

Learning	Python	Networking
Second	Edition

	

	

	

A	complete	guide	to	build	and	deploy	strong	networking	capabilities	using
Python	3.7	and	Ansible

	

	

	

	

	

	

	

José	Manuel	Ortega
Dr.	M	O	Faruque	Sarker
Sam	Washington

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learning	Python	Networking	Second
Edition
Copyright	©	2019	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

	

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Akshay	Jethani
Content	Development	Editor:	Drashti	Panchal
Technical	Editor:	Rutuja	Patade
Copy	Editor:	Safis	Editing
Project	Coordinator:	Nusaiba	Ansari
Proofreader:	Safis	Editing
Indexer:	Manju	Arasan
Graphics:	Tom	Scaria
Production	Coordinator:	Tom	Scaria

First	published:	June	2015
Second	edition:	March	2019

Production	reference:	1280319

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78995-809-6

www.packtpub.com

http://www.packtpub.com

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.packt.
com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more	details.

At	www.packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

http://www.packt.com
http://www.packt.com

Contributors

About	the	authors
José	Manuel	Ortega	is	a	software	engineer,	focusing	on	new	technologies,	open
source,	security,	and	testing.	His	career	goal	has	been	to	specialize	in	Python	and
security	testing	projects.	In	recent	years,	he	has	developed	an	interest	in	security
development,	especially	in	pentesting	with	Python.	Currently,	he	is	working	as	a
security	tester	engineer	and	his	functions	in	the	role	involves	the	analysis	and
testing	of	the	security	of	applications	in	both	web	and	mobile	environments.	He
has	taught	at	university	level	and	collaborated	with	the	official	school	of
computer	engineers.	He	has	also	been	a	speaker	at	various	conferences.	He	is
eager	to	learn	about	new	technologies	and	loves	to	share	his	knowledge	with	the
community.

I	would	like	to	thank	my	friends	and	family	for	their	help	in	both	the	professional	and	personal	fields	of	my
life.	I	would	specially	like	to	thank	Akshay	Jethani	(acquisition	editor	at	Packt	Publishing)	and	Drashti
Panchal	(content	development	editor	at	Packt	Publishing)	for	supporting	me	during	the	course	of
completing	this	book.

	

	

	

	

	

	

	

Dr.	M.	O.	Faruque	Sarker	is	a	software	architect	based	in	London;	he	has
shaped	various	Linux	and	open	source	software	solutions	mainly	on	cloud
computing	platforms	for	various	institutions.	Over	the	past	10	years,	he	has	led
numerous	Python	software	development	and	cloud	infrastructure	automation
projects.	In	2009,	he	started	using	Python	and	shepherded	a	fleet	of	miniature	E-

puck	robots	at	the	University	of	South	Wales,	Newport,	UK.	Later,	he	was
invited	to	work	on	the	Google	Summer	of	Code	(2009/2010)	programs	to
contribute	to	the	BlueZ	and	Tahoe-LAFS	open	source	projects.	He	is	the	author
of	Python	Network	Programming	Cookbook,	Packt	Publishing	and	received	his
PhD	in	multirobot	systems	at	the	University	of	South	Wales.

Sam	Washington	currently	works	at	University	College	London	as	a	systems
administrator	in	the	platform	integration	team	of	the	central	IT	department,
supporting	a	variety	of	web	hosting	and	network	services.	He	enjoys	the	daily
challenges	of	managing	the	demands	of	full-stack	enterprise	web	applications
and	looking	for	ways	to	employ	new	technologies	to	improve	services	and
workflows.	He	has	been	using	Python	for	professional	and	personal	projects	for
over	10	years.

About	the	reviewers
Bassem	Aly	is	an	experienced	SDN/NFV	senior	solution	consultant	at	Juniper
Networks	and	has	been	working	in	the	telco	industry	for	the	last	decade.	He
focuses	on	designing	and	implementing	next-generation	networks	by	leveraging
SDN,	NFV,	and	different	automation	and	DevOps	frameworks.	Also,	he	has
extensive	experience	in	architecting	and	deploying	telco	applications	on	the
cloud.	He's	the	author	of	book	Hands-On	Enterprise	Automation	with	Python,
available	from	Packt	Publishing.

I	dedicate	this	work	to	my	nephews,	Yasmina,	Yara,	Aly,	Mohamed,	and	Jody,	for	the	happiness	and	joy	that
they	bring	to	our	family.	You	are	my	small	world!

Yakov	Goldberg	is	a	Masters-trained,	InfoSec	professional	focusing	on	digital
forensics,	incident	response	(DFIR),	and	Advanced	Persistent	Threats.	He	has
experience	in	advising,	deploying	customized	security	controls	to	Fortune
Global	500	companies.	He	is	also	an	expert	in	Python,	Django	framework,
AngularJS,	ELK	stack,	reversing	malware,	and	conducting	threat	Intelligence
research.	In	2008,	Yakov	developed	his	first	Python	web	recon	tool	named
Uberharvest,	which	was	featured	in	the	famous	Backtrack	(now	known	as	Kali).
Over	the	years,	he	has	worked	at	Mandiant,	the	International	Monetary	Fund	and
TrapX,	focusing	on	DFIR	Today,	Yakov	is	a	Digital	Forensics	and	Threat
Intelligence	Director	at	enSilo	and	has	CISSP,	GIAC	GCFA,	and	CompTIA	Sec+
certs.

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Learning	Python	Networking	Second	Edition

About	Packt

Why	subscribe?

Packt.com

Contributors

About	the	authors

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Section	1:	Introduction	to	Network	and	HTTP	Programming
1.	 Network	Programming	with	Python

Technical	requirements

An	introduction	to	TCP/IP	networking

Introduction	to	TCP/IP

The	protocol	stack,	layer	by	layer

UDP

TCP

Protocol	concepts	and	the	problems	that	protocols	solve

IP	addresses	and	ports

Network	interfaces

UDP	versus	TCP

DHCP

DNS

Addressing

NAT

IPv4

IPv6

Python	network	programming	through	libraries

An	introduction	to	the PyPI Python	repository

Alternatives	to	pip	for	installing	packages

Conda

Virtualenv

Pipenv

An	introduction	to	libraries	for	network	programming	with	Python

Introduction	to	sockets

Socket	module	in	Python

Client	socket	methods

Server	socket	methods

Working	with	RFC

Extracting	RFC	information

Downloading	an	RFC	with	urllib

Downloading	an	RFC	with	requests

Downloading	an	RFC	with	the	socket	module

Interacting	with	Wireshark	with	pyshark

Introduction	to	Wireshark

Wireshark	installation

Capturing	packets	with	Wireshark

Network	traffic	in	Wireshark

Color	coding	in	Wireshark

Working	with	filters	in	Wireshark

Filtering	by	protocol	name

HTTP	objects	filter

Capture	filters

Display	filters

Analyzing	networking	traffic	using	the	pyshark	library

FileCapture	and	LiveCapture	in	pyshark

Summary

Questions

Further	reading

2.	 Programming	for	the	Web	with	HTTP
Technical	requirements

Consuming	web	services	in	Python	with	urllib

Status	codes

Handling	exceptions

HTTP	headers

User	agent

Customizing	requests	with	urllib

Getting	headers	with	a	proxy

Content	types

Extracting	links	from	a	URL	with	urllib

Getting	images	from	a	URL	with	urllib

Working	with	URLs

Consuming	web	services	in	Python	with	requests

Introduction	to	requests

Checking	HTTP	headers

Proxy	requests

Get	whois	information

Working	with	JSON

Handling	forms	with	urllib	and	requests	with	Python	3.7

Handling	forms	with	urllib

Handling	forms	with	requests

Handling	cookies	with	urllib	and	requests	with	Python

What	are	cookies?

Handling	cookies	with	urllib

Cookie	handling	with	requests

Handling	HTTP	Basic	and	Digest	Authentication	with	requests

Introduction	to	authentication	mechanisms

HTTP	Basic	authentication

HTTP	Digest	authentication

Summary

Questions

Further	reading

2.	 Section	2:	Interacting	with	APIs,	Web	Scraping,	and	Server	Scripting
3.	 Application	Programming	Interface	in	Action

Technical	requirements

Introduction	to	REST	APIs

Advantages	of	using	REST	APIs

Introduction	to	JSON	and	the	JSON	module

Encoding	and	decoding	with	the	JSON	package

Using	dict	with	JSON

Interacting	with	a	JSON	hybrid-REST	API	(Twitter)

The	Twitter	API

Registering	your	application	for	the	Twitter	API

Authenticating	requests	with	OAuth

Collecting	information	from	Twitter

A	Twitter	client

Retrieving	tweets	from	a	timeline

Searching	tweets

Consuming	the	Twitter	REST	API	with	Python

Connecting	with	the	Twitter	API

Accessing	Twitter	API	resources

Streaming	APIs	with	Tweepy

Introduction	to	XML

Getting	started	with	XML

The	XML	APIs

Processing	XML	with	ElementTree

Pretty	printing

Reading	an	XML	file

Working	with	XML	and	a	full	REST	API	(Amazon	S3	bucket)	with	the	Boto	module

The	Amazon	S3	API

Registering	with	AWS

Authentication	with	AWS

S3	buckets	and	objects

Creating	a	bucket	with	the	S3	API

Uploading	and	downloading	file

Listing	buckets

Parsing	XML	and	handling	errors

Connecting	to	S3	with	the	Python	Boto	package

Summary

Questions

Further	reading

4.	 Web	Scraping	with	BeautifulSoup	and	Scrapy
Technical	requirements

Introduction	to	web	scraping

Web	content	extraction

What	is	web	scraping?

HTML	parsers

Parsing	HTML	with	lxml

Searching	with	XPath

Extracting	information	from	web	pages	and	parsing	HTML	with	BeautifulSoup

BeautifulSoup	introduction

Access	to	elements	through	DOM

Extracting	labels	using	regex

Handling	URL	exceptions	and	not	found	tags

Introduction	to	Scrapy	components	and	architecture

What	is	Scrapy?

Scrapy	architecture

XPath	expressions

Scrapy	as	a	framework	for	performing	web	crawling	processes	and	data	analysis

Installation	of	Scrapy

Creating	a	project	with	Scrapy

Scrapy	item	class

Spiders

Creating	our	spider

Pipelines	items	and	export	formats

Scrapy	settings

Executing	Scrapy

Scrapy	execution	tips	and	tricks

EuroPython	project

Executing EuroPython	spider

Working	with	Scrapy	in	the	cloud

Scrapinghub

Portia

Start	pages	and	link	crawling

Summary

Questions

Further	reading

5.	 Engaging	with	Email
Technical	requirements

Introduction	to	email	protocols

Sending	emails	with	SMTP	through	the	smtplib	library

SMTP	protocol

Working	with	smtplib

Sending	a	basic	message

Sending	messages	in	HTML	format

Sending	emails	to	multiple	recipients

Sending	an	email	with	attachments

Authentication	with	TLS

Establishing	a	connection	with	a	Gmail	SMTP	server

Using	an	external	SMTP	service

Creating	and	sending	an	email	with	an	attachment

Learning	the	POP3	protocol	and	retrieving	emails	with	poplib

Understanding	the	POP3	protocol

Introduction	to	poplib

Retrieving	emails	with	SSL

Establishing	a	connection	with	Gmail	for	reading	emails

Gmail	account	configuration

Unread	messages

Manipulating	and	retrieving	emails	on	the	server	email	using	IMAP	with	imapclie

nt	and	imaplib

IMAP	protocol

Retrieving	emails	with	imaplib

Retrieving	emails	with	imapclient

Summary

Questions

Further	reading

6.	 Interacting	with	Remote	Systems
Technical	requirements

Understanding	the	SSH	protocol

SSH	introduction

Using	SSH	to	encrypt	sessions

How	the	SSH	protocol	works

SSH	service	features

Configuring	the	SSH	protocol	to	make	it	more	secure

SSH	terminals	and	running	commands	with	paramiko

Installing	paramiko

Establishing	an	SSH	connection	with	paramiko

Running	commands	with	paramiko

Running	an	interactive	shell	with	paramiko

SFTP	with	paramiko

Paramiko	alternatives

Fabric

Understanding	the	FTP	protocol	for	transferring	files

The	File	Transfer	Protocol

Introduction	to	ftplib

Other	ftplib	functions

Inspecting	FTP	packets	with	Wireshark

Reading	and	interacting	with	SNMP	servers

The	SNMP

MIB –	a	broad	base	of	information

Introduction	to	pysnmp

Polling	information	from	the	SNMP	agent

Reading	and	interacting	with	LDAP	servers

The	LDAP	protocol

LDAP	terminology

Introduction	to	python-ldap

The	LDAP	FreeIPA	server

Working	with	LDAP3

Accessing	the	LDAP	server

Finding	entries	in	LDAP

Summary

Questions

Further	reading

3.	 Section	3:	IP	Address	Manipulation	and	Network	Automation
7.	 Working	with	IP	and	DNS

Technical	requirements

Principles	of	the	IP	protocol

Resolving	the	IP	address	with	the	socket	package

Validating	the	IP	address	with	the	socket	package

Retrieving	the	network	configuration	of	a	local	machine

Gathering	information	with	the	netifaces	package

Using	Python	to	manipulate	IP	addresses	and	perform	CIDR	calculations

The	Python	ipaddress	module

Manipulating	IP	addresses

IP	network	objects

Subnetting	in	Python

Network	interface	objects

IP	address	objects

Planning	IP	addresses	for	your	local	area	network

The	dnspython	module	as	a	tool	for	extracting	information	from	DNS	servers

Working	with	dnspython

Determining	the	destination	of	an	MX	record	and	its	preference

Manipulating	domain	names

Converting	IPv4	and	IPv6	addresses	into	their	DNS	reverse	map	names

Inspecting	the	DNS	client	and	server	communication

GeoIP	lookups	with	pygeoip	and	python-geoip

Introduction	to	geolocation

Introduction	to	pygeoip

Introduction	to	python-geoip

The	MaxMind	database	in	Python

Summary

Questions

Further	reading

8.	 Implementing	IPv6	and	Address	Manipulation
Technical	requirements

Learning	and	understanding	the	IPv6	protocol

The	IPv6	protocol

IPv6	addresses

Representation	of	IPv6	addresses

Reserved	IPv6	addresses

First	steps	with	IPv6	– link-local

Create	an	echo	client	and	server	with	IPv6

Working	with	sockets

The	socket	server

The	socket	client

Executing	client	and	server

Understanding	netifaces	module	for	checking	IPv6	support	on	your	network

Introduction	to	netifaces

Other	packages	for	getting	interfaces

Using	the	netaddr	module	as	a	network-address	manipulation	library	for	Python

Operating	with	IPv6

Understand	ipaddress	module	as	IPv4	and	IPv6	manipulation	library

The	Python	ipaddress	module

IP	network	objects

Subnetting	in	Python	with	IPv6

Network	interface	objects

The	IP	address	objects

Planning	IP	addresses	for	your	local	area	network

Summary

Questions

Further	reading

9.	 Performing	Network	Automation	with	Python	and	Ansible
Technical	requirements

Basics	of	Ansible

Ansible	introduction

Installing	Ansible

Configuring	Ansible

Using	Ansible

Ansible's	components	and	architecture

Ansible's	architecture

Ansible's	inventory	file

Automating	network	Python	tasks	with	Ansible

Ansible	tasks

Ad-hoc	commands

Using	playbooks

Writing	Ansible	modules	with	Python

Introduction	to	Ansible	modules

Implementing	Ansible	modules	with	Python

Summary

Questions

Further	reading

4.	 Section	4:	Sockets	and	Server	Programming
10.	 Programming	with	Sockets

Technical	requirements

Basics	of	sockets

Sockets	introduction

Socket	types

Getting	information	about	ports,	protocols,	and	domains

Creating	a	TCP	client

Banner	grabbing	with	the	socket	module

Port	scanning	with	sockets

Inspecting	the	client	and	server	communication

Working	with	UDP	and	TCP	sockets	in	Python	3.7

Introduction	to	the	TCP	and	UDP	protocols

Starting	network	programming	with	Python

TCP	sockets

Starting	a	client

Capturing	packets	in	a	loopback	interface

Inspecting	the	client	and	server	interaction

Code	limitations

Creating	a	simple	UDP	client	and	UDP	server

Implementing	the	UDP	server

Implementing	the	UDP	client

Working	with	IPv6	sockets	in	Python	3.7

Implementing	the	IPv6	server

Implementing	the	IPv6	client

Executing	client	and	server

Non-blocking	and	asynchronous	socket	I/O

Introducing non-blocking	I/O

The	client-server	model	with	multiple	connections

HTTPS	and	securing	sockets	with	TLS

Implementing	the	SSL	client

Inspecting	standard	SSL	client	and	server	communication

Summary

Questions

Further	reading

11.	 Designing	Servers	and	Asynchronous	Programming
Technical	requirements

Building	a	multiprocessing-based	TCP	server

Introducing	the	concurrent.futures	module

Application	for	checking	websites

The	multiprocessing	approach

Building	asynchronous	applications	with	asyncio	and	aiohttp

Introducing	asyncio

Using	asyncio

Introducing	event	loops

Futures

Task	manipulation	with	asyncio

Downloading	files	with	asyncio

Introducing	aiohttp

Downloading	files	with	aiohttp

Other	event	loop	solutions

Building	asynchronous	network	applications	with	Tornado

Introducing	Tornado

Implementing	the	Tornado	web	server

Implementing	an	asynchronous	client	with	AsyncHTTPClient

Asynchronous	generators

Utilities	in	Tornado	for	asynchronous	network	operations

Building	asynchronous	network	applications	with	Twisted

Introduction	to	Twisted

Protocols

Building	a	basic	Twisted	server

Factory

Reactor

Building	a	socket	client

Executing	the	client	and	server

Building	a	Twisted	client

Building	a	Twisted	web	server

Building	asynchronous	network	applications	with	Celery

Celery	architecture

Installing	Celery

Installing	Redis

Introduction	to	Redis

Distributing	Python	with	Celery	and	Redis

Summary

Questions

Further	reading

12.	 Designing	Applications	on	the	Web
Technical	requirements

Writing	a	web	application	with	WSGI

Introducing	WSGI

Creating	a	WSGI	application

Existing	web	application	frameworks	(Django,	Flask,	and	Plone)

Web	frameworks

The	MVC	pattern	and	dynamic	web	programming	with	Python

The	MVC	pattern

Dynamic	web	pages

Processing	dynamic	pages

Accessing	a	database

Django	introduction

Creating	a	Django	application

Creating	RESTful	web	applications	and	working	with	Flask	and	HTTP	requests

Introducing	Flask

Routing	in	Flask

Jinja2	templating

POST	parameters	with	Flask

Other	templating	engines

Flask	extensions

Working	with	a	database	in	Flask	with	SQLAlchemy

Introducing	SQLAlchemy

Creating	a	session	and ORM	queries

Using	Flask	with	SQLAlchemy

Summary

Questions

Further	reading

Assessment

Chapter	1, Network	Programming	with	Python

Chapter	2, Programming	for	the	Web	with	HTTP

Chapter	3, Application	Programming	Interface	in	Action

Chapter	4, Web	Scraping	with	BeautifulSoup	and	Scrapy

Chapter	5, Engaging	with	Email

Chapter	6, Interacting	with	Remote	Systems

Chapter	7, Working	with	IP	and	DNS

Chapter	8, Implementing	IPv6	and	Address	Manipulation

Chapter	9, Performing	Network	Automation	with	Python	and	Ansible

Chapter	10, Programming	with	Sockets

Chapter	11, Designing	Servers	and	Asynchronous	Programming

Chapter	12, Designing	Applications	on	the	Web

Another	Book	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Network	programming	has	always	been	a	demanding	task.	With	full-featured
and	well-documented	libraries	all	the	way	up	the	stack,	Python	makes	network
programming	the	enjoyable	experience	it	should	be.

Starting	with	a	walk-through	of	today's	major	networking	protocols,	throughout
this	book,	you'll	learn	how	to	employ	Python	for	network	programming,	how	to
request	and	retrieve	web	resources,	and	how	to	extract	data	in	major	formats
over	the	web.	You'll	utilize	Python	for	emailing,	using	a	variety	of	protocols,	and
you'll	interact	with	remote	systems	and	IP	and	DNS	networking.	The	connection
of	network	devices	and	configuration	using	Python	3.7	will	also	be	covered.

As	the	book	progresses,	socket	programming	will	be	covered,	followed	by	how
to	design	servers	and	the	pros	and	cons	of	multithreaded	and	event-driven
architectures.	You'll	develop	practical	client-side	applications,	including	web
API	clients,	email	clients,	SSH,	and	FTP.	These	applications	will	also	be
implemented	through	existing	web	application	frameworks.

Who	this	book	is	for
This	book	is	ideal	for	Python	developers	or	system	administrators	with	Python
experience	who	are	looking	to	take	their	first	steps	in	network	programming.
Python	developers	who	are	interested	in	going	deeper	into	packages	related	to
asynchronous	programming	would	also	benefit	from	this	book.	A	basic
knowledge	of	Python	programming	is	recommended.

What	this	book	covers
Chapter	1,	Network	Programming	with	Python,	provides	a	review	of	basic
network	elements	and	principles.	It	discusses	how	Python	supports	network
programming	and	gives	an	overview	of	key	libraries.	It	also	provides	an
introduction	to	Wireshark	as	a	protocol	exploration	and	network	programming
diagnostic	tool.	Furthermore,	we	will	review	how	we	can	interact	with
Wireshark	from	Python	with	the	pyshark	module.

Chapter	2,	Programming	for	the	Web	with	HTTP,	covers	the	HTTP	protocol	and
the	main	Python	modules,	such	as	the	urllib	standard	library	and	the	requests
package	for	connecting	with	the	REST	API.	It	also	covers	HTTP	authentication
mechanisms	and	how	we	can	manage	them	by	means	of	the	requests	module.

Chapter	3,	Application	Programming	Interface	in	Action,	covers	how	to	use
Python	to	extract	data	from	the	major	data	formats	found	on	the	web:	HTML,
XML,	and	JSON.	An	example	of	interacting	with	REST	APIs,	such	as	Twitter
and	Amazon	S3,	will	be	used	to	guide	the	reader	through	the	essentials	of
working	with	XML	and	JSON.

Chapter	4,	Web	Scraping	with	BeautifulSoup	and	Scrapy,	covers	how	to	extract	the
content	of	a	web	page	by	automating	the	information	extraction	process	using
scraping	techniques	to	recover	data	from	the	web	automatically.	This	chapter
also	covers	some	of	the	most	powerful	tools	we	can	find	in	Python	3.7,	with	a
focus	on	BeautifulSoup	and	Scrapy.

Chapter	5,	Engaging	with	Email,	explores	the	Python	modules	that	facilitate
communication	with	email	servers	using	SMTP,	POP3,	and	IMAP	protocols.
Practical	code	examples	in	Python	3.7	will	illustrate	the	majority	of	concepts.

Chapter	6,	Interacting	with	Remote	Systems,	explains	the	different	modules	that
allow	us	to	interact	with	FTP,	SSH,	SNMP,	and	LDAP	servers.	You	will	learn
about	several	network	protocols	and	Python	libraries	that	are	used	for	interacting
with	remote	systems	through	the	Python	modules,	including	ftplib,	paramiko,
pysnmp,	and	python-ldap.

Chapter	7,	Working	with	IP	and	DNS,	explores	how	to	work	with	IPs,	DNS
networking,	and	geolocation	in	Python.	You	will	learn	about	acquiring
information	for	DNS	servers	using	the	DNSPython	module	and	extracting
information	relating	to	geolocation	IP	addresses.

Chapter	8,	Implementing	IPv6	and	Address	Manipulation,	explains	how	to	work
with	IPv6	and	address	manipulation	with	Python.	You	will	learn	by	means	of
practical	tasks,	such	as	determining	the	IP	address	of	your	own	computer	and
looking	up	other	computers	in	the	local	network.

Chapter	9,	Performing	Network	Automation	with	Python	and	Ansible,	covers	the
principles	of	Ansible	and	how	we	can	interact	with	Python.	We	will	review	how
to	write	a	Python	script	with	a	view	to	executing	a	networking	automation	task
with	Ansible	and	how	to	write	an	Ansible	module	with	Python.

Chapter	10,	Programming	with	Sockets,	introduces	the	basics	of	sockets	and	the
principles	of	UDP	and	TCP	through	examples	involving	the	socket	module	with
the	IPv4	and	IPv6	protocols.	We	will	also	cover	non-blocking	and	asynchronous
programming	and	HTTPS	and	TLS	for	secure	data	transport.

Chapter	11,	Designing	Servers	and	Asynchronous	Programming,	covers	the
principles	of	socket-based	server	design	and	how	to	build	small	servers	based	on
multiprocessing	approaches.	We	review	asyncio	and	aiohttp	for	asynchronous
operations	and	other	solutions,	such	as	Tornado,	Twisted,	and	Celery,	for
building	asynchronous	network	applications.

Chapter	12,	Designing	Applications	on	the	Web,	introduces	the	Django	and	Flask
micro	frameworks,	which	are	designed	to	facilitate	the	development	of	web
applications	under	the	Model	View	Controller	(MVC)	pattern.	Finally,	we
review	how	to	work	with	HTTP	requests	in	Flask	and	interact	with	databases
through	SQLAlchemy.

To	get	the	most	out	of	this	book
You	will	need	to	install	a	Python	distribution	on	your	local	machine,	which
should	have	at	least	4	GB	of	memory.	For	Chapter	9,	Performing	Network
Automation	with	Python	and	Ansible,	you	will	also	need	to	install	Ansible	and
have	a	local	network	configured	or	local	virtual	machines	with	Python	installed
for	executing	Ansible	scripts.	For	Chapter	11,	Designing	Servers	and
Asynchronous	Programming,	examples	involving	Celery	also	need	to	be
executed	on	a	localhost	Redis	server.

In	this	book,	all	examples	are	available	for	execution	in	Python	version	3.7	and
are	compatible	with	the	Windows	and	Unix	operating	systems.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packt.com/support
and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packt.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Learning-Python-Networking-Second-Edition.	In	case	there's	an	update	to	the
code,	it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/9781789958096_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781789958096_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"You	can	find	the	following	code	in	the
urllib_exceptions.py	file."

A	block	of	code	is	set	as	follows:

#	setup	crawler

from	scrapy.crawler	import	CrawlerProcess

crawler	=	CrawlerProcess(settings)

#	define	the	spider	for	the	crawler

crawler.crawl(MySpider())

#	start	scrapy

print("STARTING	ENGINE")

crawler.start()

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

#	setup	crawler

from	scrapy.crawler	import	CrawlerProcess

crawler	=	CrawlerProcess(settings)

#	define	the	spider	for	the	crawler

crawler.crawl(MySpider())

#	start	scrapy

print("STARTING	ENGINE")

crawler.start()

Any	command-line	input	or	output	is	written	as	follows:

pip	install	lxml

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	on	screen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Among	the	available	plugins	for	Firefox,	we	can	highlight	the
HTTP	Header	Live	add-ons."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in,	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

http://www.packt.com/

Section	1:	Introduction	to	Network
and	HTTP	Programming
In	this	section,	you	will	learn	about	the	basics	of	Python	network	programming,
networking	protocols,	and	the	main	modules	for	interacting	with	HTTP	servers.

This	section	contains	the	following	chapters:

Chapter	1,	Network	Programming	with	Python
Chapter	2,	Programming	for	the	Web	with	HTTP

Network	Programming	with	Python
This	book	will	focus	on	writing	programs	for	networks	that	use	the	Internet
Protocol	(IP)	suite.	Why	have	we	chosen	to	do	this?	Well,	out	of	the	sets	of
protocols	that	are	supported	by	the	Python	standard	library,	the	Transmission
Control	Protocol	(TCP)/IP	protocol	is	by	far	the	most	widely	employable.	It
contains	the	principal	protocols	that	are	used	by	the	internet.	By	learning	to
program	for	TCP/IP,	you'll	be	learning	how	to	potentially	communicate	with	just
about	every	device	that	is	connected	to	this	great	tangle	of	network	cables	and
electromagnetic	waves.

The	following	topics	will	be	covered	in	this	chapter:

An	introduction	to	TCP/IP	networking
Protocol	concepts	and	the	problems	that	protocols	solve
Addressing
Creating	RESTful	web	applications	and	working	with	flask	and	HTTP
requests
Interacting	flask	with	the	SQLAlchemy	database

In	this	chapter,	we	will	be	looking	at	some	concepts	and	methods	related	to
networks	and	network	programming	in	Python,	which	we'll	be	using	throughout
this	book.

This	chapter	has	two	sections.	The	first	section,	An	introduction	to	TCP/IP
networking,	offers	an	introduction	to	essential	networking	concepts,	with	a
strong	focus	on	the	TCP/IP	stack.	We'll	be	looking	at	what	comprises	a	network,
how	the	IP	allows	data	transfer	across	and	between	networks,	and	how	TCP/IP
provides	us	with	services	that	help	us	to	develop	network	applications.	This
section	is	intended	to	provide	a	grounding	in	these	essential	areas	and	to	act	as	a
point	of	reference	for	them.	If	you're	already	comfortable	with	concepts	such	as
IP	addresses,	routing,	TCP	and	User	Datagram	Protocol	(UDP),	and	protocol
stack	layers,	then	you	may	wish	to	skip	to	the	second	section,	Python	network
programming	through	libraries.

In	the	second	part,	we'll	look	at	the	way	in	which	network	programming	is

approached	with	Python.	This	chapter	provides	a	review	of	basic	network
elements	and	principles,	as	well	as	a	discussion	of	how	Python	supports	network
programming	with	an	overview	of	key	libraries.	Finally,	we	will	introduce	you	to
Wireshark,	a	protocol	exploration	and	network	programming	diagnostic	tool.	We
will	also	look	at	how	we	can	interact	with	Wireshark	from	Python	with
the	pyshark	module.

Technical	requirements
Before	you	start	reading	this	book,	you	should	already	know	the	basics	of
Python	programming,	such	as	the	basic	syntax,	variable	types,	data	type	tuple,
list	dictionary,	functions,	strings,	and	methods.	At	the	moment	of	writing	this
book,	versions	3.7.2	and	2.7.15	are	available	at	python.org/downloads.	In	this	book,
we	will	work	with	version	3.7	for	code	examples	and	installing	packages.

The	examples	and	source	code	for	this	chapter	are	available	in	this	book's
GitHub	repository	in	the	Chapter01	folder:	https://github.com/PacktPublishing/Learning-
Python-Networking-Second-Edition.

http://python.org/downloads
https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

An	introduction	to	TCP/IP
networking
This	first	section	offers	an	introduction	to	essential	networking	concepts,	with	a
strong	focus	on	the	TCP/IP	stack.

The	following	discussion	is	based	on	Internet	Protocol	version	4	(IPv4).	Since
the	internet	has	run	out	of	IPv4	addresses,	a	new	version,	IPv6,	has	been
developed,	which	is	intended	to	resolve	this	situation.	However,	although	IPv6	is
being	used	in	a	few	areas,	its	deployment	is	progressing	slowly	and	the	majority
of	the	internet	will	likely	be	using	IPv4	for	a	while	longer.	We'll	focus	on	IPv4	in
this	section,	and	then	we	will	discuss	the	relevant	changes	in	the	IPv6	section	of
this	chapter.

Introduction	to	TCP/IP
TCP/IP	is	a	set	of	protocols	that	were	designed	to	work	together	to	provide	an
end-to-end	transmission	of	messages	across	interconnected	networks.	TCP
provides	transparent	data	transfers	between	end	systems	using	the	services	of	the
lower	network	layer	to	move	the	packets	between	the	two	communicating
systems.	TCP	is	a	protocol	that	works	at	the	transport	layer,	while	IP	works	at
the	network	layer.

TCP	is	responsible	for	creating	connections	through	a	data	flow.	This	process
guarantees	that	the	data	is	delivered	to	the	destination	without	errors	and	in	the
same	order	in	which	they	came	out.	It	is	also	used	to	distinguish	different
applications	in	the	same	device.

IP	is	responsible	for	sending	and	receiving	data	in	blocks.	The	shipment	always
does	this	to	find	the	best	route,	but	without	guaranteeing	that	it	reaches	the
destination.

Both	protocols	are	used	to	solve	the	transmission	of	data	that	is	generated	in	a
network,	either	internally	or	externally.	The	union	of	these	protocols	is	done	to
ensure	that	the	information	always	arrives	on	the	best	route	and	in	the	correct
way	to	the	destination.

The	protocol	stack,	layer	by	layer
A	protocol	stack	is	organized	in	such	a	way	that	the	highest	level	of
communication	resides	in	the	top	layer.	Each	layer	in	the	stack	is	built	on	the
services	of	the	immediate	lower	layer.

The	TCP/IP	protocol	stack	has	four	layers,	as	follows:

Application	layer:	This	layer	manages	the	high-level	protocols,	including
representation,	coding,	and	dialogue	control	issues.	It	handles	everything
related	to	applications,	and	the	data	is	packed	appropriately	for	the	next
layer.	It	is	a	user	process	that	cooperates	with	other	processes	on	the	same
host	or	a	different	one.	Examples	of	protocols	at	this	layer	are
TELNET,	File	Transfer	Protocol	(FTP),	and	Simple	Mail	Transfer
Protocol	(SMTP).
Transport	layer:	This	layer	handles	quality	of	service,	reliability,	flow
control,	and	error	correction.	One	of	its	protocols	is	the	TCP,	which
provides	reliable	network	communications	that	are	oriented	to	the
connection,	unlike	UDP,	which	is	not	connection	oriented.	It	also	provides
data	transfer.	Example	protocols	include	TCP	(connection	oriented)	and
UDP	(non-connection	oriented).
Network	layer:	The	purpose	of	the	internet	layer	is	to	send	packets	from
the	source	of	any	network	and	make	them	reach	their	destination,	regardless
of	the	route	they	take	to	get	there.
Network	access	layer:	This	is	also	called	a	host-to-host	network	layer.	It
includes	the	LAN	and	WAN	protocols,	and	the	details	in	the	physical	and
data	link	layers	of	the	OSI	model.	Also	known	as	the	link	layer	or	data	link
layer,	the	network	interface	layer	is	the	interface	to	the	current	network
hardware.

The	following	diagram	represents	the	TCP/IP	protocol	stack:

The	IP	is	the	most	important	protocol	of	the	network	layer.	It	is	a	non-connection
oriented	protocol	that	does	not	assume	reliability	of	the	lower	layers.	IP	does	not
provide	reliability,	flow	control,	or	error	recovery.	These	functions	must	be
provided	by	the	upper	level,	in	the	transport	layer	with	TCP	as	the	transport
protocol,	or	in	the	application	layer	if	UDP	is	being	used	as	the	transport
protocol.	The	message	unit	in	an	IP	network	is	called	an	IP	datagram.	This	is	the
basic	unit	of	information	that	is	transmitted	from	one	side	of	the	TCP/IP	network
to	the	other.

The	application	layer	is	where	all	of	the	user	interaction	with	the	computer	and
services	occurs.	As	an	example	of	this,	any	browser	can	work,	even	without	the
TCP/IP	stack	installed.	Usually,	we	use	browsers	such	as	Google	Chrome,
Mozilla,	Firefox,	Internet	Explorer,	and	Opera	for	communicating	with	this
layer.

When	initiating	a	query	for	a	remote	document,	the	HTTP	protocol	is	used.	Each
time	we	request	a	communication	of	this	type,	the	browser	interacts	with	the
application	layer,	which,	in	turn,	serves	as	an	interface	between	the	user's
applications	and	the	protocol	stack,	which	will	provide	communication	with	the
help	of	the	lower	layers.

The	responsibilities	of	the	application	layer	are	to	identify	and	establish	the
communication	availability	of	the	target	destination,	as	well	as	to	determine	the
resources	for	that	communication	to	exist.	Some	of	the	protocols	of	the
application	layer	are	as	follows:

FTP
HTTP
Post	Office	Protocol	version	3	(POP3)
Internet	Message	Access	Protocol	(IMAP)
SMTP
Simple	Network	Management	Protocol	(SNMP)
TELNET—TCP/IP	Terminal	Emulation	Protocol

UDP
UDP	is	a	non-connection	oriented	protocol.	That	is,	when	machine	A	sends
packets	to	machine	B,	the	flow	is	unidirectional.	The	data	transfer	is	made
without	warning	the	recipient	of	machine	B,	and	the	recipient	receives	the	data
without	sending	a	confirmation	to	the	sender	of	machine	A.

This	is	because	the	data	that's	sent	by	the	UDP	protocol	does	not	allow	you	to
transmit	information	related	to	the	sender.	Therefore,	the	recipient	will	not	know
about	the	sender's	data,	except	their	IP	address.	Let's	have	a	look	at	some
properties	of	the	UDP	protocols:

Unreliable:	In	UDP,	there	is	no	concept	of	packet	retransmission.
Therefore,	when	a	UDP	packet	is	sent,	it	is	not	possible	to	know	whether
the	packet	has	reached	its	destination	since	there	are	no	errors	in	the
correction	mechanism.
Not	ordered:	The	order	in	which	packages	are	sent	and	received	cannot	be
determined.
Datagrams:	The	integrity	of	packet	delivery	is	done	individually	and	can
only	be	checked	to	ensure	that	the	packages	arrived	correctly.
Lightweight	and	speed:	The	UDP	protocol	does	not	provide	error	recovery
services,	so	it	offers	a	direct	way	to	send	and	receive	datagrams	through	an
IP	network.	It	is	used	when	speed	is	an	important	factor	in	the	transmission
of	information,	for	example,	when	streaming	audio	or	video.

TCP
The	TCP	protocol,	unlike	the	UDP	protocol,	is	connection	oriented.	When
machine	A	sends	data	to	machine	B,	machine	B	is	informed	of	the	arrival	of	this
data	and	confirms	its	good	reception.

Here,	the	CRC	control	of	data	intervenes,	which	is	based	on	a	mathematical
equation	that	allows	you	to	verify	the	integrity	of	the	transmitted	data.	In	this
way,	if	the	received	data	is	corrupted,	the	TCP	protocol	allows	the	recipients	to
request	the	sender	to	send	them	again.

This	protocol	is	one	of	the	main	protocols	of	the	transport	layer	of	the	TCP/IP
model,	since,	at	the	application	level,	it	makes	it	possible	to	manage	data	coming
from	the	lowest	level	of	the	model.

So,	when	data	is	provided	to	the	IP	protocol,	it	binds	it	in	IP	datagrams,	fixing
the	field	protocol	with	6,	so	that	you	know	in	advance	that	the	protocol	is	TCP.
This	protocol	is	connection	oriented,	so	it	allows	two	machines	that	are
communicated	to	control	the	status	of	the	transmission.

Several	programs	within	a	data	network	that	are	composed	of	computers	can	use
TCP	to	create	connections	between	them,	by	means	of	which	they	can	send	a
data	flow.	Thus,	the	protocol	guarantees	that	the	data	will	be	delivered	to	its
destination.	The	most	important	thing	to	take	into	account	is	that	it	has	no	errors
and	maintains	the	order	in	which	they	are	transmitted.

On	the	basis	of	the	preceding	example,	we	can	devise	the	properties	of	TCP:

Reliable:	The	TCP	protocol	has	the	ability	to	manage	the	attempts	that	can
be	made	to	send	a	message	if	a	packet	is	lost,	and	can	resend	those
fragments	that	were	not	sent	on	the	first	attempt.
Ordered:	The	messages	are	delivered	in	a	particular	order.
Heavyweight:	TCP	has	the	ability	to	verify	that	the	connection	can	be
established	through	a	socket	before	any	packet	can	be	sent,	for	which	it	uses
three	sending	confirmation	packets,	called	SYN,	SYN-ACK,	and	ACK.

Protocol	concepts	and	the	problems
that	protocols	solve
This	section	explains	concepts	regarding	IP	addresses	and	ports,	network
interfaces	in	a	local	machine,	and	other	concepts	related	to	protocols,	such
as	Dynamic	Host	Configuration	Protocol	(DHCP)	and	DNS.

IP	addresses	and	ports
IP	addresses	are	addresses	that	help	to	uniquely	identify	a	device	over	the
internet.	A	port	is	an	endpoint	for	communication	in	an	operating	system.

When	you	connect	to	the	internet,	your	device	is	assigned	a	public	IP	address,
and	each	website	you	visit	also	has	a	public	IP	address.	So	far,	we	have	used
IPv4	as	an	addressing	system.	The	main	problem	with	this	is	that	the	internet	is
running	out	of	IPv4	public	address	space	and	so	it	is	necessary	to	introduce	IPv6,
which	provides	a	larger	address	space.	

The	following	are	the	addresses	for	total	IPv4	and	IPv6	space:

Total	IPv4	space:	4,	294,	967,	296	addresses
Total	IPv6	space:	340,	282,	366,	920,	938,	463,	463,	374,	607,	431,	768,	211,	456
addresses

The	ports	are	numerical	values	(between	0	and	65,	535)	that	are	used	to	identify
the	processes	that	are	being	communicated.	At	each	end,	each	process	that
intervenes	in	the	communication	process	uses	a	single	port	to	send	and	receive
data.

In	conjunction	with	this,	two	pairs	of	ports	and	IP	addresses,	you	can	identify
two	processes	in	a	TCP/IP	network.	A	system	might	be	running	thousands	of
services,	but	to	uniquely	identify	a	service	on	a	system,	the	application	requires	a
port	number.

Port	numbers	are	sometimes	seen	on	the	web	or	other	URLs	as	well.	By	default,
HTTP	uses	port	80,	and	HTTPS	uses	port	443,	but	a	URL	like
http://www.domain.com:8080/path/	specifies	that	the	web	browser,	instead	of	using
default	port	80,	is	connecting	to	port	8080	of	the	HTTP	server.

Some	common	ports	are	as	follows:

22:	Secure	Shell	(SSH)
23:	Telnet	remote	login	service

25:	SMTP
53:	Domain	Name	System	(DNS)	service
80:	HTTP

Regarding	IP	addresses,	we	can	differentiate	two	types,	depending	on	whether
they	are	for	a	public	or	private	rank	for	the	internal	network	of	an	organization:

Private	IP	address:	Ranges	from	192.168.0.0	to	192.168.255.255,	172.16.0.0
to	172.31.255.255,	or	10.0.0.0	to	10.255.255.255
Public	IP	address:	A	public	IP	address	is	an	IP	address	that	your	home	or
business	router	receives	from	your	Internet	Service	Provider	(ISP)

Network	interfaces
You	can	find	out	what	IP	addresses	have	been	assigned	to	your	computer	by
running	ip	addr	or	ipconfig	all	on	Windows	systems,	or	on	a	Terminal.

If	we	run	one	of	these	commands,	we	will	see	that	the	IP	addresses	are	assigned
to	our	device's	network	interfaces.	On	Linux,	these	will	have	names,	such	as	eth0;
on	Windows,	these	will	have	phrases,	such	as	Ethernet	adapter	Local	Area
Connection.

You	will	get	the	following	output	when	you	run	the	ip	addr	command	on	Linux:

You	will	get	the	following	options	when	you	run	the	ipconfig	command	on
Windows:

You	will	get	IP	addresses	for	the	interfaces	in	your	local	machine	when	you	run
the	ip	addr	command:

Every	device	has	a	virtual	interface	called	the	loopback	interface,	which	you	can
see	in	the	preceding	listing	as	interface	1.	This	interface	doesn't	actually	connect
to	anything	outside	the	device,	and	only	the	device	itself	can	communicate	with
it.	While	this	may	sound	a	little	redundant,	it's	actually	very	useful	when	it
comes	to	local	network	application	testing,	and	it	can	also	be	used	as	a	means	of
inter-process	communication.	The	loopback	interface	is	often	referred	to	as
localhost,	and	it	is	almost	always	assigned	the	IP	address	127.0.0.1.

UDP	versus	TCP
The	main	difference	between	TCP	and	UDP	is	that	TCP	is	oriented	to
connections,	where	once	the	connection	is	established,	the	data	can	be
transmitted	in	both	directions,	while	UDP	is	a	simpler	internet	protocol,	without
the	need	for	connections.

Now,	we	have	to	analyze	the	differences	according	to	certain	features:

Differences	in	data	transfer:	TCP	ensures	the	orderly	and	reliable	delivery
of	a	series	of	data	from	the	user	to	the	server	and	vice	versa.	UDP	is	not
dedicated	to	point-to-point	connections	and	does	not	verify	the	availability
of	whoever	receives	the	data.

Reliability:	TCP	is	more	reliable	because	it	manages	to	recognize	that	the
message	was	received	and	retransmits	the	packets	that	have	been	lost.	UDP
does	not	verify	what	the	communication	has	produced	because	it	does	not
have	the	ability	to	check	the	connection	and	retransmit	the	packets.
Connection:	TCP	is	a	protocol	that's	oriented	toward	the	congestion	control
of	the	network	and	the	reliability	of	the	frames,	while	UDP	is	a	non-
connection	oriented	protocol	that's	designed	to	establish	a	rapid	exchange	of
packets	without	the	need	to	know	whether	the	packets	are	arriving	correctly.
Transfer	method:	TCP	reads	data	as	a	sequence	and	the	message	is
transmitted	in	defined	segments.	UDP	messages	are	data	packets	that	are
sent	individually	and	their	integrity	is	verified	upon	arrival.
How	TCP	and	UDP	work:	A	TCP	connection	is	established	through	the
process	of	starting	and	verifying	a	connection.	Once	the	connection	has
been	established,	it	is	possible	to	start	the	data	transfer,	and	once	the
transfer	is	complete,	the	connection	is	completed	by	closing	the	established
virtual	circuits.	UDP	provides	an	unreliable	service	and	the	data	may	arrive
unordered,	duplicated,	or	incomplete,	and	it	doesn't	notify	either	the	sender
or	receiver.	UDP	assumes	that	corrections	and	error	checking	are	not
necessary,	avoiding	the	use	of	resources	in	the	network	interface.
TCP	and	UDP	applications:	TCP	is	used	mainly	when	you	need	to	use
error	correction	mechanisms	in	the	network	interface,	while	UDP	is	mainly
used	in	applications	based	on	small	requests	from	a	large	number	of	clients,

for	example,	DNS	and	Voice	Over	IP	(VoIP).

DHCP
IP	addresses	can	be	assigned	to	a	device	by	a	network	administrator	in	one	of
two	ways:	statically,	where	the	device's	operating	system	is	manually	configured
with	the	IP	address,	or	dynamically,	where	the	device's	operating	system	is
configured	by	using	the	DHCP.

When	using	DHCP,	as	soon	as	the	device	first	connects	to	a	network,	it	is
automatically	allocated	an	address	by	a	DHCP	server	from	a	predefined	pool.
Some	network	devices,	such	as	home	broadband	routers,	provide	a	DHCP	server
service	out	of	the	box;	otherwise,	a	DHCP	server	must	be	set	up	by	a	network
administrator.	DHCP	is	widely	deployed,	and	it	is	particularly	useful	for
networks	where	different	devices	may	frequently	connect	and	disconnect,	such
as	public	Wi-Fi	hotspots	or	mobile	networks.

DHCP	environments	require	a	DHCP	server	that's	been	configured	with	the
appropriate	parameters	for	the	proposed	network.	The	main	DHCP	parameters
include	the	range	or	pool	of	available	IP	addresses,	the	correct	subnet	masks,	and
the	gateway	and	server	name	addresses.

A	DHCP	server	dynamically	allocates	IP	addresses	instead	of	having	to	depend
on	the	static	IP	address	and	is	responsible	for	assigning,	leasing,	reallocating,
and	renewing	IP	addresses.	The	protocol	will	assign	an	address	that	is	available
in	a	subnet	or	pool.	This	means	that	a	new	device	can	be	added	to	a	network
without	you	having	to	manually	assign	it	a	unique	IP	address.	DHCP	can	also
combine	static	and	dynamic	IPs,	and	also	determines	how	long	an	IP	address	is
assigned	to	a	device.

When	a	computer	in	a	network	wants	to	obtain	a	valid	network	configuration,
usually	when	starting	up	the	machine,	it	issues	a	DHCP	Discover	request.	When
this	request—which	is	made	through	a	UDP	broadcast	packet—reaches	a	DHCP
server,	a	negotiation	is	established	whereby	the	server	grants	the	use	of	an	IP,
and	other	network	parameters,	to	the	client	for	a	certain	time.

It	is	important	to	take	note	of	the	following:

The	client	does	not	need	to	have	the	network	interface	configured	to	issue	a
DHCP	Discover	request.
The	DHCP	server	can	be	on	the	same	or	a	different	subnet	as	the	client	will
be	on.	If	the	client	does	not	have	network	configuration,	it	cannot	reach
other	subnets.
When	the	DHCP	server	receives	the	DHCP	request,	Discover	obtains	the
Mac	address	of	the	client,	which	may	affect	the	IP	address	assigned	to	the
client.
The	DHCP	server	grants	network	configuration	to	the	client	for	a	certain
time.	Before	reaching	the	deadline,	the	client	may	try	to	renew	the
concession.	If	a	concession	occurs,	the	client	must	stop	using	the	network
configuration.

To	make	a	DHCP	request,	you	can	use	a	client	such	as	dhclient	(native
GNU/Linux)	or	the	ipconfig/renew	command	(in	the	case	of	Windows).	When	a
network	configuration	is	obtained,	the	client	uses	it:

DNS
DNS	allows	for	the	association	of	domain	names	with	IP	addresses,	which
greatly	facilitates	access	to	the	machines	on	the	network.	Without	DNS,	referring
to	a	machine	implies	remembering	your	IP	address.	Working	directly	with	IP
addresses	is	not	comfortable,	because	they	are	difficult	to	remember	and	because
the	IP	address	of	a	station	can	vary	for	different	reasons.	Whoever	uses	the
domain	name	does	not	need	to	worry	about	these	changes	(although	the	DNS
server	must	know	the	real	IP	in	each	case).

The	domain	name	system	is	a	distributed	and	hierarchical	database,	and	although
its	main	function	is	to	associate	domain	names	with	IP	addresses,	it	can	also
store	other	information.	The	DNS	service	is	one	of	the	pillars	of	the	network,	so
its	availability	must	be	absolute.	To	achieve	this,	redundant	servers	are	used	and
extensive	caching	is	used	to	improve	their	performance.

The	nslookup	tool	comes	with	most	Linux	and	Windows	systems	and	lets	us	query
DNS	on	the	command	line,	as	follows:

We	can	use	this	command	to	request	the	IP	address	for	the	packtpub.com	domain:

With	this	command,	we	determined	that	the	packtpub.com	host	has	the	IP	address
83.166.169.231.	DNS	distributes	the	work	of	looking	up	hostnames	by	using	a
hierarchical	system	of	caching	servers.	Internet	DNS	services	are	a	set	of
databases	that	are	scattered	on	servers	around	the	world.	These	databases
indicate	the	IP	that	is	associated	with	a	name	of	a	website.	When	we	enter	an
address	in	the	search	engine,	for	example,	packtpub.com,	the	computer	asks	the
DNS	servers	of	the	internet	provider	to	find	the	IP	address	associated	with
packtpub.com.	If	the	servers	do	not	have	that	information,	a	search	is	made	with
other	servers	that	may	have	it.

When	we	run	our	preferred	browser	and	write	a	web	address	in	its	address	bar	to
access	the	content	that's	hosted	on	the	site,	the	DNS	service	will	translate	these
names	into	elements	that	can	be	understood	and	used	for	the	equipment	and
systems	that	make	up	the	internet.

On	Windows	computers,	this	system	is	configured	by	default	to	automatically
use	the	DNS	server	of	our	internet	service	provider.	At	this	point,	we	may	have
different	DNS	providers	such	as	OpenDNS,	UltraDNS,	or	Google	DNS	as	an
alternative,	but	we	must	always	keep	in	mind	that	these	providers	offer	us
minimum	security	conditions	to	navigate.	More	information	about	configuration
using	Google	DNS	can	be	found	at	the	following	URL:	https://developers.google.co
m/speed/public-dns/.

https://developers.google.com/speed/public-dns/

Addressing
This	section	explains	concepts	regarding	the	Network	Address	Translation
(NAT)	protocol	and	introduces	the	differences	between	the	IPv4	and	IPv6
formats.

NAT
This	mechanism	makes	the	traffic	from	the	private	network	appear	to	be	coming
from	a	single	valid	public	internet	address,	which	effectively	hides	the	private
addresses	from	the	internet.	If	you	inspect	the	output	of	ip	addr	or	ipconfig/all
commands,	then	you	will	find	that	your	devices	are	using	private	range
addresses,	which	would	have	been	assigned	to	them	by	your	DHCP	server	or	by
your	router	through	DHCP	address	dynamic	assignment.

The	private	address	ranges	that	are	usually	assigned	are	as	follows:

10.0.0.0	to	10.255.255.255
172.16.0.0	to	172.31.255.255
192.168.0.0	to	192.168.255.255

The	idea	is	simple:	make	computer	networks	use	a	range	of	private	IP	addresses
and	connect	to	the	internet	using	a	single	public	IP	address.	Thanks	to	this	patch,
large	companies	will	only	be	able	to	use	one	public	IP	address	instead	of	as
many	public	addresses	as	the	number	of	machines	there	are	in	that	company.	It	is
also	used	to	connect	home	networks	to	the	internet.

There	are	two	types	of	operations	with	NAT:

Static:	A	private	IP	address	is	always	translated	into	the	same	public	IP
address.	This	mode	of	operation	would	allow	a	host	within	the	network	to
be	visible	from	the	internet.
Dynamic:	The	router	is	assigned	several	public	IP	addresses	so	that	each
private	IP	address	is	mapped	using	one	of	the	public	IP	addresses	that	the
router	has	assigned.	This	is	done	so	that	each	private	IP	address	corresponds
to	at	least	one	public	IP	address.

Each	time	a	host	requires	an	internet	connection,	the	router	will	assign	a	public
IP	address	that	is	not	being	used.	This	time,	security	is	increased	because	it
makes	it	difficult	for	an	external	host	to	enter	the	network	since	public	IP
addresses	are	constantly	changing.

IPv4
IPv4	is	the	technology	that	allows	computers	to	connect	to	the	internet,	whatever
device	we	use.	Each	of	these	devices,	in	the	instance	that	it	connects	to	the
internet,	gets	a	unique	code	so	that	we	can	send	and	receive	data	with	other
connections.

As	we	already	know,	the	IPv4	protocol	transfers	addresses	that	are	32	bits	in
length.	With	this	type	of	architecture,	it	can	manage	approximately	4.3	billion
IPs	around	the	world,	but	the	explosion	of	internet	users	in	recent	years	has
meant	that	the	system	is	at	its	maximum	capacity	in	regards	to	supporting	more
IP	addresses.

The	IPv4	address	space	is	limited	to	4.3	billion	addresses.	To	obtain	this	number,
we	could	decompose	an	IPv4	address	as	a	32-bit	number	consisting	of	four
groups	of	8	bits.	In	this	way,	we	would	have	256	different	combinations	to
represent	one	IP	address.	This	means	that	the	possible	values	of	an	octet	in	an	IP
address	would	be	in	the	range	of	0	to	255.

To	obtain	the	total	number	of	IPv4	addresses,	it	would	be	enough	to	multiply	256
*	256	*	256	*	256,	since	an	IPv4	address	is	composed	of	four	sections	with	256
possibilities	in	each	section.	In	total,	we	would	have	4,	294,	967,	296	addresses.	In
IPv4,	the	universe	of	addresses	is	divided	into	ranges	or	classes,	as	follows:

CLASS	A:	1.0.0.0-126.255.255.255
CLASS	B:	128.0.0.0-191.255.255.255
CLASS	C:	192.0.0.0-223.255.255.255
CLASS	D:	224.0.0.0-239.255.255.255	(Multicast)
CLASS	E:	240.0.0.0-254.255.255.255	(Experimental)

By	definition,	multicast	and	experimental	addresses	cannot	be	used	as	source
addresses,	so	the	previous	number	must	be	subtracted	from	520,	093,	696.	Within
the	different	classes,	we	have	network	0.0.0.0	(the	identifier	of	all	IPv4
networks),	network	127.0.0.0	(used	to	identify	physical	loopbacks	in	network
equipment),	and	network	255.0.0.0	(which	includes	the	broadcast	addresses	of	all
networks).	With	these	restrictions,	116,	777,	216	addresses	must	be	removed	from

the	total.

Due	to	this,	the	need	to	find	a	replacement	was	palpable,	and	it	fell	to	the	IPv6
protocol,	the	sixth	revision	of	IP	and	the	natural	successor	of	IPv4,	to	create
more	addresses.

IPv6
IPv6	addresses	have	a	length	of	128	bits,	and	so	the	total	number	of	addresses
will	be	raised	to	128,	where	each	IPv6	address	consists	of	eight	groups	of	16
bits,	separated	by	colons	:,	and	expressed	in	hexadecimal	notation.

Unlike	IPv4,	in	which	addresses	consist	of	four-thirds	of	decimal	digits	ranging
from	0	to	255,	IPv6	addresses	contain	eight	groups	of	four	hexadecimal
digits.	fe80::e53f:	e43b:	ad07:	9cab	is	an	example	of	an	IPv6	address.

With	the	ifconfig	command	on	a	Windows	machine,	we	can	see	an	example
configuration:

Python	network	programming
through	libraries
In	this	section,	we're	going	to	look	at	a	general	approach	to	network
programming	in	Python.	We'll	be	introducing	the	main	standard	library	modules
and	look	at	some	examples	to	see	how	they	relate	to	the	TCP/IP	stack.

An	introduction	to	the	PyPI	Python
repository
The	Python	Package	Index,	or	PyPI,	which	can	be	found	at	https://pypi.python.org,
is	the	official	software	repository	for	third-party	applications	in	the	Python
programming	language.	Python	developers	want	it	to	be	a	comprehensive
catalog	of	all	Python	packages	written	in	open	source	code.

To	download	packages	from	the	PyPI	repository,	you	can	use	several	tools,	but
in	this	section,	we	will	explain	how	to	use	the	pip	command	to	do	so.	pip	is	the
official	package	installer	that	comes	already	installed	when	you	install	Python	on
your	local	machine.

You	can	find	all	of	the	Python	networking	libraries	in	the	Python	PyPI
repository,	such	as	requests	(https://pypi.org/project/requests)	and	urllib	(https://pyp
i.org/project/urllib3).

Installing	a	package	using	pip	is	very	simple—just	execute	pip	install
<package_name>;	for	example,	pip	install	requests.	We	can	also	install	pip	using	the
package	manager	of	a	Linux	distribution.	For	example,	in	a	Debian	or	Ubuntu
distribution,	we	can	use	the	apt-get	command:

$	sudo	apt-get	install	python-pip

https://pypi.python.org
https://pypi.org/project/requests
https://pypi.org/project/urllib3

Alternatives	to	pip	for	installing
packages
We	can	use	alternatives	such	as	conda	and	Pipenv	for	the	installation	of	packages
in	Python.	Other	components,	such	as	virtualenv,	also	exist	for	this	reason.

Conda
Conda	is	another	way	in	which	you	can	install	Python	packages,	though	its
development	and	maintenance	is	provided	by	another	Anaconda	company.	An
advantage	of	the	Anaconda	distribution	is	that	it	comes	with	over	100	very
popular	Python	packages,	so	you	can	start	elbowing	in	Python	straight	away.
You	can	download	conda	from	the	following
link:	https://www.anaconda.com/download/.

Installing	packages	with	conda	is	just	as	easy	as	with	pip—just	run	conda	install
<package_name>;	for	example,	conda	install	requests.

The	conda	repository	is	independent	of	the	official	Python	repository	and	does
not	find	all	of	the	Python	packages	that	are	in	PyPI,	but	you	will	find	all	of	the
Python	networking	libraries	such	as	requests	(https://anaconda.org/anaconda/requests),
urllib,	and	socket.

https://www.anaconda.com/download/
https://anaconda.org/anaconda/requests

Virtualenv
virtualenv	is	a	Python	tool	for	creating	virtual	environments.	To	install	it,	you	just
have	to	run	pip	install	virtualenv.	With	this,	you	can	start	creating	virtual
environments,	for	example,	virtualenv	ENV.	Here,	ENV	is	a	directory	that	will	be
installed	in	a	virtual	environment	that	includes	a	separate	Python	installation.	For
more	information,	see	the	complete	guide,	which	includes	information	on	how	to
activate	the	environments:	https://virtualenv.pypa.io.

https://virtualenv.pypa.io

Pipenv
Pipenv	is	a	relatively	new	tool	that	modernizes	the	way	Python	manages
dependencies,	and	includes	a	complete	dependency	resolver	in	the	same	way
conda	does	for	handling	virtual	environments,	locking	files,	and	more.	Pipenv	is
an	official	Python	program,	so	you	just	have	to	run	pip	install	pipenv	to	install	it.
You	can	find	an	excellent	guide	for	Pipenv	in	English	here:	https://realpython.com/
pipenv-guide.

https://realpython.com/pipenv-guide/

An	introduction	to	libraries	for
network	programming	with	Python
Python	provides	modules	for	interfacing	with	protocols	at	different	levels	in	the
network	stack,	and	modules	that	support	higher-layer	protocols	follow	the
aforementioned	principle	by	using	the	interfaces	that	are	supplied	by	the	lower-
level	protocols.

Introduction	to	sockets
The	socket	module	is	Python's	standard	interface	for	the	transport	layer,	and	it
provides	functions	for	interacting	with	TCP	and	UDP,	as	well	as	for	looking	up
hostnames	through	DNS.	In	this	section,	we	will	introduce	you	to	this	module.
We'll	learn	much	more	about	this	in	Chapter	10,	Programming	with	Sockets.

A	socket	is	defined	by	the	IP	address	of	the	machine,	the	port	on	which	it	listens,
and	the	protocol	it	uses.	The	types	and	functions	that	are	needed	to	work	with
sockets	are	in	Python	in	the	socket	module.

Sockets	are	classified	into	stream	sockets,	socket.SOCK_STREAM,	or	datagram
sockets,	socket.SOCK_DGRAM,	depending	on	whether	the	service	uses	TCP,	which	is
connection	oriented	and	reliable,	or	UDP,	respectively.

The	sockets	can	also	be	classified	according	to	their	family.	We	have	Unix
sockets,	such	as	socket.AF_UNIX,	that	were	created	before	the	conception	of	the
networks	and	are	based	on	socket.AF_INET	file,	which	are	based	on	network
connections	and	sockets	related	to	connections	with	IPv6,	such	as	socket.AF_INET6.

Socket	module	in	Python
To	create	a	socket,	the	socket.socket()	constructor	is	used,	which	can	take	the
family,	type,	and	protocol	as	optional	parameters.	By	default,	the	AF_INET	family
and	the	SOCK_STREAM	type	are	used.

The	general	syntax	is	socket.socket(socket_family,	socket_type,	protocol=0),	where	the
parameters	are	as	follows:

socket_family:	This	is	either	AF_UNIX	or	AF_INET
socket_type:	This	is	either	SOCK_STREAM	or	SOCK_DGRAM
protocol:	This	is	usually	left	out,	defaulting	to	0

Client	socket	methods
To	connect	to	a	remote	socket	in	one	direction,	we	can	use	the	connect()	method
by	using	the	connect	(host,	port)	format:

import	socket

#	a	socket	object	is	created	for	communication

client_socket	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

#	now	connect	to	the	web	server	on	port	80

client_socket.connect(("www.packtpub.com",	80))

Server	socket	methods
The	following	are	some	server	socket	methods,	which	are	also	shown	in	the
following	code:

bind():	With	this	method,	we	can	define	in	which	port	our	server	will	be
listening	to	connections
listen(backlog):	This	method	makes	the	socket	accept	connections	and	accept
to	start	listening	to	connections
accept():	This	method	is	used	for	accepting	the	following	connection:

import	socket

serversocket	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

#bind	the	socket	to	localhost	on	port	80

serversocket.bind((‘localhost',	80))

#become	a	server	socket	and	listen	a	maximum	of	10	connections

serversocket.listen(10)

Working	with	RFC
The	Request	for	Comments,	better	known	by	its	acronym,	RFC,	are	a	series	of
publications	of	the	internet	engineering	working	group	that	describe	various
aspects	of	the	operation	of	the	internet	and	other	computer	networks,	such	as
protocols	and	procedures.

Each	RFC	defines	a	monograph	or	memorandum	that	engineers	or	experts	in	the
field	have	sent	to	the	Internet	Engineering	Task	Force	(IETF)	organization,
the	most	important	technical	collaboration	consortium	on	the	internet,	so	that	it
can	be	valued	by	the	rest	of	the	community.

RFCs	cover	a	wide	range	of	standards,	and	TCP/IP	is	just	one	of	these.	They	are
freely	available	on	the	IETF's	website,	which	can	be	found	at
www.ietf.org/rfc.html.	Each	RFC	has	a	number;	IPv4	is	documented	by	RFC	791,
and	other	relevant	RFCs	will	be	mentioned	as	we	progress	throughout	this	book.

The	most	important	IPs	are	defined	by	RFC,	such	as	the	IP	protocol	that's
detailed	in	RFC	791,	FTP	in	RFC	959,	or	HTTP	in	RFC	2616.

You	can	use	this	service	to	search	by	RFC	number	or	keyword.	This	can	be
found	here:	https://www.rfc-editor.org/search/rfc_search.php.

In	the	following	screenshot,	we	can	see	the	result	of	searching	for	RFC	number
2616	for	the	HTTP	protocol:

https://www.ietf.org/
https://www.rfc-editor.org/search/rfc_search.php

Extracting	RFC	information
The	IETF	landing	page	for	RFCs	is	http://www.rfc-editor.org/rfc/,	and	reading
through	it	tells	us	exactly	what	we	want	to	know.	We	can	access	a	text	version	of
an	RFC	using	a	URL	of	the	form	http://www.rfc-editor.org/rfc/rfc741.txt.	The	RFC	num
ber	in	this	case	is	741.	Therefore,	we	can	get	the	text	format	of	RFCs	using	HTTP.

At	this	point,	we	can	build	a	Python	script	for	downloading	an	RCF	document
from	IETF,	and	then	display	the	information	that's	returned	by	the	service.	We'll
make	it	a	Python	script	that	just	accepts	an	RFC	number,	downloads	the	RFC	in
text	format,	and	then	prints	it	to	stdout.

The	main	modules	that	we	can	find	in	Python	to	make	HTTP	requests	are	urllib
and	requests,	which	work	at	a	high	level.	We	can	also	use	the	socket	module	if	we
want	to	work	at	a	low	level.

http://www.rfc-editor.org/rfc/
http://www.rfc-editor.org/rfc/rfc741.txt
http://www.rfc-editor.org/rfc/rfc741.txt

Downloading	an	RFC	with	urllib
Now,	we	are	going	to	write	our	Python	script	using	the	urllib	module.	For	this,
create	a	text	file	called	RFC_download_urllib.py:

#!/usr/bin/env	python3

import	sys,	urllib.request

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

template	=	'http://www.rfc-editor.org/rfc/rfc{}.txt'

url	=	template.format(rfc_number)

rfc_raw	=	urllib.request.urlopen(url).read()

rfc	=	rfc_raw.decode()

print(rfc)

We	can	run	the	preceding	code	by	using	the	following	command:

$	python	RFC_download_urllib.py	2324

This	is	the	output	of	the	previous	script,	where	we	can	see	the	RFC	description
document:

First,	we	import	our	modules	and	check	whether	an	RFC	number	has	been
supplied	on	the	command	line.	Then,	we	construct	our	URL	by	substituting	the
supplied	RFC	number.	Next,	the	main	activity,	the	urlopen()	call,	will	construct	an
HTTP	request	for	our	URL,	and	then	it	will	connect	to	the	IETF	web	server	and
download	the	RFC	text.	Next,	we	decode	the	text	to	Unicode,	and	finally	we
print	it	out	to	the	screen.

Downloading	an	RFC	with	requests
Now,	are	going	to	create	the	same	script	but,	instead	of	using	urllib,	we	are	going
to	use	the	requests	module.	For	this,	create	a	text	file	called
RFC_download_requests.py:

#!/usr/bin/env	python3

import	sys,	requests

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

template	=	'http://www.rfc-editor.org/rfc/rfc{}.txt'

url	=	template.format(rfc_number)

rfc	=	requests.get(url).text

print(rfc)

We	can	simplify	the	previous	script	using	the	requests	module.	The	main
difference	with	the	requests	module	is	that	we	use	the	get	method	for	the	request
and	access	the	text	property	to	get	information	about	the	specific	RFC.

Downloading	an	RFC	with	the	socket
module
Now,	we	are	going	to	create	the	same	script	but,	instead	of	using	urllib	or
requests,	we	are	going	to	use	the	socket	module	for	working	at	a	low	level.	For
this,	create	a	text	file	called	RFC_download_socket.py:

#!/usr/bin/env	python3

import	sys,	socket

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

host	=	'www.rfc-editor.org'

port	=	80

sock	=	socket.create_connection((host,	port))

req	=	('GET	/rfc/rfc{rfcnum}.txt	HTTP/1.1\r\n'

'Host:	{host}:{port}\r\n'

'User-Agent:	Python	{version}\r\n'

'Connection:	close\r\n'

'\r\n'

)

req	=	req.format(rfcnum=rfc_number,host=host,port=port,version=sys.version_info[0])

sock.sendall(req.encode('ascii'))

rfc_bytes	=	bytearray()

while	True:

	buf	=	sock.recv(4096)

	if	not	len(buf):

					break

	rfc_bytes	+=	buf

rfc	=	rfc_bytes.decode('utf-8')

print(rfc)

The	main	difference	here	is	that	we	are	using	a	socket	module	instead	of	urllib	or
requests.	Socket	is	Python's	interface	for	the	operating	system's	TCP	and	UDP
implementation.	We	have	to	tell	socket	which	transport	layer	protocol	we	want
to	use.	We	do	this	by	using	the	socket.create_connection()	convenience	function.
This	function	will	always	create	a	TCP	connection.	For	establishing	the
connection,	we	are	using	port	80,	which	is	the	standard	port	number	for	web
services	over	HTTP.

Next,	we	deal	with	the	network	communication	over	the	TCP	connection.	We
send	the	entire	request	string	to	the	server	by	using	the	sendall()	call.	The	data
that's	sent	through	TCP	must	be	in	raw	bytes,	so	we	have	to	encode	the	request
text	as	ASCII	before	sending	it.

Then,	we	piece	together	the	server's	response	as	it	arrives	in	the	while	loop.	Bytes
that	are	sent	to	us	through	a	TCP	socket	are	presented	to	our	application	in	a
continuous	stream.	So,	like	any	stream	of	unknown	length,	we	have	to	read	it
iteratively.	The	recv()	call	will	return	the	empty	string	after	the	server	sends	all	of
its	data	and	closes	the	connection.	Finally,	we	can	use	this	as	a	condition	for
breaking	out	and	printing	the	response.

Interacting	with	Wireshark	with
pyshark
This	section	will	help	you	update	the	basics	of	Wireshark	to	capture	packets,
filter	them,	and	inspect	them.	You	can	use	Wireshark	to	analyze	the	network
traffic	of	a	suspicious	program,	analyze	the	traffic	flow	in	your	network,	or	solve
network	problems.	We	will	also	review	the	pyshark	module	for	capturing	packets
in	Python.

Introduction	to	Wireshark
Wireshark	is	a	network	packet	analysis	tool	that	captures	packets	in	real	time	and
displays	them	in	a	graphic	interface.	Wireshark	includes	filters,	color	coding,	and
other	features	that	allow	you	to	analyze	network	traffic	and	inspect	packets
individually.

Wireshark	implements	a	wide	range	of	filters	that	facilitate	the	definition	of
search	criteria	for	the	more	than	1,000	protocols	it	currently	supports.	All	of	this
happens	through	a	simple	and	intuitive	interface	that	allows	each	of	the	captured
packages	to	be	broken	down	into	layers.

Thanks	to	Wireshark	understanding	the	structure	of	these	protocols,	we	can
visualize	the	fields	of	each	of	the	headers	and	layers	that	make	up	the	packages,
providing	a	wide	range	of	possibilities	to	the	network	administrator	when	it
comes	to	performing	tasks	in	the	analysis	of	traffic.

One	of	the	advantages	that	Wireshark	has	is	that	at	any	given	moment,	we	can
leave	capturing	data	in	a	network	for	as	long	as	we	want	and	then	store	them	so
that	we	can	perform	the	analysis	later.	It	works	on	several	platforms,	such	as
Windows,	OS	X,	Linux,	and	Unix.

Wireshark	is	also	considered	a	protocol	analyzer	or	packet	sniffer,	thus	allowing
us	to	observe	the	messages	that	are	exchanged	between	applications.	For
example,	if	we	capture	an	HTTP	message,	the	packet	analyzer	must	know	that
this	message	is	encapsulated	in	a	TCP	segment,	which,	in	turn,	is	encapsulated	in
an	IP	packet,	and	which,	in	turn,	is	encapsulated	in	an	Ethernet	frame.

A	protocol	analyzer	is	a	passive	element,	since	it	only	observes	messages	that	are	transmitted
and	received	from	to	an	element	of	the	network,	but	never	sends	messages	themselves.	Instead,
a	protocol	analyzer	receives	a	copy	of	the	messages	that	are	being	received	or	sent	to	the
Terminal	where	it	is	running.

Wireshark	is	composed	mainly	of	two	elements:	a	packet	capture	library,	which
receives	a	copy	of	each	data	link	frame	that	is	either	sent	or	received,	and	a
packet	analyzer,	which	shows	the	fields	corresponding	to	each	of	the	captured
packets.	To	do	this,	the	packet	analyzer	must	know	about	the	protocols	that	it	is

analyzing	so	that	the	information	that's	shown	is	consistent.

Wireshark	installation
You	can	download	the	Wireshark	tool	from	the	official	page:	http://www.wireshark.o
rg/download.html.

On	Windows	systems,	we	can	install	the	following	wizard	in	the	Windows
installer.	On	a	Linux	distribution	based	on	the	Debian	operating	system,	such	as
Ubuntu,	this	is	as	easy	as	executing	the	apt-get	command:

sudo	apt-get	install	wireshark

One	of	the	advantages	of	Wireshark	is	the	filtering	we	can	make	regarding	the
captured	data.	We	can	filter	protocols,	source,	or	destination	IP,	for	a	range	of	IP
addresses,	ports,	or	uni-cast	traffic,	among	a	long	list	of	options.	We	can
manually	enter	the	filters	in	a	box	or	select	these	filters	from	a	default	list.

http://www.wireshark.org/download.html

Capturing	packets	with	Wireshark
To	start	capturing	packets,	you	can	click	on	the	name	of	an	interface	from	the	list
of	interfaces.	For	example,	if	you	want	to	capture	traffic	on	your	Ethernet
network,	double-click	on	the	Ethernet	connection	interface:

As	soon	as	you	click	on	the	name	of	the	interface,	you	will	see	that	the	packages
start	to	appear	in	real	time.	Wireshark	captures	every	packet	that's	sent	to	or	from
your	network	traffic.	You	will	see	random	flooding	of	data	in	the	Wireshark
dashboard.	There	are	many	ways	to	filter	traffic:

To	filter	traffic	from	any	specific	IP	address,	type	ip.addr	==	'xxx.xx.xx.xx'	in
the	Apply	a	display	filter	field
To	filter	traffic	for	a	specific	protocol,	say,	TCP,	UDP,	SMTP,	ARP,	and
DNS	requests,	just	type	the	protocol	name	into	the	Apply	a	display	filter
field

We	can	use	the	Apply	a	display	filter	box	to	filter	traffic	from	any	IP	address	or
protocol:

The	graphical	interface	of	Wireshark	is	mainly	divided	into	the	following
sections:

The	toolbar,	where	you	have	all	the	options	that	you	can	perform	on	the	pre
and	post	capture
The	main	toolbar,	where	you	have	the	most	frequently	used	options	in
Wireshark
The	filter	bar,	where	you	can	apply	filters	to	the	current	capture	quickly
The	list	of	packages,	which	shows	a	summary	of	each	package	that	is
captured	by	Wireshark
The	panel	of	details	of	packages	that,	once	you	have	selected	a	package	in
the	list	of	packages,	shows	detailed	information	of	the	same
The	packet	byte	panel,	which	shows	the	bytes	of	the	selected	packet,	and
highlights	the	bytes	corresponding	to	the	field	that's	selected	in	the	packet
details	panel
The	status	bar,	which	shows	some	information	about	the	current	state	of
Wireshark	and	the	capture

Network	traffic	in	Wireshark
Network	traffic	or	network	data	is	the	amount	of	packets	that	are	moving	across
a	network	at	any	given	point	of	time.	The	following	is	a	classical	formula	for
obtaining	the	traffic	volume	of	a	network:	Traffic	volume	=	Traffic	Intensity	or
rate	*	Time

In	the	following	screenshot,	we	can	see	what	the	network	traffic	looks	like	in
Wireshark:

In	the	previous	screenshot,	we	can	see	all	the	information	that	is	sent	over,	along
with	the	data	packets	on	a	network.	It	includes	several	pieces	of	information,
including	the	following:

Time:	The	time	at	which	packets	are	captured
Source:	The	source	from	which	the	packet	originated
Destination:	The	sink	where	packets	reach	their	final	destination
Protocol:	Type	of	IP	(or	set	of	rules)	the	packet	followed	during	its	journey,
such	as	TCP,	UDP,	SMTP,	and	ARP
Info:	The	information	that	the	packet	contains

The	Wireshark	website	contains	samples	for	capture	files	that	you	can	import
into	Wireshark.	You	can	also	inspect	the	packets	that	they	contain:	https://wiki.wi
reshark.org/SampleCaptures.

For	example,	we	can	find	an	HTTP	section	for	downloading	files	that	contains

https://wiki.wireshark.org/SampleCaptures

examples	of	HTTP	requests	and	responses:

Color	coding	in	Wireshark
When	you	start	capturing	packets,	Wireshark	uses	colors	to	identify	the	types	of
traffic	that	can	occur,	among	which	we	can	highlight	green	for	TCP	traffic,	blue
for	DNS	traffic,	and	black	for	traffic	that	has	errors	at	the	packet	level.

To	see	exactly	what	the	color	codes	mean,	click	View	|	Coloring	rules.	You	can
also	customize	and	modify	the	coloring	rules	in	this	screen.

If	you	need	to	change	the	color	of	one	of	the	options,	just	double-click	it	and
choose	the	color	you	want:

Working	with	filters	in	Wireshark
When	we	have	a	very	high	data	collection,	the	filters	allow	us	to	show	only	those
packages	that	fit	our	search	criteria.	We	can	distinguish	between	capture	filters
and	display	filters	depending	on	the	syntax	with	which	each	of	them	is	governed.

The	capture	filters	are	supported	directly	on	libpcap	libraries	such	as	tcpdump	or
Snort,	so	they	depend	directly	on	them	to	define	the	filters.	For	this	reason,	we
can	use	Wireshark	to	open	files	that	are	generated	by	tcpdump	or	by	those
applications	that	make	use	of	them.

The	most	basic	way	to	apply	a	filter	is	by	typing	its	name	into	the	filter	box	at
the	top	of	the	window.	For	example,	type	dns	and	you	will	see	only	DNS	packets.

The	following	is	a	screenshot	of	the	dns	filter:

You	can	also	click	on	the	Analyze	menu	and	select	Display	Filters	to	see	the
filters	that	are	created	by	default.

In	the	following	screenshot,	we	can	see	the	display	filters	that	we	can	apply
when	capturing	packets	with	Wireshark:

Filtering	by	protocol	name
This	filter	is	very	powerful,	but	you	will	realize	its	full	potential	now	that	you
are	going	to	filter	by	protocol.	Some	of	the	filters	include	TCP,	HTTP,	POP,
DNS,	ARP,	and	SSL.

We	can	find	out	about	HTTP	requests	by	applying	the	HTTP	filter.	In	this	way,
we	can	know	about	all	of	the	GET	and	POST	requests	that	have	been	made	during
the	capture.	Wireshark	displays	the	HTTP	message	that	was	encapsulated	in	a
TCP	segment,	which	was	encapsulated	in	an	IP	packet	and	encapsulated	in	an
Ethernet	frame:

In	the	preceding	screenshot,	we	can	see	how	a	GET	request	has	been	sent	to	the
URL	that	was	requested	from	the	browser.	After	this,	the	web	server	where	the
page	is	hosted	has	answered	successfully	(200	OK),	encapsulating	itself	in	an
HTTP	message	where	the	html	code	contains	the	required	path.	It	is	the	browser
(application)	that	de-encapsulates	the	code	and	interprets	it.

HTTP	objects	filter
As	we	can	see,	the	filters	provide	us	with	a	great	traceability	of	communications
and	also	serves	as	an	ideal	complement	to	analyze	a	multitude	of	attacks.	An
example	of	this	is	the	http.content_type	filter,	thanks	to	which	we	can	extract
different	data	flows	that	take	place	in	an	HTTP	connection	(text/html,
application/zip,	audio/mpeg,	image/gif).	This	will	be	very	useful	for	locating	malware,
exploits,	or	other	types	of	attacks	that	are	embedded	in	such	a	protocol:

Wireshark	contemplates	two	types	of	filters,	that	is,	capture	filters	and	display
filters:

Capture	filters	are	those	that	are	set	to	show	only	packets	that	meet	the
requirements	indicated	in	the	filter
Display	filters	establish	a	filter	criterion	on	the	captured	packages,	which
we	are	visualizing	in	the	main	screen	of	Wireshark

Capture	filters
Capture	filters	are	those	that	are	set	to	show	only	the	packages	that	meet	the
requirements	indicated	in	the	filter.	If	we	do	not	establish	any,	Wireshark	will
capture	all	of	the	traffic	and	present	it	on	the	main	screen.	Even	so,	we	can	set
the	display	filters	to	show	us	only	the	desired	traffic:

Display	filters
The	visualization	filters	establish	a	criterion	of	filter	on	the	packages	that	we	are
capturing	and	that	we	are	visualizing	in	the	main	screen	of	Wireshark.	When	you
apply	a	filter	on	the	Wireshark	main	screen,	only	the	filtered	traffic	will	appear
through	the	display	filter.	We	can	also	use	it	to	filter	the	content	of	a	capture
through	a	pcap	file:

Analyzing	networking	traffic	using
the	pyshark	library
We	can	use	the	pyshark	library	to	analyze	the	network	traffic	in	Python,	since
everything	Wireshark	decodes	in	each	packet	is	made	available	as	a	variable.	We
can	find	the	source	code	of	the	tool	in	GitHub's	repository:	https://github.com/KimiN
ewt/pyshark.

In	the	PyPI	repository,	we	can	find	the	last	version	of	the	library,	that	is,	https://p
ypi.org/project/pyshark,	and	we	can	install	it	with	the	pip	install	pyshark	command.

In	the	documentation	of	the	module,	we	can	see	that	the	main	package	for
opening	and	analyzing	a	pcap	file	is	capture.file_capture:

https://github.com/KimiNewt/pyshark
https://pypi.org/project/pyshark

Here's	an	example	that	was	taken	from	pyshark's	GitHub	page.	This	shows	us
how,	from	the	Python	3	command-line	interpreter,	we	can	read	packets	stored	in
a	pcap	file.	This	will	give	us	access	to	attributes	such	as	packet	number	and
complete	information	for	each	layer,	such	as	its	protocol,	IP	address,	mac
address,	and	flags,	where	you	can	see	if	the	packet	is	a	fragment	of	another:

>>	import	pyshark

	>>>	cap	=	pyshark.FileCapture(‘http.cap')

	>>>	cap

	>>>	print(cap[0])

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	commands,
and	also	see	where	we	passed	the	pcap	file	path	in	the	FileCapture	method	as	a
parameter:	

We	can	apply	a	filter	for	DNS	traffic	only	with	the	display_filter	argument	in
the	FileCapture	method:

import	pyshark

cap	=	pyshark.FileCapture('http.cap',	display_filter="dns")

for	pkt	in	cap:

		print(pkt.highest_layer)

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	commands:

FileCapture	and	LiveCapture	in
pyshark
As	we	saw	previously,	you	can	use	the	FileCapture	method	to	open	a	previously
saved	trace	file.	You	can	also	use	pyshark	to	sniff	from	an	interface	in	real	time
with	the	LiveCapture	method,	like	so:

import	pyshark

	#	Sniff	from	interface	in	real	time

	capture	=	pyshark.LiveCapture(interface='eth0')

	capture.sniff(timeout=10)

	<LiveCapture	(5	packets)>

Once	a	capture	object	is	created,	either	from	a	LiveCapture	or	FileCapture	method,
several	methods	and	attributes	are	available	at	both	the	capture	and	packet	level.
The	power	of	pyshark	is	that	it	has	access	to	all	of	the	packet	decoders	that	are
built	into	TShark.

Now,	let's	see	what	methods	provide	the	returned	capture	object.

To	check	this,	we	can	use	the	dir	method	with	the	capture	object:

The	display_filter,	encryption,	and	input_filename	attributes	are	used	for	displaying
parameters	that	are	passed	into	FileCapture	or	LiveCapture.

Both	methods	offer	similar	parameters	that	affect	packets	that	are	returned	in	the
capture	object.	For	example,	we	can	iterate	through	the	packets	and	apply	a
function	to	each.	The	most	useful	method	here	is	the	apply_on_packets()	method.
apply_on_packets()	is	the	main	way	to	iterate	through	the	packets,	passing	in	a
function	to	apply	to	each	packet:

>>>	cap	=	pyshark.FileCapture('http.cap',	keep_packets=False)

	>>>	def	print_info_layer(packet):

	>>>					print("[Protocol:]	"+packet.highest_layer+"	[Source	IP:]	"+packet.ip.src+"	[Destination	IP:]"+packet.ip.dst)

	>>>	cap.apply_on_packets(print_info_layer)

In	the	following	screenshot,	we	can	see	the	information	that's	returned	when	we
are	obtaining	information	for	each	packet	pertaining	to	Protocol,	Source	IP,	and
Destination	IP:

We	can	also	use	the	apply_on_packets()	method	for	adding	the	packets	to	a	list	for
counting	or	other	processing	means.	Here's	a	script	that	will	append	all	of	the
packets	to	a	list	and	print	the	count.	For	this,	create	a	text	file	called
count_packets.py:

import	pyshark

packets_array	=	[]

def	counter(*args):

	packets_array.append(args[0])

	

def	count_packets():

				cap	=	pyshark.FileCapture('http.cap',	keep_packets=False)

				cap.apply_on_packets(counter,	timeout=10000)

				return	len(packets_array)

print("Packets	number:"+str(count_packets()))

for	packet	in	packets_array:

	print(packet)

We	can	use	only_summaries,	which	will	return	packets	in	the	capture	object	with

just	the	summary	information	of	each	packet:

>>>	cap	=	pyshark.FileCapture(‘http.cap',	only_summaries=True)

	>>>	print	cap[0]

This	option	makes	capture	file	reading	much	faster,	and	with	the	dir	method,	we
can	check	the	attributes	that	are	available	in	the	object	to	obtain	information
about	a	specific	packet.

In	the	following	screenshot,	we	can	see	information	about	a	specific	packet	and
get	all	of	the	attributes	that	return	not	null	information:

The	information	you	can	see	in	the	form	of	attributes	is	as	follows:

destination:	The	IP	destination	address
source:	The	IP	source	address
info:	A	summary	of	the	application	layer
length:	Length	of	the	packet	in	bytes
no:	Index	number	of	the	packet
protocol:	The	highest	layer	protocol	that's	recognized	in	the	packet
summary_line:	All	of	the	summary	attributes	in	one	string
time:	Time	between	the	current	packet	and	the	first	packet

Summary
In	this	chapter,	we	have	completed	an	introduction	to	TCP/IP	and	how	machines
communicate	in	a	network.	We	learned	about	the	main	protocols	of	the	network
stack	and	the	different	types	of	address	for	communicating	in	a	network.	We
started	with	Python	libraries	for	network	programming	and	looked	at	socket	and
the	urlllib	and	requests	modules,	and	provided	an	example	of	how	we	can	interact
and	obtain	information	from	RFC	documents.	We	also	acquired	some	basic
knowledge	so	that	we	are	able	to	perform	a	network	traffic	analysis	with
Wireshark.

Wireshark	is	provided	with	innumerable	functionalities,	thanks	to	which	we	will
be	able	to	identify	and	analyze	network	traffic	and	identify	communications	in
our	network.

In	the	next	chapter,	you	will	learn	how	to	use	Python	as	an	HTTP	client	so	that
you	can	make	requests	over	the	REST	API	and	retrieve	web	resources	with
the	urllib	and	requests	modules.

Questions
1.	 What	TCP/IP	layer	does	user	interaction	with	computers	and	services

occur?
2.	 Why	do	we	need	to	replace	IPv4	with	the	IPv6	protocol?
3.	 What	protocol	allows	you	to	dynamically	configure	IP	addresses	in	the

device's	operating	system?
4.	 What	mechanism	makes	the	traffic	from	the	private	network	appear	to	be

coming	from	a	single	valid	public	internet	address	and	hides	the	private
addresses	from	the	internet?

5.	 What	are	the	main	options	for	installing	Python	packages	on	your	localhost
machine?

6.	 What	is	the	main	Python	tool	for	creating	virtual	environments,	which	also
includes	a	separate	Python	installation	for	the	packages?

7.	 What	are	the	main	modules	that	we	can	find	in	Python	to	make	HTTP
requests	at	a	high	level?

8.	 What	are	the	main	modules	that	we	can	find	in	Python	to	make
HTTP	requests	at	a	low	level?

9.	 Which	library	can	we	use	to	analyze	network	traffic	in	Python	that
Wireshark	decodes	in	each	packet?

10.	 What	method	from	the	pyshark	package	can	we	use	to	iterate	through	the
packets	and	apply	a	function	to	each	one?

Further	reading
By	going	to	the	following	links,	you	will	find	more	information	about	the	tools
and	the	official	Python	documentation	that	was	mentioned	in	this	chapter:

This	is	the	official	documentation	for	the	socket	package:	https://docs.python.o
rg/3/library/socket.html

This	is	the	official	documentation	for	downloading	and	installing
Wireshark:	https://www.wireshark.org/
This	is	the	official	documentation	for	the	pyshark	package:	https://kiminewt.git
hub.io/pyshark/

https://docs.python.org/3/library/socket.html
https://www.wireshark.org/
https://kiminewt.github.io/pyshark/

Programming	for	the	Web	with
HTTP
In	the	chapter,	you	will	learn	how	to	use	Python	as	an	HTTP	client	to	make
requests	and	retrieve	web	resources.	You	will	be	encouraged	to	try	a	series	of
example	requests.	We	will	compare	urllib	and	the	third-party	requests	library	and
show	you	the	differences	when	working	with	forms	and	cookies.	The	third-party
Requests	package	is	a	very	popular	alternative	to	urllib.	It	has	an	elegant
interface	and	a	powerful	feature	set,	and	it	is	a	great	tool	for	streamlining	HTTP
workflows.	We	also	cover	HTTP	authentication	mechanisms	and	how	we	can
manage	them	with	the	Requests	module.

The	following	topics	will	be	covered	in	this	chapter:

Understanding	the	urllib	package	to	query	a	REST	API
Understanding	the	Requests	package	to	query	a	REST	API
Handling	forms	with	urllib	and	requests	with	Python	3.7
Handling	cookies	with	urllib	and	requests	with	Python	3.7
Handling	HTTPS	and	HTTP	Basic	Authentication	with	requests

The	urllib	package	is	the	recommended	Python	standard	library	package	for
HTTP	tasks.	The	standard	library	also	has	a	low-level	module	called	HTTP.
Although	this	offers	access	to	almost	all	aspects	of	the	protocol,	it	has	not	been
designed	for	everyday	use.	The	urllib	package	has	a	simpler	interface,	and	it
deals	with	everything	that	we	are	going	to	cover	in	this	chapter.

The	third-party	Requests	package	is	a	very	popular	alternative	to	urllib.	It	has	an
elegant	interface	and	a	powerful	feature	set,	and	it	is	a	great	tool	for	streamlining
HTTP	workflows.

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter02	folder,	at	https://github.com/PacktPublishing/Learning-Python-
Networking-Second-Edition.

You	will	need	to	install	the	Python	distribution	on	your	local	machine	and	have
some	basic	knowledge	of	the	HTTP	protocol.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Consuming	web	services	in	Python
with	urllib
In	this	section,	we	will	learn	how	to	use	urllib	and	how	we	can	build	HTTP
clients	with	this	module.

The	urllib	module	allows	access	to	any	resource	published	on	the	network	(web
page,	files,	directories,	images,	and	so	on)	through	various	protocols	(HTTP,
FTP,	SFTP).	To	start	consuming	a	web	service,	we	have	to	import	the	following
libraries:

#!	/usr/bin/env	python3

import	urllib.request

import	urllib.parse

There	are	four	functions	in	urllib:

request:	Opens	and	reads	the	request's	URL
error:	Contains	the	errors	generated	by	the	request
parse:	A	tool	to	convert	the	URL
robotparse:	Converts	the	robots.txt	files

The	urllib.request	module	allows	access	to	a	resource	published	on	the	internet
through	its	address.	If	we	go	to	the	documentation	of	the	Python	3	module	(https:
//docs.python.org/3/library/urllib.request.html#module-urllib.request),	we	will	see	all
the	functions	that	have	this	class.	The	main	one	is	urlopen,	which	works	in	the
following	way.

A	urlopen	function	is	used	to	create	an	object	similar	to	a	file,	with	which	to	read
from	the	URL.	This	object	has	methods	such	as	read,	readline,	readlines,	and	close,
which	work	exactly	the	same	as	in	the	file	objects,	although	in	reality,	we	are
working	with	wrapper's	methods	that	abstract	us	from	using	sockets	at	a	low
level.

The	urlopen	function	has	an	optional	data	parameter	with	which	to	send
information	to	HTTP	addresses	using	the	POST	method,	where	parameters	are	sent

https://docs.python.org/3/library/urllib.request.html#module-urllib.request

in	the	request	itself;	for	example,	to	respond	to	a	form.	This	parameter	is	a
properly	encoded	string:

urllib.request.urlopen	(url,	data	=	None,	[timeout,]	*,	cafile	=	None,	capath	=	None,	cadefault	=	False,	context	=	None)

Retrieving	the	contents	of	a	URL	is	a	straightforward	process	when	done	using
urllib.	You	can	open	the	Python	interpreter	and	execute	the	following
instructions:

>>>	from	urllib.request	import	urlopen

>>>	response	=	urlopen('http://www.packtpub.com')

>>>	response

<http.client.HTTPResponse	object	at	0x7fa3c53059b0>

>>>	response.readline()

We	use	the	urllib.request.urlopen()	function	to	send	a	request	and	receive	a
response	for	the	resource	at	http://www.packtpub.com,	in	this	case	an	HTML	page.
We	will	then	print	out	the	first	line	of	the	HTML	we	receive,	with	the	readline()
method	from	the	response	object.

This	function	also	supports	specifying	a	timeout	for	the	request	that	represents
the	waiting	time	in	the	request;	that	is,	if	the	page	takes	more	than	what	we
indicated,	it	will	result	in	an	error:

>>>	print(urllib.request.urlopen(“http://packtpub.com”,timeout=30))

We	can	see	from	the	preceding	example	that	urlopen()	returns	an
http.client.HTTPResponse	instance.	The	response	object	gives	us	access	to	the	data	of
the	requested	resource	and	the	properties	and	the	metadata	of	the	response:

<http.client.HTTPResponse	object	at	0x03C4DC90>

If	we	get	a	response	in	JSON	format,	we	can	use	the	following	Python	json
module:

>>>	import	json

>>>	response	=	urllib.request.urlopen(url,timeout=30)

>>>	json_response	=	json.loads(response.read())

In	the	variable	response,	we	save	the	file	that	launches	the	request,	and	we	use
the	read()	function	to	read	the	content.	Then	we	transform	it	into	JSON	format.

http://www.packtpub.com

Status	codes
HTTP	responses	provide	us	with	a	way	to	check	the	status	of	the	response
through	status	codes.	We	can	read	the	status	code	of	a	response	using	its	status
property.	The	value	of	200	is	an	HTTP	status	code	that	tells	us	that	the	request	is
OK:

>>>	response.status

200

The	200	code	informs	us	that	everything	went	fine.	There	are	a	number	of	codes,
and	each	one	conveys	a	different	meaning.	According	to	their	first	digit,	status
codes	are	classified	into	the	following	groups:

100:	Informational
200:	Success
300:	Redirection
400:	Client	error
500:	Server	error

Status	codes	help	us	to	see	whether	our	response	was	successful	or	not.	Any
code	in	the	200	range	indicates	a	success,	whereas	any	code	in	either	the	400	range
or	the	500	range	indicates	failure	in	the	server.

The	official	list	of	status	codes	is	maintained	by	IANA	and	can	be	found	at	https://www.iana.org/ass
ignments/http-status-codes.

https://www.iana.org/assignments/http-status-codes

Handling	exceptions
Status	codes	should	always	be	checked	so	that	our	program	can	respond
appropriately	if	something	goes	wrong.	The	urllib	package	helps	us	in	checking
the	status	codes	by	raising	an	exception	if	it	encounters	a	problem.

Let's	go	through	how	to	catch	these	and	handle	them	usefully.	We'll	try	this
following	command	block.	You	can	find	the	following	code	in	the
urllib_exceptions.py	file:

import	urllib.error

from	urllib.request	import	urlopen

try:

			urlopen('http://www.ietf.org/rfc/rfc0.txt')

except	urllib.error.HTTPError	as	e:

				print('Exception',	e)

				print('status',	e.code)

				print('reason',	e.reason)

				print('url',	e.url)

The	output	of	the	previous	script	is:

Exception	HTTP	Error	404:	Not	Found

status	404

reason	Not	Found

url	https://www.ietf.org/rfc/rfc0.txt

In	the	previous	script,	we've	requested	an	rfc0.txt	document,	which	doesn't	exist.
So	the	server	has	returned	a	404	status	code,	and	urllib	has	captured	this	and
raised	an	HTTPError.	You	can	see	that	HTTPError	provides	useful	attributes	regarding
the	request.	In	the	preceding	example,	we	obtain	the	status,	reason,	and	url
attributes	to	get	some	information	about	the	response.

HTTP	headers
A	request	to	the	server	consists	of	a	request	line	that	contains	some	basic
information	about	the	request,	and	various	lines	that	constitute	the	headers.	An
example	might	be	the	following:

HTTP	requests	consist	of	two	main	parts:	a	header	and	a	body.	Headers	are	the
lines	of	information	that	contain	specific	metadata	about	the	response	and	tell	the
client	how	to	interpret	it.	With	this	module,	we	can	check	whether	the	headers
can	provide	information	about	the	web	server.

The	HTTP	headers	are	Name:	value	pairs;	for	example,	Host:	www.packtpub.com.	These
headers	contain	different	information	about	the	HTTP	request	and	about	the
browser.	For	example,	the	User-Agent	line	provides	information	about	the
browser	and	operating	system	of	the	machine	from	which	the	request	is	made,
and	Accept	Encoding	informs	the	server	if	the	browser	can	accept	compressed
data	under	formats	such	as	gzip.

An	important	header	is	the	host	header.	Many	web	server	applications	provide
the	ability	to	host	more	than	one	website	on	the	same	server	using	the	same	IP
address.	DNS	aliases	are	set	up	for	the	various	website	domain	names,	so	they
all	point	to	the	same	IP	address.	Effectively,	the	web	server	is	given	multiple
hostnames,	one	for	each	website	it	hosts.

The	following	script	will	obtain	the	site	headers	through	the	response	object's
headers.	For	this	task,	we	can	use	the	headers	property	or	the	getheaders()	method.
The	getheaders()	method	returns	the	headers	as	a	list	of	tuples	of	the	form	(header
name,	header	value).

You	can	find	the	following	code	in	the	get_headers.py	file:	

#!/usr/bin/env	python3

import	urllib.request

url	=	input("Enter	the	URL:")

http_response	=	urllib.request.urlopen(url)

if	http_response.code	==	200:

				print(http_response.headers)

				for	key,value	in	http_response.getheaders():

								print(key,value)

In	the	following	screenshot,	we	can	see	the	script	executing	for	the	packtpub.com
domain:

User	agent
Another	important	request	header	is	the	User-Agent	header.	Any	client	that
communicates	using	HTTP	can	be	referred	to	as	a	user	agent.	RFC	7231
suggests	that	user	agents	should	use	the	User-Agent	header	to	identify	themselves
in	every	request.	For	example,	the	user	agent	if	you	are	using	the	Chrome
browser	might	be	as	follows:

User-Agent:	Mozilla/5.0	(Windows	NT	10.0;	Win64;	x64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/70.0.3538.102	Safari/537.36

Also,	we	can	view	the	user	agent	used	by	the	urllib	Python	version:

>>>	from	urllib.request	import	Request

>>>	from	urllib.request	import	urlopen

>>>	req	=	Request('http://www.python.org')

	>>>	urlopen(req)

<http.client.HTTPResponse	object	at	0x034AEBF0>

>>>	req.get_header('User-agent')

	'Python-urllib/3.7'

Here,	we	have	created	a	request	and	submitted	it	using	urlopen,	and	urlopen	added
the	user	agent	header	to	the	request.	We	can	examine	this	header	by	using	the
get_header()	method.	This	header	and	its	value	are	included	in	every	request	made
by	urllib,	so	every	server	we	make	a	request	to	can	see	that	we	are	using	Python
3.7	and	the	urllib	library.

Customizing	requests	with	urllib
To	make	use	of	the	functionality	that	headers	provide,	we	add	headers	to	a
request	before	sending	it.	To	do	this,	we	need	to	follow	these	steps:

1.	 Create	a	Request	object.
2.	 Add	headers	to	the	Request	object.
3.	 Use	urlopen()	to	send	the	Request	object.

We're	going	to	learn	how	to	customize	a	request	to	retrieve	a	Netherlands	version
of	the	Debian	home	page.	We	will	use	the	Accept-Language	header,	which	tells	the
server	our	preferred	language	for	the	resource	it	returns.

First,	we	create	a	Request	object:

>>>	from	urllib.request	import	Request,urlopen

	>>>	req	=	Request('http://www.debian.org')

Next,	we	add	the	header:

>>>	req.add_header('Accept-Language',	'nl')

The	add_header()	method	takes	the	name	of	the	header	and	the	contents	of	the
header	as	arguments.	The	Accept-Language	header	takes	two-letter	ISO	639-1
language	codes.	In	this	example,	the	code	for	Netherlands	is	nl.

Lastly,	we	submit	the	customized	request	with	urlopen():

>>>	response	=	urlopen(req)

We	can	check	if	the	response	is	in	the	Dutch	language	by	printing	out	the	first
few	lines:

>>>	response.readlines()[:5]

In	this	screenshot,	we	can	see	that	the	language	changed	with	the	Accept-language
header:

The	Accept-Language	header	has	informed	the	server	about	our	preferred	language
for	the	response's	content.	To	view	the	headers	present	in	a	request,	do	the
following:

>>>	req	=	Request('http://www.debian.org')

	>>>	req.add_header('Accept-Language',	'nl')

	>>>	req.header_items()

[('Host',	'www.debian.org'),	('User-agent',	'Python-urllib/3.6'),	('Accept-language',	'nl')]

Let's	see	how	to	add	our	own	headers	using	the	User-agent	header	as	an	example.
The	User-agent	is	a	header	used	to	identify	the	browser	and	operating	system	that
we	are	using	to	connect	to	that	URL.	If	we	want	to	identify	ourselves	as	using	a
Firefox	browser,	we	could	change	the	user	agent.

To	change	the	user	agent,	we	have	two	alternatives.	The	first	is	using	a	headers
dictionary	parameter	in	the	Request	method.	The	second	solution	consists	of	using
the	add_header()	method	for	adding	headers	at	the	same	time	that	we	create	the
Request	object,	as	showing	in	the	following	example.

You	can	find	the	following	code	in	the	add_headers_user_agent.py	file:

#!/usr/bin/env	python3

from	urllib.request	import	Request

USER_AGENT	=	'Mozilla/5.0	(Windows	NT	5.1;	rv:20.0)	Gecko/20100101	Firefox/20.0'

URL	=	'http://www.debian.org'

def	add_headers_user_agent():

				headers	=	{'Accept-Language':	'nl','User-agent':	USER_AGENT}

				request	=	Request(URL,headers=headers)

				#request.add_header('Accept-Language',	'nl')

				#request.add_header('User-agent',	USER_AGENT)

				print	("Request	headers:")

				for	key,value	in	request.header_items():

								print	("%s:	%s"	%(key,	value))

			

if	__name__	==	'__main__':

				add_headers_user_agent()

In	this	screenshot,	we	can	see	the	request	headers	sent	for	the	previous	script:

Getting	headers	with	a	proxy
We	can	use	a	proxy	connection	for	the	same	task.	If	we	need	to	specify	a	proxy
in	the	code,	we	have	to	use	an	opener	that	contains	the	ProxyHandler	handler.	The
default	handler	includes	a	ProxyHandler	instance	built	by	calling	the	initializer
without	parameters,	which	reads	the	list	of	proxies	to	use	from	the	appropriate
environment	variable.	However,	we	can	also	build	a	ProxyHandler,	passing	as	a
parameter	a	dictionary	whose	key	is	the	HTTP	protocol	and	the	value	is	the
proxy	address	or	URL	used	for	this	protocol.

To	install	the	opener	once	created,	the	install_opener	function	is	used,	which	takes
as	a	parameter	the	opener	to	be	installed.

You	can	find	the	following	code	in	the	proxy_web_request.py	file:

import	urllib.request,	urllib.parse,	urllib.error

URL	=	'https://www.github.com'

#	By	Googling	free	proxy	server

PROXY_ADDRESS	=	"165.24.10.8:8080"

if	__name__	==	'__main__':

				proxy	=	urllib.request.ProxyHandler({"http"	:	PROXY_ADDRESS})

				opener	=	urllib.request.build_opener(proxy)

				urllib.request.install_opener(opener)

				resp	=	urllib.request.urlopen(URL)

				print	("Proxy	server	returns	response	headers:	%s	"	%resp.headers)

Content	types
HTTP	can	be	used	as	a	method	of	transport	for	any	type	of	file	or	data.	The
server	can	use	the	'Content-Type'	header	in	a	response	to	inform	the	client	about
the	type	of	data	that	it	has	sent	in	the	body.	This	is	the	primary	means	with	which
an	HTTP	client	determines	how	it	should	handle	the	body	data	that	the	server
returns	to	it.	To	view	the	content	type,	we	inspect	the	value	of	the	response
header,	as	shown	here:

>>>	response	=	urlopen('http://www.debian.org')

>>>	response.getheader('Content-Type')

'text/html'

These	values	are	called	content	types,	internet	media	types,	or	MIME	types.	The
full	list	can	be	found	at	http://www.iana.org/assignments/media-types.

Content	type	values	can	contain	optional	additional	parameters	that	provide
further	information	about	the	type.	This	is	usually	used	to	supply	the	character
set	that	the	data	uses;	for	example,	Content-Type:	text/html;	charset=utf-8.

In	this	screenshot,	we	can	see	many	Content-Type	instances	depending	on	the
requested	URL:

http://www.iana.org/assignments/media-types

Extracting	links	from	a	URL	with
urllib
In	this	script,	we	can	see	how	to	extract	links	using	urllib	and	HTMLParser.	HTMLParser
is	a	module	that	allows	us	to	parse	text	files	formatted	in	HTML.	You	can	get
more	information	at	https://docs.python.org/3/library/html.parser.html.

You	can	find	the	following	code	in	the	extract_links_parser.py	file:

#!/usr/bin/env	python3

from	html.parser	import	HTMLParser

import	urllib.request

class	myParser(HTMLParser):

				def	handle_starttag(self,	tag,	attrs):

								if	(tag	==	"a"):

												for	a	in	attrs:

																if	(a[0]	==	'href'):

																				link	=	a[1]

																				if	(link.find('http')	>=	0):

																								print(link)

																								newParse	=	myParser()

																								newParse.feed(link)

url	=	"http://www.packtpub.com"

request	=	urllib.request.urlopen(url)

parser	=	myParser()

parser.feed(request.read().decode('utf-8'))

In	the	following	screenshot,	we	can	see	the	script	execution	for	the	packtpub.com
domain:

https://docs.python.org/3/library/html.parser.html

Another	way	to	extract	links	from	a	URL	is	using	the	regular	expression
(re)	module	to	find	href	elements	in	the	target	URL.

You	can	find	the	following	code	in	the	urlib_link_extractor.py	file:

#!/usr/bin/env	python3

from	urllib.request	import	urlopen

import	re

def	download_page(url):

				return	urlopen(url).read().decode('utf-8')

def	extract_links(page):

				link_regex	=	re.compile('<a[^>]+href=["\'](.*?)["\']',re.IGNORECASE)

				return	link_regex.findall(page)

if	__name__	==	'__main__':

				target_url	=	'http://www.packtpub.com'

				packtpub	=	download_page(target_url)

				links	=	extract_links(packtpub)

				for	link	in	links:

								print(link)

Getting	images	from	a	URL	with
urllib
In	this	example,	we	can	see	how	to	extract	images	using	urllib	and	regular
expressions.	The	easy	way	to	extract	images	from	a	URL	is	to	use	the	re	module
to	find	img	elements	in	the	target	URL.

You	can	find	the	following	code	in	the	extract_images_urllib.py	file:

#!/usr/bin/env	python3

from	urllib.request	import	urlopen,	urljoin

import	re

def	download_page(url):

				return	urlopen(url).read().decode('utf-8')

def	extract_image_locations(page):

				img_regex	=	re.compile('<img[^>]+src=["\'](.*?)["\']',

				re.IGNORECASE)

				return	img_regex.findall(page)

if	__name__	==	'__main__':

				target_url	=	'http://www.packtpub.com'

				packtpub	=	download_page(target_url)

				image_locations	=	extract_image_locations(packtpub)

				for	src	in	image_locations:

								print(urljoin(target_url,	src))

In	this	screenshot,	we	can	see	the	script	execution	for	the	packtpub.com	domain:

Working	with	URLs
Uniform	Resource	Locators	(URLs)	are	fundamental	to	the	way	in	which	the
web	operates,	and	are	formally	described	in	RFC	3986.	A	URL	represents	a
resource	on	a	given	host.	URLs	can	point	to	files	on	the	server,	or	the	resources
may	be	dynamically	generated	when	a	request	is	received.

Python	uses	the	urllib.parse	module	for	working	with	URLs.	Let's	use	Python	to
break	a	URL	into	its	component	parts:

>>>	from	urllib.parse	import	urlparse

	>>>	result	=	urlparse('https://www.packtpub.com/tech/Python')

	>>>	result

	ParseResult(scheme='http',	netloc='www.packtpub.com',	path='/tech/Python',

	params='',	query='',	fragment='')

The	urllib.parse.urlparse()	function	interprets	our	URL	and	recognizes	HTTP	as
the	scheme,	www.packtpub.com	as	the	network	location,	and	/tech/Python	as	the	path.

We	can	access	these	components	as	attributes	of	the	ParseResult:

For	almost	all	resources	on	the	web,	we'll	be	using	the	HTTP	or	HTTPS
schemes.	In	these	schemes,	to	locate	a	specific	resource,	we	need	to	know	the
host	that	it	resides	on	and	the	TCP	port	that	we	should	connect	to,	and	we	also
need	to	know	the	path	to	the	resource	on	the	host.

The	path	in	a	URL	is	anything	that	comes	after	the	host	and	the	port.	Paths
always	start	with	a	forward	slash	(/),	and	when	a	slash	appears	on	its	own,	it's
called	the	root.

RFC	3986	defines	another	property	of	URLs	called	query	strings.	They	can
contain	additional	parameters	in	the	form	of	key-value	pairs	that	appear	after	the
path.	They	are	separated	from	the	path	by	a	question	mark.	In	this	example,	we

can	see	how	we	can	get	URL	parameters	with	the	query	argument:

>>>	result	=	urlparse('https://search.packtpub.com/?query=python')

>>>	result

ParseResult(scheme='https',	netloc='search.packtpub.com',	path='/',	params='',	query='query=python',	fragment='')

>>>	result.query

'query=python'

Query	strings	are	used	for	supplying	parameters	to	the	resource	that	we	wish	to
retrieve,	and	this	usually	customizes	the	resource	in	some	way.	In	the	previous
example,	our	query	string	tells	the	packtpub	search	page	that	we	want	to	run	a
search	for	the	term	python.	The	urllib.parse	module	has	a	function	called	parse_qs()
that	reads	the	query	string	and	then	converts	it	into	a	dictionary:

>>>	from	urllib.parse	import	parse_qs

	>>>	result	=	urlparse('https://search.packtpub.com/?query=python')

	>>>	parse_qs(result.query)

	{'query':	['python']}

The	simplest	way	to	code	the	string	is	to	use	the	urllib	urlencode	method,	which
accepts	a	dictionary	or	a	list	of	tuples	(key,	value)	and	generates	the
corresponding	encoded	string.

The	urlencode()	function	is	similarly	intended	for	encoding	query	strings	directly
from	dictionaries.	Notice	how	it	correctly	percent-encodes	our	values	and	then
joins	them	with	&,	so	as	to	construct	the	query	string:

>>>	from	urllib.parse	import	urlencode

	>>>	params	=	urllib.parse.urlencode({"user":	"user",	"password":	"password"})

	>>>	params

	'user=user&password=password'

Consuming	web	services	in	Python
with	requests
In	this	section,	we	will	learn	how	to	use	the	requests	library.	How	we	interact	with
RESTful	APIs	based	on	HTTP	is	an	increasingly	common	task	in	projects	that
use	the	Python	programming	language.

Introduction	to	requests
Requests	allow	you	to	send	requests	to	an	HTTP	server	and	get	responses	and
messages	sent	by	the	server.	They're	available	as	the	Requests	package	on	PyPI.
This	can	either	be	installed	through	pip	or	be	downloaded	from	http://docs.python-
requests.org,	which	hosts	the	documentation.	You	can	install	the	requests	library	on
your	system	in	an	easy	way	with	the	pip	command:

pip	install	requests

The	requests	library	automates	and	simplifies	many	of	the	tasks	that	we've	been
looking	at.	The	quickest	way	of	illustrating	this	is	by	trying	some	examples.	The
commands	for	retrieving	a	URL	with	Requests	are	similar	to	retrieving	a	URL
with	the	urllib	package.

The	request.get()	function	sends	a	request	using	the	get	method	with	the	following
syntax:

requests.get	('<URL>',	params	=	<object	type	dict>)

>>>	import	requests

>>>	response	=	requests.get('http://www.github.com')

The	requests.get()	method	returns	a	response	object,	where	you	will	find	all	the
information	corresponding	to	the	response	of	our	request.	These	are	the	main
properties	of	the	response	object:

response.status_code:	This	is	the	HTTP	code	returned	by	the	server
response.content:	Here,	we	will	find	the	content	of	the	server	response
response.json():	If	the	answer	is	JSON,	this	method	serializes	the	string	and
returns	a	dictionary	structure	with	the	corresponding	JSON	structure

We	can	look	at	the	properties	of	the	response	object:

>>>	response.status_code

200

>>>	response.reason

'OK'

>>>	response.url

'http://www.github.com/'

>>>	response.headers['content-type']

'text/html;	charset=utf-8'

http://docs.python-requests.org

We	can	also	access	the	headers	properties	through	the	response	object:

>>>	response.request.headers

{'User-Agent':	'python-requests/2.19.1',	'Accept-Encoding':	'gzip,	deflate',	'Accept':	'*/*',	'Connection':	'keep-alive'}

Notice	that	Requests	is	automatically	handling	compression	for	us.	It's	including
gzip	and	deflate	in	an	Accept-Encoding	header.	If	we	look	at	the	content-encoding
response,	then	we	will	see	that	the	response	was	in	fact	gzip	compressed,	and
Requests	transparently	decompressed	it	for	us:

>>>	response.headers['content-encoding']

'gzip'

We	can	look	at	the	response	content	in	many	more	ways.	To	get	the	same	bytes
object	as	we	got	from	an	HTTPResponse	object,	perform	the	following:

>>>	response.text

'\n\n\n\n\n\n<!DOCTYPE	html>\n<html	lang="en">\n		<head>\n	<meta	charset="utf-8">\n	<link	rel="dns-prefetch"	href="https://assets-cdn.github.com">\n		<link	rel="dns-prefetch"	href="https://avatars0.githubusercontent.com">\n	<link	rel="dns-prefetch"	href="https://avatars1.githubusercontent.com">\n		<link	rel="dns-prefetch"	href="https://avatars2.githubusercontent.com">\n

Checking	HTTP	headers
The	response.headers	statement	provides	the	headers	of	the	web	server	response.
Basically,	the	response	is	an	object	dictionary,	and	with	the	items()	method,	we
can	iterate	with	the	key-value	format	for	access	to	the	header's	response.

You	can	find	the	following	code	in	the	get_headers.py	file:

#!/usr/bin/env	python3

import	requests

response	=	requests.get('http://github.com')

try:

				for	key,value	in	response.headers.items():

								print('%s:	%s'	%	(key,	value))

except	Exception	as	error:

				print('%s'	%	(error))

In	this	screenshot,	we	can	see	the	script	execution	for	the	github.com	domain:

We	can	also	find	browser	add-ons	or	plugins	that	can	help	us	in	collecting
information	on	the	headers	that	are	sent	in	the	requests.

Among	the	available	plugins	for	Firefox,	we	can	suggest	the	HTTP	Header	Live
add-ons:

With	this	plugin,	we	can	get	the	headers	for	the	request	and	response	for	a
specific	domain	URL:

Proxy	requests
An	interesting	feature	offered	by	the	Requests	module	is	the	possibility	to	make
requests	through	a	proxy	or	intermediate	machine	between	our	internal	network
and	the	external	network.	A	proxy	is	defined	in	the	following	way:

>>>	proxy	=	{"protocol":"ip:port",	...}

To	make	a	Request	through	a	proxy,	the	proxies	attribute	of	the	get	method	is
used:

>>>	response	=	requests.get(url,headers=headers,proxies=proxy)

The	proxy	parameter	must	be	passed	in	the	form	of	a	dictionary;	that	is,	you
have	to	create	a	dictionary	type	where	we	specify	the	protocol	with	the	IP
address	and	the	port	where	the	proxy	is	listening:

>>>	import	requests

	>>>	http_proxy	=	"http://<ip_address>:<port>"

	>>>	proxy_dictionary	=	{	"http"	:	http_proxy}

	>>>	requests.get("http://example.org",	proxies=proxy_dictionary)

Get	whois	information
We	can	use	the	Requests	module	and	the	whois.domaintools.com	service	to	get
information	about	the	domain	we	are	analyzing,	such	as	the	IP	address	and
location.

You	can	find	the	following	code	in	the	get_whois_info.py	file:	

#!/usr/bin/env	python3

from	lxml.html	import	fromstring

import	requests

domain	=	input("Enter	the	domain	:	")

url	=	'http://whois.domaintools.com/'	+	domain

headers	=	{'User-Agent':	'wswp'}

resp	=	requests.get(url,	headers=headers)

html	=	resp.text

tree	=	fromstring(html)

info	=	tree.xpath('//*[@id="stats"]//table/tbody/tr//text()')

temp_list	=	[]

for	each	in	info:

				each	=	each.strip()

				if	each	==	"":

								continue

				temp_list.append(each.strip("\n"))

ip_index	=	temp_list.index('IP	Address')

print("IP	address	",	temp_list[ip_index	+	1])

location	=	temp_list.index('IP	Location')

location2	=	temp_list.index('ASN')

print('Location	:	',	"".join(temp_list[location	+	1:location2]))

In	the	output	of	the	previous	script,	we	can	see	information	about	the	IP	address
and	the	location	from	the	packtpub.com	domain:

Enter	the	domain	:	http://www.packtpub.com

	IP	address		83.166.169.231																										-	1	other	site	is	hosted	on	this	server

	Location	:		-England-Derby-Node4	Uk	Hosting

Working	with	JSON
If	we	need	to	send	JSON	from	a	client	to	a	server,	the	simplest	way	with	the
Requests	module	is	using	the	json	parameter,	specifying	a	dictionary	structure	in
key-value	format.

The	main	advantage	of	using	this	parameter	is	that	it	is	not	necessary	to	specify
'Content-Type'	in	the	request.	In	the	json	response,	we	can	see	that	it	automatically
returns	this	field	with	the	'application/json'	value:

>>>	import	requests

	>>>	response	=	requests.post('http://httpbin.org/post',	json={"key":	"value"})

	>>>	response.status_code

	200

	>>>	response.json()

	{'args':	{},

	'data':	'{"key":	"value"}',

	'files':	{},

	'form':	{},

	'headers':	{'Accept':	'*/*',

	'Accept-Encoding':	'gzip,	deflate',

	'Connection':	'close',

	'Content-Length':	'16',

	'Content-Type':	'application/json',

	'Host':	'httpbin.org',

	'User-Agent':	'python-requests/2.4.3	CPython/3.4.0',

	'X-Request-Id':	'xx-xx-xx'},

	'json':	{'key':	'value'},

	'origin':	'x.x.x.x',

	'url':	'http://httpbin.org/post'}

Handling	forms	with	urllib	and
requests	with	Python	3.7
In	this	section,	we	will	learn	how	to	use	urllib	and	requests	to	interact	with	HTML
forms.

Handling	forms	with	urllib
When	working	with	forms,	it	is	useful	to	use	the	POST	method	to	send	data	to	the
server.	The	POST	method	is	used	for	submitting	user	input	from	HTML	forms
and	for	uploading	files	to	a	server.

When	using	POST,	the	data	that	we	wish	to	send	will	go	in	the	body	of	the	request.
We	can	put	any	bytes	data	in	there	and	declare	its	type	by	adding	a	Content-Type
header	to	our	request	with	an	appropriate	MIME	type.

Let's	look	at	an	example	for	sending	some	HTML	form	data	to	a	server	by	using
a	POST	request,	just	as	browsers	do	when	we	submit	a	form	on	a	website.	The	site
at	https://httpbin.org	offers	a	test	server	that	returns	certain	data	from	requests.	It
will	be	used	to	exemplify	some	uses	of	the	Requests	module.

In	the	following	example,	we	are	using	the	form	that	corresponds	with	a	POST
method,	http://httpbin.org/forms/post.

Suppose	we	have	a	service	to	register	an	order	from	a	customer,	where	they	must
enter	information	such	as	their	name,	phone,	email,	and	the	desired	pizza	size:

https://httpbin.org
http://httpbin.org/forms/post

This	information	would	be	passed	through	the	data	attribute	through	a	dictionary
structure.	The	POST	method	requires	an	extra	field	called	data,	in	which	we	send	a
dictionary	with	all	the	elements	that	we	will	send	to	the	server	through	the
corresponding	method.

The	form	data	always	consists	of	key-value	pairs;	urllib	lets	us	work	with	regular
dictionaries	to	supply	the	form	data.	We	can	create	a	data	dictionary	with	the
customer	data,	adding	information	such	as	their	name,	telephone,	pizza	size,	and
email	address	with	the	keys	custname,	custtel,	size,	and	custemail	respectively:

>>>	data_dictionary	=	{'custname':	'customer','custtel':	'323232',	'size':	'large','custemail':	'email@domain.com'}

When	posting	the	HTML	form	data,	the	form	values	must	be	formatted	in	the
same	way	as	query	strings	are	formatted	in	a	URL,	and	must	be	URL	encoded.	A
Content-Type	header	must	also	be	set	to	the	special	MIME	type	of	application/x-
www-form-urlencoded.

In	the	Request	Headers,	we	can	see	the	Content-Type	value	when	we	send	data
with	the	POST	method:

Since	this	format	is	identical	to	query	strings,	we	can	just	use	the	urlencode()
function	in	our	dictionary	to	prepare	the	data:

>>>	data	=	urlencode(data_dictionary).encode('utf-8')

b'custname=customer&custtel=323232&size=large&custemail=email%40domain.com'

Here,	we	also	additionally	encode	the	result	to	bytes,	as	it	will	be	sent	as	the
body	of	the	request.	In	this	case,	we	use	the	UTF-8	character	set.

Next,	we	will	construct	our	request:

>>>	from	urllib.request	import	Request

>>>	req	=	Request('http://httpbin.org/post',data=data)

By	adding	our	data	as	the	data	keyword	argument,	we	are	telling	urllib	that	we
want	our	data	to	be	sent	as	the	body	of	the	request.	This	will	make	the	request
use	the	POST	method,	rather	than	the	GET	method.	Next,	we	add	the	Content-
Type	header:

>>>	req.add_header('Content-Type',	'application/x-www-form-urlencode;charset=UTF-8')

Lastly,	we	submit	the	request	and	transform	the	response	in	a	JSON	dictionary
with	the	json	module.

In	the	response	dictionary,	we	can	see	the	data	and	'Content-Type'	we	established
in	the	request:

>>>	response	=	urlopen(req)

>>>	response_dictionary	=	json.load(response)

>>>	print(response_dictionary)

{'args':	{},	'data':	'custname=customer&custtel=323232&size=large&custemail=email%40domain.com',	'files':	{},	'form':	{},	'headers':	{'Accept-Encoding':	'identity',	'Connection':	'close',	'Content-Length':	'72',	'Content-Type':	'application/x-www-form-urlencode;charset=UTF-8',	'Host':	'httpbin.org',	'User-Agent':	'Python-urllib/3.6'},	'

Handling	forms	with	requests
Typically,	you	want	to	send	some	form-encoded	data.	To	do	this,	simply	pass	a
dictionary	to	the	data	argument.	Your	data	dictionary	will	automatically	be	form-
encoded	when	the	request	is	made.	The	requests	library	takes	care	of	all	the
encoding	and	formatting	for	us.

In	this	example,	we	are	going	to	simulate	the	sending	of	an	HTML	form	through
a	POST	request,	just	like	browsers	do	when	we	send	a	form	to	a	website.	Form
data	is	always	sent	in	key-value	dictionary	format.

The	request.post()	function	sends	a	request	using	the	PUT	method	with	the
following	syntax:

requests.post	('<URL>',	data	=	<object>,	json	=	<object	type	dict>)

You	can	find	the	following	code	in	the	form_post_method.py	file:	

import	requests

data_dictionary	=	{'custname':	'customer','custtel':	'323232',

'size':	'large','custemail':	'email@domain.com'}

response	=	requests.post("http://httpbin.org/post",data=data_dictionary)

#	we	then	print	out	the	http	status_code

print("HTTP	Status	Code:	"	+	str(response.status_code))

if	response.status_code	==	200:

				print(response.text)

In	this	screenshot,	we	can	see	the	execution	of	the	previous	script:

In	the	script	response,	we	see	how	the	information	appears,	that	is	being	sent	in
the	request	data	dictionary	object	in	the	form	section	data.

Handling	cookies	with	urllib	and
requests	with	Python
In	this	section,	we	will	learn	about	cookies	and	how	we	can	use	urllib	and
requests	to	get	cookies	when	we	are	interacting	with	a	site	that	supports
identifying	the	user's	action.

What	are	cookies?
A	cookie	is	a	file	created	by	a	website	that	contains	small	amounts	of	data	and
that	is	sent	between	a	sender	and	a	receiver.	In	the	case	of	the	internet,	the	sender
would	be	the	server	where	the	web	page	is	hosted,	and	the	receiver	is	the
browser	that	you	use	to	visit	any	web	page.

A	cookie's	main	purpose	is	to	identify	the	user	by	storing	their	activity	history	on
a	specific	website,	so	that	the	most	appropriate	content	according	to	their	habits
can	be	offered.	This	means	that	each	time	a	website	is	visited	for	the	first	time,	a
cookie	is	saved	in	the	browser	with	a	little	information.	Then,	when	the	same
page	is	visited	again,	the	server	asks	for	the	same	cookie	to	fix	the	configuration
of	the	site	and	make	the	visit	as	personalized	as	possible.

These	cookies	can	have	a	simple	purpose,	such	as	knowing	when	the	user	last
visited	a	certain	web	page,	or	something	more	important,	as	it	is	used	to	keep	all
the	items	placed	in	the	shopping	cart	of	a	store—an	action	that	is	saved	in	real
time.

There	are	several	types	of	cookies,	but	the	most	common	are	called	session
cookies,	which	have	a	short	lifespan	since	they	are	deleted	when	you	close	the
browser.	We	also	have	persistent	cookies,	which	are	used	to	track	the	user	by
saving	information	about	their	behavior	on	a	website	for	a	certain	period	of	time.
Persistent	cookies	can	be	deleted	by	cleaning	the	browser	data,	but	some	have	an
expiration	date.

Secure	cookies	store	encrypted	information	to	prevent	the	data	stored	in	them
from	being	vulnerable	to	malicious	third-party	attacks.	They	are	used	only	in
HTTPS	connections.

Servers	use	cookies	in	various	ways.	They	can	add	a	unique	ID	to	them,	which
enables	them	to	track	a	client	as	they	access	different	areas	of	a	site.	They	can
store	a	login	token,	which	will	automatically	log	the	client	in,	even	if	the	client
leaves	the	site	and	then	accesses	it	later.	They	can	also	be	used	for	storing	the
client's	user	preferences	or	snippets	of	personalized	information,	and	so	on.

Cookies	are	necessary	because	the	server	has	no	other	way	of	tracking	a	client
between	requests.	HTTP	is	called	a	stateless	protocol.	It	doesn't	contain	an
explicit	mechanism	for	a	server	to	know	for	sure	that	two	requests	have	come
from	the	same	client.	Without	cookies	to	allow	the	server	to	add	some	uniquely
identifying	information	to	the	requests,	things	such	as	shopping	carts	would
become	impossible	to	build,	because	the	server	would	not	be	able	to	determine
which	basket	goes	with	which	request.

Handling	cookies	with	urllib
In	order	to	work	with	cookies	with	urllib,	we	can	use	the	HTTPCookieProcessor
handler	from	the	urllib.request	package:

>>>	import	urllib

>>>	cookie_processor	=	urllib.request.HTTPCookieProcessor()	

If	we	want	to	access	these	cookies	or	be	able	to	send	our	own	cookies,	we	can
pass	a	CookieJar	object	of	the	cookielib	module	as	a	parameter	to
the	HTTPCookieProcessor	initializer.

To	read	the	cookies	that	the	server	sends	us,	just	create	an	iterable	object	of	the
CookieJar	class	from	the	http.cookiejar	package.	This	will	automatically	extract	the
cookies	from	the	responses	that	we	receive	and	then	store	them	in	our	cookie	jar:

>>>	from	http.cookiejar	import	CookieJar

>>>	cookie_jar	=	CookieJar()

>>>	cookie_processor	=	urllib.request.HTTPCookieProcessor(cookie_jar)

>>>	opener	=	urllib.request.build_opener(cookie_processor)		

>>>	urllib.request.install_opener(opener)

We	can	use	our	opener	to	make	an	HTTP	request:

>>>	opener.open('http://www.github.com')

<http.client.HTTPResponse	object	at	0x00FFBD50>

Lastly,	we	can	check	that	the	server	has	sent	us	some	cookies:

>>>	len(cookie_jar)

3

Whenever	we	use	the	opener	to	make	further	requests,	the	HTTPCookieProcessor
functionality	will	check	our	cookie_jar	to	see	if	it	contains	any	cookies	for	that
site	and	will	then	automatically	add	them	to	our	requests.	It	will	also	add	any
further	cookies	that	are	received	to	the	cookie	jar.

Now,	we	are	examining	the	cookies	that	GitHub	sent	us	in	the	preceding	section.
You	can	see	that	we	have	three	cookie	objects	with	the	names	'logged_in',
'_gh_sess',	and	'has_recent_activity'.	Also,	we	can	see	information	related	to	the
GitHub	domain	as	part	of	the	mechanism	that	GitHub	uses	for	finding	out

whether	we've	logged	in.

The	expires	attribute	or	cookie's	lifespan	represents	the	amount	of	time	that	the
server	would	like	the	client	to	hold	on	to	the	cookie	for.	Once	the	expiry	date	has
passed,	the	client	can	throw	the	cookie	away	and	the	server	will	send	a	new	one
with	the	next	request:

>>>	cookies	=	list(cookie_jar)

>>>	cookies

	[Cookie(version=0,	name='logged_in',	value='no',	port=None,	port_specified=False,	domain='.github.com',	domain_specified=True,	domain_initial_dot=True,	path='/',	path_specified=True,	secure=True,	expires=2173978199,	discard=False,	comment=None,	comment_url=None,	rest={'HttpOnly':	None},	rfc2109=False),	Cookie(version=0,	name='_gh_sess',	value='cDlMVjFOdHM1djhLYWRGeGpPMTIxLytnRzdHNlRQT3VkUngxLzY2UkpmcGI1KzhNYWd4TzBzb2VJK0cxcWZBeGdpOFA3ZE95RXd5Nnp0WDdDWlQ0dHpwSkYzQ0hOZ2o1R3JkOXBPZTdCL0N4dGVMZ0dHc0VKZ0RreW5raDdRNDcrS0tTTlZiY1pOcGw5NkdkNDZBTnlQNTBiTDRzRTRIeVZPNVY2RWdUZ3VvYkFsczNqd3psQ0JBSld2Rlk4d3QvQm5XRm1iSGtVeVpTdG9haVVzMFhnQT09LS1pR3NNNnN1VmRocVJ0RXpkaWhxK0JRPT0%3D--84304a9b84b7e8c2605efb9808c1b92a25fcc221',	port=None,	port_specified=False,	domain='github.com',	domain_specified=False,	domain_initial_dot=False,	path='/',	path_specified=True,	secure=True,	expires=None,	discard=True,	comment=None,	comment_url=None,	rest={'HttpOnly':	None},	rfc2109=False),	Cookie(version=0,	name='has_recent_activity',	value='1',	port=None,	port_specified=False,	domain='github.com',	domain_specified=False,	domain_initial_dot=False,	path='/',	path_specified=True,	secure=False,	expires=1542829799,	discard=False,	comment=None,	comment_url=None,	rest={},	rfc2109=False)]

Another	interesting	attribute	is	the	HttpOnly	flag,	which	indicates	the	client	should
only	allow	access	to	a	cookie	when	the	access	is	part	of	an	HTTP	request	or
response.	The	other	methods	should	be	denied	access.	This	will	protect	the	client
from	cross-site	scripting	attacks.	This	is	an	important	security	feature,	and	when
the	server	sets	it,	our	application	should	behaves	accordingly.	We	can	see	that	for
cookies	with	the	names	'logged_in'	and	'_gh_sess',	the	HTTPOnly	flag	is	established	to
None	value	and	the	secure	flag	has	the	True	value.

If	the	value	is	true,	the	secure	flag	indicates	that	the	cookie	should	only	ever	be
sent	over	a	secure	connection,	such	as	HTTPS.	Again,	we	should	honor	this	if
the	flag	has	been	set	such	that	when	our	application	sends	requests	containing
this	cookie,	it	only	sends	them	to	HTTPS	URLs.

In	this	script,	we	can	see	how	we	can	obtain	cookies	from	a	website.	We	are
using	the	same	methods	we	have	reviewed,	and	for	each	cookie	in	the	list,	we
print	the	name	and	the	value.	We	can	process	the	headers	response	to	obtain
other	cookies	related	to	the	website.

You	can	find	the	following	code	in	the	extract_cookie_information.py	file:	

import	http.cookiejar

import	urllib

URL	=	'https://github.com/'

def	extract_cookie_info():

				#	setup	cookie	jar

				cookie_j	=	http.cookiejar.CookieJar()

				#	create	url	opener

				opener	=	urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cookie_j))

				#	now	access	without	any	login	info

				resp	=	opener.open(URL)

				for	cookie	in	cookie_j:

								print	("Cookie:	%s	-->	%s"	%(cookie.name,	cookie.value))

				print	("Headers:	%s"	%resp.headers)

if	__name__	==	'__main__':

				extract_cookie_info()

In	this	screenshot,	we	can	see	the	execution	of	the	previous	script:

Cookie	handling	with	requests
You	can	use	the	requests	library	to	get	cookies	from	the	response	object.	With	the
cookies	property	from	that	object,	you	can	access	the	cookies	list	through	a
request.cookies.RequestsCookieJar	object:

>>>	response	=	requests.get('http://www.github.com')

	>>>	print(response.cookies)

	<<class	'requests.cookies.RequestsCookieJar'>

[<Cookie	logged_in=no	for	.github.com/>,<Cookie	_gh_sess=N0RTMHpreVk3cUk0N05qbFNpNncyajU3MVNZVWtINmZQVTUrdnlpQ1lnYnZ6WGdXWU1aQ0d2VXJQVk4wcE1IYWd4Nk54RHRrMWdjNXAwL0lOei9JenlPeUJOeEZkcTRTSTlwTWtveEt0ei9XOWlWZGNwTXNzbmd6Tk93ekcrem9XZDduQzdjdjZXWVJEOXpNVUFXOTZRUWRYalZFay9mWDAvc2NlREJSdEREb1hOUC9LR2prYi9ZQ3FoOHlORHY3L0VvN3Z4MXk0WWJyWklyMXZnSGJXQT09LS1lYlkzY1pWRXBnWUlncjRaaUJacGhnPT0%3D--85b693ec8eee1f743fcaa3dc382ee5048cfda6f1	for	github.com/>,	<Cookie	has_recent_activity=1	for	github.com/>]>

Alternatively,	you	can	use	the	Session	class,	requests.Session,	and	observe	cookies
from	the	request	and	the	response:

>>>	import	requests

	>>>	session	=	requests.Session()

	>>>	print(session.cookies.get_dict())

	{}

	>>>	response	=	session.get('http://github.com')

	>>>	print(session.cookies.get_dict())

{'logged_in':	'no',	'_gh_sess':	'ekM5WmVnVlZkMXBEcXY1ZkdFNXJuRnltdkRiajhGTExGRyt4NHNOQ1Eyc3VpOFh6VDgzRVFQZDh5bU1rMFhYam81Qm9hYkphRUFLeUd6SHU4VCtSVS9ybUdMT2lKaGhrMyttSTRCU09IckZvUUhkdllpWG10WFFJOGNTMVFxN1oxYWJqY20vVVVYR1BNN0pSMzl4VkRaVDFCYS94WWFFS2NwNzlzMzV6ajY0K2I5K1oyZmVLU0xJd1RjbTNvdFZnYmdXaEU5ejl6TFg0d09qTjA5Q3VaQT09LS1OWlhCOXBneUdVN1JxVFBudVc0cmRBPT0%3D--c4f11645c3b08255c4667e264197c61cb02fe289',	'has_recent_activity':	'1'}

The	Session	object	has	the	same	interface	as	the	Requests	module,	so	we	use	its
get()	method	in	the	same	way	as	we	use	the	requests.get()	method.	Now,	any
cookies	encountered	are	stored	in	the	Session	object.

In	this	script,	we	are	going	to	extract	cookies	from	the	github.com	domain.	You	can
find	the	following	code	in	the	get_cookies_github.py	file:

#!/usr/bin/env	python3

import	requests

def	check_httponly(c):

				if	'httponly'	in	c._rest.keys():

								return	True

				else:

								return	'\x1b[31mFalse\x1b[39;49m'

cookies	=	[]

url	=	'http://www.github.com'

response	=	requests.get(url)

for	cookie	in	response.cookies:

				print('Name:',	cookie.name)

				print('Value:',	cookie.value)

				cookies.append(cookie.value)

				if	not	cookie.secure:

								cookie.secure	=	'\x1b[31mFalse\x1b[39;49m'

				print('HTTPOnly:',	check_httponly(cookie),	'\n')

print(set(cookies))

In	this	screenshot,	we	can	see	the	execution	of	the	previous	script:

Also,	we	can	send	cookies	to	a	server	with	the	cookies	parameter.	In	this	example,
we	are	using	the	service	at	http://httpbin.org/cookies	to	send	the	cookie	with
the	admin='True'	value.

You	can	find	the	following	code	in	the	send_cookies.py	file:

#!/usr/bin/env	python3

import	requests

cookies	=	[]

url	=	'http://httpbin.org/cookies'

cookies	=	dict(admin='True')

cookie_req	=	requests.get(url,	cookies=cookies)

print(cookie_req.text)

http://httpbin.org/cookies

Handling	HTTP	Basic	and	Digest
Authentication	with	requests
In	this	section,	we	will	learn	about	cookies	and	how	we	can	use	urllib	and
requests	to	get	cookies	when	we	are	interacting	with	a	site	that	supports
identifying	the	user's	action.

Introduction	to	authentication
mechanisms
The	authentication	mechanisms	supported	natively	in	the	HTTP	protocol	are
HTTP	basic	and	HTTP	digest.	Both	mechanisms	are	supported	in	Python
through	the	requests	library.	The	HTTP	Basic	Authentication	mechanism	is	based
on	forms	and	uses	Base64	to	encode	the	user	composed	with	the	password
separated	by	a	colon:	user:	password.

The	HTTP	Digest	Authentication	mechanism	uses	MD5	to	encrypt	the	user,	key,
and	realm	hashes.	The	main	difference	between	both	methods	is	that	basic	only
encodes	without	actually	encrypting,	while	digest	encrypts	the	user's	information
in	MD5	format.

With	the	Requests	module,	we	can	connect	with	servers	that	support	Basic	and
Digest	Authentication.	With	Basic	Authentication,	the	information	about	the	user
and	password	is	sent	in	Base64	format,	and	with	Digest	the	information	about
the	user	and	password	is	sent	as	a	hash	using	the	MD5	or	SHA1	algorithms.

HTTP	Basic	authentication
Basic	access	authentication	assumes	that	the	client	will	be	identified	by	a
username	and	a	password.	When	the	browser	client	initially	accesses	a	site	using
this	system,	the	server	replies	with	a	response	of	type	401,	which	contains	the
WWW-Authenticate	tag	with	the	Basic	value	and	the	name	of	the	protected	domain
(such	as	WWW-Authenticate:	Basic	realm	=	"www.domainProtected.com").

The	browser	responds	to	the	server	with	an	Authorization	tag,	which	contains	the
Basic	value	and	the	concatenation	in	the	Base64	encoding	of	the	login,	the	colon
punctuation	mark	:,	and	the	password	(for	example,	Authorization	:	Basic
b3dhc3A6cGFzc3dvcmQ	=).	Assuming	that	we	have	a	URL	protected	with	this	type	of
authentication,	in	Python,	with	the	Requests	module,	we	can	use	the	HTTPBasicAuth
class.

In	this	script,	we	are	using	the	HTTPBasicAuth	class	and	providing	the	user
credentials	as	a	tuple.

You	can	find	the	following	code	in	the	basic_authentication.py	file:

#!/usr/bin/env	python3

import	requests

from	requests.auth	import	HTTPBasicAuth

requests.get('https://api.github.com/user',	auth=HTTPBasicAuth('user',	'password'))

#	requests	provides	a	shorthand	for	this	authentication	method

response	=	requests.get('https://api.github.com/user',	auth=('user',	'password'))

print('Response.status_code:'+	str(response.status_code))

if	response.status_code	==	200:

print('Login	successful	:'+response.text)

HTTP	Digest	authentication
HTTP	Digest	is	a	mechanism	used	to	improve	the	Basic	authentication	process
in	the	HTTP	protocol.	MD5	is	normally	used	to	encrypt	the	user	information,
key,	and	realm,	although	other	algorithms,	such	as	SHA,	can	also	be	used	in	its
different	variants,	which	improve	security.

Digest	access	authentication	extends	Basic	access	authentication	by	using	a	one-
way	hashing	cryptographic	algorithm	(MD5)	to	first	encrypt	authentication
information,	and	then	add	a	unique	connection	value.

This	value	is	used	by	the	client	browser	in	the	process	of	calculating	the
password	response	in	the	hash	format.	Although	the	password	is	obfuscated	by
the	use	of	a	cryptographic	hash,	and	the	use	of	the	unique	value	prevents	the
threat	of	a	replay	attack,	the	login	name	is	sent	as	plain	text.

Assuming	we	have	a	URL	protected	with	this	type	of	authentication,	in	Python,
it	would	be	as	follows:

>>>	import	requests

>>>	from	requests.auth	import	HTTPDigestAuth

>>>	response	=	requests.get(protectedURL,	auth=HTTPDigestAuth(user,passwd))

We	can	use	this	script	to	test	access	to	a	protected-resource	Digest
Authentication.	The	script	is	similar	to	the	previous	one	with	Basic
Authentication.	The	main	difference	is	the	part	where	we	send	the	username	and
password	over	the	protected	URL,	http://httpbin.org/digest-auth/auth/user/pass.

In	this	screenshot,	we	can	see	that	with	Digest	Authentication,	the	authorization
request	header	is	established	with	the	username,	realm,	and	the	MD5	algorithm:

http://httpbin.org/digest-auth/auth/user/pass

You	can	find	the	following	code	in	the	digest_authentication.py	file:

#!/usr/bin/env	python3

import	requests

from	requests.auth	import	HTTPDigestAuth

url	=	'http://httpbin.org/digest-auth/auth/user/pass'

response	=	requests.get(url,	auth=HTTPDigestAuth('user',	'pass'))

print('Response.status_code:'+	str(response.status_code))

if	response.status_code	==	200:

				print('Login	successful	:'+str(response.json()))

Summary
In	this	chapter,	we	learned	principles	of	the	HTTP	.	We	saw	how	to	perform
numerous	fundamental	tasks	with	the	urllib	standard	library	and	the	third-party
Requests	packages.

For	each	library,	we	learned	about	the	structure	of	HTTP	messages,	HTTP	status
codes,	the	different	headers	that	we	may	encounter	in	requests	and	responses,	and
how	to	interpret	and	use	them	to	customize	our	requests.	We	also	covered	how	to
handle	cookies	and	how	to	submit	data	to	websites	in	the	manner	of	submitting	a
form	on	a	web	page,	and	how	to	extract	the	parameters	that	we	need	from	a
page's	source	code.

In	the	next	chapter,	we'll	be	employing	what	we've	learned	here	to	carry	out
detailed	interactions	with	different	web	services,	query	APIs	for	data,	and	upload
our	own	objects	to	the	web.

Questions
1.	 Which	function	from	the	urllib	package	is	used	to	create	an	object	similar	to

a	file	with	which	to	read	from	the	URL?
2.	 Which	lines	of	information	contain	specific	metadata	about	the	response

and	tell	the	client	how	to	interpret	it?
3.	 Which	header	allows	us	to	identify	the	browser	we	are	using	in	every

request?
4.	 Which	modules	allow	us	to	extract	links	and	parse	text	files	formatted	in

HTML?
5.	 Which	module	and	service	can	we	use	to	get	information	about	the	domain

we	are	analyzing,	such	as	an	IP	address	and	location?
6.	 Which	method	can	we	use	to	define	a	proxy	or	intermediate	machine

between	our	internal	network	and	the	external	network,	using	the	Requests
package?

7.	 What	is	the	main	purpose	of	using	cookies?
8.	 Which	object	is	used	for	working	with	cookies	with	the	urllib	package?
9.	 Which	object	is	used	for	working	with	cookies	with	the	Requests	package?
10.	 Which	mechanism	is	used	to	improve	the	Basic	Authentication	process	by

using	a	one-way	hashing	cryptographic	algorithm	(MD5)?

Further	reading
You	will	find	more	information	about	the	aforementioned	tools	and	the	official
Python	documentation	for	some	of	the	modules	discussed	at	the	following	links:

The	official	documentation	for	the	urllib	package:	https://docs.python.org/3/li
brary/urllib.request.html#module-urllib.request

Some	more	examples	for	the	urllib	package:	https://pythonspot.com/urllib-tuto
rial-python-3/

The	official	documentation	for	the	HTML	parser	package:	https://docs.python
.org/3/library/html.parser.html

The	official	documentation	for	the	Requests	package:	http://docs.python-reque
sts.org/en/latest

The	official	documentation	for	the	authentication	package:	http://docs.python
-requests.org/en/master/user/authentication/

https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://pythonspot.com/urllib-tutorial-python-3/
https://docs.python.org/3/library/html.parser.html
http://docs.python-requests.org/en/latest
http://docs.python-requests.org/en/master/user/authentication/

Section	2:	Interacting	with	APIs,	Web
Scraping,	and	Server	Scripting
In	this	section,	you	will	learn	how	to	interact	with	APIs,	how	to	perform	web
scraping	with	BeautifulSoup	and	Scrapy,	and	how	to	use	server	scripting	to
interact	with	SMTP,	SSH,	FTP,	SNMP,	and	LDAP	servers.

This	section	contains	the	following	chapters:

Chapter	3,	Application	Programming	Interface	in	Action
Chapter	4,	Web	Scraping	with	BeautifulSoup	and	Scrapy
Chapter	5,	Engaging	with	Email
Chapter	6,	Interacting	with	Remote	Systems

Application	Programming	Interface
in	Action
When	we	talk	about	APIs	in	relation	to	Python,	we	usually	refer	to	the	classes
and	the	functions	that	a	module	presents	to	us	for	interact	action.	In	this	chapter,
we'll	be	talking	about	something	different,	that	is,	web	APIs.

A	web	API	is	a	type	of	API	that	you	interact	with	through	the	HTTP	protocol.
Nowadays,	many	web	services	provide	a	set	of	HTTP	calls,	which	are	designed
to	be	used	programmatically	by	clients;	they	are	meant	to	be	used	by	machines
rather	than	by	humans.	Through	these	interfaces,	it's	possible	to	automate
interaction	with	the	services	and	to	perform	tasks	such	as	extracting	data,
configuring	the	service	in	some	way,	and	uploading	your	own	content	to	the
service.

The	following	topics	will	be	covered	in	this	chapter:

Introduction	to	REST	APIs
Introduction	to	JSON	and	the	json	module
Interacting	with	a	JSON	hybrid-REST	API	(Twitter)
Introduction	to	XML
Working	with	XML	and	a	full	REST	API	(Amazon	S3	bucket)	with	the
Boto	module

You	will	learn	how	to	use	Python	to	extract	data	from	the	major	data	formats
found	on	the	web:	HTML,	XML,	and	JSON.	An	example	of	pulling	useful
information	from	a	downloaded	web	page	will	be	used	to	illustrate	HTML,	while
interactions	with	REST	APIs	will	be	used	to	guide	you	through	the	essentials	of
working	with	XML	and	JSON.

Technical	requirements
Examples	and	source	code	for	this	chapter	are	available	in	the	GitHub	repository
in	the	Chapter03	folder:	https://github.com/PacktPublishing/Learning-Python-Networking-Sec
ond-Edition.

You	will	need	to	install	Python's	version	3	distribution	on	your	local	machine
and	activate	Twitter	and	Amazon	Web	Services	accounts	at	the	following	links:

https://developer.twitter.com

https://console.aws.amazon.com

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition.
https://developer.twitter.com
https://console.aws.amazon.com

Introduction	to	REST	APIs
REST	is	a	fairly	academic	concept	about	how	HTTP	should	be	used	for	APIs.
Although	the	properties	that	an	API	should	possess	so	as	to	be	considered
RESTful	are	quite	specific,	in	practice	pretty	much	any	API	that	is	based	on
HTTP	is	now	slapped	with	the	RESTful	label.

REST	is	any	interface	between	systems	that	uses	HTTP	to	obtain	data	or
generate	operations	on	that	data	in	all	possible	formats,	such	as	XML	and	JSON.
It	is	a	booming	alternative	to	other	standard	data	exchange	protocols	such	as
the	Simple	Object	Access	Protocol	(SOAP),	which	has	great	capacity	but	also	a
lot	of	complexity.	Sometimes	a	simpler	data	manipulation	solution	such	as	REST
is	preferable.

Advantages	of	using	REST	APIs
Some	advantages	of	REST	APIs	are	as	follows:

Automation:	APIs	enable	and	facilitate	automatic	processes	with	great
ease.	You	can	use	an	API	of	some	web	service	in	your	own	code	to
automate	tasks	such	as	checking	your	timeline,	posting	a	message,	and	so
on.
Separation	between	the	client	and	the	server:	The	REST	protocol
completely	separates	the	user	interface	of	the	server	and	the	storage	of	data.
That	has	some	advantages	when	making	developments.	For	example,	it
improves	the	portability	of	the	interface	to	other	platforms,	increases	the
scalability	of	the	projects,	and	allows	the	different	components	of	the
developments	to	evolve	independently.

External	database	access:	APIs	allow	website	visitors	to	access	remote,
password-protected	databases.	Your	API	password	and	username	authorizes
permission	for	information	to	be	exchanged	between	your	website	and	the
API's	database-driven	resources.
Visibility,	reliability,	and	scalability:	The	separation	between	client	and
server	has	an	evident	advantage:	any	development	team	can	scale	the
product	without	excessive	problems.	You	can	migrate	to	other	servers	or
make	all	kinds	of	changes	in	the	database,	as	long	as	the	data	of	each	of	the
requests	is	sent	correctly.	This	separation	makes	it	easier	to	have	the
frontend	and	backend	on	different	servers,	and	that	makes	the	applications
more	flexible	when	it	comes	to	working.
The	REST	API	is	always	independent	of	the	type	of	platform	or
language:	The	REST	APIs	always	adapt	to	the	type	of	syntax	or	platforms
with	which	they	are	working,	which	offers	great	freedom	when	changing	or
testing	new	environments	during	development.	With	a	REST	API	you	can
have	PHP,	Java,	Python,	or	Node.js	servers.	The	only	thing	that	is	essential
is	that	the	responses	to	requests	are	always	made	in	the	information
exchange	language	used,	usually	XML	or	JSON.

Introduction	to	JSON	and	the	JSON
module
In	this	section,	we	will	learn	how	to	work	with	the	JSON	data	format,	how	to
convert	Python	objects	into	the	JSON	data	format,	and	how	to	convert	them	back
to	Python	objects	in	Python	3.7.

JSON	corresponds	to	the	way	in	which	objects	are	defined	in
JavaScript.	JSON	is	a	standard	way	of	representing	simple	objects,	such	as	lists
and	dictionaries,	in	the	form	of	text	strings.	Although	it	was	originally	developed
for	JavaScript,	JSON	is	language-independent	and	most	languages	can	work
with	it.	It's	lightweight,	yet	flexible	enough	to	handle	a	broad	range	of	data.	This
makes	it	ideal	for	exchanging	data	over	HTTP,	and	a	large	number	of	web	APIs
use	this	as	their	primary	data	format.

Encoding	and	decoding	with	the
JSON	package
We	use	the	json	module	for	working	with	JSON	in	Python.	The	json	package
allows	you	to	transform	a	Python	object	into	a	character	string	that	represents
those	objects	in	JSON	format.	Let's	create	a	json	representation	of	a	Python	list
by	using	the	following	commands:

>>>	import	json

>>>	books	=	['book1',	'book2',	'book3']

>>>	json.dumps(books)

'["book1",	"book2",	"book3"]'

The	json.dumps()	function	allows	you	to	transform	a	dictionary-type	object	as	the
first	parameter	into	a	text	string	in	JSON	format.	In	this	case,	we	can	see	the
JSON	string	appears	to	be	identical	to	Python's	own	representation	of	a	list,	but
note	that	this	is	a	string.	You	can	confirm	this	by	executing	the	following
commands:

>>>	string_books	=	json.dumps(['book1',	'book2',	'book3'])

>>>	type(string_books)

<class	'str'>

The	json.loads()	function	transforms	a	character	string	that	contains	information
in	JSON	format	and	transforms	it	into	a	dictionary	Python-type	object.	Typically,
we	will	receive	a	JSON	string	as	the	body	of	an	HTTP	response,	which	can
simply	be	decoded	using	json.loads()	to	provide	immediately	usable	Python
objects:

>>>	books	=	'["book1",	"book2",	"book3"]'

>>>	list	=	json.loads(books)

>>>	list

['book1',	'book2',	'book3']

>>>	list[1]

'book2'

We	can	also	use	the	load	method	to	extract	the	Python	object	whose
representation	in	JSON	format	is	in	the	books.json	file.	In	the	output,	we	can	see
that	the	type	returned	is	a	dictionary	when	reading	a	JSON	file.

You	can	find	the	following	code	in	the	read_books_json.py	file:

import	json

with	open("books.json",	"rt")	as	file:

				books	=	json.load(file)

	

print(books)

print(type(books))

The	following	is	the	output	for	the	execution	of	the	previous	script:

{'title':	'Learning	Python	3',	'author':	'author',	'publisher':	'Packt	Publishing',	'pageCount':	500,	'numberOfChapters':	12,	'chapters':	[{'chapterNumber':	1,	'chapterTitle':	'Python	Fundamentals',	'pageCount':	30},	{'chapterNumber':	2,	'chapterTitle':	'Chapter	2',	'pageCount':	25}]}

	<class	'dict'>

Using	dict	with	JSON
JSON	natively	supports	a	mapping-type	object,	which	is	equivalent	to	a	Python
dictionary.	This	means	that	we	can	work	directly	with	dict	through	JSON.	In	this
example,	we	import	the	json	package	and	we	display	the	contents	of	the
dictionary-type	object	called	books	in	JSON	format:

>>>	import	json

>>>	books	=	{'A':'Book1',	'B':'Book2',	'C':'Book3'}

>>>	type(books)

<class	'dict'>

>>>	books['A']

'Book1'

>>>	books['B']

'Book2'

>>>	books['C']

'Book3'

>>>	books['D']

Traceback	(most	recent	call	last):

	File	"<stdin>",	line	1,	in	<module>

KeyError:	'D'

>>>	json.dumps(books)

'{"A":	"Book1",	"B":	"Book2",	"C":	"Book3"}'

Now	the	text	string	resulting	from	the	conversion	will	be	linked	to	the	name	books_json.

>>>	books_json	=	json.dumps(books)

>>>	print(books_json)

	{"A":	"Book1",	"B":	"Book2",	"C":	"Book3"}

The	string	with	the	representation	of	an	object	in	JSON	format	will	be	transformed	to	a	Python	object.

>>>	json.loads(books_json)

	{'A':	'Book1',	'B':	'Book2',	'C':	'Book3'}

Interacting	with	a	JSON	hybrid-
REST	API	(Twitter)
In	this	section,	we	will	learn	how	to	manage	and	interact	with	the	Twitter	API	in
Python	3.7.

The	Twitter	API
The	Twitter	API	provides	access	to	all	the	functions	that	we	may	want	a	Twitter
client	to	perform.	With	the	Twitter	API,	we	can	create	clients	that	search	for
recent	Tweets,	find	out	what's	trending,	look	up	user	details,	follow	users'
timelines,	and	even	act	on	behalf	of	users	by	posting	tweets	and	sending	direct
messages	for	them.

The	Twitter	module	is	based	on	the	Twitter	REST	API	located	at	https://developer
.twitter.com/en/docs/tweets/search/api-reference.html.

You	can	install	it	with	the		pip	install	twitter	command:

Collecting	twitter

	Downloading	https://files.pythonhosted.org/packages/85/e2/f602e3f584503f03e0389491b251464f8ecfe2596ac86e6b9068fe7419d3/twitter-1.18.0-py2.py3-none-any.whl	(54kB)

				100%	|████████████████████████████████|	61kB	655kB/s

	Installing	collected	packages:	twitter

	Successfully	installed	twitter-1.18.0

Now	we	can	import	the	twitter	module	and	show	information	about	it	with	the
help	function:

>>>	import	twitter

>>>	help(twitter)

This	gives	us	the	following	output:

https://developer.twitter.com/en/docs/tweets/search/api-reference.html

Also,	we	can	see	some	examples	of	using	the	API:

Registering	your	application	for	the
Twitter	API
We	need	to	create	a	Twitter	account	and	register	our	application	with	the
account.	Then	we	will	receive	the	authentication	credentials	for	our	app.	To
create	an	account,	go	to	http://www.twitter.com	and	complete	the	signup	process.
Do	the	following	to	register	your	application	once	you	have	a	Twitter	account:

1.	 Log	in	to	http://apps.twitter.com	with	your	main	Twitter	account,	and	then
select	Create	New	App.

2.	 Fill	out	the	new	app	form.	Note	that	Twitter	application	names	need	to	be
unique	globally.

3.	 Go	to	the	app's	settings	and	then	change	the	app	permissions	to	have	read
and	write	access.	You	may	need	to	register	your	mobile	number	to	enable
this.

Now	we	need	to	get	our	access	credentials	by	following	the	next	steps:

1.	 Go	to	the	Keys	and	Access	tokens	section	and	then	note	the	Consumer	key
and	the	Access	Secret

2.	 Generate	an	Access	token
3.	 Note	down	the	Access	token	and	the	Access	token	secret	(Access	token

secret	is	generated	form	the	Consumer	key	and	Access	secret)

https://twitter.com/
http://apps.twitter.com

Authenticating	requests	with	OAuth
We	now	have	enough	information	for	authenticating	requests.	Twitter	uses	an
authentication	standard	called	OAuth,	version	2.0.	It's	described	in	detail	at	http:/
/oauth.net/.

OAuth	credentials	comprise	of	two	main	elements,	consumer	and	access.	The
consumer	element	identifies	our	application	and	the	access	element	proves	that
the	account	the	access	credentials	came	from	authorized	our	app	to	act	on	its
behalf.	Twitter	lets	us	acquire	the	access	credentials	directly	from	the	dev.twitter.
com	interface.

The	OAuthLib	library	(https://oauthlib.readthedocs.io/en/latest)	is	a	library	that
allows	authentication	to	a	server	using	the	OAuth	protocol.	Sites	such	as
Facebook,	Twitter,	LinkedIn,	GitHub,	and	Google,	among	others,	use	this
protocol.

The	Requests	module	has	a	library	called	requests-oauthlib	(http://requests-oauthlib.
readthedocs.io/en/latest),	which	can	handle	most	of	the	complexity	for	us.	This	is
available	on	PyPI,	so	we	can	download	and	install	it	with	pip.	This	library	allows
access	to	sites	that	use	this	protocol	using	OAuthLib:

$	pip	install	requests-oauthlib

This	authentication	process	is	demonstrated	in	the	Requests-
OAuthlib	documentation,	which	can	be	found	at:	https://requests-oauthlib.readthedo
cs.org/en/latest/oauth1_workflow.html.

http://oauth.net/
https://developer.twitter.com/
https://oauthlib.readthedocs.io/en/latest
http://requests-oauthlib.readthedocs.io/en/latest
https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html

Collecting	information	from	Twitter
Twitter	has	a	REST	API	that	allows	you	to	control	an	account	and	perform	very
specific	searches	using	several	types	of	filters.	To	make	queries,	it	is	necessary	to
have	an	application	on	Twitter	linked	to	an	account	and	a	series	of	values	that
correspond	to	the	OAuth	authentication	tokens.

The	Twitter	API	has	a	fairly	broad	list	of	functions	that	can	be	invoked	from	any
client,	be	it	a	custom-developed	program	or	even	a	web	browser,	since	being	an
API	REST,	it	uses	the	HTTP	protocol	as	a	transfer	protocol.

The	documentation	on	the	Twitter	API	is	available	at	https://dev.twitter.com/rest/p
ublic:

In	addition	to	the	REST	API,	there	are	also	some	other	libraries,	such	as	the
streaming	API	and	Twitter	for	websites.	More	details	about	these	and	other

https://dev.twitter.com/rest/public

libraries	can	be	found	at	the	following	link:	https://dev.twitter.com/overview/document
ation.

https://dev.twitter.com/overview/documentation

A	Twitter	client
In	this	example,	we	will	connect	to	the	Twitter	API,	which	uses	the	OAuth
protocol.	You'll	need	to	provide	a	credentials	file	with	the	keys	you	have	taken
down	from	the	Twitter	app	configuration.	This	is	the	format	of	credentials.txt	file,
where	we	use	a	new	line	for	each	key	or	token:

CONSUMER_KEY

CONSUMER_SECRET

OAUTH_TOKEN

OAUTH_TOKEN_SECRET

You	can	find	the	following	code	in	the	twitter_connect.py	file:

!/usr/bin/python3

import	requests,	requests_oauthlib,	sys

def	init_auth(file):

				(CONSUMER_KEY,CONSUMER_SECRET,OAUTH_TOKEN,OAUTH_TOKEN_SECRET)	=	open(file,	'r').read().splitlines()

				auth_obj	=	requests_oauthlib.OAuth1(CONSUMER_KEY,	CONSUMER_SECRET,OAUTH_TOKEN,	OAUTH_TOKEN_SECRET)

				if	verify_credentials(auth_obj):

								print('Validated	credentials	OK')

								return	auth_obj

				else:

								print('Credentials	validation	failed')

								sys.exit(1)

def	verify_credentials(auth_obj):

				url	=	'https://api.twitter.com/1.1/account/verify_credentials.json'

				response	=	requests.get(url,	auth=auth_obj)

				return	response.status_code	==	200

if	__name__	==	'__main__':

				auth_obj	=	init_auth('credentials.txt')

In	the	previous	script,	we	create	the	OAuth1	authentication	instance,	auth_obj,	in
the	init_auth()	function	by	using	our	access	credentials.	We	pass	this	to	Requests
whenever	we	need	to	make	an	HTTP	Request,	and	through	it,	Requests	handles
the	authentication.	You	can	see	an	example	of	this	in	the	verify_credentials()
function.

In	the	verify_credentials()	function,	we	test	whether	Twitter	recognizes	our
credentials.	The	URL	that	we're	using	here	is	an	endpoint	that	Twitter	provides
for	testing	whether	our	credentials	are	valid.	It	returns	an	HTTP	200	status	code	if

they	are	valid	or	a	401	status	code	if	not.

Retrieving	tweets	from	a	timeline
In	the	previous	script,	we	can	add	a	get_mentions()	function	for	checking	and
retrieving	new	tweets	from	our	mentions	timeline.	For	this	task,	we	can	use	the
timeline	endpoint	at	https://developer.twitter.com/en/docs/tweets/timelines/api-referenc
e/get-statuses-mentions_timeline.html.

You	can	find	the	following	code	in	the	twitter_mentions.py	file:

#!	/usr/bin/python3

import	requests

import	requests_oauthlib

import	sys

import	json

def	init_auth(file):

				(CONSUMER_KEY,CONSUMER_SECRET,OAUTH_TOKEN,OAUTH_TOKEN_SECRET)	=	open(file,	'r').read().splitlines()

				auth_obj	=	requests_oauthlib.OAuth1(CONSUMER_KEY,	CONSUMER_SECRET,

				OAUTH_TOKEN,	OAUTH_TOKEN_SECRET)

				if	verify_credentials(auth_obj):

								print('Validated	credentials	OK')

								return	auth_obj

				else:

								print('Credentials	validation	failed')

								sys.exit(1)

def	verify_credentials(auth_obj):

				url	=	'https://api.twitter.com/1.1/account/verify_credentials.json'

				response	=	requests.get(url,	auth=auth_obj)

				return	response.status_code	==	200

def	get_mentions(since_id,	auth_obj):

				params	=	{'count':	200,	'since_id':	since_id,'include_rts':	0,	'include_entities':	'false'}

				url	=	'https://api.twitter.com/1.1/statuses/mentions_timeline.json'

				response	=	requests.get(url,	params=params,	auth=auth_obj)

				#Checking	if	the	request	is	successful.

	#It	will	raise	an	HTTPError	if	the	request	returned	an	unsuccessful	status	code.

				response.raise_for_status()

				return	json.loads(response.text)

if	__name__	==	'__main__':

				auth_obj	=	init_auth('credentials.txt')

				since_id	=	1

				for	tweet	in	get_mentions(since_id,	auth_obj):

								print(tweet['text'])

Using	get_mentions(),	we	check	for	and	download	any	tweets	that	mention	our	app
account	by	connecting	to	the	statuses/mentions_timeline.json	endpoint.	We	supply	a
number	of	parameters,	which	Requests	passes	on	as	a	query	string.	These
parameters	are	specified	by	Twitter	and	they	control	how	the	tweets	will	be

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-mentions_timeline.html

returned	to	us.	They	are	as	follows:

'count':	This	specifies	the	maximum	number	of	tweets	that	will	be	returned.
Twitter	will	allow	200	tweets	to	be	received	by	a	single	request	made	to	this
endpoint.
'include_entities':	This	is	used	for	trimming	down	some	extraneous
information	from	the	tweets	retrieved.
'include_rts':	This	tells	Twitter	not	to	include	any	retweets.	We	don't	want
the	user	to	receive	another	time	update	if	someone	retweets	our	reply.
'since_id':	This	tells	Twitter	to	only	return	the	tweets	with	IDs	above	this
value.	Every	tweet	has	a	unique	64-bit	integer	ID,	and	later	tweets	have
higher	value	IDs	than	earlier	tweets.	By	remembering	the	ID	of	the	last
tweet	we	processed	and	then	passing	it	as	this	parameter,	Twitter	will	filter
out	the	tweets	that	we've	already	seen.

Searching	tweets
In	the	previous	script,	we	can	add	a	search()	function	to	search	for	and	retrieve
tweets	from	a	specific	search	parameter.	In	this	example,	we	are	using	the	'q'
parameter	with	the	'python'	value	as	search	term.	For	this	task,	we	can	use	the
search	endpoint	at	https://developer.twitter.com/en/docs/tweets/search/api-reference/get
-search-tweets.html.	The	endpoint	(https://api.twitter.com/1.1/search/tweets.json)
requires	the	search	term	as	a	mandatory	parameter.

You	can	find	the	following	code	in	the	twitter_search_tag.py	file:

#!	/usr/bin/python3

import	requests

import	requests_oauthlib

import	sys

import	json

def	verify_credentials(auth_obj):

				url	=	'https://api.twitter.com/1.1/account/verify_credentials.json'

				response	=	requests.get(url,	auth=auth_obj)

				return	response.status_code	==	200

def	search(auth_obj):

				params	=	{'q':	'python'}

				url	=	'https://api.twitter.com/1.1/search/tweets.json'

				response	=	requests.get(url,	params=params,	auth=auth_obj)

				return	response

if	__name__	==	'__main__':

				auth_obj	=	init_auth('credentials.txt')

				response	=	search(auth_obj)

				print	(json.dumps(response.json(),indent	=	2))

In	this	screenshot,	we	can	see	the	execution	of	the	previous	script:

https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html
https://api.twitter.com/1.1/search/tweets.json

Consuming	the	Twitter	REST	API
with	Python
REST	services	can	be	used	with	standard	HTTP	Requests	and,	in	any	case,	if	the
service	requires	it,	the	requests	must	contain	specific	headers	that	allow
authentication	and	authorization	processes.

Starting	with	this,	there	are	several	possibilities	to	create	a	Python	script	that	can
consume	a	REST	service,	for	example	using	the	urllib	module	or	other	libraries
written	by	third	parties	such	as	urllib3	or	requests.

There	are	other	modules	for	working	with	Twitter	from	Python,	such	as	Tweepy
(https://github.com/tweepy/tweepy)	and	Python-Twitter	(https://github.com/bear/python-
twitter).

To	access	the	Twitter	API,	it	is	necessary	to	have	developer	credentials.	These
credentials	can	be	obtained	from	https://apps.twitter.com	when	creating	a	new
application.	The	data	that	will	be	used	includes	the	following:

Consumer	key
Consumer	secret
OAuth	token
OAuth	token	secret

These	keys	will	be	needed	to	make	the	connection	with	the	API	through	OAuth
and	allow	our	application	to	use	our	account,	since	to	access	certain
functionalities	of	the	API	we	will	have	to	be	logged	in.

After	ensuring	the	necessary	authentication	values	correspond	to	the	application
previously	created,	the	next	step	is	to	use	the	library	to	consume	some	of	the
REST	services	available	in	the	Twitter	API.	To	do	this,	the	first	step	is	to	create
a	twitter.oauth.OAuth	object.

If	the	authentication	values	are	correct,	the	instance	of	the	API	class	will	contain
all	the	methods	necessary	to	consume	the	Twitter	rest	services.

https://github.com/tweepy/tweepy
https://github.com/bear/python-twitter
https://apps.twitter.com

Connecting	with	the	Twitter	API
To	be	able	to	use	the	Twitter	API,	it	is	necessary	to	create	an	object	based	on	the
twitter.Twitter	class,	which	will	result	in	an	object	capable	of	interacting	with	the
Twitter	API	that	must	be	defined	using	the	auth	parameter:

>>>	twitter.Twitter	(auth	=	<object	twitter.oauth.OAuth>)

The	argument	for	the	auth	parameter	must	be	an	instantiated	object	of	the
twitter.oauth.OAuth	class	for	which	the	Twitter	access	credentials	must	be	entered:

>>>	twitter.oauth.OAuth(CONSUMER_KEY,CONSUMER_SECRET,ACCESS_TOKEN,ACCESS_TOKEN_SECRET)

For	example,	this	function	allows	you	to	read	the	credentials	from	a	file	whose
path	will	be	entered	as	a	parameter	and	to	return	a	twitter.Twitter	object	with	an
active	connection	to	the	Twitter	API:

def	twitter_connection(path_file):

				with	open(path_file,	'r')	as	file:

								(CONSUMER_KEY,

								CONSUMER_SECRET,

								ACCESS_TOKEN,

								ACCESS_TOKEN_SECRET)	=	archivo.read().splitlines()

								auth	=	twitter.oauth.OAuth(ACCESS_TOKEN,

																															ACCESS_TOKEN_SECRET,

																															CONSUMER_KEY,

																															CONSUMER_SECRET)

								return	twitter.Twitter(auth=auth)

In	this	case,	the	credentials	will	be	read	from	the	data/credentials.txt	file.	We	can
invoke	the	previous	function	with	the	credentials	file	as	a	parameter:

>>>	twitter	=	twitter_connection("data/credentials.txt")

From	here,	you	can	create	scripts	that	allow	you	to	extract	information	of
interest,	such	as	taking	a	list	of	tweets	from	a	specific	account	or	searching	for	a
specific	hashtag.

The	following	example	allows	you	to	extract	the	first	10	tweets	that	match	the
"#python"	hashtag.	You	can	find	the	following	code	in	the	get_info_account.py	file:

import	twitter	

	

def	get_info_twitter(tw):

				if	tw	is	not	None:

								query	=	tw.search.tweets(q="#python",	lang="en",	count="10")["statuses"]

								for	q	in	query:

												for	key,value	in	q.items():

																if(key=='text'):

																				print(value+'\n')

def	main():

				try:

								tw	=	twitter_connection("credentials.txt")

								get_info_twitter(tw)

				except	Exception	as	e:

								print(str(e))

if	__name__	==	"__main__":

				main()

In	this	screenshot,	we	can	see	the	execution	of	the	previous	script:

Accessing	Twitter	API	resources
The	created	object	has	access	to	the	GET	and	POST	resources	of	the	Twitter
API,	which	are	listed	in	the	reference	index:	https://developer.twitter.com/en/docs/ap
i-reference-index.

The	Twitter	package	transforms	the	responses	of	the	Twitter	API,	of	JSON
format,	to	a	Python	object.	The	Twitter	API	uses	the	JSON	format	by	default	to
transmit	information,	but	the	Twitter	module	transforms	the	information	into	a
dictionary-type	object.	This	query	returns	the	last	two	tweets	related	to	Python	in
the	English	language:

>>>	search=	twitter.search.tweets(q="python",	lang="en",	count="2")

>>>	for	item	in	search.keys():

	>>>				print(item)

In	this	script,	we	can	see	an	example	of	an	application	that	consumes	the	Twitter
API,	gets	a	search	term	from	the	user	input,	and	saves	the	results	in	a	JSON
file.	You	can	find	the	following	code	in	the	twitter_search.py	file:

#!	/usr/bin/python3

import	twitter,	json

def	twitter_connection(file):

				'''Create	the	object	from	which	the	Twitter	API	will	be	consumed,reading	the	credentials	from	a	file,	defined	in	path	parameter.'''

				(CONSUMER_KEY,CONSUMER_SECRET,OAUTH_TOKEN,OAUTH_TOKEN_SECRET)	=	open(file,	'r').read().splitlines()

				auth	=	twitter.oauth.OAuth(OAUTH_TOKEN,OAUTH_TOKEN_SECRET,CONSUMER_KEY,CONSUMER_SECRET)

				return	twitter.Twitter(auth=auth)

def	recently_tweets(tw,	search_term):

				'''Get	the	last	10	tweets	in	English	from	a	specific	search.'''

				search	=	tw.search.tweets(q=search_term,	lang="en",	count="10")["statuses"]

				print(search)

				return	search

def	save_tweets(tweets,	file):

				'''Store	the	tweets	in	JSON	format	in	the	specified	file.'''

				with	open(file,	"w")	as	f:

								json.dump(tweets,	f,	indent=1)

def	main(file='tweets.json'):

				try:

								search_term	=	input("Enter	the	search	term	in	twitter	:	")

								tw	=	twitter_connection("credentials.txt")

								tweets	=	recently_tweets(tw,	search_term)

								save_tweets(tweets,	file)

				except	Exception	as	e:

								print(str(e))

https://developer.twitter.com/en/docs/api-reference-index

if	__name__	==	"__main__":

				main()

Streaming	APIs	with	Tweepy
We	can	use	the	tweepy	library	to	connect	to	the	Twitter	API.	In	this	example,	we
will	use	a	streaming	API	to	process	data	in	real	time.

In	the	same	way	as	we	have	done	before	with	the	Twitter	module,	we	can	create
our	function	for	connecting	with	OAuth	credentials:

def	twitter_connection(file):

				'''Create	the	object	from	which	the	Twitter	API	will	be	consumed,

				reading	the	credentials	from	a	file,	defined	in	path	parameter.'''

				(CONSUMER_KEY,CONSUMER_SECRET,OAUTH_TOKEN,OAUTH_TOKEN_SECRET)	=	open(file,	'r').read().splitlines()

				#	We	instanced	the	authorization	manager

				auth	=	tweepy.OAuthHandler(CONSUMER_KEY,CONSUMER_SECRET)

				auth.set_access_token(OAUTH_TOKEN,OAUTH_TOKEN_SECRET)

				return	(tweepy.API(auth),	auth)

The	first	thing	we	can	do	is	create	a	class	inherited	from	tweepy.StreamListener.
This	will	be	the	class	that	is	listening	the	flow	of	tweets	and	will	process	a	tweet
that	matches	the	term	we	are	looking	for:

class	StreamListener(tweepy.StreamListener):

				

				'''When	a	Tweet	matches	our	targetTerms	it	will	be	passed	to	this	function'''

				def	on_data(self,	data):

								data	=	json.loads(data)

								print(data['text'])

								return	True

				#	If	we	reach	the	limit	of	calls	alert	and	wait	10	"

				def	on_limit(self,	track):

								print('[!]	Limit:	{0}').format(track)

								sleep(10)

				#	In	case	of	an	error,	interrupt	the	listener

				#	https://dev.twitter.com/overview/api/response-codes

				def	on_error(self,	status):

								print('[!]	Error:	{0}').format(status)

												return	False

We	can	create	a	function	that	uses	the	Tweepy	API	to	extract	information	about
trending	topics	from	Twitter:

def	getTrendingTopics(woeid=1):

				trends	=	api.trends_place(1)[0]['trends']

				#	We	extract	the	name	of	the	trends	and	return	them	as	a	list

				trendList	=	[trend['name']	for	trend	in	trends]

				return	trendList

To	tell	the	listener	what	our	keywords	will	be	and	for	it	to	be	able	to	use	them,
we	will	add	the	following	function	to	our	project:

def	streamAPI(auth):

				#	instantiate	our	listener

				l	=	StreamListener()

				#	We	start	the	streamer	with	the	OAuth	object	and	the	listener

				streamer	=	tweepy.Stream(auth=auth,	listener=l)

				#	We	define	the	terms	that	we	want	to	track

				targetTerms	=	[‘python’]

				#We	start	the	streamer,	passing	it	our	trackTerms

				streamer.filter(track=targetTerms)

We'll	call	it,	passing	it	our	authentication	auth	object	in	the	following	way:

try:

				streamAPI(auth)

except	KeyboardInterrupt,	e:

				exit(1)

In	this	screenshot,	we	can	see	the	execution	of	the	twitter_stream.py	script	used
to	track	Python	terms	when	they	appear	in	the	Twitter	timeline,	and	tweets
tagged	with	Python:

Introduction	to	XML
In	this	section,	we	will	learn	how	to	work	with	XML	documents,	parse	them,	and
extract	data	from	them	by	using	the	ElementTree	API	in	Python	3.7.	We're	going
to	start	by	introducing	how	XML	is	used	in	Python,	and	then	we	will	explain	an
XML-based	API	called	the	Amazon	S3	API.

Getting	started	with	XML
XML	corresponds	to	a	general	standard	to	serialize	data	of	diverse	types	in	a
structured	way.	The	XML	standard	was	published	in	1996	by	W3C	and	is	used
intensively	to	define	data	structures.

An	XML	document	is	known	as	an	element	and	contains	data	structures	based
on	content	delimited	by	markers	(markups).	These	markers	correspond	to	labels
(tags)	that	indicate	the	beginning	and	end	of	the	structure	they	delimit.

The	XML	is	a	way	of	representing	hierarchical	data	in	a	standard	text	format.
When	working	with	XML-based	web	APIs,	we'll	be	creating	XML	documents
and	sending	them	as	the	bodies	of	HTTP	Requests	and	receiving	XML
documents	as	the	bodies	of	responses.

The	XML	APIs
There	are	two	main	approaches	to	working	with	XML	data:

Reading	a	whole	document	and	creating	an	object-based	representation	of
it,	then	manipulating	it	by	using	an	object-oriented	API
Processing	the	document	from	start	to	end,	and	performing	actions	as
specific	tags	are	encountered

For	now,	we're	going	to	focus	on	the	object-based	approach	by	using	a	Python
XML	API	called	ElementTree.	The	second	so-called	pull	or	event-based
approach	(also	often	called	SAX,	as	SAX	is	one	of	the	most	popular	APIs	in	this
category)	is	more	complicated	to	set	up,	and	is	only	needed	for	processing	large
XML	files.

Processing	XML	with	ElementTree
The	xml	package	is	part	of	the	Python	standard	library	and	contains	in	turn	a
series	of	packages	and	modules	specializing	in	the	management	and
manipulation	of	keyed	documents.

The	xml.etree.ElementTree	package	specializes	in	XML	documents	and	contains
various	classes	and	functions	that	can	be	used	for	that	purpose.

Let's	see	how	we	may	create	the	previously	mentioned	example	XML	document
by	using	ElementTree.	Open	a	Python	interpreter	and	run	the	following	commands:

>>>	import	xml.etree.ElementTree	as	ET

>>>	root	=	ET.Element('root')

>>>	ET.dump(root)

<root	/>

We	start	by	creating	the	root	element,	that	is,	the	outermost	element	of	the
document.		The	<root	/>	representation	is	an	XML	shortcut	for	<root></root>.	It's
used	to	show	an	empty	element,	that	is,	an	element	with	no	data	and	no	child
tags.

We	create	the	<root>	element	by	creating	a	new	ElementTree.Element	object.	You'll
notice	that	the	argument	we	give	to	Element()	is	the	name	of	the	tag	that	is	created.
Our	<root>	element	is	empty	at	the	moment,	so	let's	put	something	in	it:

>>>	book	=	ET.Element('book')

	>>>	root.append(book)

	>>>	ET.dump(root)

	<root><book	/></root>

Now	we	have	an	element	called	<book>	in	our	<root>	element.	When	an	element	is
directly	nested	inside	another,	then	the	nested	element	is	called	a	child	of	the
outer	element,	and	the	outer	element	is	called	the	parent.	Similarly,	elements	that
are	at	the	same	level	are	called	siblings.

Let's	add	another	element,	and	this	time	let's	give	it	some	content.	Add	the
following	commands:

>>>	name	=	ET.SubElement(book,	'name')

>>>	name.text	=	'Book1'

>>>	ET.dump(root)

<root><book><name>Book1</name></book></root>

Now	our	document	is	starting	to	shape	up.	We	do	two	new	things	here:	first,	we
use	the	shortcut	class	method	ElementTree.SubElement()	to	create	the	new	<name>
element	and	insert	it	into	the	tree	as	a	child	of	<book>	in	a	single	operation.
Second,	we	give	it	some	content	by	assigning	some	text	to	the	element's	text
attribute.

We	can	remove	elements	by	using	the	remove()	method	on	the	parent	element,	as
shown	in	the	following	commands:

>>>	temp	=	ET.SubElement(root,	'temp')

>>>	ET.dump(root)

<root><book><name>Book1</name></book><temp	/></root>

>>>	root.remove(temp)

>>>	ET.dump(root)

<root><book><name>Book1</name></book></root>

Pretty	printing
It	would	be	useful	for	us	to	be	able	to	produce	output	in	a	more	legible	format,
such	as	the	example	shown	at	the	beginning	of	this	section.	To	do	this,	we	can
use	another	XML	API,	minidom,	provided	by	the	standard	library.

We	can	use	the	following	commands	to	print	some	nicely	formatted	XML:

>>>	import	xml.dom.minidom	as	minidom

>>>	print(minidom.parseString(ET.tostring(root)).toprettyxml())

	<?xml	version="1.0"	?>

	<root>

								<book>

																<name>Book1</name>

								</book>

	</root>

Reading	an	XML	file
The	xml.etree.ElementTree	module	contains	the	Element	class,	which	allows	you	to
inspect	an	XML	document	by	accessing	its	methods	and	attributes,	as	well	as	the
indexing	of	its	elements.

In	this	example,	we	are	reading	an	XML	file	called	books.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<root>

	<book	id="book1"	name="Learning	Python	2">

	<title>Learning	Python	2</title>

	<publisher>Packt	Publishing</publisher>

	<numberOfChapters>13</numberOfChapters>

	<pageCount>500</pageCount>

	<author>Author1</author>

	<chapters>

	<chapter>

	<chapterNumber>1</chapterNumber>

	<chapterTitle>Chapter1</chapterTitle>

	<pageCount>30</pageCount>

	</chapter>

	<chapter>

	<chapterNumber>2</chapterNumber>

	<chapterTitle>Chapter2</chapterTitle>

	<pageCount>25</pageCount>

	</chapter>

	</chapters>

	</book>

	<book	id="book2"	name="Learning	Python	3">

	<title>Learning	Python	3</title>

	<publisher>Packt	Publishing</publisher>

	<numberOfChapters>10</numberOfChapters>

	<pageCount>400</pageCount>

	<author>Author2</author>

	<chapters>

	<chapter>

	<chapterNumber>1</chapterNumber>

	<chapterTitle>Chapter1</chapterTitle>

	<pageCount>30</pageCount>

	</chapter>

	<chapter>

	<chapterNumber>2</chapterNumber>

	<chapterTitle>Chapter2</chapterTitle>

	<pageCount>25</pageCount>

	</chapter>

	</chapters>

	</book>

</root>

We	can	use	the	parse	method	from	the	ElementTree	module	for	reading	an	XML
file,	passing	as	an	argument	the	path	of	the	XML	file.	This	is	the	definition	of	the

parse	method:

	Elementtree.parse('<path_xml_file>')

In	this	example	we	are	using	the	parse	method	to	process	the	books.xml	file:

	>>>	import	xml.etree.ElementTree	as	ET

	>>>	books	=	ET.parse("books.xml")

With	the	getroot()	method,	we	can	access	the	node	root:

>>>	root	=	books.getroot()

	>>>	print(root)

	<Element	'root'	at	0x02F5DA20>

With	the	tag	property,	we	can	access	the	string	identifying	what	kind	of	data	this
element	represents:

>>>	print(root.tag)

root

By	iterating	over	each	element,	we	can	access	attributes	with	the	attrib	property
and	access	the	text	of	a	final	element:

>>>	for	child	in	root:

	>>>			print(child.tag,	child.attrib)

	>>>			for	element	in	child:

	>>>					print(element.tag,	element.text)

This	is	the	output	of	the	previous	commands,	where	we	can	see	the	values	of
each	book	element:

book	{'id':	'book1',	'name':	'Learning	Python	2'}

	title	Learning	Python	2

	publisher	Packt	Publishing

	numberOfChapters	13

	pageCount	500

	author	Author1

book	{'id':	'book2',	'name':	'Learning	Python	3'}

	title	Learning	Python	3

	publisher	Packt	Publishing

	numberOfChapters	10

	pageCount	400

	author	Author2

If	we	need	access	to	the	contents	of	a	specific	attribute,	we	can	use	the	form
child.attrib['name_attribute']:

>>>	for	child	in	root:

	>>>	print(child.tag,	child.attrib['id'],child.attrib['name'])

book	book1	Learning	Python	2

book	book2	Learning	Python	3

In	the	following	script	we	can	see	how	we	can	iterate	over	the	books.xml	file.	You
can	find	the	following	code	in	the	books_iterate_xml.py	file:

from	xml.etree.cElementTree	import	iterparse

def	books(file):

				for	event,	elem	in	iterparse(file):

								if	event	==	'start'	and	elem.tag	==	'root':

												books	=	elem

								if	event	==	'end'	and	elem.tag	==	'book':

												print('{0},	{1},	{2},	{3},	{4}'.	format(elem.findtext('title'),	elem.findtext('publisher'),	elem.findtext('numberOfChapters'),	elem.findtext('pageCount'),elem.findtext('author')))

									if	event	==	'end'	and	elem.tag	==	'chapter':

												print('{0},	{1},	{2}'.	format(elem.findtext('chapterNumber'),	elem.findtext('chapterTitle'),	elem.findtext('pageCount')))

if	__name__	==	'__main__':

				books(open("books.xml"))

This	is	the	output	of	the	previous	script,	where	we	can	see	the	values	of	each
book	element	and	the	chapter	elements	for	each	book:

1,Chapter1,30

2,Chapter2,25

Learning	Python	2,Packt	Publishing,13,500,Author1

1,Chapter1,30

2,Chapter2,25

Learning	Python	3,Packt	Publishing,10,400,Author2

Working	with	XML	and	a	full	REST
API	(Amazon	S3	bucket)	with	the
Boto	module
In	this	section,	we	will	learn	how	to	manage	and	interact	with	Amazon	S3
bucket	in	Python	3.7	with	the	S3	API	and	the	boto3	package.

The	Amazon	S3	API
Amazon	S3	is	a	data	storage	service	that	provides	a	simple	API	for	automated
access.	It's	one	of	the	many	cloud	services	in	the	growing	AWS	portfolio.

You'll	notice	that	in	the	S3	documentation	and	elsewhere,	the	S3	web	API	is
referred	to	as	a	REST	API.	The	S3	API	is	actually	among	the	most	RESTful
high-profile	APIs,	because	it	appropriately	uses	a	good	range	of	the	HTTP
methods.

Registering	with	AWS
Before	we	can	access	S3,	we	need	to	register	with	AWS.	It	is	the	norm	for	APIs
to	require	registration	before	allowing	access	to	their	features.	You	can	use	either
an	existing	Amazon	account	or	create	a	new	one	at	https://console.aws.amazon.com.

When	you	register	with	Amazon	you	will	get	a	lot	of	services.	In	this	section,	we
will	focus	on	the	S3	Storage	service:

https://console.aws.amazon.com

Authentication	with	AWS
Most	web	APIs	we	use	will	specify	a	way	of	supplying	authentication
credentials	that	allow	requests	to	be	made	to	them,	and	typically	every	HTTP
Request	we	make	must	include	authentication	information.	APIs	require	this
information	for	the	following	reasons:

To	ensure	that	others	can't	abuse	your	application's	access	permissions
To	apply	per-application	rate	limiting
To	manage	the	delegation	of	access	rights,	so	that	an	application	can	act	on
the	behalf	of	other	users	of	a	service	or	other	services
Collection	of	usage	statistics

All	of	the	AWS	services	use	an	HTTP	Request-signing	mechanism	for
authentication.	To	sign	a	request,	we	hash	and	sign	unique	data	in	an	HTTP
Request	using	a	cryptographic	key,	then	add	the	signature	to	the	request	as	a
header.	By	recreating	the	signature	on	the	server,	AWS	can	ensure	that	the
request	has	been	sent	by	us,	and	that	it	doesn't	get	altered	in	transit.

The	AWS	signature-generation	process	is	currently	on	its	fourth	version,	and	an
involved	discussion	would	be	needed	to	cover	it,	so	we're	going	to	employ	a
third-party	library,	that	is,	requests-aws4auth.	This	is	a	library	for	the	Requests
module	that	automatically	handles	signature	generation	for	us.	It's	available	at
PyPI.	So,	install	it	on	a	command	line	with	the	help	of	pip:

$	pip	install	requests-aws4auth

Once	you	are	logged	in	to	the	Amazon	console	at	https://console.aws.amazon.com,
you	need	to	perform	the	steps	shown	here:

1.	 Click	on	your	name	in	the	top-right,	and	then	choose	Security	Credentials.
2.	 Click	on	Users,	which	is	in	the	list	on	the	left-hand	side	of	the	screen,	and

then	click	on	the	Create	New	Users	button	at	the	top.
3.	 Type	in	the	username,	and	make	sure	that	Generate	an	Access	Key	for	each

user	has	been	checked,	and	then	click	on	the	Create	button	in	the	bottom
right-hand	corner.

4.	 You'll	see	a	new	page	saying	that	the	user	has	been	created	successfully.

https://console.aws.amazon.com

Click	on	the	Download	credentials	button	at	the	bottom-right	corner	to
download	a	CSV	file,	which	contains	the	Access	ID	and	Access	Secret	for
this	user.	These	are	important	because	they	will	help	in	authenticating	to	the
S3	API.

5.	 In	the	Policies	section,	a	list	of	policy	templates	will	appear.	The	policy	we
are	going	to	use	is	the	AmazonS3FullAccess:

6.	 Scroll	down	this	list	and	select	the	AmazonS3FullAccess	policy,	as	shown
in	the	following	screenshot:

7.	 Finally,	select	the	user	or	the	user	group	and	click	on	the	Attach	policy
button.	Now,	our	selected	user	or	the	user	group	has	full	access	to	the	S3
service:

S3	buckets	and	objects
S3	organizes	the	data	that	we	store	in	it	using	two	concepts:	buckets	and	objects.
An	object	is	the	equivalent	of	a	file,	that	is,	a	blob	of	data	with	a	name,	and	a
bucket	is	equivalent	to	a	directory.	Every	bucket	has	its	own	URL	of	the
form	http://s3.<region>.amazonaws.com/<bucketname>.

In	the	URL,	<bucketname>	is	the	name	of	the	bucket	and	<region>	is	the	AWS	region
where	the	bucket	is	present,	for	example	eu-west-2.	The	bucket	name	and	region
are	set	when	we	create	the	bucket.

Bucket	names	are	shared	globally	among	all	S3	users,	and	so	they	must	be
unique.	If	you	own	a	domain,	then	a	subdomain	of	that	will	make	an	appropriate
bucket	name.

Objects	are	named	when	we	first	upload	them.	We	access	objects	by	adding	the
object	name	to	the	end	of	the	bucket's	URL	as	a	path.	For	example,	if	we	have	a
bucket	called	mybucket	in	the	eu-west-2	region	containing	the	object	Python.png,
then	we	can	access	it	by	using	https://s3.eu-west-2.amazonaws.com/mybucket/Python.png.

Let's	create	our	first	bucket	through	the	AWS	Console.	We	can	perform	most	of
the	operations	that	the	API	exposes	manually	through	this	web	interface,	and	it's
a	good	way	of	checking	that	our	API	client	is	performing	the	desired	tasks:

1.	 Log	into	the	console	at	https://console.aws.amazon.com.
2.	 Go	to	the	S3	service.	You	will	see	a	page,	which	will	prompt	you	to	Create

bucket.
3.	 Click	on	the	Create	bucket	button.
4.	 Enter	a	bucket	name,	pick	a	region,	and	then	click	on	Create:

https://s3.eu-west-2.amazonaws.com/mybucket/Python.png
https://console.aws.amazon.com

Creating	a	bucket	with	the	S3	API
In	this	section,	we	are	going	to	write	a	script	that	will	enable	us	to	interact	with
the	service	and	create	a	bucket	with	the	S3	API.	To	create	a	bucket,	you'll	need
to	use	the	requests_aws4auth	package	and	the	aws4auth	method	with	your	AWS
credentials,	<ACCESS_ID>	and	<ACCESS_KEY>.	Also,	you	need	to	specify	the	<REGION>	with
the	AWS	region	of	your	choice:

>>>	import	requests

>>>	import	requests_aws4auth

>>>	auth	=	requests_aws4auth.AWS4Auth('<ACCESS_ID>',	'<ACCESS_KEY>',	'eu-west-2',	's3')

Whenever	we	write	a	client	for	an	API,	our	main	point	of	reference	is	the	API
documentation.	The	documentation	tells	us	how	to	construct	the	HTTP	Requests
for	performing	operations.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html	provides	the	details	of
bucket	creation.	This	documentation	tells	us	that	to	create	a	bucket,	we	need	to
make	an	HTTP	Request	to	our	new	bucket's	endpoint	by	using	the	HTTP	PUT
method:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

We'll	use	this	in	conjunction	with	Requests	to	add	AWS	authentication	to	our
API	requests.	The	ns	variable	is	a	string	that	represents	the	namespace,	which
we'll	need	to	work	with	XML	from	the	S3	API:

ns	=	'http://s3.amazonaws.com/doc/2006-03-01/'

You	can	see	that	the	script	will	create	a	bucket	from	the	command-line
arguments	and	so	calls	the	create_bucket()	function,	passing	myBucket	as	an
argument.

You	can	find	the	following	code	in	the	s3_create_bucket.py	file:

import	xml.etree.ElementTree	as	ET

def	create_bucket(bucket):

				print(bucket)

				XML	=	ET.Element('CreateBucketConfiguration')

				XML.attrib['xmlns']	=	ns

				location	=	ET.SubElement(XML,	'LocationConstraint')

				location.text	=	auth.region				

				data	=	ET.tostring(XML,	encoding='utf-8')

				url	=	'http://{}.{}'.format(bucket,endpoint)

				xml_pprint(data)

				response	=	requests.put(url,	data=data,	auth=auth)

				print(response)

				if	response.ok:

								print('Created	bucket	{}	OK'.format(bucket))

				else:

								xml_pprint(response.text)

We	can	create	a	method	for	printing	the	XML	output:

import	xml.dom.minidom	as	minidom

def	xml_pprint(xml_string):

				print(minidom.parseString(xml_string).toprettyxml())

For	creating	a	bucket,	we	can	see	that	it	creates	an	XML	tree	with	the	format	that
is	available	in	the	S3	documentation.	If	you	run	the	script,	then	you	will	see	the
XML	shown	here:

$	python3	s3_create_bucket.py	mybucket

<?xml	version="1.0"	?>

	<CreateBucketConfiguration	xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

								<LocationConstraint>eu-west-2</LocationConstraint>

	</CreateBucketConfiguration>

This	matches	the	format	specified	in	the	documentation.	You	can	see	that	we've
used	the	ns	variable	to	fill	the	xmlns	attribute.	This	is	the	code	that	executes	the	put
request:

url	=	'http://{}.{}'.format(bucket,	endpoint)

response	=	requests.put(url,	data=data,	auth=auth)

if	response.ok:

				print('Created	bucket	{}	OK'.format(bucket))

else:

				xml_pprint(response.text)

The	first	line	shown	here	will	generate	the	full	URL	from	our	bucket	name	and
endpoint.	The	second	line	will	make	the	put	request	to	the	S3	API.	Also,	note
that	we	have	supplied	our	auth	object	to	the	call.	This	will	allow	Requests	to
handle	all	the	S3	authentication	for	us.

If	all	goes	well,	then	we	print	out	a	message.	In	case	everything	does	not	go	as
expected,	we	print	out	the	response	body.	S3	returns	error	messages	as	XML	in
the	response	body.	So	we	use	our	xml_pprint()	function	to	display	it.

When	we	refresh	the	S3	Console	in	our	browser,	we	will	see	that	our	bucket	has
been	created:

Uploading	and	downloading	file
Now	that	we've	created	a	bucket,	we	can	upload	and	download	some	files.
Writing	a	function	for	uploading	a	file	is	similar	to	creating	a	bucket.	We	check
the	documentation	to	see	how	to	construct	our	HTTP	Request,	figure	out	what
information	should	be	collected	at	the	command	line,	and	then	write	the
function.

We	need	to	use	an	HTTP	PUT	again.	We	need	the	name	of	the	bucket	that	we
want	to	store	the	file	in	and	the	name	that	we	want	the	file	to	be	stored	under	in
S3.	The	body	of	the	request	will	contain	the	file	data.	At	the	command	line,	we'll
collect	the	bucket	name,	the	name	we	want	the	file	to	have	in	the	S3	service,	and
the	name	of	the	local	file	to	upload.

Note	that	we	open	the	local	file	in	binary	mode.	The	file	could	contain	any	type
of	data,	so	we	don't	want	text	transforms	applied.	We	could	pull	this	data	from
anywhere,	such	as	a	database	or	another	web	API.	Here,	we	just	use	a	local	file
for	simplicity.

The	URL	is	the	same	endpoint	that	we	constructed	in	create_bucket()	with	the	S3
object	name	appended	to	the	URL	path.	Later,	we	can	use	this	URL	to	retrieve
the	object.

You	can	find	the	following	code	in	the	s3_upload_download_file.py	file.	This	is	the
function	we	can	use	to	upload	a	file	to	a	specific	bucket:

def	upload_file(bucket,	local_path):

				data	=	open(local_path,	'rb').read()

				url	=	'http://{}/{}/{}'.format(endpoint,	bucket,	local_path)

				print('upload	file	'+url)

				response	=	requests.put(url,	data=data,	auth=auth)

				if	response.ok:

								print('Uploaded	{}	OK'.format(local_path))

				else:

								xml_pprint(response.text)

You'll	need	to	replace	bucket	with	your	own	bucket	name.	Once	the	file	gets
uploaded,	you	will	see	it	in	the	S3	Console.	Downloading	a	file	through	the	S3
API	is	similar	to	uploading	it.	We	simply	take	the	bucket	name,	the	S3	object
name,	and	the	local	filename	again	with	GET	request	instead	of	a	put	request,	and

then	write	the	data	received	to	disk.	This	is	the	function	we	can	use	to	download
a	file	from	a	specific	bucket:

def	download_file(bucket,	s3_name):

				url	=	'http://{}/{}/{}'.format(endpoint,	bucket,	s3_name)

				print('download	file	'+url)

				response	=	requests.get(url,	auth=auth)

				print(response)

				if	response.ok:

								open(s3_name,	'wb').write(response.content)

								print('Downloaded	{}	OK'.format(s3_name))

				else:

								xml_pprint(response.text)

The	complete	script	is	available	in	the	s3_upload_download_file.py	file.	We	can
execute	it,	passing	the	bucket	name	and	the	file	we	want	to	upload	and	download
as	arguments:

$python	s3_upload_download_file.py	bucket-aux	Python.png

upload	file	http://s3.eu-west-2.amazonaws.com/bucket-aux/Python.png

	Uploaded	Python.png	OK

	download	file	http://s3.eu-west-2.amazonaws.com/bucket-aux/Python.png

	<Response	[200]>

	Downloaded	Python.png	OK

Listing	buckets
To	list	buckets,	we	need	to	do	a	get	request	with	the	AWS	authentication	data.
Then	we	get	the	response	in	XML	format	and	get	the	response.text	content:

>>>	endpoint	=	's3.eu-west-2.amazonaws.com'

>>>	auth	=	aws4auth.AWS4Auth(access_id,	access_key,	region,	's3')

>>>	response	=	requests.get("http://"+endpoint,	auth=auth)

>>>	print(response.text)<ListAllMyBucketsResult	xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Owner><ID>e6c7c8b59da100190ebe74cf53f402506382c4c2889d64c426f8cfa8026e2f29</ID></Owner><Buckets><Bucket><Name>bucket-aux</Name><CreationDate>2018-12-11T18:33:03.000Z</CreationDate></Bucket><Bucket><Name>zappa-0esu8ehc9</Name><CreationDate>2018-07-23T11:19:50.000Z</CreationDate></Bucket></Buckets></ListAllMyBucketsResult>

Now	we	can	process	our	XML	and	convert	it	into	an	ElementTree	tree:

>>>	import	xml.etree.ElementTree	as	ET

>>>	root	=	ET.fromstring(r.text)

We	now	have	an	ElementTree	instance	in	the	root	variable	and	we	can	extract	such
information	from	XML	easily	way.

The	simplest	way	of	navigating	the	tree	is	by	using	the	elements	as	iterators.
Iterating	over	the	root	returns	each	of	its	child	elements,	and	then	we	print	out
the	tag	of	an	element	by	using	the	tag	attribute:

>>>	for	element	in	root:

>>>			print('Tag:	'	+	element.tag)

You	can	find	the	following	code	in	the	s3_list_buckets.py	file.	This	is	the	function
we	can	use	to	list	buckets	to	a	specific	AWS	account:

def	list_buckets():

				print(endpoint)

				response	=	requests.get("http://"+endpoint,	auth=auth)

				print(response.text)

				xml_pprint(response.text)

				if	response.ok:

								root	=	ET.fromstring(response.text)

								for	element	in	root:

												print('Tag:	'	+	element.tag)

In	this	screenshot,	we	can	see	the	output	of	the	previous	script	execution:

Parsing	XML	and	handling	errors
S3	embeds	error	messages	in	the	XML,	returned	in	the	response	body,	and	until
now	we've	just	been	dumping	the	raw	XML	to	the	screen.	We	can	improve	on
this	and	pull	the	text	out	of	the	XML.	First,	let's	generate	an	error	message	so
that	we	can	see	what	the	XML	looks	like.	In	s3_list_buckets.py,	if	we	replace	the
access	secret	with	an	empty	string,	then	it	will	produce	an	error.

This	is	the	function	we	can	use	for	handling	errors:

def	handle_error(response):

				output	=	'Status	code:	{}\n'.format(response.status_code)

				root	=	ET.fromstring(response.text)

				code	=	root.find('Code').text

				output	+=	'Error	code:	{}\n'.format(code)

				message	=	root.find('Message').text

				output	+=	'Message:	{}\n'.format(message)

				print(output)

In	you	try	to	execute	the	s3_list_buckets.py	with	an	empty	string	in	the	access
secret,	it	will	tell	you	that	it	can't	authenticate	the	request	because	you	have	set	a
blank	access	secret.

In	this	screenshot,	we	can	see	the	XML	error	related
to	AuthorizationHeaderMalformed:

Connecting	to	S3	with	the	Python
Boto	package
We've	discussed	working	directly	with	the	S3	REST	API,	and	this	has	given	us
some	useful	techniques	that	will	allow	us	to	program	similar	APIs	in	the	future.

In	many	cases,	this	will	be	the	only	way	in	which	we	can	interact	with	a	web
API.	However,	some	APIs,	including	AWS,	have	ready-to-use	packages	that
expose	the	functionality	of	the	service	without	having	to	deal	with	the
complexities	of	the	HTTP	API.	These	packages	generally	make	the	code	cleaner
and	simpler,	and	they	should	be	used	for	production	work	if	they're	available.

The	AWS	package	for	connecting	from	Python	is	called	Boto3.	The	boto3
package	is	available	in	PyPI,	so	we	can	install	it	with	pip	and	with	the	following
command:	

pip	install	boto3

Now,	open	a	Python	shell	and	let's	try	it	out.	We	need	to	connect	to	the	service
first:

>>>	import	boto3

>>>	s3	=	boto3.client('s3')

Use	the	following	to	display	a	list	of	the	buckets:

>>>	buckets	=	s3.list_buckets()

>>>	buckets	=	[bucket['Name']	for	bucket	in	response['Buckets']]

Now,	let's	create	a	bucket:

>>>	s3.create_bucket('mybucket’)

This	creates	the	bucket	in	the	default	standard	US	region.	We	can	supply	a
different	region,	as	shown	here:

>>>	conn.create_bucket('mybucket',	CreateBucketConfiguration={'LocationConstraint':	'eu-west-2'})

We	can	see	a	list	of	acceptable	region	names	in	the	official	documentation	at	http

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.create_bucket

s://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.c

reate_bucket.

In	this	screenshot,	we	can	see	the	documentation	for	the	create_bucket	function
and	the	parameters	we	can	use:

To	upload	a	file,	we	can	use	the	upload_file()	method	from	the	S3	object,	passing
as	parameters	the	bucket	name	and	the	filename	for	upload.	To	download	a	file,
first	we	need	to	get	a	reference	to	the	bucket	from	which	we	want	to	extract	the
file,	and	then	we	can	use	the	download_file()	method,	passing	as	parameter	the	file

we	want	to	download	and	the	name	of	the	file	when	it	is	stored	in	your	system
folder.

In	the	following	script	we	can	see	how	we	implement	two	methods	for	doing	this
tasks.	You	can	find	the	following	code	in	the	s3_upload_download_file_boto.py	file:

import	sys

import	boto3

import	botocore

#	Create	an	S3	client

s3	=	boto3.client('s3')

#	Create	an	S3	bucket

s3_bucket	=	boto3.resource('s3')

def	download_file(bucket,	s3_name):

				try:

								s3_bucket.Bucket(bucket).download_file('Python.png',	'Python_download.png')

				except	botocore.exceptions.ClientError	as	e:

								if	e.response['Error']['Code']	==	"404":

												print("The	object	does	not	exist.")

								else:

												raise

def	upload_file(bucket_name,	filename):

				#	Uploads	the	given	file	using	a	managed	uploader,	which	will	split	up	large

				#	files	automatically	and	upload	parts	in	parallel.

				s3.upload_file(filename,	bucket_name,	filename)

if	__name__	==	'__main__':

				upload_file(sys.argv[1],	sys.argv[2])

				download_file(sys.argv[1],	sys.argv[2])

This	script	uploads	and	downloads	the	Python.png	S3	object	in	the	bucket,	passed
as	a	parameter,	and	then	stores	it	in	the	Python.png	local	file.	For	the	execution	of
the	previous	script	we	can	pass	as	arguments	the	bucket	name	and	the	file	we
want	to	upload	to	the	bucket:

$	python	s3_upload_download_file_boto.py	mybucket	Python.png

I'll	leave	you	to	further	explore	the	Boto	package's	functionality	with	the	help	of
the	tutorial,	which	can	be	found	at	https://boto.readthedocs.org/en/latest/s3_tut.html.

https://boto.readthedocs.org/en/latest/s3_tut.html

Summary
In	this	chapter,	we	reviewed	the	JSON	data	format,	how	to	convert	Python
objects	into	the	JSON	data	format,	and	how	to	convert	them	back	to	Python
objects.	We	then	explored	the	Twitter	API	and	wrote	an	on-demand	search
service	using	tag	names.	We	also	explored	other	modules,	such	as	Tweepy,
which	is	used	for	processing	tweets	in	real	time.

We	learned	about	XML,	and	how	to	construct	documents,	parse	them,	and
extract	data	from	them	by	using	the	ElementTree	API.	We	looked	at	both	the
Python	ElementTree	implementation	and	lxml.	We	looked	at	the	Amazon	S3
service	and	wrote	a	client	that	lets	us	perform	basic	operations,	such	as	listing
and	creating	buckets,	and	uploading	and	downloading	files	through	the	S3	REST
API	and	the	Boto	package.	

In	the	next	chapter,	we	will	review	the	web	scraping	process	as	a	technique	for
extracting	information	from	websites.	We	will	use	Python	packages	such	as
BeautifulSoup	and	Scrapy	for	this	purpose.

Questions
1.	 Which	function	from	the	json	package	allows	you	to	transform	a	dictionary-

type	object	as	the	first	parameter	into	a	text	string	in	JSON	format?
2.	 Which	function	from	the	json	package	transforms	a	character	string	that

contains	information	in	JSON	format	and	transforms	it	into	a	dictionary
Python-type	object?

3.	 Which	authentication	mechanism	uses	Twitter,	where	credentials	are
composed	of	two	main	elements,	consumer	and	access?

4.	 Which	library	inside	the	requests	module	can	handle	most	of	the
complexity	of	the	OAuth	protocol	for	us?

5.	 Which	information	do	we	need	to	provide	at	the	credentials	level	to	connect
with	the	Twitter	API	from	Python?

6.	 Which	library	can	we	use	from	Python	to	connect	with	the	Twitter	API	and
process	data	in	real	time	using	the	streaming	API?

7.	 Which	xml	package	is	part	of	the	Python	standard	library	and	contains	in
turn	a	series	of	packages	and	modules	specializing	in	the	management	and
manipulation	of	XML	documents?

8.	 Which	AWS	policy	provides	access	to	the	Amazon	S3	service?
9.	 Which	package	can	we	use	for	AWS	authentication	from	Python?
10.	 Which	format	does	S3	use	to	organize	the	data	and	buckets	that	we	store	in

it?

Further	reading
You	will	find	more	information	about	the	mentioned	tools	and	the	official
Python	documentation	for	some	of	the	commented	modules	at	the	following
links:

orjson,	a	faster	json	library	than	the	json	default	module:	https://github.com/ijl/
orjson

Official	documentation	for	the	requests	package:	http://requests-oauthlib.read
thedocs.io/en/latest

Official	GitHub	repository	for	the	tweepy	module:	https://github.com/tweepy/twee
py.
Official	GitHub	repository	for	the	Python	Twitter	module:	https://github.com/
bear/python-twitter

Official	documentation	for	the	Amazon	S3	API:	http://docs.aws.amazon.com/Ama
zonS3/latest/API/

AWSBucketDump,	a	tool	for	enumerating	AWS	S3	buckets:	https://github.c
om/jordanpotti/AWSBucketDump

https://github.com/ijl/orjson
http://requests-oauthlib.readthedocs.io/en/latest
https://github.com/tweepy/tweepy
https://github.com/bear/python-twitter
http://docs.aws.amazon.com/AmazonS3/latest/API/
https://github.com/jordanpotti/AWSBucketDump

Web	Scraping	with	BeautifulSoup
and	Scrapy
When	we	want	to	extract	the	content	of	a	web	page	by	automating	the	extraction
of	information,	we	often	find	that	the	website	does	not	offer	any	API	to	obtain
the	data	you	need	and	it	is	necessary	to	resort	to	scraping	techniques	to	recover
data	automatically.	Some	of	the	most	powerful	tools	can	be	found	in	Python	3.7,
among	which	we	shall	highlight	BeautifulSoup	and	Scrapy.

Scrapy	is	a	framework	written	in	Python	for	the	extraction	of	data	in	an
automated	way	that	can	be	used	for	a	wide	range	of	applications,	such	as	the
processing	of	data	mining.

The	following	topics	will	be	covered	in	this	chapter:

Introduction	to	web	scraping
Extracting	information	from	web	pages	and	parsing	HTML	with
BeautifulSoup
Introduction	to	Scrapy	components	and	architecture
Scrapy	as	a	framework	for	performing	web	crawling	processes	and	data
analysis
Working	with	Scrapy	in	the	cloud

Technical	requirements
Examples	and	source	code	for	this	chapter	are	available	in	the	GitHub	repository
in	the	Chapter04	folder:	https://github.com/PacktPublishing/Learning-Python-Networking-Sec
ond-Edition.

You	will	need	to	install	Python	3	distribution	on	your	local	machine.	For	the	last
section,	Working	with	Scrapy	in	the	cloud,	you	will	need	an	active	Scrapinghub
account,	which	you	can	install	with	the	following	link:	https://app.scrapinghub.com.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://app.scrapinghub.com

Introduction	to	web	scraping
In	this	section,	we	will	learn	about	how	we	can	extract	the	content	of	a	web	page
by	automating	the	extraction	of	information.

Web	content	extraction
Among	the	techniques	available	to	extract	content	from	the	web,	we	can
highlight	the	following:

Screen	scraping:	A	technique	that	allows	you	to	obtain	information	by
moving	around	the	screen,	registering	user	pulsations.
Web	scraping:	The	aim	is	to	obtain	the	information	of	a	resource,	such	as	a
web	page	in	HTML,	and	process	that	information	to	extract	relevant	data.
Report	mining:	A	technique	that	also	tries	to	obtain	information,	but	in	this
case	from	a	file	(HTML,	RDF,	CSV,	and	so	on).	So,	with	this	approach,	we
can	create	a	simple	and	fast	mechanism	without	the	need	to	write	an	API.	A
main	characteristic	is	that	we	can	indicate	that	the	system	does	not	need	a
connection,	since	it	is	possible	to	extract	the	information	offline	and
without	using	any	API	when	working	from	a	file.	With	this	technique,	it	is
possible	to	facilitate	the	analysis	while	avoiding	the	excessive	use	of
equipment	and	computing	time,	and	increase	the	efficiency	and	speed	for	a
prototype	and	the	development	of	customized	reports.
Spiders:	Scripts	that	follow	specific	rules	to	move	around	the	website	and
gather	information	imitating	the	interaction	a	user	would	perform	with	the
website.	The	idea	is	that	developers	only	need	to	write	the	rules	for
managing	the	data	and	leave	automated	tools	such	as	Scrapy	to	get	the
contents	of	the	website	for	you.
Crawlers:	Processes	that	automatically	parse	and	extract	content	from	a
website	and	provide	that	content	to	search	engine	providers	for	building
their	page	indexes.

In	this	chapter,	we	will	focus	on	the	web	scraping	and	spiders	techniques	that
allow	the	collection	or	extraction	of	data	from	web	pages	automatically.	They	are
very	active	and	developing	fields	that	share	objectives	with	the	semantic	web,
automatic	word	processing,	artificial	intelligence,	and	human-computer
interaction.

What	is	web	scraping?
Web	scraping	is	a	technique	that	allows	the	extraction	of	information	from
websites,	transforming	unstructured	data	such	as	data	in	HTML	format	into
structured	data.

In	this	section,	we	will	review	the	BeautifulSoup	Python	library.	We	complement
this	library	by	using	the	requests	library	to	open	the	URL	and	download	the
HTML	code.	BeautifulSoup	will	receive	that	content	to	parse	the	website's
HTML	and	extract	the	data.

HTML	parsers
For	parsing	HTML,	the	recommended	third-party	package	is	lxml,	which	is
primarily	an	XML	parser.	However,	it	does	include	a	very	good	HTML	parser.
It's	quick,	it	offers	several	ways	of	navigating	documents,	and	it	is	tolerant	of
broken	HTML.

The	lxml	library	can	be	installed	on	Debian	and	Ubuntu	distributions	through	the
python-lxml	package.	If	you	need	an	up-to-date	version,	then	lxml	can	be	installed
through	pip	with	the	pip	install	lxml	command.

Another	option	is	to	use	BeautifulSoup.	BeautifulSoup	is	pure	Python,	so	it	can
be	installed	with	pip,	and	it	should	run	anywhere.	Although	it	has	its	own	API,
it's	a	well-respected	and	capable	library,	and	it	can,	in	fact,	use	lxml	as	a	backend
library.

Parsing	HTML	with	lxml
The	lxml	parser	(https://lxml.de)	is	the	main	module	for	analysis	of	XML
documents	and	libxslt.

The	main	module	features	are	as	follows:

Support	for	XML	and	HTML
An	API	based	on	ElementTree
Support	to	selected	elements	of	the	document	through	XPath	expressions

The	installation	of	the	XML	parser	can	be	done	through	the	official	repository:

pip	install	lxml

lxml.etree	is	a	submodule	within	the	lxml	library	that	provides	methods	such	as
XPath(),	which	supports	expressions	with	XPath	selector	syntax.	With	this
example,	we	see	the	use	of	the	parser	to	read	an	HTML	file	and	extract	the	text
from	the	title	tag	through	an	XPath	expression:

from	lxml	import	html,etree

simple_page	=	open('data/simple.html').read()

parser	=	etree.HTML(simple_page)

result	=	etree.tostring(parser,pretty_print=True,	method="html")

find_text	=	etree.XPath("//title/text()",	smart_strings=False)

text	=	find_text(parser)[0]

print(text)

Before	we	start	parsing	HTML,	we	need	something	to	parse.	We	can	obtain	the
version	and	codename	of	the	latest	stable	Debian	release	from	the	Debian
website.	Information	about	the	current	stable	release	can	be	found	at	https://www.d
ebian.org/releases/stable/index.en.html.	The	information	that	we	want	is	displayed	in
the	page	title	and	in	the	first	sentence.

Let's	open	a	Python	shell	and	get	to	parsing.	First,	we'll	download	the	page	with
the	requests	package:

>>>	import	requests

>>>	response	=	requests.get('https://www.debian.org/releases/stable/index.en.html')

Next,	we	parse	the	source	into	an	ElementTree	tree.	This	is	the	same	as	parsing

https://lxml.de
https://www.debian.org/releases/stable/index.en.html

XML	with	the	standard	library's	ElementTree,	except	here	we	will	use	the	lxml
specialist	HTMLParser:

>>>	from	lxml.etree	import	HTML

>>>	root	=	HTML(response.content)

The	HTML()	function	is	a	shortcut	that	reads	the	HTML	that	is	passed	to	it,	and
then	it	produces	an	XML	tree.	Notice	that	we're	passing	response.content	and	not
response.text.	The	lxml	library	produces	better	results	when	it	uses	the	raw
response	rather	than	the	decoded	Unicode	text.

The	lxml	library's	ElementTree	implementation	has	been	designed	to	be	100%
compatible	with	the	standard	library's,	so	we	can	start	exploring	the	document	in
the	same	way	as	we	did	with	XML:

>>>	[e.tag	for	e	in	root]

	['head',	'body']

>>>	root.find('head').find('title').text

	'Debian	--	Debian	“stretch”	Release	Information	'

In	the	preceding	code,	we	have	printed	out	the	text	content	of	the	document's
<title>	element.	We	can	already	see	it	contains	the	codename	that	we	want.

Let's	inspect	the	HTML	source	of	the	page,	and	see	what	we're	dealing	with.	For
this,	either	use	View	source	in	a	web	browser,	or	save	the	HTML	to	a	file	and
open	it	in	a	text	editor.	The	page's	source	code	is	also	included	in	the	source	code
download	for	this	book.	Search	for	text	Debian	9.6	in	the	text,	so	that	we	are
taken	straight	to	the	information	we	want.

In	this	screenshot,	we	can	see	how	it	looks	as	a	block	of	code:

From	the	preceding	image,	we	can	see	that	we	want	the	contents	of	the	<p>	tag

child	of	the	<div>	element.	If	we	navigated	to	this	element	by	using	the	ElementTree
functions,	which	we	have	used	before,	then	we'd	end	up	with	something	like	the
following:

>>>	root.find('body').findall('div')[1].find('p').text

	'Debian	9.6	was\nreleased	November	10th,	2018.\nDebian	9.0	was	initially	released	on	June	17th,	2017.\nThe	release	included	many	major\nchanges,	described	in\nour	'

The	main	problem	with	this	way	is	that	it	depends	quite	heavily	on	the	HTML
structure.	A	change,	such	as	a	<div>	tag	being	inserted	before	the	one	that	we
needed,	would	break	it.	Also,	in	more	complex	documents,	this	can	lead	to
horrendous	chains	of	method	calls,	which	are	hard	to	maintain.

Our	use	of	the	<title>	tag	in	the	previous	section	to	get	the	codename	is	an
example	of	a	good	technique,	because	there	is	always	only	one	<head>	tag	and	one
<title>	tag	in	a	document.	A	better	approach	to	finding	our	<div>	tag	would	be	to
make	use	of	the	id="content"	attribute	it	contains.

It's	a	common	web	page	design	pattern	to	break	a	page	into	a	few	top-level
<divs>	tag	for	the	major	page	sections	such	as	header,	footer,	and	the	content,	and
to	give	the	<divs>	ID	attributes	that	identify	them	as	such.

Since	version	2,	lxml	has	by	default	installed	a	dedicated	Python	submodule	to	work	with
HTML,	lxml.html:	http://lxml.de/lxmlhtml.html.

In	this	example,	we	make	a	request	to	the	DuckDuckGo	search	engine	and
obtain	the	form	that	is	used	to	perform	the	searches.	To	do	this,	we	access	the
forms	object	that	will	be	contained	within	the	URL	response.

You	can	find	the	following	code	in	the	duckduckgo.py	file	inside	the	lxml	folder:

from	lxml.html	import	fromstring,	tostring

from	lxml.html	import	parse,	submit_form

import	requests

response	=	requests.get('https://duckduckgo.com')

form_page	=	fromstring(response.text)

form	=	form_page.forms[0]

print(tostring(form))

page	=	parse('http://duckduckgo.com').getroot()

page.forms[0].fields['q']	=	'python'

result	=	parse(submit_form(page.forms[0])).getroot()

print(tostring(result))

This	is	the	output	of	the	first	part	of	the	script,	where	we	can	see	the	form	object

http://lxml.de/lxmlhtml.html

from	DuckDuckGo:

b'<form	id="search_form_homepage"	class="search	search--home	js-search-form"	name="x"	method="POST"	action="/html">\n\t\t\t<input	id="search_form_input_homepage"	class="search__input	js-search-input"	type="text"	autocomplete="off"	name="q"	tabindex="1"	value="">\n\t\t\t<input	id="search_button_homepage"	class="search__button	js-search-button"	type="submit"	tabindex="2"	value="S">\n\t\t\t<input	id="search_form_input_clear"	class="search__clear	empty	js-search-clear"	type="button"	tabindex="3"	value="X">\n\t\t\t<div	id="search_elements_hidden"	class="search__hidden	js-search-hidden"></div>\n\t\t</form>\n\n\t\t\t\t\t\t'

Searching	with	XPath
In	order	to	avoid	exhaustive	iteration	and	the	checking	of	every	element,	we
need	to	use	XPath,	which	is	a	query	language	that	was	developed	specifically	for
XML,	and	is	supported	by	lxml.

To	get	started	with	XPath,	use	the	Python	shell	from	the	last	section,	and	do	the
following:

>>>	root.xpath('body')

	[<Element	body	at	0x4477530>]

This	is	the	simplest	form	of	XPath	expression;	it	searches	for	children	of	the
current	element	that	have	tag	names	that	match	the	specified	tag	name.	The
current	element	is	the	one	we	call	xpath()	on—in	this	case,	root.	The	root	element
is	the	top-level	<html>	element	in	the	HTML	document,	and	so	the	returned
element	is	the	<body>	element.

XPath	expressions	can	contain	multiple	levels	of	elements.	The	searches	start
from	the	node	the	xpath()	call	is	made	on	and	work	down	the	tree	as	they	match
successive	elements	in	the	expression.	We	can	use	this	to	find	just	the	<div>	child
elements	of	<body>:

>>>	root.xpath('body/div')

	[<Element	div	at	0x447a1e8>,	<Element	div	at	0x447a210>,	<Element	div	at	0x447a238>]

In	body	and	div	expression	means,	match	the	<div>	children	of	the	<body>	children
of	the	current	element.	Elements	with	the	same	tag	can	appear	more	than	once	at
the	same	level	in	an	XML	document,	so	an	XPath	expression	can	match	multiple
elements,	hence	the	xpath()	function	always	returns	a	list.

The	preceding	queries	are	relative	to	the	element	that	we	call	xpath()	on,	but	we
can	force	a	search	from	the	root	of	the	tree	by	adding	a	slash	to	the	start	of	the
expression.	We	can	also	perform	a	search	over	all	the	descendants	of	an	element,
with	the	help	of	a	double-slash.	To	do	this,	try	the	following:

>>>	root.xpath('//h1')

	[<Element	h1	at	0x447aa58>]

The	real	power	of	XPath	lies	in	applying	additional	conditions	to	the	elements	in
the	path:

>>>	root.xpath('//div[@id="content"]')

	[<Element	div	at	0x3d6d800>]

The	square	brackets	after	div,	[@id="content"],	form	a	condition	that	we	place	on
the	<div>	elements	that	we're	matching.	The	@	sign	before	id	keyword	means	that
id	refers	to	an	attribute,	so	the	condition	means:	only	elements	with	an	id
attribute	equal	to	"content".	This	is	how	we	can	find	our	content	<div>	tag.

Before	we	employ	this	to	extract	our	information,	let's	just	touch	on	a	couple	of
useful	things	that	we	can	do	with	conditions.	We	can	specify	just	a	tag	name,	as
shown	here:

>>>	root.xpath('//div[h1]')

	[<Element	div	at	0x3d6d800>]

This	returns	all	the	<div>	elements	that	have	an	<h1>	child	element.	Also	try	the
following:

>>>	root.xpath('body/div[2]')

	[<Element	div	at	0x3d6d800>]

Putting	a	number	as	a	condition	will	return	the	element	at	that	position	in	the
matched	list.	In	this	case,	this	is	the	second	<div>	child	element	of	<body>.	Note
that	these	indexes	start	at	1,	unlike	Python	indexing	which	starts	at	0.	There's	a
lot	more	that	XPath	can	do:	the	full	specification	is	a	World	Wide	Web
Consortium	(W3C)	standard.	The	latest	version	can	be	found	at:	http://www.w3.or
g/TR/xpath-3.

Now,	let's	finish	up	by	writing	a	script	to	get	our	Debian	version	information.

You	can	find	the	following	code	in	the	get_debian_version.py	file	in	the	lxml	folder:

import	re

import	requests

from	lxml.etree	import	HTML

response	=

requests.get('https://www.debian.org/releases/stable/index.en.html')

root	=	HTML(response.content)

title_text	=	root.find('head').find('title').text

if	re.search('\u201c(.*)\u201d',	title_text):

http://www.w3.org/TR/xpath-3

				release	=	re.search('\u201c(.*)\u201d',	title_text).group(1)

				p_text	=	root.xpath('//div[@id="content"]/p[1]')[0].text

				version	=	p_text.split()[1]

				print('Codename:	{}\nVersion:	{}'.format(release,	version))

Here,	we	have	downloaded	and	parsed	the	web	page	by	pulling	out	the	text	that
we	want	with	the	help	of	XPath.	We	have	used	a	regular	expression	to	pull	out
stretch	version	name,	and	a	split	to	extract	the	version	9.6.	Finally,	we	print	it
out.	So,	run	it	as	shown	here:

$	python	get_debian_version.py

	Codename:	stretch

	Version:	9.6

XPath	is	a	language	that	allows	you	to	select	nodes	from	an	XML	document	and	calculate
values	from	their	content.	There	are	several	XPath	versions	approved	by	the	W3C.	In	this
URL,	you	can	see	documentation	and	all	XPath	versions:	https://www.w3.org/TR/xpath/all/.

In	this	example,	we	are	using	XPath	expressions	to	get	images	and	links	from	a
URL.	For	extracting	images,	we	use	the	'//img/@src'	XPath	expression	and	for
extracting	links	we	use	the	'//a/@href'	expression.

You	can	find	the	following	code	in	the	get_links_images.py	file	in	the	lxml	folder:

#!/usr/bin/env	python3

import	os

import	requests

from	lxml	import	html

class	Scraping:

				

				def	scrapingImages(self,url):

								print("\nGetting	images	from	url:"+	url)

								try:

												response	=	requests.get(url)	

												parsed_body	=	html.fromstring(response.text)

												#	regular	expresion	for	get	images

												images	=	parsed_body.xpath('//img/@src')

												print('Found	images	%s'	%	len(images))

												#create	directory	for	save	images

												os.system("mkdir	images")

												for	image	in	images:

																if	image.startswith("http")	==	False:

																				download	=	url	+	"/"+	image

																else:

																				download	=	image

																print(download)

																#	download	images	in	images	directory

																r	=	requests.get(download)

																f	=	open('images/%s'	%	download.split('/')[-1],	'wb')

																f.write(r.content)

																f.close()

								except	Exception	as	e:

												print("Connection	error	in	"	+	url)

												pass

https://www.w3.org/TR/xpath/all/

	

In	the	previous	code	block,	we	define	the	scrapingImages	function	for	extracting
images	from	a	URL	using	the	regular	expression	'//img/@src'.	In	the	next	code
block,	in	a	similar	way,	we	define	the	scrapingLinks	function	for	extracting	links
from	a	URL	using	the	regular	expression	'//a/@href':

				def	scrapingLinks(self,url):

								print("\nGetting	links	from	url:"+	url)

								try:

												response	=	requests.get(url)

												parsed_body	=	html.fromstring(response.text)

												#	regular	expression	for	get	links

												links	=	parsed_body.xpath('//a/@href')

												print('Found	links	%s'	%	len(links))

												for	link	in	links:

																print(link)

									except	Exception	as	e:

												print("Connection	error	in	"	+	url)

												pass

	

if	__name__	==	"__main__":

				target	=	"https://news.ycombinator.com"

				scraping	=	Scraping()

				scraping.scrapingImages(target)

				scraping.scrapingLinks(target)

Extracting	information	from	web
pages	and	parsing	HTML	with
BeautifulSoup
In	this	section,	we	will	explore	BeautifulSoup	as	a	Python	package	that	allows	us
to	extract	information	from	web	pages	and	parse	HTML	in	Python	3.7.

BeautifulSoup	introduction
The	BeautifulSoup	package	contains	a	library	specialized	in	analyzing	and
searching	data	within	an	HTML	file	by	means	of	various	types	of	criteria	such	as
the	following:

Searches	of	HTML	elements	by	means	of	the	structure	of	the	DOM
Searches	through	selectors
Tag	searches

BeautifulSoup	is	a	library	used	to	perform	web	scraping	operations	from	Python,
focused	on	the	parsing	of	web	content	such	as	XML,	HTML,	and	JSON.

This	tool	is	not	intended	directly	for	web	scraping.	Instead,	the	purpose	of	this
tool	is	to	provide	an	interface	that	allows	access	in	a	very	simple	way	to	the
content	of	a	web	page,	which	makes	it	ideal	to	extract	information	from	the	web.

Among	the	main	features,	we	can	highlight	the	following:

Parses	and	allows	the	extraction	of	information	from	HTML	documents
Supports	multiple	parsers	in	processing	XML	documents	and	HTML	(lxml,
html5lib)
Generates	a	tree	structure	with	all	the	elements	of	the	paired	document
Very	easily	allows	the	user	to	search	HTML	elements,	such	as	links,	forms,
or	any	HTML	tag

To	use	it,	you	have	to	install	the	specific	module	that	can	be	found	in	the	official
repository	(https://www.crummy.com/software/BeautifulSoup/bs4/doc/)	using	the	following
command:

pip	install	BeautifulSoup4

You	can	also	see	the	latest	version	of	the	module	on	the	official	Python	page:	http
s://pypi.python.org/pypi/beautifulsoup4.

Once	installed,	the	name	of	the	package	is	bs4.	The	first	thing	to	use	the	library
for	is	to	import	the	BeautifulSoup	package	from	the	bs4	module:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pypi.python.org/pypi/beautifulsoup4

>>>	from	bs4	import	BeautifulSoup

To	be	able	to	perform	operations	with	an	HTML	document,	it	is	necessary	to
create	an	object	from	the	bs4.BeautifulSoup	class	by	entering	a	str	type
object	containing	the	HTML	code	and	selecting	the	type	of	analyzer	to	be	used
as	second	parameter:	bs4.BeautifulSoup	(<object	type	str>,	<analyzer	type>).

To	learn	more	about	the	analyzer	options,	you	can	query	the	documentation:	https://www.crummy.co
m/software/BeautifulSoup/bs4/doc/#installing-a-parser.

To	create	an	instance	of	BeautifulSoup,	it	is	necessary	to	pass	the	parameters	of
the	HTML	document	and	the	parser	that	we	want	to	use	(lxml	or	html5lib):

>>>	bs=	BeautifulSoup(contents,'lxml')

In	this	way,	we	managed	to	create	an	instance	of	the	BeautifulSoup	class,	passing
the	HTML	content	of	the	page	and	the	parser	to	be	used	as	parameters.	In	the	bs
object	we	have	all	the	information	to	navigate	through	the	document	and	access
each	of	the	labels	that	are	included	in	it.	For	example,	if	we	want	to	access	the
title	tag	of	the	document,	simply	execute	bs.title.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

Access	to	elements	through	DOM
DOM	is	the	acronym	for	Document	Object	Model	and	is	the	way	in	which	a
browser	interprets	an	HTML	document	inside	a	window.

The	DOM	presents	a	structure	similar	to	that	of	the	trunk	of	a	tree	from	which
branches	are	emerge.	It	is	said	that	the	HTML	element	that	contains	other
elements	is	the	father	of	these:

parent

	|	children

	├──	Element

	├──	brother	(sibling)

When	searching	through	the	DOM,	BeautifulSoup	returns	the	first	item	with	the
matching	HTML	tag.	An	interesting	feature	of	the	library	is	that	it	allows	the
user	to	search	for	specific	elements	in	the	structure	of	the	document;	in	this	way,
we	can	search	for	meta	tags,	form,	and	links.

bs.find_all()	is	a	method	that	allows	us	to	find	all	the	HTML	elements	of	a	certain
type	and	returns	a	list	of	tags	that	match	the	search	pattern.

For	example,	to	search	for	all	meta	tags	in	an	HTML	document,	use	the
following	code:

>>>	meta_tags	=	bs.find_all("meta")

>>>	for	tag	in	meta_tags:

	>>>		print(tag)

To	search	all	the	forms	of	an	HTML	document,	use	the	following	code:

>>>	form_tags	=	bs.find_all("form")

>>>	for	form	in	form_tags:

	>>>		print	(form)

To	search	all	links	in	an	HTML	document,	use	the	following	code:

>>>	link_tags	=	bs.find_all("a")

>>>	for	link	in	link_tags:

	>>>		print	(link)

The	findAll	function	returns	all	the	elements	of	the	collection	that	match	the

argument	specified.	If	you	want	to	return	a	single	element,	you	can	use	the	find
function,	which	only	returns	the	first	element	of	the	collection.

In	this	example,	we	extract	all	the	links	of	a	certain	URL.	The	idea	is	to	make
the	request	with	requests	and	with	BeautifulSoup	to	parse	the	data	that	the	request
returns.

You	can	find	the	following	code	in	the	extract_links_from_url.py	file	inside
the	beautifulSoup	folder:

#!/usr/bin/env	python3

from	bs4	import	BeautifulSoup

import	requests

url	=	input("Enter	a	website	to	extract	the	URL's	from:	")

headers	=	{'User-Agent':	'Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_10_1)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/39.0.2171.95	Safari/537.36'}

response	=	requests.get("http://"	+url,	headers	=	headers)

data	=	response.text

soup	=	BeautifulSoup(data,'lxml')

for	link	in	soup.find_all('a'):

				print(link.get('href'))

In	this	screenshot,	we	can	see	the	output	of	the	previous	script:

We	can	also	extract	images	directly	with	BeautifulSoup,	in	the	same	way	that	we
extracted	the	images	with	the	lxml	module	in	the	previous	section.

In	this	example,	we	make	the	request	to	the	URL	passed	by	the	parameter	with
the	requests	module.	Later,	we	build	the	BeautifulSoup	object	from	which	we

will	extract	those	tags	that	are	.	If	the	URL	is	correct,	the	image	is
downloaded	again	using	the	requests	package.

You	can	find	the	following	code	in	the	download_images.py	file	inside
the	beautifulSoup	folder:

#!/usr/bin/env	python3

import	requests	

from	bs4	import	BeautifulSoup	

import	urllib.parse

import	sys

import	os

response	=	requests.get('http://www.freeimages.co.uk/galleries/transtech/informationtechnology/index.htm')	

parse	=	BeautifulSoup(response.text,'lxml')

#	Get	all	image	tags

image_tags	=	parse.find_all('img')

#	Get	urls	to	the	images

images	=	[url.get('src')	for	url	in	image_tags]

#	If	no	images	found	in	the	page

if	not	images:

				sys.exit("Found	No	Images")

#	Convert	relative	urls	to	absolute	urls	if	any

images	=	[urllib.parse.urljoin(response.url,	url)	for	url	in	images]	

print('Found	%s	images'	%	len(images))

In	the	previous	code	block,	we	have	obtained	images'	URLs	using	BeautifulSoup
and	a	lxml	parser.	Now	we	are	going	to	create	the	folder	for	storing	images	and
download	images	in	that	folder	using	the	request	package.

#create	download_images	folder	if	not	exists

file_path	=	"download_images"

directory	=	os.path.dirname(file_path)

if	not	os.path.exists(directory):

				try:

								os.makedirs(file_path)

								print	("Creation	of	the	directory	%s	OK"	%	file_path)

				except	OSError:

								print	("Creation	of	the	directory	%s	failed"	%	file_path)

else:

				print	("download_images	directory	exists")

	

#	Download	images	to	downloaded	folder

for	url	in	images:response	=	requests.get(url)

				file	=	open('download_images/%s'	%	url.split('/')[-1],	'wb')

				file.write(response.content)

				file.close()

				print('Downloaded	%s'	%	url)

In	this	screenshot,	we	can	see	the	output	of	the	previous	script:

In	this	example,	we	are	going	to	extract	titles	and	links	from	the	following
hacker	news	domain:	https://news.ycombinator.com.	In	this	case,	we	are	using	the
findAll	function	to	obtain	elements	that	match	with	a	specific	style,	later	we	use
the	find	function	for	getting	elements	that	match	with	the	href	tag.

You	can	find	the	following	code	in	the	extract_links_hacker_news.py	file	inside
the	beautifulSoup	folder:

#!/usr/bin/env	python3

import	requests

from	bs4	import	BeautifulSoup

def	get_front_page():

				target	=	"https://news.ycombinator.com"

				frontpage	=	requests.get(target)

				if	not	frontpage.ok:

								raise	RuntimeError("Can't	access	hacker	news,	you	should	go	outside")

				news_soup	=	BeautifulSoup(frontpage.text,"lxml")

				return	news_soup

def	find_interesting_links(soup):

				items	=	soup.findAll('td',	{'align':	'right',	'class':	'title'})	

				links	=	[]

				for	i	in	items:

								try:

												siblings	=	list(i.next_siblings)

												post_id	=	siblings[1].find('a')['id']

												link	=	siblings[2].find('a')['href']

												title	=	siblings[2].text

												links.append({'link':	link,	'title':	title,'post_id':post_id})

								except	Exception	as	e:

												pass

				return	links

if	__name__	==	'__main__':

				soup	=	get_front_page()

https://news.ycombinator.com

				results	=	find_interesting_links(soup)

				for	r	in	results:

								if	r	is	not	None:

												print(r['link']	+"	"+(r['title']))

In	this	screenshot,	we	can	see	the	output	of	the	previous	script:

Extracting	labels	using	regex
We	can	use	regex	package	to	identify	common	patterns	such	as	emails	and
URLs.	With	BeautifulSoup,	you	can	specify	regular	expression	patterns	to	match
specific	tags.	In	this	script,	we	are	extracting	email	addresses	that	match	a
specific	pattern.

You	can	find	the	following	code	in	the	extract_emails_from_url.py	file	inside
the	beautifulSoup	folder:

import	requests

import	re

from	bs4	import	BeautifulSoup

url	=	input("Enter	the	URL:	")

response	=	requests.get(url)

html_page	=	response.text

email_pattern=re.compile(r'\b[\w.-]+?@\w+?\.\w+?\b')

for	match	in	re.findall(email_pattern,html_page):

				print(match)

Handling	URL	exceptions	and	not
found	tags
It	is	also	important	to	verify	if	the	label	is	returned	when	we	use	the	find	method.
We	may	have	written	an	incorrect	label	or	try	to	get	a	label	that	is	not	on	the
page	and	this	will	return	the	None	object,	so	we	must	verify	if	the	object	is	None.
This	can	be	done	using	a	simple	conditional	statement	such	as	the	one	in	this
example.

You	can	find	the	following	code	in	the	handling_exceptions_tags.py	file	inside
the	beautifulSoup	folder:

from	urllib.request	import	urlopen

from	urllib.error	import	HTTPError

from	urllib.error	import	URLError

from	bs4	import	BeautifulSoup

	

try:	

				html	=	urlopen("https://www.packtpub.com/")

except	HTTPError	as	e:

				print(e)

except	URLError:

				print("Server	down	or	incorrect	domain")

else:

				res	=	BeautifulSoup(html.read(),"html5lib")

				if	res.title	is	None:

								print("Tag	not	found")

				else:

								print(res.title.text)

There	are	some	other	third-party	packages	available	that	can	speed	up	scraping
and	form	submission.	Two	popular	ones	are	mechanize	and	Scrapy.

You	can	check	them	at	http://wwwsearch.sourceforge.net/mechanize	and
http://scrapy.org.

http://wwwsearch.sourceforge.net/mechanize
http://scrapy.org

Introduction	to	Scrapy	components
and	architecture
In	this	section,	we	will	learn	about	Scrapy	components	and	architecture.	We	will
review	Scrapy	architecture	and	XPath	expressions	from	Scrapy	shell.

What	is	Scrapy?
Scrapy	(https://scrapy.org/)	is	an	open	source	collaborative	platform	that	allows
us	to	extract	data	from	web	pages	used	for	a	series	of	applications	such	as	data
mining,	information	processing,	and	historical	registration.

This	framework	also	allows	us	to	expand	its	functionality	and	is	portable
because	it	is	written	in	Python,	which	can	be	interpreted	on	Linux,	Macintosh,
and	Windows	systems.

Although	the	main	objective	of	Scrapy	is	the	extraction	of	data	from	web	pages,
this	can	also	be	used	to	extract	data	through	the	use	of	APIs,	obtain	the	structure
of	the	web,	or	simply	as	a	general	purpose	extractor.	Scrapy	has	the	following
features:

Fast	and	powerful:	You	write	the	rules	to	extract	the	data	and	Scrapy	does
the	work	for	us
Easily	extensible:	Given	its	configuration,	it	can	generate	new	functionality
without	having	to	modify	the	source	code
Portable:	It	is	written	in	Python	and	can	run	on	Linux,	Windows,	Mac,	and
BSD

Since	it	is	a	framework,	Scrapy	has	a	series	of	powerful	tools	to	scrape	or	extract
information	from	websites	easily	and	efficiently.	These	tools	include	the
following:

Support	to	extract	and	select	data	from	HTML/XML	sources	using	CSS
selectors	and	XPath	expressions,	with	help	methods	to	extract	using	regular
expressions
An	interactive	console	in	IPython	to	test	CSS	and	XPath	expressions	to
extract	data,	which	is	very	useful	when	building	your	own	methods
Support	for	exporting	records	in	multiple	formats	such	as	JSON,	CSV,	and
XML
Support	for	handling	foreign	statements,	non-standards,	and	broken	codes
Strong	extensibility,	since	it	allows	you	to	connect	your	own	functionality
using	signals,	extensions,	and	pipelines

https://scrapy.org/

To	get	started	in	Scrapy,	we	recommend	installing	Scrapy	as	shown	in	this
Installation	Guide:	https://doc.scrapy.org/en/latest/intro/install.html#intro-install.

https://doc.scrapy.org/en/latest/intro/install.html#intro-install

Scrapy	architecture
Scrapy	allows	us	to	recursively	scan	the	contents	of	a	website	and	apply	a	set	of
rules	on	said	contents	to	extract	information	that	may	be	useful	to	us.	These	are
the	main	architecture	elements:

Interpreter:	Allows	quick	tests,	as	well	as	the	creation	of	projects	with	a
defined	structure.
Spiders:	Code	routines	that	are	responsible	for	making	HTTP	requests	to	a
list	of	domains	given	by	the	client	and	applies	rules	in	the	form	of	regular
expressions	or	XPath	on	the	content	returned	from	HTTP	requests.
XPath	expressions:	With	XPath	expressions,	we	can	get	to	a	fairly	detailed
level	of	the	information	we	want	to	extract.	For	example,	if	we	want	to
extract	the	download	links	from	a	page,	it	is	enough	to	obtain	the	XPath
expression	of	the	element	and	access	the	href	attribute.
Items:	Scrapy	uses	a	mechanism	based	on	XPath	expressions	called	Xpath
selectors.	These	selectors	are	responsible	for	applying	XPath	rules	defined
by	the	developer	and	composing	Python	objects	that	contain	the
information	extracted.	The	items	are	such	as	containers	of	information	and
allow	us	to	store	the	information	that	the	rules	that	we	apply	return	on	the
contents	that	we	are	obtaining.	

In	this	image,	you	can	see	an	overview	of	the	Scrapy	architecture:

As	you	can	see	in	the	preceding	image,	the	spiders	use	the	items	to	pass	the	data
to	the	item.	Scrapy	can	have	several	spiders—the	spiders	do	the	requests,	which
are	scheduled	in	the	scheduler,	and	these	are	what	make	the	requests	to	the
server.	Finally,	when	the	server	responds,	these	responses	are	sent	back	to	the
spiders,	so	that	the	spider	is	fed	back	with	each	request.

XPath	expressions
To	use	Scrapy,	it	is	necessary	to	define	rules	that	Scrapy	will	use	for	extracting
information.	These	rules	can	be	XPath	expressions.	Scrapy	has	an	interpreter
that	allows	you	to	test	XPath	expressions	on	a	website,	which	facilitates	the
debugging	and	development	of	web	spiders.	For	example,	if	we	want	to	extract
the	text	corresponding	to	the	title	of	the	page,	we	can	do	with
the	'//title/text()'	XPath	expression:

>>>	fetch('http://www.scrapy.org')

	>>>	response.xpath('//title/text()').extract()

	>>>	['Scrapy	|	A	Fast	and	Powerful	Scraping	and	Web	Crawling	Framework']

In	the	following	screenshot,	you	can	see	the	result	of	the	execution	of	the	fetch
command	in	the	Scrapy	shell	and	extract	the	title	of	the	page	with	the	XPath
expression:

Scrapy	as	a	framework	for
performing	web	crawling	processes
and	data	analysis
In	this	section,	we	will	explore	Scrapy	as	a	framework	for	Python	that	allows	us
to	perform	web	scraping	tasks	and	web	crawling	processes	and	data	analysis.
Also,	we	will	explain	the	structure	that	a	Scrapy	project	presents	and	how	to
create	our	own	project,	and	we	will	create	a	spider	to	track	a	web	page	and
extract	the	data	that	interests	us.	We	will	review	Scrapy	components,	creating	a
project	for	configuring	pipelines.

Installation	of	Scrapy
There	are	diverse	tools	and	techniques	that	allow	a	developer	or	analyst	to
access,	consume,	and	extract	content	based	on	the	web.	The	Scrapy	project
offers	a	tool	that	enables	automated	and	rapid	web	scraping	of	large	amounts	of
web-based	content.	Scrapy	has	very	good	documentation,	which	can	be	accessed
from	the	following	URL:	https://doc.scrapy.org/en/latest.

Scrapy	was	created	from	Twisted	(https://twistedmatrix.com/),	so	it	is	capable	of
performing	thousands	of	queries	simultaneously.	Similarly,	Scrapy	makes	use	of
tools	such	as	BeautifulSoup	and	the	Python	XML	package	to	facilitate	content
searches.

Scrapy	needs	lxml	and	OpenSSL	as	prerequisite	packages	for	the	installation.
You	can	install	Scrapy	using	pip	with	the	pip	install	scrapy	command.

Scrapinghub	maintains	official	conda	packages	for	Linux,	Windows,	and	OS	X	at	the	following
URL:	https://anaconda.org/anaconda/scrapy.

To	install	Scrapy	using	conda,	run	the	following	code:

conda	install	-c	scrapinghub	scrapy

Once	installed,	it	is	possible	to	use	the	scrapy	command	from	the	command	line,
using	subcommands	at	the	same	time.

In	this	screenshot,	we	can	see	all	available	scrapy	subcommands:

https://doc.scrapy.org/en/latest
https://twistedmatrix.com/trac/
https://anaconda.org/anaconda/scrapy

Creating	a	project	with	Scrapy
Before	starting	with	Scrapy,	you	have	to	start	a	project	where	you	want	to	store
your	code.	To	create	a	project	with	Scrapy,	you	have	to	execute	the	command
from	the	console:

scrapy	startproject	helloProject

This	command	will	create	a	helloProject	directory	with	the	following	contents:

helloProject/

	scrapy.cfg	#	deploy	configuration	file

	helloProject/	#	project's	Python	module,	you'll	import	your	code	from	here

					__init__.py

					items.py	#	project	items	file

					pipelines.py	#	project	pipelines	file

					settings.py	#	project	settings	file

					spiders/	#	a	directory	where	you'll	later	put	your	spiders

									__init__.py

Each	project	consists	of	the	following:

items.py:	We	define	the	elements	to	extract
spiders:	The	heart	of	the	project,	here	we	define	the	extraction	procedure
Pipelines.py:	The	elements	to	analyze	what	has	been	obtained—data
validation	and	cleaning	of	HTML	code

Once	the	project	is	created,	we	have	to	define	the	items	that	we	want	to	extract,
or	rather	the	class	where	the	data	extracted	by	scrapy	will	be	stored.	Basically,	in
items.py	we	create	the	fields	of	the	information	that	we	are	going	to	extract.

Scrapy	item	class
Scrapy	provides	the	item	class	to	define	the	output	data	format.	Item	objects	are
containers	used	to	collect	the	extracted	data	and	specify	metadata	for	the	field
used	to	characterize	that	data.	For	more	details,	see	https://doc.scrapy.org/en/1.5/to
pics/items.html.

Create	a	file	named	MyItem.py	and	add	the	following	code	into	it:

import	scrapy

from	scrapy.loader.processors	import	TakeFirst

class	MyItem(scrapy.Item):

				#	define	the	fields	for	your	item	here	like:

				name	=	scrapy.Field(output_processor=TakeFirst(),)

The	next	step	is	to	describe	how	the	information	can	be	extracted	using	XPath
expressions	so	that	Scrapy	can	differentiate	it	from	the	rest	of	the	HTML	code	on
the	page	of	each	book.

To	start	the	crawling	process,	it	is	necessary	to	import	the	CrawlerProcess	class.	We
instantiate	the	class	by	passing	it	through	the	parameters	of	the	configuration	that
we	want	to	apply:

#	setup	crawler

from	scrapy.crawler	import	CrawlerProcess

crawler	=	CrawlerProcess(settings)

#	define	the	spider	for	the	crawler

crawler.crawl(MySpider())

#	start	scrapy

print("STARTING	ENGINE")

crawler.start()

#	printed	at	the	end	of	the	crawling	process

print("ENGINE	STOPPED")

We	import	the	necessary	modules	to	carry	out	the	crawling	process:

from	scrapy.spiders	import	CrawlSpider,	Rule

from	scrapy.linkextractors.lxmlhtml	import	LxmlLinkExtractor

from	scrapy.selector	import	HtmlXPathSelector

Rule:	Allows	us	to	establish	the	rules	by	which	the	crawler	will	be	based	to
navigate	through	different	links.
LxmlLinkExtractor:	Allows	us	to	define	a	callback	function	and	regular

https://doc.scrapy.org/en/1.5/topics/items.html

expressions	to	tell	the	crawler	which	links	to	go	through.	It	allows	us	to
define	the	navigation	rules	between	the	links	that	we	want	to	obtain.
HtmlXPathSelector:	Allows	us	to	apply	XPath	expressions.

Spiders
Spiders	are	classes	that	define	the	way	to	navigate	through	a	specific	site	or
domain	and	how	to	extract	data	from	those	pages;	that	is,	we	define	in	a
personalized	way	the	behavior	to	analyze	the	pages	of	a	particular	site.

The	cycle	that	follows	a	spider	is	the	following:

First,	we	start	generating	the	initial	request	(Requests)	to	navigate	through
the	first	URL	and	we	specify	the	backward	function	to	be	called	with	the
response	(Response)	downloaded	from	that	request
The	first	request	to	be	made	is	obtained	by	calling	the	start_request()
method,	which	by	default	generates	the	request	for	the	specific	URL	in
the	start_urls	starting	addresses	and	the	function	of	backward	for	the	requests

These	requests	will	be	made	by	downloading	by	Scrapy	and	their	responses
manipulated	by	the	backward	functions.	In	the	backward	functions,	we	analyze	the
content	typically	using	the	selectors	(XPath	selectors)	and	generate	the	items
with	the	content	analyzed.	Finally,	the	items	returned	by	the	spider	can	be	passed
to	an	item	pipeline.

Creating	our	spider
This	is	the	code	for	our	first	spider.	Save	it	in	a	file	named	MySpider.py	under	the
spiders	directory	in	your	project:

from	scrapy.contrib.spiders	import	CrawlSpider,	Rule

from	scrapy.linkextractors.lxmlhtml	import	LxmlLinkExtractor

from	scrapy.selector	import	HtmlXPathSelector

from	scrapy.item	import	Item

class	MySpider(CrawlSpider):

				name	=	'example.com'

				allowed_domains	=	['example.com']

				start_urls	=	['http://www.example.com']

				rules	=	(Rule(LxmlLinkExtractor(allow=())))

				def	parse_item(self,	response):

								hxs	=	HtmlXPathSelector(response)

								element	=	Item()

								return	element

CrawlSpider	provides	a	mechanism	that	allows	you	to	follow	the	links	that	follow	a
certain	pattern.	Apart	from	the	inherent	attributes	of	the	BaseSpider	class,	this	class
has	a	new	rules	attribute	with	which	we	can	indicate	to	the	spider	the	behavior
that	it	should	follow.

Pipelines	items	and	export	formats
The	items	pipelines	could	be	called	the	channels	or	pipes	of	the	items.	They	are
elements	of	Scrapy	and	the	information	that	arrives	to	them	are	Items	that	have
been	previously	obtained	and	processed	by	some	spider.	They	are	classes	in
themselves	that	have	a	simple	objective—to	re-process	the	item	that	arrives	to
them,	being	able	to	reject	it	for	some	reasons	or	let	it	pass	through	this	channel.

The	typical	uses	of	pipelines	are	as	follows:

Cleaning	data	in	HTML
Validation	of	scraped	data	checking	that	the	items	contain	certain	fields
Checking	duplicate	items
Storage	of	the	data	in	a	database

For	each	element	that	is	obtained,	it	is	sent	to	the	corresponding	pipeline,	which	will	process
it	either	to	save	it	in	the	database	or	to	send	it	to	another	pipeline.	For	detail,	you	can	go	to
official	documentation:	https://doc.scrapy.org/en/latest/topics/item-pipeline.html.

An	item	pipeline	is	a	Python	class	that	overrides	some	specific	methods	and
needs	to	be	activated	on	the	settings	of	the	Scrapy	project.	When	creating	a
Scrapy	project	with	the	scrapy	startproject	myproject,	you'll	find	a	pipelines.py
file	already	available	for	creating	your	own	pipelines.	It	isn't	mandatory	to	create
your	pipelines	in	this	file,	but	it	would	be	good	practice.	We'll	be	explaining	how
to	create	a	pipeline	using	the	pipelines.py	file.

These	objects	are	Python	classes	that	must	implement	the	process_item	(item,
spider)	method	and	must	return	an	item	type	object	(or	a	subclass	of	it)	or,	if	it
does	not	return	it,	it	must	throw	an	exception	of	a	DropItem	type	to	indicate	that
item	will	not	continue	to	be	processed.	An	example	of	this	component	is	as
follows:

#!/usr/bin/python

#	-*-	coding:	utf-8	-*-

from	scrapy.exceptions	import	DropItem

class	MyPipeline(object):

				def	process_item(self,	item,	spider):

								if	item['key']:

												return	item

								else:

												raise	DropItem("Element	not	exists:	%s"	%	item['key'])

https://doc.scrapy.org/en/latest/topics/item-pipeline.html

One	more	point	to	keep	in	mind	is	that	when	we	create	an	object	of	this	type,	we
must	enter	in	the	settings.py	file	of	the	project	a	line	like	the	following	to	activate
the	pipe.	Now,	to	enable	it	you	need	to	specify	it	is	going	to	be	used	in	your
settings.	Go	to	your	settings.py	file	and	search	(or	add)	the	ITEM_PIPELINES	variable.
Update	it	with	the	path	to	your	pipeline	class	and	its	priority	over	other
pipelines:

ITEM_PIPELINES	=	{

	'myproject.pipelines.MyPipeline':	300,

}

Scrapy	settings
Before	starting	Scrapy,	is	recommended	that	you	modify	the	settings	and	limit
the	speed	at	which	the	data	is	accessed,	so	as	not	to	create	a	DOS	attack.	For
doing	this	task,	we	need	to	configure	settings.py	with	the	DOWNLOAD_DELAY	property:

#	Scrapy	settings	for	scrapy	project

#

#	For	simplicity,	this	file	contains	only	the	most	important	settings	by

#	default.	All	the	other	settings	are	documented	here:

#

#	http://doc.scrapy.org/en/latest/topics/settings.html

#

BOT_NAME	=	'hacker_news'

SPIDER_MODULES	=	['hacker_news.spiders']

NEWSPIDER_MODULE	=	'hacker_news.spiders'

#	Configure	a	delay	for	requests	for	the	same	website	(default:	0)

#	See	http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay

DOWNLOAD_DELAY	=	60

Executing	Scrapy
With	Scrapy,	we	can	collect	the	information	and	save	it	in	a	file	in	one	of	the
supported	formats	(XML,	JSON,	or	CSV),	or	even	directly	in	a	database	using	a
pipeline.	In	this	case,	we	are	executing	the	scrapy	command	passing	as	argument
the	JSON	format:

$	scrapy	crawl	<crawler_name>	-o	items.json	-t	json

The	last	parameters	indicate	that	the	extracted	data	is	stored	in	a	file	called
items.json	and	that	the	exporter	uses	for	JSON	format.	It	can	be	done	in	the	same
way	to	export	to	CSV	and	XML	formats.

The	option	-o	items.csv	provides	as	a	parameter	the	name	of	the	output	file	that
will	contain	the	data	you	have	extracted.	You	can	also	extract	information	as
JSON	format	by	using	the	-t	json	option.

With	the	-t	csv	option,	we	will	obtain	a	CSV	file	with	the	crawling	process
result:

$	scrapy	crawl	<crawler_name>	-o	items.csv	-t	csv

With	the	-t	json	option,	we	will	obtain	a	JSON	file	with	the	crawling	process
result:

$	scrapy	crawl	<crawler_name>	-o	items.json	-t	json

With	the	-t	xml	option,	we	will	obtain	an	XML	file	with	the	crawling	process
result:

$	scrapy	crawl	<crawler_name>	-o	items.xml	-t	xml

The	runspider	command	tells	scrapy	to	run	your	spider	from	your	spider	template:

$	scrapy	runspider	spider-template.py

Scrapy	execution	tips	and	tricks
When	executing	Scrapy,	we	can	follow	these	rules	for	managing	the	crawler
execution:

If	the	scraping	process	fails,	you	can	look	in	the	console	log	for	lines	that
include	[scrapy]	DEBUG.
If	you	want	to	stop	Scrapy	while	it	is	still	processing,	just	press	the	key
combination	Ctrl+C.
When	Scrapy	has	finished	processing	data,	it	will	display	the	following
information	in	the	log	console:	[scrapy]	INFO:	Spider	closed	(finished).
By	default,	Scrapy	will	append	new	data	to	the	end	of	the	output	file	if	it
already	exists.	If	the	file	does	not	exist,	it	will	create	one.	So,	if	you	want	to
only	get	new	data,	then	you	should	first	remove	the	old	file.

EuroPython	project
In	this	section,	we	are	going	to	build	a	project	with	Scrapy	that	allows	us	to
extract	the	data	of	the	sessions	of	the	EuroPython	conference	following	the
pattern	from	the	following	URL:	http://ep{year}.europython.eu/en/events/sessions.
You	can	try	with	years	from	2015	to	2018:	for	example	we	can	try	with	the
following	URL:	https://ep2018.europython.eu/events/sessions/.

To	create	a	project	with	scrapy,	we	can	execute	the	following	command:

scrapy	startproject	europython

In	this	screenshot,	we	can	see	the	result	of	creating	a	Scrapy	project:

items.py	is	where	we	define	the	fields	and	the	information	that	we	are	going	to
extract:

import	scrapy

class	EuropythonItem(scrapy.Item):

				#	define	the	fields	for	your	item	here	like:

				title	=	scrapy.Field()

				author	=	scrapy.Field()

				description	=	scrapy.Field()

				date	=	scrapy.Field()

				tags	=	scrapy.Field()

In	the	settings.py	file,	we	define	the	name	of	the	'europython.spiders'	module	and
the	pipelines	defined	among	which	we	highlight	one	that	allows	exporting	the

https://ep2018.europython.eu/en/events/sessions/
https://ep2018.europython.eu/events/sessions/

data	in	XML	format—EuropythonXmlExport—and	another	that	saves	the	data	in	a
database	SQLite—	EuropythonSQLitePipeline.

You	can	find	the	following	code	in	the	settings.py	file:

#	Scrapy	settings	for	europython	project

#

#	For	simplicity,	this	file	contains	only	the	most	important	settings	by

#	default.	All	the	other	settings	are	documented	here:

#

#	http://doc.scrapy.org/en/latest/topics/settings.html

#

BOT_NAME	=	'europython'

SPIDER_MODULES	=	['europython.spiders']

NEWSPIDER_MODULE	=	'europython.spiders'

#	Configure	item	pipelines

#	See	http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html

ITEM_PIPELINES	=	{

'europython.pipelines.EuropythonXmlExport':	200,

'europython.pipelines.EuropythonSQLitePipeline':	300,

}

DOWNLOADER_MIDDLEWARES	=	{

'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware':	110,

#'europython.middlewares.ProxyMiddleware':	100,

}

In	the	pipelines.py	file	we	define	the	class	that	will	process	the	results	and	store
them	in	an	SQLite	file.	For	this	task,	we	can	create	an	entity	called
EuropythonSession	that	extends	from	db.	Entity	class	available	in	pony
ORM	package	(https://ponyorm.com).	You	need	to	install	the	pony	package	with
the	pip	install	pony	command.

You	can	find	the	following	code	in	the	pipelines.py	file:

from	pony.orm	import	*

db	=	Database("sqlite",	"europython.sqlite",	create_db=True)

class	EuropythonSession(db.Entity):

				"""	Pony	ORM	model	of	the	europython	session	table	"""

				id	=	PrimaryKey(int,	auto=True)

				author	=	Required(str)

				title	=	Required(str)

				description	=	Required(str)

				date	=	Required(str)

				tags	=	Required(str)

Also,	we	need	to	define	a	EuropythonSQLitePipeline	class	for	processing	data	about
author,	title,	description,	date,	tags,	and	storing	items	in	the	database:

class	EuropythonSQLitePipeline(object):

@classmethod

https://ponyorm.com

	def	from_crawler(cls,	crawler):

				pipeline	=	cls()

				crawler.signals.connect(pipeline.spider_opened,	signals.spider_opened)

				crawler.signals.connect(pipeline.spider_closed,	signals.spider_closed)

				return	pipeline

	

	def	spider_opened(self,	spider):

				db.generate_mapping(check_tables=True,	create_tables=True)

def	spider_closed(self,	spider):

				db.commit()

	

	#	Insert	data	in	database

	@db_session

	def	process_item(self,	item,	spider):

				#	use	db_session	as	a	context	manager

				with	db_session:

				try:

								strAuthor	=	str(item['author'])

								strAuthor	=	strAuthor[3:len(strAuthor)-2]

								strTitle	=	str(item['title'])

								strTitle	=	strTitle[3:len(strTitle)-2]

								strDescription	=	str(item['description'])

								strDescription	=	strDescription[3:len(strDescription)-2]

								strDate	=	str(item['date'])

								strDate	=	strDate[3:len(strDate)-2]

								strDate	=	strDate.replace("[u'",	"").replace("']",	"").replace("u'",	"").replace("',",	",")

								strTags	=	str(item['tags'])

								strTags	=	strTags.replace("[u'",	"").replace("']",	"").replace("u'",	"").replace("',",	",")

								europython_session	=	EuropythonSession(author=strAuthor,title=strTitle,

	description=strDescription,date=strDate,tags=strTags)

				except	Exception	as	e:

								print("Error	processing	the	items	in	the	DB	%d:	%s"	%	(e.args[0],	e.args[1]))

				return	item

In	the	europython_spider.py	file	we	define	the	EuropythonSpyder	class.	In	this	class,	the
spider	is	defined,	which	will	track	the	links	it	finds	from	the	starting	URL
depending	on	the	indicated	pattern,	and	for	each	entry	it	will	obtain	the
corresponding	data	for	each	session	(title,	author,	description,	date,	and	tags).

You	can	find	the	following	code	in	the	europython_spider.py	file:

import	scrapy

from	scrapy.spiders	import	CrawlSpider,	Rule

from	scrapy.linkextractors	import	LinkExtractor

from	scrapy.linkextractors.lxmlhtml	import	LxmlLinkExtractor

from	scrapy.selector	import	HtmlXPathSelector

from	europython.items	import	EuropythonItem

class	EuropythonSpyder(CrawlSpider):

				def	__init__(self,	year='',	*args,	**kwargs):

								super(EuropythonSpyder,	self).__init__(*args,	**kwargs)

								self.year	=	year

								self.start_urls	=	['http://ep'+str(self.year)+".europython.eu/en/events/sessions"]

								print('start	url:	'+str(self.start_urls[0]))

				name	=	"europython_spyder"

				allowed_domains	=	["ep2015.europython.eu","ep2016.europython.eu",	"ep2017.europython.eu","ep2018.europython.eu"]

				#	Pattern	for	entries	that	match	the	conference/talks	format

				rules	=	[Rule(LxmlLinkExtractor(allow=['conference/talks']),callback='process_response')]

				

				def	process_response(self,	response):

								item	=	EuropythonItem()

								print(response)

								item['title']	=	response.xpath("//div[contains(@class,	'grid-100')]//h1/text()").extract()

								item['author']	=	response.xpath("//div[contains(@class,	'talk-speakers')]//a[1]/text()").extract()

								item['description']	=	response.xpath("//div[contains(@class,	'cms')]//p//text()").extract()

								item['date']	=	response.xpath("//section[contains(@class,	'talk	when')]/strong/text()").extract()

								item['tags']	=	response.xpath("//div[contains(@class,	'all-tags')]/span/text()").extract()

								return	item

Executing	EuroPython	spider
We	can	execute	our	spider	with	the	following	command:

scrapy	crawl	europython_spider	-o	europython_items.json	-t	json

At	the	end	of	the	process,	we	obtain	the	following	as	output	files:

europython_items.json

europython_items.xml

europython.sqlite

Each	of	these	files	are	generated	in	the	classes	that	are	defined	in	the	pipelines.py
file	and	the	JSON	file	is	generated	automatically	by	the	spider.

Another	interesting	option	is	that	spiders	can	manage	arguments	that	are	passed
in	the	crawl	command	using	the	-a	option.	For	example,	the	following	command
will	extract	the	data	of	the	sessions	of	the	EuroPython	2018	from	the	following
URL:	http://ep2018.europython.eu/en/events/sessions:

scrapy	crawl	europython_spider	-a	year=2018	-o	europython_items.json	-t	json

In	this	screenshot,	we	can	see	the	JSON	file	generated	after	the	execution	of	the
previous	command:

Also,	we	can	see	that	it	generates	a	SQLite	file	that	we	can	open	with	the	SQLite
browser	tool	and	see	the	structure	of	the	generated	table:

http://ep2018.europython.eu/en/events/sessions

Working	with	Scrapy	in	the	cloud
In	this	section,	we	will	explore	Scrapy	for	deploying	spiders	and	crawlers	in	the
cloud.

Scrapinghub
The	first	step	is	register	in	the	Scrapinghub	service,	which	can	be	done	at	the
following	URL:	https://app.scrapinghub.com/account/login/.

Scrapy	Cloud	is	a	platform	for	running	web	crawlers	and	spiders,	where	spiders
are	executing	in	cloud	servers	and	scale	on	demand:	https://scrapinghub.com/scrapy-
cloud.

To	deploy	projects	into	Scrapy	Cloud,	you	will	need	the	Scrapinghub	command-
line	client,	called	shub,	and	it	can	be	installed	with	the	pip	install	command.	You
can	check	if	you	have	the	latest	version:

$	pip	install	shub	--upgrade

The	next	step	is	to	create	a	project	in	Scrapinghub	and	deploy	your	Scrapy
project:

https://app.scrapinghub.com/account/login/
https://scrapinghub.com/scrapy-cloud

When	you	create	a	Scrapy	Cloud	project,	you	will	see	information	related	with
API	key	and	the	ID	on	your	project's	Code	&	Deploys	page:

When	spider	is	deployed,	you	can	go	to	your	project	page	and	schedule	or	run
the	spider	there:

When	you	run	the	spider,	you	will	be	redirected	to	the	project	dashboard	for
checking	the	state	of	your	spider,	items,	and	data	extracted.	Once	the	process	is
finished,	the	job	created	will	be	automatically	moved	to	completed	jobs:

We	can	also	see	job	details	where	we	can	see	extracted	data	in	the	job	items
section:

Portia
Portia	is	a	visual	web	scraping	tool	available	in	the	Scrapinghub	platform:	https:/
/github.com/scrapinghub/portia.

Portia	is	a	tool	that	allows	you	to	visually	scrape	websites	annotating	a	web	page
to	identify	the	data	you	wish	to	extract.	Portia	will	understand	how	to	scrape	data
from	similar	pages	based	on	these	annotations.

Documentation	can	be	found	from	reading	the	docs	in	the	URL:	https://portia.readthedocs.io/en/late
st/getting-started.html.

You	can	run	and	deploy	Portia	in	your	local	machine	through	some	environments
such	as	Docker,	Vagrant,	and	Ubuntu	virtual	machine	following	the	official
documentation:	https://portia.readthedocs.io/en/latest/installation.html.	Also,	you
can	access	this	Portia	service	at	https://portia.scrapinghub.com,	following	is	the
screenshot	to	run	and	deploy	Portia:

https://github.com/scrapinghub/portia
https://portia.readthedocs.io/en/latest/getting-started.html
https://portia.readthedocs.io/en/latest/installation.html
https://portia.scrapinghub.com

Portia	has	the	capacity	to	find	similar	items	for	each	page.	This	process	will
continue	until	it	has	finished	checking	every	page	or	has	reached	the	limit	of
your	Scrapinghub	plan.

The	first	step	is	set	up	the	website	that	you	want	to	scrape	in	the	Portia	site:

Next,	you	need	to	create	a	new	spider:

Portia	has	the	capacity	to	add	the	page's	URL	as	a	start	page	automatically.	The
crawling	process	will	start	with	start	pages	and	Portia	will	visit	them	to	find
more	links	when	the	spider	is	executed.	

In	this	example,	we	are	extracting	the	titles	of	the	books	from	the	packtpub.com
domain:

Start	pages	and	link	crawling
Portia	will	use	start	pages	for	starting	crawling.	Under	the	LINK	CRAWLING
section,	you	can	choose	how	Portia	will	follow	links	and	in	the	LINK
CRAWLING	section	you	can	add	and	remove	start	pages.

These	are	the	many	options	for	link	crawling:

Follow	all	in-domain	links:	Allow	it	to	follow	links	under	the	same	domain
and	subdomain
Don't	follow	links:	Allow	it	to	only	follow	start	pages
Configure	URL	pattern:	Ensure	that	the	URL	pattern	is	defined
using	regular	expressions

In	this	screenshot,	we	can	see	the	methods	Portia	uses	for	link	crawling:

Summary
One	of	the	objectives	of	this	chapter	has	been	to	learn	about	the	modules	that
allow	the	automatic	extraction	of	data	on	a	specific	domain.	One	of	the	best	tools
for	web	scraping	in	Python	is	Scrapy.	In	this	tool,	we	simply	create	a	class	that
represents	the	information	that	we	want	to	get	from	the	web	and	Scrapy	itself	is
responsible	for	connecting	to	the	website,	extracting	information,	and	creating
the	objects	of	our	class.

In	the	next	chapter,	we	will	learn	how	to	use	Python	to	compose,	send,	and
retrieve	email	with	SMTP,	POP3,	and	IMAP	protocols.	

Questions
1.	 What	library	does	Scrapy	use	to	extract	content	from	web	pages	as	if	they

were	regular	expressions?	
2.	 What	XPath	expression	could	we	use	to	extract	the	images	of	a	certain	URL

from	which	the	HTML	code	has	been	extracted?
3.	 What	XPath	expression	could	we	use	to	extract	the	links	of	a	certain	URL

from	which	the	HTML	code	has	been	extracted?
4.	 What	method	of	the	BeautifulSoup	module	allows	you	to	obtain	all	the

elements	of	a	certain	label?
5.	 What	basic	elements	at	the	level	of	files	and	folders	can	we	find	in	a	Scrapy

project?
6.	 In	which	part	of	our	Scrapy	project	do	we	define	the	extraction	procedure

for	each	of	the	items?

7.	 In	which	part	of	our	Scrapy	project	do	we	define	the	classes	that	allow	us	to
validate	the	data	or	save	the	extracted	data	in	some	databases?

8.	 What	is	the	main	Scrapy	class	that	allows	us	to	define	our	spider?
9.	 What	is	the	main	method	you	must	implement	when	building	an	item

pipeline?
10.	 What	is	the	main	platform	for	deploying	spiders	in	the	cloud	and	what	are

the	commands	for	doing	this	task?

Further	reading
In	these	links,	you	will	find	more	information	about	the	mentioned	tools	and	the
official	Python	documentation	for	some	of	the	modules	that	we've	discussed:

This	is	the	official	documentation	for	the	BS4	package:	http://www.crummy.com/
software/BeautifulSoup/bs4/doc

This	is	the	official	documentation	for	the	Scrapy	package:	http://doc.scrapy.o
rg/en/latest

This	is	the	official	documentation	for	the	mechanize	package:	http://wwwsearc
h.sourceforge.net/mechanize

scrapy	commands:	https://doc.scrapy.org/en/latest/topics/commands.html
Comparison	between	Portia	and	ParseHub:	https://www.parsehub.com/blog/portia
-vs-parsehub-comparison-which-alternative-is-the-best-option-for-web-scraping/

Twint:	https://github.com/twintproject/twint

http://www.crummy.com/software/BeautifulSoup/bs4/doc
http://doc.scrapy.org/en/latest
http://wwwsearch.sourceforge.net/mechanize
https://doc.scrapy.org/en/latest/topics/commands.html
https://www.parsehub.com/blog/portia-vs-parsehub-comparison-which-alternative-is-the-best-option-for-web-scraping/
https://github.com/twintproject/twint

Engaging	with	Email
Email	is	one	of	the	most	popular	forms	of	digital	communication.	Python	has	a
rich	number	of	built-in	libraries	for	dealing	with	emails.	In	this	chapter,	you	will
learn	how	to	use	Python	to	compose,	send,	and	retrieve	emails	with	the	Simple
Mail	Transfer	Protocol	(SMTP),	Post	Office	Protocol	3	(POP3),	and	Internet
Message	Access	Protocol	(IMAP)	protocols.	Practical	code	examples	in	Python
3.7	will	illustrate	most	of	these	concepts	in	detail.

The	following	topics	will	be	covered	in	this	chapter:

Learning	about	and	understanding	email	protocols
Sending	emails	with	SMTP	through	the	smtplib	library
Learning	the	POP3	protocol	and	retrieving	emails	with	poplib
Retrieving	emails	on	the	email	server	using	IMAP	with	imapclient	and	imaplib

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	this	book's
GitHub	repository	in	the	Chapter05	folder:	https://github.com/PacktPublishing/Learning-
Python-Networking-Second-Edition.

You	will	need	to	install	Python's	version	3	distribution	on	your	local	machine
and	have	active	Twitter	and	Gmail	accounts	for	testing	examples	that	are	related
to	Gmail	servers.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Introduction	to	email	protocols
Often,	end	users	use	software	or	a	graphical	user	interface	(GUI)	to	write,	send
and	receive	emails.,	Also	known	as	email	clients,	for	example,	Mozilla
Thunderbird,	Microsoft	Outlook,	etc.,	are	customers	of	e-mail.	The	same	tasks
can	be	done	through	a	web	interface,	that	is,	a	web	mail	client	interface.	Some
common	examples	of	these	are:	Gmail,	Yahoo	mail	and	Hotmail

The	mail	you	send	from	your	client's	interface	travels	through	a	series	of
specialized	email	servers	that	internally	run	software	called	the	Mail	Transfer
Agent	(MTA),	and	their	main	job	is	to	route	the	email	to	destinations	appropriate
by	analyzing	the	mail	header.

Subsequently,	the	mail	arrives	at	the	recipient's	mail	server,	which	can	be
retrieved	using	his	email	client.

In	this	section	we	will	review	the	main	communication	protocols	that	are	used	to
send	and	receive	emails,	among	which	we	can	highlight:

SMTP:	The	SMTP	protocol	is	used	for	sending	emails	from	one	host	to
another	and	allows	you	to	transfer	files	between	mail	servers.
Simple	Mail	Transfer	Protocol	Secure	(SMTPS):	This	encrypts
communications	while	the	email	is	being	transferred	between	mail	servers.
POP3:	The	POP3	protocol	provides	a	standardized	way	for	users	to
download	messages	from	mailboxes	to	their	computers.	When	using	the
POP3	protocol,	your	email	messages	will	be	downloaded	from	the	internet
service	provider	(ISP)	mail	server	to	your	local	computer.	You	can	also
leave	copies	of	your	emails	on	the	ISP	server.
IMAP:	The	IMAP	protocol	provides	a	standardized	way	of	accessing	your
emails	from	your	ISP.	As	this	requires	only	a	small	data	transfer,	this
scheme	works	well	even	over	a	slow	connection,	such	as	a	mobile	phone
network.	If	you	send	a	request	to	read	a	specific	email,	that	email	message
will	be	downloaded	from	the	ISP.	You	can	also	do	some	other	interesting
things,	such	as	creating	and	manipulating	folders	or	mailboxes	on	the
server,	and	deleting	messages.	A	mail	client	also	pulls	emails	from	the	mail
server,	but	has	more	functionality	than	POP3	since	a	copy	of	the	message	is

retained	on	the	mail	server.
Secure/Multipurpose	Internet	Mail	Extensions(S/MIME):	This	uses
a	public	key	infrastructure	(PKI)	to	either	encrypt	the	email	or	digitally
sign	the	email	to	prove	the	integrity	of	the	message.	It	is	very	cumbersome
as	it	requires	each	user	to	exchange	their	public	key	and	does	not	scale	very
well.

Python	has	three	modules,	smtplib,	poplib,	and	imaplib,	which	support	SMTP,
POP3,	and	the	IMAP	protocols,	respectively.	Each	module	has	options	for
transmitting	the	information	securely	by	using	the	Transport	Layer	Security
(TLS)	protocol.	Each	protocol	also	uses	some	form	of	authentication	for
ensuring	the	confidentiality	of	the	data.

Sending	emails	with	SMTP	through
the	smtplib	library
In	this	section,	we	will	learn	about	the	SMTP	protocol	and	introduce	smtplib,	a
Python	module	that's	used	to	send	emails.	We	will	also	demonstrate	how	to	send
different	types	of	email,	such	as	simple	text	messages,	emails	with	attachments,
and	emails	with	HTML	content.	We	will	also	explore	how	to	work	with	emails
with	SMTP	authentication	in	Python	3.7.

SMTP	protocol
SMTP	is	a	set	of	rules	for	the	transmission	of	messages	from	their	origin	to	the
destination	and	is	used	to	transmit	email	messages	to	mail	servers.	SMTP	uses
port	25	to	send	or	transmit	mail	messages.	Email	servers	need	to	have	this	port
open	to	listen	for	incoming	connections.

In	the	connection	between	the	client	and	server,	the	client	sends	the	first	SYN
message	to	the	server	to	start	the	connection	through	port	25.	The	server	accepts
the	connection	by	sending	the	SYN_ACK	message.

After	this	exchange	of	messages,	the	server	sends	the	client	a	message	with
identifier	220,	indicating	that	the	server	is	ready	to	carry	out	transactions	so	that
it	can	proceed	and	send	emails.	Subsequently,	the	client	identifies	the	server
message	through	HELO,	which	is	used	to	read	the	messages.

The	following	image	shows	the	client	and	server's	communication	through	the
SMTP	protocol:

In	this	diagram	we	can	see	the	first	phase	of	the	communication	where	the	client
sends	a	SYN	packet	to	the	server	using	the	port	25.	If	the	connection	is
established,	a	series	of	confirmation	packets	SYN_ACK	are	exchanged	between
them.	Finally,the	server	it	returns	the		STMP	server:	READY	packet	to	the
client	indicating	that	server	its	ready	to	receive	connections.

Working	with	smtplib
Python	provides	the	smtplib	module	for	working	with	the	SMTP	protocol.	You
can	transmit	messages	by	calling	the	sendmail()	method	of	SMTP	objects.	Let's
look	at	how	we	can	using	it	to	send	an	email	with	this	module:

1.	 Create	a	smtplib.SMTP	object	that	will	receive	as	a	parameter	of	its	constructor
method,	that	is,	the	host	(localhost)

2.	 Create	a	mail	message
3.	 Send	the	message	through	a	call	to	the	sendmail	method	of	the	SMTP	object

The	syntax	for	creating	a	SMTP	object	is	as	follows:

import	smtplib

smtpObj	=	smtplib.SMTP([host[,port[,local_hostname]]])

Let's	look	at	what	each	parameter	in	the	preceding	code	in	more	detail:

host:	This	is	the	IP	address	or	domain	of	the	SMTP	server	host
port:	The	default	value	is	25	and,	if	you	provide	a	host	parameter,	you	need
to	specify	the	port	number	that's	used	by	the	SMTP	server
local_hostname:	You	need	to	specify	the	localhost	server	address	if	your
SMTP	server	is	located	on	your	local	machine	sendmail		has	the	following
syntax	and	parameters:

SMTP.sendmail(from_addr,	to_addrs,	msg[,	mail_options,	rcpt_options])

Let's	look	at	these	parameters	in	detail:

from_addr:	The	sender's	email	address
to_addrs:	A	list	of	chains;	sends	an	email
msg:	Sends	a	message

Sending	a	basic	message
These	are	the	basic	steps	we	can	follow	for	sending	a	basic	message	with	smtplib:

1.	 To	begin,	we	need	to	import	the	necessary	classes:	import	smtplib.
2.	 The	SMTP	class	represents	a	connection	to	an	SMTP	server.	Next,	we

specify	our	email	address,	destination,	and	the	message:

from_address	=	"from_user@domain.com"

	to_address	=	"to_user@domain.com"

	message	=	"Message"

3.	 To	begin	with	the	message	format,	we	need	to	import	the	necessary	classes:

from	email.mime.text	import	MIMEText

4.	 These	messages	use	the	MIME	standard,	and	so	we	must	use	the
MIMEText	class	to	build	a	plain	text	email.	We	implement	an	instance	of
the	MIMEText	class	to	build	the	message:			

mime_message	=	MIMEText(message,	"plain")

mime_message["From"]	=	from_address

	mime_message["To"]	=	to_address

	mime_message["Subject"]	=	"Subject"

5.	 In	case	the	message	contains	Unicode	characters,	consider	specifying	the
encoding:

mime_message	=	MIMEText(message,	"plain",	_charset="utf-8")

6.	 You	can	modify	the	visual	aspect	of	the	message	using	HTML:

message	=	"Hello,	python!"mime_message	=	MIMEText(message,	"html",	_charset="utf-8")

7.	 Once	the	message	has	been	elaborated,	we	must	make	the	connection	to	the
SMTP	server:													

import	smtplib

	smtp	=	SMTP("smtp_server")

8.	 We	can	use	the	server	address	provided	by	your	hosting	provider	for	this.	In
the	case	of	the	most	important	services,	the	server	addresses	are	smtp.live.com
(Outlook/Hotmail),	smtp.mail.yahoo.com	(Yahoo!),	and	smtp.gmail.com	(Gmail).

9.	 We	then	need	to	enter	the	data	for	authentication,	that	is,	the	username
(usually,	this	is	an	email	address)	and	password:smtp.login(from_address,
"password")

10.	 Finally,	we	send	the	email	and	close	the	connection	with	the	quit()	method:

smtp.sendmail(from_address,	to_address,	mime_message.as_string())

smtp.quit()

In	the	following	script,	we	are	using	a	basic	example	for	sending	email	using
smtplib.

You	can	find	the	following	code	in	the	smtp_basic.py	file:

#!/usr/bin/env	python3

import	smtplib

smtp	=	smtplib.SMTP('smtp_server')

try:

				smtp.sendmail('from@fromdomain.com',	['to@todomain.com'],	"This	is	a	test	email	message.")

except	SMTPException	as	exception:

				print("Error:	unable	to	send	email:	"+exception)

finally:

				smtp.quit()

In	this	script,	we	are	using	a	SMTP	object	to	connect	to	the	SMTP	server	and
then	using	the	sendmail()	method,	passing	from	address,	the	destination	address,
and	the	message	as	parameters.

If	you	are	using	a	webmail	service	(such	as	Gmail),	your	email	provider	must
have	provided	you	with	outgoing	mail	server	details	that	you	can	supply	them
with,	as	follows:

smtplib.SMTP('mail.server.domain',	25)

Here,	we	must	point	out	that	the	third	argument,	message,	is	a	string	representing
the	email.	We	know	that	a	message	is	usually	composed	of	a	header,	sender,
recipient,	message	content,	and	attachments.

In	the	following	script,	we	are	reviewing	a	way	to	send	an	email	by	using	MIMeText
for	the	message	format.	You	can	find	the	following	code	in
the	smtp_message_format.py	file:

#!/usr/bin/env	python3

import	smtplib

from	email.mime.text	import	MIMEText

from	email.header	import	Header

sender	=	'sender@domain.com'

receiver	=	'receiver@domain.com'

mail_host="smtp.domain.com"

mail_user="user"	

mail_password="password"

message	=	MIMEText('Python',	'plain',	'utf-8')

message['From']	=	Header(sender,	'utf-8')

message['To']	=	Header(receiver,	'utf-8')

subject	=	'Python	SMTP	message'

message['Subject']	=	Header(subject,	'utf-8')

smtp	=	smtplib.SMTP()

try:

				smtp.connect(mail_host,	25)

				smtp.login(mail_user,mail_password)

				smtp.sendmail(sender,	receiver,	message.as_string())

except	smtplib.SMTPException	as	exception:

				print("Error:"+exception)

finally:

				smtp.quit()

If	you	get	smtplib.SMTPNotSupportedError:	SMTP	AUTH,	then	the	extension	is	not
supported	by	the	server.	When	you're	trying	this	with	a	Gmail	server,	it's
important	to	mention	that	Gmail	requires	TLS	(which	we	will	review	in	the
following	examples).

Sending	messages	in	HTML	format
The	library	provides	you	with	an	option	to	send	a	message	in	HTML	format.	In
this	way,	while	sending	an	email	message,	you	can	specify	a	MIME	version,
content	type,	and	character	set,	thanks	to	the	MiMEText	constructor.	In	this	example,
we	are	using	the	'html'	content	type	and	the	'utf-8'	character	set:

mail_message	=	"""

	<p>Python</p>

	<p>python</p>

	"""

	message	=	MIMEText(mail_message	,	'html',	'utf-8')

In	this	way	we	can	provide	a	message	in	HTML	format	following	utf-8
encoding.

Sending	emails	to	multiple	recipients
To	send	an	email	to	multiple	recipients,	it	will	only	be	necessary	to	generate	a
list	with	the	email	receivers.

receivers	=	['receiver1@domain.com',	'receiver2@domain.com']

In	this	example,	we	are	declaring	an	array	with	two	receivers.

Sending	an	email	with	attachments
To	send	messages	with	attachments,	you	must	create	an	object	instance	of	the
MimeMultipart()	class.	If	there	are	multiple	attachments,	these	can	be	built
sequentially.	In	this	example,	we	are	attaching	two	text	files	to	the	message:

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

message	=	MIMEMultipart()

message['From']	=	Header("Sender",	'utf-8')

message['To']	=		Header("Receiver",	'utf-8')

message['Subject']	=	Header('Python	SMTP',	'utf-8')

message.attach(MIMEText('Python	SMTP',	'plain',	'utf-8'))

file1	=	MIMEText(open('file1.txt',	'rb').read(),	'base64',	'utf-8')

file1["Content-Type"]	=	'application/octet-stream'

file1["Content-Disposition"]	=	'attachment;	filename="file1.txt"'

message.attach(file1)

file2	=	MIMEText(open(‘file2.txt',	'rb').read(),	'base64',	'utf-8')

file2["Content-Type"]	=	'application/octet-stream'

file2["Content-Disposition"]	=	'attachment;	filename="file2.txt"'

message.attach(file2)

In	this	script	we	are	using	the	attach()	method	from	MIMEMultipart	class	for
attaching	two	files	with	the	message.	Each	file	is	declared	as	MIMEText	object
and	defined	as	application/octet-stream	in	the	Content-Type	property.

Authentication	with	TLS
The	SMTP	class	also	has	the	capacity	to	manage	authentication	and	TLS
encryption.	First,	we	need	to	determine	whether	the	server	supports	TLS
encryption.	To	do	this,	we	can	use	the	ehlo()	method	to	identify	our	computer	to
the	server	and	query	what	extensions	are	available.	Then,	we	can	call	has_extn()
to	check	the	results.	Once	TLS	is	started,	you	must	call	ehlo()	again	to	re-identify
yourself	over	TLS	connection.

If	you	want	to	do	SMTP	authentication	with	TLS	instead	of	SSL,	you	simply
have	to	change	the	port	to	587	and	execute	smtp.starttls()	in	the	following	way:

smtp.connect('smtp.mail.server',	587)

smtp.ehlo()

if	smtp.has_extn('STARTTLS'):

				smtp.starttls()

				smtp.ehlo()

smtp.login('user@domain',	'password')

In	this	section	we	have	reviewed	how	we	can	manage	authentication	and	TLS
encryption.

Establishing	a	connection	with	a
Gmail	SMTP	server
It	is	possible	to	take	advantage	of	the	free	Gmail	SMTP	server	to	send	emails.	It
can	be	the	definitive	solution	for	those	who	cannot	use	the	SMTP	server	that's
provided	by	their	ISP	or	their	host,	as	well	as	those	who	experience	several
problems	with	sending	emails.	In	this	section,	you	will	learn	how	to	use	the	free
Gmail	SMTP	server.

To	establish	a	connection	with	smtp.gmail.com,	we	can	use	the	following
instructions:

mailServer	=	smtplib.SMTP('smtp.gmail.com',587)

mailServer.ehlo()

mailServer.starttls()

mailServer.ehlo()

mailServer.login("user@gmail.com","password")

Basically,	we	indicate	smtp.gmail.com	as	the	mail	server	name	and	the	connection
as	port	587.	Then,	we	establish	the	starttls()	protocol,	sending	an	ehlo()	message
beforehand	to	accept	it.	Finally,	we	enter	the	session	with	user@gmail.com	and	the
corresponding	password,	once	again	sending	an	ehlo()	message	beforehand.

You	can	see	all	of	these	features	in	the	smtp_login_tls.py	file:

#!/usr/bin/env	python3

import	sys,	smtplib,	socket

#	this	invokes	the	secure	SMTP	protocol	(port	465,	uses	SSL)

from	smtplib	import	SMTP_SSL	as	SMTP	

from	email.mime.text	import	MIMEText

try:

				msg	=	MIMEText("Test	message",	'plain')

				msg['Subject']=	"Sent	from	Python"

				msg['From']	=	"user@gmail.com"

In	the	previous	code	block	we	import	necessary	packages	and	define	our
message	object	using	MIMEText	class.In	the	next	code	block	we	create	smtp
session	and	if	the	server	it	supports	SSL	encryption,establish	a	secure	connection

with	the	server.

				#	create	smtp	session

				smtp	=	smtplib.SMTP("smtp.gmail.com",	587)

				#debug	active

				smtp.set_debuglevel(True)

				#	identify	ourselves	to	smtp	gmail	client	

				smtp.ehlo()

				

				#	Check	if	we	can	encrypt	this	session

				if	smtp.has_extn('STARTTLS'):

								#	secure	our	email	with	tls	encryption

								smtp.starttls()

								#	re-identify	ourselves	as	an	encrypted	connection

								smtp.ehlo()

Once	we	have	created	our	SMTP	session	and	checked	whether	we	can	encrypt
this	session,	we	can	use	the	login	method	for	authenticating	our	user	credentials
and	send	an	email	with	the	sendmail	method:

				try:

								smtp.login("user@gmail.com",	"password")

				except	smtplib.SMTPException	as	e:

								print("Authentication	failed:",	e)

								sys.exit(1)

				try:

								smtp.sendmail('user@gmail.com',	['user@gmail.com'],	msg.as_string())

				except	(socket.gaierror,	socket.error,	socket.herror,smtplib.SMTPException)	as	e

								print(e)

								sys.exit(1)

				finally:

								smtp.quit()

except	(socket.gaierror,	socket.error,	socket.herror,smtplib.SMTPException)	as	e:

				print(e)

				sys.exit(1)

In	the	next	section,	we	are	going	to	review	the	configuration	for	sending	emails
with	the	Gmail	SMTP	service.

Using	an	external	SMTP	service
	Although	most	hosts	and	ISP	providers	offer	support	for	SMTP,	there	are	some
benefits	of	using	an	external	SMTP	service:

They	can	guarantee	a	better	delivery	of	emails
You	will	not	have	to	configure	your	own	server	(if	you	use	VPS)

You	can	find	the	details	of	Google	SMTP	in	the	following	parameters:

SMTP	server:	smtp.gmail.com
SMTP	user:	Your	complete	Gmail	user	(email),	for	example,	user@gmail.com
SMTP	password:	Your	Gmail	password
SMTP	port:	The	default	Gmail	SMTP	server	port	is	465	for	SSL	and	587	for
TSL
TLS/SSL:	Required

To	send	an	email	through	the	Gmail	SMTP	server,	you	need	to	configure	it
through	the	following	service	by	activating	the	Allow	less	secure	apps:
ON	option	with	your	Google	account	at	https://www.google.com/settings/security/less
secureapps:

https://www.google.com/settings/security/lesssecureapps

Now,	we	can	proceed	and	send	emails	from	Python.	We	will	follow	these	steps
to	achieve	this	process:

1.	 Create	an	SMTP	object	for	the	server	connection
2.	 Log	in	to	your	account
3.	 Define	the	headers	of	your	messages	and	login	credentials
4.	 Create	a	MIMEMultipart	message	object	and	attach	the	corresponding	headers
5.	 Attach	the	message	to	the	MIMEMultipart	object	message
6.	 Send	the	message

You	can	find	the	following	code	in	the	send_text_mail_from_gmail.py	file:

#!/usr/bin/env	python3

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

import	smtplib

	

#	create	message	object	instance

message	=	MIMEMultipart()

#	setup	the	parameters	of	the	message

message['From']	=	"user@domain"

message['To']	=	"user@domain"

message['Subject']	=	"Subject"

	

#	add	in	the	message	body

message.attach(MIMEText("message",	'plain'))

	

In	the	previous	code	block	we	have	created	the	message	object	instance	and
setup	the	parameters	of	the	message.In	the	next	code	block	we	are	going	to
create	the	connection	with	the	smtp	server,	login	with	user	credentials	and	send
email	with	sendmail	method.

#create	server

server	=	smtplib.SMTP('smtp.gmail.com:	587')

server.starttls()

	

#	Login	Credentials	for	sending	the	mail

server.login(message['From'],	"password")

	

	#	send	the	message	via	the	server.

server.sendmail(message['From'],	message['To'],	message.as_string())

print("successfully	sent	email	to	%s:"	%	(message['To']))

server.quit()

In	the	previous	example	we	have	reviewed	how	to	send	an	email	using	the	Gmail
SMTP	server.You	can	test	it	changing	the	parameters	of	the	message	using	your
user	and	setting	your	password	in	the	login()	method	credentials.

Creating	and	sending	an	email	with
an	attachment
Now,	we	will	be	sending	an	image	attachment.	This	is	a	similar	process	to
sending	a	plain	text	email.	The	only	difference	is	that,	here,	we	are	using	the
MIMEImage	class	to	create	MIME	message	objects	of	image	types.	Follow	these
steps	to	get	started:

1.	 Create	an	SMTP	object	for	the	connection	to	the	server
2.	 Log	in	to	your	account
3.	 Define	the	headers	of	your	messages	and	login	credentials
4.	 Create	a	MIMEMultipart	message	object	and	attach	the	corresponding	headers,

that	is,	from,	to,	and	subject
5.	 Read	and	attach	the	image	to	the	MIMEMultipart	object	message
6.	 Finally,	send	the	message

You	can	find	the	following	code	in	the	send_attachment_mail_from_gmail.py	file:

from	email.mime.multipart	import	MIMEMultipart

from	email.MIMEImage	import	MIMEImage

from	email.mime.text	import	MIMEText

import	smtplib

	

#	create	message	object	instance

message	=	MIMEMultipart()

	

#	setup	the	parameters	of	the	message

message['From']	=	"user@domain"

message['To']	=	"user@domain"

message['Subject']	=	"sending	images	as	attachment"

	

#	attach	image	to	message	body

message.attach(MIMEImage(file("image.jpg").read()))

In	the	previous	code	block	we	have	created	the	message	object	instance	and
setup	the	parameters	of	the	message,including	attached	image	to	message	body.
In	the	next	code	block	we	are	going	to	create	the	connection	with	the	smtp
server,	login	with	user	credentials	and	send	email	with	sendmail	method.

#	create	server

server	=	smtplib.SMTP('smtp.gmail.com:587')

server.starttls()

#	Login	Credentials	for	sending	the	mail

server.login(message['From'],	"password")

#	send	the	message	via	the	server.

server.sendmail(message['From'],	message['To'],	message.as_string())

server.quit()

print("successfully	sent	email	to	%s:"	%	(message['To']))

In	the	previous	example	we	have	reviewed	how	to	send	an	email	with	attached
image	using	the	Gmail	SMTP	server.	You	can	test	it	changing	the	parameters	of
the	message	using	your	user	and	setting	your	password	in	the	login()	method
credentials.

Learning	the	POP3	protocol	and
retrieving	emails	with	poplib
In	this	section,	we	will	learn	about	the	POP3	protocol	and	explore	the	poplib
library	and	how	to	work	with	emails	with	POP3	in	Python	3.7.

Understanding	the	POP3	protocol
POP3	is	a	protocol	that	allows	email	clients	to	obtain	email	messages	that	are
stored	on	a	remote	server.	It	is	an	application-level	protocol	in	the	OSI	model.
The	stored	email	messages	can	be	downloaded	and	read	by	the	local	computer.
The	POP3	protocol	can	be	used	to	download	these	messages	from	the	email
server.

POP3	is	designed	to	receive	emails,	not	to	send	them;	it	allows	users	with
intermittent	or	very	slow	connections	(such	as	modem	connections)	to	download
their	emails	while	they	have	a	connection	and	later	check	them	when	they	are
disconnected.	It	should	be	mentioned	that	most	mail	clients	include	the	option	to
leave	messages	on	the	server	so	that	a	client	using	POP3	connects,	obtains	all
messages,	stores	them	on	the	user's	computer	as	new	messages,	removes	them
from	the	server,	and	finally	disconnects.

The	following	diagram	shows	the	client	and	server	communicating	through	the
POP3	protocol:

The	client	establishes	a	connection	to	the	server	on	TCP	port	110.	They	then	send
their	username	and	password	to	access	the	mailbox.	Once	the	connection	has
been	established,	the	user	can	obtain	the	email	messages	individually.

If	you	want	to	read	a	little	more,	here	is	a	link	to	your	corresponding	RFC:	https://tools.ietf.org/
html/rfc1725.html.

https://tools.ietf.org/html/rfc1725.html

Introduction	to	poplib
Accessing	an	email	address	from	Python	is	very	simple	if	you	have	POP3
enabled.	For	this	task,	can	use	the	poplib	library.	As	an	example,	I	will	use	Gmail.
If	you	want	to	try	this	out	for	yourself,	remember	to	enable	POP3	on	the	Gmail
website.	To	do	this,	you	need	to	enter	the	configuration	section	inside	a	Gmail
account.	You	can	review	Gmail	account	configuration	section	of	this	chapter.

This	module	defines	a	class	called	POP3	that	encapsulates	a	connection	to	a
POP3	server.	This	class	also	supports	encrypted	communication	with	the	TLS
protocol.

This	module	provides	two	high-level	classes:

POP()

POP3_SSL()

Both	classes	implement	the	POP3	and	POP3S	protocols,	respectively.	The	class
constructor	for	each	one	accepts	three	arguments:	host,	port,	and	timeout.	The
optional	timeout	parameter	determines	the	number	of	seconds	of	the	connection
timeout	at	the	server.

Basically,	this	module	will	allow	us	to	connect	to	a	POP3	server,	and	then
authenticate	and	read	the	emails.	In	addition,	this	module	provides	a	POP3_SSL
class,	which	provides	support	for	connecting	to	POP3	servers	that	use	SSL	as	the
underlying	protocol	layer.

As	we	can	see	in	the	documentation	on	poplib	(https://docs.python.org/3/library/popl
ib.html),	the	poplib	module	has	two	classes	with	the	following	constructors:

class	poplib.POP3(host[,	port[,	timeout]])

class	poplib.POP3_SSL(host[,	port[,	keyfile[,	certfile]]])

These	are	the	more	relevant	methods:

POP3.user(username):	This	establishes	a	user	in	the	connection.
POP3.pass_(password):	This	establishes	a	password	in	the	connection.	Note	that

https://docs.python.org/3/library/poplib.html

the	mailbox	on	the	server	is	locked	until	the	quit()	method	is	called.
POP3.getwelcome():	This	returns	the	welcome	string	that's	returned	by	the	POP3
server.
POP3.stat():	This	gets	the	status	of	the	mailbox.	The	result	is	a	tuple	of	two
integers	(message	count	and	mailbox	size).
POP3.list([which]):	This	requests	a	list	of	messages.	The	result	is	in	the	form
(response,	['mesg_num	octets',	...],	octets).	If	it	is	configured,	it	is	the	message
to	list.
POP3.retr(which):	This	retrieves	the	complete	message	number	and	configures
your	view	banner.
POP3.dele(which):	This	marks	the	message	number	that	will	be	deleted.	On
most	servers,	deletions	are	not	carried	out	until	the	quit()	method	is	called.
POP3.quit():	This	allows	you	to	confirm	the	changes,	unlock	the	mailbox,	and
release	the	connection.
POP3.top	(which,	number):	This	retrieves	the	header	of	the	message,	plus	the
number	of	lines	of	the	message	after	the	header	of	the	message	number.

To	summarize,	we	have	the	poplib.POP3	and	poplib.POP3_SSL	classes	to	connect	to	the
server	(we	use	the	second	one	if	the	server	has	SSL	implemented)	and	the	user
and	pass_	methods	to	authenticate	us.	Finally,	we	have	the	getwelcome	method,
which	captures	the	welcome	message	from	the	server.

Retrieving	emails	with	SSL
POP3_SSL()	is	the	secure	version	of	POP3().	This	class	takes	additional	parameters,
such	as	keyfile	and	certfile,	which	are	used	for	supplying	the	SSL	certificate	files,
namely	the	private	key	and	certificate	chain	file.	Writing	for	a	POP3	client	is
also	very	straightforward.	To	do	this,	instantiate	a	mailbox	object	by	initializing
the	POP3()	or	POP3_SSL()	classes.	Then,	invoke	the	user()	and	pass_()	methods	to
login	to	the	server	by	using	the	following	command:

mailbox	=	poplib.POP3_SSL("POP3_SERVER",	"SERVER_PORT")

mailbox.user('username')

mailbox.pass_('password')

You	can	see	the	basic	POP3	example	from	the	documentation:	http://docs.python.org/library/poplib.h
tml#pop3-example.
We	can	retrieve	all	of	the	messages	from	an	email	account	with	the	retr	method.	The	following
link	provides	documentation	about	this	method:	https://docs.python.org/3/library/poplib.html#poplib.POP3
.retr.

Here	is	a	minimal	example	that	opens	a	mailbox	and	retrieves	all	of	its
messages.	First,	we	create	a	POP3_SSL	object	(Gmail	works	with	SSL)	and	enter
our	username	and	password.	From	here,	we	can	manage	our	emails	with	the
functions	that	are	provided	by	the	poplib	library.	In	this	example,	we	obtain	the
list	of	messages	with	the	list()	method.	The	last	message	is	chosen	from	the
response	and	the	server	is	requested	through	retr(msgid).

You	can	find	the	following	code	in	the	mailbox_basic.py	file:

#!/usr/bin/env	python3

import	poplib

mailbox	=	poplib.POP3_SSL("pop.gmail.com",995)

mailbox.user("user")

mailbox.pass_("password")

print(mailbox.getwelcome())

messages	=	len(mailbox.list()[1])

for	index	in	range(messages):

				for	message	in	mailbox.retr(index+1)[1]:

								print(message)

	

mailbox.quit()

http://docs.python.org/library/poplib.html#pop3-example
https://docs.python.org/3/library/poplib.html#poplib.POP3.retr

In	this	example,	we	have	the	same	functionality	from	the	previous	script—the
only	difference	is	how	we	get	the	params	server,	port,	user,	and	password	from	the
command	line.

You	can	find	the	following	code	in	the	mailbox_basic_params.py	file:

#!/usr/bin/env	python3

import	poplib

import	argparse

def	main(hostname,port,user,password):

		mailbox	=	poplib.POP3_SSL(hostname,port)

		

		try:

				mailbox.user(user)

				mailbox.pass_(password)

				response,	listings,	octet_count	=	mailbox.list()

				for	listing	in	listings:

						number,	size	=	listing.decode('ascii').split()

						print("Message	%s	has	%s	bytes"	%	(number,	size))

		

		except	poplib.error_proto	as	exception:

				print("Login	failed:",	exception)

	

		finally:

				mailbox.quit()

In	the	previous	code	block	we	have	defined	our	function	that	accepts	as
parameters	the	hostname,port,user	and	password	and	establish	the	connection
with	this	configuration.In	the	next	code	block	we	use	the	argparse	module	for
setting	the	parameters	used	by	the	main()	method.

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='MailBox	basic	params')

				parser.add_argument('--hostname',	action="store",	dest="hostname")

				parser.add_argument('--port',	action="store",	dest="port")

				parser.add_argument('--user',	action="store",	dest="user")

				given_args	=	parser.parse_args()	

				hostname	=	given_args.hostname

				port	=	given_args.port

				user	=	given_args.user

				import	getpass

				password	=	getpass.getpass(prompt='Enter	your	password:')

				main(hostname,port,user,password)

Let's	see	how	we	can	read	out	the	email	messages	by	accessing	Google's	secure
POP3	email	server.	By	default,	the	POP3	server	listens	on	port	995	securely.	The
following	is	an	example	of	fetching	an	email	by	using	POP3.

Get	the	total	number	of	messages:

(messagesNumber,	size)	=	mailbox.stat()

Get	a	specific	message	by	using	your	mailbox	number:

response,	headerLines,	bytes	=	mailbox.retr(i+1)

You	can	find	the	following	code	in	the	poplib_gmail.py	file:

#!/usr/bin/env	python3

import	poplib

import	getpass

mailbox	=	poplib.POP3_SSL	('pop.gmail.com',	995)

username	=	input('Enter	your	username:')

password	=	getpass.getpass(prompt='Enter	your	password:')

mailbox.user(username)

mailbox.pass_(password)

EmailInformation	=	mailbox.stat()

print("Number	of	new	emails:	%s	",	EmailInformation)

numberOfMails	=	EmailInformation[0]

num_messages	=	len(mailbox.list()[1])

In	the	previous	code	block	we	initialize	the	connection	with	pop3	server	mail
and	store	information	about	connection	in	mailbox	object,	later	we	get
information	about	stats	and	the	messages	number.	In	the	next	code	block	we	use
the	mailbox	object	to	retrieve	information	about	each	message	contained	in	the
mailbox.

for	i	in	range	(num_messages):

			print("\nMessage	number	"+str(i+1))

			print("--------------------")

			#	read	message

			response,	headerLines,	bytes	=	mailbox.retr(i+1)

			#for	header	in	headerLines:

								#print(str(header))

			print('Message	ID',	headerLines[1])

			print('Date',	headerLines[2])

			print('Reply	To',	headerLines[4])

			print('To',	headerLines[5])

			print('Subject',	headerLines[6])

			print('MIME',	headerLines[7])

			print('Content	Type',	headerLines[8])

mailbox.quit()

In	this	example	we	have	extracted	mails	from	our	mailbox	server	using	the	list()
method.For	each	message	we	can	print	all	information	available	in	headerLines
array	.Also	we	can	get	information	in	that	array	accessing	specific	index
like	headerLines[1]	for	get	Message	ID	or	headerLines[5]	for	get	mail

destination.

Establishing	a	connection	with	Gmail
for	reading	emails	
Now,	we	are	going	to	go	into	detail	regarding	the	code	of	the	previous	script.	For
reading,	we	first	establish	the	connection	to	the	Gmail	pop	server,	using
the	getpass	module	to	request	the	password:

#	Connection	is	established	with	the	gmail	pop	server

mailbox	=	poplib.POP3_SSL	('pop.gmail.com',	995)

import	getpass

username	=	input('Enter	your	username:')

password	=	getpass.getpass(prompt='Enter	your	password:')

mailbox.user(username)

mailbox.pass_(password)

Here,	we	used	poplib.POP3_SSL,	passing	the	name	of	the	server,	that	is,	pop.gmail.com,
and	the	connection	port,	995.	Then,	we	have	set	the	username	and	password	of
Gmail.	The	method	to	do	this	is	pass_(),	with	an	underscore	at	the	end.

Gmail	account	configuration
In	the	POP/IMAP	configuration	of	your	account,	you	can	find	the	following
options.

In	the	following	screenshot,	we	can	see	the	Gmail	settings	page	for	the	POP
protocol:

In	the	Settings	page,	you	can	configure	the	POP	protocol	and	enable	it	for	all
emails	or	only	emails	that	arrive	from	now	on.

Unread	messages
To	see	how	many	unread	messages	you	have,	you	can	call	the	list()	method
from	the	mailbox	object.	Use	the	following	code	to	find	out	how	many	unread
messages	you	have:

number_messages	=	len(mailbox.list()[1])

With	this,	we	just	have	to	loop	and	get	the	messages	one	by	one	to	analyze	them:

for	i	in	range	(num_messages):

			print("Message	number	"+str(i+1))

			print("--------------------")

			#	read	message

			response,	headerLines,	bytes	=	mailbox.retr(i+1)

The	retr(i+1)	method	brings	the	message	from	the	server	whose	number	is
indicated	and	marks	it	on	the	server	as	read.	It	is	set	to	i+1	because	the	retr()
method	starts	at	1	and	not	at	zero.	This	method	returns	the	server	response,	the
message,	and	a	few	bytes	related	to	the	message	that	we	are	reading.	The
important	thing	is	headerLines,	which	in	some	way	contains	all	of	the	lines	of	the
message.

Manipulating	and	retrieving	emails
on	the	server	email	using	IMAP	with
imapclient	and	imaplib
In	this	section,	we	will	learn	about	the	IMAP	protocol	and	explore	the	imapclient
and	imaplib	modules	for	working	with	emails	with	IMAP	in	Python	3.7.

IMAP	protocol
The	IMAP	protocol	does	not	download	messages	to	your	computer—both	the
messages	and	the	folders	that	we	have	created	are	kept	on	the	server.

The	IMAP	protocol	is	the	most	advisable	when	we	access	our	emails	from
various	devices,	or	when	we	are	mobile.	As	a	precaution,	we	must	periodically
delete	the	contents	of	our	account	so	that	it	does	not	exceed	the	space	that's
granted.	The	drawback	of	this	protocol	is	that	we	must	always	have	an	internet
connection,	even	to	access	and	work	with	old	messages.

This	protocol	has	the	advantage	that,	when	we	connect	to	read	our	emails	from	different
devices,	for	example,	our	laptop	or	smartphone,	we	know	that	we	can	always	access	all	of	our
messages,	and	that	the	mailbox	will	be	updated.	It	is	also	interesting	to	preserve	our	privacy
when	we	read	our	emails	from	a	public	or	shared	computer,	as	it	does	not	store	information	on
the	local	machine.

For	starters,	like	POP,	this	protocol	is	only	intended	to	read	emails,	not	to	send
them.	The	main	advantage	over	this	is	that	you	are	also	prepared	to	manage
them:	being	able	to	organize	them	in	folders	or	search	in	the	server	are	inherent
capabilities	of	the	protocol.

Another	differential	aspect	is	the	architecture	that's	designed	to	be	accessed	from
different	computers	while	keeping	copies	of	our	emails	synchronized.	If,	in	POP,
we	said	that	the	common	thing	was	to	erase	the	messages	as	we	downloaded
them,	in	IMAP,	those	messages	are	kept	on	the	server	until	we	request	their
deletion	explicitly.

This	distributed	synchronization	is	based	on	the	UID	that	represents	a	unique
identifier	for	a	given	message	sequence	number,	which	allows	several	clients	to
access	it	simultaneously	and	understand	what	messages	they	are	manipulating.
To	round	off	this	distributed	support,	clients	can	access	any	of	the	following
connection	modes:

Offline	mode:	It	periodically	connects	to	the	server	to	download	new
messages	and	synchronize	any	changes	that	may	have	happened	in	the
different	folders.	We	have	the	ability	to	delete	the	messages	as	we

download	them,	following	a	function	that's	very	similar	to	POP3.
Online	mode:	It	has	access	to	the	copy	of	the	server	messages	exactly
when	we	need	to,	synchronizing	the	changes	practically	on	the	fly.
Disconnected	mode:	Do	not	confuse	this	with	offline	mode.	In	this	case,
the	client	works	with	a	local	copy	while	they	do	not	have	access	to	the
internet,	where	they	can	create/delete/read	their	emails.	The	next	time	you
connect	to	the	internet,	these	changes	will	be	synchronized	with	the	master
copy	of	the	server.

Since	it	is	based	on	a	model	in	which	messages	are	normally	stored	on	the	server
after	being	read,	IMAP	defines	an	easy	way	to	manage	them—with	mail	trays,
that	is,	with	folders.	These	follow	a	tree-like	hierarchy,	which	we	are	used	to	in
conventional	filesystems.	Following	the	standard	we	always	have,	the	inbox	will
be	the	main	source,	but	we	can	create	other	folders	with	different	attributes.	For
example,	there	are	attributes	to	specify	that	a	folder	contains	only	emails,
(\Noinferiors),	or	only	folders,	(\Noselect),	but	they	can	also	have	other	attributes
that	indicate	whether	or	not	new	messages	exist	since	the	last	time	we	opened	it
with	(\Marked)	and	(\Unmarked).

A	similar	kind	of	label	can	have	the	emails	we	receive	or	send.	One	of	the	most
used	is	the	one	that	indicates	whether	it	has	been	read	or	not	(\Seen),	but	there	are
also	others	that	indicate	that	the	message	has	been	answered	(\Answered),	that	the
message	has	been	highlighted	(\Flagged),	which	is	a	draft	(\	Draft),	and	so	on.	All
of	this	information	is	saved	directly	on	the	server	and	not	on	the	client	as	we	are
used	to,	which	allows	you	to	perfectly	synchronize	this	metadata	between
several	clients.

Technically,	at	a	low	level,	IMAP	works	very	similarly	to	POP3—a	connection
is	opened	to	port	143	of	the	server,	and	a	conversation	begins	in	ASCII.
Following	the	custom,	Gmail	uses	another	port	993,	which	is	the	alternative	port
of	IMAP	if	we	want	the	connection	to	be	encrypted	under	SSL.	Once	that
connection	is	created,	the	client	starts	sending	commands	and	receiving
responses.

On	an	IMAP	server,	email	messages	are	grouped	into	folders,	some	of	which
will	come	predefined	by	an	IMAP	provider.	Once	a	folder	has	been	selected,
messages	can	be	listed	and	fetched.	Instead	of	having	to	download	every
message,	the	client	can	ask	for	particular	information	from	a	message,	such	as	a

few	headers	and	its	message	structure,	to	build	a	display	or	summary	for	the	user
to	click	on,	hence	pulling	message	parts	and	downloading	attachments	from	the
server	on	demand.

Retrieving	emails	with	imaplib
As	we	mentioned	earlier,	accessing	emails	over	the	IMAP	protocol	doesn't
necessarily	download	them	onto	the	local	device.

Python	provides	a	library	called	imaplib,	which	can	be	used	for	accessing
messages	over	the	IMAP	protocol.	This	library	provides	the	IMAP4()	class,	which
takes	the	host	and	port	for	implementing	this	protocol	as	arguments.	The	default
port	is	143.

The	IMAP4_SSL()	class	has	the	capacity	to	connect	over	an	SSL	encrypted	socket
and	provides	a	secure	version	of	the	IMAP4	protocol	by	using	993	as	the	default
port.

A	typical	example	of	what	an	IMAP	client	looks	like	can	be	seen	here:

mailbox	=	imaplib.IMAP4_SSL("IMAP_SERVER",	"SERVER_PORT")

mailbox.login('username',	'password')

mailbox.select('Inbox')

The	previous	code	will	try	to	initiate	an	IMAP4	encrypted	client	session.	After
the	login()	method	is	successful,	you	can	apply	the	various	methods	on	the
created	object.	In	the	previous	code	snippet,	the	select()	method	has	been	used.
This	will	select	a	user's	mailbox.	The	default	mailbox	is	called	inbox.

A	full	list	of	methods	that	are	supported	by	this	mailbox	object	is	available	on	the	Python
standard	library	documentation	page,	which	can	be	found	at	https://docs.python.org/3/library/imaplib
.html.

Here,	we	would	like	to	demonstrate	how	you	can	search	the	mailbox	by	using
the	search()	method.	It	accepts	a	character	set	and	search	criterion	parameter.	The
character	set	parameter	can	be	None,	where	a	request	for	no	specific	character	will
be	sent	to	the	server.	However,	at	least	one	criterion	needs	to	be	specified.	For
performing	an	advanced	search	for	sorting	the	messages,	you	can	use	the	sort()
method.

We	can	use	a	secure	IMAP	connection	for	connecting	to	the	server	by	using	the
IMAP4_SSL()	class.

https://docs.python.org/3/library/imaplib.html

If	you	are	using	a	Gmail	account	and	want	to	store	all	of	your	emails	messages
in	your	Gmail	Sent	folder,	go	to	the	Forwarding	and	POP/IMAP	tab	and	enable
IMAP.

In	the	following	screenshot,	we	can	see	the	Gmail	configuration	for	the	IMAP
protocol:

You	can	find	the	following	code	in	the	check_remote_email_imaplib.py	file:

#!/usr/bin/env	python3

import	argparse

import	imaplib

def	check_email(username,password):	

				mailbox	=	imaplib.IMAP4_SSL('imap.gmail.com',	'993')

				mailbox.login(username,	password)

				mailbox.select('Inbox')

				type,	data	=	mailbox.search(None,	'ALL')

				for	num	in	data[0].split():

								type,	data	=	mailbox.fetch(num,	'(RFC822)')

								print	('Message	%s\n%s\n'	%	(num,	data[0][1]))

				mailbox.close()

				mailbox.logout()

				

In	the	previous	code	block	we	define	check_email()	method	that	establish	the
connection	with	imap	gmail	server	with	username	and	password	parameters,
select	the	inbox	for	recover	messages	and	search	for	specific	RFC	number
protocol	inside	the	mailbox.	In	the	next	code	block	we	define	our	main	program
that	request	information	about	username	and	password	used	for	establish	the
connection.

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='Email	Download	IMAP')

				parser.add_argument('--username',	action="store",	dest="username")

				given_args	=	parser.parse_args()	

				username	=	given_args.username

				import	getpass

				password	=	getpass.getpass(prompt='Enter	your	password:')

				check_email(username,	password)

In	this	example,	an	instance	of	IMPA4_SSL(),	that	is,	the	mailbox	object,	has	been
created.	Here,	we	have	taken	the	server	address	and	port	as	arguments.	Upon
successfully	logging	in	with	the	login()	method,	you	can	use	the	select()	method
to	choose	the	mailbox	folder	that	you	want	to	access.	In	this	example,	the	inbox
folder	has	been	selected.	To	read	the	messages,	we	need	to	request	the	data	from
the	inbox.	One	way	to	do	that	is	by	using	the	search()	method.	Upon	successful
reception	of	some	email	metadata,	we	can	use	the	fetch()	method	to	retrieve	the
email	message	envelope	part	and	data.	In	this	example,	the	RFC	822	type	of
standard	text	message	has	been	sought	with	the	help	of	the	fetch()	method.

We	can	use	the	Python	pretty	print	or	the	print	module	for	showing	the	output	on
the	screen.	Finally,	apply	the	close()	and	the	logout()	methods	to	the	mailbox
object.

Retrieving	emails	with	imapclient
IMAPClient	is	a	complete	IMAP	client	library	written	in	Python	that	uses	the
imaplib	module	from	the	Python	standard	library.	It	provides	an	API	for	creating	a
connection	and	reads	messages	from	the	inbox	folder.

You	can	install	imapclient	with	the	following	command:

$	pip	install	imapclient

The	IMAPClient	class	is	the	core	of	the	IMAPClient	API.	You	can	create	a
connection	to	an	IMAP	account	by	instantiating	this	class	and	interacting	with
the	server	calling	methods	on	the	IMAPClient	instance.

The	following	script	shows	how	to	interact	with	an	IMAP	server,	displaying	all
of	the	messages	in	the	inbox	folder	and	the	information	related	to	the	message
ID,	subject,	and	date	of	the	message.

You	can	find	the	following	code	in	the	folder_info_imapclient.py	file:

#!/usr/bin/env	python3

from	imapclient	import	IMAPClient

import	getpass

username	=	input('Enter	your	username:')

password	=	getpass.getpass(prompt='Enter	your	password:')

server	=	IMAPClient('imap.gmail.com',	ssl=True)

server.login(username,	password)

select_info	=	server.select_folder('INBOX',readonly=True)

for	k,	v	in	list(select_info.items()):

				print('%s:	%r'	%	(k,	v))

server.logout()

In	this	script,	we	open	an	IMAP	connection	with	the	IMAPClient	and	get
information	about	its	capabilities	and	mailboxes.

You	can	find	the	following	code	in	the	listing_mailbox_imapclient.py	file:

#!/usr/bin/env	python3

import	sys

from	imapclient	import	IMAPClient

import	getpass

username	=	input('Enter	your	username:')

password	=	getpass.getpass(prompt='Enter	your	password:')

server	=	IMAPClient('imap.gmail.com',	ssl=True)

try:

				server.login('user',	'password')

except	server.Error	as	e:

				print('Could	not	log	in:',	e)

				sys.exit(1)

print('Capabilities:',	server.capabilities())

print('Listing	mailboxes:')

data	=	server.list_folders()

for	flags,	delimiter,	folder_name	in	data:

				print('	%-30s%s	%s'	%	('	'.join(str(flags)),	delimiter,	folder_name))

	

server.logout()

This	could	be	the	output	of	the	previous	script,	where	we	can	see	capabilities	and
mailboxes	that	are	available	in	your	Gmail	account:

Capabilities:	('UNSELECT',	'IDLE',	'NAMESPACE',	'QUOTA',	'XLIST','AUTH=XOAUTH')

	Listing	mailboxes:

	\Noselect	\HasChildren	/	[Gmail]

	\HasChildren	\HasNoChildren	/	[Gmail]/All	Mail

	\HasNoChildren	/	[Gmail]/Drafts

	\HasChildren	\HasNoChildren	/	[Gmail]/Sent	Mail

	\HasNoChildren	/	[Gmail]/Spam

	\HasNoChildren	/	[Gmail]/Starred

	\HasChildren	\HasNoChildren	/	[Gmail]/Trash

In	this	section	we	have	reviewed	the	imapclient	and	imaplib	modules	which	provide
the	methods	can	for	accessing	emails	with	IMAP	protocol.

Summary
This	chapter	demonstrated	how	Python	can	interact	with	the	three	major	email
handling	protocols,	that	is,	SMTP,	POP3,	and	IMAP.	In	each	of	these	cases,	you
learned	how	to	work	with	the	client	code.	Finally,	an	example	for	using	SMTP	in
Python's	logging	module	was	shown.

In	the	next	chapter,	you	will	learn	how	to	use	Python	to	work	with	remote
systems	to	perform	various	tasks,	such	as	administrative	tasks,	by	using	SSH,
file	transfer	through	FTP,	Samba,	and	so	on.	Some	remote	monitoring	protocols,
such	as	SNMP,	and	authentication	protocols,	such	as	LDAP,	will	be	reviewed.

Questions
1.	 What	is	the	main	difference	between	the	pop	and	imap	protocols?
2.	 What	method	can	you	use	to	send	emails	with	smptlib?
3.	 What	is	the	class	and	method	from	smtplib	for	sending	an	email	message

where	you	can	specify	a	MIME	version,	content	type,	and	character	set?
4.	 What	is	the	class	and	method	from	smtplib	for	sending	messages	with

attachments?
5.	 What	is	the	method	from	the	poplib	package	that	gets	the	status	of	the

mailbox?
6.	 What	is	the	class	from	the	poplib	package	that	allows	you	to	retrieve	emails

in	a	secure	way	with	SSL?
7.	 How	we	can	get	a	specific	message	with	your	mailbox	number	with	poplib?
8.	 What	is	the	main	advantage	of	the	IMAP	protocol	if	we	were	to	compare	it

with	SMTP	and	POP?
9.	 Which	class	from	the	imaplib	package	provides	a	secure	version	of	the

IMAP4	protocol?
10.	 How	can	you	open	an	IMAP	connection	with	IMAPClient	and	list	folder

information?

Further	reading
In	the	following	links,	you	will	find	more	information	about	the	tools	and	the
official	Python	documentation	that	was	covered	in	this	chapter:

Other	smtplib	examples:	https://pymotw.com/2/smtplib/
Python	module	for	connecting	with	an	Outlook	email	account:	https://github
.com/awangga/outlook

https://pymotw.com/2/smtplib/
https://github.com/awangga/outlook

Interacting	with	Remote	Systems
In	this	chapter,	you'll	learn	about	the	different	modules	that	allow	us	to	interact
with	the	FTP,	SSH,	SNMP,	and	LDAP	servers.	You'll	also	learn	how	to	use
Python	to	work	with	remote	systems	to	perform	administrative	tasks.	Then,
you'll	get	to	explore	several	network	protocols	and	Python	libraries,	which	are
used	to	interact	with	remote	systems,	and	understand	how	you	can	access	a	few
services	through	the	Python	scripts	and	modules,	such	as	ftplib,	paramiko,	pysnmp,
and	python-ldap.

The	following	topics	will	be	covered	in	this	chapter:

Understanding	the	SSH	protocol
SSH	terminal	and	running	commands	with	paramiko
Understanding	the	FTP	protocol	for	transferring	files
Reading	and	interacting	with	SNMP	servers
Reading	and	interacting	with	LDAP	servers

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter06	folder:	https://github.com/PacktPublishing/Learning-Python-Ne
tworking-Second-Edition/tree/master/chapter6.

This	chapter	requires	quite	a	few	third-party	packages,	such	as	paramiko	and	pysnmp.
You	can	use	your	operating	system's	package	management	tool	to	install	them.	If
we	are	working	with	Python	3	in	Debian	and	Ubuntu	Unix	distributions,	all	of
the	modules	that	are	required	for	understanding	the	topics	will	be	covered	in	this
chapter.

We	can	use	the	following	commands	to	install	the	required	modules	in	a	Debian
distribution:

sudo	apt-get	install	python3

sudo	apt-get	install	python3-setuptools

sudo	easy_install3	paramiko

sudo	easy_install3	python3-ldap

sudo	easy_install3	pysnmp

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition/tree/master/chapter6

Understanding	the	SSH	protocol
In	this	section,	you	will	be	introduced	to	the	SSH	protocol.

SSH	introduction
Secure	shell	(SSH)	is	a	protocol	that	facilitates	secure	communications	between
two	systems	using	a	client/server	architecture	and	allows	users	to	connect	to	a
host	remotely.	Unlike	other	remote	communication	protocols,	such	as	FTP	or
Telnet,	SSH	encrypts	the	connection	session,	making	it	impossible	for	anyone	to
obtain	unencrypted	passwords.

SSH	is	a	protocol	that	was	built	with	the	aim	of	offering	a	secure	alternative	to
other	commands	for	remote	connection	from	another	machine,	and	allows	you	to
authenticate	a	user	through	a	secure	channel.

For	Mac	and	Linux	users,	the	ssh	command	comes	installed	by	default.	The	SSH
command	consists	of	three	different	parts:	

ssh	{user}@{host}

The	following	are	the	three	different	parts	of	a	SSH	command:

The	ssh	key	command	tells	your	system	that	you	want	to	open	a	secure	and
encrypted	shell	connection.
{user}	represents	the	account	you	wish	to	access.	For	example,	you	can	use
the	root	user	to	authenticate	with	full	permissions	on	the	server.
{host}	refers	to	the	server	IP	address	or	domain	you	need	to	access.	

When	you	press	Enter,	you	will	be	asked	to	enter	the	password	for	the	requested
account.	When	you	write	it,	nothing	will	appear	on	the	screen,	but	your
password,	in	fact,	is	being	transmitted.	Once	you	have	finished	typing	the
password,	press	the	Enter	key	again,	even	though	you	will	not	see	the	password
you	introduced	in	the	console.	If	your	password	is	correct,	you	will	receive	a
remote	Terminal	window.

This	is	the	output	you	will	receive	when	you	try	to	connect	with	the	192.168.0.1	IP
address	using	the	ssh	root@192.168.0.1	command:

The	authenticity	of	host	'192.168.0.1		(192.168.0.1)'	can't	be	established.

	ECDSA	key	fingerprint	is	SHA256:NW6uvRVer4uKQAQt+USwpeFwjz0NDqvflzbwM9c5SR4.

	Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

	Warning:	Permanently	added	'192.168.0.1	'	(ECDSA)	to	the	list	of	known	hosts.

	root@192.168.0.1	's	password:

	Last	login:	Fri	Mar	8	14:31:58	2019	from	192.168.0.1

Details	of	the	SSH	protocol	can	be	found	in	the	RFC4251-RFC4254	documents,	available	at	h
ttp://www.rfc-editor.org/rfc/rfc4251.txt

http://www.rfc-editor.org/rfc/rfc4251.txt

Using	SSH	to	encrypt	sessions
When	you	access	a	remote	server	through	the	SSH	protocol,	the	security	risks
are	considerably	reduced.	In	the	case	of	the	client	and	of	the	system	itself,
security	is	improved	thanks	to	encryption;	secure	shell	is	responsible	for
encrypting	all	sessions.	Thus,	it	is	impossible	for	anyone	to	access	the
passwords,	the	customer's	access	data,	or	what	the	client	has	written.	When	a
connection	is	made	through	the	Secure	Shell	protocol,	the	remote	user	is
authenticated	by	the	system.	Then,	we	proceed	to	transfer	this	information	from
the	host	client	and	return	the	data	to	the	client.

How	the	SSH	protocol	works
The	operation	of	this	protocol	can	be	summarized	in	the	following	steps:

1.	 The	client	initiates	a	TCP	connection	on	port	22	of	the	service.	This	port	is
the	one	that	uses	the	protocol	by	default,	although	as	we	will	see	in	the
following	steps,	it	can	be	modified.

2.	 The	client	and	the	server	agree	on	the	version	of	the	protocol	to	be	used,	as
well	as	the	encryption	algorithm	used	for	the	exchange	of	information.

3.	 The	server,	which	has	two	keys	(one	private	and	one	public),	sends	its
public	key	to	the	client.

4.	 When	the	client	receives	the	key	sent	by	the	server,	it	compares	it	with	the
one	stored	to	verify	its	authenticity.	The	SSH	protocol	requires	the	client	to
confirm	it	the	first	time.

5.	 With	the	public	key	of	the	server	in	its	possession,	the	client	generates	a
random	session	key,	creating	a	message	that	contains	that	key	and	the
algorithm	that	was	selected	for	the	encryption	of	the	information.	All	this
information	is	sent	to	the	server,	which	makes	use	of	the	public	key	that
was	sent	in	an	earlier	step	in	an	encrypted	form.

6.	 If	everything	is	correct,	the	client	is	authenticated,	initiating	the	session	to
communicate	with	the	server.

SSH	service	features
The	secure	shell	protocol	offers	a	series	of	interesting	features,	which	has
become	the	most-used	protocol	by	all	users	who	manage	some	type	of	Linux
server,	either	in	the	cloud	or	dedicated.	Let's	highlight	some	of	its	features:

The	use	of	SSH	encrypts	the	registration	session,	which	prevents	anyone
from	getting	non-encrypted	passwords.
The	encryption	keys	that	are	used	are	only	known	by	those	who	issue	the
information	and	receive	it.
Modifying	the	key	could	modify	the	original	message,	which	means	that	if
a	third-party	obtains	the	key,	it	cannot	access	the	complete	message.
The	user	can	verify	that	they	are	still	connected	to	the	same	server	that	was
initially	connected.
When	a	user	authenticates,	an	encrypted	secure	channel	is	created	between
them	and	the	server	to	exchange	the	information	with	total	guarantee.
The	data	that's	sent	and	received	through	the	use	of	SSH	is	done	through
encryption	algorithms,	where	the	recommended	minimum	key	size	is	1,024
bits,	which	makes	it	very	difficult	to	decipher	and	read.
The	client	can	use	applications	securely	from	the	server's	command
interpreter,	which	allows	them	to	manage	the	machine	as	if	they	were	in
front	of	it.
The	use	of	SSH	is	also	used	as	an	encrypted	channel	to	protect	protocols
that	do	not	use	default	encryption,	such	as	port-forwarding	techniques.

From	a	security	point	of	view,	the	SSH	protocol	provides	the	following	types	of
protection:

Once	the	client	has	established	the	initial	connection,	it	is	possible	to	check
whether	it	is	connecting	to	the	same	server	it	was	initially	connected	to.
The	client	uses	a	robust	encryption,	128-bit,	to	send	authentication
information	to	the	server.
All	traffic	that	is	sent	and	received	during	communication	is	transferred
through	a	128-bit	encryption.

Configuring	the	SSH	protocol	to
make	it	more	secure
Although	we	have	been	talking	about	the	use	of	the	SSH	protocol	being
completely	safe,	this	does	not	mean	that	it	is	oblivious	to	suffer	some	kind	of
attack	that	puts	our	information	at	risk.	For	this	reason,	users	have	the	option	to
modify	the	default	configuration	of	this	protocol	to	make	it	even	more	secure,
such	as	changing	the	default	port	or	the	maximum	number	of	retries	to	connect
to	the	server.	Let's	see	how	we	can	improve	the	security	of	our	SSH.

First,	we	need	to	locate	the	configuration	file,	sshd_config.	This	file	is	usually	in
the	/etc/ssh	path.

The	following	configuration	could	be	the	default	content	of	the	file:

Port	22

Protocol	2

LoginGraceTime	30

PermitRootLogin	no

MaxAuthTries	2

MaxStartups	3

These	are	the	parameters	we	can	modify	in	this	file	configuration:

Change	the	default	port:	By	default,	SSH	uses	port	22,	so	when	a	hacker
launches	an	attack,	it	usually	does	so	on	this	port.	If	we	change	the	port
number,	the	service	will	not	respond	to	the	port	by	default,	and	we	will	have
created	a	new	obstacle	for	anyone	trying	to	get	our	information.	To	make
this	happen,	just	change	the	value	of	the	port	field	in	the	configuration	file
to	the	value	you	want.
Disable	root	access:	Every	server	is	assigned	a	root	user,	which	has
privileges	to	do	any	kind	of	action	on	the	machine.	A	good	practice	to
improve	security	is	to	prevent	access	to	the	server	through	this	root	user	and
force	access	through	any	of	the	users	we	have	created	who	do	not	have	root
privilege.	Once	logged	in	with	our	user,	we	can	become	a	root	user	through
the	sudo	command.	To	prevent	access	by	the	root	user,	we	must	set	the
PermitRootLogin	variable	to	no.
Limit	the	number	of	retries:	By	means	of	the	MaxAuthTries	variable,	we	can

indicate	the	number	of	times	that	we	can	make	a	mistake	when	entering	the
username	or	password.	Once	the	number	that	we	have	indicated	is
exceeded,	the	connection	will	be	lost	and	the	connection	process	will	have
to	start	again.	With	this,	we	will	avoid	attacks	of	persistence	of	the
connection.	If	we	want	to	enable	a	maximum	of	five	attempts,	we	would
have	to	indicate	it	in	the	following	way:	MaxAuthTries	5.
Limit	the	number	of	login	screens:	We	can	limit	the	number	of
simultaneous	login	windows	that	we	can	have	active	from	the	same	IP	in
order	to	avoid	divided	attacks.	Once	the	user	is	logged	in,	it	will	not	be
possible	to	have	a	higher	number	of	SSH	terminals	open	than	indicated	in
this	variable.	If	we	just	want	a	single	login	screen	over	the	IP,	we	should	do
it	in	the	following	way:	MaxStartups	1.
Limit	the	time	that	the	login	screen	will	be	available:	Through	the
LoginGraceTime	instruction,	we	indicate	the	time	in	seconds	that	the	login
screen	will	be	available	to	enter	our	credentials.	After	that	time,	the	screen
will	disappear	and	you	will	have	to	start	the	process	again.	With	this,	we
prevent	the	use	of	a	script	to	access	the	system.	If	we	want	to	put	a	duration
of	15	seconds,	we	would	do	it	in	the	following	way:	LoginGraceTiem	15.
Indicate	the	users	that	can	access	via	SSH:	By	means	of	the
AllowUser	directive,	we	can	indicate	the	users	that	will	be	able	to	access	the
server	via	SSH,	as	well	as	from	what	IP	address	they	will	be	able	to	do	so.
Let's	see	some	examples	of	how	to	indicate	it:

Indicate	only	the	name	of	the	users	who	will	have	access:
Using	AllowUser	user1	user2,	we	are	indicating	that	only	users	user1	and
user2	will	have	access	to	the	system	via	SSH,	regardless	of	the
computer	and	the	IP	address	from	which	they	are	connected.
Access	of	a	user	from	a	certain	IP	address:	Using	AllowUser
user@<ip_address>,	we	can	indicate	that	the	user	user	can	access	the
machine	via	SSH,	but	only	from	the	IP	address	that	we	specify.
Access	of	a	user	from	a	given	network	indicated:	Using	AllowUser
user@<network_ip>.*,	we	indicate	that	the	user	will	be	able	to	access	from
any	IP	address	that	forms	part	of	the	indicated	network.

SSH	terminals	and	running
commands	with	paramiko
In	this	section,	you	will	learn	how	to	establish	an	SSH	connection	to	transfer
files	and	run	commands	with	the	paramiko	python	package.

Installing	paramiko
Python's	paramiko	library	(http://www.paramiko.org/)	provides	very	good	support
for	SSH-based	network	communication.	You	can	use	Python	scripts	to	benefit
from	the	advantages	of	SSH-based	remote	administration,	such	as	the	remote
command-line	login,	command	execution,	and	the	other	secure	network	services
between	two	networked	computers.	You	may	also	be	interested	in	using	the
pysftp	module,	which	is	based	on	paramiko.

More	details	regarding	this	package	can	be	found	at	PyPI:	https://pypi.python.org/pypi/pysftp.

The	recommendation	is	always	to	install	paramiko	using	pip,	as	follows:

	pip	install	paramiko

http://www.paramiko.org/
https://pypi.python.org/pypi/pysftp

Establishing	an	SSH	connection	with
paramiko
SSH	is	a	client/server	protocol.	Both	of	the	parties	use	the	SSH	key-pairs	to
encrypt	the	communication.	Each	key-pair	has	one	private	and	one	public	key.
The	public	key	can	be	published	to	anyone	who	may	be	interested	in	it.	The
private	key	is	kept	private	from	everyone	except	the	owner	of	the	key.

We	can	use	the	paramiko	module	to	create	an	SSH	client	and	then	connect	it	to
the	SSH	server.	This	module	will	supply	the	SSHClient()	class.

You	can	use	the	SSHClient	class	to	create	an	SSH	client	with	the	paramiko	module:

ssh_client	=	paramiko.SSHClient()

By	default,	the	instance	of	this	client	class	will	reject	the	unknown	host	keys.	So,
you	can	set	up	a	policy	to	accept	the	unknown	host	keys.	The	built-in
AutoAddPolicy()	class	will	add	the	host	keys	as	and	when	they	are	discovered.	Run
the	set_missing_host_key_policy()	method,	along	with	the	following	argument,	on	the
ssh_client	object:

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

If	you	need	to	restrict	accepting	connections	only	to	specific	hosts,	you	can	use
the	load_system_host_keys()	method	to	add	the	system	host	keys	and	system
fingerprints:

ssh_client.load_system_host_keys()

Before	executing	a	command	on	our	server	via	ssh,	we	need	to	create	an	object	of
the	SSHClient	type,	which	will	be	responsible	for	sending	all	our	requests	to	the
server	and	handling	the	responses	that	are	returned.	You	can	wrap	this	code	in	a
function	called	get_connection(),	as	follows:

import	paramiko

def	get_connection():

				#	start	SSH	client

				ssh	=	paramiko.SSHClient()

				#	We	add	the	list	of	known	hosts

				ssh.load_system_host_keys()

				#If	it	does	not	find	the	host,	it	automatically	adds	it

				ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

				#	need	to	use	the	domain	name	resolved	through	DNS	query

				ssh.connect('domain',	username='user',	password='password')

				return	ssh

Running	commands	with	paramiko
Now	that	we	are	connected	to	the	remote	host	with	paramiko,	we	can	run
commands	on	the	remote	host	using	this	connection.	To	connect,	we	can	simply
call	the	connect()	method,	along	with	the	target	hostname	and	the	SSH	login
credentials.	To	run	any	command	on	the	target	host,	we	need	to	invoke	the
exec_command()	method	by	passing	the	command	as	its	argument:

ssh_client.connect(hostname,	port,	username,	password)

stdin,	stdout,	stderr	=	ssh_client.exec_command(cmd)

				for	line	in	stdout.readlines():

								print(line.strip())

ssh.close()

The	following	code	listing	shows	how	to	do	an	SSH	login	to	a	target	host	and
then	run	the	command	the	user	introduced	in	the	prompt.	You	can	find	the
following	code	in	the	ssh_execute_command.py	file:

#!/usr/bin/env	python3

import	getpass

import	paramiko

HOSTNAME	=	'ssh_server'

PORT	=	22

def	run_ssh_cmd(username,	password,	command,	hostname=HOSTNAME,port=PORT):

				ssh_client	=	paramiko.SSHClient()

				ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

				ssh_client.load_system_host_keys()

				ssh_client.connect(hostname,	port,	username,	password)

				stdin,	stdout,	stderr	=	ssh_client.exec_command(command)

				print(stdout.read())

				stdin.close()

				for	line	in	stdout.read().splitlines():

								print(line)

if	__name__	==	'__main__':

				username	=	input("Enter	username:	")

				password	=	getpass.getpass(prompt="Enter	password:	")

				command	=	input("Enter	command:	")

				run_ssh_cmd(username,	password,	command)

Running	an	interactive	shell	with
paramiko
If	you	want	to	run	several	commands	on	the	remote	host	using	paramiko,	but	you
encounter	the	problem	that	the	ssh	session	is	closed	when	you	execute	a
command,	give	an	exception	related	with	SSH	session	not	active:

paramiko.ssh_exception.SSHException:	SSH	session	not	active

To	solve	this,	you	can	implement	an	interactive	shell	using	paramiko;	that	way,	the
channel	does	not	close	after	a	command	is	executed	in	the	remote	shell.

After	creating	the	SSH	client,	using	connect,	you	can	use	the	invoke_shell()
method,	and	it	will	open	a	channel	that	it	doesn't	close	after	you	send	something
through	it.

You	can	find	the	following	code	in	the	ssh_interactive_shell.py	file:

#!/usr/bin/env	python3

import	paramiko	

import	re

class	ShellHandler:

				def	__init__(self,	host,	user,	psw):

								self.ssh	=	paramiko.SSHClient()

								self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

								self.ssh.connect(host,	username=user,	password=psw,	port=22)

								#	we	use	this	method	for	getting	a	shell	in	the	host

								channel	=	self.ssh.invoke_shell()

								self.stdin	=	channel.makefile('wb')

								self.stdout	=	channel.makefile('r')

				

				def	__del__(self):

								self.ssh.close()

				@staticmethod

				def	_print_exec_out(cmd,	out_buf,	err_buf,	exit_status):

								print('command	executed:	{}'.format(cmd))

								print('STDOUT:')

								for	line	in	out_buf:

												print(line,	end="")

								print('end	of	STDOUT')

								print('STDERR:')

								for	line	in	err_buf:

												print(line,	end="")

								print('end	of	STDERR')

								print('finished	with	exit	status:	{}'.format(exit_status))

								print('------------------------------------')

								pass

In	the	previous	code	block,	we	declared	the	ShellHandler	class	with	the	init	method
constructor	and	static	method	to	print	the	output	of	the	executed	command.	We
continue	declaring	the	method	to	execute	a	command	that's	passed	as	a
parameter,	as	well	as	our	main	program	that	instantiates	an	object	of	this	class.
For	each	command	available	in	command	list,	it	calls	the	execute	method:

				def	execute(self,	cmd):

				""":param	cmd:	the	command	to	be	executed	on	the	remote	computer	

				:examples:	execute('ls')

				execute('finger')

				execute('cd	folder_name')

				"""

								cmd	=	cmd.strip('\n')

								self.stdin.write(cmd	+	'\n')

								finish	=	'end	of	stdOUT	buffer.	finished	with	exit	status'

								echo_cmd	=	'echo	{}	$?'.format(finish)

								self.stdin.write(echo_cmd	+	'\n')

								shin	=	self.stdin

								self.stdin.flush()

								shout	=	[]

								sherr	=	[]

								exit_status	=	0

								for	line	in	self.stdout:

												if	str(line).startswith(cmd)	or	str(line).startswith(echo_cmd):

												#	up	for	now	filled	with	shell	junk	from	stdin

																shout	=	[]

												elif	str(line).startswith(finish):

												#	our	finish	command	ends	with	the	exit	status

																exit_status	=	int(str(line).rsplit(maxsplit=1)[1])

																if	exit_status:

																				#	stderr	is	combined	with	stdout.

																				#	thus,	swap	sherr	with	shout	in	a	case	of	failure.

																				sherr	=	shout

																				shout	=	[]

																break

												else:

												#	get	rid	of	'coloring	and	formatting'	special	characters

																shout.append(re.compile(r'(\x9B|\x1B\[)[0-?]*[-/]*[@-~]').sub('',	line).replace('\b',	'').replace('\r',	'').replace('\n',	''))

				#	first	and	last	lines	of	shout/sherr	contain	a	prompt	

					if	shout	and	echo_cmd	in	shout[-1]:

								shout.pop()

				if	shout	and	cmd	in	shout[0]:

								shout.pop(0)

				if	sherr	and	echo_cmd	in	sherr[-1]:

								sherr.pop()

				if	sherr	and	cmd	in	sherr[0]:

								sherr.pop(0)

				self._print_exec_out(cmd=cmd,	out_buf=shout,	err_buf=sherr,exit_status=exit_status)

				return	shin,	shout,	sherr

commands	=	["ls","whoami","pwd"]

host="localhost"

name="user"

pwd="password"

	

shell_connection	=	ShellHandler(host,name,pwd)	

for	command	in	commands:

				shell_connection.execute(command)	

SFTP	with	paramiko
SSH	can	be	used	to	securely	transfer	files	between	two	computer	nodes.	The
protocol	that's	used	in	this	case	is	the	secure	file	transfer	protocol	(SFTP).	The
Python	paramiko	module	will	supply	the	classes	that	are	required	to	create	the
SFTP	session.	This	session	can	then	perform	a	regular	SSH	login:

ssh_transport	=	paramiko.Transport(hostname,	port)

ssh_transport.connect(username='username',	password='password')

The	SFTP	session	can	be	created	from	the	SSH	transport.	The	paramiko	working
in	the	SFTP	session	will	support	the	normal	FTP	commands,	such	as	the	get()
command:

sftp_session	=	paramiko.SFTPClient.from_transport(ssh_transport)

sftp_session.get(source_file,	target_file)

As	you	can	see,	the	SFTP	get	command	requires	the	source	file's	path	and	the
target	file's	path.	In	the	following	example,	the	script	will	download	a	test.txt
file	that's	located	in	the	server,	which	is	located	on	the	user's	home	directory
through	SFTP.

You	can	find	the	following	code	in	the	ssh_download_sftp.py	file:

#!/usr/bin/env	python3

import	getpass

import	paramiko

HOSTNAME	=	'ssh_server'

PORT	=	22

FILE_PATH	=	'/tmp/test.txt'

def	sftp_download(username,	password,	hostname=HOSTNAME,port=PORT):

				ssh_transport	=	paramiko.Transport(hostname,	port)

				ssh_transport.connect(username=username,	password=password)

				sftp_session	=	paramiko.SFTPClient.from_transport(ssh_transport)

				file_path	=	input("Enter	filepath:	")	or	FILE_PATH

				target_file	=	file_path.split('/')[-1]

				sftp_session.get(file_path,	target_file)

				print("Downloaded	file	from:	%s"	%file_path)

				sftp_session.close()

if	__name__	==	'__main__':

				hostname	=	input("Enter	the	target	hostname:	")

				port	=	input("Enter	the	target	port:	")

				username	=	input("Enter	your	username:	")

				password	=	getpass.getpass(prompt="Enter	your	password:	")

				sftp_download(username,	password,	hostname,	int(port))

In	this	example,	a	file	has	been	downloaded	with	the	help	of	SFTP.	Notice	how
paramiko	has	created	the	SFTP	session	by	using	the
SFTPClient.from_transport(ssh_transport)	class.

Paramiko	alternatives
In	the	Python	ecosystem,	there	are	other	interesting	solutions	that	act	as	a
paramiko	wrapper	to	connect	to	ssh	servers	and	execute	command	remotely,
such	as	the	fabric	solution.

Fabric
Fabric	is	a	Python	library	and	a	command-line	tool	that's	designed	to	simplify
application	deployment	and	perform	system	administration	tasks	through	the
SSH	protocol.	It	provides	tools	to	execute	arbitrary	shell	commands	(either	as	a
normal	login	user,	or	via	sudo),	upload	and	download	files,	and	so	on.

Fabric	(http://www.fabfile.org)	is	a	high-level	Python	(2.7,	3.4+)	library	that's
designed	to	execute	shell	commands	remotely	over	SSH	so	that	we	can	control	a
group	of	SSH	servers	in	parallel.	It	is	possible	to	use	Fabric	directly	from	the
command	line	by	executing	the	fab	utility	or	with	the	API	that	contains	all	the
classes	and	decorators	that	are	needed	to	declare	a	set	of	SSH	servers,	as	well	as
the	tasks	that	we	want	to	execute	on	them.

One	of	the	main	dependencies	that	must	be	met	before	installing	Fabric	is	having
the	paramiko	library	installed;	this	library	is	responsible	for	making	the
connections	to	the	SSH	servers	using	the	appropriate	authentication	mechanism
according	to	each	case	(auth	by	password	or	auth	by	public	key).

Fabric	is	available	in	the	official	Python	repository
(https://pypi.org/project/Fabric/).	We	can	install	Fabric	simply	by	running	the
following	command:	

pip	install	Fabric

The	fundamental	element	of	Fabric	from	version	2	is	the	connections.	These
objects	represent	the	connection	to	another	machine,	and	we	can	use	it	to	do	the
following:

Execute	commands	in	the	shell	of	the	other	machine,	which	you	can	run
using	sudo
Download	files	from	the	remote	machine	to	local	using	get
Upload	files	from	local	to	remote	using	put
Do	forwarding	using	forward_local,	forward_remote

To	start	a	connection,	we	need	the	address	of	the	machine	and	some	way	to
identify	ourselves.	In	the	whole	issue	of	Fabric	authentication,	it	delegates	the

http://www.fabfile.org/
https://pypi.org/project/Fabric/

work	in	paramiko,	which	supports	a	wide	variety	of	options,	including	the	option
to	use	gateways.

Let's	look	at	an	example;	in	this	case,	we	are	requesting	the	IP	address	and	the
password	for	authentication	in	the	remote	host:

>>>	from	getpass	import	getpass

	>>>	ip_address=	prompt="Enter	remote	host	ip	address:")

>>	password	=	getpass(prompt="Enter	Password	for	Connecting	with	remote	host:	")

	>>>	connection=	Connection(host=ip_address,user="user",connect_kwargs={"password"	:	password})

We	can	execute	commands	with	the	run()	and	sudo()	methods.	If	we	want	to
obtain	the	result	of	the	command,	we	can	simply	assign	a	variable	for	the
evaluation	of	the	run	commands:

>>>	def	isLinux(connection):

>>>			result	=	connection.run("uname	-s")

>>>			return	result.stdout.strip()	==	"Linux"

>>>	isLinux(connection)

Fabric	is	very	powerful	tool,	but	as	soon	as	we	have	many	machines,	we	will
often	do	the	same	tasks.	We	can	use	a	simple	for	loop,	but	Fabric	brings	us	an
abstraction	called	group.	Basically,	we	can	join	connections	in	a	single	group
and	execute	the	actions	that	we	ask.	There	are	two	types	of	groups:

SerialGroup:	Executes	the	operations	sequentially	
	ThreadGroup:	Executes	the	operations	in	parallel

In	this	example,	we	are	launching	the	sudo	apt	update	command	in	parallel	over
hosts	defined	in	the	ThreadingGroup	constructor:

>>>	from	fabric	import	ThreadingGroup

	>>>	def	update(cxn):

	>>>				cxn.run("sudo	apt	update")

>>>	pool	=	ThreadingGroup("user1@host1","user2@host2")

	>>>	update(pool)

Understanding	the	FTP	protocol	for
transferring	files
In	this	section,	you	will	be	introduced	to	the	FTP	protocol	for	transferring	files
and	the	ftplib	package	for	interacting	with	Python.

The	File	Transfer	Protocol
The	File	Transfer	Protocol	(FTP)	protocol	allows	us	to	make	file	transfers
through	a	connection	in	a	network.	This	is	the	protocol	that	we	use	to	connect
remotely	to	servers	and	manipulate	files.	Port	21	is	usually	used.

	The	protocol	design	is	defined	in	such	a	way	that	it	is	not	necessary	for	the
client	and	server	to	run	on	the	same	platform;	any	client	and	any	FTP	server	can
use	a	different	operating	system	and	use	the	primitives	and	commands	defined	in
the	protocol	to	transfer	files.

To	interact	with	this	protocol,	we	need	two	things.	The	first	is	a	server	that	is
available	for	our	network—it	can	be	on	the	same	network	or	maybe	on	the
internet.	The	second	is	a	client	that	can	send	and	receive	information	from	said
server;	this	client	must	have	the	capacity	to	be	able	to	use	the	ports	specified	by
the	service	and	the	established	authentication.

Introduction	to	ftplib
Unlike	SFTP,	FTP	uses	the	plaintext	file	transfer	method.	This	means	any
username	or	password	transferred	through	the	wire	can	be	detected	by	an
unrelated	third	party.	Even	though	FTP	is	a	very	popular	file	transfer	protocol,
people	frequently	use	this	to	transfer	a	file	from	their	PCs	to	remote	servers.

FTPlib	is	a	Python	library	that	will	allow	us	to	connection	to	an	FTP	server	from	a
script.	To	begin,	we	must	have	installed	Python	in	our	operating	system	and	the
FTPLib	package.	We	can	install	them	on	a	Linux	system	in	two	ways:

	pip	install	ftplib

	apt-get	install	python-ftplib

In	Python,	ftplib	is	a	built-in	module	that's	used	to	transfer	files	to	and	from	the
remote	machines.	You	can	create	an	anonymous	FTP	client	connection	with	the
FTP()	class:

ftp_client	=	ftplib.FTP(path,	username,	email)

Then,	you	can	invoke	the	normal	FTP	commands,	such	as	the	CWD	command,	to
list	the	files	in	a	specific	directory.	To	download	a	binary	file,	you	need	to	create
a	file	handler,	such	as	the	following:

file_handler	=	open(DOWNLOAD_FILE_NAME,	'wb')

To	retrieve	the	binary	file	from	the	remote	host,	the	syntax	shown	here	can	be
used,	along	with	the	RETR	command:

ftp_client.retrbinary('RETR	remote_file_name',	file_handler.write)

In	the	following	script,	we	are	trying	to	connect	to	the	FTP	server,	ftp.free.fr,	to
get	get	a	list	of	directories	with	the	dir()	method,	and	download	a	specific	file	on
that	server.	To	download	a	file	through	the	ftplib	libraries,	we	will	use	the
retrbinary	method.	We	need	to	pass	two	things	to	it	as	an	input	parameter:	the	retr
command	with	the	name	of	the	file	and	a	callback	function	that	will	be	executed
every	time	a	block	of	data	is	received.	In	this	case	it	will	write	it	in	a	file	of	the
same	name.

You	can	find	the	following	code	in	the	ftp_download_file.py	file:

!/usr/bin/env	python3

import	ftplib

FTP_SERVER_URL	=	'ftp.free.fr'

DOWNLOAD_DIR_PATH	=	'/mirrors/ftp.kernel.org/linux/kernel/Historic/'

DOWNLOAD_FILE_NAME	=	'linux-0.01.tar.gz'

def	ftp_file_download(path,	username):

				#	open	ftp	connection

				ftp_client	=	ftplib.FTP(path,	username)

				print("Welcome:",	ftp_client.getwelcome())

				#	list	the	files	in	the	download	directory

				ftp_client.cwd(DOWNLOAD_DIR_PATH)

				print("Current	working	directory:",	ftp_client.pwd())

				print("File	list	at	%s:"	%path)

				files	=	ftp_client.dir()

				print(files)

				#	download	a	file

				try:

								file_handler	=	open(DOWNLOAD_FILE_NAME,	'wb')

								ftp_cmd	=	'RETR	%s'	%DOWNLOAD_FILE_NAME

								ftp_client.retrbinary(ftp_cmd,file_handler.write)

								file_handler.close()

								ftp_client.quit()

				except	Exception	as	exception:

								print('File	could	not	be	downloaded:',exception)

if	__name__	==	'__main__':

				ftp_file_download(path=FTP_SERVER_URL,username='anonymous')

The	preceding	code	illustrates	how	an	anonymous	FTP	can	be	downloaded	from
ftp.free.fr,	which	hosts	the	first	Linux	kernel	version.	The	FTP()	class	takes	three
arguments,	such	as	the	initial	filesystem	path	on	the	remote	server,	the	username,
and	the	email	address	of	the	ftp	user.	The	FTP.cwd()	function	is	used	to	change	the
directory	or	folder	(change	the	working	directory).	In	this	case,	after	accessing	as
an	anonymous	user,	change	the	location	to	the	kernel/Historic	folder.

For	anonymous	downloads,	no	username	and	password	is	required.	So,	the	script
can	be	downloaded	from	the	linux-0.01.tar.gz	file,	which	can	be	found	on	the
/mirrors/ftp.kernel.org/linux/kernel/Historic/	path.

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	script:

Another	way	to	get	information	about	the	files	and	folders	in	the	current	location
is	to	use	the	retrlines()	method,	which	can	indicate	the	commands	to	execute.
LIST	is	a	command	that's	defined	by	the	protocol,	as	well	as	others	that	can	also
be	applied	in	this	function	as	RETR,	NLST,	or	MLSD.

For	more	information	on	these	commands,	see	RFC	959:	http://tools.ietf.org/html/rfc959.html.

The	second	parameter	is	the	callback	function,	which	is	called	for	each	piece	of
received	data:

def	callback(info):

				print	info

	...

	ftp.retrlines('LIST',	callback)

In	this	example,	instead	of	using	the	ntransfercmd()	method	to	apply	a	RETR
command,	we	receive	data	in	a	byte	array.	We	execute	the	RETR	command	to
download	the	file	in	binary	mode.

You	can	find	the	following	code	in	the	ftp_download_file_bytes.py	file:

#!/usr/bin/env	python3

import	os,	sys

from	ftplib	import	FTP

f	=	FTP('ftp.free.fr')

f.login()

f.cwd('/mirrors/ftp.kernel.org/linux/kernel/Historic/')

f.voidcmd("TYPE	I")

datasock,	size	=	f.ntransfercmd("RETR	linux-0.01.tar.gz")

bytes_so_far	=	0

fd	=	open('linux-0.01.tar.gz',	'wb')

while	1:

				buf	=	datasock.recv(2048)

				if	not	buf:

http://tools.ietf.org/html/rfc959.html

								break

				fd.write(buf)

				bytes_so_far	+=	len(buf)

				print("\rReceived",	bytes_so_far,	end='	')

				if	size:

								print("of	%d	total	bytes	(%.1f%%)"	%	(

								size,	100	*	bytes_so_far	/	float(size)),end='	')

				else:

								print("bytes",	end='	')

	sys.stdout.flush()

print()

fd.close()

datasock.close()

f.voidresp()

f.quit()

In	this	example,	we	are	going	to	list	versions	that	are	available	in	the	Linux
kernel	ftp	with	the	dir()	method.

You	can	find	the	following	code	in	the		list_kernel_versions.py	file:

#!/usr/bin/env	python3

from	ftplib	import	FTP

entries	=	[]

f	=	FTP('ftp.free.fr')

f.login()

f.cwd('/mirrors/ftp.kernel.org/linux/kernel/')

f.dir(entries.append)

print("%d	entries:"	%	len(entries))

for	entry	in	entries:

				print(entry)

f.quit()

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	script:

Other	ftplib	functions
These	are	the	main	ftplib	functions	we	can	use	to	execute	ftp	operations:

FTP.getwelcome():	Gets	the	welcome	message
FTP.mkd(route):	Creates	a	directory;	it	is	passed	as	an	input	argument	to	the
route
FTP.rmd(path):	Deletes	the	directory	that	we	pass
FTP.delete(file):	Deletes	the	file	that	we	passed	as	an	input	parameter
FTP.pwd():	(Print	Working	Directory)	Returns	the	current	directory	where	it	is
located
FTP.cwd(path):	(Change	Working	Directory)	Changes	directory
FTP.dir(path):	Returns	a	list	of	directories
FTP.nlst(path):	Returns	a	list	with	the	file	names	of	the	directory
FTP.size(file):	Returns	the	size	of	the	file	we	passed	to	it

In	this	example,	we	are	going	to	list	the	versions	that	are	available	in	the	Linux
kernel	FTP	with	the	nlst()	method.

You	can	find	the	following	code	in	the	list_kernel_versions_nslt.py	file:

!/usr/bin/env	python3

from	ftplib	import	FTP

f	=	FTP('ftp.free.fr')

f.login()

f.cwd('/mirrors/ftp.kernel.org/linux/kernel/')

entries	=	f.nlst()

entries.sort()

print(len(entries),	"entries:")

for	entry	in	entries:

				print(entry)

f.quit()

Inspecting	FTP	packets	with
Wireshark
If	we	capture	the	FTP	session	in	Wireshark	on	port	21	of	the	public	network
interface,	we	can	see	how	the	communication	happens	in	plaintext.	In	the
following	example,	we	can	see	that	after	successfully	establishing	a	connection
with	a	client,	the	server	sends	the	230	Welcome	to	mirror.as35701.net	banner	message.
Following	this,	the	client	will	anonymously	send	a	request	for	login.

In	this	example,	we	are	using	the	ftplib	module	to	build	a	script	to	determine
whether	a	server	offers	anonymous	logins.

You	can	find	the	following	code	in	the		checkFTPanonymousLogin.py	file:

import	ftplib

def	ftpListDirectory(ftp):

				try:

								dirList	=	ftp.nlst()

								print(dirList)

				except:

								dirList	=	[]

								print('[-]	Could	not	list	directory	contents.')

								print('[-]	Skipping	To	Next	Target.')

								return

				retList	=	[]

				for	fileName	in	dirList:

								fn	=	fileName.lower()

								if	'.php'	in	fn	or	'.htm'	in	fn	or	'.asp'	in	fn:

												print('[+]	Found	default	page:	'	+	fileName)

												retList.append(fileName)

				return	retList

def	anonymousLogin(hostname):

				try:

								ftp	=	ftplib.FTP(hostname)

								ftp.login('anonymous',	'')

								print(ftp.getwelcome())

								ftp.set_pasv(1)

								print(ftp.dir())

								print('\n[*]	'	+	str(hostname)	+'	FTP	Anonymous	Logon	Succeeded.')

								return	ftp

				except	Exception	as	e:

								print(str(e))

								print('\n[-]	'	+	str(hostname)	+'	FTP	Anonymous	Logon	Failed.')

								return	False

host	=	'ftp.be.debian.org'

ftp	=	anonymousLogin(host)

ftpListDirectory(ftp)

The	anonymousLogin()	function	takes	a	hostname	and	returns	a	Boolean	that
describes	the	availability	of	anonymous	logins.	This	function	tries	to	create	an
FTP	connection	with	anonymous	credentials.	If	successful,	it	returns
the	True	value.

In	the	following	screenshot,	we	can	see	an	example	of	executing	the	previous
script	over	a	server	that	allows	anonymous	login:

In	the	following	screenshot,	we	can	see	packets	that	are	exchanged	in	the	ftp
communication:

In	the	following	screenshot,	we	can	see	packets	and	the	request	command	for
listing	files	in	the	ftp	server:

Reading	and	interacting	with	SNMP
servers
In	this	section,	you	will	learn	about	the	SNMP	protocol	and	examine	Python
libraries	for	dealing	with	SNMP	packets.

The	SNMP	
The	Simple	Network	Management	Protocol	(SNMP)	is	an	application	layer
protocol	that	facilitates	the	exchange	of	management	information	between
network	devices.	This	protocol	is	part	of	the	set	of	TCP/IP	protocols	and	allows
administrators	to	manage	performance,	find	and	solve	problems,	and	plan	the
future	growth	of	the	network.

SNMP	is	used	to	monitor	and	control	the	status	of	devices	connected	to	the
internet,	especially	routers,	although	it	can	be	used	in	any	type	of	host	that
allows	the	snmpd	process	to	be	executed.	SNMP	operates	at	the	application	level
using	the	TCP/IP	transport	protocol,	so	it	ignores	the	specific	aspects	of	the
hardware	on	which	it	operates.	The	management	is	carried	out	at	the	IP	level,	so
you	can	control	devices	that	are	connected	in	any	network	that's	accessible	from
the	internet,	and	not	only	those	located	in	the	local	network	itself.

For	the	SNMP	protocol,	the	network	is	a	set	of	basic	elements.	The	fundamental
elements	of	a	network	that	employs	SNMP	are	as	follows:

Managed	devices:	In	each	one,	an	agent	is	executed
Administrator	(manager):	The	device	from	which	the	network	is
administered
Management	Information	Base,	MIB:	A	namespace	organized
hierarchically	in	the	form	of	a	tree,	containing	the	information	that	can	be
read	and/or	written

Here	are	the	five	types	of	SNMP	messages	that	are	exchanged	between	Agents
and	Administrators:

Get	Request:	A	request	from	the	Administrator	to	the	Agent	to	send	the
values	contained	in	the	MIB	(database)
Get	Next	Request:	A	request	from	the	Administrator	to	the	Agent	to	send
the	values	contained	in	the	MIB,	referring	to	the	object
Get	Response:	The	Agent's	response	to	the	information	request	that's
launched	by	the	Administrator
Set	Request:	A	request	from	the	Administrator	to	the	Agent	to	change	the

value	contained	in	the	MIB,	referring	to	a	specific	object
Trap:	A	spontaneous	message	sent	by	the	Agent	to	the	Administrator,	upon
detecting	a	predetermined	condition,	such	as	the	connection/disconnection
of	a	station	or	an	alarm

The	SNMP	protocol	is	composed	of	two	elements:	the	agent	and	the	manager.	It
is	a	client-server	architecture,	in	which	the	agent	plays	the	role	of	the	server	and
the	manager	acts	as	the	client.

The	agent	is	a	program	that	must	be	executed	in	each	network	node	that	you
want	to	manage	or	monitor.	It	offers	an	interface	of	all	the	elements	that	can	be
configured.	These	elements	are	stored	in	data	structures	called	Management
Information	Base	(MIB).	It	represents	part	of	the	server,	insofar	as	it	has	the
information	that	you	want	to	manage	and	expects	commands	from	the	client.

The	manager	is	the	software	that	runs	in	the	station	responsible	for	monitoring
the	network;	its	task	is	to	consult	the	different	agents	that	are	in	the	nodes	of	the
network	and	data	they	have	been	obtaining.

In	essence,	SNMP	is	a	very	simple	protocol	since	all	operations	are	performed
under	the	load-and-store	paradigm,	which	allows	for	a	reduced	set	of	commands.
A	manager	can	perform	only	two	types	of	operations	on	an	agent:	read	or	write
the	value	of	a	variable	in	the	agent's	MIB.	These	two	operations	are	known	as
a	read	request	(get	request)	and	a	write	request	(set-request).	There	is	a
command	to	respond	to	a	read	request,	called	read-response,	which	is	used	only
by	the	agent.

The	possibility	of	extending	the	protocol	is	directly	related	to	the	ability	of	the
MIB	to	store	new	elements.	If	a	manufacturer	wants	to	add	a	new	command	to	a
device,	such	as	a	router,	they	simply	add	the	corresponding	variables	to	its
database	(MIB).

MIB	–	a	broad	base	of	information
A	MIB	is	a	hierarchical	database	of	objects	and	their	values,	stored	in	an	SNMP
agent.

Generally,	the	objects	of	the	MIB	are	referenced	by	an	identifier.	For	example,
the	internet	object	is	referred	to	by	1.3.6.1,	or	iso-ccitt.identified-
organization.dod.internet.

Through	the	MIB,	you	have	access	to	the	information	for	management,	which	is
contained	in	the	internal	memory	of	the	device	in	question.	MIB	is	a	complete
and	well-defined	database,	with	a	tree	structure,	and	is	suitable	for	handling
various	groups	of	objects,	with	unique	identifiers	for	each	object.

The	SNMP	architecture	operates	with	a	small	group	of	objects	that	are	defined	in
detail	in	the	RFC	1066	Management	information	base	for	network	management
over	TCP/IP.

The	8	groups	of	objects	that	are	usually	handled	by	MIB,	which	define	a	total	of
114	objects	(recently,	with	the	introduction	of	MIB-II,	are	defined	up	to	a	total	of
185	objects),	are	as	follows:

System:	Includes	the	identity	of	the	vendor	and	the	time	since	the	last
reinitialization	of	the	management	system
Interfaces:	Single	or	multiple	interfaces,	local	or	remote
ATT	(Address	Translation	Table):	Contains	the	address	of	the	network
and	the	equivalences	with	the	physical	addresses
IP	(Internet	Protocol):	Provides	the	route	tables,	and	keeps	statistics	on
the	received	IP	datagrams
ICMP	(Internet	Communication	Management	Protocol):	Counts	the
number	of	received	ICMP	messages	and	errors
TCP	(Transmission	Control	Protocol):	Provides	information	about	TCP
connections	and	retransmissions
UDP	(User	Datagram	Protocol):	Counts	the	number	of	UDP	datagrams
sent,	received,	and	delivered
EGP	(Exterior	Gateway	Protocol):	Collects	information	on	the	number	of

EGP	messages	that	are	received	and	generated

SNMP	is	a	client/server-based	network	protocol.	The	server	daemon	provides
the	requested	information	to	the	clients.	If	you	are	working	with	a	Debian-based
distribution,	you	can	install	snmp	in	your	local	machine	with	the	apt-get	install
snmp	command.	This	will	provide	some	snmp	commands.	In	your	machine,	if
SNMP	has	been	installed	and	configured	properly,	you	can	use	the	snmpwalk	utility
command	to	query	the	basic	system	information	by	using	the	following	syntax:

#	snmpwalk	-v2c	-c	public	localhost

Here	is	the	output	of	the	execution	of	the	snmpwalk	command,	where	we	can	see
information	being	returned	by	the	SNMP	agent:

iso.3.6.1.2.1.1.1.0	=	STRING:	"Linux	debian6box	2.6.32-5-686	#1	SMP

	Tue	Jan	15	15:00:01	UTC	2019	i686"

	iso.3.6.1.2.1.1.2.0	=	OID:	iso.3.6.1.4.1.8072.3.2.10

	iso.3.6.1.2.1.1.3.0	=	Timeticks:	(88855240)	10	days,	6:49:12.40

	iso.3.6.1.2.1.1.4.0	=	STRING:	"Me	<me@example.org>"

	iso.3.6.1.2.1.1.5.0	=	STRING:	"debian6box"

	iso.3.6.1.2.1.1.6.0	=	STRING:	"Sitting	on	the	Dock	of	the	Bay"

The	output	of	the	preceding	command	will	show	the	MIB	number	and	its	values.
For	example,	the	iso.3.6.1.2.1.1.1.0	MIB	number	shows	that	it's	a	string	type
value,	such	as	Linux	debian6box	2.6.32-5-686	#1	SMP	Tue	Jan	15	15:00:01	UTC	2019	i686.

Introduction	to	pysnmp
PySNMP	is	a	cross-platform,	pure	Python	SNMP	engine	implementation	(https:/
/github.com/etingof/pysnmp)	that	abstracts	a	lot	of	SNMP	details	for	developers,	and
supports	both	Python	2	and	Python	3.

You	can	install	the	pysnmp	module	by	using	the	pip	command:

$	pip	install	pysnmp

ASN.1	(https://asn1js.org)	is	a	standard	and	notation	that	describes	rules	and
structures	to	represent,	encode,	transmit,	and	decode	data	in	telecommunication
and	computer	networking.	PySNMP	also	requires	the	PyASN1	package.
PyASN1	(https://github.com/etingof/pyasn1)	conveniently	provides	a	Python
wrapper	around	ASN.

This	module	provides	a	useful	wrapper	for	the	snmp	commands.	Let's	learn	how
to	create	an	snmpwalk	command.	To	begin,	import	a	command	generator:

from	pysnmp.entity.rfc3413.oneliner	import	cmdgen

cmd_generator	=	cmdgen.CommandGenerator()

Then,	define	the	necessary	default	values	for	the	connection,	assuming	that	the
snmpd	daemon	has	been	running	on	port	161	in	public	SNMP	simulator	at
demo.snmplabs.com	and	that	the	community	string	has	been	set	to	public:

SNMP_HOST	=	'demo.snmplabs.com'

SNMP_PORT	=	161

SNMP_COMMUNITY	=	'public'

We	can	perform	SNMP	using	the	getCmd()	method.	The	result	is	unpacked	into
various	variables.	The	output	of	this	command	consists	of	a	four-value	tuple.	Out
of	those,	three	are	related	to	the	errors	that	are	returned	by	the	command
generator,	and	the	fourth	one	(varBinds)	is	related	to	the	actual	variables	that	bind
the	returned	data	and	contains	the	query	result:

error_notify,	error_status,	error_index,	var_binds	=

	cmd_generator.getCmd(

	cmdgen.CommunityData(SNMP_COMMUNITY),

	cmdgen.UdpTransportTarget((SNMP_HOST,	SNMP_PORT)),

	cmdgen.MibVariable('SNMPv2-MIB',	'sysDescr',	0),

https://github.com/etingof/pysnmp
https://asn1js.org
https://github.com/etingof/pyasn1

	lookupNames=True,	lookupValues=True

You	can	see	that	cmdgen	takes	the	following	parameters:

CommunityData():	Sets	the	community	string	as	public.
UdpTransportTarget():	This	is	the	host	target,	where	the	snmp	agent	is	running.
This	is	specified	in	a	pair	of	the	hostname	and	the	UDP	port.
MibVariable:	This	is	a	tuple	of	values	that	includes	the	MIB	version	number
and	the	MIB	target	string	(which	is	sysDescr;	this	refers	to	the	description	of
the	system).

The	output	of	this	command	consists	of	a	four-value	tuple.	Out	of	those,	three
are	related	to	the	errors	returned	by	the	command	generator,	and	the	fourth	is
related	to	the	actual	variables	that	bind	the	returned	data.	The	following	example
shows	how	the	preceding	method	can	be	used	to	fetch	the	SNMP	host
description	string	from	a	running	SNMP	daemon.

You	can	find	the	following	code	in	the		snmp_get_information.py	file:

#!/usr/bin/env	python3

from	pysnmp.hlapi	import	*

import	sys

def	get_info_snmp(host,	oid):

				for	(errorIndication,errorStatus,errorIndex,varBinds)	in	nextCmd(SnmpEngine(),

				CommunityData('public'),UdpTransportTarget((host,	161)),ContextData(),	ObjectType(ObjectIdentity(oid)),lookupMib=False,lexicographicMode=False):

if	errorIndication:

				print(errorIndication,	file=sys.stderr)

				break

elif	errorStatus:

				print('%s	at	%s'	%	(errorStatus.prettyPrint(),errorIndex	and	varBinds[int(errorIndex)	-	1][0]	or	'?'),	file=sys.stderr)

				break

else:

				for	varBind	in	varBinds:

								print('%s	=	%s'	%	varBind)

get_info_snmp('demo.snmplabs.com',	'1.3.6.1.2.1.1.9.1.2')

Polling	information	from	the	SNMP
agent
An	interesting	tool	to	check	for	connections	with	SNMP	servers	and	obtain	the
value	of	the	SNMP	variable	is	snmp-get,	which	is	available	for	both	Windows	and
Unix	environments:	https://snmpsoft.com/shell-tools/snmp-get/.

Other	tools,	such	as	snmpwalk	(available	at	https://snmpsoft.com/shell-tools/snmp-walk/),
allow	us	to	obtain	information	about	SNMP	servers.

This	is	the	syntax	you	can	use	to	request	information	about	a	specific	host:

snmpwalk	-c:community	-v:2c	-r:host	-os:[oid]

In	the	following	screenshot,	we	can	see	the	usage	for	the	snmpwalk	command:

https://snmpsoft.com/shell-tools/snmp-get/
https://snmpsoft.com/shell-tools/snmp-walk/

At	http://snmplabs.com/snmpsim/public-snmp-agent-simulator.html#examples,	you	can	see
some	examples	of	executing	the	snmpalk	command	using	the	SNMP	simulation
service	at	demo.snmplabs.com.

http://snmplabs.com/snmpsim/public-snmp-agent-simulator.html#examples

Reading	and	interacting	with	LDAP
servers
In	this	section,	you	will	learn	about	the	LDAP	protocol	and	examine	the	Python
libraries	that	deal	with	LDAP	packets.

The	LDAP	protocol
LDAP	is	a	protocol	based	on	the	X.500	standard,	which	is	used	to	access
information	that	is	stored	through	a	centralized	directory	that	contains	the
information	of	our	organization.

LDAP	has	a	client/server	architecture,	where	the	server	can	use	a	variety	of
databases	to	store	a	directory,	each	optimized	for	fast,	high-volume	read
operations.	When	a	client	application	is	connected	to	an	LDAP	server,	most	of
the	time	it	will	be	for	queries,	although	it	is	also	possible	to	make	changes	to	the
directory	entries.	If	the	client	application	is	trying	to	modify	the	information	in
an	LDAP	directory,	the	server	will	try	to	verify	that	the	user	has	the	necessary
permissions	to	update	the	information.

The	biggest	advantage	of	LDAP	is	that	you	can	consolidate	information	for	an
entire	organization	within	a	central	repository.	For	example,	instead	of	managing
user	lists	for	each	group	within	an	organization,	you	can	use	LDAP	as	a	central
directory,	which	is	accessible	from	anywhere	in	the	network.	Since	LDAP
supports	Secure	Connection	Layer	(SSL)	and	Transport	Layer	Security
(TLS),	confidential	data	can	be	protected	from	hackers.

Another	advantage	of	LDAP	is	that	your	company	can	access	the	LDAP
directory	from	almost	any	computing	platform,	from	any	of	the	applications	that
is	readily	available	for	LDAP.	It	is	also	easy	to	customize	your	internal	business
applications	to	add	LDAP	support.

LDAP	terminology
LDAP	stands	for	Lightweight	Directory	Access	Protocol.	It	is	an	application-
level	protocol	that	allows	queries	about	a	directory	service	to	search	for
information.

LDAP	defines	the	way	to	access	that	directory,	that	is,	it	is	optimized	to	carry	out
read	operations	on	the	directory,	such	as	validating	authenticated	access	to	a	user
stored	in	the	directory.

A	directory	service	runs	the	client-server	model,	so	if	a	client	computer	wants	to
access	the	directory,	it	does	not	access	the	database	directly;	instead	contacts	a
process	on	the	server.	The	process	queries	the	directory	and	returns	the	result	of
the	operation	to	the	client.	Among	the	main	terms	when	we	work	with	LDAP,
let's	highlight	the	following:

Classes:	The	objects	and	their	characteristics	are	defined	in	classes.	For
example,	the	type	of	object	to	be	defined	and	the	attributes	that	it	will
contain	depend	on	the	type	of	object.	In	the	scheme,	each	class	is	defined
with	the	attributes	that	will	be	obligatory	and	optional	for	each	created
entry.
Objects:	Entries	in	the	directory.	Objects	are	instances	that	are	created	from
a	certain	class	or	several,	depending	on	the	attributes	required	for	an	object.
The	entire	directory	will	be	composed	of	objects	(such	as	users,	groups,	or
organizational	units).
A	directory	service	is	like	a	database	where	we	organize	and	store
information	with	objects	of	different	classes.	This	hierarchically-organized
structure	of	the	objects	is	achieved	with	the	implementation	of	LDAP.
entry:	A	unit	in	an	LDAP	directory.	Each	entry	is	identified	by	its	unique
distinguished	name	(DN).
DN:	The	distinguished	name	to	uniquely	identify	a	specific	object	in	the
directory.	That	is,	each	entry	defined	is	unique	throughout	the	directory.	As
we	can	see,	the	DN	of	that	object	(user	type)	will	be	unique	throughout	the
directory	and	will	uniquely	identify	you.
Attributes:	Pieces	of	information	directly	associated	with	the	input.	For
example,	an	organization	can	be	represented	as	an	LDAP	entry.	The

attributes	associated	with	the	organization	can	be	your	fax	number	or	your
address,	for	example.	In	an	LDAP	directory,	the	entries	can	also	be	people,
with	common	attributes	such	as	their	telephone	number	and	email
addresses.	Some	attributes	are	mandatory	while	others	are	optional.
The	LDAP	Data	Exchange	Format	(LDIF):	An	ASCII	text	representation
of	LDAP	entries.	The	files	used	to	import	data	to	the	LDAP	servers	must	be
in	LDIF	format.

Introduction	to	python-ldap
Python's	python-ldap	(https://www.python-ldap.org/en/latest/)	third-party	package
provides	the	necessary	functionality	to	interact	with	an	LDAP	server.

You	can	install	this	package	with	the	pip	command:

$	pip	install	python-ldap

It	is	also	possible	to	install	python-ldap	distributions	based	on	Debian	or	Ubuntu
with	the	following	commands:

sudo	apt-get	update

sudo	apt-get	install	python-ldap

To	begin,	you	will	have	to	initialize	the	LDAP	connection,	where	we	can	replace
ldap_server	with	the	IP	address	of	the	server	and	the	port	number:

import	ldap

ldap_client	=	ldap.initialize("ldap://<ldap_server>:port_number/")

This	method	initializes	a	new	connection	object	to	access	the	given	LDAP
server,	and	return	an	LDAP	object	that's	used	to	perform	operations	on	that
server.	The	next	step	is	bind/authenticate	with	a	user	with	appropriate	rights:

ldap_client.simple_bind(user,password)

Then,	you	can	perform	an	ldap	search.	It	requires	you	to	specify	the	necessary
parameters,	such	as	base	DN,	filter,	and	attributes.	Here	is	an	example	of	the
syntax	that	is	required	to	search	for	users	on	an	LDAP	server:

ldap_client.search_s(base_dn,	ldap.SCOPE_SUBTREE,	filter,	attrs)

Here	is	a	complete	example	to	find	user	information	using	the	LDAP	protocol.	It
demonstrates	how	to	open	a	connection	to	an	LDAP	server	using	the	ldap	module
and	invoke	a	synchronous	subtree	search.

You	can	find	the	following	code	in	the		connect_python_ldap.py	file:

#!/usr/bin/env	python3

import	ldap

https://www.python-ldap.org/en/latest/

LDAP_SERVER	="ldap://52.57.162.88:389"

LDAP_BASE_DN	=	'ou=ldap3-tutorial,dc=demo1,dc=freeipa,dc=org'

LDAP_FILTER	=	'(objectclass=person)'

LDAP_ATTRS	=	["cn",	"dn",	"sn",	"givenName"]

	

def	main():

				try:

								#	Open	a	connection

								ldap_client	=	ldap.initialize(LDAP_SERVER)

								#	Set	LDAPv3	option

								ldap_client.set_option(ldap.OPT_PROTOCOL_VERSION,3)

								#	Bind/authenticate	with	a	user	with	appropriate	rights

								ldap_client.simple_bind("admin",'Secret123')

								#	Get	user	attributes	defined	in	LDAP_ATTRS

								result	=	ldap_client.search_s(LDAP_BASE_DN,ldap.SCOPE_SUBTREE,LDAP_FILTER,	LDAP_ATTRS)

								print(result)

				except	ldap.INVALID_CREDENTIALS	as	exception:

								ldap_client.unbind()

								print('Wrong	username	or	password.	'+exception)

				except	ldap.SERVER_DOWN	as	exception:

								print('LDAP	server	not	available.	'+exception)

if	__name__	==	'__main__':

				main	()

The	previous	script	verifies	credentials	for	the	username	and	password	against	a
LDAP	server.	It	returns	some	of	the	user	attributes	on	success,	or	a	string	that
describes	the	error	on	failure.	The	script	will	search	the	LDAP	directory	subtree
with	the	ou=ldap3-tutorial,dc=demo1,dc=freeipa,dc=org	base	DN.	The	search	is	limited
to	person	objects.

We	need	to	define	some	global	variables	so	that	we	can	establish	the	URL	of	the
LDAP	server,	that	is,	the	base	DN	to	search	for	users	within	the	LDAP	directory
and	the	user	attributes	that	you	want	to	recover.

First,	we	need	to	initialize	an	instance	of	the	ldap	class	and	define	the	options	that
are	required	for	the	connection.	Then,	try	to	connect	to	the	server	using	the
simple_bind	function.	In	case	of	success,	the	user's	attributes	are	retrieved	using
the	search_s	function.

The	LDAP	FreeIPA	server
FreeIPA	(https://www.freeipa.org/page/Demo)	is	a	fully-featured	identity	management
solution	that	provides	LDAP	server.	We	can	find	a	free	public	instance	of	the
FreeIPA	server	at	https://ipa.demo1.freeipa.org.	The	FreeIPA	domain	is	configured
with	the	following	users	(the	password	is	Secret123	for	all	of	them):

admin:	This	user	has	all	the	privileges	and	is	considered	the	administrator
account
helpdesk:	A	regular	user	with	the	helpdesk	role
employee:	A	regular	user	with	no	special	permissions
manager:	A	regular	user,	set	as	the	manager	of	the	employee	user

In	the	following	screenshot,	we	can	see	the	active	users	that	are	available:

In	the	following	screenshot,	we	can	see	the	IPA	Server	configuration:

https://www.freeipa.org/page/Demo
https://ipa.demo1.freeipa.org

In	the	following	screenshot,	we	can	see	the	default	user	object	classes	inside	the
IPA	Server	configuration:

Working	with	LDAP3
ldap3	is	a	fully-compliant	Python	LDAP	v3	client	library.	It's	written	from	scratch
to	be	compatible	with	Python	2	and	Python	3,	and	can	be	installed	via	its
Standard	Library	with	the	following	command:

pip	install	ldap3

Accessing	the	LDAP	server
Using	ldap3	is	straightforward—you	define	a	Server	object	and	a	Connection	object.
All	the	importable	objects	are	available	in	ldap3	namespace.	You	need	to	at	least
import	the	Server	and	the	Connection	object,	and	any	additional	constants	you	will
use	in	your	LDAP	connection:

>>>	from	ldap3	import	Server,	Connection,	ALL

In	this	example,	we	are	accessing	the	LDAP	server	with	an	anonymous	bind.
The	auto_bind=True	parameter	forces	the	Bind	operation	to	execute	after	creating
the	Connection	object.	You	can	get	information	with	the	info	property	of	the
Server	object.

You	can	find	the	following	code	in	the	connect_ldap_server.py	file:

#!/usr/bin/env	python3

import	argparse

from	ldap3	import	Server,	Connection,	ALL

def	main(address):

				#	Create	the	Server	object	with	the	given	address.

				#	Get	ALL	information.

				server	=	Server(address,	get_info=ALL)

				#Create	a	connection	object,	and	bind	with	auto	bind	set	to	true.

				conn	=	Connection(server,	auto_bind=True)

				#	Print	the	LDAP	Server	Information.

				print('******************Server	Info**************')

				print(server.info)

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='Query	LDAP	Server')

				parser.add_argument('--address',	action="store",	dest="address",	default='ipa.demo1.freeipa.org')

				given_args	=	parser.parse_args()

				address	=	given_args.address

				main(address)

The	following	is	the	output	of	the	previous	script.	From	this	response,	we	know
that	this	server	is	a	standalone	LDAP	server	that	can	hold	entries	in	the	dc=demo1,
dc=freeipa,	and	dc=org	contexts:

DSA	info	(from	DSE):

	Supported	LDAP	Versions:	2,	3

	Naming	Contexts:

	cn=changelog

	dc=demo1,dc=freeipa,dc=org

	o=ipaca

	Alternative	Servers:	None

	Supported	Controls:

	1.2.840.113556.1.4.319	-	LDAP	Simple	Paged	Results	-	Control	-	RFC2696

	1.2.840.113556.1.4.473	-	Sort	Request	-	Control	-	RFC2891

	1.3.6.1.1.13.1	-	LDAP	Pre-read	-	Control	-	RFC4527

	1.3.6.1.1.13.2	-	LDAP	Post-read	-	Control	-	RFC4527

	1.3.6.1.4.1.1466.29539.12	-	Chaining	loop	detect	-	Control	-	SUN	microsystems

	1.3.6.1.4.1.42.2.27.8.5.1	-	Password	policy	-	Control	-	IETF	DRAFT	behera-ldap-password-policy

	1.3.6.1.4.1.42.2.27.9.5.2	-	Get	effective	rights	-	Control	-	IETF	DRAFT	draft-ietf-ldapext-acl-model

	1.3.6.1.4.1.42.2.27.9.5.8	-	Account	usability	-	Control	-	SUN	microsystems

	1.3.6.1.4.1.4203.1.9.1.1	-	LDAP	content	synchronization	-	Control	-	RFC4533

	1.3.6.1.4.1.4203.666.5.16	-	LDAP	Dereference	-	Control	-	IETF	DRAFT	draft-masarati-ldap-deref

	2.16.840.1.113730.3.4.12	-	Proxied	Authorization	(old)	-	Control	-	Netscape

	2.16.840.1.113730.3.4.13	-	iPlanet	Directory	Server	Replication	Update	Information	-	Control	-	Netscape

	2.16.840.1.113730.3.4.14	-	Search	on	specific	database	-	Control	-	Netscape

	2.16.840.1.113730.3.4.15	-	Authorization	Identity	Response	Control	-	Control	-	RFC3829

	2.16.840.1.113730.3.4.16	-	Authorization	Identity	Request	Control	-	Control	-	RFC3829

	2.16.840.1.113730.3.4.17	-	Real	attribute	only	request	-	Control	-	Netscape

	2.16.840.1.113730.3.4.18	-	Proxy	Authorization	Control	-	Control	-	RFC6171

	2.16.840.1.113730.3.4.19	-	Chaining	loop	detection	-	Control	-	Netscape

	2.16.840.1.113730.3.4.2	-	ManageDsaIT	-	Control	-	RFC3296

	2.16.840.1.113730.3.4.20	-	Mapping	Tree	Node	-	Use	one	backend	[extended]	-	Control	-	openLDAP

	2.16.840.1.113730.3.4.3	-	Persistent	Search	-	Control	-	IETF

	2.16.840.1.113730.3.4.4	-	Netscape	Password	Expired	-	Control	-	Netscape

	2.16.840.1.113730.3.4.5	-	Netscape	Password	Expiring	-	Control	-	Netscape

	2.16.840.1.113730.3.4.9	-	Virtual	List	View	Request	-	Control	-	IETF

	2.16.840.1.113730.3.8.10.6	-	OTP	Sync	Request	-	Control	-	freeIPA

	Supported	Extensions:

	1.3.6.1.4.1.1466.20037	-	StartTLS	-	Extension	-	RFC4511-RFC4513

	1.3.6.1.4.1.4203.1.11.1	-	Modify	Password	-	Extension	-	RFC3062

	1.3.6.1.4.1.4203.1.11.3	-	Who	am	I	-	Extension	-	RFC4532

	2.16.840.1.113730.3.5.10	-	Distributed	Numeric	Assignment	Extended	Request	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.12	-	Start	replication	request	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.3	-	Transaction	Response	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.4	-	iPlanet	Replication	Response	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.5	-	iPlanet	End	Replication	Request	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.6	-	iPlanet	Replication	Entry	Request	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.7	-	iPlanet	Bulk	Import	Start	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.8	-	iPlanet	Bulk	Import	Finished	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.5.9	-	iPlanet	Digest	Authentication	Calculation	Extended	Operation	-	Extension	-	Netscape

	2.16.840.1.113730.3.6.5	-	Replication	CleanAllRUV	-	Extension	-	Netscape

	2.16.840.1.113730.3.6.6	-	Replication	Abort	CleanAllRUV	-	Extension	-	Netscape

	2.16.840.1.113730.3.6.7	-	Replication	CleanAllRUV	Retrieve	MaxCSN	-	Extension	-	Netscape

	2.16.840.1.113730.3.6.8	-	Replication	CleanAllRUV	Check	Status	-	Extension	-	Netscape

	2.16.840.1.113730.3.8.10.1	-	KeyTab	set	-	Extension	-	FreeIPA

	2.16.840.1.113730.3.8.10.3	-	Enrollment	join	-	Extension	-	FreeIPA

	2.16.840.1.113730.3.8.10.5	-	KeyTab	get	-	Extension	-	FreeIPA

	Supported	SASL	Mechanisms:

	EXTERNAL,	GSS-SPNEGO,	GSSAPI,	DIGEST-MD5,	CRAM-MD5,	PLAIN,	LOGIN,	ANONYMOUS

	Schema	Entry:

	cn=schema

	Vendor	name:	389	Project

	Vendor	version:	389-Directory/1.3.3.8	B2015.036.047

	Other:

	dataversion:

	020150912040104020150912040104020150912040104

	changeLog:

	cn=changelog

	lastchangenumber:

	3033

	firstchangenumber:

	1713

	lastusn:

	8284

	defaultnamingcontext:

	dc=demo1,dc=freeipa,dc=org

	netscapemdsuffix:

	cn=ldap://dc=ipa,dc=demo1,dc=freeipa,dc=org:389

	objectClass:

	top

Finding	entries	in	LDAP
To	find	entries	in	the	ldap	directory,	you	must	use	the	search	operation.	This
operation	has	a	number	of	parameters,	but	only	two	of	them	are	mandatory:

conn.search(search_base,search_filter,	attributes)

The	following	are	the	parameters:

search_base:	The	location	in	the	ldap	directory	where	the	search	will	start
search_filter:	A	string	that	describes	what	you	are	searching	for
attributes:	Attributes	to	extract

In	this	script,	we	are	going	to	search	all	users	in	the	FreeIPA	demo	LDAP
server.	You	can	find	the	following	code	in	the	entries_ldap_server.py	file:

#!/usr/bin/env	python3

from	ldap3	import	Server,	Connection,	ObjectDef,	AttrDef,	Reader,	Writer,	ALL

LDAP_SERVER	="ipa.demo1.freeipa.org"

LDAP_USER	="uid=admin,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org"

LDAP_PASSWORD	="Secret123"

LDAP_FILTER	=	'(objectclass=person)'

LDAP_ATTRS	=	["cn",	"dn",	"sn",	"givenName"]

def	main():

				#	Create	the	Server	object	with	the	given	address.

				server	=	Server(LDAP_SERVER,	get_info=ALL)

				#Create	a	connection	object,	and	bind	with	the	given	DN	and	password.

				try:

								conn	=	Connection(server,	LDAP_USER,	LDAP_PASSWORD,	auto_bind=True)

								print('LDAP	Bind	Successful.')

								#	Perform	a	search	for	a	pre-defined	criteria.

								#	Mention	the	search	filter	/	filter	type	and	attributes.

								conn.search('dc=demo1,dc=freeipa,dc=org',	LDAP_FILTER	,	attributes=LDAP_ATTRS)

								#	Print	the	resulting	entries.

								for	entry	in	conn.entries:

												print(entry)

				except	core.exceptions.LDAPBindError	as	e:

				#	If	the	LDAP	bind	failed	for	reasons	such	as	authentication	failure.

								print('LDAP	Bind	Failed:	',	e)

if	__name__	==	'__main__':

				main()

This	is	the	execution	of	the	previous	script.	Here,	you	request	all	the	entries	of
person	class	,	starting	from	the	dc=demo1,	dc=freeipa,	and	dc=org	contexts	with	the

default	subtree	scope:

[DN:	uid=admin,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org

	,	DN:	uid=manager,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org

	,	DN:	uid=employee,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org

	,	DN:	uid=helpdesk,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org

]

Summary
In	this	chapter,	we	encountered	several	network	protocols	and	Python	libraries
that	are	used	to	interact	with	remote	systems.	SSH	and	SFTP	are	used	to	securely
connect	and	transfer	files	to	the	remote	hosts.	We	also	examined	Python
libraries	to	work	with	remote	systems	to	perform	various	tasks,	such	as
administrative	tasks	by	using	SSH,	and	file	transfer	through	FTP	and	Samba.
Finally,	we	reviewed	some	remote	monitoring	protocols,	such	as	SNMP,	and
authentication	protocols,	such	as	LDAP.

In	the	next	chapter,	we	will	discuss	one	of	the	most	common	networking
protocols:	DNS	and	IP.	We	will	also	explore	TCP/IP	networking	using	Python
scripts.

Questions
1.	 What	is	the	file	configuration	for	ssh	connections	and	where	is	it	located	in

a	Unix	machine?	
2.	 What	is	the	encryption	type	that's	used	by	the	ssh	protocol	to	establish

communication	between	the	client	and	server?
3.	 How	we	can	prevent	access	by	the	root	user	to	a	SSH	server	by	a

configuration	established	in	sshd_config	file?
4.	 How	should	you	run	several	commands	on	the	remote	host	using	paramiko

when	you	encounter	the	problem	that	the	SSH	session	is	closed?
5.	 How	does	paramiko	create	an	SFTP	session	to	download	files	in	a	secure	way

from	the	SSH	server?
6.	 Which	command	do	we	use	to	download	a	binary	file	from	the	ftp	server

with	the	ftplib	package?
7.	 Which	method	from	the	ftplib	package	returns	a	list	with	the	filenames	of

the	directory?

8.	 Which	Python	module	provides	a	useful	wrapper	for	the	snmp	commands,
and	how	we	can	create	a	command	to	connect	with	an	snmp	server?

9.	 What	is	the	name	of	the	database	where	we	can	organize	and	store
information	with	objects	of	different	classes	in	the	ldap	server?

10.	 Which	method	from	python-ldap	initializes	a	new	connection	object	to	access
the	given	LDAP	server,	and	returns	an	LDAP	object	that's	used	to	perform
operations	on	that	server?

Further	reading
Check	out	the	following	links	for	more	information	on	the	topics	that	were
covered	in	this	chapter:

To	learn	more	about	the	ftplib	module,	you	can	query	the	official
documentation:	http://docs.python.org/library/ftplib.html
The	complete	distribution	of	paramiko	comes	with	many	good	examples	in
the	GitHub	repository:	https://github.com/paramiko/paramiko/tree/master/demos
SNMP	Link:	a	collection	of	SNMP	resources:	http://www.snmplink.org/
Net-SNMP:	SNMP	Open	Source	Tools:	http://net-snmp.sourceforge.net/
To	learn	more	about	the	pysnmp	module,	you	can	query	the	official
documentation:	http://snmplabs.com/pysnmp/index.html
The	Python	3	script	to	perform	LDAP	queries	and	enumerate	users,	groups,
and	computers	from	Windows	Domains:	https://github.com/m8r0wn/ldap_search
To	learn	more	about	the	Python	ldap	module,	you	can	query	the	official
documentation:	https://www.python-ldap.org/en/latest/reference/ldap.html
A	tutorial	and	examples	for	ldap3:	https://ldap3.readthedocs.io/tutorial_intro.htm
l

http://docs.python.org/library/ftplib.html
https://github.com/paramiko/paramiko/tree/master/demos
http://www.snmplink.org/
http://net-snmp.sourceforge.net/
http://snmplabs.com/pysnmp/index.html
https://github.com/m8r0wn/ldap_search
https://www.python-ldap.org/en/latest/reference/ldap.html
https://ldap3.readthedocs.io/tutorial_intro.html

Section	3:	IP	Address	Manipulation
and	Network	Automation
In	this	section,	you	will	learn	about	the	Python	modules	for	IP	address
manipulation,	how	to	get	DNS	and	geolocation	information	from	servers,	and
what	tools	are	available	in	Python	for	network	automation	with	Ansible.

This	section	contains	the	following	chapters:

Chapter	7,	Working	with	IP	and	DNS
Chapter	8,	Implementing	IPv6	and	Address	Manipulation
Chapter	9,	Performing	Network	Automation	with	Python	and	Ansible

Working	with	IP	and	DNS
In	this	chapter,	you	will	learn	how	to	work	with	IP,	DNS	networking,	and
geolocation	in	Python.	Through	practical	examples,	you	will	learn	how	to
determine	the	IP	address	of	your	own	computer	and	look	up	other	computers	in
the	network.	You	will	also	learn	how	to	extract	information	from	DNS	servers
with	the	dnspython	module	and	extract	information	about	geolocation	IP	addresses.

The	following	topics	will	be	covered	in	this	chapter:

Principles	of	the	IP	protocol
Retrieving	the	network	configuration	of	a	local	machine
Using	Python	to	manipulate	IP	addresses	and	perform	CIDR	calculations
The	DNS	Python	module	as	a	tool	for	extracting	information	from	DNS
servers
GeoIP	lookups	with	pygeoip	and	python-geoip

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter07	folder:	https://github.com/PacktPublishing/Learning-Python-Ne
tworking-Second-Edition/tree/master/chapter7.

You	will	need	to	install	a	Python	distribution	on	your	local	machine	and	have
some	basic	knowledge	of	the	IP	and	TCP	protocols	to	work	through	this	chapter.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition/tree/master/chapter7

Principles	of	the	IP	protocol
In	this	section,	you	will	learn	how	to	resolve	and	validate	an	IP	address	with	the
socket	package.

Resolving	the	IP	address	with	the
socket	package
If	you	would	like	to	see	the	local	machine	IP,	you	can	do	so	using	the	ifconfig
command	in	Linux	and	the	ipconfig	command	in	Windows.	Here,	we'll	do	this	in
Python	using	the	built-in	function:

>>>	import	socket

>>>	socket.gethostbyname('python.org')

	'10.0.2.15'

This	process	is	known	as	a	host	file-based	name	resolution.	You	can	send	a
query	to	a	DNS	server	and	ask	for	the	IP	address	of	a	specific	host.	If	the	name
has	been	registered	properly,	you	will	get	a	response	from	the	server.

Here	are	some	useful	methods	for	gathering	this	kind	of	information:

socket.gethostbyaddr(address):	This	allows	us	to	obtain	a	domain	name	from
the	IP	address.
socket.gethostbyname(hostname):	This	method	converts	a	hostname	into	IPv4
address	format.	The	IPv4	address	is	returned	in	the	form	of	a	string.	This
method	is	equivalent	to	the	nslookup	command	that	we	can	find	in	many
operating	systems.

Validating	the	IP	address	with	the
socket	package
We	can	use	also	the	socket	package	to	validate	an	IP	address	in	both	IPv4	and
IPv6.

You	can	find	the	following	code	in	the	check_ip_address.py	file:

import	socket

def	is_valid_ipv4_address(address):

				try:

								socket.inet_pton(socket.AF_INET,	address)

				except	AttributeError:

								try:

												socket.inet_aton(address)

								except	socket.error:

												return	False

								return	address.count('.')	==	3

				except	socket.error:		#	not	a	valid	address

								return	False

				return	True

def	is_valid_ipv6_address(address):

				try:

								socket.inet_pton(socket.AF_INET6,	address)

				except	socket.error:		#	not	a	valid	address

								return	False

				return	True

	

print("IPV4	127.0.0.1	OK:"+	str(is_valid_ipv4_address("127.0.0.1")))

print("IPV4	127.0.0.0.1	NOT	OK:"+	str(is_valid_ipv4_address("127.0.0.0.1")))

print("IPV6	::1	OK:"+	str(is_valid_ipv6_address("::1")))

print("IPV6	127.0.0.0	NOT	OK:"+	str(is_valid_ipv6_address("127.0.0.0.1")))

This	is	the	execution	of	the	previous	script,	where	we	can	see	that	127.0.0.1	is	a
valid	IPv4	address	and	::1	is	a	valid	IPv6	address:

IPV4	127.0.0.1	OK:True

IPV4	127.0.0.0.1	NOT	OK:False

IPV6	::1	OK:True

IPV6	127.0.0.0	NOT	OK:False

Retrieving	the	network	configuration
of	a	local	machine
In	this	section,	you	will	learn	how	to	retrieve	the	network	configuration	with
the	netifaces	package,	and	understand	the	standard	Python	libraries	for	IP	address
manipulation.

Gathering	information	with	the
netifaces	package
Now,	we	are	going	to	discover	some	more	information	about	the	network
interface	and	the	gateway	machine	of	your	network.

In	every	LAN,	a	host	is	configured	to	act	as	a	gateway,	which	talks	to	the	outside
world.	To	find	the	network	address	and	the	netmask,	we	can	use	a	Python	third-
party	library,	netifaces.	For	example,	you	can	call	netifaces.gateways()	to	find	the
gateways	that	are	configured	to	the	outside	world.	Similarly,	you	can	enumerate
the	network	interfaces	by	calling	netifaces.interfaces().	If	you	would	like	to	know
all	the	IP	addresses	of	a	particular	interface,	eth0,	then	you	can	call
netifaces.ifaddresses('eth0').

The	following	code	listing	shows	the	way	in	which	you	can	list	all	the	gateways
and	IP	addresses	of	a	local	machine.

You	can	find	the	following	code	in	the	local_network_config.py	file:

!/usr/bin/env	python3

import	socket

import	netifaces

#	Find	host	info

host_name	=	socket.gethostname()

ip_address	=	socket.gethostbyname(host_name)

print("Host	name:	{0}".format(host_name))

#	Get	interfaces	list

ifaces	=	netifaces.interfaces()

for	iface	in	ifaces:

				ipaddrs	=	netifaces.ifaddresses(iface)

				#for	each	ipaddress

				if	netifaces.AF_INET	in	ipaddrs:

								ipaddr_desc	=	ipaddrs[netifaces.AF_INET]

								ipaddr_desc	=	ipaddr_desc[0]

								print("Network	interface:	{0}".format(iface))

								if	'addr'	in	ipaddr_desc:

												print("\tIP	address:	{0}".format(ipaddr_desc['addr']))

								if	'netmask'	in	ipaddr_desc:

												print("\tNetmask:	{0}".format(ipaddr_desc['netmask']))

#	Find	the	gateway

gateways	=	netifaces.gateways()

print("Default	gateway:{0}".format(gateways['default'][netifaces.AF_INET][0]))

If	you	run	this	code	in	a	Windows	operating	system,	it	will	print	a	summary	of
the	local	network	configuration,	which	will	be	similar	to	the	following:

Using	Python	to	manipulate	IP
addresses	and	perform	CIDR
calculations
In	this	section,	you	will	explore	TCP/IP	networking	using	Python	scripts.

The	Python	ipaddress	module
The	ipaddress	module	simplifies	working	with	IPv4	and	IPv6	addresses	in	Python.
In	this	section,	we	will	focus	on	IPv4	and	will	work	primarily	with	the	following
three	class	types:

IPv4Address:	Represents	a	single	IPv4	address
IPv4Network:	Represents	an	IPv4	network
IPv4Interface:	Represents	an	IPv4	interface

You	can	get	more	information	about	this	module	with	the	help	command	from	the
Python	interpreter:

IPv4Address	is	the	class	that	represents	and	manipulates	single	IPv4	addresses:

The	class	represents	an	IPv4	address	or	network.	To	create	these	objects	in
Python,	the	module	provides	some	basic	factory	functions:

import	ipaddress

from	ipaddress	import	IPv4Address,	IPv4Network,	IPv4Interface

After	you	create	an	IPv4/IPv6	object,	you	can	get	a	lot	information	from	the
class,	for	example,	whether	it	is	a	multicast	address	or	a	private	address,	the
prefix	length,	and	netmask.

In	the	following	screenshot,	we	can	see	the	methods	that	are	used	to	check	these
use	cases:

From	Python	3.3,	the	best	way	to	check	whether	an	IPv6	or	IPv4	address	is
correct	is	to	use	the	Python	standard	library	module,	ipaddress.

Check	out	https://docs.python.org/3/library/ipaddress.html	for	the	complete	documentation.

If	you're	using	Python	3.3	or	later,	you	can	use	the	ipaddress	module	to	validate
the	IP	address:

>>>	import	ipaddress

	>>>	ipaddress.ip_address('127.0.0.1')

	IPv4Address('127.0.0.1')

	>>>	ipaddress.ip_address('500.500.0.1')

https://docs.python.org/3/library/ipaddress.html

	Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"/usr/lib/python3.7/ipaddress.py",	line	54,	in	ip_address

				address)

	ValueError:	'500.500.0.1'	does	not	appear	to	be	an	IPv4	or	IPv6	address

In	this	example,	we	use	this	method	to	validate	both	IPv4	and	IPv6.	You	can	find
the	following	code	in	the	validate_ip_address.py	file:

!/usr/bin/env	python3

import	ipaddress

import	sys

try:

				ip	=	ipaddress.ip_address(sys.argv[1])

				print('%s	is	a	correct	IP%s	address'	%	(ip,	ip.version))

except	ValueError:

				print('address/netmask	is	invalid:	%s'	%	sys.argv[1])

except:

				print('Usage	:	%s		ip'	%	sys.argv[0])

If	you	execute	the	previous	script	with	an	IP	address	as	a	parameter,	it	will
validate	in	both	IPv4	and	IPv6	versions:

$	python	validate_ip_address.py	127.0.0.1

	127.0.0.1	is	a	correct	IP4	address

$	python	validate_ip_address.py	::1

	::1	is	a	correct	IP6	address

Manipulating	IP	addresses
Often,	you	will	need	to	manipulate	IP	addresses	and	perform	some	sort	of
operations	on	them.	Python	3	has	a	built-in	ipaddress	module	to	help	you	carry
out	this	task.	It	has	convenient	functions	for	defining	the	IP	addresses	and	the	IP
networks,	and	for	finding	lots	of	useful	information.	For	example,	if	you	would
like	to	know	how	many	IP	addresses	exist	in	a	given	subnet,	for	instance,
10.0.1.0/255.255.255.0	or	10.0.1.0/24,	you	can	find	them	with	the	help	of	the
following	command.

This	module	will	provide	several	classes	and	factory	functions	for	working	with
both	IPv4	and	IPv6	versions.

IP	network	objects
Let's	import	the	ipaddress	module	and	define	a	net4	network:

>>>	import	ipaddress

>>>	net4	=	ipaddress.ip_network('10.0.1.0/24')

Now,	we	can	find	some	useful	information,	such	as	netmask	and	the
network/broadcast	address,	of	net4:

>>>	net4.netmask

	IP4Address(255.255.255.0)

The	netmask	properties	of	net4	will	be	displayed	as	an	IP4Address	object.	If	you	are
looking	for	its	string	representation,	then	you	can	call	the	str()	method,	as	shown
here:

>>>	str(net4.netmask)

	'255.255.255.0'

Similarly,	you	can	find	the	network	and	the	broadcast	addresses	of	net4	by	using
the	following	code:

>>>	str(net4.network_address)

	10.0.1.0

>>>	str(net4.broadcast_address)

	10.0.1.255

We	can	get	the	number	of	addresses	net4	can	hold	with	the	following	command:

>>>	net4.num_addresses

	256

So,	if	we	subtract	the	network	and	the	broadcast	addresses,	the	total	available	IP
addresses	will	be	254.	We	can	call	the	hosts()	method	on	the	net4	object.	This	will
produce	a	Python	generator,	which	will	supply	all	the	hosts	as	IPv4Address	objects:

>>>	net4.hosts()

>>>	<generator	object	_BaseNetwork.hosts	at	0x02F25FC0>

	>>>	all_hosts	=	list(net4.hosts())

	>>>	len(all_hosts)

	254

>>>	print(all_hosts)

>>>	[IPv4Address('10.0.1.1'),	IPv4Address('10.0.1.2'),	IPv4Address('10.0.1.3'),	IPv4Address('10.0.1.4'),......,IPv4Address('10.0.1.253'),	IPv4Address('10.0.1.254')]

Subnetting	in	Python
Another	use	case	is	an	IP	subnetting	application,	which	gives	you	the	required	IP
subnets	based	on	required	network	size	or	amount	of	networks	per	location.	We
can	also	find	the	subnet	information	from	the	IPv4Network	objects,	as	follows:

>>>	net4.subnets()

	<generator	object	_BaseNetwork.subnets	at	0x02F2C0C0>

>>>	subnets	=	list(net4.subnets())

>>>	subnets

	[IPv4Network('10.0.1.0/25'),	IPv4Network('10.0.1.128/25')]

The	ipaddress	module	includes	many	functions	to	create	subnets	and	supernets;
for	example,	we	can	use	these	methods	to	check	whether	a	network	overlaps
with	another:

>>>	ipnet	=	ipaddress.IPv4Network("10.2.0.0/16")

>>>	list(ipnet.subnets())

	[IPv4Network('10.2.0.0/17'),	IPv4Network('10.2.128.0/17')]

The	subnets(prefixlen_diff=1,	new_prefix=None)	method	also	has	the	capacity	to
generate	subnets	with	additional	host	bits	or	with	a	specific	amount	of	network
bits.	In	the	following	example,	we	use	the	new_prefix	argument	in	the	subnets
method	to	define	the	number	of	network	bits	for	the	new	network	mask:

#	new_prefix	=	number	of	network	bits	for	the	new	mask

>>>	list(ipnet.subnets(new_prefix=20))

	[IPv4Network('10.2.0.0/20'),	IPv4Network('10.2.16.0/20'),	IPv4Network('10.2.32.0/20'),	IPv4Network('10.2.48.0/20'),	IPv4Network('10.2.64.0/20'),	IPv4Network('10.2.80.0/20'),	IPv4Network('10.2.96.0/20'),	IPv4Network('10.2.112.0/20'),	IPv4Network('10.2.128.0/20'),	IPv4Network('10.2.144.0/20'),	IPv4Network('10.2.160.0/20'),	IPv4Network('10.2.176.0/20'),	IPv4Network('10.2.192.0/20'),	IPv4Network('10.2.208.0/20'),	IPv4Network('10.2.224.0/20'),	IPv4Network('10.2.240.0/20')]

Any	IPv4Network	object	can	tell,	which	is	the	opposite	of	the	subnet	by	looking	at	its
parent	supernet:

>>>	net4.supernet()

	IPv4Network('10.0.0.0/23')

Network	interface	objects
In	the	ipaddress	module,	we	have	a	convenient	class	to	represent	an	interface's	IP
configuration	in	detail:	IPv4Interface.	It	takes	an	arbitrary	address	and	behaves
like	a	network	address	object:

>>>	import	ipaddress

	>>>	eth0	=	ipaddress.IPv4Interface('192.168.0.1/24')

	>>>	eth0.ip

	IPv4Address('192.168.0.1')

	>>>	eth0.with_prefixlen

	'192.168.0.1/24'

	>>>	eth0.with_netmask

	'192.168.0.1/255.255.255.0'

	>>>	eth0.network

	IPv4Network('192.168.0.0/24')

	>>>	eth0.is_private

	True

	>>>	eth0.is_reserved

	False

	>>>	eth0.is_multicast

	False

	>>>

As	you	can	see,	a	network	interface,	eth0,	with	the	IPv4Address	class,	has	been
defined.	It	has	some	interesting	properties,	such	as	IP	and	network	address.	In
the	same	way	as	the	network	objects,	you	can	check	whether	the	address	is
private,	reserved,	or	multicast.

IP	address	objects
In	this	example,	the	loopback	interface	is	defined	with	the	127.0.0.1	IP	address.	As
you	can	see,	the	is_loopback	property	returns	True:

>>>	loopback	=	ipaddress.IPv4Interface('127.0.0.1')

>>>	loopback.is_private

	True

>>>	loopback.is_reserved

	False

>>>	loopback.is_multicast

	False

>>>	loopback.is_loopback

	True

The	IP	address	classes	have	many	more	interesting	properties.	You	can	perform
some	arithmetic	and	logical	operations	on	those	objects.	For	example,	we	can
check	whether	an	IP	address	is	part	of	a	network.

In	this	example,	we	are	checking	whether	an	IP	address	is	part	of	a	specific
network.	Here,	a	network	called	net	has	been	defined	by	the	network	address,
which	is	192.168.1.0/24,	and	the	membership	of	eth0	and	eth1	has	been	tested	to	see
if	these	IP	addresses	are	part	of	the	network:

>>>	eth0	=	ipaddress.IPv4Interface('192.168.1.1')

>>>	eth1	=	ipaddress.IPv4Interface('192.168.2.1')

>>>	net	=	ipaddress.ip_network('192.168.1.0/24')

>>>	eth0	in	net

	True

>>>	eth1	in	net

	False

Planning	IP	addresses	for	your	local
area	network
If	you	are	wondering	how	to	pick	up	a	suitable	IP	subnet,	try	the	ipaddress
module.	The	following	code	snippet	shows	an	example	of	how	to	choose	a
specific	subnet,	based	on	the	number	of	necessary	host	IP	addresses	for	a	small
private	network.

Suppose	you	have	a	CIDR	network	address,	such	as	192.168.0.0/24,	and	you	want
to	generate	a	range	of	all	the	IP	addresses	that	it	represents	(192.168.0.1	to
192.168.0.254).	The	ipaddress	module	can	be	easily	used	to	perform	such
calculations:

>>>	import	ipaddress

	>>>	net	=	ipaddress.ip_network('192.168.0.0/24')

	>>>	net

	IPv4Network('192.168.0.0/24')

	>>>	for	a	in	net:

	...					print(a)

	...

	192.168.0.1

	192.168.0.2

	192.168.0.3

	...

	192.168.0.254

In	this	example,	we	are	using	the	ip_network	method	from	the	ipaddress	module	to
generate	a	range	of	all	the	IP	addresses	that	represent	the	network.

You	can	find	the	following	code	in	the	net_ip_planner.py	file:

!/usr/bin/env	python3

import	ipaddress	as	ip

CLASS_C_ADDR	=	'192.168.0.0'

mask	=	input("Enter	the	mask	len	(24-30):	")

mask	=	int(mask)

if	mask	not	in	range(23,	31):

				raise	Exception("Mask	length	must	be	between	24	and	30")

net_addr	=	CLASS_C_ADDR	+	'/'	+	str(mask)

print("Using	network	address:%s	"	%net_addr)

try:

				network	=	ip.ip_network(net_addr)

except:

				raise	Exception("Failed	to	create	network	object")

print("This	mask	will	give	%s	IP	addresses"	%(network.num_addresses))

print("The	network	configuration	will	be:")

print("\t	network	address:	%s"	%str(network.network_address))

print("\t	netmask:	%s"	%str(network.netmask))

print("\t	broadcast	address:	%s"	%str(network.broadcast_address))

first_ip,	last_ip	=	list(network.hosts())[0],	list(network.hosts())[-1]

print("\t	host	IP	addresses:	from	%s	to	%s"	%(first_ip,last_ip))

The	following	is	the	execution	of	the	previous	script	for	some	masks	and
the	C	class	IP	address,	192.168.0.0:

Execution	with	mask	24:

Enter	the	mask	len	(24-30):	24

	Using	network	address:192.168.0.0/24

	This	mask	will	give	256	IP	addresses

	The	network	configuration	will	be:

									network	address:	192.168.0.0

									netmask:	255.255.255.0

									broadcast	address:	192.168.0.255

									host	IP	addresses:	from	192.168.0.1	to	192.168.0.254

Execution	with	mask	30:

Enter	the	mask	len	(24-30):	30

	Using	network	address:192.168.0.0/30

	This	mask	will	give	4	IP	addresses

	The	network	configuration	will	be:

									network	address:	192.168.0.0

									netmask:	255.255.255.252

									broadcast	address:	192.168.0.3

									host	IP	addresses:	from	192.168.0.1	to	192.168.0.2

The	dnspython	module	as	a	tool	for
extracting	information	from	DNS
servers
In	this	section,	you	will	learn	how	to	obtain	information	from	DNS	servers	with
the	dnspython	module.

Working	with	dnspython
The	IP	address	can	be	translated	into	human-readable	strings	called	domain
names.	DNS	is	a	big	topic	in	the	world	of	networking.	In	this	section,	we	will
create	a	DNS	client	in	Python,	and	see	how	this	client	will	talk	to	the	server
using	Wireshark.

A	few	DNS	client	libraries	are	available	from	PyPI.	We	will	focus	on	the
dnspython	library,	which	is	available	at	http://www.dnspython.org.

You	can	install	this	library	by	using	either	the	easy_install	command	or	the	pip
command:

$	pip	install	dnspython

In	this	practical	example,	we	will	use	dnspython	to	execute	queries	on	several
types	of	DNS	records,	such	as	IPv4	(A),	IPv6	(AAAA),	name	servers	(NS),	and
mail	exchange	(MX).

The	main	utility	of	dnspython	regarding	other	DNS	query	tools,	such	as	dig,	fierce,
or	nslookup,	is	that	you	can	control	the	result	of	queries	from	Python,	and	then	that
information	can	be	used	for	other	purposes	in	a	script.

You	can	also	install	it	from	its	source	code,	which	is	available	on	its	official
website:	http://www.dnspython.org.

Now,	we	are	going	to	review	some	interesting	queries,	such	as	the	examples	that
appear	at	http://www.dnspython.org/examples.html.

Making	a	simple	query	regarding	the	IP	address	of	a	host	is	very	simple.	You	can
use	the	dns.resolver	submodule,	as	follows.	You	can	find	the	following	code	in	the
dns_basic.py	file:

import	dns.resolver

answers	=	dns.resolver.query('dnspython.org',	'A')

for	rdata	in	answers:

				print('IP',	rdata.to_text())

http://www.dnspython.org
http://www.dnspython.org
http://www.dnspython.org/examples.html

Determining	the	destination	of	an	MX
record	and	its	preference
With	the	dns.resolver	submodule,	we	can	access	the	information	stored	in	the
ExChange	mail	exchange	records	to	see	which	hosts	have	priority	when	exchanging
emails	via	the	internet.

You	can	find	the	following	code	in	the	dns_mx.py	file:

import	dns.resolver

answers	=	dns.resolver.query('dnspython.org',	'MX')

for	rdata	in	answers:

				print('Host',	rdata.exchange,	'has	preference',	rdata.preference)

This	is	the	output	of	the	previous	script:

Host	alt1.aspmx.l.google.com.	has	preference	20

Host	alt2.aspmx.l.google.com.	has	preference	20

Host	aspmx2.googlemail.com.	has	preference	30

Host	aspmx3.googlemail.com.	has	preference	30

Host	aspmx.l.google.com.	has	preference	10

Manipulating	domain	names
In	this	example,	we	are	checking	the	properties	of	a	specific	domain	and
checking	whether	a	domain	is	a	suddomain	or	superdomain	from	another.

You	can	find	the	following	code	in	the	dns_domains.py	file:

import	dns.name

domain1=	dns.name.from_text('www.dnspython.org')

domain2	=	dns.name.from_text('dnspython.org')

print(domain2	.is_subdomain(domain1))

print(domain2	.is_superdomain(domain1))	

Converting	IPv4	and	IPv6	addresses
into	their	DNS	reverse	map	names
With	this	script,	we	can	convert	an	IP	address	into	a	name	object,	whose	value
will	be	the	reverse	map	domain	name	of	the	address.	Using	the
following	command,	we	can	find	out	which	domain	name	corresponds	to	each	of
the	specified	addresses,	that	is,	whether	they	are	IPv4	or	IPv6.

If	you	want	to	make	a	reverse	lookup,	you	need	to	use	the	dns.reversename
submodule.

You	can	find	the	following	code	in	the	dns_reverse.py	file:

!/usr/bin/env	python3

import	argparse

import	dns.reversename

import	dns.resolver

def	main(address):

				name	=	dns.reversename.from_address(address)

				print(name)

				print(dns.reversename.to_address(name))

				try:

								#	Pointer	records	(PTR)	maps	a	network	interface	(IP)	to	the	host	name.

								domain	=	str(dns.resolver.query(name,"PTR")[0])

								print(domain)

				except	Exception	as	e:

								print	("Error	while	resolving	%s:	%s"	%(address,	e))

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='DNS	Python')

				parser.add_argument('--address',	action="store",	dest="address",	default='127.0.0.1')

				given_args	=	parser.parse_args()	

				address	=	given_args.address

				main(address)

This	is	the	output	of	the	previous	script	with	the	IP	address	from	the	Google
name	server	domain:

$	python	dns_reverse.py	--address	8.8.8.8

	8.8.8.8.in-addr.arpa.

	8.8.8.8

	google-public-dns-a.google.com

Now,	let's	create	an	interactive	DNS	client	script	that	will	do	a	complete	lookup
of	the	possible	records,	as	shown	here.

You	can	find	the	following	code	in	the	dns_details.py	file:	

#!/usr/bin/env	python3

	

	import	argparse

	import	dns.zone

	import	dns.resolver

	

	def	main(domain):

				#	IPv4	DNS	Records

				answer	=	dns.resolver.query(domain,	'A')

				for	i	in	range(0,	len(answer)):

								print("IPV4	address:	",	answer[i])

	

				#	IPv6	DNS	Records

				try:

								answer6	=	dns.resolver.query(domain,	'AAAA')

								for	i	in	range(0,	len(answer6)):

												print("IPv6:	",	answer6[i])

				except	dns.resolver.NoAnswer	as	e:

								print("Exception	in	resolving	the	IPv6	Resource	Record:",	e)

	

	

In	the	previous	code	block,	we	defined	our	main	function,	which	accepts	the
domain	as	a	parameter	and	gets	information	about	the	IPv4	and	IPv6	DNS
records.	Now,	we	can	use	the	resolver.query	function	to	obtain	information	about
the	mail	exchange	and	name	server's	records,	as	follows:

				#	MX	(Mail	Exchanger)	Records

				try:

								mx	=	dns.resolver.query(domain,	'MX')

								print('Mail	Servers:	%s'	%	mx.response.to_text())

								for	data	in	mx:

												print('Mailserver',	data.exchange.to_text(),	'has	preference',	data.preference)

				except	dns.resolver.NoAnswer	as	e:

								print("Exception	in	resolving	the	MX	Resource	Record:",	e)

	

				#	NS	(Name	servers)	Records

				try:

								ns_answer	=	dns.resolver.query(domain,	'NS')

								print('Name	Servers:	%s'	%[x.to_text()	for	x	in	ns_answer])

				except	dns.resolver.NoAnswer	as	e:

								print("Exception	in	resolving	the	NS	Resource	Record:",	e)

	

	if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='DNS	Python')

				parser.add_argument('--domain',	action="store",	dest="domain",		default='dnspython.org')

				given_args	=	parser.parse_args()

				domain	=	given_args.domain

				main(domain)

If	you	run	this	script	with	the	python.org	domain,	you	will	get	an	output	similar	to

the	following:

$	python	dns_details.py	--domain	python.org

IPV4	address:		23.253.135.79

	IPv6:		2001:4802:7901:0:e60a:1375:0:6

	Mail	Servers:	id	40709

	opcode	QUERY

	rcode	NOERROR

	flags	QR	RD	RA

	;QUESTION

	python.org.	IN	MX

	;ANSWER

	python.org.	195	IN	MX	50	mail.python.org.

	;AUTHORITY

	;ADDITIONAL

	mail.python.org.	16396	IN	A	188.166.95.178

	mail.python.org.	3195	IN	AAAA	2a03:b0c0:2:d0::71:1

	Mailserver	mail.python.org.	has	preference	50

	Name	Servers:	['ns1.p11.dynect.net.',	'ns2.p11.dynect.net.',	'ns3.p11.dynect.net.',	'ns4.p11.dynect.net.']

Inspecting	the	DNS	client	and	server
communication
Throughout	this	book	we've	captured	network	packets	between	the	client	and	the
server	using	Wireshark.	Here,	we	look	at	an	example	of	session	capturing	while
Python	is	executing	the	script	where	we	obtain	DNS	details	from	a	domain.

In	Wireshark,	you	can	specify	port	53	by	navigating	to	Capture	|	Options	|
Capture	filter.	This	will	capture	all	the	DNS	packets	that	were	sent	to/from	your
machine.	We	can	also	filter	with	the	dns	keyword.

In	the	following	screenshot,	we	can	see	how	the	client	and	the	server	have
several	request/response	cycles	with	the	DNS	records.	It	was	started	with	a
standard	request	for	the	host's	address	and	it	was	followed	by	a	suitable
response:

If	you	look	deep	inside	the	packet,	you	can	see	the	request	format	of	the
response	from	the	server:

GeoIP	lookups	with	pygeoip	and
python-geoip
In	this	section,	we	will	explore	how	to	get	geolocation	information	for	an	IP
address	or	domain.

Introduction	to	geolocation
One	way	to	obtain	the	geolocation	from	an	IP	address	or	domain	is	by	using	a
service	that	provides	this	kind	of	information.	Among	the	services	that	provide
this	information,	we	can	highlight	hackertarget.com	(https://hackertarget.com/geoip-ip-
location-lookup/).	With	hackertarget.com,	we	can	get	a	geolocation	from	an	IP
address:

This	service	also	provides	a	REST	API	for	obtaining	a	geolocation	from	an	IP
address:	https://api.hackertarget.com/geoip/?q=8.8.8.8.

Another	service	is	api.hostip.info,	which	provides	a	query	by	the	IP	address:

https://hackertarget.com/
https://hackertarget.com/geoip-ip-location-lookup/
https://hackertarget.com/
https://api.hackertarget.com/geoip/?q=8.8.8.8

In	the	following	script,	we	are	using	this	service	and	the	requests	module	to
obtain	a	JSON	response	with	the	information	for	geolocation.	You	can	find	the
following	code	in	the	ip_to_geo.py	file:

import	requests

class	IPtoGeo(object):

				def	__init__(self,	ip_address):

								#	Initialize	objects	to	store

								self.latitude	=	''

								self.longitude	=	''

								self.country	=	''

								self.city	=	''

								self.ip_address	=	ip_address

								self._get_location()

def	_get_location(self):

				json_request	=	requests.get('http://api.hostip.info/get_json.php	ip=%s&position=true'	%	self.ip_address).json()

				if	'country_name'	in	json_request:

								self.country	=	json_request['country_name']

				if	'country_code'	in	json_request:

								self.country_code	=	json_request['country_code']

				if	'city'	in	json_request:

								self.city	=	json_request['city']

				if	'lat'	in	json_request:

								self.latitude	=	json_request['lat']

				if	'lng'	in	json_request:

								self.longitude	=	json_request['lng']

if	__name__	==	'__main__':

				geolocation	=	IPtoGeo('8.8.8.8')

				print(geolocation	.__dict__)

This	is	the	output	of	the	previous	script:

{'latitude':	'37.402',	'longitude':	'-122.078',	'country':	'UNITED	STATES',	'city':	'Mountain	View,	CA',	'ip_address':	'8.8.8.8',	'country_code':	'US'}

Introduction	to	pygeoip
pygeoip	is	one	of	the	modules	that's	available	in	Python	that	allows	you	to	retrieve
geographic	information	from	an	IP	address.	It	is	based	on	GeoIP	databases,
which	are	distributed	in	several	files	depending	on	their	type	(city,	region,
country,	ISP).	The	module	contains	several	functions	to	retrieve	data,	such	as	the
country	code,	time	zone,	or	complete	registration	with	all	the	information	related
to	a	specific	address.

pygeoip	can	be	downloaded	from	the	official	GitHub	repository:	http://github.com/a
ppliedsec/pygeoip.

To	build	the	object,	we	use	a	constructor	that	accepts	a	file	as	a	database	by
parameter.	An	example	of	this	file	can	be	downloaded	from	http://dev.maxmind.com/
geoip/legacy/geolite.

In	the	following	script,	we	have	two	methods:	geoip_city(domain,ipaddress),	to
obtain	information	about	the	location,	and	geoip_country(domain,ipaddress)	to	obtain
the	country,	both	from	the	IP	address	and	domain.	In	both	methods,	we	must	first
instantiate	a	GeoIP	class	with	the	path	of	the	file	that	contains	the	database.
Next,	we	will	query	the	database	for	a	specific	record,	specifying	the	IP	address
or	domain.	This	returns	a	record	that	contains	fields	for	city,	that	is,	region_name,
postal_code,	country_name,	latitude,	and	longitude.

You	can	find	the	following	code	in	the	pygeoip_test.py	file	in	the	geopip	folder:

!/usr/bin/env	python3

	

import	pygeoip

import	argparse

def	geoip_city(domain,ipaddress):

				path	=	'GeoLiteCity.dat'

				gic	=	pygeoip.GeoIP(path)

				print(gic.record_by_addr(ipaddress))

				print(gic.region_by_name(domain))

	

def	geoip_country(domain,ipaddress):	

				path	=	'GeoIP.dat'

				gi	=	pygeoip.GeoIP(path)

				print(gi.country_code_by_name(domain))

				print(gi.country_name_by_addr(ipaddress))

http://github.com/appliedsec/pygeoip
http://dev.maxmind.com/geoip/legacy/geolite

if	__name__	==	'__main__':

	parser	=	argparse.ArgumentParser(description='Get	geolocation	from	domain	and	ip	address')

	parser.add_argument('--domain',	action="store",	dest="domain",		default='www.packtpub.com')

	parser.add_argument('--ipaddress',	action="store",	dest="ipaddress",		default='83.166.169.231')

	given_args	=	parser.parse_args()

	domain	=	given_args.domain

	ipaddress	=	given_args.ipaddress

	geoip_city(domain,ipaddress)

	geoip_country(domain,ipaddress)

This	is	the	output	of	the	previous	script	with	the	default	parameters:

{'dma_code':	0,	'area_code':	0,	'metro_code':	None,	'postal_code':	'RH15',	'country_code':	'GB',	'country_code3':	'GBR',	'country_name':	'United	Kingdom',	'continent':	'EU',	'region_code':	'P6',	'city':	'Burgess	Hill',	'latitude':	50.9667,	'longitude':	-0.13329999999999131,	'time_zone':	'Europe/London'}

	{'country_code':	'GB',	'region_code':	'P6'}

	GB

	United	Kingdom

This	is	the	output	of	the	previous	script	with	the	amazon.com	domain:

$	python	pygeoip_test.py	--domain	www.amazon.com	--ipaddress	143.204.191.30

	

	{'dma_code':	819,	'area_code':	206,	'metro_code':	'Seattle-Tacoma,	WA',	'postal_code':	'98109',	'country_code':	'US',	'country_code3':	'USA',	'country_name':	'United	States',	'continent':	'NA',	'region_code':	'WA',	'city':	'Seattle',	'latitude':	47.6344,	'longitude':	-122.34219999999999,	'time_zone':	'America/Los_Angeles'}

	{'country_code':	'US',	'region_code':	'WA'}

	US

	United	States

Introduction	to	python-geoip
There	is	a	third-party	library	called	python-geoip,	which	has	a	robust	interface	to
answer	your	IP	location	query.

You	can	find	more	information	about	this	package	on	the	developer's	website:	htt
p://pythonhosted.org/python-geoip.	You	can	install	the	package	directly	from	the
Python	repository.

If	you	are	working	with	Python	3,	you	need	to	install	python-geoip-python3	(https://p
ypi.org/project/python-geoip-python3).	This	is	a	fork	of	python-geoip	with	Python	3
support.	We	also	need	to	install	the	geolite2	module	with	the	pip	install	python-
geoip-geolite2	command:

pip	install	python-geoip-python3

In	the	following	script,	we	can	see	an	example	of	how	to	use	the	python-geoip
package.	You	can	find	the	following	code	in	the	geoip_lookup.py	file:

!/usr/bin/env	python3

import	socket

from	geoip	import	geolite2

import	argparse

import	json

#	Setup	commandline	arguments

parser	=	argparse.ArgumentParser(description='Get	IP	Geolocation	info')

parser.add_argument('--hostname',	action="store",	dest="hostname",	required=True)

#	Parse	arguments

given_args	=	parser.parse_args()

hostname	=	given_args.hostname

ip_address	=	socket.gethostbyname(hostname)

print("IP	address:	{0}".format(ip_address))

match	=	geolite2.lookup(ip_address)

if	match	is	not	None:

	print('Country:	',match.country)

	print('Continent:	',match.continent)

	print('Time	zone:	',	match.timezone)

	print('Location:	',	match.location)

This	script	will	show	an	output	similar	to	the	following:

http://pythonhosted.org/python-geoip
https://pypi.org/project/python-geoip-python3

	$	python	geoip_lookup.py	--hostname=amazon.co.uk

IP	address:	176.32.98.166

Country:		US

Continent:		NA

Time	zone:		None

Location:		(38.0,	-97.0)

The	MaxMind	database	in	Python
There	are	other	Python	modules	that	use	the	MaxMind	database:

geoip2:	Provides	access	to	the	GeoIP2	web	services	and	databases
(https://github.com/maxmind/GeoIP2-python)
maxminddb-geolite2:	Provides	a	simple	MaxMind	DB	reader	extension
(https://github.com/rr2do2/maxminddb-geolite2)

In	the	following	script,	we	can	see	an	example	of	how	to	use	the	maxminddb-geolite2
package.

You	can	find	the	following	code	in	the	geoip_reader.py	file:

#!/usr/bin/env	python3

import	socket

from	geolite2	import	geolite2

import	argparse

import	json

#	Setup	commandline	arguments

parser	=	argparse.ArgumentParser(description='Get	IP	Geolocation	info')

parser.add_argument('--hostname',	action="store",	dest="hostname",	required=True)

#	Parse	arguments

given_args	=	parser.parse_args()

hostname	=	given_args.hostname

ip_address	=	socket.gethostbyname(hostname)

print("IP	address:	{0}".format(ip_address))

#	Call	geolite2

reader	=	geolite2.reader()

response	=	reader.get(ip_address)

print	(json.dumps(response,indent=4))

print	(json.dumps(response['continent']['names']['en'],indent=4))

print	(json.dumps(response['country']['names']['en'],indent=4))

print	(json.dumps(response['location']['latitude'],indent=4))

print	(json.dumps(response['location']['longitude'],indent=4))

print	(json.dumps(response['location']['time_zone'],indent=4))

In	the	following	screenshot,	we	can	see	the	output	of	the	previous	script	in	JSON
format,	along	with	the	amazon.com	domain:

https://github.com/maxmind/GeoIP2-python
https://github.com/rr2do2/maxminddb-geolite2

Summary
In	this	chapter,	we	discussed	the	standard	Python	libraries	for	IP	address
manipulation.	Two	third-party	dnspython	libraries	and	geoip	have	been	presented
to	interact	with	the	DNS	servers	and	get	geolocation	from	an	IP	address.	As	we
can	see,	when	it	comes	to	working	with	IP	addresses,	Python	provides	you	with
a	series	of	modules	that	can	be	useful	for	checking	IP	addresses	or	converting
values	related	to	IP	addresses	and	networks.

In	the	next	chapter,	we	will	introduce	the	IPv6	protocol	and	explore	the	best
Python	modules	for	working	with	IPv6	networking.

Questions
1.	 Which	Python	module	allows	us	to	retrieve	geographic	information	from	an

IP	address?
2.	 Which	method	from	the	netifaces	module	can	you	use	to	enumerate	the

network	interfaces	of	your	local	machine?
3.	 Which	port	do	DNS	servers	use	to	resolve	requests	for	mail	server	names?
4.	 Which	method	from	the	ipaddress	module	method	has	the	capacity	to

generate	subnets	with	additional	host	bits	or	with	a	specific	amount	of
network	bits?

5.	 Which	method	within	the	pygeoip	module	allows	us	to	obtain	the	value	of	the
country	name	from	the	IP	address	passed	by	the	parameter?

6.	 Which	method	within	the	pygeoip	module	allows	us	to	obtain	a	structure	in
the	form	of	a	dictionary	with	the	geographic	data	(country,	city,	area,
latitude,	longitude)	from	the	IP	address?

7.	 Which	method	within	the	pygeoip	module	allows	us	to	obtain	the	name	of	the
organization	from	the	domain	name?

8.	 Which	method	should	be	called	and	what	parameters	should	be	passed	to
obtain	the	IPv6	address	records	with	the	dnspython	module?

9.	 Which	method	should	be	called	and	what	parameters	should	be	passed	to
obtain	the	records	for	mail	servers	with	the	dnspython	module?

10.	 Which	method	should	be	called	and	what	parameters	should	be	passed	to
obtain	the	records	for	name	servers	with	the	dnspython	module?

Further	reading
Check	out	the	following	link	for	more	information	on	the	topics	that	were
covered	in	this	chapter:

The	official	Python	3.7	documentation:	https://docs.python.org/3.7/howto/ipaddr
ess.html#ipaddress-howto

https://docs.python.org/3.7/howto/ipaddress.html#ipaddress-howto

Implementing	IPv6	and	Address
Manipulation
In	this	chapter,	you	will	learn	how	to	work	with	IPv6	and	address	manipulation
with	Python	through	practical	tasks	such	as	determining	the	IP	address	of	your
own	computer	and	looking	up	other	computers.	Also,	we	will	review	the	IPv6
protocol	and	standard	Python	libraries	for	IPv6	address	manipulation.	We	will
study	three	third-party	libraries,	ipaddress,	netifaces,	and	netaddr,	for	working	with
IPv6	and	address	manipulation	with	Python.	Finally,	we	will	review	the	socket
module	for	implementing	the	client-server	application	for	sending	messages.

The	following	topics	will	be	covered	in	this	chapter:

Learning	about	and	understanding	the	IPv6	protocol
Creating	an	echo	client	and	server	with	IPv6
Understanding	the	netifaces	module	that	allows	checking	of	IPv6	support	on
your	network
The	netaddr	module	as	a	network-address	manipulation	library	for	Python
Understanding	the	ipaddress	module	as	an	IPv4	and	IPv6	manipulation
library

Technical	requirements
Examples	and	source	code	for	this	chapter	are	available	in	the	GitHub	repository
in	the	Chapter08	folder:	https://github.com/PacktPublishing/Learning-Python-Networking-Sec
ond-Edition.

You	will	need	to	install	Python	distribution	on	your	local	machine	and	have
some	basic	knowledge	about	the	IP	and	TCP	protocols.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Learning	and	understanding	the	IPv6
protocol
In	this	section,	you	will	learn	about	the	IPv6	protocol	and	how	to	resolve	IP
addresses	in	Python	with	this	protocol.

The	IPv6	protocol
The	history	of	IPv6	begins	with	a	real	need	we	have	today.	When	IPv4	was
conceived,	in	the	1970s,	the	creators	could	not	imagine	the	great	success	that	it
would	have	throughout	the	world.	Due	to	the	lack	of	addresses,	the	research
team	called	Internet	Engineering	Task	Force	(IETF)	began	to	look	for	a
substitute	for	IPv4,	which	in	principle	was	called	Internet	Protocol	Next
Generation	(IPng),	but	finally	took	the	name	of	IPv6.

The	IPv4	protocol	has	a	32-bit	address	space,	which	means	that	to	calculate	the
total	number	of	possible	addresses,	we	can	do	it	by	taking	2	raised	to	32,	making
a	total	of	4,	294,	967,	296	addresses.

The	IPv6	protocol	has	expanded	the	address	space	to	128	bits,	making	a	total	of
340,	282,	366,	920,	938,	463,	374,	607,	431,	768,	211,	456	addresses	available.

The	main	characteristics	of	the	IPv6	protocol	are	as	follows:

Greater	address	space
Plug-and-play	auto-configuration
Security	included	in	the	protocol	core	(IPsec)
Quality	of	Service	(QoS)	and	Class	of	Service	(CoS)
Multicast,	which	sends	a	single	package	to	a	group	of	receivers
Anycast,	which	sends	a	packet	to	a	receiver	within	a	group
Efficient	and	extensible	IP	packets,	there	is	no	packet	fragmentation	in	the
routers,	aligned	to	64	bits	(optimal	processing	with	64-bit	processors),	and
with	a	fixed-length,	simpler	header,	which	allows	faster	processing	by
routers
Possibility	of	packages	with	payload	(data)	of	more	than	65,535	bytes
(jumbograms)
More	efficient	routing	in	the	backbone	of	the	network,	due	to	a	hierarchy	of
addressing	based	on	aggregation
Compensation	and	multi-homing,	which	facilitates	the	change	of	service
provider
Mobility	characteristics

It	is	necessary	to	say	that	many	of	these	features	are	standards	that	are	still	in	the
implementation	phase.	IPv6	addressing	is	still	in	a	phase	of	evolution	and	it	will
take	several	years	for	some	functionalities	to	be	completed.

IPv6	addresses
In	this	section,	we	will	discuss	the	different	categories	and	types	of	addresses
that	exist	in	IPv6.	The	types	of	IPv6	addresses	can	be	identified	taking	the
ranges	defined	by	the	first	bits	of	each	address.	Among	the	main	types	of	IPv6
addresses,	we	can	highlight	the	following:

Unicast:	These	addresses	uniquely	identify	an	interface.
Multicast:	These	are	addresses	that	identify	a	set	of	interfaces.	A	packet
that	is	sent	to	a	multicast	address	is	forwarded	to	all	interfaces	identified	by
this	address.
Anycast:	These	types	of	addresses	identify	a	set	of	interfaces.	A	packet	that
is	sent	to	an	anycast	address	is	forwarded	to	one	of	the	interfaces	identified
by	this	address,	being	the	closest	one	according	to	the	routing	protocol
used.
Link-local:	These	types	of	addresses	are	created	automatically	and
exclusively	used	in	local	subnets,	therefore	they	are	not	routable.	This	type
of	address	starts	with	the	fe80	::	/	64	prefix.	The	link-local	IP	address	is
created	automatically	by	adding	the	Mac	address	of	the	interface	in	IPv6
format	to	the	previous	prefix.	In	this	way,	a	Mac	of	the	AE:	3E:	7B:	33:	5F:
B0	type	will	have	an	IPv6	address	of	the	fe80	::	ac3e:	7bff:	fe33:	5fb0	link-
local	type.
Unique	Local	Addresses	(ULA)	(RFC	4193):	These	types	of	addresses	are
the	equivalent	of	private	networks	in	IPv4.	They	are	non-routable	addresses
in	IPv6	to	the	internet.	The	routers	with	IPv6	support	are	responsible	for
discarding	the	packets	coming	from	these	addresses.	This	type	of	address
has	an	address	space	of	the	fc00	::	/	7	type,	which	in	turn	is	divided	into
two	networks	with	an	8-bit	mask	–	fc00	:::	/	8	(pending	definition,	and
reserved)	and	fd00	::	/	8,	which	is	what	can	be	used	to	create	the	network.
Global:	An	address	with	an	unlimited	scope.

Representation	of	IPv6	addresses
The	size	of	an	IPv6	address	is	128	bits.	Because	the	IPv6	addresses	are	so	large,
they	are	difficult	to	represent	in	decimal	notation	as	we	do	in	IPv4.	That	is	why
to	represent	an	IPv6	address	it	was	decided	to	use	8	groups	of	16	bits	in
hexadecimal	notation,	separating	each	group	by	the	colon	character,	:.	Here,	we
will	see	an	example	of	IPv6	address:

fe80:	0000:	0000:	0000:	ac3e:	7bff:	fe33:	5fb0

Among	the	different	rules	that	IPv6	has	for	representation,	one	of	them	is	that
you	can	suppress	the	leading	zeros	in	each	group	to	represent	the	address	in	the
following	way:

fe80:	0:	0:	0:	ac3e:	7bff:	fe33:	5fb0

In	addition	to	this	simplification,	there	is	another	one	that	indicates	that	several
groups	of	consecutive	zeros	can	be	replaced	by	two	colons,	::,	and	this	can	only
be	done	once	in	the	complete	address.	Therefore,	the	previous	example	could	be
summarized	in:

fe80	::	ac3e:	7bff:	fe33:	5fb0

To	determine	in	IPv6	which	part	of	the	IP	address	corresponds	to	the	network
and	the	host,	the	address	must	be	divided	into	two	64-bit	parts,	leaving	the
previous	IP	address	as	follows:

Network	address	->	fe80	::

Host	address	->	ac3e:	7bff:	fe33:	5fb0

It	should	be	noted	that,	in	IPv6,	the	part	of	the	address	that	corresponds	to	the
host	address	is	fixed.	In	link-local,	as	we	reviewed	before,	the	host	address
corresponds	to	the	Mac	address	of	the	interface	in	EUI-64	format.

Reserved	IPv6	addresses
There	are	a	number	of	IP	addresses	that	cannot	be	used	for	conventional	unicast
addresses.	We	have	seen	how	addresses	types	can	be	link-local	or	ULA
addresses,	but	there	are	some	more	that	will	be	summarized	in	the	following
points:

::	/	128:	An	unspecified	address,	equivalent	to	0.0.0.0	in	IPv4
::	1/128:	Represents	the	loopback	address,	such	as	127.0.0.1	in	IPv4
fc00	::	/	7:	Belongs	to	the	range	of	ULA	addresses
fc00	::	/	8:	Still	pending	definition	and	reserved
fd00	::	/	8:	Defines	a	range	of	ULA	addresses.	IP	addresses	are	constructed
by	generating	a	random	40-bit	string,	and	by	adding	the	prefix	to	make	a
64-bit	network	address
ff00	::	/	8:	Multicast	addresses,	equivalent	to	the	224.0.0.0/4	IPv4	range
fe80	::	/	10:	Belongs	to	the	link-local	addresses,	equivalent	to	the
169.254.0.0/16	range	in	IPv4

First	steps	with	IPv6	–	link-local
By	default	in	Linux,	in	the	new	distributions,	the	IPv6	protocol	is	already
activated	and,	therefore,	already	in	the	subnet	where	the	machine	is	located	and
it	can	communicate	with	others	devices	using	its	link-local	address.	To	find	out
the	IPv6	address,	use	the	ifconfig	command	or	the	ip	command	with	the
following	options:

#	ip	-6	a	l	dev	eth0

	2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qlen	1000

	inet6	fe80::bc6c:91ff:feb7:be0a/64	scope	link

	valid_lft	forever	preferred_lft	forever

#	ip	-6	addr	show

	1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	16436

	inet6	::1/128	scope	host

	valid_lft	forever	preferred_lft	forever

	2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qlen	1000

	inet6	fe80::bc6c:91ff:feb7:be0a/64	scope	link

	valid_lft	forever	preferred_lft	forever

We	can	see	that	the	address	is	of	the	link-local	type,	using
the	network	prefix	fe80.	If	we	have	several	machines,	we	can	communicate	with
each	other	with	the	ping6	command,	but	when	executing	the	command,	it	is
necessary	to	indicate	the	interface	where	the	ping	has	to	be	made.	This	is
because	all	the	interfaces	have	a	link-local	address,	therefore	they	have	the	same
prefix	and	there	is	no	way	of	knowing	which	one	will	be	available	in	one	or
another	interface.	In	IPv4	the	ARP	tables	were	in	charge	of	this,	but	in	IPv6,	the
concept	of	ARP	does	not	exist.	Therefore,	to	perform	the	ping,	we	use	the
following	command:

#	ping6	-I	eth0	fe80::ac3e:7bff:fe33:5fb0

	PING	fe80::ac3e:7bff:fe33:5fb0(fe80::ac3e:7bff:fe33:5fb0)	from	fe80::bc6c:91ff:feb7:be0a	eth0:	56	data	bytes

	64	bytes	from	fe80::ac3e:7bff:fe33:5fb0:	icmp_seq=1	ttl=64	time=0.966	ms

	64	bytes	from	fe80::ac3e:7bff:fe33:5fb0:	icmp_seq=2	ttl=64	time=0.294	ms

	^C

	---	fe80::ac3e:7bff:fe33:5fb0	ping	statistics	---

	2	packets	transmitted,	2	received,	0%	packet	loss,	time	1001ms

	rtt	min/avg/max/mdev	=	0.294/0.630/0.966/0.336	ms

This	address	can	already	be	used	as	any	IPv4	address,	so	if	a	web	server	is
running	and	has	a	service	with	IPv6	support,	you	can	establish	the	connection
through	this	IP	address.

In	the	following	example,	we	can	see	how	to	resolve	IP	addresses	from	the	https:
//www.python.org/	domain	with	IPv4	and	IPv6	formats.

You	can	find	the	following	code	in	the	getaddrinfoIPv4_IPv6.py	file:

!/usr/bin/env	python3

import	socket

def	getaddrinfoIPv4(host,	port=80,	family=0,	type=0,	proto=0,	flags=0):

				return	socket.getaddrinfo(host=host,	port=port,	

	family=socket.AF_INET,	type=type,	proto=proto,	flags=flags)	

	

def	getaddrinfoIPv6(host,	port=80,	family=0,	type=0,	proto=0,	flags=0):

				return	socket.getaddrinfo(host=host,	port=port,	

	family=socket.AF_INET6,	type=type,	proto=proto,	flags=flags)	

print(getaddrinfoIPv4("www.python.org"))

print(getaddrinfoIPv6("www.python.org"))

This	is	the	output	of	the	previous	script	where	we	can	obtain	IP	addresses	in	the
IPv4	and	IPv6	formats:

[(<AddressFamily.AF_INET:	2>,	0,	0,	'',	('151.101.120.223',	80))]

[(<AddressFamily.AF_INET6:	23>,	0,	0,	'',	('2a04:4e42:1d::223',	80,	0,	0))]

https://www.python.org/

Create	an	echo	client	and	server	with
IPv6
In	this	section,	we	will	see	how	to	create	a	basic	example	of	a	client-server
application	in	Python	using	the	IPv6	protocol	instead	of	IPv4.

Working	with	sockets
To	create	communication	between	two	programs,	we	will	use	sockets.	Sockets
are	an	abstract	concept.	With	them,	two	programs	can	communicate.	These
programs	can	be	on	the	same	machine	or	run	on	different	devices.	To	be	able	to
use	sockets,	we	must	import	them,	both	on	the	server	and	on	the	client.

The	socket	server
First,	we	define	the	necessary	variables	for	the	connection,	that	is,	the	IP	address
for	localhost	in	IPv6	format	and	the	maximum	number	of	connections	from
clients:

IPV6_ADDRESS	=	'::1'

#	Up	to	5	clients	can	connect

maxConnections	=	5

Next,	since	we	have	the	necessary	data,	we	create	the	server.	It	is	a	socket-type
object	that	is	listening	in	a	specific	port	using	IPv6	and	TCP/IP:

#	Creating	the	server	with	ipv6	support

#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

#	socket.SOCK_STREAM	to	use	TCP/IP

server_socket	=	socket.socket(socket.AF_INET6,socket.SOCK_STREAM)

dataConection	=	(host,port)

server_socket.bind(dataConection)

Our	socket	is	already	created.	Now	we	must	accept	connections	from	it:

print("Waiting	connections	in	%s:%s"	%(host,	port))

connection,	address	=	server_socket.accept()

print	('Connected	to',	address)

The	socket.accept()	method	will	remain	listening	until	you	receive	a	request.
Then,	in	a	loop,	we	indicate	what	the	server	should	do	when	receiving	each
connection:

while	True:

				data	=	connection.recv(1024)

				print	("Received	data	from	the	client:	[%s]"	%data.decode())

				if	data.decode()	==	"exit":

								connection.send(bytes("exit".encode('utf-8')))

								break

				connection.send(data)

				print	("Sent	data	echoed	back	to	the	client:	[%s]"	%data.decode())

The	core	of	our	program	is	in	this	loop,	and	it's	where	we	indicate	the	way	to	act
when	receiving	the	client's	frames.

Finally,	when	the	connection	is	closed,	we	indicate	with	a	message	that	it	has
been	closed	and	we	close	the	socket	with	the	socket.close()	method:

connection.close()

You	can	find	the	full	code	in	the	echo_server_ipv6.py	file:

#!/usr/bin/env	python3

import	argparse	

import	socket

IPV6_ADDRESS	=	'::1'

#	Up	to	5	clients	can	connect

maxConnections	=	5

def	echo_server_ipv6(port,	host=IPV6_ADDRESS):

				#	Creating	the	server	with	ipv6	support

				#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

				#	socket.SOCK_STREAM	to	use	TCP/IP

				try:

								server_socket	=	socket.socket(socket.AF_INET6,socket.SOCK_STREAM)

								dataConection	=	(host,port)

								server_socket.bind(dataConection)

								#	We	assign	the	maximum	number	of	connections

								server_socket.listen(maxConnections)

				except	socket.error	as	err:

								print	("Socket	error:	%s"	%err)

								server_socket.close()

	

				print("Waiting	connections	in	%s:%s"	%(host,	port))

				connection,	address	=	server_socket.accept()

				print	('Connected	to',	address)

In	the	previous	code	block,	we	established	a	socket	connection	with	IPv6
support,	assigning	the	maximum	number	of	connections	the	server	can	accept.
Later,	with	the	accept()	method,	the	server	will	listen	to	requests	waiting	for
connections	from	a	client:

				while	True:

								data	=	connection.recv(1024)

								print	("Received	data	from	the	client:	[%s]"	%data.decode())

								if	data.decode()	==	"exit":

												connection.send(bytes("exit".encode('utf-8')))

												break

								connection.send(data)

								print	("Sent	data	echoed	back	to	the	client:	[%s]"	%data.decode())

				print("-------	CLOSE	CONNECTION	---------")

				connection.close()

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='IPv6	Socket	Server')

				parser.add_argument('--port',	action="store",	dest="port",	type=int,	required=True)

				given_args	=	parser.parse_args()

				port	=	given_args.port

				echo_server_ipv6(port)

The	most	important	part	of	the	server	is	the	infinite	loop	simulated	with	the	while
True:	instruction.	In	this	part,	we	implement	receiving	the	message	from	the
client	and	the	instruction	for	sending	the	response	to	the	client.	At	the	end	of	the
script,	we	establish	the	port	where	the	server	will	send	the	response	with	the
argparse	module.

The	socket	client
In	the	client	part,	we	create	a	new	socket	that	is	listening	in	the	same	server	host
and	port:

#	Configure	the	data	to	connect	to	the	server

#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

#	socket.SOCK_STREAM	to	use	TCP/IP

#	These	protocols	must	be	the	same	as	on	the	server

client	=	socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM)

client.connect	((host,	port))

print	("Connected	to	the	server	--->%	s:%	s"%	(host,	port))

Our	socket	is	already	created	for	sending	data	to	the	server:

#send	initial	data	to	server

message	=	"Hello	from	ipv6	client"

print	("Send	data	to	server:	%s"	%message)

client.send(bytes(message.encode('utf-8')))

And	finally	we	indicate	what	we	want	to	do	with	the	connection.	In	this	case,	we
will	also	do	it	in	a	loop.	Since	the	way	of	client	and	server	interact	is	that	the
client	sends	a	message	to	the	server	and	the	server	will	respond	Received	from
server.	When	the	client	receives	this	message,	they	will	ask	for	a	message	from
the	user	to	be	able	to	send	it	back	to	the	server.	To	close	the	connection,	the	user
must	write	exit	to	the	client	and	send	that	message	to	the	server.	When	it	reaches
the	server,	it	will	send	the	exit	message	to	the	client,	then	it	will	show	a	message
of	Connection	closed	and	it	will	close	the	connection.	The	client,	upon	receiving
the	exit	message	from	the	server,	will	do	the	same	and	the	connection	will	end
correctly	on	both	sides.	The	code	for	this	operation	is	the	following:

while	True:

	message	=	input("Write	your	message	>	")

	client.send(bytes(message.encode('utf-8')))

	data	=	client.recv(1024)

	print	('Received	from	server:',	data.decode())

	if	data	==	"exit":

	break;

You	can	find	the	full	code	in	the	echo_client_ipv6.py	file:

#!/usr/bin/env	python3

import	argparse

import	socket

IPV6_ADDRESS	=	'::1'

def	echo_client_ipv6(port,	host=IPV6_ADDRESS):

				#	Configure	the	data	to	connect	to	the	server

				#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

				#	socket.SOCK_STREAM	to	use	TCP/IP

				#	These	protocols	must	be	the	same	as	on	the	server

				try:

								client	=	socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM)

								client.connect	((host,	port))

								print	("Connected	to	the	server	--->%	s:%	s"%	(host,	port))

				except	socket.error	as	err:

								print	("Socket	error:%s"	%err)

								client.close()

				#	send	initial	data	to	server

				message	=	"Hello	from	ipv6	client"

				print	("Send	data	to	server:	%s"	%message)

				client.send(bytes(message.encode('utf-8')))

				while	True:

								message	=	input("Write	your	message	>	")

								client.send(bytes(message.encode('utf-8')))

								data	=	client.recv(1024)

								print	('Received	from	server:',	data.decode())

								if	data.decode()	==	"exit":

												break;

				print("-------	CLOSE	CONNECTION	---------")

				client.close()

	

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='IPv6	socket	client')

				parser.add_argument('--port',	action="store",	dest="port",	type=int,	required=True)

				given_args	=	parser.parse_args()

				port	=	given_args.port

				echo_client_ipv6(port)

The	most	important	part	of	the	client	is	the	infinite	loop	simulated	with	the	while
True:	instruction.	In	this	part,	we	implement	sending	the	message	to	the	server
and	the	instruction	for	receiving	the	response	from	the	server	with	the	data	=
client.recv(1024)	code	line.	At	the	end	of	the	script,	we	establish	the	port	where
the	client	will	send	the	messages	with	the	argparse	module.

Executing	client	and	server
First,	we	start	server	execution	with	the	echo_server_ipv6.py	Python	script.	After
executing	this	script,	the	server	it	will	wait	for	connections:

usage:	echo_server_ipv6.py	[-h]	--port	PORT

When	executing	the	server	script,	we	must	use	the	port	argument	to	establish	the
number	where	the	server	is	listening	for	connections:

python	echo_server_ipv6.py	--port	7575

	Waiting	connections	in	::1:7575

Next,	we	start	the	client	with	the	same	port	parameter:

python	echo_client_ipv6.py	--port	7575

	Connected	to	the	server	--->::1:7575

	Send	data	to	server:	Hello	from	ipv6	client

	Write	your	message	>

And	we	will	see	that	the	server	has	already	identified	the	connection:

Connected	to	('::1',	3210,	0,	0)

Received	data	from	the	client:	[Hello	from	ipv6	client]

Sent	data	echoed	back	to	the	client:	[Hello	from	ipv6	client]

Now	we	can	write	any	message	on	the	client,	and	in	the	server	log	we	can	verify
that	the	message	is	sent:

Received	data	from	the	client:	[Hello	from	ipv6	client]

Sent	data	echoed	back	to	the	client:	[Hello	from	ipv6	client]

Received	data	from	the	client:	[This	is	a	new	message]

Sent	data	echoed	back	to	the	client:	[This	is	a	new	message]

In	this	screenshot,	we	can	see	the	execution	in	the	socket	server:

In	this	screenshot,	we	can	see	the	execution	in	the	socket	client:

Upon	receiving	the	exit	message,	the	server	will	close	the	connection.	The	client
has	also	received	an	exit	message	and	will	also	close	the	connection.

Understanding	netifaces	module	for
checking	IPv6	support	on	your
network
In	this	section,	the	reader	will	learn	how	to	use	the	netifaces	Python	module	to
check	IPv6	support.

Introduction	to	netifaces
If	you	want	to	query	the	network	interfaces	available	on	your	computer,	you	can
use	the	netifaces	module.	We	can	use	a	third-party	library,	netifaces,	to	find	out
whether	there	is	IPv6	support	on	your	machine.	You	can	install	it	with	the	pip
command:

pip	install	netifaces

For	more	information,	you	can	explore	the	netifaces	documentation:	https://pypi.org/project/netifa
ces/.

We	can	call	the	interfaces()	function	from	this	library	to	list	all	interfaces	present
in	the	system.	This	script	will	give	a	list	of	all	interfaces,	and	IPv4	and	IPv6
addresses	available	in	the	system.

You	can	find	the	following	code	in	the	check_interfaces.py	file:

#!/usr/bin/env	python3

import	itertools

from	netifaces	import	interfaces,	ifaddresses,	AF_INET,	AF_INET6

def	all_interfaces():

				for	interface	in	interfaces():

								print(ifaddresses(interface))

def	inspect_ipv4_addresses():

				links	=	filter(None,	(ifaddresses(x).get(AF_INET)	for	x	in	interfaces()))

				links	=	itertools.chain(*links)

				ip_v4_addresses	=	[x['addr']	for	x	in	links]

				return	ip_v4_addresses

def	inspect_ipv6_addresses():

				links	=	filter(None,	(ifaddresses(x).get(AF_INET6)	for	x	in	interfaces()))

				links	=	itertools.chain(*links)

				ip_v6_addresses	=	[x['addr']	for	x	in	links]

				return	ip_v6_addresses

	

if	__name__	==	'__main__':

				print(inspect_ipv4_addresses())

				print(inspect_ipv6_addresses())

				all_interfaces()

In	the	following	script,	we	are	checking	whether	the	Python	version	supports
IPv6	with	the	has_ipv6	property	from	the	socket	package.	With	the	netifaces
package,	we	can	get	more	information	for	each	interface,	such	as	Address	family,
netmask,	and	broadcast	addresses.

https://pypi.org/project/netifaces/

You	can	find	the	following	code	in	the	check_ipv6_support.py	file:

#!/usr/bin/env	python3

import	socket

import	netifaces

def	inspect_ipv6_support():

				print	("IPV6	support	built	into	Python:	%s"	%socket.has_ipv6)

				ipv6_addresses	=	{}

				for	interface	in	netifaces.interfaces():

								all_addresses	=	netifaces.ifaddresses(interface)

								print	("Interface	%s:"	%interface)

								for	family,addrs	in	all_addresses.items():

												fam_name	=	netifaces.address_families[family]

												print	('	Address	family:	%s'	%	fam_name)

In	the	previous	code	block,	we	used	the	netifaces	module	to	get	interfaces	and
addresses	related	with	these	interfaces.	Later,	for	each	IP	address	we	get
information	about	the	Address	family.	Depending	the	address	type,	we	use	an	array
called	ipv6_addresses	for	store	information	related	with	each	IP	address,	such
as	netmask	and	broadcast	addresses.	Finally,	we	check	the	ipv6_addresses	array	for
any	information	about	found	IPv6	addresses:

												for	addr	in	addrs:

																if	fam_name	==	'AF_INET6':

																				ipv6_addresses[interface]	=	addr['addr']

																print	('	Address	:	%s'	%	addr['addr'])

																nmask	=	addr.get('netmask',	None)

																if	nmask:

																				print	('	Netmask	:	%s'	%	nmask)

																bcast	=	addr.get('broadcast',	None)

																if	bcast:

																				print	('	Broadcast:	%s'	%	bcast)

				

				if	ipv6_addresses:

								print	("Found	IPv6	address:	%s"	%ipv6_addresses)

				else:

								print	("No	IPv6	interface	found!")

if	__name__	==	'__main__':

				inspect_ipv6_support()

This	is	the	execution	of	the	previous	script:

In	the	execution	of	the	script,	we	can	see	that	we	have	three	address	families
listed.	AF_LINK	is	the	link	layer	interface,	such	as	Ethernet,	AF_INET	is	the	IPv4
internet	address,	and	AF_INET6	represents	the	IPv6	internet	address.

Other	packages	for	getting	interfaces
There	are	other	Python	packages	that	are	not	specifically	designed	to	obtain
network	interfaces	in	a	computer,	but	they	have	some	function	for	doing	this
task.	For	example,	the	psutil	package	(https://pypi.org/project/psutil)	allows	tasks
related	to	process	and	system	monitoring	in	Python.

This	package	provides	the	net_if_addrs()	method	for	getting	information	related	to
network	interfaces:

import	psutil

psutil.net_if_addrs()

The	information	is	returned	in	a	dictionary	structure,	as	follows:

{'Local	Area	Connection*	11':	[snicaddr(family=<AddressFamily.AF_LINK:	-1>,	address='00-FF-C0-63-12-57',	netmask=None,	broadcast=None,	ptp=None),	snicaddr(family=<AddressFamily.AF_INET:	2>,	address='169.254.219.137',	netmask='255.255.0.0',	broadcast=None,	ptp=None),	snicaddr(family=<AddressFamily.AF_INET6:	23>,	address='fe80::f4ca:6a17:37a3:db89',	netmask=None,	broadcast=None,	ptp=None)],	'Ethernet':	[snicaddr(family=<AddressFamily.AF_LINK:	-1>}

This	method	returns	the	addresses	associated	with	each	network	interface	card
detected	in	the	operating	system.	The	information	is	returned	in	a	dictionary	data
structure	whose	keys	are	the	names	of	the	NIC,	and	the	value	is	a	list	of	tuples
for	each	address	assigned	to	the	NIC.	Each	named	group	includes	five	fields:

family:	Represents	the	family	for	Mac	address.
address:	The	primary	IP	address.
netmask

ptp:	References	the	destination	address	on	a	point-to-point	interface.
broadcast

With	this	package,	we	also	have	the	ability	to	get	socket	connections	in	our
computer	with	commands	such	as	netstat:

https://pypi.org/project/psutil

We	can	use	the	net_connections()	method	to	get	a	list	of	socket	connections
available	in	your	local	machine	in	the	same	way	that	we	can	use	the	netstat
command	that	is	available	in	many	operating	systems:

psutil.net_connections()

Here	is	the	output	from	executing	the	net_connections()	method:

[sconn(fd=115,	family=<AddressFamily.AF_INET:	2>,	type=<SocketType.SOCK_STREAM:	1>,	laddr=addr(ip='10.0.0.1',	port=48776),	raddr=addr(ip='93.186.135.91',	port=80),	status='ESTABLISHED',	pid=1254),

	sconn(fd=117,	family=<AddressFamily.AF_INET:	2>,	type=<SocketType.SOCK_STREAM:	1>,	laddr=addr(ip='10.0.0.1',	port=43761),	raddr=addr(ip='72.14.234.100',	port=80),	status='CLOSING',	pid=2987),

	sconn(fd=-1,	family=<AddressFamily.AF_INET:	2>,	type=<SocketType.SOCK_STREAM:	1>,	laddr=addr(ip='10.0.0.1',	port=60759),	raddr=addr(ip='72.14.234.104',	port=80),	status='ESTABLISHED',	pid=None),

	sconn(fd=-1,	family=<AddressFamily.AF_INET:	2>,	type=<SocketType.SOCK_STREAM:	1>,	laddr=addr(ip='10.0.0.1',	port=51314),	raddr=addr(ip='72.14.234.83',	port=443),	status='SYN_SENT',	pid=None)

	...]

In	the	following	script,	we	are	going	to	obtain	information	about	IPv4	and	IPv6
interfaces	with	the	psutil.net_if_addrs()	method.

You	can	find	the	following	code	in	the	check_interfaces_psutil.py	file:

#!/usr/bin/env	python3

import	socket

import	psutil

def	get_ip_addresses(family):

				for	interface,	snics	in	psutil.net_if_addrs().items():

								for	snic	in	snics:

												if	snic.family	==	family:

																yield	(interface,	snic.address)

if	__name__	==	'__main__':

				ipv4_list	=	list(get_ip_addresses(socket.AF_INET))

				ipv6_list	=	list(get_ip_addresses(socket.AF_INET6))

				print("IPV4	Interfaces",ipv4_list)

				print("IPV6	Interfaces",ipv6_list)

This	could	be	the	output	of	the	previous	script:

IPV4	Interfaces	[('Local	Area	Connection*	11',	'169.254.219.137'),	('Ethernet',	'10.80.92.211'),	('VirtualBox	Host-Only	Network',	'192.168.56.1'),	('Npcap	Loopback	Adapter',	'169.254.204.194'),	('Wi-Fi',	'169.254.52.200'),	('Local	Area	Connection*	2',	'169.254.234.2'),	('Loopback	Pseudo-Interface	1',	'127.0.0.1')]

IPV6	Interfaces	[('Local	Area	Connection*	11',	'fe80::f4ca:6a17:37a3:db89'),	('Ethernet',	'fe80::a568:f01f:d4ae:170'),	('VirtualBox	Host-Only	Network',	'fe80::e53f:e43b:ad07:9cab'),	('Npcap	Loopback	Adapter',	'fe80::8cd:714b:4e02:ccc2'),	('Wi-Fi',	'fe80::644d:7369:e8ca:34c8'),	('Local	Area	Connection*	2',	'fe80::856f:c54b:1d7e:ea02'),	('Teredo	Tunneling	Pseudo-Interface',	'fe80::ffff:ffff:fffe'),	('Loopback	Pseudo-Interface	1',	'::1')]

Using	the	netaddr	module	as	a
network-address	manipulation
library	for	Python
In	this	section,	you	will	learn	how	to	work	with	netaddr	for	network-address
manipulation	and	interoperability	between	IPv4	and	IPv6.

Operating	with	IPv6
The	next	module	that	we	are	going	to	study	allows	us	to	manipulate	the	network
address	and	the	interoperability	between	IPv4	and	IPv6.	For	example,	given	a
certain	IP	address,	we	can	obtain	it	in	the	v4	and	v6	formats.	The	easiest	way	to
install	netaddr	is	to	use	pip.	Download	and	install	the	latest	version	from	the
Python	repository	(http://pypi.python.org/pypi/pip)	and	run	the	following
command:

pip	install	netaddr

Also,	you	can	see	the	official	source	code	repository	here:	https://github.com/drkjam
/netaddr.

The	following	IPAddress	object	represents	a	single	IP	address	v6:

>>>	from	netaddr	import	*

	>>>	ipv6	=	IPAddress('::1')

	>>>	ipv6.version

	6

We	can	check	whether	we	have	full	support	for	the	IPv6	protocol:

>>>	ip	=	IPNetwork('fe80::beef:beef/64')

	>>>	str(ip),	ip.prefixlen,	ip.version

	('fe80::beef:beef/64',	64,	6)

	>>>	ip.network,	ip.broadcast,	ip.netmask,	ip.hostmask

	(IPAddress('fe80::'),	IPAddress('fe80::ffff:ffff:ffff:ffff'),	IPAddress('ffff:ffff:ffff:ffff::'),	IPAddress('::ffff:ffff:ffff:ffff'))

	>>>

Also,	we	can	interoperate	between	IPv4	and	IPv6	with	the	ipv6()	and	ipv4()
methods:

>>>	ip	=	IPAddress('127.0.0.1').ipv6()

	>>>	ip

	IPAddress('::ffff:127.0.0.1')

	>>>	ip.ipv4()

	IPAddress('127.0.0.1')

	>>>	ip.ipv6()

	IPAddress('::ffff:127.0.0.1')

If	we	are	working	with	IPv6,	it	can	be	interesting	that	addresses	could	be
compatible	also	with	IPv4:

http://pypi.python.org/pypi/pip
https://github.com/drkjam/netaddr

>>>	ip	=	IPAddress('127.0.0.1').ipv6(ipv4_compatible=True)

	>>>	ip

	IPAddress('::127.0.0.1')

	>>>	IPAddress('127.0.0.1').ipv6(ipv4_compatible=True).is_ipv4_compat()

	True

	>>>	IPNetwork('::1').ipv6(ipv4_compatible=True)

	IPNetwork('::1/128')

	>>>	IPNetwork('::1').ipv6(ipv4_compatible=True).ipv4()

	IPNetwork('0.0.0.1/32')

With	this	script,	we	can	extract	IPv6	information	from	network	interfaces,	and
with	the	netaddr	package	we	get	information	about	IP	version,	IP	prefix	length,
network	address,	and	broadcast	address.

You	can	find	the	following	code	in	the	extract_ipv6_info.py	file:

#!/usr/bin/env	python3

import	socket

import	netifaces

import	netaddr

def	extract_ipv6_info():

				print	("IPv6	support	built	into	Python:	%s"	%socket.has_ipv6)

				for	interface	in	netifaces.interfaces():

								all_addresses	=	netifaces.ifaddresses(interface)

								print	("Interface	%s:"	%interface)

								for	family,addrs	in	all_addresses.items():

												fam_name	=	netifaces.address_families[family]

												for	addr	in	addrs:

																if	fam_name	==	'AF_INET6':

																				addr	=	addr['addr']

																				has_eth_string	=	addr.split("%eth")

																				if	has_eth_string:

																								addr	=	addr.split("%eth")[0]

																				try:

																								print	("	IP	Address:	%s"	%netaddr.IPNetwork(addr))

																								print	("	IP	Version:	%s"	%netaddr.IPNetwork(addr).version)

																								print	("	IP	Prefix	length:	%s"	%netaddr.IPNetwork(addr).prefixlen)

																								print	("	Network:	%s"	%netaddr.IPNetwork(addr).network)

																								print	("	Broadcast:	%s"	%netaddr.IPNetwork(addr).broadcast)

																				except	Exception	as	e:

																								print	("Skip	Non-IPv6	Interface")

if	__name__	==	'__main__':

				extract_ipv6_info()

Understand	ipaddress	module	as	IPv4
and	IPv6	manipulation	library
In	this	section,	you	will	learn	to	work	with	IP	addresses	for	IPv4/v6	address
manipulation.	Here,	we	will	focus	on	IPv6	address	manipulation.

The	Python	ipaddress	module
The	ipaddress	module	simplifies	working	with	IPv4	and	IPv6	addresses	in	python.
In	this	section,	we	will	focus	on	the	IPv6	protocol	and	work	primarily	with	the
following	three	class	types:

IPv6Address:	Represents	a	single	IPv6	address
IPv6Network:	Represents	an	IPv6	network
IPv6Interface:	Represents	an	IPv6	interface

You	can	get	more	information	about	this	module	with	the	help	command	from
the	Python	interpreter:

The	IPv6Address	class	represents	an	IPv6	address	or	network.	To	create	these
objects	in	Python,	the	module	provides	some	basic	factory	functions	to	create
such	objects:

import	ipaddress

from	ipaddress	import	IPv6Address,	IPv6Network,	IPv6Interface

After	you	create	an	IPv6	object,	you	can	get	a	lot	of	information	out	of	the	class,
for	example,	whether	it	is	a	global	or	private	address,	the	prefix	length,	and
netmask.

In	this	screenshot,	we	can	see	the	methods	you	can	employ	to	check	these	use
cases:

IP	network	objects
When	working	with	an	IP	address	that	represents	a	network,	we	could	work	with
an	IPv4Network	or	IPv6Network	object	depending	on	the	IP	address	passed	as	the
argument.	For	this	task,	we	can	use	the	ip_network()	method	from	the	ipaddress
module	using	as	parameter	a	string	or	integer	representing	the	IP	network.

Let's	import	the	ipaddress	module	and	define	a	net6	network:

	>>>	import	ipaddress

	>>>	net6	=	ipaddress.ip_network('2001:db8::/48')

Now,	we	get	some	useful	information,	such	as	version,	netmask,	and	the
network/broadcast	address:

>>>	net6.version

	6

>>>	net6.netmask

	IPv6Address('ffff:ffff:ffff::')

Similarly,	you	can	find	the	network	and	the	broadcast	addresses	of	net6	by	doing
the	following:

	>>>	net6.network_address

	IPv6Address('2001:db8::')

	>>>	net6.broadcast_address

	IPv6Address('2001:db8:0:ffff:ffff:ffff:ffff:ffff')

Also,	we	can	get	the	number	of	addresses	net6	can	hold:

>>>	net6.num_addresses

	1208925819614629174706176

Subnetting	in	Python	with	IPv6
We	can	also	find	the	subnet	information	from	the	IPv6Network	objects,	as	follows:

>>>	subnets	=	list(net6.subnets())

	>>>	subnets

	[IPv6Network('2001:db8::/49'),	IPv6Network('2001:db8:0:8000::/49')]

The	ipaddress	module	includes	various	functions	to	create	subnets	and	supernets,	so
we	can	check	whether	a	network	overlaps:

>>>	ipnet	=	ipaddress.IPv6Network("2001:db8::/48")

	>>>	list(ipnet.subnets())

	[IPv6Network('2001:db8::/49'),	IPv6Network('2001:db8:0:8000::/49')]

We	can	use	the	subnets	method	to	expand	the	network	mask	and	obtain	new
networks:

>>>	list(ipnet.subnets(prefixlen_diff=4))

	[IPv6Network('2001:db8::/52'),	IPv6Network('2001:db8:0:1000::/52'),	IPv6Network('2001:db8:0:2000::/52'),	IPv6Network('2001:db8:0:3000::/52'),	IPv6Network('2001:db8:0:4000::/52'),	IPv6Network('2001:db8:0:5000::/52'),	IPv6Network('2001:db8:0:6000::/52'),	IPv6Network('2001:db8:0:7000::/52'),	IPv6Network('2001:db8:0:8000::/52'),	IPv6Network('2001:db8:0:9000::/52'),	IPv6Network('2001:db8:0:a000::/52'),	IPv6Network('2001:db8:0:b000::/52'),	IPv6Network('2001:db8:0:c000::/52'),	IPv6Network('2001:db8:0:d000::/52'),	IPv6Network('2001:db8:0:e000::/52'),	IPv6Network('2001:db8:0:f000::/52')]

Network	interface	objects
In	the	ipaddress	module,	a	convenient	class	is	used	to	represent	an	interface's	IP
configuration	in	detail.	The	IPv6	interface	class	lets	you	extract	the	IPv6Address
and	IPv6Network	objects	from	a	single	instance:

>>>	eth0	=	ipaddress.IPv6Interface('2001:db8::/48')

	>>>	eth0.ip

	IPv6Address('2001:db8::')

	>>>	eth0.with_prefixlen

	'2001:db8::/48'

	>>>	eth0.with_netmask

	'2001:db8::/ffff:ffff:ffff::'

	>>>	eth0.network

	IPv6Network('2001:db8::/48')

	>>>	eth0.is_private

	True

	>>>	eth0.is_reserved

	False

	>>>	eth0.is_multicast

	False

	>>>	eth0.is_link_local

	False

	>>>	eth0.is_global

	False

As	you	can	see,	a	network	interface,	eth0,	with	the	IPv6Address	class	has	been
defined.	It	has	some	interesting	properties,	such	as	IP	and	network	address.	In
the	same	way	as	with	the	network	objects,	you	can	check	whether	the	address	is
private,	reserved,	multicast,	link_local,	or	global.

Also,	we	can	work	with	the	ip_interface	method	to	extract	the	IP	address	and
network:

>>>	intf	=	ipaddress.ip_interface("2001:db8::/48")

	>>>	intf.ip

	IPv6Address('2001:db8::')

	>>>	intf.network

	IPv6Network('2001:db8::/48')

The	IP	address	objects
In	the	same	way	as	with	the	network	objects,	you	can	check	whether	the	address
is	private,	reserved,	or	multicast.

In	this	example,	the	loopback	interface	is	defined	with	the	::1	IP	address.	As	you
can	see,	the	is_loopback	property	returns	true:

	>>>	loopback	=	ipaddress.IPv6Interface('::1')

	>>>	loopback.is_private

	True

	>>>	loopback.is_reserved

	True

	>>>	loopback.is_multicast

	False

	>>>	loopback.is_loopback

	True

The	IP	address	classes	have	many	more	interesting	properties.	You	can	perform
some	arithmetic	and	logical	operations	on	those	objects.	For	example,	we	can
check	if	an	IP	address	is	part	of	a	network.

In	this	example,	we	check	whether	an	IP	is	a	part	of	a	specific	network.	Here,	a
network	net	has	been	defined	by	the	network	address,	which	is	2001:db8:0:1::/64,
and	the	membership	of	eth0	and	eth1	has	been	checked	for	whether	these
interfaces	are	part	of	the	network:

	>>>	net6	=	ipaddress.ip_network('2001:db8:0:1::/64')

	>>>	eth0	=	ipaddress.IPv6Interface('2001:db8:0:1::beef')

	>>>	eth1	=	ipaddress.IPv6Interface('2001:db7::/48')

>>>	eth0	in	net6

	True

	>>>	eth1	in	net6

	False

	>>>

Planning	IP	addresses	for	your	local
area	network
Suppose	you	have	a	CIDR	network	address	such	as
12:3456:78:90ab:cd:ef01:23:30/125,	and	you	want	to	generate	a	range	of	all	the	IP
addresses	that	it	represents	(12:3456:78:90ab:cd:ef01:23:30	to
12:3456:78:90ab:cd:ef01:23:37).	The	ipaddress	module	can	be	easily	used	to	perform
such	calculations:

	>>>	import	ipaddress

	>>>	net6	=	ipaddress.ip_network('12:3456:78:90ab:cd:ef01:23:30/125')

	>>>	net6

	IPv6Network('12:3456:78:90ab:cd:ef01:23:30/125')

	>>>	for	ip	in	net:

	...	print(ip)

	12:3456:78:90ab:cd:ef01:23:30

	12:3456:78:90ab:cd:ef01:23:31

	12:3456:78:90ab:cd:ef01:23:32

	12:3456:78:90ab:cd:ef01:23:33

	12:3456:78:90ab:cd:ef01:23:34

	12:3456:78:90ab:cd:ef01:23:35

	12:3456:78:90ab:cd:ef01:23:36

	12:3456:78:90ab:cd:ef01:23:37

In	this	example,	we	are	using	the	ip_network	method	from	the	ipaddress	module	to
generate	a	range	of	all	the	IP	addresses	that	represents	the	network.

You	can	find	the	following	code	in	the	net_planner_ipv6.py	file:

#!/usr/bin/env	python3

import	ipaddress	as	ip

IPV6_ADDR	=	'2001:db8:0:1::'

mask	=	input("Enter	the	mask	length:	")

mask	=	int(mask)

net_addr	=	IPV6_ADDR	+	'/'	+	str(mask)

print("Using	network	address:%s	"	%net_addr)

try:

				network	=	ip.ip_network(net_addr)

except:

				raise	Exception("Failed	to	create	network	object")

print("This	mask	will	give	%s	IP	addresses"	%(network.num_addresses))

print("The	network	configuration	will	be:")

print("\t	network	address:	%s"	%str(network.network_address))

print("\t	netmask:	%s"	%str(network.netmask))

print("\t	broadcast	address:	%s"	%str(network.broadcast_address))

Now	we	are	going	to	execute	the	previous	script	with	different	mask	lengths.

Here's	an	execution	with	a	mask	length	of	64:

	Enter	the	mask	length:	64

	Using	network	address:2001:db8:0:1::/64

	This	mask	will	give	18446744073709551616	IP	addresses

	The	network	configuration	will	be:

	network	address:	2001:db8:0:1::

	netmask:	ffff:ffff:ffff:ffff::

	broadcast	address:	2001:db8:0:1:ffff:ffff:ffff:ffff

Here's	an	execution	with	a	mask	length	of	68:

	Enter	the	mask	length:	68

	Using	network	address:2001:db8:0:1::/68

	This	mask	will	give	1152921504606846976	IP	addresses

	The	network	configuration	will	be:

	network	address:	2001:db8:0:1::

	netmask:	ffff:ffff:ffff:ffff:f000::

	broadcast	address:	2001:db8:0:1:fff:ffff:ffff:ffff

Summary
In	this	chapter,	we	reviewed	the	IPv6	protocol	and	the	standard	Python	libraries
for	IPv6	address	manipulation.	Three	third-party	libraries,	ipaddress,	netifaces,	and
netaddr,	were	presented	for	working	with	IPv6	and	address	manipulation	with
Python.	Also,	we	reviewed	the	socket	module	for	implementing	client-server
applications	for	sending	and	receiving	messages.

In	the	next	chapter,	we	will	introduce	Ansible	and	then	explore	some	Python
modules	for	working	with	Ansible	and	automating	networking	tasks.

Questions
1.	 Which	types	of	IPv6	addresses	are	created	automatically,	are	exclusively

used	in	local	subnets,	and	are	not	routable?
2.	 Which	IPv6	address	represents	the	loopback	address,	such	as	127.0.0.1	in

IPv4?
3.	 What	is	the	method	from	the	socket	library	that	we	can	use	to	get

information	related	to	the	IPv4	and	IPv6	protocols	from	a	specific	domain?
4.	 How	do	we	create	a	server	with	IPv6	support	with	the	socket	module?
5.	 What	method	from	the	netifaces	module	can	we	use	to	list	all	interfaces,	and

IPv4	and	IPv6	addresses	present	in	the	system?
6.	 What	are	the	address	families	available	when	we	are	working	with	the

netifaces	module?
7.	 What	is	the	alternative	module	to	netifaces	that	allows	us	to	get	socket

connections	and	interfaces	in	our	computer	with	commands	such	as	netstat?
8.	 How	do	we	use	the	netaddr	module	to	interoperate	between	IPv4	and	IPv6

addresses?
9.	 Which	classes	in	the	ipaddress	module	can	we	use	to	work	with	IPv6

addresses?
10.	 Which	functions	in	the	ipaddress	module	can	we	use	to	work	with	subnets

and	supernets?

Further	reading
Check	out	the	following	links	for	more	information	about	the	tools	we	talked
about	in	this	chapter.	The	official	Python	documentation	is	also	a	great	resource
for	some	of	the	topics	we	covered:

Presentations	about	the	IPv6	protocol:	https://insinuator.net/2019/01/ipv6-talks
-publications/

The	official	Python	3.7	documentation:	https://docs.python.org/3.7/howto/ipaddr
ess.html#ipaddress-howto

A	few	useful	functions	and	objects	for	manipulating	IPv4	and	IPv6
addresses	in	Python:	https://github.com/bd808/python-iptools

The	iptools	package	is	a	collection	of	utilities	for	working	with	IP	addresses:
http://python-iptools.readthedocs.org

Some	examples	and	the	official	documentation	for	the	netaddr	package:	https
://netaddr.readthedocs.io/en/latest/tutorial_01.htm

https://insinuator.net/2019/01/ipv6-talks-publications/
https://docs.python.org/3.7/howto/ipaddress.html#ipaddress-howto
https://github.com/bd808/python-iptools
http://python-iptools.readthedocs.org
https://netaddr.readthedocs.io/en/latest/tutorial_01.html

Performing	Network	Automation
with	Python	and	Ansible
Ansible	is	an	open	source,	general-purpose	automation	tool	written	in	Python.	It
can	be	used	to	automate	servers,	network	devices,	load	balancers,	and	more.	In
this	chapter,	you	will	learn	about	the	principles	of	Ansible	and	how	we	can
interact	with	it	from	Python.	Ansible	is	used	to	bring	structure	and	consistency	to
system	deployments,	implementations,	and	changes.	In	this	chapter,	we	will
explore	Ansible	and	learn	how	to	write	a	Python	script	to	do	a	networking-
automation	task	with	Ansible	and	how	to	write	an	Ansible	module	with	Python.

The	following	topics	will	be	covered	in	this	chapter:

Basics	of	Ansible
Ansible's	components	and	architecture
Automating	network	Python	tasks	with	Ansible
Writing	Ansible	modules	with	Python

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter09	folder:	https://github.com/PacktPublishing/Learning-Python-Ne
tworking-Second-Edition.

You	will	need	to	install	the	Python	distribution	in	your	local	machine	with	the
Unix	operating	system	and	have	some	basic	knowledge	of	network
protocols.	Also,	we	need	to	install	Ansible	following	the	official	documentation,
depending	our	operating	system:	https://docs.ansible.com/ansible/2.4/intro_installati
on.html.	

In	this	chapter	we	are	assuming	we	have	configured	a	network	with	three	IP
addresses:	192.168.1.160,	192.168.1.161,	and	192.168.1.162

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://docs.ansible.com/ansible/2.4/intro_installation.html

Basics	of	Ansible
In	this	section,	you	will	learn	about	the	basics	of	Ansible	for	network
automation,	including	how	to	install	and	configure	Ansible.

Ansible	introduction
Ansible	(https://docs.ansible.com)	is	a	software	that	automates	software
provisioning,	configuration	management,	and	application	deployment.	It	is
categorized	as	an	orchestration	tool.	In	other	words,	Ansible	allows	DevOps	to
manage	their	servers,	configurations,	and	applications	in	a	simple,	robust,	and
parallel	way.

Ansible	is	a	deployment-automation	tool,	similar	to	Puppet	and	Chef,	but	its
main	characteristic	is	that	it	is	agentless;	that	is,	it	does	not	need	to	install	an
agent	on	managed	hosts.

This	tool	manages	its	different	nodes	through	SSH	for	the	provisioning	of
services	based	on	Python	and	YAML	to	describe	the	actions	to	be	carried	out	and
the	configurations	that	should	be	propagated	to	the	different	nodes.

One	of	the	keys	to	the	success	of	Ansible	is	the	design	of	its	API,	which	has
resulted	in	the	community	being	able	to	provide	new	modules	that	continuously
incorporate	the	interaction	with	new	software.

Ansible	performs	a	deployment	of	configurations,	installations,	and	actions	on
multiple	machines,	thus	enabling	an	effective,	fast,	and	resource-saving
automated	management	capacity.	It	does	not	require	a	database	to	store	the
options	or	capabilities,	nor	the	tasks	to	be	performed.	Ansible	is	based	on	flat
text	files	written	in	the	YAML	language	that	will	be	used	to	define	the	machines,
the	variables,	and	the	tasks	to	be	performed.	To	perform	the	tasks,	Ansible	has	a
series	of	modules	that	are	capable	of	interacting	with	tools	within	managed
systems.

The	Ansible	configuration	is	defined	in	the	YAML	format.	Basically,	Ansible
translates	declarative	YAML	files	into	shell	commands	and	runs	them	on	remote
hosts	using	the	SSH	protocol:

-	hosts:	all

	tasks:

			-	name:	add	user	into	the	system

					user:	name=username	state=present	shell=/bin/bash

			-	name:	install	ngnix	into	the	system

https://docs.ansible.com/

					apt:	pkg=nginx	state=present

Installing	Ansible
Ansible	is	distributed	in	the	Fedora,	Red	Hat	Enterprise	Linux,	and	CentOS
operating	systems	in	package	form.	In	addition,	it	is	available	for	different	Linux
distributions,	apart	from	those	mentioned	previously,	and	we	can	find	it	available
in	package	search	engine	service:	https://pkgs.org/download/ansible.

For	instructions	on	installing	Ansible	on	other	operating	systems,	check	out	the	installation
document:	http://docs.ansible.com/ansible/intro_installation.html.

You	can	install	Ansible	on	Ubuntu-and	Debian-based	distributions	using	the
official	package	with	the	apt	command.	Here	we	see	the	steps	to	install	the
software	packages;	open	up	a	Terminal:

1.	 Execute	the	following	command:

$	sudo	apt-add-repository	ppa:ansible/ansible

In	this	screenshot,	you	can	see	the	execution	of	the	previous	command:

2.	 Execute	these	commands:

$	sudo	apt-get	install	python-software-properties

$	sudo	apt-get	update

$	sudo	apt-get	install	ansible

3.	 It's	possible	to	install	Ansible	on	Fedora	systems	using	the	official	package
in	the	yum	repository:

$	sudo	yum	-y	install	ansible	

https://pkgs.org/download/ansible
http://docs.ansible.com/ansible/intro_installation.html

4.	 Once	Ansible	is	installed,	you	can	check	the	Ansible	version	and	files
configuration	with	the	following	command:

$	ansible	--version

ansible	2.7.5

	config	file	=	/etc/ansible/ansible.cfg

	configured	module	search	path	=	Default	w/o	overrides

ansible	python	module	location	=	usr/lib/python3.7/site-packages/ansible

executable	location	=	/usr/bin/ansible

The	main	advantage	of	Ansible	is	that	it	allows	us	to	configure	many	nodes	in	a
parallel	and	synchronized	way.	There	are	different	ways	to	tell	Ansible	which
servers	you	are	going	to	manage.	The	easy	way	is	to	add	our	machines	to	the
inventory	that	Ansible	has	in	our	own	system,	which	is	located	in
/etc/ansible/hosts.	In	the	host	file,	we	can	add	the	IP	addresses	of	the	machines	we
want	to	configure.

Run	the	ansible	--help	command	to	see	the	available	options	for	executing
Ansible:

Configuring	Ansible
Ansible	has	its	default	configuration	file	in	/etc/ansible/ansible.cfg.	There	are
many	options	grouped	in	blocks.	These	are	the	blocks	and	the	most-used
options:

[defaults]:	The	default	configuration	options	for	the	execution	of	Ansible:
inventory:	Defines	the	location	of	the	inventory	file,	which	by	default	is
/etc/ansible/hosts

sudo_user:	The	user	with	whom	sudo	will	log	in;	by	default	it	is	root
forks:	The	number	of	Ansible	parallel	processes;	by	default	it	is	5
timeout:	The	timeout	for	an	SSH	connection;	the	default	is	10	seconds
log_path:	The	location	of	the	log	file;	by	default	/var/log/ansible.log
nocows:	If	its	value	is	0	and	we	have	cowsay	installed,	we	will	see	one	of
the	animals	reporting	the	playbooks;	by	default	it	is	1

[privilege_escalation]:	The	options	regarding	privilege	escalation
become:	If	True,	the	user	that	we	connect	with	will	try	to	scale	privileges;
by	default	False
become_method:	The	method	to	use	to	scale	privileges;	by	default	sudo
become_user:	The	user	it	will	be	scaled	to;	by	default	root

[ssh_connection]:	Options	related	to	the	SSH	connection
ssh_args:	The	options	that	Ansible	will	use	in	executing	SSH
control_path:	Ansible	makes	use	of	multiplex	to	reduce	the	number	of
connections,	this	option	defines	the	socket	file	to	create
scp_if_ssh:	The	mechanism	we	use	to	transfer	files;	by	default	it	will	try
to	use	sftp,	and	if	it	fails,	it	will	try	with	scp

[colors]:	Define	the	colors	of	the	different	Ansible	messages

Using	Ansible
Once	you	have	Ansible	set	up,	there	are	two	ways	to	use	it:

Ad-hoc	commands:	You	can	execute	a	command	on	the	remote	host	using
Ansible's	command-line	tool.
Using	playbooks:	You	can	write	your	own	file	configuration	for	all	or
specific	hosts	or	host	groups.	For	this	task,	you	can	use	YAML
configuration	specification	language.

YAML	(https://yaml.org/)	is	the	syntax	used	for	Ansible	playbooks	and	other
files.	The	YAML	documentation	(https://docs.ansible.com/ansible/latest/reference_ap
pendices/YAMLSyntax.html)	contains	the	full	specifications	of	the	syntax.

YAML	is	a	format	for	saving	data	objects	within	a	tree	structure.	Normally,	it	is
used	to	define	configuration	files,	although	it	is	also	possible	to	serialize	objects,
that	is,	to	write	the	structure	of	an	object	in	text	string	mode	so	that	later	it	can
be	recovered.

This	could	be	the	syntax	with	YAML	format:

development:		

				database:	mysql

				host:	localhost	

				username:	root	

				password:	passwd

https://yaml.org/
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Ansible's	components	and
architecture
In	this	section,	you	will	learn	about	Ansible's	components,	such	as	the	inventory
file,	and	architecture.

Ansible's	architecture
Ansible	is	a	free	software	tool	for	automated	deployments	in	IT	environments.
With	this	tool,	we	get	to	distribute	applications	or	configuration	files,	among
other	things,	for	the	different	nodes	of	our	environment.	This	is	known	as	an
orchestration	tool,	such	as	Puppet,	Chef,	or	Salt.	The	advantage	of	using	Ansible
is	that	we	do	not	need	to	install	agents	since	it	performs	these	tasks	through
SSH;	it	uses	YAML	as	a	serialization	format	to	describe	the	reusable
configurations	of	the	systems.

There	are	two	types	of	servers:

Controller	or	Ansible	manager:	The	machine	from	which	the
orchestration	begins
Managed	nodes:	The	machines	handled	by	the	controller	through	SSH

Ansible	manages	its	different	nodes	through	SSH	and	only	requires	Python	on
the	remote	server	where	it	will	run.

In	this	diagram,	we	can	see	the	components	of	the	Ansible	architecture:

The	Ansible	architecture	is	agentless	in	the	sense	that	there	is	no	software	or
agent	to	be	installed	on	the	client	that	communicates	back	to	the	server.	Instead
of	relying	on	remote	host	agents,	Ansible	uses	SSH	to	push	its	changes	to	the
remote	host.

The	idea	is	to	have	one	or	more	control	machines	from	where	you	can	issue	ad-
hoc	commands	to	remote	machines	(through	Ansible	tool)	or	execute	a	set	of
instructions	in	sequence	through	the	playbooks	(through	the	ansible-playbook	tool).

Basically,	we	use	the	Ansible	control	manager	machine,	which	will	normally	be
your	desktop,	laptop,	or	server.	From	there,	the	control	manager	uses	Ansible	to
distribute	the	configuration	changes	through	SSH.

Another	feature	of	Ansible	is	that	it	is	idempotent,	which	means	that	if	a	task	has

already	been	done	and	the	playbook	is	re-launched,	it	will	not	change	anything
since	the	task	has	already	been	executed.

The	host	inventory	file	determines	the	destination	machines	where	these	plays
will	be	executed.	The	Ansible	configuration	file	can	be	customized	to	reflect	the
configuration	of	your	environment.

Ansible's	inventory	file
We	use	Ansible	manage	and	automate	some	tasks	on	a	remote	host.	All	the	hosts
to	be	managed	by	the	Ansible	controller	are	listed	in	the	inventory	file.	The	file
is	located	by	default	in	the	following	path	/etc/ansible/hosts.

Basically,	this	contains	a	lists	of	all	the	hosts	that	Ansible	may	manage.	The
machines	can	be	identified	by	their	IP	address	or	by	their	hostname.	You	can	also
create	groups	with	similar	machines.	The	independent	hosts	must	be	at	the
beginning	of	the	file,	before	any	group.

Here	is	an	example	inventory	file:

192.168.1.160

[test-servers]

192.168.1.161

[production-servers]

192.168.1.162

This	configuration	file	specifies	three	hosts.	The	first	node	is	specified	by	its	IP
address	and	the	latter	two	hosts	are	specified	in	two	groups:	test-servers	and
production-servers.

By	default,	Ansible	will	look	for	the	inventory	file	in	/etc/ansible/hosts.	You	can
also	specify	an	alternative	path	for	an	inventory	file	with	the	-i	flag:

A	good	description	about	the	configuration	of	our	hosts	file	can	be	found	at:	https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

One	of	the	main	features	of	Ansible	is	the	capacity	to	manage	machines
remotely	through	SSH.	For	this	task,	make	sure	that	your	public	SSH	key	is	in
the	authorized_keys	file	on	the	remote	machines.	There	are	other	authentication
mechanisms	that	Ansible	supports,	such	as	providing	plain-text	passwords
(which	is	not	recommended)	and	Vault	(https://docs.ansible.com/ansible/2.4/vault.ht
ml).

Ansible	has	to	be	able	to	connect	to	these	machines	over	SSH,	so	you	will	likely
need	to	have	these	entries	in	your	.ssh/config	file.	Now,	we	can	use	the	ssh-keygen

https://docs.ansible.com/ansible/2.4/vault.html

command	for	generating	our	own	SSH	key.	For	this,	we	open	a	console	in	the
central	machine	and	execute	the	following	command:

$	ssh-keygen

Generating	public/private	rsa	key	pair.

	Enter	file	in	which	to	save	the	key	(/home/user/.ssh/id_rsa):

	Enter	passphrase	(empty	for	no	passphrase):

	Enter	same	passphrase	again:

	Your	identification	has	been	saved	in	/home/user/.ssh/id_rsa.

	Your	public	key	has	been	saved	in	/home/user/.ssh/id_rsa.pub.

Once	the	generation	process	is	finished,	we	have	two	files:	~/.ssh/id_rsa	and
~/.ssh/id_rsa.pub.

With	the	ssh-copy-id	command	we	can	copy	the	public	key	in	the	machine	we
want	the	controller	in:

$	ssh-copy-id	-i	~/.ssh/id_rsa.pub	root@192.168.1.161

This	is	the	output	of	the	preceding	command:

The	authenticity	of	host	'192.168.1.161'	can't	be	established.

	ECDSA	key	fingerprint	is	b5:47:7b:dd:d7:16:07:0e:97:5a:bd:6b:21:e9:b9:e6.

	Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

	/usr/bin/ssh-copy-id:	INFO:	attempting	to	log	in	with	the	new	key(s),	to	filter	out	any	that	are	already	installed

	/usr/bin/ssh-copy-id:	INFO:	1	key(s)	remain	to	be	installed	--	if	you	are	prompted	now	it	is	to	install	the	new	keys

	Number	of	key(s)	added:	1

	Now	try	logging	into	the	machine,	with:	"ssh	'192.168.1.161'"

	and	check	to	make	sure	that	only	the	key(s)	you	wanted	were	added.

Now	we	can	start	an	SSH	session	with	the	root	user	without	using	a	password.

Once	we	have	defined	our	inventory	file,	we	will	perform	our	first	execution,	as
follows:

$	ansible	-i	<path/to/custom/inventory>	<group|host>	-m	<module>	-a	“<module	arguments>”

In	the	inventory	file,	the	names	of	the	host	or	their	IP	addresses	are	assigned.
You	can	also	make	groupings	of	machines	based	on	their	role	(such	as	database
or	web	server).	Once	we	have	the	inventory,	we	can	start	using	Ansible,	for
example,	by	pinging	all	the	machines	or	installing	a	certain	package,	as	follows:

$	ansible	test-servers	-i	hosts	-m	ping

Automating	network	Python	tasks
with	Ansible
In	this	section,	you	will	learn	how	to	automate	network	Python	tasks	with
Ansible	and	how	to	run	playbooks.

Ansible	tasks
Basically,	a	task	is	a	single	unit	of	provisioning.	Each	play	must	define	the	hosts
on	which	the	tasks	will	be	executed.	For	example,	here's	the	syntax	to	install
apache	using	the	yum	command:

tasks:

-	name:	Install	Apache	Webserver

yum:	pkg=httpd	state=latest

Ad-hoc	commands
We	can	check	the	hostname	of	IP	addresses	available	in	the	hosts	file:

$	ansible	all	-a	"hostname"

	192.168.1.160	|	SUCCESS	|	rc=0	>>

	node-ansible1

	192.168.1.161	|	SUCCESS	|	rc=0	>>

	node-ansible2

The	preceding	command	is	equivalent	to	the	following:

$	ansible	192.168.1.160,192.168.1.161	-a	"hostname"

By	default,	Ansible	executes	the	commands	in	parallel	so	that	they	end	sooner.	If
we	have	two	servers,	we	are	practically	not	going	to	notice	the	difference,	but	as
soon	as	we	add	several	servers,	we	can	verify	that	it	goes	faster	if	we	parallelize
the	execution	of	commands.

Using	playbooks
Playbooks	basically	allow	us	to	manage	the	configuration	of	the	deployment	that
we	are	going	to	make	in	the	nodes.	In	them,	we	describe	the	configuration,	but
they	also	allow	us	to	orchestrate	a	series	of	steps	or	tasks	to	follow.

In	the	playbook	definition,	we	can	use	tasks,	groups	of	machines,	and	variables;
group	variables;	assign	values	to	variables,	conditional,	loops,	facts	(information
obtained	by	Ansible);	get	notifications	and	execution	of	actions	based	on	them,
apply	labels	to	tasks;	do	includes;	use	templates	(for	the	configuration	files	of
the	services,	for	example,	of	Apache	or	MySQL),	wait	for	conditions,	encrypt
files	that	contain	sensitive	information,	and	include	those	files	in	a	version
control	tool	without	risk	of	compromising	the	information;	and	we	can	use	roles
that	apply	all	these	things	according	to	the	function	that	we	want	a	machine	to
have.

This	is	the	basic	structure	of	a	playbook:

-	name:	Configure	webserver	with	git

		hosts:	webserver

		become:	true

		vars:

				package:	git

		tasks:

				-	name:	install	git

						apt:	name={{	package	}}	state=present

Each	playbook	must	contain	the	following	elements:

A	set	of	hosts	to	configure
A	list	of	tasks	to	execute	on	those	hosts

You	can	think	of	a	playbook	as	the	way	to	connect	hosts	with	tasks.	In	addition
to	specifying	hosts	and	tasks,	the	playbook	also	supports	a	number	of	optional
configurations.	Here	are	two	common	ones:

name:	A	comment	that	describes	what	the	work	is	about.	Ansible	will	print
this	when	the	work	begins	to	run.
vars:	A	list	of	variables	and	values.

A	playbook	specifies	a	set	of	tasks	to	be	run	and	which	hosts	to	run	them	on.	To
demonstrate	Ansible	playbook	execution,	we'll	automate	the	installation	of	the
Apache	server.	Following	is	the	file	configuration	used	for	this	use	case.

You	can	find	the	following	code	in	the	apache_server_playbook.yml	file:

-	hosts:	test-servers

		remote_user:	username

		become:	true

		vars:

				project_root:	/var/www/html

		tasks:		

		-	name:	Install	Apache	Server

				yum:	pkg=httpd	state=latest

		-	name:	Place	the	index	file	at	project	root

				copy:	src=index.html	dest={{	project_root	}}/index.html	owner=apache	group=apache	mode=0644

		-	name:	Enable	Apache	on	system	reboot

				service:	name=httpd	enabled=yes

				notify:	restart	apache

		handlers:

		-	name:	restart	apache

				service:	name=httpd	state=restarted

For	each	task,	you	can	specify	the	group	of	target	nodes	and	the	remote	user	that
will	execute	each	operation.	The	tasks	are	executed	in	order,	one	at	a	time,
against	the	nodes	described	in	the	hosts	section.	It	is	important	to	note	that	if	any
node	fails	to	execute	the	task,	it	will	be	removed	from	the	list.

The	objective	of	each	task	is	to	execute	a	module.	The	modules	will	only	be
executed	when	they	have	something	to	modify.	If	we	run	the	playbook	again	and
again,	we	can	guarantee	that	the	module	will	only	be	executed	when	there	is
something	to	modify.

If	there	are	actions	that	need	be	executed	at	the	end	of	each	task	in	the	playbook,
we	can	use	the	notify	keyword.	This	action	will	only	be	executed	once,	even
when	they	are	called	by	different	tasks.	In	the	previous	playbook,	we	are	using
notify:	restart	apache	to	restart	the	Apache	service.

In	this	playbook,	we	can	see	the	use	of	variables	set	by	the	vars	key.	This	key
takes	a	key-value	format,	where	the	key	is	the	variable	name	and	the	value	is	the
actual	value	of	the	variable.	This	variable	will	overwrite	other	variables	that	are
set	by	a	global	variable	file	or	from	an	inventory	file.

To	run	a	playbook,	we	use	the	ansible-playbook	command.	To	execute	the	previous

playbook,	simply	run	the	following	command:

$	ansible-playbook	apache_server_playbook.yml	-f	2

We	can	also	make	use	of	options	when	running	the	playbook.	For	example,	the	-
syntax-check	option	checks	the	syntax	before	running	the	playbook.	This	is	the
output	of	the	previous	command:

PLAY	[test-servers]

TASK	[setup]

ok:	[192.168.1.161]

TASK	[Install	Apache	Server]

changed:	[192.168.1.161]

TASK	[Place	the	index	file	at	project	root]

changed:	[192.168.1.161]

TASK	[Enable	Apache	on	system	root]

changed:	[192.168.1.161]

RUNNING	HANDLER[restart	apache]

changed:	[192.168.1.161]

PLAY	RECAP	***

192.168.1.161	:	ok=5	changed=4	unreachable=0	failed=0

The	next	playbook	will	just	execute	the	ping	module	(https://docs.ansible.com/ansibl
e/latest/modules/ping_module.html#ping-module)	on	all	our	hosts.

You	can	find	the	following	code	in	the	ping_playbook.yml	file:

-	hosts:	all

		tasks:

		-	name:	ping	all	hosts

				ping:

In	this	playbook,	we	are	going	to	install	Python	3	and	NGINX	in	all	machines
defined	in	the	inventory	file.

You	can	find	the	following	code	in	the	install_python_ngnix.yml	file:

-	hosts:	all

		tasks:

			-	name:	Install	Nginx

						apt:	pkg=nginx	state=installed	update_cache=true

https://docs.ansible.com/ansible/latest/modules/ping_module.html#ping-module

					notify:	Start	Nginx

			-	name:	Install	Python	3

					apt:	pkg=python3-minimal	state=installed

		handlers:

				-	name:	Start	Nginx

						service:	name=nginx	state=started

The	playbook	has	a	hosts	section	where	the	hosts	of	the	inventory	file	are
specified.	In	this	case,	we	are	processing	all	(hosts:	all)	machines	introduced	in
the	inventory	file.	Then	there	is	a	task	section	with	two	tasks	that	install
NGINX	and	Python	3.	Finally,	there	is	a	handlers	section	where	NGINX	starts
after	its	installation.	In	this	example,	we	are	passing	the	static	inventory	to
ansible-playbook	with	the	ansible-playbook	-i	path/to/static-inventory-file
myplaybook.yml	command:

$	ansible-playbook	-i	hosts	install_python_ngnix.yml	--sudo

This	is	the	output	of	the	previous	command:

PLAY	***

TASK	[setup]	***

	

ok:	[192.168.1.160]

ok:	[192.168.1.161]

ok:	[192.168.1.162]

TASK	[Install	Nginx]	***

changed:	[192.168.1.160]

changed:	[192.168.1.161]

changed:	[192.168.1.162]

TASK	[Install	Python	3]	**

changed:	[192.168.1.160]

changed:	[192.168.1.161]

changed:	[192.168.1.162]

RUNNING	HANDLER	[Start	Nginx]	**

changed:	[192.168.1.160]

changed:	[192.168.1.161]

changed:	[192.168.1.162]

PLAY	RECAP	***

192.168.1.160																					:	ok=4	changed=3	unreachable=0				failed=0

192.168.1.161																					:	ok=4	changed=3	unreachable=0				failed=0

192.168.1.162																					:	ok=4	changed=3	unreachable=0				failed=0

We	can	also	install	multiple	packages	in	a	single	task,	as	follows:

-	name:	Installing	Nginx	and	python

	apt:	pkg={{	item	}}

	with_items:

			-	ngnix

			-	python3-minimal

Ansible	also	provides	a	Python	API	for	running	an	Ansible	playbook
programmatically.

In	this	example,	we	are	using	VariableManager	from	the	ansible.vars.manager	package
and	InventoryManager	from	the	ansible.inventory.manager	package.	VariableManager	takes
care	of	merging	all	the	different	sources	to	give	you	a	unified	view	of	the
variables	available	in	each	context.	InventoryManager	uses	the	path	of	the	hosts
configuration	file	as	a	source.	We	use	PlaybookExecutor	from
ansible.executor.playbook_executor	to	execute	the	playbook	defined	in	the
playbook_path	variable.

You	can	find	the	following	code	in	the	execute_playbook.py	file:

!/usr/bin/env	python3

from	collections	import	namedtuple

from	ansible.parsing.dataloader	import	DataLoader

from	ansible.vars.manager	import	VariableManager

from	ansible.inventory.manager	import	InventoryManager

from	ansible.playbook.play	import	Play

from	ansible.executor.playbook_executor	import	PlaybookExecutor

def	execute_playbook():

				playbook_path	=	"playbook_template.yml"

				inventory_path	=	"hosts"

				Options	=	namedtuple('Options',	['connection',	'module_path',	'forks',	'become',	'become_method',	'become_user',	'check',	'diff',	'listhosts',	'listtasks',	'listtags',	'syntax'])

				loader	=	DataLoader()

				options	=	Options(connection='local',	module_path='',	forks=100,	become=None,	become_method=None,	become_user=None,	check=False,

																				diff=False,	listhosts=False,	listtasks=False,	listtags=False,	syntax=False)

				passwords	=	dict(vault_pass='secret')

After	importing	the	required	modules,	we	define	the	execute_playbook	method	to
initialize	options,	where	we	initialize	our	inventory	using	the	inventory	path.	To
execute	the	playbook,	we	use	the	PlaybookExecutor	class	and	pass	the	playbook
path,	inventory,	loader,	and	options	objects	as	parameters.	Finally,	we	use	the
run()	method	to	execute	the	playbook:

				inventory	=	InventoryManager(loader=loader,	sources=['inventory'])

				variable_manager	=	VariableManager(loader=loader,	inventory=inventory)

				executor	=	PlaybookExecutor(

																playbooks=[playbook_path],	inventory=inventory,	variable_manager=variable_manager,	loader=loader,		

																options=options,	passwords=passwords)		

				results	=	executor.run()		

				print(results)

if	__name__	==	"__main__":

				execute_playbook()

With	the	Python	API,	we	have	the	ability	to	run	tasks	in	the	same	way	we
execute	playbooks.

In	this	example,	we	create	an	inventory	using	the	path	of	the	hosts	configuration
file	as	a	source	and	the	variable	manager	takes	care	of	merging	all	the	different
sources	to	give	you	a	unified	view	of	the	variables	available	in	each	context.

Then	we	create	a	data	structure	dictionary	that	represents	our	play,	including
tasks,	which	is	basically	what	our	YAML	loader	does	internally.	In	this	case,	the
tasks	include	executing	ping	module	for	all	hosts	defined	in	the	inventory.

We	create	a	play	object	and	execute	the	load()	method	from	playbook	object.	This
method	will	also	automatically	create	the	task	objects	from	the	information
provided	in	the	play_source	variable.

To	execute	tasks,	we	need	to	instantiate	TaskQueueManager	from	the
ansible.executor.task_queue_manager	package,	which	configures	all	objects	to	iterate
over	the	host	list	and	execute	the	ping	module.	For	stdout_callback,	we	use	the
default	callback	plugin,	which	prints	to	stdout.

You	can	find	the	following	code	in	the	run_tasks_playbook.py	file:

#!/usr/bin/env	python3

from	collections	import	namedtuple

from	ansible.parsing.dataloader	import	DataLoader

from	ansible.vars.manager	import	VariableManager

from	ansible.inventory.manager	import	InventoryManager

from	ansible.playbook.play	import	Play

from	ansible.executor.task_queue_manager	import	TaskQueueManager

from	ansible.plugins.callback	import	CallbackBase

Options	=	namedtuple('Options',	['connection',	'module_path',	'forks',	'become',	'become_method',	'become_user',	'check',	'diff'])

#	initialize	objects

loader	=	DataLoader()

options	=	Options(connection='local',	module_path='',	forks=100,	become=None,	become_method=None,	become_user=None,	check=False,

	diff=False)

passwords	=	dict(vault_pass='secret')

#	create	inventory

inventory	=	InventoryManager(loader=loader,	sources=['/etc/ansible/hosts'])

variable_manager	=	VariableManager(loader=loader,	inventory=inventory)

#	create	play	with	tasks

play_source	=	dict(name	=	"myplaybook",hosts	=	'all',gather_facts	=	'no',

				tasks	=	[dict(action=dict(module='ping')),])

play	=	Play().load(play_source,	variable_manager=variable_manager,	loader=loader)

After	objects	initialization,	we	create	the	inventory	and	create	a	playbook	with
tasks	in	a	programmatic	way.	We	can	now	execute	the	playbook	using
the	TaskQueueManager	class,	passing	as	parameters	the	variables	created	in	the
previous	block	of	code:

#	execution

task	=	None

try:

				task	=	TaskQueueManager(inventory=inventory,variable_manager=variable_manager,

				loader=loader,options=options,passwords=passwords,stdout_callback='default')

				result	=	task.run(play)

finally:

				if	task	is	not	None:

								task.cleanup()

Writing	Ansible	modules	with	Python
In	this	section,	you	will	learn	about	Ansible	modules	and	writing	an	Ansible
module	with	Python.

Introduction	to	Ansible	modules
Ansible	has	an	extensible	and	modular	architecture	in	functionalities	which	are
organized	by	modules.	You	can	use	modules	directly	with	playbooks	or
through	ad-hoc	commands.

Ansible	modules	are	small	pieces	of	code	that	perform	one	function	(copying	a
file,	or	starting	or	stopping	a	daemon,	for	instance).	Ansible	comes	packaged
with	about	1,000	modules	for	all	sorts	of	use	cases.	You	can	also	extend	it	with
your	own	modules	and	roles.	Check	out	the	modules	list:	https://docs.ansible.com/a
nsible/latest/modules/list_of_all_modules.html.

For	example,	the	ping	module	(http://docs.ansible.com/ansible/ping_module.html)	is	a
test	module	that	connects	to	the	remote	host,	verifies	a	usable	Python
installation,	and	returns	the	output	pong	if	the	connection	with	the	host	is
successful.

Using	the	Ansible	command-line	tool,	we	can	use	the	ping	module	over	the	two
remote	nodes.	We	can	use	the	-m	flag	to	specify	the	Ansible	module	we	need,	and
the	-all	flag	for	all	the	hosts/groups	in	the	inventory.

The	simplest	way	to	use	Ansible	is	to	execute	ad-hoc	commands.	The	format	of
using	ad-hoc	commands	is	as	follows:

$	ansible	<host	group>	-i	<inventory	file>	-m	<module>	[-a	<argument	1>,	...	<argument	N>]

For	example,	if	you	want	to	check	whether	all	hosts	in	your	inventory	are	active,
you	can	use	the	ping	module	without	using	arguments.	To	verify	that	all	machines
available	in	out	inventory	are	active,	we	can	perform	a	ping.	The	-m	parameter
indicates	the	Ansible	module	we	are	using:

$	ansible	all	-m	ping

We	can	now	use	the	command-line	option	to	test	a	specific	host:

$	ansible	-i	hosts	192.168.1.160	-m	ping

	192.168.1.160	|	SUCCESS	>>	{

	"changed":	false,

	"ping":	"pong"

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
http://docs.ansible.com/ansible/ping_module.html

	}

If	you	have	no	connection	with	the	host,	it	returns	the	following	error	message:

192.168.1.160|	UNREACHABLE!	=>	{

				"changed":	false,

				"msg":	"Failed	to	connect	to	the	host	via	ssh.",

				"unreachable":	true

	}

The	previous	command	reads	that	we	will	use	the	host	file	as	the	inventory	file,
and	execute	the	ping	module	on	the	192.168.1.160	host.

We	can	use	Ansible's	shell	module	(http://docs.ansible.com/ansible/shell_module.html)
to	test	a	specific	group	defined	in	the	inventory	file:

$	ansible	-m	shell	-a	"hostname"	test-servers

192.168.1.161	|	SUCCESS	|	rc=0	>>

	ansible-node1

For	example,	if	we	want	to	execute	a	command	in	all	our	nodes,	we	can	do	the
following:

$	ansible	all	-a	"/etc/init.d/apache2	start"

In	this	way,	we	have	managed	to	start	the	Apache	service	of	all	the	nodes	we
have	previously	configured.

Ansible	has	many	modules	for	all	common	system	administration	tasks,	such	as
file	management,	user	administration,	and	package	management.	The	following
command	extracts	the	internal	and	external	IP	addresses	of	all	network	hosts:

$	ansible	all	-i	hosts	-m	shell	-a	'/sbin/ifconfig	|	grep	inet.*Bcast'"

192.168.1.161	|	SUCCESS	|	rc=0	>>

										inet	addr:10.0.1.10		Bcast:10.0.1.255	Mask:255.255.255.0

										inet	addr:192.168.1.161		Bcast:192.168.1.255	Mask:255.255.255.0

http://docs.ansible.com/ansible/shell_module.html

Implementing	Ansible	modules	with
Python
Ansible	comes	packed	with	a	lot	of	built-in	modules	(for	almost	all	tasks),	but
for	some	custom	tasks,	you	can	write	custom	modules	with	Python.

For	example,	we	can	use	the	common	Ansible	Boilerplate	module	as	we	can	see
in	the	documentation:	http://docs.ansible.com/ansible/dev_guide/developing_modules_gene
ral.html	or	https://docs.ansible.com/ansible/2.3/dev_guide/developing_modules_general.html.

We	can	develop	our	own	module	to	automate	input	from	a	playbook.	Ansible
also	provides	a	Python	library	to	parse	user	arguments	and	handle	errors	and
returns.	First,	we	will	import	the	AnsibleModule	class	from
the	ansible.module_utils.basic	package:

from	ansible.module_utils.basic	import	AnsibleModule

if	__name__	==	'__main__':

				main()

The	AnsibleModule	class	provides	lots	of	common	code	for	handling	returns	and
parsing	arguments.	In	the	following	example,	we	will	parse	three	arguments	for
the	host,	username,	and	password,	and	make	them	required	fields:

def	main():

				data	=	{"host":	{"default":	“localhost”,	"type":	"str"},

				"username":	{"default":	“username”,	"type":	"str"},

				"password":	{"default":	“password”,	"type":	"str"},

				"url":	{"default":	“url”,	"type":	"str"}

				}

				module	=	AnsibleModule(argument_spec	=	data)

All	variables	need	to	be	declared	with	dictionary	format	and	the	fields	are	passed
in	as	argument_spec	to	AnsibleModule.	You	can	then	access	the	value	of	the	arguments
through	the	module.params	dictionary	by	calling	the	get	method	on	module.params:

host	=	module.params.get('host')

username	=	module.params.get('username')

password	=	module.params.get('password')

url='http://'	+	host	+	'/authentication'

module.params.update({"url":	url})

http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/2.3/dev_guide/developing_modules_general.html

Finally,	we	return	the	module.params	value	with	all	data	values,	using	the	exit_json
method.	Ansible	uses	this	method	to	handle	success	providing	a	response	in
JSON	format	with	the	processing	data:

module.exit_json(changed=True,	meta=module.params)

Our	user_authenticate.yml	playbook	will	pass	four	variables	to	the
user_authenticate	module	(host,	username,	password,	and	url)	in	the	user_authenticate.py
file:

-	name:	My	Custom	Module

		hosts:	localhost

		tasks:

		-	name:	authenticating	user	service

				user_authenticate:	

						host:	"localhost"

						username:	"username"	

						password:	"password"

		url	:"url"

				register:	result

		-	debug:	var=result

Ansible	allows	us	to	register	the	values	returned	by	a	task	in	a	variable.	That
way,	we	can	work	with	them	from	another	task.	Depending	on	the	Ansible
module	used,	the	variable	will	keep	different	values.	The	keyword	used	in	this
case	is	register.

This	is	the	output	obtained	when	you	execute	$	ansible-playbook
user_authenticate.yml:

PLAY	[My	Custom	Module]

**

TASK	[authenticating	user	service]

**

ok:	[localhost]

TASK	[debug]

ok:	[localhost]	=>	{

"output":	{

"changed":	false,

"host":	"localhost",

"username":"username",

"password":	"password",

"url":	"http://localhost/authentication'",

}

}

PLAY	RECAP

localhost	:	ok=2	changed=0	unreachable=0	failed=0

Summary
In	this	chapter,	we	reviewed	Ansible	as	an	open	source	project	implemented	in
Python.	It	has	an	architecture	with	modules	that	can	handle	virtually	any
operating	system,	cloud	environment,	tool,	and	system-management	framework.
With	Ansible,	we	can	minimize	the	effort	and	time	it	takes	to	manage	remote
hosts.

In	the	next	chapter,	we	will	look	at	sockets	and	explore	the	Python	modules	that
work	with	sockets	for	the	TCP	and	UDP	protocols.

Questions
1.	 What	is	the	format	for	an	Ansible	configuration	file?
2.	 What	is	the	name	and	the	path	of	the	main	Ansible	configuration	file?	
3.	 Where	is	the	inventory	file	located	by	default	and	what	is	the	format	of	that

file?
4.	 What	are	the	two	ways	to	execute	commands	with	Ansible?
5.	 What	does	being	agentless	mean?
6.	 What	is	the	Ansible	command	to	check	the	hostname	of	the	IP	addresses

available	in	the	inventory	file?
7.	 How	can	we	use	one	Ansible	task	to	install	multiple	packages	in	the	hosts

defined	in	the	inventory	file?
8.	 What	is	the	main	class	that	the	Ansible	Python	API	provides	for	executing	a

playbook?
9.	 Which	Ansible	module	can	verify	a	Python	installation	connecting	to	the

remote	host	and	returns	the	response	if	the	connection	is	successful	with	the
host?

10.	 What	Python	package	and	class	provide	lots	of	common	code	for	handling
returns	and	parsing	arguments?

Further	reading
Check	out	the	following	links	for	more	information	about	the	topics	covered	in
this	chapter:

Ansible	examples	in	the	GitHub	repository:	https://github.com/ansible/ansible-
examples

The	latest	information	on	Ansible	Python	3	support:	https://docs.ansible.com/a
nsible/latest/reference_appendices/python_3_support.html

Ansible	best	practices:	https://docs.ansible.com/ansible/latest/user_guide/playboo
ks_best_practices.html

Other	repositories:	https://github.com/austincunningham/python-ansible
Ansible	Galaxy	is	a	helpful	tool	that	allows	users	to	share	their	modules	and
roles:	https://galaxy.ansible.com
Practice	with	Ansible:	https://www.katacoda.com/jonatanblue/scenarios/1
Automating	Python	with	Ansible	is	an	interactive	tutorial	about	how	to	use
the	Ansible	configuration-management	tool	to	run	Python	processes	on	a
remote	machine:	https://github.com/tdhopper/automating_python

https://github.com/ansible/ansible-examples
https://docs.ansible.com/ansible/latest/reference_appendices/python_3_support.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://github.com/austincunningham/python-ansible
https://galaxy.ansible.com
https://www.katacoda.com/jonatanblue/scenarios/1
https://github.com/tdhopper/automating_python

Section	4:	Sockets	and	Server
Programming
In	this	section,	you	will	learn	about	the	principles	of	socket	programming,
designing	a	multiprocessing-based	TCP	server,	asynchronous	programming,	and
dynamic	web	programming	in	Python	with	the	Flask	micro-framework.

This	section	contains	the	following	chapters:

Chapter	10,	Programming	with	Sockets
Chapter	11,	Designing	Servers	and	Asynchronous	Programming
Chapter	12,	Designing	Applications	on	the	Web

Programming	with	Sockets
This	chapter	will	introduce	you	to	the	basics	of	sockets	and	the	principles	of
UDP	and	TCP	through	examples	of	socket	programming	with	the	socket	module.
Along	the	way,	we'll	build	clients,	servers	with	TCP	and	UDP	protocols	with	the
IPv4	and	IPv6	protocols.	We	will	also	cover	non-blocking	and	asynchronous
programming	and	HTTPS	and	TLS	for	secure	data	transport.

The	following	topics	will	be	covered	in	this	chapter:

Basics	of	sockets
Working	with	UDP	and	TCP	sockets	in	Python	3.7
Working	with	IPv6	sockets	in	Python	3.7
Non-blocking	and	asynchronous	socket	I/O
HTTPS	and	securing	sockets	with	TLS

Technical	requirements
The	examples	and	the	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter10	folder:	https://github.com/PacktPublishing/Learning-Python-Ne
tworking-Second-Edition.

You	will	need	to	install	a	Python	distribution	on	your	local	machine	with	the
Unix	operating	system	and	have	some	basic	knowledge	of	network	protocols	to
be	able	to	work	through	this	chapter.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Basics	of	sockets
In	this	section,	you	will	learn	about	sockets,	which	are	the	main	component	that
allows	us	to	take	advantage	of	the	operating	system's	capabilities	to	interact	with
the	network.	You	can	think	of	sockets	as	a	point-to-point	communication	channel
between	a	client	and	a	server.

Sockets	introduction
Sockets	are	the	basis	of	IP,	but	we	can	also	use	them	to	take	advantage	of	it,	that
is,	through	sockets,	we	can	make	two	applications	communicate	with	each	other.
A	socket	in	programming	is	a	communication	tunnel	that	helps	two	applications
to	communicate	and	are	the	basis	of	the	internet	and	its	protocols,	such	as	HTTP,
FTP,	and	SMTP.

This	mechanism	emerged	in	the	early	80s	with	the	Unix	system	at	Berkeley,	to
provide	a	communication	channel	between	processes	and	have	the	same
functionality	as	communication	by	mail	or	telephone—that	is,	they	allow	a
process	to	speak	with	another,	even	when	they	are	in	different	machines.	This
interconnect	feature	makes	the	socket	concept	very	useful.

For	two	applications	to	communicate,	we	need	the	following:

Server	(the	listener):	The	server	always	listens	for	communications	in	a
specific	port.
Client:	Normally,	the	client	connects	to	the	server	through	the	port	and
starts	sending	requests	and	waiting	for	answers.
Transmission	channel:	This	can	be	a	port	of	entry	for	the	server	and	an
exit	port	for	the	client.
Protocol:	This	is	the	topic	of	conversation.	For	two	applications	to
communicate,	they	must	be	programmed	to	answer	each	other.

These	are	the	main	applications	for	using	sockets:

Server:	Application	that	is	waiting	for	the	client	to	connect
Client:	Application	that	connects	to	the	server
Client/server:	Application	that	is	a	client	and	server	at	the	same	time,	for
example,	a	chat	application,	that	can	send	messages	to	other	applications
and,	at	the	same	time,	wait	for	other	applications	to	send	messages	to	it

There	are	two	types	of	communication	between	applications:

Local:	When	the	applications	are	on	the	same	computer,	the	127.0.0.1	IP
address	or	localhost	is	used

Remote:	When	the	applications	are	on	different	computers,	the	client
application	connects	the	IP	address	and	server	port

The	sockets	allow	us	to	implement	a	client-server	or	peer-to-peer	architecture.
The	communication	must	be	initiated	by	one	of	the	programs,	which	is	called	the
client	program.	The	second	program	waits	for	another	to	initiate	the
communication.	For	this	reason,	it	is	called	the	server	program.

A	socket	is	a	process	or	thread	that	exists	in	the	client	machine	and	in	the	server
machine,	with	the	objective	that	the	server	and	the	client	read	and	write	the
information.	This	information	will	be	transmitted	by	the	different	network
layers.

When	a	client	connects	with	the	server,	a	new	socket	is	created.	The	server	can
continue	to	wait	for	a	connections	in	the	main	socket	and	communicate	with	the
connected	client,	in	the	same	way	a	socket	is	established	in	a	specific	port	of	the
client.

A	server	application	usually	listens	for	a	specific	port	that	is	waiting	for	a
connection	request	from	a	client;	once	it	is	received,	the	client	and	the	server	are
connected	so	that	they	can	communicate.	During	this	process,	the	client	is
assigned	to	a	port	number,	through	which	they	send	requests	to	the	server	and
receive	the	responses	from	it.

Similarly,	the	server	obtains	a	new	local	port	number	that	will	continue	listening
to	each	connection	request	of	the	original	port.

Sockets	are	a	universal	feature	in	any	programming	language,	and	also	without
limits;	an	application	made	in	PHP	can	communicate	with	another	made	in	Java
and	vice	versa,	or	an	application	made	in	Python	can	communicate	with	another
made	in	C.

Thanks	to	this	feature,	we	have	browsers,	mail	clients,	and	FTP	clients	that	work
and	communicate	with	the	servers,	regardless	of	the	operating	system,
technology,	or	programming	language.

Socket	types
Currently,	there	are	several	types	of	sockets,	and	each	one	is	usually	associated
with	a	type	of	protocol,	for	example:

SOCK_STREAM:	It	is	associated	with	the	TCP	protocol	and	provides	security	in
the	transmission	of	data	and	security	in	the	data	reception.
SOCK_DGRAM:	It	is	associated	with	the	UDP	protocol	and	indicates	that	packets
will	travel	in	the	datagram	type,	which	has	an	asynchronous	communication
style.

Sockets	can	also	be	classified	according	to	their	family.	We	have	Unix
sockets,	socket.AF_UNIX,	which	were	created	before	the	concept	of	networks	and
are	based	on	files,	socket.AF_INET	for	the	IPv4	protocol,	and	socket.AF_INET6	for
working	with	IPv6.

Getting	information	about	ports,
protocols,	and	domains
The	socket	module	provides	the	socket.getservbyport(port[,	protocol_name])	method,
which	allows	us	to	get	the	port	name	from	the	port	number.	For	example:

>>>	import	socket

>>>	socket.getservbyport(80)

'http'

>>>	socket.getservbyport(23)

'telnet'

We	can	also	get	information	about	the	service	name	at	the	application	level	if	we
pass	the	protocol	name	as	a	second	parameter.

You	can	find	the	following	code	in	the	socket_finding_service_name.py	file:

#!/usr/bin/env	python3

import	socket

def	find_service_name():

				protocolname	=	'tcp'

				for	port	in	[80,	25]:

								print	("Port:	%s	=>	service	name:	%s"	%(port,	socket.getservbyport(port,	protocolname)))

				print	("Port:	%s	=>	service	name:	%s"	%(53,	socket.getservbyport(53,	'udp')))

	

if	__name__	==	'__main__':

				find_service_name()

This	is	the	output	of	the	previous	script,	where	we	can	see	the	service	name	at
the	application	level	for	each	port:

Port:	80	=>	service	name:	http

Port:	25	=>	service	name:	smtp

Port:	53	=>	service	name:	domain

With	the	getaddrinfo()	method,	we	can	get	information	about	the	service	that	is
working	behind	a	domain.	In	this	example,	we	are	using	this	method	to	get	the
server	behind	the	www.packtpub.com	domain.

You	can	find	the	following	code	in	the	socket_getaddrinfo.py	file:

#!/usr/bin/env	python3

import	socket

try:

				infolist	=	socket.getaddrinfo('www.packtpub.com',	'www',	0,	socket.SOCK_STREAM,	0,	socket.AI_ADDRCONFIG	|	socket.AI_V4MAPPED	|	socket.AI_CANONNAME,)

except	socket.gaierror	as	e:

				print('Name	service	failure:',	e.args[1])

				sys.exit(1)

info	=	infolist[0]

print(infolist)

socket_args	=	info[0:3]

address	=	info[4]

s	=	socket.socket(*socket_args)

try:

				s.connect(address)

except	socket.error	as	e:

				print('Network	failure:',	e.args[1])

else:

				print('Success:	host',	info[3],	'is	listening	on	port	80')

This	is	the	output	of	the	previous	script,	where	we	can	see	that
the	varnish.packtpub.com	service	is	listening	on	port	80:

[(<AddressFamily.AF_INET:	2>,	<SocketKind.SOCK_STREAM:	1>,	0,	'varnish.packtpub.com',	('83.166.169.231',	80))]										Success:	host	varnish.packtpub.com	is	listening	on	port	80

We	can	use	the	socket.gethostbyname(hostname)	method	to	convert	a	domain	name
into	the	IPv4	address	format.	This	method	is	equivalent	to	the	nslookup	command
we	can	find	in	many	operating	systems:

">>"	import	socket

>	socket.gethostbyname('packtpub.com')

'83.166.169.231'

>>	socket.gethostbyname('google.com')

'216.58.210.142'

The	following	example	will	use	this	method	to	obtain	an	IP	address	from	a
domain.	You	can	find	the	following	code	in	the	socket_remote_info.py	file:

#!/usr/bin/env	python3

import	socket

def	get_remote_info():

				remote_host	=	'www.packtpub.com'

								try:

												print	("IP	address	of	%s:	%s"	%(remote_host,	socket.gethostbyname(remote_host)))

								except	socket.error	as	err_msg:

												print	("%s:	%s"	%(remote_host,	err_msg))

if	__name__	==	'__main__':

				get_remote_info()

Creating	a	TCP	client
The	following	code	is	an	example	of	a	simple	TCP	client.	If	you	look	carefully,
you	can	see	that	the	following	code	will	create	a	raw	HTTP	client	that	fetches	a
web	page	from	a	web	server.	It	sends	an	HTTP	GET	request	to	pull	the	home	page.

To	create	our	connection,	we	need	to	import	the	socket	module	and	use	the
connect	method	to	pass	the	(HOST,	PORT)	tuple	as	a	parameter.	With	the	send	method
from	the	socket	client	object,	we	send	the	data	for	the	request	and	get	the
response	in	the	data	object	using	the	recv	method.

You	can	find	the	following	code	in	the	socket_tcp_client.py	file:

import	socket

HOST	=	'www.yahoo.com'

PORT	=	80

BUFSIZ	=	4096

ADDR	=	(HOST,	PORT)

if	__name__	==	'__main__':

				client_sock	=	socket.socket(socket.AF_INET,socket.SOCK_STREAM)

				client_sock.connect(ADDR)

				while	True:

								data	=	'GET	/	HTTP/1.0\r\n\r\n'

								if	not	data:

												break

								client_sock.send(data.encode('utf-8'))

								data	=	client_sock.recv(BUFSIZ)

								if	not	data:

												break

								print(data.decode('utf-8'))

				client_sock.close()

This	is	the	output	of	the	socket_tcp_client.py	script	over	the	yahoo.com	domain	for
getting	information	about	the	server:

In	the	next	section,	we	are	going	to	study	a	specific	use	case	with	the	socket
module	to	obtain	information	about	a	server	that	is	running	in	a	specific	domain.

Banner	grabbing	with	the	socket
module
Banners	expose	information	related	to	the	name	of	the	web	server	and	the
version	that	is	running	on	the	server.	Some	expose	the	backend	technology	(PHP,
Java,	Python)	that's		used	and	its	version.	With	the	socket	module,	we	can	get
information	related	to	the	version	server	for	a	specific	domain.

The	simplest	way	to	obtain	the	banner	of	a	server	is	by	using	the	socket	module.
We	can	send	a	get	request	and	get	the	response	through	the	recvfrom()	method,
which	would	return	a	tuple	with	the	result.

You	can	find	the	following	code	in	the	socket_BannerGrabbing.py	file:

#!/usr/bin/python3

import	socket

import	re

sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

sock.connect(("www.packtpub.com",	80))

http_get	=	b"GET	/	HTTP/1.1\nHost:	www.packtpub.com\n\n"

data	=	''

try:

				sock.sendall(http_get)

				data	=	sock.recvfrom(1024)

				strdata	=	data[0]

				headers	=	strdata.splitlines()

				for	header	in	headers:

								print(header.decode())

except	socket.error:

				print	("Socket	error",	socket.errno)

finally:

				print("closing	connection")

				sock.close()

This	is	the	output	of	the	socket_BannerGrabbing.py	script	over	the	packtpub.com	domain
for	getting	information	about	the	server:

HTTP/1.1	301	https://www.packtpub.com/																			Location:	https://www.packtpub.com/

Accept-Ranges:	bytes

Date:	Fri,	15	Feb	2019	14:17:02	GMT

Age:	0

Via:	1.1	varnish

Connection:	close

X-Country-Code:	NL

Server:	packt

In	the	next	section,	we	are	going	to	study	a	specific	use	case	for	port	scanning	in
a	specific	IP	address	or	domain.

Port	scanning	with	sockets
Sockets	are	the	fundamental	building	blocks	for	network	communications,	and
we	can	easily	check	whether	a	specific	port	is	open,	closed,	or	filtered	by	calling
the	connect_ex()	method.	For	example,	we	could	have	a	script	that	reads	the	IP
address	and	a	list	of	ports	and	return	information	about	each	port	regarding
whether	it	is	open	or	closed.

You	can	find	the	following	code	in	the	socket_port_scan.py	file:

#!/usr/bin/env	python3

import	socket

ipaddress	=input("Enter	ip	address	or	domain	for	port	scanning:")

port_init=	input("Enter	first	port:	")

port_end	=	input("Enter	last	port:	")

for	port	in	range(int(port_init),	int(port_end)+1):

				sock=	socket.socket(socket.AF_INET,socket.SOCK_STREAM)

				sock.settimeout(5)

				result	=	sock.connect_ex((ipaddress,port))

				if	result	==	0:

								print(port,	"-->	Open")

				else:

								print(port,	"-->	Closed")

				sock.close()

This	is	the	output	of	the	previous	script	over	the	packtpub.com	domain	for	getting
information	about	the	port	states	between	80	and	85:

Enter	ip	address	or	domain	for	port	scanning:www.packtpub.com

Enter	first	port:	80

Enter	last	port:		85

80	-->	Open

81	-->	Closed

82	-->	Closed

83	-->	Closed

84	-->	Closed

85	-->	Closed

Inspecting	the	client	and	server
communication
The	interaction	between	the	client	and	server	through	the	exchange	of	network
packets	can	be	analyzed	using	any	network-packet-capturing	tool,	such	as
Wireshark.	You	can	configure	Wireshark	to	filter	packets	by	port	or	host.	In	this
case,	we	can	filter	by	port	80.	You	can	get	the	options	under	the	Capture	|	Options
menu	and	type	port	80	in	the	input	box	next	to	the	Capture	Filter	option,	as
shown	in	the	following	screenshot:

In	the	Interface	option,	we	choose	to	capture	packets	that	are	passing	through
any	interface.	Now,	run	the	preceding	TCP	client	to	connect	to	www.yahoo.com.	The
first	three	packets	establish	the	TCP	connection	by	a	three-way	handshake
between	the	client	and	server.	You	can	see	the	sequence	of	packets	being
exchanged	in	Wireshark:

http://www.yahoo.com

As	you	can	see,	the	HTTP	GET	request	has	other	components,	such	as	Request
URI	and	Request	Version.	Now,	you	can	check	the	HTTP	response	from	the	web
server	to	your	client.	It	comes	after	the	TCP	acknowledgment	packet,	that	is,	the
sixth	packet.	Here,	the	server	typically	sends	an	HTTP	response	code	(in	this
case,	the	response	is	200	ok),	content	length,	and	the	data	or	web	page	content.
The	structure	of	this	packet	is	shown	in	the	following	screenshot:

From	the	preceding	analysis	of	the	interaction	between	the	client	and	server,	you
can	now	understand,	at	a	basic	level,	what	happens	behind	the	scenes	when	you
visit	a	web	page	using	your	web	browser.	In	the	next	section,	you	will	be	shown
how	to	create	your	own	TCP	server	and	examine	the	interactions	between	your
personal	TCP	client	and	server.

In	this	section,	we	introduced	socket	concepts	and	reviewed	practical	use	cases
with	the	Python	socket	module,	such	as	creating	a	TCP	client,	banner	grabbing,

and	port	scanning.	We	also	reviewed	how	to	inspect	the	client	and	server's
communication	with	Wireshark.

Working	with	UDP	and	TCP	sockets
in	Python	3.7
In	this	section,	you	will	learn	about	basic	TCP/IP	socket	programming	using
Python	sockets	in	Python	3.7	with	the	TCP	and	UDP	protocols.

Introduction	to	the	TCP	and	UDP
protocols
The	properties	of	a	socket	depend	on	the	characteristics	of	the	protocol	in	which
they	are	implemented.	Generally,	communication	with	sockets	is	done	through	a
protocol	of	the	TCP/IP	family.	The	two	most	common	are	TCP	and	UDP.

When	implemented	with	the	TCP	protocol,	the	sockets	have	the	following
properties:

Connection-oriented.
The	transmission	of	all	packets	is	guaranteed	without	errors	or	omissions.
It	is	guaranteed	that	every	packet	will	reach	its	destination	in	the	same	order
in	which	it	was	transmitted.	These	properties	are	very	important	to
guarantee	the	correctness	of	the	programs	that	deal	with	this	information.

The	UDP	protocol	has	the	following	properties:

Is	a	non-connection-oriented	protocol
It	only	guarantees	that	if	a	message	arrives,	it	arrives	in	a	reliable	way
In	no	case	is	it	guaranteed	that	all	messages	will	arrive,	or	arrive	in	the
same	order	in	which	they	were	sent

Sockets	can	be	implemented	through	a	different	number	of	channels:	Unix
domain	sockets,	TCP,	and	UDP.	The	Python	socket	library	provides	specific
classes	to	handle	common	transport,	as	well	as	a	generic	interface	to	control
everything	else.

Starting	network	programming	with
Python
The	Python	socket	module	provides	an	interface	to	the	Berkeley	sockets	API
(another	name	for	internet	sockets).	Programming	networks	in	Python	depends
on	the	socket	objects.	To	create	an	object	of	this	type	in	Python,	we	must	use	the
socket.socket()	function	that's	available	in	the	socket	module,	with	the	socket_0	=
socket.socket(socket_family,	socket_type,	protocol=0)	syntax.

Let's	see	a	detailed	description	of	the	parameters:

socket_family:	This	is	the	family	of	protocols	that	is	used	as	a	transport
mechanism.	These	values	are	constants,	such	as	AF_INET,	PF_INET,	PF_UNIX,
and	PF_X25.
socket_type:	The	type	of	communication	between	the	two	ends	of	the
connection.	SOCK_STREAM	is	usually	used	for	connection-oriented	protocols	and
SOCK_DGRAM	for	protocols	without	connections.
protocol:	Normally	0,	this	parameter	is	used	to	identify	the	variant	of	a
protocol	within	a	family	and	socket	type.

These	are	the	methods	of	socket	objects:

socket.bind():	This	method	binds	an	address	(hostname,	port	number)	to	a
socket
socket.listen():	This	method	configures	and	starts	a	TCP	listener
socket.accept():	This	function	passively	accepts	a	TCP	client	connection,
waiting	until	the	connection	arrives

For	more	detailed	information	regarding	the	methods	in	the	socket	module,	you
can	check	out	the	documentation	at	https://docs.python.org/3/library/socket.html.

https://docs.python.org/3/library/socket.html

TCP	sockets
As	you	will	see	in	a	moment,	we	will	create	socket	objects	using	the
socket.socket()	function	and	specify	the	socket	type	as	socket.SOCK_STREAM.	When	we
do	this,	the	default	protocol	that	it	uses	is	the	TCP.

For	network	programming	in	Python,	we	need	to	create	a	socket	object	and	then
use	this	to	call	other	functions	of	the	module.	The	following	code	will	start	a
web	server	using	the	sockets	library.	The	script	waits	for	a	connection	to	be
made;	if	it	is	received,	it	will	show	the	received	bytes.

You	can	find	the	following	code	in	the	tcp_server.py	file:

#!/usr/bin/env	python3

import	socket

host	=	'127.0.0.1'

port	=	12345

BUFFER_SIZE	=	1024

#The	socket	objects	support	the	context	manager	type

#so	we	can	use	it	with	a	with	statement,	there's	no	need	to	call	socket_close	()

#We	create	a	TCP	type	socket	object

with	socket.socket(socket.AF_INET,socket.SOCK_STREAM)	as	socket_tcp:

				socket_tcp.bind((host,	port))

				#	We	wait	for	the	client	connection

				socket_tcp.listen(5)

				#	We	establish	the	connection	with	the	client

				connection,	addr	=	socket_tcp.accept()

				with	connection:

								print('[*]	Established	connection')

												while	True:

																#	We	receive	bytes,	we	convert	into	str

																data	=	connection.recv(BUFFER_SIZE)

																#	We	verify	that	we	have	received	data

																if	not	data:

																				break

																else:

																				print('[*]	Data	received:	{}'.format(data.decode('utf-8')))

																connection.send(data)

Let's	see	what	this	script	does	in	detail:

We	define	the	host,	the	port,	and	the	size	of	the	data	buffer	that	will	receive
the	connection
We	link	these	variables	to	our	socket	object	with	the	socket.bind()	method

We	establish	the	connection,	we	accept	the	data,	and	we	visualize	the	sent
data

Starting	a	client
We	are	going	to	write	a	program	that	defines	a	client	that	opens	the	connection	in
a	given	port	and	host.	This	is	very	simple	to	do	with	the	socket.connect	(hostname,
port)	function,	which	opens	a	TCP	connection	to	the	hostname	on	the	port.	Once
we	have	opened	an	object	socket,	we	can	read	and	write	this	in	as	any	other
object	of	input	and	output	(I/O),	always	remembering	to	close	it	as	we	close
files	after	working	with	them.

You	can	find	the	following	code	in	the	tcp_client.py	file:

#!/usr/bin/env	python3

import	socket

#	The	client	must	have	the	same	server	specifications

host	=	'127.0.0.1'

port	=	12345

BUFFER_SIZE	=	1024

MESSAGE	=	'Hello	world,this	is	my	first	message'

with	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	as	socket_tcp:

				socket_tcp.connect((host,	port))

				#	We	convert	str	to	bytes

				socket_tcp.send(MESSAGE.encode('utf-8'))

				data	=	socket_tcp.recv(BUFFER_SIZE)

This	script	is	similar	to	the	previous	one,	only	this	time,	we	define	a	MESSAGE
variable	that	simulates	the	data	packets,	we	make	the	connection	like	we	did
before,	and	call	the	socket.send(data)	method	after	converting	our	string	into	bytes
to	ensure	the	integrity	of	our	data.

To	execute	this	pair	of	sample	scripts,	we	must	first	execute	the	server	with	the
following	command:

$	python	tcp_server.py	&

We	append	the	ampersand,	&,	so	that	this	line	is	executed	and	the	process	is	open
and	waiting	for	another	command	(when	pressing	Enter,	the	server	will	be
executed	until	we	execute	the	client),	and	then	we	initiate	the	client:

$	python	tcp_client.py

The	result	in	the	server	part	is	as	follows:

$	python	tcp_server.py

	[*]	Established	connection

	[*]	Data	received:	Hello	world,this	is	my	first	message

Capturing	packets	in	a	loopback
interface
You	can	configure	Wireshark	to	capture	packets	in	localhost.	Visit	https://wiki.wir
eshark.org/CaptureSetup/Loopback	to	see	how	you	can	configure	the	loopback
interface	to	capture	packets	in	the	127.0.0.1	localhost	interface.

If	you	are	working	with	the	Unix	operating	system,	you	can	capture	traffic	directly	with
Wireshark.	For	more	information,	check	out	https://wiki.wireshark.org/CaptureSetup/Loopback.

If	you	are	working	with	the	Windows	operating	system,	you	may	have	problems
capturing	packets	on	localhost	with	Wireshark.	At	this	point,	the
recommendation	is	to	use	a	raw	socket	sniffer,	such	as	RawCap	(http://www.netrese
c.com/?page=RawCap),	to	capture	localhost	network	traffic	in	Windows.	You	can	read
more	about	this	at	http://www.netresec.com/?page=Blog&month=2011-04&post=RawCap-sniffer-
for-Windows-released.

The	following	is	the	execution	of	RawCap.exe	on	a	windows	system	for	capturing
packets	on	the	loopback	interface.	By	default,	it	creates	a	dumpfile.pcap	file	with
sniffed	packets.

In	the	following	screenshot,	we	can	see	the	execution	of	RawCap.exe	for	getting
machine	interfaces:

https://wiki.wireshark.org/CaptureSetup/Loopback
https://wiki.wireshark.org/CaptureSetup/Loopback
http://www.netresec.com/?page=RawCap
http://www.netresec.com/?page=Blog&month=2011-04&post=RawCap-sniffer-for-Windows-released

Inspecting	the	client	and	server
interaction
In	the	following	example,	we	are	capturing	packets	on	localhost	with	the
execution	of	the	TCP	client	and	server	on	port	12345.	When	the	client	sends	a
message	to	the	server,	we	can	capture	the	packets	that	are	being	exchanged	in	the
communication.

We	can	perform	packet	filtering	by	using	ip.dst	==	127.0.0.1,	as	shown	in	the
following	screenshot:

As	we	are	capturing	packets	on	a	non-standard	port,	Wireshark	doesn't	decode
data	packets	in	the	data	section	(as	shown	in	the	middle	pane	of	the	preceding
screenshot).	However,	you	can	see	the	decoded	text	on	the	bottom	pane,	where
the	server's	timestamp	is	shown	on	the	right-hand	side.

Code	limitations
If	we	execute	these	scripts	and	try	to	connect	to	that	same	server	from	another
Terminal,	it	will	simply	reject	the	connection.

The	BUFFER_SIZE	variable	of	the	1024	value	is	the	maximum	amount	of	data	that	can
be	received	at	one	time.	But	this	does	not	mean	that	the	function	will	return	1024
bytes.	The	send()	function	also	has	this	behavior.	send()	returns	the	number	of
bytes	sent,	which	may	be	less	than	the	size	of	the	data	that	is	sent.

Normally	in	network	programming,	to	make	a	server	handle	multiple
connections	at	the	same	time,	concurrency	or	parallelism	is	implemented.	The
problem	with	concurrency	is	that	it	is	complicated	to	make	it	work.	Of	course,	if
an	application	needs	scalability,	it	is	almost	an	obligation	to	apply	concurrency
for	the	use	of	more	than	one	processor	or	kernel.	Concurrency	aspects	will	be
reviewed	in	the	following	chapters.	In	the	next	section,	we	will	use	something
simpler	than	parallelism	that	is	much	easier	to	use:	the	selectors	library.

Creating	a	simple	UDP	client	and
UDP	server
In	this	section,	we	will	review	how	you	can	set	up	your	own	UDP	client-server
application	with	Python's	Socket	module.	The	application	will	be	a	server	that
listens	for	all	connections	and	messages	over	a	specific	port	and	prints	out	any
messages	to	the	console.

UDP	is	a	protocol	that	is	on	the	same	level	as	TCP,	that	is,	above	the	IP	layer.	It
offers	a	service	in	disconnected	mode	for	applications	that	use	it.	This	protocol	is
suitable	for	applications	that	require	efficient	communication	that	doesn't	have	to
worry	about	packet	loss.	The	typical	applications	of	UDP	are	internet	telephony
and	video	streaming.

In	this	example,	we'll	create	a	synchronous	UDP	server,	which	means	each
request	must	wait	until	the	end	of	the	process	of	the	previous	request.	The	bind()
method	will	be	used	to	associate	the	port	with	the	IP	address.

For	the	reception	of	the	message,	we	use	the	recvfrom()	method	and	for	sending
the	message,	we	use	sendto()	method.

Implementing	the	UDP	server
When	working	with	UDP,	the	only	difference	if	we	compare	this	to	working	with
TCP	in	Python	is	that	when	creating	the	socket,	you	have	to	use	SOCK_DGRAM	instead
of	SOCK_STREAM.	Use	the	following	code	to	create	the	UDP	server.
You	can	find	the	following	code	in	the	udp_server.py	file	inside	the	udp	folder:

#!/usr/bin/env	python3

import	socket,sys

UDP_IP_ADDRESS	=	"127.0.0.1"

UDP_PORT	=	12345

buffer=4096

socket_server=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)	#UDP

socket_server.bind((UDP_IP_ADDRESS,UDP_PORT))

while	True:

				print("Waiting	for	client...")

				data,address	=	socket_server.recvfrom(buffer)

				data	=	data.strip()

				print("Data	Received	from	address:	",address)

				print("message:	",	data)

				try:

								response	=	"Hi	%s"	%	sys.platform

				except	Exception	as	e:

								response	=	"%s"	%	sys.exc_info()[0]

				

				print("Response",response)

				socket_server.sendto(response.encode(),address)

				

socket_server.close()

In	the	preceding	code	for	implementing	the	UDP	server,	we	see	that
socket.SOCK_DGRAM	creates	a	UDP	socket,	and	data,	addr	=	s.recvfrom(buffer),	returns
the	data	and	the	source's	address.

Now	that	we	have	finished	our	server,	we	need	to	implement	our	client	program.
The	server	will	be	continuously	listening	on	our	defined	IP	address	and	port
number	for	any	received	UDP	message.	It	is	essential	that	this	server	is	run	prior
to	the	execution	of	the	Python	client	script,	or	the	client	script	will	fail.

Implementing	the	UDP	client
To	begin	implementing	the	client,	we	will	need	to	declare	the	IP	address	that	we
will	be	trying	to	send	our	UDP	messages	to,	as	well	as	the	port	number.	This	port
number	is	arbitrary,	but	you	must	ensure	you	aren't	using	a	socket	that	has
already	been	taken:

UDP_IP_ADDRESS	=	"127.0.0.1"

UDP_PORT	=	6789

message	=	"Hello,	Server"

Now,	it's	time	to	create	the	socket	through	which	we	will	be	sending	our	UDP
message	to	the	server:	clientSocket	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM).

Once	we've	constructed	our	new	socket,	it's	time	to	write	the	code	that	will	send
our	UDP	message:	clientSocket.sendto(Message,	(UDP_IP_ADDRESS,	UDP_PORT)).

You	can	find	the	following	code	in	the	udp_client.py	file	inside	the	udp	folder:

#!/usr/bin/env	python3

import	socket

UDP_IP_ADDRESS	=	"127.0.0.1"

UDP_PORT	=	12345

buffer=4096

address	=	(UDP_IP_ADDRESS	,UDP_PORT)

socket_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

while	True:

				message	=	input('Enter	your	message	>	')

				if	message=="exit":

								break

				socket_client.sendto(message.encode(),address)

				response,addr	=	socket_client.recvfrom(buffer)

				print("Server	response	=>	%s"	%	response)

socket_client.close()

In	the	preceding	code	snippet,	the	UDP	client	sends	a	single	line	of	text,	Hello
UDP	server,	and	receives	the	response	from	the	server.	The	following	screenshot
shows	the	request	that's	sent	from	the	client	to	the	server:

After	inspecting	the	UDP	client	and	server	packets,	we	can	easily	see	that	UDP
is	much	simpler	than	TCP.	It's	often	termed	as	a	connectionless	protocol	as	there
is	no	acknowledgment	or	error-checking	involved.

The	following	screenshot	shows	the	server's	response,	which	was	sent	to	the
client:

In	this	section,	we	introduced	the	UDP	and	TCP	protocols	and	the
implementation	of	applications	with	the	socket	module,	analyzing	use	cases	such
as	creating	a	TCP	client/server,	and	UDP	client	and	server	applications.	We	also
reviewed	how	to	inspect	the	client	and	server	communication	for	TCP	and	UDP
protocols	with	Wireshark.

Working	with	IPv6	sockets	in	Python
3.7
In	this	section,	you	will	learn	how	we	can	implement	IPv6	with	sockets	in
Python	3.7.

Implementing	the	IPv6	server
We	will	start	with	the	server	implementation	in	a	script	called	echo_server_ipv6.py.
The	first	lines	will	be	the	libraries	that	we	will	use,	which	are	socket	(network	and
connection	utilities)	and	subprocess	(which	will	allow	us	to	execute	commands	on
the	server):

import	socket

	import	subprocess

Then,	we	will	create	the	variables:	ip,	port,	max_connections,	and	server.	The
ip	variable	will	have	the	string	::1	value,	which	will	be	the	IPv6	address	of	the
localhost	server;	the	port	through	which	it	will	accept	connections	will	be	passed
as	an	argument	to	the	script;	and	max_connections	will	have	a	numerical	value	of	5,
which	indicates	the	maximum	number	of	simultaneous	connections.	Finally,	with
the	socket	method,	we	tell	Python	to	wait	for	connection	with	the	following
parameters:

socket.AF_INET6:	Indicates	that	we	are	using	the	IPv6	protocol
socket.SOCK_STREAM:	Indicates	the	type	of	socket	that	we	are	creating,	which
uses	the	TCP	protocol	as	a	basis	and	ensures	that	messages	that	are	sent	to
the	destination	arrive	in	the	same	order	in	which	they	were	sent

For	example:	server_socket	=	socket.socket(socket.AF_INET6,socket.SOCK_STREAM).

Assign	to	server.bind	the	values	of	IP	and	port,	and	to	server.listen	the	number	of
maximum	connections,	shown	as	follows:

dataConection	=	(host,port)

	server_socket.bind(dataConection)

	#	We	assign	the	maximum	number	of	connections

	server_socket.listen(maxConnections)

Finally,	we	use	the	server_socket.accept()	method	to	wait	for	connections	from	the
client:

print("Waiting	connections	in	%s:%s"	%(host,	port))

connection,	address	=	server_socket.accept()

print	('Connected	to',	address)

If	any	data	that's	received	from	the	client	is	a	command,	the	logic	could	be
executing	that	command	with	the	subprocess	package	and	run	method.	You	can
find	the	full	documentation	about	the	subprocess	module	at	https://docs.python.org/3
.7/library/subprocess.html.	For	this	example,	we	need	the	command	to	execute	in	a
string	and	the	stdout	parameter	to	save	the	command	output	in	the	response
variable:

if	"command"	in	data.decode():

	s,command	=	data.decode().split("/")

	print("Command:"+command)

	response	=	subprocess.run([command],	stdout=subprocess.PIPE)

	print(response.stdout)

	connection.send(response.stdout)

	print	("Sent	data	command	back	to	the	client:	[%s]"	%response.stdout.decode())

You	can	find	the	full	server	implementation	that's	given	in	the	following	code	in
the	echo_server_ipv6.py	file:

#!/usr/bin/env	python3

import	argparse	

import	socket

import	subprocess

IPV6_ADDRESS	=	'::1'

#	Up	to	5	clients	can	connect

maxConnections	=	5

def	echo_server_ipv6(port,	host=IPV6_ADDRESS):

				#	Creating	the	server	with	ipv6	support

				#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

				#	socket.SOCK_STREAM	to	use	TCP/IP

				try:

								server_socket	=	socket.socket(socket.AF_INET6,socket.SOCK_STREAM)

								dataConection	=	(host,port)

								server_socket.bind(dataConection)

								

								#	We	assign	the	maximum	number	of	connections

								server_socket.listen(maxConnections)

				except	socket.error	as	err:

								print	("Socket	error:	%s"	%err)

								server_socket.close()

				print("Waiting	connections	in	%s:%s"	%(host,	port))

				connection,	address	=	server_socket.accept()

				print	('Connected	to',	address)

				

If	we	continue	analyzing	the	code,	we	can	see	how	our	infinite	loop	is	listening
for	client	connections.	For	each	message	it	receives,	it	will	transform	it	into	a
command	for	execution	with	the	subprocess	module:

				while	True:

								data	=	connection.recv(4096)

https://docs.python.org/3.7/library/subprocess.html

								print	("Received	data	from	the	client:	[%s]"	%data.decode())

								if	"command"	in	data.decode():

												s,command	=	data.decode().split("/")

												print("Command:"+command)

												response	=	subprocess.run([command],	stdout=subprocess.PIPE)

												print(response.stdout)

												connection.send(response.stdout)

												print	("Sent	data	command	back	to	the	client:	[%s]"	%response.stdout.decode())

								if	data.decode()	==	"exit":

												connection.send(bytes("exit".encode('utf-8')))

												break

								if	"command"	not	in	data.decode():

												connection.send(data)

												print	("Sent	data	echoed	back	to	the	client:	[%s]"	%data.decode())

	

				print("-------	CLOSE	CONNECTION	---------")

				connection.close()

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser(description='IPv6	Socket	Server')

				parser.add_argument('--port',	action="store",	dest="port",	type=int,	required=True)

				given_args	=	parser.parse_args()

				port	=	given_args.port

				echo_server_ipv6(port)

After	implementing	the	server,	we	started	to	implement	our	client,	which	will
send	the	messages	to	the	socket	that	was	opened	by	the	server.

Implementing	the	IPv6	client
First,	we	need	to	configure	the	data	to	connect	to	the	server	and	send	initial	data
to	the	server:

client	=	socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM)

client.connect	((host,	port))

message	=	"Hello	from	ipv6	client"

print	("Send	data	to	server:	%s"	%message)

client.send(bytes(message.encode('utf-8')))

data	=	client.recv(4096)

print	('Received	initial	message	from	server:',	data.decode())

Then,	we	will	create	a	loop	and	use	the	send	and	recv	methods	from	the	socket
client	to	transmit	information	from	the	client	to	the	server.	We	use	the	exit
message	to	close	the	connection	between	the	client	and	server.

You	can	find	the	following	code	in	the	echo_client_ipv6.py	file:

#!/usr/bin/env	python3

import	argparse

import	socket

IPV6_ADDRESS	=	'::1'

def	echo_client_ipv6(port,	host=IPV6_ADDRESS):

				#	Configure	the	data	to	connect	to	the	server

				#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

				#	socket.SOCK_STREAM	to	use	TCP/IP

				#	These	protocols	must	be	the	same	as	on	the	server

				try:

								client	=	socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM)

								client.connect	((host,	port))

								print	("Connected	to	the	server	--->%	s:%	s"%	(host,	port))

				except	socket.error	as	err:

								print	("Socket	error:%s"	%err)

								client.close()

				

				#	send	initial	data	to	server

				message	=	"Hello	from	ipv6	client"

				print	("Send	data	to	server:	%s"	%message)

				client.send(bytes(message.encode('utf-8')))

				data	=	client.recv(4096)

				print	('Received	initial	message	from	server:',	data.decode())

If	we	continue	analyzing	the	code,	we	can	see	how	our	infinite	loop	requests	the
introduction	of	messages	and	commands	that	are	entered	by	the	user	to	send

them	to	the	server:

				while	True:

								message	=	input("Write	your	message	>	")

								client.send(bytes(message.encode('utf-8')))

								data	=	client.recv(4096)

								print	('Received	from	server:',	data.decode())

								if	data.decode()	==	"exit":

												break;

								command	=	input("Write	your	command	>	")

								command	=	"command/"+command

								client.send(bytes(command.encode('utf-8')))

								data	=	client.recv(4096)

								print	('Received	command	server:',	data.decode())

				print("-------	CLOSE	CONNECTION	---------")

				client.close()

	

if	__name__	==	'__main__':	

				parser	=	argparse.ArgumentParser(description='IPv6	socket	client')

				parser.add_argument('--port',	action="store",	dest="port",	type=int,	required=True)

				given_args	=	parser.parse_args()

				port	=	given_args.port

				echo_client_ipv6(port)

Executing	client	and	server
We	start	the	server	with	the	echo_server_ipv6.py	Python	command	and	wait	for	a
connection:

usage:	echo_server_ipv6.py	[-h]	--port	PORT

We	must	pass	the	port	for	listening	connections	as	an	argument:

$	python	echo_server_ipv6.py	--port	7575

Waiting	connections	in	::1:7575

Next,	we	start	the	client	with	the	same	port	parameter:

$	python	echo_client_ipv6.py	--port	7575

	Connected	to	the	server	--->::1:7575

	Send	data	to	server:	Hello	from	ipv6	client

Received	initial	message	from	server:	Hello	from	ipv6	client

	

We	will	see	that	the	server	has	already	found	the	connection:

Connected	to	('::1',	5223,	0,	0)

	Received	data	from	the	client:	[Hello	from	ipv6	client]

	Sent	data	echoed	back	to	the	client:	[Hello	from	ipv6	client]

Now	we	can	write	any	message	and	command	on	the	client,	and	in	the	server	log
we	can	verify	that	the	message	was	sent	and	that	the	command	was	executed.

In	the	following	screenshot,	we	can	see	the	execution	in	the	socket	server:

In	the	following	screenshot,	we	can	see	the	execution	in	the	socket	client	and	the
output	when	sending	messages	and	commands:

We	analyzed	the	implementation	of	a	client-server	application	with	an	IPv6
protocol	for	sending	messages	and	commands	and	the	execution	of	them	on	the
server.

Non-blocking	and	asynchronous
socket	I/O
In	this	section,	you	will	learn	about	socket	programming	with	non-blocking
socket	I/O.

Introducing	non-blocking	I/O
First,	we	are	going	to	review	a	simple	example	of	non-blocking	I/O	for	the
socket	server.	This	script	will	run	a	socket	server	and	listen	in	a	non-blocking
style.	This	means	that	you	can	connect	more	clients	who	won't	be	necessarily
blocked	for	I/O.

You	can	find	the	following	code	in	the	server_socket_async.py	file:

#!/usr/bin/env	python3

import	socket

if	__name__	==	'__main__':

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				#unset	blocking

				sock.setblocking(0)

				sock.settimeout(0.5)

				sock.bind(("127.0.0.1",	12345))

				socket_address	=sock.getsockname()

				print("Asynchronous	socket	server	launched	on	socket:	%s"	%str(socket_address))

				while(1):

								sock.listen(1)

From	a	client	point	of	view,	when	we	make	a	socket	non-blocking	by	calling
setblocking(0),	it	will	never	wait	for	the	operation	to	complete.	So,	when	we	call
the	send()	method,	it	will	put	as	much	data	in	the	buffer	as	possible	and	return.

You	can	find	the	following	code	in	the	client_socket_async.py	file:

#!/usr/bin/env	python3

import	socket

if	__name__	==	'__main__':

				sock	=	socket.socket()

				sock.connect(("127.0.0.1",	12345))

				#setting	to	non-blocking	mode

				sock.setblocking(0)

				data	=	"Hello	Python"

				sock.send(data.encode())

The	client-server	model	with	multiple
connections
If	we	are	working	with	Python	version	3.4+,	there	is	a	module	called	selectors,
which	provides	an	API	for	quickly	building	an	object-oriented	server	based	on
the	I/O	primitives.	The	documentation	and	an	example	of	this	is	available	at	https
://docs.python.org/3.7/library/selectors.html.

In	this	example,	we	are	going	to	implement	a	server	that	controls	several
connections	using	the	selectors	package.

You	can	find	the	following	code	in	the	tcp_server_selectors.py	file:

#!/usr/bin/env	python3

import	selectors

import	types

import	socket

selector	=	selectors.DefaultSelector()

def	accept_connection(sock):

				connection,	address	=	sock.accept()

				print('Connection	accepted	in	{}'.format(address))

				#	We	put	the	socket	in	non-blocking	mode

				connection.setblocking(False)

				data	=	types.SimpleNamespace(addr=address,	inb=b'',	outb=b'')

				events	=	selectors.EVENT_READ	|	selectors.EVENT_WRITE

				selector.register(connection,	events,	data=data)

In	the	previous	code	block,	we	defined	the	accept_connection()	method	for
accepting	connections	from	the	clients,	put	the	socket	in	non-blocking	mode,	and
registered	a	selector	for	capturing	read	and	write	events.	In	the	following	code
block,	we	are	defining	the	service_connection()	method	for	differentiating	messages
marked	as	event	read	selector	and	messages	marked	as	event	write	selector:

def	service_connection(key,	mask):

				sock	=	key.fileobj

				data	=	key.data

				if	mask	&	selectors.EVENT_READ:

								recv_data	=	sock.recv(BUFFER_SIZE)

				if	recv_data:

								data.outb	+=	recv_data

				else:

https://docs.python.org/3.7/library/selectors.html

								print('Closing	connection	in	{}'.format(data.addr))

								selector.unregister(sock)

								sock.close()

				if	mask	&	selectors.EVENT_WRITE:

								if	data.outb:

												print('Echo	from	{}	to	{}'.format(repr(data.outb),	data.addr))

												sent	=	sock.send(data.outb)

												data.outb	=	data.outb[sent:]

In	the	following	block	of	code,	we	can	see	our	main	program	for	establishing
the	host,	port,	and	BUFFER_SIZE	constants,	and	configuring	our	socket	in	non-
blocking	mode.	We	will	also	register	the	socket	to	be	monitored	by	the	selector
functions:

if	__name__	==	'__main__':

				host	=	'localhost'

				port	=	12345

				BUFFER_SIZE	=	1024

				#	We	create	a	TCP	socket

				socket_tcp	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				#	We	configure	the	socket	in	non-blocking	mode

				socket_tcp.setblocking(False)

				socket_tcp.bind((host,	port))

				socket_tcp.listen()

				print('Openned	socket	for	listening	connections	on	{}	{}'.format(host,	port))

				socket_tcp.setblocking(False)

				#	We	register	the	socket	to	be	monitored	by	the	selector	functions

				selector.register(socket_tcp,	selectors.EVENT_READ,	data=None)

				while	socket_tcp:

								events	=	selector.select(timeout=None)

								for	key,	mask	in	events:

												if	key.data	is	None:

																accept_connection(key.fileobj)

												else:

																service_connection(key,	mask)

				socket_tcp.close()

				print('Connection	finished.')

Let's	explore	our	implementation	a	bit	more:

Like	before,	we	defined	the	variables	that	are	necessary	to	link	with	the
socket:	host,	port,	BUFFER_SIZE,	and	MESSAGE.

We	configured	the	socket	for	non-blocking	mode	with
socket_tcp.setblocking(False).	Socket	module	functions	return	a	value
immediately,	they	have	to	wait	for	a	system	call	to	complete	to	return	a
value.	When	we	configure	the	socket	in	non-blocking,	we	make	sure	our
application	does	not	stop	waiting	for	a	response	from	the	system.
We	start	a	while	loop	in	which	the	first	line	is	events	=	sel.select	(timeout	=
None).	This	function	blocks	until	there	are	sockets	ready	to	be	written/read.
Then	it	returns	a	list	of	pairs	(key,	event),	one	for	each	socket.	The	key	is	a

SelectorKey	that	contains	a	fileobj	attribute.	Key.fileobj	is	the	socket	object,	and
mask	is	an	event	mask	for	operations	that	are	ready.
If	key.data	is	None,	we	know	that	it	comes	from	the	socket	that	is	open	and	we
need	to	accept	the	connection.	We	call	the	accept_connection()	function	that
we	defined	to	handle	this	situation.
If	key.data	is	not	None,	it	is	a	client	socket	that	is	ready	to	be	accepted	and	we
need	to	address	it.	So	we	call	the	service_connection()	function	with	key	and
mask	as	arguments,	which	contain	everything	we	need	to	operate	the
socket.

Now,	let's	look	at	an	implementation	of	a	client.	It	is	quite	similar	to	the
implementation	of	the	server	but	instead	of	waiting	for	connections,	the	client
starts	to	initiate	connections	with	the	start_connections()	function.

You	can	find	the	following	code	in	the	tcp_client_selectors.py	file:

#!/usr/bin/env	python3

import	socket

import	selectors

import	types

selector	=	selectors.DefaultSelector()

messages	=	['This	is	the	first	message',	'This	is	the	second	message']

BUFFER_SIZE	=	1024

def	start_connections(host,	port,	num_conns):

				server_address	=	(host,	port)

				for	i	in	range(0,	num_conns):

								connid	=	i	+	1

								print('Starting	connection	{}	towards	{}'.format(connid,	server_address))

								socket_tcp	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

								#	We	connect	using	connect_ex	()	instead	of	connect

								socket_tcp.connect_ex(server_address)

								events	=	selectors.EVENT_READ	|	selectors.EVENT_WRITE

								data	=	types.SimpleNamespace(connid=connid,

																msg_total=sum(len(m)	for	m	in	messages),	recv_total=0,															

																messages=list(messages),outb=b'')

								selector.register(socket_tcp,	events,	data=data)

				events	=	selector.select()

								for	key,	mask	in	events:

												service_connection(key,	mask)

	

In	the	previous	code	block,	we	defined	the	start_connections()	method	to	connect
with	the	server	and	register	a	selector	for	capturing	read	and	write	events.	In	the
following	code	block,	we	define	the	service_connection()	method	for	differentiating
messages	marked	as	event	read	selector	and	event	write	selector:

def	service_connection(key,	mask):

				sock	=	key.fileobj

				data	=	key.data

				if	mask	&	selectors.EVENT_READ:

								recv_data	=	sock.recv(BUFFER_SIZE)

								if	recv_data:

												print('Received	{}	from	connection	{}'.format(repr(recv_data),	data.connid))

												data.recv_total	+=	len(recv_data)

								if	not	recv_data	or	data.recv_total	==	data.msg_total:

												print('Closing	connection',	data.connid)

												selector.unregister(sock)

												sock.close()

				if	mask	&	selectors.EVENT_WRITE:

								if	not	data.outb	and	data.messages:

												data.outb	=	data.messages.pop(0).encode()

								if	data.outb:

												print('Sending	{}	to	connection	{}'.format(repr(data.outb),	data.connid))

												sent	=	sock.send(data.outb)

												sock.shutdown(socket.SHUT_WR)

												data.outb	=	data.outb[sent:]

if	__name__	==	'__main__':

				host	=	'localhost'

				port	=	12345

				BUFFER_SIZE	=	1024

				start_connections(host,	port,	2)

Now,	we	execute	our	new	server	and	client	implementation	for	multiple
connections:

$	python	tcp_server_selectors.py	&

	Openned	socket	for	listening	connections	on	localhost	12345

$	python	tcp_server_selectors.py	&																																			

	$	python	tcp_client_selectors.py

	Starting	connection	1	towards	('localhost',	12345)

	Starting	connection	2	towards	('localhost',	12345)

	Connection	accepted	in	('127.0.0.1',	7107)

	Connection	accepted	in	('127.0.0.1',	7109)

	Sending	'This	is	the	first	message'	to	connection	1

	Sending	'This	is	the	first	message'	to	connection	2

	Closing	connection	in		('127.0.0.1',	7107)

	Closing	connection	in		('127.0.0.1',	7109)

As	we	can	see,	our	clients	communicate	with	our	server	and	it	echoes	to	verify
that	the	messages	were	received.

In	this	section,	we	looked	at	non-blocking	I/O	with	the	socket	and	selectors
modules	to	build	an	object-oriented	server	based	on	the	I/O	primitives.

HTTPS	and	securing	sockets	with
TLS
In	this	section,	you	will	learn	how	we	can	implement	secure	sockets	with	TLS
and	the	SSL	module.	We	will	demonstrate	how	simple	TCP	sockets	can	be
wrapped	with	TLS	and	used	to	carry	encrypted	data.

Implementing	the	SSL	client
You	have	probably	come	across	the	discussion	around	secure	web
communication	using	SSL,	or	more	precisely	TLS,	which	is	adopted	by	many
other	high-level	protocols.	Let's	see	how	we	can	wrap	a	plain	sockets	connection
with	SSL.	Python	has	a	built-in	SSL	module	that	serves	this	purpose.

In	the	following	example,	we	would	like	to	create	a	plain	TCP	socket	and
connect	to	an	HTTPS-enabled	web	server.	We	can	establish	that	connection
using	the	SSL	module	and	check	the	various	properties	of	the	connection.	For
example,	to	check	the	identity	of	the	remote	web	server,	we	can	see	whether	the
hostname	is	the	same	in	the	SSL	certificate,	as	we	expect	it	to	be.	The	following
is	an	example	of	a	secure	socket-based	client.

You	can	find	the	following	code	in	the	ssl_client.py	file:

#!/usr/bin/python3

import	socket

import	ssl

from	ssl	import	wrap_socket,	CERT_NONE,	PROTOCOL_TLSv1,	SSLError

from	ssl	import	SSLContext

from	ssl	import	HAS_SNI

from	pprint	import	pprint

TARGET_HOST	=	'www.google.com'

SSL_PORT	=	443

#	Use	the	path	of	CA	certificate	file	in	your	system

CA_CERT_PATH	=	'certfiles.crt'

def	ssl_wrap_socket(sock,	keyfile=None,	certfile=None,cert_reqs=None,	ca_certs=None,	server_hostname=None,ssl_version=None):

				context	=	SSLContext(ssl_version)

				context.verify_mode	=	cert_reqs

				if	ca_certs:

								try:

												context.load_verify_locations(ca_certs)

								except	Exception	as	e:

												raise	SSLError(e)

				if	certfile:

								context.load_cert_chain(certfile,	keyfile)

				if	HAS_SNI:	#	OpenSSL	enabled	SNI

								return	context.wrap_socket(sock,server_hostname=server_hostname)

				return	context.wrap_socket(sock)

In	the	preceding	code,	we	have	declared	our	ssl_wrap_socket()	method,	which
accepts	the	socket	as	a	parameter	and	information	about	the	certificate.	This

method	internally	checks	the	certificate	and	loads	the	information	in	the	context
object	to	return	the	SSLContext	object.	The	following	code	is	our	main	program,
which	asks	the	user	for	the	destination	host	and	calls	the	previous	method	for
extracting	remote	host	certificate	details	with	the	getpeercert()	method	from
the	SSLContext	object:

if	__name__	==	'__main__':

				hostname	=	input("Enter	target	host:")	or	TARGET_HOST

				client_sock	=	socket.socket(socket.AF_INET,socket.SOCK_STREAM)

				client_sock.connect((hostname,	443))

				ssl_socket	=	ssl_wrap_socket(client_sock,ssl_version=PROTOCOL_TLSv1,

				cert_reqs=ssl.CERT_REQUIRED,

				ca_certs=CA_CERT_PATH,server_hostname=hostname)

				print(ssl_socket.cipher())

				print("Extracting	remote	host	certificate	details:")

				cert	=	ssl_socket.getpeercert()

				pprint(cert)

				if	not	cert	or	('commonName',	TARGET_HOST)	not	in	cert['subject'][4]:

								raise	Exception("Invalid	SSL	cert	for	host	%s.	Check	if	this	is	a	man-in-the-middle	attack!")

				ssl_socket.write('GET	/	\n'.encode('utf-8')

				pprint(ssl_socket.recv(1024).split(b"\r\n"))

				ssl_socket.close()

				client_sock.close()

If	you	run	the	preceding	example,	you	will	see	the	details	of	the	SSL	certificate
of	a	remote	web	server,	such	as	www.google.com.	Here,	we	have	created	a	TCP
socket	and	connected	it	to	HTTPS	port	443.	Then,	that	socket	connection	is
wrapped	into	SSL	packets	using	our	ssl_wrap_socket()	function.	This	function
takes	the	following	parameters	as	arguments:

sock:	TCP	socket
keyfile:	SSL	private	key	file	path
certfile:	SSL	public	certificate	path
cert_reqs:	Confirmation	of	whether	certificate	is	required	from	the	other	side
to	make	a	connection	and	whether	a	validation	test	is	required
ca_certs:	Public	certificate	authority	certificate	path
server_hostname:	The	target's	remote	server's	hostname
ssl_version:	The	intended	SSL	version	to	be	used	by	the	client

At	the	beginning	of	the	SSL	socket-wrapping	process,	we	created	an	SSL	context
using	the	SSLContext()	class.	This	is	necessary	to	set	up	the	SSL	connection-
specific	properties.	Instead	of	using	a	custom	context,	we	could	also	use	a
default	context,	which	is	supplied	by	default	with	the	SSL	module,	using	the
create_default_context()	function.	You	can	specify	whether	you'd	like	to	create
client-	or	server-side	sockets	using	a	constant.	The	following	is	an	example	for

creating	a	client-side	socket:	context	=	ssl.create_default_context(Purpose.SERVER_AUTH).

The	SSLContext	object	takes	the	SSL	version	argument,	which	in	our	example	is	set
to	PROTOCOL_TLSv1,	or	you	should	use	the	latest	version.	Note	that	SSLv2	and	SSLv3
are	broken	and	they	should	not	be	used	in	any	production	server	because	it	could
cause	serious	security	problems.

In	the	preceding	example,	CERT_REQUIRED	indicates	that	the	server	certificate	is
necessary	for	the	connection	to	continue,	and	that	this	certificate	will	be
validated	later.

If	the	CA	certificate	parameter	has	been	presented	with	a	certificate	path,	the
load_verify_locations()	method	is	used	to	load	the	CA	certificate	files.

This	will	be	used	to	verify	the	peer	server	certificates.	If	you'd	like	to	use	the
default	certificate	path	on	your	system,	you'd	probably	call	another	context
method:	load_default_certs(purpose=Purpose.SERVER_AUTH).

When	we	operate	on	the	server	side,	the	load_cert_chain()	method	is	usually	used
to	load	the	key	and	certificate	file	so	that	clients	can	verify	the	server's
authenticity.

Finally,	the	wrap_socket()	method	is	called	to	return	an	SSL-wrapped	socket.	Note
that	if	the	OpenSSL	library	comes	with	Server	Name	Indication	(SNI)	support
enabled,	you	can	pass	the	remote	server's	host	name	while	wrapping	the	socket.
This	is	useful	when	the	remote	server	uses	different	SSL	certificates	for	different
secure	services	using	a	single	IP	address,	for	example,	name-based	virtual
hosting.

If	you	run	the	preceding	SSL	client	code,	you	will	see	the	cipher	type	by	calling
the	cipher()	method	and	the	properties	of	the	SSL	certificate	of	the	remote	server,
as	shown	in	the	following	screenshot.	This	is	used	to	verify	the	authenticity	of
the	remote	server	by	calling	the	getpeercert()	method	and	comparing	it	with	the
returned	hostname.

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	script	for
getting	information	about	the	certificate	that	is	using	a	specific	domain:

Interestingly,	if	any	other	fake	web	server	wants	to	pretend	to	be	Google's	web
server,	it	simply	can't	do	that.	At	this	point	we	could	verify	that	the	SSL
certificate	is	signed	by	an	accredited	certification	authority	and	check	if
accredited	CA	has	been	compromised/subverted.	This	form	of	attack	to	your	web
browser	is	commonly	referred	to	as	a	man-in-the-middle	(MITM)	attack.

In	the	following	example,	we	are	using	the	wrap_socket()	method	to	get	the	SSL
socket	and	we	use	the	match_hostname()	method	from	that	socket	to	check	the
certificate.

You	can	find	the	following	code	in	the	ssl_client_check_certificate.py	file:

#!/usr/bin/env	python3

import	socket,	ssl,	sys

from	pprint	import	pprint

TARGET_HOST	=	'www.google.com'

SSL_PORT	=	443

#Use	the	path	of	CA	certificate	file	in	your	system

CA_CERT_PATH	=	'certfiles.crt'

if	__name__	==	'__main__':

				hostname	=	input("Enter	target	host:")	or	TARGET_HOST

				client_sock	=	socket.socket(socket.AF_INET,socket.SOCK_STREAM)

				client_sock.connect((hostname,	443))

				#	Turn	the	socket	over	to	the	SSL	library

				ssl_socket	=	ssl.wrap_socket(client_sock,

				ssl_version=ssl.PROTOCOL_TLSv1,cert_reqs=ssl.CERT_REQUIRED,	ca_certs=CA_CERT_PATH)

				print(ssl_socket.cipher())

				try:

								ssl.match_hostname(ssl_socket.getpeercert(),	hostname)

				except	ssl.CertificateError	as	ce:

								print('Certificate	error:',	str(ce))

								sys.exit(1)

				print("Extracting	remote	host	certificate	details:")

				cert	=	ssl_socket.getpeercert()

				pprint(cert)

				ssl_socket.close()

				client_sock.close()

If	the	hostname	doesn't	match	the	name	that	appears	on	the	certificate,	the	script
execution	will	throw	an	exception	of	the	ssl.CertificateError	type:

Enter	target	host:www.google.com

('ECDHE-RSA-AES128-SHA',	'TLSv1/SSLv3',	128)

Certificate	error:	hostname	'other_hostname'	doesn't	match	'www.google.com'

In	the	previous	examples,	we	used	CA_CERT_PATH	=	'certfiles.crt',	which	contains	the	path	of	the
CA	certificate	file	in	your	system.	You	can	also	generate	your	own	certificate	using	specific
tools,	such	as	OpenSSL	(https://www.openssl.org).	There	are	other	methods	we	can	use	to	generate
a	certificate	for	a	specific	domain,	such	as	the	web	service	(http://www.selfsignedcertificate.com/).

https://www.openssl.org
http://www.selfsignedcertificate.com/
http://www.selfsignedcertificate.com/

Inspecting	standard	SSL	client	and
server	communication
Now,	we	are	going	to	capture	packets	with	Wireshark	when	executing	the	script
showed	in	the	previous	section	to	see	the	communication	between	the	client	and
the	domain	server.

The	following	screenshot	shows	the	interaction	between	the	SSL	client	and	the
remote	server:

Let's	examine	the	SSL	handshake	process	between	the	client	and	the	server:

In	the	first	step	of	an	SSL	handshake,	the	client	sends	a	Hello	message	to	the
remote	server,	saying	what	it	is	capable	of	in	terms	handling	key	files,
encrypting	messages,	doing	message	integrity	checks,	and	so	on.
Then,	it	sends	the	TLS	version	1.0	and	a	random	number	to	generate	a
master	secret	to	encrypt	the	subsequent	message	exchanges.	This	is	helpful
for	preventing	any	third-party	from	looking	inside	the	packets.
Finally,	the	random	numbers	that	are	seen	in	the	hello	messages	are	used	to
generate	the	pre-master	secret,	which	both	ends	will	process	further	to
arrive	at	the	master	secret,	and	then	use	that	to	generate	the	symmetric	key.

In	the	following	screenshot,	you	can	see	that	the	client	is	presenting	a	set	of	29

cipher	suites	to	the	server	to	choose	relevant	algorithms:

In	the	second	packet	that's	sent	from	server	to	client,	the	server	selects	the
TLS_ECDHE_RSA_WITH_RC4_128_SHA	cipher	suite	for	the	purpose	of	connecting	to	the
client.	This	means	that	the	server	wants	to	use	the	RSA	algorithm	for	key
handling,	RC4	for	encryption,	and	SHA	for	integrity	checking	(hashing).
This	is	shown	in	the	following	screenshot:

In	the	second	phase	of	the	SSL	handshake,	the	server	sends	an	SSL
certificate	to	the	client.	This	certificate	is	issued	by	a	CA,	as	mentioned	in
the	Implementing	the	SSL	client	section.	It	contains	a	serial	number,	public
key,	validity	period,	and	the	details	of	the	subject	and	the	issuer.

The	following	screenshot	show	the	remote	server	certificate,	where	we	can	see
the	server's	public	key	inside	the	packet:

In	the	third	phase	of	the	handshake,	the	client	exchanges	a	key	and
calculates	a	master	secret	to	encrypt	the	messages	and	continue	further
communications.	The	client	also	sends	the	request	to	change	the	cipher
specification	that	was	agreed	on	the	previous	phase.	From	that	moment,	the
encryption	of	the	message	begins.	The	following	screenshot	shows	this
process:

In	the	final	part	of	the	SSL	handshake	process,	a	new	session	ticket	is
generated	by	the	server	for	the	client's	particular	session.	This	happens	due
to	a	TLS	extension	where	the	client	advertises	its	support	by	sending	an
empty	session	ticket	extension	in	the	Hello	client	message.	The	server
answers	with	an	empty	session	ticket	extension	in	its	Hello	server	message.
This	session	ticket	mechanism	enables	the	client	to	remember	the	whole
session	state,	and	the	server	becomes	less	engaged	in	maintaining	a	server-

side	session	cache.

The	following	screenshot	shows	an	example	for	presenting	an	SSL	session
ticket,	where	we	can	see	the	Session	Ticket	Lifetime:

Summary
In	this	chapter,	we	reviewed	the	socket	module	for	implementing	client-server
architectures	in	Python	with	the	TCP	and	UDP	protocols.	We	also	discussed
basic	TCP/IP	socket	programming	using	Python's	socket	and	the	SSL	module.
We	demonstrated	how	simple	TCP	sockets	can	be	wrapped	with	TLS	and	used	to
carry	encrypted	data.	We	also	talked	about	the	ways	to	validate	the	authenticity
of	a	remote	server	using	SSL	certificates.	Some	other	minor	issues	regarding
socket	programming,	such	as	non-blocking	socket	I/O,	were	also	presented.	The
detailed	packet	analysis	with	Wireshark	in	each	section	helps	us	to	understand
what	happens	under	the	hood	in	our	socket	programming	scripts.

In	the	next	chapter,	you	will	learn	about	the	principles	of	socket-based	server
design	and	how	to	build	asynchronous	network	applications	with	the	asyncio,
aiohttp,	Tornado,	Twisted,	and	Celery	frameworks.

Questions
1.	 Which	method	of	the	socket	module	allows	a	server	socket	to	accept

requests	from	a	client	socket	from	another	host?
2.	 Which	method	of	the	socket	module	allows	you	to	send	data	to	a	given

address?
3.	 Which	method	of	the	socket	module	allows	you	to	associate	a	host	and	a

port	with	a	specific	socket?
4.	 What	is	the	difference	between	the	TCP	and	UDP	protocols,	and	how	do

you	implement	them	in	Python	with	the	socket	module?
5.	 Which	method	of	the	socket	module	allows	you	to	implement	port	scanning

with	sockets	and	to	check	the	port	state?
6.	 What	is	the	alternative	tool	on	the	windows	system	for	capturing	packets	on

a	loopback	interface?
7.	 What	is	the	socket	configuration	for	the	client-and-server	IPv6	protocol?
8.	 What	Python	module	can	we	use	from	version	3.4+	that	provides	an	API	to

quickly	build	an	object-oriented	server	based	on	the	I/O	primitives?
9.	 What	method	and	parameters	from	the	SSL	module	can	we	use	to	establish

an	SSL	socket	connection?	
10.	 What	method	from	the	SSL	module	can	we	use	to	extract	remote	host

certificate	details	and	verify	the	authenticity	of	the	remote	server?	

Further	reading
Check	out	the	following	links	for	more	information	about	the	tools	mentioned	in
this	chapter.	The	official
Python	documentation	is	also	a	great	resource:

Wireshark	documentation:	https://wiki.wireshark.org
Sockets	in	Python	3:	https://docs.python.org/3/library/socket.html
Sockets	programming	in	Python:	https://www.geeksforgeeks.org/socket-programmin
g-python/

https://realpython.com/python-sockets/

What's	New	in	Sockets	for	Python	3.7:	https://www.agnosticdev.com/blog-entry/py
thon/whats-new-sockets-python-37

https://wiki.wireshark.org
https://docs.python.org/2/library/socket.html
https://www.geeksforgeeks.org/socket-programming-python/
https://realpython.com/python-sockets/
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37

Designing	Servers	and	Asynchronous
Programming
In	this	chapter,	you	will	learn	about	the	principles	of	socket-based	server	design,
and	learn	how	to	build	small	servers	based	on	multiprocessing	approaches.	We
will	continue	using	asyncio	and	aiohttp	for	asynchronous	operations.	Finally,	we
will	review	Tornado,	Twisted,	and	Celery	for	building	asynchronous	network
applications.

The	following	topics	will	be	covered	in	this	chapter:

Building	a	multiprocessing-based	TCP	server
Building	asynchronous	applications	with	asyncio	and	aiohttp
Building	asynchronous	network	applications	with	Tornado
Building	asynchronous	network	applications	with	Twisted
Building	asynchronous	network	applications	with	Celery

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter11	folder:	https://github.com/PacktPublishing/Learning-Python-Ne
tworking-Second-Edition.

You	will	need	to	install	a	Python	distribution	in	your	local	machine	with	a	Unix-
like	operating	system	and	have	some	basic	knowledge	of	network	protocols.	The
examples	in	this	chapter	are	compatible	with	Windows	as	well.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Building	a	multiprocessing-based
TCP	server
In	this	section,	we	will	learn	how	to	build	a	multiprocessing-based	server	with
the	concurrent.futures	package.

When	working	with	multiprocessing	in	Python	3,	we	have	many	alternatives,
among	which	we	can	highlight	the	concurrent.futures	and	multiprocessing	modules.	

Introducing	the	concurrent.futures
module
In	this	section,	we	are	going	to	explain	the	concurrent.futures	module,	whose
objective	is	to	introduce	a	layer	of	simplification	on	the	modules	that	are
threading	and	multiprocessing.

concurrent.futures	is	a	module	that	is	part	of	the	standard	Python	library	and
provides	a	high-level	abstraction	layer	where	the	threads	are	modeled	as
asynchronous	tasks.

The	term	futures	is	synonymous	with	promises,	delay,	or	deferred	when	working
with	asynchronous	tasks.	In	general,	regardless	of	what	you	call	it,	you	can	see	it
as	a	pending	result.	Futures	are	a	replacement	for	a	result	that	is	not	yet
available,	usually	because	their	computation	has	not	yet	ended,	or	their	transfer
over	the	network	has	not	been	completed.

The	module	has	an	abstract	base	class	called	an	executor,	which	is	used	for	the
ThreadPoolExecutor	(used	for	multithreading)	and	ProcessPoolExecutor	(used
for	multiprocessing)	subclasses.	The	max_workers	parameter	identifies	the	max
number	of	workers	that	execute	the	call	asynchronously,	and	are	as	follows:

concurrent.futures.ThreadPoolExecutor	(max_workers)
concurrent.futures.ProcessPoolExecutor	(max_workers)

The	approach	we	are	adopting	here	involves	using	a	ThreadPoolExecutor.	We	will
deliver	the	tasks	that	have	been	assigned	to	the	pool	and	return	them	later,	which
are	results	that	we	will	return	to	when	they	are	available	in	the	future.	Of	course,
we	can	wait	for	the	future	to	become	real	results.	Let's	look	at	an	example	of	the
first	subclass,	ThreadPoolExecutor,	with	a	practical	case	that	allows	you	to	download
files	asynchronously	from	https://docs.python.org/3/download.html.

You	can	find	the	following	code	in	the	download_async_files.py	file:

#!/usr/bin/python3

https://docs.python.org/3/download.html

from	concurrent.futures	import	ThreadPoolExecutor

import	requests

import	itertools

import	time

docs	=	['https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip',

	'https://docs.python.org/3/archives/python-3.7.2-docs-pdf-a4.zip',

	'https://docs.python.org/3/archives/python-3.7.2-docs-html.zip',

	'https://docs.python.org/3/archives/python-3.7.2-docs-text.zip',

	'https://docs.python.org/3/archives/python-3.7.2-docs.epub'

]

def	download_documents(documents,	workers=4):

				def	get_document(url):

								response	=	requests.get(url)

								filename	=	url.split("/")[5]

								print('Downloading	'+	filename)

								open(filename,	'wb').write(response.content)

								return	url

				

In	the	previous	code	block,	we	define	the	document	list	we	are	downloading	and
the	download_documents()	method,	which	accepts	the	document	list	and	worker's
number	that's	used	by	ThreadPoolExecutor	as	parameters.	In	the	following	code
block,	we	are	defining	our	executor,	which	we	will	use	for	downloading
documents	in	a	concurrent	way:

	message	=	'Downloading	docs	from	https://docs.python.org/3/archives'

	symbol	=	itertools.cycle('\|/-')

	executor	=	ThreadPoolExecutor(max_workers=workers)

	mydocs	=	[executor.submit(get_document,	url)	for	url	in	documents]

	while	not	all([doc.done()	for	doc	in	mydocs]):

				print(message	+	next(symbol),	end='\r')

				time.sleep(0.1)

	return	mydocs

if	__name__	==	'__main__':

				t1	=	time.time()

				print(download_documents(docs,	workers=4))

				print(time.time()	-	t1,	'seconds	passed')

This	is	the	output	of	the	previous	script.	We	can	see	information	about	futures
that	are	complete	when	we	download	certain	files:

Downloading	python-3.7.2-docs-text.ziphon.org/3/archives-

Downloading	python-3.7.2-docs-pdf-a4.zipn.org/3/archives/

Downloading	python-3.7.2-docs-pdf-letter.zipg/3/archives\

Downloading	python-3.7.2-docs.epub.python.org/3/archives\

Downloading	python-3.7.2-docs-html.ziphon.org/3/archives/

[<Future	at	0x3cc8970	state=finished	returned	str>,	<Future	at	0x3ce0430	state=finished	returned	str>,	<Future	at	0x3ce07f0	state=finished	returned	str>,	<Future	at	0x3ce0bb0	state=finished	returned	str>,	<Future	at	0x3ce0f90	state=finished	returned	str>]

We	will	study	each	of	the	actions	that	are	carried	out	in	detail,	as	follows:

Inside	thedownload_documents	function,	another	call	has	been	defined
—get_document	(URL).	This	function		makes	the	requests	to	the	file	and
downloads	it	to	the	local	filesystem.
Later,	we	instantiated	ThreadPoolExecutor	and	created	a	list,	mydocs,	which	is
where	we	will	save	the	futures.	Instanced	objects	of	the	Future	class	(each	of
the	elements	in	the	mydocs	list)	encapsulate	the	asynchronous	execution	of
the	callable.	Each	of	these	objects	come	from	Executor.submit().
Within	the	whole	block,	we	ask	each	of	the	downloads	whether	they	have
finished	by	using	the	Future.done()	method.	If	it	has	finished,	it	will	return
True,	otherwise	it	will	return	False.
Finally,	we	return	the	mydocs	list	with	the	calculated	futures.

Application	for	checking	websites
Now,	we	will	build	an	application	that	checks	the	running	time	of	websites.	The
purpose	of	this	application	is	to	notify	when	a	site	or	domain	is	not	available.
The	application	visits	a	list	of	URLs	and	checks	whether	these	sites	are
operational.	If,	when	making	an	HTTP	request,	the	returned	status	is	in	the	range
of	400-500,	this	means	that	the	site	is	not	available	and	it	would	be	a	good	idea
to	notify	the	owner.

We	need	to	adopt	a	concurrent	approach	to	solve	this	problem	because,	since	we
have	more	addresses	to	check	in	the	list	of	websites,	nothing	guarantees	that
each	site	is	reviewed	every	five	minutes	or	less.	

In	the	following	example,	we	are	going	to	use	the	concurrent.futures	package	for
processing	domains	in	a	concurrent	way	to	check	whether	each	website	is
available.	The	requests	module	will	help	us	to	obtain	the	status	of	each	domain.

You	can	find	the	following	code	in	the	demo_concurrent_futures.py	file:

#!/usr/bin/python3

import	concurrent.futures

import	requests

URLS	=	['http://www.foxnews.com/','http://www.cnn.com/',

	'http://www.bbc.co.uk/',

	'http://some-made-up-domain.com/']

#	Retrieve	a	single	page	with	requests	module

def	load_requests(domain):

	with	requests.get(domain,	timeout=60)	as	connection:

	return	connection.text

In	the	previous	code	block,	we	define	our	URL	list	for	checking	the	website	and
the	load_requests()	method	that	accepts	as	parameters	a	domain	and	tries	to
establish	a	connection	with	the	requests	package.

In	the	following	code	block,	we	define	our	executor	that	we	use	for	checking	the
state	for	each	domain	in	a	concurrent	way:

with	concurrent.futures.ThreadPoolExecutor(max_workers=5)	as	executor:

future_executor	=	{executor.submit(load_requests,	domain):	domain	for	domain	in	DOMAINS}

	for	domain_future	in	concurrent.futures.as_completed(future_executor):

	domain	=	future_executor[domain_future]

	try:

	data	=	domain_future.result()

	print('%r	page	is	%d	bytes'	%	(domain,	len(data)))

	except	Exception	as	exception:

	print('%r	generated	an	exception:	%s'	%	(domain,	exception))

The	following	is	the	output	of	the	previous	script,	where	we	can	see	information
about	the	sizes	for	download	pages	for	domains	that	are	available:

'http://www.foxnews.com/'	page	is	221581	bytes

	'http://www.bbc.co.uk/'	page	is	303120	bytes

	'http://www.cnn.com/'	page	is	1899465	bytes

	'http://some-made-up-domain.com/'	generated	an	exception:	HTTPConnectionPool(host='ww1.some-made-up-domain.com',	port=80):	Max	retries	exceeded	with	url:	/	(Caused	by	NewConnectionError('<urllib3.connection.HTTPConnection	object	at	0x00000295B3E0BEF0>:	Failed	to	establish	a	new	connection:	[WinError	10060]	A	connection	attempt	failed	because	the	connected	party	did	not	properly	respond	after	a	period	of	time,	or	established	connection	failed	because	connected	host	has	failed	to	respond'))

The	executor	is	the	one	who	manages	threads	(ThreadPoolExecutor)	or
processes	(ProcessPoolExecutor).	Also,	when	we	define	the	ThreadPoolExecutor
constructor	for	getting	the	executor	object,	you	can	put	the	number	of	workers
that	you	want	to	use,	depending	on	the	number	of	cores	in	our	CPU.

In	the	previous	example,	we	used	the	as_completed	method	to	obtain	the	results	as
they	were	obtained.	This	method	returns	an	iterator	over	the	future	instances	that
are	given	by	the	future_executor	variable,	which	yields	futures	as	they	finish.	You
can	check	the	full	documentation	and	other	examples	about	this	function	at	https:
//docs.python.org/dev/library/concurrent.futures.html#threadpoolexecutor-example.

https://docs.python.org/dev/library/concurrent.futures.html#threadpoolexecutor-example

The	multiprocessing	approach
The	multiprocessing	module	is	an	alternative	to	using	the	threading	module.	It	is	a
module	that's	similar	to	the	threading	module,	which	offers	a	very	similar
interface,	but	at	a	low	level.	It	works	with	processes	instead	of	threads.	In	this
case,	we	will	take	a	similar	approach	to	concurrent.futures.	We	are	establishing	a
multiprocessing	pool	and	presentation	of	tasks	by	assigning	a	function	to	the
address	list.

You	can	find	the	following	code	in	the	demo_multiprocessing.py	file:

#!/usr/bin/python3

import	time

import	multiprocessing

import	logging

import	requests

from	utils	import	check_website

from	utils	import	WEBSITE_LIST

NUM_WORKERS	=	3

if	__name__	==	'__main__':

				start_time	=	time.time()

				with	multiprocessing.Pool(processes=NUM_WORKERS)	as	pool:

								results	=	pool.map_async(check_website,	WEBSITE_LIST)

								results.wait()

								print(results)

				end_time	=	time.time()

				print("Time	for	multiprocessing:	%s	secs"	%	(end_time	-	start_time))

This	script	uses	check_website(),	which	is	available	in	the	utils.py	file	of	the	same
directory:

#!/usr/bin/python3

import	requests

WEBSITE_LIST	=	['http://www.foxnews.com/',

	'http://www.cnn.com/',

	'http://www.bbc.co.uk/',

	'http://some-other-domain.com/']

class	WebsiteException(Exception):

	pass

def	ping_website(address,	timeout=6000):

				try:

								response	=	requests.get(address)

								print("Website	%s	returned	status_code=%s"	%	(address,	response.status_code))

								if	response.status_code	>=	400:

												print("Website	%s	returned	status_code=%s"	%	(address,	response.status_code))

												raise	WebsiteException()

				except	requests.exceptions.RequestException:

								print("Timeout	expired	for	website	%s"	%	address)

								raise	WebsiteException()

def	check_website(address):

				try:

								ping_website(address)

				except	WebsiteException:

								pass

The	following	is	the	output	of	the	execution	of	demo_multiprocessing.py.	For	each
URL	defined	in	WEBSITE_LIST,	check	the	status	code	of	the	domain	and	show
information	about	it:

Website	http://www.bbc.co.uk/	returned	status_code=200

	Website	http://www.foxnews.com/	returned	status_code=200

	Timeout	expired	for	website	http://some-other-domain.com/

	Website	http://www.cnn.com/	returned	status_code=200

	<multiprocessing.pool.MapResult	object	at	0x00000204C59A8B70>

	Time	for	multiprocessing:	2.0654103755950928	sec

In	this	section,	you	have	learned	about	the	concurrent.futures	package	for
processing	tasks	in	an	asynchronous		way	with	the	ThreadPoolExecutor	class.	We
also	reviewed	the	multiprocessing	package	as	an	alternative	to	the	threading	module
for	creating	a	pool	of	processes	for	assigning	tasks.

Building	asynchronous	applications
with	asyncio	and	aiohttp
In	this	section,	you	will	learn	about	asyncio	and	aiohttp	for	developing
asynchronous	applications,	which	can	greatly	simplify	the	process	of	writing
servers	when	using	an	event-driven	approach.

Introducing	asyncio
asyncio	is	a	Python	module	that	is	part	of	its	standard	library.	It	allows	you	to
write	single-threaded	asynchronous	code	and	implement	concurrency	in	Python.
This	module	is	available	from	Python	3.4	and	its	documentation	is	available	at	ht
tps://docs.python.org/3/library/asyncio.html.

Basically,	asyncio	provides	an	event	loop	for	asynchronous	programming.	For
example,	if	we	need	to	make	requests	without	blocking	the	main	thread,	we	can
use	the	asyncio	library.	Python	3.4	provides	an	asyncio	module	that	has	event	loops
and	coroutines	for	I/O	operations	and	networking,	futures,	and	tasks.	In	the	next
section,	we	will	review	these	elements.

https://docs.python.org/3/library/asyncio.html

Using	asyncio
The	asyncio	module	allows	for	the	implementation	of	asynchronous	programming
using	a	combination	of	the	following	elements:

Event	loop:	The	asyncio	module	allows	an	event	loop	per	process.
Coroutines:	A	coroutine	is	a	generator	that	follows	certain	conventions.	Its
most	interesting	feature	is	that	it	can	be	suspended	during	execution	to	wait
for	external	processing	(the	some	routine	in	I/O)	and	return	from	the	point	it
had	stopped	when	the	external	processing	was	done.
Futures:	Futures	represent	a	process	that	has	still	not	finished.
Tasks:	This	is	a	subclass	of	asyncio.Future	that	encapsulates	and	manages
coroutines.	We	can	use	the	asyncio.Task	object	to	encapsulate	a	coroutine.	

Introducing	event	loops
The	most	important	concept	within	asyncio	is	the	event	loop.	An	event	loop
allow	you	to	write	asynchronous	code	using	either	callbacks	or	coroutines.

The	keys	to	understanding	asyncio	are	the	terms	of	coroutines	and	the	event
loop.	Coroutines	are	stateful	functions	whose	execution	can	be	stopped	while
another	I/O	operation	is	being	executed.	An	event	loop	is	used	to	orchestrate	the
execution	of	the	coroutines.

To	run	any	coroutine	function,	we	need	to	get	an	event	loop.	We	can	do	this
with	loop	=	asyncio.get_event_loop().

This	gives	us	a	BaseEventLoop	object.	This	has	a	run_until_complete	method	that	takes
in	a	coroutine	and	runs	it	until	completion.	Then,	the	coroutine	returns	a	result.
At	a	low	level,	an	event	loop	executes	the	BaseEventLoop.rununtilcomplete(future)
method.

Futures
One	of	the	most	important	elements	in	asyncio	are	futures,	which	represent	a
process	that	has	not	yet	finished.	A	future	is	an	object	that	is	supposed	to	have	a
result	in	the	future	and	represents	uncompleted	tasks.

A	good	example	for	starting	with	asyncio	is	collecting	all	of	the	responses	from
its	URL	list	and	performing	post-processing	on	them.	In	the	following	example,
we	are	using	an	asyncio	future	object	and	passing	whole	lists	of	future	objects	as
tasks	to	be	executed	in	the	loop.	Each	future	is	a	task	that	is	going	to	be	executed
in	the	loop.

For	more	information	on	asyncio	futures,	check	out	the	following	documentation:	https://docs.py
thon.org/3/library/asyncio-task.html#future.

You	can	find	the	following	code	in	the	future_example.py	file:

#!/usr/local/bin/python3

import	asyncio

from	aiohttp	import	ClientSession

import	time

async	def	fetch(url,	session):

				async	with	session.get(url)	as	response:

								#	async	operation	must	be	preceded	by	await

								return	await	response.read()

In	the	following	code	block,	we	are	defining	our	execute	method,	which	uses	the
ClientSession()	class	from	the	aiothttp	package	for	resolving	requests	and	getting
responses	with	the	async-await	pattern:

async	def	execute(loop):

				url	=	"http://httpbin.org/{}"

				tasks	=	[]

				sites	=	['headers','ip','user-agent']

				#	Fetch	all	responses	within	one	Client	session,

				#	keep	connection	alive	for	all	requests.

				async	with	ClientSession()	as	session:

								for	site	in	sites:

												task	=	asyncio.ensure_future(fetch(url.format(site),	session))

												tasks.append(task)

								#	async	operation	must	be	preceded	by	await

								responses	=	await	asyncio.gather(*tasks)

								#	you	now	have	all	response	bodies	in	this	variable

								for	response	in	responses:

https://docs.python.org/3/library/asyncio-task.html#future

												print(response.decode())

This	is	our	main	program,	which	initializes	the	event	loop	and	calls	the	execute
method	inside	the	context	created	by	the	asyncio.ensure_future()	method.	This	is
shown	as	follows:	

if	__name__	==	'__main__':

				t1	=	time.time()

				loop	=	asyncio.get_event_loop()

				future	=	asyncio.ensure_future(execute(loop))

				loop.run_until_complete(future)

				print(time.time()	-	t1,	'seconds	passed')

Among	the	main	methods	we	are	using,	we	can	highlight	the	following:

loop.run_until_complete()	is	the	event	loop	that	runs	until	a	particular	coroutine
completes.
asyncio.gather()	collects	future	objects	in	one	place	and	waits	for	all	of	them
to	finish.
response.read()	is	an	async	operation.	This	means	that	it	does	not	return	a
result	immediately—it	just	returns	a	generator.	This	generator	still	needs	to
be	called	and	executed,	but	this	does	not	happen	by	default;	we	need	to	use
await.

The	following	is	the	output	of	the	previous	script,	where	we	can	see	headers	for
request	and	response:

{

	"headers":	{

	"Accept":	"*/*",

	"Accept-Encoding":	"gzip,	deflate",

	"Host":	"httpbin.org",

	"User-Agent":	"Python/3.7	aiohttp/3.5.4"

	}

	}

{

	"origin":	"192.113.65.10,	192.113.65.10"

	}

{

	"user-agent":	"Python/3.7	aiohttp/3.5.4"

	}

0.4722881317138672	seconds	passed

In	this	script,	we	were	introduced	to	the	await	keyword,	which	is	one	of	the
fundamental	building	blocks	of	asynchronous	programs	in	Python.

The	await	keyword	tells	the	Python	interpreter	that	the	succeeding	expression	is
going	to	take	some	time	to	evaluate	so	that	it	can	spend	that	time	on	other	tasks.

Task	manipulation	with	asyncio
The	asyncio	module	provides	the	asyncio.Task()	method	to	handle	coroutines	with
tasks.	The	asyncio.Task	class	is	a	subclass	of	asyncio.	Future	and	aims	are	used	to
manage	coroutines.	A	task	is	responsible	for	the	execution	of	a	coroutine	object	in
an	event	loop.	When	a	coroutine	is	wrapped	in	a	task,	it	connects	the	task	to	the
event	loop	and	then	runs	automatically	when	the	loop	is	started,	thus	providing	a
mechanism	to	automatically	drive	the	coroutine.

For	more	information	on	task	manipulation	with	asyncio,	check	out	the	following
documentation:	https://docs.python.org/3.7/library/asyncio-task.html.

You	can	find	the	following	code	in	the	asyncio_task.py	file:

#!/usr/bin/python3

import	asyncio

import	time

@asyncio.coroutine

def	task_sleep(name,	loop,	seconds=1):

	future	=	loop.run_in_executor(None,	time.sleep,	seconds)

	print("[%s]	coroutine	will	sleep	for	%d	second(s)..."	%	(name,	seconds))

	yield	from	future

	print("[%s]	done!"	%	name)

In	the	previous	code	block,	we	defined	the	task_sleep()	method	annotated	with
@asyncio.coroutine,	this	method	will	execute	the	task	with	a	specific	time	sleep,
when	execution	is	finished	this	time	it	will	return	the	future.

In	the	next	code	block,	we	define	our	main	program,	where	we	define	the	event
loop	and	our	task	list	using	asyncio.task.

We	execute	the	tasks	until	complete	with	run_until_complete()	method:

if	__name__	==	'__main__':

	loop	=	asyncio.get_event_loop()

	tasks	=	[asyncio.Task(task_sleep('Task-A',	loop,	10)),	asyncio.Task(task_sleep('Task-B',	loop,5)),asyncio.Task(task_sleep('Task-C',	loop))]

	loop.run_until_complete(asyncio.gather(*tasks))

The	following	is	the	output	of	this	script's	execution:

[Task-A]	coroutine	will	sleep	for	10	second(s)...

[Task-B]	coroutine	will	sleep	for	5	second(s)...

[Task-C]	coroutine	will	sleep	for	1	second(s)...

https://docs.python.org/3.7/library/asyncio-task.html

[Task-C]	done!

[Task-B]	done!

[Task-A]	done!

We	can	see	how	the	first	task	ends	with	C,	then	B,	and	finally	A,	depending	on	the
defined	sleep	times.

Downloading	files	with	asyncio
In	the	following	example,	we	will	import	the	modules	that	we	need	and	then
create	our	first	coroutine	using	the	async	syntax.	This	coroutine	is	called
download_file,	and	it	uses	Python's	requests	module	to	download	whatever	file	is
passed	to	it.	When	it	is	done,	it	will	return	a	message	that's	related	to	the	file	that
is	being	downloaded.

You	can	find	the	following	code	in	the	download_files_asyncio.py	file:

#!/usr/bin/python3

import	asyncio

import	os

import	requests

import	time

files	=	['https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip',				'https://docs.python.org/3/archives/python-3.7.2-docs-pdf-a4.zip']

async	def	download_file(url):

				response	=	requests.get(url)

				filename	=	os.path.basename(url)

				print('Downloading	{filename}'.format(filename=filename))

				open(filename,	'wb').write(response.content)

				msg	=	'Finished	downloading	{filename}'.format(filename=filename)

				return	msg	

In	the	previous	code	block,	we	defined	our	file	list	for	downloading	and	the
download_file()	method,	which	accepts	the	URL	that	contains	the	file	as	a
parameter.	In	the	following	code	block,	we	are	defining	the	main	function	that
we	are	going	to	use	for	downloading	files	in	an	asynchronous	way.	We	will	do
this	by	using	coroutines	with	the	async-await	mechanism:

async	def	main(files):

				coroutines	=	[download_file(file)	for	file	in	files]

				completed,	pending	=	await	asyncio.wait(coroutines)

				for	item	in	completed:

								print(item.result())

	

if	__name__	==	'__main__':

				t1	=	time.time()

				event_loop	=	asyncio.get_event_loop()

				try:

								event_loop.run_until_complete(main(files))

				finally:

								event_loop.close()

	print(time.time()	-	t1,	'seconds	passed')

This	is	the	output	of	this	script's	execution:

Downloading	python-3.7.2-docs-pdf-a4.zip

	Downloading	python-3.7.2-docs-pdf-letter.zip

	Finished	downloading	python-3.7.2-docs-pdf-letter.zip

	Finished	downloading	python-3.7.2-docs-pdf-a4.zip

	11.149724960327148	seconds	passed

In	this	execution,	we	can	see	the	files	to	be	downloaded,	as	well	as	the	execution
time	for	downloading	these	files.

Introducing	aiohttp
The	next	module	we	are	going	to	review	is	frequently	used	in	conjunction	with
asyncio.	This	is	because	it	provides	a	framework	for	working	with	asynchronous
requests.	It	is	an	excellent	solution	for	complementing	the	server	part	of	a	web
application	with	Python	3.5+	as	well.

The	main	tool	for	making	requests	is	the	requests	module.	The	main	problem	with
requests	is	that	the	thread	is	blocked	until	we	obtain	a	response.	By	default,
request	operations	are	blocking.	When	the	thread	calls	a	method	such	as	get	or
post,	it	pauses	until	the	operation	completes.

To	download	multiple	resources	at	once,	we	need	many	threads.	At	this	point,
aiohttp	allows	us	to	make	requests	asynchronously.	You	can	install	aiohttp	by
using	the	pip	install	aiohttp	command:

The	documentation	for	aiohttp	is	available	at	http://aiohttp.readthedocs.io/en/stable,	and	the	source
code	is	available	at	https://github.com/aio-libs/aiohttp.

ClientSession	is	the	recommended	primary	interface	for	aiohttp	to	make	requests.
ClientSession	allows	you	to	store	cookies	between	requests	and	keeps	objects	that
are	common	for	all	requests	(event	loop,	connection,	and	access	resources).

http://aiohttp.readthedocs.io/en/stable
https://github.com/aio-libs/aiohttp

After	you	open	a	client	session,	you	can	use	it	to	make	requests.	At	this	point,
we	will	execute	the	request	where	another	asynchronous	operation	starts.	The
context	manager's	with	statement	ensures	it	will	be	closed	properly	in	all	cases.

To	start	the	execution,	you	need	to	run	it	in	an	event	loop,	so	you	need	to	create
an	instance	of	the	asyncio	loop	and	add	a	task	to	it.

You	can	find	the	following	code	in	the	aiohttp_request.py	file:

#!/usr/local/bin/python3

import	asyncio

from	aiohttp	import	ClientSession

import	time

async	def	request():

				async	with	ClientSession()	as	session:

								async	with	session.get("http://httpbin.org/headers")	as	response:

												response	=	await	response.read()

												print(response.decode())

if	__name__	==	'__main__':

				t1	=	time.time()

				loop	=	asyncio.get_event_loop()

				loop.run_until_complete(request())

				print(time.time()	-	t1,	'seconds	passed')

This	is	the	output	of	the	preceding	script:

{

"headers":	{

"Accept":	"*/*",

"Accept-Encoding":	"gzip,	deflate",

"Host":	"httpbin.org",

	"User-Agent":	"Python/3.6	aiohttp/3.5.4"

}

}

In	a	similar	way,	we	can	use	the	aiohttp	module	to	request	a	URL.	We	can	do	this
with	aiohttp.ClientSession().get(url).	In	this	example,	we	are	using	the	yield
keyword	to	await	the	response.

You	can	find	the	following	code	in	the	aiohttp_single_request.py	file:

#!/usr/bin/python3

import	asyncio

import	aiohttp

url	=	'http://httpbin.org/headers'

@asyncio.coroutine

def	get_page():

				resp	=	yield	from	aiohttp.ClientSession().get(url)

				text	=	yield	from	resp.read()

				return	text

if	__name__	==	'__main__':

				loop	=	asyncio.get_event_loop()

				content	=	loop.run_until_complete(get_page())

				print(content)

				loop.close()

This	is	the	output	of	the	preceding	script:

	Unclosed	client	session

	client_session:	<aiohttp.client.ClientSession	object	at	0x000001BFE94117F0>

	Unclosed	connector

	connections:	['[(<aiohttp.client_proto.ResponseHandler	object	at	0x000001BFE954F708>,	789153.843)]']

	connector:	<aiohttp.connector.TCPConnector	object	at	0x000001BFE9411EB8>

	b'{\n		"headers":	{\n				"Accept":	"*/*",	\n				"Accept-Encoding":	"gzip,	deflate",	\n				"Host":	"httpbin.org",	\n	"User-Agent":	"Python/3.7	aiohttp/3.5.4"\n		}\n}\n'

Downloading	files	with	aiohttp
First,	we	must	import	the	modules	we	need	to	make	our	HTTP	requests
asynchronous.	All	asynchronous	functions	will	need	to	have	the	async	keyword	in
the	function	definition.

We	will	start	by	defining	our	download_file	function,	which	will	take	two
parameters:	the	first	parameter	is	the	URL	for	downloading	the	image,	and	the
second	parameter	is	called	parts,	which	is	the	number	of	parallel	requests	we
want	to	make	to	the	server.

To	make	our	asynchronous	program	faster,	this	is	how	our	script	is	going	to
work:

1.	 We	are	going	to	make	a	head	request	to	the	file	URL	with
the	aiohttp.ClientSession().head(url)	method.

2.	 We	are	going	to	get	the	value	of	the	Content-Length	header	for	getting	the	file
size	with	the	size	=	int(resp.headers["Content-Length"])	instruction.

3.	 With	the	get_partial_content	method,	we	are	sending	multiple	GET	requests	to
the	file	URL	using	the	range	header	to	specify	the	range	of	bytes	that	we
want.

4.	 We	are	going	assimilate	all	the	responses	using	the	final_result	=
sorted(task.result()	for	task	in	response)	instruction.

You	can	find	the	following	code	in	the	download_file_aiohttp.py	file:

#!/usr/bin/python3

import	asyncio

import	itertools

import	aiohttp

import	time

import	os

async	def	download_file(url,	parts):

				async	def	get_partial_content(u,	i,	start,	end):

								async	with	aiohttp.ClientSession().get(u,	headers={"Range":	"bytes={}-{}".format(start,	end	-	1	if	end	else	"")})	as	_resp:

												return	i,	await	_resp.read()

				async	with	aiohttp.ClientSession().head(url)	as	resp:

								size	=	int(resp.headers["Content-Length"])

				ranges	=	list(range(0,	size,	size	//	parts))

				response,	_	=	await	asyncio.wait([get_partial_content(url,	i,	start,	end)	for	i,	(start,	end)	in	enumerate(itertools.zip_longest(ranges,	ranges[1:],	fillvalue=""))])

				final_result	=	sorted(task.result()	for	task	in	response)

				return	b"".join(data	for	_,	data	in	final_result)

In	the	previous	code	block,	we	defined	our	download_file()		method,	which	accepts
the	url	and	the	parts	number	that	divides	requests	as	parameters.	In	the	following
code	block,	we	are	defining	our	main	function,	which	we	will	use	to	download	a
file	in	an	asynchronous	way.	We	are	going	to	use	the	asyncio	event	loop	and
the	run_until_complete()	method:

if	__name__	==	'__main__':

				file_url	=	'https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip'

				loop	=	asyncio.get_event_loop()

				t1	=	time.time()

				bs	=	loop.run_until_complete(download_file(file_url,	10))

				filename	=	os.path.basename(file_url)

				with	open(filename,	'wb')	as	file_handle:

								file_handle.write(bs)

				print('Finished	downloading	{filename}'.format(filename=filename))

				print(time.time()	-	t1,	'seconds	passed')

This	is	the	output	we	get	when	we	execute	the	download_file_aiohttp.py	script:

client_session:	<aiohttp.client.ClientSession	object	at	0x000001FABBB42DD8>

	Unclosed	connector

	connections:	['[(<aiohttp.client_proto.ResponseHandler	object	at	0x000001FABBCEED08>,	715247.328)]']

	connector:	<aiohttp.connector.TCPConnector	object	at	0x000001FABBCE6C88>

	Finished	downloading	python-3.7.2-docs-pdf-letter.zip

	2.9168717861175537	seconds	passed

When	you	execute	the	script,	you	will	see	information	about	the	objects	that
were	created	internally	by	aiohttp,	among	which	we	can
highlight	aiohttp.client.ClientSession	for	managing	the	client	session,
aiohttp.client_proto.ResponseHandler	for	managing	the	response,	and
aiohttp.connector.TCPConnector	for	managing	the	connection.

Other	event	loop	solutions
We	can	define	event	loops	as	abstractions	that	ease	up	by	using	polling	functions
to	monitor	events.	Internally,	event	loops	make	use	of	poller	objects,	taking	away
the	responsibility	of	the	programmer	to	control	the	tasks	of	addition,	removal,
and	control	of	events.	Some	examples	of	applications	that	implement	event	loops
in	Python	are	as	follows:

Tornado	web	server	(http://www.tornadoweb.org/en/stable):	Tornado	uses	epoll
as	the	polling	function	if	the	environment	is	Linux	and	has	kqueue	support
in	the	case	of	BSD	or	Mac	OS	X
Twisted	(https://twistedmatrix.com):	This	is	a	popular	framework	that	offers
an	implementation	of	the	event	loop	and	is	used	by	the	Scrapy	framework
Gevent	(http://www.gevent.org):	This	provides	an	event	loop	based	on	libev
Eventlet	(https://pypi.python.org/pypi/eventlet):	This	implements	an	event
loop	based	on	libevent

In	this	section,	you	have	learned	about	the	asyncio	and	aiohttp	packages,	which
simplify	the	process	of	writing	servers	when	using	an	event-driven	approach,
and	we	explained	some	uses	cases	related	to	file	downloading	in	an
asynchronous	way.	In	the	next	section,	we	are	going	to	introduce	the	Tornado
framework	for	building	asynchronous	network	applications.

http://www.tornadoweb.org/en/stable
https://twistedmatrix.com
http://www.gevent.org
https://pypi.python.org/pypi/eventlet

Building	asynchronous	network
applications	with	Tornado
In	this	section,	you	will	learn	about	building	asynchronous	network	applications
with	the	Tornado	framework.

Introducing	Tornado
The	traditional	model	for	creating	applications	such	as	web	servers	that	support
several	clients	concurrently	is	based	on	a	multithread	system	in	which	a	new
thread	is	created	for	each	client	that	connects	to	the	service.	This	results	in	a
fairly	high	consumption	of	system	resources	and	performance	problems,	which
can	be	quite	serious.

Tornado	is	a	module	written	in	Python	that	allows	you	to	create	asynchronous
and	non-blocking	systems	for	network	operations,	where	each	request	executed
by	a	client	can	be	asynchronous.	The	way	in	which	the	library	is	implemented
allows	you	to	scale	to	several	thousand	open	connections,	something	that	is	ideal
for	applications	that	require	connections	with	a	long	lifetime.

You	can	install	it	with	the	pip	install	tornado	command	or	download	the	latest
version	that's	available	from	our	the	GitHub	repository	(https://github.com/tornadow
eb/tornado)	and	install	it	manually	using	the	setup.py	script.

Tornado	can	be	considered	an	alternative	to	Twisted	and	is	suitable	for	handling
a	large	number	of	connections	since	it	can	respond	to	an	incoming	client,	send	a
request	to	the	controller,	and	not	return	a	control	to	the	client	until	the	result	of
the	call	is	obtained.	Asynchronous	processing	facilitates	functional	decoupling
and	access	to	shared	data.	This	works	very	well	with	a	stateless	design	such	as
REST,	or	other	service-oriented	architectures.

You	can	get	more	information	about	the	framework	and	the	source	code	in	the
GitHub	repository:	https://github.com/tornadoweb/tornado.

https://github.com/tornadoweb/tornado
https://github.com/tornadoweb/tornado

Implementing	the	Tornado	web
server
Tornado	has	several	classes	and	functions	that	allow	you	to	create	different	types
of	network	elements,	both	synchronous	and	asynchronous.	In	this	particular
case,	we	will	focus	on	the	module	that	allows	for	the	creation	of	servers	and	web
applications	with	Tornado.	This	will	be	useful	to	perform	proof	of	concept	and
understand	the	operation	of	certain	features	in	web	environments.

The	following	script	will	allow	for	the	creation	of	a	basic	web	server	using
Tornado,	which	will	accept	normal	HTTP	connections	if	the	user	requests	the	'/'
resource.

You	can	find	the	following	code	in	the	tornado_web_server.py	file:

#!/usr/bin/python3

import	tornado.ioloop

import	tornado.web

from	tornado.options	import	define,	options

class	MyHandler(tornado.web.RequestHandler):

				def	get(self):

								self.render("index.html")

	

if	__name__	==	'__main__':

				define("port",	default=8080,	help="run	on	the	given	port",	type=int)

				app	=	tornado.web.Application([('/',	MyHandler)])

				app.listen(options.port)

				print("Tornado	web	server	listening	on	port	8080");

				tornado.ioloop.IOLoop.instance().start()

The	tornado.web.Application	object	is	responsible	for	defining	the	URIs	that	are
available	to	the	web	server.	In	this	specific	case,	it	has	been	defined	that	the	user
will	be	able	to	access	the	path	'/'.	If	the	user	requests	the	resource	'/',	the	server
will	be	responsible	for	executing	the	MyHandler	handler.

The	MyHandler	class	inherits	from	the	tornado.web.RequestHandler	class,	which	is
responsible	for	processing	HTTP	requests	that	are	made	by	clients	that	use	the
GET	method.	In	this	case,	the	class	is	simply	responsible	for	responding	to	the
client	with	the	index.html	page.

Finally,	the	actual	definition	of	the	web	server	is	given	by	an	instance	of	the
tornado.ioloop.IOLoop	class	which	is	responsible	for	creating	a	thread	that	will	run
indefinitely	and	use	the	options	per	line	of	commands	that	have	been	defined	by
means	of	the	tornado.options.define	function.

With	all	of	the	preceding	information	under	our	belt,	it	is	now	possible	to	run	the
web	server	with	the	following	command:	

$	python	tornado_web_server.py

When	you	execute	the	preceding	command,	you	will	see	the	following	message
on	your	console:	

Tornado	web	server	listening	on	port	8080

If	the	user	requests	the	resource	'/',	the	server	will	respond	with	the
index.html	page,	as	shown	in	the	following	screenshot:

In	this	section,	we	have	analyzed	how	to	create	our	own	server	with	Tornado
using	the	event	loop	that's	provided	by	the	tornado.ioloop	package.

Implementing	an	asynchronous	client
with	AsyncHTTPClient
Tornado	includes	a	class	called	AsyncHTTPClient,	which	performs	HTTP	requests
asynchronously.	The	first	thing	is	to	create	our	application,	which	will	inherit
from	application.	Then,	we	will	run	an	HTTP	server	that	supports	our
application.	Next,	we	will	indicate	in	which	port	we	want	the	server	to	listen.
Finally,	we	will	launch	the	event	loop,	which	will	listen	to	requests	with
the	IOLoop.current().start()	instruction.

In	the	following	example,	we	are	using	the	fetch	method	of	AsyncHTTPClient,	which
specifies	the	method	or	function	that	will	be	called	when	the	HTTP	request	is
complete	as	a	callback	parameter.	In	this	example,	we	specified	the
on_response	method	as	the	callback.	Also	note	the	use	of	the	@tornado.web.asynchronous
decorator	and	the	call	to	self.finish()	at	the	end	of	the	callback	response	method.

You	can	find	the	following	code	in	the	tornado_request_async.py	file:

#!/usr/bin/python3

import	tornado.ioloop

import	tornado.web

import	tornado.httpclient

class	Handler(tornado.web.RequestHandler):

	@tornado.web.asynchronous

	def	get(self):

	http_client	=	tornado.httpclient.AsyncHTTPClient()

	http_client.fetch("https://www.google.com/search?q=python",	callback=self.on_response)

def	on_response(self,	response):

	self.write(response.body)

	self.finish()

In	the	previous	code	block,	we	define	our	Handler	class	that	extends	from
tornado.web.RequestHandler.	This	class	contains	the	asynchronous	get()	method	and
on_response()	method,	which	is	called	when	getting	a	response	from	the	http_client
object.

In	the	following	code	block	we	define	our	main	program,	where	we	define	the
event	loop	and	our	application	managed	by	the	Handler	class:

if	__name__	==	'__main__':

	app	=	tornado.web.Application([tornado.web.url(r"/",	Handler)])

	app.listen(8080)

	tornado.ioloop.IOLoop.current().start()

If	we	execute	this	script	and	go	to	(http://localhost:8080),	we	will	see	the	response
related	to	the	Python	search	in	the	Google	domain.

Another	way	to	implement	an	asynchronous	client	is	to	create	a
TornadoAsyncClient()	class	with	a	method	that	handle	requests.	In	this	example,	we
can	see	this	implementation	where	the	URL	is	requested	as	a	parameter	in	the
script.

You	can	find	the	following	code	in	the	tornado_async_client.py	file:

#!/usr/bin/python3

import	argparse

import	tornado.ioloop

import	tornado.httpclient

class	TornadoAsyncClient():

	def	handle_request(self,response):

	if	response.error:

	print	("Error:",	response.error)

	else:

	print(response.body)

	tornado.ioloop.IOLoop.instance().stop()

In	the	previous	code	block,	we	define	our	TornadoAsyncClient	class	that	manages	the
request	and	the	event	loop.

In	the	next	code	block	we	define	our	run_server()	method	and	main	program	,
where	we	instantiate	the	TornadoAsyncClient	class,	starting	the	event	loop,	and	set	the
url	parameter	to	do	the	request:

def	run_server(url):

	tornadoAsync	=	TornadoAsyncClient()

	http_client	=	tornado.httpclient.AsyncHTTPClient()

	http_client.fetch(url,	tornadoAsync.handle_request)

	tornado.ioloop.IOLoop.instance().start()

if	__name__	==	'__main__':

	parser	=	argparse.ArgumentParser(description='Tornado	async	client')

	parser.add_argument('--url',	action="store",	dest="url",	type=str,	required=True)

	given_args	=	parser.parse_args()

	url	=	given_args.url

	run_server(url)

The	previous	execution	script	will	create	a	Tornado	server	that	will	execute

http://localhost:8080

requests	asynchronously.	To	execute	it,	it	is	necessary	to	pass	the	URL	that	we
want	to	obtain	the	response	from	as	a	parameter:

usage:	tornado_async_client.py	[-h]	--url	URL

tornado_async_client.py:	error:	the	following	arguments	are	required:	--url

When	you	run	the	preceding	command,	you	will	see	the	response	body	of	the
URL	that	is	passed	as	a	parameter.

Asynchronous	generators
Another	way	to	write	asynchronous	code	in	Tornado	is	by	using	coroutines.
Instead	of	using	a	callback	function	for	processing	the	response,	we	can	use	the
yield	keyword	to	resume	and	suspend	the	execution.	Tornado	2.1	introduced	the
tornado.gen.coroutine	module,	which	provides	a	pattern	for	performing
asynchronous	requests.

You	can	find	the	following	code	in	the	tornado_request_async_coroutine.py	file:

#!/usr/bin/python3

import	tornado.ioloop

import	tornado.web

import	tornado.httpclient

class	Handler(tornado.web.RequestHandler):

	@tornado.web.asynchronous

	@tornado.gen.coroutine

	def	get(self):

	http_client	=	tornado.httpclient.AsyncHTTPClient()

	response	=	yield	tornado.gen.Task(http_client.fetch,	"https://www.google.com/search?q=python")

	self.write(response.body)

In	the	previous	code	block,	we	define	our	Handler	class	that	extends	from
tornado.web.RequestHandler.	This	class	contains	the	asynchronous	get()	method	and
write	body	response	when	getting	a	response	from	the	http_client	object.

In	the	next	code	block,	we	define	our	main	program,	where	we	define	the	event
loop	and	our	application	managed	by	the	Handler	class:

if	__name__	==	'__main__':

	app	=	tornado.web.Application([tornado.web.url(r"/",	Handler)])

	app.listen(8080)

	tornado.ioloop.IOLoop.current().start()

As	you	can	see,	this	code	is	identical	to	the	previous	version	of	the	code.	The
main	difference	is	in	how	we	call	the	fetch	method	of	the	AsyncHTTPClient	object.

In	the	example	in	the	Asynchronous	generators	section,	we	will	be	using
Python's	yield	keyword,	which	returns	control	of	the	program	to	Tornado,
allowing	it	to	execute	other	tasks	while	the	HTTP	request	is	in	progress.	When
the	task	is	completed,	this	instruction	returns	the	HTTP	response	in	the	request

handler	and	the	code	is	easier	to	understand.

Note	the	use	of	the	@tornado.gen.coroutine	decorator	just	before	the	definition	of	the
get	method.	This	decorator	allows	Tornado	to	use	internally	the	tornado.gen.Task
class.	For	more	details,	you	can	look	over	the	module	documentation,	which	can
be	found	at	http://www.tornadoweb.org/en/stable/gen.html.

http://www.tornadoweb.org/en/stable/gen.html

Utilities	in	Tornado	for	asynchronous
network	operations
The	tornado.netutil	module	includes	several	functions	that	are	quite	useful	for
both	clients	and	servers.	The	use	of	some	of	these	functions	are	commented	as
follows:

>>>	from	tornado	import	netutil

>>>	sockets	=	netutil.bind_sockets(8080)

>>>	sockets

[<socket.socket	fd=1108,	family=AddressFamily.AF_INET6,	type=SocketKind.SOCK_STREAM,	proto=0,	laddr=('::',	8080,	0,	0)>,	<socket.socket	fd=1112,	family=AddressFamily.AF_INET,	type=SocketKind.SOCK_STREAM,	proto=0,	laddr=('0.0.0.0',	8080)>]

>>>	netutil.is_valid_ip('127.0.0.1')

True

>>>	netutil.is_valid_ip('::1')

True

>>>	netutil.is_valid_ip('::11111')

False

>>>	dnsResolver	=	netutil.Resolver()

>>>	dnsResolver

<tornado.netutil.DefaultExecutorResolver	object	at	0x0341FD10>

>>>	dnsResolver.resolve('www.packtpub.com',80)

<Future	pending	cb=[_make_coroutine_wrapper.<locals>.wrapper.<locals>.<lambda>()>

The	bind_sockets	function	is	responsible	for	creating	the	sockets	in	all	of	the
available	network	interfaces	and	returns	a	list	with	each	of	the	references	that
were	created.

The	is_valid_ip	function	validates	whether	an	IPv4	or	IPv6	address	is	valid	or	not.

Finally,	the	Resolver	class	allows	you	to	configure	several	types	of	resolvers	for
blocking	and	non-blocking	DNS	requests.	The	default	resolver	is
tornado.netutil.DefaultExecutorResolver.

For	more	information	about	the	utilities	that	are	available	in	Tornado,	it	is
recommended	to	review	the	documentation,	which	can	be	found	at	http://tornado.

http://tornado.readthedocs.org/en/latest/netutil.html

readthedocs.org/en/latest/netutil.html.

In	this	section,	we	have	reviewed	the	Tornado	framework	for	creating
asynchronous	and	non-blocking	systems.	In	the	following	section,	we	are	going
to	review	the	Twisted	framework	for	developing	asynchronous	applications
using	an	event-driven	network	engine.

Building	asynchronous	network
applications	with	Twisted
In	this	section,	you	will	learn	about	building	asynchronous	network	applications
with	the	Twisted	framework.

Introduction	to	Twisted
Twisted	is	an	event-driven	network	engine	that	can	be	used	to	develop
asynchronous	and	publish/subscribe-based	applications.

Twisted	can	be	obtained	from	the	PyPI	repository	at	https://pypi.org/project/Twiste
d.	You	may	need	to	install	some	additional	packages	on	Windows	and	Linux
hosts.	The	installation	procedure	is	documented	at	https://twistedmatrix.com/trac.
You	can	use	the	pip	install	twisted	command	to	install	Twisted	and	its
dependencies.

If	you	are	under	an	Debian/Ubuntu	operating	system,	another	way	to	download
and	install	Twisted	is	to	use	the	following	command:

sudo	apt-get	install	python-twisted

For	other	platforms,	the	latest	versions	of	Twisted	and	its	dependencies	can	be
found	at	https://twistedmatrix.com/trac/wiki/Downloads.

Twisted	is	based	on	the	paradigm	of	event-driven	programming,	meaning	that
Twisted	users	can	write	small	predefined	callbacks	in	the	framework	to	perform
complex	tasks.

The	Twisted	design	is	based	on	the	complete	separation	between	logical
protocols	(which	usually	depend	on	the	semantic	connection	based	on	streams	or
flows,	such	as	HTTP	or	POP3)	and	transport	in	physical	layers	that	are	supported
as	semantics	in	streams	(such	as	files,	sockets	libraries,	or	SSL).

https://pypi.org/project/Twisted
https://twistedmatrix.com/trac
https://twistedmatrix.com/trac/wiki/Downloads

Protocols
Twisted	is	a	network	framework	that	implements	a	large	number	of	protocols.	It
uses	the	paradigm	known	as	event-driven	programming,	where	the	flow	of	a
program	is	determined	by	the	events	that	occur	during	its	execution.	The	main
objective	of	this	framework	is	to	provide	a	solution	to	the	problems	that	are
established	by	the	use	of	sockets	at	a	low	level,	mediating	with	threads	and	with
the	problems	that	this	also	presents	(for	example,	access	to	shared	data).

Twisted	implements	a	multitude	of	protocols	that	we	can	use	in	our	applications
in	a	simple	and	asynchronous	way—it	contains	a	web	server,	instant	messaging
clients,	chat	servers,	mail	servers	and	clients,	servers	and	SSH	clients,	and	much
more.

Twisted	is	designed	to	separate	the	logical	protocols	(SMTP,	HTTP,	and	SSH)
and	transport	in	physical	layers	(sockets	or	SSL).	The	connection	between
protocols	and	layers	takes	place	at	the	last	moment	just	before	the	data	is
delivered	to	the	logical	protocol	instance.	It	is	at	that	moment	when	the	protocol
layer	can	make	use	of	the	transport	layer,	that	is,	as	long	as	they	are	semantically
compatible.

Twisted	is	responsible	for	reading	data	through	the	protocol	that	it	integrates
with	the	protocol.Protocol	class,	which	is	from	the	twisted.internet	package.

The	most	common	use	of	Twisted	is	for	the	definition	of	the	type	protocol,
which	is	used	from	a	Twisted	factory.	It	is	responsible	for	managing	connections.
Finally,	we	use	a	reactor	object	to	establish	the	endpoint	of	the	factory.

Objects	of	the	protocol	type	are	non-persistent,	which	means	that	they	are
created	and	destroyed	after	each	connection,	while	a	factory	is	an	object	with	a
state	where	the	information	is	kept	between	several	connections.

Building	a	basic	Twisted	server
At	the	time	of	making	a	server	using	the	Python	socket	libraries,	a	loop	was
implemented	that	is	in	charge	of	verifying	the	new	connections.	We	will	manage
the	event	handlers	with	Twisted.

We	can	manage	events	for	many	situations,	such	as	a	new	connection	by	a	client,
the	reception	of	data,	or	whether	a	client	has	been	disconnected.	These	event
handlers	are	defined	in	a	protocol,	and	this	protocol	needs	a	Factory	that	can	build
the	objects	of	the	events.	This	may	sound	confusing,	but	the	code	will	make
everything	clearer.

In	the	following	example,	we	are	going	to	write	a	basic	server	using	the	Twisted
framework.	You	can	find	the	following	code	in	the	twisted_basic_server.py	file:

#!/usr/bin/python3

from	twisted.internet	import	reactor

from	twisted.internet.protocol	import	Protocol,	Factory

class	MessageLogger(Protocol):

				def	connectionMade(self):

								print('Client	connection	from:',	self.transport.client)

				def	connectionLost(self,	reason):

								print('Client	disconnected	from:',	self.transport.client)

				def	dataReceived(self,	data):

								self.transport.write(data)

								print("Message	sent	by	the	client:	",	data.decode("utf-8"))

In	the	previous	code	block,	we	defined	our	MessageLogger	class,	which	functions	as
a	protocol.	In	the	following	code	block,	we	are	defining	the	MessageFactory	class
for	managing	the	connection.	Finally,	our	main	program	connects	the	protocol	to
a	server	running	on	port	8080	using	the	MessageFactory	class:

class	MessageFactory(Factory):

				def	buildProtocol(self,	addr):

								return	MessageLogger()

				def	clientConnectionFailed(self,	connector,	reason):

								print	("Connection	failed")

								reactor.stop()

				def	clientConnectionLost(self,	connector,	reason):

								print	("Connection	lost")

								reactor.stop()

#this	connects	the	protocol	to	a	server	running	on	port	8080	

if	__name__	==	'__main__':

				#factory	=	Factory()

				#factory.protocol	=	MessageLogger

				reactor.listenTCP(8080,	MessageFactory())

				reactor.run()

We	will	start	by	creating	a	server	that	forwards	everything	it	receives.	Then,	we
will	use	a	basic	client	using	the	standard	socket	module	to	test	the	code.

The	first	thing	we	need	to	do	is	import	the	necessary	libraries	and	components,
which	in	this	case,	are	the	reactor,	protocol,	and	factory.	Then,	we	will	handle
the	events	within	a	class,	such	as	when	we	have	a	new	connection,	connectionMade,
a	lost	connection,	connectionLost,	and	if	we	receive	data,	dataReceived.

This	is	a	simple	server	program	that	forwards	everything	it	receives.	To	achieve
this,	a	protocol	must	be	established.	It	is	for	that	reason	that	a	new	class	is
created,	MessageLogger,	of	which	there	will	be	one	instance	per	connection.	The
dataReceived	method	is	an	event	that	will	be	called	for	each	portion	of	data	that	has
been	received.	This	data	is	passed	to	the	event	in	a	data	argument,	which	is	then
used	to	send	what	has	been	received	to	the	client:

class	MessageLogger(Protocol):

				def	dataReceived(self,	data):

								self.transport.write(data)

								print("Message	sent	by	the	client:	",	data.decode("utf-8"))

self.transport	is	an	instance	of	twisted.internet.tcp.Server,	through	which	we	send
data	to	the	client.

Factory
The	class	that's	responsible	for	creating	a	MessageLogger	instance	for	each	client
that	connects	to	our	server	is	the	MessageFactory	class,	which	is	an	instance	of
twisted.internet.protocol.Factory.	It	is	responsible	for	making	protocols	for	each
incoming	connection.

buildProtocol	is	an	event	that	will	be	called	every	time	an	incoming	connection	is
found.	It	will	assign	a	protocol	to	it.	In	this	way,	each	connection	will	be	tied	to	a
protocol	that's	specified	by	the	developer	in	this	method.	In	this	case,	all
connections	will	be	handled	through	the	same	MessageLogger	protocol,	which
forwards	everything	that's	received.

We	will	make	an	instance	of	Factory	that	will	be	in	charge	of	building	the
necessary	objects.	We	will	also	specify	that	its	protocol	will	be	the	class	that	we
have	made.	Finally,	we	will	make	our	program	listen	in	a	specific	port	with	a
reactor.

The	following	is	the	class	we	used	for	defining	our	Factory	class.	This	will	be
instantiated	every	time	an	incoming	connection	is	received:

class	MessageFactory(Factory):

				def	buildProtocol(self,	addr):

								return	MessageLogger()

The	argument	that	buildProtocol	receives	is	an	instance	of	IPv4Address	or	IPv6Address,
as	appropriate.	It	contains	information	about	the	client,	and	the	incoming
connection,	such	as	the	IP	address	and	port,	among	other	things.	This	data	can
also	be	accessed	in	the	protocol	through	the	self.transport.getPeer	function.

Reactor
Twisted	implements	the	reactor	design	pattern,	which	describes	how	to	obtain
and	redirect	events	from	multiple	sources	to	their	respective	handlers	in	a	single
thread.

The	Twisted	core	is	the	reactor	event	loop.	The	event	loop	waits	for	these	events
and	then	processes	them,	abstracting	specific	behavior	of	a	platform	and
presenting	interfaces	to	facilitate	the	response.

The	reactor	is	the	main	Twisted	loop,	and	is	responsible	for	calling	the	events	at
the	appropriate	time	and	alternating	between	the	different	connections	to	achieve
(rather	than	simulate)	concurrency.

For	creating	a	reactor	that's	listening	in	a	specific	port,	we	can	use	the	listenTCP()
method.	We	will	pass	in	the	port	and	the	Factory	class	that	was	created	in	the
Factory	section	as	parameters:

reactor.listenTCP(8080,	MessageFactory())

reactor.run()

In	this	case,	it	is	used	to	listen	to	TCP	connections	through	port	8080.	As	a	second
parameter,	an	instance	of	our	factory	is	passed,	which,	as	we	indicated
previously,	is	responsible	for	assigning	a	protocol	to	each	incoming	connection.

Finally,	we	execute	the	main	loop	by	calling	the	reactor.run()	function.

Building	a	socket	client
For	simplicity,	our	client	will	be	a	socket	that	connects	to	our	server	that	was
developed	with	Twisted.

You	can	find	the	following	code	in	the	socket_client.py	file:

#!/usr/bin/env	python3

from	socket	import	socket

s	=	socket()

s.connect(("127.0.0.1",	8080))

while	True:

				output_data	=	input("Enter	message>	")

				if	output_data:

								s.send(output_data.encode())

								input_data	=	s.recv(1024)

								if	input_data:

												print(input_data.decode("utf-8"))

In	this	section,	we	have	analyzed	how	to	create	our	own	socket	client	for
communicating	with	the	Twisted	server	on	port	8080.

Executing	the	client	and	server
First,	we	need	to	run	the	server	with	the	following	command:

$	python	twisted_basic_server.py

At	this	moment,	the	server	is	waiting	for	connections	from	the	client.	If	we	run
the	client,	we	can	write	any	message	in	the	console	and	you	will	see	how	the
server	responds	with	what	it	has	received.	The	following	could	be	the	messages
that	the	server	receives	from	two	connected	clients:

Client	connection	from:	('127.0.0.1',	8229)

	Message	sent	by	the	client:	hi	this	is	my	message

	Message	sent	by	the	client:	Message	from	client	1

	Client	connection	from:	('127.0.0.1',	8282)

	Message	sent	by	the	client:	Message	from	client	2

	Client	disconnected	from:	('127.0.0.1',	8282)

	Client	disconnected	from:	('127.0.0.1',	8229)

The	twisted_basic_server.py	script	starts	a	TCP	server	listening	for	connections	on
port	8080.

This	script	sends	the	information	through	the	transport	channel	using	the
MessageLoggerprotocol	class.	The	client	socket	establishes	a	TCP	connection	to	the
server,	resending	the	server	response,	terminating	the	connection,	and	stopping
the	reactor.	The	MessageFactory	class	is	used	to	connect	both	client	and	server,
creating	instances	of	the	MessageLogger	class.

Communication	is	asynchronous	on	both	sides;	connectTCP	is	in	charge	of
registering	the	callbacks	in	the	reactor	so	that	we're	notified	when	the
information	is	available	to	be	read	from	the	socket.

Building	a	Twisted	client
For	creating	a	Twisted	client,	we	can	follow	the	same	programming	model	we
used	for	creating	a	server	with	Twisted.	Basically,	we	need	to	define	a	protocol
type,	a	factory,	and	a	reactor.

To	create	clients	with	Twisted,	we	can	use	the	TCP4ClientEndpoint	class	to	establish
a	connection	with	the	server.	We	will	use	the	connectProtocol	method	and	pass
through	the	host	and	the	port	as	parameters.

There	are	multiple	classes	and	utilities	to	make	connections	to	remote	servers
using	Twisted.	The	use	of	such	classes	depends	on	the	protocol	that's	used	for
communication	with	the	server.

You	can	find	the	following	code	in	the	twisted_basic_client.py	file:

#!/usr/bin/python3

from	twisted.internet	import	reactor

from	twisted.internet.protocol	import	Protocol

from	twisted.internet.protocol	import	ClientFactory

class	MyTwistedClient(Protocol):

	def	connectionMade(self):

	self.transport.write('Connection	established'.encode())

	def	connectionLost(self,	reason):

	print('Connection	Lost	%s	'	%(reason))

	def	dataReceived(self,	data):

	print('Server	data:	',	data)

	self.transport.loseConnection()

In	the	previous	code	block,	we	defined	our	MyTwistedClient	class	that	functions	as
protocol.	In	the	following	code	block,	we	define	the	MyTwistedClientFactory	class
for	managing	the	connection.

Finally,	our	main	program	that	connects	the	protocol	to	a	server	running	on	port
8080	using	the	MyTwistedClientFactory())	class	is	as	follows:

class	MyTwistedClientFactory(ClientFactory):

	protocol	=	MyTwistedClient

	def	clientConnectionFailed(self,	connector,	reason):

	print('Connection	Failed')

	reactor.stop()

	def	clientConnectionLost(self,	connector,	reason):

	print('Connection	Lost')

	reactor.stop()

reactor.connectTCP('localhost',	8080,	MyTwistedClientFactory())

reactor.run()

In	this	section,	we	have	built	our	own	Twisted	client	for	communicating	with	a
Twisted	server	on	port	8080.	In	this	case,	we	are	creating	a	class
called	MyTwistedClient	that	acts	as	protocol,	as	well	as	a	class
called	MyTwistedClientFactory,	which	manages	connections	between	the	client	and
server.

Building	a	Twisted	web	server
Twisted	contains	a	series	of	classes	and	utilities	to	create	various	types	of	servers
and	clients.	It	is	possible	to	create	configurations	for	web	servers	and
configurations	to	use	the	SSL	protocol	between	clients	and	servers.	In	this
example,	we	are	developing	a	server	that	receives	HTTP	requests.

You	can	find	the	following	code	in	the	twisted_web_server.py	file:

#!/usr/bin/env	python3

from	twisted.internet	import	reactor

from	twisted.web	import	server,	resource

class	TwistedResource(resource.Resource):

				def	render_GET(self,	request):

								return	b"<html><center><h1>Twisted	server	is	running	on	port	8080</h1></center></html>"

root	=	resource.Resource()

root.putChild(b"twisted",	TwistedResource())

site	=	server.Site(root)

reactor.listenTCP(8080,	site)

reactor.run()

The	following	is	the	output	of	the	web	server	after	executing	this	script:

In	this	section,	we	have	analyzed	how	to	create	our	own	server	with	Twisted	by
using	the	event	loop	that	was	provided	by	the	twisted.internet	package.

Building	asynchronous	network
applications	with	Celery
In	this	section,	you	will	learn	about	building	asynchronous	network	applications
with	the	Celery	framework.

Celery	architecture
Celery	is	an	efficient	and	scalable	way	to	execute	tasks	asynchronously	and	acts
as	a	distributor	of	high-level	tasks	where	tasks	are	queued	and	run	concurrently
using	various	paradigms	such	as	multiprocessing	or	gevent.

An	efficient	and	scalable	way	to	perform	tasks	asynchronously	is	to	use	a	queue
library	as	Celery.	With	this	library,	you	define	workers	that	are	processes	for
executing	the	heavy	tasks.	An	interesting	aspect	of	this	solution	is	that	there	can
be	many	workers	(even	in	different	servers)	executing	the	tasks.

The	architecture	of	the	solution	is	as	follows:

Consumer:	This	is	the	application	that	users	use.	If	it	is	a	web	application,
it	can	be	a	Django	or	Flask	application.
Producer:	This	is	the	worker	who	does	the	heavy	work.
Broker:	This	is	the	mechanism	that	the	consumer	uses	to	store	the	pending
work.
Backend:	This	is	the	mechanism	that's	used	by	the	producer	to	store	the
results	of	the	task.

At	this	point,	we	can	see	how	the	elements	interact	with	each	other	in	the	Celery
architecture:

The	consumer	application	is	responsible	for	generating	tasks	that	will
receive	a	message	broker	like	RabbitMQ	or	Redis.	In	this	chapter,	we	will
work	with	the	Redis	message	broker.
The	message	broker	allows	you	to	send	and	receive	messages,	and	it
generates	tasks	to	be	executed	in	Celery	workers.
When	the	tasks	are	finished,	Celery	stores	this	information	in	the	form	of
events.

Installing	Celery
Celery	is	a	set	of	tools	that	allows	us	to	easily	work	with	multiple	services,	with
some	syntactic	sugar	and	annotations	in	the	code.	It	is	a	way	of	launching
services	that	see	them	as	tasks.	First,	we	will	need	to	install	Celery	with	the
following	command:

pip	install	celery

The	most	important	concept	that	Celery	handles	are	tasks.	Celery	offers	the
ability	to	execute	them	in	real	time,	or	to	be	scheduled	synchronously	or
asynchronously	through	the	use	of	processes	or	system	events.

The	broker	is	the	channel	that's	used	to	transport	messages	from	one	service	to
another.	In	this	case,	we	are	going	to	use	a	message	queue.	Celery	can	use	other
services	to	send	and	receive	messages.	These	messages	are	usually	the	tasks	or
the	results	of	the	tasks.	In	this	case,	we	will	use	Redis	since	it	is	very	easy	to
install	and	configure	for	related	tasks	such	as	caching	and	publisher/subscriber
models.

Installing	Redis
You	can	install	Redis	by	following	the	instructions	on	the	Redis	Quick	Start	page
(https://redis.io/topics/quickstart).	It	is	also	necessary	to	install	the	Redis	Python
library,	pip	install	redis,	since	this	package	is	required	for	using	Redis	and
Celery:

pip	install	celery	[redis]

To	install	Redis	for	the	Windows	operating	system,	you	can	choose	either	of
these	sources:

https://github.com/MSOpenTech/redis/releases

https://github.com/rgl/redis/downloads

If	you	are	working	in	a	Windows	operating	syatem,	you	can	download	Redis-x64-
2.8.2104.zip	and	extract	the	ZIP	to	the	prepared	directory	and	execute	the	redis-
server.exe	file.

In	the	following	screenshot,	we	can	see	the	execution	of	the	Redis	server	on	port
6379:

In	you	are	on	a	Unix	operating	system,	you	can	start	the	Redis	server	with	the
following	command:

$	redis-server

https://redis.io/topics/quickstart
https://github.com/MSOpenTech/redis/releases
https://github.com/rgl/redis/downloads

Introduction	to	Redis
Basically,	Redis	is	a	tool	for	data	structures	in	memory	and	is	used	as	a	database
cache.	With	it,	most	of	the	data	is	in	memory,	making	the	request	for	information
that's	required	through	queries	much	faster.

We	can	create	a	connection	to	Redis	from	Python	by	using	the	redis-py	package,
where	port=6379	and	db=0	are	default	values:

>>>	import	redis

>>>	redis_client	=	redis.Redis(host='localhost',	port=6379,	db=0)

>>>	print(redis_client)

Redis<ConnectionPool<Connection<host=localhost,port=6379,db=0>>>

Now	that	we	are	connected	to	Redis,	we	can	start	reading	and	writing	data.	The
following	instruction	writes	the	my_value	to	the	Redis	my_key	key,	reads	it	back,	and
prints	it:

>>>	redis_client.set('my_key','my_value')

	True

	>>>	redis_client.get('my_key')

	b'my_value'

With	Redis,	we	can	also	manage	lists	in	an	easy	way.	These	are	the	methods	we
can	use	for	managing	this	list:

rpush:	Allows	you	to	insert	elements	at	the	end	of	the	list
llen:	Returns	the	list's	length
lindex:	Returns	the	element	passing	a	specific	index	as	a	parameter,	where
the	first	element	is	index	0
lrange:	Returns	elements	from	a	list,	passing	the	name	of	the	list	and	indexes
for	the	start	and	end	elements	as	parameters:

>>>	redis_client.rpush('my_list',	'http')

	1

	>>>	redis_client.rpush('my_list',	'ftp')

	2

	>>>	redis_client.rpush('my_list',	'smtp')

	3

	>>>	redis_client.rpush('my_list',	'tcp')

	4

	>>>	redis_client.rpush('my_list',	'udp')

	5

	>>>	redis_client.llen('my_list')

	5

	>>>	redis_client.lindex('my_list',2)

	B'smtp'

>>>	redis_client.lrange('my_list',0,4)

[b'http',	b'ftp',	b'smtp',	b'tcp',	b'udp']

In	the	previous	script	execution,	we	can	see	how	we	can	add	elements	in
the	redis_client	list,	get	the	list's	length,	get	an	element	from	a	specific	index,
and	get	elements	from	the	start	and	end	indexes	of	the	list.

Distributing	Python	with	Celery	and
Redis
The	following	is	a	simple	application	that	uses	Redis	as	a	broker,
where	consumer.py	sends	messages	to	producer.py.	Both	the	consumer	and	the
producer	require	this	configuration,	where	you	can	use	the	database	with	number
0	of	your	local	Redis	installation:

app	=	Celery	(‘celery_tasks',broker='redis://localhost:6379/0',backend='redis://localhost:6379/0')

To	establish	a	connection	with	Celery,	we	need	to	set	broker	and	backend
parameters.	The	broker	parameter	allows	specification	of	the	server	address,
where	the	tasks	are	stored	and	the	backend	parameter	is	the	address	where	Celery
puts	the	results	so	that	we	can	use	them	in	our	application.	In	this	case,	both
addresses	are	the	same,	executing	in	localhost	in	the	same	port.

To	start	building	things	with	Celery,	we	will	first	need	to	create	a	Celery
application	with	the	following	command:

$	celery	-A	producer	worker	--loglevel=debug	--concurrency=4	--pool=solo

The	different	options	that	can	be	used	when	starting	a	worker	are	detailed	in	the
Celery	documentation,	which	can	be	found	at	http://docs.celeryproject.org/en/latest
/reference/celery.bin.worker.html#module-celery.bin.worker.

In	the	following	screenshot,	we	can	see	the	execution	of	the	previous	command:

http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#module-celery.bin.worker

After	that,	Celery	needs	to	know	what	kind	of	tasks	it	can	execute.	For	this,	we
have	to	register	the	tasks	for	the	Celery	application.	This	is	the	content	of
producer.py,	which	exposes	a	task	called	task_execution	that	takes	five	seconds
before	printing	the	result.	We	will	do	this	with	the	@app.task	decorator.

You	can	find	the	following	code	in	the	producer.py	file:

!/usr/bin/python3

from	celery	import	Celery

from	time	import	sleep

app	=	Celery('celery_tasks',broker='redis://localhost:6379/0',	backend='redis://localhost:6379/0')

	

@app.task

def	task_execution(message):

				sleep(5)

				print('Message	received:	%s'	%	message)

The	following	is	the	consumer.py	code.	All	it	does	is	receive	a	message	from	the
console	and	send	it	to	the	producer:

#!/usr/bin/python3

from	producer	import	task_execution

while	True:

				message	=	input('Enter	Message>	')

				task_execution.delay(message)

The	consumer	runs	with	the	following	command:

$	python	consumer.py

Enter	Message>	This	is	my	message

When	writing	a	message	to	the	consumer,	you	can	see	that	the	producer	receives
it	and,	after	5	seconds,	prints	it.	The	interesting	thing	is	that	the	consumer	does
not	need	to	wait	5	seconds—it	is	instantly	available	to	process	another	message.
If	the	producer	receives	many	messages,	then	they	are	added	to	the	message
queue.

Also,	keep	in	mind	that	the	records	are	now	in	the	standard	output	of	the	Celery
processes,	so	check	them	out	at	the	appropriate	Terminal.

In	the	following	screenshot,	you	can	see	the	output	when	you	send	a	message
from	the	consumer	Terminal	in	debug	mode:

In	the	following	screenshot,	you	can	see	the	output	when	you	send	a	message
from	the	consumer	Terminal	with	info	mode,	--loglevel=info:

There	is	the	option	to	put	the	consumer	and	producer	in	the	script.

You	can	find	the	following	code	in	the	demo_celery.py	file:

#!/usr/bin/python3

#	Celery	full	example:	publisher/subscriber

from	celery	import	Celery

#	Redis

app	=	Celery('demo_celery',	broker='redis://localhost:6379/0',	backend='redis://localhost:6379/0')

@app.task

def	task_execution(message,count):

	array=[]

	print('Message	received:	%s'	%	message)

	for	index	in	range(0,int(count)):

	array.append(message)

	return	(array)

In	the	previous	code	block,	we	defined	our	Celery	application	using	redis	as	a
message	broker.	The	task_execution()	method	is	annotated	with	@app.task.	This
method	will	add	the	message	in	array	that	will	return.

In	the	next	code	block,	we	define	infinite	loop	to	request	user	message.	For	each
message,	it	generates	a	task	calling	the	task_execution()	method:

def	main():

	while	True:

	message	=	input('Enter	Message>	')

	count	=	input('Enter	times	appears	the	message>	')

	promise	=	task_execution.delay(message,count)

if	__name__	==	'__main__':

	main()

In	this	example,	we	are	using	the	eventlet	event	manager.	You	can	install	it	with
the	pip	install	eventlet	command.	With	the	-P	gevent	command	parameter,	we	can
execute	Celery	with	the	following	manager	event:

$	celery	-A	demo_celery	worker	--loglevel=debug	--concurrency=4	-P	gevent

This	is	the	output	when	you	enter	the	number	of	message	and	times	you	want	it
to	appear	in	the	message.

In	the	following	screenshot,	we	can	see	how	its	execution	returns	an	array	with
the	message	repeated	as	many	times	as	you	have	entered:

In	this	section,	you	have	learned	about	the	Celery	and	Redis	projects	for	building
applications.	They	allow	you	to	send	messages	between	a	consumer	and	a
producer	with	the	help	of	a	broker	as	a	mechanism,	which	allows	a	consumer	to
store	pending	tasks.

Summary
In	this	chapter,	we	reviewed	some	frameworks	and	libraries	that	try	to	solve	the
problem	of	sequential	programming	by	using	event-driven	programming,	in
which	a	single	main	loop	is	executed.	This	is	responsible	for	calling	the
functions	that	are	defined	by	the	programmer,	known	as	events.	In	this	way,	in	a
server	that	serves	information	to	several	clients,	it	is	possible	to	share	this
information	among	all	the	connections	without	having	to	worry	about	blocking
or	allowing	access	to	it.	We	reviewed	asyncio,	aiohttp,	Tornado,	Twisted,	and
Celery	for	building	asynchronous	network	applications.

In	the	next	chapter,	you	will	learn	about	the	basics	of	Python	web	frameworks
and	developing	web	applications	with	the	Flask	framework	and	SQLAlchemy.

Questions
1.	 What	is	the	main	advantage	of	using	aiohttp	regarding	the	requests	module

for	HTTP	requests?
2.	 What	are	the	classes	from	the	concurrent.futures	package	that	use	the

executor	abstract	base	class?
3.	 What	is	the	most	important	concept	within	asyncio	that	allows	us	to	write

asynchronous	code	using	either	callbacks	or	coroutines?
4.	 Which	class	from	asyncio	is	a	subclass	of	asyncio.Future	and	allows	you	to

encapsulate	and	manage	coroutines?
5.	 Which	keyword	from	asyncio	tells	the	Python	interpreter	that	the

succeeding	expression	is	going	to	take	some	time	to	evaluate	so	that	it	can
spend	that	time	on	other	tasks?

6.	 Which	Tornado	class	is	responsible	for	defining	the	URIs	that	are	available
for	the	web	server?

7.	 Which	Tornado	class	can	perform	HTTP	requests	asynchronously?
8.	 Which	method,	when	creating	a	protocol	with	Twisted,	will	be	called	for

each	portion	of	data	that	has	been	received?
9.	 What	is	the	event,	when	working	with	Twisted,	that	will	be	called	every

time	an	incoming	connection	is	found,	so	that	you	can	assign	a	protocol	to
it?

10.	 What	Twisted	class	can	we	use	to	create	clients	to	establish	a	connection
with	the	server?

Further	reading
In	the	following	links,	you	will	find	more	information	about	the
tools	mentioned	and	the	official	Python	documentation	for	some	of	the	modules
that	we	talked	about	in	this	chapter:

Python	ThreadPoolExecutor	Tutorial:	https://tutorialedge.net/python/concurren
cy/python-threadpoolexecutor-tutorial

Concurrent	futures	documentation:	https://docs.python.org/3/library/concurrent.
futures.html

asyncio	documentation:	https://docs.python.org/3/library/asyncio.html
Tornado	web	demos:	https://github.com/tornadoweb/tornado/tree/stable/demos
Other	solutions	based	on	Tornado:	http://cyclone.io
Alternatives	to	aiohttp.	Sanic	as	an	async	Python	3.5+	web	server:	https://sa
nicframework.org

Celery	project:	http://www.celeryproject.org
Twisted	project:	https://twistedmatrix.com/trac
Writing	Servers:	https://twistedmatrix.com/documents/current/core/howto/servers.htm
l

Writing	Clients:	https://twistedmatrix.com/documents/current/core/howto/clients.htm
l

Twisted	code	style	guide:	https://twistedmatrix.com/documents/current/core/develo
pment/policy/coding-standard.html

https://tutorialedge.net/python/concurrency/python-threadpoolexecutor-tutorial
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/asyncio.html
https://github.com/tornadoweb/tornado/tree/stable/demos
http://cyclone.io
https://sanicframework.org
http://www.celeryproject.org
https://twistedmatrix.com/trac
https://twistedmatrix.com/documents/current/core/howto/servers.html
https://twistedmatrix.com/documents/current/core/howto/clients.html
https://twistedmatrix.com/documents/current/core/development/policy/coding-standard.html

Designing	Applications	on	the	Web
In	this	chapter,	you	will	learn	how	to	implement	a	web	application	using
the	Web	Server	Gateway	Interface	(WSGI).	You	will	be	introduced	to	existing
web	application	frameworks	and	how	to	start	working	with	dynamic	web
programming.	We	will	introduce	the	Flask	microframework	that's	written	in
Python,	which	is	designed	to	facilitate	the	development	of	web	applications
under	the	Model-View-Controller	(MVC)	pattern.	Finally,	we	will	review	how
to	work	with	HTTP	requests	in	Flask	and	how	to	interact	with	databases	through
SQLAlchemy.

The	following	topics	will	be	covered	in	this	chapter:

Writing	a	web	application	with	WSGI
A	discussion	of	existing	web	application	frameworks	(Django,	Flask,
Plone)
The	MVC	pattern	and	dynamic	web	programming	with	Python
Creating	RESTful	web	applications	and	working	with	Flask	and	HTTP
requests
Interacting	with	Flask	with	the	SQLAlchemy	database

Technical	requirements
The	examples	and	source	code	for	this	chapter	are	available	in	the	GitHub
repository	in	the	Chapter12	folder,	at	https://github.com/PacktPublishing/Learning-Python-
Networking-Second-Edition.

You	will	need	to	install	the	Python	distribution	on	your	local	machine	with	a
Unix	operating	system	and	have	some	basic	knowledge	of	network	protocols.
The	examples	in	this	chapter	also	are	compatible	with	the	Windows	operating
system.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Writing	a	web	application	with	WSGI
In	this	section,	we	are	going	to	introduce	the	necessary	concepts	to	create	a	web
page	that's	been	developed	with	Python	without	using	any	framework.	For	this,	it
is	necessary	to	know	about	the	concept	of	WSGI,	which	is	a	specification	of	a
simple	and	universal	interface	between	web	servers	and	web	applications	or
frameworks	that	are	developed	with	Python.

Introducing	WSGI
Python	web	applications	were	originally	written	against	these	CGI	and	FastCGI
protocols,	and	a	now	mostly	defunct	mod_python	Apache	module.	This	proved
troublesome,	though,	since	Python	web	applications	were	tied	to	the	protocol	or
server	they	had	been	written	for.	Moving	them	to	a	different	server	or	protocol
required	some	reworking	of	the	application	code.

This	problem	was	solved	with	PEP	333,	which	defined	the	WSGI	protocol.	This
established	a	common	calling	convention	for	web	servers	to	invoke	web
application	code,	similar	to	CGI.	When	web	servers	and	web	applications	both
support	WSGI,	servers	and	applications	can	be	exchanged	with	ease.	WSGI
support	has	been	added	to	many	modern	web	servers	and	is	nowadays	the	main
method	of	hosting	Python	applications	on	the	web.	It	was	updated	for	Python	3
in	PEP	3333.

Many	of	the	web	frameworks	we	discussed	earlier	support	WSGI	behind	the
scenes	to	communicate	with	their	hosting	web	servers,	Flask	and	Django
included.	This	is	another	big	benefit	to	using	such	a	framework	–	you	get	full
WSGI	compatibility	for	free.

There	are	two	ways	a	web	server	can	use	WSGI	to	host	a	web	application.	First,
it	can	directly	support	hosting	WSGI	applications.	Pure	Python	servers	such	as
Gunicorn	follow	this	approach,	and	they	make	serving	Python	web	applications
very	easy.	This	is	becoming	a	very	popular	way	to	host	Python	web	applications.

The	second	approach	is	for	a	non-Python	server	to	use	an	adapter	plugin,	such	as
Apache's	mod_wsgi,	or	the	mod_wsgi	plugin	for	Nginx.

The	exception	to	the	WSGI	revolution	is	event-driven	servers.	WSGI	doesn't
include	a	mechanism	to	allow	a	web	application	to	pass	control	back	to	the
calling	process,	and	so	there	is	no	benefit	to	using	an	event-driven	server	with	a
blocking-IO	style	WSGI	web	application	because	as	soon	as	the	application
blocks	for	database	access,	for	example,	it	will	block	the	whole	web	server
process.

Hence,	most	event-driven	frameworks	include	a	production-ready	web	server.
Making	the	web	application	itself	event-driven	and	embedding	it	in	the	web
server	process	is	really	the	only	way	to	host	it.	To	host	web	applications	with
these	frameworks,	check	out	the	framework's	documentation.	In	this	chapter,	we
will	review	specific	frameworks	such	as	Django	and	Flask.

Creating	a	WSGI	application
All	the	requests	that	we	make	to	our	server	will	be	handled	by	the	WSGI
application,	which	will	be	a	single	file.	This	application	will	be	responsible	for
handling	the	requests	and	returning	the	appropriate	response	according	to	the
requested	URL.	In	this	application,	we	will	have	to	define	a	function	that	acts
with	each	user's	request.	This	function	must	be	a	valid	application	WSGI
function.	This	means	that	it	should	be	called	application	and	it	should	receive
two	parameters:	environ,	from	the	os	module,	which	provides	a	dictionary	of
standard	HTTP	requests	and	other	environment	variables,	and	the
start_response	function,	from	WSGI,	which	is	responsible	for	delivering	the	HTTP
response	to	the	user.

In	the	following	example,	we	will	create	a	web	server	that	responds	to	the
localhost	on	port	8080.

You	can	find	the	following	code	in	the	wsgi_example.py	file:

#!/usr/bin/env	python3

from	wsgiref.simple_server	import	make_server

def	page(content,	*args):

				yield	b'<html><head><title>wsgi_example.py</title></head><body>'

				yield	(content	%	args).encode('utf-8')

				yield	b'</body></html>'

def	application(environ,	start_response):

				#	I	keep	the	output	that	I	will	return	in	response

				response	=	"<p>This	is	my	web	page	built	with	python	wsgi</p>"

				#	A	response	to	the	browser	is	generated

				start_response('200	OK',	[('Content-Type',	'text/html;	charset=utf-8')])

				return	page(response)

if	__name__	==	'__main__':

				print('Listening	on	localhost:8080')

				srv	=	make_server('localhost',	8080,	application)

				srv.serve_forever()

The	controller	that	we	used	previously	does	not	take	into	account	the	URL	that
we	accessed	the	server	with,	and	will	always	generate	the	same	response.	Using
the	information	about	the	request	that	we	have	stored	in	the	environ	dictionary,	we
can	build	different	answers	according	to	the	request	by	taking	into	account	the
access	URL,	for	example.

The	environ	dictionary	that	is	received	with	each	HTTP	request	contains	the
standard	variables	of	the	CGI	specification,	including	the	following:

REQUEST_METHOD:	GET	and	POST	methods
SCRIPT_NAME:	The	initial	part	of	the	route,	which	corresponds	to	the	application
PATH_INFO:	The	second	part	of	the	route	determines	the	virtual	location	within
the	application
QUERY_STRING:	The	portion	of	the	URL	that	follows	the	?
CONTENT_TYPE,	CONTENT_LENGTH	of	the	HTTP	request
SERVER_NAME,	SERVER_PORT,	that,	combined	with	SCRIPT_NAME	and	PATH_INFO,	give	the
URL
SERVER_PROTOCOL:	The	protocol	version	(HTTP/1.0	or	HTTP/1.1)

In	this	way,	we	can	develop	a	controller	to	check	the	access	URL	and	work	with
the	parameters	that	were	sent	by	the	GET	method.	In	this	example,	we	are	using
the	QUERY_STRING	environment	variable	to	perform	a	basic	operation	by	parameters
in	the	URL.	For	example,	if	we	want	to	multiply	two	numbers,	we	can	use	these
parameters	in	the	URL	query	string,	like	so:	operation?
operator1=2&operator2=10&operation=*.

You	can	find	the	following	code	in	the	wsgi_example2.py	file:

#!/usr/bin/env	python3

from	wsgiref.simple_server	import	make_server

def	page(content,	*args):

				yield	b'<html><head><title>wsgi_example.py</title></head><body>'

				yield	(content	%	args).encode('utf-8')

				yield	b'</body></html>'

In	the	first	code	block,	we	imported	the	module	for	creating	our	server	and
defined	the	function	that	will	generate	the	HTML	page.	In	the	following	code
block,	we	are	defining	the	application	method	for	processing	the	query	string
and	parameters:

def	application(environ,	start_response):

				if	environ['PATH_INFO']	==	'/':

								response	=	"<p>This	is	my	web	page	built	with	python	wsgi</p>"

								start_response('200	OK',	[('Content-Type',	'text/html;	charset=utf-8')])

								return	page(response)

				elif	environ['PATH_INFO']	==	'/operation':

								print('environ["QUERY_STRING"]:',environ["QUERY_STRING"])

								params	=	environ["QUERY_STRING"].split("&")

								print('Parameters	',params)

								operator1	=	params[0].split("=")[1]

								print('Operator	1:',operator1)

								operator2	=	params[1].split("=")[1]

								print('Operator	2:',operator2)

								operation	=	params[2].split("=")[1]

								print('Operation:',operation)

								result	=	str(eval(operator1+operation+operator2))

								print('Result:',result)

								response	=	"<p>The	operation	result	is	%s</p>"	%result

								start_response('200	OK',	[('Content-Type',	'text/html;	charset=utf-8')])

								return	page(response)

				else:

								response	=	"<p>This	URL	is	not	valid</p>"

								start_response('404	Not	Found',	[('Content-Type',	'text/html;	charset=utf-8')])

								return	page(response)

Finally,	we	have	our	main	program	for	creating	the	server	in	localhost	8080,
which	we	provide	by	using	the	application	method	defined	in	the	previous	code
block:

if	__name__	==	'__main__':

				print('Listening	on	localhost:8080')

				server	=	make_server('localhost',	8080,	application)

				server.serve_forever()

In	the	following	screenshot,	we	can	see	the	execution	of	the	wsgi_example2.py
script,	where	we	can	see	the	server	running	in	localhost:8080.	When	we	invoke
the	operator	url	endpoint,	it	shows	information	about	the	operation	and	the	result:

In	this	section,	we	have	introduced	the	wsgiref.simple_server	package	to	create	a
web	page	that's	been	developed	with	Python	using	the	WSGI	standard,	which	is
a	specification	of	a	universal	interface	between	web	servers	and	web
applications.

Existing	web	application	frameworks
(Django,	Flask,	and	Plone)
In	this	section,	you	will	learn	about	the	web	frameworks	that	are	available	in	the
Python	ecosystem.

Web	frameworks
In	the	modern	development	of	web	applications,	different	frameworks	are	used,
which	are	tools	that	give	us	a	working	scheme	and	a	series	of	utilities	and
functions	that	facilitate	and	abstract	us	away	from	the	construction	of	dynamic
web	pages.

In	general,	frameworks	are	associated	with	programming	languages	(Ruby	on
Rails	(Ruby),	Symphony	(PHP))	in	the	Python	world.	The	most	well-known	one
is	Django,	but	Flask	is	an	interesting	option	that	may	not	have	such	a	high
learning	curve.	It	allows	us	to	create	web	applications	that	are	just	as	complex	as
those	that	can	be	created	in	Django.

A	web	framework	is	a	layer	that	sits	between	the	web	server	and	our	Python
code,	which	provides	abstractions	and	streamlined	APIs	to	perform	many	of	the
common	operations	of	interpreting	HTTP	requests	and	generating	responses.
Ideally,	it	is	also	structured	so	that	it	guides	us	into	employing	well-tested
patterns	for	good	web	development.	Frameworks	for	Python	web	applications
are	usually	written	in	Python,	and	can	be	considered	part	of	the	web	application.

The	basic	services	a	framework	provides	are	as	follows:

Abstraction	of	HTTP	requests	and	responses
Management	of	the	URL	space	(routing)
Separation	of	Python	code	and	markup	(templating)

There	are	many	Python	web	frameworks	in	use	today,	and	here's	a	non-
exhaustive	list	of	some	popular	ones:

Django:	www.djangoproject.com
Pyramid:	www.pylonsproject.org
Flask:	www.flask.pocoo.org
Web2py:	www.web2py.com
CherryPy:	www.cherrypy.org
Tornado:	www.tornadoweb.org
TurboGears:	www.turbogears.org

http://www.djangoproject.com
http://www.pylonsproject.org
http://www.flask.pocoo.org
http://www.web2py.com
http://www.cherrypy.org
http://www.tornadoweb.org
http://www.turbogears.org

Plone:	https://plone.org

An	up-to-date	list	of	frameworks	is	maintained	at	http://wiki.python.org/moin/WebFra
meworks	and	http://docs.python-guide.org/en/latest/scenarios/web/#frameworks.

Some	frameworks	provide	the	minimum	to	quickly	build	a	simple	web
application.	These	are	often	called	micro	frameworks,	and	one	of	the	most
popular	is	Flask.	Although	they	may	not	include	the	functionality	of	some	of	the
heavyweight	frameworks,	they	provide	hooks	to	allow	for	the	easy	extension	of
more	complex	tasks.	This	allows	a	fully	customizable	approach	to	web
application	development.

Other	frameworks	take	a	much	more	batteries-included	stance,	providing	all	the
common	needs	of	modern	web	applications.	The	major	contender	here	is
Django,	which	includes	everything	from	templating	to	form	management	and
database	abstraction,	and	even	a	complete	out-of-the-box	web-based	database
admin	interface.	TurboGears	provides	similar	functionality	by	integrating	a	core
micro	framework,	with	several	established	packages	for	the	other	features.

However,	other	frameworks	provide	features	such	as	supporting	web
applications	with	an	event-driven	architecture,	including	Tornado	and	CherryPy.
Both	of	these	also	feature	their	own	built-in	production-quality	web	servers.

Here,	we	have	provided	a	small	description	for	some	of	these	frameworks:

Django:	This	is	perhaps	the	most	well-known	web	framework	of	Python
that	brings	more	features	to	its	core.	The	main	feature	offered	by	Django	is
the	possibility	of	having	an	interface	for	the	administration	of	its
applications,	from	which	you	can	work	with	the	database	models	and
forms.	At	the	database	level,	an	ORM	system	(Object	Relational	Mapper)
is	used	to	relate	the	models	declared	in	Django	with	tables	in	databases.
Pyramid:	This	was	one	of	the	first	web	frameworks	that	was	compatible
with	Python	3.	It	is	considered	the	best	option	if	your	target	is	to	have	a
quick	prototype	of	the	website	or	to	develop	large	web	applications,	such	as
a	content	management	system	(CMS).
Web2py:	Architecturally,	Web2py	follows	the	MVC.	It	incorporates
generated	forms	with	validation	of	fields,	and	the	sessions	are	stored	on	the
server	side.	Database	support	includes	built-in	SQL	generation	for	the	most
popular	databases.	Once	you	have	defined	your	models,	you	will	get	a	full

https://plone.org
http://wiki.python.org/moin/WebFrameworks
http://docs.python-guide.org/en/latest/scenarios/web/#frameworks

administrative	interface	automatically.
Flask:	Flask	is	a	micro	framework	based	on	the	Web	Server	Gateway
Interface	(WSGI),	which	is	responsible	for	handling	requests	between	the
client	and	the	server.	It	supports	Jinja2	templates;	a	friendly,	modern,	safe,
and	popular	template	language	that's	also	used	by	Django.
Plone:	Plone	is	a	framework	that	acts	as	a	CMS,	with	functionalities	that
make	it	especially	suitable	for	the	business	world.	It	is	built	on	top	of	the
Zope	platform	(http://www.zope.org),	a	well-known	framework	based	on	the
Python	language.	Zope	serves	as	an	application	server	and	is	very	popular
within	the	Python	community.

http://www.zope.org

The	MVC	pattern	and	dynamic	web
programming	with	Python
In	this	section,	you	will	learn	how	use	the	MVC	paradigm	in	the	construction	of
dynamic	web	applications	in	Python.	We	will	also	review	the	Django	framework
for	introducing	web	programming	with	Python.

The	MVC	pattern
The	MVC	pattern	is	a	way	of	working	that	makes	it	possible	to	differentiate
and	separate	what	the	data	model	is	(the	data	that	the	app	will	have	that	is
normally	stored	in	DB),	the	view	(an	HTML	page),	and	the	controller	(where	the
requests	of	the	web	app	are	managed).

The	MVC	is	a	pattern	for	software	development	that	is	based	on	separating	the
data,	the	user	interface,	and	the	logic	of	the	application.	It	is	mostly	used	in	web
applications,	where	the	view	is	the	HTML	page,	the	model	is	the	database
manager	system	and	the	internal	logic,	and	the	controller	is	responsible	for
receiving	the	events	and	solving	them.	Let's	explore	each	element	in	more	detail:

Model:	This	is	the	representation	of	the	information	in	the	system.	It	works
with	the	view	to	show	the	information	to	the	user	and	is	accessed	by	the
controller	to	add,	delete,	consult,	or	update	data.
View:	This	is	presented	to	the	model	in	a	suitable	format	so	that	the	user
can	interact	with	it.	In	most	cases,	it	is	the	graphical	user	interface.
Controller:	This	is	the	most	abstract	element.	It	can	receive,	process,	and
respond	to	events	that	are	sent	by	the	user	or	by	the	application	itself.	It
interacts	with	both	the	model	and	the	view.

For	a	detailed	understanding	for	the	use	of	the	MVC	model,	let's	look	at	its
control	flow:

1.	 The	user	activates	an	event	in	the	interface	(for	example	clicking	on	button,
link)

2.	 The	controller	receives	the	event	and	manages	it
3.	 The	controller	consults	or	modifies	the	model
4.	 The	controller	sends	the	response	to	the	interface	and	it	reacts	depending	on

it	(changes	the	screen,	opens	a	link,	and	so	on)
5.	 The	interface	waits	for	a	new	user	action

In	the	following	diagram,	we	can	see	the	steps	we	just	described:

Among	the	advantages	that	this	pattern	provides	us,	we	can	highlight	the
following:

It	is	focused	on	separating	responsibilities:	Let's	think	about	how	current
applications	and	websites	are	created;	that	is,	HTML	is	used	for	the	visual
components,	CSS	is	used	for	the	style,	and	Javascript	is	used	for	the	logic,
each	with	its	own	approach	and	its	own	responsibility.	The	concept	is	the
same	for	MCV	including	the	components	that	we	mentioned	before.
It	reuses	code:	Any	framework	that's	created	from	MVC	allows	you	to
reuse	code	and	return	total	or	partial	views,	avoiding	duplicating	styles	or
content	in	the	views.	All	of	the	data	handling	is	done	in	the	models,	so	if
you	modify	your	database,	it	is	only	necessary	to	modify	the	corresponding
model	so	that	it	can	handle	the	updated	data,	without	the	need	to	update
each	place	where	it	was	used.
We	avoid	spaghetti	code:	With	this	design	pattern,	we	can	reduce	and	even
eliminate	the	use	of	server	and	presentation	code	in	one	place.
Perfect	for	multidisciplinary	teams:	With	this	design	pattern,	we	can	have
teams	where	each	person	deals	with	a	certain	layer.	For	example,	we	can
have	someone	in	charge	of	designing	the	application	and	someone	else	in
charge	of	creating	the	business	rules	and	other	activities.	Each	person	can
work	independently	of	the	other	without	suffering	affectations.

Dynamic	web	pages
Dynamic	web	pages	are	those	where	the	information	that's	presented	is
generated	from	a	request	that's	been	made	on	the	page.	Contrary	to	what	happens
with	static	pages,	in	which	their	content	is	predetermined,	in	dynamic	pages,	the
information	appears	immediately	after	a	request	is	made	by	the	user.	The	result
of	the	page	that's	obtained	in	the	answer	will	depend	on	several	aspects,	such	as
the	information	that's	stored	in	the	database,	the	content	of	a	cookie	or	session,
and	the	parameters	in	the	HTTP	request.

Processing	dynamic	pages
When	the	web	server	receives	a	request	to	display	a	dynamic	page,	it	transfers
the	page	to	a	special	piece	of	software	that's	in	charge	of	finalizing	the	page.
This	special	software	is	called	an	application	server.

In	the	following	diagram,	we	can	see	a	schema	for	processing	a	request	in	a	web
server:

The	application	server,	according	to	the	request	that	has	been	made,	executes	a
program	in	a	certain	programming	language	and	returns	an	HTTP	response,
whose	content	is	usually	an	HTML	page.

Accessing	a	database
When	working	with	databases,	today's	application	servers	have	the	ability	to
connect	in	a	simple	way	by	configuring	data	sources.	For	example,	our
application	could	use	an	application	server	to	serve	pages	dynamically	by
querying	a	database	to	obtain	or	modify	data,	and	display	them	later	in	an	HTML
page	using	asynchronous	server	queries.

The	use	of	a	database	to	store	content	allows	you	to	separate	the	design	of	the
website	from	the	content	that	you	want	to	show	to	the	users	of	the	site.	Instead	of
writing	individual	HTML	files	for	each	page,	you	only	need	to	write	a	page	or
template	so	that	you	can	present	the	data	in	the	database	to	the	user.	You	can	also
dynamically	submit	HTML	forms	that	add	or	modify	information	in	the
database.	

In	the	following	diagram,	we	can	see	a	schema	for	processing	a	request	in	a	web
and	database	server:

In	the	previous	diagram,	we	can	see	how	the	client	makes	a	request	to	the
application	server,	connects	to	the	database	to	perform	the	query	through
database	driver,	and	when	the	query	result	returns	to	the	application	server,	the
response	object	is	returned	to	the	client	browser.

In	next	section,	we	are	going	to	review	Django	and	study	some	commands	to
introduce	this	framework	and	its	powerful	administration	panel.

Django	introduction
In	this	section,	we	are	going	to	review	how	to	start	working	with	the	Django
framework.	To	install	django,	just	execute	the	pip	install	django	command.

Once	installed,	we	can	use	the	django-admin.py	script	to	create	the	file	structure
that's	necessary	to	create	applications	with	the	framework.

These	are	the	self-generated	files	that	appear	when	you	run	the	$	django-admin.py
startproject	djangoApplication	command:

__init__.py	tells	Python	that	this	folder	is	a	Python	package	and	allows
Python	to	import	all	of	the	scripts	into	the	folder	as	modules.
manage.py	is	a	utility	script	that	executes	from	the	command	line.	It	contains
some	functions	to	manage	your	website.
settings.py	contains	the	settings	of	your	website.	This	file	is	simply	a
number	of	variables	that	define	the	configuration	of	your	site.
urls.py	is	the	file	that	assigns	the	URLs	to	the	pages.

We	can	see	that	in	the	settings.py	generated	file,	there	is	a	default	configuration
for	sqlite3	database:

DATABASES	=	{

'default':	{

'ENGINE':	'django.db.backends.sqlite3',

'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),

}

}

To	create	a	database	in	our	application,	we	can	run	the	following	command	in
the	djangoApplication	directory	that	contains	the	manage.py	file:

$	python	manage.py	migrate

If	the	execution	is	correct,	you	should	see	something	like	this:

Operations	to	perform:

Apply	all	migrations:	admin,	auth,	contenttypes,	sessions

Running	migrations:

Applying	contenttypes.0001_initial...	OK

Applying	auth.0001_initial...	OK

Applying	admin.0001_initial...	OK

Applying	admin.0002_logentry_remove_auto_add...	OK

Applying	admin.0003_logentry_add_action_flag_choices...	OK

Applying	contenttypes.0002_remove_content_type_name...	OK

Applying	auth.0002_alter_permission_name_max_length...	OK

Applying	auth.0003_alter_user_email_max_length...	OK

Applying	auth.0004_alter_user_username_opts...	OK

Applying	auth.0005_alter_user_last_login_null...	OK

Applying	auth.0006_require_contenttypes_0002...	OK

Applying	auth.0007_alter_validators_add_error_messages...	OK

Applying	auth.0008_alter_user_username_max_length...	OK

Applying	auth.0009_alter_user_last_name_max_length...	OK

Applying	sessions.0001_initial...	OK

In	this	way,	we	can	start	the	web	server	by	running	the	$	python	manage.py
runserver	command,	and	we	will	have	the	application	running	on
http://localhost:8000.

Creating	a	Django	application
Once	we	have	the	base	and	file	structure,	we	can	create	our	application.	To
create	an	application,	we	need	to	execute	the	following	command	in	the	console:

$	python	manage.py	startapp	djangoApp

With	this	command,	a	new	djangoApp	directory	has	been	created	with	the
following	structure:

After	creating	an	application,	we	also	need	to	tell	Django	to	use	it.	This	is	done
in	the	djangoApplication/settings.py	file,	where	we	have	to	find	the	INSTALLED_APPS
array	in	the	Application	definition	section	and	add	a	line	that	contains	the	name	of
our		djangoApp	application:

#	Application	definition

INSTALLED_APPS	=	[

	'django.contrib.admin',

	'django.contrib.auth',

	'django.contrib.contenttypes',

	'django.contrib.sessions',

	'django.contrib.messages',

	'django.contrib.staticfiles',

	'djangoApp'

]

We	can	create	our	model	in	the	djangoApp/models.py	file	and	define	the	object
Model	inside	this	file	that	represents	a	post	from	a	blog.	This	model	includes
information	about	the	author,	title,	content,	and	timestamp:

from	django.db	import	models

class	post(models.Model):

				author	=	models.CharField(max_length	=	30)

				title	=	models.CharField(max_length	=	100)

				content=	models.TextField()

				timestamp	=	models.DateTimeField()

The	last	step	is	to	add	our	new	model	to	the	database.	First,	we	have	to	let
Django	know	that	we	have	generated	a	new	model	with	the	following	command:

$	python	manage.py	makemigrations	djangoApp.

This	is	the	output	we	receive	when	we	execute	the	previous	command:

Migrations	for	'djangoApp':

	djangoApp\migrations\0001_initial.py

	-	Create	model	post

In	this	way,	Django	has	prepared	a	migration	file	that	we	have	to	apply	to	our
database	with	the	following	command:

$	python	manage.py	migrate	djangoApp

Operations	to	perform:

Apply	all	migrations:	djangoApp

Running	migrations:

Applying	djangoApp.0001_initial...	OK

Once	we	have	defined	our	models,	we	can	use	Django	to	manage	the	objects	of
our	model.	We	can	do	this	by	using	the	administrator	(admin)	of	Django.	To	do
this,	you	must	go	to	the	djangoApp/admin.py	file	and	add	the	following	code:

from	django.contrib	import	admin

from	.models	import	post

admin.site.register(post)

We	can	use	the	admin.site.register	(post)	command	to	register	our	model	in	the
application.	This	can	also	be	used	in	the	Django	administrator	page.

With	this,	we	are	able	to	execute	the	python	manage.py	runserver	command	to	run	the
web	server	and	access	http://127.0.0.1:8000/admin	.	You'll	see	a	sign-in	page:

http://127.0.0.1:8000/admin

To	log	in,	first,	you	must	create	a	user	in	the	Django	database,	which	is	a	user
that	has	control	over	the	entire	site.	By	executing	the	$	python	manage.py
createsuperuser	command,	we	can	create	a	user	to	access	the	administration	area:

Username:	admin

Email	address:	admin@admin.com

Password:

Password	(again):

Superuser	created	successfully

After	logging	in	with	the	user	that	we	just	created,	we	can	see	the	Django
administration	panel:

From	here,	we	could,	for	example,	create	a	post	for	our	application	with	the	Add
button:

We	can	also	see	the	objects	that	are	saved	in	the	Django	database:

For	more	information,	check	out	the	official	Django	documentation	at	https://docs.djangoproject.co
m/en/2.0/ref/contrib/admin.

In	this	section,	you	have	learned	about	the	MVC	paradigm	in	the	construction	of
dynamic	web	applications,	and	were	introduced	to	the	Django	framework,	its
main	commands,	and	the	administration	panel.

https://docs.djangoproject.com/en/2.0/ref/contrib/admin/

Creating	RESTful	web	applications
and	working	with	Flask	and	HTTP
requests
In	this	section,	you	will	learn	how	to	create	RESTful	web	applications	and	work
with	HTTP	requests	with	Flask.	You	will	manage	the	separation	of	application
logic	and	HTML	with	the	Flask	template	engine.

Introducing	Flask
Flask	is	a	micro	framework	designed	to	facilitate	the	development	of	web
applications	under	the	MVC	pattern	and	provides	a	simple	interface.	The	main
advantage	is	that	it	doesn't	require	any	complex	preconfiguration;	all	we	need	to
do	is	install	it	with	a	command:

>>>	pip	install	flask

	Downloading/unpacking	flask

Flask	can	also	be	downloaded	from	the	project's	home	page	at	http://flask.pocoo.o
rg.	Note	that	to	run	Flask	under	Python	3,	you	will	need	Python	3.3	or	higher.

Among	the	main	features	of	Flask,	we	can	highlight	the	following:

Open	source:	Flask	is	open	source	and	is	covered	under	a	BSD	license.
Includes	web	server	development:	You	do	not	need	any	infrastructure
with	a	web	server	to	test	the	applications,	as	you	can	simply	run	a	web
server	to	see	the	results	that	are	obtained.
It	has	a	debugger	and	integrated	support	for	unit	tests:	If	we	have	an
error	in	the	code	that	is	being	built,	we	can	debug	that	error	and	we	can	see
the	values	of	the	variables.	There	is	also	the	possibility	of	integrating	unit
tests.
It	is	compatible	with	WSGI:	WSGI	is	a	protocol	that	uses	web	servers	to
serve	web	pages	that	are	written	in	Python.
Good	route	management:	When	you	work	with	web	apps	that	have	been
made	in	Python,	you	have	the	driver	that	receives	all	the	requests	that	the
clients	make,	and	it	has	to	determine	which	route	the	client	is	accessing	to
execute	the	necessary	code.
Build	web	services:	It	is	used	to	build	web	services	(such	as	RESTful
APIs)	or	static	content	applications.

Among	the	main	objects	and	methods	that	Flask	provides	for	work,	we	can
highlight	the	following:

flask:	This	is	the	main	object	of	the	framework	and	is	a	way	to	agglutinate
the	callable	WSGI	with	a	set	of	routes.	Our	application	is	going	to	be	an

http://flask.pocoo.org

instance	of	this	object.
request:	An	object	that	allows	us	to	access	the	data	referring	to	the	request
that	was	made	to	us.	It	includes	the	GET	parameters,	cookies,	and	headers,
among	other	things.
response:	An	object	that	allows	us	to	modify	our	responses;	add	headers,
status	codes,	and	cookies;	and	other	concepts.

render_template:	This	is	a	method	that	injects	our	context	into	a	template	and
returns	the	answer	in	its	complete	form,	ready	to	be	returned.
redirect:	A	helper	that	allows	us	to	return	a	redirect	to	another	URL	in	our
code.
abort:	A	helper	that	allows	us	to	return	an	error	status	from	our	controller.

Our	app	is	going	to	allow	us	to	browse	the	docstrings	for	the	Python	built-in
functions.	An	application	that's	built	with	Flask	is	basically	an	instance	of	the
Flask	object,	which	we	will	record	routes	in.

You	can	find	the	following	code	in	the	flaskapp_demo.py	file	on	the	GitHub
repository	(https://github.com/PacktPublishing/Learning-Python-Networking-Second-
Edition):

#!/usr/local/bin/python3

from	flask	import	Flask,	abort

app	=	Flask(__name__)

app.debug	=	True

objs	=	__builtins__.__dict__.items()

docstrings	=	{name.lower():	obj.__doc__	for	name,	obj	in	objs	if

name[0].islower()	and	hasattr(obj,	'__name__')}

...

Flask	includes	a	development	web	server,	so	to	try	it	out	on	our	application,	all
we	need	to	do	is	run	the	following	command:

$	python	flaskapp_demo.py

*	Serving	Flask	app	"demo"	(lazy	loading)

*	Environment:	production

WARNING:	Do	not	use	the	development	server	in	a	production	environment.

Use	a	production	WSGI	server	instead.

*	Debug	mode:	on

*	Restarting	with	stat

*	Debugger	is	active!

*	Debugger	PIN:	190-598-045

*	Running	on	http://127.0.0.1:5000/	(Press	CTRL+C	to	quit)

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

We	can	see	that	the	Flask	server	tells	us	the	IP	address	and	port	it's	listening	on.
Connect	to	the	http://127.0.0.1:5000/	URL.	It	will	now	display	in	a	web	browser,
and	you	should	see	a	page	with	a	list	of	Python	built-in	functions.	Clicking	on
one	should	display	a	page	showing	the	function	name	and	its	docstring.	If	you
want	to	run	the	server	on	another	interface	or	port,	you	can	change	this	data	in
the	app.run()	call,	for	example,	to	app.run(host='0.0.0.0',	port=5000).

Let's	go	through	our	code.	From	the	top,	we	created	our	Flask	app	by	creating	a
Flask	instance,	in	this	case	giving	it	the	name	of	our	main	module.	We	then	set
the	debug	mode	to	active,	which	provides	nice	tracebacks	in	the	browser	when
something	goes	wrong,	and	also	sets	the	development	server	to	automatically
reload	code	changes	without	needing	a	restart.	Note	that	the	debug	mode	should
never	be	left	active	in	a	production	app!	This	is	because	the	debugger	has	an
interactive	element,	which	allows	code	to	be	executed	on	the	server.	By	default,
debug	is	off,	so	all	we	need	to	do	is	delete	the	app.config.debug	line	when	we	put
the	app	into	production.

Routing	in	Flask
One	of	the	biggest	advantages	of	Flask	is	its	ability	to	create	routes.	A	route	is	a
web	entry	in	which	we	can	render	a	page	or	serve	an	endpoint	of	a	RESTful
service.

To	create	routes	with	Flask,	we	must	use	the	@route	annotation,	which	will	receive
the	route	that	we	will	respond	with	as	a	parameter.	It	is	necessary	to	associate	a
function	that	carries	out	the	processing	of	the	request	with	this	annotation.

We	could	define	a	route	in	Flask	in	the	following	way:

@app.route("/message/")

def	message(name):

				return	"Welcome	"+name+"!"

Now,	we	are	going	to	create	a	route	that	receives	a	name	as	a	parameter	and
returns	a	reply	message.	This	will	help	us	to	see	how	we	can	pass	parameters	in
Python	Flask	routes.	The	first	thing	is	to	focus	on	the	route,	that
is,	@app.route('/message/<name>',methods=['GET']).

Now,	let's	define	a	method	that	addresses	this	route.	The	peculiarity	of	this
method	will	be	that	it	must	have	a	parameter,	which	will	correspond	to	the
variable	of	the	route.	Now,	we	can	use	this	variable	within	the	method.	In	our
case,	we	have	used	it	in	the	response	as	part	of	the	greeting.	Finally,	the	entire
route	will	remain	as	follows:

@app.route('/message/<name>',methods=['GET'])

def	message(name):

	return	Welcome'	+	name+	'!'

If	we	return	our	previous	flaskapp_demo.py	script,	we	will	have	defined	a	set	of
functions,	usually	called	views,	that	handle	requests	for	various	parts	of	our
URL.	index()	and	show_docstring()	are	such	functions.	You	will	see	that	both	are
preceded	by	a	Flask	decorator	function,	app.route().	This	tells	Flask	which	parts
of	our	URL	space	the	decorated	function	should	handle.	That	is,	when	a	request
comes	in	with	a	URL	that	matches	a	pattern	in	an	app.route()	decorator,	the
function	with	the	matching	decorator	is	called	to	handle	the	request.	View

functions	must	return	a	response	that	Flask	can	return	to	the	client,	but	we'll
cover	more	on	that	in	a	moment.

The	URL	pattern	for	our	index()	function	is	just	the	site	root,	/,	meaning	that	only
requests	for	the	root	will	be	handled	by	index().

In	index(),	we	just	compile	our	output	HTML	as	a	string	–	first,	our	list	of	links	to
the	functions'	pages,	then	a	header	–	and	then	we	return	the	string.	Flask	takes
the	string	and	creates	a	response	out	of	it,	using	the	string	as	the	response	body
and	adding	a	few	HTTP	headers.	In	particular,	for	str	return	values,	it	sets
Content-Type	to	text/html.

The	show_docstrings()	view	does	a	similar	thing	–	it	returns	the	name	of	the	built-in
function	we're	viewing	in	an	HTML	header	tag,	plus	the	docstring	wrapped	in	a
<pre>	tag	(to	preserve	new	lines	and	whitespace).

The	interesting	part	is	the	app.route('/functions/<func_name>')	call.	Here,	we're
declaring	that	our	functions'	pages	will	live	in	the	functions	directory,	and	we're
capturing	the	name	of	the	requested	function	using	the	<func_name>	segment.

Flask	captures	the	section	of	the	URL	in	angle	brackets	and	makes	it	available	to
our	view.	We	pull	it	into	the	view	namespace	by	declaring	the	func_name	argument
for	show_docstring().

In	the	view,	we	check	that	the	name	that's	supplied	is	valid	by	seeing	whether	it
appears	in	the	docstrings	dictionary.	If	it's	okay,	we	build	and	return	the
corresponding	HTML.	If	it's	not	okay,	then	we	return	a	404	Not	Found	response
to	the	client	by	calling	Flask's	abort()	function.	This	function	raises	a	Flask
HTTPException,	which,	if	not	handled	by	our	application,	will	cause	Flask	to
generate	an	error	page	and	return	it	to	the	client	with	the	corresponding	status
code	(in	this	case,	404).	This	is	a	good	way	to	fail	fast	when	we	encounter	bad
requests.

Jinja2	templating
In	this	section,	we	are	going	to	introduce	Jinja2	as	a	template	language	that
allows	you	to	insert	processed	data	and	predetermined	text	within	your	HTML
code.	Basically,	Jinja	searches	and	substitutes	the	names,	expressions,	and
statements	that	are	enclosed	by	{	}	within	text.

You	can	see	from	our	preceding	views	that	even	when	omitting	the	usual	HTML
formalities	such	as	<DOCTYPE>	and	the	<html>	tag	to	save	complexity,	constructing
HTML	in	Python	code	is	clunky.	It's	difficult	to	get	a	feel	for	the	overall	page,
and	it's	impossible	for	designers	with	no	Python	knowledge	to	work	on	the	page
design.	The	templates	help	to	implement	the	separation	between	the	logic	of	the
backend	application	and	the	visual	part	related	to	the	views.

Flask	uses	the	Jinja2	templating	engine	for	this	task.	Let's	adapt	our	application
to	use	templates.	You	can	find	the	following	files	in	the	templates	folder:	base.html,
index.html,	docstring.html.

The	base.html	file	will	look	like	this:

<!DOCTYPE	html>

<html>

<head>

<title>Python	Builtins	Docstrings</title>

</head>

<body>

{%	block	body	%}{%	endblock	%}

</body>

</html>

	

The	index.html	file	will	be	like	this:

{%	extends	"base.html"	%}

{%	block	body	%}

<h1>Python	Builtins	Docstrings</h1>

<div>

{%	for	func	in	funcs	%}

<div	class="menuitem	link">

{{	func	}}

</div>

{%	endfor	%}

</table>

{%	endblock	%}

The	docstring.html	file	will	look	like	this:

{%	extends	'base.html'	%}

{%	block	body	%}

<h1>{{	func_name	}}</h1>

<pre>{{	doc	}}</pre>

<p>Home</p>

{%	endblock	%}

As	you	can	see,	we	write	a	standard	page	in	HTML,	with	the	only	difference	that
there	are	some	bookmarks	for	the	dynamic	content	enclosed	in	{{...}}	sections.

At	this	point,	you	need	to	use	the	render_template	method	that	looks	in	the
templates	folder	for	the	file	that's	supplied	as	the	first	argument,	reads	it,	runs
any	processing	instructions	in	the	file,	then	returns	the	processed	HTML	as	a
string.	Any	keyword	arguments	that	are	supplied	to	render_template()	are	passed	to
the	template	and	become	available	to	its	processing	instructions.

The	render_template	function	takes	the	filename	of	the	template	and	a	variable	list
of	template	arguments	to	return	the	template	armed	with	all	the	arguments
replaced.	At	low	level,	the	Jinja2	template	engine	is	used,	which	will	replace	the
{{...}}	blocks	with	the	values	provided	as	arguments	in	the	render_template
function.

You	can	find	the	following	code	in	the	flaskapp_demo_template.py	file	on	the	GitHub
repository	(https://github.com/PacktPublishing/Learning-Python-Networking-Second-
Edition):

#!/usr/local/bin/python

from	flask	import	Flask,	abort,	render_template

app	=	Flask(__name__)

app.debug	=	True

objs	=	__builtins__.__dict__.items()

docstrings	=	{name.lower():	obj.__doc__	for	name,	obj	in	objs	if

name[0].islower()	and	hasattr(obj,	'__name__')}

...

Looking	at	the	templates,	we	can	see	they	are	mostly	HTML,	but	with	some
extra	instructions	for	Flask	contained	in	{{	}}	and	{%	%}	tags.	The	{{	}}
instructions	simply	substitute	the	value	of	the	named	variable	into	that	point	of

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

the	HTML.	So,	for	example,	the	{{	func_name	}}	in	docstrings.html	substitutes	the
value	of	the	func_name	value	we	passed	to	render_template().

The	{%	%}	instructions	contain	logic	and	flow	control.	For	example,	the	{%	for	func
in	funcs	%}	instruction	in	index.html	loops	over	values	in	funcs	and	repeats	the
contained	HTML	for	each	value.

Finally,	you	may	have	spotted	that	templates	allow	for	inheritance.	This	is
provided	by	the	{%	block	%}	and	{%	extends	%}	instructions.	In	base.html,	we	declare
some	shared	boilerplate	HTML,	then	in	the	<body>	tag,	we	just	have	a	{%	block	body
%}	instruction.	In	index.html	and	docstring.html,	we	don't	include	the	boilerplate
HTML;	instead,	we	extend	base.html,	meaning	that	these	templates	will	fill	the
block	instructions	that	were	declared	in	base.html.	In	both	index.html	and
docstring.html,	we	declare	a	body	block,	the	contents	of	which	Flask	inserts	into
the	HTML	in	base.html,	replacing	the	matching	{%	block	body	%}	there.	Inheritance
allows	for	the	reuse	of	common	code,	and	it	can	cascade	through	as	many	levels
as	needed.

If	we	need	to	apply	inheritance	within	our	template,	we	need	to	use	the	extended
block	in	such	a	way	that	the	template	engine	allows	for	the	inclusion	of	a
base.html	file	inside	another	HTML	file.	The	two	templates	have	a	block
declaration	matching	the	name	of	the	content,	which	allows	Jinja2	to	know	how
to	combine	the	two	into	one.

There	is	a	lot	more	functionality	available	in	Jinja2	template	instructions;	check	out	the
template	designer	documentation	for	a	full	list,	at	http://jinja.pocoo.org/docs/dev/templates/.

http://jinja.pocoo.org/docs/dev/templates/

POST	parameters	with	Flask
The	usual	way	to	send	information	to	the	different	pages	of	our	web	application
is	by	using	HTML5	forms.	It	is	advisable	to	use	the	POST	method	(the	information
is	sent	in	the	body	of	the	request)	for	sending	information	using	forms,	although
if	necessary	we	can	also	use	the	GET	method	(the	information	is	sent	in	the	URL
of	the	request).

Creating	a	form	in	a	POST	application	will	lead	us	to	know	how	to	control	the	data
we	upload.	Here,	we	will	look	at	an	example	of	how	we	can	handle	the	POST
parameters	with	Flask.

The	first	way	will	be	to	create	a	route	that	accepts	a	GET	request	that	returns	a
form	that	we	will	render	using	the	render_template()	method:

@app.route('/',methods=['GET'])

def	index():

				return	render_template('index.html')

The	template	of	the	form	will	be	very	simple.	The	important	thing	is	that	the
method	is	POST	and	the	action	field	in	the	form	object	is	pointing	to	the	/validat.
route.

You	can	find	the	following	code	in	the	index.html	file	inside	the	post_parameters
folder:

<form	action="/validate"	method="post">

	<label	for="user">User</label>

	<input	type="text"	id="user"	name="user">

	

	<label	for="password">Password</label>

	<input	type="password"	id="password"	name="password">

	

	<input	type="submit"	value="Submit"	/>

</form>

It	is	very	important	to	put	the	name	attributes	in	the	form,	since	it	will	be	that
attribute	that	we	use	to	recover	the	value.	Now,	we	will	create	the	route	that
accepts	the	POST	requests.	If	a	URL	receives	information	through	the	POST
method	and	we	do	not	want	it	to	be	accessed	with	a	GET	method,	it	will	be
defined	as	follows:

@app.route('/validate',methods=['POST'])

	def	validate():

To	access	the	information	of	the	attributes	of	the	form,	we	can	use	the	request.form
object.	This	object	has	attributes	in	a	collection.	So,	we	will	retrieve	the	value	of
the	user	and	password	fields	of	the	form,	as	you	can	see	in	the	following	script.

You	can	find	the	following	code	in	the	flaskapp_post.py	file	inside
the	post_parameters	folder:

#!/usr/local/bin/python3

from	flask	import	Flask,	request,	render_template

import	json

app	=	Flask(__name__)

app.debug	=	True

@app.route('/',methods=['GET'])

def	index():

				return	render_template('index.html')

@app.route('/validate',methods=['POST'])

def	validate():

				user	=	request.form['user']

				password	=	request.form['password']

				if	user	==	'admin'	and	password	==	'password':

								response	=	{'user_validate':True,'message':'User	authenticated'}

				else:

								response	=	{'user_validate':False,'message':'User	incorrect'}

	return	json.dumps(response)

if	__name__	==	'__main__':

				app.run()

Once	the	method	has	been	performed	and	the	client	has	sent	the	values,	we
would	have	an	answer	like	this.	If	the	user	and	passwords	match	when	defined	in
the	code,	it	will	return	{"user_validate":	true,	"message":	"User	authenticated"},
otherwise	it	will	return	{'user_validate':False,'message':'User	incorrect'}.

In	this	way,	we	have	already	seen	how	to	manipulate	and	recover	POST
parameters	with	Flask.

Other	templating	engines
Jinja2	is	certainly	not	the	only	templating	package	in	existence.	You	can	find	a
maintained	list	of	Python	templating	engines	at	https://wiki.python.org/moin/Templati
ng.

Like	frameworks,	different	engines	exist	because	of	differing	philosophies	on
what	makes	a	good	engine.	Some	feel	that	logic	and	presentation	should	be
absolutely	separate	and	that	flow	control	and	expressions	should	never	be
available	in	templates,	providing	only	valued	substitution	mechanisms.	Others
take	the	opposite	approach	and	allow	full	Python	expressions	within	template
markup.	Others,	such	as	Jinja2,	take	a	middle	ground	approach.	Some	engines
also	use	different	schemes	altogether,	such	as	XML-based	templates,	or	declare
logic	via	special	HTML	tag	attributes.

https://wiki.python.org/moin/Templating

Flask	extensions
Flask	provides	a	set	of	extensions	that	can	help	us	add	more	functionality	to	our
application	quickly	and	easily.	Here,	we	will	mention	the	most	common	plugins
that	are	used	with	Flask:

flask-script:	Allows	you	to	have	a	command	line	to	manage	the	application
(https://flask-script.readthedocs.io/en/latest/)
flask-Bootstrap:	It	helps	to	create	link,	style	sheets	for	HTML	pages	(https:
//pythonhosted.org/Flask-Bootstrap)
flask-WTF:	Used	to	generate	HTML	forms	with	classes	and	objects	(https:/
/flask-wtf.readthedocs.io/en/stable/)
flask-login:	A	plugin	for	user	authentication	and	passwords	(https://flask-lo
gin.readthedocs.io/en/latest/)
flask-Sqlalchemy:	Used	to	generate	the	data	model	(http://flask-sqlalchemy.p
ocoo.org/2.3)
flask-Security:	Allows	you	to	manage	the	registration	and	authentication
processes	(https://pythonhosted.org/Flask-Security)

https://flask-script.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Bootstrap
https://flask-wtf.readthedocs.io/en/stable/
https://flask-login.readthedocs.io/en/latest/
http://flask-sqlalchemy.pocoo.org/2.3
https://pythonhosted.org/Flask-Security

Working	with	a	database	in	Flask
with	SQLAlchemy
In	this	section,	you	will	learn	how	to	work	with	a	database	in	Flask	with
SQLAlchemy.

Introducing	SQLAlchemy
SQLAlchemy	is	an	engine	developed	in	Python	that	has	several	components	for
working	with	databases.	It	follows	some	of	the	most	frequently	used	patterns	for
relational	object	mapping,	where	classes	can	be	mapped	in	the	database	in
multiple	ways,	which	allows	you	to	develop	the	object	model	and	the	database
schema	in	an	uncoupled	way	from	the	very	beginning.

SQLAlchemy	includes	various	tools	that	are	focused	on	interacting	with
relational	databases,	among	which	we	can	highlight	the	following:

SQLAlchemy	Core,	which	allows	you	to	create	a	generic	and	independent
interface	of	the	database	manager	by	means	of	an	expression	language
based	on	SQL.
SQLAlchemy	ORM,	a	mapper	between	objects	and	relational	transactions
or	ORM	(object	relational	mapper).	It	includes	support	for	SQLite,
MySQL,	PostgreSQL,	Oracle,	and	MS	SQL,	among	others.	

To	install	SQLAlchemy,	just	execute	the	following	command:

pip	install	sqlalchemy

This	example	will	show	us	how	to	create	a	table,	insert	data,	and	select	it	from
the	database	by	using	SQLAlchemy	Core	and	ORM	modules.	For	more
information	about	SQLAlchemy	ORM,	the	official	documentation	is	available
at	https://docs.sqlalchemy.org/en/latest/orm/tutorial.html.

To	illustrate	the	idea,	the	following	diagram	shows	a	data	model	for	a	system
that	is	responsible	for	managing	book	records	and	authors:

https://docs.sqlalchemy.org/en/latest/orm/tutorial.html

Our	model	consists	of	the	Book	and	Author	tables.	The	intermediate
table,	book_author,	is	used	to	express	the	many-to-many	relationship	among	the
book	and	author	tables.	First,	we	must	map	the	model	or	schema	of	the	database
by	means	of	SQLAlchemy.

You	can	find	the	following	code	in	the	models.py	file	inside	the	sqlalchemy	folder:

#!/usr/local/bin/python3

from	sqlalchemy	import	(create_engine,	Column,	Date,	Integer,	ForeignKey,	String,	Table)

from	sqlalchemy.ext.declarative	import	declarative_base

from	sqlalchemy.orm	import	relationship

engine	=	create_engine('sqlite:///books_authors.db',	echo=True)

Base	=	declarative_base()

#Relation	many	to	many	between	book	and	author

author_book	=	Table('author_book',	Base.metadata,

	Column('book_id',	Integer,	ForeignKey('book.id')),

	Column('author_id',	Integer,	ForeignKey('author.id'))

)

In	the	previous	code	block,	we	defined	the	database	connection	and	the
relationship	between	the	book	and	author	entities	by	creating	a	new	table	with
two	columns.	Each	one	is	the	foreign	key	to	the	book	and	author	tables.	In	the
following	code	block,	we	will	define	the	Book	entity	with	the	init	constructor	and
its	relation	with	the	Author	table	through	the	author_book	relation:

class	Book(Base):

				__tablename__	=	'book'

				id	=	Column(Integer,	primary_key=True)

				title	=	Column(String(120),	index=True,	nullable=False)

				date	=	Column(Date)

				isbn	=	Column(String(13))

				authors	=	relationship("Author",	secondary=author_book)

				def	__init__(self,	title,	date,	isbn):

								self.title	=	title

								self.date	=	date

								self.isbn	=	isbn

				def	__repr__(self):

								return	self.title

Finally,	we	create	the	Author	model	and	initialize	our	database	with	the	create_all()
method	from	the	metadata	object:

class	Author(Base):

				__tablename__	=	'author'

				id	=	Column(Integer,	primary_key=True)

				name	=	Column(String(120),	nullable=False)

				

				def	__init__(self,	name):

								self.name	=	name

Base.metadata.create_all(engine)

By	executing	the	models.py	script,	we	can	see	how	the	books_authors.db	file	is
generated	in	your	local	filesystem.

In	the	following	screenshot,	we	can	see	the	tables	that	are	created	when	you
visualize	this	file	with	the	SQLite	browser:

Now,	let's	explain	the	content	of	the	models.py	script.	First,	we	will	need	to
connect	to	our	database.	The	sqlalchemy.engine.base.Engine	class	is	responsible	for
instantiating	objects,	connecting	to	a	database,	and	in	turn	mapping	the	attributes
of	the	objects	that	are	created	by	the	ORM	model.	To	instantiate	an	object	from
sqlalchemy.engine.base.Engine,	the	sqlalchemy.create_engine()	function	is	used	with	the
following	syntax:

from	sqlalchemy	import	create_engine

engine	=	create_engine('sqlite:///books_authors.db',	echo=True)

After	creating	our	engine,	we	need	to	create	our	tables.	In	ORM,	the	process	of
creating	tables	begins	with	defining	the	classes	that	we	will	use	in	the	mapping
process.

Before	creating	the	database,	it	is	necessary	to	define	a	model	that	maps	to	an
object	with	at	least	one	table	in	the	database.	The
sqlalchemy.ext.declarative.declarative_base()	function	allows	us	to	create	a	model
from	the	subclasses	of	sqlalchemy.ext.declarative.api.DeclarativeMeta:

from	sqlalchemy.ext.declarative	import	declarative_base

Base	=	declarative_base()

Now	that	our	base	mapper	has	been	declared,	we	can	make	a	subclass	of	it	to
build	our	declarative	maps	or	models.	The	Base	subclasses	correspond	to	tables
within	a	database.	These	subclasses	have	the	attribute	__tablename__,	which
corresponds	to	the	name	of	the	table	to	which	you	are	mapping	their	attributes.
The	generic	syntax	is	as	follows:

from	sqlalchemy	import	Column,	Integer,	String

class	MyTable(Base):

				__tablename__	=	'table'

				id	=	Column(Integer,	primary_key=True)

				message	=	Column(String)

To	create	the	database	with	the	defined	tables,	the	Base.metadata.create_all()
method	is	used	in	the	database	that's	managed	by	the	instantiated	object	of
sqlalchemy.engine.base.Engine:

If	there	is	no	file	in	the	database,	it	will	be	created
In	case	there	are	already	tables	defined	in	the	database,	only	those	that	are
new	will	be	created	and	the	data	they	already	contain	will	not	be	deleted

Creating	a	session	and	ORM	queries
The	sqlalchemy.orm.sessionmaker()	function	allows	you	to	create	a
sqlalchemy.orm.session.sessionmaker	class	that	contains	attributes	and	methods	that
allow	you	to	interact	with	the	database.	You	can	use	the	following	methods	to
manage	session	data:

The	add()	method,	which	adds	or	replaces	the	record	that's	bound	to	the
instantiated	object	of	a	Base	subclass	in	the	corresponding	record	within	the
database
The	delete()	method,	which	deletes	the	record	that's	bound	to	the	object
The	commit()	method,	which	applies	the	changes	to	the	database

Now	that	our	tables	have	been	assigned	and	created,	we	can	insert	data.	This
insertion	is	done	by	creating	instances	of	the	class,	which	is	created	with	MyTable.
At	this	point,	all	we	have	is	an	instance	of	the	objects	at	the	ORM	abstraction
level,	but	nothing	has	been	saved	in	the	database	yet.	To	do	this,	we	first	need	to
create	a	session:

from	sqlalchemy.orm	import	sessionmaker

Session	=	sessionmaker(bind=engine)

session	=	Session()

This	session	object	is	our	database	manager.	According	to	the	SQLAlchemy
documentation,	this	object	allows	us	to	recover	a	connection	from	a	group	of
connections	that's	maintained	by	the	engine,	and	maintains	it	until	we	confirm	all
of	the	changes	or	close	the	session	object.	Now	that	we	have	our	session,	we	can
add	a	new	object	to	it	and	confirm	our	changes	in	the	database:

object	=	MyTable(message="Hello	World!")

session.add(object)

session.commit()

Once	we	have	our	session	defined,	we	can	perform	queries	related	to	Base
instantiate	objects	from	sessions	and	the	tables	linked	to	them.	

For	performing	queries,	we	can	use	the	following	methods:

query.first()	returns	to	the	first	object	that's	found	in	a	search

query.all()	returns	a	list	type	object	with	all	the	objects	resulting	from	a
search
query.filter()	returns	a	Query	object	with	the	objects	found	when	executing	a
search	that	satisfies	the	logical	expression	on	the	attributes	of	the	class,
which	is	entered	as	an	argument

Now	that	we	have	data,	we	can	take	advantage	of	the	ORM	query	language	to
retrieve	our	data:

query	=	session.query(MyTable)

instance	=	query.first()

print	(instance.message)	#	Hello	World!

The	Session	class	allows	you	to	add	new	objects	or	update	existing	ones	in	the
database.	To	add	new	objects,	we	can	use	the	session.add(obj)	method.	You	can
also	add	a	list	of	objects	by	using	the	session.add_all([obj1,	obj2,	obj3])	method.

When	calling	the	add()	method,	an	INSERT	will	be	made	in	the	database	and
a	commit()	will	be	performed	to	confirm	the	session	data.	In	this	example,	we	are
using	the	session	object	for	access,	thus	inserting	or	updating	data	in	the	SQLite
database.

You	can	find	the	following	code	in	the	insert_data.py	file:

#!/usr/local/bin/python3

from	datetime	import	date

from	sqlalchemy	import	create_engine

from	sqlalchemy.orm	import	sessionmaker

from	models	import	Author,	Book

#	connection	with	sqlite	database

engine	=	create_engine('sqlite:///books_authors.db',	echo=True)

#	get	sesion

Session	=	sessionmaker(bind=engine)

session	=	Session()

#	inserting	authors

author_1	=	Author('Author1')

author_2	=	Author('Author2')

author_list	=	(author_1,	author_2)

session.add_all(author_list)

session.commit()

In	the	previous	code	block,	we	defined	the	connection	with	the	SQLite	database,
got	a	session,	and	inserted	some	authors	with	the	add_all()	method	from	the

session	object.	In	the	following	code	block,	we're	using	the	Book	model	to	insert
one	book	instance	with	the	add()	and	commit()	methods:

#	inserting	books

book1	=	Book('Book1',	date(2019,	1,	1),	'123456789')

book1.authors.append(author_1)

session.add(book1)

session.commit()

#	book	query

book	=	session.query(Book).filter(Book.isbn=='123456789').first()

print(book)

#	modifying	book	data

book.title	=	'Learning	Python	Networking'

session.commit()

print(book)

At	this	point,	it	is	important	to	realize	how	the	relationship	between	the	book	and
the	author	is	established	through	the	append	method.	We	will	also	use	query	method
from	the	session	object	to	execute	a	database	query	by	applying	a	specific	filter.
Finally,	we	will	modify	the	title	of	the	book	and	save	its	information	with	the
commit()	method.

After	you	execute	the	previous	insert_data.py	script,	you	can	check	the
book_authors.db	file	to	see	whether	the	book	information	has	been	updated	in	the
database.	You	can	open	this	file	with	the	SQLite	browser,	which	is	available	at	ht
tps://sqlitebrowser.org.

https://sqlitebrowser.org

Using	Flask	with	SQLAlchemy
For	the	most	common	web	applications,	it	is	generally	recommended	that	you
use	a	Flask	extension	such	as	flask-sqlalchemy.	To	install	the	package	for	working
with	SQLAlchemy	from	Flask,	just	execute	the	following	command:

pip	install	flask-sqlalchemy

Once	we	have	our	Flask	application	created,	to	integrate	it	with	sqlalchemy,	we
would	have	to	create	a	configuration	file	with	the	database	path,	from	which	the
SQLAlchemy	object	is	created	to	manage	the	database.

In	this	example,	we	will	use	a	SQLite	database	to	simplify	the	configuration
without	having	a	database	server.

We	can	add	the	database	configuration	in	the	config.py	file	inside
the	flask_sqlalchemy	folder:

#!/usr/local/bin/python3

import	os

DEBUG	=	True

SQLALCHEMY_DATABASE_URI	=	'sqlite:///'+	os.path.join(os.path.dirname(__file__),	'books_database.db')

SECRET_KEY	=	'SECRET_KEY'

SQLALCHEMY_DATABASE_URI	is	required	by	the	Flask-SQLAlchemy	extension	and
represents	the	local	address	to	our	database	file.	We	also	need	to	define
the	SECRET_KEY	for	working	with	Flask-forms.

You	can	find	the	following	code	in	the	books.py	file	inside	the	flask_sqlalchemy
folder	on	the	GitHub	repository	at	https://github.com/PacktPublishing/Learning-Python-
Networking-Second-Edition:

#!/usr/local/bin/python3

from	flask	import	Flask,	render_template,	request

from	flask_sqlalchemy	import	SQLAlchemy

import	json

from	flask_wtf	import	FlaskForm

from	wtforms	import	StringField

from	wtforms	import	TextAreaField

from	wtforms.validators	import	DataRequired

from	datetime	import	date

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

#	Flask	application	and	config

app	=	Flask(__name__)

app.config.from_object('config')

db	=	SQLAlchemy(app)

...

In	the	previous	code	block,	we	defined	the	Flask	application	and	configuration
from	the	config.py	file.	The	Book	class	is	our	model	that	represents	a	book	entity,
while	the	CreateBookForm	class	represents	our	form	object.	In	the	following	code
block,	we	define	our	methods	for	threat	application	requests.The	index	method
will	show	the	index.html	from	the	templates	folder,	and	the	new_book	method	will
receive	book	information	with	the	POST	method	using	the	request.form	syntax.	To
save	book	information	in	the	database,	we	will	use	the	session.add()		and
session.commit()	methods	from	the	db	object:

@app.route('/new_book',	methods=['POST'])

def	new_book():

				form	=	CreateBookForm()

				if	request.method	==	'POST':

								post	=	Book(request.form['title'],	request.form['author'],	request.form['description'])

								db.session.add(post)

								db.session.commit()

								#	validate	the	received	values

								if	request.form['title']	and	request.form['author']:

												return	json.dumps({'html':'New	book	saved	in	database'})

				return	render_template('index.html',form	=	form,conf	=	app.config)

@app.route('/',	methods=['GET'])

def	index():

				form	=	CreateBookForm()

				return	render_template('index.html',form	=	form,conf	=	app.config)

if	__name__	==	'__main__':

				app.run()

				db.create_all()

Finally,	the	following	is	the	content	of	index.html.	It	contains	the	form	for	sending
book	information:

<html>

<body>

	<form	method="post"	action="/new_book">

	<dl>

	{{	form.csrf_token	}}

	{{	form.title.label	}}	{{	form.title(style="width:100%")	}}

	{%	for	error	in	form.title.errors	%}	{{	error	}}	{%	endfor	%}

	

	{{	form.author.label	}}	{{	form.author(style="width:100%")	}}

	{%	for	error	in	form.author.errors	%}	{{	error	}}	{%	endfor	%}

	

	{{	form.description.label	}}	{{form.description(style="height:100px;width:100%")	}}

	{%	for	error	in	form.description.errors	%}	{{	error	}}	{%	endfor	%}

	</dl>

	<p><input	type="submit"	value="submit">

	</form>

</body>

</html>

In	the	previous	form	object,	we	also	added	a	CSRF	token	with	the	{{
form.csrf_token	}}	instruction	to	avoid	some	security	attacks	like	cross-site
scripting	and	cross-site	request	forgery.

In	the	following	screenshot,	we	can	see	the	HTML	form	for	saving	book
information	in	the	database:

When	you	submit	the	form,	you	will	get	a	message	indicating	that	the	book	has
been	saved	in	the	SQLite	database:

In	this	section,	we	have	worked	with	Flask	and	SQLAlchemy	to	persist	data	in
an	SQLite	database.	We	used	the	flask-sqlalchemy	and	flask_wtf	packages	for
working	with	forms	in	an	easy	way.

Summary
In	this	chapter,	you	have	learned	how	to	implement	a	web	application	using
WSGI	and	started	working	with	dynamic	web	programming	in	Python.	We
introduced	the	Django	and	Flask	micro	frameworks,	which	are	designed	to
facilitate	the	development	of	web	applications	under	the	MVC	pattern.	Finally,
we	reviewed	how	we	can	work	with	HTTP	requests	in	Flask	and	interact	with
databases	through	SQLAlchemy.

Questions
1.	 What	Python	module	is	used	for	developing	our	own	WSGI	server?
2.	 What	is	the	main	advantage	that	the	MVC	pattern	provides,	from	a

developer's	point	of	view?
3.	 What	Django	script	can	we	use	to	create	the	file	structure	that's	necessary	to

create	applications	with	the	framework?
4.	 What	Django	command	can	we	use	to	create	a	database	in	our	application?
5.	 What	is	the	annotation	that's	used	for	creating	routes	in	Flask?
6.	 What	method	is	used	in	Flask	that	looks	in	the	templates	folder	for	the	file

that's	supplied	as	the	first	argument?
7.	 If	we	are	working	in	Flask	with	the	POST	method	to	send	information	to	a

server,	what	object	can	we	use	to	access	information	on	the	attributes	of	the
form?

8.	 What	is	the	Flask	extension	for	managing	the	registration	and
authentication	processes	in	your	application?

9.	 What	class	from	SQLAlchemy	is	responsible	for	instantiating	objects	and
connecting	to	a	database?

10.	 What	is	the	config	keyword	that's	required	by	the	Flask-SQLAlchemy
extension,	and	that	represents	the	local	address	to	your	database	file?

Further	reading
In	the	following	links,	you	will	find	more	information	about	the	mentioned	tools
and	the	official	Python	documentation	for	some	of	the	modules	we	talked	about
in	this	chapter:

Flask	blueprints:	http://flask.pocoo.org/docs/1.0/blueprints.	Blueprints	are	very
useful	for	projects	that	need	more	separation	between	components.
Basically,	a	blueprint	is	a	way	to	organize	your	application	into	smaller,
reusable	pieces.	
Comparing	Django,	Flask,	and	Pyramid:	https://www.airpair.com/python/posts/dj
ango-flask-pyramid

An	SQLAlchemy	tutorial,	step	by	step:	http://www.rmunn.com/sqlalchemy-tutorial
/tutorial.html	

The	Flask-Security	extension:	https://pythonhosted.org/Flask-Security/quickstart
.html#sqlalchemy-application

Using	fastcgi	with	Flask:	http://flask.pocoo.org/docs/1.0/deploying/fastcgi/

http://flask.pocoo.org/docs/1.0/blueprints
https://www.airpair.com/python/posts/django-flask-pyramid
http://www.rmunn.com/sqlalchemy-tutorial/tutorial.html
https://pythonhosted.org/Flask-Security/quickstart.html#sqlalchemy-application
http://flask.pocoo.org/docs/1.0/deploying/fastcgi/

Assessment

Chapter	1,	Network	Programming
with	Python
1.	 The	application	layer
2.	 The	reason	why	we	have	to	replace	the	IPv4	system	with	IPv6	is	because

the	internet	is	running	out	of	IPv4	address	space,	and	IPv6	provides	an
exponentially	large	number	of	IP	addresses

3.	 Dynamic	Host	Configuration	Protocol	(DHCP)
4.	 Network	Address	Translation	(NAT)
5.	 Conda	and	pip
6.	 virtualenv
7.	 The	urllib	and	requests	packages
8.	 The	socket	module
9.	 pyshark
10.	 The	apply_on_packets()	method	is	the	main	way	to	iterate	through	the	packets,

passing	in	a	function	to	apply	to	each	packet

Chapter	2,	Programming	for	the	Web
with	HTTP
1.	 urlopen
2.	 Headers
3.	 User-Agent
4.	 HTMLParser	and	urllib
5.	 The	requests	module	and	the	whois.domaintools.com	service
6.	 We	use	the	following	method:

import	requests

proxies	=	{	"http":	"http://<ip_address>:port"}

requests.get("http://example.org",	proxies=proxies)

7.	 Its	main	purpose	is	to	identify	the	user	by	storing	their	activity	history	on	a
specific	website	so	that	they	can	offer	the	most	appropriate	content
according	to	their	habits

8.	 HTTPCookieProcessor
9.	 request.cookies.RequestsCookieJar
10.	 Digest-based	access	authentication

Chapter	3,	Application	Programming
Interface	in	Action
1.	 json.dumps().
2.	 json.loads().
3.	 OAuth.
4.	 requests-oauthlib.
5.	 CONSUMER_KEY,	CONSUMER_SECRET,	OAUTH_TOKEN,	and	OAUTH_TOKEN_SECRET.
6.	 Tweepy.
7.	 The	xml.etree.ElementTree	package.
8.	 AmazonS3FullAccess.
9.	 requests-aws4auth	is	a	library	for	the	Requests	module	that	automatically

handles	signature	generation.
10.	 Every	bucket	has	its	own	URL	of	the	form	http://s3.

<region>.amazonaws.com/<bucketname>.	In	the	URL,	<bucketname>	is	the	name	of	the
bucket	and	<region>	is	the	AWS	region	where	the	bucket	is	present.

Chapter	4,	Web	Scraping	with
BeautifulSoup	and	Scrapy
1.	 XPath	selectors
2.	 code_html.xpath('//img/@src')
3.	 links	=	code_html.xpath('//a/@href')
4.	 bs.find_all("<html_tag_label>")
5.	 items.py,	pipelines.py,	settings.py,	and	spiders
6.	 spiders/my_sypder.py.
7.	 pipelines.py
8.	 CrawlSpider
9.	 process_item	(item,	spider)
10.	 Scrapinghub

Chapter	5,	Engaging	with	Email
1.	 The	main	difference	is	that	IMAP	allows	for	the	connection	of	multiple

users	or	mail	manager	programs	simultaneously	to	the	same	mailbox,
facilitating	subsequent	access	to	the	mail	messages	that	are	available	on	the
server	via	web	mail.	POP3,	on	the	other	hand,	downloads	messages	by
deleting	them	from	the	server,	and	so	email	messages	are	no	longer
available	in	the	server.

2.	 Sendmail	is	the	method	of	sending	emails	with	the	following	syntax:
SMTP.sendmail(from_addr,	to_addrs,	msg[,	mail_options,	rcpt_options].

3.	 from	email.mime.text	import	MIMEText.
4.	 message	=	MIMEText(mail_msg,	'html',	'utf-8').
5.	 You	must	first	create	a	MimeMultipart()	instance.
6.	 POP3.stat().	The	result	is	a	tuple	of	two	integers:	(message	count,	mailbox

size).
7.	 The	secure	version	of	POP3()	is	its	subclass,	POP3_SSL().	It	takes	additional

parameters,	such	as	keyfile	and	certfile:	mailbox	=	poplib.POP3_SSL(<POP3_SERVER>,
<SERVER_PORT>).

8.	 response,	headerLines,	bytes	=	mailbox.retr(i+1).
9.	 This	protocol	has	the	advantage	that,	when	we	connect	to	read	our	mail

from	different	devices,	for	example,	our	laptop	or	smartphone,	we	know
that	we	can	always	access	all	of	our	messages,	and	that	the	mailbox	will	be
updated.	It	is	also	interesting	to	preserve	our	privacy	when	we	read	our	mail
from	a	public	or	shared	computer,	as	it	does	not	store	information	on	the
local	machine"."

10.	 The	derived	class,	IMAP4_SSL().
11.	 We	can	use	the	following	code	to	open	an	IMAP	connection:

from	imapclient	import	IMAPClient

server	=	IMAPClient('imap_server',	ssl=True)

server.login('user',	'password')

select_info	=	server.select_folder('INBOX',readonly=True)

Chapter	6,	Interacting	with	Remote
Systems
1.	 sshd_config,	which	is	located	in	the/etc/ssh	path.
2.	 It	is	recommended	that	you	use	at	least	a	2048-bit	encryption.
3.	 We	must	set	the	PermitRootLogin	variable	to	no.
4.	 You	can	implement	an	interactive	shell	using	paramiko.	That	way,	the	channel

does	not	close	after	a	command	is	executed	in	the	remote	shell.	After
creating	SSHClient,	using	connect,	you	can	use	the	invoke_shell()	method,	which
will	open	a	channel	that	it	doesn't	close	after	you	send	something	through	it.

5.	 The	way	paramiko	creates	SFTP	session	for	downloading	files	in	a	secure
way	from	a	SSH	server	is	as	follows:

import	paramiko

ssh_transport	=	paramiko.Transport(hostname,	port)

ssh_transport.connect(username='username',	password='password')

sftp_session	=	paramiko.SFTPClient.from_transport(ssh_transport)sftp_session.get(source_file,	target_file)

6.	 To	retrieve	the	binary	file	from	the	remote	host,	the	syntax	that's	shown
here	can	be	used,	along	with	the	RETR	command:	ftp_client.retrbinary('RETR
remote_file_name',	file_handler.write).

7.	 FTP.nlst(path).
8.	 We	can	use	the	following	command:

from	pysnmp.entity.rfc3413.oneliner

import	cmdgen	cmd_generator	=	cmdgen.CommandGenerator()

9.	 The	directory	service	is	the	hierarchically	organized	structure	of	the	objects
in	the	LDAP	directory.

10.	 We	can	use	the	following	method:

import	ldap

ldap_client	=	ldap.initialize("ldap://<ldap_server>:port_number/")

Chapter	7,	Working	with	IP	and	DNS
1.	 pygeoip	allows	you	to	retrieve	geographic	information	from	an	IP	address.	It

is	based	on	GeoIP	databases,	which	are	distributed	in	several	files,
depending	on	their	type	(city,	region,	country,	and	ISP).

2.	 netifaces.interfaces().
3.	 53	(UDP).
4.	 The	subnets	(prefixlen_diff=1,	new_prefix=None)	method	has	the	capacity	to

generate	subnets	with	additional	host	bits	or	with	a	specific	amount	of
network	bits.

5.	 country_name_by_addr(<ip_address>).
6.	 record_by_addr(<ip_address>).
7.	 org_by_name(<domain_name>).
8.	 dns.resolver.query('domain','AAAA').
9.	 dns.resolver.query('domain','MX').
10.	 dns.resolver.query('domain','NS').

Chapter	8,	Implementing	IPv6	and
Address	Manipulation
1.	 Link-local.
2.	 ::	1/128.
3.	 socket.getaddrinfo.
4.	 Use	the	following	code	to	create	a	server	with	IPv6	support	with	a	socket

module:

#	socket.AF_INET6	to	indicate	that	we	will	use	Ipv6

client	=	socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM)

5.	 We	can	call	the	interfaces()	function	from	this	library	to	list	all	of	the
interfaces	that	are	present	in	the	system.

6.	 AF_LINK	is	the	link	layer	interface	(for	example,	Ethernet),	AF_INET	represents
the	IPv4	internet	address,	and	AF_INET6	represents	the	IPv6	internet	address.

7.	 psutil.
8.	 We	can	interoperate	between	IPv4	and	IPv6	with	the	ipv6()	and	ipv4()

methods.
9.	 From	ipaddress,	we	can	import	IPv6Address,	IPv6Network,	and	IPv6Interface.

10.	 The	subnets(prefixlen_diff=1,	new_prefix=None)	method	also	has	the	capacity	to
generate	subnets	with	additional	host	bits	or	with	a	specific	amount	of
network	bits.	Any	IPv4Network	object	can	find	out	information	about	its	parent
with	the	supernet()	method,	which	is	the	opposite	of	the	subnet.

Chapter	9,	Performing	Network
Automation	with	Python	and	Ansible
1.	 YAML.
2.	 /etc/ansible/ansible.cfg.
3.	 /etc/ansible/hosts.
4.	 Ad	hoc	commands	and	playbooks.
5.	 The	Ansible	architecture	is	agentless	in	the	sense	no	software	or	agent	has

to	be	installed	on	the	client	to	communicate	back	to	the	server.	Instead	of
relying	on	remote	host	agents,	Ansible	uses	SSH	to	push	its	changes	to	the
remote	host.

6.	 The	Ansible	command	for	checking	the	hostname	of	IP	addresses	is	as
follows:

$	ansible	all	-a	"hostname"

7.	 We	can	install	by	using	the	following	code:

name:	Installing	Nginx	and	python

apt:	pkg={{	item	}}

with_items:

-	ngnix

-	python3-minimal

8.	 PlaybookExecutor	from	ansible.executor.playbook_executor.
9.	 The	ping	module.
10.	 The	AnsibleModule	class	from	the	ansible.module_utils.basic	package.

Chapter	10,	Programming	with
Sockets
1.	 socket.accept()	is	used	to	accept	the	connection	from	the	client.	This	method

returns	two	values,	client_socket	and	client_address,	where	client_socket	is	a
new	socket	object	that's	used	to	send	and	receive	data	over	the	connection.

2.	 socket.sendto(data,	address)	is	used	to	send	data	to	a	given	address.
3.	 The	bind(IP,PORT)	method	allows	you	to	associate	a	host	and	a	port	with	a

specific	socket,	for	example,	server.bind(("localhost",	9999)).
4.	 The	main	difference	between	TCP	and	UDP	is	that	UDP	is	not	connection-

oriented.	This	means	that	there	is	no	guarantee	that	our	packets	will	reach
their	destinations,	and	there	is	no	error	notification	if	a	delivery	fails.

5.	 socket.connect_ex(address)	is	used	for	implementing	port	scanning	with
sockets.

6.	 RawCap.exe.
7.	 socket.socket	(socket.AF_INET6,	socket.SOCK_STREAM).
8.	 There	is	a	module	called	selectors.
9.	 The	connection	is	wrapped	into	SSL	packets	using	our	ssl_wrap_socket()

function.
10.	 By	calling	the	getpeercert()	method	and	comparing	it	with	the	returned

hostname.

Chapter	11,	Designing	Servers	and
Asynchronous	Programming
1.	 aiohttp	is	an	independent	library	that's	developed	using	asyncio	at	a	low

level	and	facilitates	our	handling	of	HTTP	connections
2.	 ThreadPoolExecutor,	ProcessPoolExecutor
3.	 The	event	loop
4.	 The	asyncio.Task	class	is	a	subclass	of	asyncio.Future	and	aims	to	manage

coroutines
5.	 await
6.	 The	tornado.web.Application	object
7.	 AsyncHTTPClient
8.	 dataReceived
9.	 buildProtocol
10.	 We	can	use	the	TCP4ClientEndpoint	class

Chapter	12,	Designing	Applications
on	the	Web
1.	 From	wsgiref.simple_server	import	make_server
2.	 The	Model-View-Controller	is	a	pattern	for	software	development	that	is

based	on	separating	the	data,	the	user	interface,	and	the	logic	of	the
application

3.	 django-admin.py
4.	 We	can	run	the	following	command	in	the	djangoApplication	directory	that

contains	the	manage.py	file:	python	manage.py	migrate
5.	 With	Flask,	we	must	use	the	@route	annotation
6.	 render_template
7.	 request.form
8.	 Flask-Security
9.	 sqlalchemy.engine.base.Engine
10.	 SQLALCHEMY_DATABASE_URI,	which	has	been	added	in	your	config	file

Another	Book	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	another	book	by	Packt:

Mastering	Python	Networking	-	Second	Edition
Eric	Chou

ISBN:	978-1-78913-599-2

Use	Python	libraries	to	interact	with	your	network
Integrate	Ansible	2.5	using	Python	to	control	Cisco,	Juniper,	and	Arista
eAPI	network	devices
Leverage	existing	frameworks	to	construct	high-level	APIs	
Learn	how	to	build	virtual	networks	in	the	AWS	Cloud	
Understand	how	Jenkins	can	be	used	to	automatically	deploy	changes	in
your	network
Use	PyTest	and	Unittest	for	Test-Driven	Network	Development

https://prod.packtpub.com/in/networking-and-servers/mastering-python-networking-second-edition

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Learning Python Networking Second Edition

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Section 1: Introduction to Network and HTTP Programming
	Network Programming with Python
	Technical requirements
	An introduction to TCP/IP networking
	Introduction to TCP/IP
	The protocol stack, layer by layer
	UDP
	TCP

	Protocol concepts and the problems that protocols solve
	IP addresses and ports
	Network interfaces
	UDP versus TCP
	DHCP
	DNS

	Addressing
	NAT
	IPv4
	IPv6

	Python network programming through libraries
	An introduction to the PyPI Python repository
	Alternatives to pip for installing packages
	Conda
	Virtualenv
	Pipenv

	An introduction to libraries for network programming with Python
	Introduction to sockets
	Socket module in Python
	Client socket methods
	Server socket methods

	Working with RFC
	Extracting RFC information
	Downloading an RFC with urllib
	Downloading an RFC with requests
	Downloading an RFC with the socket module

	Interacting with Wireshark with pyshark
	Introduction to Wireshark
	Wireshark installation

	Capturing packets with Wireshark
	Network traffic in Wireshark
	Color coding in Wireshark
	Working with filters in Wireshark
	Filtering by protocol name
	HTTP objects filter
	Capture filters
	Display filters

	Analyzing networking traffic using the pyshark library
	FileCapture and LiveCapture in pyshark

	Summary
	Questions
	Further reading

	Programming for the Web with HTTP
	Technical requirements
	Consuming web services in Python with urllib
	Status codes
	Handling exceptions
	HTTP headers
	User agent
	Customizing requests with urllib
	Getting headers with a proxy
	Content types
	Extracting links from a URL with urllib
	Getting images from a URL with urllib
	Working with URLs

	Consuming web services in Python with requests
	Introduction to requests
	Checking HTTP headers
	Proxy requests
	Get whois information
	Working with JSON

	Handling forms with urllib and requests with Python 3.7
	Handling forms with urllib
	Handling forms with requests

	Handling cookies with urllib and requests with Python
	What are cookies?
	Handling cookies with urllib
	Cookie handling with requests

	Handling HTTP Basic and Digest Authentication with requests
	Introduction to authentication mechanisms
	HTTP Basic authentication
	HTTP Digest authentication

	Summary
	Questions
	Further reading

	Section 2: Interacting with APIs, Web Scraping, and Server Scripting
	Application Programming Interface in Action
	Technical requirements
	Introduction to REST APIs
	Advantages of using REST APIs

	Introduction to JSON and the JSON module
	Encoding and decoding with the JSON package
	Using dict with JSON

	Interacting with a JSON hybrid-REST API (Twitter)
	The Twitter API
	Registering your application for the Twitter API
	Authenticating requests with OAuth
	Collecting information from Twitter
	A Twitter client
	Retrieving tweets from a timeline
	Searching tweets

	Consuming the Twitter REST API with Python
	Connecting with the Twitter API
	Accessing Twitter API resources
	Streaming APIs with Tweepy

	Introduction to XML
	Getting started with XML
	The XML APIs
	Processing XML with ElementTree
	Pretty printing

	Reading an XML file

	Working with XML and a full REST API (Amazon S3 bucket) with the Boto module
	The Amazon S3 API
	Registering with AWS
	Authentication with AWS
	S3 buckets and objects
	Creating a bucket with the S3 API
	Uploading and downloading file
	Listing buckets
	Parsing XML and handling errors
	Connecting to S3 with the Python Boto package

	Summary
	Questions
	Further reading

	Web Scraping with BeautifulSoup and Scrapy
	Technical requirements
	Introduction to web scraping
	Web content extraction
	What is web scraping?
	HTML parsers
	Parsing HTML with lxml
	Searching with XPath

	Extracting information from web pages and parsing HTML with BeautifulSoup
	BeautifulSoup introduction
	Access to elements through DOM
	Extracting labels using regex
	Handling URL exceptions and not found tags

	Introduction to Scrapy components and architecture
	What is Scrapy?
	Scrapy architecture
	XPath expressions

	Scrapy as a framework for performing web crawling processes and data analysis
	Installation of Scrapy
	Creating a project with Scrapy
	Scrapy item class
	Spiders
	Creating our spider

	Pipelines items and export formats
	Scrapy settings
	Executing Scrapy
	Scrapy execution tips and tricks

	EuroPython project
	Executing EuroPython spider

	Working with Scrapy in the cloud
	Scrapinghub
	Portia
	Start pages and link crawling

	Summary
	Questions
	Further reading

	Engaging with Email
	Technical requirements
	Introduction to email protocols
	Sending emails with SMTP through the smtplib library
	SMTP protocol
	Working with smtplib
	Sending a basic message
	Sending messages in HTML format
	Sending emails to multiple recipients
	Sending an email with attachments

	Authentication with TLS
	Establishing a connection with a Gmail SMTP server

	Using an external SMTP service
	Creating and sending an email with an attachment

	Learning the POP3 protocol and retrieving emails with poplib
	Understanding the POP3 protocol
	Introduction to poplib
	Retrieving emails with SSL
	Establishing a connection with Gmail for reading emails
	Gmail account configuration
	Unread messages

	Manipulating and retrieving emails on the server email using IMAP with imapclient and imaplib
	IMAP protocol
	Retrieving emails with imaplib
	Retrieving emails with imapclient

	Summary
	Questions
	Further reading

	Interacting with Remote Systems
	Technical requirements
	Understanding the SSH protocol
	SSH introduction
	Using SSH to encrypt sessions
	How the SSH protocol works
	SSH service features
	Configuring the SSH protocol to make it more secure

	SSH terminals and running commands with paramiko
	Installing paramiko
	Establishing an SSH connection with paramiko
	Running commands with paramiko
	Running an interactive shell with paramiko
	SFTP with paramiko
	Paramiko alternatives
	Fabric

	Understanding the FTP protocol for transferring files
	The File Transfer Protocol
	Introduction to ftplib
	Other ftplib functions
	Inspecting FTP packets with Wireshark

	Reading and interacting with SNMP servers
	The SNMP
	MIB – a broad base of information
	Introduction to pysnmp
	Polling information from the SNMP agent

	Reading and interacting with LDAP servers
	The LDAP protocol
	LDAP terminology
	Introduction to python-ldap
	The LDAP FreeIPA server
	Working with LDAP3
	Accessing the LDAP server

	Finding entries in LDAP

	Summary
	Questions
	Further reading

	Section 3: IP Address Manipulation and Network Automation
	Working with IP and DNS
	Technical requirements
	Principles of the IP protocol
	Resolving the IP address with the socket package
	Validating the IP address with the socket package

	Retrieving the network configuration of a local machine
	Gathering information with the netifaces package

	Using Python to manipulate IP addresses and perform CIDR calculations
	The Python ipaddress module
	Manipulating IP addresses
	IP network objects

	Subnetting in Python
	Network interface objects
	IP address objects

	Planning IP addresses for your local area network

	The dnspython module as a tool for extracting information from DNS servers
	Working with dnspython
	Determining the destination of an MX record and its preference
	Manipulating domain names
	Converting IPv4 and IPv6 addresses into their DNS reverse map names

	Inspecting the DNS client and server communication

	GeoIP lookups with pygeoip and python-geoip
	Introduction to geolocation
	Introduction to pygeoip
	Introduction to python-geoip
	The MaxMind database in Python

	Summary
	Questions
	Further reading

	Implementing IPv6 and Address Manipulation
	Technical requirements
	Learning and understanding the IPv6 protocol
	The IPv6 protocol
	IPv6 addresses
	Representation of IPv6 addresses
	Reserved IPv6 addresses
	First steps with IPv6 – link-local

	Create an echo client and server with IPv6
	Working with sockets
	The socket server

	The socket client
	Executing client and server

	Understanding netifaces module for checking IPv6 support on your network
	Introduction to netifaces
	Other packages for getting interfaces

	Using the netaddr module as a network-address manipulation library for Python
	Operating with IPv6

	Understand ipaddress module as IPv4 and IPv6 manipulation library
	The Python ipaddress module
	IP network objects
	Subnetting in Python with IPv6
	Network interface objects
	The IP address objects
	Planning IP addresses for your local area network

	Summary
	Questions
	Further reading

	Performing Network Automation with Python and Ansible
	Technical requirements
	Basics of Ansible
	Ansible introduction
	Installing Ansible
	Configuring Ansible
	Using Ansible

	Ansible's components and architecture
	Ansible's architecture
	Ansible's inventory file

	Automating network Python tasks with Ansible
	Ansible tasks
	Ad-hoc commands
	Using playbooks

	Writing Ansible modules with Python
	Introduction to Ansible modules
	Implementing Ansible modules with Python

	Summary
	Questions
	Further reading

	Section 4: Sockets and Server Programming
	Programming with Sockets
	Technical requirements
	Basics of sockets
	Sockets introduction
	Socket types
	Getting information about ports, protocols, and domains
	Creating a TCP client
	Banner grabbing with the socket module
	Port scanning with sockets
	Inspecting the client and server communication

	Working with UDP and TCP sockets in Python 3.7
	Introduction to the TCP and UDP protocols
	Starting network programming with Python
	TCP sockets
	Starting a client

	Capturing packets in a loopback interface
	Inspecting the client and server interaction
	Code limitations
	Creating a simple UDP client and UDP server
	Implementing the UDP server
	Implementing the UDP client

	Working with IPv6 sockets in Python 3.7
	Implementing the IPv6 server
	Implementing the IPv6 client
	Executing client and server

	Non-blocking and asynchronous socket I/O
	Introducing non-blocking I/O
	The client-server model with multiple connections

	HTTPS and securing sockets with TLS
	Implementing the SSL client
	Inspecting standard SSL client and server communication

	Summary
	Questions
	Further reading

	Designing Servers and Asynchronous Programming
	Technical requirements
	Building a multiprocessing-based TCP server
	Introducing the concurrent.futures module
	Application for checking websites
	The multiprocessing approach

	Building asynchronous applications with asyncio and aiohttp
	Introducing asyncio
	Using asyncio
	Introducing event loops
	Futures
	Task manipulation with asyncio
	Downloading files with asyncio
	Introducing aiohttp
	Downloading files with aiohttp
	Other event loop solutions

	Building asynchronous network applications with Tornado
	Introducing Tornado
	Implementing the Tornado web server
	Implementing an asynchronous client with AsyncHTTPClient
	Asynchronous generators
	Utilities in Tornado for asynchronous network operations

	Building asynchronous network applications with Twisted
	Introduction to Twisted
	Protocols
	Building a basic Twisted server
	Factory
	Reactor
	Building a socket client
	Executing the client and server
	Building a Twisted client
	Building a Twisted web server

	Building asynchronous network applications with Celery
	Celery architecture
	Installing Celery
	Installing Redis
	Introduction to Redis
	Distributing Python with Celery and Redis

	Summary
	Questions
	Further reading

	Designing Applications on the Web
	Technical requirements
	Writing a web application with WSGI
	Introducing WSGI
	Creating a WSGI application

	Existing web application frameworks (Django, Flask, and Plone)
	Web frameworks

	The MVC pattern and dynamic web programming with Python
	The MVC pattern
	Dynamic web pages
	Processing dynamic pages
	Accessing a database
	Django introduction
	Creating a Django application

	Creating RESTful web applications and working with Flask and HTTP requests
	Introducing Flask
	Routing in Flask
	Jinja2 templating
	POST parameters with Flask
	Other templating engines
	Flask extensions

	Working with a database in Flask with SQLAlchemy
	Introducing SQLAlchemy
	Creating a session and ORM queries
	Using Flask with SQLAlchemy

	Summary
	Questions
	Further reading

	Assessment
	Chapter 1, Network Programming with Python
	Chapter 2, Programming for the Web with HTTP
	Chapter 3, Application Programming Interface in Action
	Chapter 4, Web Scraping with BeautifulSoup and Scrapy
	Chapter 5, Engaging with Email
	Chapter 6, Interacting with Remote Systems
	Chapter 7, Working with IP and DNS
	Chapter 8, Implementing IPv6 and Address Manipulation
	Chapter 9, Performing Network Automation with Python and Ansible
	Chapter 10, Programming with Sockets
	Chapter 11, Designing Servers and Asynchronous Programming
	Chapter 12, Designing Applications on the Web

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

