Learning
Python Networking

Second Edition

José Manuel Ortega, Dr. M. O. Faruqgue Sarker
and Sam Washington

Learning Python Networking
Second Edition

A complete guide to build and deploy strong networking capabilities using
Python 3.7 and Ansible

José Manuel Ortega
Dr. M O Faruque Sarker
Sam Washington

Packb

BIRMINGHAM - MUMBAI

Learning Python Networking Second
Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Akshay Jethani

Content Development Editor: Drashti Panchal
Technical Editor: Rutuja Patade

Copy Editor: Safis Editing

Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing

Indexer: Manju Arasan

Graphics: Tom Scaria

Production Coordinator: Tom Scaria

First published: June 2015
Second edition: March 2019

Production reference: 1280319

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78995-809-6

www . packtpub.com

http://www.packtpub.com

. Mapt

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

mapt.io

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packt.
com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.packt.com
http://www.packt.com

Contributors

About the authors

José Manuel Ortega is a software engineer, focusing on new technologies, open
source, security, and testing. His career goal has been to specialize in Python and
security testing projects. In recent years, he has developed an interest in security
development, especially in pentesting with Python. Currently, he is working as a
security tester engineer and his functions in the role involves the analysis and
testing of the security of applications in both web and mobile environments. He
has taught at university level and collaborated with the official school of
computer engineers. He has also been a speaker at various conferences. He is
eager to learn about new technologies and loves to share his knowledge with the
community.

I would like to thank my friends and family for their help in both the professional and personal fields of my
life. I would specially like to thank Akshay Jethani (acquisition editor at Packt Publishing) and Drashti
Panchal (content development editor at Packt Publishing) for supporting me during the course of
completing this book.

Dr. M. O. Faruque Sarker is a software architect based in London; he has
shaped various Linux and open source software solutions mainly on cloud
computing platforms for various institutions. Over the past 10 years, he has led
numerous Python software development and cloud infrastructure automation
projects. In 2009, he started using Python and shepherded a fleet of miniature E-

puck robots at the University of South Wales, Newport, UK. Later, he was
invited to work on the Google Summer of Code (2009/2010) programs to
contribute to the BlueZ and Tahoe-L AFS open source projects. He is the author
of Python Network Programming Cookbook, Packt Publishing and received his
PhD in multirobot systems at the University of South Wales.

Sam Washington currently works at University College London as a systems
administrator in the platform integration team of the central IT department,
supporting a variety of web hosting and network services. He enjoys the daily
challenges of managing the demands of full-stack enterprise web applications
and looking for ways to employ new technologies to improve services and
workflows. He has been using Python for professional and personal projects for
over 10 years.

About the reviewers

Bassem Aly is an experienced SDN/NFYV senior solution consultant at Juniper
Networks and has been working in the telco industry for the last decade. He
focuses on designing and implementing next-generation networks by leveraging
SDN, NFYV, and different automation and DevOps frameworks. Also, he has
extensive experience in architecting and deploying telco applications on the
cloud. He's the author of book Hands-On Enterprise Automation with Python,
available from Packt Publishing.

I dedicate this work to my nephews, Yasmina, Yara, Aly, Mohamed, and Jody, for the happiness and joy that
they bring to our family. You are my small world!

Yakov Goldberg is a Masters-trained, InfoSec professional focusing on digital
forensics, incident response (DFIR), and Advanced Persistent Threats. He has
experience in advising, deploying customized security controls to Fortune
Global 500 companies. He is also an expert in Python, Django framework,
Angular]JS, ELK stack, reversing malware, and conducting threat Intelligence
research. In 2008, Yakov developed his first Python web recon tool named
Uberharvest, which was featured in the famous Backtrack (now known as Kali).
Over the years, he has worked at Mandiant, the International Monetary Fund and
TrapX, focusing on DFIR Today, Yakov is a Digital Forensics and Threat
Intelligence Director at enSilo and has CISSP, GIAC GCFA, and CompTIA Sec+
certs.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Learning Python Networking Second Edition
About Packt

Why subscribe?

Packt.com
Contributors

About the authors
About the reviewers

Packt is searching for authors like you
Preface

Who this book is for

wWhat this book covers
To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch

Reviews

1. section 1: Introduction to Network and HTTP Programming

1. Network Programming with Python

Technical requirements
An introduction to TCP/IP networking

Introduction to TCP/IP
The protocol stack, layer by layer
UDP

TCP
Protocol concepts and the problems that protocols solve

IP addresses and ports
Network interfaces

UDP versus TCP

DHCP

DNS
Addressing

NAT
IPv4

IPV6
Python network programming through libraries

An introduction to the PyPI
O;Python repository
Alternatives to pip for installing packages

Conda
Virtualenv

Pipenv
An introduction to libraries for network programming with Python

Introduction to sockets
Socket module in Python
Client socket methods

Server socket methods
Working with RFC

Extracting RFC information
Downloading an RFC with urllib
Downloading an RFC with requests

Downloading an RFC with the socket module
Interacting with Wireshark with pyshark
Introduction to Wireshark

Wireshark installation
Capturing packets with Wireshark

Network traffic in Wireshark
Color coding in Wireshark
Working with filters in Wireshark
Filtering by protocol name
HTTP objects filter
Capture filters
Display filters
Analyzing networking traffic using the pyshark library
FileCapture and LiveCapture in pyshark
Summary
Questions
Further reading
2. Programming for the Web with HTTP

Technical requirements
Consuming web services in Python with urllib

Status codes

Handling exceptions

HTTP headers

User agent

Customizing requests with urllib
Getting headers with a proxy

Content types

Extracting links from a URL with urllib
Getting images from a URL with urllib

Working with URLs
Consuming web services in Python with requests

Introduction to requests
Checking HTTP headers
Proxy requests

Get whois information

Working with JSON
Handling forms with urllib and requests with Python 3.7

Handling forms with urllib

Handling forms with requests
Handling cookies with urllib and requests with Python

What are cookies?
Handling cookies with urllib

Cookie handling with requests
Handling HTTP Basic and Digest Authentication with requests

Introduction to authentication mechanisms
HTTP Basic authentication
HTTP Digest authentication

Summary

Questions

Further reading

2. section 2: Interacting with APIs, Web Scraping, and Server Scripting

3. Application Programming Interface in Action

Technical requirements
Introduction to REST APIs

Advantages of using REST APIs
Introduction to JSON and the JSON module

Encoding and decoding with the JSON package

Using dict with JSON
Interacting with a JSON hybrid-REST API (Twitter)

The Twitter API
Registering your application for the Twitter API

Authenticating requests with OAuth
Collecting information from Twitter

A Twitter client
Retrieving tweets from a timeline
Searching tweets
Consuming the Twitter REST API with Python
Connecting with the Twitter API

Accessing Twitter API resources

Streaming APIs with Tweepy
Introduction to XML

Getting started with XML
The XML APIs

Processing XML with ElementTree
Pretty printing

Reading an XML file
Working with XML and a full REST API (Amazon S3 bucket) with the Boto module

The Amazon S3 API
Registering with AWS
Authentication with AWS
S3 buckets and objects
Creating a bucket with the S3 API
Uploading and downloading file
Listing buckets
Parsing XML and handling errors
Connecting to S3 with the Python Boto package

Summary

Questions

Further reading

4. web Scraping with BeautifulSoup and Scrapy

Technical requirements
Introduction to web scraping

Web content extraction
What is web scraping?
HTML parsers

Parsing HTML with 1xml

Searching with XPath
Extracting information from web pages and parsing HTML with BeautifulSoup

BeautifulSoup introduction
Access to elements through DOM
Extracting labels using regex

Handling URL exceptions and not found tags
Introduction to Scrapy components and architecture

What is Scrapy?
Scrapy architecture

XPath expressions
Scrapy as a framework for performing web crawling processes and data analysis

Installation of Scrapy
Creating a project with Scrapy

Scrapy item class
Spiders

Creating our spider
Pipelines items and export formats

Scrapy settings
Executing Scrapy

Scrapy execution tips and tricks
EuroPython project

Executing
O;EuroPython spider
Working with Scrapy in the cloud

Scrapinghub
Portia

Start pages and link crawling
Summary
Questions
Further reading
5. Engaging with Email
Technical requirements

Introduction to email protocols
Sending emails with SMTP through the smtplib library

SMTP protocol
Working with smtplib

Sending a basic message
Sending messages in HTML format
Sending emails to multiple recipients

Sending an email with attachments
Authentication with TLS

Establishing a connection with a Gmail SMTP server
Using an external SMTP service

Creating and sending an email with an attachment
Learning the POP3 protocol and retrieving emails with poplib

Understanding the POP3 protocol
Introduction to poplib

Retrieving emails with SSL
Establishing a connection with Gmail for reading emails

Gmail account configuration

Unread messages
Manipulating and retrieving emails on the server email using IMAP with imapclie
nt and imaplib

IMAP protocol
Retrieving emails with imaplib
Retrieving emails with imapclient
Summary
Questions

Further reading

6. Interacting with Remote Systems

Technical requirements
Understanding the SSH protocol

SSH introduction

Using SSH to encrypt sessions
How the SSH protocol works
SSH service features

Configuring the SSH protocol to make it more secure
SSH terminals and running commands with paramiko

Installing paramiko

Establishing an SSH connection with paramiko
Running commands with paramiko

Running an interactive shell with paramiko

SFTP with paramiko
Paramiko alternatives

Fabric
Understanding the FTP protocol for transferring files

The File Transfer Protocol
Introduction to ftplib
Other ftplib functions

Inspecting FTP packets with Wireshark
Reading and interacting with SNMP servers

The SNMP
Q;
MIB
OQ;– a broad base of information
Introduction to pysnmp

Polling information from the SNMP agent
Reading and interacting with LDAP servers

The LDAP protocol
LDAP terminology
Introduction to python-ldap

The LDAP FreeIPA server
Working with LDAP3

Accessing the LDAP server
Finding entries in LDAP
Summary
Questions
Further reading

3. section 3: IP Address Manipulation and Network Automation

7. Working with IP and DNS

Technical requirements
Principles of the IP protocol

Resolving the IP address with the socket package

Validating the IP address with the socket package
Retrieving the network configuration of a local machine

Gathering information with the netifaces package
Using Python to manipulate IP addresses and perform CIDR calculations

The Python ipaddress module
Manipulating IP addresses

IP network objects

Subnetting in Python
Network interface objects

IP address objects

Planning IP addresses for your local area network
The dnspython module as a tool for extracting information from DNS servers
Working with dnspython

Determining the destination of an MX record and its preference
Manipulating domain names
Converting IPv4 and IPv6 addresses into their DNS reverse map names

Inspecting the DNS client and server communication
GeoIP lookups with pygeoip and python-geoip

Introduction to geolocation
Introduction to pygeoip
Introduction to python-geoip
The MaxMind database in Python

Summary

Questions

Further reading

8. Implementing IPv6 and Address Manipulation

Technical requirements
Learning and understanding the IPv6 protocol

The IPv6 protocol

IPv6 addresses

Representation of IPv6 addresses
Reserved IPv6 addresses

First steps with IPv6 – link-local
Create an echo client and server with IPv6
Working with sockets

The socket server
The socket client

Executing client and server
Understanding netifaces module for checking IPv6 support on your network

Introduction to netifaces

Other packages for getting interfaces
Using the netaddr module as a network-address manipulation library for Python

Operating with IPv6
Understand ipaddress module as IPv4 and IPv6 manipulation library

The Python ipaddress module
IP network objects
Subnetting in Python with IPv6
Network interface objects
The IP address objects
Planning IP addresses for your local area network
Summary
Questions
Further reading
9. Performing Network Automation with Python and Ansible

Technical requirements
Basics of Ansible

Ansible introduction
Installing Ansible
Configuring Ansible

Using Ansible
Ansible's components and architecture

Ansible's architecture

Ansible's inventory file
Automating network Python tasks with Ansible

Ansible tasks
Ad-hoc commands

Using playbooks
Writing Ansible modules with Python

Introduction to Ansible modules
Implementing Ansible modules with Python
Summary
Questions
Further reading

4. section 4: Sockets and Server Programming

10. Programming with Sockets

Technical requirements
Basics of sockets

Sockets introduction

Socket types

Getting information about ports, protocols, and domains
Creating a TCP client

Banner grabbing with the socket module

Port scanning with sockets

Inspecting the client and server communication
Working with UDP and TCP sockets in Python 3.7

Introduction to the TCP and UDP protocols

Starting network programming with Python
TCP sockets

Starting a client
Capturing packets in a loopback interface
Inspecting the client and server interaction

Code limitations
Creating a simple UDP client and UDP server

Implementing the UDP server

Implementing the UDP client
Working with IPv6 sockets in Python 3.7

Implementing the IPv6 server
Implementing the IPv6 client

Executing client and server
Non-blocking and asynchronous socket I/O

Introducing non-blocking I/0

The client-server model with multiple connections
HTTPS and securing sockets with TLS

Implementing the SSL client
Inspecting standard SSL client and server communication
Summary
Questions
Further reading
11. Designing Servers and Asynchronous Programming

Technical requirements
Building a multiprocessing-based TCP server

Introducing the concurrent.futures module
Application for checking websites

The multiprocessing approach
Building asynchronous applications with asyncio and aiohttp

Introducing asyncio

Using asyncio

Introducing event loops
Futures

Task manipulation with asyncio
Downloading files with asyncio
Introducing aiohttp
Downloading files with aiohttp

Other event loop solutions
Building asynchronous network applications with Tornado

Introducing Tornado

Implementing the Tornado web server

Implementing an asynchronous client with AsyncHTTPClient
Asynchronous generators

Utilities in Tornado for asynchronous network operations
Building asynchronous network applications with Twisted

Introduction to Twisted
Protocols

Building a basic Twisted server
Factory

Reactor

Building a socket client
Executing the client and server
Building a Twisted client

Building a Twisted web server
Building asynchronous network applications with Celery

Celery architecture
Installing Celery
Installing Redis
Introduction to Redis
Distributing Python with Celery and Redis
Summary
Questions
Further reading
12. Designing Applications on the Web

Technical requirements
Writing a web application with WSGI

Introducing WSGI

Creating a WSGI application
Existing web application frameworks (Django, Flask, and Plone)

Web frameworks
The MVC pattern and dynamic web programming with Python

The MVC pattern

Dynamic web pages
Processing dynamic pages
Accessing a database
Django introduction

Creating a Django application
Creating RESTful web applications and working with Flask and HTTP requests

Introducing Flask
Routing in Flask
Jinja2 templating
POST parameters with Flask

Other templating engines

Flask extensions

Working

with a database in Flask with SQLAlchemy

Introducing SQLAlchemy

Creating a session and
Q;ORM queries

Using Flask with SQLAlchemy

Summary

Questions

Further
Assessment

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

reading

1, Network Programming with Python
2, Programming for the Web with HTTP
3, Application Programming Interface in Action
4, Web Scraping with BeautifulSoup and Scrapy

5, Engaging with Email

6, Interacting with Remote Systems

7, Working with IP and DNS

8, Implementing IPv6 and Address Manipulation

9, Performing Network Automation with Python and Ansible
10, &#XxAQ; Programming with Sockets

11, Designing Servers and Asynchronous Programming

12, Designing Applications on the Web

Another Book You May Enjoy

Leave a review - let other readers know what you think

Preface

Network programming has always been a demanding task. With full-featured
and well-documented libraries all the way up the stack, Python makes network
programming the enjoyable experience it should be.

Starting with a walk-through of today's major networking protocols, throughout
this book, you'll learn how to employ Python for network programming, how to
request and retrieve web resources, and how to extract data in major formats
over the web. You'll utilize Python for emailing, using a variety of protocols, and
you'll interact with remote systems and IP and DNS networking. The connection
of network devices and configuration using Python 3.7 will also be covered.

As the book progresses, socket programming will be covered, followed by how
to design servers and the pros and cons of multithreaded and event-driven
architectures. You'll develop practical client-side applications, including web
API clients, email clients, SSH, and FTP. These applications will also be
implemented through existing web application frameworks.

Who this book is for

This book is ideal for Python developers or system administrators with Python
experience who are looking to take their first steps in network programming.
Python developers who are interested in going deeper into packages related to
asynchronous programming would also benefit from this book. A basic
knowledge of Python programming is recommended.

What this book covers

chapter 1, Network Programming with Python, provides a review of basic
network elements and principles. It discusses how Python supports network
programming and gives an overview of key libraries. It also provides an
introduction to Wireshark as a protocol exploration and network programming
diagnostic tool. Furthermore, we will review how we can interact with
Wireshark from Python with the pyshark module.

chapter 2, Programming for the Web with HTTP, covers the HTTP protocol and
the main Python modules, such as the uri1ib standard library and the requests
package for connecting with the REST API. It also covers HTTP authentication
mechanisms and how we can manage them by means of the requests module.

chapter 3, Application Programming Interface in Action, covers how to use
Python to extract data from the major data formats found on the web: HTML,
XML, and JSON. An example of interacting with REST APIs, such as Twitter
and Amazon S3, will be used to guide the reader through the essentials of
working with XML and JSON.

chapter 4, Web Scraping with BeautifulSoup and Scrapy, covers how to extract the
content of a web page by automating the information extraction process using
scraping techniques to recover data from the web automatically. This chapter
also covers some of the most powerful tools we can find in Python 3.7, with a
focus on BeautifulSoup and Scrapy.

chapter 5, Engaging with Email, explores the Python modules that facilitate
communication with email servers using SMTP, POP3, and IMAP protocols.
Practical code examples in Python 3.7 will illustrate the majority of concepts.

chapter 6, Interacting with Remote Systems, explains the different modules that
allow us to interact with FTP, SSH, SNMP, and LDAP servers. You will learn
about several network protocols and Python libraries that are used for interacting
with remote systems through the Python modules, including ftp1ib, paramiko,
pysnmp, and python-1ldap.

chapter 7, Working with IP and DNS, explores how to work with IPs, DNS
networking, and geolocation in Python. You will learn about acquiring
information for DNS servers using the DNSPython module and extracting
information relating to geolocation IP addresses.

chapter 8, Implementing IPv6 and Address Manipulation, explains how to work
with IPv6 and address manipulation with Python. You will learn by means of
practical tasks, such as determining the IP address of your own computer and
looking up other computers in the local network.

chapter 9, Performing Network Automation with Python and Ansible, covers the
principles of Ansible and how we can interact with Python. We will review how
to write a Python script with a view to executing a networking automation task
with Ansible and how to write an Ansible module with Python.

chapter 10, Programming with Sockets, introduces the basics of sockets and the
principles of UDP and TCP through examples involving the socket module with
the IPv4 and IPv6 protocols. We will also cover non-blocking and asynchronous
programming and HTTPS and TLS for secure data transport.

chapter 11, Designing Servers and Asynchronous Programming, covers the
principles of socket-based server design and how to build small servers based on
multiprocessing approaches. We review asyncio and aionttp for asynchronous
operations and other solutions, such as Tornado, Twisted, and Celery, for
building asynchronous network applications.

chapter 12, Designing Applications on the Web, introduces the Django and Flask
micro frameworks, which are designed to facilitate the development of web
applications under the Model View Controller (MVC) pattern. Finally, we
review how to work with HTTP requests in Flask and interact with databases
through SQLAlchemy.

To get the most out of this book

You will need to install a Python distribution on your local machine, which
should have at least 4 GB of memory. For chapter 9, Performing Network
Automation with Python and Ansible, you will also need to install Ansible and
have a local network configured or local virtual machines with Python installed
for executing Ansible scripts. For chapter 11, Designing Servers and
Asynchronous Programming, examples involving Celery also need to be
executed on a localhost Redis server.

In this book, all examples are available for execution in Python version 3.7 and
are compatible with the Windows and Unix operating systems.

Download the example code files

You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support
and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packt.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/Packtpu
blishing/Learning-Python-Networking-Second-Edition. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/default/f

iles/downloads/9781789958096_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781789958096_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "You can find the following code in the
urllib_exceptions.py file."

A block of code is set as follows:

setup crawler

from scrapy.crawler import CrawlerProcess
crawler = CrawlerProcess(settings)

define the spider for the crawler
crawler.crawl(MySpider())

start scrapy

print ("STARTING ENGINE")

crawler.start()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

setup crawler

from scrapy.crawler import CrawlerProcess
crawler = CrawlerProcess(settings)

define the spider for the crawler
crawler.crawl(MySpider())

start scrapy

print ("STARTING ENGINE")

crawler.start()

Any command-line input or output is written as follows:

| pip install 1xml

Bold: Indicates a new term, an important word, or words that you see on screen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Among the available plugins for Firefox, we can highlight the
HTTP Header Live add-ons."

0 Warnings or important notes appear like this.

9 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at

customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please Visit www.packt.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in, and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Section 1: Introduction to Network
and HTTP Programming

In this section, you will learn about the basics of Python network programming,
networking protocols, and the main modules for interacting with HTTP servers.

This section contains the following chapters:

® chapter 1, Network Programming with Python
® chapter 2, Programming for the Web with HTTP

Network Programming with Python

This book will focus on writing programs for networks that use the Internet
Protocol (IP) suite. Why have we chosen to do this? Well, out of the sets of
protocols that are supported by the Python standard library, the Transmission
Control Protocol (TCP)/IP protocol is by far the most widely employable. It
contains the principal protocols that are used by the internet. By learning to
program for TCP/IP, you'll be learning how to potentially communicate with just
about every device that is connected to this great tangle of network cables and
electromagnetic waves.

The following topics will be covered in this chapter:

An introduction to TCP/IP networking

Protocol concepts and the problems that protocols solve

Addressing

Creating RESTful web applications and working with flask and HTTP
requests

¢ Interacting flask with the SQLAlchemy database

In this chapter, we will be looking at some concepts and methods related to
networks and network programming in Python, which we'll be using throughout
this book.

This chapter has two sections. The first section, An introduction to TCP/IP
networking, offers an introduction to essential networking concepts, with a
strong focus on the TCP/IP stack. We'll be looking at what comprises a network,
how the IP allows data transfer across and between networks, and how TCP/IP
provides us with services that help us to develop network applications. This
section is intended to provide a grounding in these essential areas and to act as a
point of reference for them. If you're already comfortable with concepts such as
IP addresses, routing, TCP and User Datagram Protocol (UDP), and protocol
stack layers, then you may wish to skip to the second section, Python network
programming through libraries.

In the second part, we'll look at the way in which network programming is

approached with Python. This chapter provides a review of basic network
elements and principles, as well as a discussion of how Python supports network
programming with an overview of key libraries. Finally, we will introduce you to
Wireshark, a protocol exploration and network programming diagnostic tool. We
will also look at how we can interact with Wireshark from Python with

the pyshark module.

Technical requirements

Before you start reading this book, you should already know the basics of
Python programming, such as the basic syntax, variable types, data type tuple,
list dictionary, functions, strings, and methods. At the moment of writing this
book, versions 3.7.2 and 2.7.15 are available at python.org/downloads. In this book,
we will work with version 3.7 for code examples and installing packages.

The examples and source code for this chapter are available in this book's
GitHub repository in the chaptere1 folder: nttps://github.com/PacktPublishing/Learning-

Python-Networking-Second-Edition.

http://python.org/downloads
https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

An introduction to TCP/IP
networking

This first section offers an introduction to essential networking concepts, with a
strong focus on the TCP/IP stack.

The following discussion is based on Internet Protocol version 4 (IPv4). Since
the internet has run out of IPv4 addresses, a new version, IPv6, has been
developed, which is intended to resolve this situation. However, although IPv6 is
being used in a few areas, its deployment is progressing slowly and the majority
of the internet will likely be using IPv4 for a while longer. We'll focus on IPv4 in
this section, and then we will discuss the relevant changes in the IPv6 section of
this chapter.

Introduction to TCP/IP

TCP/IP is a set of protocols that were designed to work together to provide an
end-to-end transmission of messages across interconnected networks. TCP
provides transparent data transfers between end systems using the services of the
lower network layer to move the packets between the two communicating
systems. TCP is a protocol that works at the transport layer, while IP works at
the network layer.

TCP is responsible for creating connections through a data flow. This process
guarantees that the data is delivered to the destination without errors and in the
same order in which they came out. It is also used to distinguish different
applications in the same device.

IP is responsible for sending and receiving data in blocks. The shipment always
does this to find the best route, but without guaranteeing that it reaches the
destination.

Both protocols are used to solve the transmission of data that is generated in a
network, either internally or externally. The union of these protocols is done to
ensure that the information always arrives on the best route and in the correct
way to the destination.

The protocol stack, layer by layer

A protocol stack is organized in such a way that the highest level of
communication resides in the top layer. Each layer in the stack is built on the
services of the immediate lower layer.

The TCP/IP protocol stack has four layers, as follows:

Application layer: This layer manages the high-level protocols, including
representation, coding, and dialogue control issues. It handles everything
related to applications, and the data is packed appropriately for the next
layer. It is a user process that cooperates with other processes on the same
host or a different one. Examples of protocols at this layer are

TELNET, File Transfer Protocol (FTP), and Simple Mail Transfer
Protocol (SMTP).

Transport layer: This layer handles quality of service, reliability, flow
control, and error correction. One of its protocols is the TCP, which
provides reliable network communications that are oriented to the
connection, unlike UDP, which is not connection oriented. It also provides
data transfer. Example protocols include TCP (connection oriented) and
UDP (non-connection oriented).

Network layer: The purpose of the internet layer is to send packets from
the source of any network and make them reach their destination, regardless
of the route they take to get there.

Network access layer: This is also called a host-to-host network layer. It
includes the LAN and WAN protocols, and the details in the physical and
data link layers of the OSI model. Also known as the link layer or data link
layer, the network interface layer is the interface to the current network
hardware.

The following diagram represents the TCP/IP protocol stack:

Application | —#» | SMTP, Telnet, FTP, Gopher...
Transport —» | TCP UDP
Network | P IOMP” | Amp RaRP

Network Access | —» | Ethemet, Token-Ring, FDDI, X.25, Wireless, Async, ATM, SNA...

The IP is the most important protocol of the network layer. It is a non-connection
oriented protocol that does not assume reliability of the lower layers. IP does not
provide reliability, flow control, or error recovery. These functions must be
provided by the upper level, in the transport layer with TCP as the transport
protocol, or in the application layer if UDP is being used as the transport
protocol. The message unit in an IP network is called an IP datagram. This is the
basic unit of information that is transmitted from one side of the TCP/IP network
to the other.

The application layer is where all of the user interaction with the computer and
services occurs. As an example of this, any browser can work, even without the
TCP/IP stack installed. Usually, we use browsers such as Google Chrome,
Mozilla, Firefox, Internet Explorer, and Opera for communicating with this
layer.

When initiating a query for a remote document, the HTTP protocol is used. Each
time we request a communication of this type, the browser interacts with the
application layer, which, in turn, serves as an interface between the user's
applications and the protocol stack, which will provide communication with the
help of the lower layers.

The responsibilities of the application layer are to identify and establish the
communication availability of the target destination, as well as to determine the
resources for that communication to exist. Some of the protocols of the
application layer are as follows:

FTP

HTTP

Post Office Protocol version 3 (POP3)

Internet Message Access Protocol (IMAP)
SMTP

Simple Network Management Protocol (SNMP)
TELNET—TCP/IP Terminal Emulation Protocol

UDP

UDP is a non-connection oriented protocol. That is, when machine A sends
packets to machine B, the flow is unidirectional. The data transfer is made
without warning the recipient of machine B, and the recipient receives the data
without sending a confirmation to the sender of machine A.

This is because the data that's sent by the UDP protocol does not allow you to
transmit information related to the sender. Therefore, the recipient will not know
about the sender's data, except their IP address. Let's have a look at some
properties of the UDP protocols:

e Unreliable: In UDP, there is no concept of packet retransmission.
Therefore, when a UDP packet is sent, it is not possible to know whether
the packet has reached its destination since there are no errors in the
correction mechanism.

e Not ordered: The order in which packages are sent and received cannot be
determined.

e Datagrams: The integrity of packet delivery is done individually and can
only be checked to ensure that the packages arrived correctly.

e Lightweight and speed: The UDP protocol does not provide error recovery
services, so it offers a direct way to send and receive datagrams through an
IP network. It is used when speed is an important factor in the transmission
of information, for example, when streaming audio or video.

TCP

The TCP protocol, unlike the UDP protocol, is connection oriented. When
machine A sends data to machine B, machine B is informed of the arrival of this
data and confirms its good reception.

Here, the CRC control of data intervenes, which is based on a mathematical
equation that allows you to verify the integrity of the transmitted data. In this
way, if the received data is corrupted, the TCP protocol allows the recipients to
request the sender to send them again.

This protocol is one of the main protocols of the transport layer of the TCP/IP
model, since, at the application level, it makes it possible to manage data coming
from the lowest level of the model.

So, when data is provided to the IP protocol, it binds it in IP datagrams, fixing
the field protocol with 6, so that you know in advance that the protocol is TCP.
This protocol is connection oriented, so it allows two machines that are
communicated to control the status of the transmission.

Several programs within a data network that are composed of computers can use
TCP to create connections between them, by means of which they can send a
data flow. Thus, the protocol guarantees that the data will be delivered to its
destination. The most important thing to take into account is that it has no errors
and maintains the order in which they are transmitted.

On the basis of the preceding example, we can devise the properties of TCP:

e Reliable: The TCP protocol has the ability to manage the attempts that can
be made to send a message if a packet is lost, and can resend those
fragments that were not sent on the first attempt.

¢ Ordered: The messages are delivered in a particular order.

e Heavyweight: TCP has the ability to verify that the connection can be
established through a socket before any packet can be sent, for which it uses
three sending confirmation packets, called SYN, SYN-ACK, and ACK.

Protocol concepts and the problems
that protocols solve

This section explains concepts regarding IP addresses and ports, network
interfaces in a local machine, and other concepts related to protocols, such
as Dynamic Host Configuration Protocol (DHCP) and DNS.

IP addresses and ports

IP addresses are addresses that help to uniquely identify a device over the
internet. A port is an endpoint for communication in an operating system.

When you connect to the internet, your device is assigned a public IP address,
and each website you visit also has a public IP address. So far, we have used
[Pv4 as an addressing system. The main problem with this is that the internet is
running out of IPv4 public address space and so it is necessary to introduce IPv6,
which provides a larger address space.

The following are the addresses for total IPv4 and IPv6 space:

o Total IPv4 space: 4, 294, 967, 296 addresses
o Total IPv6 space: s4o, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456
addresses

The ports are numerical values (between o and es, s35) that are used to identify
the processes that are being communicated. At each end, each process that
intervenes in the communication process uses a single port to send and receive
data.

In conjunction with this, two pairs of ports and IP addresses, you can identify
two processes in a TCP/IP network. A system might be running thousands of
services, but to uniquely identify a service on a system, the application requires a
port number.

Port numbers are sometimes seen on the web or other URLs as well. By default,
HTTP uses port se, and HTTPS uses port 443, but a URL like
http://www.domain.com:8080/path/ sSpecifies that the web browser, instead of using
default port se, is connecting to port sese of the HTTP server.

Some common ports are as follows:

e 22: Secure Shell (SSH)
¢ 23: Telnet remote login service

e 25: SMTP
¢ s53: Domain Name System (DNS) service
e go: HITP

Regarding IP addresses, we can differentiate two types, depending on whether
they are for a public or private rank for the internal network of an organization:

e Private IP address: Ranges from 192.168.0.0 t0 192.168.255.255, 172.16.0.0
to 172.31.255.255, OI' 10.0.0.0 10 10.255.255.255

e Public IP address: A public IP address is an IP address that your home or
business router receives from your Internet Service Provider (ISP)

Network interfaces

You can find out what IP addresses have been assigned to your computer by
running ip addr OT ipconfig all on Windows systems, or on a Terminal.

If we run one of these commands, we will see that the IP addresses are assigned
to our device's network interfaces. On Linux, these will have names, such as ethe;
on Windows, these will have phrases, such as Ethernet adapter Local Area
Connection.

You will get the following output when you run the ip addr command on Linux:

$ ip
BusyBox v1.28.4 (2018-07-17 15:21:40 UTC) multi-call binary.

Usage: ip [OPTIONS] address|route|link|tunnel |neigh|rule [COMMAND]

OPTIONS := —flamily] inet|inete|link | -o[neline]
COMMAND :=
ip addr add|del IFADDR dev IFACE | show|flush [dev IFACE] [to PREFI
X]
ip route list|flush|add|del|change|append|replace|test ROUTE
ip link set IFACE [up|down] [arp on|off] | show [IFACE]
ip tunnel add|change|del|show [NAME]
[mode ipiplgre|sit]
[remote ADDR] [local ADDR] [ttl TTL]
neigh show|flush [to PREFIX] [dev DEV] [nud STATE]
rule [list] | add|del SELECTOR ACTION

You will get the following options when you run the ipconfig command on
Windows:

USAGE :
ipconfig [/allcompartments] [/? | /all |

/renew [adapter] | /release [adapter] |
/renewé [adapter] | /release6 [adapter] |
/flushdns | /displaydns | /registerdns |
/showclassid adapter |
/setclassid adapter [classid] |
/showclassidé adapter |
/setclassidé adapter [classid]]

where
adapter Connection name

(wildcard characters * and ? allowed, see examples)

Options:
/? Display this help message
/all Display full configuration information.
/release Release the IPv4 address for the specified adapter.
/release6 Release the IPv6 address for the specified adapter.
/renew Renew the IPv4 address for the specified adapter.
/renewé Renew the IPv6 address for the specified adapter.
/flushdns Purges the DNS Resolver cache.
/registerdns Refreshes all DHCP leases and re-registers DNS names
/displaydns Display the contents of the DNS Resolver Cache.
/showclassid Displays all the dhcp class IDs allowed for adapter.
/setclassid Modifies the dhcp class id.
/showclassidé Displays all the IPv6 DHCP class IDs allowed for adapter.
/setclassidé Modifies the IPv6 DHCP class id.

You will get IP addresses for the interfaces in your local machine when you run
the ip addr command:

te UNENMOWHN glen 1

00 gdisc nogueue state DOWN

docker(

4> mtu 1500 gdisc noqueus state U

P;M-DOWN> mtu 1500 gdisc noqueus state UP
brd ff:ff:ff:Fff:ff:ff
1 ethl
ed 1ft forever

Every device has a virtual interface called the loopback interface, which you can
see in the preceding listing as interface 1. This interface doesn't actually connect
to anything outside the device, and only the device itself can communicate with
it. While this may sound a little redundant, it's actually very useful when it
comes to local network application testing, and it can also be used as a means of
inter-process communication. The loopback interface is often referred to as
localhost, and it is almost always assigned the IP address 127.0.0.1.

UDP versus TCP

The main difference between TCP and UDP is that TCP is oriented to
connections, where once the connection is established, the data can be
transmitted in both directions, while UDP is a simpler internet protocol, without
the need for connections.

Now, we have to analyze the differences according to certain features:

Differences in data transfer: TCP ensures the orderly and reliable delivery
of a series of data from the user to the server and vice versa. UDP is not
dedicated to point-to-point connections and does not verify the availability
of whoever receives the data.

Reliability: TCP is more reliable because it manages to recognize that the
message was received and retransmits the packets that have been lost. UDP
does not verify what the communication has produced because it does not
have the ability to check the connection and retransmit the packets.
Connection: TCP is a protocol that's oriented toward the congestion control
of the network and the reliability of the frames, while UDP is a non-
connection oriented protocol that's designed to establish a rapid exchange of
packets without the need to know whether the packets are arriving correctly.
Transfer method: TCP reads data as a sequence and the message is
transmitted in defined segments. UDP messages are data packets that are
sent individually and their integrity is verified upon arrival.

How TCP and UDP work: A TCP connection is established through the
process of starting and verifying a connection. Once the connection has
been established, it is possible to start the data transfer, and once the
transfer is complete, the connection is completed by closing the established
virtual circuits. UDP provides an unreliable service and the data may arrive
unordered, duplicated, or incomplete, and it doesn't notify either the sender
or receiver. UDP assumes that corrections and error checking are not
necessary, avoiding the use of resources in the network interface.

TCP and UDP applications: TCP is used mainly when you need to use
error correction mechanisms in the network interface, while UDP is mainly
used in applications based on small requests from a large number of clients,

for example, DNS and Voice Over IP (VoIP).

DHCP

IP addresses can be assigned to a device by a network administrator in one of
two ways: statically, where the device's operating system is manually configured
with the IP address, or dynamically, where the device's operating system is
configured by using the DHCP.

When using DHCP, as soon as the device first connects to a network, it is
automatically allocated an address by a DHCP server from a predefined pool.
Some network devices, such as home broadband routers, provide a DHCP server
service out of the box; otherwise, a DHCP server must be set up by a network
administrator. DHCP is widely deployed, and it is particularly useful for
networks where different devices may frequently connect and disconnect, such
as public Wi-Fi hotspots or mobile networks.

DHCP environments require a DHCP server that's been configured with the
appropriate parameters for the proposed network. The main DHCP parameters
include the range or pool of available IP addresses, the correct subnet masks, and
the gateway and server name addresses.

A DHCP server dynamically allocates IP addresses instead of having to depend
on the static IP address and is responsible for assigning, leasing, reallocating,
and renewing IP addresses. The protocol will assign an address that is available
in a subnet or pool. This means that a new device can be added to a network
without you having to manually assign it a unique IP address. DHCP can also
combine static and dynamic IPs, and also determines how long an IP address is
assigned to a device.

When a computer in a network wants to obtain a valid network configuration,
usually when starting up the machine, it issues a DHCP Discover request. When
this request—which is made through a UDP broadcast packet—reaches a DHCP
server, a negotiation is established whereby the server grants the use of an IP,
and other network parameters, to the client for a certain time.

It is important to take note of the following:

e The client does not need to have the network interface configured to issue a
DHCP Discover request.

e The DHCP server can be on the same or a different subnet as the client will
be on. If the client does not have network configuration, it cannot reach
other subnets.

e When the DHCP server receives the DHCP request, Discover obtains the
Mac address of the client, which may affect the IP address assigned to the
client.

e The DHCP server grants network configuration to the client for a certain
time. Before reaching the deadline, the client may try to renew the
concession. If a concession occurs, the client must stop using the network
configuration.

To make a DHCP request, you can use a client such as dnciient (native
GNU/Linux) or the ipconfig/renew command (in the case of Windows). When a
network configuration is obtained, the client uses it:

$ dhclient ——help
Usage: dhclient [-4|-6] [-SNTPRIldvrxi] [-nw] [-p <port>] [-D LL|LLT]
——dad-wait—-time <seconds>] [-—-prefix—len-hint <length>]

——decline-wait-time <seconds>]

-s server—addr] [-cf config-file]
—df duid-file] [-1f lease-file]
-pf pid-file] [-—no-pid] [-e VAR=val]

[-sf script-file] [interface]*

[
[
[
[-—address-prefix—len <length>]
[
[
[

dhclient {--version|—help|-h}

DNS

DNS allows for the association of domain names with IP addresses, which
greatly facilitates access to the machines on the network. Without DNS, referring
to a machine implies remembering your IP address. Working directly with IP
addresses is not comfortable, because they are difficult to remember and because
the IP address of a station can vary for different reasons. Whoever uses the
domain name does not need to worry about these changes (although the DNS
server must know the real IP in each case).

The domain name system is a distributed and hierarchical database, and although
its main function is to associate domain names with IP addresses, it can also
store other information. The DNS service is one of the pillars of the network, so
its availability must be absolute. To achieve this, redundant servers are used and
extensive caching is used to improve their performance.

The ns1ookup tool comes with most Linux and Windows systems and lets us query
DNS on the command line, as follows:

$ nslookup

Usage: nslookup [HOST] [SERVER]

Query the nameserver for the IP address of the given HOST

optionally using a specified DNS server

We can use this command to request the IP address for the packtpub.con domain:

$ nslookup packtpub.com

Name : packtpub.com
Address 1: 83.166.169.231

With this command, we determined that the packtpub.com host has the IP address
83.166.169.231. DNS distributes the work of looking up hostnames by using a
hierarchical system of caching servers. Internet DNS services are a set of
databases that are scattered on servers around the world. These databases
indicate the IP that is associated with a name of a website. When we enter an
address in the search engine, for example, packtpub.com, the computer asks the
DNS servers of the internet provider to find the IP address associated with
packtpub.com. If the servers do not have that information, a search is made with
other servers that may have it.

When we run our preferred browser and write a web address in its address bar to
access the content that's hosted on the site, the DNS service will translate these
names into elements that can be understood and used for the equipment and
systems that make up the internet.

On Windows computers, this system is configured by default to automatically
use the DNS server of our internet service provider. At this point, we may have
different DNS providers such as OpenDNS, UltraDNS, or Google DNS as an
alternative, but we must always keep in mind that these providers offer us
minimum security conditions to navigate. More information about configuration
using Google DNS can be found at the fOHOWng URL: nttps://developers.google.co
m/speed/public-dns/.

https://developers.google.com/speed/public-dns/

Addressing

This section explains concepts regarding the Network Address Translation
(NAT) protocol and introduces the differences between the IPv4 and IPv6
formats.

NAT

This mechanism makes the traffic from the private network appear to be coming
from a single valid public internet address, which effectively hides the private
addresses from the internet. If you inspect the output of ip addr Or ipconfig/all
commands, then you will find that your devices are using private range
addresses, which would have been assigned to them by your DHCP server or by
your router through DHCP address dynamic assignment.

The private address ranges that are usually assigned are as follows:

® 10.0.0.0 [0 10.255.255.255
® 172.16.0.0 1O 172.31.255.255
® 192.168.0.0 1O 192.168.255.255

The idea is simple: make computer networks use a range of private IP addresses
and connect to the internet using a single public IP address. Thanks to this patch,
large companies will only be able to use one public IP address instead of as
many public addresses as the number of machines there are in that company. It is
also used to connect home networks to the internet.

There are two types of operations with NAT:

e Static: A private IP address is always translated into the same public IP
address. This mode of operation would allow a host within the network to
be visible from the internet.

e Dynamic: The router is assigned several public IP addresses so that each
private IP address is mapped using one of the public IP addresses that the
router has assigned. This is done so that each private IP address corresponds
to at least one public IP address.

Each time a host requires an internet connection, the router will assign a public
IP address that is not being used. This time, security is increased because it
makes it difficult for an external host to enter the network since public IP
addresses are constantly changing.

IPv4

IPv4 is the technology that allows computers to connect to the internet, whatever
device we use. Each of these devices, in the instance that it connects to the
internet, gets a unique code so that we can send and receive data with other
connections.

As we already know, the IPv4 protocol transfers addresses that are 32 bits in
length. With this type of architecture, it can manage approximately 4.3 billion
IPs around the world, but the explosion of internet users in recent years has
meant that the system is at its maximum capacity in regards to supporting more
IP addresses.

The IPv4 address space is limited to 4.3 billion addresses. To obtain this number,
we could decompose an IPv4 address as a 32-bit number consisting of four
groups of 8 bits. In this way, we would have 256 different combinations to
represent one IP address. This means that the possible values of an octet in an IP
address would be in the range of 0 to 255.

To obtain the total number of IPv4 addresses, it would be enough to multiply 256
* 256 * 256 * 256, since an IPv4 address is composed of four sections with 256
possibilities in each section. In total, we would have 4, 294, 967, 296 addresses. In
[Pv4, the universe of addresses is divided into ranges or classes, as follows:

CLASS A: 1.0.0.0-126.255.255.255

CLASS B: 128.0.0.0-191.255.255. 255

CLASS C: 192.0.0.0-223.255.255.255

CLASS D: 224.0.0.0-239.255.255.255 (Multicast)
CLASS E: 240.0.0.0-254.255.255.255 (Experimental)

By definition, multicast and experimental addresses cannot be used as source
addresses, so the previous number must be subtracted from 520, 093, 696. Within
the different classes, we have network e.0.0.0 (the identifier of all IPv4
networks), network 127.e.0.0 (used to identify physical loopbacks in network
equipment), and network 2s5.0.0.0 (which includes the broadcast addresses of all
networks). With these restrictions, 116, 777, 216 addresses must be removed from

the total.

Due to this, the need to find a replacement was palpable, and it fell to the IPv6
protocol, the sixth revision of IP and the natural successor of IPv4, to create
more addresses.

IPv6

[Pv6 addresses have a length of 128 bits, and so the total number of addresses
will be raised to 128, where each IPv6 address consists of eight groups of 16
bits, separated by colons :, and expressed in hexadecimal notation.

Unlike IPv4, in which addresses consist of four-thirds of decimal digits ranging
from 0 to 255, IPv6 addresses contain eight groups of four hexadecimal
dlgltS fe80::e53f: e43b: ade7: 9cab IS an example of an IPv6 address.

With the ifconfig command on a Windows machine, we can see an example
configuration:

Ethernet adapter VirtualBox Host-Only Network:

Connection-specific DNS Suffix

Link-local IPv6 Address : fe80::e53f:e43b:ad0@7:9cab%5
IPv4 Address. . . . « « « « « « . & 192.168.56.1

SUonet Mask . . - v o8 v 2w T 255.755.255.8

Default Gateway . -

Python network programming
through libraries

In this section, we're going to look at a general approach to network
programming in Python. We'll be introducing the main standard library modules
and look at some examples to see how they relate to the TCP/IP stack.

An introduction to the PyPI Python
repository

The Python Package Index, or PyPI, which can be found at nttps://pypi.python.org,
is the official software repository for third-party applications in the Python
programming language. Python developers want it to be a comprehensive
catalog of all Python packages written in open source code.

To download packages from the PyPI repository, you can use several tools, but
in this section, we will explain how to use the pip command to do so. pip is the
official package installer that comes already installed when you install Python on
your local machine.

You can find all of the Python networking libraries in the Python PyPI
TEPOSitOTY, such as requests (https://pypi.org/project/requests) and ur1lib (https://pyp
i.org/project/urllibS).

Installing a package using pip is very simple—just execute pip install
<package_name>, for example, pip install requests. We can also install plp USng the
package manager of a Linux distribution. For example, in a Debian or Ubuntu
distribution, we can use the apt-get command:

|$ sudo apt-get install python-pip

https://pypi.python.org
https://pypi.org/project/requests
https://pypi.org/project/urllib3

Alternatives to pip for installing
packages

We can use alternatives such as conda and Pipenv for the installation of packages
in Python. Other components, such as virtualenv, also exist for this reason.

Conda

Conda is another way in which you can install Python packages, though its
development and maintenance is provided by another Anaconda company. An
advantage of the Anaconda distribution is that it comes with over 100 very
popular Python packages, so you can start elbowing in Python straight away.
You can download conda from the following

link: https://www.anaconda.com/download/.

Installing packages with conda is just as easy as with pip—just run conda install
<package_name>; for example, conda install requests.

The conda repository is independent of the official Python repository and does
not find all of the Python packages that are in PyPI, but you will find all of the
PythOD DEtWOFkiIlg libraries such as requests (https://anaconda.org/anaconda/requests),
urllib, and socket.

https://www.anaconda.com/download/
https://anaconda.org/anaconda/requests

Virtualenv

virtualenv is @ Python tool for creating virtual environments. To install it, you just
have to run pip install virtualenv. With this, you can start creating virtual
environments, for example, virtualenv env. Here, env is a directory that will be
installed in a virtual environment that includes a separate Python installation. For
more information, see the complete guide, which includes information on how to
activate the environments: https://virtualenv.pypa.io.

https://virtualenv.pypa.io

Pipenv

Pipenv is a relatively new tool that modernizes the way Python manages
dependencies, and includes a complete dependency resolver in the same way
conda does for handling virtual environments, locking files, and more. Pipenv is
an official Python program, so you just have to run pip install pipenv to install it.
You can find an excellent guide for Pipenv in English here: nttps://realpython.com/

pipenv-guide.

https://realpython.com/pipenv-guide/

An introduction to libraries for
network programming with Python

Python provides modules for interfacing with protocols at different levels in the
network stack, and modules that support higher-layer protocols follow the
aforementioned principle by using the interfaces that are supplied by the lower-
level protocols.

Introduction to sockets

The socket module is Python's standard interface for the transport layer, and it

provides functions for interacting with TCP and UDP, as well as for looking up
hostnames through DNS. In this section, we will introduce you to this module.
We'll learn much more about this in chapter 10, Programming with Sockets.

A socket is defined by the IP address of the machine, the port on which it listens,
and the protocol it uses. The types and functions that are needed to work with
sockets are in Python in the socket module.

Sockets are classified into stream sockets, socket.sock_stream, or datagram
sockets, socket.sock_pcram, depending on whether the service uses TCP, which is
connection oriented and reliable, or UDP, respectively.

The sockets can also be classified according to their family. We have Unix
sockets, such as socket.Ar_unix, that were created before the conception of the
networks and are based on socket.ar_1net file, which are based on network
connections and sockets related to connections with IPv6, such as socket.ar_ineTs.

Socket module in Python

To create a socket, the socket.socket() constructor is used, which can take the
family, type, and protocol as optional parameters. By default, the ar_iner family
and the sock_stream type are used.

The general syntaX is socket.socket(socket_family, socket_type, protocol=0), where the
parameters are as follows:

® socket_family: This is either ar_unix Or aF_INeT
® socket_type: This is either sock_sTREAM OI SoCK_DGRAM
® protocol: This is usually left out, defaulting to o

Client socket methods

To connect to a remote socket in one direction, we can use the connect () method
by using the connect (host, port) format:

import socket

a socket object is created for communication

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
now connect to the web server on port 80
client_socket.connect(("www.packtpub.com", 80))

Server socket methods

The following are some server socket methods, which are also shown in the
following code:

® bind(): With this method, we can define in which port our server will be
listening to connections

® 1listen(backlog): This method makes the socket accept connections and accept
to start listening to connections

® accept(): This method is used for accepting the following connection:

import socket

serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
#bind the socket to localhost on port 80
serversocket.bind((‘localhost', 80))

#become a server socket and listen a maximum of 10 connections
serversocket.listen(10)

Working with RFC

The Request for Comments, better known by its acronym, RFC, are a series of
publications of the internet engineering working group that describe various
aspects of the operation of the internet and other computer networks, such as
protocols and procedures.

Each RFC defines a monograph or memorandum that engineers or experts in the
field have sent to the Internet Engineering Task Force (IETF) organization,
the most important technical collaboration consortium on the internet, so that it
can be valued by the rest of the community.

RFCs cover a wide range of standards, and TCP/IP is just one of these. They are
freely available on the IETF's website, which can be found at
www.ietf.org/rfc.html. Each RFC has a number; IPv4 is documented by RFC 791,
and other relevant RFCs will be mentioned as we progress throughout this book.

The most important IPs are defined by RFC, such as the IP protocol that's
detailed in RFC 791, FTP in RFC 959, or HTTP in RFC 2616.

You can use this service to search by RFC number or keyword. This can be
found here: https://www.rfc-editor.org/search/rfc_search.php.

In the following screenshot, we can see the result of searching for RFC number
2616 for the HTTP protocol:

https://www.ietf.org/
https://www.rfc-editor.org/search/rfc_search.php

RFC Editor|

About this page

1 result

ASCII, PS, PDF, Hypertext Transfer R. Fielding,]. Gettys, J. Mogul, H.
RFC 2616 | PDF with Protocol — Frystyk, L. Masinter, P. Leach, T.
Images HTTP/1.1 Berners-Lee RFC 6585

Errata, Obsoletes RFC 2068, Obsoleted by RFC 7230, RFC 7231, RFC 7232,
RFC 7233, RFC 7234, RFC 7235, Updated by RFC 2817, RFC 5785, RFC 6266,

Draft
Standard

June
1999

Extracting RFC information

The IETF landing page for RFCs is nttp://www.rfc-editor.org/rfc/, and reading
through it tells us exactly what we want to know. We can access a text version of

an RFC USiI’lg a URL of the form http://www.rfc-editor.org/rfc/rfc741.txt. The RFC num
ber in this case is 741. Therefore, we can get the text format of RFCs using HTTP.

At this point, we can build a Python script for downloading an RCF document
from IETF, and then display the information that's returned by the service. We'll
make it a Python script that just accepts an RFC number, downloads the RFC in
text format, and then prints it to stdout.

The main modules that we can find in Python to make HTTP requests are ur11ib
and requests, which work at a high level. We can also use the socket module if we
want to work at a low level.

http://www.rfc-editor.org/rfc/
http://www.rfc-editor.org/rfc/rfc741.txt
http://www.rfc-editor.org/rfc/rfc741.txt

Downloading an RFC with urllib

Now, we are going to write our Python script using the ur11ib module. For this,
create a text file called rrc_download_urllib.py:

#1/usr/bin/env python3

import sys, urllib.request
try:
rfc_number = int(sys.argv[1])
except (IndexError, ValueError):
print('Must supply an RFC number as first argument')
sys.exit(2)
template = 'http://www.rfc-editor.org/rfc/rfc{}.txt'
url = template.format(rfc_number)
rfc_raw = urllib.request.urlopen(url).read()
rfc = rfc_raw.decode()
print(rfc)

We can run the preceding code by using the following command:
| $ python RFC_download_urllib.py 2324

This is the output of the previous script, where we can see the RFC description
document:

Network working Group L. Masinter
Request for Comments: 2324 1 April 1998
Category: Informational
Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)
Status of this Memo
This memo provides information for the Internet community. It does
not spec1f¥_an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

This document describes HTCPCP, a protocol for controlling,
monitoring, and diagnosing coffee pots.

First, we import our modules and check whether an RFC number has been
supplied on the command line. Then, we construct our URL by substituting the
supplied RFC number. Next, the main activity, the uriopen() call, will construct an
HTTP request for our URL, and then it will connect to the IETF web server and
download the RFC text. Next, we decode the text to Unicode, and finally we
print it out to the screen.

Downloading an RFC with requests

Now, are going to create the same script but, instead of using ur11ib, we are going
to use the requests module. For this, create a text file called
RFC_download_requests.py.:

#1/usr/bin/env python3

import sys, requests

try:
rfc_number = int(sys.argv[1])

except (IndexError, ValueError):
print('Must supply an RFC number as first argument')
sys.exit(2)

template = 'http://www.rfc-editor.org/rfc/rfc{}.txt'

url = template.format(rfc_number)

rfc = requests.get(url).text

print(rfc)

We can simplify the previous script using the requests module. The main
difference with the requests module is that we use the get method for the request
and access the text property to get information about the specific RFC.

Downloading an RFC with the socket
module

Now, we are going to create the same script but, instead of using uri1ib or
requests, we are going to use the socket module for working at a low level. For
thiS, create a text file called rrc_download_socket. py.

#1/usr/bin/env python3

import sys, socket

try:
rfc_number = int(sys.argv[1])

except (IndexError, ValueError):
print('Must supply an RFC number as first argument')
sys.exit(2)

host = 'www.rfc-editor.org'
port = 80
sock = socket.create_connection((host, port))

req = ('GET /rfc/rfc{rfcnum}.txt HTTP/1.1\r\n'
'"Host: {host}:{port}\r\n'

'User-Agent: Python {version}\r\n'
'Connection: close\r\n'

"\r\n'

)

req = req.format(rfcnum=rfc_number, host=host, port=port, version=sys.version_info[0])
sock.sendall(req.encode('ascii'))
rfc_bytes = bytearray()

while True:
buf = sock.recv(4096)
if not len(buf):
break
rfc_bytes += buf
rfc = rfc_bytes.decode('utf-8")
print(rfc)

The main difference here is that we are using a socket module instead of uri1ib or
requests. Socket is Python's interface for the operating system's TCP and UDP
implementation. We have to tell socket which transport layer protocol we want
to use. We do this by llSiDg the socket.create_connection() convenience function.
This function will always create a TCP connection. For establishing the
connection, we are using port 80, which is the standard port number for web
services over HTTP.

Next, we deal with the network communication over the TCP connection. We
send the entire request string to the server by using the senda11() call. The data
that's sent through TCP must be in raw bytes, so we have to encode the request
text as ASCII before sending it.

Then, we piece together the server's response as it arrives in the while loop. Bytes
that are sent to us through a TCP socket are presented to our application in a
continuous stream. So, like any stream of unknown length, we have to read it
iteratively. The recv() call will return the empty string after the server sends all of
its data and closes the connection. Finally, we can use this as a condition for
breaking out and printing the response.

Interacting with Wireshark with
pyshark

This section will help you update the basics of Wireshark to capture packets,
filter them, and inspect them. You can use Wireshark to analyze the network
traffic of a suspicious program, analyze the traffic flow in your network, or solve
network problems. We will also review the pyshark module for capturing packets
in Python.

Introduction to Wireshark

Wireshark is a network packet analysis tool that captures packets in real time and
displays them in a graphic interface. Wireshark includes filters, color coding, and
other features that allow you to analyze network traffic and inspect packets
individually.

Wireshark implements a wide range of filters that facilitate the definition of
search criteria for the more than 1,000 protocols it currently supports. All of this
happens through a simple and intuitive interface that allows each of the captured
packages to be broken down into layers.

Thanks to Wireshark understanding the structure of these protocols, we can
visualize the fields of each of the headers and layers that make up the packages,
providing a wide range of possibilities to the network administrator when it
comes to performing tasks in the analysis of traffic.

One of the advantages that Wireshark has is that at any given moment, we can
leave capturing data in a network for as long as we want and then store them so
that we can perform the analysis later. It works on several platforms, such as
Windows, OS X, Linux, and Unix.

Wireshark is also considered a protocol analyzer or packet sniffer, thus allowing
us to observe the messages that are exchanged between applications. For
example, if we capture an HTTP message, the packet analyzer must know that
this message is encapsulated in a TCP segment, which, in turn, is encapsulated in
an IP packet, and which, in turn, is encapsulated in an Ethernet frame.

A protocol analyzer is a passive element, since it only observes messages that are transmitted
and received from to an element of the network, but never sends messages themselves. Instead,
a protocol analyzer receives a copy of the messages that are being received or sent to the
Terminal where it is running.

Wireshark is composed mainly of two elements: a packet capture library, which
receives a copy of each data link frame that is either sent or received, and a
packet analyzer, which shows the fields corresponding to each of the captured
packets. To do this, the packet analyzer must know about the protocols that it is

analyzing so that the information that's shown is consistent.

Wireshark installation

You can download the Wireshark tool from the official page: nttp://www.wireshark.o
rg/download.html.

On Windows systems, we can install the following wizard in the Windows
installer. On a Linux distribution based on the Debian operating system, such as
Ubuntu, this is as easy as executing the apt-get command:

| sudo apt-get install wireshark

One of the advantages of Wireshark is the filtering we can make regarding the
captured data. We can filter protocols, source, or destination IP, for a range of IP
addresses, ports, or uni-cast traffic, among a long list of options. We can
manually enter the filters in a box or select these filters from a default list.

http://www.wireshark.org/download.html

Capturing packets with Wireshark

To start capturing packets, you can click on the name of an interface from the list
of interfaces. For example, if you want to capture traffic on your Ethernet
network, double-click on the Ethernet connection interface:

Welcome to Wireshark

Capture

...using this filter: | Enter a capture filter ... « | | All interfaces shown~

Npcap Loopback Adapter i s
VirtualBox Host-Only Network wl\

As soon as you click on the name of the interface, you will see that the packages
start to appear in real time. Wireshark captures every packet that's sent to or from
your network traffic. You will see random flooding of data in the Wireshark
dashboard. There are many ways to filter traffic:

e To filter traffic from any specific IP address, type ip.addr == "x.xx.xx.xx" in
the Apply a display filter field

e To filter traffic for a specific protocol, say, TCP, UDP, SMTP, ARP, and
DNS requests, just type the protocol name into the Apply a display filter
field

We can use the Apply a display filter box to filter traffic from any IP address or
protocol:

;ﬂ Capturing from Ethernet

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mae X 0 Q @ = QQ Q&

= o [
W
LA ==

¥
i

Apply a display filter ... <Ctrl-/>

The graphical interface of Wireshark is mainly divided into the following
sections:

e The toolbar, where you have all the options that you can perform on the pre
and post capture

e The main toolbar, where you have the most frequently used options in
Wireshark

e The filter bar, where you can apply filters to the current capture quickly

e The list of packages, which shows a summary of each package that is
captured by Wireshark

e The panel of details of packages that, once you have selected a package in
the list of packages, shows detailed information of the same

e The packet byte panel, which shows the bytes of the selected packet, and
highlights the bytes corresponding to the field that's selected in the packet
details panel

e The status bar, which shows some information about the current state of
Wireshark and the capture

Network traffic in Wireshark

Network traffic or network data is the amount of packets that are moving across
a network at any given point of time. The following is a classical formula for
obtaining the traffic volume of a network: Traffic volume = Trdffic Intensity or
rate * Time

In the following screenshot, we can see what the network traffic looks like in
Wireshark:

F| Capturing from Ethernet -
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
ma® XE Q @ = &EF

F S = E

[| Apply a display filter ... <Ctrl-/> -
No. Time Source Destination Protocol Length Info

1 ©.000000 10.68.8.209 173.194.188.103 UDP 686 55833 » 443 Len=564

2 0.049749 10.68.8.173 224.9.0.251 MDNS 184 Standard query response @x@ee0@ A, cache flush 10.68.8.173

3 0.860091 173.194.188.103 108.68.8.209 UDP 64 443 » 55833 Len=22

4 0.246209 173.194.188.103 18.68.8.209 UbP 1392 443 » 55833 Len=1350

5 ©.246210 173.194.188.103 18.68.8.209 UDP 1392 443 > 55833 Len=1350

6 0.246326 173.194.188.103 18.68.8.209 ubP 1392 443 > 55833 Len=1350

7 ©.246527 173.194.188.103 108.68.8.209 UDP 1392 443 » 55833 Len=1350

8 0.246528 173.194.188.103 18.68.8.209 UbP 1392 443 » 55833 Len=1350

9 0.246528 173.194.188.103 18.68.8.209 UDP 1392 443 > 55833 Len=1350

18 ©.246782 173.194.188.103 18.68.8.209 ubP 1392 443 > 55833 Len=1350

11 06 246784 172 104 188 106 18 & bY-1-) LInD 1202 443 SER22 | an=1250

In the previous screenshot, we can see all the information that is sent over, along
with the data packets on a network. It includes several pieces of information,
including the following:

Time: The time at which packets are captured

Source: The source from which the packet originated

Destination: The sink where packets reach their final destination

Protocol: Type of IP (or set of rules) the packet followed during its journey,
such as TCP, UDP, SMTP, and ARP

¢ Info: The information that the packet contains

The Wireshark website contains samples for capture files that you can import
into Wireshark. You can also inspect the packets that they contain: nttps://wiki.wi

reshark.org/SampleCaptures.

For example, we can find an HTTP section for downloading files that contains

https://wiki.wireshark.org/SampleCaptures

examples of HTTP requests and responses:

HyperText Transport Protocol (HTTP)

http.cap A simple HTTP request and response.
http_gzip.cap A simple HTTP request with a one packet gzip Content-Encoded response.

http-chunked-gzip.pcap A single HTTP request and response for www.wireshark.org (proxied using socat to remaove SSL encryption). Response is
gzipped and used chunked encoding. Added in January 2016.

http_with_jpegs.cap.gz A simple capture containing a few JPEG pictures one can reassemble and save to a file.
tcp-ethereal-file’.trace (libpcap) A large POST request, taking many TCP segments.

tcp-ecn-sample.pcap A sample TCP/HTTP of a file transfer using ECN (Explicit Congestion Notification) feature per RFC3168. Frame 48
experienced Congestion Encountered.

http_redirects.pcapng A sample TCP/HTTP with many 302 redirects per RFC 3986 (https://tools.ietf.org/html/rfc3986#section-5.4).

For captures using SSL/TLS, see #SSL with_decryption_keys.

Color coding in Wireshark

When you start capturing packets, Wireshark uses colors to identify the types of
traffic that can occur, among which we can highlight green for TCP traffic, blue
for DNS traffic, and black for traffic that has errors at the packet level.

To see exactly what the color codes mean, click View | Coloring rules. You can
also customize and modify the coloring rules in this screen.

If you need to change the color of one of the options, just double-click it and
choose the color you want:

‘ Wireshark - Coloring Rules Default 7 X

Name Filter
Bad TCP

HSRP State Change

Spanning Tree Topology Change

OSPF State Change

ICMP errors

NN

TCP RST tcp.flags.reset eq 1
SCTP ABORT sctp.chunk_type eq ABORT
TTL low or unexpected

Q< N<N<]

HTTP http || tcp.port == 80 || http2

~ ipx || spx

IPX ipx || sp

DCERPC dcerpc

Routing hsrp || eigrp || ospf || bgp || cdp || vrrp || carp || gvrp || igmp || ismp
TCP SYN/FIN tcp.flags & 0x02 || tep.flags.fin == 1

TCP tcp

upp udp

Working with filters in Wireshark

When we have a very high data collection, the filters allow us to show only those
packages that fit our search criteria. We can distinguish between capture filters
and display filters depending on the syntax with which each of them is governed.

The capture filters are supported directly on 1ibpcap libraries such as tcpdump or
Snort, so they depend directly on them to define the filters. For this reason, we
can use Wireshark to open files that are generated by tcpdump or by those
applications that make use of them.

The most basic way to apply a filter is by typing its name into the filter box at
the top of the window. For example, type dns and you will see only DNS packets.

The following is a screenshot of the dns filter:

Flle Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

w4 e R QesEFIs=EaqaqE
|dns| = v] s
No. Time Source Destination Protocol Length Info
1042 -3676.527107 10.68.8.209 10.68.55.100 DNS 70 Standard query ©xd265 A g.live.com
1044 -3676.505241 18.68.55.100 10.68.8.209 DNS 119 Standard query response Oxd265 A g.live.com CNAME g.msn.com.nsatc.net A 52.142.114.176
1085 -3675.987982 10.68.8.209 10.68.55.100 DNS 76 Standard query ©x1847 A oneclient.sfx.ms
1088 -3675.953616 10.68.55.100 10.68.8.209 DNS 170 Standard query response ©x1847 A oneclient.sfx.ms CNAME oneclient.sfx.ms.edgekey.net CNAME
1226 -3673.776523 10.68.8.209 10.68.55.100 DNS 93 Standard query 6x9f98 A v1@.vortex-win.data.microsoft.com
1227 -3673.757821 10.68.55.100 10.68.8.209 DNS 203 Standard query response @x9f9@ A v1@.vortex-win.data.microsoft.com CNAME v1@-win.vortex.d:
1292 -3670.754548 10.68.8.209 10.68.55.100 DNS 81 Standard query @x7df3 A outlook.office365.com
1293 -3670.735454 10.68.55.100 10.68.8.209 DNS 207 Standard query response 9x7df3 A outlook.office365.com CNAME outlook.ha.office365.com CNAM
1614 -3667.215912 10.68.8.209 10.68.55.100 DNs 76 Standard query ©xe486 A go.microsoft.com

You can also click on the Analyze menu and select Display Filters to see the
filters that are created by default.

In the following screenshot, we can see the display filters that we can apply
when capturing packets with Wireshark:

M Wireshark - Display Filters

Name

Fthernet address 00:00:5e:00:53:00

Ethernet type 0x0806 (ARP)

Ethernet broadcast

No ARP

IPv4 only

IPv4 address 192.0.2.1

IPv4 address isn't 192.0.2.1 (don't use != for this!)
IPv6 only

IPv6 address 2001:db8::1

IPX only

TCP only

UDP only

Non-DNS

TCP or UDP port is 80 (HTTP)

HTTP

No ARP and no DNS

Non-HTTP and non-SMTP to/from 192.0.2.1

Filter

eth.addr == 00:00:5e:00:53:00
eth.type == 0x0806

eth.addr == fffff:fEAfA

not arp

ip

ip.addr == 192.0.2.1

l(ip.addr == 192.0.2.1)

ipvo

ipvb.addr == 2001:db8::1

ipx

tcp

udp

l(udp.port == 53 || tcp.port == 53)
tep.port == 80 || udp.port == 80
http

not arp and !(udp.port == 53)
ip.addr == 192.0.2.1 and not tcp.port in {80 25}

Filtering by protocol name

This filter is very powerful, but you will realize its full potential now that you
are going to filter by protocol. Some of the filters include TCP, HTTP, POP,
DNS, ARP, and SSL.

We can find out about HTTP requests by applying the HTTP filter. In this way,
we can know about all of the cer and rost requests that have been made during
the capture. Wireshark displays the HTTP message that was encapsulated in a

TCP segment, which was encapsulated in an IP packet and encapsulated in an
Ethernet frame:

Frame 4: 533 bytes on wire (4264 bits), 533 bytes captured (4264 bits)

Ethernet II, Src: Xerox_©@:00:00 (00:00:01:00:00:00), Dst: fe:ff:20:00:01:00 (fe:ff:20:00:01:00)

Internet Protocol Version 4, Src: 145.254.160.237, Dst: 65.208.228.223

Transmission Control Protocol, Src Port: 3372, Dst Port: 8@, Seq: 1, Ack: 1, Len: 479

~ Hypertext Transfer Protocol

GET /download.html HTTP/1.1\r\n
Host: www.ethereal.com\r\n
User-Agent: Mozilla/5.@ (Windows; U; Windows NT 5.1; en-US; rv:1.6) Gecko/20040113\r\n
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,image/jpeg,image/gif;q=0.2,%/%;9=0.1\r\n
A g R s

9060 65 72 65 61 6C 2e 63 6f
0070 6f 7a 69 6¢c 6¢c 61 2f 3!
B0 e 30 20 28 57 69 6e 64 6f 77 73 3b 20 55 3b 20
[LEBlS7 69 6e 64 6F 77 73 20 4e 54 20 35 2e 31 3b 2¢
[:-ZU-Bl65 60 2d 55 53 3b 20 72 76 3a 31 2e 36 29 20 4
[CLBl6S 63 6b 6f 2f 32 30 30 34 30 31 31 33 ed eail A
63 63 65 70 74 3a 20 74 65 78 74 2f 78 6d 6¢c 2c¢ ccept: t ext/xml,
61 70 70 6¢c 69 63 61 74 €9 6f 6e 2f 78 6d 6¢c 2c¢ applicat ion/xml,
61 70 70 6c 69 63 61 74 69 6F 6e 2f 78 68 74 6d applicat ion/xhtm
6c 2b 78 6d 6¢ 2¢c 74 65 78 74 2f 68 74 6d 6¢ 3b l+xml,te xt/html;

[

In the preceding screenshot, we can see how a cer request has been sent to the
URL that was requested from the browser. After this, the web server where the
page is hosted has answered successfully (200 OK), encapsulating itself in an
HTTP message where the html code contains the required path. It is the browser
(application) that de-encapsulates the code and interprets it.

HTTP objects filter

As we can see, the filters provide us with a great traceability of communications
and also serves as an ideal complement to analyze a multitude of attacks. An
example of this is the nttp.content_type filter, thanks to which we can extract
different data flows that take place in an HTTP connection (text/htmi,
application/zip, audio/mpeg, image/gif). This will be very useful for locating malware,
exploits, or other types of attacks that are embedded in such a protocol:

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

0 a2 ® XC,QQ!Q‘Ef;i:gQQQE
http.content_type contains "text/html"
No. Time Source Destination Protocol Length Info
357 7.301216 193.145.235.30 10.68.8.209 HTTP 463 HTTP/1.1 301 Moved Permanently (text/html)
4899 71.835170 193.145.235.30 10.68.8.209 HTTP 463 HTTP/1.1 301 Moved Permanently (text/html)
5846 86.556586 216.58.212.196 10.68.8.209 HTTP 488 HTTP/1.1 200 OK (text/html)

Wireshark contemplates two types of filters, that is, capture filters and display
filters:

e Capture filters are those that are set to show only packets that meet the
requirements indicated in the filter

e Display filters establish a filter criterion on the captured packages, which
we are visualizing in the main screen of Wireshark

Capture filters

Capture filters are those that are set to show only the packages that meet the
requirements indicated in the filter. If we do not establish any, Wireshark will
capture all of the traffic and present it on the main screen. Even so, we can set
the display filters to show us only the desired traffic:

M Wireshark - Capture Filters

Name

No ARP and no DNS

HTTP TCP port (80)

TCP or UDP port 80 (HTTP)
UDP only

TCP only

IPX only

IPv6 address 2001:db8::1

IPv6 only

IPv4 address 192.0.2.1

IPv4 only

No ARP

No Broadcast and no Multicast
Ethernet type 0x0806 (ARP)
Ethernet address 00:00:5e:00:53:00

Non-HTTP and non-SMTP to/from www.wireshark.org

Filter

not port 80 and not port 25 and host www.wireshark.org
not arp and port not 53

tep port http

port 80

udp

tcp

ipx

host 2001:db8::1

ipb

host 192.0.2.1

ip

not arp

not broadcast and not multicast
ether proto 0x0806

ether host 00:00:5e:00:53:00

Display filters

The visualization filters establish a criterion of filter on the packages that we are
capturing and that we are visualizing in the main screen of Wireshark. When you
apply a filter on the Wireshark main screen, only the filtered traffic will appear
through the display filter. We can also use it to filter the content of a capture
through a pcap file:

mde RERewEFIZEQaaalrE

[| http.location contains "packtpub.com™

No. Time Source Destination Protocol Length Info

4— 4983 31.997350 83.166.169.231 10.68.8.209 HTTP 272 HTTP/1.1 301 https://www.packtpub.com/

Frame 4983: 272 bytes on wire (2176 bits), 272 bytes captured (2176 bits) on interface @
Ethernet II, Src: HewlettP_79:fd:89 (78:48:59:79:fd:89), Dst: LcfcHefe_2d:79:20 (8c:16:45:2d:79:20)
Internet Protocol Version 4, Src: 83.166.169.231, Dst: 10.68.8.209
Transmission Control Protocol, Src Port: 80, Dst Port: 39979, Seq: 1, Ack: 81, Len: 218
v Hypertext Transfer Protocol
v HTTP/1.1 301 https://www.packtpub.com/\r\n
[Expert Info (Chat/Sequence): HTTP/1.1 381 https://www.packtpub.com/\r\n]
Response Version: HTTP/1.1
Status Code: 301
[Status Code Description: Moved Permanently]
Response Phrase: https://www.packtpub.com/
Location: https://www.packtpub.com/\r\n

Analyzing networking traffic using
the pyshark library

We can use the pyshark library to analyze the network traffic in Python, since
everything Wireshark decodes in each packet is made available as a variable. We
can find the source code of the tool in GitHub's repository: nttps://github.com/kimin
ewt/pyshark.

In the PyPI repository, we can find the last version of the library, that is, nttps://p
ypi.org/project/pyshark, and we can install it with the pip install pyshark command.

In the documentation of the module, we can see that the main package for
opening and analyzing d pcap file is capture.file_capture:

https://github.com/KimiNewt/pyshark
https://pypi.org/project/pyshark

>>> help(pyshark.capture.file_capture) .
Help on module pyshark.capture.file_capture in pyshark.capture:

NAME
pyshark.capture.file_capture

CLASSES N
pyshark..capture. capture. Capture (builtins.object)
Filecapture

class 1eCapture(pyshark capture. capture. Capture)
class representing a capture read from a file.

Method resolution order:
F11eCaEture
Eyghar .caE;ure.capture.Capture
uiltins.object

Methods defined here:

getitem(self, packet_index)
Gets the packet in the given index.

:param item: packet index
;return: Packet object.

1
| A
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| _init_(self, input_file=None, keep_packets=True, display_filter=None, only_summaries=False, decryption_
key=None, encryption_type="wpa-pwk ', decode_as=None, disable_protocol=None, tshark_path=None, override_prefs=None
, Use_json=False, output_file=None, include_raw=False, eventloop=None)

! Creates a packet capture object by reading from file.

Here's an example that was taken from pyshark's GitHub page. This shows us
how, from the Python 3 command-line interpreter, we can read packets stored in
a pcap file. This will give us access to attributes such as packet number and
complete information for each layer, such as its protocol, IP address, mac
address, and flags, where you can see if the packet is a fragment of another:
>> import pyshark
>>> cap = pyshark.FileCapture(‘http.cap')

>>> cap
>>> print(cap[0])

In the following screenshot, we can see the execution of the previous commands,
and also see where we passed the pcap file path in the rilecapture method as a
parameter:

>>> import pyshark

P> @ = pyshark.Filecapture('http.cap')

b>> Cap

‘<F11eCapture http.cap>

>>> print(cap[o]g

Packet (Length: 62)

Layer ETH:
Destination: fe:ff:20:00:01:00
Address: fe:ff:20:00:01:00
e L vev ... = LG bit: Locally administered address (this is NOT the factory default)

= IG bit: Individual address (unicast)

source: 00:00:01:00:00:00
Type: Ipv4 (0x0800)

Address: 00:00:01:00:00:00
I o eeee eeen oen. = LG bt Globally unigue address (factory default)

(e
= IG bit: Individual aadress (unicast)
Layer IP:
0100 = Version: 4
.... 0101 = Header Length; 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: €SO, ECN: Not-ECT)
0000 00.. = Differentiated Services Codepoint: Default (0)
00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
Total Length: 48
Identification: 0x0f41 (3905)
Flags: 0x4000, Don't fragment
= Reserved bit: Not set
Ao=Don't fragment: Set
0. = More fragments: Not set
...0 0000 0000 0000 = Fragment offset: 0
Time to Iive: 128
Protocol: TCP (6)

We can apply a filter for DNS traffic only with the dispiay_filter argument in
the rilecapture method:

import pyshark

cap = pyshark.FileCapture('http.cap', display_filter="dns")

for pkt in cap:
print(pkt.highest_layer)

In the following screenshot, we can see the execution of the previous commands:

Layer DNS:

Transaction ID: 0x0023

Flags: 0x0100 standard query

0 - ««-. = Response: Message is a query
opcode: standard query (0)
Truncated: Message is not truncated
Recursion desired: Do query recursively
Z: reserved (0)
Non-authenticated data: Unacceptable

.000 0. ..

Qs e
s
Questions: 1
Answer RRs: O
Authority RRs: 0
Additional RRs: 0
Queries
Name: pagead2.googlesyndication.com
Name Length: 29
Label count: 3
Type: A (Host Address) (1)
Class: IN (0x0001)
pagead2.googlesyndication.com: type A, class IN

FileCapture and LiveCapture in
pyshark

As we saw previously, you can use the rilecapture method to open a previously
saved trace file. You can also use pyshark to sniff from an interface in real time
with the Livecapture method, like so:

import pyshark

Sniff from interface in real time

capture = pyshark.LiveCapture(interface="'eth0')

capture.sniff(timeout=10)
<LiveCapture (5 packets)>

Once a capture Object is created, either from a Livecapture Or Filecapture method,
several methods and attributes are available at both the capture and packet level.
The power of pyshark is that it has access to all of the packet decoders that are
built into TShark.

Now, let's see what methods provide the returned capture object.

To check this, we can use the 4ir method with the capture object:

|>>> dir(cap)
[DEFAULT BATCH _SIZE' DEFAULT LOG_| LEVEL SUMMARIES_BATCH_SIZE' SUPPORTED ENCRYPTION STANDARDS __class__
__de1 ; de1attr _dict__", d1r__', '_doc__", '__eq__ format . getattr1bute
get1tem __gt _hash__", '_dnit_", '__init_subclass__', '__iter__ L ', ' __Tlen__
moduTe d ', '__new__', ' reduce ', '_reduce_ex__", '__repr__ . __setattr__', “sizeof. '
subcTasshook '__weakref__ capture f11ter' ' _cleanup_ subprocess' '_close_async', '_closed’,

ted _new_| process current_packet' _decode_as’ d1sab1e protoc01 d1sp1ay f11ter' ' _extract_packet_json_f

rom_data" extract_tag_from_data '_get_json_ separator _get packet from stream’ get psm1 _struct’, '_
shark path —get_tshark_process', '_go_ through_packets from %d onTy_summar1es output_fiTe' _
erride prefs _packet_| -enerator _pack "_packets_from tshark s n¢',”'_running_processes _setup_eventlo
“stderr_ output’ ply_on pac ets ear', 'close debu g encrypt1on 5 , get parameters ',
d 1nput f1 ename’, ‘keep_ packets ' packets’ 1oaded’ next', ' o ', 'packets_from_{
shark', 'reset’, 'set debug : tshar'kJ)ath "use]son

The display_filter, encryption, and input_filename attributes are used for dlsplaymg
parameters that are passed into FileCapture OI LiveCapture.

Both methods offer similar parameters that affect packets that are returned in the
capture object. For example, we can iterate through the packets and apply a
function to each. The most useful method here is the app1y_on_packets() method.
apply_on_packets() is the main way to iterate through the packets, passing in a
function to apply to each packet:

>>> cap = pyshark.FileCapture('http.cap',
>>> def print_info_layer(packet):

>>> print("[Protocol:] "+packet.highest_layer+"
>>> cap.apply_on_packets(print_info_layer)

keep_packets=False)

[Source IP:] "+packet.ip.src+" [Des

In the following screenshot, we can see the information that's returned when we
are obtaining information for each packet pertaining to protocol, source 1p, and

Destination IP.

145.254.160.237 [Destination IP:]65.208.228.223
Source IP:] 65.208.228.223 [Destination IP:]145.254.160.237
Source IP:] 145.254.160.237 [Destination IP:]65.208.228.223
P [Source IP:] 145.254.160.237 [Destination IP:]65.208.228.223

Protocol: Source IP:
Protocol:
Protocol:

Protocol:

Protocol :
Protocol:
Protocol:
Protocol:

Protocol :
Protocol :
Protocol :
Protocol:
Protocol:
Protocol:
Protocol:

Source I
Source I
Source I
Source I

Source I
SOUFCE

SOUFCE
Source I
Source I
source I

65.208.228.223 [Destination IP:]145.
Destination IP:]145.

o208 228223

[
145.254.160.237 [Destination IP:]65.
65.208.228.223 [Destination IP:]145.
145.254.160.237[[Dest1nat10n P16,
[

65.208.228.223
65.208.228.223
145.254.160.237 [Destination IP:]65.

Destjnatjon IP:]145.
Destination IP:]145.

254.
254.
208.
254.
208.
254.
254.

208.

160.
160.
200
160.
228.
160.
160.

228.

237
237
203
237
223
237
237
223

145.254.160.237 [Destination IP:]145.253.2.203

65.208.228.223 [Destination IP:]145.254.160.237
145.254.160.237 [Destination IP:]65.208.228.223
65.208.228.223 [Destination IP:]145.254.160.237

]
]
]
P:]
Rl
]
]
|
-1
il
il
P:]
]
]
]
|

[[
[[
[[
[

[[
[[
[[
[[
EProtoco]: Esource
[[
[[
[[
[[
[[
[[
[[

Protocol: Source I 145.253.2.203 [Destination IP:]145.254.160.237

We can also use the app1y_on_packets() method for adding the packets to a list for
counting or other processing means. Here's a script that will append all of the
packets to a list and print the count. For this, create a text file called
count_packets.py.

import pyshark
packets_array = []

def counter(*args):
packets_array.append(args[0])

def count_packets():
cap = pyshark.FileCapture('http.cap', keep_packets=False)
cap.apply_on_packets(counter, timeout=10000)
return len(packets_array)

print("Packets number:"+str(count_packets()))

for packet in packets_array:
print(packet)

We can use only_summaries, which will return packets in the capture object with

just the summary information of each packet:

>>> cap = pyshark.FileCapture(‘http.cap', only_summaries=True)
>>> print cap[0]

This option makes capture file reading much faster, and with the ¢ir method, we
can check the attributes that are available in the object to obtain information
about a specific packet.

In the following screenshot, we can see information about a specific packet and
get all of the attributes that return not null information:

>>> import pyshark

>>> cap = pyshark.FileCapture('http.cap’, only_summaries=True)

>>> dir(cap[0])

["_class__ ", '_delattr__", '_dict__", '_dir__"', '_doc_', "_eq__"', '__format__', '__ge_ ', '_ _getattr
ibute__", ' gt ', "_bhash_"', '_ini ', '_init_subclass__", '_le__", "_1t__", '__| _ 'y "_ne_"
, __hew__" o ', '_reduce_ex__", '__repr__", '_setattr__", '__sizeof__', '_str__", '__subclass
hook__ ", "_ ', '_field_order’, "_fields', 'destination’, 'info', 'length’, 'no', 'protocol’, 'sour
ce', 'summary_line', 'time']

>>> print(cap[0].destination)

145.254.160.237

>>> print(cap[0].info)

80 \xe2\x86\x92 3372 [SYN, ACK] Seq=0 Ack=1 wWin=5840 Len=0 MSS=1380 SACK_PERM=1

>>> print(cap[0].1length)

62

>>> print(cap[0].no)

2

>>> print(cap[0] .protocol)

TCP

>>> print(cap[0].source)

65.208.228.223

>>> print(cap[0].summary_1line)

2 0.91131 65.208.228.223 145.254.160.237 TCP 62 80 \xe2\x86\x92 3372 [SYN, ACK] seq=0 Ack=1 win=5840 Len=0

MSS=1380 SACK_PERM=1

>>> print(cap[0].time)

0.91131

>>> print(cap[0].__dict_)

{"_fields': {"No. 2", 'Time': '0.91131", 'Source': '65.208.228.223", 'Destination': '145.254.160.237', '

Protocol’': 'TCP', ngth': '62", 'Info’': '80 \\xe2\\x86\\x92 3372 [SYN, ACK] Seq=0 Ack=1 win=5840 Len=0 MS
5=1380 SACK_PERM=1"}, '"_field_order': ['No.’', 'Time', 'Source’, 'Destination’, 'Protocol’, 'Length', "Info’
1, 'no*: '2', 'time': "0.91131', 'source’: '65.208.228.223", 'destination’': '145.254.160.237', "protocol':

'TcP', 'length': '62", 'info': 80 \\xe2\\x86\\x92 3372 [SYN, ACK] Seq=0 Ack=1 wWin=5840 Len=0 MSS=1380 SACK

The information you can see in the form of attributes is as follows:

destination: The IP destination address

source: The IP source address

info: A summary of the application layer

1ength: Length of the packet in bytes

no: Index number of the packet

protocol: The highest layer protocol that's recognized in the packet
sunmary_line: All of the summary attributes in one string

time: Time between the current packet and the first packet

Summary

In this chapter, we have completed an introduction to TCP/IP and how machines
communicate in a network. We learned about the main protocols of the network
stack and the different types of address for communicating in a network. We
started with Python libraries for network programming and looked at socket and
the ur111ib and requests modules, and provided an example of how we can interact
and obtain information from RFC documents. We also acquired some basic
knowledge so that we are able to perform a network traffic analysis with
Wireshark.

Wireshark is provided with innumerable functionalities, thanks to which we will
be able to identify and analyze network traffic and identify communications in
our network.

In the next chapter, you will learn how to use Python as an HTTP client so that
you can make requests over the REST API and retrieve web resources with
the ur11ib and requests modules.

Questions

10.

. What TCP/IP layer does user interaction with computers and services

occur?

Why do we need to replace IPv4 with the IPv6 protocol?

What protocol allows you to dynamically configure IP addresses in the
device's operating system?

What mechanism makes the traffic from the private network appear to be
coming from a single valid public internet address and hides the private
addresses from the internet?

What are the main options for installing Python packages on your localhost
machine?

What is the main Python tool for creating virtual environments, which also
includes a separate Python installation for the packages?

What are the main modules that we can find in Python to make HTTP
requests at a high level?

What are the main modules that we can find in Python to make

HTTP requests at a low level?

Which library can we use to analyze network traffic in Python that
Wireshark decodes in each packet?

What method from the pyshark package can we use to iterate through the
packets and apply a function to each one?

Further reading

By going to the following links, you will find more information about the tools
and the official Python documentation that was mentioned in this chapter:

e This is the official documentation for the socket package: nttps://docs.python.o
rg/3/1library/socket.html

e This is the official documentation for downloading and installing
Wireshark: https://www.wireshark.org/

e This is the official documentation for the pyshark package: nttps://kiminewt.git
hub.io/pyshark/

https://docs.python.org/3/library/socket.html
https://www.wireshark.org/
https://kiminewt.github.io/pyshark/

Programming for the Web with
HTTP

In the chapter, you will learn how to use Python as an HTTP client to make
requests and retrieve web resources. You will be encouraged to try a series of
example requests. We will compare uri11ib and the third-party requests library and
show you the differences when working with forms and cookies. The third-party
Requests package is a very popular alternative to uriiib. It has an elegant
interface and a powerful feature set, and it is a great tool for streamlining HTTP
workflows. We also cover HTTP authentication mechanisms and how we can
manage them with the Requests module.

The following topics will be covered in this chapter:

Understanding the ur11ib package to query a REST API
Understanding the Requests package to query a REST API
Handling forms with ur11ib and requests with Python 3.7
Handling cookies with uri1ib and requests with Python 3.7
Handling HTTPS and HTTP Basic Authentication with requests

The ur11ib package is the recommended Python standard library package for
HTTP tasks. The standard library also has a low-level module called HTTP.
Although this offers access to almost all aspects of the protocol, it has not been
designed for everyday use. The ur11ib package has a simpler interface, and it
deals with everything that we are going to cover in this chapter.

The third-party Requests package is a very popular alternative to uriiib. It has an
elegant interface and a powerful feature set, and it is a great tool for streamlining
HTTP workflows.

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the chapterez folder, at https://github.com/PacktPublishing/Learning-Python-

Networking-Second-Edition.

You will need to install the Python distribution on your local machine and have
some basic knowledge of the HTTP protocol.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Consuming web services in Python
with urllib

In this section, we will learn how to use ur11ib and how we can build HTTP
clients with this module.

The ur11ib module allows access to any resource published on the network (web
page, files, directories, images, and so on) through various protocols (HTTP,
FTP, SFTP). To start consuming a web service, we have to import the following
libraries:

#! /usr/bin/env python3

import urllib.request
import urllib.parse

There are four functions in uri1ib:

® request: Opens and reads the request's URL

e crror: Contains the errors generated by the request
® parse: A tool to convert the URL

® robotparse: Converts the robots. txt files

The ur11ib.request module allows access to a resource published on the internet
through its address. If we go to the documentation of the Python 3 module (https:
//docs.python.org/3/library/urllib.request.html#module-urllib.request), we will see all
the functions that have this class. The main one is uriopen, which works in the
following way.

A uriopen function is used to create an object similar to a file, with which to read
from the URL. This ObjECt has methods such as read, readline, readlines, and close,
which work exactly the same as in the file objects, although in reality, we are
working with wrapper's methods that abstract us from using sockets at a low
level.

The ur1open function has an optional data parameter with which to send
information to HTTP addresses using the rost method, where parameters are sent

https://docs.python.org/3/library/urllib.request.html#module-urllib.request

in the request itself; for example, to respond to a form. This parameter is a
properly encoded string;:

|urllib.request.urlopen (url, data = None, [timeout,] *, cafile = None, capath = None, ce

Retrieving the contents of a URL is a straightforward process when done using
ur1lib. You can open the Python interpreter and execute the following
instructions:

>>> from urllib.request import urlopen

>>> response = urlopen('http://www.packtpub.com')

>>> response

<http.client.HTTPResponse object at 0x7fa3c53059h0>
>>> response.readline()

We use the urilib.request.urlopen() function to send a request and receive a
response for the resource at nhttp://www.packtpub.com, in this case an HTML page.
We will then print out the first line of the HTML we receive, with the read1ine()
method from the response object.

This function also supports specifying a timeout for the request that represents
the waiting time in the request; that is, if the page takes more than what we
indicated, it will result in an error:

| >>> print(urllib.request.urlopen(“http://packtpub.com”, timeout=30))

We can see from the preceding example that uriopen() returns an
http.client.HTTPResponse instance. The response object gives us access to the data of
the requested resource and the properties and the metadata of the response:

| <http.client.HTTPResponse object at 0x03C4DC90>

If we get a response in JSON format, we can use the following Python json
module:
>>> import json

>>> response = urllib.request.urlopen(url, timeout=30)
>>> json_response = json.loads(response.read())

In the variable response, we save the file that launches the request, and we use
the read() function to read the content. Then we transform it into JSON format.

http://www.packtpub.com

Status codes

HTTP responses provide us with a way to check the status of the response
through status codes. We can read the status code of a response using its status
property. The value of 200 is an HTTP status code that tells us that the request is
OK:

>>> response.status
200

The 200 code informs us that everything went fine. There are a number of codes,
and each one conveys a different meaning. According to their first digit, status
codes are classified into the following groups:

100: Informational
200 Success

se0: Redirection
400: Client error
500. Server error

Status codes help us to see whether our response was successful or not. Any
code in the 200 range indicates a success, whereas any code in either the 400 range
or the seo range indicates failure in the server.

0 The official list of status codes is maintained by IANA and can be found at nttps://ww. 1ana.org/ass

ignments/http-status-codes.

https://www.iana.org/assignments/http-status-codes

Handling exceptions

Status codes should always be checked so that our program can respond
appropriately if something goes wrong. The ur11ib package helps us in checking
the status codes by raising an exception if it encounters a problem.

Let's go through how to catch these and handle them usefully. We'll try this
following command block. You can find the following code in the
urllib_exceptions.py file:

import urllib.error
from urllib.request import urlopen
try:
urlopen('http://www.ietf.org/rfc/rfco.txt')
except urllib.error.HTTPError as e:
print('Exception', e)
print('status', e.code)
print('reason', e.reason)
print('url', e.url)

The output of the previous script is:

Exception HTTP Error 404: Not Found
status 404

reason Not Found

url https://www.ietf.org/rfc/rfco.txt

In the previous script, we've requested an rfco.txt document, which doesn't exist.
So the server has returned a 404 status code, and ur11ib has captured this and
raised an wrTrerror. You can see that urreerror provides useful attributes regarding
the request. In the preceding example, we obtain the status, reason, and ur1
attributes to get some information about the response.

HTTP headers

A request to the server consists of a request line that contains some basic
information about the request, and various lines that constitute the headers. An
example might be the following:

Transfer-Encoding: chunked
www.packtpub.com

n Via: 1.1 varnish
advertisement,js

T X-Country-Code: NL
88193022b61633465ae9b864eeact 1e3.css v Request Headers view source
952c3ff98a6acdc36497d839e31aa57cjs

536347ret=js&limit=4

Accept: text/html,application/xhtml+xml,application/xml;q=8.9,image/webp,image/apng,*/*;q=0.8
Accept-Encoding: gzip, deflate, br

mmapi.js Accept-Language: es,en-US;q=0.9,en;q=0.8

all.css Connection: keep-alive

cookieconsent.min.css
Host: www.packtpub.com

cookleconsentminjs Upgrade-Insecure-Requests: 1

%20Trial% 9 10-2018%20-
8| i 30 i B e 20 - [T eV e sz User-Agent: Mozilla/5.0 (Windows NT 10.0; Wine4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/s37.

Wl it
87 requests | 1.6 MB transferred | Finish: 7.31 s | Load: 6.65s 4

HTTP requests consist of two main parts: a header and a body. Headers are the
lines of information that contain specific metadata about the response and tell the
client how to interpret it. With this module, we can check whether the headers
can provide information about the web server.

The HTTP headers are name: value pairs; for example, Host: www.packtpub.com. These
headers contain different information about the HTTP request and about the
browser. For example, the User-Agent line provides information about the
browser and operating system of the machine from which the request is made,
and Accept Encoding informs the server if the browser can accept compressed
data under formats such as gzip.

An important header is the host header. Many web server applications provide
the ability to host more than one website on the same server using the same IP
address. DNS aliases are set up for the various website domain names, so they
all point to the same IP address. Effectively, the web server is given multiple
hostnames, one for each website it hosts.

The following script will obtain the site headers through the response object's
headers. For this task, we can use the headers property or the getheaders() method.
The getheaders() method returns the headers as a list of tuples of the form (header
name, header value).

You can find the following code in the get_neaders.py file:

#1/usr/bin/env python3

import urllib.request

url = input("Enter the URL:")

http_response = urllib.request.urlopen(url)

if http_response.code == 200:
print(http_response.headers)
for key,value in http_response.getheaders():

print(key, value)

In the following screenshot, we can see the script executing for the packtpub.com
domain:

Enter the URL:http://www.packtpub.com
Server: nginx/1.4.5

Date: Mon, 26 Nov 2018 11:04:05 GMT
content-Type: text/html; charset=utf-8
Transfer-eEncoding: chunked

Connection: close

Expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: public, s-maxage=172800
Age: 3661

via: 1.1 varnish

X-Country-Code: NL

User agent

Another important request header is the user-agent header. Any client that
communicates using HTTP can be referred to as a user agent. RFC 7231
suggests that user agents should use the user-agent header to identify themselves
in every request. For example, the user agent if you are using the Chrome
browser might be as follows:

| User-Agent: Mozilla/5.0 (Windows NT 10.0; Win6é4; x64) AppleWebKit/537.36 (KHTML, like Ge

Also, we can view the user agent used by the uri1ib Python version:

>>> from urllib.request import Request
>>> from urllib.request import urlopen
>>> req = Request('http://www.python.org')

>>> urlopen(req)
<http.client.HTTPResponse object at Ox034AEBF0>
>>> req.get_header('User-agent')
'Python-urllib/3.7"'

Here, we have created a request and submitted it using uriopen, and uriopen added
the user agent header to the request. We can examine this header by using the
get_header () method. This header and its value are included in every request made
by uri1ib, SO every server we make a request to can see that we are using Python
3.7 and the ur11ib library.

Customizing requests with urllib

To make use of the functionality that headers provide, we add headers to a
request before sending it. To do this, we need to follow these steps:

1. Create a request Object.
2. Add headers to the request object.
3. Use urilopen() to send the request object.

We're going to learn how to customize a request to retrieve a Netherlands version
of the Debian home page. We will use the accept-Language header, which tells the
server our preferred language for the resource it returns.

First, we create a request Object:

>>> from urllib.request import Request,urlopen
>>> req = Request('http://www.debian.org')

Next, we add the header:

| >>> req.add_header ('Accept-Language', 'nl')

The add_neader () method takes the name of the header and the contents of the
header as arguments. The accept-Language header takes two-letter ISO 639-1
language codes. In this example, the code for Netherlands is n1.

Lastly, we submit the customized request with uriopen():

| >>> response = urlopen(req)

We can check if the response is in the Dutch language by printing out the first
few lines:

| >>> response.readlines()[:5]

In this screenshot, we can see that the language changed with the accept-1anguage
header:

>>> from ur11ib.re%uesi import Request,urlopen
>>> req.add_header('Accept-Language’', 'nl’)

>>> from urllib.request import Request,urlopen
>>> req = Request('http://www.debian.org')

>>> req.add_header('Accept-Language’, 'nl")

>>> response = urlopen(req)

>>> response.readlines(Q[:5]

[b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www-w3.org/TR/htm14/
strict.dtd">\n", b'<htm]l lang="n1">\n', b'<head>\n", b' <meta http-equiv="Conten
t-Type" content="text/html; charset=utf-8">\n', b' <title>Debian -- Het universe
lTe Besturinassysteem </title>\n"]

The Accept-Language header has informed the server about our preferred language
for the response’'s content. To view the headers present in a request, do the
following:
>>> req = Request('http://www.debian.org')
>>> req.add_header('Accept-Language', 'nl')

>>> req.header_items()
[('Host', 'www.debian.org'), ('User-agent', 'Python-urllib/3.6'), ('Accept-language',6 'r

Let's see how to add our own headers using the user-agent header as an example.
The user-agent is a header used to identify the browser and operating system that
we are using to connect to that URL. If we want to identify ourselves as using a
Firefox browser, we could change the user agent.

To change the user agent, we have two alternatives. The first is using a headers
dictionary parameter in the request method. The second solution consists of using
the add_header () method for adding headers at the same time that we create the
request Object, as showing in the following example.

You can find the fOHOWng code in the add_headers_user_agent.py file:

#1/usr/bin/env python3

from urllib.request import Request

USER_AGENT = 'Mozilla/5.0 (Windows NT 5.1; rv:20.0) Gecko/20100101 Firefox/20.0'
URL = 'http://www.debian.org'

def add_headers_user_agent():
headers = {'Accept-Language': 'nl', 'User-agent': USER_AGENT}
request = Request(URL, headers=headers)
#request.add_header('Accept-Language', 'nl')
#request.add_header('User-agent', USER_AGENT)
print ("Request headers:")
for key,value in request.header_items():

print ("%s: %s" %(key, value))

if __name__ == '__main__"':
add_headers_user_agent()

In this screenshot, we can see the request headers sent for the previous script:

Request headers:
Accept-language: nl

User-agent: Mozilla/5.0 (windows NT 5.1; rv:20.0)
Gecko/20100101 Firefox/20.0

Getting headers with a proxy

We can use a proxy connection for the same task. If we need to specify a proxy
in the code, we have to use an opener that contains the proxyHandier handler. The
default handler includes a proxytandier instance built by calling the initializer
without parameters, which reads the list of proxies to use from the appropriate
environment variable. However, we can also build a proxyHandler, passing as a
parameter a dictionary whose key is the HTTP protocol and the value is the
proxy address or URL used for this protocol.

To install the opener once created, the insta11_opener function is used, which takes
as a parameter the opener to be installed.

You can find the fOHOWiI’lg code in the proxy_web_request.py file:

import urllib.request, urllib.parse, urllib.error

URL = 'https://www.github.com'

By Googling free proxy server

PROXY_ADDRESS = "165.24.10.8:8080"

if __name__ == '__main__"':
proxy = urllib.request.ProxyHandler({"http" : PROXY_ADDRESS})
opener = urllib.request.build_opener(proxy)
urllib.request.install_opener(opener)
resp = urllib.request.urlopen(URL)
print ("Proxy server returns response headers: %s " %resp.headers)

Content types

HTTP can be used as a method of transport for any type of file or data. The
server can use the 'content-Type' header in a response to inform the client about
the type of data that it has sent in the body. This is the primary means with which
an HTTP client determines how it should handle the body data that the server
returns to it. To view the content type, we inspect the value of the response
header, as shown here:

>>> response = urlopen('http://www.debian.org')

>>> response.getheader('Content-Type')
'text/html’'

These values are called content types, internet media types, or MIME types. The
full list can be found at http://www.iana.org/assignments/media-types.

Content type values can contain optional additional parameters that provide
further information about the type. This is usually used to supply the character
set that the data uses; for example, Content-Type. text/html; charset=utf-8.

In this screenshot, we can see many content-Type instances depending on the
requested URL:

>>> from urllib.request import urlopen

>>> response = urlopen('http://www.debian.org’)
>>> response.getheader(’'Content-Type')
"text/html’

>>> response = urlopen('https://httpbin.org/get’)

>>> response.getheader(’Content-Type')
"application/json’
>>> response = urlopen('http://www.python.org')
>>> response.ﬁetheader('COntent—Type')

C

"text/html; arset=utf-8'

http://www.iana.org/assignments/media-types

Extracting links from a URL with
urllib

In this script, we can see how to extract links using ur11ib and HtmMLParser. HTMLParser
is a module that allows us to parse text files formatted in HTML. You can get
more information at https://docs.python.org/3/library/html.parser.html.

You can find the fOHOWiI’lg code in the extract_links_parser.py file:

#1/usr/bin/env python3
from html.parser import HTMLParser
import urllib.request

class myParser (HTMLParser):
def handle_starttag(self, tag, attrs):
if (tag == "a"):
for a in attrs:
if (a[@] == 'href'):
link = a[1]
if (link.find('http') >= 0):
print(link)
newParse = myParser ()
newParse.feed(1link)

url = "http://www.packtpub.com"

request = urllib.request.urlopen(url)
parser = myParser()
parser.feed(request.read().decode('utf-8'))

In the following screenshot, we can see the script execution for the packtpub.com
domain:

https://docs.python.org/3/library/html.parser.html

//www.packtpub.com/account/password

//hub.packtpub.com

//www.packtpub.com/cart/checkout

//mapt.io/free-trial/
//www.packtpub.com/skill-up-2018/big-data-bundle
//www.packtpub.com/skill-up-2018/bTlockchain-bundle
//www.packtpub.com/ski11—uE—ZOIS/business—inte]]igence—bund1e
//www.packtpub.com/ai-now/building-ai-powered-iot-systems
//www.packtpub.com/skill-up-2018/core-c-sharp-programming-bundle
//www.packtpub.com/skill-up-2018/c-sharp-web-deve lopment-bundle
//www.packtpub.com/skill-up-2018/core-c-plus-plus-programming-bundle
//www.packtpub.com/skill-up-2018/c-plus-plus-game-development-bundle
//www.packtpub.com/skill-up-2018/high-performance-c-plus-plus-apps-bundle
//www.packtpub.com/ai-now/creating-ai-systems-with-raspberry-pi
//www.packtpub.com/skill-up-2018/devops-bundle
//www.packtpub.com/ai-now/getting-started-with-machine-learning-on-the-cloud
//www.packtpub.com/skill-up-2018/docker-bundle
//www.packtpub.com/ai-now/everything-about-ai-bundle
//www.packtpub.com/skill-up-2018/go-programming-bundle
//www.packtpub.com/ski11—up—2018/ﬂ0—web—deve10pment—bund1e
//www.packtpub.com/skill-up-2018/hadoop-bundle

Another way to extract links from a URL is using the regular expression
(re) module to find nref elements in the target URL.

You can find the fOHOWng code in the ur1ib_1ink_extractor.py file:

#1/usr/bin/env python3

from urllib.request import urlopen
import re

def download_page(url):
return urlopen(url).read().decode('utf-8")

def extract_links(page):
link_regex = re.compile('<a[A>]+href=["\"](.*?)["\']"', re.IGNORECASE)
return link_regex.findall(page)

if __name__ == '__main__"':
target_url = 'http://www.packtpub.com'
packtpub = download_page(target_url)
links = extract_links(packtpub)
for link in links:
print(link)

Getting images from a URL with
urllib

In this example, we can see how to extract images using urilib and regular
expressions. The easy way to extract images from a URL is to use the re module
to find img elements in the target URL.

You can find the fOHOWng code in the extract_images_urllib.py file:

#1/usr/bin/env python3

from urllib.request import urlopen, urljoin
import re

def download_page(url):
return urlopen(url).read().decode('utf-8")

def extract_image_locations(page):
img_regex = re.compile('<img[A>]+src=["\"](.*?)["\']",
re.IGNORECASE)
return img_regex.findall(page)
if __name__ == '__main__"':
target_url = 'http://www.packtpub.com'
packtpub = download_page(target_url)
image_locations = extract_image_locations(packtpub)
for src in image_locations:
print(urljoin(target_url, src))

In this screenshot, we can see the script execution for the packtpub.com domain:

http://www.packtpub.com

https://d255esdrn735hr.cloudfront.net/sites/default/files/BFH Front Compressed V3.Eng

https://dlewSafd47i1.c1oudfront.net/sites/defau1t/fi1es/imagecache/featured_book_ Tock/bookretailers/v10662_1ow.png

http://www.packtpub.com/sites/default/files/blank.g

https://dz13w8afd471i1.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/bookretailers/v09066_1ow_0.png

http://www._packtpub.com/sites/default/files/blank.gif

https //d255esdrn735hr.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_bTlock,/B10618 .png

http://www.packtpub.com/sites/default/files/blank.gif

https //dzl3w8afd4711 cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/B09048.png

http://www.packtpub.com/sites/default/files/blank.gif

https://dz13w8afd471i1.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/bookretailers/v09197_Tlow_0.png

http://www.packtpub.com/sites/default/files/blank.gif

https //dz13w8afd471i1.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/B10120.png
p://www.packtpub.com/sites/default/files/blank.gif

https //d255esdrn735hr.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_bTlock/B09332.png

http://www.packtpub.com/sites/default/files/blank.g

https //d255esdrn735hr.cloudfront. net/s1tes/defau1t/f11e5/1magecache/featured book_bT1ock/B09991_New_cover.png

http://www.packtpub.com/sites/default/files/blank.gi

https //d255esdrn735hr.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/cover_13_png

http://www.packtpub.com/sites/default/files/blank.gif

https://dz13w8afd471i1.cloudfront. net/s1tes/defau1t/f11es/1magecache/featured book_block/bookretailers/v10068_Low.png

http://www.packtpub.com/sites/default/files/blank.qgif

Working with URLSs

Uniform Resource Locators (URLs) are fundamental to the way in which the
web operates, and are formally described in RFC 3986. A URL represents a
resource on a given host. URLs can point to files on the server, or the resources
may be dynamically generated when a request is received.

Python uses the uri1ib.parse module for working with URLSs. Let's use Python to
break a URL into its component parts:

>>> from urllib.parse import urlparse

>>> result = urlparse('https://www.packtpub.com/tech/Python')

>>> result

ParseResult(scheme="http', netloc='www.packtpub.com', path='/tech/Python',
params='"', query='', fragment='")

The ur11ib.parse.uriparse() function interprets our URL and recognizes HTTP as
the scheme, www.packtpub.com as the network location, and /tech/python as the path.

We can access these components as attributes of the parseresuit:

>>> from urllib.parse import urlparse

>>> result = urlparse('https://www.packtpub.com/tech/Python")

>>> result

ParseResult(scheme="https', netloc="www.packtpub.com', path="/tech/Python’', params='", query='", fragment="")
>>> result.scheme

"https'

>>> result.netloc

"www . packtpub.com’

>>> result.path

'/tech/Python’

For almost all resources on the web, we'll be using the HTTP or HTTPS
schemes. In these schemes, to locate a specific resource, we need to know the
host that it resides on and the TCP port that we should connect to, and we also
need to know the path to the resource on the host.

The path in a URL is anything that comes after the host and the port. Paths
always start with a forward slash (/), and when a slash appears on its own, it's
called the root.

RFC 3986 defines another property of URLs called query strings. They can
contain additional parameters in the form of key-value pairs that appear after the
path. They are separated from the path by a question mark. In this example, we

can see how we can get URL parameters with the query argument:

>>> result = urlparse('https://search.packtpub.com/?query=python')

>>> result

ParseResult(scheme="'https', netloc='search.packtpub.com', path='/', params='"', query='qL
>>> result.query

'query=python'

Query strings are used for supplying parameters to the resource that we wish to
retrieve, and this usually customizes the resource in some way. In the previous
example, our query string tells the packtpub search page that we want to run a
search for the term python. The ur11ib.parse module has a function called parse_gs()
that reads the query string and then converts it into a dictionary:

>>> from urllib.parse import parse_qgs

>>> result = urlparse('https://search.packtpub.com/?query=python')
>>> parse_qs(result.query)

{'query': ['python']}

The simplest way to code the string is to use the uri1ib urlencode method, which
accepts a dictionary or a list of tuples (key, value) and generates the
corresponding encoded string.

The uriencode() function is similarly intended for encoding query strings directly
from dictionaries. Notice how it correctly percent-encodes our values and then
joins them with &, so as to construct the query string:
>>> from urllib.parse import urlencode
>>> params = urllib.parse.urlencode({"user": "user", "password": "password"})

>>> params
'user=useré&password=password'

Consuming web services in Python
with requests

In this section, we will learn how to use the requests library. How we interact with
RESTful APIs based on HTTP is an increasingly common task in projects that
use the Python programming language.

Introduction to requests

Requests allow you to send requests to an HTTP server and get responses and
messages sent by the server. They're available as the Requests package on PyPI.
This can either be installed through pip or be downloaded from nttp://docs.python-
requests.org, Which hosts the documentation. You can install the requests library on
your system in an easy way with the pip command:

| pip install requests

The requests library automates and simplifies many of the tasks that we've been
looking at. The quickest way of illustrating this is by trying some examples. The
commands for retrieving a URL with Requests are similar to retrieving a URL
with the ur11ib package.

The request.get() function sends a request using the get method with the following
syntax:

requests.get ('<URL>', params = <object type dict>)
>>> import requests
>>> response = requests.get('http://www.github.com')

The requests.get() method returns a response 0bject, where you will find all the
information corresponding to the response of our request. These are the main
properties of the response object:

® response.status_code: This is the HTTP code returned by the server

® response.content: Here, we will find the content of the server response

e response.json(): If the answer is JSON, this method serializes the string and
returns a dictionary structure with the corresponding JSON structure

We can look at the properties of the response object:

>>> response.status_code

200

>>> response.reason

IoKl

>>> response.url
'http://www.github.com/'

>>> response.headers['content-type']
'text/html; charset=utf-8'

http://docs.python-requests.org

We can also access the headers properties through the response object:

>>> response.request.headers
{'User-Agent': 'python-requests/2.19.1', 'Accept-Encoding': 'gzip, deflate', 'Accept': '

Notice that Requests is automatically handling compression for us. It's including
gzip and deflate in an Accept-Encoding header. If we look at the content-encoding
response, then we will see that the response was in fact gzip compressed, and
Requests transparently decompressed it for us:

>>> response.headers['content-encoding']
1 gzip 1

We can look at the response content in many more ways. To get the same bytes

object as we got from an nrteresponse object, perform the following:

>>> response. text
"\n\n\n\n\n\n<!DOCTYPE html>\n<html lang="en">\n <head>\n <meta charset="utf-8">\n <lir

Checking HTTP headers

The response.headers statement provides the headers of the web server response.
Basically, the response is an object dictionary, and with the items() method, we
can iterate with the key-value format for access to the header's response.

You can find the following code in the get_neaders.py file:

#1/usr/bin/env python3

import requests
response = requests.get('http://github.com')
try:
for key,value in response.headers.items():
print('%s: %s' % (key, value))
except Exception as error:
print('%s' % (error))

In this screenshot, we can see the script execution for the github.com domain:

content-Type: text/html; charset=utf-8

Transfer-encoding: chunked

server: GitHub.com

Status: 200 oK

cache-control: no-cache

vary: X-PJAX, Accept-Encoding

Set-Cookie: has_recent_activity=1; path=/; expires=Thu, 22 Nov 2018 20:54:45 -0000, logged_in=no; domai
n=.github.com; path=/; expires=Mon, 22 Nov 2038 19:54:45 -0000; secure; Httponly, _gh_sess=alZTQwlHeHZo
NEdkR111VvzdMYJjR5Nk9ZSEFqZnFTMEh1am]0Zzd2wXZzcVg1MORabwWpRe TMWM] ZSNEEraj JtQmRVaVFTak 1BYUXIMnRERWpVVT1jVi8
sz1nRnVJYkaaTRoKOh6ekV4YW5LchPZDZPN2RMdzU1061IRU9mR01TL3c2%GIzaX1NYXNKdeGRzEOdH1tdWEvaWVEaE84N2RzSn

1paothanamgNbFF30c92eDVSZEtos3v152tvdFBaYOEGvud1ZSJRuodiRHBJYutGQT09L51w20tijdJT11p2013KOJIMjkxT0th

T0%3D--ebabe3a41b639f1bf2c202a24eff49d6bbbadbaa; path=/; secure; Httponly

X-Request-Id: bc39744d-bec4-4762-bf19-ef5ba7330838

Strict-Transport-Security: max-age=31536000; includesubdomains; preload
X-Frame-Options: deny

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Referrer-Policy: origin-when-cross-origin, strict-origin-when-cross-origin

EXpect-CT: max-age=2592000, report-uri="https://api.github.com/_private/browser/errors”

We can also find browser add-ons or plugins that can help us in collecting
information on the headers that are sent in the requests.

Among the available plugins for Firefox, we can suggest the HTTP Header Live
add-ons:

Q FirefOX Add‘ons Explorar Extensiones Temas Mas.. v | Q nttp headers

Modify Header Value (HTTP Headers)

BE cookies and HTTP Headers analyser
“w HTTP Headers Customize
15.691 & HTTP Header Live
k" Usuarios i

HE HTTP Header Mangler

Headers Middleman

HTTP Header Live e
by Martin Antrag

W
D)

HTTPS Everywhere

N
(]]

Header Editor
Displays the HTTP header. Edit it and send it. W Eliminar

With this plugin, we can get the headers for the request and response for a
specific domain URL.:

& C o ® Gy & htipsy/ packtpub.com v O N @ @
@ HTTP Header Live v X = Packt> !

http: //packtpub.com/ ~

hosts packtpub. con m
ser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;

Bccept: text/html,application/xhtml+xml,application/xml
[sccept-Language: en-US,en;q=0.5
[ccept-Encoding: gzip, deflate
Iconnection: keep-alive
pgrade-Insecure—Requests: 1
[GET: HTTP/1.1 301 https://www.packtpub.com/
[Location: https://www.packtpub.com/
[ccept-Ranges: bytes
pate: Tue, 20 Nov 2018 10:43:18 GMT

Bge: 0

s Mapt
s Stay relevant.

[server: packt

REtEel e pack b oo/ Access over 6,500 eBooks and Videos for free.
Cancel anytime.

ser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64;

Bccept: text/html,application/xhtml+xml,application/xml
[sccept-Language: en-US,en;g=0.5
[Accept-Encoding: gzip, deflate, br
Connection: keep-alive
pgrade-Insecure—Requests: 1

GET: HTTP/1.1 200 OK

[server: nginx/1.4.5

pate: Tue, 20 Nov 2018 10:43:19 GMT
Content-Type: text/html; charset=utf-8
[fransfer-Encoding: chunked

lconnection: keep-alive

Proxy requests

An interesting feature offered by the Requests module is the possibility to make
requests through a proxy or intermediate machine between our internal network
and the external network. A proxy is defined in the following way:

| >>> proxy = {"protocol":"ip:port", ...}

To make a Request through a proxy, the proxies attribute of the get method is
used:

| >>> response = requests.get(url, headers=headers, proxies=proxy)

The proxy parameter must be passed in the form of a dictionary; that is, you
have to create a dictionary type where we specify the protocol with the IP
address and the port where the proxy is listening:
>>> import requests
>>> http_proxy = "http://<ip_address>:<port>"

>>> proxy_dictionary = { "http" : http_proxy}
>>> requests.get("http://example.org", proxies=proxy_dictionary)

Get whois information

We can use the Requests module and the whois.domaintools.com Service to get
information about the domain we are analyzing, such as the IP address and
location.

You can find the following code in the get_whois_info.py file:

#1/usr/bin/env python3
from 1xml.html import fromstring
import requests

domain = input("Enter the domain : ")

url = 'http://whois.domaintools.com/' + domain

headers = {'User-Agent': 'wswp'}

resp = requests.get(url, headers=headers)

html = resp.text

tree = fromstring(html)

info = tree.xpath('//*[@id="stats"]//table/tbody/tr//text()")
temp_list = []

for each in info:
each = each.strip()
if each == "":
continue
temp_list.append(each.strip("\n"))

ip_index = temp_list.index('IP Address')

print("IP address ", temp_list[ip_index + 1])

location = temp_list.index('IP Location')

location2 = temp_list.index('ASN')

print('Location : ', "".join(temp_list[location + 1:location2]))

In the output of the previous script, we can see information about the IP address
and the location from the packtpub.com domain:
Enter the domain : http://www.packtpub.com

IP address 83.166.169.231 - 1 other site is hosted on this se
Location : -England-Derby-Node4 Uk Hosting

Working with JSON

If we need to send JSON from a client to a server, the simplest way with the

Requests module is using the json parameter, specifying a dictionary structure in
key-value format.

The main advantage of using this parameter is that it is not necessary to specify

'content-Type' in the request. In the json response, we can see that it automatically
returns this field with the 'appiication/json' value:

>>> import requests

>>> response = requests.post('http://httpbin.org/post', json={"key": "value"})
>>> response.status_code

200

>>> response.json()
{'args': {3},

'data': '{"key": "value"}',
'files': {3},

'form': {3},

'headers': {'Accept': '*/*',

'Accept-Encoding': 'gzip, deflate',

'Connection': 'close',

'Content-Length': '16',

'Content-Type': 'application/json',

'Host': 'httpbin.org',

'User-Agent': 'python-requests/2.4.3 CPython/3.4.0',

'X-Request-Id': 'xx-xx-xx'},
'json': {'key': 'value'},
'origin': 'x.x.x.x',

'url': 'http://httpbin.org/post'}

Handling forms with urllib and
requests with Python 3.7

In this section, we will learn how to use ur11ib and requests to interact with HTML
forms.

Handling forms with urllib

When working with forms, it is useful to use the rost method to send data to the
server. The POST method is used for submitting user input from HTML forms
and for uploading files to a server.

When using rosT, the data that we wish to send will go in the body of the request.
We can put any bytes data in there and declare its type by adding a content-Type
header to our request with an appropriate MIME type.

Let's look at an example for sending some HTML form data to a server by using
a posT request, just as browsers do when we submit a form on a website. The site
at https://httpbin.org Offers a test server that returns certain data from requests. It
will be used to exemplify some uses of the Requests module.

In the following example, we are using the form that corresponds with a post
method, http://httpbin.org/forms/post.

Suppose we have a service to register an order from a customer, where they must
enter information such as their name, phone, email, and the desired pizza size:

https://httpbin.org
http://httpbin.org/forms/post

Customer name: customer
Telephone: 323232

E-mail address: email@domain.com

— Pi1zza Size
Small

Medium

® Large

This information would be passed through the data attribute through a dictionary
structure. The rost method requires an extra field called data, in which we send a
dictionary with all the elements that we will send to the server through the
corresponding method.

The form data always consists of key-value pairs; ur11ib lets us work with regular
dictionaries to supply the form data. We can create a data dictionary with the
customer data, adding information such as their name, telephone, pizza size, and
email address with the keys custname, custtel, size, and custemail respectively:

| >>> data_dictionary = {'custname': 'customer','custtel': '323232', 'size': 'large', 'cust

When posting the HTML form data, the form values must be formatted in the
same way as query strings are formatted in a URL, and must be URL encoded. A
Content-Type header must also be set to the special MIME type of app1ication/x-

www-form-urlencoded.

In the Request Headers, we can see the Content-Type value when we send data
with the rost method:

¥ Request Headers view source
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: es,en-US;g=0.9,en;q=0.8
Cache-Control: max-age=0
Connection: keep-alive

Content-Length: 92

Content-Type: application/x-www-form-urlencoded

Cookie: gauges_unique_day=1; _gauges_unique _month=1; gauges unique_year=1; _gauges unique=1
Host: httpbin.org

Origin: http://httpbin.org

Referer: http://httpbin.org/forms/post

Since this format is identical to query strings, we can just use the uriencode()
function in our dictionary to prepare the data:

>>> data = urlencode(data_dictionary).encode('utf-8')
b'custname=customer&custtel=323232&size=large&custemail=email%40domain.com'

Here, we also additionally encode the result to bytes, as it will be sent as the
body of the request. In this case, we use the utr-s character set.

Next, we will construct our request:

>>> from urllib.request import Request
>>> req = Request('http://httpbin.org/post’',6data=data)

By adding our data as the data keyword argument, we are telling ur11ib that we
want our data to be sent as the body of the request. This will make the request
use the POST method, rather than the GET method. Next, we add the content-
Type header:

| >>> req.add_header('Content-Type', 'application/x-www-form-urlencode;charset=UTF-8')

Lastly, we submit the request and transform the response in a JSON dictionary
with the json module.

In the response dictionary, we can see the data and 'content-Type' we established
in the request:
>>> response = urlopen(req)

>>> response_dictionary = json.load(response)
>>> print(response_dictionary)

| {'args': {}, 'data': 'custname=customer&custtel=323232&size=large&custemail=email%40doms

Handling forms with requests

Typically, you want to send some form-encoded data. To do this, simply pass a
dictionary to the data argument. Your data dictionary will automatically be form-
encoded when the request is made. The requests library takes care of all the
encoding and formatting for us.

In this example, we are going to simulate the sending of an HTML form through
a POST request, just like browsers do when we send a form to a website. Form
data is always sent in key-value dictionary format.

The request.post() function sends a request using the rur method with the
following syntax:

requests.post ('<URL>', data = <object>, json = <object type dict>)

You can find the following code in the form_post_method.py file:

import requests

data_dictionary = {'custname': 'customer', 'custtel': '323232',
'size': 'large', 'custemail': 'email@domain.com'}
response = requests.post("http://httpbin.org/post",data=data_dictionary)
we then print out the http status_code
print("HTTP Status Code: " + str(response.status_code))
if response.status_code == 200:
print(response.text)

In this screenshot, we can see the execution of the previous script:

?'I‘I’P Status Code: 200

rlargsn: {},

fldatan: f'll'l,

"fi]es":{{},
"custemail”: "email@domain.com",
"custname": "customer",
“custeel” - '323232".
"size": "large"

7
"headers": {
"Accept": ”'fls‘/'fls‘”’
"Accept-Encoding"”: "ﬂzip, deflate”,
"Connection”: "close",
"Content-Length": "72",

"content-Type": "application/x-www-form-urlencoded",
"Host": "httpbin.org",

"User-Agent"”: "python-requests/2.19.1"

"ﬁson": null,
"origin”: "192.113.65.10",
"url”: "http://httpbin.org/post”

In the script response, we see how the information appears, that is being sent in
the request data dictionary object in the form section data.

Handling cookies with urllib and
requests with Python

In this section, we will learn about cookies and how we can use ur11ib and
requests t0 get cookies when we are interacting with a site that supports
identifying the user's action.

What are cookies?

A cookie is a file created by a website that contains small amounts of data and
that is sent between a sender and a receiver. In the case of the internet, the sender
would be the server where the web page is hosted, and the receiver is the
browser that you use to visit any web page.

A cookie's main purpose is to identify the user by storing their activity history on
a specific website, so that the most appropriate content according to their habits
can be offered. This means that each time a website is visited for the first time, a
cookie is saved in the browser with a little information. Then, when the same
page is visited again, the server asks for the same cookie to fix the configuration
of the site and make the visit as personalized as possible.

These cookies can have a simple purpose, such as knowing when the user last
visited a certain web page, or something more important, as it is used to keep all
the items placed in the shopping cart of a store—an action that is saved in real
time.

There are several types of cookies, but the most common are called session
cookies, which have a short lifespan since they are deleted when you close the
browser. We also have persistent cookies, which are used to track the user by
saving information about their behavior on a website for a certain period of time.
Persistent cookies can be deleted by cleaning the browser data, but some have an
expiration date.

Secure cookies store encrypted information to prevent the data stored in them
from being vulnerable to malicious third-party attacks. They are used only in
HTTPS connections.

Servers use cookies in various ways. They can add a unique ID to them, which
enables them to track a client as they access different areas of a site. They can
store a login token, which will automatically log the client in, even if the client
leaves the site and then accesses it later. They can also be used for storing the
client's user preferences or snippets of personalized information, and so on.

Cookies are necessary because the server has no other way of tracking a client
between requests. HTTP is called a stateless protocol. It doesn't contain an
explicit mechanism for a server to know for sure that two requests have come
from the same client. Without cookies to allow the server to add some uniquely
identifying information to the requests, things such as shopping carts would
become impossible to build, because the server would not be able to determine
which basket goes with which request.

Handling cookies with urllib

In order to work with cookies with ur11ib, we can use the nrtpcookieProcessor
handler from the ur11ib.request package:

>>> import urllib
>>> cookie_processor = urllib.request.HTTPCookieProcessor ()

If we want to access these cookies or be able to send our own cookies, we can
pass a cookiedar object of the cookie1ib module as a parameter to
the HTTPCookieProcessor initializer.

To read the cookies that the server sends us, just create an iterable object of the
cookiedar class from the http.cookiejar package. This will automatically extract the
cookies from the responses that we receive and then store them in our cookie jar:

>>> from http.cookiejar import CookieJdar

>>> cookie_jar = CookielJdar()

>>> cookie_processor = urllib.request.HTTPCookieProcessor (cookie_jar)

>>> opener = urllib.request.build_opener(cookie_processor)
>>> urllib.request.install opener(opener)

We can use our opener to make an HTTP request:

>>> opener.open('http://www.github.com')
<http.client.HTTPResponse object at Ox0OFFBD50>

Lastly, we can check that the server has sent us some cookies:

>>> len(cookie_jar)
3

Whenever we use the opener to make further requests, the wrrecookieprocessor
functionality will check our cookie_jar to see if it contains any cookies for that
site and will then automatically add them to our requests. It will also add any
further cookies that are received to the cookie jar.

Now, we are examining the cookies that GitHub sent us in the preceding section.
You can see that we have three cookie objects with the names '1ogged_in',
'_gh_sess"', and 'has_recent_activity'. AISO, we can see information related to the
GitHub domain as part of the mechanism that GitHub uses for finding out

whether we've logged in.

The expires attribute or cookie's lifespan represents the amount of time that the
server would like the client to hold on to the cookie for. Once the expiry date has
passed, the client can throw the cookie away and the server will send a new one
with the next request:

>>> cookies = list(cookie_jar)

>>> cookies
[Cookie(version=0, name='logged_in', value='no', port=None, port_specified=False, domai

Another interesting attribute is the nttpon1y flag, which indicates the client should
only allow access to a cookie when the access is part of an HTTP request or
response. The other methods should be denied access. This will protect the client
from cross-site scripting attacks. This is an important security feature, and when
the server sets it, our application should behaves accordingly. We can see that for
cookies with the names '1ogged_in' and '_gnh_sess', the nrTron1y flag is established to
none Value and the secure flag has the true value.

If the value is true, the secure flag indicates that the cookie should only ever be
sent over a secure connection, such as HTTPS. Again, we should honor this if
the flag has been set such that when our application sends requests containing
this cookie, it only sends them to HTTPS URLSs.

In this script, we can see how we can obtain cookies from a website. We are
using the same methods we have reviewed, and for each cookie in the list, we
print the name and the value. We can process the headers response to obtain
other cookies related to the website.

You can find the fOHOWiI’lg code in the extract_cookie_information.py file:

import http.cookiejar
import urllib
URL = 'https://github.com/'

def extract_cookie_info():
setup cookie jar
cookie_j = http.cookiejar.CookieJdar()
create url opener
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cookie_j))
now access without any login info
resp = opener.open(URL)
for cookie in cookie_j:
print ("Cookie: %s --> %s" %(cookie.name, cookie.value))
print ("Headers: %s" %resp.headers)

if __name__ == '__main__':
extract_cookie_info()

In this screenshot, we can see the execution of the previous script:

Cookie: 10ﬁged_in --> no

Cookie: _gh_sess --> emFXNHFsYVZ1bwNtZwlIpSz1yZndrRWduMTZNaO1RMHIyYXh1b25kNTFYwwk2aGuzM3Vv1isxv
IRVFDMjd4djuUxN 3dET0E‘IdeW823Uth zd6aS9yYMFRSR3FUMGXIRWNHawhzs0zroxdqY0lkY2zZiv24vTC9ST20vYVB2MKF
MdT1XxXZHk2cHIQSTF4Yz1jY0sveGOrubvwz 1 TuzTFpazhRWFIrcGhvsDlGenvkew03ek JRUENUMFIzdjdBRUprv1dkN3Z
TaEpHZWhLWXE2WEXpYTTXR21jVmIFUTO9LS1YTGhISy90Q1RHWmMxsejES5ckxGCO9RPTO%3D--d00e1c111bcd9ebcfaf
3e7880a4b3b7ec4ffa662

Cookie: has_recent_activity --> 1

Headers: Date: wed, 21 Nov 2018 18:39:49 GMT

Content-Type: text/html; charset=utf-8

Transfer-encoding: chunked

Connection: close

Server: GitHub.com

Status: 200 OK

cache-control: no-cache

vary: X-PJAX

Set-Cookie: has_recent_activity=1; path=/; expires=wed, 21 Nov 2018 19:39:49 -0000
Set-Cookie: logged_in=no; domain=.github.com; path=/; expires=sun, 21 Nov 2038 18:39:49 -000
0; secure; HttﬁOn]y
Set-Cookie: _gh_sess=emFXNHFsYVZ1bWNtZzwIpszlyZndrRWduMTZNaO1RMHIyYXhTh25kNTFYWWk2aGUzM3V1SXV

IRVFDde4djUxN3dETO?de82eUthZd6aS9yMFRSR3FUMGxIRWNHaWhZSOZrOquYO1kY221V24VTCQST20VYVBZMkF

MdT1XxZHk2cHIQSTF4Yz1jY0sveGOrubvwz11uzTFpazhRWFIrcGhvsDlGenvKew03ek JRUENUMFIzdjdBRUprv1dkN3Z
TaEPHZWhLWXE2WEXPYT1XR21jVmIFUTO9LS1YTGhISy90Q1RHWmMXseJESckxGCOIRPTO%3D--d00elclllbcd9ebcfaf
3e7880a4b3b7ec4ffa662; path=/; secure; Httponly

X-Request-Id: 9laa5c7a-0518-49d5-ae26-a9del5536082

Strict-Transport-Security: max-age=31536000; includesubdomains; preload

X-Frame-oOptions: deny

X-Content-Type-oOptions: nosniff

X-XSS-Protection: 1; mode=block

Referrer-Policy: origin-when-cross-origin, strict-origin-when-cross-origin

Expect-CT: max-age=2592000, report-uri="https://api.github.com/_private/browser/errors"
Content-Security-Policy: default-src 'none'; base-uri 'self'; block-all-mixed-content; conne

Cookie handling with requests

You can use the requests library to get cookies from the response object. With the
cookies property from that object, you can access the cookies list through a
request.cookies.RequestsCookieJar()bjECtZ

>>> response = requests.get('http://www.github.com')

>>> print(response.cookies)

<<class 'requests.cookies.RequestsCookieJar'>

[<Cookie logged_in=no for .github.com/>,6<Cookie _gh_sess=NORTMHpreVk3cUkONO5gbFNpNncyajl

Alternatively, you can use the session class, requests.session, and observe cookies
from the request and the response:

>>> import requests

>>> session = requests.Session()

>>> print(session.cookies.get_dict())

{z

>>> response = session.get('http://github.com')

>>> print(session.cookies.get_dict())
{'logged_in': 'no', '_gh_sess': 'ekM5WmVnV1ZkMXBEcXY1ZkdFNXJuRnltdkRiajhGTExXGRyt4NHNOQ1E

The session object has the same interface as the Requests module, so we use its
get() method in the same way as we use the requests.get() method. Now, any
cookies encountered are stored in the session Object.

In this script, we are going to extract cookies from the github.com domain. You can
find the following code in the get_cookies_github.py file:

#1/usr/bin/env python3
import requests

def check_httponly(c):
if 'httponly' in c._rest.keys():
return True
else:
return '\x1b[31mFalse\x1b[39;49m'

cookies = []
url = 'http://www.github.com'
response = requests.get(url)

for cookie in response.cookies:
print('Name:', cookie.name)
print('value:', cookie.value)
cookies.append(cookie.value)
if not cookie.secure:
cookie.secure = '\x1b[31mFalse\x1b[39;49m'
print('HTTPONly:', check_httponly(cookie), '\n')

print(set(cookies))

In this screenshot, we can see the execution of the previous script:

Name: Togged_in
Value: no
HTTPONTY:

Name: _gh_sess

Value: c3RHUNBAMUOLeVpavVWsROVZcOIwQkh3d3FGMGVBRCS5SUIVK2 TFNTRZCCIETVNINNVVOWN
DUCsXQmITbF14NnITaw94unkybEMydTR1bnRXVEFpYZFuvm1pV1FBTHI1SmT1MGXXYMNHMXB6Z3VNO
Ep3WGVZKzIweUdSL3R3UxzMz1d3TVNUaGSDaFv1duhvazkOdwlodDzvSnNGNE IncEATCOZWVFNXYmL
Wvmt1Wjz1bzzovjVjQzd1S1hwdmrYMGTDSUABUE95TVVNaWhgTDADK2huUTOILSIUOVNSMKEUTHRMS
zRSV1p%wklUTVpBPTO%3D--bde2a4b2048d7e45cee392ec9c3ca45576a4ala5

HTTPONTY:

Name: has_recent_activity
Value: 1
HTTPONTY:

{" C3RHUNB4MUO1eVpavWVSsROVZCOIwQkh3d3FGMGVBRCS 5SUIVK2 TFNTRZCCIETVNINNVVOWNDUCS X
QnIIbF14NnJTaw94wnkybEMydTR1bnRXVEFpYZFuVM]pV1FBTHI1SmT1MGXXYMNHMXB6Z3VNOEP3WG
VZKzIweUdSL3R3UX2MZ1d3TVNUaG5DaFv1duhvazk0dwlodDzvSnNGNE InCEATCOZWVFNXYmLWvmt i
WjZ1bzzoY7VjQzd1SThwdmrYMG1DSUBUE95TVVNaWhg TDADK2huUTO9LS1UOVNSMK tUTHRMSZRSV]
pZWk 1UTVpBPTO0%3D--bde2a4b2048d7e45¢cee392ec9c3cad5576adalas’, "no’, '1'}

Also, we can send cookies to a server with the cookies parameter. In this example,
we are using the service at http://httpbin.org/cookies to send the cookie with
the admin="True' value.

You can find the following code in the send_cookies.py file:

#1/usr/bin/env python3

import requests

cookies = []

url = 'http://httpbin.org/cookies'

cookies = dict(admin='True')

cookie_req = requests.get(url, cookies=cookies)
print(cookie_req.text)

http://httpbin.org/cookies

Handling HTTP Basic and Digest
Authentication with requests

In this section, we will learn about cookies and how we can use ur11ib and
requests t0 get cookies when we are interacting with a site that supports
identifying the user's action.

Introduction to authentication
mechanisms

The authentication mechanisms supported natively in the HTTP protocol are
HTTP basic and HTTP digest. Both mechanisms are supported in Python
through the requests library. The HTTP Basic Authentication mechanism is based
on forms and uses Base64 to encode the user composed with the password
separated by a colon: user: password.

The HTTP Digest Authentication mechanism uses MD5 to encrypt the user, key,
and realm hashes. The main difference between both methods is that basic only
encodes without actually encrypting, while digest encrypts the user's information
in MD5 format.

With the Requests module, we can connect with servers that support Basic and
Digest Authentication. With Basic Authentication, the information about the user
and password is sent in Base64 format, and with Digest the information about
the user and password is sent as a hash using the MD5 or SHA1 algorithms.

HTTP Basic authentication

Basic access authentication assumes that the client will be identified by a
username and a password. When the browser client initially accesses a site using
this system, the server replies with a response of type 401, which contains the
www-Authenticate tag with the sasic value and the name of the protected domain
(Sluih dS www-Authenticate: Basic realm = "www.domainProtected.com").

The browser responds to the server with an authorization tag, which contains the
asic Value and the concatenation in the Base64 encoding of the login, the colon
punctuation mark :, and the password (for example, authorization : Basic
b3dhc3A6cGFzcadvenq =). Assuming that we have a URL protected with this type of
authentication, in Python, with the Requests module, we can use the nrrreasicauth
class.

In this script, we are using the wrrreasicauth class and providing the user
credentials as a tuple.

You can find the fOHOWiI’lg code in the basic_authentication.py file:

#1/usr/bin/env python3

import requests

from requests.auth import HTTPBasicAuth

requests.get('https://api.github.com/user', auth=HTTPBasicAuth('user', 'password'))
requests provides a shorthand for this authentication method

response = requests.get('https://api.github.com/user', auth=('user', 'password'))
print('Response.status_code: '+ str(response.status_code))

if response.status_code == 200:

print('Login successful :'+response.text)

HTTP Digest authentication

HTTP Digest is a mechanism used to improve the Basic authentication process
in the HTTP protocol. MD?5 is normally used to encrypt the user information,
key, and realm, although other algorithms, such as SHA, can also be used in its
different variants, which improve security.

Digest access authentication extends Basic access authentication by using a one-
way hashing cryptographic algorithm (MD5) to first encrypt authentication
information, and then add a unique connection value.

This value is used by the client browser in the process of calculating the
password response in the hash format. Although the password is obfuscated by
the use of a cryptographic hash, and the use of the unique value prevents the
threat of a replay attack, the login name is sent as plain text.

Assuming we have a URL protected with this type of authentication, in Python,
it would be as follows:
>>> import requests

>>> from requests.auth import HTTPDigestAuth
>>> response = requests.get(protectedURL, auth=HTTPDigestAuth(user,passwd))

We can use this script to test access to a protected-resource Digest
Authentication. The script is similar to the previous one with Basic
Authentication. The main difference is the part where we send the username and
password over the pFOtECtEd URL, http://httpbin.org/digest-auth/auth/user/pass.

In this screenshot, we can see that with Digest Authentication, the authorization
request header is established with the username, reaim, and the wos algorithm:

http://httpbin.org/digest-auth/auth/user/pass

Name X Headers Preview Response Cookies Timing

. p— ¥ Request Headers view source

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8

Accept-Encoding: gzip, deflate

Accept-Language: es,en-US;q=0.9,en;g=0.8

Authorization: Digest username="user”, realm="me@kennethreitz.com", nonce="8cd8658bc2al4fdelcbalfo79cf2e035", uri="/digest-auth/auth/user/pass
algorithm=MD5, response="58a886d288260f3d56fffcc6ce888c3c”, opaque="8b7c2efed2bdc96ee2ebo71bade7fc3b”, qop=auth, nc=00000002, cnonce="dé6fed3
3d178@2"

Cache-Control: max-age=6

Connection: keep-alive

Cookie: stale after=never; fake=fake value

Host: httpbin.org

You can find the fOHOWiIlg code in the digest_authentication.py file:

#1/usr/bin/env python3
import requests
from requests.auth import HTTPDigestAuth

url = 'http://httpbin.org/digest-auth/auth/user/pass'

response = requests.get(url, auth=HTTPDigestAuth('user', 'pass'))
print('Response.status_code: '+ str(response.status_code))
if response.status_code == 200:

print('Login successful :'+str(response.json()))

Summary

In this chapter, we learned principles of the HTTP . We saw how to perform
numerous fundamental tasks with the ur11ib standard library and the third-party
Requests packages.

For each library, we learned about the structure of HTTP messages, HTTP status
codes, the different headers that we may encounter in requests and responses, and
how to interpret and use them to customize our requests. We also covered how to
handle cookies and how to submit data to websites in the manner of submitting a
form on a web page, and how to extract the parameters that we need from a
page's source code.

In the next chapter, we'll be employing what we've learned here to carry out
detailed interactions with different web services, query APIs for data, and upload
our own objects to the web.

Questions

1. Which function from the uri1ib package is used to create an object similar to
a file with which to read from the URL?

2. Which lines of information contain specific metadata about the response
and tell the client how to interpret it?

3. Which header allows us to identify the browser we are using in every
request?

4. Which modules allow us to extract links and parse text files formatted in
HTML?

5. Which module and service can we use to get information about the domain
we are analyzing, such as an IP address and location?

6. Which method can we use to define a proxy or intermediate machine

between our internal network and the external network, using the Requests

package?

What is the main purpose of using cookies?

Which object is used for working with cookies with the ur11ib package?

Which object is used for working with cookies with the Requests package?

Which mechanism is used to improve the Basic Authentication process by

using a one-way hashing cryptographic algorithm (MD5)?

S © © N

Further reading

You will find more information about the aforementioned tools and the official
Python documentation for some of the modules discussed at the following links:

e The official documentation for the ur11ib package: https://docs.python.org/3/1i
brary/urllib.request.html#module-urllib.request

e Some more examples for the ur11ib package: https://pythonspot.com/urllib-tuto
rial-python-3/

e The official documentation for the HTML parser package: nttps://docs.python
.org/3/1ibrary/html.parser.html

e The official documentation for the Requests package: http://docs.python-reque
sts.org/en/latest

e The official documentation for the authentication package: nttp://docs.python

-requests.org/en/master/user/authentication/

https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://pythonspot.com/urllib-tutorial-python-3/
https://docs.python.org/3/library/html.parser.html
http://docs.python-requests.org/en/latest
http://docs.python-requests.org/en/master/user/authentication/

Section 2: Interacting with APIs, Web
Scraping, and Server Scripting

In this section, you will learn how to interact with APIs, how to perform web
scraping with BeautifulSoup and Scrapy, and how to use server scripting to
interact with SMTP, SSH, FTP, SNMP, and LDAP servers.

This section contains the following chapters:

chapter 3, Application Programming Interface in Action
chapter 4, Web Scraping with BeautifulSoup and Scrapy
chapter 5, Engaging with Email

chapter 6, Interacting with Remote Systems

Application Programming Interface
in Action

When we talk about APIs in relation to Python, we usually refer to the classes
and the functions that a module presents to us for interact action. In this chapter,
we'll be talking about something different, that is, web APIs.

A web API is a type of API that you interact with through the HTTP protocol.
Nowadays, many web services provide a set of HTTP calls, which are designed
to be used programmatically by clients; they are meant to be used by machines
rather than by humans. Through these interfaces, it's possible to automate
interaction with the services and to perform tasks such as extracting data,
configuring the service in some way, and uploading your own content to the
service.

The following topics will be covered in this chapter:

Introduction to REST APIs

Introduction to JSON and the json module

Interacting with a JSON hybrid-REST API (Twitter)

Introduction to XML

Working with XML and a full REST API (Amazon S3 bucket) with the
Boto module

You will learn how to use Python to extract data from the major data formats
found on the web: HTML, XML, and JSON. An example of pulling useful
information from a downloaded web page will be used to illustrate HTML, while
interactions with REST APIs will be used to guide you through the essentials of
working with XML and JSON.

Technical requirements

Examples and source code for this chapter are available in the GitHub repository
in,ﬂ]e(meteros fOlderZhttps://github.com/PacktPublishing/Learning-Python-Networking-Sec

ond-Edition.

You will need to install Python's version 3 distribution on your local machine
and activate Twitter and Amazon Web Services accounts at the following links:

® https://developer.twitter.com

® https://console.aws.amazon.com

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition.
https://developer.twitter.com
https://console.aws.amazon.com

Introduction to REST APIs

REST is a fairly academic concept about how HTTP should be used for APIs.
Although the properties that an API should possess so as to be considered
RESTTful are quite specific, in practice pretty much any API that is based on
HTTP is now slapped with the RESTful label.

REST is any interface between systems that uses HT'TP to obtain data or
generate operations on that data in all possible formats, such as XML and JSON.
It is a booming alternative to other standard data exchange protocols such as

the Simple Object Access Protocol (SOAP), which has great capacity but also a
lot of complexity. Sometimes a simpler data manipulation solution such as REST
is preferable.

Advantages of using REST APIs

Some advantages of REST APIs are as follows:

Automation: APIs enable and facilitate automatic processes with great
ease. You can use an API of some web service in your own code to
automate tasks such as checking your timeline, posting a message, and so
on.

Separation between the client and the server: The REST protocol
completely separates the user interface of the server and the storage of data.
That has some advantages when making developments. For example, it
improves the portability of the interface to other platforms, increases the
scalability of the projects, and allows the different components of the
developments to evolve independently.

External database access: APIs allow website visitors to access remote,
password-protected databases. Your API password and username authorizes
permission for information to be exchanged between your website and the
APT's database-driven resources.

Visibility, reliability, and scalability: The separation between client and
server has an evident advantage: any development team can scale the
product without excessive problems. You can migrate to other servers or
make all kinds of changes in the database, as long as the data of each of the
requests is sent correctly. This separation makes it easier to have the
frontend and backend on different servers, and that makes the applications
more flexible when it comes to working.

The REST API is always independent of the type of platform or
language: The REST APIs always adapt to the type of syntax or platforms
with which they are working, which offers great freedom when changing or
testing new environments during development. With a REST API you can
have PHP, Java, Python, or Node.js servers. The only thing that is essential
is that the responses to requests are always made in the information
exchange language used, usually XML or JSON.

Introduction to JSON and the JSON
module

In this section, we will learn how to work with the JSON data format, how to
convert Python objects into the JSON data format, and how to convert them back
to Python objects in Python 3.7.

JSON corresponds to the way in which objects are defined in

JavaScript. JSON is a standard way of representing simple objects, such as lists
and dictionaries, in the form of text strings. Although it was originally developed
for JavaScript, JSON is language-independent and most languages can work
with it. It's lightweight, yet flexible enough to handle a broad range of data. This
makes it ideal for exchanging data over HTTP, and a large number of web APIs
use this as their primary data format.

Encoding and decoding with the
JSON package

We use the json module for working with JSON in Python. The json package
allows you to transform a Python object into a character string that represents
those objects in JSON format. Let's create a json representation of a Python list
by using the following commands:

>>> import json

>>> books = ['book1', 'book2', 'book3']

>>> json.dumps(books)
'["book1l", "book2", "book3"]'

The json.dumps() function allows you to transform a dictionary-type object as the
first parameter into a text string in JSON format. In this case, we can see the
JSON string appears to be identical to Python's own representation of a list, but
note that this is a string. You can confirm this by executing the following
commands:

>>> string_books = json.dumps(['book1', 'book2', 'book3'])

>>> type(string_books)
<class 'str'>

The json.10ads() function transforms a character string that contains information
in JSON format and transforms it into a dictionary Python-type object. Typically,
we will receive a JSON string as the body of an HTTP response, which can
simply be decoded using json.1loads() to provide immediately usable Python
objects:

>>> books = '["book1", "book2", "book3"]'

>>> list = json.loads(books)

>>> list

['book1', 'book2', 'book3']

>>> list[1]
'book2'

We can also use the load method to extract the Python object whose
representation in JSON format is in the books. json file. In the output, we can see
that the type returned is a dictionary when reading a JSON file.

You can find the following code in the read_books_json.py file:

import json

with open("books.json", "rt") as file:
books = json.load(file)

print(books)

print(type(books))

The following is the output for the execution of the previous script:

{'title': 'Learning Python 3', 'author': 'author', 'publisher': 'Packt Publishing',6 'pac
<class 'dict'>

Using dict with JSSON

JSON natively supports a mapping-type object, which is equivalent to a Python
dictionary. This means that we can work directly with dict through JSON. In this
example, we import the json package and we display the contents of the
dictionary-type object called books in JSON format:

>>> import json
>>> pooks = {'A':'Bookl1', 'B':'Book2', 'C':'Book3'}
>>> type(books)
<class 'dict'>
>>> pooks['A']
'Book1'
>>> books['B']
'Book2'
>>> pooks['C']
'Book3'
>>> pooks['D']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'D'
>>> json.dumps(books)
I{IIAII: llBook1||, IIBII: IIBOOkzll’ IICII: IIBook3ll}l
Now the text string resulting from the conversion will be linked to the name books_json.
>>> pooks_json = json.dumps(books)
>>> print(books_json)
{IIAII: llBook1||, IIBII: IIBOOkzll’ IICII: IIBook3ll}
The string with the representation of an object in JSON format will be transformed to a
>>> json.loads(books_json)
{'A': 'Book1', 'B': 'Book2', 'C': 'Book3'}

Interacting with a JSON hybrid-
REST API (Twitter)

In this section, we will learn how to manage and interact with the Twitter API in
Python 3.7.

The Twitter API

The Twitter API provides access to all the functions that we may want a Twitter
client to perform. With the Twitter API, we can create clients that search for
recent Tweets, find out what's trending, look up user details, follow users'
timelines, and even act on behalf of users by posting tweets and sending direct
messages for them.

The Twitter module is based on the Twitter REST API located at https://developer

.twitter.com/en/docs/tweets/search/api-reference.html.

You can install it with the pip install twitter command:

Collecting twitter
Downloading https://files.pythonhosted.org/packages/85/e2/f602e3f584503f03e0389491b2514

100% | NN | 615 G55KB/S

Installing collected packages: twitter
Successfully installed twitter-1.18.0

Now we can import the twitter module and show information about it with the
help function:

>>> import twitter
>>> help(twitter)

This gives us the following output:

https://developer.twitter.com/en/docs/tweets/search/api-reference.html

>>> help(twitter)
Help on package twitter:

NAME
twitter - The minimalist yet fully featured Twitter API and Python toolset.

DESCRIPTION . .
The Twitter and TwitterStream classes are the key to building your own
Twitter-enabled appTlications.

The Twitter class

The minimalist yet fully featured Twitter API class.

Get RESTful data by accessing members of this class. The result
is decoded python objects (11sts and dicts).

The Twitter API is documented at:
https://dev.twitter.com/overview/documentation
The Tist of most accessible functions is listed at:

https://dev.twitter.com/rest/public

Also, we can see some examples of using the API:

Examples::
from twitter import *

t = Twitter(
auth=0Auth(token, token_secret, consumer_key, consumer_secret))

Get your "home" timeline
t.statuses.home_timeline()

Get a particular friend's timeline
t.statuses.user_timeline(screen_name="bi1lybob™)

to pass in GET/POST parameters, such as "count’
t.statuses.home_timeline(count=5)

to pass in the GET/POST parameter "id" you need to use _id’
t.statuses.oembed(_1d=1234567890)

Update your status
t.statuses.update(. _
status="Using @sixohsix's sweet Python Twitter Tools.")

send a direct message
t.direct_messages.new(
user="hillybob",
text="I think yer swell!™)

Registering your application for the
Twitter API

We need to create a Twitter account and register our application with the
account. Then we will receive the authentication credentials for our app. To
create an account, go to http://www. twitter.com and complete the signup process.
Do the following to register your application once you have a Twitter account:

1. Log in to http://apps. twitter.com With your main Twitter account, and then
select Create New App.

2. Fill out the new app form. Note that Twitter application names need to be
unique globally.

3. Go to the app's settings and then change the app permissions to have read
and write access. You may need to register your mobile number to enable
this.

Now we need to get our access credentials by following the next steps:

1. Go to the Keys and Access tokens section and then note the Consumer key
and the Access Secret

2. Generate an Access token

3. Note down the Access token and the Access token secret (Access token
secret is generated form the Consumer key and Access secret)

https://twitter.com/
http://apps.twitter.com

Authenticating requests with OAuth

We now have enough information for authenticating requests. Twitter uses an
authentication standard called OAuth, version 2.0. It's described in detail at nttp:/
/oauth.net/.

OAuth credentials comprise of two main elements, consumer and access. The
consumer element identifies our application and the access element proves that
the account the access credentials came from authorized our app to act on its
behalf. Twitter lets us acquire the access credentials directly from the dev. twitter.
com interface.

The OAuthLib library (https://oauthlib. readthedocs.io/en/latest) is a library that
allows authentication to a server using the OAuth protocol. Sites such as
Facebook, Twitter, LinkedIn, GitHub, and Google, among others, use this
protocol.

The Requests module has a library called requests-oauthlib (http://requests-oauthlib.
readthedocs.io/en/latest), Which can handle most of the complexity for us. This is
available on PyPI, so we can download and install it with pip. This library allows
access to sites that use this protocol using OAuthLib:

| $ pip install requests-oauthlib
This authentication process is demonstrated in the Requests-

OAuthlib documentation, which can be found at: https://requests-oauthlib.readthedo

cs.org/en/latest/oauthl_workflow.html.

http://oauth.net/
https://developer.twitter.com/
https://oauthlib.readthedocs.io/en/latest
http://requests-oauthlib.readthedocs.io/en/latest
https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html

Collecting information from Twitter

Twitter has a REST API that allows you to control an account and perform very
specific searches using several types of filters. To make queries, it is necessary to
have an application on Twitter linked to an account and a series of values that
correspond to the OAuth authentication tokens.

The Twitter API has a fairly broad list of functions that can be invoked from any
client, be it a custom-developed program or even a web browser, since being an
API REST, it uses the HTTP protocol as a transfer protocol.

The documentation on the Twitter API is available at https://dev.twitter.com/rest/p

ublic:

Search Tweets Filter realtime Tweets
]]

Use the Search API to find historical Tweets. Free to Get only the Tweets you need by using advanced filtering
enterprise versions available. tools with the realtime streaming API.

Account Activity API Direct Message API

Have 15+ account activities delivered to you in realtime Build personalized customer experiences with our Direct
via a webhook connection. Message platform.

In addition to the REST API, there are also some other libraries, such as the
streaming API and Twitter for websites. More details about these and other

https://dev.twitter.com/rest/public

libraries can be found at the fOHOWiIlg link: nttps://dev.twitter.com/overview/document

ation.

https://dev.twitter.com/overview/documentation

A Twitter client

In this example, we will connect to the Twitter API, which uses the OAuth
protocol. You'll need to provide a credentials file with the keys you have taken
down from the Twitter app configuration. This is the format of credentiais.txt file,
where we use a new line for each key or token:

CONSUMER_KEY
CONSUMER_SECRET
OAUTH_TOKEN

OAUTH_TOKEN_SECRET

You can find the following code in the twitter_connect.py file:

1/usr/bin/python3
import requests, requests_oauthlib, sys

def init_auth(file):
(CONSUMER_KEY, CONSUMER_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) = open(file, 'r').reac
auth_obj = requests_oauthlib.0Auth1(CONSUMER_KEY, CONSUMER_SECRET,OAUTH_TOKEN, OAUTH
if verify_credentials(auth_obj):
print('validated credentials OK'")
return auth_obj
else:
print('Credentials validation failed')
sys.exit(1)

def verify_credentials(auth_obj):
url = 'https://api.twitter.com/1.1/account/verify_credentials.json'
response = requests.get(url, auth=auth_obj)
return response.status_code == 200

if __name__ == '__main__"':
auth_obj = init_auth('credentials.txt")

In the previous script, we create the OAuth1 authentication instance, auth_obj, in
the init_auth() function by using our access credentials. We pass this to Requests
whenever we need to make an HTTP Request, and through it, Requests handles
the authentication. You can see an example of this in the verify_credentials()
function.

In the verify_credentials() function, we test whether Twitter recognizes our
credentials. The URL that we're using here is an endpoint that Twitter provides
for testing whether our credentials are valid. It returns an HTTP 200 status code if

they are valid or a 4e1 status code if not.

Retrieving tweets from a timeline

In the previous script, we can add a get_mentions() function for checking and
retrieving new tweets from our mentions timeline. For this task, we can use the
timeline EIij(ﬁIHZathttps://developer.twitter.com/en/docs/tweets/timelines/api-referenc

e/get-statuses-mentions_timeline.html.

You can find the following code in the twitter_mentions.py file:

#! /usr/bin/python3
import requests

import requests_oauthlib
import sys

import json

def init_auth(file):
(CONSUMER_KEY, CONSUMER_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) = open(file, 'r').reac
auth_obj = requests_oauthlib.0Auth1(CONSUMER_KEY, CONSUMER_SECRET,
OAUTH_TOKEN, OAUTH_TOKEN_SECRET)
if verify_credentials(auth_obj):
print('validated credentials OK'")
return auth_obj
else:
print('Credentials validation failed')
sys.exit(1)

def verify_credentials(auth_obj):
url = 'https://api.twitter.com/1.1/account/verify_credentials.json'
response = requests.get(url, auth=auth_obj)
return response.status_code == 200

def get_mentions(since_id, auth_obj):
params = {'count': 200, 'since_id': since_id, 'include_rts': 0, 'include_entities': '
url = 'https://api.twitter.com/1.1/statuses/mentions_timeline.json'
response = requests.get(url, params=params, auth=auth_obj)
#Checking if the request is successful.

#It will raise an HTTPError if the request returned an unsuccessful status code.
response.raise_for_status()
return json.loads(response.text)

if __name__ == '__main__':
auth_obj = init_auth('credentials.txt")
since_id = 1

for tweet in get_mentions(since_id, auth_obj):
print(tweet['text'])

Using get_mentions(), we check for and download any tweets that mention our app
account by connecting to the statuses/mentions_timeline.json endpoint. We supply a
number of parameters, which Requests passes on as a query string. These
parameters are specified by Twitter and they control how the tweets will be

https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-mentions_timeline.html

returned to us. They are as follows:

e 'count': This specifies the maximum number of tweets that will be returned.
Twitter will allow 200 tweets to be received by a single request made to this
endpoint.

® ‘include_entities': This is used for trimming down some extraneous
information from the tweets retrieved.

® ‘include_rts': This tells Twitter not to include any retweets. We don't want
the user to receive another time update if someone retweets our reply.

e 'since_id': This tells Twitter to only return the tweets with IDs above this
value. Every tweet has a unique 64-bit integer ID, and later tweets have
higher value IDs than earlier tweets. By remembering the ID of the last
tweet we processed and then passing it as this parameter, Twitter will filter
out the tweets that we've already seen.

Searching tweets

In the previous script, we can add a search() function to search for and retrieve
tweets from a specific search parameter. In this example, we are using the 'q'
parameter with the 'python' value as search term. For this task, we can use the
SeaFCh.erujp(ﬁIHZathttps://developer.twitter.com/en/docs/tweets/search/api-reference/get
-search-tweets.html. The enfh)Oint(https://api.twitter.Com/1.1/search/tweets.json)
requires the search term as a mandatory parameter.

You can find the fOHOWiI’lg code in the twitter_search_tag.py file:

#! /usr/bin/python3

import requests

import requests_oauthlib
import sys

import json

def verify_credentials(auth_obj):
url = 'https://api.twitter.com/1.1/account/verify_credentials.json'
response = requests.get(url, auth=auth_obj)
return response.status_code == 200

def search(auth_obj):
params = {'q': 'python'}
url = 'https://api.twitter.com/1.1/search/tweets.json'
response = requests.get(url, params=params, auth=auth_obj)
return response

if __name__ == '__main__"':
auth_obj = init_auth('credentials.txt")
response = search(auth_obj)
print (json.dumps(response.json(),indent = 2))

In this screenshot, we can see the execution of the previous script:

https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html
https://api.twitter.com/1.1/search/tweets.json

validated credentials OK
"statuses™: [

"created_at": "Tue Dec 04 18:02:08 +0000 2018",
"id": 1070015412702732289,
"id_str": "1070015412702732289",
"text": "My workflow for developing Python packages is *completely* different from how I approach data analysis.\n\nI'd never\u
26 https://t.co/uMFaGJvoSp",
'truncated": true,
"entities"
"hashtag [
"symbols": [],
"user_mentions": [],
"uE'Is": [
"url": "https://t.co/uMFa6ivo8p",
"expanded_ur1": "https://twitter.com/i/web/status/1070015412702732289",
"display_url": "twitter.com/i/web/status/1\u2026",
"indices": [
116,
139
]
5
]

by

"metadata”: {
"iso_language_code":
"result_type": "recent"

Consuming the Twitter REST API
with Python

REST services can be used with standard HTTP Requests and, in any case, if the
service requires it, the requests must contain specific headers that allow
authentication and authorization processes.

Starting with this, there are several possibilities to create a Python script that can
consume a REST service, for example using the ur11ib module or other libraries
written by third parties such as ur11ib3 Or requests.

There are other modules for working with Twitter from Python, such as Tweepy
(https://github.com/tweepy/tweepy) and PythOH-T\NittEl‘ (https://github.com/bear/python-
twitter).

To access the Twitter API, it is necessary to have developer credentials. These
credentials can be obtained from nttps://apps.twitter.con when creating a new
application. The data that will be used includes the following:

e Consumer key

e Consumer secret

e OAuth token

e OAuth token secret

These keys will be needed to make the connection with the API through OAuth
and allow our application to use our account, since to access certain
functionalities of the API we will have to be logged in.

After ensuring the necessary authentication values correspond to the application
previously created, the next step is to use the library to consume some of the
REST services available in the Twitter API. To do this, the first step is to create
d twitter.oauth.OAuth ObjECt.

If the authentication values are correct, the instance of the API class will contain
all the methods necessary to consume the Twitter rest services.

https://github.com/tweepy/tweepy
https://github.com/bear/python-twitter
https://apps.twitter.com

Connecting with the Twitter API

To be able to use the Twitter API, it is necessary to create an object based on the
twitter.Twitter Class, which will result in an object capable of interacting with the
Twitter API that must be defined using the auth parameter:

|>>> twitter.Twitter (auth = <object twitter.oauth.OAuth>)

The argument for the auth parameter must be an instantiated object of the
twitter.oauth.oAuth class for which the Twitter access credentials must be entered:

|>>> twitter.oauth.OAuth(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

For example, this function allows you to read the credentials from a file whose
path will be entered as a parameter and to return a twitter.Twitter Object with an
active connection to the Twitter API:

def twitter_connection(path_file):
with open(path_file, 'r') as file:

(CONSUMER_KEY,

CONSUMER_SECRET,

ACCESS_TOKEN,

ACCESS_TOKEN_SECRET) = archivo.read().splitlines()

auth = twitter.oauth.OAuth(ACCESS_TOKEN,
ACCESS_TOKEN_SECRET,
CONSUMER_KEY,
CONSUMER_SECRET)

return twitter.Twitter (auth=auth)

In this case, the credentials will be read from the data/credentials.txt file. We can
invoke the previous function with the credentials file as a parameter:

|>>> twitter = twitter_connection("data/credentials.txt")

From here, you can create scripts that allow you to extract information of
interest, such as taking a list of tweets from a specific account or searching for a
specific hashtag.

The following example allows you to extract the first 10 tweets that match the
n#python" hashtag. You can find the following code in the get_info_account.py file:

import twitter

def get_info_twitter(tw):

if tw is not None:
query = tw.search.tweets(g="#python", lang="en", count="10")["status
for g in query:
for key,value in g.items():
if(key=="text'):
print(value+'\n'")

def main():
try:
tw = twitter_connection("credentials.txt")
get_info_twitter(tw)
except Exception as e:

print(str(e))
if __name__ == "_ _main__":
main()

In this screenshot, we can see the execution of the previous script:

RT @SecurityTube: @ppolstra #windowsForensics Book https://t.co/2rlRwbIawD Learn to create, mount & analyze file
#python..

RT @Real_shit_News: weather sent by #Raspberrypi, #Python and #Yahoo weather API. vahoo API is pretty good.
RT @Real_shit_News: #RaspberryPI and #Python Weather App. #Twython

#RaspberryPI and #Python weather App. #Twython

wWeather sent by #Raspberrypi, #Python and #Yahoo wWeather API. Yahoo API is pretty good.

RT @Ronald_vanLoon: #MachineLearning Is Not Magic: It's A1l About Math, stats, Data, and Programming
by @janakiramm @thenewstack

Read f..

@pﬁo}stra #windowsForensics Book https://t.co/2rlRwbIawD Learn to create, mount & analyze filesystem images with
sghvlp

Python Game Development™ : Build 11 Total Games
0 https://t.co/uSOPMHBR]3

#python #GameDevelopment https://t.co/bLO1FOBUEY

eS"]

system images wi

.. https://t.co/N

Accessing Twitter API resources

The created object has access to the GET and POST resources of the Twitter
API, which are listed in the reference index: nttps://developer.twitter.com/en/docs/ap

i-reference-index.

The Twitter package transforms the responses of the Twitter API, of JSON
format, to a Python object. The Twitter API uses the JSON format by default to
transmit information, but the Twitter module transforms the information into a
dictionary-type object. This query returns the last two tweets related to Python in
the English language:

>>> search= twitter.search.tweets(q="python", lang="en", count="2")
>>> for item in search.keys():
>>> print(item)

In this script, we can see an example of an application that consumes the Twitter
API, gets a search term from the user input, and saves the results in a JSON
file. You can find the following code in the twitter_search.py file:

#! /usr/bin/python3
import twitter, json

def twitter_connection(file):
'''Create the object from which the Twitter API will be consumed, reading the credent
(CONSUMER_KEY, CONSUMER_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) = open(file, 'r').reac
auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, CONSUMER_KEY, CONSUMER_SECF
return twitter.Twitter (auth=auth)

def recently_ tweets(tw, search_term):
'''Get the last 10 tweets in English from a specific search.'''
search = tw.search.tweets(g=search_term, lang="en", count="10")["statuses"]
print(search)
return search

def save_tweets(tweets, file):
'''Store the tweets in JSON format in the specified file.'''
with open(file, "w") as f:
json.dump(tweets, f, indent=1)

def main(file="'tweets.json'):

try:
search_term = input("Enter the search term in twitter : ")
tw = twitter_connection("credentials.txt")
tweets = recently_tweets(tw, search_term)
save_tweets(tweets, file)

except Exception as e:
print(str(e))

https://developer.twitter.com/en/docs/api-reference-index

if __name__ == "_ _main__":
main()

Streaming APIs with Tweepy

We can use the tweepy library to connect to the Twitter API. In this example, we
will use a streaming API to process data in real time.

In the same way as we have done before with the Twitter module, we can create
our function for connecting with OAuth credentials:

def twitter_connection(file):
'''Create the object from which the Twitter API will be consumed,
reading the credentials from a file, defined in path parameter.'''
(CONSUMER_KEY, CONSUMER_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) = open(file, 'r').reac
We instanced the authorization manager
auth = tweepy.OAuthHandler (CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET)
return (tweepy.API(auth), auth)

The first thing we can do is create a class inherited from tweepy.streamtistener.
This will be the class that is listening the flow of tweets and will process a tweet
that matches the term we are looking for:

class StreamListener(tweepy.StreamListener):

'''When a Tweet matches our targetTerms it will be passed to this function'''
def on_data(self, data):

data = json.loads(data)

print(data['text'])

return True

If we reach the limit of calls alert and wait 10 "
def on_limit(self, track):

print('[!] Limit: {0}').format(track)

sleep(10)

In case of an error, interrupt the listener
https://dev.twitter.com/overview/api/response-codes
def on_error(self, status):
print('[!] Error: {0}').format(status)
return False

We can create a function that uses the Tweepy API to extract information about
trending topics from Twitter:

def getTrendingTopics(woeid=1):
trends = api.trends_place(1)[0]['trends']
We extract the name of the trends and return them as a list
trendList = [trend['name'] for trend in trends]
return trendList

To tell the listener what our keywords will be and for it to be able to use them,
we will add the following function to our project:

def streamAPI(auth):
instantiate our listener
1 = StreamListener()
We start the streamer with the OAuth object and the listener
streamer = tweepy.Stream(auth=auth, listener=1)
We define the terms that we want to track
targetTerms = [‘python’]
#We start the streamer, passing it our trackTerms
streamer.filter(track=targetTerms)

We'll call it, passing it our authentication auth object in the following way:

try:
streamAPI(auth)

except KeyboardInterrupt, e:
exit(1)

In this screenshot, we can see the execution of the twitter_stream.py script used
to track Python terms when they appear in the Twitter timeline, and tweets
tagged with Python:

*] Starting streamer:

RT @mallorymrice: Started Python for Everybody this morning, @drchuck your so
rting hat made me even more excited to learn #python in your @.

RT @tensorflow_fan: Machine Learning - The Hithhiker’s Guide to Python

0 https://t.co/NChPIJAIE2
#DeepLearning #a1 https://t.co/1EhroLz6..

RT @sabahAlzahrani9: 00 00000000
00000 Data Science

000 0000 000 R OO Python

0000 000000000 MachineLearning

10000000..

P.S. When we were kids, my brother @jdhutch64 and I once memorized and perfor

led the entire Monty Python Argument C.. https://t.co/QqFHI9F4He
(00000000000000000000D00000000D0000

Python 00000000000 0000000000O00D00D0OOO
ttps://t.co/BvgGoXMTO9

00000000000... https://t.co/BM80zZnUYo0]
python

#peing #000 https://t.co/swQBKS6wW2

@jimbobbennett @tanurai I've always liked computing in Y6 I won an animation
ompetition. In Y7 I enjoyed program. https://t.co/41soApKgdc

RT @Franktti19471: @Accountant_R_Us @Brexitknight @Stevethsoundman But German
y’'s debt was written off in her last government before Major c.
pythonCGIN00000000000000SEDDNDNS

Nickeh30 @elgatogaming Use code Python in item shop please [

Introduction to XML

In this section, we will learn how to work with XML documents, parse them, and
extract data from them by using the ElementTree API in Python 3.7. We're going
to start by introducing how XML is used in Python, and then we will explain an
XML-based API called the Amazon S3 API.

Getting started with XML

XML corresponds to a general standard to serialize data of diverse types in a
structured way. The XML standard was published in 1996 by W3C and is used
intensively to define data structures.

An XML document is known as an element and contains data structures based
on content delimited by markers (markups). These markers correspond to labels
(tags) that indicate the beginning and end of the structure they delimit.

The XML is a way of representing hierarchical data in a standard text format.
When working with XML-based web APIs, we'll be creating XML documents
and sending them as the bodies of HTTP Requests and receiving XML
documents as the bodies of responses.

The XML APIs

There are two main approaches to working with XML data:

e Reading a whole document and creating an object-based representation of
it, then manipulating it by using an object-oriented API

e Processing the document from start to end, and performing actions as
specific tags are encountered

For now, we're going to focus on the object-based approach by using a Python
XML API called ElementTree. The second so-called pull or event-based
approach (also often called SAX, as SAX is one of the most popular APIs in this
category) is more complicated to set up, and is only needed for processing large
XML files.

Processing XML with ElementTree

The xm1 package is part of the Python standard library and contains in turn a
series of packages and modules specializing in the management and
manipulation of keyed documents.

The xm1.etree.elementTree package specializes in XML documents and contains
various classes and functions that can be used for that purpose.

Let's see how we may create the previously mentioned example XML document
by using eilementtree. Open a Python interpreter and run the following commands:
>>> import xml.etree.ElementTree as ET
>>> root = ET.Element('root')

>>> ET.dump(root)
<root />

We start by creating the root element, that is, the outermost element of the
document. The <root /> representation is an XML shortcut for <root></root>. It's
used to show an empty element, that is, an element with no data and no child
tags.

We create the <root> element by creating a new eiementTree.element Object. You'll
notice that the argument we give to e1ement() is the name of the tag that is created.
Our <root> element is empty at the moment, so let's put something in it:
>>> book = ET.Element('book')
>>> root.append(book)

>>> ET.dump(root)
<root><book /></root>

Now we have an element called <book> in our <root> element. When an element is
directly nested inside another, then the nested element is called a child of the
outer element, and the outer element is called the parent. Similarly, elements that
are at the same level are called siblings.

Let's add another element, and this time let's give it some content. Add the
following commands:

>>> name = ET.SubElement(book, 'name')

>>> name.text = 'Bookl'
>>> ET.dump(root)
<root><book><name>Bookl</name></book></root>

Now our document is starting to shape up. We do two new things here: first, we
use the shortcut class method eiementTree.subelement() to create the new <name>
element and insert it into the tree as a child of <book> in a single operation.
Second, we give it some content by assigning some text to the element's text
attribute.

We can remove elements by using the remove() method on the parent element, as
shown in the following commands:

>>> temp = ET.SubElement(root, 'temp')

>>> ET.dump(root)
<root><book><name>Book1</name></book><temp /></root>
>>> root.remove(temp)

>>> ET.dump(root)
<root><book><name>Bookl</name></book></root>

Pretty printing

It would be useful for us to be able to produce output in a more legible format,
such as the example shown at the beginning of this section. To do this, we can
use another XML API, minidom, provided by the standard library.

We can use the following commands to print some nicely formatted XML.:

>>> import xml.dom.minidom as minidom

>>> print(minidom.parseString(ET.tostring(root)).toprettyxml())

<?xml version="1.0" ?>

<root>
<book>

<name>Book1</name>
</book>
</root>

Reading an XML file

The xm1.etree.elementTree module contains the eiement class, which allows you to
inspect an XML document by accessing its methods and attributes, as well as the
indexing of its elements.

In this example, we are reading an XML file called books.xm1:

<?xml version="1.0" encoding="UTF-8"7?>
<root>

<book id="book1l" name="Learning Python 2">
<title>Learning Python 2</title>
<publisher>Packt Publishing</publisher>
<numberOfChapters>13</numberOfChapters>
<pageCount>500</pageCount>
<author>Authoril</author>

<chapters>

<chapter>
<chapterNumber>1</chapterNumber>
<chapterTitle>Chapteri</chapterTitle>
<pageCount>30</pageCount>

</chapter>

<chapter>
<chapterNumber>2</chapterNumber>
<chapterTitle>Chapter2</chapterTitle>
<pageCount>25</pageCount>

</chapter>

</chapters>

</book>

<book id="book2" name="Learning Python 3">
<title>Learning Python 3</title>
<publisher>Packt Publishing</publisher>
<numberOfChapters>10</numberOfChapters>
<pageCount>400</pageCount>
<author>Author2</author>

<chapters>

<chapter>
<chapterNumber>1</chapterNumber>
<chapterTitle>Chapteri</chapterTitle>
<pageCount>30</pageCount>

</chapter>

<chapter>
<chapterNumber>2</chapterNumber>
<chapterTitle>Chapter2</chapterTitle>
<pageCount>25</pageCount>

</chapter>

</chapters>

</book>

</root>

We can use the parse method from the eiementtree module for reading an XML
file, passing as an argument the path of the XML file. This is the definition of the

parse method:

| Elementtree.parse('<path_xml_file>")

In this example we are using the parse method to process the books.xm1 file:

>>> import xml.etree.ElementTree as ET
>>> books = ET.parse("books.xml")

With the getroot() method, we can access the node root:

>>> root = books.getroot()
>>> print(root)
<Element 'root' at Ox02F5DA20>

With the tag property, we can access the string identifying what kind of data this
element represents:

>>> print(root.tag)
root

By iterating over each element, we can access attributes with the attrib property
and access the text of a final element:

>>> for child in root:

>>> print(child.tag, child.attrib)

>>> for element in child:

>>> print(element.tag, element.text)

This is the output of the previous commands, where we can see the values of
each book element:

book {'id': 'bookl1', 'name': 'Learning Python 2'}
title Learning Python 2

publisher Packt Publishing

numberOfChapters 13

pageCount 500

author Authoril

book {'id': 'book2', 'name': 'Learning Python 3'}
title Learning Python 3

publisher Packt Publishing

numberOfChapters 10

pageCount 400

author Author2

If we need access to the contents of a specific attribute, we can use the form

child.attrib['name_attribute']:

>>> for child in root:
>>> print(child.tag, child.attrib['id'],child.attrib['name'])

book bookl Learning Python 2
book book2 Learning Python 3

In the following script we can see how we can iterate over the books.xm1 file. You
can find the following code in the books_iterate_xm1.py file:

from xml.etree.cElementTree import iterparse

def books(file):
for event, elem in iterparse(file):

if event == 'start' and elem.tag == 'root':

books = elem
if event == 'end' and elem.tag == 'book':

print('{e}, {13}, {23}, {3}, {4}'. format(elem.findtext('title'), elem.findtex
if event == 'end' and elem.tag == 'chapter':

print('{e}, {1}, {2}'. format(elem.findtext('chapterNumber'), elem.findtext(

if __name__ == '__main__':
books(open("books.xml"))

This is the output of the previous script, where we can see the values of each
book element and the chapter elements for each book:

1,Chapter1, 30
2,Chapter2, 25
Learning Python 2,Packt Publishing,13,500,Author1
1,Chapter1, 30
2,Chapter2, 25
Learning Python 3,Packt Publishing,16,400,Author2

Working with XML and a full REST
API (Amazon S3 bucket) with the
Boto module

In this section, we will learn how to manage and interact with Amazon S3
bucket in Python 3.7 with the S3 API and the botos package.

The Amazon S3 API

Amazon S3 is a data storage service that provides a simple API for automated
access. It's one of the many cloud services in the growing AWS portfolio.

You'll notice that in the S3 documentation and elsewhere, the S3 web API is
referred to as a REST API. The S3 API is actually among the most RESTful
high-profile APIs, because it appropriately uses a good range of the HTTP
methods.

Registering with AWS

Before we can access S3, we need to register with AWS. It is the norm for APIs
to require registration before allowing access to their features. You can use either
an EXiStng Amazon account or create a new One at https://console.aws.amazon.com.

When you register with Amazon you will get a lot of services. In this section, we
will focus on the S3 Storage service:

l Group AZ

History [

[AM

% @ Compute

Console Home EC2

Billing Lightsail &7
ECS

Lambda
EKS
Lambda
Batch
Elastic Beanstalk
ECR

B
Storage
53

EFS
FSx
S3 Glacier

Blockchain

Amazon Managed Blockchain

Satellite

Ground Station

Management &
Governance

CloudWatch

AWS Auto Scaling

CloudFormation
CloudTrail

Config

OpsWorks

Qaniira Matalnn

Analytics

Athena

EMR

CloudSearch
Elasticsearch Service
Kinesis

QuickSight &

Data Pipeline

AWS Glue

MSK

Security, Identity, &
Compliance

AM

Resource Access Manager

Customer Engagement

Amazon Connect

Simple Email Service

Business Applications

Alexa for Business
Amazon Chime (2

WorkDacs

Desktop & App Streaming

WorkSpaces
AppStream 2.0

https://console.aws.amazon.com

Authentication with AWS

Most web APIs we use will specify a way of supplying authentication
credentials that allow requests to be made to them, and typically every HTTP
Request we make must include authentication information. APIs require this
information for the following reasons:

To ensure that others can't abuse your application's access permissions

To apply per-application rate limiting

To manage the delegation of access rights, so that an application can act on
the behalf of other users of a service or other services

Collection of usage statistics

All of the AWS services use an HTTP Request-signing mechanism for
authentication. To sign a request, we hash and sign unique data in an HTTP
Request using a cryptographic key, then add the signature to the request as a
header. By recreating the signature on the server, AWS can ensure that the
request has been sent by us, and that it doesn't get altered in transit.

The AWS signature-generation process is currently on its fourth version, and an
involved discussion would be needed to cover it, so we're going to employ a
third-party library, that is, requests-aws4auth. This is a library for the Requests
module that automatically handles signature generation for us. It's available at
PyPI. So, install it on a command line with the help of pip:

|$ pip install requests-aws4auth

Once you are logged in to the Amazon console at https://console.aws.amazon.com,
you need to perform the steps shown here:

1. Click on your name in the top-right, and then choose Security Credentials.

2. Click on Users, which is in the list on the left-hand side of the screen, and
then click on the Create New Users button at the top.

3. Type in the username, and make sure that Generate an Access Key for each
user has been checked, and then click on the Create button in the bottom
right-hand corner.

4. You'll see a new page saying that the user has been created successfully.

https://console.aws.amazon.com

Click on the Download credentials button at the bottom-right corner to
download a CSV file, which contains the Access ID and Access Secret for
this user. These are important because they will help in authenticating to the
S3 APL.

5. In the Policies section, a list of policy templates will appear. The policy we
are going to use is the AmazonS3FullAccess:

. YK Policy actions c % 0

Dashboard Filter policies v Q Search Showing 470 results
Groups
Policy name v Type Used as Description
Users
Roles » AmazonRoute53ReadOnlyAc... AWS managed ne Provides read only access to all Amazon Route 53 via the AWS Mana...
Policies o v AmazonS3FullAccess AWS managed € Provides full access to all buckets via the AWS Management Console.
|dentity providers
F AmazonS3FullAccess
Account settings Provides full access to all buckets via the AWS Management Console.
Credential report : ay | {}IsoN
Encryption keys Q Filter
Service v Access level Resource Request condition

Allow (1 of 165 services) Show remaining 164

S3 Full access All resources None

6. Scroll down this list and select the AmazonS3FullAccess policy, as shown
in the following screenshot:

(+CN WA | Policy actions ¥ c % e

Filter policies + Showing 4 results

Polic’ Type Used as Description
» AmazonDMSRedshiftS3Role AWS managed Provides access to manage S3 settings for Redshift endpoints for DMS.
(] » AmazonS3FullAccess AWS managed one Provides full access to all buckets via the AWS Management Console.
» AmazonS3ReadOnlyAccess AWS managed Jone Provides read only access to all buckets via the AWS Management Con...
» QuickSightAccessForS3Stora... AWS managed None Policy used by QuickSight team to access customer data produced by S...

7. Finally, select the user or the user group and click on the Attach policy
button. Now, our selected user or the user group has full access to the S3
service:

Attach the policy to users, groups, or roles in your account

Filter: Filter v Q Search Showing 9 resuits
Name » Type »
T G e o B B S S e D P R R e o eed =
lambda_basic_execution Role
myproject-dev Role
talks-app-dev Role
todo-app-dev Role
virtualenvzappa-dev-ZappaLambdaExecutionRole Role
v group Group

Cancel Attach policy

S3 buckets and objects

S3 organizes the data that we store in it using two concepts: buckets and objects.
An object is the equivalent of a file, that is, a blob of data with a name, and a
bucket is equivalent to a directory. Every bucket has its own URL of the

form http://s3.<region>.amazonaws.com/<bucketname>.

In the URL, <bucketname> is the name of the bucket and <region> is the AWS region
where the bucket is present, for example eu-west-2. The bucket name and region
are set when we create the bucket.

Bucket names are shared globally among all S3 users, and so they must be
unique. If you own a domain, then a subdomain of that will make an appropriate
bucket name.

Objects are named when we first upload them. We access objects by adding the

object name to the end of the bucket's URL as a path. For example, if we have a
bucket called mybucket in the eu-west-2 region containing the object python.png,
then we can access it by USiI’lg https://s3.eu-west-2.amazonaws.com/mybucket/Python.png.

Let's create our first bucket through the AWS Console. We can perform most of
the operations that the API exposes manually through this web interface, and it's
a good way of checking that our API client is performing the desired tasks:

1. LOg into the console at https://console.aws.amazon.com.

2. Go to the S3 service. You will see a page, which will prompt you to Create
bucket.

Click on the Create bucket button.

4. Enter a bucket name, pick a region, and then click on Create:

w

https://s3.eu-west-2.amazonaws.com/mybucket/Python.png
https://console.aws.amazon.com

Create bucket

@ Name and region @ Set options @ Set permissions

Name and region
Name of the bucket

mybucket
Region

EU (London) v

Copy configuration of an existing bucket

Select bucket (optional)1 buckets v

Create Cancel Following

Creating a bucket with the S3 API

In this section, we are going to write a script that will enable us to interact with
the service and create a bucket with the S3 API. To create a bucket, you'll need
to use the requests_awssauth package and the awsaauth method with your AWS
credentials, <access_1p> and <access_kev>. Also, you need to specify the <recron> with
the AWS region of your choice:

>>> import requests

>>> import requests_aws4auth
>>> auth = requests_aws4auth.AWS4Auth('<ACCESS_ID>', '<ACCESS_KEY>', 'eu-west-2',6 's3')

Whenever we write a client for an API, our main point of reference is the API
documentation. The documentation tells us how to construct the HTTP Requests
for performing operations.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html pFOVidES the details of
bucket creation. This documentation tells us that to create a bucket, we need to
make an HTTP Request to our new bucket's endpoint by using the HTTP pur
method:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

create_bucket(**kwargs)

Creates a new bucket,
See also: AWS API Documentation

Request Syntax

response = client.create bucket(
ACL="private'|'public-read'|'public-read-write' | 'avthenticated-read’,
Bucket="string’,
CreateBucketConfiguration={
'LocationConstraint'; "EU'|'eu-west-1'|"us-west-1'| 'us-west-2'|'ap-south-1'| "ap-
b
GrantFullControl="string’,
GrantRead="string’,
GrantReadACP="string’,
Grantlirite="string’,
GrantliriteACP="string’,
ObjectLockEnabledForBucket=True|False

We'll use this in conjunction with Requests to add AWS authentication to our
API requests. The ns variable is a string that represents the namespace, which
we'll need to work with XML from the S3 API:

|ns = 'http://s3.amazonaws.com/doc/2006-03-01/"

You can see that the script will create a bucket from the command-line
arguments and so calls the create_bucket () function, passing mysucket as an
argument.

You can find the following code in the s3_create_bucket.py file:

import xml.etree.ElementTree as ET

def create_bucket(bucket):

print(bucket)
XML = ET.Element('CreateBucketConfiguration')
XML.attrib['xmlns'] = ns
location = ET.SubElement (XML, 'LocationConstraint')
location.text = auth.region
data = ET.tostring(XML, encoding='utf-8"')
url = 'http://{}.{}'.format(bucket, endpoint)
xml_pprint(data)
response = requests.put(url, data=data, auth=auth)
print(response)
if response.ok:

print('Created bucket {} OK'.format(bucket))
else:

xml_pprint(response.text)

We can create a method for printing the XML output:

import xml.dom.minidom as minidom

def xml_pprint(xml_string):
print(minidom.parseString(xml_string).toprettyxml())

For creating a bucket, we can see that it creates an XML tree with the format that
is available in the S3 documentation. If you run the script, then you will see the
XML shown here:

$ python3 s3 _create_bucket.py mybucket
<?xml version="1.0" ?>
<CreateBucketConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<LocationConstraint>eu-west-2</LocationConstraint>
</CreateBucketConfiguration>

This matches the format specified in the documentation. You can see that we've
used the ns variable to fill the xm1ns attribute. This is the code that executes the put
TEQUESU
url = '"http://{}.{}'.format(bucket, endpoint)
response = requests.put(url, data=data, auth=auth)
if response.ok:
print('Created bucket {} OK'.format(bucket))

else:
xml_pprint(response.text)

The first line shown here will generate the full URL from our bucket name and
endpoint. The second line will make the put request to the S3 API. Also, note
that we have supplied our auth object to the call. This will allow Requests to
handle all the S3 authentication for us.

If all goes well, then we print out a message. In case everything does not go as
expected, we print out the response body. S3 returns error messages as XML in
the response body. So we use our xm1_pprint() function to display it.

When we refresh the S3 Console in our browser, we will see that our bucket has
been created:

Buckets of S3 (! Discover the new

Q Buscar buckets All types of access

% Create bucket 2 Buckets

('] Name of the bucket 1-

Access @ 1= Region 1=

(] § mybucket The objects can be public EU (London)

] & zappa-OesuBehcd The objects can be public EU (London)

Uploading and downloading file

Now that we've created a bucket, we can upload and download some files.
Writing a function for uploading a file is similar to creating a bucket. We check
the documentation to see how to construct our HTTP Request, figure out what
information should be collected at the command line, and then write the
function.

We need to use an HTTP PUT again. We need the name of the bucket that we
want to store the file in and the name that we want the file to be stored under in
S3. The body of the request will contain the file data. At the command line, we'll
collect the bucket name, the name we want the file to have in the S3 service, and
the name of the local file to upload.

Note that we open the local file in binary mode. The file could contain any type
of data, so we don't want text transforms applied. We could pull this data from
anywhere, such as a database or another web API. Here, we just use a local file
for simplicity.

The URL is the same endpoint that we constructed in create_bucket() with the S3
object name appended to the URL path. Later, we can use this URL to retrieve
the object.

You can find the following code in the s3_upload_download_file.py file. This is the
function we can use to upload a file to a specific bucket:

def upload_file(bucket, local_path):
data = open(local_path, 'rb').read()
url = '"http://{3/{3/{}'.format(endpoint, bucket, local_path)
print('upload file '+url)
response = requests.put(url, data=data, auth=auth)
if response.ok:
print('Uploaded {} OK'.format(local_path))
else:
xml_pprint(response.text)

You'll need to replace bucket with your own bucket name. Once the file gets
uploaded, you will see it in the S3 Console. Downloading a file through the S3
API is similar to uploading it. We simply take the bucket name, the S3 object
name, and the local filename again with cer request instead of a put request, and

then write the data received to disk. This is the function we can use to download
a file from a specific bucket:

def download_file(bucket, s3_name):

url = "http://{}/{3}/{}"'.format(endpoint, bucket, s3_name)

print('download file '+url)

response = requests.get(url, auth=auth)

print(response)

if response.ok:
open(s3_name, 'wb').write(response.content)
print('Downloaded {} OK'.format(s3_name))

else:
xml_pprint(response.text)

The complete SCTipt is available in the s3_upload_download_file.py file. We can
execute it, passing the bucket name and the file we want to upload and download
as arguments:

$python s3_upload_download_file.py bucket-aux Python.png

upload file http://s3.eu-west-2.amazonaws.com/bucket-aux/Python.png
Uploaded Python.png OK

download file http://s3.eu-west-2.amazonaws.com/bucket-aux/Python.png
<Response [200]>

Downloaded Python.png OK

Listing buckets

To list buckets, we need to do a get request with the AWS authentication data.
Then we get the response in XML format and get the response.text content:

>>> endpoint = 's3.eu-west-2.amazonaws.com'

>>> auth = aws4auth.AwWS4Auth(access_id, access_key, region, 's3')

>>> response = requests.get("http://"+endpoint, auth=auth)

>>> print(response.text)<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-

Now we can process our XML and convert it into an elementTree tree:

>>> import xml.etree.ElementTree as ET
>>> root = ET.fromstring(r.text)

We now have an elementTree instance in the root variable and we can extract such
information from XML easily way.

The simplest way of navigating the tree is by using the elements as iterators.
Iterating over the root returns each of its child elements, and then we print out
the tag of an element by using the tag attribute:

>>> for element in root:
>>> print('Tag: ' + element.tag)

You can find the following code in the s3_1ist_buckets.py file. This is the function
we can use to list buckets to a specific AWS account:

def 1list_buckets():

print(endpoint)
response = requests.get("http://"+endpoint, auth=auth)
print(response.text)
xml_pprint(response.text)
if response.ok:

root = ET.fromstring(response.text)

for element in root:

print('Tag: ' + element.tag)

In this screenshot, we can see the output of the previous script execution:

s3.eu-west-2.amazonaws.com
<?xml version="1.0" encoding="UTF-8"7>
<ListAlIMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><0wner><ID>e6c7c8b59dall
0190ebe74cf53T402506382¢c4c2889d64c426T8cfa8026e2f29</ID></0wner><Buckets><Bucket><Name>bucket-au
X</Name><CreationDate>2018-12-11T18:33:03.000z</CreationDate></Bucket><Bucket><Name>zappa-0esu8e
hc9</Name><CreationDate>2018-07-23T11:19:50.000Z</CreationDate></Bucket></Buckets></ListAlIMyBuc
ketsResult>
<?xml version="1.0" ?>
<ListAlIMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<owner>
<ID>e6¢c7c8b59dal100190ehe74cf53T402506382c4c2889d64c426F8cTa8026e2f29</ID>
</owners>
<Buckets>
<Bucket>
<Name>bucket-aux</Name>
<CreationDate>2018-12-11T18:33:03.000Z</CreationDate>
</Bucket>
<Bucket>
<Name>zappa-0esu8ehc9</Name>
<CreationDate>2018-07-23T11:19:50.000Z</CreationDate>
</Bucket>
</Buckets>
</ListAlImMmyBucketsResult>

Tag: {http://s3.amazonaws.com/doc/2006-03-01/}0wner
Tag: {http://s3.amazonaws.com/doc/2006-03-01/}Buckets

Parsing XML and handling errors

S3 embeds error messages in the XML, returned in the response body, and until
now we've just been dumping the raw XML to the screen. We can improve on
this and pull the text out of the XML. First, let's generate an error message so
that we can see what the XML looks like. In s3_1ist_buckets.py, if we replace the
access secret with an empty string, then it will produce an error.

This is the function we can use for handling errors:

def handle_error(response):
output = 'Status code: {}\n'.format(response.status_code)
root = ET.fromstring(response.text)
code = root.find('Code').text
output += 'Error code: {}\n'.format(code)
message = root.find('Message').text
output += 'Message: {}\n'.format(message)
print(output)

In you try to execute the s3_1ist_buckets.py with an empty string in the access
secret, it will tell you that it can't authenticate the request because you have set a
blank access secret.

In this screenshot, we can see the XML error related

tO AuthorizationHeaderMalformed.

<?xml version="1.0" encoding="UTF-8"?>)))
<Error><Code>AuthorizationHeadermalformed</Code><Message>The authorization header is malformed

; a non-empty Access Key (AKID) must be provided in the credential.</Message><RequestId>B41Cl7
BDF7235401</RequestId><HostId>Mn1tkDj8g0sBuUnsRItjTa6SKG+/ryXsr3sAwaqSwh3QwxzUeNK1CeAJ3MhZXDSSs
Ja7c9rD4gbA=</HostId></Error>
<?xml version="1.0" 7>
<Error>

<Code>AuthorizationHeaderMalformed</Code>

<Message>The authorization header is malformed; a non-empty Access Key (AKID) must be
provided in the credential.</Message>

<RequestId>B41C17BDF7235401</RequestId>

. <HostId>MnltkDj8g0sBuUnsRItjTa6SKG+/ryxsrisAwaqswh3QwxzUeNK1CeAl3MhzZXDSSsIa7CorD4gha=</

HostIa>
</Error>

Status code: 400

Error code: AuthorizationHeaderMmalformed

Message: The authorization header is malformed; a non-empty Access Key (AKID) must be provided
in the credential.

Connecting to S3 with the Python
Boto package

We've discussed working directly with the S3 REST API, and this has given us
some useful techniques that will allow us to program similar APIs in the future.

In many cases, this will be the only way in which we can interact with a web
API. However, some APIs, including AWS, have ready-to-use packages that
expose the functionality of the service without having to deal with the
complexities of the HTTP API. These packages generally make the code cleaner
and simpler, and they should be used for production work if they're available.

The AWS package for connecting from Python is called Boto3. The botos
package is available in PyPI, so we can install it with pip and with the following
command:

| pip install boto3

Now, open a Python shell and let's try it out. We need to connect to the service
first:

>>> import boto3
>>> s3 = boto3.client('s3')

Use the following to display a list of the buckets:

>>> buckets
>>> buckets

s3.1list_buckets()
[bucket['Name'] for bucket in response['Buckets']]

Now, let's create a bucket:

| >>> s3.create_bucket('mybucket’)

This creates the bucket in the default standard US region. We can supply a
different region, as shown here:

| >>> conn.create_bucket('mybucket', CreateBucketConfiguration={'LocationConstraint': 'eu-

We can see a list of acceptable region names in the official documentation at nttp

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.create_bucket

s://boto3.amazonaws.com/vl/documentation/api/latest/reference/services/s3.html#S3.Client.c

reate_bucket.

In this screenshot, we can see the documentation for the create_bucket function
and the parameters we can use:

create_bucket(**kwargs)

Creates a new bucket.

See also: AWS APl Documentation

Request Syntax

response = client.create_bucket(

)

ACL="private'|'public-read'|'public-read-urite'|'authenticated-read’,
Bucket="string’,
CreateBucketConfiguration={
'LocationConstraint': 'EU'|'eu-west-1'| us-west-1'| us-west-2' | ap-south-1'| "ap-
b
GrantFullControl="string',
GrantRead="string’,
GrantReadACP="string’,
GrantWrite='string’,
GrantWriteACP="string’,
ObjectLockEnabledForBucket=True |False

To upload a file, we can use the upioad_file() method from the S3 object, passing
as parameters the bucket name and the filename for upload. To download a file,
first we need to get a reference to the bucket from which we want to extract the
file, and then we can use the down1oad_file() method, passing as parameter the file

we want to download and the name of the file when it is stored in your system
folder.

In the following script we can see how we implement two methods for doing this
tasks. You can find the fOllOWng code in the s3_upload_download_file_boto.py file:

import sys
import boto3
import botocore

Create an S3 client
s3 = boto3.client('s3')

Create an S3 bucket
s3_bucket = boto3.resource('s3")

def download_file(bucket, s3_name):
try:
s3_bucket .Bucket (bucket).download_file('Python.png', 'Python_download.png')
except botocore.exceptions.ClientError as e:

if e.response['Error']['Code'] == "404":
print("The object does not exist.")
else:
raise

def upload_file(bucket_name, filename):
Uploads the given file using a managed uploader, which will split up large
files automatically and upload parts in parallel.
s3.upload_file(filename, bucket_name, filename)

if __name__ == '__main__"':
upload_file(sys.argv[1l], sys.argv[2])
download_file(sys.argv[1l], sys.argv[2])

This script uploads and downloads the python.png S3 object in the bucket, passed
as a parameter, and then stores it in the python.png local file. For the execution of
the previous script we can pass as arguments the bucket name and the file we
want to upload to the bucket:

| $ python s3_upload_download_file_boto.py mybucket Python.png

I'll leave you to further explore the Boto package's functionality with the help of
the tutorial, which can be found at https://boto.readthedocs.org/en/latest/s3_tut.html.

https://boto.readthedocs.org/en/latest/s3_tut.html

Summary

In this chapter, we reviewed the JSON data format, how to convert Python
objects into the JSON data format, and how to convert them back to Python
objects. We then explored the Twitter API and wrote an on-demand search
service using tag names. We also explored other modules, such as Tweepy,
which is used for processing tweets in real time.

We learned about XML, and how to construct documents, parse them, and
extract data from them by using the ElementTree API. We looked at both the
Python ElementTree implementation and Ixml. We looked at the Amazon S3
service and wrote a client that lets us perform basic operations, such as listing
and creating buckets, and uploading and downloading files through the S3 REST
API and the Boto package.

In the next chapter, we will review the web scraping process as a technique for
extracting information from websites. We will use Python packages such as
BeautifulSoup and Scrapy for this purpose.

Questions

. Which function from the json package allows you to transform a dictionary-

type object as the first parameter into a text string in JSON format?

Which function from the json package transforms a character string that
contains information in JSON format and transforms it into a dictionary
Python-type object?

Which authentication mechanism uses Twitter, where credentials are
composed of two main elements, consumer and access?

Which library inside the requests module can handle most of the
complexity of the OAuth protocol for us?

Which information do we need to provide at the credentials level to connect
with the Twitter API from Python?

Which library can we use from Python to connect with the Twitter API and
process data in real time using the streaming API?

Which xm1 package is part of the Python standard library and contains in
turn a series of packages and modules specializing in the management and
manipulation of XML documents?

Which AWS policy provides access to the Amazon S3 service?

Which package can we use for AWS authentication from Python?

. Which format does S3 use to organize the data and buckets that we store in

it?

Further reading

You will find more information about the mentioned tools and the official
Python documentation for some of the commented modules at the following
links:

orjson, a faster json library than the json default module: nttps://github.com/iji/
orjson

Official documentation for the requests package: http://requests-oauthlib.read

thedocs.io/en/latest

Official GitHub repository for the tweepy module: nttps://github.com/tweepy/twee
py.

Official GitHub repository for the Python Twitter module: nttps://github.com/
bear/python-twitter

Official documentation for the Amazon S3 API: http://docs.aws.amazon.com/Ama
zonS3/latest/API/

AWSBucketDump, a tool for enumerating AWS S3 buckets: nttps://github.c

om/jordanpotti/AwWSBucketDump

https://github.com/ijl/orjson
http://requests-oauthlib.readthedocs.io/en/latest
https://github.com/tweepy/tweepy
https://github.com/bear/python-twitter
http://docs.aws.amazon.com/AmazonS3/latest/API/
https://github.com/jordanpotti/AWSBucketDump

Web Scraping with BeautifulSoup
and Scrapy

When we want to extract the content of a web page by automating the extraction

of information, we often find that the website does not offer any API to obtain
the data you need and it is necessary to resort to scraping techniques to recover

data automatically. Some of the most powerful tools can be found in Python 3.7,

among which we shall highlight BeautifulSoup and Scrapy.

Scrapy is a framework written in Python for the extraction of data in an
automated way that can be used for a wide range of applications, such as the
processing of data mining.

The following topics will be covered in this chapter:

Introduction to web scraping

Extracting information from web pages and parsing HTML with
BeautifulSoup

Introduction to Scrapy components and architecture

Scrapy as a framework for performing web crawling processes and data
analysis

Working with Scrapy in the cloud

Technical requirements

Examples and source code for this chapter are available in the GitHub repository
in the Chaptero4 folder: https://github.com/PacktPublishing/Learning-Python-Networking-Sec

ond-Edition.

You will need to install Python 3 distribution on your local machine. For the last
section, Working with Scrapy in the cloud, you will need an active Scrapinghub
account, which you can install with the fOHOWiDg link: https://app.scrapinghub.com.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://app.scrapinghub.com

Introduction to web scraping

In this section, we will learn about how we can extract the content of a web page
by automating the extraction of information.

Web content extraction

Among the techniques available to extract content from the web, we can
highlight the following:

¢ Screen scraping: A technique that allows you to obtain information by
moving around the screen, registering user pulsations.

e Web scraping: The aim is to obtain the information of a resource, such as a
web page in HTML, and process that information to extract relevant data.

e Report mining: A technique that also tries to obtain information, but in this
case from a file (HTML, RDF, CSV, and so on). So, with this approach, we
can create a simple and fast mechanism without the need to write an API. A
main characteristic is that we can indicate that the system does not need a
connection, since it is possible to extract the information offline and
without using any API when working from a file. With this technique, it is
possible to facilitate the analysis while avoiding the excessive use of
equipment and computing time, and increase the efficiency and speed for a
prototype and the development of customized reports.

e Spiders: Scripts that follow specific rules to move around the website and
gather information imitating the interaction a user would perform with the
website. The idea is that developers only need to write the rules for
managing the data and leave automated tools such as Scrapy to get the
contents of the website for you.

e Crawlers: Processes that automatically parse and extract content from a
website and provide that content to search engine providers for building
their page indexes.

In this chapter, we will focus on the web scraping and spiders techniques that
allow the collection or extraction of data from web pages automatically. They are
very active and developing fields that share objectives with the semantic web,
automatic word processing, artificial intelligence, and human-computer
interaction.

What is web scraping?

Web scraping is a technique that allows the extraction of information from
websites, transforming unstructured data such as data in HTML format into
structured data.

In this section, we will review the BeautifulSoup Python library. We complement
this library by using the requests library to open the URL and download the
HTML code. BeautifulSoup will receive that content to parse the website's
HTML and extract the data.

HTML parsers

For parsing HTML, the recommended third-party package is Ixml, which is
primarily an XML parser. However, it does include a very good HTML parser.
It's quick, it offers several ways of navigating documents, and it is tolerant of
broken HTML.

The 1xm1 library can be installed on Debian and Ubuntu distributions through the
python-1xm1 package. If you need an up-to-date version, then ixm1 can be installed
through pip with the pip install 1xm1 command.

Another option is to use BeautifulSoup. BeautifulSoup is pure Python, so it can
be installed with pip, and it should run anywhere. Although it has its own API,
it's a well-respected and capable library, and it can, in fact, use ixm1 as a backend
library.

Parsing HT'ML with Ixml

The Ixml parser (https://1xm1.de) is the main module for analysis of XML
documents and 1ibxs1t.

The main module features are as follows:

e Support for XML and HTML
e An API based on ElementTree
e Support to selected elements of the document through XPath expressions

The installation of the XML parser can be done through the official repository:

| pip install 1xml

1xml.etree iS @ submodule within the 1xm1 library that provides methods such as
xpath(), which supports expressions with XPath selector syntax. With this
example, we see the use of the parser to read an HTML file and extract the text
from the title tag through an XPath expression:

from 1xml import html,etree

simple_page = open('data/simple.html').read()

parser = etree.HTML(simple_page)

result = etree.tostring(parser,pretty_print=True, method="html")

find_text = etree.XPath("//title/text()", smart_strings=False)

text = find_text(parser)[0]
print(text)

Before we start parsing HTML, we need something to parse. We can obtain the
version and codename of the latest stable Debian release from the Debian
website. Information about the current stable release can be found at https://www.d
ebian.org/releases/stable/index.en.html. The information that we want is dlsplayed in
the page title and in the first sentence.

Let's open a Python shell and get to parsing. First, we'll download the page with
the requests package:

>>> import requests
>>> response = requests.get('https://www.debian.org/releases/stable/index.en.html')

Next, we parse the source into an ElementTree tree. This is the same as parsing

https://lxml.de
https://www.debian.org/releases/stable/index.en.html

XML with the standard library's ElementTree, except here we will use the 1xml
specialist HTMLParser:

>>> from 1lxml.etree import HTML
>>> root = HTML(response.content)

The wtmi() function is a shortcut that reads the HTML that is passed to it, and
then it produces an XML tree. Notice that we're passing response.content and not
response. text. 1 he 1xm1 library produces better results when it uses the raw
response rather than the decoded Unicode text.

The 1xm1 library's ElementTree implementation has been designed to be 100%
compatible with the standard library's, so we can start exploring the document in
the same way as we did with XML:
>>> [e.tag for e in root]
['head', 'body']

>>> root.find('head').find('title').text
'Debian -- Debian “stretch” Release Information '

In the preceding code, we have printed out the text content of the document's
<title> element. We can already see it contains the codename that we want.

Let's inspect the HTML source of the page, and see what we're dealing with. For
this, either use View source in a web browser, or save the HTML to a file and
open it in a text editor. The page's source code is also included in the source code
download for this book. Search for text Debian 9.6 in the text, so that we are
taken straight to the information we want.

In this screenshot, we can see how it looks as a block of code:

<div id="content">

<hl>Debian “stretch” Release Information</hl>
<p>Debian 9.6 was

released November 10th, 2018.

Debian 9.© was initially released on June 17th, 2017.

The release included many major

changes, described in

our press release and
the Release Notes.</p>

From the preceding image, we can see that we want the contents of the <> tag

child of the <div> element. If we navigated to this element by using the eiementtree
functions, which we have used before, then we'd end up with something like the
following:

>>> root.find('body').findall('div')[1].find('p').text
'Debian 9.6 was\nreleased November 10th, 2018.\nDebian 9.0 was initially released on Ju

The main problem with this way is that it depends quite heavily on the HTML
structure. A change, such as a <div> tag being inserted before the one that we
needed, would break it. Also, in more complex documents, this can lead to
horrendous chains of method calls, which are hard to maintain.

Our use of the <tit1e> tag in the previous section to get the codename is an
example of a good technique, because there is always only one <head> tag and one
<title> tag in a document. A better approach to finding our <div> tag would be to
make use of the id="content" attribute it contains.

It's a common web page design pattern to break a page into a few top-level
<divs> tag for the major page sections such as header, footer, and the content, and
to give the <divs> ID attributes that identify them as such.

Since version 2, Ixml has by default installed a dedicated Python submodule to work with
HTML, 1xmi.html: http://1xml.de/Ixmlhtml.html.

In this example, we make a request to the DuckDuckGo search engine and
obtain the form that is used to perform the searches. To do this, we access the
forms object that will be contained within the URL response.

You can find the following code in the duckduckgo.py file inside the 1xm1 folder:

from 1xml.html import fromstring, tostring
from 1xml.html import parse, submit_form

import requests

response = requests.get('https://duckduckgo.com')
form_page = fromstring(response.text)

form = form_page.forms[0]

print(tostring(form))

page = parse('http://duckduckgo.com').getroot()
page.forms[0].fields['q'] = 'python'

result = parse(submit_form(page.forms[0])).getroot()
print(tostring(result))

This is the output of the first part of the script, where we can see the form object

http://lxml.de/lxmlhtml.html

from DuckDuckGo:

| b'<form id="search_form_homepage" class="search search--home js-search-form" name="x" me

Searching with XPath

In order to avoid exhaustive iteration and the checking of every element, we
need to use XPath, which is a query language that was developed specifically for
XML, and is supported by lxml.

To get started with XPath, use the Python shell from the last section, and do the
following:

>>> root.xpath('body')
[<Element body at 0x4477530>]

This is the simplest form of XPath expression; it searches for children of the
current element that have tag names that match the specified tag name. The
current element is the one we call xpath() on—in this case, root. The root element
is the top-level <htm1> element in the HTML document, and so the returned
element is the <body> element.

XPath expressions can contain multiple levels of elements. The searches start
from the node the xpath() call is made on and work down the tree as they match
successive elements in the expression. We can use this to find just the <div> child
elements of <body>:

>>> root.xpath('body/div')
[<Element div at 0x447ale8>, <Element div at 0x447a210>, <Element div at 0x447a238>]

In body and div expression means, match the <div> children of the <body> children
of the current element. Elements with the same tag can appear more than once at
the same level in an XML document, so an XPath expression can match multiple
elements, hence the xpath() function always returns a list.

The preceding queries are relative to the element that we call xpath() on, but we
can force a search from the root of the tree by adding a slash to the start of the
expression. We can also perform a search over all the descendants of an element,
with the help of a double-slash. To do this, try the following:

>>> root.xpath('//h1')
[<Element h1 at 0x447aa58>]

The real power of XPath lies in applying additional conditions to the elements in
the path:

>>> root.xpath('//div[@id="content"]')
[<Element div at 0x3d6d800>]

The square brackets after div, [@id="content"], form a condition that we place on
the <div> elements that we're matching. The e sign before id keyword means that
id refers to an attribute, so the condition means: only elements with an id
attribute equal to "content". This is how we can find our content <div> tag.

Before we employ this to extract our information, let's just touch on a couple of
useful things that we can do with conditions. We can specify just a tag name, as
shown here:

>>> root.xpath('//div[h1]")
[<Element div at 0x3d6d800>]

This returns all the <div> elements that have an <h1> child element. Also try the
following:

>>> root.xpath('body/div[2]"')
[<Element div at 0x3d6d800>]

Putting a number as a condition will return the element at that position in the
matched list. In this case, this is the second <div> child element of <body>. Note
that these indexes start at 1, unlike Python indexing which starts at o. There's a
lot more that XPath can do: the full specification is a World Wide Web
Consortium (W3C) standard. The latest version can be found at: http://www.w3.or
g/TR/xpath-3.

Now, let's finish up by writing a script to get our Debian version information.

You can find the following code in the get_debian_version.py file in the 1xm1 folder:

import re
import requests

from 1xml.etree import HTML

response =
requests.get('https://www.debian.org/releases/stable/index.en.html"')
root = HTML(response.content)

title_text = root.find('head').find('title').text

if re.search('\u201c(.*)\u201d', title_text):

http://www.w3.org/TR/xpath-3

release = re.search('\u201c(.*)\u201d', title_text).group(1)
p_text = root.xpath('//div[@id="content"]/p[1]')[0].text
version = p_text.split()[1]

print('Codename: {}\nVersion: {}'.format(release, version))

Here, we have downloaded and parsed the web page by pulling out the text that
we want with the help of XPath. We have used a regular expression to pull out
stretch version name, and a split to extract the version 9.6. Finally, we print it
out. So, run it as shown here:

$ python get_debian_version.py

Codename: stretch
Version: 9.6

8 XPath is a language that allows you to select nodes from an XML document and calculate

values from their content. There are several XPath versions approved by the W3C. In this
URL, you can see documentation and all XPath versions: nttps://wmw.ws.org/TR/xpath/al1/.

In this example, we are using XPath expressions to get images and links from a
URL. For extracting images, we use the '//img/@src’ XPath expression and for
extracting links we use the '//a/@href' expression.

You can find the following code in the get_1inks_images.py file in the 1xm1 folder:

#1/usr/bin/env python3

import os
import requests
from 1xml import html

class Scraping:

def scrapingImages(self,url):
print("\nGetting images from url:"+ url)
try:
response = requests.get(url)
parsed_body = html.fromstring(response.text)
regular expresion for get images
images = parsed_body.xpath('//img/@src')
print('Found images %s' % len(images))
#create directory for save images
os.system("mkdir images")
for image in images:
if image.startswith("http") == False:
download = url + "/"+ image
else:
download = image
print(download)
download images in images directory
r = requests.get(download)
f = open('images/%s' % download.split('/')[-1], 'wb')
f.write(r.content)
f.close()
except Exception as e:
print("Connection error in " + url)
pass

https://www.w3.org/TR/xpath/all/

In the previous code block, we define the scrapingimages function for extracting
images from a URL using the regular expression '//ing/@src'. In the next code
block, in a similar way, we define the scrapingLinks function for extracting links
from a URL using the regular expression '//a/@href':

def scrapingLinks(self,url):
print("\nGetting links from url:"+ url)
try:
response = requests.get(url)
parsed_body = html.fromstring(response.text)
regular expression for get links
links = parsed_body.xpath('//a/@href")
print('Found links %s' % len(links))
for link in links:
print(1link)
except Exception as e:
print("Connection error in " + url)
pass

if __name__ == "__main__":
target = "https://news.ycombinator.com"
scraping = Scraping()
scraping.scrapingImages(target)
scraping.scrapinglLinks(target)

Extracting information from web
pages and parsing HTML with
BeautifulSoup

In this section, we will explore BeautifulSoup as a Python package that allows us
to extract information from web pages and parse HTML in Python 3.7.

BeautifulSoup introduction

The BeautifulSoup package contains a library specialized in analyzing and
searching data within an HTML file by means of various types of criteria such as
the following:

e Searches of HTML elements by means of the structure of the DOM
e Searches through selectors
e Tag searches

BeautifulSoup is a library used to perform web scraping operations from Python,
focused on the parsing of web content such as XML, HTML, and JSON.

This tool is not intended directly for web scraping. Instead, the purpose of this
tool is to provide an interface that allows access in a very simple way to the
content of a web page, which makes it ideal to extract information from the web.

Among the main features, we can highlight the following:

e Parses and allows the extraction of information from HTML documents

e Supports multiple parsers in processing XML documents and HTML (1xm1,
htm151ib)

e Generates a tree structure with all the elements of the paired document

e Very easily allows the user to search HTML elements, such as links, forms,
or any HTML tag

To use it, you have to install the specific module that can be found in the official
repository (https://www.crummy.Com/software/BeautifulSoup/bs4/doc/) USng the fOHOWiDg
command:

| pip install BeautifulSoup4

You can also see the latest version of the module on the official Python page: nttp
s://pypi.python.org/pypi/beautifulsoup4.

Once installed, the name of the package is bsa. The first thing to use the library
for is to import the Beautiful Soup package from the bs4 module:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pypi.python.org/pypi/beautifulsoup4

|>>> from bs4 import BeautifulSoup

To be able to perform operations with an HTML document, it is necessary to
create an object from the bs4.seautifulsoup class by entering a str type

object containing the HTML code and selecting the type of analyzer to be used
as second parameter: bs4.BeautifulSoup (<object type str>, <analyzer type>).

0 To learn more about the analyzer options, you can query the documentation: nteps://wm.crummy. co

m/software/BeautifulSoup/bs4/doc/#installing-a-parser.

To create an instance of BeautifulSoup, it is necessary to pass the parameters of
the HTML document and the parser that we want to use (1xnl OF htm151ib):

| >>> bs= BeautifulSoup(contents, '1xml')

In this way, we managed to create an instance of the geautifulsoup class, passing
the HTML content of the page and the parser to be used as parameters. In the bs
object we have all the information to navigate through the document and access
each of the labels that are included in it. For example, if we want to access the
title tag of the document, simply execute bs.tit1le.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

Access to elements through DOM

DOM is the acronym for Document Object Model and is the way in which a
browser interprets an HTML document inside a window.

The DOM presents a structure similar to that of the trunk of a tree from which
branches are emerge. It is said that the HTML element that contains other
elements is the father of these:
parent
| children

— Element
— brother (sibling)

When searching through the DOM, BeautifulSoup returns the first item with the
matching HTML tag. An interesting feature of the library is that it allows the
user to search for specific elements in the structure of the document; in this way,
we can search for meta tags, form, and links.

bs.find_all() iS @ method that allows us to find all the HTML elements of a certain
type and returns a list of tags that match the search pattern.

For example, to search for all meta tags in an HTML document, use the
following code:
>>> meta_tags = bs.find_all("meta")

>>> for tag in meta_tags:
>>> print(tag)

To search all the forms of an HTML document, use the following code:

>>> form_tags = bs.find_all("form")
>>> for form in form_tags:
>>> print (form)

To search all links in an HTML document, use the following code:

>>> link_tags = bs.find_all("a")
>>> for link in link_tags:
>>> print (link)

The finda11 function returns all the elements of the collection that match the

argument specified. If you want to return a single element, you can use the find
function, which only returns the first element of the collection.

In this example, we extract all the links of a certain URL. The idea is to make
the request with requests and with BeautifulSoup to parse the data that the request
returns.

You can find the following code in the extract_1links_from_url.py file inside
the beautifuisoup folder:

#1/usr/bin/env python3

from bs4 import BeautifulSoup
import requests

url = input("Enter a website to extract the URL's from: ")

headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_1) AppleWebKit/5¢
response = requests.get("http://" +url, headers = headers)
data = response.text
soup = BeautifulSoup(data, '1xml')
for link in soup.find_all('a'):
print(link.get('href'))

In this screenshot, we can see the output of the previous script:

Enter a website to extract the URL’s from: www.packtpub.com
/account
#

/register

https://account.packtpub.com/

/Togout
https://www.packtpub.com/account/password
/register

#

/
/all
/tech

/]

/books/content/support

https://subscribe.packtpub.com

https://www.packtpub.com/cart/checkout

https://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Data
://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Business%20%26%200ther
//search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Cloud%20%26%20Networking

/search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category] [0]=Game%20Development
search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=I10T%20%26%20Hardware

://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Mobile
://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Programming
://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=Security
://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[category][0]=web Development
://search.packtpub.com/?refinementList%5Bproduct_type%5D%580%5D=Book&refinementList%5Breleased%5D%580%5D=Available
://S7Erch.p?$ktpub.com/?refinementList%SBproduct_type%SD%SBO%SD:Video&refinementList%SBre1eased%SD%SBO%SD:Avai1ab1ehttps://www
.com/bestsellers
://search.packtpub.com/?refinementList%5Breleased%5D%5B80%5D=Available&refinementList%5B8t001%5D%5B80%5D=Android

https://search.packtpub.com/?refinementList%5Breleased%5D%580%5D=Available&refinementList%5Bt0o01%5D%580%5D=Angular

https://search.packtpub.com/?refinementList[released] [0]=Available&refinementList[concept] [0]=Artificial%20Intelligence

We can also extract images directly with BeautifulSoup, in the same way that we
extracted the images with the 1xn1 module in the previous section.

In this example, we make the request to the URL passed by the parameter with
the requests module. Later, we build the BeautifulSoup object from which we

will extract those tags that are . If the URL is correct, the image is
downloaded again using the requests package.

You can find the following code in the download_images.py file inside
the beautifuisoup folder:

#1/usr/bin/env python3

import requests

from bs4 import BeautifulSoup
import urllib.parse

import sys

import os

response = requests.get('http://www.freeimages.co.uk/galleries/transtech/informationtect
parse = BeautifulSoup(response.text, '1Ixml')

Get all image tags
image_tags = parse.find_all('img")

Get urls to the images
images = [url.get('src') for url in image_tags]

If no images found in the page
if not images:
sys.exit("Found No Images")

Convert relative urls to absolute urls if any
images = [urllib.parse.urljoin(response.url, url) for url in images]
print('Found %s images' % len(images))

In the previous code block, we have obtained images' URLs using Beautiful Soup
and a Ixml parser. Now we are going to create the folder for storing images and
download images in that folder using the request package.

#create download_images folder if not exists

file_path
directory

= "download_images"
= os.path.dirname(file_path)
if not os.path.exists(directory):
try:
os.makedirs(file_path)
print ("Creation of the directory %s OK" % file_path)
except OSError:
print ("Creation of the directory %s failed" % file_path)
else:
print ("download_images directory exists")

Download images to downloaded folder
for url in images:response = requests.get(url)
file = open('download_images/%s' % url.split('/')[-1], 'wb')
file.write(response.content)
file.close()
print('Downloaded %s' % url)

In this screenshot, we can see the output of the previous script:

Found 79 images

Creation of the directory download_images OK

Downloaded http:/, .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/beige keyboard.jpg
Downloaded http: .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/blue_screen.jpg
Downloaded 20 .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/chiclet_keyboard.jpg
Downloaded - .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_blank_screen.jpg
Downloaded £ .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_dollar_key.jpg
Downloaded =i .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_help key.jpg
Downloaded - .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_memory.jpg
Downloaded =/ .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_memory_dimm.jpg
Downloaded 1] .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/computer_typing.jpg
Downloaded : .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/CPU_chip_and_scoket.jpg
Downloaded i .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/designer_keyboard.jpg
Downloaded =i .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/end_button.jpg
Downloaded ://www. freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/enter_key.jpg

Downloaded : .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/ethernet_router.jpg
Downloaded E .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/floppy_disks.jpg
Downloaded :/ /www . freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/forward_stop_buttons.jpg
Downloaded - .freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/green_network_plug.jpg
Downloaded //www . freeimages.co.uk/galleries/transtech/informationtechnology/thumbs/handy_scanner.jpg

In this example, we are going to extract titles and links from the following
hacker news domain: https://news.ycombinator.com. In this case, we are using the
finda11 function to obtain elements that match with a specific style, later we use
the rind function for getting elements that match with the nrer tag.

You can find the fOHOWng code in the extract_1inks_hacker_news.py file inside
the beautifuisoup folder:

#1/usr/bin/env python3
import requests
from bs4 import BeautifulSoup

def get_front_page():
target = "https://news.ycombinator.com"
frontpage = requests.get(target)
if not frontpage.ok:
raise RuntimeError("Can't access hacker news, you should go outside")
news_soup = BeautifulSoup(frontpage.text,"lxml")
return news_soup

def find_interesting_links(soup):
items = soup.findAll('td', {'align': 'right', 'class': 'title'})

links = []
for i in items:
try:

siblings = list(i.next_siblings)
post_id = siblings[1].find('a')['id']
link = siblings[2].find('a')['href']
title = siblings[2].text
links.append({'link': link, 'title': title, 'post_id':post_id})
except Exception as e:
pass
return links

if __name__ == '_ _main__':
soup = get_front_page()

https://news.ycombinator.com

results = find_interesting_links(soup)
for r in results:
if r is not None:
print(r['link'] +" "+(r['title']))

In this screenshot, we can see the output of the previous script:

https://qIt.eecs.northwestern.edu/snapshots/current/ dt-doc/rack log.pdt Racklog: Pr
olog style Logic Programming [pdf] (northwestern.edu
https://graydon2.dreamwidth.org/263429.html Rust 2019 and beyond: Timits to some gr
owt (graydonz.dreamwidth.or?)
http://www.daemono1og¥.net/b 0g/2018-12-26-the-many-ways-to-launch-FreeBSD-in-EC2.h
tml The many ways to launch FreeBsD in EC2 (daemonology.net)
http://antitrust.s1ated.org/www.iowaconsumercase.or?/011607/8000/Px08875.pdf Micros
oft word for windows 1.0 Postmortem (1989) [pdf] (slated.org)
https://oaklandmofo.com/blog/block-stringray-devices How to Block Stringray Devices
(oaklandmofo.com)
https://www.nytimes.com/2018/12/26/sports/antarctica-race-colin-obrady.html colin o
’Brady Completes Crossing of Antarctica with Final 32-Hour Push (nytimes.com)
item?id=18767767 Ask HN: What do you use for authentication and authorization?
htt ://tech.pau1cz.net/b1OE/future—of—kubernetes—is—virtua1—machines/ The future of
Kubernetes is virtual machines (paulcz.net)

https://fastmai1.b10?/2g18/12/27/jmap—is—on—the—home—straight/ JMAP is on the home
og

straight (fastmail.b
https://www.nytimes.com/2018/05/08/science/alan-turing-desalination.htm]l Alan Turin
ﬁ and the mathematics of pattern formation in nature (nhytimes.com)
ttps://www.facebook.com/notes/daniel-colascione/buttery-smooth-emacs/1015531344006
6102/ Buttery smooth Emacs (2016) (facebook.com)
https://www.cnet.com/news/this-man-spent-5000-o0f-his-own-money-to-put-zimbabwe-on-s
treet-view Spending $5k to put Zimbabwe on Street View (cnet.com)
https://github.com/1inux-noah/noah Noah: Bash on Ubuntu on macos (github.com)
hgtgs://www.10ckhaven.edu/~dsimanek/puzz]es/puzz]es.htm Physics puzzles (lockhaven.
edu

https://www.braze.com/perspectives/article/building-braze-job-queues-resiliency Res
i]igncy with Queues: Building a System That Never Skips a Beat in a Billion (braze.
com

https://github.com/arun1729/road-network show HN: QuadTree model for generating ran
dom road networks (github.com)

Extracting labels using regex

We can use regex package to identify common patterns such as emails and
URLSs. With BeautifulSoup, you can specify regular expression patterns to match
specific tags. In this script, we are extracting email addresses that match a
specific pattern.

You can find the fOHOWiI’lg code in the extract_emails_from_url.py file inside
the beautifuisoup folder:

import requests
import re
from bs4 import BeautifulSoup

url = input("Enter the URL: ")

response = requests.get(url)

html_page = response.text

email pattern=re.compile(r'\b[\w.-]+?2@\w+?\.\w+?\b"')

for match in re.findall(email_pattern,html_page):
print(match)

Handling URL exceptions and not
found tags

It is also important to verify if the label is returned when we use the find method.
We may have written an incorrect label or try to get a label that is not on the
page and this will return the none object, so we must verify if the object is none.
This can be done using a simple conditional statement such as the one in this
example.

You can find the fOHOWiI’lg code in the hand1ing_exceptions_tags.py file inside
the beautifuisoup folder:

from urllib.request import urlopen
from urllib.error import HTTPError
from urllib.error import URLError
from bs4 import BeautifulSoup

try:
html = urlopen("https://www.packtpub.com/")
except HTTPError as e:
print(e)
except URLError:
print("Server down or incorrect domain")
else:
res = BeautifulSoup(html.read(), "html51ib")
if res.title is None:
print("Tag not found")
else:
print(res.title.text)

There are some other third-party packages available that can speed up scraping
and form submission. Two popular ones are mechanize and Scrapy.

You can check them at http://wwwsearch.sourceforge.net/mechanize and
http://scrapy.org.

http://wwwsearch.sourceforge.net/mechanize
http://scrapy.org

Introduction to Scrapy components
and architecture

In this section, we will learn about Scrapy components and architecture. We will
review Scrapy architecture and XPath expressions from Scrapy shell.

What is Scrapy?

Scrapy (https://scrapy.org/) is an open source collaborative platform that allows
us to extract data from web pages used for a series of applications such as data
mining, information processing, and historical registration.

This framework also allows us to expand its functionality and is portable
because it is written in Python, which can be interpreted on Linux, Macintosh,
and Windows systems.

Although the main objective of Scrapy is the extraction of data from web pages,
this can also be used to extract data through the use of APIs, obtain the structure
of the web, or simply as a general purpose extractor. Scrapy has the following
features:

¢ Fast and powerful: You write the rules to extract the data and Scrapy does
the work for us

¢ Easily extensible: Given its configuration, it can generate new functionality
without having to modify the source code

e Portable: It is written in Python and can run on Linux, Windows, Mac, and
BSD

Since it is a framework, Scrapy has a series of powerful tools to scrape or extract
information from websites easily and efficiently. These tools include the
following:

e Support to extract and select data from HTML/XML sources using CSS
selectors and XPath expressions, with help methods to extract using regular
expressions

¢ An interactive console in IPython to test CSS and XPath expressions to
extract data, which is very useful when building your own methods

e Support for exporting records in multiple formats such as JSON, CSV, and
XML

e Support for handling foreign statements, non-standards, and broken codes

e Strong extensibility, since it allows you to connect your own functionality
using signals, extensions, and pipelines

https://scrapy.org/

To get started in Scrapy, we recommend installing Scrapy as shown in this
Installation Guide: https://doc.scrapy.org/en/latest/intro/install.html#intro-install.

https://doc.scrapy.org/en/latest/intro/install.html#intro-install

Scrapy architecture

Scrapy allows us to recursively scan the contents of a website and apply a set of
rules on said contents to extract information that may be useful to us. These are
the main architecture elements:

e Interpreter: Allows quick tests, as well as the creation of projects with a
defined structure.

e Spiders: Code routines that are responsible for making HTTP requests to a
list of domains given by the client and applies rules in the form of regular
expressions or XPath on the content returned from HTTP requests.

e XPath expressions: With XPath expressions, we can get to a fairly detailed
level of the information we want to extract. For example, if we want to
extract the download links from a page, it is enough to obtain the XPath
expression of the element and access the nrer attribute.

e Items: Scrapy uses a mechanism based on XPath expressions called Xpath
selectors. These selectors are responsible for applying XPath rules defined
by the developer and composing Python objects that contain the
information extracted. The items are such as containers of information and
allow us to store the information that the rules that we apply return on the
contents that we are obtaining.

In this image, you can see an overview of the Scrapy architecture:

4

<

e ————

Requests

e
~N

Items \)

(" scheduier .
|\ S——— Internet
‘ _

\ Requests

\““~———-—r

1.

3 N\
- t/ Downloader |
| S 4

Downloader
Middlewares

Spider /

Middlewares Responses

—

’,.'-"

Spiders

As you can see in the preceding image, the spiders use the items to pass the data
to the item. Scrapy can have several spiders—the spiders do the requests, which
are scheduled in the scheduler, and these are what make the requests to the
server. Finally, when the server responds, these responses are sent back to the
spiders, so that the spider is fed back with each request.

XPath expressions

To use Scrapy, it is necessary to define rules that Scrapy will use for extracting
information. These rules can be XPath expressions. Scrapy has an interpreter
that allows you to test XPath expressions on a website, which facilitates the
debugging and development of web spiders. For example, if we want to extract
the text corresponding to the title of the page, we can do with
the '//title/text()' XPath expression:

>>> fetch('http://www.scrapy.org')

>>> response.xpath('//title/text()"').extract()
>>> ['Scrapy | A Fast and Powerful Scraping and Web Crawling Framework']

In the following screenshot, you can see the result of the execution of the fetcn
command in the Scrapy shell and extract the title of the page with the XPath
expression:

[s] Available Scrapy objects:

[s] crauler {scrapy.crauler.Crawler object at 0x042138D0>
[s] item (}

[s] request {GET http://scrapy.org>

[s] response <200 http://scrapy.org>

[s] settings <scrapy.settings.Settings object at 0x029A8750>
[s] spider {(Spider ‘default’' at Ox4498c30>

[s] Useful shortcuts:

[s] shelp() Shell help (print this help)

[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] wview(response) Ulew response in a browser

>>> response.xpath('//title/text() ') .extract()
[u'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework']

Scrapy as a framework for
performing web crawling processes
and data analysis

In this section, we will explore Scrapy as a framework for Python that allows us
to perform web scraping tasks and web crawling processes and data analysis.
Also, we will explain the structure that a Scrapy project presents and how to
create our own project, and we will create a spider to track a web page and
extract the data that interests us. We will review Scrapy components, creating a
project for configuring pipelines.

Installation of Scrapy

There are diverse tools and techniques that allow a developer or analyst to
access, consume, and extract content based on the web. The Scrapy project
offers a tool that enables automated and rapid web scraping of large amounts of
web-based content. Scrapy has very good documentation, which can be accessed
from the fOHOWiDg URL: https://doc.scrapy.org/en/latest.

Scrapy was created from Twisted (https://twistedmatrix.com/), SO it is capable of
performing thousands of queries simultaneously. Similarly, Scrapy makes use of
tools such as BeautifulSoup and the Python XML package to facilitate content
searches.

Scrapy needs Ixml and OpenSSL as prerequisite packages for the installation.
You can install Scrapy using pip with the pip install scrapy command.

0 Scrapinghub maintains official conda packages for Linux, Windows, and OS X at the following

URL.' https://anaconda.org/anaconda/scrapy.

To install Scrapy using conda, run the following code:

| conda install -c scrapinghub scrapy

Once installed, it is possible to use the scrapy command from the command line,
using subcommands at the same time.

In this screenshot, we can see all available scrapy subcommands:

https://doc.scrapy.org/en/latest
https://twistedmatrix.com/trac/
https://anaconda.org/anaconda/scrapy

Scrapy 1.5.1 - no active project

Usage:
scrapy <command> [options] [args]

Available commands:
bench Run quick benchmark test
fetch Fetch a URL using the Scrapy downloader
genspider Generate new spider using pre-defined templates
runspider Run a self-contained spider (without creating a project)

settings Get settings values

shell Interactive scraping console
startproject Create new project

version Print Scrapy version

view open URL in browser, as seen by Scrapy

[more] More commands available when run from project directory

Use "scrapy <command> -h" to see more info about a command

Creating a project with Scrapy

Before starting with Scrapy, you have to start a project where you want to store
your code. To create a project with Scrapy, you have to execute the command
from the console:

| scrapy startproject helloProject

This command will create a hei1oproject directory with the following contents:

helloProject/
scrapy.cfg # deploy configuration file
helloProject/ # project's Python module, you'll import your code from here
__init__ .py
items.py # project items file
pipelines.py # project pipelines file
settings.py # project settings file
spiders/ # a directory where you'll later put your spiders
__init__ .py

Each project consists of the following;:

e items.py: We define the elements to extract

e spiders: The heart of the project, here we define the extraction procedure

® pipelines.py: The elements to analyze what has been obtained—data
validation and cleaning of HTML code

Once the project is created, we have to define the items that we want to extract,
or rather the class where the data extracted by scrapy will be stored. Basically, in
items.py we create the fields of the information that we are going to extract.

Scrapy item class

Scrapy provides the item class to define the output data format. Item objects are
containers used to collect the extracted data and specify metadata for the field
used to characterize that data. For more details, see nttps://doc.scrapy.org/en/1.5/to

pics/items.html.

Create a file named my1ten.py and add the following code into it:

import scrapy
from scrapy.loader.processors import TakeFirst

class MyItem(scrapy.Item):
define the fields for your item here like:
name = scrapy.Field(output_processor=TakeFirst(),)

The next step is to describe how the information can be extracted using XPath
expressions so that Scrapy can differentiate it from the rest of the HTML code on
the page of each book.

To start the crawling process, it is necessary to import the crawlerprocess class. We
instantiate the class by passing it through the parameters of the configuration that
we want to apply:

setup crawler

from scrapy.crawler import CrawlerProcess
crawler = CrawlerProcess(settings)

define the spider for the crawler
crawler.crawl(MySpider())

start scrapy

print ("STARTING ENGINE")

crawler.start()

printed at the end of the crawling process
print ("ENGINE STOPPED")

We import the necessary modules to carry out the crawling process:

from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor
from scrapy.selector import HtmlXPathSelector

e rule: Allows us to establish the rules by which the crawler will be based to
navigate through different links.
e LxmiLinkextractor: Allows us to define a callback function and regular

https://doc.scrapy.org/en/1.5/topics/items.html

expressions to tell the crawler which links to go through. It allows us to
define the navigation rules between the links that we want to obtain.
® nutmixpathselector: Allows us to apply XPath expressions.

Spiders

Spiders are classes that define the way to navigate through a specific site or
domain and how to extract data from those pages; that is, we define in a
personalized way the behavior to analyze the pages of a particular site.

The cycle that follows a spider is the following:

o First, we start generating the initial request (Requests) to navigate through
the first URL and we specify the backward function to be called with the
response (Response) downloaded from that request

e The first request to be made is obtained by calling the start_request()
method, which by default generates the request for the specific URL in
the start_uris starting addresses and the function of backward for the requests

These requests will be made by downloading by Scrapy and their responses
manipulated by the backward functions. In the backward functions, we analyze the
content typically using the selectors (XPath selectors) and generate the items
with the content analyzed. Finally, the items returned by the spider can be passed
to an item pipeline.

Creating our spider

This is the code for our first spider. Save it in a file named myspider.py under the
spiders directory in your project:

from
from
from
from

clas

scrapy.contrib.spiders import CrawlSpider, Rule
scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor
scrapy.selector import HtmlXPathSelector

scrapy.item import Item

s MySpider(CrawlSpider):

name = 'example.com'

allowed_domains = ['example.com']
start_urls = ['http://www.example.com']
rules = (Rule(LxmlLinkExtractor(allow=())))

def parse_item(self, response):
hxs = HtmlXPathSelector(response)
element = Item()
return element

crawlspider provides a mechanism that allows you to follow the links that follow a
certain pattern. Apart from the inherent attributes of the sasespider class, this class
has a new rules attribute with which we can indicate to the spider the behavior

that it

should follow.

Pipelines items and export formats

The items pipelines could be called the channels or pipes of the items. They are
elements of Scrapy and the information that arrives to them are Items that have
been previously obtained and processed by some spider. They are classes in
themselves that have a simple objective—to re-process the item that arrives to
them, being able to reject it for some reasons or let it pass through this channel.

The typical uses of pipelines are as follows:

Cleaning data in HTML

Validation of scraped data checking that the items contain certain fields
Checking duplicate items

Storage of the data in a database

For each element that is obtained, it is sent to the corresponding pipeline, which will process
0 it either to save it in the database or to send it to another pipeline. For detail, you can go to
official documentation: https://doc.scrapy.org/en/latest/topics/item-pipeline.html.

An item pipeline is a Python class that overrides some specific methods and
needs to be activated on the settings of the Scrapy project. When creating a
Scrapy pFOjECt with the scrapy startproject myproject, YOU'H find a pipelines.py

file already available for creating your own pipelines. It isn't mandatory to create
your pipelines in this file, but it would be good practice. We'll be explaining how
to create a pipeline using the pipelines.py file.

These objects are Python classes that must implement the process_item (item,
spider) method and must return an item type object (or a subclass of it) or, if it
does not return it, it must throw an exception of a proprten type to indicate that
item will not continue to be processed. An example of this component is as
follows:

#!1/usr/bin/python
-*- coding: utf-8 -*-
from scrapy.exceptions import DropItem
class MyPipeline(object):
def process_item(self, item, spider):
if item['key']:
return item
else:
raise DropItem("Element not exists: %s" % item['key'])

https://doc.scrapy.org/en/latest/topics/item-pipeline.html

One more point to keep in mind is that when we create an object of this type, we
must enter in the settings.py file of the project a line like the following to activate
the pipe. Now, to enable it you need to specify it is going to be used in your
settings. Go to your settings.py file and search (or add) the 1tem_r1reL1nes variable.
Update it with the path to your pipeline class and its priority over other
pipelines:

ITEM_PIPELINES = {

'myproject.pipelines.MyPipeline': 300,
b

Scrapy settings

Before starting Scrapy, is recommended that you modify the settings and limit
the speed at which the data is accessed, so as not to create a DOS attack. For
doing this task, we need to configure settings.py with the pownLoab_peLay property:

Scrapy settings for scrapy project

For simplicity, this file contains only the most important settings by
default. All the other settings are documented here:

http://doc.scrapy.org/en/latest/topics/settings.html

HoH o HHH

BOT_NAME = 'hacker_news'

SPIDER_MODULES = ['hacker_news.spiders']

NEWSPIDER_MODULE = 'hacker_news.spiders'

Configure a delay for requests for the same website (default: 0)

See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
DOWNLOAD_DELAY = 60

Executing Scrapy

With Scrapy, we can collect the information and save it in a file in one of the
supported formats (XML, JSON, or CSV), or even directly in a database using a
pipeline. In this case, we are executing the scrapy command passing as argument
the JSON format:

|$ scrapy crawl <crawler_name> -o items.json -t json

The last parameters indicate that the extracted data is stored in a file called
items.json and that the exporter uses for JSON format. It can be done in the same
way to export to CSV and XML formats.

The option -o items.csv provides as a parameter the name of the output file that
will contain the data you have extracted. You can also extract information as
JSON format by using the -t json option.

With the -t csv option, we will obtain a CSV file with the crawling process
result:

|$ scrapy crawl <crawler_name> -o items.csv -t csv

With the -t json option, we will obtain a JSON file with the crawling process
result:

|$ scrapy crawl <crawler_name> -o items.json -t json

With the -t xm1 option, we will obtain an XML file with the crawling process
result:

| $ scrapy crawl <crawler_name> -o items.xml -t xml

The runspider command tells scrapy to run your spider from your spider template:

| $ scrapy runspider spider-template.py

Scrapy execution tips and tricks

When executing Scrapy, we can follow these rules for managing the crawler
execution:

o If the scraping process fails, you can look in the console log for lines that
include [scrapy] DEBUG.

¢ If you want to stop Scrapy while it is still processing, just press the key
combination Ctrl+C.

e When Scrapy has finished processing data, it will display the following
information in the log console: [scrapy] INFO: Spider closed (finished).

e By default, Scrapy will append new data to the end of the output file if it
already exists. If the file does not exist, it will create one. So, if you want to
only get new data, then you should first remove the old file.

EuroPython project

In this section, we are going to build a project with Scrapy that allows us to
extract the data of the sessions of the EuroPython conference following the
pattern from the fOHOWng URL: http://ep{year}.europython.eu/en/events/sessions.
You can try with years from 2015 to 2018: for example we can try with the
fOllOVVhlg URL: https://ep2018.europython.eu/events/sessions/.

To create a project with scrapy, we can execute the following command:

| scrapy startproject europython

In this screenshot, we can see the result of creating a Scrapy project:

spiders
E’h _init__.py
| europython.sglite

E’b items.py
E middlewares.py

B pipelines.py
E’h settings.py

items.py is where we define the fields and the information that we are going to
extract:

import scrapy
class EuropythonItem(scrapy.Item):
define the fields for your item here like:
title = scrapy.Field()
author = scrapy.Field()
description = scrapy.Field()
date scrapy.Field()
tags scrapy.Field()

In the settings.py file, we define the name of the 'europython.spiders' module and
the pipelines defined among which we highlight one that allows exporting the

https://ep2018.europython.eu/en/events/sessions/
https://ep2018.europython.eu/events/sessions/

data in XML format—=turopythonxmiexport—and another that saves the data in a
database SQLite— europythonsqLitepipeline.

You can find the following code in the settings.py file:

Scrapy settings for europython project

For simplicity, this file contains only the most important settings by
default. All the other settings are documented here:

http://doc.scrapy.org/en/latest/topics/settings.html

HoH o HHH

BOT_NAME = 'europython'

SPIDER_MODULES = ['europython.spiders']

NEWSPIDER_MODULE = 'europython.spiders'

Configure item pipelines

See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {

'europython.pipelines.EuropythonXmlExport': 200,
'europython.pipelines.EuropythonSQLitePipeline': 300,

}
DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 110,
#'europython.middlewares.ProxyMiddleware': 100,

}

In the pipelines.py file we define the class that will process the results and store
them in an SQLite file. For this task, we can create an entity called
Europythonsession that extends from db. Entity class available in pony

ORM package (https://ponyorm.com). You need to install the pony package with
the pip install pony command.

You can find the following code in the pipelines.py file:

from pony.orm import *
db = Database('"sqlite", "europython.sqlite", create_db=True)

class EuropythonSession(db.Entity):
""" Pony ORM model of the europython session table """
id = PrimaryKey(int, auto=True)
author = Required(str)
title = Required(str)
description = Required(str)
date Required(str)
tags Required(str)

Also, we need to define a europythonsqLitepripeline class for processing data about
author, title, description, date, tags, and storing items in the database:

class EuropythonSQLitePipeline(object):

@classmethod

https://ponyorm.com

def

def

def

I
@db
def

des

In the

from_crawler(cls, crawler):

pipeline = cls()

crawler.signals.connect(pipeline.spider_opened, signals.spider_opened)
crawler.signals.connect(pipeline.spider_closed, signals.spider_closed)
return pipeline

spider_opened(self, spider):
db.generate_mapping(check_tables=True, create_tables=True)

spider_closed(self, spider):
db.commit ()

nsert data in database

_session

process_item(self, item, spider):

use db_session as a context manager
with db_session:

try:
strAuthor str(item['author'])
strAuthor strAuthor[3:1len(strAuthor)-2]
strTitle = str(item['title'])
strTitle = strTitle[3:len(strTitle)-2]
strDescription = str(item['description'])
strDescription = strDescription[3:len(strDescription)-2]

strDate = str(item['date'])

strDate = strDate[3:1len(strDate)-2]

strDate = strDate.replace("[u'", "").replace("']", "").replace("u'", "").replace
strTags = str(item['tags'])

strTags = strTags.replace("[u'", "").replace("']", "").replace("u'", "").replace

europython_session = EuropythonSession(author=strAuthor,title=strTitle,
cription=strDescription,date=strDate, tags=strTags)
except Exception as e:

print("Error processing the items in the DB %d: %s" % (e.args[0], e.args[1]))
return item

europython_spider.py file we define the EuropythonSpyder class. In this class, the

spider is defined, which will track the links it finds from the starting URL
depending on the indicated pattern, and for each entry it will obtain the

corres

ponding data for each session (title, author, description, date, and tags).

You can find the fOHOWiI’lg code in the europython_spider.py file:

impo
from
from
from
from
from

clas

rt scrapy

scrapy.spiders import CrawlSpider, Rule
scrapy.linkextractors import LinkExtractor
scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor
scrapy.selector import HtmlXPathSelector

europython.items import EuropythonItem

s EuropythonSpyder (CrawlSpider):
def __init_ (self, year='"',6 *args, **kwargs):
super (EuropythonSpyder, self).__init_ (*args, **kwargs)
self.year = year
self.start_urls = ['http://ep'+str(self.year)+".europython.eu/en/events/sessions
print('start url: '+str(self.start_urls[0]))

name = "europython_spyder"

allowed_domains = ["ep2015.europython.eu", "ep2016.europython.eu", "ep2017.europythor

Pattern for entries that match the conference/talks format
rules = [Rule(LxmlLinkExtractor(allow=['conference/talks']),callback="'process_respor

def process_response(self, response):
item = EuropythonItem()
print(response)
item['title'] = response.xpath("//div[contains(@class, 'grid-100')]//h1/text()")
item['author'] = response.xpath("//div[contains(@class, 'talk-speakers')]//a[1]/
item['description'] = response.xpath("//div[contains(@class, 'cms')]//p//text()"
item['date'] = response.xpath("//section[contains(@class, 'talk when')]/strong/t
item['tags'] = response.xpath("//div[contains(@class, 'all-tags')]/span/text()")
return item

Executing EuroPython spider

We can execute our spider with the following command:

| scrapy crawl europython_spider -o europython_items.json -t json
At the end of the process, we obtain the following as output files:

® curopython_items.json
® curopython_items.xml

® curopython.sqglite

Each of these files are generated in the classes that are defined in the pipelines.py
file and the JSON file is generated automatically by the spider.

Another interesting option is that spiders can manage arguments that are passed
in the crawl command using the -a option. For example, the following command
will extract the data of the sessions of the EuroPython 2018 from the following
URL: http://ep2018.europython.eu/en/events/sessions.

| scrapy crawl europython_spider -a year=2018 -o europython_items.json -t json

In this screenshot, we can see the JSON file generated after the execution of the
previous command:

[

{"title": ["Citizen Science with Python"], "author": ["Ian Ozsvald"], "description": ["You could make a difference in the world with a lit
{"title": ["Creating a Culture of Software Craftsmanship\u202f"], "author": ["Keith Harrison"], "description": ["This time it\u201911 be d
{"title": ["CatBoost - the new generation of Gradient Boosting"], "author": ["Anna Veronika Dorogush"], "description": ["Gradient boosting
{"title": ["Code Review Skills for Pythonistas™], "author": ["Nina Zakharenko"], "description": ["As teams and projects grow, code review
{"title": ["Creating Solid APIs"], "author™: ["Rivo Laks"], "description": ["Increasingly, our apps are used not by humans but by other ap
{"title": ["Building a Question Answering System using Deep Learning Techniques "], "author": ["Rricha Jalota"], "description”: ["Question
{"title": ["Change music in two epochs"], "author": ["Marcel Raas"], "description": ["This talk is about applying deep learning to music.
{"title": ["Building new NLP solutions with spaCy and Prodigy"], "author": ["Matthew Honnibal"], "description": ["Commercial machine learn
{"title": ["Bytecodes and stacks: A look at CPython\u2019s compiler and its execution model"], "author": ["Petr Viktorin"], "description":
{"title": ["Automating testing and deployment with Github and Travis"], "author": ["Alex Gr\u0Ofénholm"], "description": ["Maintaining an
{"title": ["Asyncio in Python 3.7 and 3.8."], "author": ["Yury Selivanov"], "description": ["The talk is aimed to give attendees a clear p
{"title": ["Bad hotel again? Find your perfect match!"], "author™: ["Elisabetta Bergamini"], "description": ["For most travellers, online
{"title": ["Asyncio in production”], "author": ["Hrafn Eiriksson™], "description": ["Much has been written about asynchronous programming
{"title": ["Bridging the Gap: from Data Science to Production"], "author": ["Florian Wilhelm"], "description": ["A recent but quite common
{"title": ["Building a Naive Bayes Text Classifier with scikit-learn"], "author": ["Obiamaka Agbaneje"], "description": ["Machine learning
{"title": ["Autism in development™], "author": ["Ed Singleton"], "description": ["Autism is a condition that correlates with engineering.
{"title": ["The pytest/tox/devpi help desk"], "author": ["Oliver Bestwalter"], "description": ["We\u201911 try to help everyone with their
{"title": ["OpenStack Help Desk"], "author™: ["Daniel Abad"], "description": ["Come and chat with us about OpenStack! The free and open-so
{"title": ["Help desk: choosing (or not) the right NoSQL database"], "author": ["Alexys Jacob"], "description": ["During this ", "help des

Also, we can see that it generates a SQLite file that we can open with the SQLite
browser tool and see the structure of the generated table:

http://ep2018.europython.eu/en/events/sessions

Database Structure Browse Data

Edit Pragmas Execute SQL
|4 Create Table o Create Index |21 Modify Table |4 Delete Table
Name Type Schema
v [E Tables (2)

+ [EuropythonSession CREATE TABLE "EuropythonSession" ("id" INTEGER PRIMARY KEY AUTOINCREMENT, "author” TEXT NOT NULL
Zid INTEGER “id” INTEGER PRIMARY KEY AUTOINCREMENT
= author TEXT “author” TEXT NOT NULL
2 title TEXT “title” TEXT NOT NULL
2 description TEXT “description” TEXT NOT NULL
2 date TEXT “date’ TEXT NOT NULL
=) tags TEXT “tags” TEXT NOT NULL

= sqlite_sequence CREATE TABLE sqlite_sequence(name,seq)
Indices (0)
= Views (0)

L] Triggers (0)

Working with Scrapy in the cloud

In this section, we will explore Scrapy for deploying spiders and crawlers in the
cloud.

Scrapinghub

The first step is register in the Scrapinghub service, which can be done at the
fOllOVVhlg URL: https://app.scrapinghub.com/account/login/.

Scrapy Cloud is a platform for running web crawlers and spiders, where spiders
are executing in cloud servers and scale on demand: https://scrapinghub.com/scrapy-

cloud.

To deploy projects into Scrapy Cloud, you will need the Scrapinghub command-
line client, called shub, and it can be installed with the pip install command. You
can check if you have the latest version:

|$ pip install shub --upgrade

The next step is to create a project in Scrapinghub and deploy your Scrapy
project:

https://app.scrapinghub.com/account/login/
https://scrapinghub.com/scrapy-cloud

Create A New Project

Name

europython

Deploy Your Spiders

Choose the technology that you are using for your project

& v

PORTIA SCRAPY

Not sure which one to pick? Read this to help you decide

CANCEL CREATE

When you create a Scrapy Cloud project, you will see information related with
API key and the ID on your project's Code & Deploys page:

Deploy Management

DEPLQOY YOUR CODE

L[] command line ¢) Github

Your account is not connected yet

$ pip install shub

$ shub login OR
API key: ec6334d7375845Tdb876c1d10b2b1622

$ shub deploy 366126

Don't have a project yet? Clone a public repository Learn more

When spider is deployed, you can go to your project page and schedule or run
the spider there:

Run

Spiders

Job Units

Priority

Normal Y

Tags

Arguments

year 2018 X

CANCEL m

When you run the spider, you will be redirected to the project dashboard for
checking the state of your spider, items, and data extracted. Once the process is
finished, the job created will be automatically moved to completed jobs:

wv Completed Jobs € Show only jobs with comments (0) & ~
Job Spider Items ¢ Requests Errors Log Runtime Started Finished Outcome
12 ?gmpytm”ﬁpydef 158 159 0 178 0:02:04 2018-12-27 14:32:22 UTC 2018-12-27 14:34:26 UTC finished
171 $}3'”0F7Y“7°”-Spydef 0 0 4 14 0:00:10 2018-12-27 14:23:27 UTC 2018-12-27 14:23:38 UTC finished

We can also see job details where we can see extracted data in the job items
section:

Job Items @& Requests &) Log stats @) Console

Job kems

Filter by Field:| Choose field... ¥ || Choose action... v Allltems v CLEAR SHOW SCRAPED FIELDS
Item 0 2018-12-27 14:33:47 UTC & DOWNLOAD
author lan Ozsvald
date Friday 27 July

description You could make a difference in the world with a little science and Python. We'll lock at several data-driven humanitarian and healthcare proje
cts developed using Python and, all going well, run some audience experiments. By the end of the talk | hope you'll be looking to run your ow
n experiments with the scientific Python stack.

tags Science
Data

Portia

Portia is a visual web scraping tool available in the Scrapinghub platform: https:/
/github.com/scrapinghub/portia.

Portia is a tool that allows you to visually scrape websites annotating a web page
to identify the data you wish to extract. Portia will understand how to scrape data
from similar pages based on these annotations.

0 Documentation can be found from reading the docs in the URL: nttps://portia. readthedocs. io/en/late

st/getting-started.html.

You can run and deploy Portia in your local machine through some environments
such as Docker, Vagrant, and Ubuntu virtual machine following the official
documentation: https://portia.readthedocs.io/en/latest/installation.html. AISO, you
can access this Portia service at https://portia.scrapinghub.com, fOHOWng is the
screenshot to run and deploy Portia:

https://github.com/scrapinghub/portia
https://portia.readthedocs.io/en/latest/getting-started.html
https://portia.readthedocs.io/en/latest/installation.html
https://portia.scrapinghub.com

Code & Deploys WATCH +

Manage project code deployments

Deploy Management
(% Visual Scraping Start working on your project in Portia
Learn more

Portia has the capacity to find similar items for each page. This process will
continue until it has finished checking every page or has reached the limit of
your Scrapinghub plan.

The first step is set up the website that you want to scrape in the Portia site:

Portiam Scrapinghub Deshboard Portia 2.0 Documentation

Changes are saved automatically
PROJECT Not published @
B demo
SPIDERS @

M scrapy.org

DATAFORMATS @

L(((]

default

e

Scrapy A Fast and Powerfu... :
SR What would you like to scrape?
Enter a website address

You can also select one of your existing spiders from the sidebar.

Next, you need to create a new spider:

Portia m Scrapinghub Dashboard Portia 2.0 Documentation

Last saved a few seconds ago

PROJECT Not published @ € 2 https://www.packtpub.com/

B demo

SPIDERS @

This project has no spiders

To create a spider first visit a web page that you

would like to start crawling from.

(63 &% New spider

| Find the latest in tech learning...

m A

Packt»

|-

Portia has the capacity to add the page's URL as a start page automatically. The
crawling process will start with start pages and Portia will visit them to find
more links when the spider is executed.

In this example, we are extracting the titles of the books from the packtpub.com

domain:

Portia m Scrapinghub Dashboard

PROJECT Not published @
B demo

SPIDER © Show all spiders

&% www.packtpub.com

SAMPLE PAGE @ Show all samples

I Packt Publishing Technolo...

ITEMS
@ £ Packt Publishing Techn...

@ 4 tittleBook text

Portia 2.0 Documentation

€ | > https://www.packtpub.com/ c

Tools N El + | - H % Close sample

[:]Artificiallntelligenn RMastering Reversn [;‘]AWS Certified n

and Machine Learning Engineering Book Solutions Architect -
Fundamentals Book Cover Associate Guide Book
Cover Mastering Reverse Cover
Engineering AWS Certified
Solutions Architect -
€36.87€ 5.22 Associate Guide
€407 € 5.22 €3687 € 5.22

This website uses cookies to ensure you get the best experience on
our website. Learn More

Inspector -

html > body > div > div > div > div > div >
div > div > div > div > div > div > div > div >
div > div

content Artificial Intel... (Tl ©

itemprop name (+]

Extracted items o JSON @ =

[
{
"tittleBook": [
"Artificial Intelligence and
Machine Learning Fundamentals”
1,
"url™: "https://www.packtpub.com/"
}
1

Start pages and link crawling

Portia will use start pages for starting crawling. Under the LINK CRAWLING
section, you can choose how Portia will follow links and in the LINK
CRAWLING section you can add and remove start pages.

These are the many options for link crawling:

e Follow all in-domain links: Allow it to follow links under the same domain

and subdomain

e Don't follow links: Allow it to only follow start pages

e Configure URL pattern: Ensure that the URL pattern is defined
using regular expressions

In this screenshot, we can see the methods Portia uses for link crawling:

LINK CRAWLING
% | Follow all in-domain... ~

hnange now liNKs are craw

SAM —
Follow all in-domain links

El Don't follow links

Configure url patterns

Summary

One of the objectives of this chapter has been to learn about the modules that
allow the automatic extraction of data on a specific domain. One of the best tools
for web scraping in Python is Scrapy. In this tool, we simply create a class that
represents the information that we want to get from the web and Scrapy itself is
responsible for connecting to the website, extracting information, and creating
the objects of our class.

In the next chapter, we will learn how to use Python to compose, send, and
retrieve email with SMTP, POP3, and IMAP protocols.

Questions

0o

10.

. What library does Scrapy use to extract content from web pages as if they

were regular expressions?

What XPath expression could we use to extract the images of a certain URL
from which the HTML code has been extracted?

What XPath expression could we use to extract the links of a certain URL
from which the HTML code has been extracted?

What method of the BeautifulSoup module allows you to obtain all the
elements of a certain label?

What basic elements at the level of files and folders can we find in a Scrapy
project?

In which part of our Scrapy project do we define the extraction procedure
for each of the items?

In which part of our Scrapy project do we define the classes that allow us to
validate the data or save the extracted data in some databases?

What is the main Scrapy class that allows us to define our spider?

What is the main method you must implement when building an item
pipeline?

What is the main platform for deploying spiders in the cloud and what are
the commands for doing this task?

Further reading

In these links, you will find more information about the mentioned tools and the
official Python documentation for some of the modules that we've discussed:

e This is the official documentation for the BS4 package: nttp://www.crummy.com/
software/BeautifulSoup/bs4/doc

e This is the official documentation for the Scrapy package: nttp://doc.scrapy.o
rg/en/latest

e This is the official documentation for the mechanize package: http://wwsearc
h.sourceforge.net/mechanize

® scrapy commands: https://doc.scrapy.org/en/latest/topics/commands.html

° Comparison between Portia and ParseHub: https://www.parsehub.com/blog/portia
-vs-parsehub-comparison-which-alternative-is-the-best-option-for-web-scraping/

e Twint: https://github.com/twintproject/twint

http://www.crummy.com/software/BeautifulSoup/bs4/doc
http://doc.scrapy.org/en/latest
http://wwwsearch.sourceforge.net/mechanize
https://doc.scrapy.org/en/latest/topics/commands.html
https://www.parsehub.com/blog/portia-vs-parsehub-comparison-which-alternative-is-the-best-option-for-web-scraping/
https://github.com/twintproject/twint

Engaging with Email

Email is one of the most popular forms of digital communication. Python has a
rich number of built-in libraries for dealing with emails. In this chapter, you will
learn how to use Python to compose, send, and retrieve emails with the Simple
Mail Transfer Protocol (SMTP), Post Office Protocol 3 (POP3), and Internet
Message Access Protocol (IMAP) protocols. Practical code examples in Python
3.7 will illustrate most of these concepts in detail.

The following topics will be covered in this chapter:

Learning about and understanding email protocols

Sending emails with SMTP through the smtp1ib library

Learning the POP3 protocol and retrieving emails with pop1ib

Retrieving emails on the email server using IMAP with imapciient and imap1ib

Technical requirements

The examples and source code for this chapter are available in this book's
GitHub repository in the chapteres folder: nttps://github.com/PacktPublishing/Learning-

Python-Networking-Second-Edition.

You will need to install Python's version 3 distribution on your local machine
and have active Twitter and Gmail accounts for testing examples that are related
to Gmail servers.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Introduction to email protocols

Often, end users use software or a graphical user interface (GUI) to write, send
and receive emails., Also known as email clients, for example, Mozilla
Thunderbird, Microsoft Outlook, etc., are customers of e-mail. The same tasks
can be done through a web interface, that is, a web mail client interface. Some
common examples of these are: Gmail, Yahoo mail and Hotmail

The mail you send from your client's interface travels through a series of
specialized email servers that internally run software called the Mail Transfer
Agent (MTA), and their main job is to route the email to destinations appropriate
by analyzing the mail header.

Subsequently, the mail arrives at the recipient's mail server, which can be
retrieved using his email client.

In this section we will review the main communication protocols that are used to
send and receive emails, among which we can highlight:

e SMTP: The SMTP protocol is used for sending emails from one host to
another and allows you to transfer files between mail servers.

e Simple Mail Transfer Protocol Secure (SMTPS): This encrypts
communications while the email is being transferred between mail servers.

e POP3: The POP3 protocol provides a standardized way for users to
download messages from mailboxes to their computers. When using the
POP3 protocol, your email messages will be downloaded from the internet
service provider (ISP) mail server to your local computer. You can also
leave copies of your emails on the ISP server.

e IMAP: The IMAP protocol provides a standardized way of accessing your
emails from your ISP. As this requires only a small data transfer, this
scheme works well even over a slow connection, such as a mobile phone
network. If you send a request to read a specific email, that email message
will be downloaded from the ISP. You can also do some other interesting
things, such as creating and manipulating folders or mailboxes on the
server, and deleting messages. A mail client also pulls emails from the mail
server, but has more functionality than POP3 since a copy of the message is

retained on the mail server.

¢ Secure/Multipurpose Internet Mail Extensions(S/MIME): This uses
a public key infrastructure (PKI) to either encrypt the email or digitally
sign the email to prove the integrity of the message. It is very cumbersome
as it requires each user to exchange their public key and does not scale very
well.

Python has three modules, smtp1ib, pop1ib, and imap1ib, which support SMTP,
POP3, and the IMAP protocols, respectively. Each module has options for
transmitting the information securely by using the Transport Layer Security
(TLS) protocol. Each protocol also uses some form of authentication for
ensuring the confidentiality of the data.

Sending emails with SMTP through
the smtplib library

In this section, we will learn about the SMTP protocol and introduce smtp1ib, a
Python module that's used to send emails. We will also demonstrate how to send
different types of email, such as simple text messages, emails with attachments,
and emails with HTML content. We will also explore how to work with emails
with SMTP authentication in Python 3.7.

SMTP protocol

SMTP is a set of rules for the transmission of messages from their origin to the
destination and is used to transmit email messages to mail servers. SMTP uses

port 25 to send or transmit mail messages. Email servers need to have this port

open to listen for incoming connections.

In the connection between the client and server, the client sends the first SYN
message to the server to start the connection through port 2s. The server accepts
the connection by sending the SYN_ACK message.

After this exchange of messages, the server sends the client a message with
identifier 220, indicating that the server is ready to carry out transactions so that
it can proceed and send emails. Subsequently, the client identifies the server
message through HEL O, which is used to read the messages.

The following image shows the client and server's communication through the
SMTP protocol:

Client

" "
SYN (TCP_Port=25)
>
SYN_ACK
< >
SYN
|

220: SMTP server: READY

<
HELO:ACK

>

In this diagram we can see the first phase of the communication where the client
sends a SYN packet to the server using the port 25. If the connection is
established, a series of confirmation packets SYN_ACK are exchanged between
them. Finally,the server it returns the STMP server: reaoy packet to the

client indicating that server its ready to receive connections.

Working with smtplib

Python provides the smtp1ib module for working with the SMTP protocol. You
can transmit messages by calling the sendmaii() method of SMTP objects. Let's
look at how we can using it to send an email with this module:

1. Create a smtp1ib.sutp Object that will receive as a parameter of its constructor
method, that is, the host (localhost)

2. Create a mail message

3. Send the message through a call to the sendmaii method of the SMTP object

The syntax for creating a SMTP object is as follows:

import smtplib
smtpObj = smtplib.SMTP([host[,port[,local_hostname]]])

Let's look at what each parameter in the preceding code in more detail:

® nost: This is the IP address or domain of the SMTP server host

® port: The default value is 25 and, if you provide a host parameter, you need
to specify the port number that's used by the SMTP server

® local_hostname: Y OU need to specify the localhost server address if your
SMTP server is located on your local machine sendmai1 has the following
syntax and parameters:

| SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options])
Let's look at these parameters in detail:

e from_addr: The sender's email address
® to_addrs: A list of chains; sends an email
® nsg: Sends a message

Sending a basic message

These are the basic steps we can follow for sending a basic message with smtp1ib:

1. To begin, we need to import the necessary classes: import smtplib.
2. The SMTP class represents a connection to an SMTP server. Next, we
specify our email address, destination, and the message:

from_address = "from_user@domain.com"
to_address = "to_user@domain.com"
message = "Message"

3. To begin with the message format, we need to import the necessary classes:

| from email.mime.text import MIMEText

4. These messages use the MIME standard, and so we must use the
MIMEText class to build a plain text email. We implement an instance of
the MIMEText class to build the message:

mime_message = MIMEText(message, "plain")
mime_message["From"] = from_address
mime_message["To"] = to_address
mime_message["Subject"] = "Subject"

5. In case the message contains Unicode characters, consider specifying the
encoding:

| mime_message = MIMEText(message, "plain", _charset="utf-8")

6. You can modify the visual aspect of the message using HTML.:

| message = '"Hello, python!"mime_message = MIMEText(mess

7. Once the message has been elaborated, we must make the connection to the
SMTP server:

import smtplib
smtp = SMTP("smtp_server")

8. We can use the server address provided by your hosting provider for this. In
the case of the most important services, the server addresses are smtp.1ive.com
(Outlook/Hotmail), smtp.mail.yahoo.com (Yahoo!), and smtp.gmail.com (Gmall)

9. We then need to enter the data for authentication, that is, the username
(usually, this is an email address) and password:smtp.1login(from_address,
"password")

10. Finally, we send the email and close the connection with the quit() method:

smtp.sendmail(from_address, to_address, mime_message.as_string())
smtp.quit()

In the following script, we are using a basic example for sending email using
smtplib.

You can find the following code in the smtp_basic.py file:

#1/usr/bin/env python3
import smtplib
smtp = smtplib.SMTP('smtp_server')

try:

smtp.sendmail('from@fromdomain.com', ['to@todomain.com'], "This is a test email mess
except SMTPException as exception:

print("Error: unable to send email: "+exception)
finally:

smtp.quit()

In this script, we are using a SMTP object to connect to the SMTP server and
then using the sendmai1() method, passing from address, the destination address,
and the message as parameters.

If you are using a webmail service (such as Gmail), your email provider must
have provided you with outgoing mail server details that you can supply them
with, as follows:

| smtplib.SMTP('mail.server.domain', 25)

Here, we must point out that the third argument, message, is a string representing
the email. We know that a message is usually composed of a header, sender,
recipient, message content, and attachments.

In the following script, we are reviewing a way to send an email by using mimetext
for the message format. You can find the following code in
the smtp_message_format.py file:

#1/usr/bin/env python3

import smtplib
from email.mime.text import MIMEText
from email.header import Header

sender = 'sender@domain.com'
receiver = 'receiver@domain.com'

mail_host="smtp.domain.com"
mail_user="user"
mail_password="password"

message = MIMEText('Python', 'plain', 'utf-8')
message['From'] = Header(sender, 'utf-8')
message['To'] = Header(receiver, 'utf-8')

subject = 'Python SMTP message'
message['Subject'] = Header(subject, 'utf-8'")

smtp = smtplib.SMTP()

try:
smtp.connect(mail_host, 25)
smtp.login(mail_user,mail_password)
smtp.sendmail(sender, receiver, message.as_string())
except smtplib.SMTPException as exception:
print("Error:"+exception)
finally:
smtp.quit()

If you get smtplib.sMTPNotsupportederror: sMTp AuTH, then the extension is not
supported by the server. When you're trying this with a Gmail server, it's
important to mention that Gmail requires TLS (which we will review in the
following examples).

Sending messages in HI'ML format

The library provides you with an option to send a message in HTML format. In
this way, while sending an email message, you can specify a MIME version,
content type, and character set, thanks to the mivetext constructor. In this example,
we are using the 'nhtm1' content type and the 'utf-s' character set:

mail_message = """

<p>Python</p>
<p>python</p>

message = MIMEText(mail message , 'html', 'utf-8')

In this way we can provide a message in HTML format following utf-8
encoding.

Sending emails to multiple recipients

To send an email to multiple recipients, it will only be necessary to generate a
list with the email receivers.

|receivers = ['receiveril@domain.com', 'receiver2@domain.com']

In this example, we are declaring an array with two receivers.

Sending an email with attachments

To send messages with attachments, you must create an object instance of the
mimemultipart() class. If there are multiple attachments, these can be built
sequentially. In this example, we are attaching two text files to the message:

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

message = MIMEMultipart()

message['From'] = Header("Sender", 'utf-8")
message['To'] = Header("Receiver", 'utf-8')
message['Subject'] = Header('Python SMTP', 'utf-8'")

message.attach(MIMEText('Python SMTP', 'plain', 'utf-8'))

filel = MIMEText(open('filel.txt', 'rb').read(), 'base64', 'utf-8'")
filel["Content-Type"] = 'application/octet-stream'
filel["Content-Disposition"] = 'attachment; filename="filel.txt"'
message.attach(filel)

file2 = MIMEText(open(‘file2.txt', 'rb').read(), 'base64', 'utf-8')
file2["Content-Type"] = 'application/octet-stream'
file2["Content-Disposition"] = 'attachment; filename="file2.txt"'
message.attach(file2)

In this script we are using the attach() method from MIMEMultipart class for
attaching two files with the message. Each file is declared as MIMEText object
and defined as application/octet-stream in the Content-Type property.

Authentication with TLS

The SMTP class also has the capacity to manage authentication and TLS
encryption. First, we need to determine whether the server supports TLS
encryption. To do this, we can use the en1o() method to identify our computer to
the server and query what extensions are available. Then, we can call has_extn()
to check the results. Once TLS is started, you must call en1o() again to re-identify
yourself over TLS connection.

If you want to do SMTP authentication with TLS instead of SSL, you simply
have to change the port to ss7 and execute smtp.starttis() in the following way:

smtp.connect('smtp.mail.server', 587)
smtp.ehlo()
if smtp.has_extn('STARTTLS'):
smtp.starttls()
smtp.ehlo()
smtp.login('user@domain', 'password')

In this section we have reviewed how we can manage authentication and TLS
encryption.

Establishing a connection with a
Gmail SMTP server

It is possible to take advantage of the free Gmail SMTP server to send emails. It
can be the definitive solution for those who cannot use the SMTP server that's
provided by their ISP or their host, as well as those who experience several
problems with sending emails. In this section, you will learn how to use the free
Gmail SMTP server.

To establish a connection with smtp.gmai1.com, we can use the following
instructions:

mailServer = smtplib.SMTP('smtp.gmail.com',587)

mailServer.ehlo()

mailServer.starttls()

mailServer.ehlo()
mailServer.login("user@gmail.com", "password")

Basically, we indicate smtp.gmail.con as the mail server name and the connection
as port ss7. Then, we establish the startt1s() protocol, sending an enio() message
beforehand to accept it. Finally, we enter the session with user@gmai1.com and the

corresponding password, once again sending an en1lo() message beforehand.

You can see all of these features in the smtp_1o0gin_t1s.py file:

#1/usr/bin/env python3
import sys, smtplib, socket

this invokes the secure SMTP protocol (port 465, uses SSL)
from smtplib import SMTP_SSL as SMTP
from email.mime.text import MIMEText

try:
msg = MIMEText("Test message", 'plain')
msg['Subject']= "Sent from Python"
msg['From'] = "user@gmail.com"

In the previous code block we import necessary packages and define our
message object using MIMEText class.In the next code block we create smtp
session and if the server it supports SSL encryption,establish a secure connection

with the server.

create smtp session

smtp = smtplib.SMTP("smtp.gmail.com", 587)
#debug active

smtp.set_debuglevel(True)

identify ourselves to smtp gmail client
smtp.ehlo()

Check if we can encrypt this session

if smtp.has_extn('STARTTLS'):
secure our email with tls encryption
smtp.starttls()

re-identify ourselves as an encrypted connection
smtp.ehlo()

Once we have created our SMTP session and checked whether we can encrypt

this session, we can use the login method for authenticating our user credentials
and send an email with the sendmaii method:

try:
smtp.login("user@gmail.com", "password")
except smtplib.SMTPException as e:
print("Authentication failed:", e)
sys.exit(1)

try:
smtp.sendmail('user@gmail.com', ['user@gmail.com'], msg.as_string())
except (socket.gaierror, socket.error, socket.herror,smtplib.SMTPException) as e
print(e)
sys.exit(1)
finally:
smtp.quit()

except (socket.gaierror, socket.error, socket.herror,smtplib.SMTPException) as e:
print(e)
sys.exit(1)

In the next section, we are going to review the configuration for sending emails
with the Gmail SMTP service.

Using an external SMTP service

Although most hosts and ISP providers offer support for SMTP, there are some
benefits of using an external SMTP service:

e They can guarantee a better delivery of emails
¢ You will not have to configure your own server (if you use VPS)

You can find the details of Google SMTP in the following parameters:

SMTP server: smtp.gmail.com

SMTP user: Your complete Gmail user (email), for example, user@gmail.com
SMTP password: Your Gmail password

SMTP port: The default Gmail SMTP server port is 465 for SSL and ss7 for
TSL

e TLS/SSL: Required

To send an email through the Gmail SMTP server, you need to configure it
through the following service by activating the Allow less secure apps:
ON OptiOI’l with your Google account at nttps://www.google.com/settings/security/less

secureapps.

https://www.google.com/settings/security/lesssecureapps

¢ Less secure apps

Some apps and devices use less secure sign-in technology, which makes your account more vulnerable.
You can turn off access for these apps, which we recommend, or turn on access if you want to use them
despite the risks. Learn more

Allow less secure apps: ON .

Now, we can proceed and send emails from Python. We will follow these steps
to achieve this process:

Create an SMTP object for the server connection

Log in to your account

Define the headers of your messages and login credentials

Create a mivemultipart message object and attach the corresponding headers
Attach the message to the mivemuitipart Object message

Send the message

S h W

You can find the fOHOWiIlg code in the send_text_mail from_gmail.py file:

#1/usr/bin/env python3

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import smtplib

create message object instance
message = MIMEMultipart()

setup the parameters of the message
message['From'] = "user@domain"
message['To'] = "user@domain"
message['Subject'] = "Subject"

add in the message body
message.attach(MIMEText("message", 'plain'))

In the previous code block we have created the message object instance and
setup the parameters of the message.In the next code block we are going to
create the connection with the smtp server, login with user credentials and send
email with sendmail method.

#create server
server = smtplib.SMTP('smtp.gmail.com: 587")
server.starttls()

Login Credentials for sending the mail
server.login(message['From'], "password")

send the message via the server.

server.sendmail(message['From'], message['To'], message.as_string())
print("successfully sent email to %s:" % (message['To']))
server.quit()

In the previous example we have reviewed how to send an email using the Gmail
SMTP server.You can test it changing the parameters of the message using your
user and setting your password in the login() method credentials.

Creating and sending an email with
an attachment

Now, we will be sending an image attachment. This is a similar process to
sending a plain text email. The only difference is that, here, we are using the
mimeImage Class to create MIME message objects of image types. Follow these
steps to get started:

1. Create an SMTP object for the connection to the server

2. Log in to your account

3. Define the headers of your messages and login credentials

4. Create a mivemultipart message object and attach the corresponding headers,
that is, from, to, and subject

5. Read and attach the image to the mivemuitipart object message

6. Finally, send the message

You can find the fOHOWiI’lg code in the send_attachment_mail_from_gmail.py file:

from email.mime.multipart import MIMEMultipart
from email.MIMEImage import MIMEImage

from email.mime.text import MIMEText

import smtplib

create message object instance
message = MIMEMultipart()

setup the parameters of the message

message['From'] = "user@domain"

message['To'] = "user@domain"

message['Subject'] = "sending images as attachment"

attach image to message body
message.attach(MIMEImage(file("image.jpg").read()))

In the previous code block we have created the message object instance and
setup the parameters of the message,including attached image to message body.
In the next code block we are going to create the connection with the smtp
server, login with user credentials and send email with sendmail method.

create server

server = smtplib.SMTP('smtp.gmail.com:587")
server.starttls()

Login Credentials for sending the mail
server.login(message['From'], "password")

send the message via the server.

server.sendmail(message['From'], message['To'], message.as_string())
server.quit()

print("successfully sent email to %s:" % (message['To']))

In the previous example we have reviewed how to send an email with attached
image using the Gmail SMTP server. You can test it changing the parameters of
the message using your user and setting your password in the login() method
credentials.

Learning the POP3 protocol and
retrieving emails with poplib

In this section, we will learn about the POP3 protocol and explore the pop1ib
library and how to work with emails with POP3 in Python 3.7.

Understanding the POP3 protocol

POP3 is a protocol that allows email clients to obtain email messages that are
stored on a remote server. It is an application-level protocol in the OSI model.
The stored email messages can be downloaded and read by the local computer.
The POP3 protocol can be used to download these messages from the email
server.

POP3 is designed to receive emails, not to send them; it allows users with
intermittent or very slow connections (such as modem connections) to download
their emails while they have a connection and later check them when they are
disconnected. It should be mentioned that most mail clients include the option to
leave messages on the server so that a client using POP3 connects, obtains all
messages, stores them on the user's computer as new messages, removes them
from the server, and finally disconnects.

The following diagram shows the client and server communicating through the
POP3 protocol:

Mail Server User Computer

POP3 POP3
Server Client
— user-name

eﬁ OK]
) Ee— password —e
07 OK |
+— list —e
o— email numbers and their sizes EE—
L Em— retrieve 1 —o

ei email 1 I

«— retrieve N 4@
Qﬁ email N ——p

The client establishes a connection to the server on TCP port 11e. They then send
their username and password to access the mailbox. Once the connection has
been established, the user can obtain the email messages individually.

html/rfc1725.html.

0 If you want to read a little more, here is a link to your corresponding RFC: nttps://tools. ietf.org/

https://tools.ietf.org/html/rfc1725.html

Introduction to poplib

Accessing an email address from Python is very simple if you have POP3
enabled. For this task, can use the pop1ib library. As an example, I will use Gmail.
If you want to try this out for yourself, remember to enable POP3 on the Gmail
website. To do this, you need to enter the configuration section inside a Gmail
account. You can review Gmail account configuration section of this chapter.

This module defines a class called POP3 that encapsulates a connection to a
POP3 server. This class also supports encrypted communication with the TLS
protocol.

This module provides two high-level classes:

® PoP()
® POP3_SSL()

Both classes implement the POP3 and POP3S protocols, respectively. The class
constructor for each one accepts three arguments: host, port, and timeout. The
optional timeout parameter determines the number of seconds of the connection
timeout at the server.

Basically, this module will allow us to connect to a POP3 server, and then
authenticate and read the emails. In addition, this module provides a roprs_sst
class, which provides support for connecting to POP3 servers that use SSL as the
underlying protocol layer.

As we can see in the documentation on poplib (https://docs.python.org/S/library/popl
ib.htm1), the pop1ib module has two classes with the following constructors:

class poplib.POP3(host[, port[, timeout]])
class poplib.POP3_SSL(host[, port[, keyfile[, certfile]]])

These are the more relevant methods:

® pop3.user(username): This establishes a user in the connection.
® pop3.pass_(password): This establishes a password in the connection. Note that

https://docs.python.org/3/library/poplib.html

the mailbox on the server is locked until the quit() method is called.

® pop3.getwelcome(): This returns the welcome string that's returned by the POP3
server.

e popr3.stat(): This gets the status of the mailbox. The result is a tuple of two
integers (message count and mailbox size).

® pop3.list([which]): This requests a list of messages. The result is in the form
(response, ['mesg_num octets', ...], octets). If it is conﬁgured, it is the message
to list.

® popr3.retr(which): This retrieves the complete message number and configures
your view banner.

® pop3.dele(which): This marks the message number that will be deleted. On
most servers, deletions are not carried out until the quit() method is called.

® popr3.quit(): This allows you to confirm the changes, unlock the mailbox, and
release the connection.

® pop3.top (which, number): This retrieves the header of the message, plus the
number of lines of the message after the header of the message number.

To summarize, we have the pop1ib.porz and pop1ib.pPor3_ssL classes to connect to the
server (we use the second one if the server has SSL implemented) and the user
and pass_ methods to authenticate us. Finally, we have the getwelcone method,
which captures the welcome message from the server.

Retrieving emails with SSL

por3_ssL() is the secure version of ror3(). This class takes additional parameters,
such as keyfile and certfile, which are used for supplying the SSL certificate files,
namely the private key and certificate chain file. Writing for a POP3 client is
also very straightforward. To do this, instantiate a mailbox object by initializing
the por3() or popra_ssL() classes. Then, invoke the user() and pass_() methods to
login to the server by using the following command:

mailbox = poplib.POP3_SSL("POP3_SERVER", "SERVER _PORT")

mailbox.user('username')
mailbox.pass_('password')

0 You can see the basic POP3 example from the documentation: nttp://docs. python.org/library/poplib.h

tml#pop3-example.

We can retrieve all of the messages from an email account with the retr method. The following
0 link provides documentation about this method: https://docs.python.org/3/1ibrary/poplib.html#poplib.POP3

.retr.

Here is a minimal example that opens a mailbox and retrieves all of its
messages. First, we create a rops_ss. object (Gmail works with SSL) and enter
our username and password. From here, we can manage our emails with the
functions that are provided by the pop1ib library. In this example, we obtain the
list of messages with the 1ist() method. The last message is chosen from the
response and the server is requested through retr(msgid).

You can find the following code in the maiibox basic.py file:

#1/usr/bin/env python3

import poplib

mailbox = poplib.POP3_SSL("pop.gmail.com",995)
mailbox.user ("user"

mailbox.pass_("password")
print(mailbox.getwelcome())

messages = len(mailbox.list()[1])

for index in range(messages):

for message in mailbox.retr(index+1)[1]:
print(message)

mailbox.quit()

http://docs.python.org/library/poplib.html#pop3-example
https://docs.python.org/3/library/poplib.html#poplib.POP3.retr

In this example, we have the same functionality from the previous script—the
only difference is how we get the params server, port, user, and password from the
command line.

You can find the fOHOWiI’lg code in the mailbox_basic_params.py file:

#1/usr/bin/env python3

import poplib
import argparse

def main(hostname, port,user,password):
mailbox = poplib.POP3_SSL(hostname, port)

try:
mailbox.user (user)
mailbox.pass_(password)
response, listings, octet_count = mailbox.list()
for listing in listings:
number, size = listing.decode('ascii').split()
print("Message %s has %s bytes" % (number, size))

except poplib.error_proto as exception:
print("Login failed:", exception)

finally:
mailbox.quit()

In the previous code block we have defined our function that accepts as
parameters the hostname,port,user and password and establish the connection
with this configuration.In the next code block we use the argparse module for
setting the parameters used by the main() method.

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description='MailBox basic params')
parser.add_argument('--hostname', action="store", dest="hostname")
parser.add_argument('--port', action="store", dest="port")
parser.add_argument('--user', action="store", dest="user")
given_args = parser.parse_args()
hostname = given_args.hostname
port = given_args.port
user = given_args.user
import getpass
password = getpass.getpass(prompt='Enter your password:")
main(hostname, port, user, password)

Let's see how we can read out the email messages by accessing Google's secure
POP3 email server. By default, the POP3 server listens on port 995 securely. The
following is an example of fetching an email by using POP3.

Get the total number of messages:

| (messagesNumber, size) = mailbox.stat()

Get a specific message by using your mailbox number:

| response, headerLines, bytes = mailbox.retr(i+1)

You can find the following code in the pop1ib_gmaii.py file:

#1/usr/bin/env python3

import poplib
import getpass

mailbox = poplib.POP3_SSL ('pop.gmail.com', 995)
username = input('Enter your username:')

password = getpass.getpass(prompt='Enter your password:')
mailbox.user (username)

mailbox.pass_(password)

EmailInformation = mailbox.stat()
print("Number of new emails: %s ", EmailInformation)
numberO0fMails = EmailInformation[0]

num_messages = len(mailbox.list()[1])

In the previous code block we initialize the connection with pop3 server mail
and store information about connection in mailbox object, later we get
information about stats and the messages number. In the next code block we use
the mailbox object to retrieve information about each message contained in the
mailbox.

for 1 in range (num_messages):
print("\nMessage number "+str(i+1))
print("-------------------- ")
read message
response, headerLines, bytes = mailbox.retr(i+1)
#for header in headerlLines:

#print(str(header))

print('Message ID', headerLines[1])
print('Date', headerlLines[2])
print('Reply To', headerLines[4])
print('To', headerLines[5])
print('Subject', headerLines[6])
print('MIME', headerlLines[7])
print('Content Type', headerLines[8])

mailbox.quit()

In this example we have extracted mails from our mailbox server using the list()
method.For each message we can print all information available in headerLines
array .Also we can get information in that array accessing specific index

like headerLines[1] for get Message ID or headerLines[5] for get mail

destination.

Establishing a connection with Gmail
for reading emails

Now, we are going to go into detail regarding the code of the previous script. For
reading, we first establish the connection to the Gmail pop server, using
the getpass module to request the password:

Connection is established with the gmail pop server
mailbox = poplib.POP3_SSL ('pop.gmail.com', 995)

import getpass
username = input('Enter your username:')
password = getpass.getpass(prompt='Enter your password:')

mailbox.user (username)
mailbox.pass_(password)

Here, we used pop1ib.rop3_ssL, passing the name of the server, that is, pop.gmail.conm,
and the connection port, 995. Then, we have set the username and password of
Gmail. The method to do this is pass_(), with an underscore at the end.

Gmail account configuration

In the POP/IMAP configuration of your account, you can find the following
options.

In the following screenshot, we can see the Gmail settings page for the POP
protocol:
Settings

General Labels Inbox Accountsand Import Filters and blocked addresses Forwarding and POP/IMAP Add-ons

Offline Themes

Forwarding: Add a forwarding address
Learn more

Tip: You can also forward only some of your mail by creating a filter!

POP download: 1. Status: POP is enabled for all emails
Learn more Enable POP for all mail (even mail that's already been downloaded)
Enable POP for mail that arrives from now on
Disable POP
2. When messages are accessed with POP keep Gmail's copy in the Inbox v

3. Configure your email client (e.g. Outlook, Eudora, Netscape Mail)
Configuration instructions

In the Settings page, you can configure the POP protocol and enable it for all
emails or only emails that arrive from now on.

Unread messages

To see how many unread messages you have, you can call the 1ist() method
from the mailbox object. Use the following code to find out how many unread
messages you have:

| number_messages = len(mailbox.list()[1])

With this, we just have to loop and get the messages one by one to analyze them:

for 1 in range (num_messages):
print("Message number "+str(i+1))
print("-------------------- ")
read message
response, headerLines, bytes = mailbox.retr(i+1)

The retr(i+1) method brings the message from the server whose number is
indicated and marks it on the server as read. It is set to i+1 because the retr()
method starts at 1 and not at zero. This method returns the server response, the
message, and a few bytes related to the message that we are reading. The
important thing is headerLines, which in some way contains all of the lines of the
message.

Manipulating and retrieving emails
on the server email using IMAP with
imapclient and imaplib

In this section, we will learn about the IMAP protocol and explore the imapclient
and imap1ib modules for working with emails with IMAP in Python 3.7.

IMAP protocol

The IMAP protocol does not download messages to your computer—both the
messages and the folders that we have created are kept on the server.

The IMAP protocol is the most advisable when we access our emails from
various devices, or when we are mobile. As a precaution, we must periodically
delete the contents of our account so that it does not exceed the space that's
granted. The drawback of this protocol is that we must always have an internet
connection, even to access and work with old messages.

This protocol has the advantage that, when we connect to read our emails from different
devices, for example, our laptop or smartphone, we know that we can always access all of our

8 messages, and that the mailbox will be updated. It is also interesting to preserve our privacy
when we read our emails from a public or shared computer, as it does not store information on
the local machine.

For starters, like POP, this protocol is only intended to read emails, not to send
them. The main advantage over this is that you are also prepared to manage
them: being able to organize them in folders or search in the server are inherent
capabilities of the protocol.

Another differential aspect is the architecture that's designed to be accessed from
different computers while keeping copies of our emails synchronized. If, in POP,
we said that the common thing was to erase the messages as we downloaded
them, in IMAP, those messages are kept on the server until we request their
deletion explicitly.

This distributed synchronization is based on the UID that represents a unique
identifier for a given message sequence number, which allows several clients to
access it simultaneously and understand what messages they are manipulating.
To round off this distributed support, clients can access any of the following
connection modes:

e Offline mode: It periodically connects to the server to download new
messages and synchronize any changes that may have happened in the
different folders. We have the ability to delete the messages as we

download them, following a function that's very similar to POP3.

¢ Online mode: It has access to the copy of the server messages exactly
when we need to, synchronizing the changes practically on the fly.

¢ Disconnected mode: Do not confuse this with offline mode. In this case,
the client works with a local copy while they do not have access to the
internet, where they can create/delete/read their emails. The next time you
connect to the internet, these changes will be synchronized with the master
copy of the server.

Since it is based on a model in which messages are normally stored on the server
after being read, IMAP defines an easy way to manage them—with mail trays,
that is, with folders. These follow a tree-like hierarchy, which we are used to in
conventional filesystems. Following the standard we always have, the inbox will
be the main source, but we can create other folders with different attributes. For
example, there are attributes to specify that a folder contains only emails,
(\Noinferiors), or only folders, (\noselect), but they can also have other attributes
that indicate whether or not new messages exist since the last time we opened it
with (\Marked) and (\Unmarked).

A similar kind of label can have the emails we receive or send. One of the most
used is the one that indicates whether it has been read or not (\seen), but there are
also others that indicate that the message has been answered (\answered), that the
message has been highlighted (\r1agged), which is a draft (\ oraft), and so on. All
of this information is saved directly on the server and not on the client as we are
used to, which allows you to perfectly synchronize this metadata between
several clients.

Technically, at a low level, IMAP works very similarly to POP3—a connection
is opened to port 143 of the server, and a conversation begins in ASCII.
Following the custom, Gmail uses another port 993, which is the alternative port
of IMAP if we want the connection to be encrypted under SSL. Once that
connection is created, the client starts sending commands and receiving
responses.

On an IMAP server, email messages are grouped into folders, some of which
will come predefined by an IMAP provider. Once a folder has been selected,
messages can be listed and fetched. Instead of having to download every
message, the client can ask for particular information from a message, such as a

few headers and its message structure, to build a display or summary for the user
to click on, hence pulling message parts and downloading attachments from the
server on demand.

Retrieving emails with imaplib

As we mentioned earlier, accessing emails over the IMAP protocol doesn't
necessarily download them onto the local device.

Python provides a library called imap1ib, which can be used for accessing
messages over the IMAP protocol. This library provides the 1mara() class, which
takes the host and port for implementing this protocol as arguments. The default
port is 143.

The 1mara_ssi() class has the capacity to connect over an SSL encrypted socket
and provides a secure version of the IMAP4 protocol by using 993 as the default
port.

A typical example of what an IMAP client looks like can be seen here:

mailbox = imaplib.IMAP4_SSL("IMAP_SERVER", "SERVER_PORT")
mailbox.login('username', 'password')
mailbox.select('Inbox"')

The previous code will try to initiate an IMAP4 encrypted client session. After
the 10gin() method is successful, you can apply the various methods on the
created object. In the previous code snippet, the seiect() method has been used.
This will select a user's mailbox. The default mailbox is called inbox.

standard library documentation page, which can be found at nttps://docs. python.org/3/1ibrary/imaplib

.html.

0 A full list of methods that are supported by this mailbox object is available on the Python

Here, we would like to demonstrate how you can search the mailbox by using
the search() method. It accepts a character set and search criterion parameter. The
character set parameter can be none, where a request for no specific character will
be sent to the server. However, at least one criterion needs to be specified. For
performing an advanced search for sorting the messages, you can use the sort()
method.

We can use a secure IMAP connection for connecting to the server by using the
1MAP4_ssL() class.

https://docs.python.org/3/library/imaplib.html

If you are using a Gmail account and want to store all of your emails messages
in your Gmail Sent folder, go to the Forwarding and POP/IMAP tab and enable
IMAP.

In the following screenshot, we can see the Gmail configuration for the IMAP
protocol:

Settings

General Labels Inbox Accountsand Import Filters and blocked addresses Forwarding and POP/IMAP Add-ons

Offline Themes

IMAP access: Status: IMAP is enabled
(access Gmail from other clients @ Enable IMAP

using IMAP) Disable IMAP

Learn more

When | mark a message in IMAP as deleted:
» Auto-Expunge on- Immediately update the server. (default)
Auto-Expunge off - Wait for the client to update the server.

When a message is marked as deleted and expunged from the last visible IMAP folder:
. Archive the message (default)

Move the message to the Bin

Immediately delete the message forever

Folder size limits
o Do not limit the number of messages in an IMAP folder (default)
Limit IMAP folders to contain no more than this many messages | 1,000 ¥|

You can find the fOHOWiIlg code in the check_remote_email_imaplib.py file:

#1/usr/bin/env python3

import argparse
import imaplib

def check_email(username, password):

mailbox = imaplib.IMAP4_SSL('imap.gmail.com', '993')
mailbox.login(username, password)
mailbox.select('Inbox"')
type, data = mailbox.search(None, 'ALL'")
for num in data[0].split():
type, data = mailbox.fetch(num, '(RFC822)"')
print ('Message %s\n%s\n' % (num, data[@][1]))
mailbox.close()
mailbox.logout()

In the previous code block we define check_emai1() method that establish the
connection with imap gmail server with username and password parameters,
select the inbox for recover messages and search for specific RFC number
protocol inside the mailbox. In the next code block we define our main program
that request information about username and password used for establish the
connection.

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description="'Email Download IMAP')
parser.add_argument('--username', action="store", dest="username"
given_args = parser.parse_args()
username = given_args.username
import getpass
password = getpass.getpass(prompt='Enter your password:")
check_email(username, password)

In this example, an instance of 1vpas_ssiL(), that is, the maiibox object, has been
created. Here, we have taken the server address and port as arguments. Upon
successfully logging in with the 10gin() method, you can use the seiect() method
to choose the mailbox folder that you want to access. In this example, the inbox
folder has been selected. To read the messages, we need to request the data from
the inbox. One way to do that is by using the search() method. Upon successful
reception of some email metadata, we can use the fetch() method to retrieve the
email message envelope part and data. In this example, the RFC 822 type of
standard text message has been sought with the help of the fetch() method.

We can use the Python pretty print or the print module for showing the output on
the screen. Finally, apply the ciose() and the 10gout () methods to the mailbox
object.

Retrieving emails with imapclient

IMAPClient is a complete IMAP client library written in Python that uses the
imap1ib module from the Python standard library. It provides an API for creating a
connection and reads messages from the inbox folder.

You can install imapciient with the following command:

|$ pip install imapclient

The marciient class is the core of the IMAPClient API. You can create a
connection to an IMAP account by instantiating this class and interacting with
the server calling methods on the IMAPClient instance.

The following script shows how to interact with an IMAP server, displaying all
of the messages in the inbox folder and the information related to the message
ID, subject, and date of the message.

You can find the fOHOWiI’lg code in the folder_info_imapclient.py file:

#1/usr/bin/env python3

from imapclient import IMAPClient
import getpass

username
password

= input('Enter your username:')
= getpass.getpass(prompt="'Enter your password:"')
server = IMAPClient('imap.gmail.com', ssl=True)
server.login(username, password)
select_info = server.select_folder('INBOX', readonly=True)
for k, v in list(select_info.items()):

print('%s: %r' % (k, v))

server.logout()

In this script, we open an IMAP connection with the 1marciient and get
information about its capabilities and mailboxes.

You can find the fOHOWiI’lg code in the 1isting_mailbox_imapclient.py file:

#1/usr/bin/env python3

import sys
from imapclient import IMAPClient

import getpass

username
password

input('Enter your username:')
getpass.getpass(prompt="'Enter your password:"')

server = IMAPClient('imap.gmail.com', ssl=True)

try:
server.login('user', 'password')
except server.Error as e:
print('Could not log in:', e)
sys.exit(1)

print('Capabilities:', server.capabilities())
print('Listing mailboxes:')
data = server.list_folders()
for flags, delimiter, folder_name in data:
print(' %-30s%s %s' % (' '.join(str(flags)), delimiter, folder_name))

server.logout()

This could be the output of the previous script, where we can see capabilities and
mailboxes that are available in your Gmail account:

Capabilities: ('UNSELECT', 'IDLE', 'NAMESPACE', 'QUOTA', 'XLIST', 'AUTH=XO0AUTH')
Listing mailboxes:

\Noselect \HasChildren / [Gmail]

\HasChildren \HasNoChildren / [Gmail]/All Mail

\HasNoChildren / [Gmail]/Drafts

\HasChildren \HasNoChildren / [Gmail]/Sent Mail

\HasNoChildren / [Gmail]/Spam

\HasNoChildren / [Gmail]/Starred

\HasChildren \HasNoChildren / [Gmail]/Trash

In this section we have reviewed the imapciient and imap1ib modules which provide
the methods can for accessing emails with IMAP protocol.

Summary

This chapter demonstrated how Python can interact with the three major email
handling protocols, that is, SMTP, POP3, and IMAP. In each of these cases, you
learned how to work with the client code. Finally, an example for using SMTP in
Python's logging module was shown.

In the next chapter, you will learn how to use Python to work with remote
systems to perform various tasks, such as administrative tasks, by using SSH,
file transfer through FTP, Samba, and so on. Some remote monitoring protocols,
such as SNMP, and authentication protocols, such as LDAP, will be reviewed.

Questions

N

10.

What is the main difference between the pop and imap protocols?

What method can you use to send emails with smpt1ib?

What is the class and method from smtp1ib for sending an email message
where you can specify a MIME version, content type, and character set?
What is the class and method from smtp1ib for sending messages with
attachments?

What is the method from the pop1ib package that gets the status of the
mailbox?

What is the class from the pop1ib package that allows you to retrieve emails
in a secure way with SSL?

How we can get a specific message with your mailbox number with pop1ib?
What is the main advantage of the IMAP protocol if we were to compare it
with SMTP and POP?

Which class from the imap1ib package provides a secure version of the
IMAP4 protocol?

How can you open an IMAP connection with 1marciient and list folder
information?

Further reading

In the following links, you will find more information about the tools and the
official Python documentation that was covered in this chapter:

e Other smtplib examples: https://pymotw.com/2/smtplib/
e Python module for connecting with an Outlook email account: nttps://github

.com/awangga/outlook

https://pymotw.com/2/smtplib/
https://github.com/awangga/outlook

Interacting with Remote Systems

In this chapter, you'll learn about the different modules that allow us to interact
with the FTP, SSH, SNMP, and LDAP servers. You'll also learn how to use
Python to work with remote systems to perform administrative tasks. Then,
you'll get to explore several network protocols and Python libraries, which are
used to interact with remote systems, and understand how you can access a few
services through the Python scripts and modules, such as ftp1ib, paramiko, pysnmp,
and python-1ldap.

The following topics will be covered in this chapter:

e Understanding the SSH protocol

SSH terminal and running commands with paramiko
Understanding the FTP protocol for transferring files
Reading and interacting with SNMP servers
Reading and interacting with LDAP servers

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the Chapter@6 folder: https://github.com/PacktPublishing/Learning-Python-Ne

tworking-Second-Edition/tree/master/chaptere6.

This chapter requires quite a few third-party packages, such as paramiko and pysnmp.
You can use your operating system's package management tool to install them. If
we are working with Python 3 in Debian and Ubuntu Unix distributions, all of
the modules that are required for understanding the topics will be covered in this
chapter.

We can use the following commands to install the required modules in a Debian
distribution:

sudo apt-get install python3
sudo apt-get install python3-setuptools

[]

[]

® sudo easy_install3 paramiko

® sudo easy_install3 python3-ldap
°

sudo easy_install3 pysnmp

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition/tree/master/chapter6

Understanding the SSH protocol

In this section, you will be introduced to the SSH protocol.

SSH introduction

Secure shell (SSH) is a protocol that facilitates secure communications between
two systems using a client/server architecture and allows users to connect to a
host remotely. Unlike other remote communication protocols, such as FTP or
Telnet, SSH encrypts the connection session, making it impossible for anyone to
obtain unencrypted passwords.

SSH is a protocol that was built with the aim of offering a secure alternative to
other commands for remote connection from another machine, and allows you to
authenticate a user through a secure channel.

For Mac and Linux users, the ssh command comes installed by default. The SSH
command consists of three different parts:

| ssh {user}@{host}
The following are the three different parts of a SSH command:

e The ssh key command tells your system that you want to open a secure and
encrypted shell connection.

® (user} represents the account you wish to access. For example, you can use
the root user to authenticate with full permissions on the server.

e (host} refers to the server IP address or domain you need to access.

When you press Enter, you will be asked to enter the password for the requested
account. When you write it, nothing will appear on the screen, but your
password, in fact, is being transmitted. Once you have finished typing the
password, press the Enter key again, even though you will not see the password
you introduced in the console. If your password is correct, you will receive a
remote Terminal window.

This is the output you will receive when you try to connect with the 192.168.0.1 IP
address using the ssh root@192.168.0.1 command:
The authenticity of host '192.168.0.1 (192.168.0.1)' can't be established.

ECDSA key fingerprint is SHA256:NW6uvRVer4uKQAQt+USwpeFwjzONDqvflzbwM9c5SR4 .
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.1 ' (ECDSA) to the list of known hosts.
root@192.168.0.1 's password:

Last login: Fri Mar 8 14:31:58 2019 from 192.168.0.1

0 Details of the SSH protocol can be found in the RFC4251-RFC4254 documents, available at n

ttp://www.rfc-editor.org/rfc/rfc4251. txt

http://www.rfc-editor.org/rfc/rfc4251.txt

Using SSH to encrypt sessions

When you access a remote server through the SSH protocol, the security risks
are considerably reduced. In the case of the client and of the system itself,
security is improved thanks to encryption; secure shell is responsible for
encrypting all sessions. Thus, it is impossible for anyone to access the
passwords, the customer's access data, or what the client has written. When a
connection is made through the Secure Shell protocol, the remote user is
authenticated by the system. Then, we proceed to transfer this information from
the host client and return the data to the client.

How the SSH protocol works

The operation of this protocol can be summarized in the following steps:

1.

The client initiates a TCP connection on port 22 of the service. This port is
the one that uses the protocol by default, although as we will see in the
following steps, it can be modified.

The client and the server agree on the version of the protocol to be used, as
well as the encryption algorithm used for the exchange of information.
The server, which has two keys (one private and one public), sends its
public key to the client.

When the client receives the key sent by the server, it compares it with the
one stored to verify its authenticity. The SSH protocol requires the client to
confirm it the first time.

With the public key of the server in its possession, the client generates a
random session key, creating a message that contains that key and the
algorithm that was selected for the encryption of the information. All this
information is sent to the server, which makes use of the public key that
was sent in an earlier step in an encrypted form.

If everything is correct, the client is authenticated, initiating the session to
communicate with the server.

SSH service features

The secure shell protocol offers a series of interesting features, which has
become the most-used protocol by all users who manage some type of Linux
server, either in the cloud or dedicated. Let's highlight some of its features:

e The use of SSH encrypts the registration session, which prevents anyone
from getting non-encrypted passwords.

e The encryption keys that are used are only known by those who issue the
information and receive it.

e Modifying the key could modify the original message, which means that if
a third-party obtains the key, it cannot access the complete message.

e The user can verify that they are still connected to the same server that was
initially connected.

e When a user authenticates, an encrypted secure channel is created between
them and the server to exchange the information with total guarantee.

e The data that's sent and received through the use of SSH is done through
encryption algorithms, where the recommended minimum key size is 1,024
bits, which makes it very difficult to decipher and read.

e The client can use applications securely from the server's command
interpreter, which allows them to manage the machine as if they were in
front of it.

e The use of SSH is also used as an encrypted channel to protect protocols
that do not use default encryption, such as port-forwarding techniques.

From a security point of view, the SSH protocol provides the following types of
protection:

¢ Once the client has established the initial connection, it is possible to check
whether it is connecting to the same server it was initially connected to.

e The client uses a robust encryption, 128-bit, to send authentication
information to the server.

e All traffic that is sent and received during communication is transferred
through a 128-bit encryption.

Configuring the SSH protocol to
make it more secure

Although we have been talking about the use of the SSH protocol being
completely safe, this does not mean that it is oblivious to suffer some kind of
attack that puts our information at risk. For this reason, users have the option to
modify the default configuration of this protocol to make it even more secure,
such as changing the default port or the maximum number of retries to connect
to the server. Let's see how we can improve the security of our SSH.

First, we need to locate the configuration file, sshd_config. This file is usually in
the /etc/ssh path.

The following configuration could be the default content of the file:

Port 22

Protocol 2
LoginGraceTime 30
PermitRootLogin no
MaxAuthTries 2
MaxStartups 3

These are the parameters we can modify in this file configuration:

e Change the default port: By default, SSH uses port 22, so when a hacker
launches an attack, it usually does so on this port. If we change the port
number, the service will not respond to the port by default, and we will have
created a new obstacle for anyone trying to get our information. To make
this happen, just change the value of the port field in the configuration file
to the value you want.

e Disable root access: Every server is assigned a root user, which has
privileges to do any kind of action on the machine. A good practice to
improve security is to prevent access to the server through this root user and
force access through any of the users we have created who do not have root
privilege. Once logged in with our user, we can become a root user through
the sudo command. To prevent access by the root user, we must set the
PermitRootLogin variable to no.

¢ Limit the number of retries: By means of the maxauthtries variable, we can

indicate the number of times that we can make a mistake when entering the
username or password. Once the number that we have indicated is
exceeded, the connection will be lost and the connection process will have
to start again. With this, we will avoid attacks of persistence of the
connection. If we want to enable a maximum of five attempts, we would
have to indicate it in the following way: maxauthtries s.

Limit the number of login screens: We can limit the number of
simultaneous login windows that we can have active from the same IP in
order to avoid divided attacks. Once the user is logged in, it will not be
possible to have a higher number of SSH terminals open than indicated in
this variable. If we just want a single login screen over the IP, we should do
it in the following way: maxstartups 1.

Limit the time that the login screen will be available: Through the
LogineraceTime instruction, we indicate the time in seconds that the login
screen will be available to enter our credentials. After that time, the screen
will disappear and you will have to start the process again. With this, we
prevent the use of a script to access the system. If we want to put a duration
of 15 seconds, we would do it in the following way: LogineraceTiem 15.
Indicate the users that can access via SSH: By means of the

allowuser directive, we can indicate the users that will be able to access the
server via SSH, as well as from what IP address they will be able to do so.
Let's see some examples of how to indicate it:

¢ Indicate only the name of the users who will have access:

Using Allowuser user1 user2, we are indicating that only users user1 and
user2 Will have access to the system via SSH, regardless of the
computer and the IP address from which they are connected.

e Access of a user from a certain IP address: Using a11owuser
user@<ip_address>, we can indicate that the user user can access the
machine via SSH, but only from the IP address that we specify.

e Access of a user from a given network indicated: Using a11owuser
user@<network_ip>.*, we indicate that the user will be able to access from
any IP address that forms part of the indicated network.

SSH terminals and running
commands with paramiko

In this section, you will learn how to establish an SSH connection to transfer
files and run commands with the paramiko python package.

Installing paramiko

Python's paramiko library (http://www.paramiko.org/) provides very good support
for SSH-based network communication. You can use Python scripts to benefit
from the advantages of SSH-based remote administration, such as the remote
command-line login, command execution, and the other secure network services
between two networked computers. You may also be interested in using the
pysftp module, which is based on paramiko.

0 More details regarding this package can be found at PyPI: nttps://pypi.python.org/pypi/pysttp.

The recommendation is always to install paramiko using pip, as follows:

| pip install paramiko

http://www.paramiko.org/
https://pypi.python.org/pypi/pysftp

Establishing an SSH connection with
paramiko

SSH is a client/server protocol. Both of the parties use the SSH key-pairs to
encrypt the communication. Each key-pair has one private and one public key.
The public key can be published to anyone who may be interested in it. The
private key is kept private from everyone except the owner of the key.

We can use the paramiko module to create an SSH client and then connect it to
the SSH server. This module will supply the ssxciient() class.

You can use the sshciient class to create an SSH client with the paramiko module:

| ssh_client = paramiko.SSHClient()

By default, the instance of this client class will reject the unknown host keys. So,
you can set up a policy to accept the unknown host keys. The built-in
Autoaddpolicy() class will add the host keys as and when they are discovered. Run
the set_missing_host_key_policy() method, along with the fOHOWiI'lg argument, on the
ssh_client ObjECtZ

| ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

If you need to restrict accepting connections only to specific hosts, you can use
the 1oad_system_host_keys() method to add the system host keys and system
fingerprints:

| ssh_client.load_system_host_keys()

Before executing a command on our server via ssh, we need to create an object of
the SSHClient type, which will be responsible for sending all our requests to the
server and handling the responses that are returned. You can wrap this code in a
function called get_connection(), as follows:

import paramiko

def get_connection():
start SSH client
ssh = paramiko.SSHClient()

We add the list of known hosts
ssh.load_system_host_keys()

#If it does not find the host, it automatically adds it
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
need to use the domain name resolved through DNS query

ssh.connect('domain', username='user', password='password')
return ssh

Running commands with paramiko

Now that we are connected to the remote host with paramiko, we can run
commands on the remote host using this connection. To connect, we can simply
call the connect () method, along with the target hostname and the SSH login
credentials. To run any command on the target host, we need to invoke the
exec_command() method by passing the command as its argument:

ssh_client.connect(hostname, port, username, password)
stdin, stdout, stderr = ssh_client.exec_command(cmd)
for line in stdout.readlines():
print(line.strip())
ssh.close()

The following code listing shows how to do an SSH login to a target host and
then run the command the user introduced in the prompt. You can find the
following code in the ssh_execute_command.py file:

#1/usr/bin/env python3

import getpass
import paramiko

HOSTNAME = 'ssh_server'
PORT = 22

def run_ssh_cmd(username, password, command, hostname=HOSTNAME, port=PORT):
ssh_client = paramiko.SSHClient()
ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh_client.load_system_host_keys()
ssh_client.connect(hostname, port, username, password)
stdin, stdout, stderr = ssh_client.exec_command(command)
print(stdout.read())
stdin.close()
for line in stdout.read().splitlines():

print(line)

if __name__ == '__main__"':
username = input("Enter username: ")
password = getpass.getpass(prompt="Enter password: ")
command = input("Enter command: ")
run_ssh_cmd(username, password, command)

Running an interactive shell with
paramiko

If you want to run several commands on the remote host using paramiko, but you
encounter the problem that the ssh session is closed when you execute a
command, give an exception related with SSH session not active:

| paramiko.ssh_exception.SSHException: SSH session not active

To solve this, you can implement an interactive shell using paramiko; that way, the
channel does not close after a command is executed in the remote shell.

After creating the SSH client, using connect, you can use the invoke_she11()
method, and it will open a channel that it doesn't close after you send something
through it.

You can find the fOHOWiI’lg code in the ssh_interactive_shell.py file:

#1/usr/bin/env python3

import paramiko
import re

class ShellHandler:

def __init__ (self, host, user, psw):
self.ssh = paramiko.SSHClient()
self.ssh.set_missing_host_key_ policy(paramiko.AutoAddPolicy())
self.ssh.connect(host, username=user, password=psw, port=22)
we use this method for getting a shell in the host
channel = self.ssh.invoke_shell()
self.stdin = channel.makefile('wb')
self.stdout = channel.makefile('r")

def __del_ (self):
self.ssh.close()

@staticmethod
def _print_exec_out(cmd, out_buf, err_buf, exit_status):
print('command executed: {}'.format(cmd))
print('STDOUT: ")
for line in out_buf:
print(line, end="")
print('end of STDOUT')
print('STDERR: ")
for line in err_buf:
print(line, end="")
print('end of STDERR')
print('finished with exit status: {}'.format(exit_status))

In the previous code block, we declared the sheiinandier class with the init method
constructor and static method to print the output of the executed command. We
continue declaring the method to execute a command that's passed as a
parameter, as well as our main program that instantiates an object of this class.
For each command available in command list, it calls the execute method:

def execute(self, cmd):
""":param cmd: the command to be executed on the remote computer
:examples: execute('ls')
execute('finger')
execute('cd folder_name')
cmd = cmd.strip('\n")
self.stdin.write(cmd + '\n')
finish = 'end of stdOUT buffer. finished with exit status'
echo_cmd = 'echo {} $?'.format(finish)
self.stdin.write(echo_cmd + '\n')
shin = self.stdin
self.stdin.flush()

shout = []
sherr = []
exit_status = 0
for line in self.stdout:
if str(line).startswith(cmd) or str(line).startswith(echo_cmd):
up for now filled with shell junk from stdin
shout = []
elif str(line).startswith(finish):
our finish command ends with the exit status
exit_status = int(str(line).rsplit(maxsplit=1)[1])
if exit_status:
stderr is combined with stdout.
thus, swap sherr with shout in a case of failure.

sherr = shout
shout = []
break

else:
get rid of 'coloring and formatting' special characters
shout.append(re.compile(r' (\x9B|\x1B\[)[0-?2]*[-/]1*[@-~]").sub('', line)

first and last lines of shout/sherr contain a prompt
if shout and echo_cmd in shout[-1]:
shout.pop()
if shout and cmd in shout[0]:
shout.pop(0)
if sherr and echo_cmd in sherr[-1]:
sherr.pop()
if sherr and cmd in sherr[0]:
sherr.pop(0)

self._print_exec_out(cmd=cmd, out_buf=shout, err_buf=sherr,exit_status=exit_status)
return shin, shout, sherr

commands = ["1s", "whoami", "pwd"]
host="1localhost"

name="user"
pwd="password"

shell_connection = ShellHandler (host, name, pwd)
for command in commands:
shell _connection.execute(command)

SFTP with paramiko

SSH can be used to securely transfer files between two computer nodes. The
protocol that's used in this case is the secure file transfer protocol (SFTP). The
Python paramiko module will supply the classes that are required to create the
SFTP session. This session can then perform a regular SSH login:

ssh_transport = paramiko.Transport(hostname, port)
ssh_transport.connect(username='username', password='password')

The SFTP session can be created from the SSH transport. The paramiko working
in the SFTP session will support the normal FTP commands, such as the get()
command:

sftp_session = paramiko.SFTPClient.from_transport(ssh_transport)
sftp_session.get(source_file, target_file)

As you can see, the SFTP get command requires the source file's path and the
target file's path. In the following example, the script will download a test.txt
file that's located in the server, which is located on the user's home directory
through SFTP.

You can find the following code in the ssh_download_sftp.py file:

#1/usr/bin/env python3

import getpass
import paramiko

HOSTNAME = 'ssh_server'
PORT = 22
FILE_PATH = '/tmp/test.txt'

def sftp_download(username, password, hostname=HOSTNAME, port=PORT):
ssh_transport = paramiko.Transport(hostname, port)
ssh_transport.connect(username=username, password=password)
sftp_session = paramiko.SFTPClient.from_transport(ssh_transport)
file_path = input("Enter filepath: ") or FILE_PATH
target_file = file_path.split('/"')[-1]
sftp_session.get(file_path, target_file)
print("Downloaded file from: %s" %file_path)
sftp_session.close()

if __name__ == '__main__"':
hostname = input("Enter the target hostname: ")
port = input("Enter the target port: ")
username = input("Enter your username: ")

password = getpass.getpass(prompt="Enter your password: ")
sftp_download(username, password, hostname, int(port))

In this example, a file has been downloaded with the help of SFTP. Notice how
paramiko has created the SFTP session by using the

SFTPClient.from_transport(ssh_transport) class.

Paramiko alternatives

In the Python ecosystem, there are other interesting solutions that act as a
paramiko wrapper to connect to ssh servers and execute command remotely,
such as the fabric solution.

Fabric

Fabric is a Python library and a command-line tool that's designed to simplify
application deployment and perform system administration tasks through the
SSH protocol. It provides tools to execute arbitrary shell commands (either as a
normal login user, or via sudo), upload and download files, and so on.

Fabric (http://www.fabfile.org) is a high-level Python (2.7, 3.4+) library that's
designed to execute shell commands remotely over SSH so that we can control a
group of SSH servers in parallel. It is possible to use Fabric directly from the
command line by executing the fab utility or with the API that contains all the
classes and decorators that are needed to declare a set of SSH servers, as well as
the tasks that we want to execute on them.

One of the main dependencies that must be met before installing Fabric is having
the paramiko library installed; this library is responsible for making the
connections to the SSH servers using the appropriate authentication mechanism
according to each case (auth by password or auth by public key).

Fabric is available in the official Python repository
(https://pypi.org/project/Fabric/). We can install Fabric snnply by FUDDng the
following command:

| pip install Fabric

The fundamental element of Fabric from version 2 is the connections. These
objects represent the connection to another machine, and we can use it to do the
following:

e Execute commands in the shell of the other machine, which you can run
USiIlg sudo

e Download files from the remote machine to local using get

¢ Upload files from local to remote using put

e Do fOI'W&TdiDg llSiI'lg forward_local, forward_remote

To start a connection, we need the address of the machine and some way to
identify ourselves. In the whole issue of Fabric authentication, it delegates the

http://www.fabfile.org/
https://pypi.org/project/Fabric/

work in paramiko, which supports a wide variety of options, including the option
to use gateways.

Let's look at an example; in this case, we are requesting the IP address and the
password for authentication in the remote host:
>>> from getpass import getpass
>>> ip_address= prompt="Enter remote host ip address:")

>> password = getpass(prompt="Enter Password for Connecting with remote host: ")
>>> connection= Connection(host=ip_address, user="user", connect_kwargs={"password" : pas

We can execute commands with the run() and sudo() methods. If we want to
obtain the result of the command, we can simply assign a variable for the
evaluation of the run commands:

>>> def isLinux(connection):

>>> result = connection.run("uname -s"

>>> return result.stdout.strip() == "Linux"
>>> islinux(connection)

Fabric is very powerful tool, but as soon as we have many machines, we will
often do the same tasks. We can use a simple for loop, but Fabric brings us an
abstraction called group. Basically, we can join connections in a single group
and execute the actions that we ask. There are two types of groups:

® serialeroup: EXecutes the operations sequentially
® Threadsroup: Executes the operations in parallel

In this example, we are launching the sudo apt update command in parallel over
hosts defined in the threadingsroup constructor:

>>> from fabric import ThreadingGroup

>>> def update(cxn):

>>> cxn.run("sudo apt update")

>>> pool = ThreadingGroup("useri1@host1", "user2@host2")
>>> update(pool)

Understanding the FTP protocol for
transferring files

In this section, you will be introduced to the FTP protocol for transferring files
and the ftp1ib package for interacting with Python.

The File Transfer Protocol

The File Transfer Protocol (FTP) protocol allows us to make file transfers
through a connection in a network. This is the protocol that we use to connect
remotely to servers and manipulate files. Port 21 is usually used.

The protocol design is defined in such a way that it is not necessary for the
client and server to run on the same platform; any client and any FTP server can
use a different operating system and use the primitives and commands defined in
the protocol to transfer files.

To interact with this protocol, we need two things. The first is a server that is
available for our network—it can be on the same network or maybe on the
internet. The second is a client that can send and receive information from said
server; this client must have the capacity to be able to use the ports specified by
the service and the established authentication.

Introduction to ftplib

Unlike SFTP, FTP uses the plaintext file transfer method. This means any
username or password transferred through the wire can be detected by an
unrelated third party. Even though FTP is a very popular file transfer protocol,
people frequently use this to transfer a file from their PCs to remote servers.

rTPlib is @ Python library that will allow us to connection to an FTP server from a
script. To begin, we must have installed Python in our operating system and the
rreLib package. We can install them on a Linux system in two ways:

pip install ftplib
apt-get install python-ftplib

In Python, ftp1ib is a built-in module that's used to transfer files to and from the
remote machines. You can create an anonymous FTP client connection with the
FTe() class:

| ftp_client = ftplib.FTP(path, username, email)

Then, you can invoke the normal FTP commands, such as the cwo command, to
list the files in a specific directory. To download a binary file, you need to create
a file handler, such as the following:

| file_handler = open(DOWNLOAD_FILE_NAME, 'wb')

To retrieve the binary file from the remote host, the syntax shown here can be
used, along with the retr command:

| ftp_client.retrbinary('RETR remote_file_name', file_handler.write)

In the following script, we are trying to connect to the FTP server, ftp.free.fr, to
get get a list of directories with the dir() method, and download a specific file on
that server. To download a file through the ftp1ib libraries, we will use the
retrbinary method. We need to pass two things to it as an input parameter: the retr
command with the name of the file and a callback function that will be executed
every time a block of data is received. In this case it will write it in a file of the
same name.

You can find the following code in the ftp_download_file.py file:

1/usr/bin/env python3
import ftplib

FTP_SERVER_URL = 'ftp.free.fr'
DOWNLOAD_DIR_PATH = '/mirrors/ftp.kernel.org/linux/kernel/Historic/"
DOWNLOAD_FILE_NAME = 'linux-0.01.tar.gz'

def ftp_file_download(path, username):
open ftp connection
ftp_client = ftplib.FTP(path, username)
print("welcome:", ftp_client.getwelcome())
list the files in the download directory
ftp_client.cwd(DOWNLOAD_DIR_PATH)
print("Current working directory:", ftp_client.pwd())
print("File list at %s:" %path)
files = ftp_client.dir()
print(files)
download a file
try:
file_handler = open(DOWNLOAD_FILE_NAME, 'wb')
ftp_cmd = 'RETR %s' %DOWNLOAD_FILE_NAME
ftp_client.retrbinary(ftp_cmd, file_handler.write)
file_handler.close()
ftp_client.quit()
except Exception as exception:
print('File could not be downloaded:', exception)
if __name__ == '__main__"':
ftp_file_download(path=FTP_SERVER_URL, username="'anonymous")

The preceding code illustrates how an anonymous FTP can be downloaded from
ftp.free.fr, which hosts the first Linux kernel version. The rrp() class takes three
arguments, such as the initial filesystem path on the remote server, the username,
and the email address of the ftp user. The rrp.cwd() function is used to change the
directory or folder (change the working directory). In this case, after accessing as
an anonymous user, change the location to the kerne1/nistoric folder.

For anonymous downloads, no username and password is required. So, the script
can be downloaded from the 1inux-e.01.tar.gz file, which can be found on the
/mirrors/ftp.kernel.org/linux/kernel/Historic/ pth.

In the following screenshot, we can see the execution of the previous script:

wWelcome: 220 wWelcome to ProXad FTP server

Current working directory: /.mirrorsl7/ftp.kernel.org/1inux/kernel/Historic
File Tist at ftp.free.fr:

-r--r--r-- 1 ftp ftp 73091 oct 30 1993 Tlinux-0.01.tar.gz

-r--r--r-- 1 ftp ftp 665 Aug 08 2013 Tinux-0.01.tar.sign
drwxr-sr-x 5 ftp ftp 4096 Mar 20 2003 old-versions
-rw-r--r-- 1 ftp ftp 969 May 11 2017 sha256sums.asc
drwxr-sr-x 2 ftp ftp 4096 Dec 10 2007 v0.99

Another way to get information about the files and folders in the current location
is to use the retr1ines() method, which can indicate the commands to execute.
L1sT is a command that's defined by the protocol, as well as others that can also
be applied in this function as retr, nLsT, OT MLsD.

0 For more information on these commands, see RFC 959: nttp://tools. ietf.org/ntm1/rfc9s9. html.

The second parameter is the caiiback function, which is called for each piece of
received data:

def callback(info):
print info

ftp.retrlines('LIST', callback)

In this example, instead of using the ntransfercnd() method to apply a retr
command, we receive data in a byte array. We execute the retr command to
download the file in binary mode.

You can find the fOHOWng code in the ftp_download_file bytes.py file:

#1/usr/bin/env python3

import os, sys
from ftplib import FTP

f = FTP('ftp.free.fr')
f.login()

f.cwd('/mirrors/ftp.kernel.org/linux/kernel/Historic/")
f.voidcmd("TYPE I")

datasock, size = f.ntransfercmd("RETR linux-0.01.tar.gz")
bytes_so_far = 0
fd = open('linux-0.01.tar.gz', 'wb'")

while 1:
buf = datasock.recv(2048)
if not buf:

http://tools.ietf.org/html/rfc959.html

break
fd.write(buf)
bytes_so_far += len(buf)
print("\rReceived", bytes_so_far, end=' ')
if size:
print("of %d total bytes (%.1f%%)" % (
size, 100 * bytes_so_far / float(size)),end=' ")
else:
print("bytes", end=' ")
sys.stdout.flush()

print()
fd.close()
datasock.close()
f.voidresp()
f.quit()

In this example, we are going to list versions that are available in the Linux
kernel ftp with the dir() method.

You can find the fOHOWiI’lg code in the list_kernel_versions.py file:

#1/usr/bin/env python3
from ftplib import FTP

entries = []
f = FTP('ftp.free.fr')
f.login()
f.cwd('/mirrors/ftp.kernel.org/linux/kernel/")
f.dir(entries.append)
print("%d entries:" % len(entries))
for entry in entries:
print(entry)
f.quit()

In the following screenshot, we can see the execution of the previous script:

28 entries:

drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
Trwxrwxrwx
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x
drwxr-sr-x

4096 Mar
4096 Jun
4096 Nov
299008 Jan
16384 Dec
4096 Mar
4096 SeE
4096 Fe
4096 Oct
4096 Mar
4096 Mar
20480 Mar
4096 Mar
40960 Mar
20480 Feb
49152 mar
12288 Mar
24576 Mar
20480 Ma¥
32768 Ju
57344 Aug
4096 Apr
4 Nov
299008 Dec
4096 Apr
221184 Jan
4096 Apr
4096 Apr

20 2003
26 2017

Historic
S111ySounds

24 2001 crypto

10 04:13
13 00:17
13 2003
18 2012
14 2002
03 20:58
20 2003
20 2003
20 2003
20 2003
20 2003
08 2004
20 2003
24 2004
20 2003
g1 2013
14 2003
08 2013
16 2018
2miu i

next
people
ports
projects
testing
tools
uemacs
v1.0
vli.1l
vl.2
vl1.3
v2.0
v2.1
v2.2
v2.3
v2.4
V2.5
V2.6
v2018.x
v3.0 -> v3.X

. B 16 st T 05

16 2018
09 17:02
16 2018
16 2018

v3000.x
v4.X
V5. X
V6.X

Other ftplib functions

These are the main ftplib functions we can use to execute ftp operations:

FTP.getwelcome(): Gets the welcome message

FTP.mkd(route): Creates a directory; it is passed as an input argument to the
route

rTP.rmd(path): Deletes the directory that we pass

rTp.delete(file): Deletes the file that we passed as an input parameter
rre.pwd(): (Print Working Directory) Returns the current directory where it is
located

rrp.cwd(path): (Change Working Directory) Changes directory
FTP.dir(path): Returns a list of directories

FTP.n1st(path): Returns a list with the file names of the directory
FTP.size(file): Returns the size of the file we passed to it

In this example, we are going to list the versions that are available in the Linux
kernel FTP with the n1st() method.

You can find the fOHOWiI’lg code in the 1ist_kernel_versions_nsit.py file:

1/usr/bin/env python3
from ftplib import FTP

f = FTP('ftp.free.fr')

f.login()
f.cwd('/mirrors/ftp.kernel.org/linux/kernel/")
entries = f.nlst()

entries.sort()

print(len(entries), "entries:")

for entry in entries:

print(entry)

f.quit()

Inspecting FTP packets with
Wireshark

If we capture the FTP session in Wireshark on port 21 of the public network
interface, we can see how the communication happens in plaintext. In the
following example, we can see that after successfully establishing a connection
with a client, the server sends the 230 welcome to mirror.as3s7e1.net banner message.
Following this, the client will anonymously send a request for login.

In this example, we are using the rtp1ib module to build a script to determine
whether a server offers anonymous logins.

You can find the fOHOWiI’lg code in the checkFTPanonymousLogin.py file:

import ftplib

def ftpListDirectory(ftp):

try:
dirList = ftp.nlst()
print(dirList)
except:

dirList = []
print('[-] Could not 1list directory contents.')
print('[-] Skipping To Next Target.')
return
retList = []
for fileName in dirlList:
fn = fileName.lower ()
if '.php' in fn or '.htm' in fn or '.asp' in fn:
print('[+] Found default page: ' + fileName)
retList.append(fileName)
return retList

def anonymousLogin(hostname):

try:
ftp = ftplib.FTP(hostname)
ftp.login('anonymous', '")
print(ftp.getwelcome())
ftp.set_pasv(1)
print(ftp.dir())
print('\n[*] ' + str(hostname) +' FTP Anonymous Logon Succeeded.')
return ftp

except Exception as e:
print(str(e))
print('\n[-] ' + str(hostname) +' FTP Anonymous Logon Failed.')
return False

host = 'ftp.be.debian.org'
ftp = anonymousLogin(host)

| ftpListDirectory(ftp)

The anonymousLogin() function takes a hostname and returns a Boolean that
describes the availability of anonymous logins. This function tries to create an
FTP connection with anonymous credentials. If successful, it returns

the True value.

In the following screenshot, we can see an example of executing the previous
script over a server that allows anonymous login:

220 ProFTPD 1.3.5b Server (mirror.as35701.net) |::Tttt:195.234.45.114]
Trwxrwxrwx May 14 2011 backports.org -> debian-backports
drwxr-xr-x ftp ftp Jan 14 09:01 debian
drwxr-sr-x ftp ftp Mar 13 2016 debian-backports
drwxr-xr-x ftp ftp Nov 11 03:00 debian-cd
drwxr-xr-x ftp ftp Jan 13 22:32 debian-security
drwxr-sr-x ftp ftp Jan 5 2012 debian-volatile
drwxr-xr-x ftp ftp oct 13 2006 ftp.irc.or
-rw-r--r-- ftp ftp Nov 17 2017 HEADER.htm
drwxr-xr-x ftp ftp Jan 14 12:05 pub

drwxr-xr-x ftp ftp Jan 14 12:14 video.fosdem.org
-rW-r--r-- ftp ftp Nov 17 2017 welcome.msg

None

[
ROV
ens

[*] ftp.be.debian.org FTP Anonymous Logon Succeeded.

["debian-backports’, 'backports.org’, 'debian-security', 'pub’, 'HEADER.html1', 'debian’, 'welcome.msg', 'ftp.irc.org’, '
debian-volatile', 'video.fosdem.org’, 'debian-cd']

[+] Found default paae: HEADER.htm

In the following screenshot, we can see packets that are exchanged in the ftp
communication:

LIE BED)
No. Time Source Destination Protocol Length Info
| 989 42.807029 195.234.45.114 10.68.15.20 FTP 126 Response: 220 ProFTPD 1.3.5b Server (mirror.as357@1.net) [::ffff:195.234.45.114]
990 42.807766 10.68.15.20 195.234.45.114 FTP 7@ Request: USER anonymous
993 42.877437 195.234.45.114 10.68.15.20 FTP 129 Response: 331 Anonymous login ok, send your complete email address as your passwor
994 42.877689 10.68.15.20 195.234.45.114 FTP 71 Request: PASS anonymous@
| 998 42.946282 195.234.45.114 10.68.15.20 FTP 90 Response: 230-Welcome to mirror.as357@1.net.
999 42.946283 195.234.45.114 10.68.15.20 FTP 6@ Response: 230-
1000 42.946283 195.234.45.114 10.68.15.20 FTP 103 Response: 23@-The server is located in Brussels, Belgium.
1002 42.947451 195.234.45.114 10.68.15.20 FTP 455 Response: 230-
lee4 42.948133 10.68.15.20 195.234.45.114 FTP 62 Request: TYPE A
1004 A3 Q1EE0A 198 234 AC 114 10 AR 15 20 ETP 72 _Rasnanca‘' 200 Tuna at +n A

Frame 998: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface @
Ethernet II, Src: HewlettP_79:fd:89 (78:48:59:79:fd:89), Dst: IntelCor_f4:54:ca (@@:24:d6:f4:54:ca)
Internet Protocol Version 4, Src: 195.234.45.114, Dst: 10.68.15.20
Transmission Control Protocol, Src Port: 21, Dst Port: 47737, Seq: 148, Ack: 34, Len: 36
v File Transfer Protocol (FTP)
v 230-Welcome to mirror.as35701.net.\r\n
Response code: User logged in, proceed (230)
Response arg: Welcome to mirror.as35701.net.
[Current working directory:]
00 24 d6 f4 54 ca 78 48 59 79 fd 89 08 00 45 00 $--T-xH Yy E
00 4c e6 ce 40 00 2f B6 5a 29 c3 ea 2d 72 Ba 44 L--@ /- Z)---r-D
of 14 00 15 ba 79 1b ff 5c 5 42 4a 43 ¢8 50 18 y-- \'BIC-P
LRI Rl E V)32 33 38 2d 57 65 6c 63 6f 6d S 23 ©-Welco
[:-7BlleS 20 74 6f 20 6d 69 72 72 6f 72 2e 61 73 33 3! le to mir ror.as3!
:-L-Bl37 30 31 2e 6e 65 74 2e 0d 03 [761.net. - -

In the following screenshot, we can see packets and the request command for
listing files in the ftp server:

1087 43.016169 10.68.15.20 195.234.45.114 FTP 6@ Request: PASV
- 1609 43.086169 195.234.45.114 10.68.15.20 FTP 106 Response: 227 Entering Passive Mode (195,234,45,114,156,99).
— 1822 43.154958 10.68.15.20 195.234.45.114 FTP 68 Request: LIST
1024 43.225734 195.234.45.114 10.68.15.20 FTP 108 Response: 158 Opening ASCII mode data connection for file list
1031 43.295548 195.234.45.114 18.68.15.20 FTP 77 Response: 226 Transfer complete
1032 43.297660 10.68.15.20 195.234.45.114 FTP 62 Request: TYPE A
1037 43.364299 195.234.45.114 18.68.15.20 FTP 73 Response: 2080 Type set to A
1038 43.364623 10.68.15.20 195.234.45.114 FTP 68 Request: PASV
1056 43.431473 195.234.45.114 10.68.15.20 FTP 107 Response: 227 Entering Passive Mode (195,234,45,114,173,207)
1858 43 540621 18 AR 18 26 195 234 A8 114 FTP A RPanuact: NI ST

Frame 1022: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface @
Ethernet II, Src: IntelCor_f4:54:ca (06:24:d6:f4:54:ca), Dst: HewlettP_79:fd:89 (78:48:59:79:fd:89)
Internet Protocol Version 4, Src: 10.68.15.208, Dst: 195.234.45.114
Transmission Control Protocol, Sr¢ Port: 47737, Dst Port: 21, Seq: 48, Ack: 711, Len: 6
v File Transfer Protocol (FTP)
v LIST\r\n
Request command: LIST
[Current working directory:]
[Command response frames: 1]

78 48 59 79 fd 89 0@ 24 d6 f4 54 ca ©8 00 45 00
00 2e 5a 2e 40 00 80 06 95 e7 Pa 44 ©f 14 c3 ea
2d 72 ba 79 @@ 15 42 4a 43 dé 1b ff 5f 18 50 18

o830 oo fd 3b a7 60 oo LJLCEEEEREY od ea

Reading and interacting with SNMP
servers

In this section, you will learn about the SNMP protocol and examine Python
libraries for dealing with SNMP packets.

The SNMP

The Simple Network Management Protocol (SNMP) is an application layer
protocol that facilitates the exchange of management information between
network devices. This protocol is part of the set of TCP/IP protocols and allows
administrators to manage performance, find and solve problems, and plan the
future growth of the network.

SNMP is used to monitor and control the status of devices connected to the
internet, especially routers, although it can be used in any type of host that
allows the snmpd process to be executed. SNMP operates at the application level
using the TCP/IP transport protocol, so it ignores the specific aspects of the
hardware on which it operates. The management is carried out at the IP level, so
you can control devices that are connected in any network that's accessible from
the internet, and not only those located in the local network itself.

For the SNMP protocol, the network is a set of basic elements. The fundamental
elements of a network that employs SNMP are as follows:

e Managed devices: In each one, an agent is executed

¢ Administrator (manager): The device from which the network is
administered

e Management Information Base, MIB: A namespace organized
hierarchically in the form of a tree, containing the information that can be
read and/or written

Here are the five types of SNMP messages that are exchanged between Agents
and Administrators:

¢ Get Request: A request from the Administrator to the Agent to send the
values contained in the MIB (database)

¢ Get Next Request: A request from the Administrator to the Agent to send
the values contained in the MIB, referring to the object

¢ Get Response: The Agent's response to the information request that's
launched by the Administrator

¢ Set Request: A request from the Administrator to the Agent to change the

value contained in the MIB, referring to a specific object

e Trap: A spontaneous message sent by the Agent to the Administrator, upon
detecting a predetermined condition, such as the connection/disconnection
of a station or an alarm

The SNMP protocol is composed of two elements: the agent and the manager. It
is a client-server architecture, in which the agent plays the role of the server and
the manager acts as the client.

The agent is a program that must be executed in each network node that you
want to manage or monitor. It offers an interface of all the elements that can be
configured. These elements are stored in data structures called Management
Information Base (MIB). It represents part of the server, insofar as it has the
information that you want to manage and expects commands from the client.

The manager is the software that runs in the station responsible for monitoring
the network; its task is to consult the different agents that are in the nodes of the
network and data they have been obtaining.

In essence, SNMP is a very simple protocol since all operations are performed
under the load-and-store paradigm, which allows for a reduced set of commands.
A manager can perform only two types of operations on an agent: read or write
the value of a variable in the agent's MIB. These two operations are known as

a read request (get request) and a write request (set-request). There is a
command to respond to a read request, called read-response, which is used only
by the agent.

The possibility of extending the protocol is directly related to the ability of the
MIB to store new elements. If a manufacturer wants to add a new command to a
device, such as a router, they simply add the corresponding variables to its
database (MIB).

MIB — a broad base of information

A MIB is a hierarchical database of objects and their values, stored in an SNMP
agent.

Generally, the objects of the MIB are referenced by an identifier. For example,
the internet object is referred to by 1.3.6.1, or iso-ccitt.identified-

organization.dod.internet.

Through the MIB, you have access to the information for management, which is
contained in the internal memory of the device in question. MIB is a complete
and well-defined database, with a tree structure, and is suitable for handling
various groups of objects, with unique identifiers for each object.

The SNMP architecture operates with a small group of objects that are defined in
detail in the RFC 1066 Management information base for network management
over TCP/IP.

The 8 groups of objects that are usually handled by MIB, which define a total of
114 objects (recently, with the introduction of MIB-II, are defined up to a total of
185 objects), are as follows:

e System: Includes the identity of the vendor and the time since the last
reinitialization of the management system

¢ Interfaces: Single or multiple interfaces, local or remote

e ATT (Address Translation Table): Contains the address of the network
and the equivalences with the physical addresses

e [P (Internet Protocol): Provides the route tables, and keeps statistics on
the received IP datagrams

e ICMP (Internet Communication Management Protocol): Counts the
number of received ICMP messages and errors

e TCP (Transmission Control Protocol): Provides information about TCP
connections and retransmissions

e UDP (User Datagram Protocol): Counts the number of UDP datagrams
sent, received, and delivered

¢ EGP (Exterior Gateway Protocol): Collects information on the number of

EGP messages that are received and generated

SNMP is a client/server-based network protocol. The server daemon provides
the requested information to the clients. If you are working with a Debian-based
distribution, you can install snmp in your local machine with the apt-get insta11
snmp command. This will provide some snmp commands. In your machine, if
SNMP has been installed and configured properly, you can use the snmpwaik utility
command to query the basic system information by using the following syntax:

| # snmpwalk -v2c -c public localhost

Here is the output of the execution of the snmpwalx command, where we can see
information being returned by the SNMP agent:

is0.3.6.1.2.1.1.1.0 = STRING: "Linux debian6box 2.6.32-5-686 #1 SMP
Tue Jan 15 15:00: UTC 2019 i686"

iso. 0ID: is0.3.6.1.4.1.8072.3.2.10

iso. Timeticks: (88855240) 10 days, 6:49:12.40
iso. STRING: "Me <me@example.org>"

iso. STRING: "debian6box"

iso. STRING: "Sitting on the Dock of the Bay"

WwWwwww
(o)l o)l e)ie]

The output of the preceding command will show the MIB number and its values.
For example, the iso.3.6.1.2.1.1.1.0¢ MIB number shows that it's a string type
Value, such as Linux debianebox 2.6.32-5-686 #1 SMP Tue Jan 15 15:00:01 UTC 2019 i686.

Introduction to pysnmp

PySNMP is a cross-platform, pure Python SNMP engine implementation (https:/
/github.con/etingof/pysnmp) that abstracts a lot of SNMP details for developers, and
supports both Python 2 and Python 3.

You can install the pysnmp module by using the pip command:

|$ pip install pysnmp

ASN.1 (nhttps://asnijs.org) is a standard and notation that describes rules and
structures to represent, encode, transmit, and decode data in telecommunication
and computer networking. PySNMP also requires the PyASN1 package.
PYASNl (https://github.com/etingof/pyasnl) Conveniently pFOVidES d PythOD
wrapper around ASN.

This module provides a useful wrapper for the snmp commands. Let's learn how
to create an snmpwalk command. To begin, import a command generator:

from pysnmp.entity.rfc3413.oneliner import cmdgen
cmd_generator = cmdgen.CommandGenerator ()

Then, define the necessary default values for the connection, assuming that the
snmpd daemon has been running on port 161 in public SNMP simulator at
demo.snmplabs.com and that the community string has been set to public:
SNMP_HOST 'demo.snmplabs.com'

SNMP_PORT 161
SNMP_COMMUNITY = 'public'

We can perform SNMP using the getcnd() method. The result is unpacked into
various variables. The output of this command consists of a four-value tuple. Out
of those, three are related to the errors that are returned by the command
generator, and the fourth one (vareinds) is related to the actual variables that bind
the returned data and contains the query result:
error_notify, error_status, error_index, var_binds =
cmd_generator.getCmd (
cmdgen.CommunityData(SNMP_COMMUNITY),

cmdgen.UdpTransportTarget ((SNMP_HOST, SNMP_PORT)),
cmdgen.Mibvariable('SNMPv2-MIB', 'sysDescr', 0),

https://github.com/etingof/pysnmp
https://asn1js.org
https://github.com/etingof/pyasn1

| lookupNames=True, lookupValues=True
You can see that cndgen takes the following parameters:

® communitypata(): Sets the community string as public.

® udpTransportTarget(): This is the host target, where the snmp agent is running.
This is specified in a pair of the hostname and the UDP port.

e wmibvariable: This is a tuple of values that includes the MIB version number
and the MIB target string (which is syspescr; this refers to the description of
the system).

The output of this command consists of a four-value tuple. Out of those, three
are related to the errors returned by the command generator, and the fourth is
related to the actual variables that bind the returned data. The following example
shows how the preceding method can be used to fetch the SNMP host
description string from a running SNMP daemon.

You can find the fOHOWiI’lg code in the snmp_get_information.py file:

#1/usr/bin/env python3

from pysnmp.hlapi import *
import sys

def get_info_snmp(host, oid):
for (errorIndication,errorStatus,errorIndex,varBinds) in nextCmd(SnmpEngine(),
CommunityData('public'),UdpTransportTarget((host, 161)),ContextData(), ObjectType(Ot

if errorIndication:
print(errorIndication, file=sys.stderr)
break
elif errorStatus:
print('%s at %s' % (errorStatus.prettyPrint(),errorIndex and varBinds[int(errorIndex
break
else:
for varBind in varBinds:
print('%s = %s' % varBind)

get_info_snmp('demo.snmplabs.com', '1.3.6.1.2.1.1.9.1.2")

Polling information from the SNMP
agent

An interesting tool to check for connections with SNMP servers and obtain the
value of the SNMP variable is snmp-get, which is available for both Windows and
Unix environments: https://snmpsoft.com/shell-tools/snmp-get/.

Other tOOlS, such as snmpwalk (available at https://snmpsoft.com/shell-tools/snmp-walk/),
allow us to obtain information about SNMP servers.

This is the syntax you can use to request information about a specific host:

| snmpwalk -c:community -v:2c -r:host -os:[oid]

In the following screenshot, we can see the usage for the snmpwaik command:

https://snmpsoft.com/shell-tools/snmp-get/
https://snmpsoft.com/shell-tools/snmp-walk/

Description: . .
Lists existing SNMP variables on any network device that supports SNMP.
SNMP is widely used for administration and monitoring purposes.

Usage:

snmpwalk.exe [-q] -r:host [-p:port] [-t:timeout] [-v:version] [-c:community]
[-ei:engine_id] [-sn:sec_name] [-ap:auth_proto] [-aw:auth_passwd]
[-pp:priv_proto] [-pw:§r1v_passwd] [-ce:cont_engine] [-cn:cont_name]

[-0s:start_oid

-r:host

-p:port
-t:timeout
-v:version
-C:community
-ei:engine_id
-sn:sec_name
-ap:auth_proto
-aw:auth_passwd
-pp:priv_proto

-pw:priv_passwd
-Cn:cont_name
-ce:cont_engine
-0s:start_o1d
-op:stop_oid

-GSV

[-op:stop_oid] [-csv]

Quiet mode (suppress header; print variable values only).
Name or networE address (IPv4/IPv6) of remote host.

SNMP port number on remote host. Default: 161

SNMP timeout in seconds (1-600). Default: 5

SNMP version. Supported version: 1, 2c or 3. Default: 1
SNMP community string for SNMP v1/v2c. Default: public
Engine ID. Format: hexadecimal string. (SNMPv3).

SNMP security name for SNMPV3.

Authentication protocol. Supported: MD5, SHA (SNMPv3).
Authentication ?assword (SNMPv3).

Privacy protocol. Supported: DES, IDEA, AES128, AES192,
AES256, 3DES (SNMPV3§

Privacy password (SNMPv3).

Context name. (SNMPv3)

Context engine. Format: hexadecimal string. (SNMPv3)
object ID (0ID) of first SNMP variable to walk. Default:.l
object ID (0ID) of last SNMP variable to walk.

Default: walk to the very last variable.

output in CSv (Comma Separated Values) format.

At http://snmplabs.com/snmpsim/public-snmp-agent-simulator.html#examples, YOU Cdll See
some examples of executing the snmpaik command using the SNMP simulation
service at demo.snmplabs.com.

http://snmplabs.com/snmpsim/public-snmp-agent-simulator.html#examples

Reading and interacting with LDAP
servers

In this section, you will learn about the LDAP protocol and examine the Python
libraries that deal with LDAP packets.

The LDAP protocol

LDAP is a protocol based on the X.500 standard, which is used to access
information that is stored through a centralized directory that contains the
information of our organization.

LDAP has a client/server architecture, where the server can use a variety of
databases to store a directory, each optimized for fast, high-volume read
operations. When a client application is connected to an LDAP server, most of
the time it will be for queries, although it is also possible to make changes to the
directory entries. If the client application is trying to modify the information in
an LDAP directory, the server will try to verify that the user has the necessary
permissions to update the information.

The biggest advantage of LDAP is that you can consolidate information for an
entire organization within a central repository. For example, instead of managing
user lists for each group within an organization, you can use LDAP as a central
directory, which is accessible from anywhere in the network. Since LDAP
supports Secure Connection Layer (SSL) and Transport Layer Security
(TLS), confidential data can be protected from hackers.

Another advantage of LDAP is that your company can access the LDAP
directory from almost any computing platform, from any of the applications that
is readily available for LDAP. It is also easy to customize your internal business
applications to add LDAP support.

LDAP terminology

LDAP stands for Lightweight Directory Access Protocol. It is an application-
level protocol that allows queries about a directory service to search for
information.

LDAP defines the way to access that directory, that is, it is optimized to carry out
read operations on the directory, such as validating authenticated access to a user
stored in the directory.

A directory service runs the client-server model, so if a client computer wants to
access the directory, it does not access the database directly; instead contacts a
process on the server. The process queries the directory and returns the result of
the operation to the client. Among the main terms when we work with LDAP,
let's highlight the following:

e Classes: The objects and their characteristics are defined in classes. For
example, the type of object to be defined and the attributes that it will
contain depend on the type of object. In the scheme, each class is defined
with the attributes that will be obligatory and optional for each created
entry.

e Objects: Entries in the directory. Objects are instances that are created from
a certain class or several, depending on the attributes required for an object.
The entire directory will be composed of objects (such as users, groups, or
organizational units).

e A directory service is like a database where we organize and store
information with objects of different classes. This hierarchically-organized
structure of the objects is achieved with the implementation of LDAP.

e entry: A unit in an LDAP directory. Each entry is identified by its unique
distinguished name (DN).

e DN: The distinguished name to uniquely identify a specific object in the
directory. That is, each entry defined is unique throughout the directory. As
we can see, the DN of that object (user type) will be unique throughout the
directory and will uniquely identify you.

e Attributes: Pieces of information directly associated with the input. For
example, an organization can be represented as an LDAP entry. The

attributes associated with the organization can be your fax number or your
address, for example. In an LDAP directory, the entries can also be people,
with common attributes such as their telephone number and email
addresses. Some attributes are mandatory while others are optional.

The LDAP Data Exchange Format (LDIF): An ASCII text representation
of LDAP entries. The files used to import data to the LDAP servers must be
in LDIF format.

Introduction to python-ldap

PythOD'S python-1ldap (https://www.python-ldap.org/en/latest/) third—party package
provides the necessary functionality to interact with an LDAP server.
You can install this package with the pip command:

|$ pip install python-1ldap

It is also possible to install python-1dap distributions based on Debian or Ubuntu
with the following commands:

sudo apt-get update
sudo apt-get install python-1ldap

To begin, you will have to initialize the LDAP connection, where we can replace
1dap_server with the IP address of the server and the port number:

import ldap
ldap_client = ldap.initialize("ldap://<ldap_server>:port_number/")

This method initializes a new connection object to access the given LDAP
server, and return an LDAP object that's used to perform operations on that
server. The next step is bind/authenticate with a user with appropriate rights:

| 1dap_client.simple_bind(user, password)

Then, you can perform an 1dap search. It requires you to specify the necessary
parameters, such as base DN, filter, and attributes. Here is an example of the
syntax that is required to search for users on an LDAP server:

| 1dap_client.search_s(base_dn, ldap.SCOPE_SUBTREE, filter, attrs)

Here is a complete example to find user information using the LDAP protocol. It
demonstrates how to open a connection to an LDAP server using the 1dap module
and invoke a synchronous subtree search.

You can find the fOHOWiI’lg code in the connect_python_ldap.py file:

#1/usr/bin/env python3
import ldap

https://www.python-ldap.org/en/latest/

LDAP_SERVER ="ldap://52.57.162.88:389"

LDAP_BASE_DN = 'ou=ldap3-tutorial, dc=demol,dc=freeipa, dc=org'
LDAP_FILTER = '(objectclass=person)'

LDAP_ATTRS = ["cn", "dn", "sn", "givenName"]

def main():

try:
Open a connection
ldap_client = ldap.initialize(LDAP_SERVER)
Set LDAPv3 option
ldap_client.set_option(ldap.OPT_PROTOCOL_VERSION, 3)
Bind/authenticate with a user with appropriate rights
ldap_client.simple_bind("admin", 'Secret123")
Get user attributes defined in LDAP_ATTRS
result = ldap_client.search_s(LDAP_BASE_DN, ldap.SCOPE_SUBTREE, LDAP_FILTER, LDAP_
print(result)

except ldap.INVALID_CREDENTIALS as exception:
ldap_client.unbind()
print('Wrong username or password. '+exception)

except ldap.SERVER_DOWN as exception:
print('LDAP server not available. '+exception)

if __name__ == '_ _main__':
main ()

The previous script verifies credentials for the username and password against a
LDAP server. It returns some of the user attributes on success, or a string that
describes the error on failure. The script will search the LDAP directory subtree
with the ou=1dap3-tutorial, dc=demo1, dc=freeipa, dc=org base DN. The search is limited
to person objects.

We need to define some global variables so that we can establish the URL of the
LDAP server, that is, the base DN to search for users within the LDAP directory
and the user attributes that you want to recover.

First, we need to initialize an instance of the 1dap class and define the options that
are required for the connection. Then, try to connect to the server using the
simple_bind function. In case of success, the user's attributes are retrieved using
the search_s function.

The LDAP FreelPA server

FreelPA (https://www.freeipa.org/page/Demo) isa fully—featured identity management
solution that provides LDAP server. We can find a free public instance of the
FreelPA server at https://ipa.demo1.freeipa.org. The FreeIPA domain is configured
with the following users (the password is secret123 for all of them):

¢ admin: This user has all the privileges and is considered the administrator
account

¢ helpdesk: A regular user with the helpdesk role

e employee: A regular user with no special permissions

e manager: A regular user, set as the manager of the employee user

In the following screenshot, we can see the active users that are available:

Users Hosts Services Groups ID Views Automember v

- Active users
Stage users 2 Refresh || @1 Delete | [+ Add | [= Dis v Enable | [Actions ~

Preserved users

[0 userlogin First name Last name Status uiD Email address Telephone Number Job Title

O | admin Administrator v Enabled 1162400000

O | asd asd asd v Enabled 1162400011 asd@demo1 .freeipa.org

O | employee Jake Smith v Enabled 1162400003 employee@demo?.freeipa.org Senior Software Engineer
O | igital S! Frankenstein + Enabled 1162400012 figital@demo.freeipa.org

O | helpdesk Test Helpdesk v Enabled 1162400004 helpdesk@demo.freeipa.org

O jdoey Johnny Doey + Enabled 1162400010 jdoey@demo?.freeipa.org

O | manager Test Manager v Enabled 1162400001 manager@demo freeipa.org

Showing 1 to 7 of 7 entries.

In the following screenshot, we can see the IPA Server configuration:

% freelPA & Administrator v

Identity Policy Authentication Network Services IPA Server

Role-Based Access Control v ID Ranges Realm Domains Trusts v Topology API Browser Configuration

Configuration

ZRefresh | O

Search Options User Options
search size limit * 100 User search fields * uid,givenname,sn,telephonenumber,ou,title
Search time limit * 2 Default e-mail demo! freeipa.org

domain

Domain resolution
order®

Default users group * ipausers v

Home directory * /home

https://www.freeipa.org/page/Demo
https://ipa.demo1.freeipa.org

In the following screenshot, we can see the default user object classes inside the
IPA Server configuration:

Default user * top Delete
objectclasses
person Delete
organizationalperson Delete
inetorgperson Delete
inetuser Delete
posixaccount Delete
krbprincipalaux Delete
krbticketpolicyaux Delete
ipaohject Delete
ipasshuser Delete
Add
IPA CA renewal ipa.demo1.freeipa.org W

master

Working with LDAP3

1daps is a fully-compliant Python LDAP v3 client library. It's written from scratch
to be compatible with Python 2 and Python 3, and can be installed via its
Standard Library with the following command:

| pip install ldap3

Accessing the LDAP server

Using 1daps is straightforward—you define a server object and a connection object.
All the importable objects are available in 1daps namespace. You need to at least
import the server and the connection object, and any additional constants you will
use in your LDAP connection:

| >>> from ldap3 import Server, Connection, ALL

In this example, we are accessing the LDAP server with an anonymous bind.
The auto_bind=True parameter forces the Bind operation to execute after creating
the Connection object. You can get information with the info property of the
Server object.

You can find the fOHOWiI’lg code in the connect_ldap_server.py file:

#1/usr/bin/env python3

import argparse
from ldap3 import Server, Connection, ALL

def main(address):
Create the Server object with the given address.
Get ALL information.
server = Server(address, get_info=ALL)
#Create a connection object, and bind with auto bind set to true.
conn = Connection(server, auto_bind=True)
Print the LDAP Server Information.
print(I******************Server Info**************l)
print(server.info)

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description="'Query LDAP Server')
parser.add_argument('--address', action="store", dest="address", default='ipa.demol.
given_args = parser.parse_args()
address = given_args.address
main(address)

The following is the output of the previous script. From this response, we know
that this server is a standalone LDAP server that can hold entries in the dc=demo1,
dc=freeipa, and dc=org Ccontexts:

DSA info (from DSE):

Supported LDAP Versions: 2, 3
Naming Contexts:

cn=changelog
dc=demol,dc=freeipa, dc=org

o=ipaca
Alternative Servers:
Supported Controls:
113556.1.
113556.1.
1.
1.1

2.

WWWWwwwwwN
OO OO OO,

RRRPRRRRR
FN NN NI NN

T G W G G G G (G

NPNNNNNNDNNNNNNNNNNERRPRPONMNMNNNNDNNNNNDMNMNNMNNMNNNRRRPRPRRRPRRRRR

EXTERNAL, GSS-SPNEGO, GSSAPI,

8

.8

.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.

.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.
.16.

40.
40.
1.

840.

840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.

840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
840.
Supported SASL Mechanisms:

FRRRERRRBRRRBRRERPBRRERRBRRE R

1

RRRRRR

.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
upported Extensions:
.3.6.1.4.1.1466.20037 - StartTLS - Extension - RFC4511-RFC4513
.3.6.1.4.1.4203.1.11
.3.6.1.4.1.4203.1.11
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.
.113730.

3.1 -
3.2 -
.1466.
.42.2.
.42.2.
.42.2.
.4208.
.4208.

Schema Entry:
cn=schema
Vendor name: 389 Project
Vendor version: 389-Directory/1.3.3.8 B2015.036.047
Other:
dataversion:
020150912040104020150912040104020150912040104
changelLog:
cn=changelog

lastchangenumber:

3033

None

4.319 - LDAP Simple Paged Results - Control - RFC2696

4.473 - Sort Request - Control - RFC2891

LDAP Pre-read - Control - RFC4527

LDAP Post-read - Control - RFC4527

29539.12 - Chaining loop detect - Control - SUN microsystems

27.8.5.1 - Password policy - Control - IETF DRAFT behera-ldap-passworc
27.9.5.2 - Get effective rights - Control - IETF DRAFT draft-ietf-ldag
27.9.5.8 - Account usability - Control - SUN microsystems

1.9.1.1 - LDAP content synchronization - Control - RFC4533

666.5.16 - LDAP Dereference - Control - IETF DRAFT draft-masarati-ldag
.12 - Proxied Authorization (old) - Control - Netscape

.13 - iPlanet Directory Server Replication Update Information - Cc

WWWWWWwWwwwwWwwwwww
OrhDEAAADMBPMAIMDIMDIDAIAD

.5

WWWWWwwWwwWwwwwwwwwowow
[eoleelNecINe B> e >IN) RN, &) N6 NG, NS &) N6 N4

firstchangenumber:

1713

lastusn:

.14 - Search

on specific database - Control - Netscape

.15 - Authorization Identity Response Control - Control - RFC3829
.16 - Authorization Identity Request Control - Control - RFC3829
.17 - Real attribute only request - Control - Netscape

.18 - Proxy Authorization Control - Control - RFC6171

.19 - Chaining loop detection - Control - Netscape

.2 - ManageDsaIT - Control - RFC3296

.20 - Mapping Tree Node - Use one backend [extended] - Control - ¢
.3 - Persistent Search - Control - IETF

.4 - Netscape Password Expired - Control - Netscape

.5 - Netscape Password Expiring - Control - Netscape

.9 - Virtual List View Request - Control - IETF

.10.6 - OTP Sync Request - Control - freeIPA

.1 - Modify Password - Extension - RFC3062
.3 - Who am I - Extension - RFC4532
.10 - Distributed Numeric Assignment Extended Request - Extension

- iPlanet
- iPlanet
- iPlanet
- iPlanet
iPlanet
- iPlanet

O~NOOUIO©WoO~NO O~ wW
1

.12 - Start replication request - Extension - Netscape
- Transaction Response Extended Operation - Extension - Netscag

Replication Response Extended Operation - Extension -
End Replication Request Extended Operation - Extensic
Replication Entry Request Extended Operation - Extens
Bulk Import Start Extended Operation - Extension - Ne
Bulk Import Finished Extended Operation - Extension -
Digest Authentication Calculation Extended Operation

- Replication CleanAllRUV - Extension - Netscape

- Replication Abort CleanAllRUV - Extension - Netscape

- Replication CleanAllRUV Retrieve MaxCSN - Extension - Netscar
- Replication CleanAllRUV Check Status - Extension - Netscape
.10.1 - KeyTab set - Extension - FreeIPA

.10.3 - Enrollment join - Extension - FreeIPA

.10.5 - KeyTab get - Extension - FreeIPA

DIGEST-MD5, CRAM-MD5, PLAIN, LOGIN, ANONYMOUS

8284

defaultnamingcontext:

dc=demol, dc=freeipa, dc=org

netscapemdsuffix:

cn=ldap://dc=ipa, dc=demol, dc=freeipa, dc=org:389
objectClass:

top

Finding entries in LDAP

To find entries in the 1dap directory, you must use the search operation. This
operation has a number of parameters, but only two of them are mandatory:

| conn.search(search_base, search_filter, attributes)
The following are the parameters:

® secarch_base: The location in the 1dap directory where the search will start
® search_filter: A string that describes what you are searching for
® attributes: Attributes to extract

In this script, we are going to search all users in the FreeIPA demo LDAP
server. You can find the fOHOWiI’lg code in the entries_ldap_server.py file:

#1/usr/bin/env python3
from ldap3 import Server, Connection, ObjectDef, AttrDef, Reader, Writer, ALL

LDAP_SERVER ="ipa.demol.freeipa.org"

LDAP_USER ="uid=admin, cn=users,cn=accounts,dc=demol,dc=freeipa,dc=org"
LDAP_PASSWORD ="Secret123"

LDAP_FILTER = '(objectclass=person)'

LDAP_ATTRS = ["cn", "dn", "sn", "givenName"]

def main():

Create the Server object with the given address.

server = Server (LDAP_SERVER, get_info=ALL)

#Create a connection object, and bind with the given DN and password.

try:
conn = Connection(server, LDAP_USER, LDAP_PASSWORD, auto_bind=True)
print('LDAP Bind Successful.')
Perform a search for a pre-defined criteria.
Mention the search filter / filter type and attributes.
conn.search('dc=demol,dc=freeipa,dc=org', LDAP_FILTER , attributes=LDAP_ATTRS)
Print the resulting entries.
for entry in conn.entries:

print(entry)

except core.exceptions.LDAPBindError as e:

If the LDAP bind failed for reasons such as authentication failure.
print('LDAP Bind Failed: ', e)

if _ _name_ == '_ _main__':
main()

This is the execution of the previous script. Here, you request all the entries of
person class , starting from the dc=demo1, dc=freeipa, and dc=org contexts with the

default subtree scope:

[DN: uid=admin, cn=users,cn=accounts,dc=demol, dc=freeipa,dc=org

DN: uid=manager,cn=users, cn=accounts, dc=demol,dc=freeipa, dc=org
DN: uid=employee, cn=users, cn=accounts, dc=demol,dc=freeipa, dc=org
DN: uid=helpdesk, cn=users, cn=accounts, dc=demol,dc=freeipa, dc=org

~ 0~ N

Summary

In this chapter, we encountered several network protocols and Python libraries
that are used to interact with remote systems. SSH and SFTP are used to securely
connect and transfer files to the remote hosts. We also examined Python

libraries to work with remote systems to perform various tasks, such as
administrative tasks by using SSH, and file transfer through FTP and Samba.
Finally, we reviewed some remote monitoring protocols, such as SNMP, and
authentication protocols, such as LDAP.

In the next chapter, we will discuss one of the most common networking
protocols: DNS and IP. We will also explore TCP/IP networking using Python
scripts.

Questions

10.

What is the file configuration for ssh connections and where is it located in
a Unix machine?

What is the encryption type that's used by the ssh protocol to establish
communication between the client and server?

How we can prevent access by the root user to a SSH server by a
configuration established in sshd_config file?

How should you run several commands on the remote host using paramiko
when you encounter the problem that the SSH session is closed?

How does paramiko create an SFTP session to download files in a secure way
from the SSH server?

Which command do we use to download a binary file from the ftp server
with the ftp1ib package?

Which method from the ftp1ib package returns a list with the filenames of
the directory?

Which Python module provides a useful wrapper for the shmp commands,
and how we can create a command to connect with an snmp server?

What is the name of the database where we can organize and store
information with objects of different classes in the 1dap server?

Which method from python-1dap initializes a new connection object to access
the given LDAP server, and returns an LDAP object that's used to perform
operations on that server?

Further reading

Check out the following links for more information on the topics that were
covered in this chapter:

¢ To learn more about the ftp1ib module, you can query the official
documentation: http://docs.python.org/library/ftplib.html

e The complete distribution of paramiko comes with many good examples in
the GitHub I‘EpOSitOI‘Y: https://github.com/paramiko/paramiko/tree/master/demos

e SNMP Link: a collection of SNMP resources: http://www.snmplink.org/

e Net-SNMP: SNMP Open Source Tools: http://net-snmp.sourceforge.net/

e To learn more about the pysnmp module, you can query the official
documentation: http://snmplabs.com/pysnmp/index.html

e The Python 3 script to perform LDAP queries and enumerate users, groups,
and computers from Windows Domains: https://github.com/m8r0wn/ldap_search

¢ To learn more about the Python 1dap module, you can query the official
documentation: https://www.python-ldap.org/en/latest/reference/ldap.html

e A tutorial and examples for ldap3: https://1ldap3.readthedocs.io/tutorial_intro.htm
1

http://docs.python.org/library/ftplib.html
https://github.com/paramiko/paramiko/tree/master/demos
http://www.snmplink.org/
http://net-snmp.sourceforge.net/
http://snmplabs.com/pysnmp/index.html
https://github.com/m8r0wn/ldap_search
https://www.python-ldap.org/en/latest/reference/ldap.html
https://ldap3.readthedocs.io/tutorial_intro.html

Section 3: IP Address Manipulation
and Network Automation

In this section, you will learn about the Python modules for IP address
manipulation, how to get DNS and geolocation information from servers, and
what tools are available in Python for network automation with Ansible.

This section contains the following chapters:

® chapter 7, Working with IP and DNS
e chapter 8, Implementing IPv6 and Address Manipulation
e chapter 9, Performing Network Automation with Python and Ansible

Working with IP and DNS

In this chapter, you will learn how to work with IP, DNS networking, and
geolocation in Python. Through practical examples, you will learn how to
determine the IP address of your own computer and look up other computers in
the network. You will also learn how to extract information from DNS servers
with the dnspython module and extract information about geolocation IP addresses.

The following topics will be covered in this chapter:

Principles of the IP protocol

Retrieving the network configuration of a local machine

Using Python to manipulate IP addresses and perform CIDR calculations
The DNS Python module as a tool for extracting information from DNS
servers

e GeolP IOOkUpS with pygeoip and python-geoip

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the Chapter@7 folder: https://github.com/PacktPublishing/Learning-Python-Ne

tworking-Second-Edition/tree/master/chapter?.

You will need to install a Python distribution on your local machine and have
some basic knowledge of the IP and TCP protocols to work through this chapter.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition/tree/master/chapter7

Principles of the IP protocol

In this section, you will learn how to resolve and validate an IP address with the
socket package.

Resolving the IP address with the
socket package

If you would like to see the local machine IP, you can do so using the ifconfig
command in Linux and the ipconfig command in Windows. Here, we'll do this in
Python using the buiit-in function:

>>> import socket

>>> socket.gethostbyname('python.org')
'10.0.2.15"

This process is known as a host file-based name resolution. You can send a
query to a DNS server and ask for the IP address of a specific host. If the name
has been registered properly, you will get a response from the server.

Here are some useful methods for gathering this kind of information:

® socket.gethostbyaddr(address): This allows us to obtain a domain name from
the IP address.

® socket.gethostbyname(hostname): This method converts a hostname into IPv4
address format. The IPv4 address is returned in the form of a string. This
method is equivalent to the nsiookup command that we can find in many
operating systems.

Validating the IP address with the
socket package

We can use also the socket package to validate an IP address in both IPv4 and
IPv6.

You can find the following code in the check_ip_address.py file:

import socket

def is_valid_ipv4_address(address):
try:
socket.inet_pton(socket.AF_INET, address)
except AttributeError:
try:
socket.inet_aton(address)
except socket.error:
return False
return address.count('.') == 3
except socket.error: # not a valid address
return False

return True

def is_valid_ipv6_address(address):
try:
socket.inet_pton(socket.AF_INET6, address)
except socket.error: # not a valid address
return False
return True

print("IPV4 127.0.0.1 OK:"+ str(is_valid_ipv4_address("127.0.0.1")))
print("IPV4 127.0.0.0.1 NOT OK:"+ str(is_valid_ipv4_address("127.0.0.0.1")))

print("IPV6 ::1 OK:"+ str(is_valid_ipv6_address("::1")))
print("IPV6 127.0.0.0 NOT OK:"+ str(is_valid_ipv6_address("127.0.0.0.1")))

This is the execution of the previous script, where we can see that 127.0.0.1is a
valid IPv4 address and ::1 is a valid IPv6 address:

IPV4 127.0.0.1 OK:True

IPV4 127.0.0.0.1 NOT OK:False
IPV6 ::1 OK:True

IPV6 127.0.0.0 NOT OK:False

Retrieving the network configuration
of a local machine

In this section, you will learn how to retrieve the network configuration with
the netifaces package, and understand the standard Python libraries for IP address
manipulation.

Gathering information with the
netifaces package

Now, we are going to discover some more information about the network
interface and the gateway machine of your network.

In every LAN, a host is configured to act as a gateway, which talks to the outside
world. To find the network address and the netmask, we can use a Python third-
party library, netifaces. For example, you can call netifaces.gateways() to find the
gateways that are configured to the outside world. Similarly, you can enumerate
the network interfaces by calling netifaces.interfaces(). If you would like to know
all the IP addresses of a particular interface, ethe, then you can call

netifaces.ifaddresses('etho').

The following code listing shows the way in which you can list all the gateways
and IP addresses of a local machine.

You can find the fOHOWiI’lg code in the local_network_config.py file:

1/usr/bin/env python3

import socket
import netifaces

Find host info

host_name = socket.gethostname()

ip_address = socket.gethostbyname(host_name)
print("Host name: {0}".format(host_name))

Get interfaces list
ifaces = netifaces.interfaces()

for iface in ifaces:
ipaddrs = netifaces.ifaddresses(iface)
#for each ipaddress
if netifaces.AF_INET in ipaddrs:
ipaddr_desc = ipaddrs[netifaces.AF_INET]
ipaddr_desc = ipaddr_desc[0]
print("Network interface: {0}".format(iface))
if 'addr' in ipaddr_desc:
print("\tIP address: {0}".format(ipaddr_desc['addr']))
if 'netmask' in ipaddr_desc:
print("\tNetmask: {0}".format(ipaddr_desc['netmask']))

Find the gateway
gateways = netifaces.gateways()

| print("Default gateway:{03}".format(gateways['default'][netifaces.AF_INET][0]))

If you run this code in a Windows operating system, it will print a summary of
the local network configuration, which will be similar to the following:

Network interface: {40EE5A9D-737D-40AA-BBFC-4F5833D17COE}
IP address: 10.80.92.139
Netmask: 255.255.255.0

Network interface: {361548CA-A87A-40B1-9E88-EAAC3B1B91B1}
IP address: 192.168.56.1
Netmask: 255.255.255.0

Network interface: {7641A251-28A7-46E8-A6E1-781D95CE9477}
IP address: 169.254.204.194
Netmask: 255.255.0.0

Network interface: {E1722BC0-6333-11E7-BBOC-806E6F6E6963}
IP address: 127.0.0.1
Netmask: 255.0.0.0

Default gateway:10.68.14.1

Using Python to manipulate IP
addresses and perform CIDR
calculations

In this section, you will explore TCP/IP networking using Python scripts.

The Python ipaddress module

The ipaddress module simplifies working with IPv4 and IPv6 addresses in Python.
In this section, we will focus on IPv4 and will work primarily with the following
three class types:

® 1pvsaaddress: Represents a single IPv4 address
e 1pvanetwork: Represents an IPv4 network
® 1pvainterface: Represents an IPv4 interface

You can get more information about this module with the heip command from the
Python interpreter:

>>> imgort 1paddress
>>> help(ipaddress)
Help on module ipaddress:

NAME
1paddress - A fast, Tightweight IPv4/IPv6 manipulation Tibrary in Python.

DESCRIPTION

This Tibrary 1s used to create/poke/manipulate IPv4 and IPv6 addresses
and networks.

CLASSES
builtins.valueError(builtins.Exception)
AddressvalueError
NetmaskvalueError
_BaseAddress (_IPAddressBase)
IPv4Address(_Basev4, _BaseAddress)
IPv4Interface
IPv6Address(_Basev6, _BaseAddress)
IPv6Interface
_BaseNetwork (_IPAddressBase)
IPv4Network (_Basev4, _BaseNetwork)
IPv6Network (_Baseve, _BaseNetwork)
_Basev4(builtins.object)
IPv4Address(_Basev4, _BaseAddress)
IPv4Interface
IPv4Network (_Basev4, _BaseNetwork)

1pvaaddress 1S the class that represents and manipulates single IPv4 addresses:

class IPv4Address(_Basev4, _BaseAddress)
Represent and manipulate single IPv4 Addresses.

Method resolution order:
IPv4Address
_BaseVv4
_BaseAddress
_IPAddressBase
builtins.object

Methods defined here:

Args:
address: A string or integer representing the IP

Additionally, an integer can be passed, so

IPv4Address('192.0.2.1") == IPv4Address(3221225985).

or, more generally

IPv4Address (int (IPv4Address('192.0.2.1"))) ==
IPv4Address('192.0.2.1")

Raises:
Addressvaluegrror: If ipaddress isn't a valid IPv4 address.

|
|
|
|
|
|
|
|
|
I
I __init__(self, address)
|
|
|
|
|
|
|
|
|
|

The c1ass represents an IPv4 address or network. To create these objects in
Python, the module provides some basic factory functions:

import ipaddress
from ipaddress import IPv4Address, IPv4Network, IPv4Interface

After you create an IPv4/IPv6 object, you can get a lot information from the
class, for example, whether it is a multicast address or a private address, the
prefix length, and netmask.

In the following screenshot, we can see the methods that are used to check these
use cases:

is_link_local
Test if the address is reserved for link-local.

Returns:
A boolean, True if the address is link-local per RFC 3927.

is_Tloopback
Test if the address is a loopback address.

Returns: _ _
A boolean, True if the address is a Toopback per RFC 3330.

is_mu]ticqst . .
Test if the address is reserved for multicast use.

Returns: _ _ _
A boolean, True if the address is multicast.
See RFC 3171 for details.

is_private . . .
Test if this address is allocated for private networks.

Returns: _ _
A boolean, True if the address is reserved per
iana-ipv4-special-registry.

is_reservgd . .
Test if the address is otherwise IETF reserved.

Returns: _ R
A boolean, True if the address is within the
reserved IPv4 Network range.

From Python 3.3, the best way to check whether an IPv6 or IPv4 address is
correct is to use the Python standard library module, ipaddress.

0 Check out https://docs.python.org/3/1ibrary/ipaddress.html for the Complete documentation.

If you're using Python 3.3 or later, you can use the ipaddress module to validate
the IP address:

>>> import ipaddress
>>> ipaddress.ip_address('127.0.0.1')
IPv4Address('127.0.0.1"')
>>> ipaddress.ip_address('500.500.0.1"')

https://docs.python.org/3/library/ipaddress.html

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3.7/ipaddress.py", line 54, in ip_address
address)
ValueError: '500.500.0.1' does not appear to be an IPv4 or IPv6 address

In this example, we use this method to validate both IPv4 and IPv6. You can find
the fOHOWng code in the validate_ip_address.py file:

1/usr/bin/env python3

import ipaddress
import sys

try:
ip = ipaddress.ip_address(sys.argv[1])
print('%s is a correct IP%s address' % (ip, ip.version))
except ValueError:

print('address/netmask is invalid: %s' % sys.argv[1])
except:

print('Usage : %s 1ip' % sys.argv[0])

If you execute the previous script with an IP address as a parameter, it will
validate in both IPv4 and IPv6 versions:

$ python validate_ip_address.py 127.0.0.1
127.0.0.1 is a correct IP4 address

$ python validate_ip_address.py ::1
::1 is a correct IP6 address

Manipulating IP addresses

Often, you will need to manipulate IP addresses and perform some sort of
operations on them. Python 3 has a built-in ipaddress module to help you carry
out this task. It has convenient functions for defining the IP addresses and the IP
networks, and for finding lots of useful information. For example, if you would
like to know how many IP addresses exist in a given subnet, for instance,
10.0.1.0/255.255.255.0 OF 10.0.1.0/24, you can find them with the help of the
following command.

This module will provide several classes and factory functions for working with
both IPv4 and IPv6 versions.

IP network objects

Let's import the ipaddress module and define a net4 network:

>>> import ipaddress
>>> net4 = ipaddress.ip_network('10.0.1.0/24")

Now, we can find some useful information, such as netmask and the
network/broadcast address, of neta:

>>> net4.netmask
IP4Address(255.255.255.0)

The netmask properties of net4 will be displayed as an 1paaddress object. If you are
looking for its string representation, then you can call the str() method, as shown
here:

>>> str(net4.netmask)
'255.255.255.0"'

Similarly, you can find the network and the broadcast addresses of net4 by using
the following code:

>>> str(net4.network_address)
10.0.1.0

>>> str(net4.broadcast_address)
10.0.1.255

We can get the number of addresses net4 can hold with the following command:

>>> net4.num_addresses
256

So, if we subtract the network and the broadcast addresses, the total available IP
addresses will be 254. We can call the nosts() method on the net4 object. This will
produce a Python generator, which will supply all the hosts as 1pvaaddress objects:

>>> net4.hosts()

>>> <generator object _BaseNetwork.hosts at 0x02F25FC0>

>>> all hosts = list(net4.hosts())

>>> len(all_hosts)

254

>>> print(all_hosts)

>>> [IPv4Address('10.0.1.1'), IPv4Address('10.0.1.2'), IPv4Address('10.0.1.3'), IPv4Addr

Subnetting in Python

Another use case is an IP subnetting application, which gives you the required IP
subnets based on required network size or amount of networks per location. We
can also find the subnet information from the 1pvanetwork objects, as follows:
>>> net4.subnets()
<generator object _BaseNetwork.subnets at 0x02F2C0C0>
>>> subnets = list(net4.subnets())

>>> subnets
[IPv4Network('10.0.1.0/25'), IPv4Network('10.0.1.128/25')]

The ipaddress module includes many functions to create subnets and supernets;
for example, we can use these methods to check whether a network overlaps
with another:

>>> ipnet = ipaddress.IPv4Network("10.2.0.0/16")

>>> list(ipnet.subnets())
[IPv4Network('10.2.0.0/17'), IPv4aNetwork('10.2.128.0/17')]

The subnets(prefixlen_diff=1, new_prefix=None) method also has the capacity to
generate subnets with additional host bits or with a specific amount of network
bits. In the following example, we use the new_prefix argument in the subnets
method to define the number of network bits for the new network mask:

new_prefix = number of network bits for the new mask

>>> list(ipnet.subnets(new_prefix=20))
[IPv4Network('10.2.0.0/20'), IPv4Network('10.2.16.6/20'), IPv4Network('10.2.32.0/20'),

Any 1pvanetwork object can tell, which is the opposite of the subnet by looking at its
parent supernet:

>>> net4.supernet()
IPv4Network('10.0.0.0/23")

Network interface objects

In the ipaddress module, we have a convenient class to represent an interface's IP
configuration in detail: 1pvarnterface. It takes an arbitrary address and behaves
like a network address object:

>>> import ipaddress

>>> eth@ = ipaddress.IPv4Interface('192.168.0.1/24')
>>> etho.ip
IPv4Address('192.168.0.1")
>>> eth0.with_prefixlen
'192.168.0.1/24"'

>>> eth0.with_netmask
'192.168.0.1/255.255.255.0"
>>> eth0.network
IPv4Network('192.168.0.0/24"')
>>> eth0.is_private

True

>>> eth0.is_reserved

False

>>> eth0.is_multicast

False

>>>

As you can see, a network interface, etho, with the 1pvaaddress class, has been
defined. It has some interesting properties, such as IP and network address. In
the same way as the network objects, you can check whether the address is

private, reserved, OI multicast.

IP address objects

In this example, the 100pback interface is defined with the 127.0.0.1 IP address. As
you can see, the is_1oopback property returns true:

>>> loopback = ipaddress.IPv4Interface('127.0.0.1')
>>> loopback.is_private

True

>>> loopback.is_reserved

False

>>> loopback.is_multicast

False

>>> loopback.is_loopback

True

The IP address classes have many more interesting properties. You can perform
some arithmetic and logical operations on those objects. For example, we can
check whether an IP address is part of a network.

In this example, we are checking whether an IP address is part of a specific
network. Here, a network called net has been defined by the network address,
which is 192.168.1.0/24, and the membership of ethe and eth1 has been tested to see
if these IP addresses are part of the network:

>>> etho ipaddress.IPv4Interface('192.168.1.1")
>>> ethl = ipaddress.IPv4Interface('192.168.2.1')
>>> net = ipaddress.ip_network('192.168.1.0/24"')
>>> eth0 in net

True

>>> ethl in net

False

Planning IP addresses for your local
area network

If you are wondering how to pick up a suitable IP subnet, try the ipaddress
module. The following code snippet shows an example of how to choose a
specific subnet, based on the number of necessary host IP addresses for a small
private network.

Suppose you have a CIDR network address, such as 192.168.0.0/24, and you want
to generate a range of all the IP addresses that it represents (192.168.0.1 to
192.168.0.254). The ipaddress module can be easily used to perform such
calculations:

>>> import ipaddress
>>> net = ipaddress.ip_network('192.168.0.0/24")
>>> net
IPv4Network('192.168.0.0/24"')
>>> for a in net:
print(a)

192.168.0.1
192.168.0.2
192.168.0.3

192.168.0.254

In this example, we are using the ip_network method from the ipaddress module to
generate a range of all the IP addresses that represent the network.

You can find the following code in the net_ip_pianner.py file:

1/usr/bin/env python3

import ipaddress as ip

CLASS_C_ADDR = '192.168.0.0'

mask = input("Enter the mask len (24-30): ")
mask = int(mask)

if mask not in range(23, 31):

raise Exception("Mask length must be between 24 and 30")

net_addr = CLASS_C_ADDR + '/' + str(mask)
print("Using network address:%s " %net_addr)

try:

except:

print("\t
print("\t
print("\t
first_ip,
print("\t

network = ip.ip_network(net_addr)
raise Exception("Failed to create network object")

print("This mask will give %s IP addresses" %(network.num_addresses))
print("The network configuration will be:")

network address: %s" %str(network.network_address))

netmask: %s" %str(network.netmask))

broadcast address: %s" %str(network.broadcast_address))
last_ip = list(network.hosts())[0], list(network.hosts())[-1]
host IP addresses: from %s to %s" %(first_ip,last_ip))

The following is the execution of the previous script for some masks and
the ¢ class IP address, 192.168.0.0:

e Execution with mask 2a:

Enter the mask len (24-30): 24

Using network address:192.168.0.0/24
This mask will give 256 IP addresses
The network configuration will be:

network address: 192.168.0.0

netmask: 255.255.255.0

broadcast address: 192.168.0.255

host IP addresses: from 192.168.0.1 to 192.168.0.254

e Execution with mask ze:

Enter the mask len (24-30): 30

Using network address:192.168.0.0/30
This mask will give 4 IP addresses
The network configuration will be:

network address: 192.168.0.0

netmask: 255.255.255.252

broadcast address: 192.168.0.3

host IP addresses: from 192.168.0.1 to 192.168.0.2

The dnspython module as a tool for
extracting information from DNS
servers

In this section, you will learn how to obtain information from DINS servers with
the dnspython module.

Working with dnspython

The IP address can be translated into human-readable strings called domain
names. DNS is a big topic in the world of networking. In this section, we will
create a DNS client in Python, and see how this client will talk to the server
using Wireshark.

A few DNS client libraries are available from PyPI. We will focus on the
dnspython library, which is available at http://www.dnspython.org.

You can install this library by using either the easy_insta11 command or the pip
command:

| $ pip install dnspython

In this practical example, we will use dnspython to execute queries on several
types of DNS records, such as IPv4 (A), IPv6 (AAAA), name servers (NS), and
mail exchange (MX).

The main utility of dnspython regarding other DNS query tools, such as dig, fierce,
or nslookup, iS that you can control the result of queries from Python, and then that
information can be used for other purposes in a script.

You can also install it from its source code, which is available on its official
website: http://www.dnspython.org.

Now, we are going to review some interesting queries, such as the examples that
dppear at http://www.dnspython.org/examples.html.

Making a simple query regarding the IP address of a host is very simple. You can
use the dns.resolver submodule, as follows. You can find the following code in the
dns_basic.py file:

import dns.resolver

answers = dns.resolver.query('dnspython.org', 'A'")

for rdata in answers:
print('IP', rdata.to_text())

http://www.dnspython.org
http://www.dnspython.org
http://www.dnspython.org/examples.html

Determining the destination of an MX
record and its preference

With the dns.resolver submodule, we can access the information stored in the
exchange Mail exchange records to see which hosts have priority when exchanging
emails via the internet.

You can find the following code in the dns_nx.py file:

import dns.resolver

answers = dns.resolver.query('dnspython.org', 'MX')
for rdata in answers:
print('Host', rdata.exchange, 'has preference', rdata.preference)

This is the output of the previous script:

Host altl.aspmx.l.google.com. has preference 20
Host alt2.aspmx.l.google.com. has preference 20
Host aspmx2.googlemail.com. has preference 30
Host aspmx3.googlemail.com. has preference 30
Host aspmx.l.google.com. has preference 10

Manipulating domain names

In this example, we are checking the properties of a specific domain and
checking whether a domain is a suddomain OT superdomain from another.

You can find the following code in the dns_domains.py file:

import dns.name

domainl= dns.name.from_text('www.dnspython.org')
domain2 = dns.name.from_text('dnspython.org')
print(domain2 .is_subdomain(domainl))
print(domain2 .is_superdomain(domainl))

Converting IPv4 and IPv6 addresses
into their DNS reverse map names

With this script, we can convert an IP address into a name object, whose value
will be the reverse map domain name of the address. Using the

following command, we can find out which domain name corresponds to each of
the specified addresses, that is, whether they are IPv4 or IPv6.

If you want to make a reverse lookup, you need to use the dns.reversename
submodule.

You can find the following code in the dns_reverse.py file:

1/usr/bin/env python3

import argparse
import dns.reversename
import dns.resolver

def main(address):
name = dns.reversename.from_address(address)
print(name)
print(dns.reversename.to_address(name))

try:
Pointer records (PTR) maps a network interface (IP) to the host name.
domain = str(dns.resolver.query(name,"PTR")[0])
print(domain)
except Exception as e:
print ("Error while resolving %s: %s" %(address, e))

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DNS Python'")
parser.add_argument('--address', action="store", dest="address", default='127.0.0.1'
given_args = parser.parse_args()
address = given_args.address
main(address)

This is the output of the previous script with the IP address from the Google
name server domain:

$ python dns_reverse.py --address 8.8.8.8
8.8.8.8.1in-addr.arpa.

8.8.8.8

google-public-dns-a.google.com

Now, let's create an interactive DNS client script that will do a complete lookup
of the possible records, as shown here.

You can find the following code in the dns_details.py file:

#1/usr/bin/env python3

import argparse
import dns.zone
import dns.resolver

def main(domain):
IPv4 DNS Records
answer = dns.resolver.query(domain, 'A'")
for i in range(©, len(answer)):
print("IPV4 address: ", answer[i])

IPv6 DNS Records
try:
answer6 = dns.resolver.query(domain, 'AAAA'")
for i in range(0, len(answer6)):
print("IPv6: ", answer6[i])
except dns.resolver.NoAnswer as e:
print("Exception in resolving the IPv6 Resource Record:", e)

In the previous code block, we defined our main function, which accepts the
domain as a parameter and gets information about the IPv4 and IPv6 DNS
records. Now, we can use the resolver.query function to obtain information about
the mail exchange and name server's records, as follows:

MX (Mail Exchanger) Records
try:

mx = dns.resolver.query(domain, 'MX")

print('Mail Servers: %s' % mx.response.to_text())

for data in mx:

print('Mailserver', data.exchange.to_text(), 'has preference', data.preferer

except dns.resolver.NoAnswer as e:

print("Exception in resolving the MX Resource Record:", e)

NS (Name servers) Records
try:

ns_answer = dns.resolver.query(domain, 'NS')

print('Name Servers: %s' %[x.to_text() for x in ns_answer])
except dns.resolver.NoAnswer as e:

print("Exception in resolving the NS Resource Record:", e)

if __name__ == '__main__"':

parser = argparse.ArgumentParser(description='DNS Python'")
parser.add_argument('--domain', action="store", dest="domain", default="'dnspython.c
given_args = parser.parse_args()
domain = given_args.domain
main(domain)

If you run this script with the python.org domain, you will get an output similar to

the following:

$ python dns_details.py --domain python.org

IPV4 address: 23.253.135.79

IPv6: 2001:4802:7901:0:e60a:1375:0:6

Mail Servers: id 40709

opcode QUERY

rcode NOERROR

flags QR RD RA

; QUESTION

python.org. IN MX

s ANSWER

python.org. 195 IN MX 50 mail.python.org.
;AUTHORITY

;ADDITIONAL

mail.python.org. 16396 IN A 188.166.95.178
mail.python.org. 3195 IN AAAA 2a03:b0c0:2:d0::71:1
Mailserver mail.python.org. has preference 50

Name Servers: ['nsl.pll.dynect.net.', 'ns2.pll.dynect.net.', 'ns3.pli.dynect.net.', 'ns

Inspecting the DNS client and server
communication

Throughout this book we've captured network packets between the client and the
server using Wireshark. Here, we look at an example of session capturing while
Python is executing the script where we obtain DNS details from a domain.

In Wireshark, you can specify port 53 by navigating to Capture | Options |
Capture filter. This will capture all the DNS packets that were sent to/from your
machine. We can also filter with the dns keyword.

In the following screenshot, we can see how the client and the server have
several request/response cycles with the DNS records. It was started with a
standard request for the host's address and it was followed by a suitable
response:

[|dr|s [X] v] Expression...
No. Time Source Destination Protocol Length Info
346 11.420548 10.80.92.139 10.68.98.35 DNS 81 Standard query ©x9595 A outlook.office365.com
347 11.484322 10.68.98.35 10.80.92.139 DNS 213 Standard query response 0x9595 A outlook.office365.com CNAME outlook.ha.office365.com.
401 12.349293 10.80.92.139 10.68.98.35 DNS 70 Standard query @xcbb2 AAAA python.org
404 12.413304 10.68.98.35 10.80.92.139 DNS 98 Standard query response @xcbb2 AAAA python.org AAAA 2001:4802:7901:0:e60a:1375:0:6
405 12.416453 10.80.92.139 10.68.55.100 DNS 70 Standard query oxbl73 MX python.org
417 14.415211 10.80.92.139 10.68.98.35 DNS 70 Standard query ©xb173 MX python.org
418 14.479499 10.68.98.35 10.80.92.139 DNS 135 Standard query response @xbl73 MX python.org MX 50 mail.python.org A 188.166.95.178 A.. |
419 14.496510 10.80.92.139 10.68.55.100 DNS 70 Standard query 0x83bf NS python.org
428 16.496837 10.80.92.139 10.68.98.35 DNS 70 Standard query 0x83bf NS python.org
429 16.561085 10.68.98.35 10.80.92.139 DNS 220 Standard query response @x83bf NS python.org NS ns3.pll.dynect.net NS ns4.pll.dynect...

User Datagram Protocol, Src Port: 62078, Dst Port: 53

v Domain Name System (query)

Transaction ID: @xcbb2

Flags: ©x0100 Standard query

Questions: 1

Answer RRs: @

Authority RRs: ©

Additional RRs: @

v Queries
i —

ABA 1 ™
78 48 59 79 fd 89 8c 16 45 2d 79 20 ©8 ©0 45 @0 xHYy E-y --E
00 38 6b d6 @0 @0 80 11 fb 9c @a 5@ 5c 8b @a 44 8k P\--D
62 23 f2 72 @0 3500 24 40 15 cb b2 €1 00 80 ©1 b# ~-5-§ @ ------

2030 00 00 co oo 0o ¢o TR EEE -

If you look deep inside the packet, you can see the request format of the
response from the server:

v python.org: type NS, class IN, ns ns2.pll.dynect.net

Name: python.org
Type: NS (authoritative Name Server) (2)

Class: IN (©x©ee1)
Time to live: 2119

Data length: 6
Name Server: ns2.pll.dynect.net
v Additional records

v ns3.pll.dynect.net: type A, class IN, addr 208.78.71.11

Name: ns3.pll.dynect.net
Type: A (Host Address) (1)

Class: IN (@x@ee1)

Time to live: 19712
Data length: 4

Address:

208.78.71.11
v ns4.pll.dynect.net: type A, class IN, addr 204.13.251.11

Name: ns4.pll.dynect.net
Type: A (Host Address) (1)

No. Time Source Destination Protocol Length Info
401 12.349293 10.80.92.139 10.68.98.35 DNS 70 Standard query @xcbb2 AAAA python.org
404 12.413304 10.68.98.35 10.80.92.139 DNS 98 Standard query response @xcbb2 AAAA python.org AAAA 2001:4802:7901:0:€60a:1375:0:6
405 12.416453 10.80.92.139 10.68.55.100 DNS 76 Standard query ©xbl73 MX python.org
417 14.415211 10.80.92.139 10.68.98.35 DNS 70 Standard query @xbl73 MX python.org
418 14.479499 10.68.98.35 10.80.92.139 DNS 135 Standard query response @xbl73 MX python.org MX 56 mail.python.org A 188.166.95.178 A..
419 14.496510 10.80.92.139 10.68.55.100 DNS 76 Standard query ©x83bf NS python.org
428 16.496837 10.80.92.139 10.68.98.35 DNS 70 Standard query @x83bf NS python.org
I 429 16.561085 10.68.98.35 10.80.92.139 DNS 220 Standard query response @x83bf NS python.org NS ns3.pll.dynect.net NS ns4.pll.dynect...
Name Server: nsl.pll.dynect.net

GeolP lookups with pygeoip and
python-geoip

In this section, we will explore how to get geolocation information for an IP
address or domain.

Introduction to geolocation

One way to obtain the geolocation from an IP address or domain is by using a
service that provides this kind of information. Among the services that provide
this information, we can hlghllght hackertarget.com (https://hackertarget.com/geoip-ip-
location-lookup/). With hackertarget.com, We can geta geolocation from an IP
address:

HACKER TARGET SCANNERS TOOLS RESEARCH SERVICES

GeolP - IP Location Lookup

Find the location of an IP address with this GeolP lookup tcol.

§.8.8.8

GET THE IP LOCATION

This service also provides a REST API for obtaining a geolocation from an IP
address: https://api.hackertarget.com/geoip/?q=8.8.8.8.

Another service is api.hostip.info, Which provides a query by the IP address:

https://hackertarget.com/
https://hackertarget.com/geoip-ip-location-lookup/
https://hackertarget.com/
https://api.hackertarget.com/geoip/?q=8.8.8.8

// http

://api.hostip.info/get_json.php?ip=8.8.8.8&position=true

"country_name": "UNITED STATES"

"country_code": "US"

"city": "Mountain View, CA™
=IaT s PRiBBAT

“lat": ©37.402"

"Iag™: =-122.078"

In the following script, we are using this service and the requests module to
obtain a JSON response with the information for geolocation. You can find the
following code in the ip_to_geo.py file:

self
self
self
self
self
self

self.

self.

import requests

class IPtoGeo(object):

def __init_ (self, ip_address):

Initialize objects to store

.latitude = "'
.longitude = "'
.country = "'
.city = "'
.ip_address = ip_address
._get_location()

def _get_location(self):
json_request = requests.get('http://api.hostip.info/get_json.php ip=%s&position=true
if 'country_name' in json_request:

country = json_request['country_name']

if 'country_code' in json_request:

country_code = json_request['country_code']

if 'city' in json_request:

self.city = json_request['city']
if 'lat' in json_request:

self.latitude = json_request['lat']
if 'lng' in json_request:

self.longitude = json_request['lng']

if __name__ == '__main__':

geolocation = IPtoGeo('8.8.8.8")
print(geolocation .__dict_)

This is the output of the previous script:

| {'latitude’:

'37.402', 'longitude': '-122.078', 'country': 'UNITED STATES', 'city': 'MouL

Introduction to pygeoip

pygeoip is one of the modules that's available in Python that allows you to retrieve
geographic information from an IP address. It is based on GeolP databases,
which are distributed in several files depending on their type (city, region,
country, ISP). The module contains several functions to retrieve data, such as the
country code, time zone, or complete registration with all the information related
to a specific address.

pygeoip can be downloaded from the official GitHub repository: nttp://github.com/a
ppliedsec/pygeoip.

To build the object, we use a constructor that accepts a file as a database by
parameter. An example of this file can be downloaded from nttp://dev.maxmind.com/
geoip/legacy/geolite.

In the fOHOWng SCFipt, we have two methods: geoip_city(domain, ipaddress), tO
obtain information about the location, and geoip_country(domain, ipaddress) t0 obtain
the country, both from the IP address and domain. In both methods, we must first
instantiate a GeolP class with the path of the file that contains the database.
Next, we will query the database for a specific record, specifying the IP address
or domain. This returns a record that contains fields for city, that is, region_name,

postal_code,Country_name,latitude,Eﬂ]d.longitude.

You can find the following code in the pygeoip_test.py file in the geopip folder:

1/usr/bin/env python3

import pygeoip
import argparse

def geoip_city(domain, ipaddress):
path = 'GeoLiteCity.dat'
gic = pygeoip.GeoIP(path)
print(gic.record_by_addr(ipaddress))
print(gic.region_by_name(domain))

def geoip_country(domain, ipaddress):
path = 'GeoIP.dat'
gi = pygeoip.GeoIP(path)
print(gi.country_code_by_name(domain))
print(gi.country_name_by_addr(ipaddress))

http://github.com/appliedsec/pygeoip
http://dev.maxmind.com/geoip/legacy/geolite

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description='Get geolocation from domain and ip addres
parser.add_argument('--domain', action="store", dest="domain", default='www.packtpub.c
parser.add_argument('--ipaddress', action="store", dest="ipaddress", default='83.166.1
given_args = parser.parse_args()
domain = given_args.domain
ipaddress = given_args.ipaddress
geoip_city(domain, ipaddress)
geoip_country(domain, ipaddress)

This is the output of the previous script with the default parameters:

{'dma_code': 0, 'area_code': 0, 'metro_code': None, 'postal code': 'RH15', 'country_code
{'country_code': 'GB', 'region_code': 'P6'}

GB

United Kingdom

This is the output of the previous script with the amazon.com domain:

$ python pygeoip_test.py --domain www.amazon.com --ipaddress 143.204.191.30

{'dma_code': 819, 'area_code': 206, 'metro_code': 'Seattle-Tacoma, WA', 'postal_code':
{'country _code': 'US', 'region_code': 'WA'}
us

United States

Introduction to python-geoip

There is a third-party library called python-geoip, which has a robust interface to
answer your IP location query.

You can find more information about this package on the developer's website: nhtt
p://pythonhosted.org/python-geoip. YOU can install the package directly from the
Python repository.

If you are WOFkng with PythOI'l 3, you need to install python-geoip-python3 (https://p
ypi.org/project/python-geoip-pythons). This is a fork of python-geoip with PythOI'l 3
support. We also need to install the geo1ite2 module with the pip install python-
geoip-geolite2 command:

| pip install python-geoip-python3

In the following script, we can see an example of how to use the python-geoip
package. You can find the following code in the geoip_10okup.py file:

1/usr/bin/env python3

import socket

from geoip import geolite2
import argparse

import json

Setup commandline arguments
parser = argparse.ArgumentParser(description='Get IP Geolocation info')
parser.add_argument('--hostname', action="store", dest="hostname", required=True)

Parse arguments

given_args = parser.parse_args()

hostname = given_args.hostname

ip_address = socket.gethostbyname(hostname)

print("IP address: {0}".format(ip_address))
match = geolite2.lookup(ip_address)

if match is not None:
print('Country: ',6match.country)
print('Continent: ', match.continent)
print('Time zone: ', match.timezone)
print('Location: ', match.location)

This script will show an output similar to the following:

http://pythonhosted.org/python-geoip
https://pypi.org/project/python-geoip-python3

$ python geoip_lookup.py --hostname=amazon.co.uk
IP address: 176.32.98.166

Country: US

Continent: NA

Time zone: None

Location: (38.0, -97.0)

The MaxMind database in Python

There are other Python modules that use the MaxMind database:

® geoip2: Provides access to the GeolP2 web services and databases
(https://github.com/maxmind/GeoIPZ-python)

® maxminddb-geolite2: Provides a simple MaxMind DB reader extension
(https://github.com/rr2d02/maxminddb-geolitez)

In the following script, we can see an example of how to use the maxminddb-geolite2
package.

You can find the fOHOWiI’lg code in the geoip_reader.py file:

#1/usr/bin/env python3

import socket

from geolite2 import geolite2
import argparse

import json

Setup commandline arguments
parser = argparse.ArgumentParser(description='Get IP Geolocation info')
parser.add_argument('--hostname', action="store", dest="hostname", required=True)

Parse arguments

given_args = parser.parse_args()

hostname = given_args.hostname

ip_address = socket.gethostbyname(hostname)

print("IP address: {0}".format(ip_address))

Call geolite2

reader = geolite2.reader()

response = reader.get(ip_address)

print (json.dumps(response,indent=4))

print (json.dumps(response['continent']['names']['en'], indent=4))
print (json.dumps(response['country']['names']['en'],indent=4))
print (json.dumps(response['location']['latitude'],indent=4))
print (json.dumps(response['location']['longitude'],indent=4))
print (json.dumps(response['location']['time_zone'], indent=4))

In the following screenshot, we can see the output of the previous script in JSON
format, along with the amazon.com domain:

https://github.com/maxmind/GeoIP2-python
https://github.com/rr2do2/maxminddb-geolite2

"lTocation": {
"accuracy_radius": 1000,
"latitude"”: 39.0481,
"longitude"”: -77.4728,
"metro_code": 511,
"time_zone": "America/New_York"

"ﬁosta]": {
"code": "20149"

";egistered_cquntry": {
“geoname_id": 6252001,

"1so_code": "us",
"names": {
I'Idel'l:
"en": "United States",
"es": "Estados Unidos",
"fr'": "\u00c9tats-unis",
"ja": "\u30a2\u30el\u30ea\u30ab\u5408\u8846\u56fd",
"pt-BR": "Estados Unidos"”,
"ru”: "\u0421\u0428\u0410",
"zh-cN": "\u7f8e\us56fd"

Summary

In this chapter, we discussed the standard Python libraries for IP address
manipulation. Two third-party dnspython libraries and geoip have been presented
to interact with the DNS servers and get geolocation from an IP address. As we
can see, when it comes to working with IP addresses, Python provides you with
a series of modules that can be useful for checking IP addresses or converting
values related to IP addresses and networks.

In the next chapter, we will introduce the IPv6 protocol and explore the best
Python modules for working with IPv6 networking.

Questions

10.

. Which Python module allows us to retrieve geographic information from an

IP address?

Which method from the netifaces module can you use to enumerate the
network interfaces of your local machine?

Which port do DNS servers use to resolve requests for mail server names?
Which method from the ipaddress module method has the capacity to
generate subnets with additional host bits or with a specific amount of
network bits?

Which method within the pygeoip module allows us to obtain the value of the
country name from the IP address passed by the parameter?

Which method within the pygeoip module allows us to obtain a structure in
the form of a dictionary with the geographic data (country, city, area,
latitude, longitude) from the IP address?

Which method within the pygeoip module allows us to obtain the name of the
organization from the domain name?

Which method should be called and what parameters should be passed to
obtain the IPv6 address records with the dnspython module?

Which method should be called and what parameters should be passed to
obtain the records for mail servers with the dnspython module?

Which method should be called and what parameters should be passed to
obtain the records for name servers with the dnspython module?

Further reading

Check out the following link for more information on the topics that were
covered in this chapter:

e The official PythOH 3.7 documentation: https://docs.python.org/3.7/howto/ipaddr

ess.html#ipaddress-howto

https://docs.python.org/3.7/howto/ipaddress.html#ipaddress-howto

Implementing IPv6 and Address
Manipulation

In this chapter, you will learn how to work with IPv6 and address manipulation
with Python through practical tasks such as determining the IP address of your
own computer and looking up other computers. Also, we will review the IPv6
protocol and standard Python libraries for IPv6 address manipulation. We will
study three third-party libraries, ipaddress, netifaces, and netaddr, for working with
[Pv6 and address manipulation with Python. Finally, we will review the socket
module for implementing the client-server application for sending messages.

The following topics will be covered in this chapter:

Learning about and understanding the IPv6 protocol

Creating an echo client and server with IPv6

Understanding the netifaces module that allows checking of IPv6 support on
your network

The netaddr module as a network-address manipulation library for Python
Understanding the ipaddress module as an IPv4 and IPv6 manipulation
library

Technical requirements

Examples and source code for this chapter are available in the GitHub repository
in,ﬂ]e(meterOS fOlderZhttps://github.Com/PacktPublishing/Learning-Python-Networking-Sec

ond-Edition.

You will need to install Python distribution on your local machine and have
some basic knowledge about the IP and TCP protocols.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Learning and understanding the IPv6
protocol

In this section, you will learn about the IPv6 protocol and how to resolve IP
addresses in Python with this protocol.

The IPv6 protocol

The history of IPv6 begins with a real need we have today. When IPv4 was
conceived, in the 1970s, the creators could not imagine the great success that it
would have throughout the world. Due to the lack of addresses, the research
team called Internet Engineering Task Force (IETF) began to look for a
substitute for IPv4, which in principle was called Internet Protocol Next
Generation (IPng), but finally took the name of IPv6.

The IPv4 protocol has a 32-bit address space, which means that to calculate the
total number of possible addresses, we can do it by taking 2 raised to 32, making
a total of 4, 204, 967, 296 addresses.

The IPv6 protocol has expanded the address space to 128 bits, making a total of
340, 282, 366, 920, 938, 463, 374, 607, 431, 768, 211, 456 addresses available.

The main characteristics of the IPv6 protocol are as follows:

Greater address space

Plug-and-play auto-configuration

Security included in the protocol core (IPsec)

Quality of Service (QoS) and Class of Service (CoS)

Multicast, which sends a single package to a group of receivers

Anycast, which sends a packet to a receiver within a group

Efficient and extensible IP packets, there is no packet fragmentation in the

routers, aligned to 64 bits (optimal processing with 64-bit processors), and

with a fixed-length, simpler header, which allows faster processing by

routers

e Possibility of packages with payload (data) of more than 65,535 bytes
(jumbograms)

e More efficient routing in the backbone of the network, due to a hierarchy of
addressing based on aggregation

e Compensation and multi-homing, which facilitates the change of service
provider

e Mobility characteristics

It is necessary to say that many of these features are standards that are still in the
implementation phase. IPv6 addressing is still in a phase of evolution and it will
take several years for some functionalities to be completed.

IPv6 addresses

In this section, we will discuss the different categories and types of addresses
that exist in IPv6. The types of IPv6 addresses can be identified taking the
ranges defined by the first bits of each address. Among the main types of IPv6
addresses, we can highlight the following:

Unicast: These addresses uniquely identify an interface.

Multicast: These are addresses that identify a set of interfaces. A packet
that is sent to a multicast address is forwarded to all interfaces identified by
this address.

Anycast: These types of addresses identify a set of interfaces. A packet that
is sent to an anycast address is forwarded to one of the interfaces identified
by this address, being the closest one according to the routing protocol
used.

Link-local: These types of addresses are created automatically and
exclusively used in local subnets, therefore they are not routable. This type
of address starts with the fese :: / 64 prefix. The link-local IP address is
created automatically by adding the Mac address of the interface in IPv6
format to the previous prefix. In this way, a Mac of the ae: se: 78: 33: sF:

BO type will have an IPv6 address of the feso :: acze: 7bff: fe33: sfbo link-
local type.

Unique Local Addresses (ULA) (RFC 4193): These types of addresses are
the equivalent of private networks in IPv4. They are non-routable addresses
in IPv6 to the internet. The routers with IPv6 support are responsible for
discarding the packets coming from these addresses. This type of address
has an address space of the fceo :: / 7 type, which in turn is divided into
two networks with an 8-bit mask — fcee ::: / & (pending definition, and
reserved) and fdee :: / s, which is what can be used to create the network.
Global: An address with an unlimited scope.

Representation of IPv6 addresses

The size of an IPv6 address is 128 bits. Because the IPv6 addresses are so large,
they are difficult to represent in decimal notation as we do in IPv4. That is why
to represent an IPv6 address it was decided to use 8 groups of 16 bits in
hexadecimal notation, separating each group by the colon character, :. Here, we
will see an example of [Pv6 address:

|fe8®: 0000: 0000: 0000: acle: 7bff: fe33: 5fb0

Among the different rules that IPv6 has for representation, one of them is that
you can suppress the leading zeros in each group to represent the address in the
following way:

| feso: 0: 0: 0: ac3e: 7bff: fe33: 5fbo

In addition to this simplification, there is another one that indicates that several
groups of consecutive zeros can be replaced by two colons, ::, and this can only
be done once in the complete address. Therefore, the previous example could be
summarized in:

| feso :: ac3e: 7bff: fe33: 5fbo

To determine in IPv6 which part of the IP address corresponds to the network
and the host, the address must be divided into two 64-bit parts, leaving the
previous IP address as follows:

Network address -> fe80 ::
Host address -> ac3e: 7bff: fe33: 5fb0

It should be noted that, in IPv6, the part of the address that corresponds to the
host address is fixed. In link-local, as we reviewed before, the host address
corresponds to the Mac address of the interface in EUI-64 format.

Reserved IPv6 addresses

There are a number of IP addresses that cannot be used for conventional unicast
addresses. We have seen how addresses types can be link-local or ULA
addresses, but there are some more that will be summarized in the following
points:

:: / 128 An unspecified address, equivalent to e.0.0.0 in I[Pv4

:: 1/128: Represents the loopback address, such as 127.0.0.1 in IPv4

fcoo :: / 7: Belongs to the range of ULA addresses

fcoo :: / 8: Still pending definition and reserved

fdeo :: / 8: Defines a range of ULA addresses. IP addresses are constructed
by generating a random 40-bit string, and by adding the prefix to make a
64-bit network address

ffeo :: + 8: Multicast addresses, equivalent to the 224.0.0.0/4 IPv4 range
feso :: / 10: Belongs to the link-local addresses, equivalent to the
169.254.0.0/16 Tange in IPv4

First steps with IPv6 — link-local

By default in Linux, in the new distributions, the IPv6 protocol is already
activated and, therefore, already in the subnet where the machine is located and
it can communicate with others devices using its link-local address. To find out
the IPv6 address, use the ifconfig command or the ip command with the
following options:

ip -6 a 1 dev etho

2: eth®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 glen 1000
inet6 fe80::bc6c:91ff:feb7:beda/64 scope link

valid_1ft forever preferred_1ft forever

ip -6 addr show

1: lo: <LOOPBACK,UP, LOWER_UP> mtu 16436

inet6 ::1/128 scope host

valid_1ft forever preferred_1ft forever

2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 glen 1000
inet6 fe80::bc6c:91ff:feb7:beda/64 scope link

valid_1ft forever preferred_1ft forever

We can see that the address is of the link-local type, using
the network prefix reso. If we have several machines, we can communicate with
each other with the pinge command, but when executing the command, it is
necessary to indicate the interface where the ping has to be made. This is
because all the interfaces have a link-local address, therefore they have the same
prefix and there is no way of knowing which one will be available in one or
another interface. In IPv4 the ARP tables were in charge of this, but in IPv6, the
concept of ARP does not exist. Therefore, to perform the ping, we use the
following command:
ping6 -I etho fe80::ac3e:7bff:fe33:5fbo

PING fe80::ac3e:7bff:fe33:5fb0(fe80::ac3e:7bff:fe33:5fb0) from fe80::bc6c:91ff:feb7:bec

64 bytes from fe80::ac3e:7bff:fe33:5fb0: icmp_seq=1 ttl=64 time=0.966 ms

64 bytes from fe80::ac3e:7bff:fe33:5fb0: icmp_seq=2 ttl=64 time=0.294 ms

T?- fe80::ac3e:7bff:fe33:5fb0 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.294/0.630/0.966/0.336 ms

This address can already be used as any IPv4 address, so if a web server is
running and has a service with IPv6 support, you can establish the connection
through this IP address.

In the following example, we can see how to resolve IP addresses from the nttps:
//www.python.org/ domain with IPv4 and IPv6 formats.

You can find the following code in the getaddrinforpva_tpve.py file:

1/usr/bin/env python3

import socket

def getaddrinfoIPv4(host, port=80, family=0, type=0, proto=0, flags=0):
return socket.getaddrinfo(host=host, port=port,

family=socket.AF_INET, type=type, proto=proto, flags=flags)

def getaddrinfoIPv6é(host, port=80, family=0, type=0, proto=0, flags=0):

return socket.getaddrinfo(host=host, port=port,
family=socket.AF_INET6, type=type, proto=proto, flags=flags)

print(getaddrinfoIPv4("www.python.org"))

print(getaddrinfoIPv6("www.python.org"))

This is the output of the previous script where we can obtain IP addresses in the
[Pv4 and IPv6 formats:

[(<AddressFamily.AF_INET: 2>, @, 0, '', ('151.101.120.223', 80))]
[(<AddressFamily.AF_INET6: 23>, 0, 0, '', ('2a04:4e42:1d::223', 80, 0, 0))]

https://www.python.org/

Create an echo client and server with
IPv6

In this section, we will see how to create a basic example of a client-server
application in Python using the IPv6 protocol instead of IPv4.

Working with sockets

To create communication between two programs, we will use sockets. Sockets
are an abstract concept. With them, two programs can communicate. These
programs can be on the same machine or run on different devices. To be able to
use sockets, we must import them, both on the server and on the client.

The socket server

First, we define the necessary variables for the connection, that is, the IP address
for localhost in IPv6 format and the maximum number of connections from
clients:

IPV6_ADDRESS = '::1'

Up to 5 clients can connect
maxConnections = 5

Next, since we have the necessary data, we create the server. It is a socket-type
object that is listening in a specific port using IPv6 and TCP/IP:

Creating the server with ipv6é support
socket.AF_INET6 to indicate that we will use Ipv6
socket.SOCK_STREAM to use TCP/IP

server_socket socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
dataConection (host, port)
server_socket.bind(dataConection)

Our socket is already created. Now we must accept connections from it:

print("waiting connections in %s:%s" %(host, port))
connection, address = server_socket.accept()
print ('Connected to', address)

The socket.accept () method will remain listening until you receive a request.
Then, in a loop, we indicate what the server should do when receiving each
connection:
while True:

data = connection.recv(1024)
print ("Received data from the client: [%s]" %data.decode())

if data.decode() == "exit":
connection.send(bytes("exit".encode('utf-8")))
break

connection.send(data)
print ("Sent data echoed back to the client: [%s]" %data.decode())

The core of our program is in this loop, and it's where we indicate the way to act
when receiving the client's frames.

Finally, when the connection is closed, we indicate with a message that it has
been closed and we close the socket with the socket.c10se() method:

| connection.close()

You can find the full code in the echo_server_ipve.py file:

#1/usr/bin/env python3

import argparse
import socket

IPV6_ADDRESS = '::1'
Up to 5 clients can connect
maxConnections = 5

def echo_server_ipv6(port, host=IPV6_ADDRESS):

Creating the server with ipv6é support

socket.AF_INET6 to indicate that we will use Ipv6

socket.SOCK_STREAM to use TCP/IP

try:
server_socket = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
dataConection = (host, port)
server_socket.bind(dataConection)
We assign the maximum number of connections
server_socket.listen(maxConnections)

except socket.error as err:
print ("Socket error: %s" %err)
server_socket.close()

print("waiting connections in %s:%s" %(host, port))
connection, address = server_socket.accept()
print ('Connected to', address)

In the previous code block, we established a socket connection with IPv6
support, assigning the maximum number of connections the server can accept.
Later, with the accept() method, the server will listen to requests waiting for
connections from a client:

while True:

data = connection.recv(1024)
print ("Received data from the client: [%s]" %data.decode())

if data.decode() == "exit":
connection.send(bytes("exit".encode('utf-8')))
break

connection.send(data)
print ("Sent data echoed back to the client: [%s]" %data.decode())

print("------- CLOSE CONNECTION --------- ")
connection.close()

if __name__ == '__main__':
parser = argparse.ArgumentParser(description="'IPv6 Socket Server')
parser.add_argument('--port', action="store", dest="port", type=int, required=True)
given_args = parser.parse_args()
port = given_args.port
echo_server_ipv6(port)

The most important part of the server is the infinite loop simulated with the whiie
True: instruction. In this part, we implement receiving the message from the
client and the instruction for sending the response to the client. At the end of the
script, we establish the port where the server will send the response with the
argparse module.

The socket client

In the client part, we create a new socket that is listening in the same server host
and port:

Configure the data to connect to the server

socket.AF_INET6 to indicate that we will use Ipv6
socket.SOCK_STREAM to use TCP/IP

These protocols must be the same as on the server

client = socket.socket (socket.AF_INET6, socket.SOCK_STREAM)
client.connect ((host, port))
print ("Connected to the server --->% s:% s"% (host, port))

Our socket is already created for sending data to the server:

#send initial data to server

message = "Hello from ipv6é client"

print ("Send data to server: %s" %message)
client.send(bytes(message.encode('utf-8')))

And finally we indicate what we want to do with the connection. In this case, we
will also do it in a loop. Since the way of client and server interact is that the
client sends a message to the server and the server will respond received from
server. When the client receives this message, they will ask for a message from
the user to be able to send it back to the server. To close the connection, the user
must write exit to the client and send that message to the server. When it reaches
the server, it will send the exit message to the client, then it will show a message
of connection closed and it will close the connection. The client, upon receiving
the exit message from the server, will do the same and the connection will end
correctly on both sides. The code for this operation is the following:

while True:

message = input("Write your message > ")

client.send(bytes(message.encode('utf-8')))
data = client.recv(1024)

print ('Received from server:', data.decode())
if data == "exit":
break;

You can find the full code in the echo_client_ipve.py file:

#1/usr/bin/env python3

import argparse
import socket

IPV6_ADDRESS = '::1'

def echo_client_ipv6(port, host=IPV6_ADDRESS):
Configure the data to connect to the server
socket.AF_INET6 to indicate that we will use Ipv6
socket.SOCK_STREAM to use TCP/IP
These protocols must be the same as on the server
try:
client = socket.socket (socket.AF_INET6, socket.SOCK_STREAM)
client.connect ((host, port))
print ("Connected to the server --->% s:% s"% (host, port))
except socket.error as err:
print ("Socket error:%s" %err)
client.close()

send initial data to server

message = "Hello from ipv6 client"

print ("Send data to server: %s" %message)
client.send(bytes(message.encode('utf-8')))

while True:
message = input("Write your message > ")
client.send(bytes(message.encode('utf-8')))
data = client.recv(1024)
print ('Received from server:', data.decode())
if data.decode() == "exit":
break;

print("------- CLOSE CONNECTION --------- ")
client.close()

if __name__ == '__main__':
parser = argparse.ArgumentParser(description="'IPv6 socket client')
parser.add_argument('--port', action="store", dest="port", type=int, required=True)
given_args = parser.parse_args()
port = given_args.port
echo_client_ipv6(port)

The most important part of the client is the infinite loop simulated with the whiie
True: instruction. In this part, we implement sending the message to the server
and the instruction for receiving the response from the server with the data =
client.recv(1024) code line. At the end of the script, we establish the port where
the client will send the messages with the argparse module.

Executing client and server

First, we start server execution with the echo_server_ipve.py Python script. After
executing this script, the server it will wait for connections:

| usage: echo_server_ipv6.py [-h] --port PORT

When executing the server script, we must use the port argument to establish the
number where the server is listening for connections:

python echo_server_ipv6.py --port 7575
Waiting connections in ::1:7575

Next, we start the client with the same port parameter:

python echo_client_ipv6.py --port 7575
Connected to the server --->::1:7575

Send data to server: Hello from ipv6 client
Write your message >

And we will see that the server has already identified the connection:

Connected to ('::1', 3210, 0, 0)
Received data from the client: [Hello from ipvé client]
Sent data echoed back to the client: [Hello from ipv6 client]

Now we can write any message on the client, and in the server log we can verify
that the message is sent:

Received data from the client: [Hello from ipvé client]

Sent data echoed back to the client: [Hello from ipv6 client]

Received data from the client: [This is a new message]
Sent data echoed back to the client: [This is a new message]

In this screenshot, we can see the execution in the socket server:

Waiting connections in ::1:7575

connected to ('::1", 3367, 0, 0)

Received data from the client: [Hello from ipv6 client]

Sent data echoed back to the client: [Hello from ipv6 client]
Received data from the client: [This is a new message]

Sent data echoed back to the client: [This is a new message]
Received data from the client: [I am testing sockets with IPV6]
Sent data echoed back to the client: [I am testing sockets with IPV6]
Received data from the client: [exit]
CLOSE CONNECTION

In this screenshot, we can see the execution in the socket client:

Connected to the server --->::1:7575

Send data to server: Hello from ipv6é client

Write your message > This_1s a new message

Received from server: Hello from 1pv6 client

Write your message > I am testing sockets with IPV6
Received from server: This is a new message

Write your message > exit
Received from server: I am testing sockets with IPV6
Write your message >
Received from server: exit
CLOSE CONNECTION

Upon receiving the exit message, the server will close the connection. The client
has also received an exit message and will also close the connection.

Understanding netifaces module for
checking IPv6 support on your
network

In this section, the reader will learn how to use the netifaces Python module to
check IPv6 support.

Introduction to netifaces

If you want to query the network interfaces available on your computer, you can
use the netifaces module. We can use a third-party library, netifaces, to find out
whether there is IPv6 support on your machine. You can install it with the pip
command:

| pip install netifaces
0 For more information, you can explore the netifaces documentation: nttps://pypi.org/project/netifa

ces/.

We can call the interfaces() function from this library to list all interfaces present
in the system. This script will give a list of all interfaces, and IPv4 and IPv6
addresses available in the system.

You can find the fOHOWiI’lg code in the check_interfaces.py file:

#1/usr/bin/env python3

import itertools
from netifaces import interfaces, ifaddresses, AF_INET, AF_INET6

def all interfaces():
for interface in interfaces():
print(ifaddresses(interface))

def inspect_ipv4_addresses():
links = filter(None, (ifaddresses(x).get(AF_INET) for x in interfaces()))
links = itertools.chain(*1inks)
ip_v4_addresses = [x['addr'] for x in links]
return ip_v4_addresses

def inspect_ipv6_addresses():
links = filter(None, (ifaddresses(x).get(AF_INET6) for x in interfaces()))
links = itertools.chain(*1inks)
ip_v6_addresses = [x['addr'] for x in links]
return ip_v6_addresses

if __name__ == '__main__"':
print(inspect_ipv4_addresses())
print(inspect_ipv6_addresses())
all interfaces()

In the following script, we are checking whether the Python version supports
[Pv6 with the nas_ipve property from the socket package. With the netifaces
package, we can get more information for each interface, such as address family,
netmask, and broadcast addresses.

https://pypi.org/project/netifaces/

You can find the fOHOWiI’lg code in the check_ipv6_support.py file:

#1/usr/bin/env python3

import socket
import netifaces

def inspect_ipv6_support():
print ("IPV6 support built into Python: %s" %socket.has_ipv6)
ipv6_addresses = {}
for interface in netifaces.interfaces():
all _addresses = netifaces.ifaddresses(interface)
print ("Interface %s:" %interface)
for family,addrs in all_addresses.items():
fam_name = netifaces.address_families[family]
print (' Address family: %s' % fam_name)

In the previous code block, we used the netifaces module to get interfaces and
addresses related with these interfaces. Later, for each IP address we get
information about the address family. Depending the address type, we use an array
called ipve_addresses for store information related with each IP address, such

as netmask and broadcast addresses. Finally, we check the ipvé_addresses array for

any information about found IPv6 addresses:

for addr in addrs:

if fam_name == 'AF_INET6':
ipv6_addresses[interface] = addr['addr']

print (' Address : %s' % addr['addr'])

nmask = addr.get('netmask', None)

if nmask:
print (' Netmask : %s' % nmask)

bcast = addr.get('broadcast', None)

if bcast:
print (' Broadcast: %s' % bcast)

if ipv6_addresses:

print ("Found IPv6 address: %s" %ipv6_addresses)
else:

print ("No IPv6 interface found!")

if __name__ == '__main__':
inspect_ipv6_support()

This is the execution of the previous script:

IPV6 support built into Python: True
Interface {06C67899-9BE2-49F1-AAB5-C576A234DD9A}:
Address family: AF_LINK
Address : 00:ff:c0:63:12:57
Address family: AF_INETG6
Address : fe80::f4ca:6al7:37a3:db89%3
Netmask : ffff:ffff:ffff:ffff::/64
Broadcast: fe80::ffff:ffff:ffff:ffff%3
Interface {40EE5A9D-737D-40AA-BBFC-4F5833D17COE}:
Address family: AF_LINK
Address : 8c:16:45:2d:79:20
Address family: AF_INETG6
Address : fe80::a568:f01f:d4ae:170%6
Netmask : ffff:ffff:ffff:ffff::/64
Broadcast: fe80::ffff:ffff:ffff:ffff%e
Address family: AF_INET
Address : 10.80.92.211
Netmask : 255.255.255.0
Broadcast: 10.80.92.255
Interface {361548CA-A87A-40B1-9E88-EAAC3B1B91B1}:
Address family: AF_LINK
Address : 0a:00:27:00:00:05
Address family: AF_INET6
Address : fe80::e53f:e43b:ad07:9cab%5
Netmask : ffff:ffff:ffff:ffff::/64
Broadcast: fe80::ffff:ffff:ffff:ffff%s
Address family: AF_INET
Address : 192.168.56.1
Netmask : 255.255.255.0
Broadcast: 192.168.56.255

In the execution of the script, we can see that we have three address families
listed. ar_r1nk is the link layer interface, such as Ethernet, ar_iner is the IPv4
internet address, and ar_inete represents the IPv6 internet address.

Other packages for getting interfaces

There are other Python packages that are not specifically designed to obtain
network interfaces in a computer, but they have some function for doing this
task. For example, the psuti1 package (https://pypi.org/project/psutil) allows tasks
related to process and system monitoring in Python.

This package provides the net_if_addrs() method for getting information related to
network interfaces:

import psutil
psutil.net_if_addrs()

The information is returned in a dictionary structure, as follows:

| {'Local Area Connection* 11': [snicaddr(family=<AddressFamily.AF_LINK: -1>, address='00-

This method returns the addresses associated with each network interface card
detected in the operating system. The information is returned in a dictionary data
structure whose keys are the names of the NIC, and the value is a list of tuples
for each address assigned to the NIC. Each named group includes five fields:

family: Represents the family for Mac address.

address: The primary IP address.

netmask

ptp: References the destination address on a point-to-point interface.

broadcast

With this package, we also have the ability to get socket connections in our
computer with commands such as netstat:

https://pypi.org/project/psutil

net_connections(kind="1net")
Return system-wide socket connections as a list of
(fd, family, type, laddr, raddr, status, pid) namedtuples.
In case of limited ?r1v11eges "fd" and p1d may be set to -1
and None respectively

The *kind* parameter filters for connections that fit the
following criteria:

IPv4 and IPv6

IPv4

IPV6

TCP

TCP over IPv4

TCP over IPv6

UDP

UDP over IPv4

UDP over IPv6

UNIX socket (both UDP and TCP protocols)
the sum of all the possible families and protocols

We can use the net_connections() method to get a list of socket connections
available in your local machine in the same way that we can use the netstat
command that is available in many operating systems:

| psutil.net_connections()

Here is the output from executing the net_connections() method:

[sconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK STREAM: 1>, ladc
sconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK STREAM: 1>, ladc
sconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK STREAM: 1>, laddr
sconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr

.

In the following script, we are going to obtain information about IPv4 and IPv6
interfaces with the psutil.net_if_addrs() method.

You can find the fOHOWng code in the check_interfaces_psutil.py file:

#1/usr/bin/env python3

import socket
import psutil

def get_ip_addresses(family):
for interface, snics in psutil.net_if_addrs().items():
for snic in snics:
if snic.family == family:
yield (interface, snic.address)

if __name__ == '__main__"':
ipv4_list = list(get_ip_addresses(socket.AF_INET))
ipv6_list = list(get_ip_addresses(socket.AF_INET6))
print("IPV4 Interfaces",ipv4_list)
print("IPV6 Interfaces",ipv6_list)

This could be the output of the previous script:

IPV4 Interfaces [('Local Area Connection* 11', '169.254.219.137'), ('Ethernet', '10.80.¢

IPV6 Interfaces [('Local Area Connection* 11', 'fe80::f4ca:6al7:37a3:db89'), ('Ethernet'

Using the netaddr module as a
network-address manipulation
library for Python

In this section, you will learn how to work with netaddr for network-address
manipulation and interoperability between IPv4 and IPv6.

Operating with IPv6

The next module that we are going to study allows us to manipulate the network
address and the interoperability between IPv4 and IPv6. For example, given a
certain IP address, we can obtain it in the v4 and v6 formats. The easiest way to
install netaddr is to use pip. Download and install the latest version from the
Python repository (http://pypi.python.org/pypispip) and run the following
command:

| pip install netaddr

Also, you can see the official source code repository here: nttps://github.com/drkjam
/netaddr.

The following 1raddress object represents a single IP address v6:

>>> from netaddr import *
>>> ipv6 = IPAddress('::1')
>>> ipv6.version
6

We can check whether we have full support for the IPv6 protocol:

>>> ip = IPNetwork('fe80::beef:beef/64')

>>> str(ip), ip.prefixlen, ip.version

('fe80::beef:beef/64', 64, 6)

>>> ip.network, ip.broadcast, ip.netmask, ip.hostmask

(IPAddress('fe80::'), IPAddress('fe80::ffff:ffff:ffff:ffff'), IPAddress('ffff:ffff:ffff
>>>

Also, we can interoperate between IPv4 and IPv6 with the ipve() and ipva()
methods:

>>> ip = IPAddress('127.0.0.1').ipv6()
>>> ip

IPAddress('::ffff:127.0.0.1")

>>> ip.ipv4a()

IPAddress('127.0.0.1")

>>> ip.ipv6()
IPAddress('::ffff:127.0.0.1")

If we are working with IPv6, it can be interesting that addresses could be
compatible also with IPv4:

http://pypi.python.org/pypi/pip
https://github.com/drkjam/netaddr

>>> ip = IPAddress('127.0.0.1').ipv6(ipv4_compatible=True)

>>> ip

IPAddress('::127.0.0.1"')

>>> IPAddress('127.0.0.1"').ipv6(ipv4_compatible=True).is_ipv4_compat ()
True

>>> IPNetwork('::1').ipv6(ipv4_compatible=True)

IPNetwork('::1/128"')

>>> IPNetwork('::1').ipv6(ipv4_compatible=True).ipv4()
IPNetwork('0.0.0.1/32"')

With this script, we can extract IPv6 information from network interfaces, and
with the netaddr package we get information about IP version, IP prefix length,
network address, and broadcast address.

You can find the following code in the extract_ipve_info.py file:

#1/usr/bin/env python3

import socket
import netifaces
import netaddr

def extract_ipvé_info():
print ("IPv6 support built into Python: %s" %socket.has_ipv6)
for interface in netifaces.interfaces():
all _addresses = netifaces.ifaddresses(interface)
print ("Interface %s:" %interface)
for family,addrs in all_addresses.items():
fam_name = netifaces.address_families[family]
for addr in addrs:
if fam_name == 'AF_INET6':
addr = addr['addr']
has_eth_string = addr.split("%eth")
if has_eth_string:
addr = addr.split("%eth")[0]
try:
print (" IP Address: %s" %netaddr.IPNetwork(addr))
print (" IP Version: %s" %netaddr.IPNetwork(addr).version)
print (" IP Prefix length: %s" %netaddr.IPNetwork(addr).prefixle
print (" Network: %s" %netaddr.IPNetwork(addr).network)
print (" Broadcast: %s" %netaddr.IPNetwork(addr).broadcast)

except Exception as e:
print ("Skip Non-IPv6 Interface")

if __name__ == '__main__':
extract_ipv6_info()

Understand ipaddress module as IPv4
and IPv6 manipulation library

In this section, you will learn to work with IP addresses for IPv4/v6 address
manipulation. Here, we will focus on IPv6 address manipulation.

The Python ipaddress module

The ipaddress module simplifies working with IPv4 and IPv6 addresses in python.
In this section, we will focus on the IPv6 protocol and work primarily with the
following three class types:

® 1pveaddress: Represents a single IPv6 address
e 1pveNetwork: Represents an IPv6 network
® 1pveInterface: Represents an IPv6 interface

You can get more information about this module with the help command from
the Python interpreter:

class IPv6Address(_Basev6, _BaseAddress)
Represent and manipulate single IPv6 Addresses.

Method resolution order:
IPv6Address
_Baseve
_BaseAddress
_IPAddressBase
builtins.object

Methods defined here:

init__(self, address) _
Instantiate a new IPv6 address object.

Args:
address: A string or integer representing the IP

Additionally, an integer can be passed, so
IPv6Address('2001:db8::") ==
IPv6Address (42540766411282592856903984951653826560)
or, more generally
IPv6Address (int (IPv6Address('2001:db8::"))) ==
IPv6Address('2001:db8::")

Raises:
Addressvalueerror: If address isn't a valid IPv6 address.

The 1pveaddress class represents an IPv6 address or network. To create these
objects in Python, the module provides some basic factory functions to create
such objects:

import ipaddress
from ipaddress import IPv6Address, IPv6Network, IPv6Interface

After you create an IPv6 object, you can get a lot of information out of the class,
for example, whether it is a global or private address, the prefix length, and

netmask.

In this screenshot, we can see the methods you can employ to check these use
cases:

1pv4_mapped
Return the IPv4 mapped address.

Returns: _
If the IPv6 address is a v4 mapped address, return the
IPv4 mapped address. Return None otherwise.

15_global
Test if this address is allocated for public networks.

Returns: . .
A boolean, true if the address is not reserved per
iana-ipve-special-registry.

is_link_local
Test if the address 1is reserved for Tink-local.

Returns:) :
A boolean, True if the address is reserved per RFC 4291.

15_loopback
Test if the address is a Toopback address.

Returns:
A boolean, True 1T the address 1is a Toopback address as defined in
REC 2373 2.5 3.

is_mu]ticqst _ .
Test if the address is reserved for multicast use.

IP network objects

When working with an IP address that represents a network, we could work with
an pvanetwork OF Tpvenetwork Object depending on the IP address passed as the
argument. For this task, we can use the ip_network() method from the ipaddress
module using as parameter a string or integer representing the IP network.

Let's import the ipaddress module and define a nets network:

>>> import ipaddress
>>> net6 = ipaddress.ip_network('2001:db8::/48")

Now, we get some useful information, such as version, netmask, and the
network/broadcast address:
>>> net6.version
6

>>> net6.netmask
IPv6Address('ffff:ffff:ffff::"')

Similarly, you can find the network and the broadcast addresses of nets by doing
the following:

>>> net6.network_address

IPv6Address('2001:db8::")

>>> net6.broadcast_address
IPv6Address('2001:db8:0: ffff:ffff:ffff:ffff:ffff')

Also, we can get the number of addresses nets can hold:

>>> net6.num_addresses
1208925819614629174706176

Subnetting in Python with IPv6

We can also find the subnet information from the 1pvenetwork objects, as follows:

>>> subnets = list(net6.subnets())
>>> subnets
[IPv6Network('2001:db8::/49'), IPv6Network('2001:dh8:0:8000::/49')]

The ipaddress module includes various functions to create subnets and supernets, SO
we can check whether a network overlaps:

>>> ipnet = ipaddress.IPv6Network("2001:db8::/48")

>>> list(ipnet.subnets())
[IPv6Network('2001:db8::/49'), IPv6Network('2001:dh8:0:8000::/49')]

We can use the subnets method to expand the network mask and obtain new
networks:

>>> list(ipnet.subnets(prefixlen_diff=4))
[IPv6Network('2001:db8::/52"'), IPv6Network('2001:db8:0:1000::/52"'), IPv6Network('2001:c

Network interface objects

In the ipaddress module, a convenient class is used to represent an interface's IP
configuration in detail. The IPv6 interface class lets you extract the 1pveaddress
and tpvenetwork Objects from a single instance:

>>> eth0 = ipaddress.IPv6Interface('2001:dh8::/48')
>>> etho.ip
IPv6Address('2001:db8::")
>>> eth0.with_prefixlen
'2001:dbh8::/48'

>>> eth0.with_netmask
'2001:db8: :/ffff . ffff . ffff: ;"'
>>> eth0.network
IPv6Network('2001:db8::/48")
>>> eth0.is_private

True

>>> eth0.1is_reserved

False

>>> eth0.1is_multicast

False

>>> eth0.1is_link_local

False

>>> eth0.is_global

False

As you can see, a network interface, ethe, with the 1pveaddress class has been
defined. It has some interesting properties, such as IP and network address. In
the same way as with the network objects, you can check whether the address is

private, reserved, multicast, 1link_local, OI global.

Also, we can work with the ip_interface method to extract the IP address and
network:

>>> intf = ipaddress.ip_interface("2001:db8::/48")
>>> intf.ip

IPv6Address('2001:db8::")

>>> intf.network

IPv6Network('2001:db8::/48")

The IP address objects

In the same way as with the network objects, you can check whether the address
is private, reserved, or multicast.

In this example, the loopback interface is defined with the ::1 IP address. As you
can see, the is_loopback property returns true:

>>> loopback = ipaddress.IPv6Interface('::1')
>>> loopback.is_private

True

>>> loopback.is_reserved

True

>>> loopback.is_multicast

False

>>> loopback.is_loopback

True

The IP address classes have many more interesting properties. You can perform
some arithmetic and logical operations on those objects. For example, we can
check if an IP address is part of a network.

In this example, we check whether an IP is a part of a specific network. Here, a
network net has been defined by the network address, which is 2ee1:dbs:0:1::/64,
and the membership of ethe and eth1 has been checked for whether these
interfaces are part of the network:

>>> net6 = ipaddress.ip_network('2001:db8:0:1::/64"')
>>> eth@ = ipaddress.IPv6Interface('2001:db8:0:1::beef')
>>> ethl = ipaddress.IPv6Interface('2001:db7::/48'")

>>> eth® in net6
True

>>> ethl in net6
False

>>>

Planning IP addresses for your local
area network

Suppose you have a CIDR network address such as
12:3456:78:90ab:cd:efo1:23:30/125, and you want to generate a range of all the IP
addresses that it represents (12:3456:78:90ab:cd:efo1:23:30 tO
12:3456:78:90ab:cd:ef01:23:37). The ipaddress module can be easily used to perform
such calculations:

>>> import ipaddress
>>> net6 = ipaddress.ip_network('12:3456:78:90ab:cd:ef01:23:30/125")
>>> net6
IPv6Network('12:3456:78:90ab:cd:ef01:23:30/125")
>>> for ip in net:

. print(ip)
12:3456:78:90ab:cd:ef01:23:30
12:3456:78:90ab:cd:ef01:23:31
12:3456:78:90ab:cd:ef01:23:32
12:3456:78:90ab:cd:ef01:23:33
12:3456:78:90ab:cd:ef01:23:34
12:3456:78:90ab:cd:ef01:23:35
12:3456:78:90ab:cd:ef01:23:36
12:3456:78:90ab:cd:ef01:23:37

In this example, we are using the ip_network method from the ipaddress module to
generate a range of all the IP addresses that represents the network.

You can find the fOHOWiI’lg code in the net_p1anner_ipve.py file:

#1/usr/bin/env python3

import ipaddress as ip

IPV6_ADDR = '2001:db8:0:1::"'

mask input("Enter the mask length: ")

mask int(mask)
net_addr = IPV6_ADDR + '/' + str(mask)

print("Using network address:%s " %net_addr)
try:
network = ip.ip_network(net_addr)
except:
raise Exception("Failed to create network object")

print("This mask will give %s IP addresses" %(network.num_addresses))
print("The network configuration will be:")

print("\t network address: %s" %str(network.network_address))
print("\t netmask: %s" %str(network.netmask))

| print("\t broadcast address: %s" %str(network.broadcast_address))
Now we are going to execute the previous script with different mask lengths.

Here's an execution with a mask length of sa:

Enter the mask length: 64

Using network address:2001:db8:0:1::/64

This mask will give 18446744073709551616 IP addresses
The network configuration will be:

network address: 2001:dbh8:0:1::

netmask: ffff:ffff:ffff:ffff::

broadcast address: 2001:db8:0:1:ffff:ffff:ffff:ffff

Here's an execution with a mask length of es:

Enter the mask length: 68

Using network address:2001:db8:0:1::/68

This mask will give 1152921504606846976 IP addresses
The network configuration will be:

network address: 2001:dbh8:0:1::

netmask: ffff:ffff:ffff:ffff:fo00::

broadcast address: 2001:db8:0:1:fff:ffff:ffff:ffff

Summary

In this chapter, we reviewed the IPv6 protocol and the standard Python libraries
for IPv6 address manipulation. Three third-party libraries, ipaddress, netifaces, and
netaddr, were presented for working with IPv6 and address manipulation with
Python. Also, we reviewed the socket module for implementing client-server
applications for sending and receiving messages.

In the next chapter, we will introduce Ansible and then explore some Python
modules for working with Ansible and automating networking tasks.

Questions

10.

. Which types of IPv6 addresses are created automatically, are exclusively

used in local subnets, and are not routable?

Which IPv6 address represents the loopback address, such as 127.0.0.1 in
[Pv4?

What is the method from the socket library that we can use to get
information related to the IPv4 and IPv6 protocols from a specific domain?
How do we create a server with IPv6 support with the socket module?
What method from the netifaces module can we use to list all interfaces, and
[Pv4 and IPv6 addresses present in the system?

What are the address families available when we are working with the
netifaces module?

What is the alternative module to netifaces that allows us to get socket
connections and interfaces in our computer with commands such as netstat?
How do we use the netaddr module to interoperate between IPv4 and IPv6
addresses?

Which classes in the ipaddress module can we use to work with IPv6
addresses?

Which functions in the ipaddress module can we use to work with subnets
and supernets?

Further reading

Check out the following links for more information about the tools we talked
about in this chapter. The official Python documentation is also a great resource
for some of the topics we covered:

e Presentations about the IPv6 pFOtOCOIZ https://insinuator.net/2019/01/ipv6-talks
-publications/

e The official PythOIl 3.7 documentation: https://docs.python.org/3.7/howto/ipaddr
ess.html#ipaddress-howto

e A few useful functions and objects for manipulating IPv4 and IPv6
addresses in Py‘thOIlZ https://github.com/bd808/python-iptools

e The iptoois package is a collection of utilities for working with IP addresses:
http://python-iptools.readthedocs.org

e Some examples and the official documentation for the netaddr package: nttps
://netaddr.readthedocs.io/en/latest/tutorial_01.htm

https://insinuator.net/2019/01/ipv6-talks-publications/
https://docs.python.org/3.7/howto/ipaddress.html#ipaddress-howto
https://github.com/bd808/python-iptools
http://python-iptools.readthedocs.org
https://netaddr.readthedocs.io/en/latest/tutorial_01.html

Performing Network Automation
with Python and Ansible

Ansible is an open source, general-purpose automation tool written in Python. It
can be used to automate servers, network devices, load balancers, and more. In
this chapter, you will learn about the principles of Ansible and how we can
interact with it from Python. Ansible is used to bring structure and consistency to
system deployments, implementations, and changes. In this chapter, we will
explore Ansible and learn how to write a Python script to do a networking-
automation task with Ansible and how to write an Ansible module with Python.

The following topics will be covered in this chapter:

Basics of Ansible

Ansible's components and architecture
Automating network Python tasks with Ansible
Writing Ansible modules with Python

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the Chapter09 folder: https://github.com/PacktPublishing/Learning-Python-Ne

tworking-Second-Edition.

You will need to install the Python distribution in your local machine with the
Unix operating system and have some basic knowledge of network

protocols. Also, we need to install Ansible following the official documentation,
depending our operating System: https://docs.ansible.com/ansible/2.4/intro_installati

on.html.

In this chapter we are assuming we have configured a network with three IP
addresses: 192.168.1.160, 192.168.1.161, and 192.168.1.162

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition
https://docs.ansible.com/ansible/2.4/intro_installation.html

Basics of Ansible

In this section, you will learn about the basics of Ansible for network
automation, including how to install and configure Ansible.

Ansible introduction

Ansible (https://docs.ansible.com) iS a software that automates software
provisioning, configuration management, and application deployment. It is
categorized as an orchestration tool. In other words, Ansible allows DevOps to
manage their servers, configurations, and applications in a simple, robust, and
parallel way.

Ansible is a deployment-automation tool, similar to Puppet and Chef, but its
main characteristic is that it is agentless; that is, it does not need to install an
agent on managed hosts.

This tool manages its different nodes through SSH for the provisioning of
services based on Python and YAML to describe the actions to be carried out and
the configurations that should be propagated to the different nodes.

One of the keys to the success of Ansible is the design of its API, which has
resulted in the community being able to provide new modules that continuously
incorporate the interaction with new software.

Ansible performs a deployment of configurations, installations, and actions on
multiple machines, thus enabling an effective, fast, and resource-saving
automated management capacity. It does not require a database to store the
options or capabilities, nor the tasks to be performed. Ansible is based on flat
text files written in the YAML language that will be used to define the machines,
the variables, and the tasks to be performed. To perform the tasks, Ansible has a
series of modules that are capable of interacting with tools within managed
systems.

The Ansible configuration is defined in the YAML format. Basically, Ansible
translates declarative YAML files into shell commands and runs them on remote
hosts using the SSH protocol:

- hosts: all
tasks:
- name: add user into the system
user: name=username state=present shell=/bin/bash
- name: install ngnix into the system

https://docs.ansible.com/

apt: pkg=nginx state=present

Installing Ansible

Ansible is distributed in the Fedora, Red Hat Enterprise Linux, and CentOS
operating systems in package form. In addition, it is available for different Linux
distributions, apart from those mentioned previously, and we can find it available
in package search engine service: https://pkgs.org/download/ansible.

0 For instructions on installing Ansible on other operating systems, check out the installation

document.‘ http://docs.ansible.com/ansible/intro_installation.html.

You can install Ansible on Ubuntu-and Debian-based distributions using the
official package with the apt command. Here we see the steps to install the
software packages; open up a Terminal:

1. Execute the following command:

| $ sudo apt-add-repository ppa:ansible/ansible

In this screenshot, you can see the execution of the previous command:

2. Execute these commands:

$ sudo apt-get install python-software-properties
$ sudo apt-get update
$ sudo apt-get install ansible

3. It's possible to install Ansible on Fedora systems using the official package
in the yum repository:

| $ sudo yum -y install ansible

https://pkgs.org/download/ansible
http://docs.ansible.com/ansible/intro_installation.html

4. Once Ansible is installed, you can check the Ansible version and files
configuration with the following command:

$ ansible --version

ansible 2.7.5

config file = /etc/ansible/ansible.cfg

configured module search path = Default w/o overrides

ansible python module location = usr/lib/python3.7/site-packages/ansible
executable location = /usr/bin/ansible

The main advantage of Ansible is that it allows us to configure many nodes in a
parallel and synchronized way. There are different ways to tell Ansible which
servers you are going to manage. The easy way is to add our machines to the
inventory that Ansible has in our own system, which is located in
/etc/ansible/hosts. In the host file, we can add the IP addresses of the machines we
want to configure.

Run the ansibie --help command to see the available options for executing
Ansible:

$ ansible --help
Usage: ansible <host-pattern> [options]

Options:
-a MODULE_ARGS, --args=MODULE_ARGS
module arguments
--ask-become-pass ask for privilege escalation password
-k, --ask-pass ask for SSH password
--ask-su-pass ask for su password (deprecated, use become)
-K, --ask-sudo-pass ask for sudo password (deprecated, use become)
--ask-vault-pass ask for vault password
-B SECONDS, --background=SECONDS
run asynchronously, failing after X seconds
(default=N/A)

-b, --become run operations with become (nopasswd implied)
--become-method=BECOME_METHOD
privilege escalation method to use (default=sudo),

Configuring Ansible

Ansible has its default configuration file in /etc/ansiblesansible.cfg. There are
many options grouped in blocks. These are the blocks and the most-used
options:

e [defaults]: The default configuration options for the execution of Ansible:
e inventory: Defines the location of the inventory file, which by default is
/etc/ansible/hosts

sudo_user: The user with whom sudo will log in; by default it is root
forks: The number of Ansible parallel processes; by default it is s
timeout: The timeout for an SSH connection; the default is 10 seconds
1og_path: The location of the log file; by default /var/1og/ansibie.10g
nocows: If its value is e and we have cowsay installed, we will see one of
the animals reporting the playbooks; by default it is 1
® [privilege_escalation]. The OptiOI'IS regarding privilege escalation
® pecome: If True, the user that we connect with will try to scale privileges;
by default raise
® become_method: The method to use to scale privileges; by default sudo
® pecome_user: The user it will be scaled to; by default root
® [ssh_connection]: Options related to the SSH connection
® ssh_args: The options that Ansible will use in executing SSH
® control_path: Ansible makes use of multiplex to reduce the number of
connections, this option defines the socket file to create
® scp_if_ssh: The mechanism we use to transfer files; by default it will try
to use sftp, and if it fails, it will try with scp
e [colors]: Define the colors of the different Ansible messages

Using Ansible

Once you have Ansible set up, there are two ways to use it:

e Ad-hoc commands: You can execute a command on the remote host using
Ansible's command-line tool.

e Using playbooks: You can write your own file configuration for all or
specific hosts or host groups. For this task, you can use YAML
configuration specification language.

YAML (https://yami.org/) is the syntax used for Ansible playbooks and other
files. The YAML documentation (https://docs.ansible.com/ansible/latest/reference_ap
pendices/vAMLsyntax.htm1) contains the full specifications of the syntax.

YAML is a format for saving data objects within a tree structure. Normally, it is
used to define configuration files, although it is also possible to serialize objects,
that is, to write the structure of an object in text string mode so that later it can
be recovered.

This could be the syntax with YAML format:

development:
database: mysql
host: localhost
username: root
password: passwd

https://yaml.org/
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Ansible's components and
architecture

In this section, you will learn about Ansible's components, such as the inventory
file, and architecture.

Ansible's architecture

Ansible is a free software tool for automated deployments in IT environments.
With this tool, we get to distribute applications or configuration files, among
other things, for the different nodes of our environment. This is known as an
orchestration tool, such as Puppet, Chef, or Salt. The advantage of using Ansible
is that we do not need to install agents since it performs these tasks through
SSH; it uses YAML as a serialization format to describe the reusable
configurations of the systems.

There are two types of servers:

e Controller or Ansible manager: The machine from which the
orchestration begins
e Managed nodes: The machines handled by the controller through SSH

Ansible manages its different nodes through SSH and only requires Python on
the remote server where it will run.

In this diagram, we can see the components of the Ansible architecture:

Prod servers

Devops
(Ansible manager)

Test servers

The Ansible architecture is agentless in the sense that there is no software or
agent to be installed on the client that communicates back to the server. Instead
of relying on remote host agents, Ansible uses SSH to push its changes to the
remote host.

The idea is to have one or more control machines from where you can issue ad-
hoc commands to remote machines (through Ansible tool) or execute a set of
instructions in sequence through the playbooks (through the ansibie-p1aybook tool).

Basically, we use the Ansible control manager machine, which will normally be
your desktop, laptop, or server. From there, the control manager uses Ansible to
distribute the configuration changes through SSH.

Another feature of Ansible is that it is idempotent, which means that if a task has

already been done and the playbook is re-launched, it will not change anything
since the task has already been executed.

The host inventory file determines the destination machines where these plays
will be executed. The Ansible configuration file can be customized to reflect the
configuration of your environment.

Ansible's inventory file

We use Ansible manage and automate some tasks on a remote host. All the hosts
to be managed by the Ansible controller are listed in the inventory file. The file
is located by default in the following path /etc/ansible/hosts.

Basically, this contains a lists of all the hosts that Ansible may manage. The
machines can be identified by their IP address or by their hostname. You can also
create groups with similar machines. The independent hosts must be at the
beginning of the file, before any group.

Here is an example inventory file:

192.168.1.160

[test-servers]
192.168.1.161

[production-servers]
192.168.1.162

This configuration file specifies three hosts. The first node is specified by its IP
address and the latter two hosts are specified in two groups: test-servers and

production-servers.

By default, Ansible will look for the inventory file in /etc/ansible/hosts. You can
also specify an alternative path for an inventory file with the -i flag:

| A good description about the configuration of our hosts file can be found at: https://dc

One of the main features of Ansible is the capacity to manage machines
remotely through SSH. For this task, make sure that your public SSH key is in
the authorized_keys file on the remote machines. There are other authentication
mechanisms that Ansible supports, such as providing plain-text passwords
(Wthh is not recommended) and Vault (https://docs.ansible.Com/ansible/2.4/vault .ht

ml).

Ansible has to be able to connect to these machines over SSH, so you will likely
need to have these entries in your .ssh/config file. Now, we can use the ssh-keygen

https://docs.ansible.com/ansible/2.4/vault.html

command for generating our own SSH key. For this, we open a console in the
central machine and execute the following command:

$ ssh-keygen
Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.

Once the generation process is finished, we have two files: ~/.ssh/id_rsa and
~/.ssh/id_rsa.pub.

With the ssh-copy-id command we can copy the public key in the machine we
want the controller in:

|$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.1.161

This is the output of the preceding command:

The authenticity of host '192.168.1.161' can't be established.

ECDSA key fingerprint is b5:47:7b:dd:d7:16:07:0e:97:5a:bd:6b:21:€9:b9:€6.

Are you sure you want to continue connecting (yes/no)? yes

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now
Number of key(s) added: 1

Now try logging into the machine, with: "ssh '192.168.1.161'"

and check to make sure that only the key(s) you wanted were added.

Now we can start an SSH session with the root user without using a password.
Once we have defined our inventory file, we will perform our first execution, as
follows:

|$ ansible -i <path/to/custom/inventory> <group|host> -m <module> -a “<module arguments>"

In the inventory file, the names of the host or their IP addresses are assigned.
You can also make groupings of machines based on their role (such as database
or web server). Once we have the inventory, we can start using Ansible, for
example, by pinging all the machines or installing a certain package, as follows:

|$ ansible test-servers -i hosts -m ping

Automating network Python tasks
with Ansible

In this section, you will learn how to automate network Python tasks with
Ansible and how to run playbooks.

Ansible tasks

Basically, a task is a single unit of provisioning. Each play must define the hosts
on which the tasks will be executed. For example, here's the syntax to instal1
apache USiIlg the yum command:

tasks:

- name: Install Apache Webserver
yum: pkg=httpd state=latest

Ad-hoc commands

We can check the nhostname of IP addresses available in the hosts file:

$ ansible all -a "hostname"
192.168.1.160 | SUCCESS | rc=0 >>
node-ansiblel

192.168.1.161 | SUCCESS | rc=0 >>
node-ansible2

The preceding command is equivalent to the following:

|$ ansible 192.168.1.160,192.168.1.161 -a "hostname"

By default, Ansible executes the commands in parallel so that they end sooner. If
we have two servers, we are practically not going to notice the difference, but as
soon as we add several servers, we can verify that it goes faster if we parallelize
the execution of commands.

Using playbooks

Playbooks basically allow us to manage the configuration of the deployment that
we are going to make in the nodes. In them, we describe the configuration, but
they also allow us to orchestrate a series of steps or tasks to follow.

In the playbook definition, we can use tasks, groups of machines, and variables;
group variables; assign values to variables, conditional, loops, facts (information
obtained by Ansible); get notifications and execution of actions based on them,
apply labels to tasks; do includes; use templates (for the configuration files of
the services, for example, of Apache or MySQL), wait for conditions, encrypt
files that contain sensitive information, and include those files in a version
control tool without risk of compromising the information; and we can use roles
that apply all these things according to the function that we want a machine to
have.

This is the basic structure of a playbook:

- name: Configure webserver with git
hosts: webserver
become: true
vars:
package: git
tasks:
- name: install git
apt: name={{ package }} state=present

Each playbook must contain the following elements:

e A set of hosts to configure
e A list of tasks to execute on those hosts

You can think of a playbook as the way to connect hosts with tasks. In addition
to specifying hosts and tasks, the playbook also supports a number of optional
configurations. Here are two common ones:

e name: A comment that describes what the work is about. Ansible will print
this when the work begins to run.
e vars: A list of variables and values.

A playbook specifies a set of tasks to be run and which hosts to run them on. To
demonstrate Ansible playbook execution, we'll automate the installation of the
Apache server. Following is the file configuration used for this use case.

You can find the fOHOWiI’lg code in the apache_server_playbook.yml file:

- hosts: test-servers

remote_user: username

become: true

vars:
project_root: /var/www/html

tasks:

- name: Install Apache Server
yum: pkg=httpd state=latest

- name: Place the index file at project root
copy: src=index.html dest={{ project_root }}/index.html owner=apache group=apache mc

- name: Enable Apache on system reboot
service: name=httpd enabled=yes
notify: restart apache

handlers:

- name: restart apache
service: name=httpd state=restarted

For each task, you can specify the group of target nodes and the remote user that
will execute each operation. The tasks are executed in order, one at a time,
against the nodes described in the hosts section. It is important to note that if any
node fails to execute the task, it will be removed from the list.

The objective of each task is to execute a module. The modules will only be
executed when they have something to modify. If we run the playbook again and
again, we can guarantee that the module will only be executed when there is
something to modify.

If there are actions that need be executed at the end of each task in the playbook,
we can use the notify keyword. This action will only be executed once, even
when they are called by different tasks. In the previous playbook, we are using
notify: restart apache tO restart the Apache service.

In this playbook, we can see the use of variables set by the vars key. This key
takes a key-value format, where the key is the variable name and the value is the
actual value of the variable. This variable will overwrite other variables that are
set by a global variable file or from an inventory file.

To run a playbook, we use the ansib1e-p1aybook command. To execute the previous

playbook, simply run the following command:

| $ ansible-playbook apache_server_playbook.yml -f 2

We can also make use of options when running the playbook. For example, the -
syntax-check option checks the syntax before running the playbook. This is the
output of the previous command:

PLAY [test-servers]

LR E R ERE R EEEEEEEREEEREEREREEREEREEREEEEEEEREREREEREEREEEEEESEEEEEEEEEEREREEEEEEEEEEEEEEEEZEEEESE]

TASK [setup]

LR R EEEE R EEEEEEEREEEREEREEREEREEREREEEEEEEREESEREREEEEEEEEEESEEEREEEEEEEREREEEEEEEEEEEEEEZEZEEEESE]

ok: [192.168.1.161]

TASK [Install Apache Server]

LR R E R EEEEEEEEEEREEEREEREEREEREEREREREEEEEEREEREREREEEREEEEEESEEEEEEEEREEREREEEEEEEEEEEEEEZEZEEEESE]

changed: [192.168.1.161]

TASK [Place the index file at project root]

LR E R ERE R EEEEEEEREEEREEREREEREEREEREEEEEEEREREREEREEREEEEEESEEEEEEEEEEREREEEEEEEEEEEEEEEEZEEEESE]

changed: [192.168.1.161]

TASK [Enable Apache on system root]

LR R R R R R R EEEEEEEREEEREREREEREEREEEREEEEEEREEREREEREEREEEEEESEEEREEEEEEEREREEEEEEEEEEEEEEEEZEEEESE]

changed: [192.168.1.161]

RUNNING HANDLER[restart apache]

LR R R EE R EEEEEEEREEEREEREEREEREEREREEEEEEEREREREEREEEEEEEEESEEEEEEEEEEREREEEEEEEEEEEEEEZEZEEEESE]

changed: [192.168.1.161]

PLAY RECAP ER R R R R R R R EE EEEEEEEREEREEEEEREEEEEEEEEEEEEEEEEEREREEEEEE S EEEEEEEEREEEEEREEEEEEEEX]

192.168.1.161 : ok=5 changed=4 unreachable=0 failed=0

The next playbook will jllSt execute the ping module (https://docs.ansible.com/ansibl
e/latest/modules/ping_module.html#ping-module)()D.all(ﬂlrllOStS.

You can find the following code in the ping_p1aybook.ym1 file:

- hosts: all
tasks:
- name: ping all hosts
ping:

In this playbook, we are going to install Python 3 and NGINX in all machines
defined in the inventory file.

You can find the fOHOWiI’lg code in the install_python_ngnix.yml file:

- hosts: all
tasks:
- name: Install Nginx
apt: pkg=nginx state=installed update_cache=true

https://docs.ansible.com/ansible/latest/modules/ping_module.html#ping-module

notify: Start Nginx
- name: Install Python 3

apt: pkg=

handlers:

python3-minimal state=installed

- name: Start Nginx

service:

name=nginx state=started

The playbook has a hosts section where the hosts of the inventory file are

specified. In this case, we are processing all (hosts: a11) machines introduced in

the inventory file. Then there is a task section with two tasks that install

NGINX and Python 3. Finally, there is a handlers section where NGINX starts

after its installation. In this example, we are passing the static inventory to
ansible-playbook VVit}ltlle ansible-playbook -i path/to/static-inventory-file
myplaybook.yml command:

| $ ansible-playbook -i hosts install_python_ngnix.yml --sudo

This is the output of the previous command:

TASK [Install
changed: [192
changed: [192
changed: [192

TASK [Install
changed: [192
changed: [192
changed: [192

192.168.1.160
192.168.1.161
192.168.1.162

PLAY LR R R R R EEEEEEEEEREEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEE BB B EEEEEEEEEREEEEEEEEE S

TASK [Setup] khkkkhkhhhhhhhhhhhkhkhkkhkkhkhkhkhhhhhhhhhhhhhkhkhkhkhkkhkkhkhkhhhhhhhhhhhkhhkkkkkkkk*

ok: [192.168.1.160]
ok: [192.168.1.161]
ok: [192.168.1.162]

Nginx] LR R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEREEEEEEEEEEEE BB EEEEEEEES]

.168.1.160]
.168.1.161]
.168.1.162]

Python 3] khkkhhkhkhhkkkkkkkhkkhhhhhhhhhhhhhkhkhkkhkkhkhkhkhkhhhhhhhhhhhkhkkkkkkk*

.168.1.160]
.168.1.161]
.168.1.162]

RUNNING HANDLER [Start Nginx] LR R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
changed: [192.
changed: [192.
changed: [192.

168.1.160]
168.1.161]
168.1.162]

PLAY RECAP ER R R R R R R R R R EEEEEREEREEEEREEEEEEEEEEEEEEEEEEREEEEEEEEE S EEEEEEEEEEEREESE]

: ok=4 changed=3 unreachable=0 failed=0
: ok=4 changed=3 unreachable=0 failed=0
: ok=4 changed=3 unreachable=0 failed=0

We can also install multiple packages in a single task, as follows:

- name: Installing Nginx and python
apt: pkg={{ item }}

with_items:
- hgnix

- python3-minimal

Ansible also provides a Python API for running an Ansible playbook
programmatically.

In this example, we are USiI’lg variableManager from the ansible.vars.manager package
and InventoryManager from the ansible.inventory.manager package. VariableManager takes
care of merging all the different sources to give you a unified view of the
variables available in each context. 1nventorymanager uses the path of the hosts
configuration file as a source. We use piaybookexecutor from

ansible.executor .playbook_executor t0 execute the playbook defined in the
playbook_path'VaTiable.

You can find the fOHOWiI’lg code in the execute_playbook.py file:

1/usr/bin/env python3

from collections import namedtuple

from ansible.parsing.dataloader import DatalLoader

from ansible.vars.manager import VariableManager

from ansible.inventory.manager import InventoryManager

from ansible.playbook.play import Play

from ansible.executor.playbook_executor import PlaybookExecutor

def execute_playbook():
playbook_path = "playbook_template.yml"

inventory_path = "hosts"

Options = namedtuple('Options', ['connection', 'module_path', 'forks', 'become', 'be
loader = Dataloader ()

options = Options(connection='local', module_path='"', forks=100, become=None, become

diff=False, listhosts=False, listtasks=False, listtags=False, syntax
passwords = dict(vault_pass='secret')

After importing the required modules, we define the execute_p1aybook method to
initialize options, where we initialize our inventory using the inventory path. To
execute the playbook, we use the piaybookexecutor class and pass the playbook
path, inventory, loader, and options objects as parameters. Finally, we use the
run() method to execute the playbook:

inventory = InventoryManager(loader=loader, sources=['inventory'])

variable_manager = VariableManager(loader=1loader, inventory=inventory)

executor = PlaybookExecutor (
playbooks=[playbook_path], inventory=inventory, variable_manager=variabl
options=options, passwords=passwords)

results = executor.run()

print(results)

if __name__ == "__main__ ":
execute_playbook()

With the Python API, we have the ability to run tasks in the same way we
execute playbooks.

In this example, we create an inventory using the path of the hosts configuration
file as a source and the variable manager takes care of merging all the different
sources to give you a unified view of the variables available in each context.

Then we create a data structure dictionary that represents our play, including
tasks, which is basically what our YAML loader does internally. In this case, the
tasks include executing ping module for all hosts defined in the inventory.

We create a p1ay object and execute the 10ad() method from playbook object. This
method will also automatically create the task objects from the information
provided in the piay_source variable.

To execute tasks, we need to instantiate taskqueuemManager from the
ansible.executor.task_queue_manager package, which COHfigUTES all ObjECtS to iterate
over the host list and execute the ping module. For stdout_callback, we use the
default caiiback plugin, which prints to stdout.

You can find the fOHOWiI’lg code in the run_tasks_playbook.py file:

#1/usr/bin/env python3

from collections import namedtuple

from ansible.parsing.dataloader import DatalLoader

from ansible.vars.manager import VariableManager

from ansible.inventory.manager import InventoryManager

from ansible.playbook.play import Play

from ansible.executor.task_queue_manager import TaskQueueManager
from ansible.plugins.callback import CallbackBase

Options = namedtuple('Options', ['connection', 'module_path', 'forks', 'become', 'become

initialize objects

loader = DataLoader ()

options = Options(connection="'local', module_path=""', forks=100, become=None, become_met
diff=False)

passwords = dict(vault_pass='secret')

create inventory
inventory = InventoryManager(loader=loader, sources=['/etc/ansible/hosts'])
variable_manager = VariableManager (loader=loader, inventory=inventory)

create play with tasks
play_source = dict(name = "myplaybook",hosts = 'all',6gather_facts = 'no',
tasks = [dict(action=dict(module="'ping')),])
play = Play().load(play_source, variable_manager=variable_manager, loader=loader)

After objects initialization, we create the inventory and create a playbook with
tasks in a programmatic way. We can now execute the playbook using

the Taskqueuemanager class, passing as parameters the variables created in the
previous block of code:

execution
task = None
try:
task = TaskQueueManager (inventory=inventory,variable_manager=variable_manager,
loader=1loader, options=options, passwords=passwords, stdout_callback="'default')
result = task.run(play)
finally:
if task is not None:
task.cleanup()

Writing Ansible modules with Python

In this section, you will learn about Ansible modules and writing an Ansible
module with Python.

Introduction to Ansible modules

Ansible has an extensible and modular architecture in functionalities which are
organized by modules. You can use modules directly with playbooks or
through ad-hoc commands.

Ansible modules are small pieces of code that perform one function (copying a
file, or starting or stopping a daemon, for instance). Ansible comes packaged
with about 1,000 modules for all sorts of use cases. You can also extend it with
your own modules and roles. Check out the modules list: nttps://docs.ansible.con/a

nsible/latest/modules/list_of_all modules.html.

For example, the ping module (http://docs.ansible.Com/ansible/ping_module.html) isa
test module that connects to the remote host, verifies a usable Python
installation, and returns the output pong if the connection with the host is
successful.

Using the Ansible command-line tool, we can use the ping module over the two
remote nodes. We can use the -n flag to specify the Ansible module we need, and
the -a11 flag for all the hosts/groups in the inventory.

The simplest way to use Ansible is to execute ad-hoc commands. The format of
using ad-hoc commands is as follows:

| $ ansible <host group> -i <inventory file> -m <module> [-a <argument 1>, ... <argument M

For example, if you want to check whether all hosts in your inventory are active,
you can use the ping module without using arguments. To verify that all machines
available in out inventory are active, we can perform a ping. The -n parameter
indicates the Ansible module we are using:

| $ ansible all -m ping

We can now use the command-line option to test a specific host:

$ ansible -i hosts 192.168.1.160 -m ping
192.168.1.160 | SUCCESS >> {
"changed": false,

"Ping" : llpongll

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
http://docs.ansible.com/ansible/ping_module.html

| 3

If you have no connection with the host, it returns the following error message:

192.168.1.160| UNREACHABLE! => {
"changed": false,
"msg": "Failed to connect to the host via ssh.",
"unreachable": true

The previous command reads that we will use the host file as the inventory file,
and execute the ping module on the 192.168.1.160 host.

We can use Ansible's she11 module (http://docs.ansible.com/ansible/shell_module.html)
to test a specific group defined in the inventory file:
$ ansible -m shell -a "hostname" test-servers

192.168.1.161 | SUCCESS | rc=0 >>
ansible-nodel

For example, if we want to execute a command in all our nodes, we can do the
following:

|$ ansible all -a "/etc/init.d/apache2 start"

In this way, we have managed to start the Apache service of all the nodes we
have previously configured.

Ansible has many modules for all common system administration tasks, such as
file management, user administration, and package management. The following
command extracts the internal and external IP addresses of all network hosts:

$ ansible all -i hosts -m shell -a '/sbin/ifconfig | grep inet.*Bcast'"

192.168.1.161 | SUCCESS | rc=0 >>

inet addr:10.0.1.10 Bcast:10.0.1.255 Mask:255.255.255.0
inet addr:192.168.1.161 Bcast:192.168.1.255 Mask:255.255.255.0

http://docs.ansible.com/ansible/shell_module.html

Implementing Ansible modules with
Python

Ansible comes packed with a lot of built-in modules (for almost all tasks), but
for some custom tasks, you can write custom modules with Python.

For example, we can use the common Ansible Boilerplate module as we can see
in the documentation: nttp://docs.ansible.com/ansible/dev_guide/developing_modules_gene
ral.html OI https://docs.ansible.com/ansible/2.3/dev_guide/developing_modules_general.html.

We can develop our own module to automate input from a playbook. Ansible
also provides a Python library to parse user arguments and handle errors and
returns. First, we will import the ansibiemodule class from
the ansible.mod ule_utils.basic package:

from ansible.module_utils.basic import AnsibleModule

if _ _name__ == '_ main__':
main()

The ansiblemModule class provides lots of common code for handling returns and
parsing arguments. In the following example, we will parse three arguments for
the host, username, and password, and make them required fields:

def main():
data = {"host": {"default": “localhost”, "type": "str"},
"username": {"default": “username”, "type": "str"},
"password": {"default": “password”, "type": "str"},
"url": {"default": “url”, "type": "str"}

}

module = AnsibleModule(argument_spec = data)

All variables need to be declared with dictionary format and the fields are passed
in as argument_spec tO Ansiblemodule. YOU can then access the value of the arguments
through the module.params dictionary by calling the get method on module.params:

host = module.params.get('host')
username = module.params.get('username')
password = module.params.get('password')
url='http://' + host + '/authentication'
module.params.update({"url": url})

http://docs.ansible.com/ansible/dev_guide/developing_modules_general.html
https://docs.ansible.com/ansible/2.3/dev_guide/developing_modules_general.html

Finally, we return the module.params value with all data values, using the exit_json
method. Ansible uses this method to handle success providing a response in
JSON format with the processing data:

| module.exit_json(changed=True, meta=module.params)

Our user_authenticate.yml playbook will pass four variables to the
user_authenticate module (host, username, password, and url) in the user_authenticate.py

file:

- name: My Custom Module
hosts: localhost
tasks:
- name: authenticating user service
user_authenticate:
host: "localhost"
username: "username"
password: "password"
url :"url"
register: result
- debug: var=result

Ansible allows us to register the values returned by a task in a variable. That
way, we can work with them from another task. Depending on the Ansible
module used, the variable will keep different values. The keyword used in this
case is register.

This is the output obtained when you execute s ansible-playbook

user_authenticate.yml:

PLAY [My Custom Module]

LR R R R R EEEEEEEEEEEEREEREEEEREEEEEEEEEEEEEEEEEEEEEESE]

TASK [authenticating user service]

LR R R R R R R R R EEEEEEEREEREEREEREEREREEEEEEEEEE SRR R EEEEEEEEEEEEEEED

ok: [localhost]

TASK [debug]

IR EEEEE SRR EEEEE SRR EE SRR SRR R R EE R EE R RS R R R R R EE R R R R R R R R E R R EREEREEEREEESE.]
ok: [localhost] => {

"output": {

"changed": false,

"host": "localhost",

"username" : "username",

"password": "password",

"url": "http://localhost/authentication'",

}
}

PLAY RECAP

LR R R R R R R EEEEEEEEEREEEREEEEEEEEEEEEEEEREEREEREREREEEEEEESEEEEEEEEREEEESSE]

localhost : ok=2 changed=0 unreachable=0 failed=0

Summary

In this chapter, we reviewed Ansible as an open source project implemented in
Python. It has an architecture with modules that can handle virtually any
operating system, cloud environment, tool, and system-management framework.
With Ansible, we can minimize the effort and time it takes to manage remote
hosts.

In the next chapter, we will look at sockets and explore the Python modules that
work with sockets for the TCP and UDP protocols.

Questions

N

10.

What is the format for an Ansible configuration file?

What is the name and the path of the main Ansible configuration file?
Where is the inventory file located by default and what is the format of that
file?

What are the two ways to execute commands with Ansible?

What does being agentless mean?

What is the Ansible command to check the hostname of the IP addresses
available in the inventory file?

How can we use one Ansible task to install multiple packages in the hosts
defined in the inventory file?

What is the main class that the Ansible Python API provides for executing a
playbook?

Which Ansible module can verify a Python installation connecting to the
remote host and returns the response if the connection is successful with the
host?

What Python package and class provide lots of common code for handling
returns and parsing arguments?

Further reading

Check out the following links for more information about the topics covered in
this chapter:

e Ansible examples in the GitHub repository: https://github.com/ansible/ansible-
examples

e The latest information on Ansible Python 3 support: https://docs.ansible.con/a
nsible/latest/reference_appendices/python_3_support.html

e Ansible best practices: https://docs.ansible.com/ansible/latest/user_guide/playboo
ks_best_practices.html

e Other repositories: https://github.com/austincunningham/python-ansible

¢ Ansible Galaxy is a helpful tool that allows users to share their modules and
roles: https://galaxy.ansible.com

e Practice with Ansible: https://www.katacoda.com/jonatanblue/scenarios/1

e Automating Python with Ansible is an interactive tutorial about how to use
the Ansible configuration-management tool to run Python processes on a
remote machine: https://github.com/tdhopper/automating_python

https://github.com/ansible/ansible-examples
https://docs.ansible.com/ansible/latest/reference_appendices/python_3_support.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://github.com/austincunningham/python-ansible
https://galaxy.ansible.com
https://www.katacoda.com/jonatanblue/scenarios/1
https://github.com/tdhopper/automating_python

Section 4: Sockets and Server
Programming

In this section, you will learn about the principles of socket programming,
designing a multiprocessing-based TCP server, asynchronous programming, and
dynamic web programming in Python with the Flask micro-framework.

This section contains the following chapters:

® chapter 10, Programming with Sockets
e chapter 11, Designing Servers and Asynchronous Programming
e chapter 12, Designing Applications on the Web

Programming with Sockets

This chapter will introduce you to the basics of sockets and the principles of
UDP and TCP through examples of socket programming with the socket module.
Along the way, we'll build clients, servers with TCP and UDP protocols with the
IPv4 and IPv6 protocols. We will also cover non-blocking and asynchronous
programming and HTTPS and TLS for secure data transport.

The following topics will be covered in this chapter:

e Basics of sockets

Working with UDP and TCP sockets in Python 3.7
Working with IPv6 sockets in Python 3.7
Non-blocking and asynchronous socket 1/0
HTTPS and securing sockets with TLS

Technical requirements

The examples and the source code for this chapter are available in the GitHub
repository in the Chapter10 folder: https://github.com/PacktPublishing/Learning-Python-Ne

tworking-Second-Edition.

You will need to install a Python distribution on your local machine with the
Unix operating system and have some basic knowledge of network protocols to
be able to work through this chapter.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Basics of sockets

In this section, you will learn about sockets, which are the main component that
allows us to take advantage of the operating system's capabilities to interact with
the network. You can think of sockets as a point-to-point communication channel
between a client and a server.

Sockets introduction

Sockets are the basis of IP, but we can also use them to take advantage of it, that
is, through sockets, we can make two applications communicate with each other.
A socket in programming is a communication tunnel that helps two applications

to communicate and are the basis of the internet and its protocols, such as HTTP,
FTP, and SMTP.

This mechanism emerged in the early 80s with the Unix system at Berkeley, to
provide a communication channel between processes and have the same
functionality as communication by mail or telephone—that is, they allow a
process to speak with another, even when they are in different machines. This
interconnect feature makes the socket concept very useful.

For two applications to communicate, we need the following:

¢ Server (the listener): The server always listens for communications in a
specific port.

e Client: Normally, the client connects to the server through the port and
starts sending requests and waiting for answers.

e Transmission channel: This can be a port of entry for the server and an
exit port for the client.

e Protocol: This is the topic of conversation. For two applications to
communicate, they must be programmed to answer each other.

These are the main applications for using sockets:

e Server: Application that is waiting for the client to connect

e Client: Application that connects to the server

¢ Client/server: Application that is a client and server at the same time, for
example, a chat application, that can send messages to other applications
and, at the same time, wait for other applications to send messages to it

There are two types of communication between applications:

e Local: When the applications are on the same computer, the 127.0.0.1 IP
address or localhost is used

¢ Remote: When the applications are on different computers, the client
application connects the IP address and server port

The sockets allow us to implement a client-server or peer-to-peer architecture.
The communication must be initiated by one of the programs, which is called the
client program. The second program waits for another to initiate the
communication. For this reason, it is called the server program.

A socket is a process or thread that exists in the client machine and in the server
machine, with the objective that the server and the client read and write the
information. This information will be transmitted by the different network
layers.

When a client connects with the server, a new socket is created. The server can
continue to wait for a connections in the main socket and communicate with the
connected client, in the same way a socket is established in a specific port of the
client.

A server application usually listens for a specific port that is waiting for a
connection request from a client; once it is received, the client and the server are
connected so that they can communicate. During this process, the client is
assigned to a port number, through which they send requests to the server and
receive the responses from it.

Similarly, the server obtains a new local port number that will continue listening
to each connection request of the original port.

Sockets are a universal feature in any programming language, and also without
limits; an application made in PHP can communicate with another made in Java
and vice versa, or an application made in Python can communicate with another
made in C.

Thanks to this feature, we have browsers, mail clients, and FTP clients that work
and communicate with the servers, regardless of the operating system,
technology, or programming language.

Socket types

Currently, there are several types of sockets, and each one is usually associated
with a type of protocol, for example:

e sock_sTream: It is associated with the TCP protocol and provides security in
the transmission of data and security in the data reception.

e sock_perav: It is associated with the UDP protocol and indicates that packets
will travel in the datagram type, which has an asynchronous communication
style.

Sockets can also be classified according to their family. We have Unix
sockets, socket.Ar_unix, which were created before the concept of networks and
are based on files, socket.ar_1inet for the IPv4 protocol, and socket.ar_1inete for
working with IPv6.

Getting information about ports,
protocols, and domains

The socket module pFOVidES the socket.getservbyport(port[, protocol_name]) IIlethOd,
which allows us to get the port name from the port number. For example:

>>> import socket

>>> socket.getservbyport(80)
"http'

>>> socket.getservbyport(23)
'telnet’

We can also get information about the service name at the application level if we
pass the protocol name as a second parameter.

You can find the fOHOWiI’lg code in the socket_finding_service_name.py file:

#1/usr/bin/env python3
import socket

def find_service_name():
protocolname = 'tcp'
for port in [80, 25]:
print ("Port: %s => service name: %s" %(port, socket.getservbyport(port, protocc
print ("Port: %s => service name: %s" %(53, socket.getservbyport(53, 'udp')))

if __name__ == '__main__':
find_service_name()

This is the output of the previous script, where we can see the service name at
the application level for each port:

Port: 80 => service name: http
Port: 25 => service name: smtp
Port: 53 => service name: domain

With the getaddrinfo() method, we can get information about the service that is
working behind a domain. In this example, we are using this method to get the
server behind the www.packtpub.com domain.

You can find the fOHOWiI’lg code in the socket_getaddrinfo.py file:

#1/usr/bin/env python3

import socket

try:

infolist = socket.getaddrinfo('www.packtpub.com', 'www', 0, socket.SOCK_STREAM, 0, ¢
except socket.gaierror as e:

print('Name service failure:', e.args[1])

sys.exit(1)

info = infolist[0]
print(infolist)
socket_args = info[0:3]
address = info[4]
s = socket.socket(*socket_args)
try:
s.connect(address)
except socket.error as e:
print('Network failure:', e.args[1])
else:
print('Success: host', info[3], 'is listening on port 80'")

This is the output of the previous script, where we can see that
the varnish.packtpub.com Service is listening On port 86:

| [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 0, 'varnish.packtpub.com', ('

We can use the socket.gethostbyname(hostname) method to convert a domain name
into the IPv4 address format. This method is equivalent to the nsiookup command
we can find in many operating systems:

">>" import socket

> socket.gethostbyname('packtpub.com')
'83.166.169.231"

>> socket.gethostbyname('google.com')
'216.58.210.142"

The following example will use this method to obtain an IP address from a
domain. You can find the fOHOWng code in the socket_remote_info.py file:

#1/usr/bin/env python3
import socket

def get_remote_info():
remote_host = 'www.packtpub.com'
try:
print ("IP address of %s: %s" %(remote_host, socket.gethostbyname(remote_hos
except socket.error as err_msg:
print ("%s: %s" %(remote_host, err_msg))

if __name__ == '__main__':
get_remote_info()

Creating a TCP client

The following code is an example of a simple TCP client. If you look carefully,
you can see that the following code will create a raw HTTP client that fetches a
web page from a web server. It sends an HTTP cet request to pull the home page.

To create our connection, we need to import the socket module and use the
connect method to pass the (Host, porT) tuple as a parameter. With the send method
from the socket client object, we send the data for the request and get the
response in the data object using the recv method.

You can find the following code in the socket_tcp_client.py file:

import socket

HOST 'www.yahoo.com'
PORT 80

BUFSIZ = 4096

ADDR = (HOST, PORT)

if __name__ == '__main__"':
client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_sock.connect (ADDR)
while True:
data = 'GET / HTTP/1.0\r\n\r\n'
if not data:
break
client_sock.send(data.encode('utf-8'))
data = client_sock.recv(BUFSIZ)
if not data:
break
print(data.decode('utf-8'))
client_sock.close()

This is the output of the socket_tcp_client.py script over the yahoo.com domain for
getting information about the server:

HTTP/1.0 200 OK

Date: Mon, 18 Feb 2019 16:20:04 GMT

P3P: policyref="https://policies.yahoo.com/w3c/p3p.xm1", CP="CAO DSP COR CUR ADM DEV TAI PSA PSD IVAi IVDi CONi TELo OTP
i OUR DELi SAMi OTRi UNRi PUBi IND PHY ONL UNI PUR FIN COM NAV INT DEM CNT STA POL HEA PRE LOC GOV"
Referrer-Policy: strict-origin-when-cross-origin

cache-control: max-age=3600, public

vary: Accept-Encoding

content-Length: 3388

content-Type: text/html; charset=UTF-8

Age: 711

connection: keep-alive

server: ATS

X-Frame-Options: DENY

X-Content-Type-oOptions: nosniff

X-XSS-Protection: 1; mode=block

<!doctyﬁe html public "-//w3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd”>

html><head><title>Yahoo!</title><meta name="ROBOTS" content="NOINDEX" /><style>
n4 hide */
</

In the next section, we are going to study a specific use case with the socket
module to obtain information about a server that is running in a specific domain.

Banner grabbing with the socket
module

Banners expose information related to the name of the web server and the
version that is running on the server. Some expose the backend technology (PHP,
Java, Python) that's used and its version. With the socket module, we can get
information related to the version server for a specific domain.

The simplest way to obtain the banner of a server is by using the socket module.
We can send a get request and get the response through the recvfrom() method,
which would return a tuple with the result.

You can find the fOHOWiI’lg code in the socket_BannerGrabbing.py file:

#1/usr/bin/python3

import socket
import re

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect (("www.packtpub.com", 80))

http_get = b"GET / HTTP/1.1\nHost: www.packtpub.com\n\n"
data = "'
try:
sock.sendall(http_get)
data = sock.recvfrom(1024)
strdata = data[0]
headers = strdata.splitlines()
for header in headers:
print(header.decode())
except socket.error:
print ("Socket error", socket.errno)
finally:
print("closing connection")
sock.close()

This is the output of the socket_Bannercrabbing.py SCFipt over the packtpub.com domain
for getting information about the server:

HTTP/1.1 301 https://www.packtpub.com/ Location: https://www.packtpub.
Accept-Ranges: bytes

Date: Fri, 15 Feb 2019 14:17:02 GMT

Age: 0O

Via: 1.1 varnish

Connection: close

X-Country-Code: NL

| server: packt

In the next section, we are going to study a specific use case for port scanning in
a specific IP address or domain.

Port scanning with sockets

Sockets are the fundamental building blocks for network communications, and
we can easily check whether a specific port is open, closed, or filtered by calling
the connect_ex() method. For example, we could have a script that reads the IP
address and a list of ports and return information about each port regarding
whether it is open or closed.

You can find the fOHOWiI’lg code in the socket_port_scan.py file:

#1/usr/bin/env python3
import socket
ipaddress =input("Enter ip address or domain for port scanning:")

port_init= input("Enter first port: ")
port_end = input("Enter last port: ")

for port in range(int(port_init), int(port_end)+1):
sock= socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(5)
result = sock.connect_ex((ipaddress, port))
if result == 0:
print(port, "--> Open")
else:
print(port, "--> Closed")
sock.close()

This is the output of the previous script over the packtpub.con domain for getting
information about the port states between se and ss:

Enter ip address or domain for port scanning:www.packtpub.com
Enter first port: 80

Enter last port: 85

80 --> Open

81 --> Closed

82 --> Closed

83 --> Closed

84 --> Closed

85 --> Closed

Inspecting the client and server
communication

The interaction between the client and server through the exchange of network
packets can be analyzed using any network-packet-capturing tool, such as
Wireshark. You can configure Wireshark to filter packets by port or host. In this
case, we can filter by port se. You can get the options under the Capture | Options
menu and type port se in the input box next to the Capture Filter option, as
shown in the following screenshot:

Welcome to Wireshark

Capture

...using this filter: [port 80 &:Q -] All interfaces shown -

Local Area Connection® 11

Wi-Fi

Ethernet Mot A
Npcap Loopback Adapter A

VirtualBox Host-Only Network

In the Interface option, we choose to capture packets that are passing through
any interface. Now, run the preceding TCP client to connect to www.yahoo.con. The
first three packets establish the TCP connection by a three-way handshake
between the client and server. You can see the sequence of packets being
exchanged in Wireshark:

http://www.yahoo.com

[L@|Apnlyad\sp\avmter <cul/> 3~ Expression..

No. Time Source - Destination Protocol Length Info
90 4.533757 10.80.92.216 10.68.98.35 DNS 73 Standard query @xccl4 A www.yahoo.com
92 4.613556 10.80.92.216 217.12.15.38 GE] 66 8144 > 80 [SYN] Seq=0 Win=64260 Len=0 MSS5=1428 W5=256 SACK_PERM=1
97 4.688971 10.80.92.216 217.12.15.38 TCP 54 8144 > 80 [ACK] Seq=1 Ack=1 Win=65536 Len=@
98 4.689092 10.80.92.216 217.12.15.38 HTTP 72 GET / HTTP/1.8
105 4.779971 10.80.92.216 217.12.15.38 ICE 54 8144 > 80 [ACK] Seq=19 Ack=5665 Win=65536 Len=@
108 4.780417 10.80.92.216 217.12.15.38 GE] 54 8144 > 80 [ACK] Seq=19 Ack=6881 Win=64256 Len=0
109 4.806975 10.80.92.216 217.12.15.38 HTTP 72 GET / HTTP/1.0
11e 4.809953 10.80.92.216 217.12.15.38 HTTP 72 GET / HTTP/1.@

TCP payload (18 bytes)
v Hypertext Transfer Protocol
~ GET / HTTP/1.e\r\n
v [Expert Info (Chat/Sequence): GET / HTTP/1.e\r\n]
[GET / HTTP/1.e\r\n]
[Severity level: Chat]
[Group: Sequence]
Request Method: GET
Request URI: /
Request Version: HTTP/1.@
\r\n
[HTTP request 1/3]
Response in frame: 106
Next request in frame: 109

As you can see, the HTTP GET request has other components, such as Request
URI and Request Version. Now, you can check the HTTP response from the web
server to your client. It comes after the TCP acknowledgment packet, that is, the
sixth packet. Here, the server typically sends an HTTP response code (in this
case, the response is 200 ok), content length, and the data or web page content.
The structure of this packet is shown in the following screenshot:

99 4.711872 217.12.15.38 10.80.92.216 TCP 60 80 > 8144 [ACK] Seq=1 Ack=19 Win=3737600 Len=0

101 4.779144 217.12.15.38 10.80.92.216 gz 1470 80 - 8144 [ACK] Seq=1 Ack=19 Win=3737600@ Len=1416 [TCP segment of a reassembled PDU] —
102 4.779145 217.12.15.38 10.80.92.216 TCP 1470 80 - 8144 [ACK] Seq=1417 Ack=19 Win=3737600 Len=1416 [TCP segment of a reassembled PDU]

103 4.779146 17805 33R) 10.80.92.216 TCP 1470 80 > 8144 [ACK] Seq=2833 Ack=19 Win=3737600 Len=1416 [TCP segment of a reassembled PDU]

104 4.779148 217.12.15.38 10.80.92.216 TCP 1470 80 » 8144 [ACK] Seq=4249 Ack=19 Win=37376€@ Len=1416 [TCP segment of a reassembled PDU] —
106 4.780165 217.12.15.38 10.80.92.216 HTTP 1269 HTTP/1.0 484 Not Found on Accelerator (text/html)

[HTTP response 1/3]

[Time since request: ©.091073000 seconds]

Reguest in frame: 98

Next request in frame: 109

File Data: 6551 bytes

v Line-based text data: text/html (206 lines)
<IDOCTYPE html>\n
<html lang="en-us">\n
<head>\n

<meta http-equiv="content-type" content="text/html; charset=UTF-8">\n
<meta charset="utf-8">\n
<title>Yahoo</title>\n

0140
0150
0160
e17e
0180
019
0120
01be

36 35 35 31 Od Oa Od Oa ElPNEEVARE LRV RT
45 20 68 74 6d 6c 3e @a 3c 68 74 6d 6C 20 6C 6
[6e 67 3d 22 65 6e 2d 75 73 22 3e @a 20 20 3c 69
65 61 64 3e @a 20 20 20 20 3c 6d 65 74 61 20 69
74 74 7@ 2d 65 71 75 69 76 3d 22 63 6f 6e 74 6
6e 74 2d 74 79 70 65 22 20 63 6f 6e 74 65 6e 74

3d 22 74 65 78 74 2f 68 74 6d 6c 3b 20 63 68 6:
72 73 65 74 3d 55 54 46 2d 38 22 3e 8a 20 20 20

From the preceding analysis of the interaction between the client and server, you
can now understand, at a basic level, what happens behind the scenes when you
visit a web page using your web browser. In the next section, you will be shown
how to create your own TCP server and examine the interactions between your
personal TCP client and server.

In this section, we introduced socket concepts and reviewed practical use cases
with the Python socket module, such as creating a TCP client, banner grabbing,

and port scanning. We also reviewed how to inspect the client and server's
communication with Wireshark.

Working with UDP and TCP sockets
in Python 3.7

In this section, you will learn about basic TCP/IP socket programming using
Python sockets in Python 3.7 with the TCP and UDP protocols.

Introduction to the TCP and UDP
protocols

The properties of a socket depend on the characteristics of the protocol in which
they are implemented. Generally, communication with sockets is done through a
protocol of the TCP/IP family. The two most common are TCP and UDP.

When implemented with the TCP protocol, the sockets have the following
properties:

e Connection-oriented.

e The transmission of all packets is guaranteed without errors or omissions.

e It is guaranteed that every packet will reach its destination in the same order
in which it was transmitted. These properties are very important to
guarantee the correctness of the programs that deal with this information.

The UDP protocol has the following properties:

¢ [s a non-connection-oriented protocol

¢ It only guarantees that if a message arrives, it arrives in a reliable way

¢ Inno case is it guaranteed that all messages will arrive, or arrive in the
same order in which they were sent

Sockets can be implemented through a different number of channels: Unix
domain sockets, TCP, and UDP. The Python socket library provides specific
classes to handle common transport, as well as a generic interface to control
everything else.

Starting network programming with
Python

The Python socket module provides an interface to the Berkeley sockets API
(another name for internet sockets). Programming networks in Python depends
on the socket objects. To create an object of this type in Python, we must use the
socket . socket () function that's available in the socket module, with the socket_o =
socket.socket(socket_family, socket_type, protocol=0) syntax.

Let's see a detailed description of the parameters:

socket_family: This is the family of protocols that is used as a transport
mechanism. These values are constants, such as arF_INeT, PF_INET, PF_UNIX,

and pr_xzs.

socket_type: The type of communication between the two ends of the
connection. sock_sTream is usually used for connection-oriented protocols and
sock_peram for protocols without connections.

protocol: Normally e, this parameter is used to identify the variant of a
protocol within a family and socket type.

These are the methods of socket objects:

socket.bind(): This method binds an address (hostname, port number) to a
socket

socket.listen(): This method configures and starts a TCP listener
socket.accept(): This function passively accepts a TCP client connection,
waiting until the connection arrives

For more detailed information regarding the methods in the socket module, you
can check out the documentation at nhttps://docs.python.org/3/1ibrary/socket .html.

https://docs.python.org/3/library/socket.html

TCP sockets

As you will see in a moment, we will create socket objects using the
socket .socket () function and specify the socket type as socket.sock_strean. When we
do this, the default protocol that it uses is the TCP.

For network programming in Python, we need to create a socket object and then
use this to call other functions of the module. The following code will start a
web server using the sockets library. The script waits for a connection to be
made; if it is received, it will show the received bytes.

You can find the following code in the tcp_server.py file:

#1/usr/bin/env python3
import socket
host '127.0.0.1"'

port 12345
BUFFER_SIZE = 1024

#The socket objects support the context manager type
#so0 we can use it with a with statement, there's no need to call socket_close ()
#We create a TCP type socket object
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as socket_tcp:
socket_tcp.bind((host, port))
We wait for the client connection
socket_tcp.listen(5)
We establish the connection with the client
connection, addr = socket_tcp.accept()
with connection:
print('[*] Established connection')
while True:
We receive bytes, we convert into str
data = connection.recv(BUFFER_SIZE)
We verify that we have received data
if not data:
break
else:
print('[*] Data received: {}'.format(data.decode('utf-8")))
connection.send(data)

Let's see what this script does in detail:

e We define the host, the port, and the size of the data buffer that will receive
the connection
e We link these variables to our socket object with the socket.bind() method

e We establish the connection, we accept the data, and we visualize the sent
data

Starting a client

We are going to write a program that defines a client that opens the connection in
a given port and host. This is very simple to do with the socket.connect (hostname,
port) function, which opens a TCP connection to the hostname on the port. Once
we have opened an object socket, we can read and write this in as any other
object of input and output (I/0), always remembering to close it as we close
files after working with them.

You can find the following code in the tcp_ciient.py file:

#1/usr/bin/env python3
import socket

The client must have the same server specifications
host '127.0.0.1"'

port 12345

BUFFER_SIZE = 1024

MESSAGE = 'Hello world, this is my first message'

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as socket_tcp:
socket_tcp.connect((host, port))
We convert str to bytes
socket_tcp.send(MESSAGE.encode('utf-8'))
data = socket_tcp.recv(BUFFER_SIZE)

This script is similar to the previous one, only this time, we define a vessace
variable that simulates the data packets, we make the connection like we did
before, and call the socket.send(data) method after converting our string into bytes
to ensure the integrity of our data.

To execute this pair of sample scripts, we must first execute the server with the
following command:

| $ python tcp_server.py &

We append the ampersand, ¢, so that this line is executed and the process is open
and waiting for another command (when pressing Enter, the server will be
executed until we execute the client), and then we initiate the client:

| $ python tcp_client.py

The result in the server part is as follows:

$ python tcp_server.py
[*] Established connection
[*] Data received: Hello world, this is my first message

Capturing packets in a loopback
interface

You can configure Wireshark to capture packets in localhost. Visit nttps://wiki.wir
eshark.org/CaptureSetup/Loopback tO See how you can COHﬁgUTE the loopback
interface to capture packets in the 127.0.0.1 localhost interface.

If you are working with the Unix operating system, you can capture traffic directly with
Wireshark. For more information, check out https://wiki.wireshark.org/CaptureSetup/Loopback.

If you are working with the Windows operating system, you may have problems
capturing packets on localhost with Wireshark. At this point, the
recommendation is to use a raw socket sniffer, such as RawCap (http://www.netrese
c.com/?page=Rawcap), t0 capture localhost network traffic in Windows. You can read
more about this at http://www.netresec.com/?page=Blog&month=2011-048&post=RawCap-sniffer -

for-windows-released.

The following is the execution of rawcap.exe on a windows system for capturing
packets on the loopback interface. By default, it creates a dumpfile.pcap file with
sniffed packets.

In the following screenshot, we can see the execution of rawcap.exe for getting
machine interfaces:

Interfaces:
169.254.219.137 Local Area Connection* 11 Ethernet
10.86.92.216 Ethernet Ethernet
192.168.56.1 VirtualBox Host-Only Network Ethernet
169.254.204.194 Npcap Loopback Adapter Ethernet

169.254.52.200 Wi-Fi Wireless86211
169.254.234.2 Local Area Connection* 2 Wirelessg86211
127.0.0.1 Loopback Pseudo- Interface 1 Loopback
Select interface to sniff [default '@']:
Qutput path or filename [default 'dumpflle.pcap']:

https://wiki.wireshark.org/CaptureSetup/Loopback
https://wiki.wireshark.org/CaptureSetup/Loopback
http://www.netresec.com/?page=RawCap
http://www.netresec.com/?page=Blog&month=2011-04&post=RawCap-sniffer-for-Windows-released

Inspecting the client and server
interaction

In the following example, we are capturing packets on localhost with the
execution of the TCP client and server on port 12345. When the client sends a
message to the server, we can capture the packets that are being exchanged in the
communication.

We can perform packet filtering by using ip.dst == 127.0.0.1, as shown in the
following screenshot:

[|ip.dst:: 127.0.0.1] [X] v] Expression...
No. Time Source Destination Protocol Length Info :

34 14.297992 127.0.0.1 [272 P & 51 TCP 40 12345 - 15833 [ACK] Seq=1 Ack=37 Win=525568 Len=@

38 14.297992 127.0.0.1 127.0.0.1 Tcp 40 12345 > 15833 [ACK] Seq=37 Ack=38 Win=525568 Len=0

39 14.297992 127.0.0.1 [27=0C 801 TCP 40 12345 > 15833 [FIN, ACK] Seq=37 Ack=38 Win=525568 Len=0

35 14.297992 127.0.6.1 127.0.6.1 TCP 76 12345 - 15833 [PSH, ACK] Seg=1 Ack=37 Win=525568 Len=36

31 14.297992 127.0.0.1 127.0.0.1 TCP 52 12345 - 15833 [SYN, ACK] Seq=@ Ack=1 Win=65535 Len=@ MSS=65495 WS=256 SACK_PERM=1

24 9.456911 127.0.0.1 [L27E s e 1Y TCP 40 14766 - 8995 [ACK] Seq=1 Ack=44 Win=2050 Len=@

32 14.297992 127.0.0.1 127.0.0.1 Tcp 40 15833 > 12345 [ACK] Seq=1 Ack=1 Win=525568 Len=0

36 14.297992 127.0.0.1 127.8.0.1 TCP 40 15833 - 12345 [ACK] Seq=37 Ack=37 Win=525312 Len=@

40 14.297992 127.0.0.1 127.0.0.1 Tcp 40 15833 > 12345 [ACK] Seq=38 Ack=38 Win=525312 Len=0

37 14.297992 127.0.0.1 127.0.0.1 EGE 40 15833 > 12345 [FIN, ACK] Seq=37 Ack=37 Win=525312 Len=0

Frame 35: 76 bytes on wire (608 bits), 76 bytes captured (668 bits)
Raw packet data
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 12345, Dst Port: 15833, Seq: 1, Ack: 37, Len: 36
v Data (36 bytes)
Data: 48656c6c6¥20776726c642c74686973206973206d792066. . .
[Length: 36]

45 00 @0 4c 42 72 46 60 80 ©6 60 00 7T 00 00 01 E--LBr@

6016 7f 60 08 61 38 39 d7 71 44 8b 86 9e 9d 3d 0% D=
50 18 @8 05 4d 68 @0 @@ 48 65 6¢ 6¢c 6f 20 77 6f P---Mh-- Hello wo
72 6c 64 2c 74 68 69 73 20 69 73 20 6d 79 20 66 rld,this ismy f
69 72 73 74 26 6d 65 73 73 61 67 65 irst mes sage

As we are capturing packets on a non-standard port, Wireshark doesn't decode
data packets in the data section (as shown in the middle pane of the preceding

screenshot). However, you can see the decoded text on the bottom pane, where
the server's timestamp is shown on the right-hand side.

Code limitations

If we execute these scripts and try to connect to that same server from another
Terminal, it will simply reject the connection.

The surrer_s1ze variable of the 1024 value is the maximum amount of data that can
be received at one time. But this does not mean that the function will return 1024
bytes. The send() function also has this behavior. send() returns the number of
bytes sent, which may be less than the size of the data that is sent.

Normally in network programming, to make a server handle multiple
connections at the same time, concurrency or parallelism is implemented. The
problem with concurrency is that it is complicated to make it work. Of course, if
an application needs scalability, it is almost an obligation to apply concurrency
for the use of more than one processor or kernel. Concurrency aspects will be
reviewed in the following chapters. In the next section, we will use something
simpler than parallelism that is much easier to use: the selectors library.

Creating a simple UDP client and
UDP server

In this section, we will review how you can set up your own UDP client-server
application with Python's Socket module. The application will be a server that
listens for all connections and messages over a specific port and prints out any
messages to the console.

UDP is a protocol that is on the same level as TCP, that is, above the IP layer. It
offers a service in disconnected mode for applications that use it. This protocol is
suitable for applications that require efficient communication that doesn't have to
worry about packet loss. The typical applications of UDP are internet telephony
and video streaming.

In this example, we'll create a synchronous UDP server, which means each
request must wait until the end of the process of the previous request. The bind()
method will be used to associate the port with the IP address.

For the reception of the message, we use the recvfrom() method and for sending
the message, we use sendto() method.

Implementing the UDP server

When working with UDP, the only difference if we compare this to working with
TCP in Python is that when creating the socket, you have to use sock_bcram instead
of sock_stream. Use the following code to create the UDP server.

You can find the following code in the udp_server.py file inside the udp folder:

#1/usr/bin/env python3
import socket, sys

UDP_IP_ADDRESS = "127.0.0.1"
UDP_PORT = 12345
buffer=4096

socket_server=socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #UDP
socket_server.bind((UDP_IP_ADDRESS, UDP_PORT))

while True:
print("waiting for client...")
data, address = socket_server.recvfrom(buffer)
data = data.strip()
print("Data Received from address: ",address)
print("message: ", data)
try:
response = "Hi %s" % sys.platform
except Exception as e:
response = "%s" % sys.exc_info()[0]

print("Response", response)
socket_server.sendto(response.encode(),address)

socket_server.close()

In the preceding code for implementing the UDP server, we see that
socket .sock_beram creates a UDP socket, and data, addr = s.recvfrom(buffer), returns
the data and the source's address.

Now that we have finished our server, we need to implement our client program.
The server will be continuously listening on our defined IP address and port
number for any received UDP message. It is essential that this server is run prior
to the execution of the Python client script, or the client script will fail.

Implementing the UDP client

To begin implementing the client, we will need to declare the IP address that we
will be trying to send our UDP messages to, as well as the port number. This port
number is arbitrary, but you must ensure you aren't using a socket that has
already been taken:

UDP_IP_ADDRESS = "127.0.0.1"

UDP_PORT = 6789
message = "Hello, Server"

Now, it's time to create the socket through which we will be sending our UDP
D]ESS&gE!tO'ﬂ]e Server: clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM).

Once we've constructed our new socket, it's time to write the code that will send
our UDP message: clientSocket.sendto(Message, (UDP_IP_ADDRESS, UDP_PORT)).

You can find the following code in the udp_c1ient.py file inside the udp folder:

#1/usr/bin/env python3
import socket

UDP_IP_ADDRESS = "127.0.0.1"
UDP_PORT = 12345
buffer=4096

address = (UDP_IP_ADDRESS ,UDP_PORT)
socket_client=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
message = input('Enter your message > ')
if message=="exit":
break
socket_client.sendto(message.encode(),address)
response,addr = socket_client.recvfrom(buffer)
print("Server response => %s" % response)

socket_client.close()

In the preceding code snippet, the UDP client sends a single line of text, Hello
UDP server, and receives the response from the server. The following screenshot
shows the request that's sent from the client to the server:

(T

No. Time Source Destination Protocol Length Info
1 ©.eeeece 127.0.90.1 2T ar e Uubp 44 51678 -+ 12345 Len=16
I: 2 ©.e00000 AL e | L7) UDP 36 12345 -+ 51678 Len=8

Frame 1: 44 bytes on wire (352 bits), 44 bytes captured (352 bits)
Raw packet data
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
User Datagram Protocol, Src Port: 51678, Dst Port: 12345
v Data (16 bytes)
Data: 48656c6c6120554458208736572766572
[Length: 18]

45 00 00 2c 44 42 00 9@ 80 11 @0 20 7f €9 eo o1

E--,DB
@810 7f 00 80 @1 c9 de 30 39 00 18 f2 fe ENTAE a9 Hel
oy MllG 20 55 44 50 20 73 65 72 76 65 72) o UDP se rve

After inspecting the UDP client and server packets, we can easily see that UDP
is much simpler than TCP. It's often termed as a connectionless protocol as there
is no acknowledgment or error-checking involved.

The following screenshot shows the server's response, which was sent to the
client:

| udp
No. Time Source Destination Protocol Length Info
I: 1 ©.000000 127.9.0.1 127.9.0.1 uppP 44 51678 -» 12345 Len=16
2 ©.000000 127.9.0.1 127.9.46.1 UDP 36 12345 » 51678 Len=8

3 @A.3479019 = 1A.RA.92.118 = 255.255.255.255 = DNHCP 328 DHCP Tnfarm - Transaction TN @xcd3eSdlc
Frame 2: 36 bytes on wire (288 bits), 36 bytes captured (288 bits)
Raw packet data
Internet Protocol Version 4, Src: 127.9.0.1, Dst: 127.e.0.1
User Datagram Protocol, Src Port: 12345, Dst Port: 51678
v Data (8 bytes)
Data: 48692077696e3332
[Length: 8]

45 00 €@ 24 44 43 60 6@ 80 11 0@ @@ 7f @@ €@ @1 E--$DC

@ole 7f 0@ 60 @1 30 39 c9 de o0 1o o2 33 [FNTIFERE @9 EH1 W
[0G9 6e 33 32|

In this section, we introduced the UDP and TCP protocols and the
implementation of applications with the socket module, analyzing use cases such
as creating a TCP client/server, and UDP client and server applications. We also
reviewed how to inspect the client and server communication for TCP and UDP
protocols with Wireshark.

Working with IPv6 sockets in Python
3.7

In this section, you will learn how we can implement IPv6 with sockets in
Python 3.7.

Implementing the IPv6 server

We will start with the server implementation in a script called echo_server_ipve.py.
The first lines will be the libraries that we will use, which are socket (network and
connection utilities) and subprocess (which will allow us to execute commands on
the server):

import socket
import subprocess

Then, we will create the variables: ip, port, max_connections, and server. The

ip variable will have the string ::1 value, which will be the IPv6 address of the
localhost server; the port through which it will accept connections will be passed
as an argument to the script; and max_connections will have a numerical value of s,
which indicates the maximum number of simultaneous connections. Finally, with
the socket method, we tell Python to wait for connection with the following
parameters:

® socket.AF_1neTe: Indicates that we are using the IPv6 protocol

® socket.sock_sTream: Indicates the type of socket that we are creating, which
uses the TCP protocol as a basis and ensures that messages that are sent to
the destination arrive in the same order in which they were sent

For example: server_socket = socket.socket(socket.AF_INET6, socket.SOCK_STREAM).

Assign to server.bind the values of IP and port, and to server.1isten the number of
maximum connections, shown as follows:
dataConection = (host,port)
server_socket.bind(dataConection)

We assign the maximum number of connections
server_socket.listen(maxConnections)

Finally, we use the server_socket.accept() method to wait for connections from the
client:
print("waiting connections in %s:%s" %(host, port))

connection, address = server_socket.accept()
print ('Connected to', address)

If any data that's received from the client is a command, the logic could be
executing that command with the subprocess package and run method. You can
find the full documentation about the subprocess module at https://docs.python.org/3
.7/1ibrary/subprocess.html. For this example, we need the command to execute in a
string and the stdout parameter to save the command output in the response
variable:

if "command" in data.decode():

s,command = data.decode().split("/")

print("Command:"+command)

response = subprocess.run([command], stdout=subprocess.PIPE)
print(response.stdout)

connection.send(response.stdout)

print ("Sent data command back to the client: [%s]" %response.stdout.decode())

You can find the full server implementation that's given in the following code in
the echo_server_ipv6.py file:

#1/usr/bin/env python3

import argparse
import socket
import subprocess

IPV6_ADDRESS = '::1'
Up to 5 clients can connect
maxConnections = 5

def echo_server_ipv6(port, host=IPV6_ADDRESS):

Creating the server with ipv6é support

socket.AF_INET6 to indicate that we will use Ipv6

socket.SOCK_STREAM to use TCP/IP

try:
server_socket = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
dataConection = (host, port)
server_socket.bind(dataConection)

We assign the maximum number of connections
server_socket.listen(maxConnections)

except socket.error as err:
print ("Socket error: %s" %err)
server_socket.close()

print("waiting connections in %s:%s" %(host, port))
connection, address = server_socket.accept()
print ('Connected to', address)

If we continue analyzing the code, we can see how our infinite loop is listening
for client connections. For each message it receives, it will transform it into a
command for execution with the subprocess module:

while True:
data = connection.recv(4096)

https://docs.python.org/3.7/library/subprocess.html

print ("Received data from the client: [%s]" %data.decode())
if "command" in data.decode():
s,command = data.decode().split("/")
print("Command:"+command)
response = subprocess.run([command], stdout=subprocess.PIPE)
print(response.stdout)
connection.send(response.stdout)
print ("Sent data command back to the client: [%s]" %response.stdout.decode(

if data.decode() == "exit":
connection.send(bytes("exit".encode('utf-8')))
break

if "command" not in data.decode():
connection.send(data)
print ("Sent data echoed back to the client: [%s]" %data.decode())

print("------- CLOSE CONNECTION --------- ")
connection.close()

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description="'IPv6 Socket Server')
parser.add_argument('--port', action="store", dest="port", type=int, required=True)
given_args = parser.parse_args()
port = given_args.port
echo_server_ipv6(port)

After implementing the server, we started to implement our client, which will
send the messages to the socket that was opened by the server.

Implementing the IPv6 client

First, we need to configure the data to connect to the server and send initial data
to the server:

client = socket.socket (socket.AF_INET6, socket.SOCK_STREAM)
client.connect ((host, port))

message = "Hello from ipv6é client"

print ("Send data to server: %s" %message)
client.send(bytes(message.encode('utf-8')))

data = client.recv(4096)

print ('Received initial message from server:',6 data.decode())

Then, we will create a loop and use the send and recv methods from the socket
client to transmit information from the client to the server. We use the exit
message to close the connection between the client and server.

You can find the following code in the echo_c1ient_ipve.py file:

#1/usr/bin/env python3

import argparse
import socket

IPV6_ADDRESS = '::1'

def echo_client_ipv6(port, host=IPV6_ADDRESS):
Configure the data to connect to the server
socket.AF_INET6 to indicate that we will use Ipv6
socket.SOCK_STREAM to use TCP/IP
These protocols must be the same as on the server
try:
client = socket.socket (socket.AF_INET6, socket.SOCK_STREAM)
client.connect ((host, port))
print ("Connected to the server --->% s:% s"% (host, port))
except socket.error as err:
print ("Socket error:%s" %err)
client.close()

send initial data to server

message = "Hello from ipv6é client"

print ("Send data to server: %s" %message)
client.send(bytes(message.encode('utf-8')))

data = client.recv(4096)

print ('Received initial message from server:',6 data.decode())

If we continue analyzing the code, we can see how our infinite loop requests the
introduction of messages and commands that are entered by the user to send

them to the server:

while True:
message = input("Write your message > ")
client.send(bytes(message.encode('utf-8')))
data = client.recv(4096)
print ('Received from server:', data.decode())
if data.decode() == "exit":

break;

command = input("Write your command > ")
command = "command/"+command
client.send(bytes(command.encode('utf-8')))
data = client.recv(4096)
print ('Received command server:',6 data.decode())

print("------- CLOSE CONNECTION --------- ")
client.close()

if __name__ == '__main__':
parser = argparse.ArgumentParser(description="'IPv6 socket client')
parser.add_argument('--port', action="store", dest="port", type=int,
given_args = parser.parse_args()
port = given_args.port
echo_client_ipv6(port)

required=True)

Executing client and server

We start the server with the echo_server_ipve.py Python command and wait for a
connection:

| usage: echo_server_ipv6.py [-h] --port PORT

We must pass the port for listening connections as an argument:

$ python echo_server_ipv6.py --port 7575
Waiting connections in ::1:7575

Next, we start the client with the same port parameter:

$ python echo_client_ipv6.py --port 7575

Connected to the server --->::1:7575

Send data to server: Hello from ipv6 client

Received initial message from server: Hello from ipv6 client

We will see that the server has already found the connection:

Connected to ('::1', 5223, 0, 0)
Received data from the client: [Hello from ipvé client]
Sent data echoed back to the client: [Hello from ipvé client]

Now we can write any message and command on the client, and in the server log
we can verify that the message was sent and that the command was executed.

In the following screenshot, we can see the execution in the socket server:

Waiting connections in ::1:7575

connected to ('::1', 5223, 0, 0)

Received data from the client: [Hello from ipv6 client]

Sent data echoed bhack to the client: [Hello from ipvé client]
Received data from the client: [hi can i1 get 1list files]

sent data echoed back to the client: [hi can i get list files]
Received data from the client: [command/l1s]

command: 1s

b'echo_client_ipv6.py\necho_server_ipv6.py\n'

Sent data command back to the client: [ecKo_c]ient_ipvﬁ.py
echo_server_ipv6.py

Received data from the client: [thank you]

sent data echoed back to the client: [thank you]

Received data from the client: [command/dir]

command:dir

b'echo_client_ipv6.py echo_server_iva.pK\n'

Sent data command back to the client: [echo_client_ipv6.py echo_server_ipv6.py

Received data from the client: [exit]
CLOSE CONNECTION

In the following screenshot, we can see the execution in the socket client and the
output when sending messages and commands:

Connected to the server --->::1:7575

Send data to server: Hello from ipv6 client

Received initial message from server: Hello from ipvé client
Write your message > hi can i get list files

Received from server: hi can i1 get list files

Write your command > 1s

Received command server: echo_client_ipv6.py
echo_server_ipv6.py

Write your message > thank you

Received from server: thank you

Write your command > dir

Received command server: echo_client_ipv6.py echo_server_ipv6.py

Write your message > exit
Received from server: exit
CLOSE CONNECTION

We analyzed the implementation of a client-server application with an IPv6
protocol for sending messages and commands and the execution of them on the
server.

Non-blocking and asynchronous
socket I/0

In this section, you will learn about socket programming with non-blocking
socket 1/0.

Introducing non-blocking 1/0

First, we are going to review a simple example of non-blocking I/O for the
socket server. This script will run a socket server and listen in a non-blocking
style. This means that you can connect more clients who won't be necessarily
blocked for I/0O.

You can find the fOHOWiI’lg code in the server_socket_async.py file:

#1/usr/bin/env python3

import socket
if __name__ == '__main__"':

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#unset blocking

sock.setblocking(0)

sock.settimeout(0.5)

sock.bind(("127.0.0.1", 12345))

socket_address =sock.getsockname()

print("Asynchronous socket server launched on socket: %s" %str(socket_address))

while(1):

sock.listen(1)

From a client point of view, when we make a socket non-blocking by calling
setblocking(0), it will never wait for the operation to complete. So, when we call
the send() method, it will put as much data in the buffer as possible and return.

You can find the fOHOWiI’lg code in the client_socket_async.py file:

#1/usr/bin/env python3

import socket

if __name__ == '__main__"':
sock = socket.socket()
sock.connect(("127.0.0.1", 12345))
#setting to non-blocking mode
sock.setblocking(0)
data = "Hello Python"
sock.send(data.encode())

The client-server model with multiple
connections

If we are working with Python version 3.4+, there is a module called selectors,
which provides an API for quickly building an object-oriented server based on
the I/O primitives. The documentation and an example of this is available at nttps
://docs.python.org/3.7/1library/selectors.html.

In this example, we are going to implement a server that controls several
connections using the selectors package.

You can find the fOHOWiI’lg code in the tcp_server_selectors.py file:

#1/usr/bin/env python3

import selectors
import types
import socket

selector = selectors.DefaultSelector()

def accept_connection(sock):
connection, address = sock.accept()
print('Connection accepted in {}'.format(address))
We put the socket in non-blocking mode
connection.setblocking(False)
data = types.SimpleNamespace(addr=address, inb=b'', outb=b'")
events = selectors.EVENT_READ | selectors.EVENT_WRITE
selector.register(connection, events, data=data)

In the previous code block, we defined the accept_connection() method for
accepting connections from the clients, put the socket in non-blocking mode, and
registered a selector for capturing read and write events. In the following code
block, we are defining the service_connection() method for differentiating messages
marked as event read selector and messages marked as event write selector:

def service_connection(key, mask):

sock = key.fileobj

data = key.data

if mask & selectors.EVENT_READ:
recv_data = sock.recv(BUFFER_SIZE)

if recv_data:
data.outb += recv_data

else:

https://docs.python.org/3.7/library/selectors.html

print('Closing connection in {}'.format(data.addr))

selector.unregister(sock)

sock.close()

if mask & selectors.EVENT_WRITE:

if data.outb:
print('Echo from {} to {}'.format(repr(data.outb), data.addr))
sent = sock.send(data.outb)
data.outb = data.outb[sent:]

In the following block of code, we can see our main program for establishing
the nost, port, and surrer_s1ze constants, and configuring our socket in non-
blocking mode. We will also register the socket to be monitored by the seiector
functions:

if __name__ == '__main__"':
host = 'localhost'
port = 12345
BUFFER_SIZE = 1024
We create a TCP socket
socket_tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
We configure the socket in non-blocking mode
socket_tcp.setblocking(False)
socket_tcp.bind((host, port))
socket_tcp.listen()
print('Openned socket for listening connections on {} {}'.format(host, port))
socket_tcp.setblocking(False)
We register the socket to be monitored by the selector functions
selector.register(socket_tcp, selectors.EVENT_READ, data=None)
while socket_tcp:
events = selector.select(timeout=None)
for key, mask in events:
if key.data is None:
accept_connection(key.fileobj)
else:

service_connection(key, mask)
socket_tcp.close()
print('Connection finished.')

Let's explore our implementation a bit more:

e Like before, we defined the variables that are necessary to link with the
socket: host, port, BUFFER_SIZE, and MESSAGE.

e We configured the socket for non-blocking mode with
socket_tcp.setblocking(False). Socket module functions return a value
immediately, they have to wait for a system call to complete to return a
value. When we configure the socket in non-blocking, we make sure our
application does not stop waiting for a response from the system.

e We start a while IOOp in which the first line is events = sel.select (timeout =
none). This function blocks until there are sockets ready to be written/read.
Then it returns a list of pairs (key, event), one for each socket. The key is a

selectorkey that contains a fileobj attribute. key.fileobj iS the socket object, and
mask is an event mask for operations that are ready.

o If key.data is none, we know that it comes from the socket that is open and we
need to accept the connection. We call the accept_connection() function that
we defined to handle this situation.

o If key.data is NoOt none, it is a client socket that is ready to be accepted and we
need to address it. So we call the service_connection() function with key and
mask as arguments, which contain everything we need to operate the
socket.

Now, let's look at an implementation of a client. It is quite similar to the
implementation of the server but instead of waiting for connections, the client
starts to initiate connections with the start_connections() function.

You can find the fOHOWiI’lg code in the tcp_client_selectors.py file:

#1/usr/bin/env python3

import socket
import selectors
import types

selector = selectors.DefaultSelector()
messages = ['This is the first message', 'This is the second message']
BUFFER_SIZE = 1024

def start_connections(host, port, num_conns):
server_address = (host, port)
for i in range(®, num_conns):
connid = i + 1
print('Starting connection {} towards {}'.format(connid, server_address))
socket_tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
We connect using connect_ex () instead of connect
socket_tcp.connect_ex(server_address)
events = selectors.EVENT_READ | selectors.EVENT_WRITE
data = types.SimpleNamespace(connid=connid,
msg_total=sum(len(m) for m in messages), recv_total=0,
messages=list(messages),outb=b'")
selector.register(socket_tcp, events, data=data)
events = selector.select()
for key, mask in events:
service_connection(key, mask)

In the previous code block, we defined the start_connections() method to connect
with the server and register a selector for capturing read and write events. In the
following code block, we define the service_connection() method for differentiating
messages marked as event read selector and event write selector:

|def service_connection(key, mask):

sock = key.fileobj
data = key.data
if mask & selectors.EVENT_READ:
recv_data = sock.recv(BUFFER_SIZE)
if recv_data:
print('Received {} from connection {}'.format(repr(recv_data), data.connid))
data.recv_total += len(recv_data)
if not recv_data or data.recv_total == data.msg_total:
print('Closing connection', data.connid)
selector.unregister(sock)
sock.close()
if mask & selectors.EVENT_WRITE:
if not data.outb and data.messages:
data.outb = data.messages.pop(0).encode()
if data.outb:
print('Sending {} to connection {}'.format(repr(data.outb), data.connid))
sent = sock.send(data.outb)
sock.shutdown(socket.SHUT_WR)
data.outb = data.outb[sent:]

if __name__ == '__main__':
host = 'localhost'
port = 12345
BUFFER_SIZE = 1024
start_connections(host, port, 2)

Now, we execute our new server and client implementation for multiple
connections:

$ python tcp_server_selectors.py &
Openned socket for listening connections on localhost 12345

$ python tcp_server_selectors.py &

$ python tcp_client_selectors.py

Starting connection 1 towards ('localhost', 12345)
Starting connection 2 towards ('localhost', 12345)
Connection accepted in ('127.0.0.1', 7107)
Connection accepted in ('127.0.0.1', 7109)

Sending 'This is the first message' to connection 1
Sending 'This is the first message' to connection 2
Closing connection in ('127.0.0.1', 7107)

Closing connection in ('127.0.0.1', 7109)

As we can see, our clients communicate with our server and it echoes to verify
that the messages were received.

In this section, we looked at non-blocking I/O with the socket and selectors
modules to build an object-oriented server based on the I/O primitives.

HTTPS and securing sockets with
TLS

In this section, you will learn how we can implement secure sockets with TLS
and the SSL module. We will demonstrate how simple TCP sockets can be
wrapped with TLS and used to carry encrypted data.

Implementing the SSL client

You have probably come across the discussion around secure web
communication using SSL, or more precisely TLS, which is adopted by many
other high-level protocols. Let's see how we can wrap a plain sockets connection
with SSL. Python has a built-in SSL module that serves this purpose.

In the following example, we would like to create a plain TCP socket and
connect to an HTTPS-enabled web server. We can establish that connection
using the SSL module and check the various properties of the connection. For
example, to check the identity of the remote web server, we can see whether the
hostname is the same in the SSL certificate, as we expect it to be. The following
is an example of a secure socket-based client.

You can find the following code in the ss1_ciient.py file:

#1/usr/bin/python3

import socket
import ssl

from ssl import wrap_socket, CERT_NONE, PROTOCOL_TLSv1l, SSLError
from ssl import SSLContext

from ssl import HAS_SNI

from pprint import pprint

TARGET_HOST = 'www.google.com'
SSL_PORT = 443

Use the path of CA certificate file in your system
CA_CERT_PATH = 'certfiles.crt'

def ssl wrap_socket(sock, keyfile=None, certfile=None,cert_reqs=None, ca_certs=None, ser
context = SSLContext(ssl_version)
context.verify_mode = cert_reqs
if ca_certs:
try:
context.load_verify_ locations(ca_certs)
except Exception as e:
raise SSLError(e)
if certfile:
context.load_cert_chain(certfile, keyfile)
if HAS_SNI: # OpenSSL enabled SNI
return context.wrap_socket(sock, server_hostname=server_hostname)
return context.wrap_socket(sock)

In the preceding code, we have declared our ssi_wrap_socket () method, which
accepts the socket as a parameter and information about the certificate. This

method internally checks the certificate and loads the information in the context
object to return the ssLcontext object. The following code is our main program,
which asks the user for the destination host and calls the previous method for
extracting remote host certificate details with the getpeercert() method from

the ssLcontext object:

if __name__ == '__main__"':
hostname = input("Enter target host:") or TARGET_HOST
client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_sock.connect((hostname, 443))
ssl_socket = ssl_wrap_socket(client_sock,ssl_version=PROTOCOL_TLSv1,
cert_reqgs=ssl.CERT_REQUIRED,
ca_certs=CA_CERT_PATH, server_hostname=hostname)
print(ssl_socket.cipher())
print("Extracting remote host certificate details:")
cert = ssl_socket.getpeercert()
pprint(cert)
if not cert or ('commonName', TARGET_HOST) not in cert['subject'][4]:
raise Exception("Invalid SSL cert for host %s. Check if this is a man-in-the-mic
ssl_socket.write('GET / \n'.encode('utf-8")
pprint(ssl_socket.recv(1024).split(b"\r\n"))
ssl_socket.close()
client_sock.close()

If you run the preceding example, you will see the details of the SSL certificate
of a remote web server, such as www.google.com. Here, we have created a TCP
socket and connected it to HTTPS port 443. Then, that socket connection is
wrapped into SSL packets using our ss1_wrap_socket() function. This function
takes the following parameters as arguments:

e sock: TCP socket

e keyfile: SSL private key file path

e certfile: SSL public certificate path

e cert_regs: Confirmation of whether certificate is required from the other side
to make a connection and whether a validation test is required

® ca_certs: Public certificate authority certificate path

® server_hostname: The target's remote server's hostname

® ss1_version: The intended SSL version to be used by the client

At the beginning of the SSL socket-wrapping process, we created an SSL context
using the ssicontext() class. This is necessary to set up the SSL connection-
specific properties. Instead of using a custom context, we could also use a
default context, which is supplied by default with the SSL module, using the
create_default_context() function. You can specify whether you'd like to create
client- or server-side sockets using a constant. The following is an example for

Creating a client-side socket: context = ssl.create_default_context(Purpose.SERVER_AUTH).

The ssLcontext object takes the SSL version argument, which in our example is set
to proTocoL_TLsv1, Or you should use the latest version. Note that SSL.v2 and SSLv3
are broken and they should not be used in any production server because it could
cause serious security problems.

In the preceding example, cert_requiren indicates that the server certificate is
necessary for the connection to continue, and that this certificate will be
validated later.

If the CA certificate parameter has been presented with a certificate path, the
load_verify_locations() method is used to load the CA certificate files.

This will be used to verify the peer server certificates. If you'd like to use the
default certificate path on your system, you'd probably call another context
method: load_default_certs(purpose=Purpose.SERVER_AUTH).

When we operate on the server side, the 10ad_cert_chain() method is usually used
to load the key and certificate file so that clients can verify the server's
authenticity.

Finally, the wrap_socket () method is called to return an SSL-wrapped socket. Note
that if the OpenSSL library comes with Server Name Indication (SNI) support
enabled, you can pass the remote server's host name while wrapping the socket.
This is useful when the remote server uses different SSL certificates for different
secure services using a single IP address, for example, name-based virtual
hosting.

If you run the preceding SSL client code, you will see the cipher type by calling
the cipher() method and the properties of the SSL certificate of the remote server,
as shown in the following screenshot. This is used to verify the authenticity of
the remote server by calling the getpeercert() method and comparing it with the
returned hostname.

In the following screenshot, we can see the execution of the previous script for
getting information about the certificate that is using a specific domain:

Enter target host:www.google.com
("ECDHE-ECDSA-AES128-SHA', 'TLSv1l/SsLv3', 128)
Extracting remote host certificate details:
{'ocsp': ('http://ocsp.pki.goog/GTSGIAG3',),
"caIssuers': ('http://pki.goog/ger/GTSGIAGS.crt',),
"cripistributionPoints': ("http://crl.pki.goog/GTSGIAG3.crl’,),
issuer': ((('countryName', 'US'),),
(("organizationName', 'Google Trust Services'),),
(("commonName', 'Google Internet Authority G3'),)),
notAfter': 'Apr 23 14:58:00 2019 GMT',

1

"notBefore’: "Jan 29 14:58:00 2019 GMT',

"serialNumber’: '726B68C873C67FB2’,

"subject’: ((('countryName', 'USs'),),
(('stateorprovinceName', 'california'),),
(("TocalityName', 'Mountain View'),),
(("organizationName', 'Google LLC'),),
((' commonName ", 'www.goog]e.com'),)),

‘subjectAltName": (('DNS', "www.goog

e.com'),),
'version': 3}

Interestingly, if any other fake web server wants to pretend to be Google's web
server, it simply can't do that. At this point we could verify that the SSL
certificate is signed by an accredited certification authority and check if
accredited CA has been compromised/subverted. This form of attack to your web
browser is commonly referred to as a man-in-the-middle (MITM) attack.

In the following example, we are using the wrap_socket() method to get the SSL
socket and we use the match_nostname() method from that socket to check the
certificate.

You can find the fOHOWng code in the ss1_client_check_certificate.py file:

#1/usr/bin/env python3

import socket, ssl, sys
from pprint import pprint

TARGET_HOST = 'www.google.com'
SSL_PORT = 443

#Use the path of CA certificate file in your system
CA_CERT_PATH = 'certfiles.crt'

if __name__ == '__main__"':
hostname = input("Enter target host:") or TARGET_HOST
client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_sock.connect((hostname, 443))
Turn the socket over to the SSL library
ssl_socket = ssl.wrap_socket(client_sock,
ssl_version=ssl.PROTOCOL_TLSv1,cert_reqs=ssl.CERT_REQUIRED, ca_certs=CA_CERT_PATH)
print(ssl_socket.cipher())
try:
ssl.match_hostname(ssl_socket.getpeercert(), hostname)
except ssl.CertificateError as ce:
print('Certificate error:', str(ce))
sys.exit(1)
print("Extracting remote host certificate details:")
cert = ssl_socket.getpeercert()
pprint(cert)
ssl_socket.close()
client_sock.close()

If the hostname doesn't match the name that appears on the certificate, the script
execution will throw an exception of the ssi.certificateerror type:

Enter target host:www.google.com

('ECDHE-RSA-AES128-SHA', 'TLSv1/SSLv3', 128)

Certificate error: hostname 'other_hostname' doesn't match 'www.google.com'
In the previous examples, we used ca_cer_raTH = 'certfiles.crt', which contains the path of the
CA certificate file in your system. You can also generate your own certificate using specific
tools, such as OpenSSL (nttps://wm.openss1.org). There are other methods we can use to generate
a certificate for a specific domain, such as the web service (nttp://wm.se1fsignedcertificate.con’).

https://www.openssl.org
http://www.selfsignedcertificate.com/
http://www.selfsignedcertificate.com/

Inspecting standard SSL client and
server communication

Now, we are going to capture packets with Wireshark when executing the script
showed in the previous section to see the communication between the client and
the domain server.

The following screenshot shows the interaction between the SSL client and the
remote server:

No. Time
346 14.000573
347 14.174945
348 14.196753
349 14.256451
350 14.256744
351 14.256855
352 14.261750
353 14.283431
354 14.338848
355 14.341408
356 14.364007
357 14.409954
358 14.431593
359 14.454253
360 14.456540

Source
10.80.92.1
10.80.92.216
172.217.168.196
172.217.168.196
172.217.168.196
10.80.92.216
10.80.92.216
172.217.168.196
172.217.168.196
10.80.92.216
172.217.168.196
10.80.92.216
216.58.211.106
172.217.168.196
172.217.168.196

Destination

2550255 12558055
172.217.168.196
10.80.92.216
10.80.92.216
10.80.92.216
172.217.168.196
172.217.168.196
10.80.92.216
10.80.92.216
172.217.168.196
10.80.92.216
216.58.211.106
10.80.92.216
10.80.92.216
10.80.92.216

Protocol
DHCP
TLSv1
TCP
TLSv1
TLSv1
TCP
TLSv1
TCP
TLSv1
TLSv1
TCP
TCP
TCP
TLSv1
TLSv1

Length Info
342 DHCP ACK - Transaction ID @x77bede@7
234 client Hello
60 443 -» 20365 [ACK] Seq=1 Ack=181 Win=15744 Len=0
1482 Server Hello
958 Certificate, Server Key Exchange, Server Hello Done
54 20365 -» 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=@
188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
60 443 > 20365 [ACK] Seq=2333 Ack=315 Win=16768 Len=0
341 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
128 Application Data, Application Data
60 443 -» 20365 [ACK] Seq=2620 Ack=389 Win=16768 Len=@
55 20088 > 443 [ACK] Seq=1 Ack=1 Win=256 Len=1 [TCP segment of a reassembled PDU]
66 443 > 20088 [ACK] Seq=1 Ack=2 Win=153 Len=@ SLE=1 SRE=2
1467 Application Data
1467 Application Data

Frame 351: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @
Ethernet II, Src: LcfcHefe_2d:79:2@ (8c:16:45:2d:79:208), Dst: HewlettP_79:fd:89 (78:48:59:79:fd:89)

Internet Protocol Version 4, Src: 10.80.92.216, Dst: 172.217.168.196

Transmission Control Protocol, Src Port: 20365, Dst Port: 443, Seq: 181, Ack: 2333, Len: ©

78 48 59 79 fd 89 8c 16 45 2d 79 20 €8 €@ 45 @0 xHYy
00 28 78 Ge 4@ 0@ 82 06 c5 fb @a 50 5c d8 ac d9 (x-@
a8 c4 4f 8d @1 bb 95 68 eb fl 62 da 3f b8 50 10 [} h -b-?P

01 @9 7c d9 ee ee

E-y -“E
PX

Let's examine the SSL handshake process between the client and the server:

e In the first step of an SSL handshake, the client sends a ve110 message to the
remote server, saying what it is capable of in terms handling key files,
encrypting messages, doing message integrity checks, and so on.

e Then, it sends the TLS version 1.0 and a random number to generate a
master secret to encrypt the subsequent message exchanges. This is helpful
for preventing any third-party from looking inside the packets.

¢ Finally, the random numbers that are seen in the hello messages are used to
generate the pre-master secret, which both ends will process further to
arrive at the master secret, and then use that to generate the symmetric key.

In the following screenshot, you can see that the client is presenting a set of 29

cipher suites to the server to choose relevant algorithms:

347 14.174945
348 14.196753
349 14.256451
350 14.256744
351 14.256855
352 14.26175@
353 14.283431

10.80.92.216
172.217.168.196
1722217 1687196
172.217.168.196
10.86.92.216
10.80.92.216
172.217.168.196

172.217.168.196
16.80.92.216
16.80.92.216
10.80.92.216
172.217.168.196
172.217.168-196
10.80.92.216

TLSv1
el
TLEAL
TLSv1
TCP
TLSv1
CE

234 client Hello
6@ 443 » 20365 [ACK] Seq=1 Ack=181 Win=15744 Len=@

1482 Server Hello

958 Certificate, Server Key Exchange, Server Hello Done
54 20365 + 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=0

188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
60 443 - 20365 [ACK] Seq=2333 Ack=315 Win=16768 Len=@

v Handshake Protocel: Client Hello
Handshake Type: Client Hello (1)
Length: 171

Version: TLS 1.0 (@xe@3el)
Random: ¢7b278216e2018f293a9¢8d1b8725d58¢c5¢c4606db7e5b9al. . .
Session ID Length: ©
Cipher Suites Length: 58
v Cipher Suites (29 suites)

Cipher Suite:
Cipher Suite: TLS
Cipher Suite:
Cipher Suite:

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (@xc@14)
ECDHE_ECDSA_WITH_AES_256_CBC_SHA (@xc@@a)
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA (@xcoef)
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA (0xc@es)

¢ In the second packet that's sent from server to client, the server selects the
TLS_ECDHE_RSA_WITH_Rc4_128_sHA Cipher suite for the purpose of connecting to the
client. This means that the server wants to use the RSA algorithm for key
handling, RC4 for encryption, and SHA for integrity checking (hashing).
This is shown in the following screenshot:

347 14.174945
348 14.196753
349 14.256451
350 14.256744
351 14.256855
352 14.261750
353 14.283431

16.86.92.216
172.217.168.196
172.217.168.196
172.217.168.196
16.86.92.216
10.86.92.216
172.217.168.196

172.217.168.196
10.86.92.216
16.86.92.216
16.86.92.216
172.217.168.196
172.217.168.196
10.80.92.216

TLSv1
TCP
TLSv1
TLSV1
TCP
TLSv1
TCP

234 Client Hello
60 443 > 20365 [ACK] Seq=1 Ack=181 Win=15744 Len=0
1482 Server Hello
958 Certificate, Server Key Exchange, Server Hello Done
54 20365 » 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=0
188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
60 443 -» 20365 [ACK] Seq=2333 Ack=315 Win=16768 Len=@

Version: TLS 1.6 (@xe3e1)

Length: 59

v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 55

Version: TLS 1.0 (@xe361)
Random: 5c6d326d6e24ddf286d34d4bada98dcbadd5582a615a5077. . .
Session ID Length: @
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (@xc@es)

Compression Method: null (@)

Extensions Length: 15
v Extension: renegotiation_info (len=1)

e In the second phase of the SSL handshake, the server sends an SSL
certificate to the client. This certificate is issued by a CA, as mentioned in
the Implementing the SSL client section. It contains a serial number, public
key, validity period, and the details of the subject and the issuer.

The following screenshot show the remote server certificate, where we can see
the server's public key inside the packet:

347 14.174945 10.80.92.216 172.217.168.196 TLSv1 234 Client Hello

348 14.196753 172.217.168.196 106.80.92.216 TCP 60 443 » 20365 [ACK] Seq=1 Ack=181 Win=15744 Len=0
349 14.256451 172.217.168.196 10.80.92.216 TLSv1 1482 Server Hello
350 14.256744 172.217.168.196 10.80.92.216 TLSv1 958 Certificate, Server Key Exchange, Server Hello Done
351 14.256855 10.80.92.216 172.217.168.196 TCP 54 20365 + 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=0
352 14.261750@ 10.80.92.216 172.217.168.196 TLSv1 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
353 14.283431 172.217.168.196 10.80.92.216 iCE 60 443 > 20365 [ACK] Seq=2333 Ack=315 Win=16768 Len=@
Length: 145

v Handshake Protocol: Server Key Exchange
Handshake Type: Server Key Exchange (12)
Length: 141
v EC Diffie-Hellman Server Params
Curve Type: named_curve (@x@3)
Named Curve: secp256rl (@xee17)
Pubkey Length: 65
Pubkey: ©4ef@da73a37825475309a957d8dc24dd@4ca6adca27b28f. ..
Signature Length: 7@
Signature: 304402205b301f3586210bfc6da21le1093e614775beaaas9. ..
v TLSvl Record Layer: Handshake Protocol: Server Hello Done

¢ In the third phase of the handshake, the client exchanges a key and
calculates a master secret to encrypt the messages and continue further
communications. The client also sends the request to change the cipher
specification that was agreed on the previous phase. From that moment, the
encryption of the message begins. The following screenshot shows this

Pprocess:
347 14.174945 10.80.92.216 172.217.168.196 TLSv1 234 Client Hello
348 14.196753 172.217.168.196 10.80.92.216 SICE 60 443 > 20365 [ACK] Seq=1 Ack=181 Win=15744 Len=0
349 14.256451 172.217.168.196 10.80.92.216 TLSv1 1482 Server Hello
350 14.256744 172.217.168.19%96 10.80.92.216 TLSv1l 958 Certificate, Server Key Exchange, Server Hello Done
351 14.256855 10.80.92.216 172.217.168.196 TCP 54 20365 > 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=0
352 14.261750 10.80.92.216 172.217.168.196 TLSv1 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
353 14.283431 172.217.168.196 10.80.92.216 TCP 60 443 > 20365 [ACK] Seq=2333 Ack=315 Win=16768 Len=@

Transmission Control Protocol, Src Port: 20365, Dst Port: 443, Seq: 181, Ack: 2333, Len: 134
Secure Sockets Layer
~ TLSvl Record Layer: Handshake Protocol: Client Key Exchange

Content Type: Handshake (22)

Version: TLS 1.0 (@x@3e1)

Length: 70

v Handshake Protocol: Client Key Exchange
Handshake Type: Client Key Exchange (16)
Length: 66
v EC Diffie-Hellman Client Params
Pubkey Length: 65
Pubkey: 04b485085bc@7d2cbafdl64ce2c9422d8cadl6cabg78d4ds. . .

v TLSvl Record Layer: Change Cipher Spec Protocol: Change Cipher Spec

Content Type: Change Cipher Spec (20)

Version: TLS 1.0 (@x@3e1)

Length: 1

Change Cipher Spec Message
v TLSvl Record Layer: Handshake Protocol: Encrypted Handshake Message

Content Type: Handshake (22)

Version: TLS 1.8 (ex@301)

¢ In the final part of the SSL handshake process, a new session ticket is
generated by the server for the client's particular session. This happens due
to a TLS extension where the client advertises its support by sending an
empty session ticket extension in the xe110 client message. The server
answers with an empty session ticket extension in its Hello server message.
This session ticket mechanism enables the client to remember the whole
session state, and the server becomes less engaged in maintaining a server-

side session cache.

The following screenshot shows an example for presenting an SSL session
ticket, where we can see the Session Ticket Lifetime:

350
351
352
353
354
355
356

14.
14.
14.
14.
14,
14.
14.

256744
256855
261750
283431
338848
341408
364007

172.217.168.196
10.80.92.216
16.80.92.216
172.217.168.196
172.217.168.196
16.80.92.216
172.217.168.196

10.80.92.216
172.217.168.196
172.217.168.196
10.80.92.216
10.80.92.216
172.217.168.196
10.80.92.216

TLSv1
TCP
TLSv1
TCP
TLSv1
TLSv1
TCP

958
54
188
60
341
12
60

©

Certificate, Server Key Exchange, Server Hello Done

20365 > 443 [ACK] Seq=181 Ack=2333 Win=65536 Len=0

Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
443 > 208365 [ACK] Seq=2333 Ack=315 Win=16768 Len=0

New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
Application Data, Application Data

443 > 208365 [ACK] Seq=26208 Ack=389 Win=16768 Len=0

Transmission Control Protocol, Src Port: 443, Dst Port: 20365, Seq: 2333, Ack: 315, Len: 287

* Secure Sockets Layer

v TLSvl Record Layer: Handshake Protocol: New Session Ticket
Content Type: Handshake (22)
Version: TLS 1.0 (@xe@3e1)

v TLSvl Record Layer: Change Cipher Spec Protocol: Change Cipher Spec

v TLSv1l Record Layer: Handshake Protocol: Encrypted Handshake Message

Length: 223
v Handshake Protocol:

New Session Ticket

Handshake Type: New Session Ticket (4)

Length: 219

v TLS Session Ticket
Session Ticket Lifetime Hint: 100799 seconds (1 day, 3 hours, 59 minutes, 59 seconds)

Session Ticket Length: 213

Session Ticket: @@c7df9abc456b89e6e2c8e7a453e5f1e2c63d47766a5799. ..

Content Type: Change Cipher Spec (20@)
Version: TLS 1.0 (exe3e1)
Length: 1
Change Cipher Spec Message

Content Tvpe: Handshake (22)

Summary

In this chapter, we reviewed the socket module for implementing client-server
architectures in Python with the TCP and UDP protocols. We also discussed
basic TCP/IP socket programming using Python's socket and the SSL. module.
We demonstrated how simple TCP sockets can be wrapped with TLS and used to
carry encrypted data. We also talked about the ways to validate the authenticity
of a remote server using SSL certificates. Some other minor issues regarding
socket programming, such as non-blocking socket I/O, were also presented. The
detailed packet analysis with Wireshark in each section helps us to understand
what happens under the hood in our socket programming scripts.

In the next chapter, you will learn about the principles of socket-based server
design and how to build asynchronous network applications with the asyncio,
aiohttp, Tornado, Twisted, and Celery frameworks.

Questions

10.

Which method of the socket module allows a server socket to accept
requests from a client socket from another host?

Which method of the socket module allows you to send data to a given
address?

Which method of the socket module allows you to associate a host and a
port with a specific socket?

What is the difference between the TCP and UDP protocols, and how do
you implement them in Python with the socket module?

Which method of the socket module allows you to implement port scanning
with sockets and to check the port state?

What is the alternative tool on the windows system for capturing packets on
a loopback interface?

What is the socket configuration for the client-and-server IPv6 protocol?
What Python module can we use from version 3.4+ that provides an API to
quickly build an object-oriented server based on the I/O primitives?

What method and parameters from the SSL module can we use to establish
an SSL socket connection?

What method from the SSL module can we use to extract remote host
certificate details and verify the authenticity of the remote server?

Further reading

Check out the following links for more information about the tools mentioned in
this chapter. The official
Python documentation is also a great resource:

e Wireshark documentation: https://wiki.wireshark.org

e Sockets in Python 3: https://docs.python.org/3/1library/socket.html

e Sockets programming in PythOTlZ https://www.geeksforgeeks.org/socket-programmin
g-python/

® https://realpython.com/python-sockets/

e What's New in Sockets fOI‘ PythOTl 3.7: https://www.agnosticdev.com/blog-entry/py
thon/whats-new-sockets-python-37

https://wiki.wireshark.org
https://docs.python.org/2/library/socket.html
https://www.geeksforgeeks.org/socket-programming-python/
https://realpython.com/python-sockets/
https://www.agnosticdev.com/blog-entry/python/whats-new-sockets-python-37

Designing Servers and Asynchronous
Programming

In this chapter, you will learn about the principles of socket-based server design,
and learn how to build small servers based on multiprocessing approaches. We
will continue using asyncio and aionttp for asynchronous operations. Finally, we
will review Tornado, Twisted, and Celery for building asynchronous network
applications.

The following topics will be covered in this chapter:

¢ Building a multiprocessing-based TCP server

¢ Building asynchronous applications with asyncio and aiohttp
¢ Building asynchronous network applications with Tornado

¢ Building asynchronous network applications with Twisted

¢ Building asynchronous network applications with Celery

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the Chapteri11 folder: https://github.com/PacktPublishing/Learning-Python-Ne

tworking-Second-Edition.

You will need to install a Python distribution in your local machine with a Unix-
like operating system and have some basic knowledge of network protocols. The
examples in this chapter are compatible with Windows as well.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Building a multiprocessing-based
TCP server

In this section, we will learn how to build a multiprocessing-based server with
the concurrent. futures package.

When working with multiprocessing in Python 3, we have many alternatives,
among which we can hlghhght the concurrent. futures and multiprocessing modules.

Introducing the concurrent.futures
module

In this section, we are going to explain the concurrent.futures module, whose
objective is to introduce a layer of simplification on the modules that are
threading and multiprocessing.

concurrent. futures 1S @ module that is part of the standard Python library and
provides a high-level abstraction layer where the threads are modeled as
asynchronous tasks.

The term futures is synonymous with promises, delay, or deferred when working
with asynchronous tasks. In general, regardless of what you call it, you can see it
as a pending result. Futures are a replacement for a result that is not yet
available, usually because their computation has not yet ended, or their transfer
over the network has not been completed.

The module has an abstract base class called an executor, which is used for the
ThreadPoolExecutor (USEd for multithreading) and processPoolExecutor (USEd

for multiprocessing) subclasses. The max_workers parameter identifies the max
number of workers that execute the call asynchronously, and are as follows:

® concurrent.futures.ThreadPoolExecutor (max_workers)

® concurrent.futures.ProcessPoolExecutor (max_workers)

The approach we are adopting here involves using a threadroolexecutor. We will
deliver the tasks that have been assigned to the pool and return them later, which
are results that we will return to when they are available in the future. Of course,
we can wait for the ruture to become real results. Let's look at an example of the
first subclass, Threadroolexecutor, with a practical case that allows you to download
files asynchronously from https://docs.python.org/3/download.html.

You can find the fOHOWiI’lg code in the download_async_files.py file:

#1/usr/bin/python3

https://docs.python.org/3/download.html

from concurrent.futures import ThreadPoolExecutor

import requests
import itertools
import time

docs = ['https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip’,
'https://docs.python.org/3/archives/python-3.7.2-docs-pdf-a4.zip',
'https://docs.python.org/3/archives/python-3.7.2-docs-html.zip’,
'https://docs.python.org/3/archives/python-3.7.2-docs-text.zip',
'https://docs.python.org/3/archives/python-3.7.2-docs.epub’

]

def download_documents(documents, workers=4):
def get_document(url):
response = requests.get(url)
filename = url.split("/")[5]
print('Downloading '+ filename)
open(filename, 'wb').write(response.content)
return url

In the previous code block, we define the document list we are downloading and
the download_documents() method, which accepts the document list and worker's
number that's used by threadpoolexecutor as parameters. In the following code
block, we are defining our executor, which we will use for downloading
documents in a concurrent way:

message = 'Downloading docs from https://docs.python.org/3/archives’
symbol = itertools.cycle('\|/-")
executor = ThreadPoolExecutor(max_workers=workers)
mydocs = [executor.submit(get_document, url) for url in documents]
while not all([doc.done() for doc in mydocs]):

print(message + next(symbol), end='\r"')

time.sleep(0.1)
return mydocs

if __name__ == '__main__"':
tl1 = time.time()
print(download_documents(docs, workers=4))
print(time.time() - t1, 'seconds passed')

This is the output of the previous script. We can see information about futures
that are complete when we download certain files:
Downloading python-3.7.2-docs-text.ziphon.org/3/archives-
Downloading python-3.7.2-docs-pdf-a4.zipn.org/3/archives/
Downloading python-3.7.2-docs-pdf-letter.zipg/3/archives\
7
7

Downloading python-3.7.2-docs.epub.python.org/3/archives\
Downloading python-3.7.2-docs-html.ziphon.org/3/archives/

[<Future at 0x3cc8970 state=finished returned str>, <Future at 0x3ce0430 state=finished

We will study each of the actions that are carried out in detail, as follows:

Inside thedown1oad_documents function, another call has been defined
—get_document (URL). This function makes the requests to the file and
downloads it to the local filesystem.

Later, we instantiated threadroolexecutor and created a list, mydocs, which is
where we will save the futures. Instanced objects of the ruture class (each of
the elements in the mydocs list) encapsulate the asynchronous execution of
the callable. Each of these objects come from executor. submit().

Within the whole block, we ask each of the downloads whether they have
finished by using the ruture.done() method. If it has finished, it will return
True, otherwise it will return raise.

Finally, we return the mydocs list with the calculated futures.

Application for checking websites

Now, we will build an application that checks the running time of websites. The
purpose of this application is to notify when a site or domain is not available.
The application visits a list of URLs and checks whether these sites are
operational. If, when making an HTTP request, the returned status is in the range
of 400-500, this means that the site is not available and it would be a good idea
to notify the owner.

We need to adopt a concurrent approach to solve this problem because, since we
have more addresses to check in the list of websites, nothing guarantees that
each site is reviewed every five minutes or less.

In the following example, we are going to use the concurrent.futures package for
processing domains in a concurrent way to check whether each website is
available. The requests module will help us to obtain the status of each domain.

You can find the fOHOWiI’lg code in the demo_concurrent_futures.py file:

#1/usr/bin/python3
import concurrent.futures
import requests

URLS = ['http://www.foxnews.com/', "http://www.cnn.com/",
'http://www.bbc.co.uk/",
'http://some-made-up-domain.com/ "]

Retrieve a single page with requests module
def load_requests(domain):

with requests.get(domain, timeout=60) as connection:
return connection.text

In the previous code block, we define our URL list for checking the website and
the 10ad_requests() method that accepts as parameters a domain and tries to
establish a connection with the requests package.

In the following code block, we define our executor that we use for checking the
state for each domain in a concurrent way:

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:

future_executor = {executor.submit(load_requests, domain): domain for domain in DOMAINS}
for domain_future in concurrent.futures.as_completed(future_executor):
domain = future_executor[domain_future]

try:

data = domain_future.result()

print('%r page is %d bytes' % (domain, len(data)))

except Exception as exception:

print('%r generated an exception: %s' % (domain, exception))

The following is the output of the previous script, where we can see information
about the sizes for download pages for domains that are available:
"http://www.foxnews.com/' page is 221581 bytes
'http://www.bbc.co.uk/"' page is 303120 bytes

'http://www.cnn.com/' page is 1899465 bytes
'http://some-made-up-domain.com/' generated an exception: HTTPConnectionPool(host="wwl.

The executor is the one who manages threads (threadroolexecutor) Or

Processes (ProcessPoolExecutor). AISO, when we define the Threadroolexecutor
constructor for getting the executor object, you can put the number of workers
that you want to use, depending on the number of cores in our CPU.

In the previous example, we used the as_completed method to obtain the results as
they were obtained. This method returns an iterator over the future instances that
are given by the future_executor variable, which yields futures as they finish. You
can check the full documentation and other examples about this function at https:

//docs.python.org/dev/1library/concurrent.futures.html#threadpoolexecutor-example.

https://docs.python.org/dev/library/concurrent.futures.html#threadpoolexecutor-example

The multiprocessing approach

The muitiprocessing module is an alternative to using the threading module. It is a
module that's similar to the threading module, which offers a very similar
interface, but at a low level. It works with processes instead of threads. In this
case, we will take a similar approach to concurrent.futures. We are establishing a
multiprocessing pool and presentation of tasks by assigning a function to the
address list.

You can find the fOHOWiI’lg code in the demo_multiprocessing.py file:

#!/usr/bin/python3

import time

import multiprocessing
import logging

import requests

from utils import check_website
from utils import WEBSITE_LIST
NUM_WORKERS = 3

if __name__ == '__main__"':

start_time = time.time()

with multiprocessing.Pool(processes=NUM_WORKERS) as pool:
results = pool.map_async(check _website, WEBSITE_LIST)
results.wait()
print(results)

end_time = time.time()

print("Time for multiprocessing: %s secs" % (end_time - start_time))

This script uses check_website(), which is available in the uti1s.py file of the same
directory:

#1/usr/bin/python3
import requests

WEBSITE_LIST = ['http://www.foxnews.com/',
'http://www.cnn.com/"',
'http://www.bbc.co.uk/",
'http://some-other-domain.com/ "]

class WebsiteException(Exception):
pass

def ping_website(address, timeout=6000):
try:
response = requests.get(address)
print("website %s returned status_code=%s" % (address, response.status_code))

if response.status_code >= 400:
print("website %s returned status_code=%s" % (address, response.status_code)
raise WebsiteException()
except requests.exceptions.RequestException:
print("Timeout expired for website %s" % address)
raise WebsiteException()

def check_website(address):
try:
ping_website(address)
except WebsiteException:
pass

The fOHOWng is the output of the execution of demo_multiprocessing.py. For each
URL defined in wess1te_r1sT, check the status code of the domain and show
information about it:
Website http://www.bbc.co.uk/ returned status_code=200
Website http://www.foxnews.com/ returned status_code=200
Timeout expired for website http://some-other-domain.com/
Website http://www.cnn.com/ returned status_code=200

<multiprocessing.pool.MapResult object at 0x00000204C59A8B70>
Time for multiprocessing: 2.0654103755950928 sec

In this section, you have learned about the concurrent.futures package for
processing tasks in an asynchronous way with the threadpooiexecutor class. We
also reviewed the muitiprocessing package as an alternative to the threading module
for creating a pool of processes for assigning tasks.

Building asynchronous applications
with asyncio and aiohttp

In this section, you will learn about asyncio and aiohttp for developing
asynchronous applications, which can greatly simplify the process of writing
servers when using an event-driven approach.

Introducing asyncio

asyncio is a Python module that is part of its standard library. It allows you to
write single-threaded asynchronous code and implement concurrency in Python.
This module is available from Python 3.4 and its documentation is available at nt
tps://docs.python.org/3/1library/asyncio.html.

Basically, asyncio provides an event loop for asynchronous programming. For
example, if we need to make requests without blocking the main thread, we can
use the asyncio library. Python 3.4 provides an asyncio module that has event loops
and coroutines for I/O operations and networking, futures, and tasks. In the next
section, we will review these elements.

https://docs.python.org/3/library/asyncio.html

Using asyncio

The asyncio module allows for the implementation of asynchronous programming
using a combination of the following elements:

e Event loop: The asyncio module allows an event loop per process.

e Coroutines: A coroutine is a generator that follows certain conventions. Its
most interesting feature is that it can be suspended during execution to wait
for external processing (the some routine in I/0) and return from the point it
had stopped when the external processing was done.

e Futures: Futures represent a process that has still not finished.

e Tasks: This is a subclass of asyncio.ruture that encapsulates and manages
coroutines. We can use the asyncio.Task Object to encapsulate a coroutine.

Introducing event loops

The most important concept within asyncio is the event loop. An event loop
allow you to write asynchronous code using either callbacks or coroutines.

The keys to understanding asyncio are the terms of coroutines and the event
loop. Coroutines are stateful functions whose execution can be stopped while
another I/O operation is being executed. An event loop is used to orchestrate the
execution of the coroutines.

To run any coroutine function, we need to get an event loop. We can do this
Wlth loop = asyncio.get_event_loop().

This giVES US a BaseEventLoop ObjECt. This has a run_until_complete method that takes
in a coroutine and runs it until completion. Then, the coroutine returns a result.
At a low level, an event lOOp executes the BaseEventLoop.rununtilcomplete(future)
method.

Futures

One of the most important elements in asyncio are futures, which represent a
process that has not yet finished. A future is an object that is supposed to have a
result in the future and represents uncompleted tasks.

A good example for starting with asyncio is collecting all of the responses from
its URL list and performing post-processing on them. In the following example,
we are using an asyncio future object and passing whole lists of future objects as
tasks to be executed in the loop. Each future is a task that is going to be executed
in the loop.

0 For more information on asyncio futures, check out the following documentation: nttps: //docs.py

thon.org/3/1ibrary/asyncio-task.html#future.

You can find the fOHOWiI’lg code in the future_exampie.py file:

#!/usr/local/bin/python3

import asyncio
from aiohttp import ClientSession
import time

async def fetch(url, session):
async with session.get(url) as response:
async operation must be preceded by await
return await response.read()

In the following code block, we are defining our execute method, which uses the
clientsession() class from the aiothttp package for resolving requests and getting
responses with the async-await pattern:

async def execute(loop):
url = "http://httpbin.org/{}"
tasks [1]
sites ["headers', 'ip', 'user-agent']
Fetch all responses within one Client session,
keep connection alive for all requests.
async with ClientSession() as session:
for site in sites:
task = asyncio.ensure_future(fetch(url.format(site), session))
tasks.append(task)
async operation must be preceded by await
responses = await asyncio.gather(*tasks)
you now have all response bodies in this variable
for response in responses:

https://docs.python.org/3/library/asyncio-task.html#future

print(response.decode())

This is our main program, which initializes the event loop and calls the execute
method inside the context created by the asyncio.ensure_future() method. This is
shown as follows:

if __name__ == '__main__"':
tl1 = time.time()
loop = asyncio.get_event_loop()
future = asyncio.ensure_future(execute(loop))
loop.run_until complete(future)
print(time.time() - t1, 'seconds passed')

Among the main methods we are using, we can highlight the following:

® loop.run_until complete() iS the event IOOp that runs until a particular coroutine
completes.

® asyncio.gather() collects future objects in one place and waits for all of them
to finish.

® response.read() iS an async operation. This means that it does not return a
result immediately—it just returns a generator. This generator still needs to
be called and executed, but this does not happen by default; we need to use

await.

The following is the output of the previous script, where we can see headers for
request and response:

{

"headers": {

llAcceptll : II*/*II,

"Accept-Encoding": "gzip, deflate",
"Host": "httpbin.org",

"User-Agent": "Python/3.7 aiohttp/3.5.4"

}
}

{
"origin": "192.113.65.10, 192.113.65.10"
}

{
"user-agent": "Python/3.7 aiohttp/3.5.4"
}

0.4722881317138672 seconds passed

In this script, we were introduced to the await keyword, which is one of the
fundamental building blocks of asynchronous programs in Python.

The await keyword tells the Python interpreter that the succeeding expression is
going to take some time to evaluate so that it can spend that time on other tasks.

Task manipulation with asyncio

The asyncio module provides the asyncio.Task() method to handle coroutines with
tasks. The asyncio.Task class is a subclass of asyncio. Future and aims are used to
manage coroutines. A task is responsible for the execution of a coroutine object in
an event loop. When a coroutine is wrapped in a task, it connects the task to the
event loop and then runs automatically when the loop is started, thus providing a
mechanism to automatically drive the coroutine.

For more information on task manipulation with asyncio, check out the following
documentation: https://docs.python.org/3.7/1library/asyncio-task.html.

You can find the following code in the asyncio_task.py file:

#1/usr/bin/python3
import asyncio
import time

@asyncio.coroutine

def task_sleep(name, loop, seconds=1):

future = loop.run_in_executor(None, time.sleep, seconds)

print("[%s] coroutine will sleep for %d second(s)..." % (name, seconds))
yield from future

print("[%s] done!" % name)

In the previous code block, we defined the task_sieep() method annotated with
@asyncio.coroutine, this method will execute the task with a specific time sleep,
when execution is finished this time it will return the future.

In the next code block, we define our main program, where we define the event
loop and our task list using asyncio. task.

We execute the tasks until complete with run_unti1_complete() method:

if __name__ == '__main__"':

loop = asyncio.get_event_loop()

tasks = [asyncio.Task(task_sleep('Task-A', loop, 10)), asyncio.Task(task_sleep('Task-B'
loop.run_until complete(asyncio.gather(*tasks))

The following is the output of this script's execution:

[Task-A] coroutine will sleep for 10 second(s)...
[Task-B] coroutine will sleep for 5 second(s)...
[Task-C] coroutine will sleep for 1 second(s)...

https://docs.python.org/3.7/library/asyncio-task.html

[Task-C] done!
[Task-B] done!
[Task-A] done!

We can see how the first task ends with c, then g, and finally a, depending on the
defined sleep times.

Downloading files with asyncio

In the following example, we will import the modules that we need and then
create our first coroutine using the async syntax. This coroutine is called
download_file, and it uses Python's requests module to download whatever file is
passed to it. When it is done, it will return a message that's related to the file that
is being downloaded.

You can find the fOHOWiI’lg code in the download_files_asyncio.py file:

#1/usr/bin/python3

import asyncio
import os
import requests
import time

files = ['https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip', "httg

async def download_file(url):
response = requests.get(url)
filename = os.path.basename(url)
print('Downloading {filename}'.format(filename=filename))
open(filename, 'wb').write(response.content)
msg = 'Finished downloading {filename}'.format(filename=filename)
return msg

In the previous code block, we defined our file list for downloading and the
download_file() method, which accepts the URL that contains the file as a
parameter. In the following code block, we are defining the main function that
we are going to use for downloading files in an asynchronous way. We will do
this by using coroutines with the async-await mechanism:

async def main(files):
coroutines = [download_file(file) for file in files]
completed, pending = await asyncio.wait(coroutines)
for item in completed:
print(item.result())

if __name__ == '__main__"':
tl1 = time.time()
event_loop = asyncio.get_event_loop()
try:
event_loop.run_until complete(main(files))
finally:
event_loop.close()
print(time.time() - t1, 'seconds passed')

This is the output of this script's execution:

Downloading python-3.7.2-docs-pdf-a4.zip
Downloading python-3.7.2-docs-pdf-letter.zip
Finished downloading python-3.7.2-docs-pdf-letter.zip
Finished downloading python-3.7.2-docs-pdf-a4.zip
11.149724960327148 seconds passed

In this execution, we can see the files to be downloaded, as well as the execution
time for downloading these files.

Introducing aiohttp

The next module we are going to review is frequently used in conjunction with
asyncio. This is because it provides a framework for working with asynchronous
requests. It is an excellent solution for complementing the server part of a web
application with Python 3.5+ as well.

The main tool for making requests is the requests module. The main problem with
requests is that the thread is blocked until we obtain a response. By default,
request operations are blocking. When the thread calls a method such as get or
post, it pauses until the operation completes.

To download multiple resources at once, we need many threads. At this point,
aiohttp allows us to make requests asynchronously. You can install aiohttp by
using the pip install aiohttp command:

ollecting aiohttp
Downloading https://files.pythonhosted.org/packages/bc/bd/08f8900d62bdealcalobb2e2al596ac3b04024c7dat7350debeedbd@22fb
/aiohttp-3.5.4-cp37-cp37m-win_amd6é4.whl (611kB)
1e0% | N | G14k5 1.6MB/s
ollecting async-timeout<4.8,>=3.8 (from aiohttp)
Using cached https://files.pythonhosted.org/packages/el/le/5a4441be21b@726c446413123c8b19628372f606755a9d2e46c187e65eC
/async_timeout-3.0.1-py3-none-any.whl
ollecting multidict<5.0,>=4.8 (from aiohttp)
Downloading https://files.pythonhosted.org/packages/38/c7/@7d8d88c3c16Te65d8596dad429d104229dd7433b07432694a3ab45a72eaq
/multidict-4.5.2-cp37-cp37m-win_amd64.whl (138kB)
1007 | I | 143k5 999kB/s
ollecting yarl<2.0,>=1.@ (from aiohttp)
Downloading https://files.pythonhosted.org/packages/7d/dc/fb3617b3de986566b54blae59eb72fc72818358d7ed9164b26F155Fa682d
/yarl-1.3.8-cp37-cp37m-win_amdé4.whl (121kB)
107 | N | 122kE 885kE/s
ollecting chardet<4.8,>=2.8 (from aiohttp)
Using cached https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487bdbblddec7ca55ec7516b22ed4c51F14098443b
8/chardet-3.0.4-py2.py3-none-any.whl
ollecting attrs>=17.3.8 (from aiohttp)
Downloading https://files.pythonhosted.org/packages/3a/el/5f9623cc983F1a628a8c2fd051ad19e76Ff7bld2abfaf329336f9a62a51
/attrs-18.2.0-py2.py3-none-any.whl
ollecting idna>=2.@ (from yarl<2.8,>=1.8->aiochttp)
Downloading https://files.pythonhosted.org/packages/14/2c/cd551d81dbel52688belcf41cd@3869ad46Fe7226e7450af7a6545bfc474c9
/idna-2.8-py2.py3-none-any.whl (58kB)
100% | I | 61k 613kB/s
Installing collected packages: async-timeout, multidict, idna, yarl, chardet, attrs, aiohttp
uccessfully installed aiohttp-3.5.4 async-timeout-3.0.1 attrs-18.2.0 chardet-3.0.4 idna-2.8 multidict-4.5.2

The documentation for aiohttp is available at nttp://aionttp. readthedocs. io/en/stabie, and the source
code is available at https://github.com/aio-1ibs/aiohttp.

clientsession iS the recommended primary interface for aionttp to make requests.
clientsession allows you to store cookies between requests and keeps objects that
are common for all requests (event loop, connection, and access resources).

http://aiohttp.readthedocs.io/en/stable
https://github.com/aio-libs/aiohttp

After you open a client session, you can use it to make requests. At this point,
we will execute the request where another asynchronous operation starts. The
context manager's with statement ensures it will be closed properly in all cases.

To start the execution, you need to run it in an event loop, so you need to create
an instance of the asyncio loop and add a task to it.

You can find the following code in the aiohttp_request.py file:

#!/usr/local/bin/python3

import asyncio
from aiohttp import ClientSession
import time

async def request():
async with ClientSession() as session:
async with session.get("http://httpbin.org/headers") as response:
response = await response.read()
print(response.decode())

if __name__ == '__main__"':
tl1 = time.time()
loop = asyncio.get_event_loop()
loop.run_until complete(request())
print(time.time() - t1, 'seconds passed')

This is the output of the preceding script:

{

"headers": {

IIAcceptll : ll*/*ll,

"Accept-Encoding": "gzip, deflate",
"Host": "httpbin.org",

"User-Agent": "Python/3.6 aiohttp/3.5.4"

}
}

In a similar way, we can use the aionhttp module to request a URL. We can do this
Wwith aiohttp.clientsession().get(url). In this example, we are using the yield
keyword to await the response.

You can find the fOHOWiI’lg code in the aiohttp_single_request.py file:

#1/usr/bin/python3

import asyncio
import aiohttp
url = 'http://httpbin.org/headers'

@asyncio.coroutine
def get_page():
resp = yield from aiohttp.ClientSession().get(url)

text = yield from resp.read()
return text

if __name__ == '__main__"':
loop = asyncio.get_event_loop()
content = loop.run_until complete(get_page())
print(content)
loop.close()

This is the output of the preceding script:

Unclosed client session

client_session: <aiohttp.client.ClientSession object at 0x000001BFE94117F0>

Unclosed connector

connections: ['[(<aiohttp.client_proto.ResponseHandler object at 0x000001BFE954F708>, 7
connector: <aiohttp.connector.TCPConnector object at 0x000001BFE9411EB8>

b'{\n "headers": {\n "Accept": "*/*", \n "Accept-Encoding": "gzip, deflate", \n

Downloading files with aiohttp

First, we must import the modules we need to make our HTTP requests
asynchronous. All asynchronous functions will need to have the async keyword in
the function definition.

We will start by defining our download_file function, which will take two
parameters: the first parameter is the URL for downloading the image, and the
second parameter is called parts, which is the number of parallel requests we
want to make to the server.

To make our asynchronous program faster, this is how our script is going to
work:

1.

2.

We are going to make a head request to the file URL with

the aiohttp.clientsession().head(url) method.

We are going to get the value of the content-Length header for getting the file
size with the size = int(resp.headers["cContent-Length"]) instruction.

With the get_partial_content method, we are sending multiple cet requests to
the file URL using the range header to specify the range of bytes that we
want.

We are going assimilate all the responses using the final_result =
sorted(task.result() for task in response) instruction.

You can find the following code in the download_file_aiohttp.py file:

#1/usr/bin/python3

import asyncio
import itertools
import aiohttp
import time
import os

async def download_file(url, parts):

async def get_partial_content(u, i, start, end):
async with aiohttp.ClientSession().get(u, headers={"Range": "bytes={}-{}".format
return i, await _resp.read()

async with aiohttp.ClientSession().head(url) as resp:
size = int(resp.headers["Content-Length"])

ranges = list(range(0, size, size // parts))

response, _ = await asyncio.wait([get_partial content(url, i, start, end) for i, (st

final_result = sorted(task.result() for task in response)
return b"".join(data for _, data in final_result)

In the previous code block, we defined our download_file() method, which accepts
the ur1 and the parts number that divides requests as parameters. In the following
code block, we are defining our main function, which we will use to download a
file in an asynchronous way. We are going to use the asyncio event loop and

the run_until_complete() method:

if __name__ == '__main__"':
file_url = 'https://docs.python.org/3/archives/python-3.7.2-docs-pdf-letter.zip'
loop = asyncio.get_event_loop()
tl1 = time.time()
bs = loop.run_until complete(download_file(file_url, 10))
filename = os.path.basename(file_url)
with open(filename, 'wb') as file_handle:
file_handle.write(bs)
print('Finished downloading {filename}'.format(filename=filename))
print(time.time() - t1, 'seconds passed')

This is the output we get when we execute the download_file_aiohttp.py SCIript:

client_session: <aiohttp.client.ClientSession object at 0x000001FABBB42DD8>

Unclosed connector

connections: ['[(<aiohttp.client_proto.ResponseHandler object at 0x000001FABBCEED08>, 7
connector: <aiohttp.connector.TCPConnector object at 0x000001FABBCE6C88>

Finished downloading python-3.7.2-docs-pdf-letter.zip

2.9168717861175537 seconds passed

When you execute the script, you will see information about the objects that
were created internally by aionttp, among which we can

hlghllght aiohttp.client.ClientSession fOr managing the client session,
aiohttp.client_proto.ResponseHandler for managing the response, and
aiohttp.connector.TCPConnector for managing the connection.

Other event loop solutions

We can define event loops as abstractions that ease up by using polling functions
to monitor events. Internally, event loops make use of po11er objects, taking away
the responsibility of the programmer to control the tasks of addition, removal,
and control of events. Some examples of applications that implement event loops
in Python are as follows:

Tornado web server (http://ww. tornadoweb.org/en/stable): Tornado uses epoll
as the polling function if the environment is Linux and has kqueue support
in the case of BSD or Mac OS X

Twisted (https://twistedmatrix.com): This is a popular framework that offers
an implementation of the event loop and is used by the Scrapy framework
Gevent (http://www.gevent.org): This provides an event loop based on 1ibev
Eventlet (https://pypi.python.org/pypi/eventlet)Z This implements an event
loop based on 1ibevent

In this section, you have learned about the asyncio and aionttp packages, which
simplify the process of writing servers when using an event-driven approach,
and we explained some uses cases related to file downloading in an
asynchronous way. In the next section, we are going to introduce the Tornado
framework for building asynchronous network applications.

http://www.tornadoweb.org/en/stable
https://twistedmatrix.com
http://www.gevent.org
https://pypi.python.org/pypi/eventlet

Building asynchronous network
applications with Tornado

In this section, you will learn about building asynchronous network applications
with the Tornado framework.

Introducing Tornado

The traditional model for creating applications such as web servers that support
several clients concurrently is based on a multithread system in which a new
thread is created for each client that connects to the service. This results in a
fairly high consumption of system resources and performance problems, which
can be quite serious.

Tornado is a module written in Python that allows you to create asynchronous
and non-blocking systems for network operations, where each request executed
by a client can be asynchronous. The way in which the library is implemented
allows you to scale to several thousand open connections, something that is ideal
for applications that require connections with a long lifetime.

You can install it with the pip install tornado command or download the latest
version that's available from our the GitHub repository (https://github.com/tornadow
eb/tornado) and install it manually using the setup.py script.

Tornado can be considered an alternative to Twisted and is suitable for handling
a large number of connections since it can respond to an incoming client, send a
request to the controller, and not return a control to the client until the result of
the call is obtained. Asynchronous processing facilitates functional decoupling
and access to shared data. This works very well with a stateless design such as
REST, or other service-oriented architectures.

You can get more information about the framework and the source code in the
GitHub repository: https://github.com/tornadoweb/tornado.

https://github.com/tornadoweb/tornado
https://github.com/tornadoweb/tornado

Implementing the Tornado web
server

Tornado has several classes and functions that allow you to create different types
of network elements, both synchronous and asynchronous. In this particular
case, we will focus on the module that allows for the creation of servers and web
applications with Tornado. This will be useful to perform proof of concept and
understand the operation of certain features in web environments.

The following script will allow for the creation of a basic web server using
Tornado, which will accept normal HTTP connections if the user requests the '/
resource.

You can find the fOHOWiI’lg code in the tornado_web_server.py file:

#1/usr/bin/python3

import tornado.ioloop
import tornado.web
from tornado.options import define, options

class MyHandler(tornado.web.RequestHandler):
def get(self):
self.render("index.html")

if __name__ == '__main__"':
define("port", default=8080, help="run on the given port", type=int)
app = tornado.web.Application([('/', MyHandler)])
app.listen(options.port)
print("Tornado web server listening on port 8080");
tornado.ioloop.IOLoop.instance().start()

The tornado.web.Application Object is responsible for defining the URIs that are
available to the web server. In this specific case, it has been defined that the user
will be able to access the path '/'. If the user requests the resource '/', the server
will be responsible for executing the mynandier handler.

The mynand1er class inherits from the tornado.web.RequestHandler class, which is
responsible for processing HT'TP requests that are made by clients that use the
ceT method. In this case, the class is simply responsible for responding to the
client with the index.nhtm1 page.

Finally, the actual definition of the web server is given by an instance of the
tornado.ioloop.I0oLoop Class which is responsible for creating a thread that will run
indefinitely and use the options per line of commands that have been defined by
means of the tornado.options.define function.

With all of the preceding information under our belt, it is now possible to run the
web server with the following command:

| $ python tornado_web_server.py

When you execute the preceding command, you will see the following message
on your console:

| Tornado web server listening on port 8080

If the user requests the resource '/', the server will respond with the
index.html page, as shown in the following screenshot:

C' (@ localhost:8080

This is server by tornado

In this section, we have analyzed how to create our own server with Tornado
using the event loop that's provided by the tornado.iol00p package.

Implementing an asynchronous client
with AsyncHTTPClient

Tornado includes a class called asynchtteciient, which performs HTTP requests
asynchronously. The first thing is to create our application, which will inherit
from application. Then, we will run an HTTP server that supports our
application. Next, we will indicate in which port we want the server to listen.
Finally, we will launch the event loop, which will listen to requests with

the 1oLoop.current().start() instruction.

In the following example, we are using the fetch method of asyncurTPciient, which
specifies the method or function that will be called when the HTTP request is
complete as a caliback parameter. In this example, we specified the

on_response Method as the caiiback. Also note the use of the @tornado.web.asynchronous
decorator and the call to seif.finish() at the end of the caiiback response method.

You can find the fOHOWiI’lg code in the tornado_request_async.py file:

#1/usr/bin/python3

import tornado.ioloop
import tornado.web
import tornado.httpclient

class Handler(tornado.web.RequestHandler):

@tornado.web.asynchronous

def get(self):

http_client = tornado.httpclient.AsyncHTTPClient()
http_client.fetch("https://www.google.com/search?q=python", callback=self.on_response)

def on_response(self, response):
self.write(response.body)
self.finish()

In the previous code block, we define our Handler class that extends from
tornado.web.RequestHandler. This class contains the asynchronous get() method and
on_response() method, which is called when getting a response from the nttp_ciient
object.

In the following code block we define our main program, where we define the
event loop and our application managed by the nand1er class:

if __name__ == '__main__"':

app = tornado.web.Application([tornado.web.url(r"/", Handler)])
app.listen(8080)

tornado.ioloop.IOLoop.current().start()

If we execute this script and go to (http://1ocalhost:8ese), we will see the response
related to the Python search in the Google domain.

Another way to implement an asynchronous client is to create a
TornadoAsyncclient () class with a method that handle requests. In this example, we
can see this implementation where the URL is requested as a parameter in the
script.

You can find the fOHOWiI’lg code in the tornado_async_client.py file:

#1/usr/bin/python3

import argparse
import tornado.ioloop
import tornado.httpclient

class TornadoAsyncClient():

def handle_request(self, response):

if response.error:

print ("Error:", response.error)

else:

print(response.body)
tornado.ioloop.IOLoop.instance().stop()

In the previous code block, we define our tornadoasyncciient class that manages the
request and the event loop.

In the next code block we define our run_server() method and main program ,
where we instantiate the Tornadoasyncciient class, starting the event loop, and set the
url parameter to do the request:

def run_server(url):
tornadoAsync = TornadoAsyncClient()
http_client = tornado.httpclient.AsyncHTTPClient()
http_client.fetch(url, tornadoAsync.handle_request)
tornado.ioloop.IOLoop.instance().start()

if __name__ == '__main__"':
parser = argparse.ArgumentParser(description='Tornado async client')
parser.add_argument('--url', action="store", dest="url", type=str, required=True)
given_args = parser.parse_args()
url = given_args.url
run_server(url)

The previous execution script will create a Tornado server that will execute

http://localhost:8080

requests asynchronously. To execute it, it is necessary to pass the URL that we
want to obtain the response from as a parameter:

usage: tornado_async_client.py [-h] --url URL
tornado_async_client.py: error: the following arguments are required: --url

When you run the preceding command, you will see the response body of the
URL that is passed as a parameter.

Asynchronous generators

Another way to write asynchronous code in Tornado is by using coroutines.
Instead of using a cai1back function for processing the response, we can use the
yield keyword to resume and suspend the execution. Tornado 2.1 introduced the
tornado.gen.coroutine module, which provides a pattern for performing
asynchronous requests.

You can find the fOHOWiI’lg code in the tornado_request_async_coroutine.py file:

#1/usr/bin/python3

import tornado.ioloop
import tornado.web
import tornado.httpclient

class Handler(tornado.web.RequestHandler):

@tornado.web.asynchronous

@tornado.gen.coroutine

def get(self):

http_client = tornado.httpclient.AsyncHTTPClient()

response = yield tornado.gen.Task(http_client.fetch, "https://www.google.com/search?qg=f
self.write(response.body)

In the previous code block, we define our Handler class that extends from
tornado.web.RequestHandler. This class contains the asynchronous get() method and
write body response when getting a response from the nttp_c1ient object.

In the next code block, we define our main program, where we define the event
loop and our application managed by the Hand1er class:
if __name__ == '__main__"':
app = tornado.web.Application([tornado.web.url(r"/", Handler)])

app.listen(8080)
tornado.ioloop.IOLoop.current().start()

As you can see, this code is identical to the previous version of the code. The
main difference is in how we call the fetch method of the asyncutTeciient Object.

In the example in the Asynchronous generators section, we will be using
Python's yield keyword, which returns control of the program to Tornado,
allowing it to execute other tasks while the HTTP request is in progress. When
the task is completed, this instruction returns the HTTP response in the request

handler and the code is easier to understand.

Note the use of the @tornado.gen.coroutine decorator just before the definition of the
get method. This decorator allows Tornado to use internally the tornado.gen.Task
class. For more details, you can look over the module documentation, which can
be found at http://www.tornadoweb.org/en/stable/gen.html.

http://www.tornadoweb.org/en/stable/gen.html

Utilities in Tornado for asynchronous
network operations

The tornado.netutil module includes several functions that are quite useful for
both clients and servers. The use of some of these functions are commented as
follows:

>>> from tornado import netutil

>>> sockets = netutil.bind_sockets(8080)

>>> sockets

[<socket.socket fd=1108, family=AddressFamily.AF_INET6, type=SocketKind.SOCK_STREAM, prc

>>> netutil.is_valid_ip('127.0.0.1")
True

>>> netutil.is_valid_ip('::1")
True

>>> netutil.is_valid_ ip('::11111")
False

>>> dnsResolver = netutil.Resolver ()

>>> dnsResolver
<tornado.netutil.DefaultExecutorResolver object at 0x0341FD10>

>>> dnsResolver.resolve('www.packtpub.com', 80)

<Future pending cb=[_make_coroutine_wrapper.<locals>.wrapper.<locals>.<lambda>()>

The bind_sockets function is responsible for creating the sockets in all of the
available network interfaces and returns a list with each of the references that
were created.

The is_va1id_ip function validates whether an IPv4 or IPv6 address is valid or not.

Finally, the reso1ver class allows you to configure several types of resolvers for
blocking and non-blocking DNS requests. The default resolver is

tornado.netutil.DefaultExecutorResolver.

For more information about the utilities that are available in Tornado, it is
recommended to review the documentation, which can be found at nttp://tornado.

http://tornado.readthedocs.org/en/latest/netutil.html

readthedocs.org/en/latest/netutil.html.

In this section, we have reviewed the Tornado framework for creating
asynchronous and non-blocking systems. In the following section, we are going
to review the Twisted framework for developing asynchronous applications
using an event-driven network engine.

Building asynchronous network
applications with Twisted

In this section, you will learn about building asynchronous network applications
with the Twisted framework.

Introduction to Twisted

Twisted is an event-driven network engine that can be used to develop
asynchronous and publish/subscribe-based applications.

Twisted can be obtained from the PYPI repository at https://pypi.org/project/Twiste
d. You may need to install some additional packages on Windows and Linux
hosts. The installation procedure is documented at nttps://twistedmatrix.com/trac.
You can use the pip install twisted command to install Twisted and its
dependencies.

If you are under an Debian/Ubuntu operating system, another way to download
and install Twisted is to use the following command:

| sudo apt-get install python-twisted

For other platforms, the latest versions of Twisted and its dependencies can be
found at https://twistedmatrix.com/trac/wiki/Downloads.

Twisted is based on the paradigm of event-driven programming, meaning that
Twisted users can write small predefined callbacks in the framework to perform
complex tasks.

The Twisted design is based on the complete separation between logical
protocols (which usually depend on the semantic connection based on streams or
flows, such as HTTP or POP3) and transport in physical layers that are supported
as semantics in streams (such as files, sockets libraries, or SSL).

https://pypi.org/project/Twisted
https://twistedmatrix.com/trac
https://twistedmatrix.com/trac/wiki/Downloads

Protocols

Twisted is a network framework that implements a large number of protocols. It
uses the paradigm known as event-driven programming, where the flow of a
program is determined by the events that occur during its execution. The main
objective of this framework is to provide a solution to the problems that are
established by the use of sockets at a low level, mediating with threads and with
the problems that this also presents (for example, access to shared data).

Twisted implements a multitude of protocols that we can use in our applications
in a simple and asynchronous way—it contains a web server, instant messaging

clients, chat servers, mail servers and clients, servers and SSH clients, and much
more.

Twisted is designed to separate the logical protocols (SMTP, HTTP, and SSH)
and transport in physical layers (sockets or SSL). The connection between
protocols and layers takes place at the last moment just before the data is
delivered to the logical protocol instance. It is at that moment when the protocol
layer can make use of the transport layer, that is, as long as they are semantically
compatible.

Twisted is responsible for reading data through the protocol that it integrates
with the protocol.protocol class, which is from the twisted.internet package.

The most common use of Twisted is for the definition of the type protocol,
which is used from a Twisted factory. It is responsible for managing connections.
Finally, we use a reactor object to establish the endpoint of the factory.

Objects of the protocol type are non-persistent, which means that they are
created and destroyed after each connection, while a factory is an object with a
state where the information is kept between several connections.

Building a basic Twisted server

At the time of making a server using the Python socket libraries, a loop was
implemented that is in charge of verifying the new connections. We will manage
the event handlers with Twisted.

We can manage events for many situations, such as a new connection by a client,
the reception of data, or whether a client has been disconnected. These event
handlers are defined in a protocol, and this protocol needs a ractory that can build
the objects of the events. This may sound confusing, but the code will make
everything clearer.

In the following example, we are going to write a basic server using the Twisted
framework. You can find the fOHOWiI’lg code in the twisted_basic_server.py file:

#1/usr/bin/python3

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, Factory

class MessagelLogger (Protocol):
def connectionMade(self):
print('Client connection from:', self.transport.client)

def connectionLost(self, reason):
print('Client disconnected from:', self.transport.client)

def dataReceived(self, data):
self.transport.write(data)
print("Message sent by the client: ", data.decode("utf-8"))

In the previous code block, we defined our messageLogger class, which functions as
a protocol. In the following code block, we are defining the messageractory class
for managing the connection. Finally, our main program connects the protocol to
d server running on pOFt 8080 llSiI'lg the MessageFactory class:

class MessageFactory(Factory):

def buildProtocol(self, addr):
return MessagelLogger()

def clientConnectionFailed(self, connector, reason):
print ("Connection failed")
reactor.stop()

def clientConnectionLost(self, connector, reason):

print ("Connection lost")
reactor.stop()

#this connects the protocol to a server running on port 8080
if __name__ == '__main__':
#factory = Factory()
#factory.protocol = MessagelLogger
reactor.listenTCP (8080, MessageFactory())
reactor.run()

We will start by creating a server that forwards everything it receives. Then, we
will use a basic client using the standard socket module to test the code.

The first thing we need to do is import the necessary libraries and components,
which in this case, are the reactor, protocol, and factory. Then, we will handle
the events within a class, such as when we have a new connection, connectionmade,
a lost connection, connectionLost, and if we receive data, datareceived.

This is a simple server program that forwards everything it receives. To achieve
this, a protocol must be established. It is for that reason that a new class is
created, messageLogger, Of which there will be one instance per connection. The
datareceived Mmethod is an event that will be called for each portion of data that has
been received. This data is passed to the event in a data argument, which is then
used to send what has been received to the client:

class MessagelLogger (Protocol):

def dataReceived(self, data):

self.transport.write(data)
print("Message sent by the client: ", data.decode("utf-8"))

self.transport iS an instance of twisted.internet.tcp.Server, through which we send
data to the client.

Factory

The class that's responsible for creating a messageLogger instance for each client
that connects to our server is the messageractory class, which is an instance of
twisted.internet.protocol.Factory. It is I‘ESpOHSibIE for Inaking pTOtOCOIS for each
incoming connection.

buildprotocol iS an event that will be called every time an incoming connection is
found. It will assign a protocol to it. In this way, each connection will be tied to a
protocol that's specified by the developer in this method. In this case, all
connections will be handled through the same messageLogger protocol, which
forwards everything that's received.

We will make an instance of ractory that will be in charge of building the
necessary objects. We will also specify that its protocol will be the class that we
have made. Finally, we will make our program listen in a specific port with a
reactor.

The following is the class we used for defining our ractory class. This will be
instantiated every time an incoming connection is received:
class MessageFactory(Factory):

def buildProtocol(self, addr):
return MessagelLogger()

The argument that buildprotocol receives is an instance of 1pvaaddress OF 1Pv6Address,
as appropriate. It contains information about the client, and the incoming
connection, such as the IP address and port, among other things. This data can
also be accessed in the protocol through the seif.transport.getreer function.

Reactor

Twisted implements the reactor design pattern, which describes how to obtain
and redirect events from multiple sources to their respective handlers in a single
thread.

The Twisted core is the reactor event loop. The event loop waits for these events
and then processes them, abstracting specific behavior of a platform and
presenting interfaces to facilitate the response.

The reactor is the main Ttwisted loop, and is responsible for calling the events at
the appropriate time and alternating between the different connections to achieve
(rather than simulate) concurrency.

For creating a reactor that's listening in a specific port, we can use the 1istentce()
method. We will pass in the port and the ractory class that was created in the
Factory section as parameters:

reactor.listenTCP(8080, MessageFactory())
reactor.run()

In this case, it is used to listen to TCP connections through port sese. As a second
parameter, an instance of our factory is passed, which, as we indicated
previously, is responsible for assigning a protocol to each incoming connection.

Finally, we execute the main loop by calling the reactor.run() function.

Building a socket client

For simplicity, our client will be a socket that connects to our server that was
developed with Twisted.

You can find the following code in the socket_client.py file:

#1/usr/bin/env python3
from socket import socket

s = socket()
s.connect(("127.0.0.1", 8080))
while True:
output_data = input("Enter message> ")
if output_data:
s.send(output_data.encode())
input_data = s.recv(1024)
if input_data:
print(input_data.decode("utf-8"))

In this section, we have analyzed how to create our own socket client for
communicating with the Twisted server on port sese.

Executing the client and server

First, we need to run the server with the following command:

| $ python twisted_basic_server.py

At this moment, the server is waiting for connections from the client. If we run
the client, we can write any message in the console and you will see how the
server responds with what it has received. The following could be the messages
that the server receives from two connected clients:

Client connection from: ('127.0.0.1', 8229)

Message sent by the client: hi this is my message

Message sent by the client: Message from client 1

Client connection from: ('127.0.0.1', 8282)

Message sent by the client: Message from client 2

Client disconnected from: ('127.0.0.1', 8282)
Client disconnected from: ('127.0.0.1', 8229)

The twisted_basic_server.py Script starts a TCP server listening for connections on
port sese.

This script sends the information through the transport channel using the
MessageLoggerprotocol class. The client socket establishes a TCP connection to the
server, resending the server response, terminating the connection, and stopping
the reactor. The messageractory class is used to connect both client and server,
creating instances of the messageLogger class.

Communication is asynchronous on both sides; connecttce is in charge of
registering the callbacks in the reactor so that we're notified when the
information is available to be read from the socket.

Building a Twisted client

For creating a Twisted client, we can follow the same programming model we
used for creating a server with Twisted. Basically, we need to define a protocol
type, a factory, and a reactor.

To create clients with Twisted, we can use the tcpaclientendpoint class to establish
a connection with the server. We will use the connectprotocol method and pass
through the host and the port as parameters.

There are multiple classes and utilities to make connections to remote servers
using Twisted. The use of such classes depends on the protocol that's used for
communication with the server.

You can find the following code in the twisted_basic_client.py file:

#1/usr/bin/python3

from twisted.internet import reactor
from twisted.internet.protocol import Protocol
from twisted.internet.protocol import ClientFactory

class MyTwistedClient(Protocol):
def connectionMade(self):
self.transport.write('Connection established'.encode())

def connectionLost(self, reason):
print('Connection Lost %s ' %(reason))

def dataReceived(self, data):
print('Server data: ', data)
self.transport.loseConnection()

In the previous code block, we defined our mytwistedciient class that functions as
protocol. In the following code block, we define the mytwistedclientractory class
for managing the connection.

Finally, our main program that connects the protocol to a server running on port
8080 USiIlg the myTwistedclientractory()) class is as follows:

class MyTwistedClientFactory(ClientFactory):
protocol = MyTwistedClient

def clientConnectionFailed(self, connector, reason):

print('Connection Failed')
reactor.stop()

def clientConnectionLost(self, connector, reason):
print('Connection Lost')
reactor.stop()

reactor.connectTCP('localhost', 8080, MyTwistedClientFactory())
reactor.run()

In this section, we have built our own Twisted client for communicating with a
Twisted server on port sese. In this case, we are creating a class

called mytwistedciient that acts as protocol, as well as a class

called myTwistedciientractory, which manages connections between the client and
server.

Building a Twisted web server

Twisted contains a series of classes and utilities to create various types of servers
and clients. It is possible to create configurations for web servers and
configurations to use the SSL protocol between clients and servers. In this
example, we are developing a server that receives HTTP requests.

You can find the fOHOWng code in the twisted_web_server.py file:

#1/usr/bin/env python3

from twisted.internet import reactor
from twisted.web import server, resource

class TwistedResource(resource.Resource):
def render_GET(self, request):
return b"<html><center><hil>Twisted server is running on port 8080</hl1></center><

root = resource.Resource()
root.putChild(b"twisted", TwistedResource())
site = server.Site(root)
reactor.listenTCP(8080, site)

reactor.run()

The following is the output of the web server after executing this script:

@ localhost:8

Twisted server is running on port 8080

In this section, we have analyzed how to create our own server with Twisted by
using the event loop that was provided by the twisted.internet package.

Building asynchronous network
applications with Celery

In this section, you will learn about building asynchronous network applications
with the Celery framework.

Celery architecture

Celery is an efficient and scalable way to execute tasks asynchronously and acts
as a distributor of high-level tasks where tasks are queued and run concurrently
using various paradigms such as multiprocessing O gevent.

An efficient and scalable way to perform tasks asynchronously is to use a queue
library as Celery. With this library, you define workers that are processes for
executing the heavy tasks. An interesting aspect of this solution is that there can
be many workers (even in different servers) executing the tasks.

The architecture of the solution is as follows:

e Consumer: This is the application that users use. If it is a web application,
it can be a Django or Flask application.

e Producer: This is the worker who does the heavy work.

¢ Broker: This is the mechanism that the consumer uses to store the pending
work.

e Backend: This is the mechanism that's used by the producer to store the
results of the task.

At this point, we can see how the elements interact with each other in the Celery
architecture:

e The consumer application is responsible for generating tasks that will
receive a message broker like RabbitMQ or Redis. In this chapter, we will
work with the Redis message broker.

e The message broker allows you to send and receive messages, and it
generates tasks to be executed in Celery workers.

e When the tasks are finished, Celery stores this information in the form of
events.

Installing Celery

Celery is a set of tools that allows us to easily work with multiple services, with
some syntactic sugar and annotations in the code. It is a way of launching
services that see them as tasks. First, we will need to install Celery with the
following command:

| pip install celery

The most important concept that Celery handles are tasks. Celery offers the
ability to execute them in real time, or to be scheduled synchronously or
asynchronously through the use of processes or system events.

The broker is the channel that's used to transport messages from one service to
another. In this case, we are going to use a message queue. Celery can use other
services to send and receive messages. These messages are usually the tasks or
the results of the tasks. In this case, we will use Redis since it is very easy to
install and configure for related tasks such as caching and publisher/subscriber
models.

Installing Redis

You can install Redis by following the instructions on the Redis Quick Start page
(https://redis.io/topics/quickstart). It is also necessary to install the Redis Py'thOIl
library, pip install redis, since this package is required for using Redis and
Celery:

| pip install celery [redis]

To install Redis for the Windows operating system, you can choose either of
these sources:

® https://github.com/MSOpenTech/redis/releases
® https://github.com/rgl/redis/downloads

If you are working in a Windows operating syatem, you can download redis-x64-
2.8.2104.zip and extract the ZIP to the prepared directory and execute the redis-

server.exe flle

In the following screenshot, we can see the execution of the Redis server on port
6379.

[18312] 25 Feb 13:40:02.879 # warning: no config file specified, using the default config. In order to specify a config
ile use C:\Users\jortegac\Desktop\redis\redis-server.exe /path/to/redis.conf

Redis 2.8.2104 (00000000/0) 64 bit

Running in stand alone mode
Port: 6379
PID: 18312

http://redis.qio

Feb 13:40:02.910 # server started, Redis version 2.8.2104
Feb 13:40:02.926 * DB loaded from disk: 0.001 seconds _
Feb 13:40:02.926 * The server is now ready to accept connections on port 6379

In you are on a Unix operating system, you can start the Redis server with the
following command:

| $ redis-server

https://redis.io/topics/quickstart
https://github.com/MSOpenTech/redis/releases
https://github.com/rgl/redis/downloads

Introduction to Redis

Basically, Redis is a tool for data structures in memory and is used as a database
cache. With it, most of the data is in memory, making the request for information
that's required through queries much faster.

We can create a connection to Redis from Python by using the redis-py package,
where port=6379 and db=e are default values:

>>> import redis

>>> redis_client = redis.Redis(host='localhost', port=6379, db=0)

>>> print(redis_client)
Redis<ConnectionPool<Connection<host=localhost, port=6379, db=0>>>

Now that we are connected to Redis, we can start reading and writing data. The
following instruction writes the my_vaiue to the Redis my_key key, reads it back, and
prints it:
>>> redis_client.set('my_key', 'my_value')
True

>>> redis_client.get('my_key"')
b'my_value'

With Redis, we can also manage lists in an easy way. These are the methods we
can use for managing this list:

rpush: Allows you to insert elements at the end of the list

e 11en: Returns the list's length

e 1index: Returns the element passing a specific index as a parameter, where
the first element is index o

® 1range: Returns elements from a list, passing the name of the list and indexes

for the start and end elements as parameters:

>>> redis_client.rpush('my_list', 'http')
i>> redis_client.rpush('my_list', 'ftp')
§>> redis_client.rpush('my_list', 'smtp')
§>> redis_client.rpush('my_list', 'tcp')
i>> redis_client.rpush('my_list', 'udp')
§>> redis_client.llen('my_list"')
5

>>> redis_client.lindex('my_list',2)
B'smtp'

>>> redis_client.lrange('my_list',0,4)
[b'http', b'ftp', b'smtp', b'tcp', b'udp']

In the previous script execution, we can see how we can add elements in
the redis_client 1ist, get the list's length, get an element from a specific index,
and get elements from the start and end indexes of the list.

Distributing Python with Celery and
Redis

The following is a simple application that uses Redis as a broker,

where consumer.py sends messages to producer.py. Both the consumer and the
producer require this configuration, where you can use the database with number
o of your local Redis installation:

|app = Celery (‘celery_tasks',broker="'redis://localhost:6379/0',6backend="'redis://localhos

To establish a connection with Celery, we need to set broker and backend
parameters. The broker parameter allows specification of the server address,
where the tasks are stored and the backend parameter is the address where Celery
puts the results so that we can use them in our application. In this case, both
addresses are the same, executing in localhost in the same port.

To start building things with Celery, we will first need to create a Celery
application with the following command:

|$ celery -A producer worker --loglevel=debug --concurrency=4 --pool=solo

The different options that can be used when starting a worker are detailed in the
Celery documentation, which can be found at http://docs.celeryproject.org/en/latest

/reference/celery.bin.worker.html#module-celery.bin.worker.

In the following screenshot, we can see the execution of the previous command:

http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#module-celery.bin.worker

[2019-02-25 :40:19,150: DEBUG/MainProcess] Worker: Preparing bootsteps.

[2019-02-25 :40:19,150: DEBUG/MainProcess] | worker: Building graph...

[2019-02-25 :19,150: DEBUG/MainProcess] | Worker: New boot order: {Beat, StateDB, Timer, Hub, Pool, Autoscaler, Consumer}
[2019-02-25 :19,181: DEBUG/MainProcess] consumer: Preparing bootsteps.

[2019-02-25 40:19,181: DEBUG/MainProcess] Consumer: Building graph...

[2019-02-25 ,219: DEBUG/MainProcess] consumer: New boot order: {Connection, Events, Heart, Agent, Mingle, Tasks, Control,
Eip, event Toop}

- celery@LES005256 v4.2.1 (windowlicker)

pp: celery_tasks:0x4954b10
> transport: redis://localhost:6379/0

> results: redis://localhost:6379/0
> concurrency: 4 (prefork)
- .> task events: ofFF (enable -E to monitor tasks in this worker)

-—- [queues]
.> celery exchange=celery(direct) key=celery

[tasks]
. celery.accumulate
. celery.backend_cleanup
. celery.chain
. celery.chord
. celery.chord_unlock
. celery.chunks
. celery.group
. celery.map
. celery.starmap
. producer.task_execution

After that, Celery needs to know what kind of tasks it can execute. For this, we
have to register the tasks for the Celery application. This is the content of
producer.py, Which exposes a task called task_execution that takes five seconds
before printing the result. We will do this with the @app.task decorator.

You can find the following code in the producer.py file:

1/usr/bin/python3

from celery import Celery
from time import sleep

app = Celery('celery_tasks', broker="'redis://localhost:6379/0', backend='redis://localhos

@app.task
def task_execution(message):
sleep(5)
print('Message received: %s' % message)

The following is the consumer.py code. All it does is receive a message from the
console and send it to the producer:

#1/usr/bin/python3
from producer import task_execution

while True:

message = input('Enter Message> ')
task_execution.delay(message)

The consumer runs with the following command:

$ python consumer.py
Enter Message> This is my message

When writing a message to the consumer, you can see that the producer receives
it and, after 5 seconds, prints it. The interesting thing is that the consumer does
not need to wait 5 seconds—it is instantly available to process another message.
If the producer receives many messages, then they are added to the message
queue.

Also, keep in mind that the records are now in the standard output of the Celery
processes, so check them out at the appropriate Terminal.

In the following screenshot, you can see the output when you send a message
from the consumer Terminal in debug mode:

[2019-03-14 17:05:48,496: INFO/MainProcess] Received task: producer.task_execution[69b6d8b6-5389-4f
31-931d-ea7f53alb5b2]

[2019-03-14 17:05:48,497: DEBUG/MainProcess] TaskPool: Apply <function _fast_trace_task at O0x0481E2
70> (args:('producer.task_execution', '69b6d8b6-5389-4fal-931d-ea7f53alb5bh2’', {'lang': 'py', 'task’
: 'producer.task_execution', 'id': '69b6d8b6-5389-4fal-931d-ea7f53alb5b2’, 'shadow': None, ‘eta’: N
one, 'expires': None, 'group’: None, 'retries': 0, "timelimit': [None, None], 'root_id': '69b6d8b6-

5389-4fal-931d-ea7f53a1b5b2', 'parent_id': None, ‘'argsrepr': "('This 1is the message',)", 'kwargsrep
': "{}", 'origin': 'gen36412@LES005256', 'reply_to': 'f40843f4-6ad3-3c34-9e04-cadcf13977a2', 'corr
i id’: '69b6d8b6-5389-4fal-931d-ea7f53alb5b2", 'delivery info': {'exchange’': "', 'routing _key
': 'celery', 'priority': 0, 'redelivered': None}}, b'[["This is the message"], {}, {"callbacks": nu
11, "errbacks": null, "chain": null, "chord": null}]', "application/json’, 'utf-8') kwargs:{})
[2019-03-14 17:05:48,499: DEBUG/MainProcess] Task accepted: producer.task_execution[69b6d8b6-5389-4
fal-931d-ea7f53alb5b2] pid:41300

In the following screenshot, you can see the output when you send a message
from the consumer Terminal with info mode, --10gievel=info:

[2019-03-14 17:31:10,666: INFO/MainProcess] Connected to redis://Tocalhost:6379/0

[2019-03-14 17:31:10,678: INFO/MainProcess] mingle: searching for neighbors

[2019-03-14 17:31:11,704: INFO/MainProcess] mingle: all alone

[2019-03-14 17:31:11,724: INFO/MainProcess] celery@LES005256 ready.

[2019-03-14 17:31:19,928: INFO/MainProcess] Received task: producer.task_execution[90laef18-f

2ba-471b-a0dd-e7f596102e42]

[2019-03-14 17:31:24,929: WARNING/MainProcess] Message received: This is the message
[2019-03-14 17:31:24,934: INFO/MainProcess] Task producer.task_execution[90laef18-f2ba-471b-a
0dd-e7f596102e42] succeeded in 5.0s: None

There is the option to put the consumer and producer in the script.

You can find the following code in the demo_celery.py file:

#1/usr/bin/python3

Celery full example: publisher/subscriber
from celery import Celery

Redis
app = Celery('demo_celery', broker='redis://localhost:6379/0', backend='redis://localhos

@app.task
def task_execution(message,count):
array=[]

print('Message received: %s' % message)
for index in range(0©,int(count)):
array.append(message)

return (array)

In the previous code block, we defined our Celery application using redis as a
message broker. The task_execution() method is annotated with @app.task. This
method will add the message in array that will return.

In the next code block, we define infinite loop to request user message. For each
message, it generates a task calling the task_execution() method:

def main():

while True:

message = input('Enter Message> ')

count = input('Enter times appears the message> ')
promise = task_execution.delay(message, count)

if _ _name_ == '_ _main__':
main()

In this example, we are using the eventiet event manager. You can install it with
the pip install eventlet command. With the -p gevent command parameter, we can
execute Celery with the following manager event:

|$ celery -A demo_celery worker --loglevel=debug --concurrency=4 -P gevent

This is the output when you enter the number of message and times you want it
to appear in the message.

In the following screenshot, we can see how its execution returns an array with
the message repeated as many times as you have entered:

2019-03-14 17:38:46,676: INFO/MainProcess] Received : demo_celery.task_execution[9
B533208-285b-4b6T-97ab-0b147139f092]
2019-03-14 17:38:46,678: DEBUG/MainProcess] TaskPoo]: Apply <function _fast_trace_task
at 0x03569BB8> (args:(demo_ ce]ery task_execution’ 93533208—285b—4b6f—97ab—0b147139f
D92', {'lang’: 'py', 'task': 'demo ce1ery task_ execut1on "id': '93533208-285h-4b6f-97
hb-0b1471391092", 'shadow': None, 'eta’ None, ‘expires’ None, 'group’: None, 'retries
: 0, "timelimit': [None, None] "root_ id" 93533208 285b 4b6f 97ab- 0b147139f092', 'pa
ent_id': None, ‘'argsrepr': "(' Th1s 1s the message’ '4')", 'kwargsrepr': '{}', 'origin
'gen45476@LES005256", 'reply "3585f47a-bfed-3708-82fb- 0ef67d37c111 "correlati
bn_1id" : '93533208—285b—4b6f—97ab—0b147139f092 ‘delivery_info': {' exchange "', 'rout
ng_key': 'celery’, 'priority’': 0, "redelivered’: Nonel}, b'[["This is the message", Sl
'], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]", ‘applica
ion/json', 'utf-8') kwargs:{})
2019-03-14 17:38:46,683: DEBUG/MainProcess] Task accepted: demo_celery.task_execution[
D3533208-285b-4b61-97ab-0b147139f092] pid:47872
2019-03-14 17:38:46,684: WARNING/MainProcess] Message received: This is the message
2019-03-14 17:38:46,694: INFO/MainProcess] Task demo_celery. task_execution[93533208—28
bb-4b6T-97ab- 0b147139f092] succeeded in 0. 0159999999450519685 i Th1s is the message’,
This is the message', 'This is the message’', 'This is the message']

In this section, you have learned about the Celery and Redis projects for building
applications. They allow you to send messages between a consumer and a
producer with the help of a broker as a mechanism, which allows a consumer to
store pending tasks.

Summary

In this chapter, we reviewed some frameworks and libraries that try to solve the
problem of sequential programming by using event-driven programming, in
which a single main loop is executed. This is responsible for calling the
functions that are defined by the programmer, known as events. In this way, in a
server that serves information to several clients, it is possible to share this
information among all the connections without having to worry about blocking
or allowing access to it. We reviewed asyncio, aiohttp, Tornado, Twisted, and
Celery for building asynchronous network applications.

In the next chapter, you will learn about the basics of Python web frameworks
and developing web applications with the Flask framework and SQLAlchemy.

Questions

>

10.

. What is the main advantage of using aiohttp regarding the requests module

for HTTP requests?

What are the classes from the concurrent.futures package that use the
executor abstract base class?

What is the most important concept within asyncio that allows us to write
asynchronous code using either callbacks or coroutines?

Which class from asyncio is a subclass of asyncio.ruture and allows you to
encapsulate and manage coroutines?

Which keyword from asyncio tells the Python interpreter that the
succeeding expression is going to take some time to evaluate so that it can
spend that time on other tasks?

Which Tornado class is responsible for defining the URIs that are available
for the web server?

Which Tornado class can perform HTTP requests asynchronously?

Which method, when creating a protocol with Twisted, will be called for
each portion of data that has been received?

What is the event, when working with Twisted, that will be called every
time an incoming connection is found, so that you can assign a protocol to
it?

What Twisted class can we use to create clients to establish a connection
with the server?

Further reading

In the following links, you will find more information about the
tools mentioned and the official Python documentation for some of the modules
that we talked about in this chapter:

° Python ThreadPoolExecutor Tutorial: https://tutorialedge.net/python/concurren
cy/python-threadpoolexecutor-tutorial

e Concurrent futures documentation: https://docs.python.org/3/1library/concurrent.

futures.html

asyncio documentation: nhttps://docs.python.org/3/1library/asyncio.html

Tornado web demos: https://github.com/tornadoweb/tornado/tree/stable/demos

Other solutions based on Tornado: nttp://cyclone.io

Alternatives to aiohttp. Sanic as an async Python 3.5+ web server: nhttps://sa

nicframework.org

(:ElETY’pFOjECtZhttp://www.celeryproject.org

L4]\NiStEd.prOjeCtZhttps://twistedmatrix.com/trac

L VV?itﬁ?g.ServerSZhttps://twistedmatrix.com/documents/current/core/howto/servers.htm
1

L VV?jtﬂqg CﬂientSZhttps://twistedmatrix.Com/documents/current/core/howto/clients.htm
1

e Twisted code style gUidEZ https://twistedmatrix.com/documents/current/core/develo

pment/policy/coding-standard.html

https://tutorialedge.net/python/concurrency/python-threadpoolexecutor-tutorial
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/asyncio.html
https://github.com/tornadoweb/tornado/tree/stable/demos
http://cyclone.io
https://sanicframework.org
http://www.celeryproject.org
https://twistedmatrix.com/trac
https://twistedmatrix.com/documents/current/core/howto/servers.html
https://twistedmatrix.com/documents/current/core/howto/clients.html
https://twistedmatrix.com/documents/current/core/development/policy/coding-standard.html

Designing Applications on the Web

In this chapter, you will learn how to implement a web application using

the Web Server Gateway Interface (WSGI). You will be introduced to existing
web application frameworks and how to start working with dynamic web
programming. We will introduce the Flask microframework that's written in
Python, which is designed to facilitate the development of web applications
under the Model-View-Controller (MVC) pattern. Finally, we will review how
to work with HTTP requests in Flask and how to interact with databases through
SQLAIchemy.

The following topics will be covered in this chapter:

Writing a web application with WSGI

A discussion of existing web application frameworks (Django, Flask,
Plone)

The MVC pattern and dynamic web programming with Python
Creating RESTful web applications and working with Flask and HTTP
requests

Interacting with Flask with the SQLAlchemy database

Technical requirements

The examples and source code for this chapter are available in the GitHub
repository in the chapter12 folder, at https://github.com/PacktPublishing/Learning-Python-

Networking-Second-Edition.

You will need to install the Python distribution on your local machine with a
Unix operating system and have some basic knowledge of network protocols.
The examples in this chapter also are compatible with the Windows operating
system.

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Writing a web application with WSGI

In this section, we are going to introduce the necessary concepts to create a web
page that's been developed with Python without using any framework. For this, it
is necessary to know about the concept of WSGI, which is a specification of a
simple and universal interface between web servers and web applications or
frameworks that are developed with Python.

Introducing WSGI

Python web applications were originally written against these CGI and FastCGI
protocols, and a now mostly defunct mod_python Apache module. This proved
troublesome, though, since Python web applications were tied to the protocol or
server they had been written for. Moving them to a different server or protocol
required some reworking of the application code.

This problem was solved with PEP 333, which defined the WSGI protocol. This
established a common calling convention for web servers to invoke web
application code, similar to CGI. When web servers and web applications both
support WSGI, servers and applications can be exchanged with ease. WSGI
support has been added to many modern web servers and is nowadays the main
method of hosting Python applications on the web. It was updated for Python 3
in PEP 3333.

Many of the web frameworks we discussed earlier support WSGI behind the
scenes to communicate with their hosting web servers, Flask and Django
included. This is another big benefit to using such a framework — you get full
WSGI compatibility for free.

There are two ways a web server can use WSGI to host a web application. First,
it can directly support hosting WSGI applications. Pure Python servers such as
Gunicorn follow this approach, and they make serving Python web applications
very easy. This is becoming a very popular way to host Python web applications.

The second approach is for a non-Python server to use an adapter plugin, such as
Apache's mod_wsgi, or the mod_wsgi plugin for Nginx.

The exception to the WSGI revolution is event-driven servers. WSGI doesn't
include a mechanism to allow a web application to pass control back to the
calling process, and so there is no benefit to using an event-driven server with a
blocking-10 style WSGI web application because as soon as the application
blocks for database access, for example, it will block the whole web server
process.

Hence, most event-driven frameworks include a production-ready web server.
Making the web application itself event-driven and embedding it in the web
server process is really the only way to host it. To host web applications with
these frameworks, check out the framework's documentation. In this chapter, we
will review specific frameworks such as Django and Flask.

Creating a WSGI application

All the requests that we make to our server will be handled by the WSGI
application, which will be a single file. This application will be responsible for
handling the requests and returning the appropriate response according to the
requested URL. In this application, we will have to define a function that acts
with each user's request. This function must be a valid application WSGI
function. This means that it should be called application and it should receive
two parameters: environ, from the os module, which provides a dictionary of
standard HTTP requests and other environment variables, and the

start_response function, from WSGI, which is responsible for delivering the HTTP
response to the user.

In the following example, we will create a web server that responds to the
localhost on port sese.

You can find the following code in the wsgi_exampie.py file:

#1/usr/bin/env python3
from wsgiref.simple_server import make_server

def page(content, *args):
yield b'<html><head><title>wsgi_example.py</title></head><body>'
yield (content % args).encode('utf-8'")
yield b'</body></html>'

def application(environ, start_response):
I keep the output that I will return in response
response = "<p>This is my web page built with python wsgi</p>"
A response to the browser is generated
start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')])
return page(response)

if __name__ == '__main__"':
print('Listening on localhost:8080"')
srv = make_server('localhost', 8080, application)
srv.serve_forever()

The controller that we used previously does not take into account the URL that
we accessed the server with, and will always generate the same response. Using
the information about the request that we have stored in the environ dictionary, we
can build different answers according to the request by taking into account the
access URL, for example.

The environ dictionary that is received with each HTTP request contains the
standard variables of the CGI specification, including the following:

® RrequesT_METHoD: GET and post methods

e scrrpr_nave: The initial part of the route, which corresponds to the application

e pati_inro: The second part of the route determines the virtual location within
the application

e querv_string: The portion of the URL that follows the -

e conTenT_TYpe, conTENT_LENGTH Of the HTTP request

® SERVER_NAME, SERVER_PoRT, that, combined with script_name and patH_inro, give the
URL

e server_proTocoL: The protocol version (HTTP/1.0 or HTTP/1.1)

In this way, we can develop a controller to check the access URL and work with
the parameters that were sent by the cer method. In this example, we are using
the querv_sTrIng environment variable to perform a basic operation by parameters
in the URL. For example, if we want to multiply two numbers, we can use these
parameters in the URL query string, like so: operation?

operatoril=2&operator2=10&operation=*.

You can find the following code in the wsgi_exampiez.py file:

#1/usr/bin/env python3
from wsgiref.simple_server import make_server

def page(content, *args):
yield b'<html><head><title>wsgi_example.py</title></head><body>"
yield (content % args).encode('utf-8'")
yield b'</body></html>"

In the first code block, we imported the module for creating our server and
defined the function that will generate the HTML page. In the following code
block, we are defining the application method for processing the query string
and parameters:

def application(environ, start_response):

if environ['PATH_INFO'] == '/':
response = "<p>This is my web page built with python wsgi</p>"
start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')])
return page(response)

elif environ['PATH_INFO'] == '/operation':
print('environ["QUERY_STRING"]:', environ["QUERY_STRING"])
params = environ["QUERY_STRING"].split("&")
print('Parameters ', params)
operatorl = params[0].split("=")[1]

print('Operator 1:',6 operatorl)
operator2 = params[1].split("=")[1]
print('Operator 2:',6 operator2)
operation = params[2].split("=")[1]
print('Operation:',operation)
result = str(eval(operatorli+operation+operator2))
print('Result:', result)
response = "<p>The operation result is %s</p>" %result
start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')])
return page(response)
else:
response = "<p>This URL is not valid</p>"
start_response('404 Not Found', [('Content-Type', 'text/html; charset=utf-8')])
return page(response)

Finally, we have our main program for creating the server in localhost sese,
which we provide by using the application method defined in the previous code
block:

if __name__ == '__main__"':
print('Listening on localhost:8080')
server = make_server('localhost', 8080, application)
server.serve_forever()

In the following screenshot, we can see the execution of the wsgi_examp1e2.py
script, where we can see the server running in 1ocalnhost:sese. When we invoke
the operator url endpoint, it shows information about the operation and the result:

Listening on localhost:8080

i "]: operatorl=200&operator2=5&operation=/

['operatorl=200"', 'operator2=5', ‘operation=/"]
Operator 1: 200
Operator 2: 5
Operation: /
Result: 40.0
127.0.0.1 - - [12/Mar/2019 13:33:10] "GET /operation?operatorl=200&operator2=5&operation=/ HTTP/1.1" 200 104
environ["QUERY_STRING"]: operatorl=10&operator2=5&operation=*
Parameters ['operatorl=10', ‘operator2=5', ‘operation=*']
Operator 1: 10
Operator 2: 5
Operation: *
Result: 50
127.0.0.1 - - [12/Mar/2019 13:33:23] "GET /operation?operatorl=10&operator2=5&operation=* HTTP/1.1" 200 102
environ["QUERY_STRING"]: operatorl=10&operator2=5&operation=+
Parameters ['operatorl=10"', 'operator2=5', 'operation=+'"]
Operator 1: 10
Operator 2: 5
Operation: +
Result: 15
127.0.0.1 - - [12/Mar/2019 13:33:30] "GET /operation?operatorl=10&operator2=5&operation=+ HTTP/1.1" 200 102

In this section, we have introduced the wsgiref.simple_server package to create a
web page that's been developed with Python using the WSGI standard, which is
a specification of a universal interface between web servers and web
applications.

Existing web application frameworks
(Django, Flask, and Plone)

In this section, you will learn about the web frameworks that are available in the
Python ecosystem.

Web frameworks

In the modern development of web applications, different frameworks are used,
which are tools that give us a working scheme and a series of utilities and
functions that facilitate and abstract us away from the construction of dynamic
web pages.

In general, frameworks are associated with programming languages (Ruby on
Rails (Ruby), Symphony (PHP)) in the Python world. The most well-known one
is Django, but Flask is an interesting option that may not have such a high
learning curve. It allows us to create web applications that are just as complex as
those that can be created in Django.

A web framework is a layer that sits between the web server and our Python
code, which provides abstractions and streamlined APIs to perform many of the
common operations of interpreting HTTP requests and generating responses.
Ideally, it is also structured so that it guides us into employing well-tested
patterns for good web development. Frameworks for Python web applications
are usually written in Python, and can be considered part of the web application.

The basic services a framework provides are as follows:

e Abstraction of HTTP requests and responses
e Management of the URL space (routing)
e Separation of Python code and markup (templating)

There are many Python web frameworks in use today, and here's a non-
exhaustive list of some popular ones:

Django: www.djangoproject.com
Pyramid: www . pylonsproject.org
Flask: www . flask.pocoo.org
Web2py: www . web2py . com
ChEl‘l‘YPy: www.cherrypy.org
Tornado: www . tornadoweb.org
TurboGears: vww. turbogears.org

http://www.djangoproject.com
http://www.pylonsproject.org
http://www.flask.pocoo.org
http://www.web2py.com
http://www.cherrypy.org
http://www.tornadoweb.org
http://www.turbogears.org

¢ Plone: https://plone.org

An up—to—date list of frameworks is maintained at http://wiki.python.org/moin/webFra
meworks and http://docs.python-guide.org/en/latest/scenarios/web/#frameworks.

Some frameworks provide the minimum to quickly build a simple web
application. These are often called micro frameworks, and one of the most
popular is Flask. Although they may not include the functionality of some of the
heavyweight frameworks, they provide hooks to allow for the easy extension of
more complex tasks. This allows a fully customizable approach to web
application development.

Other frameworks take a much more batteries-included stance, providing all the
common needs of modern web applications. The major contender here is
Django, which includes everything from templating to form management and
database abstraction, and even a complete out-of-the-box web-based database
admin interface. TurboGears provides similar functionality by integrating a core
micro framework, with several established packages for the other features.

However, other frameworks provide features such as supporting web
applications with an event-driven architecture, including Tornado and CherryPy.
Both of these also feature their own built-in production-quality web servers.

Here, we have provided a small description for some of these frameworks:

e Django: This is perhaps the most well-known web framework of Python
that brings more features to its core. The main feature offered by Django is
the possibility of having an interface for the administration of its
applications, from which you can work with the database models and
forms. At the database level, an ORM system (Object Relational Mapper)
is used to relate the models declared in Django with tables in databases.

e Pyramid: This was one of the first web frameworks that was compatible
with Python 3. It is considered the best option if your target is to have a
quick prototype of the website or to develop large web applications, such as
a content management system (CMS).

e Web2py: Architecturally, Web2py follows the MVC. It incorporates
generated forms with validation of fields, and the sessions are stored on the
server side. Database support includes built-in SQL generation for the most
popular databases. Once you have defined your models, you will get a full

https://plone.org
http://wiki.python.org/moin/WebFrameworks
http://docs.python-guide.org/en/latest/scenarios/web/#frameworks

administrative interface automatically.

Flask: Flask is a micro framework based on the Web Server Gateway
Interface (WSGI), which is responsible for handling requests between the
client and the server. It supports Jinja2 templates; a friendly, modern, safe,
and popular template language that's also used by Django.

Plone: Plone is a framework that acts as a CMS, with functionalities that
make it especially suitable for the business world. It is built on top of the
Zope platform (http://www.zope.org), a well-known framework based on the
Python language. Zope serves as an application server and is very popular
within the Python community.

http://www.zope.org

The MVC pattern and dynamic web
programming with Python

In this section, you will learn how use the MVC paradigm in the construction of
dynamic web applications in Python. We will also review the Django framework
for introducing web programming with Python.

The MVC pattern

The MVC pattern is a way of working that makes it possible to differentiate
and separate what the data model is (the data that the app will have that is
normally stored in DB), the view (an HTML page), and the controller (where the
requests of the web app are managed).

The MVC is a pattern for software development that is based on separating the
data, the user interface, and the logic of the application. It is mostly used in web
applications, where the view is the HTML page, the model is the database
manager system and the internal logic, and the controller is responsible for
receiving the events and solving them. Let's explore each element in more detail:

e Model: This is the representation of the information in the system. It works

with the view to show the information to the user and is accessed by the
controller to add, delete, consult, or update data.

View: This is presented to the model in a suitable format so that the user
can interact with it. In most cases, it is the graphical user interface.
Controller: This is the most abstract element. It can receive, process, and
respond to events that are sent by the user or by the application itself. It
interacts with both the model and the view.

For a detailed understanding for the use of the MVC model, let's look at its
control flow:

1.

w

4.

5.

The user activates an event in the interface (for example clicking on button,
link)

The controller receives the event and manages it

The controller consults or modifies the model

The controller sends the response to the interface and it reacts depending on
it (changes the screen, opens a link, and so on)

The interface waits for a new user action

In the following diagram, we can see the steps we just described:

|4 3

5I1 2

Among the advantages that this pattern provides us, we can highlight the
following:

¢ It is focused on separating responsibilities: Let's think about how current
applications and websites are created; that is, HTML is used for the visual
components, CSS is used for the style, and Javascript is used for the logic,
each with its own approach and its own responsibility. The concept is the
same for MCV including the components that we mentioned before.

o It reuses code: Any framework that's created from MVC allows you to
reuse code and return total or partial views, avoiding duplicating styles or
content in the views. All of the data handling is done in the models, so if
you modify your database, it is only necessary to modify the corresponding
model so that it can handle the updated data, without the need to update
each place where it was used.

e We avoid spaghetti code: With this design pattern, we can reduce and even
eliminate the use of server and presentation code in one place.

¢ Perfect for multidisciplinary teams: With this design pattern, we can have
teams where each person deals with a certain layer. For example, we can
have someone in charge of designing the application and someone else in
charge of creating the business rules and other activities. Each person can
work independently of the other without suffering affectations.

Dynamic web pages

Dynamic web pages are those where the information that's presented is
generated from a request that's been made on the page. Contrary to what happens
with static pages, in which their content is predetermined, in dynamic pages, the
information appears immediately after a request is made by the user. The result
of the page that's obtained in the answer will depend on several aspects, such as
the information that's stored in the database, the content of a cookie or session,
and the parameters in the HTTP request.

Processing dynamic pages

When the web server receives a request to display a dynamic page, it transfers
the page to a special piece of software that's in charge of finalizing the page.
This special software is called an application server.

In the following diagram, we can see a schema for processing a request in a web
server:

Web browser

WEB SERVER

<HTML>
<p>H1
</HTML>

—>

<HTML>
<code>
</HTML>

)

Application
server

e

./

/

The application server, according to the request that has been made, executes a
program in a certain programming language and returns an HTTP response,
whose content is usually an HTML page.

Accessing a database

When working with databases, today's application servers have the ability to
connect in a simple way by configuring data sources. For example, our
application could use an application server to serve pages dynamically by
querying a database to obtain or modify data, and display them later in an HTML
page using asynchronous server queries.

The use of a database to store content allows you to separate the design of the
website from the content that you want to show to the users of the site. Instead of
writing individual HTML files for each page, you only need to write a page or
template so that you can present the data in the database to the user. You can also
dynamically submit HTML forms that add or modify information in the
database.

In the following diagram, we can see a schema for processing a request in a web
and database server:

WEB SERVER

O

<HTML>
</HTML>

Application
server

Web browser

<HTML>

Recordset '—

Request <code:
</HTML>

| S
-

/

Query b—

Database
driver

Database

In the previous diagram, we can see how the client makes a request to the

application server, connects to the database to perform the query through

database driver, and when the query result returns to the application server, the

response object is returned to the client browser.

In next section, we are going to review Django and study some commands to
introduce this framework and its powerful administration panel.

Django introduction

In this section, we are going to review how to start working with the Django
framework. To install django, just execute the pip install django command.

Once installed, we can use the django-admin.py script to create the file structure
that's necessary to create applications with the framework.

These are the self-generated files that appear when you run the s django-admin.py
startproject djangoApplication command:

e _init_ .py tells Python that this folder is a Python package and allows
Python to import all of the scripts into the folder as modules.

® manage.py is a utility script that executes from the command line. It contains
some functions to manage your website.

® settings.py contains the settings of your website. This file is simply a
number of variables that define the configuration of your site.

® urls.py is the file that assigns the URLSs to the pages.

We can see that in the settings.py generated file, there is a default configuration
for sqlite3 database.

DATABASES = {

'default': {

'"ENGINE': 'django.db.backends.sqlite3',
"NAME': os.path.join(BASE_DIR, 'db.sqglite3'),
b

b

To create a database in our application, we can run the following command in
the djangoapplication diI‘ECtOI‘y that contains the manage.py file:

| $ python manage.py migrate

If the execution is correct, you should see something like this:

Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:

Applying contenttypes.0001_initial... OK

Applying auth.0001_initial... OK

Applying admin.0001_initial... OK

Applying admin.0002_logentry_ remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag choices... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email _max_length... OK
Applying auth.0004_alter_user_username_opts... OK

Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... 0K
Applying auth.0009_alter_user_last_name_max_length... OK
Applying sessions.0001 initial... OK

In this way, we can start the web server by running the s python manage.py
runserver command, and we will have the application running on
http://localhost:8000.

Creating a Django application

Once we have the base and file structure, we can create our application. To
create an application, we need to execute the following command in the console:

| $ python manage.py startapp djangoApp

With this command, a new djangoapp directory has been created with the
following structure:

migrations
_init__.py
admin.py
apps.py
models.py
tests.py

W) R R R

views.py

After creating an application, we also need to tell Django to use it. This is done
in the djangoApplication/settings.py file, where we have to find the insTaLLED_aPPs
array in the application definition Section and add a line that contains the name of
our djangoApp application:

INSTALLED_APPS =

'djangoApp'

'django.contrib.
'django.contrib.
'django.contrib.
'django.contrib.
'django.contrib.
'django.contrib.

Application definition

[

admin',

auth',
contenttypes',
sessions',
messages',
staticfiles'’,

We can create our model in the djangoapp/models.py file and define the object
Model inside this file that represents a post from a blog. This model includes
information about the author, title, content, and timestamp:

from django.db import models

class post(models.Model):
author = models.CharField(max_length = 30)
title = models.CharField(max_length = 100)
content= models.TextField()
timestamp = models.DateTimeField()

The last step is to add our new model to the database. First, we have to let
Django know that we have generated a new model with the following command:

| $ python manage.py makemigrations djangoApp.

This is the output we receive when we execute the previous command:

Migrations for 'djangoApp':
djangoApp\migrations\0001_initial.py
- Create model post

In this way, Django has prepared a migration file that we have to apply to our
database with the following command:

$ python manage.py migrate djangoApp

Operations to perform:

Apply all migrations: djangoApp

Running migrations:
Applying djangoApp.0001_initial... OK

Once we have defined our models, we can use Django to manage the objects of
our model. We can do this by using the administrator (admin) of Django. To do
this, you must go to the djangoapp/adnin.py file and add the following code:

from django.contrib import admin

from .models import post
admin.site.register(post)

We can use the admin.site.register (post) command to register our model in the
application. This can also be used in the Django administrator page.

With this, we are able to execute the python manage.py runserver command to run the
web server and access http://127.0.0.1:8000/adnin . YOU'll see a sign-in page:

http://127.0.0.1:8000/admin

Django administration

Username:

Password:

To log in, first, you must create a user in the Django database, which is a user
that has control over the entire site. By executing the s python manage.py
createsuperuser COmmand, we can create a user to access the administration area:

Username: admin

Email address: admin@admin.com
Password:

Password (again):

Superuser created successfully

After logging in with the user that we just created, we can see the Django
administration panel:

Django administration WELCOME, ADMIN. VIEW SITE

Site administration

AUTHENTICATION AND AUTHORIZATION

Recent actions
Groups + Add # Change

Users + Add & Change My actions

4+ post object (1)

Post
DJANGOAPP

Posts + Add # Change

From here, we could, for example, create a post for our application with the Add
button:

Django administration

Home > Djangoapp » Posts » Add post

Add post
Author: author
Title: title
Content: content

We can also see the objects that are saved in the Django database:

DJa ng @) adl’n | n |St r‘a‘“on WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Djangoapp » Posts

@& The post "post object (1)" was added successfully.

Select post to change

Action: | ======-=- v || Go | 0of1 selected

O post

O post object (1)

1 post

0 For more information, check out the official Django documentation at nttps: //docs. djangoproject.co

m/en/2.0/ref/contrib/admin.

In this section, you have learned about the MVC paradigm in the construction of
dynamic web applications, and were introduced to the Django framework, its
main commands, and the administration panel.

https://docs.djangoproject.com/en/2.0/ref/contrib/admin/

Creating RESTful web applications
and working with Flask and HTTP

requests

In this section, you will learn how to create RESTful web applications and work
with HTTP requests with Flask. You will manage the separation of application
logic and HTML with the Flask template engine.

Introducing Flask

Flask is a micro framework designed to facilitate the development of web
applications under the MVC pattern and provides a simple interface. The main
advantage is that it doesn't require any complex preconfiguration; all we need to
do is install it with a command:

>>> pip install flask
Downloading/unpacking flask

Flask can also be downloaded from the project's home page at http://f1ask.pocoo.o
rg. Note that to run Flask under Python 3, you will need Python 3.3 or higher.

Among the main features of Flask, we can highlight the following:

Open source: Flask is open source and is covered under a BSD license.
Includes web server development: You do not need any infrastructure
with a web server to test the applications, as you can simply run a web
server to see the results that are obtained.

It has a debugger and integrated support for unit tests: If we have an
error in the code that is being built, we can debug that error and we can see
the values of the variables. There is also the possibility of integrating unit
tests.

It is compatible with WSGI: WSGI is a protocol that uses web servers to
serve web pages that are written in Python.

Good route management: When you work with web apps that have been
made in Python, you have the driver that receives all the requests that the
clients make, and it has to determine which route the client is accessing to
execute the necessary code.

Build web services: It is used to build web services (such as RESTful
APIs) or static content applications.

Among the main objects and methods that Flask provides for work, we can
highlight the following:

f1ask: This is the main object of the framework and is a way to agglutinate
the callable WSGI with a set of routes. Our application is going to be an

http://flask.pocoo.org

instance of this object.

e request: An object that allows us to access the data referring to the request
that was made to us. It includes the GET parameters, cookies, and headers,
among other things.

® response: An object that allows us to modify our responses; add headers,
status codes, and cookies; and other concepts.

® render_template: This is a method that injects our context into a template and
returns the answer in its complete form, ready to be returned.

® redirect: A helper that allows us to return a redirect to another URL in our
code.

e avort: A helper that allows us to return an error status from our controller.

Our app is going to allow us to browse the docstrings for the Python built-in
functions. An application that's built with Flask is basically an instance of the
Flask object, which we will record routes in.

You can find the following code in the fiaskapp_demo.py file on the GitHub
TEPN)Sitor}f(https://github.com/PacktPublishing/Learning-Python-Networking-Second-
Edition):

#!/usr/local/bin/python3

from flask import Flask, abort

app = Flask(__name__)

app.debug = True

objs = __builtins__._ dict__.items()

docstrings = {name.lower(): obj.__doc__ for name, obj in objs if
name[0].islower () and hasattr(obj, '__name__')}

Flask includes a development web server, so to try it out on our application, all
we need to do is run the following command:

$ python flaskapp_demo.py

* Serving Flask app "demo" (lazy loading)

* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: on

Restarting with stat

Debugger is active!

Debugger PIN: 190-598-045

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* * O *

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

We can see that the Flask server tells us the IP address and port it's listening on.
Connect to the nttp://127.0.0.1:5000/ URL. It will now display in a web browser,
and you should see a page with a list of Python built-in functions. Clicking on
one should display a page showing the function name and its docstring. If you
want to run the server on another interface or port, you can change this data in
the app.run() call, for example, {0 app.run(host='0.0.0.0', port=5000).

Let's go through our code. From the top, we created our Flask app by creating a
Flask instance, in this case giving it the name of our main module. We then set
the debug mode to active, which provides nice tracebacks in the browser when
something goes wrong, and also sets the development server to automatically
reload code changes without needing a restart. Note that the debug mode should
never be left active in a production app! This is because the debugger has an
interactive element, which allows code to be executed on the server. By default,
debug is off, so all we need to do is delete the app.config.debug line when we put
the app into production.

Routing in Flask

One of the biggest advantages of Flask is its ability to create routes. A route is a
web entry in which we can render a page or serve an endpoint of a RESTful
service.

To create routes with Flask, we must use the eroute annotation, which will receive
the route that we will respond with as a parameter. It is necessary to associate a
function that carries out the processing of the request with this annotation.

We could define a route in Flask in the following way:

@app.route("/message/")
def message(name):
return "Welcome "+name+"!"

Now, we are going to create a route that receives a name as a parameter and
returns a reply message. This will help us to see how we can pass parameters in
Python Flask routes. The first thing is to focus on the route, that

iS,@app.route('/message/<name>',methods=[‘GET']L

Now, let's define a method that addresses this route. The peculiarity of this
method will be that it must have a parameter, which will correspond to the
variable of the route. Now, we can use this variable within the method. In our
case, we have used it in the response as part of the greeting. Finally, the entire
route will remain as follows:

@app.route('/message/<name>',methods=['GET'])

def message(name):
return Welcome' + name+ '!'

If we return our previous flaskapp_demo.py script, we will have defined a set of
functions, usually called views, that handle requests for various parts of our
URL. index() and show_docstring() are such functions. You will see that both are
preceded by a Flask decorator function, app.route(). This tells Flask which parts
of our URL space the decorated function should handle. That is, when a request
comes in with a URL that matches a pattern in an app.route() decorator, the
function with the matching decorator is called to handle the request. View

functions must return a response that Flask can return to the client, but we'll
cover more on that in a moment.

The URL pattern for our index() function is just the site root, /, meaning that only
requests for the root will be handled by index().

In index(), we just compile our output HTML as a string — first, our list of links to
the functions' pages, then a header — and then we return the string. Flask takes
the string and creates a response out of it, using the string as the response body
and adding a few HTTP headers. In particular, for str return values, it sets
Content-Type 1O text/html.

The show_docstrings() view does a similar thing — it returns the name of the built-in
function we're viewing in an HTML header tag, plus the docstring wrapped in a
<pre> tag (to preserve new lines and whitespace).

The interesting part is the app.route('/functions/<func_name>') call. Here, we're
declaring that our functions' pages will live in the functions directory, and we're
capturing the name of the requested function using the <func_name> segment.

Flask captures the section of the URL in angle brackets and makes it available to
our view. We pull it into the view namespace by declaring the func_name argument
for show_docstring().

In the view, we check that the name that's supplied is valid by seeing whether it
appears in the docstrings dictionary. If it's okay, we build and return the
corresponding HTML. If it's not okay, then we return a 404 Not Found response
to the client by calling Flask's avort() function. This function raises a Flask
HTTPException, Which, if not handled by our application, will cause Flask to
generate an error page and return it to the client with the corresponding status
code (in this case, 404). This is a good way to fail fast when we encounter bad
requests.

Jinja2 templating

In this section, we are going to introduce Jinja2 as a template language that
allows you to insert processed data and predetermined text within your HTML
code. Basically, Jinja searches and substitutes the names, expressions, and
statements that are enclosed by ¢ 1 within text.

You can see from our preceding views that even when omitting the usual HTML
formalities such as <boctvre> and the <htm1> tag to save complexity, constructing
HTML in Python code is clunky. It's difficult to get a feel for the overall page,
and it's impossible for designers with no Python knowledge to work on the page
design. The templates help to implement the separation between the logic of the
backend application and the visual part related to the views.

Flask uses the Jinja2 templating engine for this task. Let's adapt our application
to use templates. You can find the following files in the temp1ates folder: base.ntmi,

index.html, docstring.html.

The base.ntm1 file will look like this:

<!DOCTYPE html>

<html>

<head>

<title>Python Builtins Docstrings</title>
</head>

<body>

{% block body %}{% endblock %}

</body>

</html>

The index.ntm1 file will be like this:

{% extends "base.html" %}

{% block body %}

<hi>Python Builtins Docstrings</h1>

<div>

{% for func in funcs %}

<div class="menuitem link">

{{ func }}
</div>

{% endfor %}

</table>

| {% endblock %}

The docstring.htm1 file will look like this:

{% extends 'base.html' %}
{% block body %}

<h1i>{{ func_name }}</h1>
<pre>{{ doc }}</pre>

<p>Home</p>
{% endblock %}

As you can see, we write a standard page in HTML, with the only difference that
there are some bookmarks for the dynamic content enclosed in ({...}} sections.

At this point, you need to use the render_template method that looks in the
templates folder for the file that's supplied as the first argument, reads it, runs
any processing instructions in the file, then returns the processed HTML as a
string. Any keyword arguments that are supplied to render_template() are passed to
the template and become available to its processing instructions.

The render_temp1ate function takes the filename of the template and a variable list
of template arguments to return the template armed with all the arguments
replaced. At low level, the Jinja2 template engine is used, which will replace the
{{...13 blocks with the values provided as arguments in the render_template
function.

You can find the following code in the fiaskapp_demo_tempiate.py file on the GitHub
TEPN)Sitor}f(https://github.com/PacktPublishing/Learning-Python-Networking-Second-
Edition):

#!/usr/local/bin/python

from flask import Flask, abort, render_template

app = Flask(__name__)

app.debug = True

objs = __builtins__._ dict__.items()

docstrings = {name.lower(): obj.__doc__ for name, obj in objs if
name[0].islower () and hasattr(obj, '__name__')}

Looking at the templates, we can see they are mostly HTML, but with some
extra instructions for Flask contained in {{ 33 and (% %} tags. The {{ 1}
instructions simply substitute the value of the named variable into that point of

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

the HTML. So, for example, the {{ func_name 3} in docstrings.htm1 substitutes the
value of the func_name value we passed tO render_template().

The ¢% %} instructions contain logic and flow control. For example, the {% for func
in funcs %} instruction in index.htm1 loops over values in funcs and repeats the
contained HTML for each value.

Finally, you may have spotted that templates allow for inheritance. This is
provided by the (% block %} and {% extends %} instructions. In base.htm1, we declare
some shared boilerplate HTML, then in the <body> tag, we just have a {% block body
%} instruction. In index.htm1 and docstring.htm1, we don't include the boilerplate
HTML,; instead, we extend base.htm1, meaning that these templates will fill the
block instructions that were declared in base.ntm1. In both index.ntm1 and
docstring.html, we declare a body block, the contents of which Flask inserts into
the HTML in base.ntm1, replacing the matching {% block body %} there. Inheritance
allows for the reuse of common code, and it can cascade through as many levels
as needed.

If we need to apply inheritance within our template, we need to use the extended
block in such a way that the template engine allows for the inclusion of a
base.html file inside another HTML file. The two templates have a block
declaration matching the name of the content, which allows Jinja2 to know how
to combine the two into one.

There is a lot more functionality available in Jinja2 template instructions; check out the
template designer documentation for a full list, at netp://jinja.pocoo.org/docs/dev/templates/.

http://jinja.pocoo.org/docs/dev/templates/

POST parameters with Flask

The usual way to send information to the different pages of our web application
is by using HTMLS5 forms. It is advisable to use the rost method (the information
is sent in the body of the request) for sending information using forms, although
if necessary we can also use the cer method (the information is sent in the URL
of the request).

Creating a form in a rost application will lead us to know how to control the data
we upload. Here, we will look at an example of how we can handle the POST
parameters with Flask.

The first way will be to create a route that accepts a cet request that returns a
form that we will render using the render_tempiate() method:
@app.route('/',methods=["'GET'])

def index():
return render_template('index.html')

The template of the form will be very simple. The important thing is that the
method is POST and the action field in the form object is pointing to the /validat.
route.

You can find the fOHOWiI’lg code in the index.ntm1 file inside the post_parameters
folder:

<form action="/validate" method="post">
<label for="user">User</label>
<input type="text" id="user" name="user">

<label for="password">Password</label>
<input type="password" id="password" name="password">

<input type="submit" value="Submit" />
</form>

It is very important to put the name attributes in the form, since it will be that
attribute that we use to recover the value. Now, we will create the route that
accepts the POST requests. If a URL receives information through the POST
method and we do not want it to be accessed with a GET method, it will be
defined as follows:

@app.route('/validate', methods=["'POST'])
def validate():

To access the information of the attributes of the form, we can use the request.form
object. This object has attributes in a collection. So, we will retrieve the value of
the user and password fields of the form, as you can see in the following script.

You can find the following code in the fiaskapp_post.py file inside
the post_parameters folder:

#!/usr/local/bin/python3
from flask import Flask, request, render_template
import json

app = Flask(__name__)
app.debug = True

@app.route('/',methods=["'GET'])
def index():
return render_template('index.html')

@app.route('/validate', methods=["'POST'])
def validate():
user = request.form['user']
password = request.form['password']
if user == 'admin' and password == 'password':
response = {'user_validate':True, 'message':'User authenticated'}
else:
response = {'user_validate':False, 'message':'User incorrect'}
return json.dumps(response)

if _ _name_ == '_ _main__':
app.run()

Once the method has been performed and the client has sent the values, we
would have an answer like this. If the user and passwords match when defined in
the C(Hje,it\ViH,retUFD.{“user_validate": true, "message": "User authenticated"},
otherwise ﬂ:VVi”,FeturD.{‘user_validate':False,'message‘:'User incorrect'}.

In this way, we have already seen how to manipulate and recover POST
parameters with Flask.

Other templating engines

Jinja2 is certainly not the only templating package in existence. You can find a
maintained list of PythOI'l templating engines at https://wiki.python.org/moin/Templati

ng.

Like frameworks, different engines exist because of differing philosophies on
what makes a good engine. Some feel that logic and presentation should be
absolutely separate and that flow control and expressions should never be
available in templates, providing only valued substitution mechanisms. Others
take the opposite approach and allow full Python expressions within template
markup. Others, such as Jinja2, take a middle ground approach. Some engines
also use different schemes altogether, such as XML-based templates, or declare
logic via special HTML tag attributes.

https://wiki.python.org/moin/Templating

Flask extensions

Flask provides a set of extensions that can help us add more functionality to our
application quickly and easily. Here, we will mention the most common plugins
that are used with Flask:

o flask-script: Allows you to have a command line to manage the application
(https://flask-script.readthedocs.io/en/latest/)

o flask-Bootstrap: It helps to create link, style sheets for HTML pages (https:
//pythonhosted.org/Flask-Bootstrap)

o flask-WTF: Used to generate HTML forms with classes and objects (https:/
/flask-wtf.readthedocs. io/en/stable/)

e flask-login: A plugin for user authentication and passwords (https://flask-1o
gin.readthedocs.io/en/latest/)

o flask-Sqglalchemy: Used to generate the data model (http://flask-sqlalchemy.p
ocoo.org/2.3)

e flask-Security: Allows you to manage the registration and authentication
Processes (https://pythonhosted.org/Flask-Security)

https://flask-script.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Bootstrap
https://flask-wtf.readthedocs.io/en/stable/
https://flask-login.readthedocs.io/en/latest/
http://flask-sqlalchemy.pocoo.org/2.3
https://pythonhosted.org/Flask-Security

Working with a database in Flask
with SQLAIchemy

In this section, you will learn how to work with a database in Flask with
SQLAIchemy.

Introducing SQLAIlchemy

SQLAIchemy is an engine developed in Python that has several components for
working with databases. It follows some of the most frequently used patterns for
relational object mapping, where classes can be mapped in the database in
multiple ways, which allows you to develop the object model and the database
schema in an uncoupled way from the very beginning.

SQLAIchemy includes various tools that are focused on interacting with
relational databases, among which we can highlight the following:

e SQLAIchemy Core, which allows you to create a generic and independent
interface of the database manager by means of an expression language
based on SQL.

e SQLAIchemy ORM, a mapper between objects and relational transactions
or ORM (object relational mapper). It includes support for SQLite,
MySQL, PostgreSQL, Oracle, and MS SQL, among others.

To install SQLAIchemy, just execute the following command:

| pip install sqlalchemy

This example will show us how to create a table, insert data, and select it from
the database by using SQL Alchemy Core and ORM modules. For more
information about SQLAlchemy ORM, the official documentation is available
at https://docs.sqlalchemy.org/en/latest/orm/tutorial.html.

To illustrate the idea, the following diagram shows a data model for a system
that is responsible for managing book records and authors:

https://docs.sqlalchemy.org/en/latest/orm/tutorial.html

book_id

id Book
Book / id Author
id

tite Author
date 'd
iohe name

Our model consists of the Book and Author tables. The intermediate

table, book_author, is used to express the many-to-many relationship among the
book and author tables. First, we must map the model or schema of the database
by means of SQLAIchemy.

You can find the following code in the mode1s.py file inside the sqiaichemy folder:

#!/usr/local/bin/python3

from sglalchemy import (create_engine, Column, Date, Integer, ForeignKey, String, Table)
from sglalchemy.ext.declarative import declarative_base
from sglalchemy.orm import relationship

engine = create_engine('sqlite:///books_authors.db', echo=True)
Base = declarative_base()

#Relation many to many between book and author
author_book = Table('author_book', Base.metadata,
Column('book_id', Integer, ForeignKey('book.id')),
Column('author_id', Integer, ForeignKey('author.id'))

)

In the previous code block, we defined the database connection and the
relationship between the book and author entities by creating a new table with
two columns. Each one is the foreign key to the book and author tables. In the
following code block, we will define the sook entity with the init constructor and
its relation with the author table through the author_book relation:

class Book(Base):
__tablename__ = 'book'
id = Column(Integer, primary_key=True)
title = Column(String(120), index=True, nullable=False)
date = Column(Date)
isbn = Column(String(13))
authors = relationship("Author", secondary=author_book)

def __init_ (self, title, date, isbn):

self.title = title
self.date date
self.isbn isbn

def __repr__(self):
return self.title

Finally, we create the author model and initialize our database with the create_a11()
method from the metadata object:

class Author(Base):
__tablename__ = 'author'
id = Column(Integer, primary_key=True)
name = Column(String(120), nullable=False)

def __init_ (self, name):
self.name = name

Base.metadata.create_all(engine)

By executing the models.py script, we can see how the books_authors.db file is
generated in your local filesystem.

In the following screenshot, we can see the tables that are created when you
visualize this file with the SQLite browser:

Database Structure Browse Data Edit Pragmas Execute SQL

o Create Table © Create Index) Print

Name Type Schema

v [Tables (3)

= author CREATE TABLE author (id INTEGER NOT NULL, name VARCHAR(120) NOT NULL, PRIMARY KEY (id))

CREATE TABLE author_book (book_id INTEGER, author_id INTEGER, FOREIGN KEY(book_id) REFERE

"I author_book
CREATE TABLE book (id INTEGER NOT NULL, title VARCHAR(120) NOT NULL, date DATE, isbn VARC

“| book
v Indices (1)
ix_book title
2 Views (0)
L/ Triggers (0)

CREATE INDEX ix_book title ON book (title)

Now, let's explain the content of the mode1s.py script. First, we will need to
connect to our database. The sqlalchemy.engine.base.Engine class is responsible for
instantiating objects, connecting to a database, and in turn mapping the attributes
of the objects that are created by the ORM model. To instantiate an object from
sglalchemy.engine.base.Engine, the sqlalchemy.create_engine() function is used with the

following syntax:

from sglalchemy import create_engine
engine = create_engine('sqlite:///books_authors.db', echo=True)

After creating our engine, we need to create our tables. In ORM, the process of
creating tables begins with defining the classes that we will use in the mapping
process.

Before creating the database, it is necessary to define a model that maps to an
object with at least one table in the database. The
sqlalchemy.ext.declarative.declarative_base() function allows us to create a model
from the subclasses of sqlalchemy.ext.declarative.api.DeclarativeMeta.

from sglalchemy.ext.declarative import declarative_base
Base = declarative_base()

Now that our base mapper has been declared, we can make a subclass of it to
build our declarative maps or models. The sase subclasses correspond to tables
within a database. These subclasses have the attribute __tabiename__, which
corresponds to the name of the table to which you are mapping their attributes.
The generic syntax is as follows:

from sglalchemy import Column, Integer, String

class MyTable(Base):
__tablename__ = 'table'
id = Column(Integer, primary_key=True)
message = Column(String)

To create the database with the defined tables, the Base.metadata.create_all()
method is used in the database that's managed by the instantiated object of

sqlalchemy.engine.base.Engine:

e [f there is no file in the database, it will be created
¢ In case there are already tables defined in the database, only those that are
new will be created and the data they already contain will not be deleted

Creating a session and ORM queries

The sqlalchemy.orm.sessionmaker () function allows you to create a
sqlalchemy.orm.session.sessionmaker class that contains attributes and methods that
allow you to interact with the database. You can use the following methods to
manage session data:

e The add() method, which adds or replaces the record that's bound to the
instantiated object of a sase subclass in the corresponding record within the
database

e The delete() method, which deletes the record that's bound to the object

e The comnit() method, which applies the changes to the database

Now that our tables have been assigned and created, we can insert data. This
insertion is done by creating instances of the class, which is created with mytap1e.
At this point, all we have is an instance of the objects at the ORM abstraction
level, but nothing has been saved in the database yet. To do this, we first need to
create a session:

from sglalchemy.orm import sessionmaker

Session = sessionmaker (bind=engine)
session = Session()

This session object is our database manager. According to the SQLAIchemy
documentation, this object allows us to recover a connection from a group of
connections that's maintained by the engine, and maintains it until we confirm all
of the changes or close the session object. Now that we have our session, we can
add a new object to it and confirm our changes in the database:

object = MyTable(message="Hello World!")

session.add(object)
session.commit()

Once we have our session defined, we can perform queries related to sase
instantiate objects from sessions and the tables linked to them.

For performing queries, we can use the following methods:

® query.first() returns to the first object that's found in a search

® query.all() returns a list type object with all the objects resulting from a
search

® query.filter() Ireturns a query object with the objects found when executing a
search that satisfies the logical expression on the attributes of the class,
which is entered as an argument

Now that we have data, we can take advantage of the ORM query language to
retrieve our data:
query = session.query(MyTable)

instance = query.first()
print (instance.message) # Hello World!

The session class allows you to add new objects or update existing ones in the
database. To add new objects, we can use the session.add(obj) method. You can
also add a list of objects by using the session.add_al1([obj1, obj2, obj3]) method.

When calling the add() method, an insert will be made in the database and

a commit () will be performed to confirm the session data. In this example, we are
using the session object for access, thus inserting or updating data in the SQLite
database.

You can find the following code in the insert_data.py file:

#!/usr/local/bin/python3

from datetime import date

from sglalchemy import create_engine
from sglalchemy.orm import sessionmaker
from models import Author, Book

connection with sqlite database
engine = create_engine('sqlite:///books_authors.db', echo=True)

get sesion
Session = sessionmaker (bind=engine)
session = Session()

inserting authors

author_1 = Author('Author1i')
author_2 = Author('Author2')
author_list = (author_1, author_2)
session.add_all(author_list)
session.commit()

In the previous code block, we defined the connection with the SQLite database,
got a session, and inserted some authors with the add_a11() method from the

session Object. In the following code block, we're using the sook model to insert
one book instance with the add() and commit() methods:

inserting books

bookl = Book('Bookl',6 date(2019, 1, 1), '123456789'")
bookl.authors.append(author_1)

session.add(book1)

session.commit()

book query
book = session.query(Book).filter (Book.isbn=="'123456789"').first()
print(book)

modifying book data
book.title = 'Learning Python Networking'
session.commit()

print(book)

At this point, it is important to realize how the relationship between the book and
the author is established through the append method. We will also use query method
from the session object to execute a database query by applying a specific filter.
Finally, we will modify the title of the book and save its information with the
commit() method.

After you execute the previous insert_data.py SCript, you can check the
book_authors.db file to see whether the book information has been updated in the
database. You can open this file with the SQLite browser, which is available at nt

tps://sqlitebrowser.org.

https://sqlitebrowser.org

Using Flask with SQLAlchemy

For the most common web applications, it is generally recommended that you
use a Flask extension such as fiask-sqlaichemy. To install the package for working
with SQLAIchemy from Flask, just execute the following command:

| pip install flask-sqlalchemy

Once we have our Flask application created, to integrate it with sqiaichemy, we
would have to create a configuration file with the database path, from which the
SQLAIchemy object is created to manage the database.

In this example, we will use a SQLite database to simplify the configuration
without having a database server.

We can add the database configuration in the config.py file inside
the flask_sqlalchemy folder:

#!/usr/local/bin/python3

import os

DEBUG = True

SQLALCHEMY_DATABASE_URI = 'sqlite:///'+ os.path.join(os.path.dirname(__file__), 'books_c
SECRET_KEY = 'SECRET_KEY'

squALcHemMY_DATABASE_URT iS required by the Flask-SQLAIchemy extension and
represents the local address to our database file. We also need to define
the secret_kev for working with Flask-forms.

You can find the fOHOWiI’lg code in the books.py file inside the fiask_sqlalchemy
folder on the GitHub repository at https://github.com/PacktPublishing/Learning-Python-

Networking-Second-Edition.

#!/usr/local/bin/python3

from flask import Flask, render_template, request
from flask_sglalchemy import SQLAlchemy
import json

from flask _wtf import FlaskForm

from wtforms import StringField

from wtforms import TextAreaField

from wtforms.validators import DataRequired
from datetime import date

https://github.com/PacktPublishing/Learning-Python-Networking-Second-Edition

Flask application and config
app = Flask(__name__)
app.config.from_object('config')
db = SQLAlchemy(app)

In the previous code block, we defined the Flask application and configuration
from the config.py file. The sook class is our model that represents a book entity,
while the createsookrorm class represents our form object. In the following code
block, we define our methods for threat application requests.The index method
will show the index.ntm1 from the templates folder, and the new_book method will
receive book information with the POST method using the request.form syntax. To
save book information in the database, we will use the session.add() and
session.commit () methods from the db object:

@app.route('/new_book', methods=['POST'])
def new_book():
form = CreateBookForm()
if request.method == 'POST':
post = Book(request.form['title'], request.form['author'], request.form['descrig
db.session.add(post)
db.session.commit()
validate the received values
if request.form['title'] and request.form['author']:
return json.dumps({'html':'New book saved in database'})
return render_template('index.html',6 form = form,conf = app.config)

@app.route('/', methods=['GET'])
def index():
form = CreateBookForm()
return render_template('index.html', form = form,conf = app.config)

if _ _name_ == '_ _main__':

app.run()
db.create_all()

Finally, the following is the content of index.ntm1. It contains the form for sending
book information:

<html>
<body>

<form method="post" action="/new_book">

<dl>

{{ form.csrf_token }}

{{ form.title.label }} {{ form.title(style="width:100%") }}

{% for error in form.title.errors %} {{ error }} {% endfor %}

{{ form.author.label }} {{ form.author(style="width:100%") }}

{% for error in form.author.errors %} {{ error }} {% endfor %}

{{ form.description.label }} {{form.description(style="height:100px;width:100%") }}
{% for error in form.description.errors %} {{ error }} {% endfor %}
</d1>

<p><input type="submit" value="submit">

</form>
</body>
</html>

In the previous form object, we also added a CSRF token with the (¢
form.csrf_token }} instruction to avoid some security attacks like cross-site
scripting and cross-site request forgery.

In the following screenshot, we can see the HTML form for saving book
information in the database:

&< > C ® 127.0.0.1:5000

title

Learning Python Networking
author

Author

description

Python is a popular programming language used for performing network
automation in an easy-to-implement way. This book is an update to
Learning Python Networking, and delves into the concepts of Python
network programming and its importance in today’s world.

| submit

When you submit the form, you will get a message indicating that the book has
been saved in the SQLite database:

C (@ 127.0.0.1:5000/new

{"html": "New book saved in database"}

In this section, we have worked with Flask and SQLAIchemy to persist data in
an SQLite database. We used the f1ask-sqlaichemy and fiask_wtf packages for
working with forms in an easy way.

Summary

In this chapter, you have learned how to implement a web application using
WSGI and started working with dynamic web programming in Python. We
introduced the Django and Flask micro frameworks, which are designed to
facilitate the development of web applications under the MVC pattern. Finally,
we reviewed how we can work with HTTP requests in Flask and interact with

databases through SQLAlchemy.

Questions

10.

What Python module is used for developing our own WSGI server?

What is the main advantage that the MV C pattern provides, from a
developer's point of view?

What Django script can we use to create the file structure that's necessary to
create applications with the framework?

What Django command can we use to create a database in our application?
What is the annotation that's used for creating routes in Flask?

What method is used in Flask that looks in the templates folder for the file
that's supplied as the first argument?

If we are working in Flask with the rost method to send information to a
server, what object can we use to access information on the attributes of the
form?

What is the Flask extension for managing the registration and
authentication processes in your application?

What class from SQLAIlchemy is responsible for instantiating objects and
connecting to a database?

What is the config keyword that's required by the Flask-SQLAlchemy
extension, and that represents the local address to your database file?

Further reading

In the following links, you will find more information about the mentioned tools
and the official Python documentation for some of the modules we talked about
in this chapter:

e Flask blueprints: nttp://flask.pocoo.org/docs/1.0/blueprints. Blueprints are very
useful for projects that need more separation between components.
Basically, a blueprint is a way to organize your application into smaller,
reusable pieces.

L4 Comparing Django, Flask, and Pyramid: https://www.airpair.com/python/posts/dj
ango-flask-pyramid

e An SQLA]chemy tutorial, step by Step: http://www.rmunn.com/sglalchemy-tutorial
/tutorial.html

e The Flask—Security extension: https://pythonhosted.org/Flask-Security/quickstart
.html#sqlalchemy-application

° USng fastcgi with Flask: http://flask.pocoo.org/docs/1.0/deploying/fastcgi/

http://flask.pocoo.org/docs/1.0/blueprints
https://www.airpair.com/python/posts/django-flask-pyramid
http://www.rmunn.com/sqlalchemy-tutorial/tutorial.html
https://pythonhosted.org/Flask-Security/quickstart.html#sqlalchemy-application
http://flask.pocoo.org/docs/1.0/deploying/fastcgi/

Assessment

Chapter 1, Network Programming
with Python

1. The application layer

The reason why we have to replace the IPv4 system with IPv6 is because
the internet is running out of IPv4 address space, and IPv6 provides an
exponentially large number of IP addresses

Dynamic Host Configuration Protocol (DHCP)

Network Address Translation (NAT)

Conda and pip

virtualenv

The ur11ib and requests packages

The socket module

pyshark

The app1y_on_packets() method is the main way to iterate through the packets,
passing in a function to apply to each packet

N

SOENDU AW

—_

Chapter 2, Programming for the Web
with HTTP

ok

urlopen

Headers

User-Agent

HTMLParser and urllib

The requests module and the whois.domaintools.com Service
We use the following method:

import requests
proxies = { "http": "http://<ip_address>:port"}
requests.get("http://example.org", proxies=proxies)

Its main purpose is to identify the user by storing their activity history on a
specific website so that they can offer the most appropriate content
according to their habits

HTTPCookieProcessor

request.cookies.RequestsCookieldar

. Digest-based access authentication

Chapter 3, Application Programming
Interface in Action

—_
e

LCONPUHAEWN =

json.dumps().

json.loads().

OAuth.

requests-oauthlib.

CONSUMER_KEY, CONSUMER_SECRET, OAUTH_TOKEN, and OAUTH_TOKEN_SECRET.

Tweepy.

The xml.etree.ElementTree package.

AmazonS3FullAccess.

requests-aws4auth isa library for the Requests module that automatically
handles signature generation.

Every bucket has its own URL of the form nttp://s3.
<region>.amazonaws.com/<bucketname>. IN the URL, <bucketname> is the name of the
bucket and <region> is the AWS region where the bucket is present.

Chapter 4, Web Scraping with
BeautifulSoup and Scrapy

XPath selectors

code_html.xpath('//img/@src')

links = code_html.xpath('//a/@href")
bs.find_all("<html_tag_label>")

items.py, pipelines.py, settings.py, and spiders
spiders/my_sypder.py.

pipelines.py

CrawlSpider

process_item (item, spider)

Scrapinghub

SCLONUI A WNE

—_

Chapter 5, Engaging with Email

N

ok W

0o

10.
11.

The main difference is that IMAP allows for the connection of multiple
users or mail manager programs simultaneously to the same mailbox,
facilitating subsequent access to the mail messages that are available on the
server via web mail. POP3, on the other hand, downloads messages by
deleting them from the server, and so email messages are no longer
available in the server.

sendmail is the method of sending emails with the following syntax:
SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options].

from email.mime.text import MIMEText.

message = MIMEText(mail_msg, 'html', 'utf-8').

You must first create a mimemultipart() instance.

por3.stat(). LThe result is a tuple of two integers: (message count, mailbox
size).

The secure version of rorz() is its subclass, pops_ssL(). It takes additional
parameters, such as keyfile and certfile: maiibox = poplib.PoP3_ssL(<POP3_SERVER>,
<SERVER_PORT>).

response, headerLines, bytes = mailbox.retr(i+1).

This protocol has the advantage that, when we connect to read our mail
from different devices, for example, our laptop or smartphone, we know
that we can always access all of our messages, and that the mailbox will be
updated. It is also interesting to preserve our privacy when we read our mail
from a public or shared computer, as it does not store information on the
local machine".”

The derived class, mapa_ssL().

We can use the following code to open an IMAP connection:

from imapclient import IMAPClient

server = IMAPClient('imap_server', ssl=True)
server.login('user', 'password')

select_info = server.select_folder('INBOX', readonly=True)

Chapter 6, Interacting with Remote
Systems

sshd_config, Which is located in the/etc/ssh path.

It is recommended that you use at least a 2048-bit encryption.

We must set the permitrootLogin Variable to no.

You can implement an interactive shell using paramiko. That way, the channel
does not close after a command is executed in the remote shell. After
creating ssclient, USING connect, you can use the invoke_she11() method, which
will open a channel that it doesn't close after you send something through it.
5. The way paramiko creates SFTP session for downloading files in a secure
way from a SSH server is as follows:

A=

import paramiko

ssh_transport = paramiko.Transport(hostname, port)
ssh_transport.connect(username='username', password='password")

sftp_session = paramiko.SFTPClient.from_transport(ssh_transport)sftp_session.get

6. To retrieve the binary file from the remote host, the syntax that's shown
here can be used, along with the RETR command: ftp_client.retrbinary('RETR

remote_file_name', file_handler.write).

>

FTP.nlst(path).
8. We can use the following command:

from pysnmp.entity.rfc3413.oneliner
import cmdgen cmd_generator = cmdgen.CommandGenerator ()

9. The directory service is the hierarchically organized structure of the objects
in the LDAP directory.
10. We can use the following method:

import ldap
ldap_client = ldap.initialize("ldap://<ldap_server>:port_number/")

Chapter 7, Working with IP and DNS

W

LU

10.

pygeoip allows you to retrieve geographic information from an IP address. It
is based on GeolP databases, which are distributed in several files,
depending on their type (city, region, country, and ISP).
netifaces.interfaces().

53 (UDP).

The subnets (prefixlen_diff=1, new_prefix=None) method has the capacity to
generate subnets with additional host bits or with a specific amount of
network bits.

country_name_by_addr(<ip_address>).

record_by_addr(<ip_address>).

org_by_name(<domain_name>).

dns.resolver.query('domain', 'AAAA").

dns.resolver.query('domain', 'MX').

dns.resolver.query('domain', 'NS').

Chapter 8, Implementing IPv6 and
Address Manipulation

10.

1
2.
3.
4. Use the following code to create a server with IPv6 support with a socket

Link-local.
1 1/128.

socket.getaddrinfo.

module:

socket.AF_INET6 to indicate that we will use Ipv6
client = socket.socket (socket.AF_INET6, socket.SOCK_STREAM)

We can call the interfaces() function from this library to list all of the
interfaces that are present in the system.

ar_Link is the link layer interface (for example, Ethernet), ar_inet represents
the IPv4 internet address, and ar_inets represents the IPv6 internet address.
psutil.

We can interoperate between IPv4 and IPv6 with the ipve() and ipva()
methods.

From ipaddress, We Cdll import IPv6Address, IPv6Network, and 1pveInterface.

The subnets(prefixlen_diff=1, new_prefix=None) method also has the capacity to
generate subnets with additional host bits or with a specific amount of
network bits. Any 1pvanetwork object can find out information about its parent
with the supernet() method, which is the opposite of the subnet.

Chapter 9, Performing Network
Automation with Python and Ansible

0o

ik

YAML.

/etc/ansible/ansible.cfg.

/etc/ansible/hosts.

Ad hoc commands and playbooks.

The Ansible architecture is agentless in the sense no software or agent has
to be installed on the client to communicate back to the server. Instead of
relying on remote host agents, Ansible uses SSH to push its changes to the
remote host.

The Ansible command for checking the hostname of IP addresses is as
follows:

$ ansible all -a "hostname"

We can install by using the following code:

name: Installing Nginx and python
apt: pkg={{ item }}

with_items:

- ngnix

- python3-minimal

PlaybookExecutor fTOID,ansible.executor.playbook_executor.
The ping module.

. The AnsibleModule class fI‘OIl’l the ansible.module_utils.basic package.

Chapter 10, Programming with
Sockets

i

© o ND

10.

. socket.accept() iS used to accept the connection from the client. This method

returns two Values, client_socket and client_address, where client_socket iS a
new socket object that's used to send and receive data over the connection.
socket.sendto(data, address) iS used to send data to a given address.

The bind(zr, PorT) method allows you to associate a host and a port with a
specific socket, for example, server.bind(("localhost", 9999)).

The main difference between TCP and UDP is that UDP is not connection-
oriented. This means that there is no guarantee that our packets will reach
their destinations, and there is no error notification if a delivery fails.
socket .connect_ex(address) iS used for implementing port scanning with
sockets.

RawCap.exe.

socket.socket (socket.AF_INET6, socket.SOCK_STREAM).

There is a module called selectors.

The connection is wrapped into SSL packets using our ss1_wrap_socket ()
function.

By calling the getpeercert() method and comparing it with the returned
hostname.

Chapter 11, Designing Servers and
Asynchronous Programming

W

S©O®ND W

. aiohttp is an independent library that's developed using asyncio at a low

level and facilitates our handling of HTTP connections
ThreadPoolExecutor, ProcessPoolExecutor

The event loop

The asyncio.Task class is a subclass of asyncio.Future and aims to manage
coroutines

await

The tornado.web.Application object

AsyncHTTPClient

dataReceived

buildProtocol

We can use the tcpaclientEndpoint class

Chapter 12, Designing Applications
on the Web

W

S©O®ND W

From wsgiref.simple_server import make_server

The Model-View-Controller is a pattern for software development that is
based on separating the data, the user interface, and the logic of the
application

django-admin.py

We can run the following command in the djangoapplication directory that
contains the manage.py file: python manage.py migrate

With Flask, we must use the @route annotation

render_template

request.form

Flask-Security

sglalchemy.engine.base.Engine

squLALcHEMY_paTABAsE_urI, Which has been added in your config file

Another Book You May Enjoy

If you enjoyed this book, you may be interested in another book by Packt:

Python
Networking

Mastering Python Networking - Second Edition
Eric Chou

ISBN: 978-1-78913-599-2

Use Python libraries to interact with your network

Integrate Ansible 2.5 using Python to control Cisco, Juniper, and Arista
eAPI network devices

Leverage existing frameworks to construct high-level APIs

Learn how to build virtual networks in the AWS Cloud

Understand how Jenkins can be used to automatically deploy changes in
your network

Use PyTest and Unittest for Test-Driven Network Development

https://prod.packtpub.com/in/networking-and-servers/mastering-python-networking-second-edition

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Learning Python Networking Second Edition

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Section 1: Introduction to Network and HTTP Programming
	Network Programming with Python
	Technical requirements
	An introduction to TCP/IP networking
	Introduction to TCP/IP
	The protocol stack, layer by layer
	UDP
	TCP

	Protocol concepts and the problems that protocols solve
	IP addresses and ports
	Network interfaces
	UDP versus TCP
	DHCP
	DNS

	Addressing
	NAT
	IPv4
	IPv6

	Python network programming through libraries
	An introduction to the PyPI Python repository
	Alternatives to pip for installing packages
	Conda
	Virtualenv
	Pipenv

	An introduction to libraries for network programming with Python
	Introduction to sockets
	Socket module in Python
	Client socket methods
	Server socket methods

	Working with RFC
	Extracting RFC information
	Downloading an RFC with urllib
	Downloading an RFC with requests
	Downloading an RFC with the socket module

	Interacting with Wireshark with pyshark
	Introduction to Wireshark
	Wireshark installation

	Capturing packets with Wireshark
	Network traffic in Wireshark
	Color coding in Wireshark
	Working with filters in Wireshark
	Filtering by protocol name
	HTTP objects filter
	Capture filters
	Display filters

	Analyzing networking traffic using the pyshark library
	FileCapture and LiveCapture in pyshark

	Summary
	Questions
	Further reading

	Programming for the Web with HTTP
	Technical requirements
	Consuming web services in Python with urllib
	Status codes
	Handling exceptions
	HTTP headers
	User agent
	Customizing requests with urllib
	Getting headers with a proxy
	Content types
	Extracting links from a URL with urllib
	Getting images from a URL with urllib
	Working with URLs

	Consuming web services in Python with requests
	Introduction to requests
	Checking HTTP headers
	Proxy requests
	Get whois information
	Working with JSON

	Handling forms with urllib and requests with Python 3.7
	Handling forms with urllib
	Handling forms with requests

	Handling cookies with urllib and requests with Python
	What are cookies?
	Handling cookies with urllib
	Cookie handling with requests

	Handling HTTP Basic and Digest Authentication with requests
	Introduction to authentication mechanisms
	HTTP Basic authentication
	HTTP Digest authentication

	Summary
	Questions
	Further reading

	Section 2: Interacting with APIs, Web Scraping, and Server Scripting
	Application Programming Interface in Action
	Technical requirements
	Introduction to REST APIs
	Advantages of using REST APIs

	Introduction to JSON and the JSON module
	Encoding and decoding with the JSON package
	Using dict with JSON

	Interacting with a JSON hybrid-REST API (Twitter)
	The Twitter API
	Registering your application for the Twitter API
	Authenticating requests with OAuth
	Collecting information from Twitter
	A Twitter client
	Retrieving tweets from a timeline
	Searching tweets

	Consuming the Twitter REST API with Python
	Connecting with the Twitter API
	Accessing Twitter API resources
	Streaming APIs with Tweepy

	Introduction to XML
	Getting started with XML
	The XML APIs
	Processing XML with ElementTree
	Pretty printing

	Reading an XML file

	Working with XML and a full REST API (Amazon S3 bucket) with the Boto module
	The Amazon S3 API
	Registering with AWS
	Authentication with AWS
	S3 buckets and objects
	Creating a bucket with the S3 API
	Uploading and downloading file
	Listing buckets
	Parsing XML and handling errors
	Connecting to S3 with the Python Boto package

	Summary
	Questions
	Further reading

	Web Scraping with BeautifulSoup and Scrapy
	Technical requirements
	Introduction to web scraping
	Web content extraction
	What is web scraping?
	HTML parsers
	Parsing HTML with lxml
	Searching with XPath

	Extracting information from web pages and parsing HTML with BeautifulSoup
	BeautifulSoup introduction
	Access to elements through DOM
	Extracting labels using regex
	Handling URL exceptions and not found tags

	Introduction to Scrapy components and architecture
	What is Scrapy?
	Scrapy architecture
	XPath expressions

	Scrapy as a framework for performing web crawling processes and data analysis
	Installation of Scrapy
	Creating a project with Scrapy
	Scrapy item class
	Spiders
	Creating our spider

	Pipelines items and export formats
	Scrapy settings
	Executing Scrapy
	Scrapy execution tips and tricks

	EuroPython project
	Executing EuroPython spider

	Working with Scrapy in the cloud
	Scrapinghub
	Portia
	Start pages and link crawling

	Summary
	Questions
	Further reading

	Engaging with Email
	Technical requirements
	Introduction to email protocols
	Sending emails with SMTP through the smtplib library
	SMTP protocol
	Working with smtplib
	Sending a basic message
	Sending messages in HTML format
	Sending emails to multiple recipients
	Sending an email with attachments

	Authentication with TLS
	Establishing a connection with a Gmail SMTP server

	Using an external SMTP service
	Creating and sending an email with an attachment

	Learning the POP3 protocol and retrieving emails with poplib
	Understanding the POP3 protocol
	Introduction to poplib
	Retrieving emails with SSL
	Establishing a connection with Gmail for reading emails
	Gmail account configuration
	Unread messages

	Manipulating and retrieving emails on the server email using IMAP with imapclient and imaplib
	IMAP protocol
	Retrieving emails with imaplib
	Retrieving emails with imapclient

	Summary
	Questions
	Further reading

	Interacting with Remote Systems
	Technical requirements
	Understanding the SSH protocol
	SSH introduction
	Using SSH to encrypt sessions
	How the SSH protocol works
	SSH service features
	Configuring the SSH protocol to make it more secure

	SSH terminals and running commands with paramiko
	Installing paramiko
	Establishing an SSH connection with paramiko
	Running commands with paramiko
	Running an interactive shell with paramiko
	SFTP with paramiko
	Paramiko alternatives
	Fabric

	Understanding the FTP protocol for transferring files
	The File Transfer Protocol
	Introduction to ftplib
	Other ftplib functions
	Inspecting FTP packets with Wireshark

	Reading and interacting with SNMP servers
	The SNMP
	MIB – a broad base of information
	Introduction to pysnmp
	Polling information from the SNMP agent

	Reading and interacting with LDAP servers
	The LDAP protocol
	LDAP terminology
	Introduction to python-ldap
	The LDAP FreeIPA server
	Working with LDAP3
	Accessing the LDAP server

	Finding entries in LDAP

	Summary
	Questions
	Further reading

	Section 3: IP Address Manipulation and Network Automation
	Working with IP and DNS
	Technical requirements
	Principles of the IP protocol
	Resolving the IP address with the socket package
	Validating the IP address with the socket package

	Retrieving the network configuration of a local machine
	Gathering information with the netifaces package

	Using Python to manipulate IP addresses and perform CIDR calculations
	The Python ipaddress module
	Manipulating IP addresses
	IP network objects

	Subnetting in Python
	Network interface objects
	IP address objects

	Planning IP addresses for your local area network

	The dnspython module as a tool for extracting information from DNS servers
	Working with dnspython
	Determining the destination of an MX record and its preference
	Manipulating domain names
	Converting IPv4 and IPv6 addresses into their DNS reverse map names

	Inspecting the DNS client and server communication

	GeoIP lookups with pygeoip and python-geoip
	Introduction to geolocation
	Introduction to pygeoip
	Introduction to python-geoip
	The MaxMind database in Python

	Summary
	Questions
	Further reading

	Implementing IPv6 and Address Manipulation
	Technical requirements
	Learning and understanding the IPv6 protocol
	The IPv6 protocol
	IPv6 addresses
	Representation of IPv6 addresses
	Reserved IPv6 addresses
	First steps with IPv6 – link-local

	Create an echo client and server with IPv6
	Working with sockets
	The socket server

	The socket client
	Executing client and server

	Understanding netifaces module for checking IPv6 support on your network
	Introduction to netifaces
	Other packages for getting interfaces

	Using the netaddr module as a network-address manipulation library for Python
	Operating with IPv6

	Understand ipaddress module as IPv4 and IPv6 manipulation library
	The Python ipaddress module
	IP network objects
	Subnetting in Python with IPv6
	Network interface objects
	The IP address objects
	Planning IP addresses for your local area network

	Summary
	Questions
	Further reading

	Performing Network Automation with Python and Ansible
	Technical requirements
	Basics of Ansible
	Ansible introduction
	Installing Ansible
	Configuring Ansible
	Using Ansible

	Ansible's components and architecture
	Ansible's architecture
	Ansible's inventory file

	Automating network Python tasks with Ansible
	Ansible tasks
	Ad-hoc commands
	Using playbooks

	Writing Ansible modules with Python
	Introduction to Ansible modules
	Implementing Ansible modules with Python

	Summary
	Questions
	Further reading

	Section 4: Sockets and Server Programming
	Programming with Sockets
	Technical requirements
	Basics of sockets
	Sockets introduction
	Socket types
	Getting information about ports, protocols, and domains
	Creating a TCP client
	Banner grabbing with the socket module
	Port scanning with sockets
	Inspecting the client and server communication

	Working with UDP and TCP sockets in Python 3.7
	Introduction to the TCP and UDP protocols
	Starting network programming with Python
	TCP sockets
	Starting a client

	Capturing packets in a loopback interface
	Inspecting the client and server interaction
	Code limitations
	Creating a simple UDP client and UDP server
	Implementing the UDP server
	Implementing the UDP client

	Working with IPv6 sockets in Python 3.7
	Implementing the IPv6 server
	Implementing the IPv6 client
	Executing client and server

	Non-blocking and asynchronous socket I/O
	Introducing non-blocking I/O
	The client-server model with multiple connections

	HTTPS and securing sockets with TLS
	Implementing the SSL client
	Inspecting standard SSL client and server communication

	Summary
	Questions
	Further reading

	Designing Servers and Asynchronous Programming
	Technical requirements
	Building a multiprocessing-based TCP server
	Introducing the concurrent.futures module
	Application for checking websites
	The multiprocessing approach

	Building asynchronous applications with asyncio and aiohttp
	Introducing asyncio
	Using asyncio
	Introducing event loops
	Futures
	Task manipulation with asyncio
	Downloading files with asyncio
	Introducing aiohttp
	Downloading files with aiohttp
	Other event loop solutions

	Building asynchronous network applications with Tornado
	Introducing Tornado
	Implementing the Tornado web server
	Implementing an asynchronous client with AsyncHTTPClient
	Asynchronous generators
	Utilities in Tornado for asynchronous network operations

	Building asynchronous network applications with Twisted
	Introduction to Twisted
	Protocols
	Building a basic Twisted server
	Factory
	Reactor
	Building a socket client
	Executing the client and server
	Building a Twisted client
	Building a Twisted web server

	Building asynchronous network applications with Celery
	Celery architecture
	Installing Celery
	Installing Redis
	Introduction to Redis
	Distributing Python with Celery and Redis

	Summary
	Questions
	Further reading

	Designing Applications on the Web
	Technical requirements
	Writing a web application with WSGI
	Introducing WSGI
	Creating a WSGI application

	Existing web application frameworks (Django, Flask, and Plone)
	Web frameworks

	The MVC pattern and dynamic web programming with Python
	The MVC pattern
	Dynamic web pages
	Processing dynamic pages
	Accessing a database
	Django introduction
	Creating a Django application

	Creating RESTful web applications and working with Flask and HTTP requests
	Introducing Flask
	Routing in Flask
	Jinja2 templating
	POST parameters with Flask
	Other templating engines
	Flask extensions

	Working with a database in Flask with SQLAlchemy
	Introducing SQLAlchemy
	Creating a session and ORM queries
	Using Flask with SQLAlchemy

	Summary
	Questions
	Further reading

	Assessment
	Chapter 1, Network Programming with Python
	Chapter 2, Programming for the Web with HTTP
	Chapter 3, Application Programming Interface in Action
	Chapter 4, Web Scraping with BeautifulSoup and Scrapy
	Chapter 5, Engaging with Email
	Chapter 6, Interacting with Remote Systems
	Chapter 7, Working with IP and DNS
	Chapter 8, Implementing IPv6 and Address Manipulation
	Chapter 9, Performing Network Automation with Python and Ansible
	Chapter 10, Programming with Sockets
	Chapter 11, Designing Servers and Asynchronous Programming
	Chapter 12, Designing Applications on the Web

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

