

Learning	Python	Network	Programming

Table	of	Contents

Learning	Python	Network	Programming

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Virtual	environments

Installing	Python	3

Ubuntu	and	Debian

RHEL,	CentOS,	Scientific	Linux

Fedora

Alternative	installation	methods

Pythonz

JuJu

Windows

Other	requirements

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Network	Programming	and	Python

An	introduction	to	TCP/IP	networks

IP	addresses

Network	interfaces

Assigning	IP	addresses

IP	addresses	on	the	Internet

Packets

Networks

Routing	with	IP

DNS

The	protocol	stack	or	why	the	Internet	is	like	a	cake

Layer	4	–	TCP	and	UDP

Network	ports

UDP

TCP

UDP	versus	TCP

Layer	5	–	The	application	layer

On	to	Python!

Network	programming	with	Python

Breaking	a	few	eggs

Taking	it	from	the	top

Downloading	an	RFC

Looking	deeper

Programming	for	TCP/IP	networks

Firewalls

Network	Address	Translation

IPv6

Summary

2.	HTTP	and	Working	with	the	Web

Request	and	response

Requests	with	urllib

Response	objects

Status	codes

Handling	problems

HTTP	headers

Customizing	requests

Content	compression

Multiple	values

Content	negotiation

Content	types

User	agents

Cookies

Cookie	handling

Know	your	cookies

Redirects

URLs

Paths	and	relative	URLs

Query	strings

URL	encoding

URLs	in	summary

HTTP	methods

The	HEAD	method

The	POST	method

Formal	inspection

HTTPS

The	Requests	library

Handling	errors	with	Requests

Summary

3.	APIs	in	Action

Getting	started	with	XML

The	XML	APIs

The	basics	of	ElementTree

Pretty	printing

Element	attributes

Converting	to	text

The	Amazon	S3	API

Registering	with	AWS

Authentication

Setting	up	an	AWS	user

Regions

S3	buckets	and	objects

An	S3	command-line	client

Creating	a	bucket	with	the	API

Uploading	a	file

Retrieving	an	uploaded	file	through	a	web	browser

Displaying	an	uploaded	file	in	a	web	browser

Downloading	a	file	with	the	API

Parsing	XML	and	handling	errors

Parsing	XML

Finding	elements

Handling	errors

Further	enhancements

The	Boto	package

Wrapping	up	with	S3

JSON

Encoding	and	decoding

Using	dicts	with	JSON

Other	object	types

The	Twitter	API

A	Twitter	world	clock

Authentication	for	Twitter

Registering	your	application	for	the	Twitter	API

Authenticating	requests

A	Twitter	client

Polling	for	Tweets

Processing	the	Tweets

Rate	limits

Sending	a	reply

Final	touches

Taking	it	further

Polling	and	the	Twitter	streaming	APIs

Alternative	oAuth	flows

HTML	and	screen	scraping

HTML	parsers

Show	me	the	data

Parsing	HTML	with	lxml

Zeroing	in

Searching	with	XPath

XPath	conditions

Pulling	it	together

With	great	power…

Choosing	a	User	Agent

The	Robots.txt	file

Summary

4.	Engaging	with	E-mails

E-mail	terminologies

Sending	e-mails	with	SMTP

Composing	an	e-mail	message

Sending	an	e-mail	message

Sending	e-mails	securely	with	TLS

Retrieving	e-mails	by	using	POP3	with	poplib

Retrieving	e-mails	by	using	IMAP	with	imaplib

Sending	e-mail	attachments

Sending	e-mails	via	the	logging	module

Summary

5.	Interacting	with	Remote	Systems

Secure	shell	–	access	using	Python

Inspecting	the	SSH	packets

Transferring	files	through	SFTP

Transferring	files	with	FTP

Inspecting	FTP	packets

Fetching	Simple	Network	Management	Protocol	data

Inspecting	SNMP	packets

Reading	Light-weight	Directory	Access	Protocol	data

Inspecting	LDAP	packets

Sharing	files	with	SAMBA

Inspecting	SAMBA	packets

Summary

6.	IP	and	DNS

Retrieving	the	network	configuration	of	a	local	machine

Manipulating	IP	addresses

IP	network	objects

Network	interface	objects

The	IP	address	objects

Planning	IP	addresses	for	your	local	area	network

GeoIP	look-ups

DNS	look-ups

Inspecting	DNS	client/server	communication

NTP	clients

Inspecting	the	NTP	client/server	communication

Summary

7.	Programming	with	Sockets

Basics	of	sockets

Working	with	TCP	sockets

Inspecting	the	client/server	communication

TCP	servers

Inspecting	client/server	interaction

Working	with	UDP	sockets

TCP	port	forwarding

A	non-blocking	socket	I/O

Securing	sockets	with	TLS/SSL

Inspecting	standard	SSL	client/server	communication

Creating	a	custom	SSL	client/server

Inspecting	interaction	between	a	custom	SSL	client/server

Summary

8.	Client	and	Server	Applications

Client	and	server

An	echo	protocol

Framing

A	simple	echo	server

Handling	the	received	data

The	server	itself

A	simple	echo	client

Concurrent	I/O

Multithreading	and	multiprocessing

Threading	and	the	GIL

A	multithreaded	echo	server

Designing	a	chat	server

A	chat	protocol

Handling	data	on	persistent	connections

A	multithreaded	chat	server

Queues

Locks

A	multithreaded	chat	client

Event-driven	servers

A	low-level	event-driven	chat	server

Frameworks

An	eventlet-based	chat	server

An	asyncio-based	chat	server

More	on	frameworks

Taking	our	servers	forward

Summary

9.	Applications	for	the	Web

What’s	in	a	web	server?

Python	and	the	Web

Web	frameworks

Flask	–	a	microframework

Templating

Other	templating	engines

Adding	some	style

A	note	on	security

XSS

CSRF

Finishing	up	with	frameworks

Hosting	Python	web	applications

CGI

Recycling	for	a	better	world

Event-driven	servers

WSGI

Hosting	in	practice

Summary

A.	Working	with	Wireshark

Packet	sniffers

Wireshark

Installation

Capturing	some	packets

Filtering

Inspecting	packets

A	versatile	tool

Index

Learning	Python	Network	Programming

Learning	Python	Network	Programming
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2015

Production	reference:	1100615

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-600-8

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Dr.	M.	O.	Faruque	Sarker

Sam	Washington

Reviewers

Konstantin	Manchev	Manchev

Vishrut	Mehta

Anhad	Jai	Singh

Ben	Tasker

Ilja	Zegars

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Rohit	Singh

Technical	Editor

Saurabh	Malhotra

Copy	Editors

Ameesha	Green

Rashmi	Sawant

Trishla	Singh

Project	Coordinator

Izzat	Contractor

Proofreaders

Stephen	Copestake

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Abhinash	Sahu

Production	Coordinator

Shantanu	Zagade

Cover	Work

Shantanu	Zagade

About	the	Authors
Dr.	M.	O.	Faruque	Sarker	is	a	software	architect	based	in	London,	UK,	where	he	has
been	shaping	various	Linux	and	open	source	software	solutions,	mainly	on	cloud
computing	platforms,	for	commercial	companies,	educational	institutions,	and
multinational	consultancies.	Over	the	past	10	years,	he	has	been	leading	a	number	of
Python	software	development	and	cloud	infrastructure	automation	projects.	In	2009,	he
started	using	Python,	where	he	was	responsible	for	shepherding	a	fleet	of	miniature	E-
puck	robots	at	the	University	of	South	Wales,	Newport,	UK.	Later,	he	honed	his	Python
skills,	and	he	was	invited	to	work	on	the	Google	Summer	of	Code	(2009/2010)	programs
for	contributing	to	the	BlueZ	and	Tahoe-LAFS	open	source	projects.	He	is	the	author	of
Python	Network	Programming	Cookbook,	Packt	Publishing.

He	received	his	PhD	in	multirobot	systems	from	the	University	of	South	Wales.	He	is
currently	working	at	University	College	London.	He	takes	an	active	interest	in	cloud
computing,	software	security,	intelligent	systems,	and	child-centric	education.	He	lives	in
East	London	with	his	wife,	Shahinur,	and	daughter,	Ayesha.

All	praises	and	thanks	to	Allah,	the	God	who	is	the	Merciful	and	the	Beneficent.	I	would
not	be	able	to	finish	this	book	without	the	help	of	God.	I	would	like	to	thank	Packt
Publishing’s	entire	team	and	my	coauthor,	Sam,	who	were	very	friendly	and	cooperative
in	this	long	journey.	I	would	also	like	to	thank	my	family	and	friends	for	their	sacrifice	of
time,	encouraging	words,	and	smiles.

Sam	Washington	currently	works	at	University	College	London	as	a	member	of	its
Learning	and	Teaching	Applications	team,	developing	and	supporting	the	University’s
Moodle	virtual	learning	environment,	its	wikis	and	blogs,	and	its	online	media	services.
Prior	to	this,	he	was	a	system	administrator	for	UCL’s	several	museums.	He	has	working
experience	of	managing	the	demands	of	varied	web	applications,	and	deploying	and
supporting	Windows,	Linux,	and	TCP/IP	networks.	He	has	been	using	Python	for
professional	and	personal	projects	for	over	7	years.

I	would	like	to	thank	the	team	at	Packt	for	their	encouragement	and	input	throughout	this
project,	especially	Rebecca,	Rohit,	Saurabh,	Trishla,	and	Akshay.	I	would	also	like	to
thank	the	reviewers	for	all	their	insights	and	corrections,	Anhad	Jai	Singh,	Ben	Tasker,
Grzegorz	Gwóźdź,	Ilja	Zegars,	Tom	Stephens,	Vishrut	Mehta,	Konstantin	Manchev,	and
Andrew	Armitage.	I	would	like	to	express	my	immense	respect	and	gratitude	to	the	entire
Python	community	for	creating	such	a	great	programming	language	and	ecosystem,	and
thanks	to	Faruque	for	giving	me	this	opportunity	to	give	a	little	in	return.	And	Christina,
thank	you	for	still	being	here.	You	can	have	me	back	now.

About	the	Reviewers
Konstantin	Manchev	Manchev	is	a	technical	support	professional,	who	has	more	than	15
years	of	experience	in	a	wide	range	of	operating	systems,	database	services,	scripting,
networking,	and	security	in	the	mobile	telecommunication	systems.	He	actively
participates	in	the	adaption	of	various	vendor	equipment	projects	to	live	mobile	operator
networks.

He	has	worked	on	the	following	technologies:

Mobile	systems	such	as	GSM,	UMTS,	3G,	and	WiFi
Vendors	such	as	Cisco,	ALU,	NSN,	RedHat,	and	Canonical
Network	elements	such	as	MSC,	VLR,	HLR,	MSCS,	OCS,	NGIN,	and	PCRF
Network	protocol	suites	such	as	SS#7	and	TCP/IP
Webpage	technologies	such	as	HTTP,	XML,	HTML,	SOAP,	and	REST
Operating	systems	such	as	Linux	(Debian,	Ubuntu,	RHEL,	and	CentOS),	Windows,
and	Unix
Virtualisation	and	Cloud	technologies	such	as	EC2,	OpenStack,	VMware,
VirtualBox,	and	so	on
Programming	languages	such	as	Perl,	Python,	awk,	bash,	C,	Delphi,	Java,	and	so	on
Databases	such	as	MongoDB,	InfluxDB,	MySQL,	MS	SQL,	Oracle,	and	so	on
Monitoring	systems	such	as	Nagios,	Grafana,	Zabbix,	and	so	on

He	specializes	in	IT	and	Telecom	services	support,	installation,	configuration,
maintenance,	and	implementation	of	the	latest	market	technology	solutions.	He	is	a	Linux
enthusiast.

I	would	like	to	thank	my	wife,	Nadya	Valcheva-Mancheva,	my	kids,	Elena	Mancheva	and
Daniel	Manchev,	and	colleagues,	Attila	Sovak,	Ketan	Delhiwala,	Jerzy	Sczudlowski,
Aneesh	Kannankara,	Devrim	Kucuk,	Peter	De	Vriendt,	Peyo	Chernev,	Andrey	Royatchki,
Tzvetan	Balabanov,	Vasil	Zgurev,	Ludmil	Panov,	Plamen	Georgiev,	Ivailo	Pavlov,	Mitko
Bagrev,	and	Milen	Cholakov	for	their	support.

Vishrut	Mehta	is	a	student	of	IIIT	Hyderabad,	who	is	pursuing	his	masters	in	the	field	of
cloud	computing	and	software-defined	networks.	He	has	participated	in	the	Google
Summer	of	Code	2013	program	under	Sahana	Software	Foundation,	and	he	was	also	the
administrator	for	Google	Code-In.	He	also	did	his	research	internship	at	INRIA,	France,
for	3	months	under	Dr.	Nikos	Parlavantzas	in	the	field	of	automating	multi-cloud
applications.

He	has	worked	on	Untangle	Network	Security	and	Python	Network	Programming
Cookbook,	both	by	Packt	Publishing.

I	would	like	to	thank	my	advisors,	Dr.	Vasudeva	Varma	and	Dr.	Reddy	Raja,	for	helping
me	in	my	work	and	constantly	supporting	me	with	my	research.

Anhad	Jai	Singh	is	a	computer	science	graduate	from	IIIT	Hyderabad.	He’s	a	part-time
system	administrator	and	has	worked	as	a	Python	developer	in	the	past.	He’s	a	two-time

release	engineering	intern	at	Mozilla,	as	well	as	a	Google	Summer	of	Code	participant.	In
his	free	time,	he	plays	with	networks	and	distributed	systems.	You	can	find	him	lurking
around	IRC	networks	under	the	alias	of	“ffledgling.”

Ben	Tasker	is	a	Linux	systems	administrator,	penetration	tester,	and	software	developer
based	in	Suffolk,	UK.

Having	initially	interacted	with	Linux	at	an	early	age,	he’s	been	configuring,	scripting,	and
managing	systems	ever	since.	He	maintains	a	blog	and	documentation	archive
(www.bentasker.co.uk)	that	attempts	to	cater	to	both	technical	and	nontechnical	audiences.
He	is	currently	active	on	a	number	of	varied	projects	and	loves	every	challenge	they	bring.

Thanks	to	Claire,	my	love,	for	not	mentioning	the	time	I’ve	dedicated	to	this	and	other
projects.	I	would	also	like	to	thank	my	son,	Toby,	who’s	similarly	had	to	share	me.	The
Sanity	checks	provided	by	Ben,	Dean,	and	Neil	were	also	very	greatly	appreciated.

Ilja	Zegars	is	a	networking	specialist	with	over	7	years	of	experience	in	the	networking
field.	He	became	a	professional	Python	programmer	and	Python	programming	teacher,
while	studying	for	his	bachelor’s	degree.	Over	the	years,	he	mastered	his	skills	in	coding
and	networking.	Currently,	he	is	working	as	a	networking	specialist	and	data	analyst	at
AD-net	Technology	and	FiberBit	Technology.

He	is	the	author	of	the	book	Colour	Measurement	Using	Mobile	Phone	Camera.

I	want	to	thank	my	dear,	Danhua,	for	supporting	and	believing	in	me.

http://www.bentasker.co.uk

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Welcome	to	the	world	of	network	programming	with	Python.	Python	is	a	full-featured
object-oriented	programming	language	with	a	standard	library	that	includes	everything
needed	to	rapidly	build	powerful	network	applications.	In	addition,	it	has	a	multitude	of
third-party	libraries	and	packages	that	extend	Python	to	every	sphere	of	network
programming.	Combined	with	the	fun	of	using	Python,	with	this	book,	we	hope	to	get	you
started	on	your	journey	so	that	you	master	these	tools	and	produce	some	great	networking
code.

In	this	book,	we	are	squarely	targeting	Python	3.	Although	Python	3	is	still	establishing
itself	as	the	successor	to	Python	2,	version	3	is	the	future	of	the	language,	and	we	want	to
demonstrate	that	it	is	ready	for	network	programming	prime	time.	It	offers	many
improvements	over	the	previous	version,	many	of	which	improve	the	network
programming	experience,	with	enhanced	standard	library	modules	and	new	additions.

We	hope	you	enjoy	this	introduction	to	network	programming	with	Python.

What	this	book	covers
Chapter	1,	Network	Programming	and	Python,	introduces	core	networking	concepts	for
readers	that	are	new	to	networking,	and	also	covers	how	network	programming	is
approached	in	Python.

Chapter	2,	HTTP	and	Working	with	the	Web,	introduces	you	to	the	HTTP	protocol	and
covers	how	we	can	retrieve	and	manipulate	web	content	using	Python	as	an	HTTP	client.
We	also	take	a	look	at	the	standard	library	urllib	and	third-party	Requests	modules.

Chapter	3,	APIs	in	Action,	introduces	you	to	working	with	web	APIs	using	HTTP.	We	also
cover	the	XML	and	JSON	data	formats,	and	walk	you	through	developing	applications
using	the	Amazon	Web	Services	Simple	Storage	Service	(S3)	and	Twitter	APIs.

Chapter	4,	Engaging	with	E-mails,	covers	the	principle	protocols	used	in	sending	and
receiving	e-mails,	such	as	SMTP,	POP3,	and	IMAP,	and	how	to	work	with	them	in	Python
3.

Chapter	5,	Interacting	with	Remote	Systems,	guides	you	through	the	ways	of	using	Python
to	connect	to	servers	and	performing	common	administrative	tasks,	including	the
execution	of	shell	commands	through	SSH,	file	transfers	with	FTP	and	SMB,
authentication	with	LDAP,	and	to	monitor	systems	with	SNMP.

Chapter	6,	IP	and	DNS,	discusses	the	details	of	the	Internet	Protocol	(IP),	ways	of	working
with	IP	in	Python,	and	how	to	use	DNS	to	resolve	hostnames.

Chapter	7,	Programming	with	Sockets,	covers	using	TCP	and	UDP	sockets	from	Python
for	writing	low-level	network	applications.	We	also	cover	HTTPS	and	TLS	for	secure	data
transport.

Chapter	8,	Client	and	Server	Applications,	looks	at	writing	client	and	server	programs	for
socket-based	communication.	By	writing	an	echo	application	and	a	chat	application	we
look	at	developing	basic	protocols,	framing	network	data,	and	compare	the	multithreading
and	event-based	server	architectures.

Chapter	9,	Applications	for	the	Web,	introduces	you	to	writing	web	applications	in	Python.
We	cover	the	main	approaches,	methods	of	hosting	Python	web	applications,	and	develop
an	example	application	in	the	Flask	microframework.

Appendix,	Working	with	Wireshark,	covers	packet	sniffers,	the	installation	of	Wireshark,
and	how	to	capture	and	filter	packets	using	the	Wireshark	application.

What	you	need	for	this	book
This	book	is	aimed	at	Python	3.	While	many	of	the	examples	will	work	in	Python	2,	you’ll
get	the	best	experience	working	through	this	book	with	a	recent	version	of	Python	3.	At
the	time	of	writing,	the	latest	version	is	3.4.3,	and	the	examples	were	tested	against	this.

Though	Python	3.4	is	the	preferred	version,	all	the	examples	should	run	on	Python	3.1	or
later,	except	for	the	following:

The	asyncio	example	in	Chapter	8,	Client	and	Server	Applications,	as	the	asyncio
module	was	only	included	in	Version	3.4
The	Flask	example	in	Chapter	9,	Applications	for	the	Web,	which	requires	Python	3.3
or	later

We’re	also	targeting	the	Linux	operating	system,	and	the	assumption	is	made	that	you	are
working	on	a	Linux	OS.	The	examples	have	been	tested	on	Windows	though,	and	we’ll
make	a	note	of	where	there	may	be	differences	in	the	requirements	or	outcomes.

Virtual	environments
It	is	highly	recommended	that	you	use	Python	virtual	environments,	or	“venvs“,	when	you
work	with	this	book,	and	in	fact,	when	doing	any	work	with	Python.	A	venv	is	an	isolated
copy	of	the	Python	executable	and	associated	files,	which	provides	a	separate	environment
for	installing	Python	modules,	independent	from	the	system	Python	installation.	You	can
have	as	many	venvs	as	you	need,	which	means	that	you	can	have	multiple	module
configurations	set	up,	and	you	can	switch	between	them	easily.

From	version	3.3,	Python	includes	a	venv	module,	which	provides	this	functionality.	The
documentation	and	examples	are	available	at	https://docs.python.org/3/using/scripts.html.
There	is	also	a	standalone	tool	available	for	earlier	versions,	which	can	be	found	at
https://virtualenv.pypa.io/en/latest/.

https://docs.python.org/3/using/scripts.html
https://virtualenv.pypa.io/en/latest/

Installing	Python	3
Most	major	Linux	distributions	come	preinstalled	with	Python	2.	When	installing	Python
3	on	such	a	system,	it	is	important	to	note	that	we’re	not	replacing	the	installation	of
Python	2.	Many	distributions	use	Python	2	for	core	system	operations,	and	these	will	be
tuned	for	the	major	version	of	the	system	Python.	Replacing	the	system	Python	can	have
severe	consequences	for	the	running	of	the	OS.	Instead,	when	we	install	Python	3,	it	is
installed	side	by	side	with	Python	2.	After	installing	Python	3,	it	is	invoked	using	the
python3.x	executable,	where	x	is	replaced	with	the	corresponding	installed	minor	version.
Most	packages	also	provide	a	symlink	to	this	executable	called	python3,	which	can	be	run
instead.

Packages	to	install	Python	3.4	are	available	for	most	recent	distributions,	we’ll	go	through
the	major	ones	here.	If	packages	are	not	available,	there	are	still	some	options	that	you	can
use	to	install	a	working	Python	3.4	environment.

Ubuntu	and	Debian
Ubuntu	15.04	and	14.04	come	with	Python	3.4	already	installed;	so	if	you’re	running	these
versions,	you’re	already	good	to	go.	Note	that	there	is	a	bug	in	14.04,	which	means	pip
must	be	installed	manually	in	any	venvs	created	using	the	bundled	venv	module.	You	can
find	information	on	working	around	this	at
http://askubuntu.com/questions/488529/pyvenv-3-4-error-returned-non-zero-exit-status-1.

For	earlier	versions	of	Ubuntu,	Felix	Krull	maintains	a	repository	of	up-to-date	Python
installations	for	Ubuntu.	The	complete	details	can	be	found	at
https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes.

On	Debian,	Jessie	has	a	Python	3.4	package	(python3.4),	which	can	be	installed	directly
with	apt-get.	Wheezy	has	a	package	for	3.2	(python3.2),	and	Squeeze	has	python3.1,
which	can	be	installed	similarly.	In	order	to	get	working	Python	3.4	installations	on	these
latter	two,	it’s	easiest	to	use	Felix	Krull’s	repositories	for	Ubuntu.

RHEL,	CentOS,	Scientific	Linux
These	distributions	don’t	provide	up-to-date	Python	3	packages,	so	we	need	to	use	a	third-
party	repository.	For	Red	Hat	Enterprise	Linux,	CentOS,	and	Scientific	Linux,	Python	3
can	be	obtained	from	the	community	supported	Software	Collections	(SCL)	repository.
Instructions	on	using	this	repository	can	be	found	at
https://www.softwarecollections.org/en/scls/rhscl/python33/.	At	the	time	of	writing,
Python	3.3	is	the	latest	available	version.

Python	3.4	is	available	from	another	repository,	the	IUS	Community	repository,	sponsored
by	Rackspace.	Instructions	on	the	installation	can	be	found	at
https://iuscommunity.org/pages/IUSClientUsageGuide.html.

Fedora
Fedora	21	and	22	provide	Python	3.4	with	the	python3	package:

http://askubuntu.com/questions/488529/pyvenv-3-4-error-returned-non-zero-exit-status-1
https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes
https://www.softwarecollections.org/en/scls/rhscl/python33/
https://iuscommunity.org/pages/IUSClientUsageGuide.html

$	yum	install	python3

For	earlier	versions	of	Fedora,	use	the	repositories	listed	in	the	preceding	Red	Hat	section.

Alternative	installation	methods
If	you’re	working	on	a	system,	which	isn’t	one	of	the	systems	mentioned	earlier,	and	you
can’t	find	packages	for	your	system	to	install	an	up-to-date	Python	3,	there	are	still	other
ways	of	getting	it	installed.	We’ll	discuss	two	methods,	Pythonz	and	JuJu.

Pythonz
Pythonz	is	a	program	that	manages	the	compilation	of	Python	interpreters	from	source
code.	It	downloads	and	compiles	Python	from	source	and	installs	the	compiled	Python
interpreters	in	your	home	directory.	These	binaries	can	then	be	used	to	create	venvs.	The
only	limitation	with	this	installation	method	is	that	you	need	a	build	environment	(that	is,
a	C	compiler	and	supporting	packages)	installed	on	your	system,	and	dependencies	to
compile	Python.	If	this	doesn’t	come	with	your	distribution,	you	will	need	root	access	to
install	this	initially.	The	complete	instructions	can	be	found	at
https://github.com/saghul/pythonz.

JuJu
JuJu	can	be	used	as	a	last	resort,	it	allows	a	working	Python	3.4	installation	on	any	system
without	needing	root	access.	It	works	by	creating	a	tiny	Arch	Linux	installation	in	a	folder,
in	your	home	folder	and	provides	tools	that	allow	us	to	switch	to	this	installation	and	run
commands	in	it.	Using	this,	we	can	install	Arch’s	Python	3.4	package,	and	you	can	run
Python	programs	using	this.	The	Arch	environment	even	shares	your	home	folder	with
your	system,	so	sharing	files	between	environments	is	easy.	The	JuJu	home	page	is
available	at	https://github.com/fsquillace/juju.

JuJu	should	work	on	any	distribution.	To	install	it	we	need	to	do	this:

$	mkdir	~/.juju

$	curl	https://	bitbucket.org/fsquillace/juju-repo/raw/master/juju-	

x86_64.tar.gz	|	tar	-xz	-C	~/.juju

This	downloads	and	extracts	the	JuJu	image	to	~/.juju.	You’ll	need	to	replace	the	x86_64
with	x86	if	you’re	running	on	a	32-bit	system.	Next,	set	up	PATH	to	pick	up	the	JuJu
commands:

$	export	PATH=~/.juju/opt/juju/bin:$PATH

It’s	a	good	idea	to	add	this	to	your	.bashrc,	so	you	don’t	need	to	run	it	every	time	you	log
in.	Next,	we	install	Python	in	the	JuJu	environment,	we	only	need	to	do	this	once:

$	juju	-f

$	pacman	--sync	refresh

$	pacman	--sync	--sysupgrade

$	pacman	--sync	python3

$	exit

These	commands	first	activate	the	JuJu	environment	as	root,	then	use	the	pacman	Arch
Linux	package	manager	to	update	the	system	and	install	Python	3.4.	The	final	exit
command	exits	the	JuJu	environment.	Finally,	we	can	access	the	JuJu	environment	as	a

https://github.com/saghul/pythonz
https://github.com/fsquillace/juju

regular	user:

$	juju

We	can	then	start	using	the	installed	Python	3:

$	python3	

Python	3.4.3	(default,	Apr	28	2015,	19:59:08)

[GCC	4.7.2]	on	linux

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Windows
Compared	to	some	of	the	older	Linux	distributions,	installing	Python	3.4	on	Windows	is
relatively	easy;	just	download	the	Python	3.4	installer	from	http://www.python.org	and	run
it.	The	only	hitch	is	that	it	requires	administrator	privileges	to	do	so,	so	if	you’re	on	a
locked	down	machine,	things	are	trickier.	The	best	solution	at	the	moment	is	WinPython,
which	is	available	at	http://winpython.github.io.

http://www.python.org
http://winpython.github.io

Other	requirements
We	assume	that	you	have	a	working	Internet	connection.	Several	chapters	use	Internet
resources	extensively,	and	there	is	no	real	way	to	emulate	these	offline.	Having	a	second
computer	is	also	useful	to	explore	some	networking	concepts,	and	for	trying	out	network
applications	across	a	real	network.

We	also	use	the	Wireshark	packet	sniffer	in	several	chapters.	This	will	require	a	machine
where	you	have	root	access	(or	administrator	access	in	Windows).	Wireshark	installers
and	installation	instructions	are	available	at	https://www.wireshark.org.	An	introduction	to
using	Wireshark	can	be	found	in	the	Appendix,	Working	with	Wireshark.

https://www.wireshark.org

Who	this	book	is	for
If	you’re	a	Python	developer,	or	system	administrator	with	Python	experience,	and	you’re
looking	forward	to	take	your	first	step	in	network	programming,	then	this	book	is	for	you.
Whether	you’re	working	with	networks	for	the	first	time	or	looking	to	enhance	your
existing	networking	and	Python	skills,	you	will	find	this	book	very	useful.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“IP
addresses	have	been	assigned	to	your	computer	by	running	the	ip	addr	or	ipconfig	/all
command	on	Windows.”

A	block	of	code	is	set	as	follows:

import	sys,	urllib.request

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

template	=	'http://www.ietf.org/rfc/rfc{}.txt'

url	=	template.format(rfc_number)

rfc_raw	=	urllib.request.urlopen(url).read()

rfc	=	rfc_raw.decode()

print(rfc)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	highlighted:

<body>

...

<div	id="content">

<h1>Debian	“jessie”	Release	Information</h1>

<p>Debian	8.0	was

released	October	18th,	2014.

The	release	included	many	major

changes,	described	in…

Any	command-line	input	or	output	is	written	as	follows:

$	python	RFC_downloader.py	2324	|	less

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“We	can	see	there’s	a
list	of	interfaces	below	the	Start	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

We	follow	PEP	8	as	closely	as	we	can,	but	we	also	follow	the	principle	that	practicality
beats	purity,	and	do	deviate	in	a	few	areas.	Imports	are	often	performed	on	a	single	line	to
save	space,	and	we	may	not	strictly	adhere	to	wrapping	conventions	do	to	the	nature	of
printed	media;	we	aim	for	“readability	counts”.

We	have	also	chosen	to	focus	on	the	procedural	programming	style	rather	than	use	object-
oriented	examples.	The	reason	for	this	is	that	it	is	generally	easier	for	someone	familiar
with	object	oriented	programming	to	rework	procedural	examples	into	an	object	oriented
format	than	it	is	for	someone	unfamiliar	with	OOP	to	do	the	reverse.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Network	Programming	and
Python
This	book	will	focus	on	writing	programs	for	networks	that	use	the	Internet	protocol	suite.
Why	have	we	chosen	to	do	this?	Well,	of	the	sets	of	protocols	supported	by	the	Python
standard	library,	the	TCP/IP	protocol	is	by	far	the	most	widely	employable.	It	contains	the
principle	protocols	used	by	the	Internet.	By	learning	to	program	for	TCP/IP,	you’ll	be
learning	how	to	potentially	communicate	with	just	about	every	device	that	is	connected	to
this	great	tangle	of	network	cables	and	electromagnetic	waves.

In	this	chapter,	we	will	be	looking	at	some	concepts	and	methods	around	networks	and
network	programming	in	Python,	which	we’ll	be	using	throughout	this	book.

This	chapter	has	two	sections.	The	first	section,	An	introduction	to	TCP/IP	networks,
offers	an	introduction	to	essential	networking	concepts,	with	a	strong	focus	on	the	TCP/IP
stack.	We’ll	be	looking	at	what	comprises	a	network,	how	the	Internet	Protocol	(IP)
allows	data	transfer	across	and	between	networks,	and	how	TCP/IP	provides	us	with
services	that	help	us	to	develop	network	applications.	This	section	is	intended	to	provide	a
grounding	in	these	essential	areas	and	to	act	as	a	point	of	reference	for	them.	If	you’re
already	comfortable	with	concepts	such	as	IP	addresses,	routing,	TCP	and	UDP,	and
protocol	stack	layers,	then	you	may	wish	to	skip	to	second	part,	Network	programming
with	Python.

In	the	second	part,	we’ll	look	at	the	way	in	which	network	programming	is	approached
with	Python.	We’ll	be	introducing	the	main	standard	library	modules,	looking	at	some
examples	to	see	how	they	relate	to	the	TCP/IP	stack,	and	then	we	will	be	discussing	a
general	approach	for	finding	and	employing	modules	that	meet	our	networking	needs.
We’ll	also	be	taking	a	look	at	a	couple	of	general	issues	that	we	may	encounter,	when
writing	applications	that	communicate	over	TCP/IP	networks.

An	introduction	to	TCP/IP	networks
The	Internet	protocol	suite,	often	referred	to	as	TCP/IP,	is	a	set	of	protocols	designed	to
work	together	to	provide	end-to-end	transmission	of	messages	across	interconnected
networks.

The	following	discussion	is	based	on	Internet	Protocol	version	4	(IPv4).	Since	the
Internet	has	run	out	of	IPv4	addresses,	a	new	version,	IPv6,	has	been	developed,	which	is
intended	to	resolve	this	situation.	However,	although	IPv6	is	being	used	in	a	few	areas,	its
deployment	is	progressing	slowly	and	a	majority	of	the	Internet	will	likely	be	using	IPv4
for	a	while	longer.	We’ll	focus	on	IPv4	in	this	section,	and	then	we	will	discuss	the
relevant	changes	in	IPv6	in	second	part	of	this	chapter.

TCP/IP	is	specified	in	documents	called	Requests	for	Comment	(RFCs)	which	are
published	by	the	Internet	Engineering	Task	Force	(IETF).	RFCs	cover	a	wide	range	of
standards	and	TCP/IP	is	just	one	of	these.	They	are	freely	available	on	the	IETF’s	website,
which	can	be	found	at	www.ietf.org/rfc.html.	Each	RFC	has	a	number,	IPv4	is
documented	by	RFC	791,	and	other	relevant	RFCs	will	be	mentioned	as	we	progress.

Note	that	you	won’t	learn	how	to	set	up	your	own	network	in	this	chapter	because	that’s	a
big	topic	and	unfortunately,	somewhat	beyond	the	scope	of	this	book.	But,	it	should	enable
you	at	least	to	have	a	meaningful	conversation	with	your	network	support	people!

http://www.ietf.org/rfc.html

IP	addresses
So,	let’s	get	started	with	something	you’re	likely	to	be	familiar	with,	that	is,	IP	addresses.
They	typically	look	something	like	this:

203.0.113.12

They	are	actually	a	single	32-bit	number,	though	they	are	usually	written	just	like	the
number	shown	in	the	preceding	example;	they	are	written	in	the	form	of	four	decimal
numbers	that	are	separated	by	dots.	The	numbers	are	sometimes	called	octets	or	bytes
because	each	one	represents	8-bits	of	the	32-bit	number.	As	such,	each	octet	can	only	take
values	from	0	to	255,	so	valid	IP	addresses	range	from	0.0.0.0	to	255.255.255.255.	This
way	of	writing	IP	addresses	is	called	dot-decimal	notation.

IP	addresses	perform	two	main	functions.	They	are	as	follows:

They	uniquely	address	each	device	that	is	connected	to	a	network
They	help	the	traffic	to	be	routed	between	networks

You	may	have	noticed	that	the	network-connected	devices	that	you	use	have	IP	addresses
assigned	to	them.	Each	IP	address	that	is	assigned	to	a	network	device	is	unique	and	no
two	devices	can	share	an	IP	address.

Network	interfaces
You	can	find	out	what	IP	addresses	have	been	assigned	to	your	computer	by	running	ip
addr	(or	ipconfig	/all	on	Windows)	on	a	terminal.	In	Chapter	6,	IP	and	DNS,	we’ll	see
how	to	do	this	when	using	Python.

If	we	run	one	of	these	commands,	then	we	can	see	that	the	IP	addresses	are	assigned	to	our
device’s	network	interfaces.	On	Linux,	these	will	have	names,	such	as	eth0;	on	Windows
these	will	have	phrases,	such	as	Ethernet	adapter	Local	Area	Connection.

You	will	get	the	following	output	when	you	run	the	ip	addr	command	on	Linux:

$	ip	addr

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

				inet	127.0.0.1/8	scope	host	lo

							valid_lft	forever	preferred_lft	forever

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	

UP	qlen	1000

				link/ether	b8:27:eb:5d:7f:ae	brd	ff:ff:ff:ff:ff:ff

				inet	192.168.0.4/24	brd	192.168.0.255	scope	global	eth0

							valid_lft	forever	preferred_lft	forever

In	the	preceding	example,	the	IP	addresses	for	the	interfaces	appear	after	the	word	inet.

An	interface	is	a	device’s	physical	connection	to	its	network	media.	It	could	be	a	network
card	that	connects	to	a	network	cable,	or	a	radio	that	uses	a	specific	wireless	technology.	A
desktop	computer	may	only	have	a	single	interface	for	a	network	cable,	whereas	a
Smartphone	is	likely	to	have	at	least	two	interfaces,	one	for	connecting	to	Wi-Fi	networks
and	one	for	connecting	to	mobile	networks	that	use	4G	or	other	technologies.

An	interface	is	usually	assigned	only	one	IP	address,	and	each	interface	in	a	device	has	a
different	IP	address.	So,	going	back	to	the	purposes	of	IP	addresses	discussed	in	the
preceding	section,	we	can	now	more	accurately	say	that	their	first	main	function	is	to
uniquely	address	each	device’s	connection	to	a	network.

Every	device	has	a	virtual	interface	called	the	loopback	interface,	which	you	can	see	in
the	preceding	listing	as	interface	1.	This	interface	doesn’t	actually	connect	to	anything
outside	the	device,	and	only	the	device	itself	can	communicate	with	it.	While	this	may
sound	a	little	redundant,	it’s	actually	very	useful	when	it	comes	to	local	network
application	testing,	and	it	can	also	be	used	as	a	means	of	inter-process	communication.
The	loopback	interface	is	often	referred	to	as	localhost,	and	it	is	almost	always	assigned
the	IP	address	127.0.0.1.

Assigning	IP	addresses
IP	addresses	can	be	assigned	to	a	device	by	a	network	administrator	in	one	of	two	ways:
statically,	where	the	device’s	operating	system	is	manually	configured	with	the	IP	address,
or	dynamically,	where	the	device’s	operating	system	is	configured	by	using	the	Dynamic
Host	Configuration	Protocol	(DHCP).

When	using	DHCP,	as	soon	as	the	device	first	connects	to	a	network,	it	is	automatically
allocated	an	address	by	a	DHCP	server	from	a	predefined	pool.	Some	network	devices,
such	as	home	broadband	routers	provide	a	DHCP	server	service	out-of-the-box,	otherwise
a	DHCP	server	must	be	set	up	by	a	network	administrator.	DHCP	is	widely	deployed,	and
it	is	particularly	useful	for	networks	where	different	devices	may	frequently	connect	and
disconnect,	such	as	public	Wi-Fi	hotspots	or	mobile	networks.

IP	addresses	on	the	Internet
The	Internet	is	a	huge	IP	network,	and	every	device	that	sends	data	over	it	is	assigned	an
IP	address.

The	IP	address	space	is	managed	by	an	organization	called	the	Internet	Assigned
Numbers	Authority	(IANA).	IANA	decides	the	global	allocation	of	the	IP	address	ranges
and	assigns	blocks	of	addresses	to	Regional	Internet	Registries	(RIRs)	worldwide,	who
then	allocate	address	blocks	to	countries	and	organizations.	The	receiving	organizations
have	the	freedom	to	allocate	the	addresses	from	their	assigned	blocks	as	they	like	within
their	own	networks.

There	are	some	special	IP	address	ranges.	IANA	has	defined	ranges	of	private	addresses.
These	ranges	will	never	be	assigned	to	any	organization,	and	as	such	these	are	available
for	anyone	to	use	for	their	networks.	The	private	address	ranges	are	as	follows:

10.0.0.0	to	10.255.255.255
172.16.0.0	to	172.31.255.255
192.168.0.0	to	192.168.255.255

You	may	be	thinking	that	if	anybody	can	use	them,	then	would’nt	that	mean	that	devices
on	the	Internet	will	end	up	using	the	same	addresses,	thereby	breaking	IP’s	unique
addressing	property?	This	is	a	good	question,	and	this	problem	has	been	avoided	by
forbidding	traffic	from	private	addresses	from	being	routed	over	the	public	Internet.
Wherever	a	network	using	private	addresses	needs	to	communicate	with	the	public
Internet,	a	technique	called	Network	Address	Translation	(NAT)	is	used,	which
essentially	makes	the	traffic	from	the	private	network	appear	to	be	coming	from	a	single
valid	public	Internet	address,	and	this	effectively	hides	the	private	addresses	from	the
Internet.	We’ll	discuss	NAT	later	on.

If	you	inspect	the	output	of	ip	addr	or	ipconfig	/all	on	your	home	network,	then	you
will	find	that	your	devices	are	using	private	range	addresses,	which	would	have	been
assigned	to	them	by	your	broadband	router	through	DHCP.

Packets
We’ll	be	talking	about	network	traffic	in	the	following	sections,	so	let’s	get	an	idea	of	what
it	is.

Many	protocols,	including	the	principle	protocols	in	the	Internet	protocol	suite,	employ	a
technique	called	packetization	to	help	manage	data	while	it’s	being	transmitted	across	a
network.

When	a	packetizing	protocol	is	given	some	data	to	transmit,	it	breaks	it	up	into	small	units
—	sequences	of	bytes,	typically	a	few	thousand	bytes	long	and	then	it	prefixes	each	unit
with	some	protocol-specific	information.	The	prefix	is	called	a	header,	and	the	prefix	and
data	together	form	a	packet.	The	data	within	a	packet	is	often	called	its	payload.

What	a	packet	contains	is	shown	in	the	following	figure:

Some	protocols	use	alternative	terms	for	packets,	such	as	frames,	but	we’ll	stick	with	the
term	packets	for	now.	The	header	includes	all	the	information	that	the	protocol
implementation	running	on	another	device	needs	to	be	able	to	interpret	what	the	packet	is
and	how	to	handle	it.	For	example,	the	information	in	an	IP	packet	header	includes	the
source	IP	address,	the	destination	IP	address,	the	total	length	of	the	packet,	and	the
checksum	of	the	data	in	the	header.

Once	created,	the	packets	are	sent	onto	the	network,	where	they	are	independently	routed
to	their	destination.	Sending	the	data	in	packets	has	several	advantages,	including
multiplexing	(where	more	than	one	device	can	send	data	over	the	network	at	once),	rapid
notification	of	errors	that	may	occur	on	the	network,	congestion	control,	and	dynamic	re-
routing.

Protocols	may	call	upon	other	protocols	to	handle	their	packets	for	them;	passing	their
packets	to	the	second	protocol	for	delivery.	When	both	the	protocols	employ
packetization,	nested	packets	result,	as	shown	in	the	following	figure:

This	is	called	encapsulation,	and	as	we’ll	see	shortly,	it	is	a	powerful	mechanism	for
structuring	network	traffic.

Networks
A	network	is	a	discrete	collection	of	connected	network	devices.	Networks	can	vary
greatly	in	scale,	and	they	can	be	made	up	of	smaller	networks.	Your	network-connected
devices	at	home	or	the	network-connected	computers	in	a	large	office	building	are
examples	of	networks.

There	are	quite	a	few	ways	of	defining	a	network,	some	loose,	some	very	specific.
Depending	on	the	context,	networks	can	be	defined	by	physical	boundaries,	administrative
boundaries,	institutional	boundaries,	or	network	technology	boundaries.

For	this	section,	we’re	going	to	start	with	a	simplified	definition	of	a	network,	and	then
work	toward	a	more	specific	definition,	in	the	form	of	IP	subnets.

So	for	our	simplified	definition,	our	common	defining	feature	of	a	network	will	be	that	all
devices	on	the	network	share	a	single	point	of	connection	to	the	rest	of	the	Internet.	In
some	large	or	specialized	networks,	you	will	find	that	there	is	more	than	one	point	of
connection,	but	for	the	sake	of	simplicity	we’ll	stick	to	a	single	connection	here.

This	connection	point	is	called	a	gateway,	and	usually	it	takes	the	form	of	a	special
network	device	called	a	router.	The	job	of	a	router	is	to	direct	traffic	between	networks.	It
sits	between	two	or	more	networks	and	is	said	to	sit	at	the	boundary	of	these	networks.	It
always	has	two	or	more	network	interfaces;	one	for	each	network	it	is	attached	to.	A	router
contains	a	set	of	rules	called	a	routing	table,	which	tells	it	how	to	direct	the	packets	that
are	passing	through	it	onwards,	based	on	the	packets’	destination	IP	addresses.

The	gateway	forwards	the	packets	to	another	router,	which	is	said	to	be	upstream,	and	is
usually	located	at	the	network’s	Internet	Service	Provider	(ISP).	The	ISP’s	router	falls
into	a	second	category	of	routers,	that	is,	it	sits	outside	the	networks	described	earlier,	and
routes	traffic	between	network	gateways.	These	routers	are	run	by	ISPs	and	other
communications	entities.	They	are	generally	arranged	in	tiers,	and	the	upper	regional	tiers
route	the	traffic	for	some	large	sections	of	countries	or	continents	and	form	the	Internet’s
backbone.

Because	these	routers	can	sit	between	many	networks,	their	routing	tables	can	become
very	extensive	and	they	need	to	be	updated	continuously.	A	simplified	illustration	is
shown	in	the	following	diagram:

The	preceding	diagram	gives	us	an	idea	of	the	arrangement.	Each	ISP	gateway	connects
an	ISP	network	to	the	regional	routers,	and	each	home	broadband	router	has	a	home
network	connected	to	it.	In	the	real	world,	this	arrangement	gets	more	complicated	as	one
goes	toward	the	top.	ISPs	will	often	have	more	than	one	gateway	connecting	them	to	the
regional	routers,	and	some	of	these	will	also	themselves	be	acting	as	regional	routers.
Regional	routers	also	have	more	tiers	than	shown	here,	and	they	have	many	connections
between	one	another,	which	are	in	arrangements	that	are	much	more	complicated	than	this
simple	hierarchy.	A	rendering	of	a	section	of	the	Internet	from	data	gathered	in	2005
provides	a	beautiful	illustration	of	just	how	complex	this	becomes,	it	can	be	found	at
http://en.wikipedia.org/wiki/Internet_backbone#/media/File:Internet_map_1024.jpg.

http://en.wikipedia.org/wiki/Internet_backbone#/media/File:Internet_map_1024.jpg

Routing	with	IP
We	mentioned	that	routers	are	able	to	route	traffic	toward	a	destination	network,	and
implied	that	this	is	somehow	done	by	using	IP	addresses	and	routing	tables.	But	what’s
really	going	on	here?

One	perhaps	obvious	method	for	routers	to	determine	the	correct	router	to	forward	traffic
to	would	be	to	program	every	router’s	routing	table	with	a	route	for	every	IP	address.
However,	in	practice,	with	4	billion	plus	IP	addresses	and	constantly	changing	network
routes,	this	turns	out	to	be	a	completely	infeasible	method.

So,	how	is	routing	done?	The	answer	lies	in	another	property	of	IP	addresses.	An	IP
address	can	be	interpreted	as	being	made	up	of	two	logical	parts:	a	network	prefix	and	a
host	identifier.	The	network	prefix	uniquely	identifies	the	network	a	device	is	on,	and	the
device	can	use	this	to	determine	how	to	handle	traffic	that	it	generates,	or	receives	for
forwarding.	The	network	prefix	is	the	first	n	bits	of	the	IP	address	when	it’s	written	out	in
binary	(remember	an	IP	address	is	really	just	a	32-bit	number).	The	n	bits	are	supplied	by
the	network	administrator	as	a	part	of	a	device’s	network	configuration	at	the	same	time
that	it	is	given	its	IP	address.

You’ll	see	that	n	is	written	in	one	of	two	ways.	It	can	simply	be	appended	to	the	IP
address,	separated	by	a	slash,	as	follows:

192.168.0.186/24

This	is	called	CIDR	notation.	Alternatively,	it	can	be	written	as	a	subnet	mask,	which	is
sometimes	just	called	a	netmask.	This	is	the	way	in	which	you	will	usually	see	n	being
specified	in	a	device’s	network	configuration.	A	subnet	mask	is	a	32-bit	number	written	in
dot-decimal	notation,	just	like	an	IP	address.

255.255.255.0

This	subnet	mask	is	equivalent	to	/24.	We	get	n	from	it	by	looking	at	it	in	binary.	A	few
examples	are	as	follows:

255.0.0.0							=	11111111	00000000	00000000	00000000	=	/8

255.192.0.0					=	11111111	11000000	00000000	00000000	=	/10

255.255.255.0			=	11111111	11111111	11111111	00000000	=	/24

255.255.255.240	=	11111111	11111111	11111111	11110000	=	/28

n	is	simply	the	number	of	1	bits	in	the	subnet	mask.	(It’s	always	the	leftmost	bits	that	are
set	to	1	because	this	allows	us	to	quickly	get	the	Network	prefix	in	binary	by	doing	a
bitwise	AND	operation	on	the	IP	address	and	the	subnet	mask).

So,	how	does	this	help	in	routing?	When	a	network	device	generates	network	traffic	that
needs	to	be	sent	across	a	network,	it	first	compares	the	destination’s	IP	address	with	its
own	network	prefix.	If	the	destination	IP	address	has	the	same	network	prefix	as	that	of
the	sending	device,	then	the	sending	device	will	recognise	that	the	destination	device	is	on
the	same	network	and,	therefore,	it	can	then	send	the	traffic	directly	to	it.	If	the	network
prefixes	differ,	then	it	will	send	the	message	to	its	default	gateway,	which	will	forward	it

on	towards	the	receiving	device.

When	a	router	receives	traffic	that	has	to	be	forwarded,	it	first	checks	whether	the
destination	IP	address	matches	the	network	prefix	of	any	of	the	networks	that	it’s
connected	to.	If	that	is	the	case,	then	it	will	send	the	message	directly	to	the	destination
device	on	that	network.	If	not,	it	will	consult	its	routing	table.	If	it	finds	a	matching	rule,
then	it	sends	the	message	to	the	router	that	it	found	listed,	and	if	there	are	no	explicit	rules
defined,	then	it	will	send	the	traffic	to	its	own	default	gateway.

When	we	create	a	network	with	a	given	network	prefix,	in	the	32-bits	of	the	IP	address,
the	digits	to	the	right	of	the	network	prefix	are	available	for	assignment	to	the	network
devices.	We	can	calculate	the	number	of	the	available	addresses	by	raising	2	to	the	power
of	the	number	of	available	bits.	For	example,	in	a	/28	network	prefix,	we	have	4	bits	left,
which	means	that	16	addresses	are	available.	In	reality,	we	are	able	to	assign	fewer
addresses,	since	two	of	the	addresses	in	the	calculated	range	are	always	reserved.	These
are:	the	first	address	in	the	range,	which	is	called	the	network	address	and	the	last
address	in	the	range,	which	is	called	the	broadcast	address.

This	range	of	addresses,	which	is	identified	by	its	network	prefix,	is	called	a	subnet.
Subnets	are	the	basic	unit	of	assignment	when	IANA,	an	RIR	or	an	ISP	allocates	IP
address	blocks	to	organizations.	Organizations	assign	subnets	to	their	various	networks.

Organizations	can	further	partition	their	addresses	into	subnets	simply	by	employing	a
longer	network	prefix	than	the	one	they	had	been	assigned.	They	might	do	this	either	to
make	more	efficient	use	of	their	addresses	or	to	create	a	hierarchy	of	networks,	which	can
be	delegated	across	the	organization.

DNS
We’ve	discussed	connecting	to	network	devices	by	using	IP	addresses.	However,	unless
you	work	with	networks	or	in	systems	administration,	it	is	unlikely	that	you	will	get	to	see
an	IP	address	very	often,	even	though	many	of	us	use	the	Internet	every	day.	When	we
browse	the	web	or	send	an	e-mail,	we	usually	connect	to	servers	using	host	names	or
domain	names.	These	must	somehow	map	to	the	servers’	IP	addresses.	But	how	is	this
done?

Documented	as	RFC	1035,	the	Domain	Name	System	(DNS)	is	a	globally	distributed
database	of	mappings	between	hostnames	and	IP	addresses.	It	is	an	open	and	hierarchical
system	with	many	organizations	choosing	to	run	their	own	DNS	servers.	DNS	is	also	a
protocol,	which	devices	use	to	query	DNS	servers	for	resolving	hostnames	to	IP	addresses
(and	vice-versa).

The	nslookup	tool	comes	with	most	Linux	and	Windows	systems	and	it	lets	us	query	DNS
on	the	command	line,	as	follows:

$	nslookup	python.org

Server:									192.168.0.4

Address:								192.168.0.4#53

Non-authoritative	answer:

Name:			python.org

Address:	104.130.43.121

Here,	we	determined	that	the	python.org	host	has	the	IP	address	104.130.42.121.	DNS
distributes	the	work	of	looking	up	hostnames	by	using	an	hierarchical	system	of	caching
servers.	When	connecting	to	a	network,	your	network	device	will	be	given	a	local	DNS
server	through	either	DHCP	or	manually,	and	it	will	query	this	local	server	when	doing
DNS	lookups.	If	that	server	doesn’t	know	the	IP	address,	then	it	will	query	its	own
configured	higher	tier	server,	and	so	on	until	an	answer	can	be	found.	ISPs	run	their	own
DNS	caching	servers,	and	broadband	routers	often	act	as	caching	servers	as	well.	In	this
example,	my	device’s	local	server	is	192.168.0.4.

A	device’s	operating	system	usually	handles	DNS,	and	it	provides	a	programming
interface,	which	applications	use	to	ask	it	to	resolve	hostnames	and	IP	addresses.	Python
provides	an	interface	for	this,	which	we’ll	discuss	in	Chapter	6,	IP	and	DNS.

The	protocol	stack	or	why	the	Internet	is	like	a
cake
The	Internet	Protocol	is	a	member	of	the	set	of	protocols	that	make	up	the	Internet
protocol	suite.	Each	protocol	in	the	suite	has	been	designed	to	solve	specific	problems	in
networking.	We	just	saw	how	IP	solves	the	problems	of	addressing	and	routing.

The	core	protocols	in	the	suite	are	designed	to	work	together	within	a	stack.	That	is,	each
protocol	occupies	a	layer	within	the	stack,	and	the	other	protocols	are	situated	above	and
below	that	layer.	So,	it	is	layered	just	like	a	cake.	Each	layer	provides	a	specific	service	to
the	layers	above	it,	while	hiding	the	complexity	of	its	own	operation	from	them,	following
the	principle	of	encapsulation.	Ideally,	each	layer	only	interfaces	with	the	layer	below	it	in
order	to	benefit	from	the	entire	range	of	the	problem	solving	powers	of	all	the	layers
below.

Python	provides	modules	for	interfacing	with	different	protocols.	As	the	protocols	employ
encapsulation,	we	typically	only	need	to	work	with	one	module	to	leverage	the	power	of
the	underlying	stack,	thus	avoiding	the	complexity	of	the	lower	layers.

The	TCP/IP	Suite	defines	four	layers,	although	five	layers	are	often	used	for	clarity.	These
are	given	in	the	following	table:

Layer Name Example	protocols

5 Application	layer HTTP,	SMTP,	IMAP

4 Transport	layer TCP,	UDP

3 Network	layer IP

2 Data-link	layer Ethernet,	PPP,	FDDI

1 Physical	layer -

Layers	1	and	2	correspond	to	the	first	layer	of	the	TCP/IP	suite.	These	two	bottom	layers
deal	with	the	low	level	network	infrastructure	and	services.

Layer	1	corresponds	to	the	physical	media	of	the	network,	such	as	a	cable	or	a	Wi-Fi
radio.	Layer	2	provides	the	service	of	getting	the	data	from	one	network	device	to	another,
directly	connected	network	device.	This	layer	can	employ	all	sorts	of	layer	2	protocols,
such	as	Ethernet	or	PPP,	as	long	as	the	Internet	Protocol	in	layer	3	can	ask	it	to	get	the	data
to	the	next	device	in	the	network	by	using	any	type	of	available	physical	medium.

We	don’t	need	to	concern	ourselves	with	the	two	lowest	layers,	since	we	will	rarely	need
to	interface	with	them	when	using	Python.	Their	operation	is	almost	always	handled	by
the	operating	system	and	the	network	hardware.

Layer	3	is	variously	called	the	Network	layer	and	the	Internet	layer.	It	exclusively	employs
the	Internet	Protocol.	As	we	have	already	seen,	it	has	been	tasked	primarily	with

internetwork	addressing	and	routing.	Again,	we	don’t	typically	directly	interface	with	this
layer	in	Python.

Layers	4	and	5	are	more	interesting	for	our	purposes.

Layer	4	–	TCP	and	UDP
Layer	4	is	the	first	layer	that	we	may	want	to	work	with	in	Python.	This	layer	can	employ
one	of	two	protocols:	the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram
Protocol	(UDP).	Both	of	these	provide	the	common	service	of	end-to-end	transportation
of	data	between	applications	on	different	network	devices.

Network	ports
Although	IP	facilitates	the	transport	of	data	from	one	network	device	to	another,	it	doesn’t
provide	us	with	a	way	of	letting	the	destination	device	know	what	it	should	do	with	the
data	once	it	receives	it.	One	possible	solution	to	this	would	be	to	program	every	process
running	on	the	destination	device	to	check	all	of	the	incoming	data	to	see	if	they	are
interested	in	it,	but	this	would	quickly	lead	to	obvious	performance	and	security	problems.

TCP	and	UDP	provide	the	answer	by	introducing	the	concept	of	ports.	A	port	is	an
endpoint,	which	is	attached	to	one	of	the	IP	addresses	assigned	to	the	network	device.
Ports	are	claimed	by	a	process	running	on	the	device,	and	the	process	is	then	said	to	be
listening	on	that	port.	Ports	are	represented	by	a	16-bit	number,	so	that	each	IP	address	on
a	device	has	65,535	possible	ports	that	the	processes	can	claim	(port	number	0	is
reserved).	Ports	can	only	be	claimed	by	one	process	at	a	time,	even	though	a	process	can
claim	more	than	one	port	at	a	time.

When	a	message	is	sent	over	the	network	through	TCP	or	UDP,	the	sending	application
sets	the	destination	port	number	in	the	header	of	the	TCP	or	UDP	packet.	When	the
message	arrives	at	the	destination,	the	TCP	or	UDP	protocol	implementation	running	on
the	receiving	device	reads	the	port	number	and	then	delivers	the	message	payload	to	the
process	that	is	listening	on	that	port.

Port	numbers	need	to	be	known	before	the	messages	are	sent.	The	main	mechanism	for
this	is	convention.	In	addition	to	managing	the	IP	address	space,	it	is	also	the
responsibility	of	IANA	to	manage	the	assignment	of	port	numbers	to	network	services.

A	service	is	a	class	of	application,	for	example	a	web	server,	or	a	DNS	server,	which	is
usually	tied	to	an	application	protocol.	Ports	are	assigned	to	services	rather	than	specific
applications,	because	it	gives	service	providers	the	flexibility	to	choose	what	kind	of
software	they	want	to	use	to	provide	a	service,	without	having	to	worry	about	the	users
who	would	need	to	look	up	and	connect	to	a	new	port	number	simply	because	the	server
has	started	using	Apache	instead	of	IIS,	for	example.

Most	operating	systems	contain	a	copy	of	this	list	of	services	and	their	assigned	port
numbers.	On	Linux,	this	is	usually	found	at	/etc/services,	and	on	Windows	this	is
usually	found	at	c:\windows\system32\drivers\etc\services.	The	complete	list	can
also	be	viewed	online	at	http://www.iana.org/assignments/port-numbers.

TCP	and	UDP	packet	headers	may	also	include	a	source	port	number.	This	is	optional	for
UDP,	but	mandatory	for	TCP.	The	source	port	number	tells	the	receiving	application	on
the	server	where	it	should	send	replies	to	when	sending	data	back	to	the	client.
Applications	can	specify	the	source	port	that	they	wish	to	use,	or	if	a	source	port	has	not

http://www.iana.org/assignments/port-numbers

been	specified	for	TCP,	then	one	is	assigned	randomly	by	the	operating	system	when	the
packet	is	sent.	Once	the	OS	has	a	source	port	number,	it	assigns	it	to	the	calling
application	and	starts	listening	on	it	for	a	reply.	If	a	reply	is	received	on	that	port,	then	the
received	data	is	passed	to	the	sending	application.

So,	both	TCP	and	UCP	provide	an	end-to-end	transport	for	the	application	data	through
the	provision	of	ports,	and	both	of	them	employ	the	Internet	Protocol	to	get	the	data	to	the
destination	device.	Now,	let’s	look	at	their	features.

UDP
UDP	is	documented	as	RFC	768.	It	is	deliberately	uncomplicated:	it	provides	no	services
other	than	those	that	we	described	in	the	previous	section.	It	just	takes	the	data	that	we
want	to	send,	packetizes	it	with	the	destination	port	number	(and	optional	source	port
number),	and	hands	it	off	to	the	local	Internet	Protocol	implementation	for	delivery.
Applications	on	the	receiving	end	see	the	data	in	the	same	discrete	chunks	in	which	it	was
packetized.

Both	IP	and	UDP	are	what	are	called	connectionless	protocols.	This	means	that	they
attempt	to	deliver	their	packets	on	a	best	effort	basis,	but	if	something	goes	wrong,	then
they	will	just	shrug	their	metaphorical	shoulders	and	move	on	to	delivering	the	next
packet.	There	is	no	guarantee	that	our	packets	will	reach	their	destinations,	and	no	error
notification	if	a	delivery	fails.	If	the	packets	do	make	it,	then	there	is	no	guarantee	that
they	will	do	so	in	the	same	order	as	they	were	sent.	It’s	up	to	a	higher	layer	protocol	or	the
sending	application	to	determine	if	the	packets	have	arrived	and	whether	to	handle	any
problems.	These	are	protocols	in	the	fire-and-forget	style.

The	typical	applications	of	UDP	are	internet	telephony	and	video	streaming.	DNS	queries
are	also	transported	using	UDP.

We’ll	now	look	at	UDP’s	more	dependable	sibling,	TCP,	and	then	discuss	the	differences,
and	why	applications	may	choose	to	use	one	or	the	other.

TCP
The	Transmission	Control	Protocol	is	documented	as	RFC	761.	As	opposed	to	UDP,	TCP
is	a	connection	based	protocol.	In	such	a	protocol,	no	data	is	sent	until	the	server	and	the
client	have	performed	an	initial	exchange	of	control	packets.	This	exchange	is	called	a
handshake.	This	establishes	a	connection,	and	from	then	on	data	can	be	sent.	Each	data
packet	that	is	received	is	acknowledged	by	the	receiving	party,	and	it	does	so	by	sending	a
packet	called	an	ACK.	As	such,	TCP	always	requires	that	the	packets	include	a	source
port	number,	because	it	depends	on	the	continual	two-way	exchange	of	messages.

From	an	application’s	point	of	view,	the	key	difference	between	UDP	and	TCP	is	that	the
application	no	longer	sees	the	data	in	discrete	chunks;	the	TCP	connection	presents	the
data	to	the	application	as	a	continuous,	seamless	stream	of	bytes.	This	makes	things	much
simpler	if	we	are	sending	messages	that	are	larger	than	a	typical	packet,	however	it	means
that	we	need	to	start	thinking	about	framing	our	messages.	While	with	UDP,	we	can	rely
on	its	packetization	to	provide	a	means	of	doing	this,	with	TCP	we	must	decide	a

mechanism	for	unambiguously	determining	where	our	messages	start	and	end.	We’ll	see
more	about	this	in	Chapter	8,	Client	and	Server	Applications.

TCP	provides	the	following	services:

In-order	delivery
Receipt	acknowledgment
Error	detection
Flow	and	congestion	control

Data	sent	through	TCP	is	guaranteed	to	get	delivered	to	the	receiving	application	in	the
order	that	it	was	sent	in.	The	receiving	TCP	implementation	buffers	the	received	packets
on	the	receiving	device	and	then	waits	until	it	can	deliver	them	in	the	correct	order	before
passing	them	to	the	application.

Because	the	data	packets	are	acknowledged,	sending	applications	can	be	sure	that	the	data
is	arriving	and	that	it	is	okay	to	continue	sending	the	data.	If	an	ACK	is	not	received	for	a
sent	packet,	then	within	a	set	time	period	the	packet	will	be	resent.	If	there’s	still	no
response,	then	TCP	will	keep	resending	the	packet	at	increasing	intervals,	until	a	second,
longer	timeout	period	expires.	At	this	point,	it	will	give	up	and	notify	the	calling
application	that	it	has	encountered	a	problem.

The	TCP	header	includes	a	checksum	of	the	header	data	and	the	payload.	This	allows	the
receiver	to	verify	whether	a	packet’s	contents	have	been	modified	during	the	transmission.

TCP	also	includes	algorithms	which	ensure	that	traffic	is	not	sent	too	quickly	for	the
receiving	device	to	process,	and	these	algorithms	also	infer	network	conditions	and
regulate	the	transmission	rate	to	avoid	network	congestion.

Together	these	services	provide	a	robust	and	reliable	transport	system	for	application	data.
This	is	one	of	the	reasons	many	popular	higher	level	protocols,	such	as	HTTP,	SMTP,
SSH,	and	IMAP,	depend	on	TCP.

UDP	versus	TCP
Given	the	features	of	TCP,	you	may	be	wondering	what	the	use	of	a	connectionless
protocol	like	UDP	is.	Well,	the	Internet	is	still	a	pretty	reliable	network,	and	most	of	the
packets	do	get	delivered.	The	connectionless	protocols	are	useful	where	the	minimum
transfer	overhead	is	required,	and	where	the	occasional	dropped	packet	is	not	a	big	deal.
TCP’s	reliability	and	congestion	control	comes	at	the	cost	of	needing	additional	packets
and	round-trips,	and	the	introduction	of	deliberate	delays	when	packets	are	lost	in	order	to
prevent	congestion.	These	can	drastically	increase	latency,	which	is	the	arch-nemesis	of
real-time	services,	while	not	providing	any	real	benefit	for	them.	A	few	dropped	packets
might	result	in	a	transient	glitch	or	a	drop	in	signal	quality	in	a	media	stream,	but	as	long
as	the	packets	keep	coming,	the	stream	can	usually	recover.

UDP	is	also	the	main	protocol	that	is	used	for	DNS,	which	is	interesting	because	most
DNS	queries	fit	inside	a	single	packet,	so	TCP’s	streaming	abilities	aren’t	generally
needed.	DNS	is	also	usually	configured	such	that	it	does	not	depend	upon	a	reliable
connection.	Most	devices	are	configured	with	multiple	DNS	servers,	and	it’s	usually

quicker	to	resend	a	query	to	a	second	server	after	a	short	timeout	rather	than	wait	for	a
TCP	back-off	period	to	expire.

The	choice	between	UDP	and	TCP	comes	down	to	the	message	size,	whether	latency	is	an
issue,	and	how	much	of	TCP’s	functionality	the	application	wants	to	perform	itself.

Layer	5	–	The	application	layer
Finally	we	come	to	the	top	of	the	stack.	The	application	layer	is	deliberately	left	open	in
the	IP	protocol	suite,	and	it’s	really	a	catch-all	for	any	protocol	that	is	developed	by
application	developers	on	top	of	TCP	or	UDP	(or	even	IP,	though	these	are	rarer).
Application	layer	protocols	include	HTTP,	SMTP,	IMAP,	DNS,	and	FTP.

Protocols	may	even	become	their	own	layers,	where	an	application	protocol	is	built	on	top
of	another	application	protocol.	An	example	of	this	is	the	Simple	Object	Access	Protocol
(SOAP),	which	defines	an	XML-based	protocol	that	can	be	used	over	almost	any
transport,	including	HTTP	and	SMTP.

Python	has	standard	library	modules	for	many	application	layer	protocols	and	third-party
modules	for	many	more.	If	we	write	low-level	server	applications,	then	we	will	be	more
likely	to	be	interested	in	TCP	and	UDP,	but	if	not,	then	application	layer	protocols	are	the
ones	we’ll	be	working	with,	and	we’ll	be	looking	at	some	of	them	in	detail	over	the	next
few	chapters.

On	to	Python!
Well,	that’s	it	for	our	rundown	of	the	TCP/IP	stack.	We’ll	move	on	to	the	next	section	of
this	chapter,	where	we’ll	look	at	how	to	start	using	Python	and	how	to	work	with	some	of
the	topics	we’ve	just	covered.

Network	programming	with	Python
In	this	section,	we’re	going	to	look	at	the	general	approach	to	network	programming	in
Python.	We’ll	look	at	how	Python	lets	us	interface	with	the	network	stack,	how	to	track
down	useful	modules,	and	cover	some	general	network	programming	tips.

Breaking	a	few	eggs
The	power	of	the	layer	model	of	network	protocols	is	that	a	higher	layer	can	easily	build
on	the	services	provided	by	the	lower	layers	and	this	enables	them	to	add	new	services	to
the	network.	Python	provides	modules	for	interfacing	with	protocols	at	different	levels	in
the	network	stack,	and	modules	that	support	higher-layer	protocols	follow	the
aforementioned	principle	by	using	the	interfaces	supplied	by	the	lower	level	protocols.
How	can	we	visualize	this?

Well,	sometimes	a	good	way	to	see	inside	something	like	this	is	by	breaking	it.	So,	let’s
break	Python’s	network	stack.	Or,	more	specifically,	let’s	generate	a	traceback.

Yes,	this	means	that	the	first	piece	of	Python	that	we’re	going	to	write	is	going	to	generate
an	exception.	But,	it	will	be	a	good	exception.	We’ll	learn	from	it.	So,	fire	up	your	Python
shell	and	run	the	following	command:

>>>	import	smtplib

>>>	smtplib.SMTP('127.0.0.1',	port=66000)

What	are	we	doing	here?	We	are	importing	smtplib,	which	is	Python’s	standard	library
for	working	with	the	SMTP	protocol.	SMTP	is	an	application	layer	protocol,	which	is	used
for	sending	e-mails.	We	will	then	try	to	open	an	SMTP	connection	by	instantiating	an	SMTP
object.	We	want	the	connection	to	fail	and	that	is	why	we’ve	specified	the	port	number
66000,	which	is	an	invalid	port.	We	will	specify	the	local	host	for	the	connection,	as	this
will	cause	it	to	fail	quickly,	rather	than	make	it	wait	for	a	network	timeout.

On	running	the	preceding	command,	you	should	get	the	following	traceback:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"/usr/lib/python3.4/smtplib.py",	line	242,	in	__init__

				(code,	msg)	=	self.connect(host,	port)

		File	"/usr/lib/python3.4/smtplib.py",	line	321,	in	connect

				self.sock	=	self._get_socket(host,	port,	self.timeout)

		File	"/usr/lib/python3.4/smtplib.py",	line	292,	in	_get_socket

				self.source_address)

		File	"/usr/lib/python3.4/socket.py",	line	509,	in	create_connection

				raise	err

		File	"/usr/lib/python3.4/socket.py",	line	500,	in	create_connection

				sock.connect(sa)

ConnectionRefusedError:	[Errno	111]	Connection	refused

This	was	generated	by	using	Python	3.4.1	on	a	Debian	7	machine.	The	final	error	message
will	be	slightly	different	from	this	if	you	run	this	on	Windows,	but	the	stack	trace	will
remain	the	same.

Inspecting	it	will	reveal	how	the	Python	network	modules	act	as	a	stack.	We	can	see	that
the	call	stack	starts	in	smtplib.py,	and	then	as	we	go	down,	it	moves	into	socket.py.	The
socket	module	is	Python’s	standard	interface	for	the	transport	layer,	and	it	provides	the
functions	for	interacting	with	TCP	and	UDP	as	well	as	for	looking	up	hostnames	through
DNS.	We’ll	learn	much	more	about	this	in	Chapter	7,	Programming	with	Sockets,	and

Chapter	8,	Client	and	Server	Applications.

From	the	preceding	program,	it’s	clear	that	the	smtplib	module	calls	into	the	socket
module.	The	application	layer	protocol	has	employed	a	transport	layer	protocol	(which	in
this	case	is	TCP).

Right	at	the	bottom	of	the	traceback,	we	can	see	the	exception	itself	and	the	Errno	111.
This	is	an	error	message	from	the	operating	system.	You	can	verify	this	by	going	through
/usr/include/asm-generic/errno.h	(asm/errno.h	on	some	systems)	for	the	error
message	number	111	(on	Windows	the	error	will	be	a	WinError,	so	you	can	see	that	it	has
clearly	been	generated	by	the	OS).	From	this	error	message	we	can	see	that	the	socket
module	is	calling	down	yet	again	and	asking	the	operating	system	to	manage	the	TCP
connection	for	it.

Python’s	network	modules	are	working	as	the	protocol	stack	designers	intended	them	to.
They	call	on	the	lower	levels	in	the	stack	to	employ	their	services	to	perform	the	network
tasks.	We	can	work	by	using	simple	calls	made	to	the	application	layer	protocol,	which	in
this	case	is	SMTP,	without	having	to	worry	about	the	underlying	network	layers.	This	is
network	encapsulation	in	action,	and	we	want	to	make	as	much	use	of	this	as	we	can	in
our	applications.

Taking	it	from	the	top
Before	we	start	writing	code	for	a	new	network	application,	we	want	to	make	sure	that
we’re	taking	as	much	advantage	of	the	existing	stack	as	possible.	This	means	finding	a
module	that	provides	an	interface	to	the	services	that	we	want	to	use,	and	that	is	as	high	up
the	stack	as	we	can	find.	If	we’re	lucky,	someone	has	already	written	a	module	that
provides	an	interface	that	provides	the	exact	service	we	need.

Let’s	use	an	example	to	illustrate	this	process.	Let’s	write	a	tool	for	downloading	Request
for	Comments	(RFC)	documents	from	IETF,	and	then	display	them	on	screen.

Let’s	keep	the	RFC	downloader	simple.	We’ll	make	it	a	command-line	program	that	just
accepts	an	RFC	number,	downloads	the	RFC	in	text	format,	and	then	prints	it	to	stdout.

Now,	it’s	possible	that	somebody	has	already	written	a	module	for	doing	this,	so	let’s	see
if	we	can	find	anything.

The	first	place	we	look	should	always	be	the	Python	standard	library.	The	modules	in	the
library	are	well	maintained,	and	well	documented.	When	we	use	a	standard	library
module,	the	users	of	your	application	won’t	need	to	install	any	additional	dependencies	for
running	it.

A	look	through	the	Library	Reference	at	https://docs.python.org	doesn’t	seem	to	show
anything	directly	relevant	to	our	requirement.	This	is	not	entirely	surprising!

So,	next	we	will	turn	to	third-party	modules.	The	Python	package	index,	which	can	be
found	at	https://pypi.python.org,	is	the	place	where	we	should	look	for	these.	Here	as	well,
running	a	few	searches	around	the	theme	of	RFC	client	and	RFC	download	doesn’t	seem
to	reveal	anything	useful.	The	next	place	to	look	will	be	Google,	though	again,	the
searches	don’t	reveal	anything	promising.	This	is	slightly	disappointing,	but	this	is	why
we’re	learning	network	programming,	to	fill	these	gaps!

There	are	other	ways	in	which	we	may	be	able	to	find	out	about	useful	third-party
modules,	including	mailing	lists,	Python	user	groups,	the	programming	Q&A	site
http://stackoverflow.com,	and	programming	textbooks.

For	now,	let’s	assume	that	we	really	can’t	find	a	module	for	downloading	RFCs.	What
next?	Well,	we	need	to	think	lower	in	the	network	stack.	This	means	that	we	need	to
identify	the	network	protocol	that	we’ll	need	to	use	for	getting	hold	of	the	RFCs	in	text
format	by	ourselves.

The	IETF	landing	page	for	RFCs	is	http://www.ietf.org/rfc.html,	and	reading	through	it
tell	us	exactly	what	we	want	to	know.	We	can	access	a	text	version	of	an	RFC	using	a
URL	of	the	form	http://www.ietf.org/rfc/rfc741.txt.	The	RFC	number	in	this	case	is	741.
So,	we	can	get	text	format	of	RFCs	using	HTTP.

Now,	we	need	a	module	that	can	speak	HTTP	for	us.	We	should	look	at	the	standard
library	again.	You	will	notice	that	there	is,	in	fact,	a	module	called	http.	Sounds
promising,	though	looking	at	its	documentation	will	tell	us	that	it’s	a	low	level	library	and
that	something	called	urllib	will	prove	to	be	more	useful.

https://docs.python.org
https://pypi.python.org
http://stackoverflow.com
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc/rfc741.txt

Now,	looking	at	the	urllib	documentation,	we	find	that	it	does	indeed	do	what	we	need.
It	downloads	the	target	of	a	URL	through	a	straightforward	API.	We’ve	found	our	protocol
module.

Downloading	an	RFC
Now	we	can	write	our	program.	For	this,	create	a	text	file	called	RFC_downloader.py	and
save	the	following	code	to	it:

import	sys,	urllib.request

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

template	=	'http://www.ietf.org/rfc/rfc{}.txt'

url	=	template.format(rfc_number)

rfc_raw	=	urllib.request.urlopen(url).read()

rfc	=	rfc_raw.decode()

print(rfc)

We	can	run	the	preceding	code	by	using	the	following	command:

$	python	RFC_downloader.py	2324	|	less

On	Windows,	you’ll	need	to	use	more	instead	of	less.	RFCs	can	run	to	many	pages,	hence
we	use	a	pager	here.	If	you	try	this,	then	you	should	see	some	useful	information	on	the
remote	control	of	coffee	pots.

Let’s	go	through	our	code	and	look	at	what	we’ve	done	so	far.

First,	we	import	our	modules	and	check	whether	an	RFC	number	has	been	supplied	on	the
command	line.	Then,	we	construct	our	URL	by	substituting	the	supplied	RFC	number.
Next,	the	main	activity,	the	urlopen()	call	will	construct	an	HTTP	request	for	our	URL,
and	then	it	will	contact	the	IETF	web	server	over	the	Internet	and	download	the	RFC	text.
Next,	we	decode	the	text	to	Unicode,	and	finally	we	print	it	out	to	screen.

So,	we	can	easily	view	any	RFC	that	we	like	from	the	command	line.	In	retrospect,	it’s	not
entirely	surprising	that	there	isn’t	a	module	for	this,	because	we	can	use	urllib	to	do	most
of	the	hard	work!

Looking	deeper
But,	what	if	HTTP	was	brand	new	and	there	were	no	modules,	such	as	urllib,	which	we
could	use	to	speak	HTTP	for	us?	Well,	then	we	would	have	to	step	down	the	stack	again
and	use	TCP	for	our	purposes.	Let’s	modify	our	program	according	to	this	scenario,	as
follows:

import	sys,	socket

try:

				rfc_number	=	int(sys.argv[1])

except	(IndexError,	ValueError):

				print('Must	supply	an	RFC	number	as	first	argument')

				sys.exit(2)

host	=	'www.ietf.org'

port	=	80

sock	=	socket.create_connection((host,	port))

req	=	(

				'GET	/rfc/rfc{rfcnum}.txt	HTTP/1.1\r\n'

				'Host:	{host}:{port}\r\n'

				'User-Agent:	Python	{version}\r\n'

				'Connection:	close\r\n'

				'\r\n'

)

req	=	req.format(

				rfcnum=rfc_number,

				host=host,

				port=port,

				version=sys.version_info[0]

)

sock.sendall(req.encode('ascii'))

rfc_raw	=	bytearray()

while	True:

				buf	=	sock.recv(4096)

				if	not	len(buf):

								break

				rfc_raw	+=	buf

rfc	=	rfc_raw.decode('utf-8')

print(rfc)

The	first	noticeable	change	is	that	we	have	used	socket	instead	of	urllib.	Socket	is
Python’s	interface	for	the	operating	system’s	TCP	and	UDP	implementation.	The
command-line	check	remains	the	same,	but	then	we	will	see	that	we	now	need	to	handle
some	of	the	things	that	urllib	was	doing	for	us	before.

We	have	to	tell	socket	which	transport	layer	protocol	that	we	want	to	use.	We	do	this	by
using	the	socket.create_connection()	convenience	function.	This	function	will	always
create	a	TCP	connection.	You’ll	notice	that	we	have	to	explicitly	supply	the	TCP	port
number	that	socket	should	use	to	establish	the	connection	as	well.	Why	80?	80	is	the
standard	port	number	for	web	services	over	HTTP.	We’ve	also	had	to	separate	the	host
from	the	URL,	since	socket	has	no	understanding	of	URLs.

The	request	string	that	we	create	to	send	to	the	server	is	also	much	more	complicated	than
the	URL	that	we	used	before:	it’s	a	full	HTTP	request.	In	the	next	chapter,	we’ll	be
looking	at	these	in	detail.

Next,	we	deal	with	the	network	communication	over	the	TCP	connection.	We	send	the
entire	request	string	to	the	server	using	the	sendall()	call.	The	data	sent	through	TCP
must	be	in	raw	bytes,	so	we	have	to	encode	the	request	text	as	ASCII	before	sending	it.

Then,	we	piece	together	the	server’s	response	as	it	arrives	in	the	while	loop.	Bytes	that	are
sent	to	us	through	a	TCP	socket	are	presented	to	our	application	in	a	continuous	stream.
So,	like	any	stream	of	unknown	length,	we	have	to	read	it	iteratively.	The	recv()	call	will
return	the	empty	string	after	the	server	sends	all	its	data	and	closes	the	connection.	Hence,
we	can	use	this	as	a	condition	for	breaking	out	and	printing	the	response.

Our	program	is	clearly	more	complicated.	Compared	to	our	previous	one,	this	is	not	good
in	terms	of	maintenance.	Also,	if	you	run	the	program	and	look	at	the	start	of	the	output
RFC	text,	then	you’ll	notice	that	there	are	some	extra	lines	at	the	beginning,	and	these	are
as	follows:

HTTP/1.1	200	OK

Date:	Thu,	07	Aug	2014	15:47:13	GMT

Content-Type:	text/plain

Transfer-Encoding:	chunked

Connection:	close

Set-Cookie:	__cfduid=d1983ad4f7…

Last-Modified:	Fri,	27	Mar	1998	22:45:31	GMT

ETag:	W/"8982977-4c9a-32a651f0ad8c0"

Because	we’re	now	dealing	with	a	raw	HTTP	protocol	exchange,	we’re	seeing	the	extra
header	data	that	HTTP	includes	in	a	response.	This	has	a	similar	purpose	to	the	lower-
level	packet	headers.	The	HTTP	header	contains	HTTP-specific	metadata	about	the
response	that	tells	the	client	how	to	interpret	it.	Before,	urllib	parsed	this	for	us,	added
the	data	as	attributes	to	the	response	object,	and	removed	the	header	data	from	the	output
data.	We	would	need	to	add	code	to	do	this	as	well	to	make	this	program	as	capable	as	our
first	one.

What	can’t	immediately	be	seen	from	the	code	is	that	we’re	also	missing	out	on	the
urllib	module’s	error	checking	and	handling.	Although	low-level	network	errors	will	still
generate	exceptions,	we	will	no	longer	catch	any	problems	in	the	HTTP	layer,	which
urllib	would	have	done.

The	200	value	in	the	first	line	of	the	aforementioned	headers	is	an	HTTP	status	code,
which	tells	us	whether	there	were	any	problems	with	the	HTTP	request	or	response.	200
means	that	everything	went	well,	but	other	codes,	such	as	the	infamous	404	‘not	found’
can	mean	something	went	wrong.	The	urllib	module	would	check	these	for	us	and	raise
an	exception.	But	here,	we	need	to	handle	these	ourselves.

So,	there	are	clear	benefits	of	using	modules	as	far	up	the	stack	as	possible.	Our	resulting
programs	will	be	less	complicated,	which	will	make	them	quicker	to	write,	and	easier	to
maintain.	It	also	means	that	their	error	handling	will	be	more	robust,	and	we	will	benefit

from	the	expertise	of	the	modules’	developers.	Also,	we	benefit	from	the	testing	that	the
module	would	have	undergone	for	catching	unexpected	and	tricky	edge-case	problems.
Over	the	next	few	chapters,	we’ll	be	discussing	more	modules	and	protocols	that	live	at
the	top	of	the	stack.

Programming	for	TCP/IP	networks
To	round	up,	we’re	going	to	look	at	a	few	frequently	encountered	aspects	of	TCP/IP
networks	that	can	cause	a	lot	of	head-scratching	for	application	developers	who	haven’t
encountered	them	before.	These	are:	firewalls,	Network	Address	Translation,	and	some	of
the	differences	between	IPv4	and	IPv6.

Firewalls
A	firewall	is	a	piece	of	hardware	or	software	that	inspects	the	network	packets	that	flow
through	it	and,	based	on	the	packet’s	properties,	it	filters	what	it	lets	through.	It	is	a
security	mechanism	for	preventing	unwanted	traffic	from	moving	from	one	part	of	a
network	to	another.	Firewalls	can	sit	at	network	boundaries	or	can	be	run	as	applications
on	network	clients	and	servers.	For	example,	iptables	is	the	de	facto	firewall	software	for
Linux.	You’ll	often	find	a	firewall	built	into	desktop	anti-virus	programs.

The	filtering	rules	can	be	based	on	any	property	of	the	network	traffic.	The	commonly
used	properties	are:	the	transport	layer	protocol	(that	is,	whether	traffic	uses	TCP	or	UDP),
the	source	and	destination	IP	addresses,	and	the	source	and	destination	port	numbers.

A	common	filtering	strategy	is	to	deny	all	inbound	traffic	and	only	allow	traffic	that
matches	very	specific	parameters.	For	example,	a	company	might	have	a	web	server	it
wants	to	allow	access	to	from	the	Internet,	but	it	wants	to	block	all	traffic	from	the	Internet
that	is	directed	towards	any	of	the	other	devices	on	its	network.	To	do	so,	it	would	put	a
firewall	directly	in	front	of	or	behind	its	gateway,	and	then	configure	it	to	block	all
incoming	traffic,	except	TCP	traffic	with	the	destination	IP	address	of	the	web	server,	and
the	destination	port	number	80	(since	port	80	is	the	standard	port	number	for	the	HTTP
service).

Firewalls	can	also	block	outbound	traffic.	This	may	be	done	to	stop	malicious	software
that	finds	its	way	onto	internal	network	devices	from	calling	home	or	sending	spam	e-
mail.

Because	firewalls	block	network	traffic,	they	can	cause	obvious	problems	for	network
applications.	When	testing	our	applications	over	a	network,	we	need	to	be	sure	that	the
firewalls	that	exist	between	our	devices	are	configured	such	that	they	let	our	application’s
traffic	through.	Usually,	this	means	that	we	need	to	make	sure	that	the	ports	which	we
need	are	open	on	the	firewall	for	the	traffic	between	the	source	and	the	destination	IP
addresses	to	flow	freely.	This	may	take	some	negotiating	with	an	IT	support	team	or	two,
and	maybe	looking	at	our	operating	system’s	and	local	network	router’s	documentation.
Also,	we	need	to	make	sure	that	our	application	users	are	aware	of	any	firewall
configuration	that	they	need	to	perform	in	their	own	environments	in	order	to	make	use	of
our	program.

Network	Address	Translation
Earlier,	we	discussed	private	IP	address	ranges.	While	they	are	potentially	very	useful,
they	come	with	a	small	catch.	Packets	with	source	or	destination	addresses	in	the	private
ranges	are	forbidden	from	being	routed	over	the	public	Internet!	So,	without	some	help,

devices	using	private	range	addresses	can’t	talk	to	devices	using	addresses	on	the	public
Internet.	However,	with	Network	Address	Translation	(NAT),	we	can	solve	this.	Since
most	home	networks	use	private	range	addresses,	NAT	is	likely	to	be	something	that
you’ll	encounter.

Although	NAT	can	be	used	in	other	circumstances,	it	is	most	commonly	performed	by	a
gateway	at	the	boundary	of	the	public	Internet	and	a	network	that	is	using	private	range	IP
addresses.	To	enable	the	packets	from	the	gateway’s	network	to	be	routed	on	the	public
Internet	as	the	gateway	receives	packets	from	the	network	that	are	destined	for	the
Internet,	it	rewrites	the	packets’	headers	and	replaces	the	private	range	source	IP	addresses
with	its	own	public	range	IP	address.	If	the	packets	contain	TCP	or	UDP	packets,	and
these	contain	a	source	port,	then	it	may	also	open	up	a	new	source	port	for	listening	on	its
external	interface	and	rewrite	the	source	port	number	in	the	packets	to	match	this	new
number.

As	it	does	these	rewrites,	it	records	the	mapping	between	the	newly	opened	source	port
and	the	source	device	on	the	internal	network.	If	it	receives	a	reply	to	the	new	source	port,
then	it	reverses	the	translation	process	and	sends	the	received	packets	to	the	original
device	on	the	internal	network.	The	originating	network	device	shouldn’t	be	made	aware
of	the	fact	that	its	traffic	is	undergoing	NAT.

There	are	several	benefits	of	using	NAT.	The	internal	network	devices	are	shielded	from
malicious	traffic	directed	toward	the	network	from	the	Internet,	devices	which	use	NAT
devices	are	provided	with	a	layer	of	privacy	since	their	private	addresses	are	hidden,	and
the	number	of	network	devices	that	need	to	be	assigned	precious	public	IP	addresses	is
reduced.	It’s	actually	the	heavy	use	of	NAT	that	allows	the	Internet	to	continue	functioning
despite	having	run	out	of	IPv4	addresses.

NAT	can	cause	some	problems	for	network’s	applications,	if	it	is	not	taken	into
consideration	at	design	time.

If	the	transmitted	application	data	includes	information	about	a	device’s	network
configuration	and	that	device	is	behind	a	NAT	router,	then	problems	can	occur	if	the
receiving	device	acts	on	the	assumption	that	the	application	data	matches	the	IP	and	the
TCP/UDP	header	data.	NAT	routers	will	rewrite	the	IP	and	TCP/UDP	header	data,	but	not
the	application	data.	This	is	a	well	known	problem	in	the	FTP	protocol.

Another	problem	that	FTP	has	with	NAT	is	that	in	FTP	active	mode,	a	part	of	the	protocol
operation	involves	the	client	opening	a	port	for	listening	on,	and	the	server	creating	a	new
TCP	connection	to	that	port	(as	opposed	to	just	a	regular	reply).	This	fails	when	the	client
is	behind	a	NAT	router	because	the	router	doesn’t	know	what	to	do	with	the	server’s
connection	attempt.	So,	be	careful	about	assuming	that	servers	can	create	new	connections
to	clients,	since	they	may	be	blocked	by	a	NAT	router,	or	firewall.	In	general,	it’s	best	to
program	under	the	assumption	that	it’s	not	possible	for	a	server	to	establish	a	new
connection	to	a	client.

IPv6
We	mentioned	that	the	earlier	discussion	is	based	on	IPv4,	but	that	there	is	a	new	version

called	IPv6.	IPv6	is	ultimately	designed	to	replace	IPv4,	but	this	process	is	unlikely	to	be
completed	for	a	while	yet.

Since	most	Python	standard	library	modules	have	now	been	updated	to	support	IPv6	and
to	accept	IPv6	addresses,	moving	to	IPv6	in	Python	shouldn’t	have	much	impact	on	our
applications.	However,	there	are	a	few	small	glitches	to	watch	out	for.

The	main	difference	that	you’ll	notice	in	IPv6	is	that	the	address	format	has	been	changed.
One	of	the	main	design	goals	of	the	new	protocol	was	to	alleviate	the	global	shortage	of
IPv4	addresses	and	to	prevent	it	from	happening	again	the	IETF	quadrupled	the	length	of
an	address,	to	128	bits,	creating	a	large	enough	address	space	to	give	each	human	on	the
planet	a	billion	times	as	many	addresses	as	there	are	in	the	entire	IPv4	address	space.

The	new	format	IP	addresses	are	written	differently,	they	look	like	this:

2001:0db8:85a3:0000:0000:b81a:63d6:135b

Note	the	use	of	colons	and	hexadecimal	format.

There	are	rules	for	writing	IPv6	addresses	in	more	compact	forms	as	well.	This	is
principally	done	by	omitting	runs	of	consecutive	zeros.	For	example,	the	address	in	the
preceding	example	could	be	shortened	to:

2001:db8:85a3::b81a:63d6:135b

If	a	program	needs	to	compare	or	parse	text-formatted	IPv6	addresses,	then	it	will	need	to
be	made	aware	of	these	compacting	rules,	as	a	single	IPv6	address	can	be	represented	in
more	than	one	way.	Details	of	these	rules	can	be	found	in	RFC	4291,	which	is	available	at
http://www.ietf.org/rfc/rfc4291.txt.

Since	colons	may	cause	conflicts	when	used	in	URIs,	IPv6	addresses	need	to	be	enclosed
in	square	brackets	when	they	are	used	in	this	manner,	for	example:

http://[2001:db8:85a3::b81a:63d6:135b]/index.html

Also,	in	IPv6,	it	is	now	standard	practice	for	network	interfaces	to	have	multiple	IP
addresses	assigned	to	them.	IPv6	addresses	are	classified	by	what	scope	they	are	valid	in.
The	scopes	include	the	global	scope	(that	is,	the	public	Internet)	and	the	link-local	scope,
which	is	only	valid	for	the	local	subnet.	An	IP	address’s	scope	can	be	determined	by
inspecting	its	high-order	bits.	If	we	enumerate	the	IP	addresses	of	local	interfaces	to	use
for	a	certain	purpose,	then	we	need	to	check	if	we	have	used	the	correct	address	for	the
scope	that	we	intend	to	work	with.	There	are	more	details	in	RFC	4291.

Finally,	with	the	mind-boggling	cornucopia	of	addresses	that	are	available	in	IPv6,	the
idea	is	that	every	device	(and	component,	and	bacterium)	can	be	given	a	globally	unique
public	IP	address,	and	NAT	will	become	a	thing	of	the	past.	Though	it	sounds	great	in
theory,	some	concerns	have	been	raised	about	the	implications	that	this	has	for	issues	like
user	privacy.	As	such,	additions	designed	for	alleviating	these	concerns	have	been	made	to
the	protocol	(http://www.ietf.org/rfc/rfc3041.txt).	This	is	a	welcome	progression;	however,
it	can	cause	problems	for	some	applications.	So	reading	through	the	RFC	is	worth	your
while,	if	you’re	planning	for	your	program	to	employ	IPv6.

http://www.ietf.org/rfc/rfc4291.txt
http://www.ietf.org/rfc/rfc3041.txt

Summary
In	the	first	part	of	this	chapter,	we	looked	at	the	essentials	of	networking	with	TCP/IP.	We
discussed	the	concept	of	network	stacks,	and	looked	at	the	principle	protocols	of	the
Internet	protocol	suite.	We	saw	how	IP	solves	the	problem	of	sending	messages	between
devices	on	different	networks,	and	how	TCP	and	UDP	provide	end-to-end	transport
between	applications.

In	the	second	section,	we	looked	at	how	network	programming	is	generally	approached
when	using	Python.	We	discussed	the	general	principle	of	using	modules	that	interface
with	services	as	far	up	the	network	stack	as	we	can	manage.	We	also	discussed	where	we
might	find	those	modules.	We	looked	at	examples	of	employing	modules	that	interface
with	the	network	stack	at	different	layers	to	accomplish	a	simple	network	task.

Finally,	we	discussed	some	common	pitfalls	of	programming	for	TCP/IP	networks	and
some	steps	that	may	be	taken	to	avoid	them.

This	chapter	has	been	heavy	on	the	networking	theory	side	of	things.	But,	now	it’s	time	to
get	stuck	into	Python	and	put	some	application	layer	protocols	to	work	for	us.

Chapter	2.	HTTP	and	Working	with	the
Web
The	Hypertext	Transfer	Protocol	(HTTP)	is	probably	the	most	widely-used	application
layer	protocol.	It	was	originally	developed	to	allow	academics	to	share	HTML	documents.
Nowadays,	it	is	used	as	the	core	protocol	of	innumerable	applications	across	the	Internet,
and	it	is	the	principle	protocol	of	the	World	Wide	Web.

In	this	chapter,	we	will	cover	the	following	topics:

The	HTTP	protocol	structure
Using	Python	for	talking	to	services	through	HTTP
Downloading	files
HTTP	capabilities,	such	as	compression	and	cookies
Handling	errors
URLs
The	Python	standard	library	urllib	package
Kenneth	Reitz’s	third-party	Requests	package

The	urllib	package	is	the	recommended	Python	standard	library	package	for	HTTP	tasks.
The	standard	library	also	has	a	low-level	module	called	http.	Although	this	offers	access
to	almost	all	aspects	of	the	protocol,	it	has	not	been	designed	for	everyday	use.	The
urllib	package	has	a	simpler	interface,	and	it	deals	with	everything	that	we	are	going	to
cover	in	this	chapter.

The	third-party	Requests	package	is	a	very	popular	alternative	to	urllib.	It	has	an	elegant
interface	and	a	powerful	featureset,	and	it	is	a	great	tool	for	streamlining	HTTP
workflows.	We’ll	be	discussing	how	it	can	be	used	in	place	of	urllib	at	the	end	of	the
chapter.

Request	and	response
HTTP	is	an	application	layer	protocol,	and	it	is	almost	always	used	on	top	of	TCP.	The
HTTP	protocol	has	been	deliberately	defined	to	use	a	human-readable	message	format,	but
it	can	still	be	used	for	transporting	arbitrary	bytes	data.

An	HTTP	exchange	consists	of	two	elements.	A	request	made	by	the	client,	which	asks
the	server	for	a	particular	resource	specified	by	a	URL,	and	a	response,	sent	by	the	server,
which	supplies	the	resource	that	the	client	has	asked	for.	If	the	server	can’t	provide	the
resource	that	the	client	has	requested,	then	the	response	will	contain	information	about	the
failure.

This	order	of	events	is	fixed	in	HTTP.	All	interactions	are	initiated	by	the	client.	The
server	never	sends	anything	to	the	client	without	the	client	explicitly	asking	for	it.

This	chapter	will	teach	you	how	to	use	Python	as	an	HTTP	client.	We	will	learn	how	to
make	requests	to	servers	and	then	interpret	their	responses.	We	will	look	at	writing	server-
side	applications	in	Chapter	9,	Applications	for	the	Web.

By	far,	the	most	widely	used	version	of	HTTP	is	1.1,	defined	in	RFCs	7230	to	7235.
HTTP	2	is	the	latest	version,	which	was	officially	ratified	just	as	this	book	was	going	to
press.	Most	of	the	semantics	and	syntax	remain	the	same	between	versions	1.1	and	2,	the
main	changes	are	in	how	the	TCP	connections	are	utilised.	As	of	now,	HTTP	2	isn’t
widely	supported,	so	we	will	focus	on	version	1.1	in	this	book.	If	you	do	want	to	know
more,	HTTP	2	is	documented	in	RFCs	7540	and	7541.

HTTP	version	1.0,	documented	in	RFC	1945,	is	still	used	by	some	older	softwares.
Version	1.1	is	backwards-compatible	with	1.0	though,	and	the	urllib	package	and
Requests	both	support	HTTP	1.1,	so	when	we’re	writing	a	client	with	Python	we	don’t
need	to	worry	about	whether	we’re	connecting	to	an	HTTP	1.0	server.	It’s	just	that	some
more	advanced	features	are	not	available.	Almost	all	services	nowadays	use	version	1.1,
so	we	won’t	go	into	the	differences	here.	The	stack	overflow	question	is,	a	good	starting
point,	if	you	need	further	information:	http://stackoverflow.com/questions/246859/http-1-
0-vs-1-1.

http://stackoverflow.com/questions/246859/http-1-0-vs-1-1

Requests	with	urllib
We	have	already	seen	some	examples	of	HTTP	exchanges	while	discussing	the	RFC
downloaders	in	Chapter	1,	Network	Programming	and	Python.	The	urllib	package	is
broken	into	several	submodules	for	dealing	with	the	different	tasks	that	we	may	need	to
perform	when	working	with	HTTP.	For	making	requests	and	receiving	responses,	we
employ	the	urllib.request	module.

Retrieving	the	contents	of	a	URL	is	a	straightforward	process	when	done	using	urllib.
Load	your	Python	interpreter	and	do	the	following:

>>>	from	urllib.request	import	urlopen

>>>	response	=	urlopen('http://www.debian.org')

>>>	response

<http.client.HTTPResponse	object	at	0x7fa3c53059b0>

>>>	response.readline()

b'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n'

We	use	the	urllib.request.urlopen()	function	for	sending	a	request	and	receiving	a
response	for	the	resource	at	http://www.debian.org,	in	this	case	an	HTML	page.	We	will
then	print	out	the	first	line	of	the	HTML	we	receive.

http://www.debian.org

Response	objects
Let’s	take	a	closer	look	at	our	response	object.	We	can	see	from	the	preceding	example
that	urlopen()	returns	an	http.client.HTTPResponse	instance.	The	response	object
gives	us	access	to	the	data	of	the	requested	resource,	and	the	properties	and	the	metadata
of	the	response.	To	view	the	URL	for	the	response	that	we	received	in	the	previous
section,	do	this:

>>>	response.url

'http://www.debian.org'

We	get	the	data	of	the	requested	resource	through	a	file-like	interface	using	the
readline()	and	read()	methods.	We	saw	the	readline()	method	in	the	previous	section.
This	is	how	we	use	the	read()	method:

>>>	response	=	urlopen('http://www.debian.org')

>>>	response.read(50)

b'g="en">\n<head>\n		<meta	http-equiv="Content-Type"	c'

The	read()	method	returns	the	specified	number	of	bytes	from	the	data.	Here	it’s	the	first
50	bytes.	A	call	to	the	read()	method	with	no	argument	will	return	all	the	data	in	one	go.

The	file-like	interface	is	limited.	Once	the	data	has	been	read,	it’s	not	possible	to	go	back
and	re-read	it	by	using	either	of	the	aforementioned	functions.	To	demonstrate	this,	try
doing	the	following:

>>>	response	=	urlopen('http://www.debian.org')

>>>	response.read()

b'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n<html	lang="en">\n<head>\n		<meta	

http-equiv

...

>>>	response.read()

b''

We	can	see	that	when	we	call	the	read()	function	a	second	time	it	returns	an	empty	string.
There	are	no	seek()	or	rewind()	methods,	so	we	cannot	reset	the	position.	Hence,	it’s
best	to	capture	the	read()	output	in	a	variable.

Both	readline()	and	read()	functions	return	bytes	objects,	and	neither	http	nor	urllib
will	make	any	effort	to	decode	the	data	that	they	receive	to	Unicode.	Later	on	in	the
chapter,	we’ll	be	looking	at	a	way	in	which	we	can	handle	this	with	the	help	of	the
Requests	library.

Status	codes
What	if	we	wanted	to	know	whether	anything	unexpected	had	happened	to	our	request?
Or	what	if	we	wanted	to	know	whether	our	response	contained	any	data	before	we	read
the	data	out?	Maybe	we’re	expecting	a	large	response,	and	we	want	to	quickly	see	if	our
request	has	been	successful	without	reading	the	whole	response.

HTTP	responses	provide	a	means	for	us	to	do	this	through	status	codes.	We	can	read	the
status	code	of	a	response	by	using	its	status	attribute.

>>>	response.status

200

Status	codes	are	integers	that	tell	us	how	the	request	went.	The	200	code	informs	us	that
everything	went	fine.

There	are	a	number	of	codes,	and	each	one	conveys	a	different	meaning.	According	to
their	first	digit,	status	codes	are	classified	into	the	following	groups:

100:	Informational
200:	Success
300:	Redirection
400:	Client	error
500:	Server	error

A	few	of	the	more	frequently	encountered	codes	and	their	messages	are	as	follows:

200:	OK
404:	Not	Found
500:	Internal	Server	Error

The	official	list	of	status	codes	is	maintained	by	IANA	and	it	can	be	found	at
https://www.iana.org/assignments/http-status-codes.	We’ll	be	looking	at	various	codes	in
this	chapter.

https://www.iana.org/assignments/http-status-codes

Handling	problems
Status	codes	help	us	to	see	whether	our	response	was	successful	or	not.	Any	code	in	the
200	range	indicates	a	success,	whereas	any	code	in	either	the	400	range	or	the	500	range
indicates	failure.

Status	codes	should	always	be	checked	so	that	our	program	can	respond	appropriately	if
something	goes	wrong.	The	urllib	package	helps	us	in	checking	the	status	codes	by
raising	an	exception	if	it	encounters	a	problem.

Let’s	go	through	how	to	catch	these	and	handle	them	usefully.	For	this	try	the	following
command	block:

>>>	import	urllib.error

>>>	from	urllib.request	import	urlopen

>>>	try:

...			urlopen('http://www.ietf.org/rfc/rfc0.txt')

...	except	urllib.error.HTTPError	as	e:

...			print('status',	e.code)

...			print('reason',	e.reason)

...			print('url',	e.url)

...

status:	404

reason:	Not	Found

url:	http://www.ietf.org/rfc/rfc0.txt

Here	we’ve	requested	RFC	0,	which	doesn’t	exist.	So	the	server	has	returned	a	404	status
code,	and	urllib	has	spotted	this	and	raised	an	HTTPError.

You	can	see	that	HTTPError	provide	useful	attributes	regarding	the	request.	In	the
preceding	example,	we	used	the	status,	reason,	and	url	attributes	to	get	some
information	about	the	response.

If	something	goes	wrong	lower	in	the	network	stack,	then	the	appropriate	module	will
raise	an	exception.	The	urllib	package	catches	these	exceptions	and	then	wraps	them	as
URLErrors.	For	example,	we	might	have	specified	a	host	or	an	IP	address	that	doesn’t
exist,	as	shown	here:

>>>	urlopen('http://192.0.2.1/index.html')

...

urllib.error.URLError:	<urlopen	error	[Errno	110]	Connection	timed	out>

In	this	instance,	we	have	asked	for	index.html	from	the	192.0.2.1.	host.	The
192.0.2.0/24	IP	address	range	is	reserved	to	be	used	by	documentation	only,	so	you	will
never	encounter	a	host	using	the	preceding	IP	address.	Hence	the	TCP	connection	times
out	and	socket	raises	a	timeout	exception,	which	urllib	catches,	re-wraps,	and	re-raises
for	us.	We	can	catch	these	exceptions	in	the	same	way	as	we	did	in	the	preceding	example.

HTTP	headers
Requests,	and	responses	are	made	up	of	two	main	parts,	headers	and	a	body.	We	briefly
saw	some	HTTP	headers	when	we	used	our	TCP	RFC	downloader	in	Chapter	1,	Network
Programming	and	Python.	Headers	are	the	lines	of	protocol-specific	information	that
appear	at	the	beginning	of	the	raw	message	that	is	sent	over	the	TCP	connection.	The	body
is	the	rest	of	the	message.	It	is	separated	from	the	headers	by	a	blank	line.	The	body	is
optional,	its	presence	depends	on	the	type	of	request	or	response.	Here’s	an	example	of	an
HTTP	request:

GET	/	HTTP/1.1

Accept-Encoding:	identity

Host:	www.debian.com

Connection:	close

User-Agent:	Python-urllib/3.4

The	first	line	is	called	the	request	line.	It	is	comprised	of	the	request	method,	which	is
GET	in	this	case,	the	path	to	the	resource,	which	is	/	here,	and	the	HTTP	version,	1.1.	The
rest	of	the	lines	are	request	headers.	Each	line	is	comprised	of	a	header	name	followed	by
a	colon	and	a	header	value.	The	request	in	the	preceding	output	only	contains	headers,	it
does	not	have	a	body.

Headers	are	used	for	several	purposes.	In	a	request	they	can	be	used	for	passing	extra	data,
such	as	cookies	and	authorization	credentials,	and	for	asking	the	server	for	preferred
formats	of	resources.

For	example,	an	important	header	is	the	Host	header.	Many	web	server	applications
provide	the	ability	to	host	more	than	one	website	on	the	same	server	using	the	same	IP
address.	DNS	aliases	are	set	up	for	the	various	website	domain	names,	so	they	all	point	to
the	same	IP	address.	Effectively,	the	web	server	is	given	multiple	hostnames,	one	for	each
website	it	hosts.	IP	and	TCP	(which	HTTP	runs	on),	can’t	be	used	to	tell	the	server	which
hostname	the	client	wants	to	connect	to	because	both	of	them	operate	solely	on	IP
addresses.	The	HTTP	protocol	allows	the	client	to	supply	the	hostname	in	the	HTTP
request	by	including	a	Host	header.

We’ll	look	at	some	more	request	headers	in	the	following	section.

Here’s	an	example	of	a	response:

HTTP/1.1	200	OK

Date:	Sun,	07	Sep	2014	19:58:48	GMT

Content-Type:	text/html

Content-Length:	4729

Server:	Apache

Content-Language:	en

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n…

The	first	line	contains	the	protocol	version,	the	status	code,	and	the	status	message.
Subsequent	lines	contain	the	headers,	a	blank	line,	and	then	the	body.	In	the	response,	the

server	can	use	headers	to	inform	the	client	about	things	such	as	the	length	of	the	body,	the
type	of	content	the	response	body	contains,	and	the	cookie	data	that	the	client	should	store.

Do	the	following	to	view	a	response	object’s	headers:

>>>	response	=	urlopen('http://www.debian.org)

>>>	response.getheaders()

[('Date',	'Sun,	07	Sep	2014	19:58:48	GMT'),	('Server',	'Apache'),	

('Content-Location',	'index.en.html'),	('Vary',	'negotiate,accept-	

language,Accept-Encoding')...

The	getheaders()	method	returns	the	headers	as	a	list	of	tuples	of	the	form	(header
name,	header	value).	A	complete	list	of	HTTP	1.1	headers	and	their	meanings	can	be
found	in	RFC	7231.	Let’s	look	at	how	to	use	some	headers	in	requests	and	responses.

Customizing	requests
To	make	use	of	the	functionality	that	headers	provide,	we	add	headers	to	a	request	before
sending	it.	To	do	this,	we	can’t	just	use	urlopen().	We	need	to	follow	these	steps:

Create	a	Request	object
Add	headers	to	the	request	object
Use	urlopen()	to	send	the	request	object

We’re	going	to	learn	how	to	customize	a	request	for	retrieving	a	Swedish	version	of	the
Debian	home	page.	We	will	use	the	Accept-Language	header,	which	tells	the	server	our
preferred	language	for	the	resource	it	returns.	Note	that	not	all	servers	hold	versions	of
resources	in	multiple	languages,	so	not	all	servers	will	respond	to	Accept-LanguageLinux
home	page.

First,	we	create	a	Request	object:

>>>	from	urllib.request	import	Request

>>>	req	=	Request('http://www.debian.org')

Next	we	add	the	header:

>>>	req.add_header('Accept-Language',	'sv')

The	add_header()	method	takes	the	name	of	the	header	and	the	contents	of	the	header	as
arguments.	The	Accept-Language	header	takes	two-letter	ISO	639-1	language	codes.	The
code	for	Swedish	is	sv.

Lastly,	we	submit	the	customized	request	with	urlopen():

>>>	response	=	urlopen(req)

We	can	check	if	the	response	is	in	Swedish	by	printing	out	the	first	few	lines:

>>>	response.readlines()[:5]

[b'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n',

		b'<html	lang="sv">\n',

		b'<head>\n',

		b'		<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-		

8">\n',

		b'		<title>Debian—Det	universella	operativsystemet	</title>\n']

Jetta	bra!	The	Accept-Language	header	has	informed	the	server	about	our	preferred
language	for	the	response’s	content.

To	view	the	headers	present	in	a	request,	do	the	following:

>>>	req	=	Request('http://www.debian.org')

>>>	req.add_header('Accept-Language',	'sv')

>>>	req.header_items()

[('Accept-language',	'sv')]

The	urlopen()	method	adds	some	of	its	own	headers	when	we	run	it	on	a	request:

>>>	response	=	urlopen(req)

>>>	req.header_items()

[('Accept-language',	'sv'),	('User-agent':	'Python-urllib/3.4'),	('Host':	

'www.debian.org')]

A	shortcut	for	adding	headers	is	to	add	them	at	the	same	time	that	we	create	the	request
object,	as	shown	here:

>>>	headers	=	{'Accept-Language':	'sv'}

>>>	req	=	Request('http://www.debian.org',	headers=headers)

>>>	req.header_items()

[('Accept-language',	'sv')]

We	supply	the	headers	as	a	dict	to	the	Request	object	constructor	as	the	headers
keyword	argument.	In	this	way,	we	can	add	multiple	headers	in	one	go,	by	adding	more
entries	to	the	dict.

Let’s	take	a	look	at	some	more	things	that	we	can	do	with	headers.

Content	compression
The	Accept-Encoding	request	header	and	the	Content-Encoding	response	header	can
work	together	to	allow	us	to	temporarily	encode	the	body	of	a	response	for	transmission
over	the	network.	This	is	typically	used	for	compressing	the	response	and	reducing	the
amount	of	data	that	needs	to	be	transferred.

This	process	follows	these	steps:

The	client	sends	a	request	with	acceptable	encodings	listed	in	an	Accept-Encoding
header
The	server	picks	an	encoding	method	that	it	supports
The	server	encodes	the	body	using	this	encoding	method
The	server	sends	the	response,	specifying	the	encoding	it	has	used	in	a	Content-
Encoding	header
The	client	decodes	the	response	body	using	the	specified	encoding	method

Let’s	discuss	how	to	request	a	document	and	get	the	server	to	use	gzip	compression	for
the	response	body.	First,	let’s	construct	the	request:

>>>	req	=	Request('http://www.debian.org')

Next,	add	the	Accept-Encoding	header:

>>>	req.add_header('Accept-Encoding',	'gzip')

And	then,	submit	it	with	the	help	of	urlopen():

>>>	response	=	urlopen(req)

We	can	check	if	the	server	is	using	gzip	compression	by	looking	at	the	response’s
Content-Encoding	header:

>>>	response.getheader('Content-Encoding')

'gzip'

We	can	then	decompress	the	body	data	by	using	the	gzip	module:

>>>	import	gzip

>>>	content	=	gzip.decompress(response.read())

>>>	content.splitlines()[:5]

[b'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">',

		b'<html	lang="en">',

		b'<head>',

		b'		<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8">',

		b'		<title>Debian—The	Universal	Operating	System	</title>']

Encodings	are	registered	with	IANA.	The	current	list	contains:	gzip,	compress,	deflate,
and	identity.	The	first	three	refer	to	specific	compression	methods.	The	last	one	allows
the	client	to	specify	that	it	doesn’t	want	any	encoding	applied	to	the	content.

Let’s	see	what	happens	if	we	ask	for	no	compression	by	using	the	identity	encoding:

>>>	req	=	Request('http://www.debian.org')

>>>	req.add_header('Accept-Encoding',	'identity')

>>>	response	=	urlopen(req)

>>>	print(response.getheader('Content-Encoding'))

None

When	a	server	uses	the	identity	encoding	type,	no	Content-Encoding	header	is	included
in	the	response.

Multiple	values
To	tell	the	server	that	we	can	accept	more	than	one	encoding,	add	more	values	to	the
Accept-Encoding	header	and	separate	them	by	commas.	Let’s	try	it.	We	create	our
Request	object:

>>>	req	=	Request('http://www.debian.org')

Then,	we	add	our	header,	and	this	time	we	include	more	encodings:

>>>	encodings	=	'deflate,	gzip,	identity'

>>>	req.add_header('Accept-Encoding',	encodings)

Now,	we	submit	the	request	and	then	check	the	response	encoding:

>>>	response	=	urlopen(req)

>>>	response.getheader('Content-Encoding')

'gzip'

If	needed,	relative	weightings	can	be	given	to	specific	encodings	by	adding	a	q	value:

>>>	encodings	=	'gzip,	deflate;q=0.8,	identity;q=0.0'

The	q	value	follows	the	encoding	name,	and	it	is	separated	by	a	semicolon.	The	maximum
q	value	is	1.0,	and	this	is	also	the	default	if	no	q	value	is	given.	So,	the	preceding	line
should	be	interpreted	as	my	first	preference	for	encoding	is	gzip,	my	second	preference	is
deflate,	and	my	third	preference	is	identity,	if	nothing	else	is	available.

Content	negotiation
Content	compression	with	the	Accept-Encoding	header	and	language	selection	with	the
Accept-Language	header	are	examples	of	content	negotiation,	where	the	client	specifies
its	preferences	regarding	the	format	and	the	content	of	the	requested	resource.	The
following	headers	can	also	be	used	for	this:

Accept:	For	requesting	a	preferred	file	format
Accept-Charset:	For	requesting	the	resource	in	a	preferred	character	set

There	are	additional	aspects	to	the	content	negotiation	mechanism,	but	because	it’s
inconsistently	supported	and	it	can	become	quite	involved,	we	won’t	be	covering	it	in	this
chapter.	RFC	7231	contain	all	the	details	that	you	need.	Take	a	look	at	sections	such	as
3.4,	5.3,	6.4.1,	and	6.5.6,	if	you	find	that	your	application	requires	this.

Content	types
HTTP	can	be	used	as	a	transport	for	any	type	of	file	or	data.	The	server	can	use	the
Content-Type	header	in	a	response	to	inform	the	client	about	the	type	of	data	that	it	has
sent	in	the	body.	This	is	the	primary	means	an	HTTP	client	determines	how	it	should
handle	the	body	data	that	the	server	returns	to	it.

To	view	the	content	type,	we	inspect	the	value	of	the	response	header,	as	shown	here:

>>>	response	=	urlopen('http://www.debian.org')

>>>	response.getheader('Content-Type')

'text/html'

The	values	in	this	header	are	taken	from	a	list	which	is	maintained	by	IANA.	These	values
are	variously	called	content	types,	Internet	media	types,	or	MIME	types	(MIME	stands
for	Multipurpose	Internet	Mail	Extensions,	the	specification	in	which	the	convention
was	first	established).	The	full	list	can	be	found	at
http://www.iana.org/assignments/media-types.

There	are	registered	media	types	for	many	of	the	types	of	data	that	are	transmitted	across
the	Internet,	some	common	ones	are:

Media	type Description

text/html HTML	document

text/plain Plain	text	document

image/jpeg JPG	image

application/pdf PDF	document

application/json JSON	data

application/xhtml+xml XHTML	document

Another	media	type	of	interest	is	application/octet-stream,	which	in	practice	is	used
for	files	that	don’t	have	an	applicable	media	type.	An	example	of	this	would	be	a	pickled
Python	object.	It	is	also	used	for	files	whose	format	is	not	known	by	the	server.	In	order	to
handle	responses	with	this	media	type	correctly,	we	need	to	discover	the	format	in	some
other	way.	Possible	approaches	are	as	follows:

Examine	the	filename	extension	of	the	downloaded	resource,	if	it	has	one.	The
mimetypes	module	can	then	be	used	for	determining	the	media	type	(go	to	Chapter	3,
APIs	in	Action	to	see	an	example	of	this).
Download	the	data	and	then	use	a	file	type	analysis	tool.	TheUse	the	Python	standard
library	imghdr	module	can	be	used	for	images,	and	the	third-party	python-magic
package,	or	the	GNU	file	command,	can	be	used	for	other	types.
Check	the	website	that	we’re	downloading	from	to	see	if	the	file	type	has	been
documented	anywhere.

http://www.iana.org/assignments/media-types

Content	type	values	can	contain	optional	additional	parameters	that	provide	further
information	about	the	type.	This	is	usually	used	to	supply	the	character	set	that	the	data
uses.	For	example:

Content-Type:	text/html;	charset=UTF-8.

In	this	case,	we’re	being	told	that	the	character	set	of	the	document	is	UTF-8.	The
parameter	is	included	after	a	semicolon,	and	it	always	takes	the	form	of	a	key/value	pair.

Let’s	discuss	an	example,	downloading	the	Python	home	page	and	using	the	Content-
Type	value	it	returns.	First,	we	submit	our	request:

>>>	response	=	urlopen('http://www.python.org')

Then,	we	check	the	Content-Type	value	of	our	response,	and	extract	the	character	set:

>>>	format,	params	=	response.getheader('Content-Type').split(';')

>>>	params

'	charset=utf-8'

>>>	charset	=	params.split('=')[1]

>>>	charset

'utf-8'

Lastly,	we	decode	our	response	content	by	using	the	supplied	character	set:

>>>	content	=	response.read().decode(charset)

Note	that	quite	often,	the	server	either	doesn’t	supply	a	charset	in	the	Content-Type
header,	or	it	supplies	the	wrong	charset.	So,	this	value	should	be	taken	as	a	suggestion.
This	is	one	of	the	reasons	that	we	look	at	the	Requests	library	later	in	this	chapter.	It	will
automatically	gather	all	the	hints	that	it	can	find	about	what	character	set	should	be	used
for	decoding	a	response	body	and	make	a	best	guess	for	us.

User	agents
Another	request	header	worth	knowing	about	is	the	User-Agent	header.	Any	client	that
communicates	using	HTTP	can	be	referred	to	as	a	user	agent.	RFC	7231	suggests	that
user	agents	should	use	the	User-Agent	header	to	identify	themselves	in	every	request.
What	goes	in	there	is	up	to	the	software	that	makes	the	request,	though	it	usually
comprises	a	string	that	identifies	the	program	and	version,	and	possibly	the	operating
system	and	the	hardware	that	it’s	running	on.	For	example,	the	user	agent	for	my	current
version	of	Firefox	is	shown	here:

Mozilla/5.0	(X11;	Linux	x86_64;	rv:24.0)	Gecko/20140722	Firefox/24.0	

Iceweasel/24.7.0

Although	it	has	been	broken	over	two	lines	here,	it	is	a	single	long	string.	As	you	can
probably	decipher,	I’m	running	Iceweasel	(Debian’s	version	of	Firefox)	version	24	on	a
64-bit	Linux	system.	User	agent	strings	aren’t	intended	for	identifying	individual	users.
They	only	identify	the	product	that	was	used	for	making	the	request.

We	can	view	the	user	agent	that	urllib	uses.	Perform	the	following	steps:

>>>	req	=	Request('http://www.python.org')

>>>	urlopen(req)

>>>	req.get_header('User-agent')

'Python-urllib/3.4'

Here,	we	have	created	a	request	and	submitted	it	using	urlopen,	and	urlopen	added	the
user	agent	header	to	the	request.	We	can	examine	this	header	by	using	the	get_header()
method.	This	header	and	its	value	are	included	in	every	request	made	by	urllib,	so	every
server	we	make	a	request	to	can	see	that	we	are	using	Python	3.4	and	the	urllib	library.

Webmasters	can	inspect	the	user	agents	of	requests	and	then	use	the	information	for
various	things,	including	the	following:

Classifying	visits	for	their	website	statistics
Blocking	clients	with	certain	user	agent	strings
Sending	alternative	versions	of	resources	for	user	agents	with	known	problems,	such
as	bugs	when	interpreting	certain	languages	like	CSS,	or	not	supporting	some
languages	at	all,	such	as	JavaScript

The	last	two	can	cause	problems	for	us	because	they	can	stop	or	interfere	with	us
accessing	the	content	that	we’re	after.	To	work	around	this,	we	can	try	and	set	our	user
agent	so	that	it	mimics	a	well	known	browser.	This	is	known	as	spoofing,	as	shown	here:

>>>	req	=	Request('http://www.debian.org')

>>>	req.add_header('User-Agent',	'Mozilla/5.0	(X11;	Linux	x86_64;	rv:24.0)	

Gecko/20140722	Firefox/24.0	Iceweasel/24.7.0')

>>>	response	=	urlopen(req)

The	server	will	respond	as	if	our	application	is	a	regular	Firefox	client.	User	agent	strings
for	different	browsers	are	available	on	the	web.	I’m	yet	to	come	across	a	comprehensive
resource	for	them,	but	Googling	for	a	browser	and	version	number	will	usually	turn

something	up.	Alternatively	you	can	use	Wireshark	to	capture	an	HTTP	request	made	by
the	browser	you	want	to	emulate	and	look	at	the	captured	request’s	user	agent	header.

Cookies
A	cookie	is	a	small	piece	of	data	that	the	server	sends	in	a	Set-Cookie	header	as	a	part	of
the	response.	The	client	stores	cookies	locally	and	includes	them	in	any	future	requests
that	are	sent	to	the	server.

Servers	use	cookies	in	various	ways.	They	can	add	a	unique	ID	to	them,	which	enables
them	to	track	a	client	as	it	accesses	different	areas	of	a	site.	They	can	store	a	login	token,
which	will	automatically	log	the	client	in,	even	if	the	client	leaves	the	site	and	then
accesses	it	later.	They	can	also	be	used	for	storing	the	client’s	user	preferences	or	snippets
of	personalizing	information,	and	so	on.

Cookies	are	necessary	because	the	server	has	no	other	way	of	tracking	a	client	between
requests.	HTTP	is	called	a	stateless	protocol.	It	doesn’t	contain	an	explicit	mechanism	for
a	server	to	know	for	sure	that	two	requests	have	come	from	the	same	client.	Without
cookies	to	allow	the	server	to	add	some	uniquely	identifying	information	to	the	requests,
things	such	as	shopping	carts	(which	were	the	original	problem	that	cookies	were
developed	to	solve)	would	become	impossible	to	build,	because	the	server	would	not	be
able	to	determine	which	basket	goes	with	which	request.

We	may	need	to	handle	cookies	in	Python	because	without	them,	some	sites	don’t	behave
as	expected.	When	using	Python,	we	may	also	want	to	access	the	parts	of	a	site	which
require	a	login,	and	the	login	sessions	are	usually	maintained	through	cookies.

Cookie	handling
We’re	going	to	discuss	how	to	handle	cookies	with	urllib.	First,	we	need	to	create	a	place
for	storing	the	cookies	that	the	server	will	send	us:

>>>	from	http.cookiejar	import	CookieJar

>>>	cookie_jar	=	CookieJar()

Next,	we	build	something	called	an	urllib	opener	.	This	will	automatically	extract	the
cookies	from	the	responses	that	we	receive	and	then	store	them	in	our	cookie	jar:

>>>	from	urllib.request	import	build_opener,	HTTPCookieProcessor

>>>	opener	=	build_opener(HTTPCookieProcessor(cookie_jar))

Then,	we	can	use	our	opener	to	make	an	HTTP	request:

>>>	opener.open('http://www.github.com')

Lastly,	we	can	check	that	the	server	has	sent	us	some	cookies:

>>>	len(cookie_jar)

2

Whenever	we	use	opener	to	make	further	requests,	the	HTTPCookieProcessor
functionality	will	check	our	cookie_jar	to	see	if	it	contains	any	cookies	for	that	site	and
then	it	will	automatically	add	them	to	our	requests.	It	will	also	add	any	further	cookies	that
are	received	to	the	cookie	jar.

The	http.cookiejar	module	also	contains	a	FileCookieJar	class,	that	works	in	the	same
way	as	CookieJar,	but	it	provides	an	additional	function	for	easily	saving	the	cookies	to	a
file.	This	allows	persistence	of	cookies	across	Python	sessions.

Know	your	cookies
It’s	worth	looking	at	the	properties	of	cookies	in	more	detail.	Let’s	examine	the	cookies
that	GitHub	sent	us	in	the	preceding	section.

To	do	this,	we	need	to	pull	the	cookies	out	of	the	cookie	jar.	The	CookieJar	module
doesn’t	let	us	access	them	directly,	but	it	supports	the	iterator	protocol.	So,	a	quick	way	of
getting	them	is	to	create	a	list	from	it:

>>>	cookies	=	list(cookie_jar)

>>>	cookies

[Cookie(version=0,	name='logged_in',	value='no',	...),

	Cookie(version=0,	name='_gh_sess',	value='eyJzZxNzaW9uX…',	...)

]

You	can	see	that	we	have	two	Cookie	objects.	Now,	let’s	pull	out	some	information	from
the	first	one:

>>>	cookies[0].name

'logged_in'

>>>	cookies[0].value

'no'

The	cookie’s	name	allows	the	server	to	quickly	reference	it.	This	cookie	is	clearly	a	part	of
the	mechanism	that	GitHub	uses	for	finding	out	whether	we’ve	logged	in	yet.	Next,	let’s
do	the	following:

>>>	cookies[0].domain

'.github.com'

>>>	cookies[0].path

'/'

The	domain	and	the	path	are	the	areas	for	which	this	cookie	is	valid,	so	our	urllib	opener
will	include	this	cookie	in	any	request	that	it	sends	to	www.github.com	and	its	sub-
domains,	where	the	path	is	anywhere	below	the	root.

Now,	let’s	look	at	the	cookie’s	lifetime:

>>>	cookies[0].expires

2060882017

This	is	a	Unix	timestamp;	we	can	convert	it	to	datetime:

>>>	import	datetime

>>>	datetime.datetime.fromtimestamp(cookies[0].expires)

datetime.datetime(2035,	4,	22,	20,	13,	37)

So,	our	cookie	will	expire	on	22nd	of	April,	2035.	An	expiry	date	is	the	amount	of	time
that	the	server	would	like	the	client	to	hold	on	to	the	cookie	for.	Once	the	expiry	date	has
passed,	the	client	can	throw	the	cookie	away	and	the	server	will	send	a	new	one	with	the
next	request.	Of	course,	there’s	nothing	to	stop	a	client	from	immediately	throwing	the
cookie	away,	though	on	some	sites	this	may	break	functionality	that	depends	on	the
cookie.

http://www.github.com

Let’s	discuss	two	common	cookie	flags:

>>>	print(cookies[0].get_nonstandard_attr('HttpOnly'))

None

Cookies	that	are	stored	on	a	client	can	be	accessed	in	a	number	of	ways:

By	the	client	as	part	of	an	HTTP	request	and	response	sequence
By	scripts	running	in	the	client,	such	as	JavaScript
By	other	processes	running	in	the	client,	such	as	Flash

The	HttpOnly	flag	indicates	that	the	client	should	only	allow	access	to	a	cookie	when	the
access	is	part	of	an	HTTP	request	or	response.	The	other	methods	should	be	denied	access.
This	will	protect	the	client	against	Cross-site	scripting	attacks	(see	Chapter	9,	Applications
for	the	Web,	for	more	information	on	these).	This	is	an	important	security	feature,	and
when	the	server	sets	it,	our	application	should	behaves	accordingly.

There	is	also	a	secure	flag:

>>>	cookies[0].secure

True

If	the	value	is	true,	the	Secure	flag	indicates	that	the	cookie	should	only	ever	be	sent	over
a	secure	connection,	such	as	HTTPS.	Again,	we	should	honor	this	if	the	flag	has	been	set
such	that	when	our	application	send	requests	containing	this	cookie,	it	only	sends	them	to
HTTPS	URLs.

You	may	have	spotted	an	inconsistency	here.	Our	URL	has	requested	a	response	over
HTTP,	yet	the	server	has	sent	us	a	cookie,	which	it’s	requesting	to	be	sent	only	over	secure
connections.	Surely	the	site	designers	didn’t	overlook	a	security	loophole	like	that?	Rest
assured;	they	didn’t.	The	response	was	actually	sent	over	HTTPS.	But,	how	did	that
happen?	Well,	the	answer	lies	with	redirects.

Redirects
Sometimes	servers	move	their	content	around.	They	also	make	some	content	obsolete	and
put	up	new	stuff	in	a	different	location.	Sometimes	they’d	like	us	to	use	the	more	secure
HTTPS	protocol	instead	of	HTTP.	In	all	these	cases,	they	may	get	traffic	that	asks	for	the
old	URLs,	and	in	all	these	cases	they’d	probably	prefer	to	be	able	to	automatically	send
visitors	to	the	new	ones.

The	300	range	of	HTTP	status	codes	is	designed	for	this	purpose.	These	codes	indicate	to
the	client	that	further	action	is	required	on	their	part	to	complete	the	request.	The	most
commonly	encountered	action	is	to	retry	the	request	at	a	different	URL.	This	is	called	a
redirect.

We’ll	learn	how	this	works	when	using	urllib.	Let’s	make	a	request:

>>>	req	=	Request('http://www.gmail.com')

>>>	response	=	urlopen(req)

Simple	enough,	but	now,	look	at	the	URL	of	the	response:

>>>	response.url

'https://accounts.google.com/ServiceLogin?service=mail&passive=true&r	

m=false…'

This	is	not	the	URL	that	we	requested!	If	we	open	this	new	URL	in	a	browser,	then	we’ll
see	that	it’s	actually	the	Google	login	page	(you	may	need	to	clear	your	browser	cookies	to
see	this	if	you	already	have	a	cached	Google	login	session).	Google	redirected	us	from
http://www.gmail.com	to	its	login	page,	and	urllib	automatically	followed	the	redirect.
Moreover,	we	may	have	been	redirected	more	than	once.	Look	at	the	redirect_dict
attribute	of	our	request	object:

>>>	req.redirect_dict

{'https://accounts.google.com/ServiceLogin?service=...':	1,	

'https://mail.google.com/mail/':	1}

The	urllib	package	adds	every	URL	that	we	were	redirected	through	to	this	dict.	We	can
see	that	we	have	actually	been	redirected	twice,	first	to	https://mail.google.com,	and
second	to	the	login	page.

When	we	send	our	first	request,	the	server	sends	a	response	with	a	redirect	status	code,
one	of	301,	302,	303,	or	307.	All	of	these	indicate	a	redirect.	This	response	includes	a
Location	header,	which	contains	the	new	URL.	The	urllib	package	will	submit	a	new
request	to	that	URL,	and	in	the	aforementioned	case,	it	will	receive	yet	another	redirect,
which	will	lead	it	to	the	Google	login	page.

Since	urllib	follows	redirects	for	us,	they	generally	don’t	affect	us,	but	it’s	worth
knowing	that	a	response	urllib	returns	may	be	for	a	URL	different	from	what	we	had
requested.	Also,	if	we	hit	too	many	redirects	for	a	single	request	(more	than	10	for
urllib),	then	urllib	will	give	up	and	raise	an	urllib.error.HTTPError	exception.

http://www.gmail.com
https://mail.google.com

URLs
Uniform	Resource	Locators,	or	URLs	are	fundamental	to	the	way	in	which	the	web
operates,	and	they	have	been	formally	described	in	RFC	3986.	A	URL	represents	a
resource	on	a	given	host.	How	URLs	map	to	the	resources	on	the	remote	system	is	entirely
at	the	discretion	of	the	system	admin.	URLs	can	point	to	files	on	the	server,	or	the
resources	may	be	dynamically	generated	when	a	request	is	received.	What	the	URL	maps
to	though	doesn’t	matter	as	long	as	the	URLs	work	when	we	request	them.

URLs	are	comprised	of	several	sections.	Python	uses	the	urllib.parse	module	for
working	with	URLs.	Let’s	use	Python	to	break	a	URL	into	its	component	parts:

>>>	from	urllib.parse	import	urlparse

>>>	result	=	urlparse('http://www.python.org/dev/peps')

>>>	result

ParseResult(scheme='http',	netloc='www.python.org',	path='/dev/peps',	

params='',	query='',	fragment='')

The	urllib.parse.urlparse()	function	interprets	our	URL	and	recognizes	http	as	the
scheme,	https://www.python.org/	as	the	network	location,	and	/dev/peps	as	the	path.
We	can	access	these	components	as	attributes	of	the	ParseResult:

>>>	result.netloc

'www.python.org'

>>>	result.path

'/dev/peps'

For	almost	all	resources	on	the	web,	we’ll	be	using	the	http	or	https	schemes.	In	these
schemes,	to	locate	a	specific	resource,	we	need	to	know	the	host	that	it	resides	on	and	the
TCP	port	that	we	should	connect	to	(together	these	are	the	netloc	component),	and	we
also	need	to	know	the	path	to	the	resource	on	the	host	(the	path	component).

Port	numbers	can	be	specified	explicitly	in	a	URL	by	appending	them	to	the	host.	They
are	separated	from	the	host	by	a	colon.	Let’s	see	what	happens	when	we	try	this	with
urlparse.

>>>	urlparse('http://www.python.org:8080/')

ParseResult(scheme='http',	netloc='www.python.org:8080',	path='/',	

params='',	query='',	fragment='')

The	urlparse	method	just	interprets	it	as	a	part	of	the	netloc.	This	is	fine	because	this	is
how	handlers	such	as	urllib.request.urlopen()	expect	it	to	be	formatted.

If	we	don’t	supply	a	port	(as	is	usually	the	case),	then	the	default	port	80	is	used	for	http,
and	the	default	port	443	is	used	for	https.	This	is	usually	what	we	want,	as	these	are	the
standard	ports	for	the	HTTP	and	HTTPS	protocols	respectively.

https://www.python.org/

Paths	and	relative	URLs
The	path	in	a	URL	is	anything	that	comes	after	the	host	and	the	port.	Paths	always	start
with	a	forward-slash	(/),	and	when	just	a	slash	appears	on	its	own,	it’s	called	the	root.	We
can	see	this	by	performing	the	following:

>>>	urlparse('http://www.python.org/')

ParseResult(scheme='http',	netloc='www.python.org',	path='/',	params='',	

query='',	fragment='')

If	no	path	is	supplied	in	a	request,	then	by	default	urllib	will	send	a	request	for	the	root.

When	a	scheme	and	a	host	are	included	in	a	URL	(as	in	the	previous	example),	the	URL	is
called	an	absolute	URL.	Conversely,	it’s	possible	to	have	relative	URLs,	which	contain
just	a	path	component,	as	shown	here:

>>>	urlparse('../images/tux.png')

ParseResult(scheme='',	netloc='',	path='../images/tux.png',	params='',	

query='',	fragment='')

We	can	see	that	ParseResult	only	contains	a	path.	If	we	want	to	use	a	relative	URL	to
request	a	resource,	then	we	need	to	supply	the	missing	scheme,	the	host,	and	the	base	path.

Usually,	we	encounter	relative	URLs	in	a	resource	that	we’ve	already	retrieved	from	a
URL.	So,	we	can	just	use	this	resource’s	URL	to	fill	in	the	missing	components.	Let’s	look
at	an	example.

Suppose	that	we’ve	retrieved	the	http://www.debian.org	URL,	and	within	the	webpage
source	code	we	found	the	relative	URL	for	the	‘About’	page.	We	found	that	it’s	a	relative
URL	for	intro/about.

We	can	create	an	absolute	URL	by	using	the	URL	for	the	original	page	and	the
urllib.parse.urljoin()	function.	Let’s	see	how	we	can	do	this:

>>>	from	urllib.parse	import	urljoin

>>>	urljoin('http://www.debian.org',	'intro/about')

'http://www.debian.org/intro/about'

By	supplying	urljoin	with	a	base	URL,	and	a	relative	URL,	we’ve	created	a	new
absolute	URL.

Here,	notice	how	urljoin	has	filled	in	the	slash	between	the	host	and	the	path.	The	only
time	that	urljoin	will	fill	in	a	slash	for	us	is	when	the	base	URL	does	not	have	a	path,	as
shown	in	the	preceding	example.	Let’s	see	what	happens	if	the	base	URL	does	have	a
path.

>>>	urljoin('http://www.debian.org/intro/',	'about')

'http://www.debian.org/intro/about'

>>>	urljoin('http://www.debian.org/intro',	'about')

'http://www.debian.org/about'

This	will	give	us	varying	results.	Notice	how	urljoin	appends	to	the	path	if	the	base	URL
ends	in	a	slash,	but	it	replaces	the	last	path	element	in	the	base	URL	if	the	base	URL

http://www.debian.org

doesn’t	end	in	a	slash.

We	can	force	a	path	to	replace	all	the	elements	of	a	base	URL	by	prefixing	it	with	a	slash.
Do	the	following:

>>>	urljoin('http://www.debian.org/intro/about',	'/News')

'http://www.debian.org/News'

How	about	navigating	to	parent	directories?	Let’s	try	the	standard	dot	syntax,	as	shown
here:

>>>	urljoin('http://www.debian.org/intro/about/',	'../News')

'http://www.debian.org/intro/News'

>>>	urljoin('http://www.debian.org/intro/about/',	'../../News')

'http://www.debian.org/News'

>>>	urljoin('http://www.debian.org/intro/about',	'../News')

'http://www.debian.org/News'

It	work	as	we’d	expect	it	to.	Note	the	difference	between	the	base	URL	having	and	not
having	a	trailing	slash.

Lastly,	what	if	the	‘relative’	URL	is	actually	an	absolute	URL:

>>>	urljoin('http://www.debian.org/about',	'http://www.python.org')

'http://www.python.org'

The	relative	URL	completely	replaces	the	base	URL.	This	is	handy,	as	it	means	that	we
don’t	need	to	worry	about	testing	whether	a	URL	is	relative	or	not	before	using	it	with
urljoin.

Query	strings
RFC	3986	defines	another	property	of	URLs.	They	can	contain	additional	parameters	in
the	form	of	key/value	pairs	that	appear	after	the	path.	They	are	separated	from	the	path	by
a	question	mark,	as	shown	here:

http://docs.python.org/3/search.html?q=urlparse&area=default

This	string	of	parameters	is	called	a	query	string.	Multiple	parameters	are	separated	by
ampersands	(&).	Let’s	see	how	urlparse	handles	it:

>>>	urlparse('http://docs.python.org/3/search.html?	

q=urlparse&area=default')

ParseResult(scheme='http',	netloc='docs.python.org',	path='/3/search.html',	

params='',	query='q=urlparse&area=default',	fragment='')

So,	urlparse	recognizes	the	query	string	as	the	query	component.

Query	strings	are	used	for	supplying	parameters	to	the	resource	that	we	wish	to	retrieve,
and	this	usually	customizes	the	resource	in	some	way.	In	the	aforementioned	example,	our
query	string	tells	the	Python	docs	search	page	that	we	want	to	run	a	search	for	the	term
urlparse.

The	urllib.parse	module	has	a	function	that	helps	us	turn	the	query	component	returned
by	urlparse	into	something	more	useful:

>>>	from	urllib.parse	import	parse_qs

>>>	result	=	urlparse	('http://docs.python.org/3/search.html?

q=urlparse&area=default')

>>>	parse_qs(result.query)

{'area':	['default'],	'q':	['urlparse']}

The	parse_qs()	method	reads	the	query	string	and	then	converts	it	into	a	dictionary.	See
how	the	dictionary	values	are	actually	in	the	form	of	lists?	This	is	because	parameters	can
appear	more	than	once	in	a	query	string.	Try	it	with	a	repeated	parameter:

>>>	result	=	urlparse	('http://docs.python.org/3/search.html?

q=urlparse&q=urljoin')

>>>	parse_qs(result.query)

{'q':	['urlparse',	'urljoin']}

See	how	both	of	the	values	have	been	added	to	the	list?	It’s	up	to	the	server	to	decide	how
it	interprets	this.	If	we	send	this	query	string,	then	it	may	just	pick	one	of	the	values	and
use	that,	while	ignoring	the	repeat.	You	can	only	try	it,	and	see	what	happens.

You	can	usually	figure	out	what	you	need	to	put	in	a	query	string	for	a	given	page	by
submitting	a	query	through	the	web	interface	using	your	web	browser,	and	inspecting	the
URL	of	the	results	page.	You	should	be	able	to	spot	the	text	of	your	search	and
consequently	deduce	the	corresponding	key	for	the	search	text.	Quite	often,	many	of	the
other	parameters	in	the	query	string	aren’t	actually	needed	for	getting	a	basic	result.	Try
requesting	the	page	using	only	the	search	text	parameter	and	see	what	happens.	Then,	add
the	other	parameters,	if	it	does	not	work	as	expected.

http://docs.python.org/3/search.html?q=urlparse&area=default

If	you	submit	a	form	to	a	page	and	the	resulting	page’s	URL	doesn’t	have	a	query	string,
then	the	page	would	have	used	a	different	method	for	sending	the	form	data.	We’ll	look	at
this	in	the	HTTP	methods	section	in	the	following,	while	discussing	the	POST	method.

URL	encoding
URLs	are	restricted	to	the	ASCII	characters	and	within	this	set,	a	number	of	characters	are
reserved	and	need	to	be	escaped	in	different	components	of	a	URL.	We	escape	them	by
using	something	called	URL	encoding.	It	is	often	called	percent	encoding,	because	it	uses
the	percent	sign	as	an	escape	character.	Let’s	URL-encode	a	string:

>>>	from	urllib.parse	import	quote

>>>	quote('A	duck?')

'A%20duck%3F'

The	special	characters	'	'	and	?	have	been	replaced	by	escape	sequences.	The	numbers	in
the	escape	sequences	are	the	characters’	ASCII	codes	in	hexadecimal.

The	full	rules	for	where	the	reserved	characters	need	to	be	escaped	are	given	in	RFC	3986,
however	urllib	provides	us	with	a	couple	of	methods	for	helping	us	construct	URLs.
This	means	that	we	don’t	need	to	memorize	all	of	these!

We	just	need	to:

URL-encode	the	path
URL-encode	the	query	string
Combine	them	by	using	the	urllib.parse.urlunparse()	function

Let’s	see	how	to	use	the	aforementioned	steps	in	code.	First,	we	encode	the	path:

>>>	path	=	'pypi'

>>>	path_enc	=	quote(path)

Then,	we	encode	the	query	string:

>>>	from	urllib.parse	import	urlencode

>>>	query_dict	=	{':action':	'search',	'term':	'Are	you	quite	sure	this	is	

a	cheese	shop?'}

>>>	query_enc	=	urlencode(query_dict)

>>>	query_enc

'%3Aaction=search&term=Are+you+quite+sure+this+is+a+cheese+shop%3F'

Lastly,	we	compose	everything	into	a	URL:

>>>	from	urllib.parse	import	urlunparse

>>>	netloc	=	'pypi.python.org'

>>>	urlunparse(('http',	netloc,	path_enc,	'',	query_enc,	''))

'http://pypi.python.org/pypi?%3Aaction=search&term=Are+you+quite+sure	

+this+is+a+cheese+shop%3F'

The	quote()	function	has	been	setup	for	specifically	encoding	paths.	By	default,	it	ignores
slash	characters	and	it	doesn’t	encode	them.	This	isn’t	obvious	in	the	preceding	example,
try	the	following	to	see	how	this	works:

>>>	from	urllib.parse	import	quote

>>>	path	=	'/images/users/+Zoot+/'

>>>	quote(path)

'/images/users/%2BZoot%2B/'

Notice	that	it	ignores	the	slashes,	but	it	escapes	the	+.	That	is	perfect	for	paths.

The	urlencode()	function	is	similarly	intended	for	encoding	query	strings	directly	from
dicts.	Notice	how	it	correctly	percent	encodes	our	values	and	then	joins	them	with	&,	so	as
to	construct	the	query	string.

Lastly,	the	urlunparse()	method	expects	a	6-tuple	containing	the	elements	matching
those	of	the	result	of	urlparse(),	hence	the	two	empty	strings.

There	is	a	caveat	for	path	encoding.	If	the	elements	of	a	path	themselves	contain	slashes,
then	we	may	run	into	problems.	The	example	is	shown	in	the	following	commands:

>>>	username	=	'+Zoot/Dingo+'

>>>	path	=	'images/users/{}'.format(username)

>>>	quote(path)

'images/user/%2BZoot/Dingo%2B'

Notice	how	the	slash	in	the	username	doesn’t	get	escaped?	This	will	be	incorrectly
interpreted	as	an	extra	level	of	directory	structure,	which	is	not	what	we	want.	In	order	to
get	around	this,	first	we	need	to	individually	escape	any	path	elements	that	may	contain
slashes,	and	then	join	them	manually:

>>>	username	=	'+Zoot/Dingo+'

>>>	user_encoded	=	quote(username,	safe='')

>>>	path	=	'/'.join(('',	'images',	'users',	username))

'/images/users/%2BZoot%2FDingo%2B'

Notice	how	the	username	slash	is	now	percent-encoded?	We	encode	the	username
separately,	telling	quote	not	to	ignore	slashes	by	supplying	the	safe=''	argument,	which
overwrites	its	default	ignore	list	of	/.	Then,	we	combine	the	path	elements	by	using	a
simple	join()	function.

Here,	it’s	worth	mentioning	that	hostnames	sent	over	the	wire	must	be	strictly	ASCII,
however	the	socket	and	http	modules	support	transparent	encoding	of	Unicode
hostnames	to	an	ASCII-compatible	encoding,	so	in	practice	we	don’t	need	to	worry	about
encoding	hostnames.	There	are	more	details	about	this	process	in	the	encodings.idna
section	of	the	codecs	module	documentation.

URLs	in	summary
There	are	quite	a	few	functions	that	we’ve	used	in	the	preceding	sections.	Let’s	just	review
what	we	have	used	each	function	for.	All	of	these	functions	can	be	found	in	the
urllib.parse	module.	They	are	as	follows:

Splitting	a	URL	into	its	components:	urlparse
Combining	an	absolute	URL	with	a	relative	URL:	urljoin
Parsing	a	query	string	into	a	dict:	parse_qs
URL-encoding	a	path:	quote
Creating	a	URL-encoded	query	string	from	a	dict:	urlencode
Creating	a	URL	from	components	(reverse	of	urlparse):	urlunparse

HTTP	methods
So	far,	we’ve	been	using	requests	for	asking	servers	to	send	web	resources	to	us,	but
HTTP	provides	more	actions	that	we	can	perform.	The	GET	in	our	request	lines	is	an	HTTP
method,	and	there	are	several	methods,	such	as	HEAD,	POST,	OPTION,	PUT,	DELETE,	TRACE,
CONNECT,	and	PATCH.

We’ll	be	looking	at	several	of	these	in	some	detail	in	the	next	chapter,	but	there	are	two
methods,	we’re	going	to	take	a	quick	look	at	now.

The	HEAD	method
The	HEAD	method	is	the	same	as	the	GET	method.	The	only	difference	is	that	the	server	will
never	include	a	body	in	the	response,	even	if	there	is	a	valid	resource	at	the	requested
URL.	The	HEAD	method	is	used	for	checking	if	a	resource	exists	or	if	it	has	changed.	Note
that	some	servers	don’t	implement	this	method,	but	when	they	do,	it	can	prove	to	be	a
huge	bandwidth	saver.

We	use	alternative	methods	with	urllib	by	supplying	the	method	name	to	a	Request
object	when	we	create	it:

>>>	req	=	Request('http://www.google.com',	method='HEAD')

>>>	response	=	urlopen(req)

>>>	response.status

200

>>>	response.read()

b''

Here	the	server	has	returned	a	200	OK	response,	yet	the	body	is	empty,	as	expected.

The	POST	method
The	POST	method	is	in	some	senses	the	opposite	of	the	GET	method.	We	use	the	POST
method	for	sending	data	to	the	server.	However,	in	return	the	server	can	still	send	us	a	full
response.	The	POST	method	is	used	for	submitting	user	input	from	HTML	forms	and	for
uploading	files	to	a	server.

When	using	POST,	the	data	that	we	wish	to	send	will	go	in	the	body	of	the	request.	We	can
put	any	bytes	data	in	there	and	declare	its	type	by	adding	a	Content-Type	header	to	our
request	with	an	appropriate	MIME	type.

Let’s	look	at	an	example	for	sending	some	HTML	form	data	to	a	server	by	using	a	POST
request,	just	as	browsers	do	when	we	submitt	a	form	on	a	website.	The	form	data	always
consists	of	key/value	pairs;	urllib	lets	us	work	with	regular	dictionaries	for	supplying
this	(we’ll	look	at	where	this	data	comes	from	in	the	following	section):

>>>	data_dict	=	{'P':	'Python'}

When	posting	the	HTML	form	data,	the	form	values	must	be	formatted	in	the	same	way	as
querystrings	are	formatted	in	a	URL,	and	must	be	URL-encoded.	A	Content-Type	header
must	also	be	set	to	the	special	MIME	type	of	application/x-www-form-urlencoded.

Since	this	format	is	identical	to	querystrings,	we	can	just	use	the	urlencode()	function	on
our	dict	for	preparing	the	data:

>>>	data	=	urlencode(data_dict).encode('utf-8')

Here,	we	also	additionally	encode	the	result	to	bytes,	as	it’s	to	be	sent	as	the	body	of	the
request.	In	this	case,	we	use	the	UTF-8	character	set.

Next,	we	will	construct	our	request:

>>>	req	=	Request('http://search.debian.org/cgi-bin/omega',	data=data)

By	adding	our	data	as	the	data	keyword	argument,	we	are	telling	urllib	that	we	want	our
data	to	be	sent	as	the	body	of	the	request.	This	will	make	the	request	use	the	POST	method
rather	than	the	GET	method.

Next,	we	add	the	Content-Type	header:

>>>	req.add_header('Content-Type',	'application/x-www-form-urlencode;		

charset=UTF-8')

Lastly,	we	submit	the	request:

>>>	response	=	urlopen(req)

If	we	save	the	response	data	to	a	file	and	open	it	in	a	web	browser,	then	we	should	see
some	Debian	website	search	results	related	to	Python.

Formal	inspection
In	the	previous	section	we	used	the	URL	http://search.debian.org/cgibin/omega,	and
the	dictionary	data_dict	=	{'P':	'Python'}.	But	where	did	these	come	from?

We	get	these	by	visiting	the	web	page	containing	the	form	we	would	submit	to	get	the
results	manually.	We	then	inspect	the	HTML	source	code	of	the	web	page.	If	we	were
carrying	out	the	aforementioned	search	in	a	web	browser,	then	we	would	most	likely	be	on
the	http://www.debian.org	page,	and	we	would	be	running	a	search	by	typing	our	search
term	into	the	search	box	at	the	top	right	corner	and	then	clicking	on	Search.

Most	modern	browsers	allow	you	to	directly	inspect	the	source	for	any	element	on	a	page.
To	do	this	right-click	on	the	element,	which	in	this	case	is	the	search	box,	then	select	the
Inspect	Element	option,	as	shown	in	the	screenshot	here:

http://www.debian.org

The	source	code	will	pop	up	in	a	section	of	the	window.	In	the	preceding	screenshot,	it’s	at
the	bottom	left	corner	of	the	screen.	Here,	you	will	see	some	lines	of	code	that	looks	like
the	following	example:

<form	action="http://search.debian.org/cgi-bin/omega"

method="get"	name="P">

		<p>

				<input	type="hidden"	value="en"	name="DB"></input>

				<input	size="27"	value=""	name="P"></input>

				<input	type="submit"	value="Search"></input>

		</p>

</form>

You	should	see	the	second	<input>	highlighted.	This	is	the	tag	that	corresponds	to	the

search	text	box.	The	value	of	the	name	attribute	on	the	highlighted	<input>	tag	is	the	key
that	we	use	in	our	data_dict,	which	in	this	case	is	P.	The	value	in	our	data_dict	is	the
term	that	we	want	to	search	for.

To	get	the	URL,	we	need	to	look	above	the	highlighted	<input>	for	the	enclosing	<form>
tag.	Here,	our	URL	will	be	of	the	value	of	the	action	attribute,
http://search.debian.org/cgi-bin/omega.	The	source	code	for	this	web	page	is	included	in
the	source	code	download	for	this	book,	in	case	Debian	changes	their	website	before	you
read	this.

This	process	can	be	applied	to	most	HTML	pages.	To	do	this,	look	for	the	<input>
corresponding	to	the	input	text	box,	then	find	the	URL	from	the	enclosing	<form>	tag.	If
you’re	not	familiar	with	HTML,	then	this	can	be	a	bit	of	a	trial	and	error	process.	We’ll	be
looking	at	some	more	methods	of	parsing	HTML	in	the	next	chapter.

Once	we	have	our	input	name	and	URL,	we	can	construct	and	submit	the	POST	request,
as	shown	in	the	previous	section.

http://search.debian.org/cgi-bin/omega

HTTPS
Unless	otherwise	protected,	all	HTTP	requests	and	responses	are	sent	in	clear	text.
Anyone	with	access	to	the	network	that	the	messages	travel	over	can	potentially	intercept
our	traffic	and	read	it	without	hindrance.

Since	the	web	is	used	for	transferring	quite	a	lot	of	sensitive	data,	solutions	have	been
created	for	preventing	eavesdroppers	from	reading	the	traffic,	even	if	they	are	able	to
intercept	it.	These	solutions,	for	the	most	part,	employ	some	form	of	encryption.

The	standard	method	for	encrypting	HTTP	traffic	is	called	HTTP	Secure,	or	HTTPS.	It
uses	an	encryption	mechanism	called	TLS/SSL,	and	it	is	applied	to	the	TCP	connection	on
which	the	HTTP	traffic	travels.	HTTPS	typically	uses	TCP	port	443,	as	opposed	to	the
default	HTTP	port	80.

To	most	users,	this	process	is	almost	transparent.	In	principle,	we	only	need	to	change	the
http	in	a	URL	to	an	https.	Since	urllib	supports	HTTPS,	the	same	is	true	for	our	Python
clients.

Note	that	not	all	servers	support	HTTPS,	so	simply	changing	the	URL	scheme	to	https:
isn’t	guaranteed	to	work	for	all	sites.	If	this	is	the	case,	then	the	connection	attempt	may
fail	in	a	number	of	ways,	including	a	socket	timeout,	a	connection	reset	error,	or	possibly
even	an	HTTP	error,	such	as	a	400	range	error	or	a	500	range	error.	An	increasing	number
of	sites	are	enabling	HTTPS	however.	Many	others	are	switching	to	it	and	using	it	as	their
default	protocol,	so	it’s	worth	investigating	whether	it’s	available	so	you	can	give	your
application’s	users	extra	security.

The	Requests	library
So	that’s	it	for	the	urllib	package.	As	you	can	see,	access	to	the	standard	library	is	more
than	adequate	for	most	HTTP	tasks.	We	haven’t	touched	upon	all	of	its	capabilities.	There
are	numerous	handler	classes	which	we	haven’t	discussed,	plus	the	opener	interface	is
extensible.

However,	the	API	isn’t	the	most	elegant,	and	there	have	been	several	attempts	made	to
improve	it.	One	of	these	is	the	very	popular	third-party	library	called	Requests.	It’s
available	as	the	requests	package	on	PyPi.	It	can	either	be	installed	through	Pip	or	be
downloaded	from	http://docs.python-requests.org,	which	hosts	the	documentation.

The	Requests	library	automates	and	simplifies	many	of	the	tasks	that	we’ve	been	looking
at.	The	quickest	way	of	illustrating	this	is	by	trying	some	examples.

The	commands	for	retrieving	a	URL	with	Requests	are	similar	to	retrieving	a	URL	with
the	urllib	package,	as	shown	here:

>>>	import	requests

>>>	response	=	requests.get('http://www.debian.org')

And	we	can	look	at	properties	of	the	response	object.	Try:

>>>	response.status_code

200

>>>	response.reason

'OK'

>>>	response.url

'http://www.debian.org/'

>>>	response.headers['content-type']

'text/html'

Note	that	the	header	name	in	the	preceding	command	is	in	lowercase.	The	keys	in	the
headers	attribute	of	Requests	response	objects	are	case	insensitive.

There	are	some	convenience	attributes	that	have	been	added	to	the	response	object:

>>>	response.ok

True

The	ok	attribute	indicates	whether	the	request	was	successful.	That	is,	the	request
contained	a	status	code	in	the	200	range.	Also:

>>>	response.is_redirect

False

The	is_redirect	attribute	indicates	whether	the	request	was	redirected.	We	can	also
access	the	request	properties	through	the	response	object:

>>>	response.request.headers

{'User-Agent':	'python-requests/2.3.0	CPython/3.4.1	Linux/3.2.0-4-	amd64',	

'Accept-Encoding':	'gzip,	deflate',	'Accept':	'*/*'}

Notice	that	Requests	is	automatically	handling	compression	for	us.	It’s	including	gzip

http://docs.python-requests.org

and	deflate	in	an	Accept-Encoding	header.	If	we	look	at	the	Content-Encoding
response,	then	we	will	see	that	the	response	was	in	fact	gzip	compressed,	and	Requests
transparently	decompressed	it	for	us:

>>>	response.headers['content-encoding']

'gzip'

We	can	look	at	the	response	content	in	many	more	ways.	To	get	the	same	bytes	object	as
we	got	from	an	HTTPResponse	object,	perform	the	following:

>>>	response.content

b'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n<html	lang="en">...

But	Requests	also	performs	automatic	decoding	for	us.	To	get	the	decoded	content,	do
this:

>>>	response.text

'<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">\n<html	lang="en">\n<head>\n

...

Notice	that	this	is	now	str	rather	than	bytes.	The	Requests	library	uses	values	in	the
headers	for	choosing	a	character	set	and	decoding	the	content	to	Unicode	for	us.	If	it	can’t
get	a	character	set	from	the	headers,	then	it	uses	the	chardet	library
(http://pypi.python.org/pypi/chardet)	to	make	an	estimate	from	the	content	itself.	We	can
see	what	encoding	Requests	has	chosen	here:

>>>	response.encoding

'ISO-8859-1'

We	can	even	ask	it	to	change	the	encoding	that	it	has	used:

>>>	response.encoding	=	'utf-8'

After	changing	the	encoding,	subsequent	references	to	the	text	attribute	for	this	response
will	return	the	content	decoded	by	using	the	new	encoding	setting.

The	Requests	library	automatically	handles	cookies.	Give	the	following	a	try:

>>>	response	=	requests.get('http://www.github.com')

>>>	print(response.cookies)

<<class	'requests.cookies.RequestsCookieJar'>

[<Cookie	logged_in=no	for	.github.com/>,

	<Cookie	_gh_sess=eyJzZxNz…	for	..github.com/>]>

The	Requests	library	also	has	a	Session	class,	which	allows	the	reuse	of	cookies,	and	this
is	similar	to	using	the	http	module’s	CookieJar	and	the	urllib	module’s
HTTPCookieHandler	objects.	Do	the	following	to	reuse	the	cookies	in	subsequent	requests:

>>>	s	=	requests.Session()

>>>	s.get('http://www.google.com')

>>>	response	=	s.get('http://google.com/preferences')

The	Session	object	has	the	same	interface	as	the	requests	module,	so	we	use	its	get()

http://pypi.python.org/pypi/chardet

method	in	the	same	way	as	we	use	the	requests.get()method.	Now,	any	cookies
encountered	are	stored	in	the	Session	object,	and	they	will	be	sent	with	corresponding
requests	when	we	use	the	get()	method	in	the	future.

Redirects	are	also	automatically	followed,	in	the	same	way	as	when	using	urllib,	and	any
redirected	requests	are	captured	in	the	history	attribute.

The	different	HTTP	methods	are	easily	accessible,	they	have	their	own	functions:

>>>	response	=	requests.head('http://www.google.com')

>>>	response.status_code

200

>>>	response.text

''

Custom	headers	are	added	to	to	requests	in	a	similar	way	as	they	are	when	using	urllib:

>>>	headers	=	{'User-Agent':	'Mozilla/5.0	Firefox	24'}

>>>	response	=	requests.get('http://www.debian.org',	headers=headers)

Making	requests	with	query	strings	is	a	straightforward	process:

>>>	params	=	{':action':	'search',	'term':	'Are	you	quite	sure	this	is	a	

cheese	shop?'}

>>>	response	=	requests.get('http://pypi.python.org/pypi',	params=params)

>>>	response.url

'https://pypi.python.org/pypi?%3Aaction=search&term=Are+you+quite+sur	

e+this+is+a+cheese+shop%3F'

The	Requests	library	takes	care	of	all	the	encoding	and	formatting	for	us.

Posting	is	similarly	simplified,	although	we	use	the	data	keyword	argument	here:

>>>	data	=	{'P',	'Python'}

>>>	response	=	requests.post('http://search.debian.org/cgi-	bin/omega',	

data=data)

Handling	errors	with	Requests
Errors	in	Requests	are	handled	slightly	differently	from	how	they	are	handled	with
urllib.	Let’s	work	through	some	error	conditions	and	see	how	it	works.	Generate	a	404
error	by	doing	the	following:

>>>	response	=	requests.get('http://www.google.com/notawebpage')

>>>	response.status_code

404

In	this	situation,	urllib	would	have	raised	an	exception,	but	notice	that	Requests	doesn’t.
The	Requests	library	can	check	the	status	code	and	raise	a	corresponding	exception,	but
we	have	to	ask	it	to	do	so:

>>>	response.raise_for_status()

...

requests.exceptions.HTTPError:	404	Client	Error

Now,	try	it	on	a	successful	request:

>>>	r	=	requests.get('http://www.google.com')

>>>	r.status_code

200

>>>	r.raise_for_status()

None

It	doesn’t	do	anything,	which	in	most	situations	would	let	our	program	exit	a	try/except
block	and	then	continue	as	we	would	want	it	to.

What	happens	if	we	get	an	error	that	is	lower	in	the	protocol	stack?	Try	the	following:

>>>	r	=	requests.get('http://192.0.2.1')

...

requests.exceptions.ConnectionError:	HTTPConnectionPool(...

We	have	made	a	request	for	a	host	that	doesn’t	exist	and	once	it	has	timed	out,	we	get	a
ConnectionError	exception.

The	Requests	library	simply	reduces	the	workload	that	is	involved	in	using	HTTP	in
Python	as	compared	to	urllib.	Unless	you	have	a	requirement	for	using	urllib,	I	would
always	recommend	using	Requests	for	your	projects.

Summary
We	looked	at	the	principles	of	the	HTTP	protocol.	We	saw	how	to	perform	numerous
fundamental	tasks	with	the	standard	library	urllib	and	the	third-party	Requests
packages.

We	looked	at	the	structure	of	HTTP	messages,	HTTP	status	codes,	the	different	headers
that	we	may	encounter	in	requests	and	responses,	and	how	to	interpret	them	and	use	them
for	customizing	our	requests.	We	looked	at	how	URLs	are	formed,	and	how	to	manipulate
and	construct	them.

We	saw	how	to	handle	cookies	and	redirects,	how	to	handle	errors	that	might	occur,	and
how	to	use	secure	HTTP	connections.

We	also	covered	how	to	submit	data	to	websites	in	the	manner	of	submitting	a	form	on	a
web	page,	and	how	to	extract	the	parameters	that	we	need	from	a	page’s	source	code.

Finally,	we	looked	at	the	third-party	Requests	package.	We	saw	that	as	compared	to	the
urllib	package,	Requests,	automates	and	simplifies	many	of	the	tasks	that	we	may
routinely	need	to	carry	out	with	HTTP.	This	makes	it	a	great	choice	for	day-to-day	HTTP
work.

In	the	next	chapter,	we’ll	be	employing	what	we’ve	learned	here	to	carry	out	detailed
interactions	with	different	web	services,	querying	APIs	for	data,	and	uploading	our	own
objects	to	the	web.

Chapter	3.	APIs	in	Action
When	we	talk	about	APIs	in	relation	to	Python,	we	usually	refer	to	the	classes	and	the
functions	that	a	module	presents	to	us	to	interact	with.	In	this	chapter,	we’ll	be	talking
about	something	different,	that	is,	web	APIs.

A	web	API	is	a	type	of	API	that	you	interact	with	through	the	HTTP	protocol.	Nowadays,
many	web	services	provide	a	set	of	HTTP	calls,	which	are	designed	to	be	used
programmatically	by	clients,	that	is,	they	are	meant	to	be	used	by	machines	rather	than	by
humans.	Through	these	interfaces	it’s	possible	to	automate	interaction	with	the	services
and	to	perform	tasks	such	as	extracting	data,	configuring	the	service	in	some	way,	and
uploading	your	own	content	into	the	service.

In	this	chapter,	we’ll	look	at:

Two	popular	data	exchange	formats	used	by	web	APIs:	XML	and	JSON
How	to	interact	with	two	major	web	APIs:	Amazon	S3	and	Twitter
How	to	pull	data	from	HTML	pages	when	an	API	is	not	available
How	to	make	life	easier	for	the	webmasters	that	provide	these	APIs	and	websites

There	are	hundreds	of	services	that	offer	web	APIs.	A	quite	comprehensive	and	ever-
growing	list	of	these	services	can	be	found	at	http://www.programmableweb.com.

We’re	going	to	start	by	introducing	how	XML	is	used	in	Python,	and	then	we	will	explain
an	XML-based	API	called	the	Amazon	S3	API.

http://www.programmableweb.com

Getting	started	with	XML
The	Extensible	Markup	Language	(XML)	is	a	way	of	representing	hierarchical	data	in	a
standard	text	format.	When	working	with	XML-based	web	APIs,	we’ll	be	creating	XML
documents	and	sending	them	as	the	bodies	of	HTTP	requests	and	receiving	XML
documents	as	the	bodies	of	responses.

Here’s	the	text	representation	of	an	XML	document,	perhaps	this	represents	the	stock	at	a
cheese	shop:

<?xml	version='1.0'?>

<inventory>

				<cheese	id="c01">

								<name>Caerphilly</name>

								<stock>0</stock>

				</cheese>

				<cheese	id="c02">

								<name>Illchester</name>

								<stock>0</stock>

				</cheese>

</inventory>

If	you’ve	coded	with	HTML	before,	then	this	may	look	familiar.	XML	is	a	markup	based
format.	It	is	from	the	same	family	of	languages	as	HTML.	The	data	is	structured	in	an
hierarchy	formed	by	elements.	Each	element	is	represented	by	two	tags,	a	start	tag,	for
example,	<name>,	and	a	matching	end	tag,	for	example,	</name>.	Between	these	two	tags,
we	can	either	put	data,	such	as	Caerphilly,	or	add	more	tags,	which	represent	child
elements.

Unlike	HTML,	XML	is	designed	such	that	we	can	define	our	own	tags	and	create	our	own
data	formats.	Also,	unlike	HTML,	the	XML	syntax	is	always	strictly	enforced.	Whereas	in
HTML	small	mistakes,	such	as	tags	being	closed	in	the	wrong	order,	closing	tags	missing
altogether,	or	attribute	values	missing	quotes	are	tolerated,	in	XML,	these	mistakes	will
result	in	completely	unreadable	XML	documents.	A	correctly	formatted	XML	document	is
called	well	formed.

The	XML	APIs
There	are	two	main	approaches	to	working	with	XML	data:

Reading	in	a	whole	document	and	creating	an	object-based	representation	of	it,	then
manipulating	it	by	using	an	object-oriented	API
Processing	the	document	from	start	to	end,	and	performing	actions	as	specific	tags
are	encountered

For	now,	we’re	going	to	focus	on	the	object-based	approach	by	using	a	Python	XML	API
called	ElementTree.	The	second	so-called	pull	or	event-based	approach	(also	often	called
SAX,	as	SAX	is	one	of	the	most	popular	APIs	in	this	category)	is	more	complicated	to	set
up,	and	is	only	needed	for	processing	large	XML	files.	We	won’t	need	this	to	work	with
Amazon	S3.

The	basics	of	ElementTree
We’ll	be	using	the	Python	standard	library	implementation	of	the	ElementTree	API,	which
is	in	the	xml.etree.ElementTree	module.

Let’s	see	how	we	may	create	the	aforementioned	example	XML	document	by	using
ElementTree.	Open	a	Python	interpreter	and	run	the	following	commands:

>>>	import	xml.etree.ElementTree	as	ET

>>>	root	=	ET.Element('inventory')

>>>	ET.dump(root)

<inventory	/>

We	start	by	creating	the	root	element,	that	is,	the	outermost	element	of	the	document.	We
create	a	root	element	<inventory>	here,	and	then	print	its	string	representation	to	screen.
The	<inventory	/>	representation	is	an	XML	shortcut	for	<inventory></inventory>.
It’s	used	to	show	an	empty	element,	that	is,	an	element	with	no	data	and	no	child	tags.

We	create	the	<inventory>	element	by	creating	a	new	ElementTree.Element	object.
You’ll	notice	that	the	argument	we	give	to	Element()	is	the	name	of	the	tag	that	is	created.

Our	<inventory>	element	is	empty	at	the	moment,	so	let’s	put	something	in	it.	Do	this:

>>>	cheese	=	ET.Element('cheese')

>>>	root.append(cheese)

>>>	ET.dump(root)

<inventory><cheese	/></inventory>

Now,	we	have	an	element	called	<cheese>	in	our	<inventory>	element.	When	an	element
is	directly	nested	inside	another,	then	the	nested	element	is	called	a	child	of	the	outer
element,	and	the	outer	element	is	called	the	parent.	Similarly,	elements	that	are	at	the
same	level	are	called	siblings.

Let’s	add	another	element,	and	this	time	let’s	give	it	some	content.	Add	the	following
commands:

>>>	name	=	ET.SubElement(cheese,	'name')

>>>	name.text	=	'Caerphilly'

>>>	ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese></inventory>

Now,	our	document	is	starting	to	shape	up.	We	do	two	new	things	here:	first,	we	use	the
shortcut	class	method	ElementTree.SubElement()	to	create	the	new	<name>	element	and
insert	it	into	the	tree	as	a	child	of	<cheese>	in	a	single	operation.	Second,	we	give	it	some
content	by	assigning	some	text	to	the	element’s	text	attribute.

We	can	remove	elements	by	using	the	remove()	method	on	the	parent	element,	as	shown
in	the	following	commands:

>>>	temp	=	ET.SubElement(root,	'temp')

>>>	ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese><temp	/></inventory>

>>>	root.remove(temp)

>>>	ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese></inventory>

Pretty	printing
It	would	be	useful	for	us	to	be	able	to	produce	output	in	a	more	legible	format,	such	as	the
example	shown	at	the	beginning	of	this	section.	The	ElementTree	API	doesn’t	have	a
function	for	doing	this,	but	another	XML	API,	minidom,	provided	by	the	standard	library,
does,	and	it’s	simple	to	use.	First,	import	minidom:

>>>	import	xml.dom.minidom	as	minidom

Second,	use	the	following	command	to	print	some	nicely	formatted	XML:

>>>	print(minidom.parseString(ET.tostring(root)).toprettyxml())

<?xml	version="1.0"	?>

<inventory>

				<cheese>

						<name>Caerphilly</name>

				</cheese>

</inventory>

These	are	not	the	easiest	lines	of	code	at	first	glance,	so	let’s	break	them	down.	The
minidom	library	can’t	directly	work	with	ElementTree	elements,	so	we	use	ElementTree’s
tostring()	function	to	create	a	string	representation	of	our	XML.	We	load	the	string	into
the	minidom	API	by	using	minidom.parseString(),	and	then	we	use	the	toprettyxml()
method	to	output	our	formatted	XML.

This	can	be	wrapped	into	a	function	so	that	it	becomes	more	handy.	Enter	the	command
block	as	shown	in	the	following	into	your	Python	shell:

>>>	def	xml_pprint(element):

...					s	=	ET.tostring(element)

...					print(minidom.parseString(s).toprettyxml())

Now,	just	do	the	following	to	pretty	print:

>>>	xml_pprint(root)

<?xml	version="1.0"	?>

<inventory>

				<cheese>

...

Element	attributes
In	the	example	shown	at	the	beginning	of	this	section,	you	may	have	spotted	something	in
the	opening	tag	of	the	<cheese>	element,	that	is,	the	id="c01"	text.	This	is	called	an
attribute.	We	can	use	attributes	to	attach	extra	information	to	elements,	and	there’s	no
limit	to	the	number	of	attributes	an	element	can	have.	Attributes	are	always	comprised	of
an	attribute	name,	which	in	this	case	is	id,	and	a	value,	which	in	this	case	is	c01.	The
values	can	be	any	text,	but	they	must	be	enclosed	in	quotes.

Now,	add	the	id	attribute	to	the	<cheese>	element,	as	shown	here:

>>>	cheese.attrib['id']	=	'c01'

>>>	xml_pprint(cheese)

<?xml	version="1.0"	?>

<cheese	id="c01">

				<name>Caerphilly</name>

</cheese>

The	attrib	attribute	of	an	element	is	a	dict-like	object	which	holds	an	element’s	attribute
names	and	values.	We	can	manipulate	the	XML	attributes	as	we	would	a	regular	dict.

By	now,	you	should	be	able	to	fully	recreate	the	example	document	shown	at	the
beginning	of	this	section.	Go	ahead	and	give	it	a	try.

Converting	to	text
Once	we	have	an	XML	tree	that	we’re	happy	with,	usually	we	would	want	to	convert	it
into	a	string	to	send	it	over	the	network.	The	ET.dump()	function	that	we’ve	been	using
isn’t	appropriate	for	this.	All	the	dump()	function	does	is	print	the	tag	to	the	screen.	It
doesn’t	return	a	string	which	we	can	use.	We	need	to	use	the	ET.tostring()	function	for
this,	as	shown	in	the	following	commands:

>>>	text	=	ET.tostring(name)

>>>	print(text)

b'<name>Caerphilly</name>'

Notice	that	it	returns	a	bytes	object.	It	encods	our	string	for	us.	The	default	character	set	is
us-ascii	but	it’s	better	to	use	UTF-8	for	transmitting	over	HTTP,	since	it	can	encode	the
full	range	of	Unicode	characters,	and	it	is	widely	supported	by	web	applications.

>>>	text	=	ET.tostring(name,	encoding='utf-8')

For	now,	this	is	all	that	we	need	to	know	about	creating	XML	documents,	so	let’s	see	how
we	can	apply	it	to	a	web	API.

The	Amazon	S3	API
Amazon	S3	is	a	data	storage	service.	It	underpins	many	of	today’s	high-profile	web
services.	Despite	offering	enterprise-grade	resilience,	performance	and	features,	it’s	pretty
easy	to	start	with.	It	is	affordable,	and	it	provides	a	simple	API	for	automated	access.	It’s
one	of	many	cloud	services	in	the	growing	Amazon	Web	Services	(AWS)	portfolio.

APIs	change	every	now	and	then,	and	they	are	usually	given	a	version	number	so	that	we
can	track	them.	We’ll	be	working	with	the	current	version	of	the	S3	REST	API,	“2006-03-
01”.

You’ll	notice	that	in	the	S3	documentation	and	elsewhere,	the	S3	web	API	is	referred	to	as
a	REST	API.	REST	stands	for	Representational	State	Transfer,	and	it	is	a	fairly
academic	conception	of	how	HTTP	should	be	used	for	APIs,	originally	presented	by	Roy
Fielding	in	his	PhD	dissertation.	Although	the	properties	that	an	API	should	possess	so	as
to	be	considered	RESTful	are	quite	specific,	in	practice	pretty	much	any	API	that	is	based
on	HTTP	is	now	slapped	with	the	RESTful	label.	The	S3	API	is	actually	among	the	most
RESTful	high-profile	APIs,	because	it	appropriately	uses	a	good	range	of	the	HTTP
methods.

Note
If	you	want	to	read	more	about	this	topic,	Roy	Fielding’s	dissertation	is	available	here
http://ics.uci.edu/~fielding/pubs/dissertation,	and	one	of	the	original	books	that	promoted
the	concept,	and	is	a	great	read,	RESTful	Web	Services	by	Leonard	Richardson	and	Sam
Ruby,	is	now	available	for	free	download	from	this	page
http://restfulwebapis.org/rws.html.

http://ics.uci.edu/~fielding/pubs/dissertation
http://restfulwebapis.org/rws.html

Registering	with	AWS
Before	we	can	access	S3,	we	need	to	register	with	AWS.	It	is	the	norm	for	APIs	to	require
registration	before	allowing	access	to	their	features.	You	can	use	either	an	existing
Amazon	account	or	create	a	new	one	at	http://www.amazonaws.com.	Although	S3	is
ultimately	a	paid-for	service,	if	you	are	using	AWS	for	the	first	time,	then	you	will	get	a
year’s	free	trial	for	low-volume	use.	A	year	is	plenty	of	time	for	finishing	this	chapter!	The
trial	provides	5GB	of	free	S3	storage.

http://www.amazonaws.com

Authentication
Next,	we	need	to	discuss	authentication,	which	is	an	important	topic	of	discussion	when
using	many	web	APIs.	Most	web	APIs	we	use	will	specify	a	way	for	supplying
authentication	credentials	that	allow	requests	to	be	made	to	them,	and	typically	every
HTTP	request	we	make	must	include	authentication	information.

APIs	require	this	information	for	the	following	reasons:

To	ensure	that	others	can’t	abuse	your	application’s	access	permissions
To	apply	per-application	rate	limiting
To	manage	delegation	of	access	rights,	so	that	an	application	can	act	on	the	behalf	of
other	users	of	a	service	or	other	services
Collection	of	usage	statistics

All	of	the	AWS	services	use	an	HTTP	request	signing	mechanism	for	authentication.	To
sign	a	request,	we	hash	and	sign	unique	data	in	an	HTTP	request	using	a	cryptographic
key,	then	add	the	signature	to	the	request	as	a	header.	By	recreating	the	signature	on	the
server,	AWS	can	ensure	that	the	request	has	been	sent	by	us,	and	that	it	doesn’t	get	altered
in	transit.

The	AWS	signature	generation	process	is	currently	on	its	4th	version,	and	an	involved
discussion	would	be	needed	to	cover	it,	so	we’re	going	to	employ	a	third-party	library,	that
is,	requests-aws4auth.	This	is	a	companion	library	for	the	Requests	module	that
automatically	handles	signature	generation	for	us.	It’s	available	at	PyPi.	So,	install	it	on	a
command	line	with	the	help	of	pip:

$	pip	install	requests-aws4auth

Downloading/unpacking	requests-aws4auth

...

Setting	up	an	AWS	user
To	use	authentication,	we	need	to	acquire	some	credentials.

We	will	set	this	up	through	the	AWS	Console.	Once	you’ve	registered	with	AWS,	log	into
the	Console	at	https://console.aws.amazon.com.

Once	you	are	logged	in,	you	need	to	perform	the	steps	shown	here:

1.	 Click	on	your	name	at	the	top-right,	and	then	choose	Security	Credentials.
2.	 Click	on	Users,	which	is	on	the	list	in	the	left-hand	side	of	the	screen,	and	then	click

on	the	Create	New	Users	button	at	the	top.
3.	 Type	in	the	username,	and	make	sure	that	Generate	an	access	key	for	each	user

has	been	checked,	and	then	click	on	the	Create	button	in	the	bottom	right-hand
corner.

You’ll	see	a	new	page	saying	that	the	user	has	been	created	successfully.	Click	on	the
Download	credentials	button	at	the	bottom	right	corner	to	download	a	CSV	file,	which
contains	the	Access	ID	and	Access	Secret	for	this	user.	These	are	important	because	they

https://console.aws.amazon.com

will	help	in	authenticating	ourselves	to	the	S3	API.	Make	sure	that	you	store	them
securely,	as	they	will	allow	full	access	to	your	S3	files.

Then,	click	on	Close	at	the	bottom	of	the	screen,	and	click	on	the	new	user	in	the	list	that
will	appear,	and	then	click	on	the	Attach	Policy	button.	A	list	of	policy	templates	will
appear.	Scroll	down	this	list	and	select	the	AmazonS3FullAccess	policy,	as	shown	in	the
following	screenshot:

Finally,	click	on	the	Attach	Policy	button	at	the	bottom	right-hand	side	when	it	appears.
Now,	our	user	has	full	access	to	the	S3	service.

Regions
AWS	has	datacenters	around	the	world,	so	when	we	activate	a	service	in	AWS	we	pick	the
region	we	want	it	to	live	in.	There	is	a	list	of	regions	for	S3	at
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region.

It’s	best	to	choose	a	region	that	is	closest	to	the	users	who	will	be	using	the	service.	For
now,	you’ll	be	the	only	user,	so	just	decide	on	the	region	that	is	closest	to	you	for	our	first
S3	tests.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

S3	buckets	and	objects
S3	organizes	the	data	that	we	store	in	it	using	two	concepts:	buckets	and	objects.	An
object	is	the	equivalent	of	a	file,	that	is,	a	blob	of	data	with	a	name,	and	a	bucket	is
equivalent	to	a	directory.	The	only	difference	between	buckets	and	directories	is	that
buckets	cannot	contain	other	buckets.

Every	bucket	has	its	own	URL	of	the	form:

http://<bucketname>.s3-<region>.amazonaws.com.

In	the	URL,	<bucketname>	is	the	name	of	the	bucket	and	<region>	is	the	AWS	region
where	the	bucket	is	present,	for	example	eu-west-1.	The	bucket	name	and	region	are	set
when	we	create	the	bucket.

Bucket	names	are	shared	globally	among	all	S3	users,	and	so	they	must	be	unique.	If	you
own	a	domain,	then	a	subdomain	of	that	will	make	an	appropriate	bucket	name.	You	could
also	use	your	email	address	by	replacing	the	@	symbol	with	a	hyphen	or	underscore.

Objects	are	named	when	we	first	upload	them.	We	access	objects	by	adding	the	object
name	to	the	end	of	the	bucket’s	URL	as	a	path.	For	example,	if	we	have	a	bucket	called
mybucket.example.com	in	the	eu-west-1	region	containing	the	object	cheeseshop.txt,
then	we	can	access	it	by	using	the	URL	http://mybucket.example.com.s3-eu-west-
1.amazonaws.com/cheeseshop.txt.

Let’s	create	our	first	bucket	through	the	AWS	Console.	We	can	perform	most	of	the
operations	that	the	API	exposes	manually	through	this	web	interface,	and	it’s	a	good	way
of	checking	that	our	API	client	is	performing	the	desired	tasks:

1.	 Log	into	the	Console	at	https://console.aws.amazon.com.
2.	 Go	to	the	S3	service.	You	will	see	a	page,	which	will	prompt	you	to	create	a	bucket.
3.	 Click	on	the	Create	Bucket	button.
4.	 Enter	a	bucket	name,	pick	a	region,	and	then	click	on	Create.
5.	 You	will	be	taken	to	the	bucket	list,	and	you	will	be	able	to	see	your	bucket.

http://mybucket.example.com.s3-eu-west-1.amazonaws.com/cheeseshop.txt
https://console.aws.amazon.com

An	S3	command-line	client
Okay,	enough	preparation,	let’s	get	to	coding.	For	the	rest	of	this	section	on	S3,	we	will	be
writing	a	small	command	line	client	that	will	enable	us	to	interact	with	the	service.	We
will	create	buckets,	and	then	upload	and	download	files.

First	we’ll	set	up	our	command	line	interpreter	and	initialize	the	authentication.	Create	a
file	called	s3_client.py	and	save	the	following	code	block	in	it:

import	sys

import	requests

import	requests_aws4auth	as	aws4auth

import	xml.etree.ElementTree	as	ET

import	xml.dom.minidom	as	minidom

access_id	=	'<ACCESS	ID>'

access_key	=	'<ACCESS	KEY>'

region	=	'<REGION>'

endpoint	=	's3-{}.amazonaws.com'.format(region)

auth	=	aws4auth.AWS4Auth(access_id,	access_key,	region,	's3')

ns	=	'http://s3.amazonaws.com/doc/2006-03-01/'

def	xml_pprint(xml_string):

				print(minidom.parseString(xml_string).toprettyxml())

def	create_bucket(bucket):

				print('Bucket	name:	{}'.format(bucket))

if	__name__	==	'__main__':

				cmd,	*args	=	sys.argv[1:]

				globals()[cmd](*args)

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

You’ll	need	to	replace	<ACCESS	ID>	and	<ACCESS	KEY>	with	the	values	from	the
credentials	CSV	that	we	downloaded	earlier,	and	<REGION>	with	the	AWS	region	of	your
choice.

So,	what	are	we	doing	here?	Well,	first	we	set	up	our	endpoint.	An	endpoint	is	a	general
term	for	a	URL	which	is	used	to	access	an	API.	Some	web	APIs	have	a	single	endpoint,
some	have	many	endpoints,	it	depends	on	how	the	API	is	designed.	The	endpoint	we
generate	here	is	actually	only	a	part	of	the	full	endpoint	which	we’ll	use	when	we	work
with	buckets.	Our	actual	endpoint	is	the	endpoint	prefixed	by	a	bucket	name.

Next,	we	create	our	auth	object.	We’ll	use	this	in	conjunction	with	Requests	to	add	AWS
authentication	to	our	API	requests.

http://www.packtpub.com
http://www.packtpub.com/support

The	ns	variable	is	a	string,	which	we’ll	need	for	working	with	XML	from	the	S3	API.
We’ll	discuss	this	when	we	use	it.

We’ve	included	a	modified	version	of	our	xml_pprint()	function	to	help	with	debugging.
And,	for	now,	the	create_bucket()	function	is	just	a	placeholder.	We’ll	learn	more	about
this	in	the	next	section.

Finally,	we	have	the	command	interpreter	itself	-	it	simply	takes	the	first	argument	given
to	the	script	on	the	command	line	and	tries	to	run	a	function	with	the	same	name,	passing
any	remaining	command-line	arguments	to	the	function.	Let’s	give	this	a	test	run.	Enter
the	following	in	a	command	prompt:

$	python3.4	s3_client.py	create_bucket	mybucket

Bucket	name:	mybucket

You	can	see	that	the	script	pulls	create_bucket	from	the	command	line	arguments	and	so
calls	the	function	create_bucket(),	passing	myBucket	as	an	argument.

This	framework	makes	adding	functions	to	expand	our	client’s	capabilities	a
straightforward	process.	Let’s	start	by	making	create_bucket()	do	something	useful.

Creating	a	bucket	with	the	API
Whenever	we	write	a	client	for	an	API,	our	main	point	of	reference	is	the	API
documentation.	The	documentation	tells	us	how	to	construct	the	HTTP	requests	for
performing	operations.	The	S3	documentation	can	be	found	at
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html.	The
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html	URL	will
provide	the	details	of	bucket	creation.

This	documentation	tells	us	that	to	create	a	bucket	we	need	to	make	an	HTTP	request	to
our	new	bucket’s	endpoint	by	using	the	HTTP	PUT	method.	It	also	tells	us	that	the	request
body	must	contain	some	XML,	which	specifies	the	AWS	region	that	we	want	the	bucket	to
be	created	in.

So,	now	we	know	what	we’re	aiming	for,	let’s	discuss	our	function.	First,	let’s	create	the
XML.	Replace	the	content	of	create_bucket()	with	the	following	code	block:

def	create_bucket(bucket):

				XML	=	ET.Element('CreateBucketConfiguration')

				XML.attrib['xmlns']	=	ns

				location	=	ET.SubElement(XML,	'LocationConstraint')

				location.text	=	auth.region

				data	=	ET.tostring(XML,	encoding='utf-8')

				xml_pprint(data)

Here	we	create	an	XML	tree	following	the	format	given	in	the	S3	documentation.	If	we
run	our	client	now,	then	we	will	see	the	XML	shown	here:

$	python3.4	s3_client.py	create_bucket	mybucket.example.com

<?xml	version="1.0"	?>

<CreateBucketConfiguration	xmlns="http://s3.amazonaws.com/doc/2006-	03-

01/">

http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

				<LocationConstraint>eu-west-1</LocationConstraint>

</CreateBucketConfiguration>

This	matches	the	format	specified	in	the	documentation.	You	can	see	that	we’ve	used	the
ns	variable	to	fill	the	xmlns	attribute.	This	attribute	pops	up	throughout	the	S3	XML,
having	the	ns	variable	pre-defined	makes	it	quicker	to	work	with	it.

Now,	let’s	add	the	code	to	make	the	request.	Replace	the	xml_pprint(data)	at	the	end	of
create_bucket()	with	the	following:

				url	=	'http://{}.{}'.format(bucket,	endpoint)

				r	=	requests.put(url,	data=data,	auth=auth)

				if	r.ok:

								print('Created	bucket	{}	OK'.format(bucket))

				else:

								xml_pprint(r.text)

The	first	line	shown	here	will	generate	the	full	URL	from	our	bucket	name	and	endpoint.
The	second	line	will	make	the	request	to	the	S3	API.	Notice	that	we	have	used	the
requests.put()	function	to	make	this	request	using	the	HTTP	PUT	method,	rather	than	by
using	either	the	requests.get()method	or	the	requests.post()	method.	Also,	note	that
we	have	supplied	our	auth	object	to	the	call.	This	will	allow	Requests	to	handle	all	the	S3
authentication	for	us!

If	all	goes	well	,	then	we	print	out	a	message.	In	case	everything	does	not	go	as	expected,
we	print	out	the	response	body.	S3	returns	error	messages	as	XML	in	the	response	body.
So	we	use	our	xml_pprint()	function	to	display	it.	We’ll	look	at	working	with	these
errors	in	the	Handling	errors	section,	later	on.

Now	run	the	client,	and	if	everything	works	as	expected,	then	we	will	get	a	confirmation
message.	Make	sure	that	you	have	picked	a	bucket	that	hasn’t	already	been	created:

$	python3.4	s3_client.py	create_bucket	mybucket.example.com

Created	bucket	mybucket.example.com	OK

When	we	refresh	the	S3	Console	in	our	browser,	we	will	see	that	our	bucket	has	been
created.

Uploading	a	file
Now	that	we’ve	created	a	bucket,	we	can	upload	some	files.	Writing	a	function	for
uploading	a	file	is	similar	to	creating	a	bucket.	We	check	the	documentation	to	see	how	to
construct	our	HTTP	request,	figure	out	what	information	should	be	collected	at	the
command	line,	and	then	write	the	function.

We	need	to	use	an	HTTP	PUT	again.	We	need	the	name	of	the	bucket	that	we	want	to	store
the	file	in	and	the	name	that	we	want	the	file	to	be	stored	under	in	S3.	The	body	of	the
request	will	contain	the	file	data.	At	the	command	line,	we’ll	collect	the	bucket	name,	the
name	we	want	the	file	to	have	in	the	S3	service	and	the	name	of	the	local	file	to	upload.

Add	the	following	function	to	your	s3_client.py	file	after	the	create_bucket()
function:

def	upload_file(bucket,	s3_name,	local_path):

				data	=	open(local_path,	'rb').read()

				url	=	'http://{}.{}/{}'.format(bucket,	endpoint,	s3_name)

				r	=	requests.put(url,	data=data,	auth=auth)

				if	r.ok:

								print('Uploaded	{}	OK'.format(local_path))

				else:

								xml_pprint(r.text)

In	creating	this	function,	we	follow	a	pattern	similar	to	that	for	creating	a	bucket:

1.	 Prepare	the	data	that	will	go	in	the	request	body.
2.	 Construct	our	URL.
3.	 Make	the	request.
4.	 Check	the	outcome.

Note	that	we	open	the	local	file	in	binary	mode.	The	file	could	contain	any	type	of	data,	so
we	don’t	want	text	transforms	applied.	We	could	pull	this	data	from	anywhere,	such	as	a
database	or	another	web	API.	Here,	we	just	use	a	local	file	for	simplicity.

The	URL	is	the	same	endpoint	that	we	constructed	in	create_bucket()	with	the	S3	object
name	appended	to	the	URL	path.	Later,	we	can	use	this	URL	to	retrieve	the	object.

Now,	run	the	command	shown	here	to	upload	a	file:

$	python3.4	s3_client.py	mybucket.example.com	test.jpg	~/test.jpg

Uploaded	~/test.jpg	OK

You’ll	need	to	replace	mybucket.example.com	with	your	own	bucket	name.	Once	the	file
gets	uploaded,	you	will	see	it	in	the	S3	Console.

I	have	used	a	JPEG	image	that	was	stored	in	my	home	directory	as	the	source	file.	You	can
use	any	file,	just	change	the	last	argument	to	an	appropriate	path.	However,	using	a	JPEG
image	will	make	the	following	sections	easier	for	you	to	reproduce.

Retrieving	an	uploaded	file	through	a	web	browser
By	default,	S3	applies	restrictive	permissions	for	buckets	and	objects.	The	account	that
creates	them	has	full	read-write	permissions,	but	access	is	completely	denied	for	anyone
else.	This	means	that	the	file	that	we’ve	just	uploaded	can	only	be	downloaded	if	the
download	request	includes	authentication	for	our	account.	If	we	try	the	resulting	URL	in	a
browser,	then	we’ll	get	an	access	denied	error.	This	isn’t	very	useful	if	we’re	trying	to	use
S3	for	sharing	files	with	other	people.

The	solution	for	this	is	to	use	one	of	S3’s	mechanisms	for	changing	the	permissions.	Let’s
look	at	the	simple	task	of	making	our	uploaded	file	public.	Change	upload_file()	to	the
following:

def	upload_file(bucket,	s3_name,	local_path,	acl='private'):

				data	=	open(local_path,	'rb').read()

				url	=	'http://{}.{}/{}'.format(bucket,	endpoint,	s3_name)

				headers	=	{'x-amz-acl':	acl}

				r	=	requests.put(url,	data=data,	headers=headers,	auth=auth)

				if	r.ok:

								print('Uploaded	{}	OK'.format(local_path))

				else:

								xml_pprint(r.text)

We	have	now	included	a	header	in	our	HTTP	request,	x-amz-acl,	which	specifies	a
permission	set	to	be	applied	to	the	object.	We’ve	also	added	a	new	argument	to	our
function	signature	so	that	we	can	specify	the	permission	set	on	the	command	line.	We
have	used	the	so-called	canned	ACLs	(canned	Access	Control	Lists),	which	have	been
provided	by	S3,	and	are	documented	at
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl.

The	ACL	that	we’re	interested	in	is	called	public-read.	This	will	allow	anyone	to
download	the	file	without	needing	any	kind	of	authentication.	We	can	now	re-run	our
upload,	but	this	time	it	will	apply	this	ACL	to	it:

$	python3.4	s3_client.py	mybucket.example.com	test.jpg	~/test.jpg	public-

read

Uploaded	test.jpg	OK

Now,	visiting	the	file’s	S3	URL	in	a	browser	will	give	us	the	option	to	download	the	file.

Displaying	an	uploaded	file	in	a	web	browser
If	you	have	uploaded	an	image,	then	you	may	be	wondering	why	the	browser	had	asked	us
to	save	it	instead	of	just	displaying	it.	The	reason	is	that	we	haven’t	set	the	file’s	Content-
Type.

If	you	remember	from	the	last	chapter,	the	Content-Type	header	in	an	HTTP	response
tells	the	client,	which	in	this	case	is	our	browser,	the	type	of	file	that	is	in	the	body.	By
default,	S3	applies	the	content	type	of	binary/octet-stream.	Because	of	this	Content-
Type,	the	browser	can’t	tell	that	it’s	downloading	an	image,	so	it	just	presents	it	as	a	file
that	can	be	saved.	We	can	fix	this	by	supplying	a	Content-Type	header	in	the	upload
request.	S3	will	store	the	type	that	we	specify,	and	it	will	use	it	as	the	Content-Type	in	the
subsequent	download	responses.

Add	the	code	block	shown	here	to	the	import	at	the	beginning	of	s3_client.py:

import	mimetypes

Then	change	upload_file()	to	this:

def	upload_file(bucket,	s3_name,	local_path,	acl='private'):

				data	=	open(local_path,	'rb').read()

				url	=	'http://{}.{}/{}'.format(bucket,	endpoint,	s3_name)

				headers	=	{'x-amz-acl':	acl}

				mimetype	=	mimetypes.guess_type(local_path)[0]

				if	mimetype:

								headers['Content-Type']	=	mimetype

				r	=	requests.put(url,	data=data,	headers=headers,	auth=auth)

				if	r.ok:

								print('Uploaded	{}	OK'.format(local_path))

				else:

								xml_pprint(r.text)

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

Here,	we	have	used	the	mimetypes	module	to	guess	a	suitable	Content-Type	by	looking	at
the	file	extension	of	local_path.	If	mimetypes	can’t	determine	a	Content-Type	from
local_path,	then	we	don’t	include	the	Content-Type	header,	and	let	S3	apply	the	default
binary/octet-stream	type.

Unfortunately,	in	S3	we	won’t	be	able	to	overwrite	the	metadata	for	an	existing	object	by
using	a	simple	PUT	request.	It’s	possible	to	do	it	by	using	a	PUT	copy	request,	but	that’s
beyond	the	scope	of	this	chapter.	For	now,	it’s	better	to	just	delete	the	file	from	S3	by
using	the	AWS	Console	before	uploading	it	again.	We	only	need	to	do	this	once.	Now,	our
code	will	automatically	add	the	Content-Type	for	any	new	file	that	we	upload.

Once	you’ve	deleted	the	file,	re-run	the	client	just	as	shown	in	the	last	section,	that	is,
upload	the	file	with	the	new	Content-Type	and	try	to	download	the	file	in	a	browser
again.	If	all	goes	well,	then	the	image	will	be	displayed.

Downloading	a	file	with	the	API
Downloading	a	file	through	the	S3	API	is	similar	to	uploading	it.	We	simply	take	the
bucket	name,	the	S3	object	name	and	the	local	filename	again	but	issue	a	GET	request
instead	of	a	PUT	request,	and	then	write	the	data	received	to	disk.

Add	the	following	function	to	your	program,	underneath	the	upload_file()	function:

def	download_file(bucket,	s3_name,	local_path):

				url	=	'http://{}.{}/{}'.format(bucket,	endpoint,	s3_name)

				r	=	requests.get(url,	auth=auth)

				if	r.ok:

								open(local_path,	'wb').write(r.content)

								print('Downloaded	{}	OK'.format(s3_name))

				else:

								xml_pprint(r.text)

Now,	run	the	client	and	download	a	file,	which	you	have	uploaded	previously,	by	using
the	following	command:

$	python3.4	s3_client.py	download_file	mybucket.example.com	test.jpg	

~/test_downloaded.jpg

Downloaded	test.jpg	OK

Parsing	XML	and	handling	errors
If	you	ran	into	any	errors	while	running	the	aforementioned	code,	then	you’ll	notice	that	a
clear	error	message	will	not	get	displayed.	S3	embeds	error	messages	in	the	XML	returned
in	the	response	body,	and	until	now	we’ve	just	been	dumping	the	raw	XML	to	the	screen.
We	can	improve	on	this	and	pull	the	text	out	of	the	XML.	First,	let’s	generate	an	error
message	so	that	we	can	see	what	the	XML	looks	like.	In	s3_client.py,	replace	your
access	secret	with	an	empty	string,	as	shown	here:

access_secret	=	''

Now,	try	and	perform	the	following	operation	on	the	service:

$	python3.4	s3_client.py	create_bucket	failbucket.example.com

<?xml	version="1.0"	?>

<Error>

				<Code>SignatureDoesNotMatch</Code>

				<Message>The	request	signature	we	calculated	does	not	match	the	

signature	you	provided.	Check	your	key	and	signing	method.</Message>

				<AWSAccessKeyId>AKIAJY5II3SZNHZ25SUA</AWSAccessKeyId>

				<StringToSign>AWS4-HMAC-SHA256…</StringToSign>

				<SignatureProvided>e43e2130…</SignatureProvided>

				<StringToSignBytes>41	57	53	34…</StringToSignBytes>

				<CanonicalRequest>PUT…</CanonicalRequest>

				<CanonicalRequestBytes>50	55	54…</CanonicalRequestBytes>

				<RequestId>86F25A39912FC628</RequestId>

				<HostId>kYIZnLclzIW6CmsGA….</HostId>

</Error>

The	preceding	XML	is	the	S3	error	information.	I’ve	truncated	several	of	the	fields	so	as
to	show	it	here.	Your	code	block	will	be	slightly	longer	than	this.	In	this	case,	it’s	telling
us	that	it	can’t	authenticate	our	request,	and	this	is	because	we	have	set	a	blank	access
secret.

Parsing	XML
Printing	all	of	the	XML	is	too	much	for	an	error	message.	There’s	a	lot	of	extraneous
information	which	isn’t	useful	to	us.	It	would	be	better	if	we	could	just	pull	out	the	useful
parts	of	the	error	message	and	display	them.

Well,	ElementTree	gives	us	some	powerful	tools	for	extracting	such	information	from
XML.	We’re	going	back	to	XML	for	a	while	to	explore	these	tools	a	little.

First	we	need	to	open	an	interactive	Python	shell,	and	then	generate	the	aforementioned
error	message	again	by	using	the	following	command:

>>>	import	requests

>>>	import	requests_aws4auth

>>>	auth	=	requests_aws4auth.AWS4Auth('<ID>',	'',	'eu-west-1',	'')

>>>	r	=	requests.get('http://s3.eu-west-1.amazonaws.com',	auth=auth)

You’ll	need	to	replace	<ID>	with	your	AWS	access	ID.	Print	out	r.text	to	make	sure	that
you	get	an	error	message,	which	is	similar	to	the	one	that	we	generated	earlier.

Now,	we	can	explore	our	XML.	Convert	the	XML	text	into	an	ElementTree	tree.	A	handy
function	for	doing	this	is:

>>>	import	xml.etree.ElementTree	as	ET

>>>	root	=	ET.fromstring(r.text)

We	now	have	an	ElementTree	instance,	with	root	as	the	root	element.

Finding	elements
The	simplest	way	of	navigating	the	tree	is	by	using	the	elements	as	iterators.	Try	doing	the
following:

>>>	for	element	in	root:

...					print('Tag:	'	+	element.tag)

Tag:	Code

Tag:	Message

Tag:	AWSAccessKeyId

Tag:	StringToSign

Tag:	SignatureProvided

...

Iterating	over	root	returns	each	of	its	child	elements,	and	then	we	print	out	the	tag	of	an
element	by	using	the	tag	attribute.

We	can	apply	a	filter	to	the	tags	that	we	iterate	over	by	using	the	following	command:

>>>	for	element	in	root.findall('Message'):

...					print(element.tag	+	':	'	+	element.text)

Message:	The	request	signature	we	calculated	does	not	match	the	signature	

you	provided.	Check	your	key	and	signing	method.

Here,	we	have	used	the	findall()	method	of	the	root	element.	This	method	will	provide
us	with	a	list	of	all	the	direct	children	of	the	root	element	that	match	the	specified	tag,
which	in	this	case	is	<Message>.

And	this	will	solve	our	problem	of	just	extracting	the	text	of	the	error	message.	Now,	let’s
update	our	error	handling.

Handling	errors
We	can	go	back	and	add	this	to	our	s3_client.py	file,	but	let’s	include	a	little	more
information	in	the	output,	and	structure	the	code	to	allow	re-use.	Add	the	following
function	to	the	file	underneath	the	download_file()	function:

def	handle_error(response):

				output	=	'Status	code:	{}\n'.format(response.status_code)

				root	=	ET.fromstring(response.text)

				code	=		root.find('Code').text

				output	+=	'Error	code:	{}\n'.format(code)

				message	=	root.find('Message').text

				output	+=	'Message:	{}\n'.format(message)

				print(output)

You’ll	notice	that	we	have	used	a	new	function	here,	namely,	root.find().	This	works	in
the	same	way	as	findall()	except	that	it	only	returns	the	first	matching	element,	as

opposed	to	a	list	of	all	matching	elements.

Then,	replace	each	instance	of	xml_pprint(r.text)	in	your	file	with	handle_error(r)
and	then	run	the	client	again	with	the	incorrect	access	secret.	Now,	you	will	see	a	more
informative	error	message:

$	python3.4	s3_client.py	create_bucket	failbucket.example.com

Status	code:	403

Error	code:	SignatureDoesNotMatch

Message:	The	request	signature	we	calculated	does	not	match	the	signature	

you	provided.	Check	your	key	and	signing	method.

Further	enhancements
That’s	as	far	as	we’re	going	to	take	our	client.	We’ve	written	a	command	line	program	that
can	perform	essential	operations,	such	as	creating	buckets	and	uploading	and	downloading
objects	on	the	Amazon	S3	service.	There	are	still	plenty	of	operations	that	can	be
implemented,	and	these	can	be	found	in	the	S3	documentation;	operations	such	as	listing
buckets’	contents,	deleting	objects,	and	copying	objects.

We	could	improve	a	few	other	things,	especially	if	we	are	going	to	make	this	into	a
production	application.	The	command-line	parsing	mechanism,	although	compact,	is	not
satisfactory	from	a	security	perspective,	since	anybody	with	access	to	the	command	line
can	run	any	built-in	python	command.	It	would	be	better	to	have	a	whitelist	of	functions
and	to	implement	a	proper	command	line	parser	by	using	one	of	the	standard	library
modules	like	argparse.

Storing	the	access	ID	and	the	access	secret	in	the	source	code	is	also	a	problem	for
security.	Several	serious	security	incidents	have	happened	because	passwords	were	stored
in	source	code	and	then	uploaded	to	cloud	code	repositories.	It’s	much	better	to	load	the
keys	from	an	external	source,	such	as	a	file	or	a	database	at	run	time.

The	Boto	package
We’ve	discussed	working	directly	with	the	S3	REST	API,	and	this	has	given	us	some
useful	techniques	that	will	allow	us	to	program	against	similar	APIs	in	the	future.	In	many
cases,	this	will	be	the	only	way	in	which	we	can	interact	with	a	web	API.

However,	some	APIs,	including	AWS,	have	ready-to-use	packages	which	expose	the
functionality	of	the	service	without	having	to	deal	with	the	complexities	of	the	HTTP	API.
These	packages	generally	make	the	code	cleaner	and	simpler,	and	they	should	be	preferred
for	doing	production	work	if	they’re	available.

The	AWS	package	is	called	Boto.	We	will	take	a	very	quick	look	at	the	Boto	package	to
see	how	it	can	provide	some	of	the	functionalities	that	we	wrote	earlier.

The	boto	package	is	available	in	PyPi,	so	we	can	install	it	with	pip:

$	pip	install	boto

Downloading/unpacking	boto

...

Now,	fire	up	a	Python	shell	and	let’s	try	it	out.	We	need	to	connect	to	the	service	first:

>>>	import	boto

>>>	conn	=	boto.connect_s3('<ACCESS	ID>',	'<ACCESS	SECRET>')

You’ll	need	to	replace	<ACCESS	ID>	and	<ACCESS	SECRET>	with	your	access	ID	and	access
secret.	Now,	let’s	create	a	bucket:

>>>	conn.create_bucket('mybucket.example.com')

This	creates	the	bucket	in	the	default	standard	US	region.	We	can	supply	a	different
region,	as	shown	here:

>>>	from	boto.s3.connection	import	Location

>>>	conn.create_bucket('mybucket.example.com',	location=Location.EU)

The	region	names	we	need	to	use	for	this	function	are	different	to	the	ones	we	used	when
creating	buckets	earlier.	To	see	a	list	of	acceptable	region	names	do	this:

>>>	[x	for	x	in	dir(Location)	if	x.isalnum()]

['APNortheast',	'APSoutheast',	'APSoutheast2',	'CNNorth1',	'DEFAULT',	'EU',	

'SAEast',	'USWest',	'USWest2']

Do	the	following	to	display	a	list	of	the	buckets	we	own:

>>>	buckets	=	conn.get_all_buckets()

>>>	[b.name	for	b	in	buckets]

['mybucket.example.com',	'mybucket2.example.com']

We	can	also	list	the	contents	of	a	bucket.	To	do	so,	first,	we	need	to	get	a	reference	to	it:

>>>	bucket	=	conn.get_bucket('mybucket.example.com')

And	then	to	list	the	contents:

>>>	[k.name	for	k	in	bucket.list()]

['cheesehop.txt',	'parrot.txt']

Uploading	a	file	is	a	straightforward	process.	First,	we	need	to	get	a	reference	to	the
bucket	that	we	want	to	put	it	in,	and	then	we	need	to	create	a	Key	object,	which	will
represent	our	object	in	the	bucket:

>>>	bucket	=	conn.get_bucket('mybucket.example.com')

>>>	from	boto.s3.key	import	Key

>>>	key	=	Key(bucket)

Next,	we	have	to	set	the	Key	name	and	then	upload	our	file	data:

>>>	key.key	=	'lumberjack_song.txt'

>>>	key.set_contents_from_filename('~/lumberjack_song.txt')

The	boto	package	will	automatically	set	the	Content-Type	when	it	uploads	a	file	like	this,
and	it	uses	the	same	mimetypes	module	that	we	used	earlier	for	determining	a	type.

Downloading	also	follows	a	similar	pattern.	Try	the	following	commands:

>>>	bucket	=	conn.get_bucket('mybucket.example.com')

>>>	key	=	bucket.get_key('parrot.txt')

>>>	key.get_contents_to_filename('~/parrot.txt')

This	downloads	the	parrot.txt	S3	object	in	the	mybucket.example.com	bucket	and	then
stores	it	in	the	~/parrot.txt	local	file.

Once	we	have	a	reference	to	the	key,	just	use	the	following	to	set	the	ACL:

>>>	key.set_acl('public-read')

I’ll	leave	you	to	further	explore	the	boto	package’s	functionality	with	the	help	of	the
tutorial,	which	can	be	found	at	https://boto.readthedocs.org/en/latest/s3_tut.html.

It	should	be	evident	that	for	everyday	S3	work	in	Python,	boto	should	be	your	go	to
package.

https://boto.readthedocs.org/en/latest/s3_tut.html

Wrapping	up	with	S3
So,	we’ve	discussed	some	of	the	uses	of	the	Amazon	S3	API,	and	learned	some	things
about	working	with	XML	in	Python.	These	skills	should	give	you	a	good	start	in	working
with	any	XML	based	REST	API,	whether	or	not	it	has	a	pre-built	library	like	boto.

However,	XML	isn’t	the	only	data	format	that	is	used	by	web	APIs,	and	the	S3	way	of
working	with	HTTP	isn’t	the	only	model	used	by	web	APIs.	So,	we’re	going	to	move	on
and	take	a	look	at	the	other	major	data	format	in	use	today,	JSON	and	another	API:
Twitter.

JSON
JavaScript	Object	Notation	(JSON)	is	a	standard	way	of	representing	simple	objects,
such	as	lists	and	dicts,	in	the	form	of	text	strings.	Although,	it	was	originally	developed
for	JavaScript,	JSON	is	language	independent	and	most	languages	can	work	with	it.	It’s
lightweight,	yet	flexible	enough	to	handle	a	broad	range	of	data.	This	makes	it	ideal	for
exchanging	data	over	HTTP,	and	a	large	number	of	web	APIs	use	this	as	their	primary
data	format.

Encoding	and	decoding
We	use	the	json	module	for	working	with	JSON	in	Python.	Let’s	create	a	JSON
representation	of	a	Python	list	by	using	the	following	commands:

>>>	import	json

>>>	l	=	['a',	'b',	'c']

>>>	json.dumps(l)

'["a",	"b",	"c"]'

We	use	the	json.dumps()	function	for	converting	an	object	to	a	JSON	string.	In	this	case,
we	can	see	that	the	JSON	string	appears	to	be	identical	to	Python’s	own	representation	of
a	list,	but	note	that	this	is	a	string.	Confirm	this	by	doing	the	following:

>>>	s	=	json.dumps(['a',	'b',	'c'])

>>>	type(s)

<class	'str'>

>>>	s[0]

'['

Converting	JSON	to	a	Python	object	is	also	straightforward,	as	shown	here:

>>>	s	=	'["a",	"b",	"c"]'

>>>	l	=	json.loads(s)

>>>	l

['a',	'b',	'c']

>>>	l[0]

'a'

We	use	the	json.loads()	function,	and	just	pass	it	a	JSON	string.	As	we’ll	see,	this	is
very	powerful	when	interacting	with	web	APIs.	Typically,	we	will	receive	a	JSON	string
as	the	body	of	an	HTTP	response,	which	can	simply	be	decoded	using	json.loads()	to
provide	immediately	usable	Python	objects.

Using	dicts	with	JSON
JSON	natively	supports	a	mapping-type	object,	which	is	equivalent	to	a	Python	dict.	This
means	that	we	can	work	directly	with	dicts	through	JSON.

>>>	json.dumps({'A':'Arthur',	'B':'Brian',	'C':'Colonel'})

'{"A":	"Arthur",	"C":	"Colonel",	"B":	"Brian"}'

Also,	it	is	useful	to	know	how	JSON	handles	nested	objects.

>>>	d	=	{

...					'Chapman':	['King	Arthur',	'Brian'],

...					'Cleese':	['Sir	Lancelot',	'The	Black	Knight'],

...					'Idle':	['Sir	Robin',	'Loretta'],

...	}

>>>	json.dumps(d)

'{"Chapman":	["King	Arthur",	"Brian"],	"Idle":	["Sir	Robin",	"Loretta"],	

"Cleese":	["Sir	Lancelot",	"The	Black	Knight"]}'

There	is	just	one	gotcha	though:	JSON	dictionary	keys	can	only	be	in	the	form	of	strings.

>>>	json.dumps({1:10,	2:20,	3:30})

'{"1":	10,	"2":	20,	"3":	30}'

Notice,	how	the	keys	in	the	JSON	dictionary	become	string	representations	of	integers?	To
decode	a	JSON	dictionary	that	uses	numeric	keys,	we	need	to	manually	type-convert	them
if	we	want	to	work	with	them	as	numbers.	Do	the	following	to	accomplish	this:

>>>	j	=	json.dumps({1:10,	2:20,	3:30})

>>>	d_raw	=	json.loads(j)

>>>	d_raw

{'1':	10,	'2':	20,	'3':	30}

>>>	{int(key):val	for	key,val	in	d_raw.items()}

{1:	10,	2:	20,	3:	30}

We	just	use	a	dictionary	comprehension	to	apply	int()	to	the	dictionary’s	keys.

Other	object	types
JSON	cleanly	handles	only	Python	lists	and	dicts,	for	other	object	types	json	may
attempt	to	cast	the	object	type	as	one	or	the	other,	or	fail	completely.	Try	a	tuple,	as	shown
here:

>>>	json.dumps(('a',	'b',	'c'))

'["a",	"b",	"c"]'

JSON	doesn’t	have	a	tuple	data	type,	so	the	json	module	will	cast	it	to	a	list.	If	we
convert	it	back:

>>>	j	=	json.dumps(('a',	'b',	'c'))

>>>	json.loads(j)

['a',	'b',	'c']

It	will	still	remain	a	list.	The	json	module	doesn’t	support	sets,	so	they	also	need	to	be
recast	as	lists.	Try	the	following	commands:

>>>	s	=	set(['a',	'b',	'c'])

>>>	json.dumps(s)

...

TypeError:	{'a',	'c',	'b'}	is	not	JSON	serializable

>>>	json.dumps(list(s))

'["a",	"b",	"c"]'

This	will	cause	problems	similar	to	the	ones	caused	by	tuples.	If	we	convert	the	JSON
back	to	a	Python	object,	then	it	will	be	a	list	and	not	a	set.

We	almost	never	encounter	web	APIs	that	need	these	kinds	of	specialist	Python	objects,
and	if	we	do,	then	the	API	should	provide	some	kind	of	convention	for	handling	it.	But	we
do	need	to	keep	track	of	any	conversions	that	we	would	need	to	apply	to	the	outgoing	or
the	incoming	objects,	if	we	were	storing	the	data	locally	in	any	format	other	than	that	of
lists	or	dicts.

Now	that	we	have	an	understanding	of	JSON,	let’s	see	how	it	works	in	a	web	API.

The	Twitter	API
The	Twitter	API	provides	access	to	all	the	functions	that	we	may	want	a	Twitter	client	to
perform.	With	the	Twitter	API,	we	can	create	clients	that	search	for	recent	tweets,	find	out
what’s	trending,	look	up	user	details,	follow	users’	timelines,	and	even	act	on	the	behalf	of
users	by	posting	tweets	and	direct	messages	for	them.

We’ll	be	looking	at	Twitter	API	version	1.1,	the	version	current	at	time	of	writing	this
chapter.

Note
Twitter	maintains	comprehensive	documentation	for	its	API,	which	can	be	found	at
https://dev.twitter.com/overview/documentation.

https://dev.twitter.com/overview/documentation

A	Twitter	world	clock
To	illustrate	some	of	the	functionalities	of	the	Twitter	API,	we’re	going	to	write	the	code
for	a	simple	Twitter	world	clock.	Our	application	will	periodically	poll	its	Twitter	account
for	mentions	which	contain	a	recognizable	city	name,	and	if	it	finds	one,	then	it	will	reply
to	the	Tweet	with	the	current	local	time	of	that	city.	In	Twitter	speak,	a	mention	is	any
Tweet	which	includes	our	account	name	prefixed	by	an	@,	for	example,	@myaccount.

Authentication	for	Twitter
Similar	to	S3,	we	need	to	determine	how	authentication	will	be	managed	before	we	get
started.	We	need	to	register,	and	then	we	need	to	find	out	how	Twitter	expects	us	to
authenticate	our	requests.

Registering	your	application	for	the	Twitter	API
We	need	to	create	a	Twitter	account,	register	our	application	against	the	account,	and	then
we	will	receive	the	authentication	credentials	for	our	app.	It’s	also	a	good	idea	to	set	up	a
second	account,	which	we	can	use	for	sending	test	tweets	to	the	application	account.	This
provides	for	a	cleaner	way	of	checking	whether	the	app	is	working	properly,	rather	than
having	the	app	account	send	tweets	to	itself.	There’s	no	limit	on	the	number	of	Twitter
accounts	that	you	can	create.

To	create	an	account,	go	to	http://www.twitter.com	and	complete	the	signup	process.	Do
the	following	for	registering	your	application	once	you	have	a	Twitter	account:

1.	 Log	into	http://apps.twitter.com	with	your	main	Twitter	account,	and	then	create	a
new	app.

2.	 Fill	out	the	new	app	form,	note	that	Twitter	application	names	need	to	be	unique
globally.

3.	 Go	to	the	app’s	settings	and	then	change	the	app	permissions	to	have	read	and	write
access.	You	may	need	to	register	your	mobile	number	for	enabling	this.	Even	if
you’re	unhappy	about	supplying	this,	we	can	create	the	full	app;	however	the	final
function	that	sends	a	tweet	in	reply	won’t	be	active.

Now	we	need	to	get	our	access	credentials,	as	shown	here:

1.	 Go	to	the	Keys	and	Access	Tokens	section	and	then	note	the	Consumer	Key	and	the
Access	Secret.

2.	 Generate	an	Access	Token.
3.	 Note	down	the	Access	Token	and	the	Access	Secret.

Authenticating	requests
We	now	have	enough	information	for	authenticating	requests.	Twitter	uses	an
authentication	standard	called	oAuth,	version	1.0a.	It’s	described	in	detail	at
http://oauth.net/core/1.0a/.

The	oAuth	authentication	standard	is	a	little	tricky,	but	fortunately	the	Requests	module
has	a	companion	library	called	requests-oauthlib,	which	can	handle	most	of	the
complexity	for	us.	This	is	available	on	PyPi,	so	we	can	download	and	install	it	with	pip.

$	pip	install	requests-oauthlib

Downloading/unpacking	requests-oauthlib

...

Now,	we	can	add	authentication	to	our	requests,	and	then	write	our	application.

http://www.twitter.com
http://apps.twitter.com
http://oauth.net/core/1.0a/

A	Twitter	client
Save	the	code	mentioned	here	to	a	file,	and	save	it	as	twitter_worldclock.py.	You’ll
need	to	replace	<CONSUMER_KEY>,	<CONSUMER_SECRET>,	<ACCESS_TOKEN>,	and
<ACCESS_SECRET>	with	the	values	that	you	have	taken	down	from	the	aforementioned
Twitter	app	configuration:

import	requests,	requests_oauthlib,	sys

consumer_key	=	'<CONSUMER_KEY>'

consumer_secret	=	'<CONSUMER_SECRET>'

access_token	=	'<ACCESS_TOKEN>'

access_secret	=	'<ACCESS_KEY>'

def	init_auth():

				auth_obj	=	requests_oauthlib.OAuth1(

																				consumer_key,	consumer_secret,

																				access_token,	access_secret)

				if	verify_credentials(auth_obj):

								print('Validated	credentials	OK')

								return	auth_obj

				else:

								print('Credentials	validation	failed')

								sys.exit(1)	

def	verify_credentials(auth_obj):

				url	=	'https://api.twitter.com/1.1/'	\

										'account/verify_credentials.json'

				response	=	requests.get(url,	auth=auth_obj)

				return	response.status_code	==	200

if	__name__	==	'__main__':

				auth_obj	=	init_auth()

Remember	that	consumer_secret	and	access_secret	act	as	the	password	to	your	Twitter
account,	so	in	a	production	app	they	should	be	loaded	from	a	secure	external	location
instead	of	being	hard-coded	into	the	source	code.

In	the	aforementioned	code,	we	create	the	OAuth1	authentication	instance,	auth_obj,	in
the	init_auth()	function	by	using	our	access	credentials.	We	pass	this	to	Requests
whenever	we	need	to	make	an	HTTP	request,	and	through	it	Requests	handles	the
authentication.	You	can	see	an	example	of	this	in	the	verify_credentials()	function.

In	the	verify_credentials()	function,	we	test	whether	Twitter	recognizes	our
credentials.	The	URL	that	we’re	using	here	is	an	endpoint	that	Twitter	provides	purely	for
testing	whether	our	credentials	are	valid.	It	returns	an	HTTP	200	status	code	if	they	are
valid	or	a	401	status	code	if	not.

Now,	let’s	run	twitter_worldclock.py	and	if	we’ve	registered	our	application	and	filled
out	the	tokens	and	secrets	properly,	then	we	should	see	Validated	credentials	OK.	Now
that	the	authentication	is	working,	the	basic	flow	of	our	program	will	be,	as	shown	in	the
following	diagram:

Our	program	will	be	running	as	a	daemon,	polling	Twitter	periodically	to	see	whether
there	are	any	new	tweets	for	us	to	process	and	reply	to.	When	we	poll	the	mentions
timeline,	we	will	download	any	new	tweets	that	were	received	in	a	single	batch	since	our
last	poll,	so	that	we	can	process	all	of	them	without	having	to	poll	again.

Polling	for	Tweets
Let’s	add	a	function	for	checking	and	retrieving	new	tweets	from	our	mentions	timeline.
We’ll	get	this	to	work	before	we	add	the	loop.	Add	the	new	function	underneath
verify_credentials(),	and	then	add	a	call	this	function	to	the	main	section,	as	shown
here;	also,	add	json	to	the	list	of	the	imports	at	the	beginning	of	the	file:

def	get_mentions(since_id,	auth_obj):

				params	=	{'count':	200,	'since_id':	since_id,

														'include_rts':		0,	'include_entities':	'false'}

				url	=	'https://api.twitter.com/1.1/'	\

										'statuses/mentions_timeline.json'

				response	=	requests.get(url,	params=params,	auth=auth_obj)

				response.raise_for_status()

				return	json.loads(response.text)

if	__name__	==	'__main__':

				auth_obj	=	init_auth()

				since_id	=	1

				for	tweet	in	get_mentions(since_id,	auth_obj):

								print(tweet['text'])

Using	get_mentions(),	we	check	for	and	download	any	tweets	that	mention	our	app
account	by	connecting	to	the	statuses/mentions_timeline.json	endpoint.	We	supply	a
number	of	parameters,	which	Requests	passes	on	as	a	query	string.	These	parameters	are
specified	by	Twitter	and	they	control	how	the	tweets	will	be	returned	to	us.	They	are	as
follows:

'count':	This	specifies	the	maximum	number	of	tweets	that	will	be	returned.	Twitter
will	allow	200	tweets	to	be	received	by	a	single	request	made	to	this	endpoint.
'include_entities':	This	is	used	for	trimming	down	some	extraneous	information
from	the	tweets	retrieved.
'include_rts':	This	tells	Twitter	not	to	include	any	retweets.	We	don’t	want	the	user
to	receive	another	time	update	if	someone	retweets	our	reply.
'since_id':	This	tells	Twitter	to	only	return	the	tweets	with	IDs	above	this	value.
Every	tweet	has	a	unique	64-bit	integer	ID,	and	later	tweets	have	higher	value	IDs
than	earlier	tweets.	By	remembering	the	ID	of	the	last	tweet	we	process	and	then
passing	it	as	this	parameter,	Twitter	will	filter	out	the	tweets	that	we’ve	already	seen.

Before	running	the	aforementioned,	we	want	to	generate	some	mentions	for	our	account
so	that	we	have	something	to	download.	Log	into	your	Twitter	test	account	and	then	create
a	couple	of	tweets	that	contain	@username,	where	you	replace	username	with	your	app
account’s	username.	After	this,	when	you	go	into	the	Mentions	section	of	the
Notifications	tab	of	your	app	account,	you	will	see	these	tweets.

Now,	if	we	run	the	aforementioned	code,	then	we	will	get	the	text	of	our	mentions	printed
to	screen.

Processing	the	Tweets
The	next	step	is	to	parse	our	mentions	and	then	generate	the	times	that	we	want	to	include
in	our	replies.	Parsing	is	a	straightforward	process.	In	this,	we	just	check	the	‘text’	value	of
the	tweets,	but	it	takes	a	little	more	work	to	generate	the	times.	In	fact,	for	this,	we’ll	need
a	database	of	cities	and	their	time	zones.	This	is	available	in	the	pytz	package,	which	can
be	found	at	PyPi.	For	doing	this,	install	the	following	package:

$	pip	install	pytz

Downloading/unpacking	pytz

...

And	then,	we	can	write	our	tweet	processing	function.	Add	this	function	underneath
get_mentions(),	and	then	add	datetime	and	pytz	to	the	list	of	the	imports	at	the
beginning	of	the	file:

def	process_tweet(tweet):

				username	=	tweet['user']['screen_name']

				text	=	tweet['text']

				words	=	[x	for	x	in	text.split()	if

																								x[0]	not	in	['@',	'#']]

				place	=	'	'.join(words)

				check	=	place.replace('	',	'_').lower()

				found	=	False

				for	tz	in	pytz.common_timezones:

								tz_low	=	tz.lower()

								if	check	in	tz_low.split('/'):

												found	=	True

												break

				if	found:

								timezone	=	pytz.timezone(tz)

								time	=	datetime.datetime.now(timezone).strftime('%H:%M')

								reply	=	'@{}	The	time	in	{}	is	currently	{}'.format(username,	

place,	time)

				else:

								reply	=	"@{}	Sorry,	I	didn't	recognize	"	\

																								"'{}'	as	a	city".format(username,	place)

				print(reply)

if	__name__	==	'__main__':

				auth_obj	=	init_auth()

				since_id	=	1

				for	tweet	in	get_mentions(since_id,	auth_obj):

								process_tweet(tweet)

The	bulk	of	process_tweet()	is	used	for	formatting	the	tweet’s	text	and	processing	the
time	zone	data.	First	we	will	remove	any	@username	mentions	and	#hashtags	from	the
tweet.	Then,	we	prepare	the	remaining	tweet	text	to	be	compared	with	the	time	zone
names	database.	The	time	zone	names	database	is	held	in	pytz.common_timezones,	but
the	names	also	contain	regions,	which	are	separated	from	the	names	with	slashes	(/).	Also,
in	these	names	underscores	are	used	in	place	of	spaces.

We	scan	through	the	database	checking	against	the	formatted	tweet	text.	If	a	match	is

found,	then	we	construct	a	reply,	which	contains	the	local	time	of	the	matched	time	zone.
For	this,	we	use	the	datetime	module	along	with	a	time	zone	object	generated	by	pytz.	If
we	don’t	find	a	match	in	the	time	zone	database,	then	we	compose	a	reply	to	let	the	user
know	the	same.	Then,	we	print	our	reply	to	screen	to	check	if	it’s	working	as	expected.

Again,	before	running	this,	we	may	want	to	create	a	few	tweets	that	contain	just	a	city
name	and	mention	our	world	clock	app	account,	so	that	the	function	has	something	to
process.	Some	cities	that	appear	in	the	time	zone	database	are	Dublin,	New	York,	and
Tokyo.

Give	it	a	try!	When	you	run	it,	you	will	get	some	tweet	reply	texts	on	the	screen,	which
contain	the	cities	and	the	current	local	times	for	those	cities.

Rate	limits
If	we	run	the	aforementioned	several	times,	then	we’ll	find	that	it	will	stop	working	after	a
while.	Either	the	credentials	will	temporarily	fail	to	validate,	or	the	HTTP	request	in
get_mentions()	will	fail.

This	is	because	Twitter	applies	rate	limits	to	its	API,	which	means	that	our	application	is
only	allowed	to	make	a	certain	number	of	requests	to	an	endpoint	in	a	given	amount	of
time.	The	limits	are	listed	in	the	Twitter	documentation	and	they	vary	according	to	the
authentication	route	(as	discussed	later)	and	endpoint.	We	are	using
statuses/mentions_timeline.json,	so	our	limit	is	15	requests	for	every	15	minutes.	If
we	exceed	this,	then	Twitter	will	respond	with	a	429	Too	many	requests	status	code.	This
will	force	us	to	wait	till	the	next	15	minute	window	starts	before	it	lets	us	get	any	useful
data	back.

Rate	limits	are	a	common	feature	of	web	APIs,	so	it’s	useful	to	have	ways	of	testing
efficiently	when	using	them.	One	approach	to	testing	with	data	from	rate-limited	APIs	is
to	download	some	data	once	and	then	store	it	locally.	After	this,	load	it	from	the	file
instead	of	pulling	it	from	the	API.	Download	some	test	data	by	using	the	Python
interpreter,	as	shown	here:

>>>	from	twitter_worldclock	import	*

>>>	auth_obj	=	init_auth()

Credentials	validated	OK

>>>	mentions	=	get_mentions(1,	auth_obj)

>>>	json.dump(mentions,	open('test_mentions.json',	'w'))

You’ll	need	to	be	in	the	same	folder	as	twitter_worldclock.py	when	you	run	this.	This
creates	a	file	called	test_mentions.json,	which	contains	our	JSONized	mentions.	Here,
the	json.dump()	function	writes	the	supplied	data	into	a	file	rather	than	returning	it	as	a
string.

Instead	of	calling	the	API,	we	can	use	this	data	by	modifying	our	program’s	main	section
to	look	like	the	following:

if	__name__	==	'__main__':

				mentions	=	json.load(open('test_mentions.json'))

				for	tweet	in	mentions:

								process_tweet(tweet)

Sending	a	reply
The	final	function	that	we	need	to	perform	is	sending	a	tweet	in	response	to	a	mention.	For
this,	we	use	the	statuses/update.json	endpoint.	If	you’ve	not	registered	your	mobile
number	with	your	app	account,	then	this	won’t	work.	So,	just	leave	your	program	as	it	is.
If	you	have	registered	your	mobile	number,	then	add	this	function	under
process_tweets():

def	post_reply(reply_to_id,	text,	auth_obj):

				params	=	{

								'status':	text,

								'in_reply_to_status_id':	reply_to_id}

				url	=	'https://api.twitter.com/1.1./statuses/update.json'

				response	=	requests.post(url,	params=params,	auth=auth_obj)

				response.raise_for_status()

And	add	this	below	the	print()	call	at	the	end	of	process_tweet(),	at	the	same
indentation	level:

post_reply(tweet['id'],	reply,	auth_obj)

Now,	if	you	run	this	and	then	check	your	test	account’s	Twitter	notifications,	you	will	see
some	replies.

The	post_reply()	function	just	calls	the	endpoint	by	using	the	following	parameters	to
inform	Twitter	on	what	to	post:

status:	This	is	the	text	of	our	reply	tweet.
in_reply_to_status_id:	This	is	the	ID	of	the	tweet	that	we’re	replying	to.	We
supply	this	so	that	Twitter	can	link	the	tweets	as	a	conversation.

When	testing	this,	we	might	get	some	403	status	code	responses.	This	is	okay,	it’s	just	that
Twitter	refuses	to	let	us	post	two	tweets	with	identical	text	in	a	row,	which	we	may	find
happens	with	this	set	up,	depending	on	what	test	tweets	we	send.

Final	touches
The	building	blocks	are	in	place,	and	we	can	add	our	main	loop	to	make	the	program	a
daemon.	Add	the	time	module	to	the	imports	at	the	top,	and	then	change	the	main	section
to	what	is	shown	here:

if	__name__	==	'__main__':

				auth_obj	=	init_auth()

				since_id	=	1

				error_count	=	0

				while	error_count	<	15:

								try:

												for	tweet	in	get_mentions(since_id,	auth_obj):

																process_tweet(tweet)

																since_id	=	max(since_id,	tweet['id'])

												error_count	=		0

								except	requests.exceptions.HTTPError	as	e:

												print('Error:	{}'.format(str(e)))

												error_count	+=	1

								time.sleep(60)

This	will	call	get_mentions()	every	60	seconds	and	then	process	any	new	tweets	that
have	been	downloaded.	If	we	hit	any	HTTP	errors,	then	it	will	retry	the	process	15	times
before	exiting	the	program.

Now	if	we	run	our	program,	then	it	will	run	continuously,	replying	to	tweets	that	mention
the	world	clock	app	account.	Give	it	a	try,	run	the	program,	and	then	send	some	tweets
from	your	test	account.	After	a	minute,	you	will	see	some	replies	to	your	notifications.

Taking	it	further
Now	that	we’ve	written	a	basic	functional	Twitter	API	client,	there	are	certainly	some
things	that	we	could	improve	upon.	Although	we	don’t	have	space	in	this	chapter	to
explore	enhancements	in	detail,	it’s	worth	mentioning	a	few	to	inform	future	projects	you
may	want	to	undertake.

Polling	and	the	Twitter	streaming	APIs
You	may	have	already	spotted	a	problem	that	our	client	will	only	pull	a	maximum	of	200
tweets	per	poll.	In	each	poll,	Twitter	provides	the	most	recent	tweets	first.	This	means	that
if	we	get	more	than	200	tweets	in	60	seconds,	then	we	will	permanently	lose	the	tweets
that	come	in	first.	In	fact,	there	is	no	complete	solution	for	this	using	the
statuses/mentions_timeline.json	endpoint.

Twitter’s	solution	for	this	problem	is	to	provide	an	alternative	type	of	API,	which	is	called
a	streaming	API.	When	connecting	to	these	APIs,	the	HTTP	response	connection	is
actually	left	open	and	the	incoming	tweets	are	continuously	streamed	through	it.	The
Requests	package	provides	neat	functionality	for	handling	this.	The	Requests	response
objects	have	an	iter_lines()	method,	which	runs	indefinitely.	It	is	capable	of	outputting
a	line	of	data	whenever	the	server	sends	one,	which	can	then	be	processed	by	us.	If	you	do
find	that	you	need	this,	then	there’s	an	example	that	will	help	you	in	getting	started	in	the
Requests	documentation,	and	it	can	be	found	at	http://docs.python-
requests.org/en/latest/user/advanced/#streaming-requests.

http://docs.python-requests.org/en/latest/user/advanced/#streaming-requests

Alternative	oAuth	flows
Our	setup	for	having	our	app	operate	against	our	main	account	and	having	a	second
account	for	sending	the	test	tweets	is	a	little	clunky,	especially	so	if	you	use	your	app
account	for	regular	tweeting.	Wouldn’t	it	be	better	to	have	a	separate	account	dedicated	to
handling	the	world	clock	tweets?

Well,	yes	it	would.	The	ideal	set	up	is	to	have	a	main	account	on	which	you	register	the
app,	and	which	you	can	also	use	it	as	a	regular	Twitter	account,	and	have	the	app	process
tweets	for	a	second	dedicated	world	clock	account.

oAuth	makes	this	possible,	but	there	are	some	extra	steps	that	are	needed	to	get	it	to	work.
We	would	need	the	world	clock	account	to	authorize	our	app	to	act	on	its	behalf.	You’ll
notice	that	the	oAuth	credentials	mentioned	earlier	are	comprised	of	two	main	elements,
consumer	and	access.	The	consumer	element	identifies	our	application,	and	the	access
element	proves	that	the	account	the	access	credentials	came	from	authorized	our	app	to	act
on	its	behalf.	In	our	app	we	shortcut	the	full	account	authorization	process	by	having	the
app	act	on	behalf	of	the	account	through	which	it	was	registered,	that	is,	our	app	account.
When	we	do	this,	Twitter	lets	us	acquire	the	access	credentials	directly	from	the
dev.twitter.com	interface.	To	use	a	different	user	account,	we	would	have	needed	to	have
inserted	a	step	where	the	user	is	taken	to	Twitter,	which	would	be	opened	in	a	web
browser,	where	the	user	would	have	to	log	in	and	then	explicitly	authorize	our	application.

Note
This	process	is	demonstrated	in	the	requests-oauthlib	documentation,	which	can	be
found	at	https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html.

http://dev.twitter.com
https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html

HTML	and	screen	scraping
Although	more	and	more	services	are	offering	their	data	through	APIs,	when	a	service
doesn’t	do	this	then	the	only	way	of	getting	the	data	programmatically	is	to	download	its
web	pages	and	then	parse	the	HTML	source	code.	This	technique	is	called	screen
scraping.

Though	it	sounds	simple	enough	in	principle,	screen	scraping	should	be	approached	as	a
last	resort.	Unlike	XML,	where	the	syntax	is	strictly	enforced	and	data	structures	are
usually	reasonably	stable	and	sometimes	even	documented,	the	world	of	web	page	source
code	is	a	messy	one.	It	is	a	fluid	place,	where	the	code	can	change	unexpectedly	and	in	a
way	that	can	completely	break	your	script	and	force	you	to	rework	the	parsing	logic	from
scratch.

Still,	it	is	sometimes	the	only	way	to	get	essential	data,	so	we’re	going	to	take	a	brief	look
at	developing	an	approach	toward	scraping.	We	will	discuss	ways	to	reduce	the	impact
when	the	HTML	code	does	change.

You	should	always	check	a	site’s	terms	and	conditions	before	scraping.	Some	websites
explicitly	disallow	automated	parsing	and	retrieval.	Breaching	the	terms	may	result	in
your	IP	address	being	barred.	However,	in	most	cases,	as	long	as	you	don’t	republish	the
data	and	don’t	make	excessively	frequent	requests,	you	should	be	okay.

HTML	parsers
We’ll	be	parsing	HTML	just	as	we	parsed	XML.	We	again	have	a	choice	between	pull-
style	APIs	and	object-oriented	APIs.	We	are	going	to	use	ElementTree	for	the	same
reasons	as	mentioned	before.

There	are	several	HTML	parsing	libraries	that	are	available.	They’re	differentiated	by	their
speed,	the	interfaces	that	they	offer	for	navigating	within	HTML	documents,	and	their
ability	at	handling	badly	constructed	HTML.	The	Python	standard	library	doesn’t	include
an	object-oriented	HTML	parser.	The	universally	recommended	third-party	package	for
this	is	lxml,	which	is	primarily	an	XML	parser.	However,	it	does	include	a	very	good
HTML	parser.	It’s	quick,	it	offers	several	ways	of	navigating	documents,	and	it	is	tolerant
of	broken	HTML.

The	lxml	library	can	be	installed	on	Debian	and	Ubuntu	through	the	python-lxml
package.	If	you	need	an	up-to-date	version	or	if	you’re	not	able	to	install	the	system
packages,	then	lxml	can	be	installed	through	pip.	Note	that	you’ll	need	a	build
environment	for	this.	Debian	usually	comes	with	an	environment	that	has	already	been	set
up	but	if	it’s	missing,	then	the	following	will	install	one	for	both	Debian	and	Ubuntu:

$	sudo	apt-get	install	build-essential

Then	you	should	be	able	to	install	lxml,	like	this:

$	sudo	STATIC_DEPS=true	pip	install	lxml

If	you	hit	compilation	problems	on	a	64-bit	system,	then	you	can	also	try:

$	CFLAGS="$CFLAGS	-fPIC"	STATIC_DEPS=true	pip	install	lxml

On	Windows,	installer	packages	are	available	from	the	lxml	website	at
http://lxml.de/installation.html.	Check	the	page	for	links	to	third-party	installers	in	case	an
installer	for	your	version	of	Python	isn’t	available.

The	next	best	library,	in	case	lxml	doesn’t	work	for	you,	is	BeautifulSoup.	BeautifulSoup
is	pure	Python,	so	it	can	be	installed	with	pip,	and	it	should	run	anywhere.	Although	it	has
its	own	API,	it’s	a	well-respected	and	capable	library,	and	it	can,	in	fact,	use	lxml	as	a
backend	library.

http://lxml.de/installation.html

Show	me	the	data
Before	we	start	parsing	HTML,	we	need	something	to	parse!	Let’s	grab	the	version	and
codename	of	the	latest	stable	Debian	release	from	the	Debian	website.	Information	about
the	current	stable	release	can	be	found	at	https://www.debian.org/releases/stable/.

The	information	that	we	want	is	displayed	in	the	page	title	and	in	the	first	sentence:

So,	we	should	extract	the	“jessie”	codename	and	the	8.0	version	number.

https://www.debian.org/releases/stable/

Parsing	HTML	with	lxml
Let’s	open	a	Python	shell	and	get	to	parsing.	First,	we’ll	download	the	page	with
Requests.

>>>	import	requests

>>>	response	=	requests.get('https://www.debian.org/releases/stable')

Next,	we	parse	the	source	into	an	ElementTree	tree.	This	is	the	same	as	it	is	for	parsing
XML	with	the	standard	library’s	ElementTree,	except	here	we	will	use	the	lxml	specialist
HTMLParser.

>>>	from	lxml.etree	import	HTML

>>>	root	=	HTML(response.content)

The	HTML()	function	is	a	shortcut	that	reads	the	HTML	that	is	passed	to	it,	and	then	it
produces	an	XML	tree.	Notice	that	we’re	passing	response.content	and	not
response.text.	The	lxml	library	produces	better	results	when	it	uses	the	raw	response
rather	than	the	decoded	Unicode	text.

The	lxml	library’s	ElementTree	implementation	has	been	designed	to	be	100	percent
compatible	with	the	standard	library’s,	so	we	can	start	exploring	the	document	in	the	same
way	as	we	did	with	XML:

>>>	[e.tag	for	e	in	root]

['head',	'body']

>>>	root.find('head').find('title').text

'Debian	–-	Debian	\u201cjessie\u201d	Release	Information'

In	the	preceding	code,	we	have	printed	out	the	text	content	of	the	document’s	<title>
element,	which	is	the	text	that	appears	in	the	tab	in	the	preceding	screenshot.	We	can
already	see	it	contains	the	codename	that	we	want.

Zeroing	in
Screen	scraping	is	the	art	of	finding	a	way	to	unambiguously	address	the	elements	in	the
HTML	that	contain	the	information	that	we	want,	and	extract	the	information	from	only
those	elements.

However,	we	also	want	the	selection	criteria	to	be	as	simple	as	possible.	The	less	we	rely
on	the	contents	of	the	document,	the	lesser	the	chance	of	it	being	broken	if	the	page’s
HTML	changes.

Let’s	inspect	the	HTML	source	of	the	page,	and	see	what	we’re	dealing	with.	For	this,
either	use	View	Source	in	a	web	browser,	or	save	the	HTML	to	a	file	and	open	it	in	a	text
editor.	The	page’s	source	code	is	also	included	in	the	source	code	download	for	this	book.
Search	for	the	text	Debian	8.0,	so	that	we	are	taken	straight	to	the	information	we	want.
For	me,	it	looks	like	the	following	block	of	code:

<body>

...

<div	id="content">

<h1>Debian	“jessie”	Release	Information</h1>

<p>Debian	8.0	was

released	October	18th,	2014.

The	release	included	many	major

changes,	described	in…

I’ve	skipped	the	HTML	between	the	<body>	and	the	<div>	to	show	that	the	<div>	is	a
direct	child	of	the	<body>	element.	From	the	above,	we	can	see	that	we	want	the	contents
of	the	<p>	tag	child	of	the	<div>	element.

If	we	navigated	to	this	element	by	using	the	ElementTree	functions,	which	we	have	used
before,	then	we’d	end	up	with	something	like	the	following:

>>>	root.find('body').findall('div')[1].find('p').text

Debian	8.0	was.

...

But	this	isn’t	the	best	approach,	as	it	depends	quite	heavily	on	the	HTML	structure.	A
change,	such	as	a	<div>	tag	being	inserted	before	the	one	that	we	needed,	would	break	it.
Also,	in	more	complex	documents,	this	can	lead	to	horrendous	chains	of	method	calls,
which	are	hard	to	maintain.	Our	use	of	the	<title>	tag	in	the	previous	section	to	get	the
codename	is	an	example	of	a	good	technique,	because	there	is	always	only	one	<head>
and	one	<title>	tag	in	a	document.	A	better	approach	to	finding	our	<div>	would	be	to
make	use	of	the	id="content"	attribute	it	contains.	It’s	a	common	web	page	design
pattern	to	break	a	page	into	a	few	top-level	<divs>	for	the	major	page	sections	like	the
header,	the	footer	and	the	content,	and	to	give	the	<divs>	id	attributes	which	identify
them	as	such.

Hence,	if	we	could	search	for	<div>s	with	an	id	attribute	of	"content",	then	we’d	have	a
clean	way	of	selecting	the	right	<div>.	There	is	only	one	<div>	in	the	document	that	is	a
match,	and	it’s	unlikely	that	another<div>	like	that	will	be	added	to	the	document.	This
approach	doesn’t	depend	on	the	document	structure,	and	so	it	won’t	be	affected	by	any

changes	that	are	made	to	the	structure.	We’ll	still	need	to	rely	on	the	fact	that	the	<p>	tag
in	the	<div>	is	the	first	<p>	tag	that	appears,	but	given	that	there	is	no	other	way	to
identify	it,	this	is	the	best	we	can	do.

So,	how	do	we	run	such	a	search	for	our	content	<div>?

Searching	with	XPath
In	order	to	avoid	exhaustive	iteration	and	the	checking	of	every	element,	we	need	to	use
XPath,	which	is	more	powerful	than	what	we’ve	used	so	far.	It	is	a	query	language	that
was	developed	specifically	for	XML,	and	it’s	supported	by	lxml.	Plus,	the	standard	library
implementation	provides	limited	support	for	it.

We’re	going	to	take	a	quick	look	at	XPath,	and	in	the	process	we	will	find	the	answer	to
the	question	posed	earlier.

To	get	started,	use	the	Python	shell	from	the	last	section,	and	do	the	following:

>>>	root.xpath('body')

[<Element	body	at	0x39e0908>]

This	is	the	simplest	form	of	XPath	expression:	it	searches	for	children	of	the	current
element	that	have	tag	names	that	match	the	specified	tag	name.	The	current	element	is	the
one	we	call	xpath()	on,	in	this	case	root.	The	root	element	is	the	top-level	<html>
element	in	the	HTML	document,	and	so	the	returned	element	is	the	<body>	element.

XPath	expressions	can	contain	multiple	levels	of	elements.	The	searches	start	from	the
node	the	xpath()	call	is	made	on	and	work	down	the	tree	as	they	match	successive
elements	in	the	expression.	We	can	use	this	to	find	just	the	<div>	child	elements	of
<body>:

>>>	root.xpath('body/div')

[<Element	div	at	0x39e06c8>,	<Element	div	at	0x39e05c8>,	<Element	div	at	

0x39e0608>]

The	body/div	expression	means	match	<div>	children	of	<body>	children	of	the	current
element.	Elements	with	the	same	tag	can	appear	more	than	once	at	the	same	level	in	an
XML	document,	so	an	XPath	expression	can	match	multiple	elements,	hence	the	xpath()
function	always	returns	a	list.

The	preceding	queries	are	relative	to	the	element	that	we	call	xpath()	on,	but	we	can
force	a	search	from	the	root	of	the	tree	by	adding	a	slash	to	the	start	of	the	expression.	We
can	also	perform	a	search	over	all	the	descendants	of	an	element,	with	the	help	of	a
double-slash.	To	do	this,	try	the	following:

>>>	root.xpath('//h1')

[<Element	h1	at	0x2ac3b08>]

Here,	we’ve	directly	found	our	<h1>	element	by	only	specifying	a	single	tag,	even	though
it’s	several	levels	below	root.	This	double-slash	at	the	beginning	of	the	expression	will
always	search	from	the	root,	but	we	can	prefix	this	with	a	dot	if	we	want	it	to	start
searching	from	the	context	element.

>>>	root.find('head').xpath('.//h1')

[]

This	will	not	find	anything	because	there	are	no	<h1>	descendents	of	<head>.

XPath	conditions
So,	we	can	be	quite	specific	by	supplying	paths,	but	the	real	power	of	XPath	lies	in
applying	additional	conditions	to	the	elements	in	the	path.	In	particular,	our
aforementioned	problem,	which	is,	testing	element	attributes.

>>>	root.xpath('//div[@id="content"]')

[<Element	div	at	0x39e05c8>]

The	square	brackets	after	div,	[@id="content"],	form	a	condition	that	we	place	on	the
<div>	elements	that	we’re	matching.	The	@	sign	before	id	means	that	id	refers	to	an
attribute,	so	the	condition	means:	only	elements	with	an	id	attribute	equal	to	"content".
This	is	how	we	can	find	our	content	<div>.

Before	we	employ	this	to	extract	our	information,	let’s	just	touch	on	a	couple	of	useful
things	that	we	can	do	with	conditions.	We	can	specify	just	a	tag	name,	as	shown	here:

>>>	root.xpath('//div[h1]')

[<Element	div	at	0x39e05c8>]

This	returns	all	<div>	elements	which	have	an	<h1>	child	element.	Also	try:

>>>	root.xpath('body/div[2]'):

[<Element	div	at	0x39e05c8>]

Putting	a	number	as	a	condition	will	return	the	element	at	that	position	in	the	matched	list.
In	this	case	this	is	the	second	<div>	child	element	of	<body>.	Note	that	these	indexes	start
at	1,	unlike	Python	indexing	which	starts	at	0.

There’s	a	lot	more	that	XPath	can	do,	the	full	specification	is	a	World	Wide	Web
Consortium	(W3C)	standard.	The	latest	version	can	be	found	at
http://www.w3.org/TR/xpath-3/.

http://www.w3.org/TR/xpath-3/

Pulling	it	together
Now	that	we’ve	added	XPath	to	our	superpowers,	let’s	finish	up	by	writing	a	script	to	get
our	Debian	version	information.	Create	a	new	file,	get_debian_version.py,	and	save	the
following	to	it:

import	re

import	requests

from	lxml.etree	import	HTML

response	=	requests.get('http://www.debian.org/releases/stable/')

root	=	HTML(response.content)

title_text	=	root.find('head').find('title').text

release	=	re.search('\u201c(.*)\u201d',	title_text).group(1)

p_text	=	root.xpath('//div[@id="content"]/p[1]')[0].text

version	=	p_text.split()[1]

print('Codename:	{}\nVersion:	{}'.format(release,	version))

Here,	we	have	downloaded	and	parsed	the	web	page	by	pulling	out	the	text	that	we	want
with	the	help	of	XPath.	We	have	used	a	regular	expression	to	pull	out	jessie,	and	a	split
to	extract	the	version	8.0.	Finally	we	print	it	out.

So,	run	it	like	it	is	shown	here:

$	python3.4	get_debian_version.py

Codename:	jessie

Version:	8.0

Magnificent.	Well,	darned	nifty,	at	least.	There	are	some	third-party	packages	available
which	can	speed	up	scraping	and	form	submission,	two	popular	ones	are	Mechanize	and
Scrapy.	Check	them	out	at	http://wwwsearch.sourceforge.net/mechanize/,	and
http://scrapy.org.

http://wwwsearch.sourceforge.net/mechanize/
http://scrapy.org

With	great	power…
As	an	HTTP	client	developer,	you	may	have	different	priorities	to	the	webmasters	that	run
websites.	A	webmaster	will	typically	provide	a	site	for	human	users;	possibly	offering	a
service	designed	for	generating	revenue,	and	it	is	most	likely	that	all	this	will	need	to	be
done	with	the	help	of	very	limited	resources.	They	will	be	interested	in	analyzing	how
humans	use	their	site,	and	may	have	areas	of	the	site	they	would	prefer	that	automated
clients	didn’t	explore.

HTTP	clients	that	automatically	parse	and	download	pages	on	websites	are	called	various
things,	such	as	bots,	web	crawlers,	and	spiders.	Bots	have	many	legitimate	uses.	All	the
search	engine	providers	make	extensive	use	of	bots	for	crawling	the	web	and	building
their	huge	page	indexes.	Bots	can	be	used	to	check	for	dead	links,	and	to	archive	sites	for
repositories,	such	as	the	Wayback	Machine.	But,	there	are	also	many	uses	that	might	be
considered	as	illegitimate.	Automatically	traversing	an	information	service	to	extract	the
data	on	its	pages	and	then	repackaging	that	data	for	presentation	elsewhere	without
permission	of	the	site	owners,	downloading	large	batches	of	media	files	in	one	go	when
the	spirit	of	the	service	is	online	viewing	and	so	on	could	be	considered	as	illegitimate.
Some	sites	have	terms	of	service	which	explicitly	bar	automated	downloads.	Although
some	actions	such	as	copying	and	republishing	copyrighted	material	are	clearly
illegitimate,	some	other	actions	are	subject	to	interpretation.	This	gray	area	is	a	subject	of
ongoing	debate,	and	it	is	unlikely	that	it	will	ever	be	resolved	to	everyone’s	satisfaction.

However,	even	when	they	do	serve	a	legitimate	purpose,	in	general,	bots	do	make
webmasters	lives	somewhat	more	difficult.	They	pollute	the	webserver	logs,	which
webmasters	use	for	calculating	statistics	on	how	their	site	is	being	used	by	their	human
audience.	Bots	also	consume	bandwidth	and	other	server	resources.

Using	the	methods	that	we	are	looking	at	in	this	chapter,	it	is	quite	straightforward	to	write
a	bot	that	performs	many	of	the	aforementioned	functions.	Webmasters	provide	us	with
services	that	we	will	be	using,	so	in	return,	we	should	respect	the	aforementioned	areas
and	design	our	bots	in	such	a	way	that	they	impact	them	as	little	as	possible.

Choosing	a	User	Agent
There	are	a	few	things	that	we	can	do	to	help	our	webmasters	out.	We	should	always	pick
an	appropriate	user	agent	for	our	client.	The	principle	way	in	which	webmasters	filter	out
bot	traffic	from	their	logfiles	is	by	performing	user	agent	analysis.

There	are	lists	of	the	user	agents	of	known	bots,	for	example,	one	such	list	can	be	found	at
http://www.useragentstring.com/pages/Crawlerlist/.

Webmasters	can	use	these	in	their	filters.	Many	webmasters	also	simply	filter	out	any	user
agents	that	contain	the	words	bot,	spider,	or	crawler.	So,	if	we	are	writing	an	automated
bot	rather	than	a	browser,	then	it	will	make	the	webmasters’	lives	a	little	easier	if	we	use	a
user	agent	that	contains	one	of	these	words.	Many	bots	used	by	the	search	engine
providers	follow	this	convention,	some	examples	are	listed	here:

Mozilla/5.0	compatible;	bingbot/2.0;	http://www.bing.com/bingbot.htm

Baiduspider:	http://www.baidu.com/search/spider.htm

Mozilla/5.0	compatible;	Googlebot/2.1;	http://www.google.com/bot.html

There	are	also	some	guidelines	in	section	5.5.3	of	the	HTTP	RFC	7231.

http://www.useragentstring.com/pages/Crawlerlist/

The	Robots.txt	file
There	is	an	unofficial	but	standard	mechanism	to	tell	bots	if	there	are	any	parts	of	a
website	that	they	should	not	crawl.	This	mechanism	is	called	robots.txt,	and	it	takes	the
form	of	a	text	file	called,	unsurprisingly,	robots.txt.	This	file	always	lives	in	the	root	of	a
website	so	that	bots	can	always	find	it.	It	has	rules	that	describe	the	accessible	parts	of	the
website.	The	file	format	is	described	at	http://www.robotstxt.org.

The	Python	standard	library	provides	the	urllib.robotparser	module	for	parsing	and
working	with	robots.txt	files.	You	can	create	a	parser	object,	feed	it	a	robots.txt	file
and	then	you	can	simply	query	it	to	see	whether	a	given	URL	is	permitted	for	a	given	user
agent.	A	good	example	can	be	found	in	the	documentation	in	the	standard	library.	If	you
check	every	URL	that	your	client	might	want	to	access	before	you	access	it,	and	honor	the
webmasters	wishes,	then	you’ll	be	helping	them	out.

Finally,	since	we	may	be	making	quite	a	lot	of	requests	as	we	test	out	our	fledgling	clients,
it’s	a	good	idea	to	make	local	copies	of	the	web	pages	or	the	files	that	you	want	your	client
to	parse	and	test	it	against	them.	In	this	way,	we’ll	be	saving	bandwidth	for	ourselves	and
for	the	websites.

http://www.robotstxt.org

Summary
We’ve	covered	a	lot	of	ground	in	this	chapter,	but	you	should	now	be	able	to	start	making
real	use	of	the	web	APIs	that	you	encounter.

We	looked	at	XML,	how	to	construct	documents,	parse	them	and	extract	data	from	them
by	using	the	ElementTree	API.	We	looked	at	both	the	Python	ElementTree
implementation	and	lxml.	We	also	looked	at	how	the	XPath	query	language	can	be	used
efficiently	for	extracting	information	from	documents.

We	looked	at	the	Amazon	S3	service	and	wrote	a	client	that	lets	us	perform	basic
operations,	such	as	creating	buckets,	and	uploading	and	downloading	files	through	the	S3
REST	API.	We	learned	about	setting	access	permissions	and	setting	content	types,	such
that	the	files	work	properly	in	web	browsers.

We	looked	at	the	JSON	data	format,	how	to	convert	Python	objects	into	the	JSON	data
format	and	how	to	convert	them	back	to	Python	objects.

We	then	explored	the	Twitter	API	and	wrote	an	on-demand	world	clock	service,	through
which	we	learned	how	to	read	and	process	tweets	for	an	account,	and	how	to	send	a	tweet
as	a	reply.

We	saw	how	to	extract	or	scrape	information	from	the	HTML	source	of	web	pages.	We
saw	how	to	work	with	HTML	when	using	ElementTree	and	the	lxml	HTML	parser.	We
also	learned	how	to	use	XPath	to	help	make	this	process	more	efficient.

And	finally,	we	looked	at	how	we	can	give	back	to	the	webmasters	that	provide	us	with	all
the	data.	We	discussed	a	few	ways	in	which	we	can	code	our	clients	to	make	the
webmasters	lives	a	little	easier	and	respect	how	they	would	like	us	to	use	their	sites.

So,	that’s	it	for	HTTP	for	now.	We’ll	re-visit	HTTP	in	Chapter	9,	Applications	for	the	Web,
where	we’ll	be	looking	at	using	Python	for	constructing	the	server-side	of	web
applications.	In	the	next	chapter,	we’ll	discuss	the	other	great	workhorse	of	the	Internet:	e-
mail.

Chapter	4.	Engaging	with	E-mails
E-mail	is	one	of	the	most	popular	ways	of	digital	communication.	Python	has	a	rich
number	of	built-in	libraries	for	dealing	with	e-mails.	In	this	chapter,	we	will	learn	how	to
use	Python	to	compose,	send,	and	retrieve	e-mails.	The	following	topics	will	be	covered	in
this	chapter:

Sending	e-mails	with	SMTP	through	the	smtplib	library
Securing	e-mails	transport	with	TLS
Retrieving	e-mails	by	using	POP3	with	poplib
Retrieving	e-mails	by	using	IMAP	with	imapclient
Manipulating	e-mails	on	the	server	with	IMAP
Sending	e-mails	with	the	help	of	the	logging	module

E-mail	terminologies
Before	we	start	composing	our	first	e-mail	with	the	help	of	Python,	let	us	revisit	some	of
the	elementary	concepts	of	e-mail.	Often,	an	end-user	uses	a	piece	of	software	or	a
graphical	user	interface	(GUI)	for	composing,	sending,	and	receiving	e-mails.	This	piece
of	software	is	known	as	an	e-mail	client,	for	example,	Mozilla	Thunderbird,	Microsoft
Outlook,	and	so	on	are	e-mail	clients.	The	same	tasks	can	be	done	by	a	web	interface,	that
is,	a	webmail	client	interface.	Some	common	examples	of	these	are:	Gmail,	Yahoo	mail,
Hotmail	and	so	on.

The	mail	that	you	send	from	your	client	interface	does	not	reach	the	receiver’s	computer
directly.	Your	mail	travels	through	a	number	of	specialized	e-mail	servers.	These	servers
run	a	piece	of	software	called	the	Mail	Transfer	Agent	(MTA),	and	its	primary	job	is	to
route	the	e-mail	to	the	appropriate	destinations	by	analyzing	the	mail	header,	among	other
things.

Lots	of	other	things	also	happen	en-route,	and	then	the	mail	reaches	the	recipient’s	local	e-
mail	gateway.	Then,	the	recipient	can	retrieve	the	e-mail	by	using	his	or	her	e-mail	client.

A	few	protocols	are	involved	in	the	aforementioned	process.	The	most	common	of	those
have	been	listed	here:

Simple	Mail	Transfer	Protocol	(SMTP):	The	SMTP	protocol	is	used	by	the	MTA
for	delivering	your	e-mail	to	the	recipient’s	e-mail	server.	The	SMTP	protocol	can
only	be	used	for	sending	e-mails	from	one	host	to	another.
Post	Office	Protocol	3	(POP3):	The	POP3	protocol	provides	a	simple	and
standardized	way	for	the	users	to	gain	access	to	the	mailboxes	and	then	download	the
messages	to	their	computers.	When	using	the	POP3	protocol,	your	e-mail	messages
will	be	downloaded	from	the	Internet	service	provider’s	(ISP)	mail	server	to	the	local
computer.	You	can	also	leave	the	copies	of	your	e-mails	on	the	ISP	server.
Internet	Message	Access	Protocol	(IMAP):	The	IMAP	protocol	also	provides	a
simple	and	standardized	way	for	accessing	your	e-mail	from	the	ISP’s	local	server.
IMAP	is	a	client/server	protocol	in	which	the	e-mails	are	received	and	held	for	you
by	your	ISP.	As	this	requires	only	a	small	data	transfer,	this	scheme	works	well	even
over	a	slow	connection,	such	as	the	mobile	phone	network.	Only	if	you	send	a
request	to	read	a	specific	e-mail,	that	email	message	will	be	downloaded	from	the
ISP.	You	can	also	do	some	other	interesting	things,	such	as	creating	and	manipulating
folders	or	mailboxes	on	the	server,	deleting	messages,	and	so	on.

Python	has	three	modules,	smtplib,	poplib,	and	imaplib,	which	support	SMTP,	POP3,
and	the	IMAP	protocols	respectively.	Each	module	has	options	for	transmitting	the
information	securely	by	using	the	Transport	Layer	Security	(TLS)	protocol.	Each
protocol	also	uses	some	form	of	authentication	for	ensuring	the	confidentiality	of	the	data.

Sending	e-mails	with	SMTP
We	can	send	an	e-mail	from	a	Python	script	by	using	smtplib	and	e-mail	packages.	The
smtplib	module	provides	an	SMTP	objects	which	is	used	for	sending	mail	by	using	either
an	SMTP	or	an	Extended	SMTP	(ESMTP)	protocol.	The	e-mail	module	helps	us	in
constructing	the	e-mail	messages	with	the	help	of	the	various	header	information	and
attachments.	This	module	conforms	to	the	Internet	Message	Format	(IMF)	described	at
http://tools.ietf.org/html/rfc2822.html.

http://tools.ietf.org/html/rfc2822.html

Composing	an	e-mail	message
Let	us	construct	the	e-mail	message	by	using	classes	from	the	email	module.	The
email.mime	module	provides	classes	for	creating	the	e-mail	and	MIME	objects	from
scratch.	MIME	is	an	acronym	for	Multi-purpose	Internet	Mail	Extensions.	This	is	an
extension	of	the	original	Internet	e-mail	protocol.	This	is	widely	used	for	exchanging
different	kinds	of	data	files,	such	as	audio,	video,	images,	applications,	and	so	on.

Many	classes	have	been	derived	from	the	MIME	base	class.	We	will	use	an	SMTP	client
script	using	email.mime.multipart.MIMEMultipart()	class	as	an	example.	It	accepts
passing	the	e-mail	header	information	through	a	keyword	dictionary.	Let’s	have	a	look	at
how	we	can	specify	an	e-mail	header	by	using	the	MIMEMultipart()	object.	Multi-part
mime	refers	to	sending	both	the	HTML	and	the	TEXT	part	of	an	e-mail	message	in	a
single	e-mail.	When	an	e-mail	client	receives	a	multipart	message,	it	accepts	the	HTML
version	if	it	can	render	HTML,	otherwise	it	presents	the	plain	text	version,	as	shown	in	the
following	code	block:

				from	email.mime.multipart	import	MIMEMultipart()

				msg	=	MIMEMultipart()

				msg['To']	=	recipient

				msg['From']	=	sender

				msg['Subject']	=	'Email	subject..'

Now,	attach	a	plain	text	message	to	this	multi-part	message	object.	We	can	wrap	a	plain-
text	message	by	using	the	MIMEText()	object.	The	constructor	of	this	class	takes	the
additional	arguments.	For	example,	we	can	pass	text	and	plain	as	its	arguments.	The	data
of	this	message	can	be	set	by	using	the	set_payload()	method,	as	shown	here:

				part	=	MIMEText('text',	'plain')

				message	=	'Email	message	….'

				part.set_payload(message)

Now,	we	will	attach	the	plain	text	message	to	the	Multi-part	message,	as	shown	here:

				msg.attach(part)

The	message	is	ready	to	be	routed	to	the	destination	mail	server	by	using	one	or	more
SMTP	MTA	servers.	But,	obviously,	the	script	only	talks	to	a	specific	MTA	and	that	MTA
handles	the	routing	of	the	message.

Sending	an	e-mail	message
The	smtplib	module	supplies	us	with	an	SMTP	class,	which	can	be	initialized	by	an
SMTP	server	socket.	Upon	successful	initialization,	this	will	give	us	an	SMTP	session
object.	The	SMTP	client	will	establish	a	proper	SMTP	session	with	the	server.	This	can	be
done	by	using	the	ehlo()	method	for	an	SMTP	session	object.	The	actual	message
sending	will	be	done	by	applying	the	sendmail()	method	to	the	SMTP	session.	So,	a
typical	SMTP	session	will	look	like	the	following:

				session	=	smtplib.SMTP(SMTP_SERVER,	SMTP_PORT)

				session.ehlo()

				session.sendmail(sender,	recipient,	msg.as_string())

				session.quit()

In	our	example	SMTP	client	script,	we	have	made	use	of	Google’s	free	Gmail	service.	If
you	have	a	Gmail	account,	then	you	can	send	an	e-mail	from	a	Python	script	to	that
account	by	using	SMTP.	Your	e-mail	may	get	blocked	initially,	as	Gmail	may	detect	that	it
had	been	sent	from	a	less	secure	e-mail	client.	You	can	change	your	Gmail	account
settings	and	enable	your	account	to	send/receive	e-mails	from	less	secure	e-mail	clients.
You	can	learn	more	about	sending	e-mail	from	an	app	on	the	Google	website,	which	can
be	found	at	https://support.google.com/a/answer/176600?hl=en.

If	you	don’t	have	a	Gmail	account,	then	you	can	use	a	local	SMTP	server	setup	in	a	typical
Linux	box	and	run	this	script.	The	following	code	shows	how	to	send	an	e-mail	through	a
public	SMTP	server:

#!/usr/bin/env	python3

#	Listing	1	–	First	email	client

import	smtplib

from	email.mime.image	import	MIMEImage

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

SMTP_SERVER	=	'aspmx.l.google.com'

SMTP_PORT	=	25

def	send_email(sender,	recipient):

				"""	Send	email	message	"""

				msg	=	MIMEMultipart()

				msg['To']	=	recipient

				msg['From']	=	sender

				subject	=	input('Enter	your	email	subject:	')

				msg['Subject']	=	subject

				message	=	input('Enter	your	email	message.	Press	Enter	when	finished.	

')

				part	=	MIMEText('text',	"plain")

				part.set_payload(message)

				msg.attach(part)

				#	create	smtp	session

				session	=	smtplib.SMTP(SMTP_SERVER,	SMTP_PORT)

				session.ehlo()

https://support.google.com/a/answer/176600?hl=en

				#session.set_debuglevel(1)

				#	send	mail

				session.sendmail(sender,	recipient,	msg.as_string())

				print("You	email	is	sent	to	{0}.".format(recipient))

				session.quit()

if	__name__	==	'__main__':

				sender	=	input("Enter	sender	email	address:	")

				recipient	=	input("Enter	recipient	email	address:	")

				send_email(sender,	recipient)

If	you	run	this	script,	then	you	can	see	that	the	output	is	similar	to	what	is	mentioned	here.
For	the	sake	of	anonymity,	real	e-mail	addresses	have	not	been	shown	in	the	following
example:

$	python3	smtp_mail_sender.py	

Enter	sender	email	address:	<SENDER>@gmail.com	

Enter	recipeint	email	address:	<RECEIVER>@gmail.com

Enter	your	email	subject:	Test	mail

Enter	your	email	message.	Press	Enter	when	finished.	This	message	can	be	

ignored

You	email	is	sent	to	<RECEIVER>@gmail.com.

This	script	will	send	a	very	simple	e-mail	message	by	using	Python’s	standard	library
module,	smtplib.	For	composing	the	message,	MIMEMultipart	and	MIMEText	classes	have
been	imported	from	the	email.mime	submodule.	This	submodule	has	various	types	of
classes	for	composing	e-mail	messages	with	different	types	of	attachments,	for	example,
MIMEApplication(),	MIMEAudio(),	MIMEImage(),	and	so	on.

In	this	example,	the	send_mail()	function	has	been	called	by	two	arguments:	sender	and
receiver.	Both	of	these	arguments	are	e-mail	addresses.	An	e-mail	message	is	constructed
by	the	MIMEMultipart()	message	class.	The	essential	headers,	such	as	To,	From,	and
Subject	have	been	added	to	this	class	namespace.	The	body	of	the	message	is	composed
with	the	instance	of	the	MIMEText()	class.	This	is	done	by	the	class	set_payload()
method.	Then,	this	payload	is	attached	to	the	main	message	by	the	attach()	method.

In	order	to	communicate	with	the	SMTP	server,	a	session	with	the	server	will	be	created
by	instantiating	the	smtplib	module’s	SMTP()	class.	The	server	name	and	the	port
arguments	will	be	passed	to	the	constructor.	According	to	the	SMTP	protocol,	an	extended
hello	message	through	ehlo()	method	will	be	sent	by	the	client	to	the	server.	The	message
will	be	sent	by	the	sendmail()	method.

Notice	that	if	the	set_debuglevel()	method	is	called	on	an	SMTP	session	object,	then	it
will	produce	additional	debug	messages.	The	line	is	commented	out	in	the	preceding
example.	Un-commenting	that	line	will	produce	a	debug	message	such	as:

$	python3	smtp_mail_sender.py	

Enter	sender	email	address:	<SENDER>@gmail.com

Enter	recipeint	email	address:	<RECEIVER>@gmail.com

Enter	your	

email	subject:	Test	email

Enter	your	email	message.	Press	Enter	when	finished.	This	is	a	test	email

send:	'mail	FROM:<SENDER@gmail.com>	size=339\r\n'

reply:	b'250	2.1.0	OK	hg2si4622244wib.38	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.1.0	OK	hg2si4622244wib.38	-	gsmtp'

send:	'rcpt	TO:<RECEIVER@gmail.com>\r\n'

reply:	b'250	2.1.5	OK	hg2si4622244wib.38	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.1.5	OK	hg2si4622244wib.38	-	gsmtp'

send:	'data\r\n'

reply:	b'354		Go	ahead	hg2si4622244wib.38	-	gsmtp\r\n'

reply:	retcode	(354);	Msg:	b'Go	ahead	hg2si4622244wib.38	-	gsmtp'

data:	(354,	b'Go	ahead	hg2si4622244wib.38	-	gsmtp')

send:	'Content-Type:	multipart/mixed;	

boundary="===============1431208306=="\r\nMIME-Version:	1.0\r\nTo:	

RECEIVER@gmail.com\r\nFrom:	SENDER@gmail.com\r\nSubject:	Test		

email\r\n\r\n--===============1431208306==\r\nContent-Type:	text/plain;	

charset="us-ascii"\r\nMIME-Version:	1.0\r\nContent-	Transfer-Encoding:	

7bit\r\n\r\nThis	is	a	test	email\r\n--	===============1431208306==--

\r\n.\r\n'

reply:	b'250	2.0.0	OK	1414233177	hg2si4622244wib.38	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.0.0	OK	1414233177	hg2si4622244wib.38	-	

gsmtp'

data:	(250,	b'2.0.0	OK	1414233177	hg2si4622244wib.38	-	gsmtp')

You	email	is	sent	to	RECEIVER@gmail.com.

send:	'quit\r\n'

reply:	b'221	2.0.0	closing	connection	hg2si4622244wib.38	-	gsmtp\r\n'

reply:	retcode	(221);	Msg:	b'2.0.0	closing	connection	hg2si4622244wib.38	-	

gsmtp'

This	is	interesting	because	the	message	has	been	sent	through	a	public	SMTP	server	in	a
step-by-step	fashion.

Sending	e-mails	securely	with	TLS
TLS	protocol	is	a	successor	of	SSL	or	Secure	Socket	Layer.	This	ensures	that	the
communication	between	the	client	and	the	server	is	secure.	This	is	done	by	sending	the
message	in	an	encrypted	format	so	that	unauthorized	people	cannot	see	the	message.	It	is
not	difficult	to	use	TLS	with	smtplib.	After	you	create	an	SMTP	session	object,	you	need
to	call	the	starttls()	method.	Before	sending	an	e-mail,	you	need	to	login	to	the	server
by	using	the	SMTP	server	credentials.

Here	is	an	example	for	the	second	e-mail	client:

#!/usr/bin/env	python3

#	Listing	2

import	getpass

import	smtplib

from	email.mime.image	import	MIMEImage

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

SMTP_SERVER	=	'smtp.gmail.com'

SMTP_PORT	=	587	#	ssl	port	465,	tls	port	587

def	send_email(sender,	recipient):

				"""	Send	email	message	"""

				msg	=	MIMEMultipart()

				msg['To']	=	recipient

				msg['From']	=	sender

				msg['Subject']	=	input('Enter	your	email	subject:	')

				message	=	input('Enter	your	email	message.	Press	Enter	when	finished.	

')

				part	=	MIMEText('text',	"plain")

				part.set_payload(message)

				msg.attach(part)

				#	create	smtp	session

				session	=	smtplib.SMTP(SMTP_SERVER,	SMTP_PORT)

				session.set_debuglevel(1)

				session.ehlo()

				session.starttls()

				session.ehlo

				password	=	getpass.getpass(prompt="Enter	you	email	password:	")	

				#	login	to	server

				session.login(sender,	password)

				#	send	mail

				session.sendmail(sender,	recipient,	msg.as_string())

				print("You	email	is	sent	to	{0}.".format(recipient))

				session.quit()

if	__name__	==	'__main__':

				sender	=	input("Enter	sender	email	address:	")

				recipient	=	input("Enter	recipeint	email	address:	")

				send_email(sender,	recipient)

The	preceding	code	is	similar	to	our	first	example,	except	for	the	authentication	to	the

server.	In	this	case,	the	SMTP	user	is	authenticated	against	the	server.	If	we	run	the	script
after	turning	on	the	SMTP	debugging,	then	we	would	be	seeing	an	output	similar	to	the
following:

$	python3	smtp_mail_sender_tls.py	

Enter	sender	email	address:	SENDER@gmail.com

Enter	recipeint	email	address:	RECEPIENT@gmail.com

Enter	your	email	subject:	Test	email

Enter	your	email	message.	Press	Enter	when	finished.	This	is	a	test	email	

that	can	be	ignored.

After	the	user	input,	communication	with	the	server	will	begin.	It	will	start	by	the	ehlo()
method.	In	response	to	this	command,	the	SMTP	server	will	send	a	few	response	lines
with	the	return	code	250.	This	response	will	include	the	features	supported	by	the	server.

The	summary	of	these	responses	will	indicate	that	the	server	is	ready	to	proceed	with	the
client,	as	shown	in	the	following:

send:	'ehlo	debian6box.localdomain.loc\r\n'

reply:	b'250-mx.google.com	at	your	service,	[77.233.155.107]\r\n'

reply:	b'250-SIZE	35882577\r\n'

reply:	b'250-8BITMIME\r\n'

reply:	b'250-STARTTLS\r\n'

reply:	b'250-ENHANCEDSTATUSCODES\r\n'

reply:	b'250-PIPELINING\r\n'

reply:	b'250-CHUNKING\r\n'

reply:	b'250	SMTPUTF8\r\n'

reply:	retcode	(250);	Msg:	b'mx.google.com	at	your	service,	

[77.233.155.107]\nSIZE	

35882577\n8BITMIME\nSTARTTLS\nENHANCEDSTATUSCODES\nPIPELINING\	

nCHUNKING\nSMTPUTF8'

After	the	initial	command,	the	client	will	use	the	starttls()	method	to	upgrade	the
connection	to	TLS,	as	shown	here:

send:	'STARTTLS\r\n'

reply:	b'220	2.0.0	Ready	to	start	TLS\r\n'

reply:	retcode	(220);	Msg:	b'2.0.0	Ready	to	start	TLS'

Enter	you	email	password:	

send:	'ehlo	debian6box.localdomain.loc\r\n'

reply:	b'250-mx.google.com	at	your	service,	[77.233.155.107]\r\n'

reply:	b'250-SIZE	35882577\r\n'

reply:	b'250-8BITMIME\r\n'

reply:	b'250-AUTH	LOGIN	PLAIN	XOAUTH	XOAUTH2	PLAIN-CLIENTTOKEN	

OAUTHBEARER\r\n'

reply:	b'250-ENHANCEDSTATUSCODES\r\n'

reply:	b'250-PIPELINING\r\n'

reply:	b'250-CHUNKING\r\n'

reply:	b'250	SMTPUTF8\r\n'

reply:	retcode	(250);	Msg:	b'mx.google.com	at	your	service,	

[77.233.155.107]\nSIZE	35882577\n8BITMIME\nAUTH	LOGIN	PLAIN	XOAUTH	XOAUTH2	

PLAIN-CLIENTTOKEN	

OAUTHBEARER\nENHANCEDSTATUSCODES\nPIPELINING\nCHUNKING\nSMTPUTF8'

In	the	authentication	phase,	the	authentication	data	is	sent	by	the	client-side	script	with	the

help	of	the	login()	method.	Note	that	the	authentication	token	is	a	base-64	encoded	string
and	the	username	and	password	are	separated	by	a	null	byte.	There	other	supported
authentication	protocols	exists	for	the	sophisticated	clients.	The	following	is	the	example
of	authentication	token:

send:	'AUTH	PLAIN	A…dvXXDDCCD…....sscdsvsdvsfd…12344555\r\n'

reply:	b'235	2.7.0	Accepted\r\n'

reply:	retcode	(235);	Msg:	b'2.7.0	Accepted'

After	the	client	is	authenticated,	it	can	send	e-mail	messages	by	using	the	sendmail()
method.	Three	arguments	are	passed	to	this	method,	sender,	recipient,	and	the	message.
The	sample	output	is	shown	here:

send:	'mail	FROM:<SENDER@gmail.com>	size=360\r\n'

reply:	b'250	2.1.0	OK	xw9sm8487512wjc.24	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.1.0	OK	xw9sm8487512wjc.24	-	gsmtp'

send:	'rcpt	TO:<RECEPIENT@gmail.com>\r\n'

reply:	b'250	2.1.5	OK	xw9sm8487512wjc.24	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.1.5	OK	xw9sm8487512wjc.24	-	gsmtp'

send:	'data\r\n'

reply:	b'354		Go	ahead	xw9sm8487512wjc.24	-	gsmtp\r\n'

reply:	retcode	(354);	Msg:	b'Go	ahead	xw9sm8487512wjc.24	-	gsmtp'

data:	(354,	b'Go	ahead	xw9sm8487512wjc.24	-	gsmtp')

send:	'Content-Type:	multipart/mixed;	

boundary="===============1501937935=="\r\nMIME-Version:	1.0\r\n

To:	<Output	omitted>-===============1501937935==--\r\n.\r\n'

reply:	b'250	2.0.0	OK	1414235750	xw9sm8487512wjc.24	-	gsmtp\r\n'

reply:	retcode	(250);	Msg:	b'2.0.0	OK	1414235750	xw9sm8487512wjc.24	-	

gsmtp'

data:	(250,	b'2.0.0	OK	1414235750	xw9sm8487512wjc.24	-	gsmtp')

You	email	is	sent	to	RECEPIENT@gmail.com.

send:	'quit\r\n'

reply:	b'221	2.0.0	closing	connection	xw9sm8487512wjc.24	-	gsmtp\r\n'

reply:	retcode	(221);	Msg:	b'2.0.0	closing	connection	xw9sm8487512wjc.24	-	

gsmtp'

Retrieving	e-mails	by	using	POP3	with
poplib
The	stored	e-mail	messages	can	be	downloaded	and	read	by	the	local	computer.	The	POP3
protocol	can	be	used	to	download	the	messages	from	the	e-mail	server.	Python	has	a
module	called	poplib,	and	it	can	be	used	for	this	purpose.	This	module	provides	two	high-
level	classes,	POP()	and	POP3_SSL(),which	implement	the	POP3	and	POP3S	protocols
respectively	for	communicating	with	a	POP3/POP3S	server.	It	accepts	three	arguments,
host,	port,	and	timeout.	If	port	is	omitted,	then	the	default	port	(110)	can	be	used.	The
optional	timeout	parameter	determines	the	length	(in	seconds)	of	the	connection	timeout	at
the	server.

The	secure	version	of	POP3()	is	its	subclass	POP3_SSL().	It	takes	additional	parameters,
such	as	keyfile	and	certfile,	which	are	used	for	supplying	the	SSL	certificate	files,	namely
the	private	key	and	certificate	chain	file.

Writing	for	a	POP3	client	is	also	very	straightforward.	To	do	this,	instantiate	a	mailbox
object	by	initializing	the	POP3()	or	POP3_SSL()	class.	Then,	invoke	the	user()	and
pass_()	methods	to	login	to	the	server	by	using	the	following	command:

		mailbox	=	poplib.POP3_SSL(<POP3_SERVER>,	<SERVER_PORT>)	

		mailbox.user('username')

							mailbox.pass_('password')

Now,	you	can	call	the	various	methods	for	manipulating	your	accounts	and	messages.	A
few	interesting	methods	have	been	listed	here:

stat():	This	method	returns	the	mailbox	status	according	to	tuples	of	two	integers,
that	is,	the	message	count	and	the	size	of	the	mailbox.
list():	This	method	sends	a	request	for	getting	a	message	list,	which	has	been
demonstrated	in	the	example	shown	later	in	this	section.
retr():	This	method	gives	an	argument	message	a	number	that	indicates	the	message
that	has	to	be	retrieved.	It	also	marks	the	message	as	read.
dele():	This	method	provides	an	argument	for	the	message	that	has	to	be	deleted.	On
many	POP3	servers,	the	deletion	is	not	performed	until	QUIT.	You	can	reset	the
delete	flag	by	using	the	rset()	method.
quit():	This	method	takes	you	off	the	connection	by	committing	a	few	changes	and
disconnecting	you	from	the	server.

Let	us	see	how	we	can	read	out	the	e-mail	messages	by	accessing	the	Google’s	secure
POP3	e-mail	server.	By	default,	the	POP3	server	listens	on	port	995	securely.	The
following	is	an	example	of	fetching	an	e-mail	by	using	POP3:

#!/usr/bin/env	python3

import	getpass

import	poplib

GOOGLE_POP3_SERVER	=	'pop.googlemail.com'

POP3_SERVER_PORT	=	'995'

def	fetch_email(username,	password):	

				mailbox	=	poplib.POP3_SSL(GOOGLE_POP3_SERVER,	POP3_SERVER_PORT)	

				mailbox.user(username)

				mailbox.pass_(password)	

				num_messages	=	len(mailbox.list()[1])

				print("Total	emails:	{0}".format(num_messages))

				print("Getting	last	message")	

				for	msg	in	mailbox.retr(num_messages)[1]:

								print(msg)

				mailbox.quit()

if	__name__	==	'__main__':

				username	=	input("Enter	your	email	user	ID:	")

				password	=	getpass.getpass(prompt="Enter	your	email	password:				")	

				fetch_email(username,	password)

As	you	can	see	in	the	preceding	code,	the	fetch_email()	function	has	created	a	mailbox
object	by	calling	POP3_SSL()	along	with	the	server	socket.	The	username	and	the
password	are	set	on	this	object	by	calling	the	user()	and	pass_()	method.	Upon
successful	authentication,	we	can	invoke	the	POP3	commands	by	using	methods,	such	as
the	list()	method,	which	is	called	to	list	the	e-mails.	In	this	example,	the	total	number	of
messages	has	been	displayed	on	the	screen.	Then,	the	retr()	method	has	been	used	for
retrieving	the	content	of	a	single	message.

A	sample	output	has	been	shown	here:

$	python3	fetch_email_pop3.py	

Enter	your	email	user	ID:	<PERSON1>@gmail.com

Enter	your	email	password:	

Total	emails:	330

Getting	last	message

b'Received:	by	10.150.139.7	with	HTTP;	Tue,	7	Oct	2008	13:20:42	-0700	

(PDT)'

b'Message-ID:	<fc9dd8650810…@mail.gmail.com>'

b'Date:	Tue,	7	Oct	2008	21:20:42	+0100'

b'From:	"Mr	Person1"	<PERSON1@gmail.com>'

b'To:	"Mr	Person2"	<PERSON2@gmail.com>'

b'Subject:	Re:	Some	subject'

b'In-Reply-To:	<1bec119d…@mail.gmail.com>'

b'MIME-Version:	1.0'

b'Content-Type:	multipart/alternative;	'

b'\tboundary="----=_Part_63057_22732713.1223410842697"'

b'References:	<fc9dd8650809270….@mail.gmail.com>'

b'\t	<1bec119d0810060337p557bc….@mail.gmail.com>'

b'Delivered-To:	PERSON1@gmail.com'

b''

b'------=_Part_63057_22732713.1223410842697'

b'Content-Type:	text/plain;	charset=ISO-8859-1'

b'Content-Transfer-Encoding:	quoted-printable'

b'Content-Disposition:	inline'

b''

b'Dear	Person2,'

Retrieving	e-mails	by	using	IMAP	with
imaplib
As	we	mentioned	previously,	accessing	e-mail	over	the	IMAP	protocol	doesn’t	necessarily
download	the	message	to	the	local	computer	or	mobile	phone.	So,	this	can	be	very
efficient,	even	when	used	over	any	low	bandwidth	Internet	connection.

Python	provides	a	client-side	library	called	imaplib,	which	can	be	used	for	accessing	e-
mails	over	the	IMAP	protocol.	This	provides	the	IMAP4()	class,	which	implements	the
IMAP	protocol.	It	takes	two	arguments,	that	is,	host	and	port	for	implementing	this
protocol.	By	default,	143	has	been	used	as	the	port	number.

The	derived	class,	that	is,	IMAP4_SSL(),	provides	a	secure	version	of	the	IMAP4	protocol.
It	connects	over	an	SSL	encrypted	socket.	So,	you	will	need	an	SSL	friendly	socket
module.	The	default	port	is	993.	Similar	to	POP3_SSL(),	you	can	supply	the	path	to	a
private	key	and	a	certificate	file	path.

A	typical	example	of	what	an	IMAP	client	looks	like	can	be	seen	here:

		mailbox	=	imaplib.IMAP4_SSL(<IMAP_SERVER>,	<SERVER_PORT>)	

						mailbox.login('username',	'password')

						mailbox.select('Inbox')

The	aforementioned	code	will	try	to	initiate	an	IMAP4	encrypted	client	session.	After	the
login()	method	is	successful,	you	can	apply	the	various	methods	on	the	created	object.	In
the	aforementioned	code	snippet,	the	select()	method	has	been	used.	This	will	select	a
user’s	mailbox.	The	default	mailbox	is	called	Inbox.	A	full	list	of	methods	supported	by
this	mailbox	object	is	available	on	the	Python	Standard	library	documentation	page,	which
can	be	found	at	https://docs.python.org/3/library/imaplib.html.

Here,	we	would	like	to	demonstrate	how	you	can	search	the	mailbox	by	using	the
search()	method.	It	accepts	a	character	set	and	search	criterion	parameter.	The	character
set	parameter	can	be	None,	where	a	request	for	no	specific	character	will	be	sent	to	the
server.	However,	at	least	one	criterion	needs	to	be	specified.	For	performing	advance
search	for	sorting	the	messages,	you	can	use	the	sort()	method.

Similar	to	POP3,	we	will	use	a	secure	IMAP	connection	for	connecting	to	the	server	by
using	the	IMAP4_SSL()	class.	Here’s	a	lightweight	example	of	a	Python	IMAP	client:

#!/usr/bin/env	python3

import	getpass

import	imaplib

import	pprint

GOOGLE_IMAP_SERVER	=	'imap.googlemail.com'

IMAP_SERVER_PORT	=	'993'

def	check_email(username,	password):	

				mailbox	=	imaplib.IMAP4_SSL(GOOGLE_IMAP_SERVER,	IMAP_SERVER_PORT)	

				mailbox.login(username,	password)

https://docs.python.org/3/library/imaplib.html

				mailbox.select('Inbox')

				tmp,	data	=	mailbox.search(None,	'ALL')

				for	num	in	data[0].split():

								tmp,	data	=	mailbox.fetch(num,	'(RFC822)')

								print('Message:	{0}\n'.format(num))

								pprint.pprint(data[0][1])

								break

				mailbox.close()

				mailbox.logout()

				

if	__name__	==	'__main__':

				username	=	input("Enter	your	email	username:	")

				password	=	getpass.getpass(prompt="Enter	you	account	password:	")

				check_email(username,	password)

In	this	example,	an	instance	of	IMPA4_SSL(),	that	is,	the	mailbox	object,	has	been	created.
In	this,	we	have	taken	the	server	address	and	port	as	arguments.	Upon	successfully
logging	in	with	the	login()	method,	you	can	use	the	select()	method	for	choosing	the
mail	box	folder	that	you	want	to	access.	In	this	example,	the	Inbox	folder	has	been
selected.	In	order	to	read	the	messages,	we	need	to	request	for	the	data	from	the	Inbox.
One	way	to	do	that	is	to	use	the	search()	method.	Upon	the	successful	reception	of	some
mail	metadata,	we	can	use	the	fetch()	method	for	retrieving	the	e-mail	message	envelope
part	and	data.	In	this	example,	the	RFC	822	type	of	standard	text	message	has	been	sought
with	the	help	of	the	fetch()	method.	We	can	use	the	Python	pretty	print	or	the	print
module	for	showing	the	output	on	the	screen.	Finally,	apply	the	close()	and	the	logout()
methods	to	the	mailbox	object.

The	preceding	code	will	display	an	output	similar	to	the	following:

$	python3	fetch_email_imap.py	

Enter	your	email	username:	RECIPIENT@gmail.comn

Enter	you	Google	password:	

Message	b'1'

b'X-Gmail-Received:	3ec65fa310559efe27307d4e37fdc95406deeb5a\r\nDelivered-

To:	RECIPIENT@gmail.com\r\nReceived:	by	10.54.40.10	with	SMTP	id	

n10cs1955wrn;\r\n				[Message	omitted]

Sending	e-mail	attachments
In	the	previous	section,	we	have	seen	how	plain	text	messages	can	be	sent	by	using	the
SMTP	protocol.	In	this	section,	let	us	explore	how	to	send	attachments	through	e-mail
messages.	We	can	use	our	second	example,	in	which	we	have	sent	an	e-mail	by	using
TLS,	for	this.	While	composing	the	e-mail	message,	in	addition	to	adding	a	plain	text
message,	include	the	additional	attachment	field.

In	this	example,	we	can	use	the	MIMEImage	type	for	the	email.mime.image	sub-module.	A
GIF	type	of	image	will	be	attached	to	the	e-mail	message.	It	is	assumed	that	a	GIF	image
can	be	found	anywhere	in	the	file	system	path.	This	file	path	is	generally	taken	on	the
basis	of	the	user	input.

The	following	example	shows	how	to	send	an	attachment	along	with	your	e-mail	message:

#!/usr/bin/env	python3

import	os

import	getpass

import	re

import	sys

import	smtplib

from	email.mime.image	import	MIMEImage

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

SMTP_SERVER	=	'aspmx.l.google.com'

SMTP_PORT	=	25

def	send_email(sender,	recipient):

				"""	Sends	email	message	"""

				msg	=	MIMEMultipart()

				msg['To']	=	recipient

				msg['From']	=	sender

				subject	=	input('Enter	your	email	subject:	')

				msg['Subject']	=	subject

				message	=	input('Enter	your	email	message.	Press	Enter	when					

finished.	')

				part	=	MIMEText('text',	"plain")

				part.set_payload(message)

				msg.attach(part)

				#	attach	an	image	in	the	current	directory

				filename	=	input('Enter	the	file	name	of	a	GIF	image:	')

				path	=	os.path.join(os.getcwd(),	filename)

				if	os.path.exists(path):

								img	=	MIMEImage(open(path,	'rb').read(),	_subtype="gif")

								img.add_header('Content-Disposition',	'attachment',	

filename=filename)

								msg.attach(img)

				#	create	smtp	session

				session	=	smtplib.SMTP(SMTP_SERVER,	SMTP_PORT)

				session.ehlo()

				session.starttls()

				session.ehlo

				#	send	mail

				session.sendmail(sender,	recipient,	msg.as_string())

				print("You	email	is	sent	to	{0}.".format(recipient))

				session.quit()

if	__name__	==	'__main__':

				sender	=	input("Enter	sender	email	address:	")

				recipient	=	input("Enter	recipeint	email	address:	")

				send_email(sender,	recipient)

If	you	run	the	preceding	script,	then	it	will	ask	the	usual,	that	is,	the	e-mail	sender,	the
recipient,	the	user	credentials,	and	the	location	of	the	image	file.

$	python3	smtp_mail_sender_mime.py	

Enter	sender	email	address:	SENDER@gmail.com

Enter	recipeint	email	address:	RECIPIENT@gmail.com

Enter	your	email	subject:	Test	email	with	attachment	

Enter	your	email	message.	Press	Enter	when	finished.	This	is	a	test	email	

with	atachment.

Enter	the	file	name	of	a	GIF	image:	image.gif

You	email	is	sent	to	RECIPIENT@gmail.com.

Sending	e-mails	via	the	logging	module
In	any	modern	programming	language,	the	logging	facilities	are	provided	with	common
features.	Similarly,	Python’s	logging	module	is	very	rich	in	features	and	flexibilities.	We
can	use	the	different	types	of	log	handlers	with	the	logging	module,	such	as	the	console	or
the	file	logging	handler.	One	way	in	which	you	can	maximize	your	logging	benefits	is	by
e-mailing	the	log	messages	to	the	user	just	as	the	log	is	being	produced.	Python’s	logging
module	provides	a	type	of	handler	called	BufferingHandler,	which	is	capable	of
buffering	the	log	data.

An	example	of	extending	BufferingHandler	has	been	displayed	later.	A	child	class	called
BufferingSMTPHandler	is	defined	by	BufferingHandler.	In	this	example,	an	instance	of
the	logger	object	is	created	by	using	the	logging	module.	Then,	an	instance	of
BufferingSMTPHandler	is	tied	to	this	logger	object.	The	logging	level	is	set	to	DEBUG	so
that	it	can	log	any	message.	A	sample	list	of	four	words	has	been	used	for	creating	the	four
log	entries.	Each	log	entry	should	resemble	the	following:

<Timestamp>	INFO		First	line	of	log

This	accumulated	log	message	will	be	emailed	to	a	local	user	as	set	on	top	

of	the	script.

Now,	let	us	take	a	look	at	the	full	code.	The	following	is	an	example	of	sending	an	e-mail
with	the	help	of	the	logging	module:

import	logging.handlers

import	getpass

MAILHOST	=	'localhost'

FROM	=	'you@yourdomain'

TO	=	['%s@localhost'	%getpass.getuser()]	

SUBJECT	=	'Test	Logging	email	from	Python	logging	module	(buffering)'

class	BufferingSMTPHandler(logging.handlers.BufferingHandler):

				def	__init__(self,	mailhost,	fromaddr,	toaddrs,	subject,	capacity):

								logging.handlers.BufferingHandler.__init__(self,	capacity)

								self.mailhost	=	mailhost

								self.mailport	=	None

								self.fromaddr	=	fromaddr

								self.toaddrs	=	toaddrs

								self.subject	=	subject

								self.setFormatter(logging.Formatter("%(asctime)s	%(levelname)-5s	%

(message)s"))

				def	flush(self):

								if	len(self.buffer)	>	0:

												try:

																import	smtplib

																port	=	self.mailport

																if	not	port:

																				port	=	smtplib.SMTP_PORT

																				smtp	=	smtplib.SMTP(self.mailhost,	port)

																				msg	=	"From:	%s\r\nTo:	%s\r\nSubject:	%s\r\n\r\n"	%	

(self.fromaddr,	",".join(self.toaddrs),	self.subject)

																for	record	in	self.buffer:

																				s	=	self.format(record)

																				print(s)

																				msg	=	msg	+	s	+	"\r\n"

																smtp.sendmail(self.fromaddr,	self.toaddrs,	msg)

																smtp.quit()

												except:

																self.handleError(None)	#	no	particular	record

												self.buffer	=	[]

def	test():

				logger	=	logging.getLogger("")

				logger.setLevel(logging.DEBUG)

				logger.addHandler(BufferingSMTPHandler(MAILHOST,	FROM,	TO,	SUBJECT,	

10))

				for	data	in	['First',	'Second',	'Third',	'Fourth']:

								logger.info("%s	line	of	log",	data)

				logging.shutdown()

if	__name__	==	"__main__":

				test()

As	you	can	see,	our	BufferingSMTPHandler	method	only	overrides	one	method,	that	is,
flush().	On	the	constructor,	__init__(),	the	basic	variable	is	setup	as	well	as	the	logging
format	by	using	the	setFormatter()	method.	In	the	flush()	method,	we	have	created	an
instance	of	an	SMTP()	object.	The	SMTP	message	header	has	been	created	by	using	the
data	available.	The	log	message	has	been	appended	to	the	e-mail	message,	and	the
sendmail()	method	has	been	called	to	send	the	e-mail	message.	The	code	in	the	flush()
method	is	wrapped	inside	a	try-except	block.

The	output	of	the	script	discussed	will	be	similar	to	the	following:

$	python3	logger_mail_send.py	

2014-10-25	13:15:07,124	INFO		First	line	of	log

2014-10-25	13:15:07,127	INFO		Second	line	of	log

2014-10-25	13:15:07,127	INFO		Third	line	of	log

2014-10-25	13:15:07,129	INFO		Fourth	line	of	log

Now,	when	you	check	the	e-mail	message	with	the	e-mail	command	(native	to
Linux/UNIX	machines),	you	can	expect	that	the	e-mail	would	have	been	received	by	the
local	user,	as	shown	in	the	following:

$	mail

Mail	version	8.1.2	01/15/2001.		Type	?	for	help.

"/var/mail/faruq":	1	message	1	new

>N		1	you@yourdomain					Sat	Oct	25	13:15			20/786			Test	Logging	email	

from	Python	logging	module	(buffering)

You	can	view	the	content	of	the	message	by	typing	the	message	ID	on	the	command
prompt	with	&,	as	shown	in	the	following	output:

&	1

Message	1:

From	you@yourdomain	Sat	Oct	25	13:15:08	2014

Envelope-to:	faruq@localhost

Delivery-date:	Sat,	25	Oct	2014	13:15:08	+0100

Date:	Sat,	25	Oct	2014	13:15:07	+0100

From:	you@yourdomain

To:	faruq@localhost

Subject:	Test	Logging	email	from	Python	logging	module	(buffering)

2014-10-25	13:15:07,124	INFO		First	line	of	log

2014-10-25	13:15:07,127	INFO		Second	line	of	log

2014-10-25	13:15:07,127	INFO		Third	line	of	log

2014-10-25	13:15:07,129	INFO		Fourth	line	of	log

Finally,	you	can	quit	the	mail	program	by	typing	the	shortcut	q	on	the	command	prompt,
as	shown	here:

&	q

Saved	1	message	in	/home/faruq/mbox

Summary
This	chapter	demonstrates	how	Python	can	interact	with	the	three	major	e-mail	handling
protocols:	SMTP,	POP3,	and	IMAP.	In	each	of	these	cases,	how	to	work	the	client	code
has	been	explained.	Finally,	an	example	for	using	SMTP	in	the	Python’s	logging	module
has	been	shown.

In	the	next	chapter,	you	will	learn	how	to	use	Python	to	work	with	remote	systems	to
perform	various	tasks,	such	as	administrative	tasks	by	using	SSH,	file	transfer	through
FTP,	Samba,	and	so	forth.	Some	remote	monitoring	protocols,	such	as	SNMP,	and	the
authentication	protocols,	such	as	LDAP,	will	also	be	discussed	briefly.	So,	enjoy	writing
more	Python	codes	in	the	next	chapter.

Chapter	5.	Interacting	with	Remote
Systems
If	your	computer	is	connected	to	the	Internet	or	a	local	area	network	(LAN),	then	it’s
time	to	talk	to	the	other	computers	on	the	network.	In	a	typical	home,	office,	or	campus
LAN,	you	will	find	that	many	different	types	of	computers	are	connected	to	the	network.
Some	computers	act	as	the	servers	for	specific	services,	such	as	a	file	server,	a	print	server,
a	user	authentication	management	server,	and	so	on.	In	this	chapter,	we	will	explore	how
the	computers	in	a	network	can	interact	with	each	other	and	how	they	can	access	a	few
services	through	the	Python	scripts.	The	following	task	list	will	give	you	an	overview	of
the	topics	that	will	be	covered	in	this	chapter:

Accessing	SSH	terminals	with	paramiko
Transferring	files	through	SFTP
Transferring	files	with	the	help	of	FTP
Reading	the	SNMP	packets
Reading	the	LDAP	packets
Sharing	the	files	with	the	help	of	SAMBA

This	chapter	requires	quite	a	few	third-party	packages,	such	as	paramiko,	pysnmp,	and	so
on.	You	can	use	your	operating	system’s	package	management	tool	for	installing	them.
Here’s	a	quick	how-to	on	installing	the	paramiko	module	in	Ubuntu	14,	python3,	and	the
other	modules	that	are	required	for	understanding	the	topics	covered	in	this	chapter:

sudo	apt-get	install	python3

sudo	apt-get	install	python3-setuptools

sudo	easy_install3	paramiko

sudo	easy_install3	python3-ldap

sudo	easy_install3	pysnmp

sudo	easy_install3	pysmb

Secure	shell	–	access	using	Python
SSH	has	become	a	very	popular	network	protocol	for	performing	secure	data
communication	between	two	computers.	It	provides	an	excellent	cryptographic	support,	so
that	unrelated	third-parties	cannot	see	the	content	of	the	data	during	the	transmission
process.	Details	of	the	SSH	protocol	can	be	found	in	these	RFC	documents:	RFC4251-
RFC4254,	available	at	http://www.rfc-editor.org/rfc/rfc4251.txt.

Python’s	paramiko	library	provides	a	very	good	support	for	the	SSH-based	network
communication.	You	can	use	Python	scripts	to	benefit	from	the	advantages	of	SSH-based
remote	administration,	such	as	the	remote	command-line	login,	command	execution,	and
the	other	secure	network	services	between	two	networked	computers.	You	may	also	be
interested	in	using	the	pysftp	module,	which	is	based	on	paramiko.	More	details
regarding	this	package	can	be	found	at	PyPI:	https://pypi.python.org/pypi/pysftp/.

The	SSH	is	a	client/server	protocol.	Both	of	the	parties	use	the	SSH	key	pairs	to	encrypt
the	communication.	Each	key	pair	has	one	private	and	one	public	key.	The	public	key	can
be	published	to	anyone	who	may	be	interested	in	that.	The	private	key	is	always	kept
private	and	secure	from	everyone	except	the	owner	of	the	key.

The	SSH	public	and	private	keys	can	be	generated	and	digitally	signed	by	an	external	or
an	internal	certificate	authority.	But	that	brings	a	lot	of	overhead	to	a	small	organization.
So,	alternatively,	the	keys	can	be	generated	randomly	by	utility	tools,	such	as	ssh-keygen.
The	public	key	needs	to	be	available	to	all	participating	parties.	When	the	SSH	client
connects	to	the	server	for	the	first	time,	it	registers	the	public	key	of	the	server	on	a	special
file	called	~/.ssh/known_hosts	file.	So,	the	subsequent	connection	to	the	server	ensures
that	the	client	is	talking	to	the	same	server	as	it	spoke	to	before.	On	the	server	side,	if	you
would	like	to	restrict	access	to	certain	clients	who	have	certain	IP	addresses,	then	the
public	keys	of	the	permitted	hosts	can	be	stored	to	another	special	file	called
ssh_known_hosts	file.	Of	course,	if	you	re-build	the	machines,	such	as	the	server
machine,	then	the	old	public	key	of	the	server	won’t	match	with	that	of	the	one	stored	in
the	~/.ssh/known_hosts	file.	So,	the	SSH	client	will	raise	an	exception	and	prevent	you
from	connecting	to	it.	You	can	delete	the	old	key	from	that	file	and	then	try	to	re-connect,
as	if	for	the	first	time.

We	can	use	the	paramiko	module	to	create	an	SSH	client	and	then	connect	it	to	the	SSH
server.	This	module	will	supply	the	SSHClient()	class.

ssh_client	=	paramiko.SSHClient()

By	default,	the	instance	of	this	client	class	will	reject	the	unknown	host	keys.	So,	you	can
set	up	a	policy	for	accepting	the	unknown	host	keys.	The	built-in	AutoAddPolicy()	class
will	add	the	host	keys	as	and	when	they	are	discovered.	Now,	you	need	to	run	the
set_missing_host_key_policy()	method	along	with	the	following	argument	on	the
ssh_client	object.

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

http://www.rfc-editor.org/rfc/rfc4251.txt
https://pypi.python.org/pypi/pysftp/

If,	you	want	to	restrict	connecting	only	to	certain	hosts,	then	you	can	define	your	own
policy	and	replace	it	with	the	AutoAddPolicy()	class.

You	may	also	be	interested	in	adding	the	system	host	keys	by	using	the
load_system_host_keys()	method.

ssh_client.load_system_host_keys()

So	far,	we	have	discussed	how	to	encrypt	the	connection.	However,	SSH	needs	your
authentication	credentials.	This	means	that	the	client	needs	to	prove	to	the	server	that	a
specific	user	is	talking,	not	someone	else.	This	can	be	done	in	a	few	ways.	The	simplest
way	is	by	using	the	username	and	the	password	combination.	Another	popular	way	is	by
using	the	key-based	authentication	method.	This	means	that	the	user’s	public	key	can	be
copied	to	the	server.	There’s	a	specific	tool	for	doing	that.	This	comes	with	the	later
versions	of	the	SSH.	Here’s	an	example	of	how	to	use	ssh-copy-id.

ssh-copy-id	-i	~/.ssh/id_rsa.pub	faruq@debian6box.localdomain.loc

This	command	will	copy	the	SSH	public	key	of	the	faruq	user	to	a	machine,
debian6box.localdomain.loc:

Here,	we	can	simply	call	the	connect()	method	along	with	the	target	hostname	and	the
SSH	login	credentials.	To	run	any	command	on	the	target	host,	we	need	to	invoke	the
exec_command()	method	by	passing	the	command	as	its	argument.

ssh_client.connect(hostname,	port,	username,	password)

stdin,	stdout,	stderr	=	ssh_client.exec_command(cmd)

The	following	code	listing	shows	how	to	do	SSH	login	to	a	target	host	and	then	run	a
simple	ls	command:

#!/usr/bin/env	python3

import	getpass

import	paramiko

HOSTNAME	=	'localhost'

PORT	=	22

def	run_ssh_cmd(username,	password,	cmd,	hostname=HOSTNAME,	port=PORT):

				ssh_client	=	paramiko.SSHClient()

				ssh_client.set_missing_host_key_policy(\

								paramiko.AutoAddPolicy())

				ssh_client.load_system_host_keys()

				ssh_client.connect(hostname,	port,	username,	password)

				stdin,	stdout,	stderr	=	ssh_client.exec_command(cmd)

				print(stdout.read())

if	__name__	==	'__main__':

				username	=	input("Enter	username:	")

				password	=	getpass.getpass(prompt="Enter	password:	")

				cmd	=	'ls	-l	/dev'

				run_ssh_cmd(username,	password,	cmd)

Before	running	it,	we	need	to	ensure	that	the	SSH	server	daemon	is	running	on	the	target
host	(which	in	this	case	is	the	localhost).	As	shown	in	the	following	screenshot,	we	can
use	the	netstat	command	for	doing	that.	This	command	will	show	all	the	running
services	that	are	listening	to	a	particular	port:

The	preceding	script	will	make	an	SSH	connection	to	the	localhost	and	the	run	the	ls	-l
/dev/	command.	The	output	of	this	script	will	be	similar	to	the	following	screenshot:

Inspecting	the	SSH	packets
It	would	be	very	interesting	to	see	the	network	packet	exchange	between	the	client	and	the
server.	We	can	use	either	the	native	tcpdump	command	or	the	third-party	Wireshark	tool	to
capture	network	packets.	With	tcpdump,	you	can	specify	the	target	network	interface	(-i
lo)	and	the	port	number	(port	22)	options.	In	the	following	packet	capture	session,	five
packet	exchanges	have	been	shown	during	an	SSH	client/server	communication	session:

root@debian6box:~#	tcpdump	-i	lo	port	22

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	lo,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

12:18:19.761292	IP	localhost.50768	>	localhost.ssh:	Flags	[S],	seq	

3958510356,	win	32792,	options	[mss	16396,sackOK,TS	val	57162360	ecr	

0,nop,wscale	6],	length	0

12:18:19.761335	IP	localhost.ssh	>	localhost.50768:	Flags	[S.],	seq	

1834733028,	ack	3958510357,	win	32768,	options	[mss	16396,sackOK,TS	val	

57162360	ecr	57162360,nop,wscale	6],	length	0

12:18:19.761376	IP	localhost.50768	>	localhost.ssh:	Flags	[.],	ack	1,	win	

513,	options	[nop,nop,TS	val	57162360	ecr	57162360],	length	0

12:18:19.769430	IP	localhost.50768	>	localhost.ssh:	Flags	[P.],	seq	1:25,	

ack	1,	win	513,	options	[nop,nop,TS	val	57162362	ecr	57162360],	length	24

12:18:19.769467	IP	localhost.ssh	>	localhost.50768:	Flags	[.],	ack	25,	win	

512,	options	[nop,nop,TS	val	57162362	ecr	57162362],	length	0

Although,	it’s	very	quick	and	easy	to	run	tcpdump,	the	command	does	not	interpret	it	in
the	same	way	as	the	other	GUI	tools,	such	as	Wireshark,	interpret	it.	The	preceding
session	can	be	captured	in	Wireshark,	as	shown	in	the	following	screenshot:

This	clearly	shows	how	the	first	three	packets	complete	the	TCP	handshake	process.	Then,

the	subsequent	SSH	packets	negotiate	the	connection	between	the	client	and	the	server.
It’s	interesting	to	see	how	the	client	and	the	server	negotiate	the	encryption	protocols.	In
this	example,	the	client	port	is	50768	and	the	server	port	is	22.	The	client	first	initiates	the
SSH	packet	exchange	and	then	indicates	that	it	would	like	to	talk	over	the	SSHv2	protocol.
Then,	the	server	agrees	on	that	and	continues	the	packet	exchange.

Transferring	files	through	SFTP
SSH	can	be	used	effectively	for	securely	transferring	files	between	two	computer	nodes.
The	protocol	used	in	this	case	is	the	secure	file	transfer	protocol	(SFTP).	The	Python
paramiko	module	will	supply	the	classes	required	for	creating	the	SFTP	session.	This
session	can	then	perform	a	regular	SSH	login.

ssh_transport	=	paramiko.Transport(hostname,	port)

ssh_transport.connect(username='username',	password='password')

The	SFTP	session	can	be	created	from	the	SSH	transport.	The	paramiko’s	working	in	the
SFTP	session	will	support	the	normal	FTP	commands	such	as	get().

	sftp_session	=	paramiko.SFTPClient.from_transport(ssh_transport)

	sftp_session.get(source_file,	target_file)

As	you	can	see,	the	SFTP	get	command	requires	the	source	file’s	path	and	the	target	file’s
path.	In	the	following	example,	the	script	will	download	a	test.txt	file,	which	is	located
on	the	user’s	home	directory,	through	SFTP:

#!/usr/bin/env	python3

import	getpass

import	paramiko

HOSTNAME	=	'localhost'

PORT	=	22

FILE_PATH	=	'/tmp/test.txt'

def	sftp_download(username,	password,	hostname=HOSTNAME,	port=PORT):

				ssh_transport	=	paramiko.Transport(hostname,	port)

				ssh_transport.connect(username=username,	password=password)

				sftp_session	=	paramiko.SFTPClient.from_transport(ssh_transport)

				file_path	=	input("Enter	filepath:	")	or	FILE_PATH

				target_file	=	file_path.split('/')[-1]

				sftp_session.get(file_path,	target_file)

				print("Downloaded	file	from:	%s"	%file_path)

				sftp_session.close()

				

if	__name__	==	'__main__':

				hostname	=	input("Enter	the	target	hostname:	")

				port	=	input("Enter	the	target	port:	")

				username	=	input("Enter	yur	username:	")

				password	=	getpass.getpass(prompt="Enter	your	password:	")

				sftp_download(username,	password,	hostname,	int(port))

In	this	example,	a	file	has	been	downloaded	with	the	help	of	SFTP.	Notice,	how	paramiko
has	created	the	SFTP	session	by	using	the	SFTPClient.from_transport(ssh_transport)
class.

The	script	can	be	run	as	shown	in	the	following	screenshot.	Here,	we	will	first	create	a
temporary	file	called	/tmp/test.txt,	then	complete	the	SSH	login,	and	then	download
that	file	by	using	SFTP.	Lastly,	we	will	check	the	content	of	the	file.

Transferring	files	with	FTP
Unlike	SFTP,	FTP	uses	the	plain-text	file	transfer	method.	This	means	any	username	or
password	transferred	through	the	wire	can	be	detected	by	an	unrelated	third-party.	Even
though	FTP	is	a	very	popular	file	transfer	protocol,	people	frequently	use	this	for
transferring	a	file	from	their	PCs	to	the	remote	servers.

In	Python,	ftplib	is	a	built-in	module	used	for	transferring	the	files	to	and	from	the
remote	machines.	You	can	create	an	anonymous	FTP	client	connection	with	the	FTP()
class.

ftp_client	=	ftplib.FTP(path,	username,	email)			

Then	you	can	invoke	the	normal	FTP	commands,	such	as	CWD.	In	order	to	download	a
binary	file,	you	need	to	create	a	file-handler	such	as	the	following:

file_handler	=	open(DOWNLOAD_FILE_NAME,	'wb')

In	order	to	retrieve	the	binary	file	from	the	remote	host,	the	syntax	shown	here	can	be	used
along	with	the	RETR	command:

ftp_client.retrbinary('RETR	remote_file_name',	file_handler.write)

In	the	following	code	snippet,	an	example	of	a	full	FTP	file	download	can	be	seen:

#!/usr/bin/env	python

import	ftplib

FTP_SERVER_URL	=	'ftp.kernel.org'

DOWNLOAD_DIR_PATH	=	'/pub/software/network/tftp'

DOWNLOAD_FILE_NAME	=	'tftp-hpa-0.11.tar.gz'

def	ftp_file_download(path,	username,	email):

				#	open	ftp	connection

				ftp_client	=	ftplib.FTP(path,	username,	email)

				#	list	the	files	in	the	download	directory

				ftp_client.cwd(DOWNLOAD_DIR_PATH)

				print("File	list	at	%s:"	%path)

				files	=	ftp_client.dir()

				print(files)

				#	downlaod	a	file

				file_handler	=	open(DOWNLOAD_FILE_NAME,	'wb')

				#ftp_cmd	=	'RETR	%s	'	%DOWNLOAD_FILE_NAME

				ftp_client.retrbinary('RETR	tftp-hpa-0.11.tar.gz',	file_handler.write)

				file_handler.close()

				ftp_client.quit()

if	__name__	==	'__main__':

				ftp_file_download(path=FTP_SERVER_URL,		username='anonymous',	

email='nobody@nourl.com')

The	preceding	code	illustrates	how	an	anonymous	FTP	can	be	downloaded	from
ftp.kernel.org,	which	is	the	official	website	that	hosts	the	Linux	kernel.	The	FTP()	class
takes	three	arguments,	such	as	the	initial	filesystem	path	on	the	remote	server,	the

http://ftp.kernel.org

username,	and	the	email	address	of	the	ftp	user.	For	anonymous	downloads,	no	username
and	password	is	required.	So,	the	script	can	be	downloaded	from	the	tftp-hpa-
0.11.tar.gz	file,	which	can	be	found	on	the	/pub/software/network/tftp	path.

Inspecting	FTP	packets
If	we	capture	the	FTP	session	in	Wireshark	on	port	21	of	the	public	network	interface,	then
we	can	see	how	the	communication	happens	in	plain-text.	This	will	show	you	why	SFTP
should	be	preferred.	In	the	following	figure,	we	can	see	that,	after	successfully
establishing	connection	with	a	client	the	server	sends	the	banner	message:	220	Welcome	to
kernel.org.	Following	this,	the	client	will	anonymously	send	a	request	for	login.	In
response,	the	server	will	ask	for	a	password.	The	client	can	send	the	user’s	e-mail	address
for	authentication.

To	your	surprise,	you	can	see	that	the	password	has	been	sent	in	clear-text.	In	the
following	screenshot,	the	contents	of	the	password	packet	have	been	displayed.	It	shows
the	supplied	fake	e-mail	address,	nobody@nourl.com.

Fetching	Simple	Network	Management
Protocol	data
SNMP	is	a	ubiquitous	network	protocol	that	is	used	by	the	network	routers,	such	as
switches,	servers,	and	so	on,	for	communicating	the	device’s	configuration,	performance
data,	and	the	commands	that	are	meant	for	the	control	devices.	Although	SNMP	starts
with	the	word	simple,	it’s	not	a	simple	protocol.	Internally,	each	device’s	information	is
stored	in	a	sort	of	a	database	of	information	called	the	management	information	base
(MIB).	The	SNMP	protocol	offers	varying	levels	of	security	depending	on	the	protocol
version	number.	In	SNMP	v1	and	v2c,	the	data	is	protected	by	a	pass	phrase	known	as	the
community	string.	In	SNMP	v3,	a	username	and	a	password	are	required	for	storing	the
data.	And,	the	data	can	be	encrypted	with	the	help	of	SSL.	In	our	example,	we	will	use	the
v1	and	v2c	versions	of	the	SNMP	protocol.

SNMP	is	a	client/server-based	network	protocol.	The	server	daemon	provides	the
requested	information	to	the	clients.	In	your	machine,	if	SNMP	has	been	installed	and
configured	properly,	then	you	can	use	the	snmpwalk	utility	command	to	query	the	basic
system	information	by	using	the	following	syntax:

#	snmpwalk	-v2c	-c	public	localhost

iso.3.6.1.2.1.1.1.0	=	STRING:	"Linux	debian6box	2.6.32-5-686	#1	SMP	Tue	May	

13	16:33:32	UTC	2014	i686"

iso.3.6.1.2.1.1.2.0	=	OID:	iso.3.6.1.4.1.8072.3.2.10

iso.3.6.1.2.1.1.3.0	=	Timeticks:	(88855240)	10	days,	6:49:12.40

iso.3.6.1.2.1.1.4.0	=	STRING:	"Me	<me@example.org>"

iso.3.6.1.2.1.1.5.0	=	STRING:	"debian6box"

iso.3.6.1.2.1.1.6.0	=	STRING:	"Sitting	on	the	Dock	of	the	Bay"

The	output	of	the	preceding	command	will	show	the	MIB	number	and	its	values.	For
example,	the	MIB	number	iso.3.6.1.2.1.1.1.0	shows	that	it’s	a	string	type	value,	such
as	Linux	debian6box	2.6.32-5-686	#1	SMP	Tue	May	13	16:33:32	UTC	2014	i686.

In	Python,	you	can	use	a	third-party	library	called	pysnmp	for	interfacing	with	the	snmp
daemon.	You	can	install	the	pysnmp	module	by	using	pip.

$	pip	install	pysnmp

This	module	provides	a	useful	wrapper	for	the	snmp	commands.	Let’s	learn	how	to	create
an	snmpwalk	command.	To	begin,	import	a	command	generator.

from	pysnmp.entity.rfc3413.oneliner	import	cmdgen

cmd_generator	=	cmdgen.CommandGenerator()

Then	define	the	necessary	default	values	for	the	connection	assuming	that	the	snmpd
daemon	has	been	running	on	port	161	of	the	local	machine	and	the	community	string	has
been	set	to	public.

SNMP_HOST	=	'localhost'

SNMP_PORT	=	161

SNMP_COMMUNITY	=	'public'

Now	invoke	the	getCmd()	method	with	the	help	of	the	necessary	data.

				error_notify,	error_status,	error_index,	var_binds	=	

cmd_generator.getCmd(

								cmdgen.CommunityData(SNMP_COMMUNITY),

								cmdgen.UdpTransportTarget((SNMP_HOST,	SNMP_PORT)),

								cmdgen.MibVariable('SNMPv2-MIB',	'sysDescr',	0),

								lookupNames=True,	lookupValues=True

)

You	can	see	that	cmdgen	takes	the	following	parameters:

CommunityData():	Set	the	community	string	as	public.
UdpTransportTarget():	This	is	the	host	target,	where	the	snmp	agent	is	running.	This
is	specified	in	a	pair	of	the	hostname	and	the	UDP	port.
MibVariable:	This	is	a	tuple	of	values	that	includes	the	MIB	version	number	and	the
MIB	target	string	(which	in	this	case	is	sysDescr;	this	refers	to	the	description	of	the
system).

The	output	of	this	command	consists	of	a	four-value	tuple.	Out	of	those,	three	are	related
to	the	errors	returned	by	the	command	generator,	and	the	fourth	one	is	related	to	the	actual
variables	that	bind	the	returned	data.

The	following	example	shows	how	the	preceding	method	can	be	used	for	fetching	the
SNMP	host	description	string	from	a	running	SNMP	daemon:

from	pysnmp.entity.rfc3413.oneliner	import	cmdgen

SNMP_HOST	=	'localhost'

SNMP_PORT	=	161

SNMP_COMMUNITY	=	'public'

if	__name__	==	'__manin__':

				cmd_generator	=	cmdgen.CommandGenerator()

				

				error_notify,	error_status,	error_index,	var_binds	=	

cmd_generator.getCmd(

								cmdgen.CommunityData(SNMP_COMMUNITY),

								cmdgen.UdpTransportTarget((SNMP_HOST,	SNMP_PORT)),

								cmdgen.MibVariable('SNMPv2-MIB',	'sysDescr',	0),

								lookupNames=True,	lookupValues=True

)

				

				#	Check	for	errors	and	print	out	results

				if	error_notify:

								print(error_notify)

				elif	error_status:

								print(error_status)

				else:

								for	name,	val	in	var_binds:

												print('%s	=	%s'	%	(name.prettyPrint(),	val.prettyPrint()))

After	running	the	preceding	example,	an	output	similar	to	the	following	will	appear:

$		python	5_4_snmp_read.py

SNMPv2-MIB::sysDescr."0"	=	Linux	debian6box	2.6.32-5-686	#1	SMP	Tue	May	13	

16:33:32	UTC	2014	i686

Inspecting	SNMP	packets
We	can	inspect	the	SNMP	packet	by	capturing	the	packets	on	port	161	of	your	network
interface.	If	the	server	is	running	locally,	then	listening	on	the	loopbook	interface	is
sufficient.	The	snmp-get	request	format	and	the	snmp-get	response	packet	formats,	which
are	produced	by	Wireshak,	is	shown	in	the	following	screenshot:

In	response	to	the	SNMP	get	request	from	the	client,	an	SNMP	get	response	will	be
generated	by	the	server.	This	can	be	seen	in	the	following	screenshot:

Reading	Light-weight	Directory	Access
Protocol	data
LDAP	has	been	used	for	a	long	time	for	accessing	and	managing	distributed	directory
information.	This	is	an	application	level	protocol	that	works	over	the	IP	network.
Directory	service	is	heavily	used	in	organizations	for	managing	the	information	about	the
users,	the	computer	systems,	the	networks,	the	applications,	and	so	on.	The	LDAP
protocol	contains	plenty	of	technical	jargon.	It	is	a	client/server-based	protocol.	So,	the
LDAP	client	will	make	a	request	to	a	properly	configured	LDAP	server.	After	initializing
the	LDAP	connection,	the	connection	will	need	to	be	authenticated	by	using	a	few
parameters.	A	simple	BIND	operation	will	establish	an	LDAP	session.	In	a	simple	case,
you	can	set	up	a	simple	anonymous	BIND	that	would	not	need	no	password	or	any	other
credentials.

If	you	a	run	a	simple	LDAP	query	with	the	help	of	ldapsearch,	then	you	will	see	results
such	as:

#	ldapsearch		-x	-b	"dc=localdomain,dc=loc"	-h	10.0.2.15	-p	389

#	extended	LDIF

#

#	LDAPv3

#	base	<dc=localdomain,dc=loc>	with	scope	subtree

#	filter:	(objectclass=*)

#	requesting:	ALL

#

#	localdomain.loc

dn:	dc=localdomain,dc=loc

objectClass:	top

objectClass:	dcObject

objectClass:	organization

o:	localdomain.loc

dc:	localdomain

#	admin,	localdomain.loc

dn:	cn=admin,dc=localdomain,dc=loc

objectClass:	simpleSecurityObject

objectClass:	organizationalRole

cn:	admin

description:	LDAP	administrator

#	groups,	localdomain.loc

dn:	ou=groups,dc=localdomain,dc=loc

ou:	groups

objectClass:	organizationalUnit

objectClass:	top

#	users,	localdomain.loc

dn:	ou=users,dc=localdomain,dc=loc

ou:	users

objectClass:	organizationalUnit

objectClass:	top

#	admin,	groups,	localdomain.loc

dn:	cn=admin,ou=groups,dc=localdomain,dc=loc

cn:	admin

gidNumber:	501

objectClass:	posixGroup

#	Faruque	Sarker,	users,	localdomain.loc

dn:	cn=Faruque	Sarker,ou=users,dc=localdomain,dc=loc

givenName:	Faruque

sn:	Sarker

cn:	Faruque	Sarker

uid:	fsarker

uidNumber:	1001

gidNumber:	501

homeDirectory:	/home/users/fsarker

loginShell:	/bin/sh

objectClass:	inetOrgPerson

objectClass:	posixAccount

#	search	result

search:	2

result:	0	Success

#	numResponses:	7

#	numEntries:	6

The	preceding	communication	can	be	captured	with	the	help	of	Wireshark.	You	need	to
capture	the	packets	on	port	389.	As	shown	in	the	following	screenshot,	the	LDAP	client-
server	communication	will	be	established	after	a	bindRequest	has	been	successfully	sent.
It’s	not	secure	to	communicate	anonymously	with	the	LDAP	server.	For	the	sake	of
simplicity,	in	the	following	example	the	search	has	been	done	without	binding	with	any	of
the	credentials.

The	Python’s	third-party	python-ldap	package	provides	the	necessary	functionality	for
interacting	with	an	LDAP	server.	You	can	install	this	package	with	the	help	of	pip.

$	pip	install	python-ldap

To	begin	with,	you	will	have	to	initialize	the	LDAP	connection:

import	ldap

			ldap_client	=	ldap.initialize("ldap://10.0.2.15:389/")

Then	the	following	code	will	show	how	a	simple	BIND	operation	can	be	performed:

		ldap_client.simple_bind("dc=localdomain,dc=loc")

Then	you	can	perform	an	ldap	search.	It	requires	you	to	specify	the	necessary	parameters,
such	as	base	DN,	filter,	and	attributes.	Here	is	an	example	of	the	syntax	that	is	required	for
searching	for	the	users	on	an	LDAP	server:

ldap_client.search_s(base_dn,	ldap.SCOPE_SUBTREE,	filter,	attrs)

Here	is	a	complete	example	for	finding	user	information	by	using	the	LDAP	protocol:

import	ldap

#	Open	a	connection

ldap_client	=	ldap.initialize("ldap://10.0.2.15:389/")

#	Bind/authenticate	with	a	user	with	apropriate	rights	to	add	objects

ldap_client.simple_bind("dc=localdomain,dc=loc")

base_dn	=	'ou=users,dc=localdomain,dc=loc'

filter	=	'(objectclass=person)'

attrs	=	['sn']

result	=	ldap_client.search_s(base_dn,	ldap.SCOPE_SUBTREE,	filter,	attrs)

print(result)

The	preceding	code	will	search	the	LDAP	directory	subtree	with	the
ou=users,dc=localdomain,dc=loc	base	DN	and	the	[sn]	attributes.	The	search	is	limited
to	the	person	objects.

Inspecting	LDAP	packets
If	we	analyze	the	communication	between	the	LDAP	client	and	the	server,	then	we	can	see
the	format	of	the	LDAP	search	request	and	response.	The	parameters	that	we	have	used	in
our	code	have	a	direct	relationship	with	the	searchRequest	section	of	an	LDAP	packet.
As	shown	in	the	following	screenshot	produced	by	Wireshark,	it	contains	data,	such	as
baseObject,	scope	and	Filter.

The	LDAP	search	request	generates	a	server	response,	which	has	been	shown	here:

When	the	LDAP	server	returns	the	search	response,	we	can	see	the	format	of	the	response.
As	shown	in	the	preceding	screenshot,	it	contains	the	result	of	the	search	and	the
associated	attributes.

Here	is	an	example	of	searching	a	user	from	an	LDAP	server:

#!/usr/bin/env	python

import	ldap

import	ldap.modlist	as	modlist

LDAP_URI	=	"ldap://10.0.2.15:389/"

BIND_TO	=	"dc=localdomain,dc=loc"

BASE_DN	=	'ou=users,dc=localdomain,dc=loc'

SEARCH_FILTER	=	'(objectclass=person)'

SEARCH_FILTER	=	['sn']

if	__name__	==	'__main__':

				#	Open	a	connection

				l	=	ldap.initialize(LDAP_URI)

				#	bind	to	the	server

				l.simple_bind(BIND_TO)

				result	=	l.search_s(BASE_DN,	ldap.SCOPE_SUBTREE,	SEARCH_FILTER,	

SEARCH_FILTER)

				print(result)

In	a	properly	configured	LDAP	machine,	the	preceding	script	will	return	a	result	that	will
be	similar	to	the	following:

$	python	5_5_ldap_read_record.py

[('cn=Faruque	Sarker,ou=users,dc=localdomain,dc=loc',	{'sn':	['Sarker']})]

Sharing	files	with	SAMBA
In	a	LAN	environment,	you	will	often	need	to	share	the	files	between	different	types	of
machines,	such	as	Windows	and	Linux	machines.	The	protocol	used	for	sharing	the	files
and	the	printers	among	these	machines	is	either	the	Server	Message	Block	(SMB)
protocol	or	its	enhanced	version	called	the	Common	Internet	File	System	(CIFS)
protocol.	CIFS	runs	over	TCP/IP	and	it	is	used	by	the	SMB	clients	and	servers.	In	Linux,
you	will	find	a	package	called	Samba,	which	implements	the	SMB	protocol.

If	you	are	running	a	Linux	virtual	machine	within	a	Windows	box	with	the	help	of
software,	such	as	VirtualBox,	then	we	can	test	file	sharing	among	the	Windows	and	the
Linux	machines.	Let	us	create	a	folder	at	C:\share	on	the	Windows	machine	as	you	can
see	in	the	following	screenshot:

Now,	right-click	on	the	folder	and	then	go	to	the	Sharing	tab.	There	are	two	buttons:
Share	and	Advanced	sharing.	You	can	click	on	the	latter	and	it	will	open	the	advanced
sharing	dialog	box.	Now	you	can	adjust	the	share	permissions.	If	this	share	is	active,	then
you	will	be	able	to	see	this	share	from	your	Linux	virtual	machine.	If	you	run	the
following	command	on	your	Linux	box,	then	you	will	see	the	previously	defined	file-
share:

$smbclient	-L	10.0.2.2	-U	WINDOWS_USERNAME%PASSWPRD		-W	WORKGROUP

Domain=[FARUQUESARKER]	OS=[Windows	8	9200]	Server=[Windows	8	6.2]

				Sharename							Type						Comment

				---------							----						-------

				ADMIN$										Disk						Remote	Admin

				C$														Disk						Default	share

				IPC$												IPC							Remote	IPC

				Share											Disk

The	following	screenshot	shows	how	you	can	share	a	folder	under	Windows	7	as
discussed	previously:

The	preceding	file	share	can	be	accessed	from	your	Python	script	by	using	a	third-party
module	called	pysmb.	You	can	use	the	pip	command-line	tool	for	installing	pysmb:

$	pip	install	pysmb

This	module	provides	an	SMBConnection	class,	where	you	can	pass	the	necessary
parameters	for	accessing	an	SMB/CIFS	share.	For	example,	the	following	code	will	help
you	to	access	a	file-share:

from	smb.SMBConnection	import	SMBConnection

smb_connection	=	SMBConnection(username,	password,	client_machine_name,	

server_name,	use_ntlm_v2	=	True,	domain='WORKGROUP',	is_direct_tcp=True)

If	the	preceding	works,	then	the	following	assertion	will	be	true:

assert	smb_connection.connect(server_ip,	445)

You	can	list	the	shared	files	by	using	the	listShares()	method:

shares	=		smb_connection.listShares()

for	share	in	shares:

				print	share.name

If	you	can	use	the	tmpfile	module	copying	a	file	from	your	windows	share.	For	example,
if	you	create	a	file	in	the	C:\Share\test.rtf	path,	then	the	additional	code	shown	here
will	copy	that	file	by	using	the	SMB	protocol:

import	tempfile

files	=	smb_connection.listPath(share.name,	'/')

for	file	in	files:

				print	file.filename

file_obj	=	tempfile.NamedTemporaryFile()

file_attributes,	filesize	=	smb_connection.retrieveFile('Share',	

'/test.rtf',	file_obj)

file_obj.close()

If	we	put	the	entire	code	into	a	single	source	file,	then	it	will	look	like	the	following
listing:

#!/usr/bin/env	python

import	tempfile

from	smb.SMBConnection	import	SMBConnection

SAMBA_USER_ID	=	'FaruqueSarker'

PASSWORD	=	'PASSWORD'

CLIENT_MACHINE_NAME	=	'debian6box'

SAMBA_SERVER_NAME	=	'FARUQUESARKER'

SERVER_IP	=	'10.0.2.2'

SERVER_PORT	=	445

SERVER_SHARE_NAME	=	'Share'

SHARED_FILE_PATH	=	'/test.rtf'

if	__name__	==	'__main__':

				smb_connection	=	SMBConnection(SAMBA_USER_ID,	PASSWORD,	

CLIENT_MACHINE_NAME,	SAMBA_SERVER_NAME,	use_ntlm_v2	=	True,	

domain='WORKGROUP',	is_direct_tcp=True)

				assert	smb_connection.smb_connectionect(SERVER_IP,	SERVER_PORT	=	445)

				shares	=		smb_connection.listShares()

				

				for	share	in	shares:

								print	share.name

								

				files	=	smb_connection.listPath(share.name,	'/')

				for	file	in	files:

								print	file.filename

				

				file_obj	=	tempfile.NamedTemporaryFile()

				file_attributes,	filesize	=	

smb_connection.retrieveFile(SERVER_SHARE_NAME,	SHARED_FILE_PATH,	file_obj)

				

				#	Retrieved	file	contents	are	inside	file_obj

				file_obj.close()

Inspecting	SAMBA	packets
If	we	capture	the	SMABA	packets	on	port	445,	then	we	can	see	how	the	Windows	Server
communicates	with	the	Linux	SAMBA	client	over	the	CIFS	protocol.	In	the	following	two
screenshots,	a	detailed	communication	between	the	client	and	the	server,	has	been
presented.	The	connection	setup	has	been	shown	in	the	following	screenshot:

The	following	screenshot	shows	how	a	file	copy	session	is	performed:

A	typical	SAMBA	packet	format	has	been	shown	in	the	following	screenshot.	The
important	field	of	this	packet	is	the	NT_STATUS	field.	Typically,	if	the	connection	is
successful,	then	it	will	show	STATUS_SUCESS.	Otherwise,	it	will	print	a	different	code.	This
is	shown	in	the	following	screenshot:

Summary
In	this	chapter,	we	have	come	across	several	network	protocols	and	Python	libraries,
which	are	used	for	interacting	with	remote	systems.	SSH	and	SFTP	are	used	for	securely
connecting	and	transferring	files	to	the	remote	hosts.	FTP	is	still	used	as	a	simple	file
transfer	mechanism.	However,	it’s	not	secure	due	to	user	credentials	being	transferred	over
the	wire	as	plain-text.	We	also	examined	Python	libraries	for	dealing	with	SNMP,	LDAP,
and	SAMBA	packets.

In	the	next	chapter,	one	of	the	most	common	networking	protocols—that	is,	DNS	and	IP
—will	be	discussed.	We	will	explore	TCP/IP	networking	using	Python	scripts.

Chapter	6.	IP	and	DNS
Every	computer	that	is	connected	to	a	network	needs	an	IP	address.	In	Chapter	1,	Network
Programming	and	Python,	an	introduction	to	TCP/IP	networking	was	presented.	The	IP
address	labels	a	machine’s	network	interface	with	a	numeric	identifier,	which	also
identifies	the	location	of	the	machine,	albeit	with	limited	reliability.	Domain	Name
System	(DNS)	is	a	core	network	service	that	maps	the	names	to	the	IP	addresses	and	vice-
verse.	In	this	chapter,	we	will	mainly	focus	on	manipulating	the	IP	and	DNS	protocols
with	the	help	of	Python.	In	addition	to	this,	we	will	briefly	discuss	the	Network	Time
Protocol	(NTP),	which	helps	in	synchronizing	the	time	with	a	centralized	time	server.	The
following	topics	will	be	discussed	here:

Retrieving	the	network	configuration	of	a	local	machine
Manipulating	the	IP	addresses
The	GeoIP	look-ups
Working	with	DNS
Working	with	NTP

Retrieving	the	network	configuration	of	a
local	machine
Before	doing	anything	else,	let’s	ask	in	the	Python	language,	What’s	my	name?.	In
networking	terms,	this	is	equivalent	to	finding	out	the	machine’s	name	or	the	host’s	name.
On	the	shell	command-line,	this	can	be	discovered	by	using	the	hostname	command.	In
Python,	you	can	do	this	by	using	the	socket	module.

>>>	import	socket

>>>	socket.gethostname()

'debian6box.localdomain.loc'

Now,	we	would	like	to	see	the	local	machine	IP.	This	can	be	seen	by	using	the	ifconfig
command	in	Linux	and	by	using	the	ipconfig	command	in	the	Windows	OS.	But,	we’d
like	to	do	this	in	Python	by	using	the	following	built-in	function:

>>>	socket.gethostbyname('debian6box.localdomain.loc')

'10.0.2.15'

As	you	can	see,	this	is	the	IP	of	the	first	network	interface.	It	can	also	show	us	the	IP	of
the	loopback	interface	(127.0.0.1)	if	your	DNS	or	hostfile	has	not	been	configured
properly.	In	Linux/UNIX,	the	following	line	can	be	added	to	your	/etc/hosts	file	for
obtaining	the	correct	IP	address:

10.0.2.15							debian6box.localdomain.loc						debian6box

This	process	is	known	as	a	host-file	based	name	resolution.	You	can	send	a	query	to	a
DNS	server	and	ask	for	the	IP	address	of	a	specific	host.	If	the	name	has	been	registered
properly,	then	you	will	get	a	response	from	the	server.	But,	before	making	a	query	to	the
remote	server,	let	us	first	discover	some	more	information	about	the	network	interface	and
the	gateway	machine	of	your	network.

In	every	LAN,	a	host	is	configured	to	act	as	a	gateway,	which	talks	to	the	outside	world.	In
order	to	find	the	network	address	and	the	netmask,	we	can	use	the	Python	third-party
library	netifaces	(version	>	0.10.0).	This	will	pull	all	the	relevant	information.	For
example,	you	can	call	netifaces.gateways()	for	finding	the	gateways	that	are
configured	to	the	outside	world.	Similarly,	you	can	enumerate	the	network	interfaces	by
calling	netifaces.interfaces().	If	you	would	like	to	know	all	the	IP	addresses	of	a
particular	interface	eth0,	then	you	can	call	netifaces.ifaddresses('eth0').	The
following	code	listing	shows	the	way	in	which	you	can	list	all	the	gateways	and	IP
addresses	of	a	local	machine:

#!/usr/bin/env	python

import	socket

import	netifaces

if	__name__	==	'__main__':				

				#	Find	host	info

				host_name	=	socket.gethostname()

				ip_address	=	socket.gethostbyname(host_name)

				print("Host	name:	{0}".format(host_name))

				

				#	Get	interfaces	list

				ifaces	=	netifaces.interfaces()

				for	iface	in	ifaces:

								ipaddrs	=	netifaces.ifaddresses(iface)

								if	netifaces.AF_INET	in	ipaddrs:

												ipaddr_desc	=	ipaddrs[netifaces.AF_INET]

												ipaddr_desc	=	ipaddr_desc[0]

												print("Network	interface:	{0}".format(iface))

												print("\tIP	address:	{0}".format(ipaddr_desc['addr']))

												print("\tNetmask:	{0}".format(ipaddr_desc['netmask']))

				#	Find	the	gateway

				gateways	=	netifaces.gateways()

				print("Default	gateway:	{0}".format(gateways['default']

[netifaces.AF_INET][0]))

If	you	run	this	code,	then	this	will	print	a	summary	of	the	local	network	configuration,
which	will	be	similar	to	the	following:

$	python	6_1_local_network_config.py

Host	name:	debian6box

Network	interface:	lo

		IP	address:	127.0.0.1

		Netmask:	255.0.0.0

Network	interface:	eth0

		IP	address:	10.0.2.15

		Netmask:	255.255.255.0

Default	gateway:	10.0.2.2

Manipulating	IP	addresses
Often	you	will	need	to	manipulate	IP	addresses	and	perform	some	sort	of	operations	on
them.	Python3	has	a	built-in	ipaddress	module	to	help	you	in	carrying	out	this	task.	It	has
convenient	functions	for	defining	the	IP	addresses	and	the	IP	networks	and	for	finding	lots
of	useful	information.	For	example,	if	you	would	like	to	know	how	many	IP	addresses
exist	in	a	given	subnet,	for	instance,	10.0.1.0/255.255.255.0	or	10.0.2.0/24,	then	you
can	find	them	with	the	help	of	the	code	snippet	shown	here.	This	module	will	provide
several	classes	and	factory	functions;	for	example,	the	IP	address	and	the	IP	network	has
separate	classes.	Each	class	has	a	variant	for	both	IP	version	4	(IPv4)	and	IP	version	6
(IPv6).	Some	of	the	features	have	been	demonstrated	in	the	following	section:

IP	network	objects
Let	us	import	the	ipaddress	module	and	define	a	net4	network.

>>>	import	ipaddress	as	ip

>>>	net4	=	ip.ip_network('10.0.1.0/24')

Now,	we	can	find	some	useful	information,	such	as	netmask,	the	network/broadcast
address,	and	so	on,	of	net4:

>>>	net4.netmask

IP4Address(255.255.255.0)

The	netmask	properties	of	net4	will	be	displayed	as	an	IP4Address	object.	If	you	are
looking	for	its	string	representation,	then	you	can	call	the	str()	method,	as	shown	here:

>>>	str(net4.netmask)

'255.255.255.0'

Similarly,	you	can	find	the	network	and	the	broadcast	addresses	of	net4,	by	doing	the
following:

>>>	str(net4.network_address)

10.0.1.0

>>>	str(net4.broadcast_address)

10.0.1.255

How	many	addresses	does	net4	hold	in	total?	This	can	be	found	by	using	the	command
shown	here:

>>>	net4.num_addresses

256

So,	if	we	subtract	the	network	and	the	broadcast	addresses,	then	the	total	available	IP
addresses	will	be	254.	We	can	call	the	hosts()	method	on	the	net4	object.	It	will	produce
a	Python	generator,	which	will	supply	all	the	hosts	as	IPv4Adress	objects.

>>>	all_hosts	=	list(net4.hosts())

>>>	len(all_hosts)

254

You	can	access	the	individual	IP	addresses	by	following	the	standard	Python	list	access
notation.	For	example,	the	first	IP	address	would	be	the	following:

>>>	all_hosts[0]

IPv4Address('10.0.1.1')

You	can	access	the	last	IP	address	by	using	the	list	notation	for	accessing	the	last	item	of	a
list,	as	shown	here:

>>>	all_hosts[-1]

IPv4Address('10.0.1.1')

We	can	also	find	the	subnet	information	from	the	IPv4Network	objects,	as	follows:

>>>	subnets	=	list(net4.subnets())

>>>	subnets

[IPv4Network('10.0.1.0/25'),	IPv4Network('10.0.1.128/25')]

Any	IPv4Network	object	can	tell	about	its	parent	supernet,	which	is	the	opposite	of	the
subnet.

>>>	net4.supernet()

IPv4Network('10.0.1.0/23')

Network	interface	objects
In	the	ipaddress	module,	a	convenient	class	is	used	for	representing	an	interface’s	IP
configuration	in	detail.	The	IPv4	Interface	class	takes	an	arbitrary	address	and	behaves
like	a	network	address	object.	Let	us	define	and	discuss	our	network	interface	eth0,	as
shown	in	following	screenshot:

As	you	can	see	in	the	preceding	screenshot,	a	network	interface	eth0	with	the
IPv4Address	class	has	been	defined.	It	has	some	interesting	properties,	such	as	IP,
network	address,	and	so	on.	In	the	same	way	as	with	the	network	objects,	you	can	check	if
the	address	is	private,	reserved,	or	multicast.	These	address	ranges	have	been	defined	in
various	RFC	documents.	The	ipaddress	module’s	help	page	will	show	you	the	links	to
those	RFC	documents.	You	can	search	this	information	in	other	places	as	well.

The	IP	address	objects
The	IP	address	classes	have	many	more	interesting	properties.	You	can	perform	some
arithmetic	and	logical	operations	on	those	objects.	For	example,	if	an	IP	address	is	greater
than	another	IP	address,	then	you	can	add	numbers	to	the	IP	address	objects,	and	this	will
give	you	a	corresponding	IP	address.	Let’s	see	a	demonstration	of	this	in	the	following
screenshot:

Demonstration	of	the	ipaddress	module

Here,	the	eth0	interface	has	been	defined	with	a	private	IP	address,	which	is
192.168.1.1,	and	eth1	has	been	defined	with	another	private	IP	address,	which	is
192.168.2.1.	Similarly	the	loopback	interface	lo	is	defined	with	IP	address	127.0.0.1.
As	you	can	see,	you	can	add	numbers	to	the	IP	address	and	it	will	give	you	the	next	IP
address	with	the	same	sequence.

You	can	check	if	an	IP	is	a	part	of	a	specific	network.	Here,	a	network	net	has	been
defined	by	the	network	address,	which	is	192.168.1.0/24,	and	the	membership	of	eth0
and	eth1	has	been	tested	against	that.	A	few	other	interesting	properties,	such	as
is_loopback,	is_private,	and	so	on,	have	also	been	tested	here.

Planning	IP	addresses	for	your	local	area	network
If	you	are	wondering	how	to	pick-up	a	suitable	IP	subnet,	then	you	can	experiment	with
the	ipaddress	module.	The	following	code	snippet	will	show	an	example	of	how	to
choose	a	specific	subnet,	based	on	the	number	of	necessary	host	IP	addresses	for	a	small
private	network:

#!/usr/bin/env	python

import	ipaddress	as	ip

CLASS_C_ADDR	=	'192.168.0.0'

if	__name__	==	'__main__':

				not_configed	=	True

				while	not_configed:

								prefix	=	input("Enter	the	prefixlen	(24-30):	")

								prefix	=	int(prefix)

								if	prefix	not	in	range(23,	31):

												raise	Exception("Prefixlen	must	be	between	24	and	30")

								net_addr	=	CLASS_C_ADDR	+	'/'	+	str(prefix)

								print("Using	network	address:%s	"	%net_addr)

								try:

												network	=	ip.ip_network(net_addr)

								except:

												raise	Exception("Failed	to	create	network	object")

								print("This	prefix	will	give	%s	IP	addresses"	%

(network.num_addresses))

								print("The	network	configuration	will	be")

								print("\t	network	address:	%s"	%str(network.network_address))

								print("\t	netmask:	%s"	%str(network.netmask))

								print("\t	broadcast	address:	%s"	%str(network.broadcast_address))

								first_ip,	last_ip	=	list(network.hosts())[0],	list(network.hosts())

[-1]	

								print("\t	host	IP	addresses:	from	%s	to	%s"	%(first_ip,	last_ip))

								ok	=	input("Is	this	configuration	OK	[y/n]?	")

								ok	=	ok.lower()

								if	ok.strip()	==	'y':

												not_configed	=	False

If	you	run	this	script,	then	it	will	show	an	output	similar	to	the	following:

#	python	6_2_net_ip_planner.py	

Enter	the	prefixlen	(24-30):	28

Using	network	address:192.168.0.0/28	

This	prefix	will	give	16	IP	addresses

The	network	configuration	will	be

			network	address:	192.168.0.0

			netmask:	255.255.255.240

			broadcast	address:	192.168.0.15

			host	IP	addresses:	from	192.168.0.1	to	192.168.0.14

Is	this	configuration	OK	[y/n]?	n

Enter	the	prefixlen	(24-30):	26

Using	network	address:192.168.0.0/26	

This	prefix	will	give	64	IP	addresses

The	network	configuration	will	be

			network	address:	192.168.0.0

			netmask:	255.255.255.192

			broadcast	address:	192.168.0.63

			host	IP	addresses:	from	192.168.0.1	to	192.168.0.62

Is	this	configuration	OK	[y/n]?	y

GeoIP	look-ups
At	times,	it	will	be	necessary	for	many	applications	to	look-up	the	location	of	the	IP
addresses.	For	example,	many	website	owners	can	be	interested	in	tracking	the	location	of
their	visitors	and	in	classifying	their	IPs	according	to	criteria,	such	as	country,	city,	and	so
on.	There	is	a	third-party	library	called	python-geoip,	which	has	a	robust	interface	for
giving	you	the	answer	to	your	IP	location	query.	This	library	is	provided	by	MaxMind,
which	also	provides	the	option	for	shipping	a	recent	version	of	the	Geolite2	database	as
the	python-geoip-geolite2	package.	This	includes	the	GeoLite2	data	created	by
MaxMind,	which	is	available	at	www.maxmind.com	under	the	creative	commons
Attribution-ShareAlike	3.0	Unported	License.	You	can	also	buy	a	commercial	license
from	their	website.

Let’s	see	an	example	of	how	to	use	this	Geo-lookup	library.:

import	socket

from	geoip	import	geolite2

import	argparse

if	__name__	==	'__main__':

				#	Setup	commandline	arguments

				parser	=	argparse.ArgumentParser(description='Get	IP	Geolocation	info')

				parser.add_argument('--hostname',	action="store",	dest="hostname",	

required=True)

				

				#	Parse	arguments

				given_args	=	parser.parse_args()

				hostname	=		given_args.hostname

				ip_address	=	socket.gethostbyname(hostname)

				print("IP	address:	{0}".format(ip_address))

				

				match	=	geolite2.lookup(ip_address)

				if	match	is	not	None:

								print('Country:	',match.country)

								print('Continent:	',match.continent)	

								print('Time	zone:	',	match.timezone)	

This	script	will	show	an	output	similar	to	the	following:

$	python	6_3_geoip_lookup.py	--hostname=amazon.co.uk

IP	address:	178.236.6.251

Country:		IE

Continent:		EU

Time	zone:		Europe/Dublin

You	can	find	more	information	about	this	package	from	the	developer’s	website,	which	is
at	http://pythonhosted.org/python-geoip/.

http://www.maxmind.com
http://pythonhosted.org/python-geoip/

DNS	look-ups
The	IP	address	can	be	translated	into	human	readable	strings	called	domain	names.	DNS	is
a	big	topic	in	the	world	of	networking.	In	this	section,	we	will	create	a	DNS	client	in
Python,	and	see	how	this	client	will	talk	to	the	server	by	using	Wirshark.

A	few	DNS	cleint	libraries	are	available	from	PyPI.	We	will	focus	on	the	dnspython
library,	which	is	available	at	http://www.dnspython.org/.	You	can	install	this	library	by
using	either	the	easy_install	command	or	the	pip	command:

$	pip	install	dnspython

Making	a	simple	query	regarding	the	IP	address	of	a	host	is	very	simple.	You	can	use	the
dns.resolver	submodule,	as	follows:

import	dns.resolver

answers	=	dns.resolver.query('python.org',	'A')

for	rdata	in	answers:

				print('IP',	rdata.to_text())

If	you	want	to	make	a	reverse	look-up,	then	you	need	to	use	the	dns.reversename
submodule,	as	shown	here:

import	dns.reversename

name	=	dns.reversename.from_address("127.0.0.1")

print	name

print	dns.reversename.to_address(name)

Now,	let’s	create	an	interactive	DNS	client	script	that	will	do	a	complete	look-up	of	the
possible	records,	as	shown	here:

import	dns.resolver

if	__name__	==	'__main__':

				loookup_continue	=	True

				while	loookup_continue:

								name	=	input('Enter	the	DNS	name	to	resolve:	')

								record_type	=	input('Enter	the	query	type	[A/MX/CNAME]:	')

								answers	=	dns.resolver.query(name,	record_type)

								if	record_type	==	'A':

												print('Got	answer	IP	address:	%s'	%[x.to_text()	for	x	in	

answers])

								elif	record_type	==	'CNAME':

												print('Got	answer	Aliases:	%s'	%[x.to_text()	for	x	in	answers])

								elif	record_type	==	'MX':

												for	rdata	in	answers:

																print('Got	answers	for	Mail	server	records:')

																print('Mailserver',	rdata.exchange.to_text(),	'has	

preference',	rdata.preference)

												print('Record	type:	%s	is	not	implemented'	%record_type)

								lookup_more	=	input("Do	you	want	to	lookup	more	records?	[y/n]:	")

								if	lookup_more.lower()	==	'n':

												loookup_continue	=	False

If	you	run	this	script	with	some	input,	then	you	will	have	an	output	similar	to	the

http://www.dnspython.org/

following:

$	python	6_4_dns_client.py	

Enter	the	DNS	name	to	resolve:	google.com

Enter	the	query	type	[A/MX/CNAME]:	MX

Got	answers	for	Mail	server	records:

Mailserver	alt4.aspmx.l.google.com.	has	preference	50

Got	answers	for	Mail	server	records:

Mailserver	alt2.aspmx.l.google.com.	has	preference	30

Got	answers	for	Mail	server	records:

Mailserver	alt3.aspmx.l.google.com.	has	preference	40

Got	answers	for	Mail	server	records:

Mailserver	aspmx.l.google.com.	has	preference	10

Got	answers	for	Mail	server	records:

Mailserver	alt1.aspmx.l.google.com.	has	preference	20

Do	you	want	to	lookup	more	records?	[y/n]:	y

Enter	the	DNS	name	to	resolve:	www.python.org

Enter	the	query	type	[A/MX/CNAME]:	A

Got	answer	IP	address:	['185.31.18.223']

Do	you	want	to	lookup	more	records?	[y/n]:	y

Enter	the	DNS	name	to	resolve:	pypi.python.org

Enter	the	query	type	[A/MX/CNAME]:	CNAME

Got	answer	Aliases:	['python.map.fastly.net.']

Do	you	want	to	lookup	more	records?	[y/n]:	n

Inspecting	DNS	client/server	communication
In	previous	chapters,	perhaps	you	noticed	how	we	captured	network	packets	between	the
client	and	the	server	by	using	Wireshark.	Here	is	an	example	of	the	session	capturing,
while	a	Python	package	was	being	installed	from	PyPI:

FDNS	client/server	communication

In	Wireshark	you	can	specify	port	53	by	navigating	to	Capture	|	Options	|	Capture
filter.	This	will	capture	all	the	DNS	packets	that	were	sent	to/from	your	machine.

As	you	can	see	in	the	following	screenshot,	the	client	and	the	server	have	several
request/response	cycles	the	DNS	records.	It	was	started	with	a	standard	request	for	the
host’s	address	(A)	and	it	was	followed	by	a	suitable	response.

If	you	look	deep	inside	a	packet,	then	you	can	see	the	request	format	of	the	response	from
the	server,	as	shown	in	the	following	screenshot:

NTP	clients
The	final	topic	that	will	be	covered	in	this	chapter	is	NTP.	Synchronizing	time	with	a
centralized	time	server	is	a	key	step	in	any	corporate	network.	We	would	like	to	compare
the	log	files	between	various	servers	and	see	if	the	timestamp	on	each	server	is	accurate;
the	log	events	may	not	then	co-relate.	Many	authentication	protocols,	such	as	Kerberos,
strictly	rely	on	the	accuracy	of	the	time	stamp	reported	by	the	client	to	the	servers.	Here,	a
third-party	Python	ntplib	library	will	be	introduced,	and	then	the	communication
between	the	NTP	client	and	the	server	will	be	investigated.

To	create	an	NTP	client,	you	need	to	call	the	ntplib’s	NTPCLient	class.

import	ntplib

from	time	import	ctime

c	=	ntplib.NTPClient()

response	=	c.request('pool.ntp.org')

print	ctime(response.tx_time)

Here,	we	have	selected	pool.ntp.org,	which	is	a	load-balanced	webserver.	So,	a	pool	of
the	NTP	servers	will	be	ready	to	respond	to	the	client’s	request.	Let’s	find	more
information	regarding	this	from	the	response	that	was	returned	by	an	NTP	server.

import	ntplib

from	time	import	ctime

HOST_NAME	=	'pool.ntp.org'

if	__name__	==	'__main__':

				params	=	{}

				client	=	ntplib.NTPClient()

				response	=	client.request(HOST_NAME)

				print('Received	time:	%s'	%ctime(response.tx_time))

				print('ref_clock:	',ntplib.ref_id_to_text(response.ref_id,	

response.stratum))

				print('stratum:	',response.stratum)

				print('last_update:	',	response.ref_time)

				print('offset:		%f'	%response.offset)

				print('precision:	',	response.precision)

				print('root_delay:	%.6f'	%response.root_delay)

				print('root_dispersion:	%.6f'	%response.root_dispersion)

The	detailed	response	will	look	like	the	following:

$	python	6_5_ntp_client.py	

Received	time:	Sat	Feb	28	17:08:29	2015

ref_clock:		213.136.0.252

stratum:		2

last_update:		1425142998.2

offset:		-4.777519

precision:		-23

root_delay:	0.019608

root_dispersion:	0.036987

The	preceding	information	was	supplied	by	the	NTP	server	to	the	client.	This	information

can	be	used	to	determine	the	accuracy	of	the	supplied	time	server.	For	example,	the
stratum	value	2	indicates	that	the	NTP	server	will	query	another	NTP	server	with	the
stratum	value	1,	which	may	have	a	directly	attached	time	source.	For	more	information
about	the	NTP	protocol,	you	may	either	read	the	RFC	958	document	at
https://tools.ietf.org/html/rfc958	or	visit	http://www.ntp.org/.

https://tools.ietf.org/html/rfc958
http://www.ntp.org/

Inspecting	the	NTP	client/server	communication
You	may	be	able	to	learn	more	about	NTP	by	looking	at	captured	packets.	For	this
purpose,	the	preceding	NTP	client/server	communication	has	been	captured	as	shown	in
the	following	two	screenshots:

The	first	screenshot	shows	the	NTP	client	request.	If	you	look	inside	the	flag	fields,	then
you	will	see	the	client’s	version	number.

Similarly,	the	NTP	server	response	has	been	shown	in	the	following	screenshot:

Summary
In	this	chapter,	the	standard	Python	libraries	for	IP	address	manipulation	were	discussed.
Two	third-party	libraries	dnspython	and	ntplib	have	been	presented	to	interact	with	the
DNS	and	the	NTP	servers	respectively.	As	you	have	seen	through	the	aforementioned
examples,	these	libraries	provide	you	with	the	necessary	interface	for	talking	to	those
services.

In	the	following	chapter,	we	will	introduce	socket	programming	in	Python.	This	is	another
interesting	and	popular	topic	for	networking	programmers.	There,	you	will	find	both	low
and	high-level	Python	libraries	for	programming	with	BSD	sockets.

Chapter	7.	Programming	with	Sockets
After	you	have	interacted	with	various	clients/servers	in	Python,	you	will	be	keen	to	create
your	own	custom	clients	and	servers	for	any	protocol	of	your	choice.	Python	provides	a
good	coverage	on	the	low-level	networking	interface.	It	all	starts	with	BSD	socket
interface.	As	you	can	assume,	Python	has	a	socket	module	that	gives	you	the	necessary
functionality	to	work	with	the	socket	Interface.	If	you	have	ever	done	socket	programming
in	any	other	language	like	C/C++,	you	will	love	the	Python	socket	module.

In	this	chapter,	we	will	explore	the	socket	module	by	creating	a	diverse	range	of	Python
scripts.

The	following	are	the	highlights	of	this	chapter:

Basics	of	sockets
Working	with	TCP	sockets
Working	with	UDP	sockets
TCP	port	forwarding
Non-blocking	socket	I/O
Securing	sockets	with	SSL/TLS
Creating	custom	SSL	client/server

Basics	of	sockets
Network	programming	in	any	programming	language	can	begin	with	sockets.	But	what	is
a	socket?	Simply	put,	a	network	socket	is	a	virtual	end	point	where	entities	can	perform
inter-process	communication.	For	example,	one	process	sitting	in	a	computer,	exchanges
data	with	another	process	sitting	on	the	same	or	another	computer.	We	typically	label	the
first	process	which	initiates	the	communication	as	the	client	and	the	latter	one	as	the
server.

Python	has	quite	an	easy	way	to	start	with	the	socket	interface.	In	order	to	understand	this
better,	let’s	see	the	big	picture	first.	In	the	following	figure,	a	flow	of	client/server
interaction	is	shown.	This	will	give	you	an	idea	of	how	to	use	the	socket	API.

client/server	interaction	through	socket

In	the	interaction	between	a	typical	client	and	a	server,	the	server	process	has	to	work	a	bit
more,	as	you	may	have	thought.	After	creating	a	socket	object,	the	server	process	binds
that	socket	to	a	particular	IP	address	and	port.	This	is	much	like	a	telephone	connection
with	an	extension	number.	In	a	corporate	office,	after	a	new	employee	has	been	allocated
with	his	desk	phone,	usually	he	or	she	will	be	assigned	to	a	new	extension	number.	So,	if
anybody	makes	a	phone	call	to	this	employee,	the	connection	can	be	established	using	his

phone	number	and	extension.	After	the	successful	binding,	the	server	process	will	start
listening	for	a	new	client	connection.	For	a	valid	client	session,	the	server	process	can
accept	the	request	of	the	client	process.	At	this	point,	we	can	say	that	the	connection
between	the	server	and	the	client	has	been	established.

Then	the	client/server	enters	into	the	request/response	loop.	The	client	process	sends	data
to	the	server	process,	and	the	server	process	processes	the	data	and	returns	a	response	to
the	client.	When	the	client	process	finishes,	it	exits	by	closing	down	the	connection.	At
that	moment,	the	server	process	probably	goes	back	to	the	listening	state.

The	above	interaction	between	client	and	server	is	a	very	simplified	representation	of	the
actual	reality.	In	practice,	any	production	server	process	has	multiple	threads	or
subprocesses	to	handle	concurrent	connections	from	thousands	of	clients	over	respective
virtual	channels.

Working	with	TCP	sockets
Creating	a	socket	object	in	Python	is	very	straightforward.	You	just	need	to	import	the
socket	module	and	call	the	socket()	class:

from	socket	import*

import	socket

#create	a	TCP	socket	(SOCK_STREAM)

s	=	socket.socket(family=AF_INET,	type=SOCK_STREAM,	proto=0)

print('Socket	created')

Traditionally,	the	class	takes	plenty	of	parameters.	Some	of	them	are	listed	in	the
following:

Socket	family:	This	is	the	domain	of	socket,	such	as	AF_INET	(about	90	percent	of
the	sockets	of	the	Internet	fall	under	this	category)	or	AF_UNIX,	which	is	sometimes
used	as	well.	In	Python	3,	you	can	create	a	Bluetooth	socket	using	AF_BLUETOOTH.
Socket	type:	Depending	on	your	need,	you	need	to	specify	the	type	of	socket.	For
example,	TCP	and	UDP-based	sockets	are	created	by	specifying	SOCK_STREAM	and
SOCK_DGRAM,	respectively.
Protocol:	This	specifies	the	variation	of	protocol	within	a	socket	family	and	type.
Usually,	it	is	left	as	zero.

For	many	reasons,	socket	operations	may	not	be	successful.	For	example,	if	you	don’t
have	permission	to	access	a	particular	port	as	a	normal	user,	you	may	not	be	able	to	bind
to	a	socket.	This	is	why	it	is	a	good	idea	to	do	proper	error	handling	when	creating	a
socket	or	doing	some	network-bound	communication.

Let’s	try	to	connect	a	client	socket	to	a	server	process.	The	following	code	is	an	example
of	TCP	client	socket	that	makes	a	connection	to	server	socket:

import	socket

import	sys	

if	__name__	==	'__main__':

				try:

								sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				except	socket.error	as	err:

								print("Failed	to	crate	a	socket")

								print("Reason:	%s"	%str(err))

								sys.exit();

					

				print('Socket	created')

				

				target_host	=	input("Enter	the	target	host	name	to	connect:	")

				target_port	=	input("Enter	the	target	port:	")	

				

				try:

								sock.connect((target_host,	int(target_port)))

								print("Socket	Connected	to	%s	on	port:	%s"	%(target_host,	

target_port))

				sock.shutdown(2)

				except	socket.error	as	err:

								print("Failed	to	connect	to	%s	on	port	%s"	%(target_host,	

target_port))

								print("Reason:	%s"	%str(err))

								sys.exit();

If	you	run	the	preceding	TCP	client,	an	output	similar	to	the	following	will	be	shown:

#	python	7_1_tcp_client_socket.py

Socket	created

Enter	the	target	host	name	to	connect:	'www.python.org'

Enter	the	target	port:	80

Socket	Connected	to	www.python.org	on	port:	80

However,	if	socket	creation	has	failed	for	some	reason,	such	as	invalid	DNS,	an	output
similar	to	the	following	will	be	shown:

#	python	7_1_tcp_client_socket.py

Socket	created

Enter	the	target	host	name	to	connect:	

www.asgdfdfdkflakslalalasdsdsds.invalid

Enter	the	target	port:	80

Failed	to	connect	to	www.asgdfdfdkflakslalalasdsdsds.invalid	on	port	80

Reason:	[Errno	-2]	Name	or	service	not	known

Now,	let’s	exchange	some	data	with	the	server.	The	following	code	is	an	example	of	a
simple	TCP	client:

import	socket

HOST	=	'www.linux.org'	#	or	'localhost'

PORT	=	80

BUFSIZ	=	4096

ADDR	=	(HOST,	PORT)

if	__name__	==	'__main__':

				client_sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				client_sock.connect(ADDR)

				while	True:

								data	=	'GET	/	HTTP/1.0\r\n\r\n'

								if	not	data:

												break

								client_sock.send(data.encode('utf-8'))

								data	=	client_sock.recv(BUFSIZ)

								if	not	data:

												break

								print(data.decode('utf-8'))

				client_sock.close()

If	you	look	carefully,	you	can	see	that	the	preceding	code	actually	created	a	raw	HTTP
client	that	fetches	a	web	page	from	a	web	server.	It	sends	an	HTTP	GET	request	to	pull	the
home	page:

#	python	7_2_simple_tcp_client.py

HTTP/1.1	200	OK

Date:	Sat,	07	Mar	2015	16:23:02	GMT

Server:	Apache

Last-Modified:	Mon,	17	Feb	2014	03:19:34	GMT

Accept-Ranges:	bytes

Content-Length:	111

Connection:	close

Content-Type:	text/html

<html><head><META	HTTP-EQUIV="refresh"	CONTENT="0;URL=/cgi-	

sys/defaultwebpage.cgi"></head><body></body></html>

Inspecting	the	client/server	communication
The	interaction	between	the	client	and	server	through	the	exchange	of	network	packets	can
be	analyzed	using	any	network	packet	capturing	tool,	such	as	Wireshark.	You	can
configure	Wireshark	to	filter	packets	by	port	or	host.	In	this	case,	we	can	filter	by	port	80.
You	can	get	the	options	under	the	Capture	|	Options	menu	and	type	port	80	in	the	input
box	next	to	the	Capture	Filter	option,	as	shown	in	the	following	screenshot:

In	the	Interface	option,	we	choose	to	capture	packets	passing	through	any	interface.	Now,
if	you	run	the	preceding	TCP	client	to	connect	to	www.linux.org,	you	can	see	the	sequence
of	packets	exchanged	in	Wireshark,	as	shown	in	the	following	screenshot:

http://www.linux.org/

As	you	can	see,	the	first	three	packets	establish	the	TCP	connection	by	a	three-way
handshake	process	between	the	client	and	server.	We	are	more	interested	in	the	fourth
packet	that	makes	an	HTTP	GET	request	to	the	server.	If	you	double-click	the	selected	row,
you	can	see	the	details	of	the	HTTP	request,	as	shown	in	the	following	screenshot:

As	you	can	see,	the	HTTP	GET	request	has	other	components	such	as	Request	URI,
version,	and	so	on.	Now	you	can	check	the	HTTP	response	from	the	web	server	to	your
client.	It	has	come	after	the	TCP	acknowledgment	packet,	that	is,	the	sixth	packet.	Here,
the	server	typically	sends	an	HTTP	response	code	(in	this	case	200),	content	length,	and
the	data	or	web	page	content.	The	structure	of	this	packet	is	shown	in	the	following
screenshot:

From	the	preceding	analysis	of	the	interaction	between	the	client	and	server,	you	can	now
understand,	at	a	basic	level,	what	happens	behind	the	scenes	when	you	visit	a	web	page
using	your	web	browser.	In	the	next	section,	you	will	be	shown	how	to	create	your	own
TCP	server	and	examine	the	interactions	between	your	personal	TCP	client	and	server.

TCP	servers
As	you	understood	from	the	very	first	client/server	interaction	diagram,	the	server	process
needs	to	carry	out	a	bit	of	extra	work.	It	needs	to	bind	to	a	socket	address	and	listen	for
incoming	connections.	The	following	code	snippet	shows	how	to	create	a	TCP	server:

import	socket

from	time	import	ctime

HOST	=	'localhost'

PORT	=	12345

BUFSIZ	=	1024

ADDR	=	(HOST,	PORT)

if	__name__	==	'__main__':

				server_socket	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				server_socket.bind(ADDR)

				server_socket.listen(5)

				server_socket.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				while	True:

								print('Server	waiting	for	connection…')

								client_sock,	addr	=	server_socket.accept()

								print('Client	connected	from:	',	addr)

								while	True:

												data	=	client_sock.recv(BUFSIZ)

												if	not	data	or	data.decode('utf-8')	==	'END':

																break

												print("Received	from	client:	%s"	%	data.decode('utf-	8'))

												print("Sending	the	server	time	to	client:	%s"		%ctime())

												try:

																client_sock.send(bytes(ctime(),	'utf-8'))

												except	KeyboardInterrupt:

																print("Exited	by	user")

								client_sock.close()

				server_socket.close()

Let’s	modify	our	previous	TCP	client	to	send	arbitrary	data	to	any	server.	The	following	is
an	example	of	an	enhanced	TCP	client:

import	socket

HOST	=	'localhost'

PORT	=	12345

BUFSIZ	=	256

if	__name__	==	'__main__':

				client_sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				host	=	input("Enter	hostname	[%s]:	"	%HOST)	or	HOST

				port	=	input("Enter	port	[%s]:	"	%PORT)	or	PORT

				sock_addr	=	(host,	int(port))

				client_sock.connect(sock_addr)

				payload	=	'GET	TIME'

				try:

								while	True:

												client_sock.send(payload.encode('utf-8'))

												data	=	client_sock.recv(BUFSIZ)

												print(repr(data))

												more	=	input("Want	to	send	more	data	to	server[y/n]	:")

												if	more.lower()	==	'y':

															payload	=	input("Enter	payload:	")

												else:

																break

				except	KeyboardInterrupt:

								print("Exited	by	user")	

				client_sock.close()

If	you	run	the	preceding	TCP	server	in	one	console	and	the	TCP	client	in	another	console,
you	can	see	the	following	interaction	between	the	client	and	server.	After	running	the	TCP
server	script	you	will	get	the	following	output:

#	python	7_3_tcp_server.py	

Server	waiting	for	connection…

Client	connected	from:		('127.0.0.1',	59961)

Received	from	client:	GET	TIME

Sending	the	server	time	to	client:	Sun	Mar	15	12:09:16	2015

Server	waiting	for	connection…

When	you	will	run	the	TCP	client	script	on	another	terminal	then	you	will	get	the
following	output:

#	python	7_4_tcp_client_socket_send_data.py	

Enter	hostname	[www.linux.org]:	localhost

Enter	port	[80]:	12345

b'Sun	Mar	15	12:09:16	2015'

Want	to	send	more	data	to	server[y/n]	:n

Inspecting	client/server	interaction
Now,	once	again,	you	can	configure	Wireshark	to	capture	packets,	as	discussed	in	the	last
section.	But,	in	this	case,	you	need	to	specify	the	port	that	your	server	is	listening	on	(in
the	preceding	example	it’s	12345),	as	shown	in	the	following	screenshot:

As	we	are	capturing	packets	on	a	non-standard	port,	Wireshark	doesn’t	decode	it	in	the
Data	section	(as	shown	in	the	middle	pane	of	the	preceding	screenshot).	However,	you
can	see	the	decoded	text	on	the	bottom	pane	where	the	server’s	timestamp	is	shown	on	the
right	side.

Working	with	UDP	sockets
Unlike	TCP,	UDP	doesn’t	check	for	errors	in	the	exchanged	datagram.	We	can	create	UDP
client/servers	similar	to	the	TCP	client/servers.	The	only	difference	is	you	have	to	specify
SOCK_DGRAM	instead	of	SOCK_STREAM	when	you	create	the	socket	object.

Let	us	create	a	UDP	server.	Use	the	following	code	to	create	the	UDP	server:

from	socket	import	socket,	AF_INET,	SOCK_DGRAM

maxsize	=	4096

sock	=	socket(AF_INET,SOCK_DGRAM)

sock.bind(('',12345))

while	True:				

		data,	addr	=	sock.recvfrom(maxsize)

				resp	=	"UDP	server	sending	data"				

		sock.sendto(resp,addr)

Now,	you	can	create	a	UDP	client	to	send	some	data	to	the	UDP	server,	as	shown	in	the
following	code:

from	socket	import	socket,	AF_INET,	SOCK_DGRAM

MAX_SIZE	=	4096

PORT	=	12345

if	__name__	==	'__main__':

				sock	=	socket(AF_INET,SOCK_DGRAM)

				msg	=	"Hello	UDP	server"

				sock.sendto(msg.encode(),('',	PORT))

				data,	addr	=	sock.recvfrom(MAX_SIZE)

				print("Server	says:")

				print(repr(data))

In	the	preceding	code	snippet,	the	UDP	client	sends	a	single	line	of	text	Hello	UDP
server	and	receives	the	response	from	the	server.	The	following	screenshot	shows	the
request	sent	from	the	client	to	the	server:

The	following	screenshot	shows	the	server’s	response	sent	to	the	client.	After	inspecting
UDP	client/server	packets,	we	can	easily	see	that	UDP	is	much	simpler	than	TCP.	It’s
often	termed	as	a	connectionless	protocol	as	there	is	no	acknowledgment	or	error	checking
involved.

TCP	port	forwarding
One	of	the	interesting	experiments	we	can	do	with	TCP	socket	programming	is	to	set	up	a
TCP	port	forwarding.	This	has	very	good	use	cases.	Say,	for	example,	if	you	are	running
an	insecure	program	like	FTP	in	a	public	server	that	doesn’t	have	any	SSL	capability	to	do
secure	communication	(FTP	passwords	can	be	seen	clear-text	over	the	wires).	Since	this
server	is	accessible	from	Internet,	you	must	not	login	with	your	password	to	the	server
without	ensuring	that	the	passwords	are	encrypted.	One	way	of	doing	this	is	to	use	Secure
FTP	or	SFTP.	We	can	use	a	simple	SSH	tunnel	in	order	to	show	how	this	approach	works.
So,	any	communication	between	your	local	FTP	client	and	remote	FTP	server	will	happen
via	this	encrypted	channel.

Let	us	run	the	FTP	program	to	the	same	SSH	server	host.	But	create	an	SSH	tunnel	from
your	local	machine	that	will	give	you	a	local	port	number	and	will	directly	connect	you	to
the	remote	FTP	server	daemon.

Python	has	a	third	party	sshtunnel	module	that	is	a	wrapper	around	the	Paramiko’s	SSH
library.	The	following	is	a	code	snippet	of	TCP	port	forwarding	that	shows	how	the
concept	can	be	realized:

import	sshtunnel

from	getpass	import	getpass

ssh_host	=	'192.168.56.101'

ssh_port	=	22

ssh_user	=	'YOUR_SSH_USERNAME'

REMOTE_HOST	=	'192.168.56.101'

REMOTE_PORT	=	21

from	sshtunnel	import	SSHTunnelForwarder

ssh_password	=	getpass('Enter	YOUR_SSH_PASSWORD:	')

server	=	SSHTunnelForwarder(

				ssh_address=(ssh_host,	ssh_port),

				ssh_username=ssh_user,

				ssh_password=ssh_password,

				remote_bind_address=(REMOTE_HOST,	REMOTE_PORT))

server.start()

print('Connect	the	remote	service	via	local	port:	%s'		

%server.local_bind_port)

#	work	with	FTP	SERVICE	via	the	`server.local_bind_port.

try:

				while	True:

								pass

except	KeyboardInterrupt:

				print("Exiting	user	user	request.\n")

				server.stop()

Let	us	capture	the	packet	transfer	from	the	local	machine	192.168.0.102	to	the	remote
machine	192.168.0.101.	You	will	see	all	network	traffic	is	encrypted.	When	you	run	the

preceding	script,	you	will	get	a	local	port	number.	Use	the	ftp	command	to	connect	to	that
local	port	number:

$	ftp	<localhost>	<local_bind_port>

If	you	run	the	preceding	command,	then	you	will	get	the	following	screenshot:

In	the	preceding	screenshot,	you	cannot	see	any	FTP	traffic.	As	you	can	see,	first	we
connect	to	local	port	5815	(see	the	first	three	packets)	and	suddenly	an	encrypted	session
started	with	the	remote	host.	You	can	continue	watching	the	remote	traffic,	but	there	is	no
trace	of	FTP.

If	you	can	also	capture	packets	on	your	remote	machine	(192.168.56.101),	you	could	see
FTP	traffic,	as	shown	in	the	following	screenshot:

Interestingly,	you	can	see	your	FTP	password	sent	from	the	local	machine	(over	SSH
tunnel)	as	clear-text	only	on	your	remote	box,	not	over	the	network,	as	shown	in	the

following	screenshot:

So,	in	this	way,	you	can	hide	any	sensitive	network	traffic	in	an	SSL	tunnel.	Not	only	the
FTP,	you	can	also	pass	remote	desktop	session	encrypted	over	an	SSH	channel.

A	non-blocking	socket	I/O
In	this	section,	we	will	see	a	small	example	code	snippet	to	test	a	non-blocking	socket	I/O.
This	is	useful	if	you	know	that	the	synchronous	blocking	connection	is	not	necessary	for
your	program.	The	following	is	an	example	of	non-blocking	I/O:

import	socket

if	__name__	==	'__main__':

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				sock.setblocking(0)

				sock.settimeout(0.5)

				sock.bind(("127.0.0.1",	0))

				socket_address	=sock.getsockname()

				print("Asynchronous	socket	server	launched	on	socket:	%s"	

%str(socket_address))

				while(1):

								sock.listen(1)

This	script	will	run	a	socket	server	and	listen	in	a	non-blocking	style.	This	means	you	can
connect	more	clients	who	won’t	be	necessarily	blocked	for	I/O.

Securing	sockets	with	TLS/SSL
You	have	probably	come	across	the	discussion	around	secure	web	communication	using
Secure	Socket	Layer	(SSL),	or	more	precisely	Transport	Layer	Security	(TLS),	which
is	adopted	by	many	other	high-level	protocols.	Let	us	see	how	we	can	wrap	a	plain	sockets
connection	with	SSL.	Python	has	the	built-in	ssl	module,	which	serves	this	purpose.

In	this	example,	we	would	like	to	create	a	plain	TCP	socket	and	connect	to	an	HTTPS
enabled	web	server.	Then,	we	can	wrap	that	connection	using	SSL	and	check	the	various
properties	of	the	connection.	For	example,	to	check	the	identity	of	the	remote	web	server,
we	can	see	if	the	hostname	is	same	in	the	SSL	certificate	as	we	expect	it	to	be.	The
following	is	an	example	of	a	secure	socket-based	client:

import	socket

import	ssl

from	ssl	import	wrap_socket,	CERT_NONE,	PROTOCOL_TLSv1,	SSLError

from	ssl	import	SSLContext

from	ssl	import	HAS_SNI

from	pprint	import	pprint

TARGET_HOST	=	'www.google.com'

SSL_PORT	=	443

#	Use	the	path	of	CA	certificate	file	in	your	system

CA_CERT_PATH	=	'/usr/local/lib/python3.3/dist-	

packages/requests/cacert.pem'

def	ssl_wrap_socket(sock,	keyfile=None,	certfile=None,	cert_reqs=None,	

ca_certs=None,	server_hostname=None,	ssl_version=None):

				context	=	SSLContext(ssl_version)

				context.verify_mode	=	cert_reqs

				if	ca_certs:

								try:

												context.load_verify_locations(ca_certs)

								except	Exception	as	e:

												raise	SSLError(e)

				if	certfile:

								context.load_cert_chain(certfile,	keyfile)

				if	HAS_SNI:		#	OpenSSL	enabled	SNI

								return	context.wrap_socket(sock,	server_hostname=server_hostname)

				return	context.wrap_socket(sock)

if	__name__	==	'__main__':

				hostname	=	input("Enter	target	host:")	or	TARGET_HOST

				client_sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				client_sock.connect((hostname,	443))

				

				ssl_socket	=	ssl_wrap_socket(client_sock,	ssl_version=PROTOCOL_TLSv1,	

cert_reqs=ssl.CERT_REQUIRED,	ca_certs=CA_CERT_PATH,	

server_hostname=hostname)

				print("Extracting	remote	host	certificate	details:")

				cert	=	ssl_socket.getpeercert()

				pprint(cert)

				if	not	cert	or	('commonName',	TARGET_HOST)	not	in	cert['subject'][4]:

								raise	Exception("Invalid	SSL	cert	for	host	%s.	Check	if	this	is	a	

man-in-the-middle	attack!")

				ssl_socket.write('GET	/	\n'.encode('utf-8'))

				#pprint(ssl_socket	.recv(1024).split(b"\r\n"))

				ssl_socket.close()

				client_sock.close()

If	you	run	the	preceding	example,	you	will	see	the	details	of	the	SSL	certificate	of	a
remote	web	server	such	as	http://www.google.com.	Here	we	have	created	a	TCP	socket
and	connected	it	to	HTTPS	port	443.	Then	that	socket	connection	is	wrapped	into	SSL
packets	using	our	ssl_wrap_socket()	function.	This	function	takes	the	following
parameters	as	arguments:

sock:	TCP	socket
keyfile:	SSL	private	key	file	path
certfile:	SSL	public	certificate	path
cert_reqs:	Confirmation	if	certificate	is	required	from	other	side	to	make	connection
and	if	validation	test	is	required
ca_certs:	Public	certificate	authority	certificate	path
server_hostname:	The	target	remote	server’s	hostname
ssl_version:	The	intended	SSL	version	to	be	used	by	the	client

At	the	beginning	of	the	SSL	socket	wrapping	process,	we	have	created	an	SSL	context
using	the	SSLContext()	class.	This	is	necessary	to	set	up	the	SSL	connection	specific
properties.	Instead	of	using	a	custom	context,	we	could	also	use	a	default	context,	supplied
by	default	with	the	ssl	module,	using	the	create_default_context()	function.	You	can
specify	whether	you’d	like	to	create	client	or	server	side	sockets	using	a	constant.	The
following	is	an	example	for	creating	a	client	side	socket:

context	=	ssl.create_default_context(Purpose.SERVER_AUTH)

The	SSLContext	object	takes	the	SSL	version	argument,	that	in	our	example	is	set	to
PROTOCOL_TLSv1,	or	you	should	use	the	latest	version.	Note	that	SSLv2	and	SSLv3	are
broken	and	must	not	be	used	in	any	production	code	for	serious	security	issues.

In	the	preceding	example,	CERT_REQUIRED	indicates	that	server	certificate	is	necessary	for
the	connection	to	continue,	and	this	certificate	will	be	validated	later.

If	the	CA	certificate	parameter	has	been	presented	with	a	certificate	path,	the
load_verify_locations()	method	is	used	to	load	the	CA	certificate	files.	This	will	be
used	to	verify	the	peer	server	certificates.	If	you’d	like	to	use	the	default	certificate	path	on
your	system,	you’d	probably	call	another	context	method;
load_default_certs(purpose=Purpose.SERVER_AUTH).

http://www.google.com

When	we	operate	on	server	side,	usually	the	load_cert_chain()	method	is	used	to	load
the	key	and	certificate	file	so	that	clients	can	verify	the	server’s	authenticity.

Finally,	the	wrap_socket()	method	is	called	to	return	an	SSL	wrapped	socket.	Note	that,
if	OpenSSL	library	comes	with	Server	Name	Indication	(SNI)	support	enabled,	you	can
pass	the	remote	server’s	host	name	while	wrapping	the	socket.	This	is	useful	when	the
remote	server	uses	different	SSL	certificates	for	different	secure	services	using	a	single	IP
address,	for	example,	name-based	virtual	hosting.

If	you	run	the	preceding	SSL	client	code,	you	will	see	the	various	properties	of	the	SSL
certificate	of	the	remote	server,	as	shown	in	the	following	screenshot.	This	is	used	to
verify	the	authenticity	of	the	remote	server	by	calling	the	getpeercert()	method	and
comparing	it	with	the	returned	hostname.

Interestingly,	if	any	other	fake	web	server	wants	to	pretend	to	be	the	Google’s	web	server,
it	simply	can’t	do	that,	provided	that	you	check	the	SSL	certificate	that	is	signed	by	an
accredited	certificate	authority,	unless	an	accredited	CA	has	been	compromised/subverted.
This	form	of	attack	to	your	web	browser	is	commonly	referred	to	as	the	man	in	the
middle	(MITM)	attack.

Inspecting	standard	SSL	client/server
communication
The	following	screenshot	shows	the	interaction	between	the	SSL	client	and	the	remote
server:

Let	us	examine	the	SSL	handshake	process	between	the	client	and	the	server.	In	the	first
step	of	a	SSL	handshake,	the	client	sends	a	Hello	message	to	the	remote	server	saying
what	it	is	capable	of,	in	terms	handling	key	files,	encrypting	messages,	doing	message
integrity	checks,	and	so	on.	In	the	following	screenshot,	you	can	see	that	the	client	is
presenting	a	set	of	38	cipher	suites	to	the	server	to	choose	relevant	algorithms.	It	also
sends	the	TLS	version	number	1.0	and	a	random	number	to	generate	a	master	secret	for
encrypting	the	subsequent	message	exchanges.	This	is	helpful	for	preventing	any	third
party	to	look	inside	the	packets.	The	random	numbers	seen	in	the	hello	messages	are	used
to	generate	the	pre-master	secret,	which	both	ends	will	process	further	to	arrive	at	the
master	secret,	and	then	use	that	to	generate	the	symmetric	key.

In	the	second	packet	from	server	to	client,	the	server	selects	the	cipher	suite
TLS_ECDHE_RSA_WITH_RC4_128_SHA	for	the	purpose	of	connecting	to	the	client.	This
roughly	means	the	server	wants	to	use	the	RSA	algorithm	for	key	handling,	RC4	for
encryption,	and	SHA	for	integrity	checking	(hashing).	This	is	shown	in	the	following
screenshot:

In	the	second	phase	of	the	SSL	handshake,	the	server	sends	an	SSL	certificate	to	the	client.
This	certificate	is	issued	by	a	CA,	as	mentioned	earlier.	It	contains	a	serial	number,	public
key,	validity	period,	and	the	details	of	the	subject	and	the	issuer.	The	following	screenshot
show	the	remote	server	certificate.	Can	you	locate	the	server’s	public	key	inside	the
packet?

In	the	third	phase	of	the	handshake,	the	client	exchanges	a	key	and	calculates	a	master
secret	to	encrypt	the	messages	and	continue	further	communications.	Client	also	sends	the
request	to	change	the	cipher	specification	that	was	agreed	on	the	previous	phase.	It	then
indicates	to	start	encrypting	the	message.	The	following	screenshot	shows	this	process:

In	the	final	task	of	the	SSL	handshake	process,	a	new	session	ticket	is	generated	by	the
server	for	the	client’s	particular	session.	This	happens	due	to	a	TLS	extension	where	the
client	advertises	its	support	by	sending	an	empty	session	ticket	extension	in	the	client
Hello	message.	The	server	answers	with	an	empty	session	ticket	extension	in	its	server
Hello	message.	This	session	ticket	mechanism	enables	the	client	to	remember	the	whole
session	state,	and	the	server	becomes	less	engaged	in	maintaining	a	server-side	session
cache.	The	following	screenshot	shows	an	example	for	presenting	an	SSL	session	ticket:

Creating	a	custom	SSL	client/server
So	far,	we	have	been	dealing	more	with	the	SSL	or	TLS	client.	Now,	let	us	have	a	look	at
the	server	side	briefly.	As	you	are	already	familiar	with	the	TCP/UDP	socket	server
creation	process,	let’s	skip	that	part	and	just	concentrate	on	the	SSL	wrapping	part.	The
following	code	snippet	shows	an	example	of	a	simple	SSL	server:

import	socket

import	ssl

SSL_SERVER_PORT	=	8000

if	__name__	==	'__main__':

				server_socket	=	socket.socket()

				server_socket.bind(('',	SSL_SERVER_PORT))

				server_socket.listen(5)

				print("Waiting	for	ssl	client	on	port	%s"	%SSL_SERVER_PORT)

				newsocket,	fromaddr	=	server_socket.accept()

				#	Generate	your	server's		public	certificate	and	private	key	pairs.

				ssl_conn	=	ssl.wrap_socket(newsocket,	server_side=True,	

certfile="server.crt",	keyfile="server.key",	

ssl_version=ssl.PROTOCOL_TLSv1)

				print(ssl_conn.read())

				ssl_conn.write('200	OK\r\n\r\n'.encode())

				print("Served	ssl	client.	Exiting…")

				ssl_conn.close()

				server_socket.close()

As	you	can	see,	the	server	socket	is	wrapped	with	the	wrap_socket()	method,	which	uses
some	intuitive	parameters	such	as	certfile,	keyfile,	and	SSL	version	number.	You	can
easily	generate	the	certificate	by	following	any	step-by-step	guide	found	on	the	Internet.
For	example,	http://www.akadia.com/services/ssh_test_certificate.html	suggests	to
generate	the	SSL	certificate	in	a	few	steps.

Now,	let’s	make	a	simplified	version	of	a	SSL	client	to	talk	with	the	above	SSL	server.
The	following	code	snippet	shows	an	example	of	a	simple	SSL	client:

from	socket	import	socket

import	ssl

from	pprint	import	pprint

TARGET_HOST	='localhost'

TARGET_PORT	=	8000

CA_CERT_PATH	=	'server.crt'

if	__name__	==	'__main__':

				sock	=	socket()

				ssl_conn	=	ssl.wrap_socket(sock,	cert_reqs=ssl.CERT_REQUIRED,	

ssl_version=ssl.PROTOCOL_TLSv1,	ca_certs=CA_CERT_PATH)

				target_host	=	TARGET_HOST	

http://www.akadia.com/services/ssh_test_certificate.html

				target_port	=	TARGET_PORT	

				ssl_conn.connect((target_host,	int(target_port)))

				#	get	remote	cert

				cert	=	ssl_conn.getpeercert()

				print("Checking	server	certificate")

				pprint(cert)

				if	not	cert	or	ssl.match_hostname(cert,	target_host):

								raise	Exception("Invalid	SSL	cert	for	host	%s.	Check	if	this	is	a	

man-in-the-middle	attack!"	%target_host)

				print("Server	certificate	OK.\n	Sending	some	custom	request…	GET	")

				ssl_conn.write('GET	/	\n'.encode('utf-8'))

				print("Response	received	from	server:")

				print(ssl_conn.read())

				ssl_conn.close()

Running	the	client/server	will	show	output	similar	to	the	following	screenshot.	Can	you
see	any	difference	in	comparison	to	our	last	example	client/server	communication?

Inspecting	interaction	between	a	custom	SSL
client/server
Let	us	inspect	the	SSL	client/server	interaction	once	again	in	order	to	observe	the
differences.	The	first	screenshot	shows	the	entire	communication	sequence.	In	the
following	screenshot	we	can	see	that	the	server’s	Hello	and	certificate	are	combined	in	the
same	message.

The	client’s	Client	Hello	packet	looks	pretty	similar	to	our	previous	SSL	connection,	as
shown	in	the	following	screenshot:

The	server’s	Server	Hello	packet	is	a	bit	different.	Can	you	identify	the	differences?	The
cipher	specification	is	different	that	is	TLS_RSA_WITH_AES_256_CBC_SHA,	as	shown	in	the
following	screenshot:

The	Client	key	exchange	packet	also	looks	very	familiar,	as	shown	in	the	following
screenshot:

The	following	screenshot	shows	the	New	Session	Ticket	packet	offered	in	this
connection:

Now	let’s	have	a	look	at	the	application	data.	Is	that	encrypted?	For	the	captured	packet,	it
looks	like	garbage.	The	following	screenshot	shows	the	encrypted	message	that	hides	the
real	data.	This	is	what	we	want	to	achieve	using	SSL/TLS.

Summary
In	this	chapter,	we	discussed	basic	TCP/IP	socket	programming	using	Python’s	socket
and	ssl	module.	We	demonstrated	how	simple	TCP	sockets	can	be	wrapped	with	TLS	and
used	to	carry	encrypted	data.	We	also	found	the	ways	to	validate	the	authenticity	of	a
remote	server	using	SSL	certificates.	Some	other	minor	issues	around	socket
programming,	such	as	non-blocking	socket	I/O	were	also	presented.	The	detailed	packet
analysis	in	each	section	helps	us	to	understand	what	happens	under	the	hood	in	our	socket
programming	exercises.

In	the	next	chapter,	we	will	learn	about	the	socket	server	design,	particularly	the	popular
multithreaded	and	event-driven	approaches	will	be	touched	upon.

Chapter	8.	Client	and	Server	Applications
In	the	previous	chapter,	we	looked	at	exchanging	data	between	devices	by	using	the
sockets	interface.	In	this	chapter,	we’re	going	to	use	sockets	to	build	network	applications.
Sockets	follow	one	of	the	main	models	of	computer	networking,	that	is,	the	client/server
model.	We’ll	look	at	this	with	a	focus	on	structuring	server	applications.	We’ll	cover	the
following	topics:

Designing	a	simple	protocol
Building	an	echo	server	and	client
Building	a	chat	server	and	client
Multithreaded	and	event-driven	server	architectures
The	eventlet	and	asyncio	libraries

The	examples	in	this	chapter	are	best	run	on	Linux	or	a	Unix	operating	system.	The
Windows	sockets	implementation	has	some	idiosyncrasies,	and	these	can	create	some
error	conditions,	which	we	will	not	be	covering	here.	Note	that	Windows	does	not	support
the	poll	interface	that	we’ll	use	in	one	example.	If	you	do	use	Windows,	then	you’ll
probably	need	to	use	ctrl	+	break	to	kill	these	processes	in	the	console,	rather	than	using
ctrl	-	c	because	Python	in	a	Windows	command	prompt	doesn’t	respond	to	ctrl	–	c	when
it’s	blocking	on	a	socket	send	or	receive,	which	will	be	quite	often	in	this	chapter!	(and	if,
like	me,	you’re	unfortunate	enough	to	try	testing	these	on	a	Windows	laptop	without	a
break	key,	then	be	prepared	to	get	very	familiar	with	the	Windows	Task	Manager’s	End
task	button).

Client	and	server
The	basic	setup	in	the	client/server	model	is	one	device,	the	server	that	runs	a	service	and
patiently	waits	for	clients	to	connect	and	make	requests	to	the	service.	A	24-hour	grocery
shop	may	be	a	real	world	analogy.	The	shop	waits	for	customers	to	come	in	and	when	they
do,	they	request	certain	products,	purchase	them	and	leave.	The	shop	might	advertise	itself
so	people	know	where	to	find	it,	but	the	actual	transactions	happen	while	the	customers
are	visiting	the	shop.

A	typical	computing	example	is	a	web	server.	The	server	listens	on	a	TCP	port	for	clients
that	need	its	web	pages.	When	a	client,	for	example	a	web	browser,	requires	a	web	page
that	the	server	hosts,	it	connects	to	the	server	and	then	makes	a	request	for	that	page.	The
server	replies	with	the	content	of	the	page	and	then	the	client	disconnects.	The	server
advertises	itself	by	having	a	hostname,	which	the	clients	can	use	to	discover	the	IP	address
so	that	they	can	connect	to	it.

In	both	of	these	situations,	it	is	the	client	that	initiates	any	interaction	–	the	server	is	purely
responsive	to	that	interaction.	So,	the	needs	of	the	programs	that	run	on	the	client	and
server	are	quite	different.

Client	programs	are	typically	oriented	towards	the	interface	between	the	user	and	the
service.	They	retrieve	and	display	the	service,	and	allow	the	user	to	interact	with	it.	Server
programs	are	written	to	stay	running	for	indefinite	periods	of	time,	to	be	stable,	to
efficiently	deliver	the	service	to	the	clients	that	are	requesting	it,	and	to	potentially	handle
a	large	number	of	simultaneous	connections	with	a	minimal	impact	on	the	experience	of
any	one	client.

In	this	chapter,	we	will	look	at	this	model	by	writing	a	simple	echo	server	and	client,	and
then	upgrading	it	to	a	chat	server,	which	can	handle	a	session	with	multiple	clients.	The
socket	module	in	Python	perfectly	suits	this	task.

An	echo	protocol
Before	we	write	our	first	client	and	server	programs,	we	need	to	decide	how	they	are
going	to	interact	with	each	other,	that	is	we	need	to	design	a	protocol	for	their
communication.

Our	echo	server	should	listen	until	a	client	connects	and	sends	a	bytes	string,	then	we	want
it	to	echo	that	string	back	to	the	client.	We	only	need	a	few	basic	rules	for	doing	this.
These	rules	are	as	follows:

1.	 Communication	will	take	place	over	TCP.
2.	 The	client	will	initiate	an	echo	session	by	creating	a	socket	connection	to	the	server.
3.	 The	server	will	accept	the	connection	and	listen	for	the	client	to	send	a	bytes	string.
4.	 The	client	will	send	a	bytes	string	to	the	server.
5.	 Once	it	sends	the	bytes	string,	the	client	will	listen	for	a	reply	from	the	server
6.	 When	it	receives	the	bytes	string	from	the	client,	the	server	will	send	the	bytes	string

back	to	the	client.
7.	 When	the	client	has	received	the	bytes	string	from	the	server,	it	will	close	its	socket

to	end	the	session.

These	steps	are	straightforward	enough.	The	missing	element	here	is	how	the	server	and
the	client	will	know	when	a	complete	message	has	been	sent.	Remember	that	an
application	sees	a	TCP	connection	as	an	endless	stream	of	bytes,	so	we	need	to	decide
what	in	that	byte	stream	will	signal	the	end	of	a	message.

Framing
This	problem	is	called	framing,	and	there	are	several	approaches	that	we	can	take	to
handle	it.	The	main	ones	are	described	here:

1.	 Make	it	a	protocol	rule	that	only	one	message	will	be	sent	per	connection,	and	once	a
message	has	been	sent,	the	sender	will	immediately	close	the	socket.

2.	 Use	fixed	length	messages.	The	receiver	will	read	the	number	of	bytes	and	know	that
they	have	the	whole	message.

3.	 Prefix	the	message	with	the	length	of	the	message.	The	receiver	will	read	the	length
of	the	message	from	the	stream	first,	then	it	will	read	the	indicated	number	of	bytes	to
get	the	rest	of	the	message.

4.	 Use	special	character	delimiters	for	indicating	the	end	of	a	message.	The	receiver	will
scan	the	incoming	stream	for	a	delimiter,	and	the	message	comprises	everything	up	to
the	delimiter.

Option	1	is	a	good	choice	for	very	simple	protocols.	It’s	easy	to	implement	and	it	doesn’t
require	any	special	handling	of	the	received	stream.	However,	it	requires	the	setting	up
and	tearing	down	of	a	socket	for	every	message,	and	this	can	impact	performance	when	a
server	is	handling	many	messages	at	once.

Option	2	is	again	simple	to	implement,	but	it	only	makes	efficient	use	of	the	network
when	our	data	comes	in	neat,	fixed-length	blocks.	For	example	in	a	chat	server	the
message	lengths	are	variable,	so	we	will	have	to	use	a	special	character,	such	as	the	null
byte,	to	pad	messages	to	the	block	size.	This	only	works	where	we	know	for	sure	that	the
padding	character	will	never	appear	in	the	actual	message	data.	There	is	also	the	additional
issue	of	how	to	handle	messages	longer	than	the	block	length.

Option	3	is	usually	considered	as	one	of	the	best	approaches.	Although	it	can	be	more
complex	to	code	than	the	other	options,	the	implementations	are	still	reasonably
straightforward,	and	it	makes	efficient	use	of	bandwidth.	The	overhead	imposed	by
including	the	length	of	each	message	is	usually	minimal	as	compared	to	the	message
length.	It	also	avoids	the	need	for	any	additional	processing	of	the	received	data,	which
may	be	needed	by	certain	implementations	of	option	4.

Option	4	is	the	most	bandwidth-efficient	option,	and	is	a	good	choice	when	we	know	that
only	a	limited	set	of	characters,	such	as	the	ASCII	alphanumeric	characters,	will	be	used
in	messages.	If	this	is	the	case,	then	we	can	choose	a	delimiter	character,	such	as	the	null
byte,	which	will	never	appear	in	the	message	data,	and	then	the	received	data	can	be	easily
broken	into	messages	as	this	character	is	encountered.	Implementations	are	usually
simpler	than	option	3.	Although	it	is	possible	to	employ	this	method	for	arbitrary	data,	that
is,	where	the	delimiter	could	also	appear	as	a	valid	character	in	a	message,	this	requires
the	use	of	character	escaping,	which	needs	an	additional	round	of	processing	of	the	data.
Hence	in	these	situations,	it’s	usually	simpler	to	use	length-prefixing.

For	our	echo	and	chat	applications,	we’ll	be	using	the	UTF-8	character	set	to	send
messages.	The	null	byte	isn’t	used	in	any	character	in	UTF-8	except	for	the	null	byte	itself,

so	it	makes	a	good	delimiter.	Thus,	we’ll	be	using	method	4	with	the	null	byte	as	the
delimiter	to	frame	our	messages.

So,	our	rule	number	8	will	become:

Messages	will	be	encoded	in	the	UTF-8	character	set	for	transmission,	and	they	will
be	terminated	by	the	null	byte.

Now,	let’s	write	our	echo	programs.

A	simple	echo	server
As	we	work	through	this	chapter,	we’ll	find	ourselves	reusing	several	pieces	of	code,	so	to
save	ourselves	from	repetition,	we’ll	set	up	a	module	with	useful	functions	that	we	can
reuse	as	we	go	along.	Create	a	file	called	tincanchat.py	and	save	the	following	code	in
it:

import	socket

HOST	=	''

PORT	=	4040

def	create_listen_socket(host,	port):

				"""	Setup	the	sockets	our	server	will	receive	connection	requests	on	

"""

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				sock.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				sock.bind((host,	port))

				sock.listen(100)

				return	sock

def	recv_msg(sock):

				"""	Wait	for	data	to	arrive	on	the	socket,	then	parse	into	messages	

using	b'\0'	as	message	delimiter	"""

				data	=	bytearray()

				msg	=	''

				#	Repeatedly	read	4096	bytes	off	the	socket,	storing	the	bytes

				#	in	data	until	we	see	a	delimiter

				while	not	msg:

								recvd	=	sock.recv(4096)

								if	not	recvd:

												#	Socket	has	been	closed	prematurely

												raise	ConnectionError()

								data	=	data	+	recvd

								if	b'\0'	in	recvd:

												#	we	know	from	our	protocol	rules	that	we	only	send

												#	one	message	per	connection,	so	b'\0'	will	always	be

												#	the	last	character

												msg	=	data.rstrip(b'\0')

				msg	=	msg.decode('utf-8')

				return	msg

def	prep_msg(msg):

				"""	Prepare	a	string	to	be	sent	as	a	message	"""

				msg	+=	'\0'

				return	msg.encode('utf-8')

def	send_msg(sock,	msg):

				"""	Send	a	string	over	a	socket,	preparing	it	first	"""

				data	=	prep_msg(msg)

				sock.sendall(data)

First	we	define	a	default	interface	and	a	port	number	to	listen	on.	The	empty	''	interface,
specified	in	the	HOST	variable,	tells	socket.bind()	to	listen	on	all	available	interfaces.	If

you	want	to	restrict	access	to	just	your	machine,	then	change	the	value	of	the	HOST
variable	at	the	beginning	of	the	code	to	127.0.0.1.

We’ll	be	using	create_listen_socket()	to	set	up	our	server	listening	connections.	This
code	is	the	same	for	several	of	our	server	programs,	so	it	makes	sense	to	reuse	it.

The	recv_msg()	function	will	be	used	by	our	echo	server	and	client	for	receiving
messages	from	a	socket.	In	our	echo	protocol,	there	isn’t	anything	that	our	programs	may
need	to	do	while	they’re	waiting	to	receive	a	message,	so	this	function	just	calls
socket.recv()	in	a	loop	until	it	has	received	the	whole	message.	As	per	our	framing	rule,
it	will	check	the	accumulated	data	on	each	iteration	to	see	if	it	has	received	a	null	byte,
and	if	so,	then	it	will	return	the	received	data,	stripping	off	the	null	byte	and	decoding	it
from	UTF-8.

The	send_msg()	and	prep_msg()	functions	work	together	for	framing	and	sending	a
message.	We’ve	separated	the	null	byte	termination	and	the	UTF-8	encoding	into
prep_msg()	because	we	will	use	them	in	isolation	later	on.

Handling	the	received	data
Note	that	we’re	drawing	ourselves	a	careful	line	with	these	send	and	receive	functions	as
regards	string	encoding.	Python	3	strings	are	Unicode,	while	the	data	that	we	receive	over
the	network	is	bytes.	The	last	thing	that	we	want	to	be	doing	is	handling	a	mixture	of	these
in	the	rest	of	our	program	code,	so	we’re	going	to	carefully	encode	and	decode	the	data	at
the	boundary	of	our	program,	where	the	data	enters	and	leaves	the	network.	This	will
ensure	that	any	functions	in	the	rest	of	our	code	can	assume	that	they’ll	be	working	with
Python	strings,	which	will	later	on	make	things	much	easier	for	us.

Of	course,	not	all	the	data	that	we	may	want	to	send	or	receive	over	a	network	will	be	text.
For	example,	images,	compressed	files,	and	music,	can’t	be	decoded	to	a	Unicode	string,
so	a	different	kind	of	handling	is	needed.	Usually	this	will	involve	loading	the	data	into	a
class,	such	as	a	Python	Image	Library	(PIL)	image	for	example,	if	we	are	going	to
manipulate	the	object	in	some	way.

There	are	basic	checks	that	could	be	done	here	on	the	received	data,	before	performing
full	processing	on	it,	to	quickly	flag	any	problems	with	the	data.	Some	examples	of	such
checks	are	as	follows:

Checking	the	length	of	the	received	data
Checking	the	first	few	bytes	of	a	file	for	a	magic	number	to	confirm	a	file	type
Checking	values	of	higher	level	protocol	headers,	such	as	the	Host	header	in	an	HTTP
request

This	kind	of	checking	will	allow	our	application	to	fail	fast	if	there	is	an	obvious	problem.

The	server	itself
Now,	let’s	write	our	echo	server.	Open	a	new	file	called	1.1-echo-server-uni.py	and
save	the	following	code	in	it:

import	tincanchat

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

def	handle_client(sock,	addr):

				"""	Receive	data	from	the	client	via	sock	and	echo	it	back	"""

				try:

								msg	=	tincanchat.recv_msg(sock)		#	Blocks	until	received

																																									#	complete	message

								print('{}:	{}'.format(addr,	msg))

								tincanchat.send_msg(sock,	msg)		#	Blocks	until	sent

				except	(ConnectionError,	BrokenPipeError):

								print('Socket	error')

				finally:

								print('Closed	connection	to	{}'.format(addr))

								sock.close()

if	__name__	==	'__main__':

				listen_sock	=	tincanchat.create_listen_socket(HOST,	PORT)

				addr	=	listen_sock.getsockname()

				print('Listening	on	{}'.format(addr))

				while	True:

								client_sock,	addr	=	listen_sock.accept()

								print('Connection	from	{}'.format(addr))

								handle_client(client_sock,	addr)

This	is	about	as	simple	as	a	server	can	get!	First,	we	set	up	our	listening	socket	with	the
create_listen_socket()	call.	Second,	we	enter	our	main	loop,	where	we	listen	forever
for	incoming	connections	from	clients,	blocking	on	listen_sock.accept().	When	a
client	connection	comes	in,	we	invoke	the	handle_client()	function,	which	handles	the
client	as	per	our	protocol.	We’ve	created	a	separate	function	for	this	code,	partly	to	keep
the	main	loop	tidy,	and	partly	because	we’ll	want	to	reuse	this	set	of	operations	in	later
programs.

That’s	our	server,	now	we	just	need	to	make	a	client	to	talk	to	it.

A	simple	echo	client
Create	a	file	called	1.2-echo_client-uni.py	and	save	the	following	code	in	it:

import	sys,	socket

import	tincanchat

HOST	=	sys.argv[-1]	if	len(sys.argv)	>	1	else	'127.0.0.1'

PORT	=	tincanchat.PORT

if	__name__	==	'__main__':

				while	True:

								try:

												sock	=	socket.socket(socket.AF_INET,

																																	socket.SOCK_STREAM)

												sock.connect((HOST,	PORT))

												print('\nConnected	to	{}:{}'.format(HOST,	PORT))

												print("Type	message,	enter	to	send,	'q'	to	quit")

												msg	=	input()

												if	msg	==	'q':	break

												tincanchat.send_msg(sock,	msg)		#	Blocks	until	sent

												print('Sent	message:	{}'.format(msg))

												msg	=	tincanchat.recv_msg(sock)		#	Block	until

																																													#	received	complete

																																													#	message

												print('Received	echo:	'	+	msg)

								except	ConnectionError:

												print('Socket	error')

												break

								finally:

												sock.close()

												print('Closed	connection	to	server\n')

If	we’re	running	our	server	on	a	different	machine	from	the	one	on	which	we	are	running
the	client,	then	we	can	supply	the	IP	address	or	the	hostname	of	the	server	as	a	command
line	argument	to	the	client	program.	If	we	don’t,	then	it	will	default	to	trying	to	connect	to
the	localhost.

The	third	and	forth	lines	of	the	code	check	the	command	line	arguments	for	a	server
address.	Once	we’ve	determined	which	server	to	connect	to,	we	enter	our	main	loop,
which	loops	forever	until	we	kill	the	client	by	entering	q	as	a	message.	Within	the	main
loop,	we	first	create	a	connection	to	the	server.	Second,	we	prompt	the	user	to	enter	the
message	to	send	and	then	we	send	the	message	using	the	tincanchat.send_msg()
function.	We	then	wait	for	the	server’s	reply.	Once	we	get	the	reply,	we	print	it	and	then
we	close	the	connection	as	per	our	protocol.

Give	our	client	and	server	a	try.	Run	the	server	in	a	terminal	by	using	the	following
command:

$	python	1.1-echo_server-uni.py

Listening	on	('0.0.0.0',	4040)

In	another	terminal,	run	the	client	and	note	that	you	will	need	to	specify	the	server	if	you

need	to	connect	to	another	computer,	as	shown	here:

$	python	1.2-echo_client.py	192.168.0.7

Type	message,	enter	to	send,	'q'	to	quit

Running	the	terminals	side	by	side	is	a	good	idea,	because	you	can	simultaneously	see
how	the	programs	behave.

Type	a	few	messages	into	the	client	and	see	how	the	server	picks	them	up	and	sends	them
back.	Disconnecting	with	the	client	should	also	prompt	a	notification	on	the	server.

Concurrent	I/O
If	you’re	adventurous,	then	you	may	have	tried	connecting	to	our	server	using	more	than
one	client	at	once.	If	you	tried	sending	messages	from	both	of	them,	then	you’d	have	seen
that	it	does	not	work	as	we	might	have	hoped.	If	you	haven’t	tried	this,	then	give	it	a	go.

A	working	echo	session	on	the	client	should	look	like	this:

Type	message,	enter	to	send.	'q'	to	quit

hello	world

Sent	message:	hello	world

Received	echo:	hello	world

Closed	connection	to	server

However,	when	trying	to	send	a	message	by	using	a	second	connected	client,	we’ll	see
something	like	this:

Type	message,	enter	to	send.	'q'	to	quit

hello	world

Sent	message:	hello	world

The	client	will	hang	when	the	message	is	sent,	and	it	won’t	get	an	echo	reply.	You	may
also	notice	that	if	we	send	a	message	by	using	the	first	connected	client,	then	the	second
client	will	get	its	response.	So,	what’s	going	on	here?

The	problem	is	that	the	server	can	only	listen	for	the	messages	from	one	client	at	a	time.
As	soon	as	the	first	client	connects,	the	server	blocks	at	the	socket.recv()	call	in
tincanchat.recv_msg(),	waiting	for	the	first	client	to	send	a	message.	The	server	isn’t
able	to	receive	messages	from	other	clients	while	this	is	happening	and	so,	when	another
client	sends	a	message,	that	client	blocks	too,	waiting	for	the	server	to	send	a	reply.

This	is	a	slightly	contrived	example.	The	problem	in	this	case	could	easily	be	fixed	in	the
client	end	by	asking	the	user	for	an	input	before	establishing	a	connection	to	the	server.
However	in	our	full	chat	service,	the	client	will	need	to	be	able	to	listen	for	messages	from
the	server	while	simultaneously	waiting	for	user	input.	This	is	not	possible	in	our	present
procedural	setup.

There	are	two	solutions	to	this	problem.	We	can	either	use	more	than	one	thread	or
process,	or	use	non-blocking	sockets	along	with	an	event-driven	architecture.	We’re
going	to	look	at	both	of	these	approaches,	starting	with	multithreading.

Multithreading	and	multiprocessing
Python	has	APIs	that	allow	us	to	write	both	multithreading	and	multiprocessing
applications.	The	principle	behind	multithreading	and	multiprocessing	is	simply	to	take
copies	of	our	code	and	run	them	in	additional	threads	or	processes.	The	operating	system
automatically	schedules	the	threads	and	processes	across	available	CPU	cores	to	provide
fair	processing	time	allocation	to	all	the	threads	and	processes.	This	effectively	allows	a
program	to	simultaneously	run	multiple	operations.	In	addition,	when	a	thread	or	process
blocks,	for	example,	when	waiting	for	IO,	the	thread	or	process	can	be	de-prioritized	by
the	OS,	and	the	CPU	cores	can	be	allocated	to	other	threads	or	processes	that	have	actual
computation	to	do.

Here	is	an	overview	of	how	threads	and	processes	relate	to	each	other:

Threads	exist	within	processes.	A	process	can	contain	multiple	threads	but	it	always
contains	at	least	one	thread,	sometimes	called	the	main	thread.	Threads	within	the	same
process	share	memory,	so	data	transfer	between	threads	is	just	a	case	of	referencing	the
shared	objects.	Processes	do	not	share	memory,	so	other	interfaces,	such	as	files,	sockets,
or	specially	allocated	areas	of	shared	memory,	must	be	used	for	transferring	data	between
processes.

When	threads	have	operations	to	execute,	they	ask	the	operating	system	thread	scheduler
to	allocate	them	some	time	on	a	CPU,	and	the	scheduler	allocates	the	waiting	threads	to
CPU	cores	based	on	various	parameters,	which	vary	from	OS	to	OS.	Threads	in	the	same
process	may	run	on	separate	CPU	cores	at	the	same	time.

Although	two	processes	have	been	displayed	in	the	preceding	diagram,	multiprocessing	is
not	going	on	here,	since	the	processes	belong	to	different	applications.	The	second	process
is	displayed	to	illustrate	a	key	difference	between	Python	threading	and	threading	in	most

other	programs.	This	difference	is	the	presence	of	the	GIL.

Threading	and	the	GIL
The	CPython	interpreter	(the	standard	version	of	Python	available	for	download	from
www.python.org)	contains	something	called	the	Global	Interpreter	Lock	(GIL).	The
GIL	exists	to	ensure	that	only	a	single	thread	in	a	Python	process	can	run	at	a	time,	even	if
multiple	CPU	cores	are	present.	The	reason	for	having	the	GIL	is	that	it	makes	the
underlying	C	code	of	the	Python	interpreter	much	easier	to	write	and	maintain.	The
drawback	of	this	is	that	Python	programs	using	multithreading	cannot	take	advantage	of
multiple	cores	for	parallel	computation.

This	is	a	cause	of	much	contention;	however,	for	us	this	is	not	so	much	of	a	problem.	Even
with	the	GIL	present,	threads	that	are	blocking	on	I/O	are	still	de-prioritized	by	the	OS	and
put	into	the	background,	so	threads	that	do	have	computational	work	to	do	can	run	instead.
The	following	figure	is	a	simplified	illustration	of	this:

The	Waiting	for	GIL	state	is	where	a	thread	has	sent	or	received	some	data	and	so	is
ready	to	come	out	of	the	blocking	state,	but	another	thread	has	the	GIL,	so	the	ready
thread	is	forced	to	wait.	In	many	network	applications,	including	our	echo	and	chat
servers,	the	time	spent	waiting	on	I/O	is	much	higher	than	the	time	spent	processing	data.
As	long	as	we	don’t	have	a	very	large	number	of	connections	(a	situation	we’ll	discuss
later	on	when	we	come	to	event	driven	architectures),	thread	contention	caused	by	the	GIL
is	relatively	low,	and	hence	threading	is	still	a	suitable	architecture	for	these	network
server	applications.

With	this	in	mind,	we’re	going	to	use	multithreading	rather	than	multiprocessing	in	our
echo	server.	The	shared	data	model	will	simplify	the	code	that	we’ll	need	for	allowing	our
chat	clients	to	exchange	messages	with	each	other,	and	because	we’re	I/O	bound,	we	don’t
need	processes	for	parallel	computation.	Another	reason	for	not	using	processes	in	this
case	is	that	processes	are	more	“heavyweight”	in	terms	of	the	OS	resources,	so	creating	a
new	process	takes	longer	than	creating	a	new	thread.	Processes	also	use	more	memory.

One	thing	to	note	is	that	if	you	need	to	perform	an	intensive	computation	in	your	network
server	application	(maybe	you	need	to	compress	a	large	file	before	sending	it	over	the

http://www.python.org

network),	then	you	should	investigate	methods	for	running	this	in	a	separate	process.
Because	of	quirks	in	the	implementation	of	the	GIL,	having	even	a	single	computationally
intensive	thread	in	a	mainly	I/O	bound	process	when	multiple	CPU	cores	are	available	can
severely	impact	the	performance	of	all	the	I/O	bound	threads.	For	more	details,	go	through
the	David	Beazley	presentations	linked	to	in	the	following	information	box:

Note
Processes	and	threads	are	different	beasts,	and	if	you’re	not	clear	on	the	distinctions,	it’s
worthwhile	to	read	up.	A	good	starting	point	is	the	Wikipedia	article	on	threads,	which	can
be	found	at	http://en.wikipedia.org/wiki/Thread_(computing).

A	good	overview	of	the	topic	is	given	in	Chapter	4	of	Benjamin	Erb’s	thesis,	which	is
available	at	http://berb.github.io/diploma-thesis/community/.

Additional	information	on	the	GIL,	including	the	reasoning	behind	keeping	it	in	Python
can	be	found	in	the	official	Python	documentation	at
https://wiki.python.org/moin/GlobalInterpreterLock.

You	can	also	read	more	on	this	topic	in	Nick	Coghlan’s	Python	3	Q&A,	which	can	be
found	at	http://python-
notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-
fixing-the-gil-is-more-important-than-fixing-unicode.

Finally,	David	Beazley	has	done	some	fascinating	research	on	the	performance	of	the	GIL
on	multi-core	systems.	Two	presentations	of	importance	are	available	online.	They	give	a
good	technical	background,	which	is	relevant	to	this	chapter.	These	can	be	found	at
http://pyvideo.org/video/353/pycon-2010—understanding-the-python-gil–82	and	at
https://www.youtube.com/watch?v=5jbG7UKT1l4.

http://en.wikipedia.org/wiki/Thread_(computing)
http://berb.github.io/diploma-thesis/community/
https://wiki.python.org/moin/GlobalInterpreterLock
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-fixing-the-gil-is-more-important-than-fixing-unicode
http://pyvideo.org/video/353/pycon-2010--understanding-the-python-gil---82
https://www.youtube.com/watch?v=5jbG7UKT1l4

A	multithreaded	echo	server
A	benefit	of	the	multithreading	approach	is	that	the	OS	handles	the	thread	switches	for	us,
which	means	we	can	continue	to	write	our	program	in	a	procedural	style.	Hence	we	only
need	to	make	small	adjustments	to	our	server	program	to	make	it	multithreaded,	and	thus,
capable	of	handling	multiple	clients	simultaneously.

Create	a	new	file	called	1.3-echo_server-multi.py	and	add	the	following	code	to	it:

import	threading

import	tincanchat

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

def	handle_client(sock,	addr):

				"""	Receive	one	message	and	echo	it	back	to	client,	then	close

								socket	"""

				try:

								msg	=	tincanchat.recv_msg(sock)		#	blocks	until	received

																																									#	complete	message

								msg	=	'{}:	{}'.format(addr,	msg)

								print(msg)

								tincanchat.send_msg(sock,	msg)		#	blocks	until	sent

				except	(ConnectionError,	BrokenPipeError):

								print('Socket	error')

				finally:

								print('Closed	connection	to	{}'.format(addr))

								sock.close()

if	__name__	==	'__main__':

				listen_sock	=	tincanchat.create_listen_socket(HOST,	PORT)

				addr	=	listen_sock.getsockname()

				print('Listening	on	{}'.format(addr))

				while	True:

								client_sock,addr	=	listen_sock.accept()

								#	Thread	will	run	function	handle_client()	autonomously

								#	and	concurrently	to	this	while	loop

								thread	=	threading.Thread(target=handle_client,

																																		args=[client_sock,	addr],

																																		daemon=True)

								thread.start()

								print('Connection	from	{}'.format(addr))

You	can	see	that	we’ve	just	imported	an	extra	module	and	modified	our	main	loop	to	run
our	handle_client()	function	in	separate	threads,	rather	than	running	it	in	the	main
thread.	For	each	client	that	connects,	we	create	a	new	thread	that	just	runs	the
handle_client()	function.	When	the	thread	blocks	on	a	receive	or	send,	the	OS	checks
the	other	threads	to	see	if	they	have	come	out	of	a	blocking	state,	and	if	any	have,	then	it
switches	to	one	of	them.

Notice	that	we	have	set	the	daemon	argument	in	the	thread	constructor	call	to	True.	This

will	allow	the	program	to	exit	if	we	hit	ctrl	-	c	without	us	having	to	explicitly	close	all	of
our	threads	first.

If	you	try	this	echo	server	with	multiple	clients,	then	you’ll	see	that	a	second	client	that
connects	and	sends	a	message	will	immediately	get	a	response.

Designing	a	chat	server
We’ve	got	a	working	echo	server	and	it	can	handle	multiple	clients	simultaneously,	so
we’re	pretty	close	to	having	a	functional	chat	client.	However,	our	server	needs	to
broadcast	the	messages	it	receives	to	all	the	connected	clients.	Sounds	simple,	but	there
are	two	problems	that	we	need	to	overcome	to	make	this	happen.

First,	our	protocol	needs	an	overhaul.	If	we	think	about	what	needs	to	happen	from	a
client’s	point	of	view,	then	we	can	no	longer	rely	on	the	simple	work	flow:

client	connect	>	client	send	>	server	send	>	client	disconnect.

Clients	can	now	potentially	receive	messages	at	any	time,	and	not	just	when	they	send	a
message	to	the	server	themselves.

Second,	we	need	to	modify	our	server	to	send	messages	to	all	of	the	connected	clients.	As
we	are	using	multiple	threads	to	handle	our	clients,	this	means	that	we	need	to	set	up
communication	between	the	threads.	With	this,	we’re	dipping	our	toe	into	the	world	of
concurrent	programming,	and	it	should	be	approached	with	care	and	forethought.	While
the	shared	state	of	threads	is	useful,	it	is	also	deceptive	in	its	simplicity.	Having	multiple
threads	of	control	asynchronously	accessing	and	changing	the	same	resources	is	a	perfect
breeding	ground	for	race	conditions	and	subtle	deadlock	bugs.	While	a	full	discussion	on
concurrent	programming	is	well	beyond	the	scope	of	this	text,	we’ll	cover	some	simple
principles,	which	can	help	preserve	your	sanity.

A	chat	protocol
The	main	purpose	of	our	protocol	update	will	be	to	specify	that	clients	must	be	able	to
accept	all	messages	that	are	sent	to	them,	whenever	they	are	sent.

In	theory,	one	solution	for	this	would	be	for	our	client	itself	to	set	up	a	listening	socket,	so
that	the	server	can	connect	to	it	whenever	it	has	a	new	message	to	deliver.	In	the	real
world,	this	solution	will	rarely	be	applicable.	Clients	are	almost	always	protected	by	some
kind	of	firewall,	which	prevents	any	new	inbound	connections	from	connecting	to	the
client.	In	order	for	our	server	to	make	a	connection	to	a	port	on	our	client,	we	would	need
to	ensure	that	any	intervening	firewalls	are	configured	to	allow	our	server	to	connect.	This
requirement	would	make	our	software	much	less	appealing	to	most	users	since	there	are
already	chat	solutions	which	don’t	require	this.

If	we	can’t	assume	that	the	server	can	connect	to	the	client,	then	we	need	to	meet	our
requirement	by	only	using	the	client-initiated	connection	to	the	server.	There	are	two	ways
in	which	we	can	do	this.	First,	we	can	have	our	clients	run	in	a	disconnected	state	by
default,	then	have	them	periodically	connect	to	the	server,	download	any	waiting
messages,	and	then	disconnect	again.	Alternatively,	we	can	have	our	clients	connect	to	the
server	and	then	leave	the	connection	open.	They	can	then	continuously	listen	on	the
connection	and	handle	new	messages	sent	by	the	server	in	one	thread,	while	accepting
user	input	and	sending	messages	over	the	same	connection	in	another	thread.

You	may	recognize	these	scenarios	as	the	pull	and	push	options	that	are	available	in	some
e-mail	clients.	They	are	called	pull	and	push	because	of	how	the	operations	appear	to	the
client.	The	client	either	pulls	data	from	the	server,	or	the	server	pushes	data	to	the	client.

There	are	pros	and	cons	to	using	either	of	the	two	approaches,	and	the	decision	depends	on
an	application’s	needs.	Pull	results	in	a	lower	load	on	the	server,	but	higher	latency	for	the
client	in	receiving	messages.	While	this	is	fine	for	many	applications,	such	as	e-mail,	in	a
chat	server	we	usually	expect	immediate	updates.	While	we	could	poll	very	frequently,
this	imposes	unneeded	load	on	the	client,	server,	and	network	as	the	connections	are
repeatedly	set	up	and	torn	down.

Push	is	better	suited	for	a	chat	server.	As	the	connection	remains	open	continuously	the
amount	of	network	traffic	is	limited	to	the	initial	connection	setup,	and	the	messages
themselves.	Also,	the	client	gets	new	messages	from	the	server	almost	immediately.

So,	we’ll	use	a	push	approach,	and	we	will	now	write	our	chat	protocol	as	follows:

1.	 Communication	will	be	conducted	over	TCP.
2.	 The	client	will	initiate	a	chat	session	by	creating	a	socket	connection	to	the	server.
3.	 The	server	will	accept	the	connection,	listen	for	any	messages	from	the	client,	and

accept	them.
4.	 The	client	will	listen	on	the	connection	for	any	messages	from	the	server,	and	accept

them.
5.	 The	server	will	send	any	messages	from	the	client	to	all	the	other	connected	clients.
6.	 Messages	will	be	encoded	in	the	UTF-8	character	set	for	transmission,	and	they	will

be	terminated	by	the	null	byte.

Handling	data	on	persistent	connections
A	new	problem	which	our	persistent	connection	approach	raises	is	that	we	can	no	longer
assume	that	our	socket.recv()	call	will	contain	data	from	only	one	message.	In	our	echo
server,	because	of	how	we	have	defined	the	protocol,	we	know	that	as	soon	as	we	see	a
null	byte,	the	message	that	we	have	received	is	complete,	and	that	the	sender	won’t	be
sending	anything	further.	That	is,	everything	we	read	in	the	last	socket.recv()	call	is	a
part	of	that	message.

In	our	new	setup,	we’ll	be	reusing	the	same	connection	to	send	an	indefinite	number	of
messages,	and	these	won’t	be	synchronized	with	the	chunks	of	data	that	we	will	pull	from
each	socket.recv().	Hence,	it’s	quite	possible	that	the	data	from	one	recv()	call	will
contain	data	from	multiple	messages.	For	example,	if	we	send	the	following:

caerphilly,

illchester,

brie

Then	on	the	wire	they	will	look	like	this:

caerphilly\0illchester\0brie\0

Due	to	the	vagaries	of	network	transmission	though,	a	set	of	successive	recv()	calls	may
receive	them	as:

recv	1:	caerphil

recv	2:	ly\0illches

recv	3:	ter\0brie\0

Notice	that	recv	1	and	recv	2,	when	taken	together	contain	a	complete	message,	but
they	also	contain	the	beginning	of	the	next	message.	Clearly,	we	need	to	update	our
parsing.	One	option	is	to	read	data	from	the	socket	one	byte	at	a	time,	that	is,	use	recv(1),
and	check	every	byte	to	see	if	it’s	a	null	byte.	This	is	a	dismally	inefficient	way	to	use	a
network	socket	though.	We	want	to	read	as	much	data	in	our	call	to	recv()	as	we	can.
Instead,	when	we	encounter	an	incomplete	message	we	can	cache	the	extraneous	bytes
and	use	them	when	we	next	call	recv().	Lets	do	this,	add	these	functions	to	the
tincanchat.py	file:

def	parse_recvd_data(data):

				"""	Break	up	raw	received	data	into	messages,	delimited

								by	null	byte	"""

				parts	=	data.split(b'\0')

				msgs	=	parts[:-1]

				rest	=	parts[-1]

				return	(msgs,	rest)

def	recv_msgs(sock,	data=bytes()):

				"""	Receive	data	and	break	into	complete	messages	on	null	byte

							delimiter.	Block	until	at	least	one	message	received,	then

							return	received	messages	"""

				msgs	=	[]

				while	not	msgs:

								recvd	=	sock.recv(4096)

								if	not	recvd:

												raise	ConnectionError()

								data	=	data	+	recvd

								(msgs,	rest)	=	parse_recvd_data(data)

				msgs	=	[msg.decode('utf-8')	for	msg	in	msgs]

				return	(msgs,	rest)

From	now	on,	we’ll	be	using	recv_msgs()	wherever	we	were	using	recv_msg()	before.
So,	what	are	we	doing	here?	Starting	with	a	quick	scan	through	recv_msgs(),	you	can	see
that	it’s	similar	to	recv_msg().	We	make	repeated	calls	to	recv()	and	accumulate	the
received	data	as	before,	but	now	we	will	be	using	parse_recvd_data()	to	parse	it,	with
the	expectation	that	it	may	contain	multiple	messages.	When	parse_recvd_data()	finds
one	or	more	complete	messages	in	the	received	data,	it	splits	them	into	a	list	and	returns
them,	and	if	there	is	anything	left	after	the	last	complete	message,	then	it	additionally
returns	this	using	the	rest	variable.	The	recv_msgs()	function	then	decodes	the	messages
from	UTF-8,	and	returns	them	and	the	rest	variable.

The	rest	value	is	important	because	we	will	feed	it	back	to	recv_msgs()	next	time	we
call	it,	and	it	will	be	prefixed	to	the	data	from	the	recv()	calls.	In	this	way,	the	leftover
data	from	the	last	recv_msgs()	call	won’t	be	lost.

So,	in	our	preceding	example,	parsing	the	messages	would	take	place	as	shown	here:

recv_msgs	call data	argument recv	result Accumulated	data msgs rest

1 - 'caerphil' 'caerphil' [] b''

1 - 'ly\0illches' 'caerphilly\0illches' ['caerphilly'] 'illches'

2 'illches' 'ter\0brie\0' 'illchester\0brie\0' ['illchester',	'brie'] b''

Here,	we	can	see	that	the	first	recv_msgs()	call	doesn’t	return	after	its	first	iteration.	It
loops	again	because	msgs	is	still	empty.	This	is	why	the	recv_msgs	call	numbers	are	1,	1,
and	2.

A	multithreaded	chat	server
So	let’s	put	this	to	use	and	write	our	chat	server.	Make	a	new	file	called	2.1-
chat_server-multithread.py	and	put	the	following	code	in	it:

import	threading,	queue

import	tincanchat

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

send_queues	=	{}

lock	=	threading.Lock()

def	handle_client_recv(sock,	addr):

				"""	Receive	messages	from	client	and	broadcast	them	to

								other	clients	until	client	disconnects	"""

				rest	=	bytes()

				while	True:

								try:

												(msgs,	rest)	=	tincanchat.recv_msgs(sock,	rest)

								except	(EOFError,	ConnectionError):

												handle_disconnect(sock,	addr)

												break

								for	msg	in	msgs:

												msg	=	'{}:	{}'.format(addr,	msg)

												print(msg)

												broadcast_msg(msg)

def	handle_client_send(sock,	q,	addr):

				"""	Monitor	queue	for	new	messages,	send	them	to	client	as

								they	arrive	"""

				while	True:

								msg	=	q.get()

								if	msg	==	None:	break

								try:

												tincanchat.send_msg(sock,	msg)

								except	(ConnectionError,	BrokenPipe):

												handle_disconnect(sock,	addr)

												break

def	broadcast_msg(msg):

				"""	Add	message	to	each	connected	client's	send	queue	"""

				with	lock:

								for	q	in	send_queues.values():

												q.put(msg)

def	handle_disconnect(sock,	addr):

				"""	Ensure	queue	is	cleaned	up	and	socket	closed	when	a	client

								disconnects	"""

				fd	=	sock.fileno()

				with	lock:

								#	Get	send	queue	for	this	client

								q	=	send_queues.get(fd,	None)

				#	If	we	find	a	queue	then	this	disconnect	has	not	yet

				#	been	handled

				if	q:

								q.put(None)

								del	send_queues[fd]

								addr	=	sock.getpeername()

								print('Client	{}	disconnected'.format(addr))

								sock.close()

if	__name__	==	'__main__':

				listen_sock	=	tincanchat.create_listen_socket(HOST,	PORT)

				addr	=	listen_sock.getsockname()

				print('Listening	on	{}'.format(addr))

				while	True:

								client_sock,addr	=	listen_sock.accept()

								q	=	queue.Queue()

								with	lock:

												send_queues[client_sock.fileno()]	=	q

								recv_thread	=	threading.Thread(target=handle_client_recv,

																																							args=[client_sock,	addr],

																																							daemon=True)

								send_thread	=	threading.Thread(target=handle_client_send,

																																							args=[client_sock,	q,

																																													addr],

																																							daemon=True)

								recv_thread.start()

								send_thread.start()

								print('Connection	from	{}'.format(addr))

We’re	now	using	two	threads	per	client.	One	thread	handles	the	messages	received	and	the
other	thread	handles	the	task	of	sending	messages.	The	idea	here	is	to	break	out	each	place
a	block	might	happen	into	its	own	thread.	This	will	give	us	the	lowest	latency	for	each
client,	but	it	does	come	at	the	cost	of	system	resources.	We’re	reducing	the	potential
number	of	clients	that	we	may	be	able	to	handle	simultaneously.	There	are	other	models
that	we	could	use,	such	as	having	a	single	thread	for	each	client	which	receives	messages
and	then	sends	them	itself	to	all	the	connected	clients,	but	I’ve	chosen	to	optimize	for
latency.

To	facilitate	the	separate	threads,	we’ve	broken	the	receiving	code	and	the	sending	code
into	the	handle_client_recv()	function	and	handle_client_send()	function
respectively.

Our	handle_client_recv	threads	are	tasked	with	receiving	messages	from	the	clients,	and
our	handle_client_send	threads	are	tasked	with	sending	messages	to	the	clients,	but	how
do	the	received	messages	get	from	the	receive	threads	to	the	send	threads?	This	is	where
the	queue,	send_queue,	dict	and	lock	objects	come	in.

Queues
A	Queue	is	a	first-in	first-out	(FIFO)	pipe.	You	add	items	to	it	by	using	the	put()
method,	and	pull	them	out	by	using	the	get()	method.	The	important	thing	about	Queue
objects	is	that	they	are	completely	thread	safe.	Objects	in	Python	are	generally	not	thread
safe	unless	it	is	explicitly	specified	in	their	documentation.	Being	thread	safe	means	that
operations	on	the	object	are	guaranteed	to	be	atomic,	that	is,	they	will	always	complete
without	any	chance	of	another	thread	getting	to	that	object	and	doing	something
unexpected	to	it.

Hang	on,	you	might	ask,	earlier,	didn’t	you	say	that	because	of	the	GIL	the	OS	is	running
only	one	Python	thread	per	process	at	any	given	moment	in	time?	If	that’s	so,	then	how
could	two	threads	perform	an	operation	on	an	object	simultaneously?	Well,	this	is	a	fair
question.	Most	operations	in	Python	are,	in	fact,	made	up	of	many	operations	at	the	OS
level,	and	it	is	at	the	OS	level	that	threads	are	scheduled.	A	thread	could	start	an	operation
on	an	object—say	by	appending	an	item	to	a	list—and	when	the	thread	gets	halfway
through	its	OS	level	operations	the	OS	could	switch	to	another	thread,	which	also	starts
appending	to	the	same	list.	Since	list	objects	provide	no	warranty	of	their	behavior
when	abused	like	this	by	threads	(they’re	not	thread	safe),	anything	could	happen	next,
and	it’s	unlikely	to	be	a	useful	outcome.	This	situation	can	be	called	a	race	condition.

Thread	safe	objects	remove	this	possibility,	so	they	should	absolutely	be	preferred	for
sharing	state	among	threads.

Getting	back	to	our	server,	the	other	useful	behavior	of	Queues	is	that	if	get()	is	called	on
an	empty	Queue,	then	it	will	block	until	something	is	added	to	the	Queue.	We	take
advantage	of	this	in	our	send	threads.	Notice,	how	we	go	into	an	infinite	loop,	with	the
first	operation	being	a	get()	method	call	on	a	Queue.	The	thread	will	block	there	and
patiently	wait	until	something	is	added	to	its	Queue.	And,	you’ve	probably	guessed	it,	our
receive	threads	add	the	messages	to	the	queues.

We	create	a	Queue	object	for	each	send	thread	as	it’s	being	created	and	then	we	store	the
queues	in	the	send_queues	dict.	For	our	receive	threads	to	broadcast	new	messages,	they
just	need	to	add	the	message	to	each	Queue	in	send_queues,	which	we	do	in	the
broadcast_msgs()	function.	Our	waiting	send	threads	will	then	unblock,	pick	the
message	out	of	their	Queue	and	then	send	it	to	their	client.

We’ve	also	added	a	handle_disconnect()	function,	which	gets	called	whenever	a	client
disconnects	or	a	socket	error	occurs.	This	function	ensures	that	queues	associated	with
closed	connections	are	cleaned	up,	and	that	the	socket	is	closed	properly	from	the	server
end.

Locks
Contrast	our	use	of	the	Queues	object	with	our	use	of	send_queues.	Dict	objects	are	not
thread	safe,	and	unfortunately	there	isn’t	a	thread	safe	associative	array	type	in	Python.
Since	we	need	to	share	this	dict,	we	need	to	take	extra	precautions	whenever	we	access	it,
and	this	is	where	the	Lock	comes	in.	Lock	objects	are	a	type	of	synchronization
primitive.	These	are	special	objects	built	with	functionality	to	help	manage	our	threads
and	ensure	that	they	don’t	trip	over	each	others’	accesses.

A	Lock	is	either	locked	or	unlocked.	A	thread	can	lock	a	thread	by	either	calling
acquire()	on	it,	or	as	in	our	program,	using	it	as	a	context	manager.	If	a	thread	has
acquired	a	lock	and	another	thread	also	tries	to	acquire	the	lock,	then	the	second	thread
will	block	on	the	acquire()	call	until	the	first	thread	releases	the	lock	or	exits	the	context.
There	is	no	limit	on	the	number	of	threads	that	can	try	to	acquire	a	lock	at	once	–	all	but
the	first	will	block.	By	wrapping	all	the	accesses	to	a	non-thread	safe	object	with	a	lock,
we	can	ensure	that	no	two	threads	operate	on	the	object	at	the	same	time.

So,	every	time	we	add	or	remove	something	from	send_queues,	we	wrap	it	in	a	Lock
context.	Notice	that	we’re	also	protecting	send_queues	when	we	iterate	over	it.	Even
though	we’re	not	changing	it,	we	want	to	be	sure	that	it	doesn’t	get	modified	while	we’re
working	with	it.

Although	we’re	being	careful	and	using	locks	and	thread	safe	primitives,	we’re	not
protected	against	all	possible	thread	related	pitfalls.	Since	the	thread	synchronization
mechanisms	themselves	block,	it’s	still	quite	possible	to	create	deadlocks,	where	two
threads	are	simultaneously	blocking	on	objects	locked	by	the	other	thread.	The	best
approach	to	managing	thread	communication	is	to	keep	all	the	accesses	to	your	shared
state	restricted	to	as	small	an	area	of	your	code	as	you	can.	In	the	case	of	this	server,	this
module	could	be	reworked	as	a	class	providing	a	minimum	number	of	public	methods.	It
could	also	be	documented	such	that	it	discourages	the	changing	of	any	internal	state.	This
will	keep	this	chunk	of	threading	strictly	confined	to	this	class.

A	multithreaded	chat	client
Now	that	we	have	a	new,	all	receiving	and	broadcasting	chat	server,	we	just	need	a	client
to	go	with	it.	We	have	mentioned	before	that	we	will	hit	a	problem	with	our	procedural
client	when	trying	to	listen	for	both	network	data	and	user	input	at	the	same	time.	Well,
now	that	we	have	some	idea	of	how	to	employ	threads,	we	can	have	a	go	at	addressing
this.	Create	a	new	text	file	called	2.2-chat_client-multithread.py	and	save	the
following	code	in	it:

import	sys,	socket,	threading

import	tincanchat

HOST	=	sys.argv[-1]	if	len(sys.argv)	>	1	else	'127.0.0.1'

PORT	=	tincanchat.PORT

def	handle_input(sock):

				"""	Prompt	user	for	message	and	send	it	to	server	"""				

				print("Type	messages,	enter	to	send.	'q'	to	quit")

				while	True:

								msg	=	input()		#	Blocks

								if	msg	==	'q':

												sock.shutdown(socket.SHUT_RDWR)

												sock.close()

												break

								try:

												tincanchat.send_msg(sock,	msg)		#	Blocks	until	sent

								except	(BrokenPipeError,	ConnectionError):

												break

if	__name__	==	'__main__':

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				sock.connect((HOST,	PORT))

				print('Connected	to	{}:{}'.format(HOST,	PORT))

				#	Create	thread	for	handling	user	input	and	message	sending

				thread	=	threading.Thread(target=handle_input,

																														args=[sock],

																														daemon=True)

				thread.start()

				rest	=	bytes()

				addr	=	sock.getsockname()

				#	Loop	indefinitely	to	receive	messages	from	server

				while	True:

								try:

												#	blocks

												(msgs,	rest)	=	tincanchat.recv_msgs(sock,	rest)

												for	msg	in	msgs:

																print(msg)

								except	ConnectionError:

												print('Connection	to	server	closed')

												sock.close()

												break

We’ve	updated	our	client	to	honor	our	new	chat	protocol	by	creating	a	new	thread	to

handle	user	input	and	send	messages,	while	handling	receiving	messages	in	the	main
thread.	This	allows	the	client	to	deal	with	the	user	input	and	receive	the	messages	at	the
same	time.

Note	that	there’s	no	shared	state	here,	so	we	didn’t	have	to	get	clever	with	Queues	or
synchronization	primitives.

Let’s	give	our	new	programs	a	try.	Fire	up	the	multithreaded	chat	server,	and	then	launch
at	least	two	clients.	If	you	can,	run	them	in	terminals	such	that	you	can	watch	all	of	them
at	once.	Now,	try	and	send	some	messages	from	the	clients	and	see	how	they	are	sent	to	all
of	the	other	clients.

Event-driven	servers
For	many	purposes	threads	are	great,	especially	because	we	can	still	program	in	the
familiar	procedural,	blocking-IO	style.	But	they	suffer	from	the	drawback	that	they
struggle	when	managing	large	numbers	of	connections	simultaneously,	because	they	are
required	to	maintain	a	thread	for	each	connection.	Each	thread	consumes	memory,	and
switching	between	threads	incurs	a	type	of	CPU	overhead	called	context	switching.
Although	these	aren’t	a	problem	for	small	numbers	of	threads,	they	can	impact
performance	when	there	are	many	threads	to	manage.	Multiprocessing	suffers	from	similar
problems.

An	alternative	to	threading	and	multiprocessing	is	using	the	event-driven	model.	In	this
model,	instead	of	having	the	OS	automatically	switch	between	active	threads	or	processes
for	us,	we	use	a	single	thread	which	registers	blocking	objects,	such	as	sockets,	with	the
OS.	When	these	objects	become	ready	to	leave	the	blocking	state,	for	example	a	socket
receives	some	data,	the	OS	notifies	our	program;	our	program	can	then	access	these
objects	in	non-blocking	mode,	since	it	knows	that	they	are	in	a	state	that	is	ready	for
immediate	use.	Calls	made	to	objects	in	non-blocking	mode	always	return	immediately.
We	structure	our	application	around	a	loop,	where	we	wait	for	the	OS	to	notify	us	of
activity	on	our	blocking	objects,	then	we	handle	that	activity,	and	then	we	go	back	to
waiting.	This	loop	is	called	the	event	loop.

This	approach	provides	comparable	performance	to	threading	and	multiprocessing,	but
without	the	memory	or	context	switching	overheads,	and	hence	allows	for	greater	scaling
on	the	same	hardware.	The	challenge	of	engineering	applications	that	can	efficiently
handle	very	large	numbers	of	simultaneous	connections	has	historically	been	called	the
c10k	problem,	referring	to	the	handling	of	ten-thousand	concurrent	connections	in	a
single	thread.	With	the	help	of	event-driven	architectures,	this	problem	was	solved,	though
the	term	is	still	often	used	to	refer	to	the	challenges	of	scaling	when	it	comes	to	handling
many	concurrent	connections.

Note
On	modern	hardware	it’s	actually	possible	to	handle	ten-thousand	concurrent	connections
using	a	multithreading	approach	as	well,	see	this	Stack	Overflow	question	for	some
numbers	https://stackoverflow.com/questions/17593699/tcp-ip-solving-the-c10k-with-the-
thread-per-client-approach.

The	modern	challenge	is	the	“c10m	problem”,	that	is,	ten	million	concurrent	connections.
Solving	this	involves	some	drastic	software	and	even	operating	system	architecture
changes.	Although	this	is	unlikely	to	be	manageable	with	Python	any	time	soon,	an
interesting	(though	unfortunately	incomplete)	general	introduction	to	the	topic	can	be
found	at	http://c10m.robertgraham.com/p/blog-page.html.

The	following	diagram	shows	the	relationship	of	processes	and	threads	in	an	event-driven
server:

https://stackoverflow.com/questions/17593699/tcp-ip-solving-the-c10k-with-the-thread-per-client-approach
http://c10m.robertgraham.com/p/blog-page.html

Although	the	GIL	and	the	OS	thread	scheduler	are	shown	here	for	completeness,	in	the
case	of	an	event-driven	server,	they	have	no	impact	on	performance	because	the	server
only	uses	a	single	thread.	The	scheduling	of	I/O	handling	is	done	by	the	application.

A	low-level	event-driven	chat	server
So	the	event-driven	architecture	has	a	few	great	benefits,	the	catch	is	that	for	a	low-level
implementation,	we	need	to	write	our	code	in	a	completely	different	style.	Let’s	write	an
event-driven	chat	server	to	illustrate	this.

Note	that	this	example	will	not	at	all	work	on	Windows	as	Windows	lacks	the	poll
interface	which	we	will	be	employing	here.	There	is	an	older	interface,	called	select,
which	Windows	does	support,	however	it	is	slower	and	more	complicated	to	work	with.
The	event-driven	frameworks	that	we	look	at	later	do	automatically	switch	to	select	for
us	though,	if	we’re	running	on	Windows.

There	is	a	higher	performance	alternative	to	poll	called	epoll,	available	on	Linux
operating	systems,	however	it	also	more	complicated	to	use,	so	for	simplicity	we’ll	stick
with	poll	here.	Again,	the	frameworks	we	discuss	later	automatically	take	advantage	of
epoll	if	it	is	available.

Finally,	counter-intuitively,	Python’s	poll	interface	lives	in	a	module	called	select,	hence
we	will	import	select	in	our	program.

Create	a	file	called	3.1-chat_server-poll.py	and	save	the	following	code	in	it:

import	select

import	tincanchat

from	types	import	SimpleNamespace

from	collections	import	deque

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

clients	=	{}

def	create_client(sock):

				"""	Return	an	object	representing	a	client	"""

				return	SimpleNamespace(

																				sock=sock,

																				rest=bytes(),

																				send_queue=deque())

def	broadcast_msg(msg):

				"""	Add	message	to	all	connected	clients'	queues	"""

				data	=	tincanchat.prep_msg(msg)

				for	client	in	clients.values():

								client.send_queue.append(data)

								poll.register(client.sock,	select.POLLOUT)

if	__name__	==	'__main__':

				listen_sock	=	tincanchat.create_listen_socket(HOST,	PORT)

				poll	=	select.poll()

				poll.register(listen_sock,	select.POLLIN)

				addr	=	listen_sock.getsockname()

				print('Listening	on	{}'.format(addr))

				#	This	is	the	event	loop.	Loop	indefinitely,	processing	events

				#	on	all	sockets	when	they	occur

				while	True:

								#	Iterate	over	all	sockets	with	events

								for	fd,	event	in	poll.poll():

												#	clear-up	a	closed	socket

												if	event	&	(select.POLLHUP	|	

																								select.POLLERR	|

																								select.POLLNVAL):

																poll.unregister(fd)

																del	clients[fd]

												#	Accept	new	connection,	add	client	to	clients	dict

												elif	fd	==	listen_sock.fileno():

																client_sock,addr	=	listen_sock.accept()

																client_sock.setblocking(False)

																fd	=	client_sock.fileno()

																clients[fd]	=	create_client(client_sock)

																poll.register(fd,	select.POLLIN)

																print('Connection	from	{}'.format(addr))

												#	Handle	received	data	on	socket

												elif	event	&	select.POLLIN:

																client	=	clients[fd]

																addr	=	client.sock.getpeername()

																recvd	=	client.sock.recv(4096)

																if	not	recvd:

																				#	the	client	state	will	get	cleaned	up	in	the

																				#	next	iteration	of	the	event	loop,	as	close()

																				#	sets	the	socket	to	POLLNVAL

																				client.sock.close()

																				print('Client	{}	disconnected'.format(addr))

																				continue

																data	=	client.rest	+	recvd

																(msgs,	client.rest)	=	\

																																tincanchat.parse_recvd_data(data)

																#	If	we	have	any	messages,	broadcast	them	to	all

																#	clients

																for	msg	in	msgs:

																				msg	=	'{}:	{}'.format(addr,	msg)

																				print(msg)

																				broadcast_msg(msg)

												#	Send	message	to	ready	client

												elif	event	&	select.POLLOUT:

																client	=	clients[fd]

																data	=	client.send_queue.popleft()

																sent	=	client.sock.send(data)

																if	sent	<	len(data):

																				client.sends.appendleft(data[sent:])

																if	not	client.send_queue:

																				poll.modify(client.sock,	select.POLLIN)

The	crux	of	this	program	is	the	poll	object,	which	we	create	at	the	start	of	execution.	This
is	an	interface	for	the	kernel’s	poll	service,	which	lets	us	register	sockets	for	the	OS	to
watch	and	notify	us	when	they	are	ready	for	us	work	with	them.

We	register	a	socket	by	calling	the	poll.register()	method,	passing	the	socket	as	an
argument	along	with	the	type	of	activity	that	we	want	the	kernel	to	watch	out	for.	There
are	several	conditions	which	we	can	monitor	by	specifying	various	select.POLL*
constants.	We’re	using	POLLIN	and	POLLOUT	in	this	program	to	watch	out	for	when	a
socket	is	ready	to	receive	and	send	data	respectively.	Accepting	a	new	incoming
connection	on	our	listening	socket	will	be	counted	as	a	read.

Once	a	socket	is	registered	with	poll,	the	OS	will	watch	it	and	record	when	the	socket	is
ready	to	carry	out	the	activity	that	we	requested.	When	we	call	poll.poll(),	it	returns	a
list	of	all	the	sockets	that	have	become	ready	for	us	to	work	with.	For	each	socket,	it	also
returns	an	event	flag,	which	indicates	the	state	of	the	socket.	We	can	use	this	event	flag	to
tell	whether	we	can	read	from	(POLLIN	event)	or	write	to	the	socket	(POLLOUT	event),	or
whether	an	error	has	occurred	(POLLHUP,	POLLERR,	POLLNVAL	events).

To	make	use	of	this,	we	enter	our	event	loop,	repeatedly	calling	poll.poll(),	iterating
through	the	ready	objects	it	returns	and	operating	on	them	as	per	their	event	flags.

Because	we’re	only	running	in	a	single	thread,	we	don’t	need	any	of	the	synchronization
mechanisms	which	we	had	to	employ	in	the	multithreaded	server.	We’re	just	using	a
regular	dict	to	keep	track	of	our	clients.	If	you’ve	not	come	across	it	before,	the
SimpleNamespace	object	that	we	use	in	the	create_client()	function	is	just	a	new	idiom
for	creating	an	empty	object	with	a	__dict__	(this	is	needed	because	Object	instances
don’t	have	a	__dict__	so	they	won’t	accept	arbitrary	attributes).	Previously,	we	may	have
used	the	following	to	give	us	an	object	which	we	can	assign	arbitrary	attributes	to:

class	Client:

		pass

client	=	Client()

Python	version	3.3	and	later	versions	give	us	the	new,	more	explicit	SimpleNamespace
object.

We	can	run	our	multithreaded	client	against	this	server.	The	server	is	still	using	the	same
network	protocol,	and	the	architecture	of	the	two	programs	won’t	affect	the
communication.	Give	it	a	try	and	verify	if	it	works	as	expected.

This	style	of	programming,	employing	poll	and	non-blocking	sockets,	is	often	referred	to
as	non-blocking	and	asynchronous,	since	we	use	sockets	in	non-blocking	mode,	and	the
thread	of	control	handles	I/O	reactively,	as	it	needs	to	happen,	rather	than	locking	to	a
single	I/O	channel	until	it’s	done.	However,	you	should	note	that	our	program	isn’t
completely	non-blocking,	since	it	still	blocks	on	the	poll.poll()	call.	This	is	pretty	much
inevitable	in	an	I/O	bound	system	because	when	nothing’s	happening,	you’ve	got	to	wait
for	the	I/O	activity	somewhere.

Frameworks
As	you	can	see,	writing	servers	using	these	lower	level	threading	and	poll	APIs	can	be
quite	involved,	especially	considering	that	various	things	which	would	be	expected	in	a
production	system,	such	as	logging	and	comprehensive	error	handling,	haven’t	been
included	in	our	examples	due	to	brevity.

Many	people	have	hit	these	problems	before	us,	and	several	libraries	and	frameworks	are
available	for	taking	some	of	the	leg	work	out	of	writing	the	network	servers.

An	eventlet-based	chat	server
The	eventlet	library	provides	a	high-level	API	for	event-driven	programming,	but	it	does
so	in	a	style	that	mimics	the	procedural,	blocking-IO	style	that	we	used	in	our
multithreaded	servers.	The	upshot	is	that	we	can	effectively	take	our	multithreaded	chat
server	code,	make	a	few	minor	modifications	to	it	to	use	eventlet	instead,	and
immediately	gain	the	benefits	of	the	event-driven	model!

The	eventlet	library	is	available	in	PyPi,	and	it	can	be	installed	with	pip,	as	shown	here:

$	pip	install	eventlet

Downloading/unpacking	eventlet

Note
The	eventlet	library	automatically	falls	back	to	select	if	poll	is	not	available,	so	it	will
run	properly	on	Windows.

Once	it’s	installed,	create	a	new	file	called	4.1-chat_server-eventlet.py	and	save	the
following	code	in	it:

import	eventlet

import	eventlet.queue	as	queue

import	tincanchat

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

send_queues	=	{}

def	handle_client_recv(sock,	addr):

				"""	Receive	messages	from	client	and	broadcast	them	to

								other	clients	until	client	disconnects	"""

				rest	=	bytes()

				while	True:

								try:

												(msgs,	rest)	=	tincanchat.recv_msgs(sock)

								except	(EOFError,	ConnectionError):

												handle_disconnect(sock,	addr)

												break

								for	msg	in	msgs:

												msg	=	'{}:	{}'.format(addr,	msg)

												print(msg)

												broadcast_msg(msg)

def	handle_client_send(sock,	q,	addr):

				"""	Monitor	queue	for	new	messages,	send	them	to	client	as

								they	arrive	"""

				while	True:

								msg	=	q.get()

								if	msg	==	None:	break

								try:

												tincanchat.send_msg(sock,	msg)

								except	(ConnectionError,	BrokenPipe):

												handle_disconnect(sock,	addr)

												break

def	broadcast_msg(msg):

				"""	Add	message	to	each	connected	client's	send	queue	"""

				for	q	in	send_queues.values():

								q.put(msg)

def	handle_disconnect(sock,	addr):

				"""	Ensure	queue	is	cleaned	up	and	socket	closed	when	a	client

								disconnects	"""

				fd	=	sock.fileno()

				#	Get	send	queue	for	this	client

				q	=	send_queues.get(fd,	None)

				#	If	we	find	a	queue	then	this	disconnect	has	not	yet

				#	been	handled

				if	q:

								q.put(None)

								del	send_queues[fd]

								addr	=	sock.getpeername()

								print('Client	{}	disconnected'.format(addr))

								sock.close()

if	__name__	==	'__main__':

				server	=	eventlet.listen((HOST,	PORT))

				addr	=	server.getsockname()

				print('Listening	on	{}'.format(addr))

				while	True:

								client_sock,addr	=	server.accept()

								q	=	queue.Queue()

								send_queues[client_sock.fileno()]	=	q

								eventlet.spawn_n(handle_client_recv,

																									client_sock,

																									addr)

								eventlet.spawn_n(handle_client_send,

																									client_sock,

																									q,

																									addr)

								print('Connection	from	{}'.format(addr))

We	can	test	this	with	our	multithreaded	client	to	ensure	that	it	works	as	expected.

As	you	can	see,	it’s	pretty	much	identical	to	our	multithreaded	server,	with	a	few	changes
made	so	as	to	use	eventlet.	Notice	that	we’ve	removed	the	synchronization	code	and	the
lock	around	send_queues.	We’re	still	using	queues,	although	they’re	the	eventlet
library’s	queues,	because	we	want	to	retain	the	blocking	behavior	of	Queue.get().

Note
There	are	more	examples	of	using	eventlet	for	programming	on	the	eventlet	site	at
http://eventlet.net/doc/examples.html.

http://eventlet.net/doc/examples.html

An	asyncio-based	chat	server
The	asyncio	Standard	Library	module	is	new	in	Python	3.4	and	it	is	an	effort	at	bringing
some	standardization	around	asynchronous	I/O	into	the	Standard	Library.	The	asyncio
library	uses	a	co-routine	based	style	of	programming.	It	provides	a	powerful	loop	class,
which	our	programs	can	submit	prepared	tasks,	called	co-routines,	to,	for	asynchronous
execution.	The	event	loop	handles	the	scheduling	of	the	tasks	and	optimization	of
performance	around	blocking	I/O	calls.

It	has	built-in	support	for	socket-based	networking,	which	makes	building	a	basic	server	a
straightforward	task.	Let’s	see	how	this	can	be	done.	Create	a	new	file	called	5.1-
chat_server-asyncio.py	and	save	the	following	code	in	it:

import	asyncio

import	tincanchat

HOST	=	tincanchat.HOST

PORT	=	tincanchat.PORT

clients	=	[]

class	ChatServerProtocol(asyncio.Protocol):

		"""	Each	instance	of	class	represents	a	client	and	the	socket	

							connection	to	it.	"""

				def	connection_made(self,	transport):

								"""	Called	on	instantiation,	when	new	client	connects	"""

											self.transport	=	transport

								self.addr	=	transport.get_extra_info('peername')

								self._rest	=	b''

								clients.append(self)

								print('Connection	from	{}'.format(self.addr))

				def	data_received(self,	data):

								"""	Handle	data	as	it's	received.	Broadcast	complete

								messages	to	all	other	clients	"""

								data	=	self._rest	+	data

								(msgs,	rest)	=	tincanchat.parse_recvd_data(data)

								self._rest	=	rest

								for	msg	in	msgs:

												msg	=	msg.decode('utf-8')

												msg	=	'{}:	{}'.format(self.addr,	msg)

												print(msg)

												msg	=	tincanchat.prep_msg(msg)

												for	client	in	clients:

																client.transport.write(msg)		#	<--	non-blocking

				def	connection_lost(self,	ex):

								"""	Called	on	client	disconnect.	Clean	up	client	state	"""

								print('Client	{}	disconnected'.format(self.addr))

								clients.remove(self)

if	__name__	==	'__main__':

				loop	=	asyncio.get_event_loop()

				#	Create	server	and	initialize	on	the	event	loop

				coroutine	=	loop.create_server(ChatServerProtocol,

																																		host=HOST,

																																		port=PORT)

				server	=	loop.run_until_complete(coroutine)

				#	print	listening	socket	info

				for	socket	in	server.sockets:

								addr	=	socket.getsockname()

								print('Listening	on	{}'.format(addr))

				#	Run	the	loop	to	process	client	connections

				loop.run_forever()

Again,	we	can	test	this	with	our	multithreaded	client	to	make	sure	that	it	works	as	we
expect	it	to.

Let’s	step	through	the	code,	as	it’s	quite	different	from	our	previous	servers.	We	begin	by
defining	our	server	behavior	in	a	subclass	of	the	asyncio.Protocol	abstract	class.	We’re
required	to	override	the	three	methods	connection_made(),	data_received(),	and
connection_lost().	By	using	this	class	we	can	instantiate	a	new	server	scheduled	on	the
event	loop,	which	will	listen	on	a	socket	and	behave	according	to	the	contents	of	these
three	methods.	We	perform	this	instantiation	in	the	main	section	further	down	with	the
loop.create_server()	call.

The	connection_made()	method	is	called	when	a	new	client	connects	to	our	socket,
which	is	equivalent	to	socket.accept()	receiving	a	connection.	The	transport	argument
that	it	receives	is	a	writable	stream	object,	that	is,	it	is	an	asyncio.WriteTransport
instance.	We	will	use	this	to	write	data	to	the	socket,	so	we	hang	on	to	it	by	assigning	it	to
the	self.transport	attribute.	We	also	grab	the	client’s	host	and	port	by	using
transport.get_extra_info('peername').	This	is	the	transport’s	equivalent	of
socket.getpeername().	We	then	set	up	a	rest	attribute	to	hold	the	leftover	data	from
tincanchat.parse_recvd_data()	calls,	and	then	we	add	our	instance	to	the	global
clients	list	so	that	the	other	clients	can	broadcast	to	it.

The	data_received()	method	is	where	the	action	happens.	This	function	is	called	every
time	the	Protocol	instance’s	socket	receives	any	data.	This	is	equivalent	to	poll.poll()
returning	a	POLLIN	event,	and	then	us	performing	a	recv()	on	the	socket.	When	called,
this	method	is	passed	the	data	that	is	received	from	the	socket	as	the	data	argument,
which	we	then	parse	using	tincanchat.parse_recvd_data(),	as	we	have	done	before.

We	then	iterate	over	any	received	messages,	and	for	each	one,	send	it	to	every	client	in	the
clients	list	by	calling	the	write()	method	on	the	clients’	transport	objects.	The	important
thing	to	note	here	is	that	the	Transport.write()	call	is	non-blocking	and	so	returns
immediately.	The	send	just	gets	submitted	to	the	event	loop,	to	be	scheduled	for
completion	soon.	Hence	the	broadcast	itself	completes	quickly.

The	connection_lost()	method	is	called	when	the	client	disconnects	or	the	connection	is
lost,	which	is	equivalent	to	a	socket.recv()	returning	an	empty	result,	or	a
ConnectionError.	Here,	we	just	remove	the	client	from	the	clients	global	list.

In	the	main	module	code	we	acquire	an	event	loop,	and	then	create	an	instance	of	our
Protocol	server.	The	call	to	loop.run_until_complete()	runs	the	initialization	phase	of

our	server	on	the	event	loop,	setting	up	the	listening	socket.	Then	we	call
loop.run_forever(),	which	starts	our	server	listening	for	incoming	connections.

More	on	frameworks
I’ve	broken	from	our	usual	procedural	form	and	used	an	object-oriented	approach	in	the
last	example	for	two	reasons.	First,	although	it	is	possible	to	write	a	purely	procedural
style	server	with	asyncio,	it	requires	a	deeper	understanding	of	co-routines	than	what	we
were	able	to	provide	here.	If	you’re	curious,	then	you	can	go	through	an	example	co-
routine	style	echo	server,	which	is	in	the	asyncio	documentation	at
https://docs.python.org/3/library/asyncio-stream.html#asyncio-tcp-echo-server-streams.

The	second	reason	is	that	this	kind	of	class-based	approach	is	generally	a	more
manageable	model	to	follow	in	a	full	system.

There	is	in	fact	a	new	module	called	selectors	in	Python	3.4,	which	provides	an	API	for
quickly	building	an	object-oriented	server	based	on	the	IO	primitives	in	the	select
module	(including	poll).	The	documentation	and	an	example	can	be	seen	at
https://docs.python.org/3.4/library/selectors.html.

There	are	other	third-party	event-driven	frameworks	available,	popular	ones	are	Tornado
(www.tornadoweb.org)	and	circuits	(https://github.com/circuits/circuits).	Both	are	worth
investigating	for	comparison,	if	you	intend	to	choose	a	framework	for	a	project.

Moreover,	no	discussion	of	Python	asynchronous	I/O	would	be	complete	without	a
mention	of	the	Twisted	framework.	Until	Python	3,	this	has	been	the	go	to	solution	for	any
serious	asynchronous	I/O	work.	It	is	an	event-driven	engine,	with	support	for	a	large
number	of	network	protocols,	good	performance,	and	a	large	and	active	community.
Unfortunately,	it	hasn’t	finished	the	jump	to	Python	3	yet	(a	view	of	the	migration
progress	can	be	seen	at	https://rawgit.com/mythmon/twisted-py3-
graph/master/index.html).	Since	we’re	focused	squarely	on	Python	3	in	this	book,	we
decided	to	not	include	a	detailed	treatment	of	it.	However,	once	it	does	get	there,	Python	3
will	have	another	very	powerful	asynchronous	framework,	which	will	be	well	worth
investigating	for	your	projects.

https://docs.python.org/3/library/asyncio-stream.html#asyncio-tcp-echo-server-streams
https://docs.python.org/3.4/library/selectors.html
http://www.tornadoweb.org
https://github.com/circuits/circuits
https://rawgit.com/mythmon/twisted-py3-graph/master/index.html

Taking	our	servers	forward
There	are	a	number	of	things	that	we	can	do	to	improve	our	servers.	For	multithreaded
systems,	it’s	common	to	have	a	mechanism	for	capping	the	number	of	threads	in	use	at
any	one	time.	This	can	be	done	by	keeping	a	count	of	the	active	threads	and	immediately
closing	any	new	incoming	connections	from	clients	while	it’s	above	a	threshold.

For	all	our	servers,	we	would	also	want	to	add	a	logging	mechanism.	I	strongly
recommend	the	standard	library	logging	module	for	this,	the	documentation	for	this	is
complete	and	full	of	good	examples.	The	basic	tutorial	is	a	good	place	to	start	if	you’ve
not	used	it	before,	and	it	can	be	found	at
https://docs.python.org/3/howto/logging.html#logging-basic-tutorial.

We	also	want	to	handle	errors	more	comprehensively.	Since	the	intention	is	that	our	server
should	be	long	running	with	minimal	intervention,	we	want	to	make	sure	that	nothing	less
than	a	critical	exception	causes	the	process	to	exit.	We	also	want	to	make	sure	that	errors
that	occur	when	handling	one	client	do	not	affect	other	connected	clients.

Finally	there	are	some	basic	features	of	chat	programs	that	it	may	be	fun	to	add:	letting
users	enter	a	name,	which	would	be	shown	beside	their	messages	on	the	other	clients;
adding	chat	rooms;	and	adding	TLS	encryption	to	the	socket	connections	to	provide
privacy	and	security.

https://docs.python.org/3/howto/logging.html#logging-basic-tutorial

Summary
We	looked	at	how	to	develop	network	protocols	while	considering	aspects	such	as	the
connection	sequence,	framing	of	the	data	on	the	wire,	and	the	impact	these	choices	will
have	on	the	architecture	of	the	client	and	server	programs.

We	worked	through	different	architectures	for	network	servers	and	clients,	demonstrating
the	differences	between	the	multithreaded	and	event-driven	models	by	writing	a	simple
echo	server	and	upgrading	it	to	a	multi-client	chat	server.	We	discussed	performance
issues	around	threaded	and	event-driven	architectures.	Finally,	we	looked	at	the	eventlet
and	asyncio	frameworks,	which	can	greatly	simplify	the	process	of	writing	servers	when
using	an	event-driven	approach.

In	the	next	and	final	chapter	of	this	book,	we	will	look	at	bringing	several	threads	of	this
book	together	for	writing	server-side	web	applications.

Chapter	9.	Applications	for	the	Web
In	Chapter	2,	HTTP	and	Working	with	the	Web,	we	explored	the	HTTP	protocol—the
primary	protocol	used	by	the	World	Wide	Web—and	we	learned	how	to	use	Python	as	an
HTTP	client.	In	Chapter	3,	APIs	in	Action,	we	expanded	on	this	and	looked	at	ways	to
consume	web	APIs.	In	this	chapter,	we’ll	be	turning	our	focus	around	and	looking	at	how
we	can	use	Python	to	build	applications	that	serve	responses	to	HTTP	requests.

In	this	chapter,	we’ll	cover	the	following:

Python	web	frameworks
A	Python	web	application
Hosting	Python	and	WSGI

I	should	note	up	front	that	hosting	modern	web	applications	is	a	very	large	topic,	and	a
complete	treatment	is	well	beyond	the	scope	of	this	book,	where	we’re	focusing	on
applying	Python	code	to	network	problems.	Topics	such	as	database	access,	selecting	and
configuring	load	balancers	and	reverse-proxies,	containerization,	and	the	system
administration	techniques	needed	to	keep	the	whole	show	up	and	running	won’t	be
covered	here.	There	are	many	great	resources	online	though	that	can	give	you	a	start,	and
we’ll	try	to	mention	as	many	as	we	can	where	relevant,	as	we	go	along.

Having	said	that,	the	technologies	listed	above	aren’t	a	requirement	for	creating	and
serving	Python-based	web	applications,	they’re	simply	what	a	service	comes	to	require	as
it	reaches	scale.	As	we’ll	see,	there	are	options	for	easily	manageable	small-scale
application	hosting	too.

What’s	in	a	web	server?
To	understand	how	we	can	employ	Python	in	responding	to	HTTP	requests,	we	need	to
know	a	bit	about	what	typically	needs	to	occur	in	order	to	respond	to	a	request,	and	what
tools	and	patterns	already	exist	to	do	this.

A	basic	HTTP	request	and	response	might	look	like	this:

Here	our	web	client	sends	an	HTTP	request	to	a	server,	where	a	web	server	program
interprets	the	request,	creates	a	suitable	HTTP	response,	and	sends	it	back.	In	this	case,	the
response	body	is	simply	the	contents	of	an	HTML	file	read	from,	with	the	response
headers	added	by	the	web	server	program.

The	web	server	is	responsible	for	the	entire	process	of	responding	to	the	client’s	request.
The	basic	steps	it	needs	to	perform	are:

First	the	web	server	program	needs	to	accept	the	TCP	connection	attempt	by	the	client.	It
then	receives	the	HTTP	request	from	the	client	over	the	TCP	connection.	The	server	needs
to	keep	the	TCP	connection	open	while	it	generates	the	HTTP	response,	and	it	uses	the
connection	to	send	the	response	back	to	the	client.	What	the	server	does	with	the
connection	after	that	depends	on	the	HTTP	version	in	use	and	the	value	of	a	possible

Connection	header	in	the	request	(see	the	RFC	for	full	details	at
http://tools.ietf.org/html/rfc7230#section-6.3).

Once	the	web	server	has	received	the	request,	it	parses	it,	then	generates	the	response.
When	the	requested	URL	maps	to	a	valid	resource	on	the	server,	the	server	will	respond
with	the	resource	at	that	URL.	The	resource	could	be	a	file	on	disk	(so-called	static
content),	as	shown	in	the	diagram	of	a	basic	HTTP	request	and	response	from	before,	it
could	be	an	HTTP	redirect,	or	it	could	be	a	dynamically	generated	HTML	page.	If
something	goes	wrong,	or	the	URL	is	not	valid,	then	instead	the	response	will	include	a
status	code	in	the	4xx	or	5xx	range.	Once	the	response	is	prepared,	the	server	sends	it	back
to	the	client	over	the	TCP	connection.

In	the	early	days	of	the	Web,	when	almost	all	requested	resources	consisted	of	static	files
read	from	disk,	web	servers	could	be	written	in	a	single	language	and	could	easily	handle
all	four	steps	shown	in	the	preceding	image.	However,	as	more	and	more	dynamic	content
came	into	demand,	such	as	shopping	baskets	and	database-driven	resources	such	as	blogs,
wikis,	and	social	media,	it	was	quickly	found	that	hard-coding	these	functionalities	into
the	web	server	itself	was	impractical.	Instead,	facilities	were	built	into	web	servers	to
allow	the	invocation	of	external	code	as	part	of	the	page	generation	process.

Hence,	web	servers	could	be	written	in	a	fast	language	such	as	C	and	could	deal	with	the
low-level	TCP	connections,	initial	parsing	and	validating	of	requests,	and	handling	static
content,	but	then	could	invoke	external	code	to	handle	page	generation	duties	when	a
dynamic	response	was	needed.

This	external	code	is	what	we	commonly	refer	to	when	we	talk	about	web	applications.	So
the	response	process	duties	can	be	split,	as	shown	in	the	following	figure:

Web	applications	can	be	written	in	any	language	that	the	web	server	is	able	to	invoke,
providing	great	flexibility	and	allowing	higher	level	languages	to	be	used.	This	can
drastically	reduce	the	time	it	takes	to	develop	a	new	web	service.	These	days	there	is	a
great	range	of	languages	that	can	be	used	to	write	web	applications,	and	Python	is	no

http://tools.ietf.org/html/rfc7230#section-6.3

exception.

Python	and	the	Web
Using	some	of	the	techniques	discussed	in	this	book,	in	particular	Chapter	8,	Client	and
Server	Applications,	it	is	possible	to	use	Python	to	write	a	full	web	server	that	handles	all
four	of	the	steps	of	handling	an	HTTP	request	that	we	listed	in	the	previous	section.	There
are	several	actively	developed	web	servers	already	in	existence	written	in	pure	Python,
including	Gunicorn	(http://gunicorn.org),	and	CherryPy	(http://www.cherrypy.org).	There
is	even	a	very	basic	HTTP	server	in	the	standard	library	http.server	module.

Writing	a	full	HTTP	server	is	not	a	trivial	task	and	a	detailed	treatment	is	well	beyond	the
scope	of	this	book.	It	is	also	not	a	very	common	requirement	nowadays,	primarily	due	to
the	prevalence	of	excellent	web	servers	that	are	already	ready	to	deploy.	If	you	do	feel	the
need	to	have	a	crack	at	this	challenge	though,	I	would	start	with	looking	through	the
source	code	of	the	web	servers	mentioned	earlier,	looking	in	more	detail	at	the
frameworks	listed	in	Chapter	8,	Client	and	Server	Applications,	and	reading	the	full	HTTP
specifications	in	the	relevant	RFCs.	You	may	also	want	to	read	the	WSGI	specifications,
discussed	in	the	WSGI	section	later	on,	so	as	to	allow	the	server	to	act	as	a	host	for	other
Python	web	applications.

The	much	stronger	requirement	is	to	build	a	web	service	application	to	generate	some
dynamic	content,	and	to	get	it	up	and	running	quickly.	In	this	situation,	Python	provides	us
with	some	excellent	options	in	the	form	of	web	frameworks.

http://gunicorn.org
http://www.cherrypy.org

Web	frameworks
A	web	framework	is	a	layer	that	sits	between	the	web	server	and	our	Python	code,	which
provides	abstractions	and	streamlined	APIs	to	perform	many	of	the	common	operations	of
interpreting	HTTP	requests	and	generating	responses.	Ideally,	it	is	also	structured	so	that	it
guides	us	into	employing	well-tested	patterns	for	good	web	development.	Frameworks	for
Python	web	applications	are	usually	written	in	Python,	and	can	be	considered	part	of	the
web	application.

The	basic	services	a	framework	provides	are:

Abstraction	of	HTTP	requests	and	responses
Management	of	the	URL	space	(routing)
Separation	of	Python	code	and	markup	(templating)

There	are	many	Python	web	frameworks	in	use	today,	and	here’s	a	non-exhaustive	list	of
some	popular	ones,	in	no	particular	order:

Django	(www.djangoproject.com)
CherryPy	(www.cherrypy.org)
Flask	(flask.pocoo.org)
Tornado	(www.tornadoweb.org)
TurboGears	(www.turbogears.org)
Pyramid	(www.pylonsproject.org)

Note
An	up-to-date	list	of	frameworks	is	maintained	at
http://wiki.python.org/moin/WebFrameworks	and	http://docs.python-
guide.org/en/latest/scenarios/web/#frameworks.

There	are	so	many	frameworks	because	there	are	many	approaches	that	can	be	taken	to	the
tasks	they	perform,	and	many	different	opinions	about	what	tasks	they	should	even
perform.

Some	frameworks	provide	the	minimum	to	quickly	build	a	simple	web	application.	These
are	often	called	microframeworks,	the	most	popular	here	being	Armin	Ronacher’s
excellent	Flask.	Although	they	may	not	include	the	functionality	of	some	of	the
heavyweight	frameworks,	what	they	do,	they	generally	do	very	well,	and	provide	hooks	to
allow	easy	extension	for	more	complex	tasks.	This	allows	a	fully	customizable	approach
to	web	application	development.

Other	frameworks	take	a	much	more	batteries-included	stance,	providing	for	all	the
common	needs	of	modern	web	applications.	The	major	contender	here	is	Django,	which
includes	everything	from	templating	to	form	management	and	database	abstraction,	and
even	a	complete	out-of-the-box	web-based	database	admin	interface.	TurboGears	provides
similar	functionality	by	integrating	a	core	microframework	with	several	established
packages	for	the	other	features.

Yet	other	frameworks	provide	features	such	as	supporting	web	applications	with	an	event-

http://www.djangoproject.com
http://www.cherrypy.org
http://flask.pocoo.org
http://www.tornadoweb.org
http://www.turbogears.org
http://www.pylonsproject.org
https://wiki.python.org/moin/WebFrameworks
http://docs.python-guide.org/en/latest/scenarios/web/#frameworks

driven	architecture,	such	as	Tornado,	and	CherryPy.	Both	of	these	also	feature	their	own
built-in	production	quality	web	servers.

Choosing	a	framework	can	be	a	tricky	decision,	and	there	is	no	right	answer.	We’re	going
to	take	a	quick	look	at	one	of	today’s	most	popular	frameworks	to	get	an	idea	of	the
services	a	framework	can	offer,	then	discuss	how	you	might	approach	choosing	one.

Flask	–	a	microframework
To	get	a	taste	of	working	with	a	Python	web	framework,	we’re	going	to	write	a	small	app
with	Flask.	We’ve	chosen	Flask	because	it	provides	a	lean	interface,	giving	us	the	features
we	need	while	getting	out	of	the	way	and	letting	us	code.	Also,	it	doesn’t	require	any
significant	preconfiguration,	all	we	need	to	do	is	install	it,	like	this:

>>>	pip	install	flask

Downloading/unpacking	flask

Flask	can	also	be	downloaded	from	the	project’s	homepage	at	http://flask.pocoo.org.	Note
that	to	run	Flask	under	Python	3,	you	will	need	Python	3.3	or	higher.

Now	create	a	project	directory,	and	within	the	directory	create	a	text	file	called
tinyflaskapp.py.	Our	app	is	going	to	allow	us	to	browse	the	docstrings	for	the	Python
built-in	functions.	Enter	this	into	tinyflaskapp.py:

from	flask	import	Flask,	abort

app	=	Flask(__name__)

app.debug	=	True

objs	=	__builtins__.__dict__.items()

docstrings	=	{name.lower():	obj.__doc__	for	name,	obj	in	objs	if

														name[0].islower()	and	hasattr(obj,	'__name__')}

@app.route('/')

def	index():

				link_template	=	'{}</br>'

				links	=	[]

				for	func	in	sorted(docstrings):

								link	=	link_template.format(func,	func)

								links.append(link)

				links_output	=	'\n'.join(links)

				return	'<h1>Python	builtins	docstrings</h1>\n'	+	links_output

@app.route('/functions/<func_name>')

def	show_docstring(func_name):

				func_name	=	func_name.lower()

				if	func_name	in	docstrings:

								output	=	'<h1>{}</h1>\n'.format(func_name)

								output	+=	'<pre>{}</pre>'.format(docstrings[func_name])

								return	output

				else:

								abort(404)

if	__name__	==	'__main__':

				app.run()

This	code	can	be	found	in	this	book’s	source	code	download	for	this	chapter	within	the	1-
init	folder.

Flask	includes	a	development	web	server,	so	to	try	out	our	application	all	we	need	to	do	is
run	the	following	command:

http://flask.pocoo.org

$	python3.4	tinyflaskapp.py

	*	Running	on	http://127.0.0.1:5000/	(Press	CTRL+C	to	quit)

	*	Restarting	with	stat

We	can	see	that	the	Flask	server	tells	us	the	IP	address	and	port	it’s	listening	on.	Connect
to	the	URL	it	displays	(in	the	preceding	example	this	is	http://127.0.0.1:5000/)	now	in
a	web	browser,	and	you	should	see	a	page	with	a	list	of	Python	built-in	functions.	Clicking
on	one	should	display	a	page	showing	the	function	name	and	its	docstring.

If	you	want	to	run	the	server	on	another	interface	or	port,	you	can	change	the	app.run()
call,	for	example,	to	app.run(host='0.0.0.0',	port=5001).

Let’s	go	through	our	code.	From	the	top,	we	create	our	Flask	app	by	creating	a	Flask
instance,	in	this	case	giving	it	the	name	of	our	main	module.	We	then	set	debug	mode	to
active,	which	provides	nice	tracebacks	in	the	browser	when	something	goes	wrong,	and
also	sets	the	development	server	to	automatically	reload	code	changes	without	needing	a
restart.	Note	that	debug	mode	should	never	be	left	active	in	a	production	app!	This	is
because	the	debugger	has	an	interactive	element,	which	allows	code	to	be	executed	on	the
server.	By	default,	debug	is	off,	so	all	we	need	to	do	is	delete	the	app.config.debug	line
when	we	put	the	app	into	production.

Next	we	filter	the	built-in	function	objects	out	of	the	globals	and	extract	their	docstrings
for	later	use.	Now	we	have	the	main	section	of	the	app,	and	we	encounter	the	first	of
Flask’s	superpowers:	URL	routing.	The	heart	of	a	Flask	app	is	a	set	of	functions,	usually
called	views,	that	handle	requests	for	various	parts	of	our	URL	space—index()	and
show_docstring()	are	such	functions.	You	will	see	both	are	preceded	by	a	Flask
decorator	function,	app.route().	This	tells	Flask	which	parts	of	our	URL	space	the
decorated	function	should	handle.	That	is,	when	a	request	comes	in	with	a	URL	that
matches	a	pattern	in	an	app.route()	decorator,	the	function	with	the	matching	decorator
is	called	to	handle	the	request.	View	functions	must	return	a	response	that	Flask	can	return
to	the	client,	but	more	on	that	in	a	moment.

The	URL	pattern	for	our	index()	function	is	just	the	site	root,	'/',	meaning	that	only
requests	for	the	root	will	be	handled	by	index().

In	index(),	we	just	compile	our	output	HTML	as	a	string—first	our	list	of	links	to	the
functions’	pages,	then	a	header—and	then	we	return	the	string.	Flask	takes	the	string	and
creates	a	response	out	of	it,	using	the	string	as	the	response	body	and	adding	a	few	HTTP
headers.	In	particular,	for	str	return	values,	it	sets	Content-Type	to	text/html.

The	show_docstrings()	view	does	a	similar	thing—it	returns	the	name	of	the	built-in
function	we’re	viewing	in	an	HTML	header	tag,	plus	the	docstring	wrapped	in	a	<pre>	tag
(to	preserve	new	lines	and	whitespace).

The	interesting	part	is	the	app.route('/functions/<func_name>')	call.	Here	we’re
declaring	that	our	functions’	pages	will	live	in	the	functions	directory,	and	we’re
capturing	the	name	of	the	requested	function	using	the	<func_name>	segment.	Flask
captures	the	section	of	the	URL	in	angle	brackets	and	makes	it	available	to	our	view.	We
pull	it	into	the	view	namespace	by	declaring	the	func_name	argument	for

show_docstring().

In	the	view,	we	check	that	the	name	supplied	is	valid	by	seeing	whether	it	appears	in	the
docstrings	dict.	If	it’s	okay,	we	build	and	return	the	corresponding	HTML.	If	it’s	not
okay,	then	we	return	a	404	Not	Found	response	to	the	client	by	calling	Flask’s	abort()
function.	This	function	raises	a	Flask	HTTPException,	which	if	not	handled	by	our
application,	will	cause	Flask	to	generate	an	error	page	and	return	it	to	the	client	with	the
corresponding	status	code	(in	this	case	404).	This	is	a	good	way	to	fail	fast	when	we
encounter	bad	requests.

Templating
You	can	see	from	our	preceding	views	that	even	when	cheekily	omitting	the	usual	HTML
formalities	such	as	<DOCTYPE>	and	the	<html>	tag	to	save	complexity,	constructing	HTML
in	Python	code	is	clunky.	It’s	difficult	to	get	a	feel	for	the	overall	page,	and	it’s	impossible
for	designers	with	no	Python	knowledge	to	work	on	the	page	design.	Also,	mixing	the
generation	of	the	presentation	code	with	the	application	logic	makes	both	harder	to	test.

Pretty	much	all	web	frameworks	solve	this	problem	by	employing	the	template	idiom.
Since	the	bulk	of	the	HTML	is	static,	the	question	arises:	Why	keep	it	in	the	application
code	at	all?	With	templates,	we	extract	the	HTML	entirely	into	separate	files.	These	then
comprise	HTML	code,	with	the	inclusion	of	some	special	placeholder	and	logic	markup	to
allow	dynamic	elements	to	be	inserted.

Flask	uses	another	Armin	Ronacher	creation,	the	Jinja2	templating	engine,	for	this	task.
Let’s	adapt	our	application	to	use	templates.	In	your	project	folder,	create	a	folder	called
templates.	In	there,	create	three	new	text	files,	base.html,	index.html,	and
docstring.html.	Fill	them	out	as	follows:

The	base.html	file	will	be	like	this:

<!DOCTYPE	html>

<html>

<head>

				<title>Python	Builtins	Docstrings</title>

</head>

<body>

{%	block	body	%}{%	endblock	%}

</body>

</html>

The	index.html	file	will	be	like	this:

{%	extends	"base.html"	%}

{%	block	body	%}

				<h1>Python	Builtins	Docstrings</h1>

				<div>

				{%	for	func	in	funcs	%}

								<div	class="menuitem	link">

												{{	func	}}

								</div>

				{%	endfor	%}

				</table>

{%	endblock	%}

The	docstring.html	file	will	be	like	this:

{%	extends	'base.html'	%}

{%	block	body	%}

				<h1>{{	func_name	}}</h1>

				<pre>{{	doc	}}</pre>

				<p>Home</p>

{%	endblock	%}

Add	render_template	to	the	from	flask	import…	line	at	the	top	of	tinyflaskapp.py,
then	modify	your	views	to	look	like	this:

@app.route('/')

def	index():

				return	render_template('index.html',	funcs=sorted(docstrings))

@app.route('/functions/<func_name>')

def	show_docstring(func_name):

				func_name	=	func_name.lower()

				if	func_name	in	docstrings:

								return	render_template('docstring.html',

																															func_name=func_name,

																															doc=docstrings[func_name])

				else:

								abort(404)

This	code	can	be	found	in	the	2-templates	folder	of	this	chapter’s	source	code.

Notice	how	the	views	become	much	simpler,	and	the	HTML	is	much	more	readable	now?
Instead	of	composing	a	return	string	by	hand,	our	views	simply	call	render_template()
and	return	the	result.

So	what	does	render_template()	do?	Well,	it	looks	in	the	templates	folder	for	the	file
supplied	as	the	first	argument,	reads	it,	runs	any	processing	instructions	in	the	file,	then
returns	the	processed	HTML	as	a	string.	Any	keyword	arguments	supplied	to
render_template()	are	passed	to	the	template	and	become	available	to	its	processing
instructions.

Looking	at	the	templates,	we	can	see	they	are	mostly	HTML,	but	with	some	extra
instructions	for	Flask,	contained	in	{{	}}	and	{%	%}	tags.	The	{{	}}	instructions	simply
substitute	the	value	of	the	named	variable	into	that	point	of	the	HTML.	So	for	example	the
{{	func_name	}}	in	docstrings.html	substitutes	the	value	of	the	func_name	value	we
passed	to	render_template().

The	{%	%}	instructions	contain	logic	and	flow	control.	For	example,	the	{%	for	func	in
funcs	%}	instruction	in	index.html	loops	over	values	in	funcs	and	repeats	the	contained
HTML	for	each	value.

Finally,	you	may	have	spotted	that	templates	allow	inheritance.	This	is	provided	by	the	{%
block	%}	and	{%	extends	%}	instructions.	In	base.html	we	declare	some	shared
boilerplate	HTML,	then	in	the	<body>	tag	we	just	have	a	{%	block	body	%}	instruction.
In	index.html	and	docstring.html,	we	don’t	include	the	boilerplate	HTML;	instead	we
extend	base.html,	meaning	that	these	templates	will	fill	the	block	instructions	declared
in	base.html.	In	both	index.html	and	docstring.html,	we	declare	a	body	block,	the
contents	of	which	Flask	inserts	into	the	HTML	in	base.html,	replacing	the	matching	{%
block	body	%}	there.	Inheritance	allows	the	reuse	of	common	code,	and	it	can	cascade
through	as	many	levels	as	needed.

There	is	a	lot	more	functionality	available	in	Jinja2	template	instructions;	check	out	the
template	designer	documentation	for	a	full	list	at

http://jinja.pocoo.org/docs/dev/templates/.

http://jinja.pocoo.org/docs/dev/templates/

Other	templating	engines
Jinja2	is	certainly	not	the	only	templating	package	in	existence;	you	can	find	a	maintained
list	of	Python	templating	engines	at	https://wiki.python.org/moin/Templating.

Like	frameworks,	different	engines	exist	because	of	differing	philosophies	on	what	makes
a	good	engine.	Some	feel	that	logic	and	presentation	should	be	absolutely	separate	and
that	flow	control	and	expressions	should	never	be	available	in	templates,	providing	only
value	substitution	mechanisms.	Others	take	the	opposite	tack	and	allow	full	Python
expressions	within	template	markup.	Others,	such	as	Jinja2,	take	a	middleground
approach.	And	some	engines	use	different	schemes	altogether,	such	as	XML-based
templates	or	declaring	logic	via	special	HTML	tag	attributes.

There	isn’t	a	“right”	approach;	it’s	best	to	experiment	with	a	few	and	see	what	works	best
for	you.	Where	a	framework	has	its	own	engine	though,	like	Django,	or	is	tightly
integrated	with	an	existing	engine,	like	Flask,	you’ll	usually	have	a	smoother	run	sticking
with	what	they	supply,	if	you	can.

https://wiki.python.org/moin/Templating

Adding	some	style
At	the	moment,	our	pages	look	a	little	plain.	Let’s	add	some	style.	We’ll	do	this	by
including	a	static	CSS	document,	but	the	same	approach	can	be	used	to	include	images
and	other	static	content.	The	code	for	this	section	can	be	found	in	the	3-style	folder	in
this	chapter’s	source	code.

First	create	a	new	static	folder	in	your	project	folder,	and	in	there	create	a	new	text	file
called	style.css.	Save	the	following	to	it:

body								{	font-family:	Sans-Serif;	background:	white;	}

h1										{	color:	#38b;	}

pre									{	margin:	0px;	font-size:	1.2em;	}

.menuitem			{	float:	left;	margin:	1px	1px	0px	0px;	}

.link							{	width:	100px;	padding:	5px	25px;	background:	#eee;	}

.link	a						{	text-decoration:	none;	color:	#555;	}

.link	a:hover	{	font-weight:	bold;	color:	#38b;	}

Next	update	the	<head>	section	of	your	base.html	file	to	look	like	this:

<head>

				<title>Python	Builtins	Docstrings</title>

				<link	rel="stylesheet"	href="{{	url_for('static',	filename='style.css')	

}}"/>

</head>

Note	the	third	and	forth	lines	in	the	preceding	code—that	is	the	<link>	tag—should	be	a
single	line	in	your	code.	Try	your	web	application	in	the	browser	again	and	notice	that	it
looks	(hopefully)	a	little	more	up	to	date.

Here	we’ve	just	added	a	stylesheet	to	our	boilerplate	HTML	in	base.html,	adding	a
<link>	tag	pointing	to	our	static/style.css	file.	We	use	Flask’s	url_for()	function	for
this.	The	url_for()	function	returns	paths	to	named	parts	of	our	URL	space.	In	this	case,
it’s	the	special	static	folder,	which	by	default	Flask	looks	for	in	the	root	of	our	web
application.	Another	thing	we	can	use	url_for()	for	is	to	get	the	paths	of	our	view
functions,	for	example,	url_for('index')	would	return	/.

You	can	put	images	and	other	resources	in	the	static	folder,	and	reference	them	in	the
same	way.

A	note	on	security
If	you’re	new	to	web	programming,	then	I	strongly	recommend	you	read	up	on	two
common	types	of	security	flaw	in	web	applications.	Both	are	fairly	easily	avoided	but	can
have	serious	consequences	if	not	addressed.

XSS
The	first	is	Cross-Site	Scripting	(XSS).	This	is	where	an	attacker	injects	malicious	script
code	into	a	site’s	HTML,	causing	a	user’s	browser	to	carry	out	operations	in	the	security
context	of	that	site	without	the	user’s	knowledge.	A	typical	vector	is	user	submitted	info
being	redisplayed	to	users	without	proper	sanitization	or	escaping.

For	example,	one	method	is	to	trick	users	into	visiting	URLs	containing	carefully	crafted
GET	parameters.	As	we	saw	in	Chapter	2,	HTTP	and	Working	with	the	Web,	these
parameters	can	be	used	by	web	servers	to	generate	pages,	and	sometimes	their	content	is
included	in	the	HTML	of	the	response	page	itself.	If	the	server	is	not	careful	to	replace
special	characters	in	the	URL	parameters	with	their	HTML	escape	codes	when	displayed,
an	attacker	can	put	executable	code,	for	example	Javascript,	into	URL	parameters	and
actually	have	it	executed	when	that	URL	is	visited.	If	they	can	trick	a	victim	into	visiting
that	URL,	that	code	will	be	executed	in	the	user’s	browser,	enabling	the	attacker	to
potentially	perform	any	action	the	user	could.

The	basic	XSS	prevention	is	to	ensure	that	any	input	received	from	outside	the	web
application	is	escaped	properly	when	returned	to	the	client.	Flask	is	very	helpful	in	this
regard	since	it	activates	Jinja2’s	auto-escaping	feature	by	default,	meaning	that	anything
we	render	via	template	is	automatically	protected.	Not	all	frameworks	have	this	feature
though,	and	some	that	do	need	it	to	be	manually	set.	Also,	this	only	applies	in	situations
where	your	user-generated	content	can’t	include	markup.	In	situations	like	a	wiki	that
allows	some	markup	in	user-generated	content,	you	need	to	take	much	greater	care—see
the	source	code	download	for	this	chapter	in	the	5-search	folder	for	an	example	of	this.
You	should	always	make	sure	you	check	out	your	framework’s	documentation.

CSRF
The	second	form	of	attack	is	the	Cross-Site	Request	Forgery	(CSRF).	In	this	attack,	a
site	is	tricked	into	carrying	out	actions	in	the	security	context	of	a	user,	without	the	user’s
knowledge	or	consent.	Frequently	this	is	initiated	by	an	XSS	attack	that	causes	a	user’s
browser	to	perform	an	operation	on	the	target	site	while	the	user	is	logged	in.	It	should	be
noted	that	this	can	affect	sites	even	when	a	user	isn’t	actively	browsing	them;	sites	often
clear	cookie	authentication	tokens	only	when	a	user	explicitly	logs	out,	and	hence	from	the
site	and	browser’s	point	of	view,	any	request	coming	from	the	browser	even	after	the	user
has	stopped	browsing	a	site—if	they	haven’t	logged	out—will	be	as	if	the	user	is	still
logged	in.

One	technique	to	help	prevent	CSRF	attacks	is	to	make	potentially	abusable	operations,
such	as	submitting	forms,	require	a	one-time	nonce	value	that	is	only	known	to	the	server
and	the	client.	CRSF	attacks	often	take	the	form	of	a	pre-composed	HTTP	request,

mimicking	a	user	submitting	a	form	or	similar.	However,	if	every	time	a	server	sends	a
form	to	a	client	it	includes	a	different	nonce	value,	then	the	attacker	has	no	way	of
including	this	in	the	pre-composed	request,	and	hence	the	attack	attempt	can	be	detected
and	rejected.	This	technique	is	less	effective	against	XSS	initiated	attacks,	and	attacks
where	an	attacker	is	eavesdropping	the	HTTP	traffic	of	a	browsing	session.	The	former	is
difficult	to	completely	protect	against,	and	the	best	solution	is	to	ensure	XSS
vulnerabilities	are	not	present	in	the	first	place.	The	latter	can	be	mitigated	using	HTTPS
rather	than	HTTP.	See	the	OWASP	pages	linked	to	below	for	further	information.

Different	frameworks	have	different	approaches	to	providing	nonce-based	CSRF
protection.	Flask	doesn’t	have	this	functionality	built	in,	but	it	is	very	easy	to	add
something,	for	example:

@app.before_request

def	csrf_protect():

				if	request.method	==	"POST":

								token	=	session.pop('_csrf_token',	None)

								if	not	token	or	token	!=	request.form.get('_csrf_token'):

												abort(403)

def	generate_csrf_token():

				if	'_csrf_token'	not	in	session:

								session['_csrf_token']	=	some_random_string()

				return	session['_csrf_token']

app.jinja_env.globals['csrf_token']	=	generate_csrf_token

Then	in	templates	with	forms,	just	do	the	following:

<form	method="post"	action="<whatever>">

				<input	name="_csrf_token"	type="hidden"	value="{{	csrf_token()	}}">

This	is	from	the	Flask	site:	http://flask.pocoo.org/snippets/3/.	Although	this	contains	some
Flask	functionality,	we	haven’t	covered,	including	sessions	and	the
@app.before_request()	decorator,	you	just	need	to	include	the	above	code	in	your	app,
and	make	sure	you	include	a	_	csrf_token	hidden	input	in	every	form.	An	alternative
approach	is	to	use	the	Flask-WTF	plugin	that	provides	integration	with	the	WTForms
package,	which	has	built-in	CSRF	protection.

Django	on	the	other	hand	has	built-in	protection,	though	you	need	to	enable	and	use	it.
Other	frameworks	vary.	Always	check	your	chosen	framework’s	documentation.

Note
There	is	more	information	on	XSS	and	CSRF	on	the	Flask	and	Django	sites:

http://flask.pocoo.org/docs/latest/security/
https://docs.djangoproject.com/en/1.7/topics/security/

Also	on	the	OWASP	site,	there	is	a	repository	of	all	sorts	of	computer	security	related
information:

https://www.owasp.org/index.php/XSS

http://flask.pocoo.org/snippets/3/
http://flask.pocoo.org/docs/latest/security/
https://docs.djangoproject.com/en/1.7/topics/security/
https://www.owasp.org/index.php/XSS

https://www.owasp.org/index.php/CSRF

https://www.owasp.org/index.php/CSRF

Finishing	up	with	frameworks
That’s	as	far	as	we’re	going	to	take	our	dip	into	Flask,	here.	There	are	some	examples	of
further	adaptations	to	our	application	in	the	downloadable	source	code	of	this	chapter,
notably	form	submission,	accessing	form	values	in	the	request,	and	sessions.	The	Flask
tutorial	covers	many	of	these	elements	in	some	detail,	and	is	well	worth	checking	out
http://flask.pocoo.org/docs/0.10/tutorial/.

So	that’s	a	taste	of	what	a	very	basic	Python	web	application	can	look	like.	There	are
obviously	as	many	ways	to	write	the	same	app	as	there	are	frameworks	though,	so	how	do
you	choose	a	framework?

Firstly,	it	helps	to	have	a	clear	idea	of	what	you’re	looking	to	achieve	with	your
application.	Do	you	require	database	interaction?	If	so,	a	more	integrated	solution	like
Django	may	be	quicker	to	get	started	with.	Will	you	need	a	web-based	data	entry	or
administration	interface?	Again	if	so,	Django	has	this	out	of	the	box.

Next	you	can	look	at	your	environment.	Are	there	already	preferred	packages	in	your
organization	for	operations	you	might	want	to	perform,	such	as	database	access	or	unit
testing?	If	so,	do	any	frameworks	already	use	these?	If	not	then	a	microframework	might
be	a	better	option,	plugging	in	your	required	packages.	Do	you	have	a	preferred	operating
system	or	web	server	for	hosting,	and	which	frameworks	support	these?	Does	your	hosting
restrict	you	in	terms	of	Python	version,	database	technology,	or	similar?	Also,	if	you	have
web	designers,	do	you	have	time	to	get	them	up	to	speed	on	a	complex	templating
language,	or	must	it	be	kept	simple?

Answers	to	these	questions	can	help	you	narrow	down	your	choices.	Then,	researching	the
frameworks,	asking	people	who	are	using	them,	and	trying	out	a	few	likely	looking	ones
will	get	you	where	you	need	to	go.

Having	said	that,	for	a	general	web	application	that	needs	some	user	form	submission	and
database	access,	you	can’t	really	go	wrong	with	Django.	It	really	is	“batteries	included”,
its	database	model	is	elegant,	and	its	out-of-the	box	database	administration	and	data	entry
interface	is	very	powerful	and	can	be	a	huge	timesaver.	And	for	simpler	applications	such
as	APIs,	Flask	is	also	a	great	choice,	coupled	with	SQLAlchemy	if	database	access	is
needed.

As	I	mentioned	before,	there’s	no	right	answer,	but	there’s	a	lot	to	be	learned	by	exploring
what’s	available	and	seeing	the	different	approaches	that	the	frameworks	take.

Of	course,	once	we’ve	got	our	web	application,	we	need	a	way	to	host	it.	We’re	going	to
look	at	some	options	now.

http://flask.pocoo.org/docs/0.10/tutorial/

Hosting	Python	web	applications
As	we	discussed	at	the	beginning	of	this	chapter,	in	order	to	run	a	Python	web	application,
we	need	a	web	server	to	host	it.	There	are	many	web	servers	in	existence	today,	and	you
will	very	likely	have	heard	of	several.	Popular	examples	are	Apache,	nginx	(pronounced
engine-x),	lhttpd	(pronounced	lighty),	and	Microsoft’s	Internet	Information	Services
(IIS).

There	is	a	lot	of	terminology	around	web	servers	and	various	mechanisms	they	can	use	to
invoke	Python	web	applications.	We’re	going	to	take	a	very	brief	tour	of	the	history	of
web	applications	to	help	explain	some	of	these	concepts.

CGI
In	the	early	days	of	the	Web,	web	servers	would	mostly	only	be	required	to	send	clients
HTML	pages,	or	the	occasional	image	file.	As	in	the	earlier	figure	of	a	HTTP	request
journey,	these	static	resources	would	live	on	the	hard	disk	of	the	server,	and	the	web
server’s	main	task	would	be	to	accept	socket	connections	from	clients,	map	the	URL	of	a
request	to	a	local	file,	and	send	the	file	back	over	the	socket	as	an	HTTP	response.

However,	with	the	rise	of	the	need	for	dynamic	content,	web	servers	were	given	the	ability
to	generate	pages	by	invoking	external	programs	and	scripts,	which	we	today	call	web
applications.	Web	applications	originally	took	the	form	of	scripts	or	compiled	executables
that	lived	on	disk	next	to	the	regular	static	content	as	part	of	the	published	web	tree.	The
web	server	would	be	configured	so	that	when	a	client	requested	these	web	application
files,	instead	of	just	reading	the	file	and	returning	it,	the	web	server	would	launch	a	new
operating	system	process	and	execute	the	file,	returning	the	result	as	the	requested	HTML
web	page.

If	we	update	our	HTTP	request’s	journey	from	our	earlier	image,	our	request’s	journey
would	now	look	something	like	this:

There	obviously	needs	to	be	some	kind	of	protocol	for	the	web	server	and	the	web
application	to	pass	the	HTTP	request	and	the	returned	HTML	page	between	them.	The
earliest	mechanism	for	this	was	called	the	Common	Gateway	Interface	(CGI).	The	web
server	would	decompose	the	request	into	environment	variables,	which	it	would	add	to	the
environment	of	the	handler	program	when	it	was	invoked,	and	pass	the	body	of	the
request,	if	there	was	one,	to	the	program	via	its	standard	input.	The	program	would	then
simply	pipe	the	HTTP	response	it	generated	to	its	standard	output,	which	the	web	server

would	catch	and	return	to	the	client.

Due	to	performance	issues	however,	CGI	is	slowly	falling	out	of	favor	these	days,	and
writing	a	Python	CGI	application	is	something	that	should	be	avoided	if	at	all	possible.

Recycling	for	a	better	world
CGI	works,	but	the	major	drawback	is	that	a	new	process	has	to	be	launched	for	each
request.	Launching	processes	is	expensive	in	terms	of	operating	system	resources,	and	so
this	approach	is	very	inefficient.	Alternatives	have	been	developed.

Two	approaches	became	common.	The	first	was	to	make	web	servers	launch	and	maintain
multiple	processes	at	startup,	ready	to	accept	new	connections—	a	technique	known	as
pre-forking.	With	this	technique,	there	is	still	a	one-process-per-	client	relationship,	but
the	processes	are	already	created	when	a	new	client	connects,	improving	response	time.
Also	the	processes	can	be	reused	instead	of	being	re-created	anew	with	each	connection.

Alongside	this,	web	servers	were	made	extensible	and	bindings	were	created	to	different
languages	so	that	the	web	application	could	be	embedded	within	the	web	server	processes
themselves.	The	most	commonly	seen	examples	of	these	are	the	various	language	modules
for	the	Apache	web	server	for	languages	such	as	PHP	and	Perl.

With	pre-forking	and	web	application	embedding,	our	request’s	journey	might	look	like
this:

Here,	the	request	is	transformed	by	the	language	binding	code,	and	the	request	our	web
application	sees	depends	on	the	design	of	the	binding	itself.	This	approach	to	managing	a
web	application	works	fairly	well	for	general	web	loads,	and	remains	a	popular	way	to
host	web	applications	today.	Modern	browsers	usually	also	offer	multithreaded	variants,
where	each	process	can	handle	requests	using	multiple	threads,	one	for	each	client

connection,	further	improving	efficiency.

The	second	approach	to	solving	CGI’s	performance	problems	was	to	hand	off	the
management	of	the	web	application	processes	completely	to	a	separate	system.	The
separate	system	would	pre-fork	and	maintain	a	pool	of	processes	running	the	web
application	code.	Like	web	server	pre-forking,	these	could	be	reused	for	each	client
connection.	New	protocols	were	developed	to	allow	the	web	server	to	pass	requests	to	the
external	processes,	the	most	notable	being	FastCGI	and	SCGI.	In	this	situation,	our
journey	would	be:

Again,	how	the	request	is	transformed	and	presented	to	the	web	application	depends	on
the	protocol	used.

Although	in	practice	this	is	somewhat	more	complex	to	configure,	it	has	advantages	over
embedding	a	copy	of	the	application	code	in	pre-forked	web	server	processes.	Primarily,
the	web	application	process	pool	can	be	managed	independently	of	the	web	server	process
pool,	allowing	more	efficient	tuning	of	both.

Event-driven	servers
Web	client	numbers	continued	to	grow	though,	and	the	need	arose	for	servers	to	be	able	to
handle	very	large	numbers	of	simultaneous	client	connections,	numbers	that	proved
problematic	using	the	multiprocessing	approaches.	This	spurred	the	development	of	event-
driven	web	servers,	such	as	nginx	and	lighttpd,	which	can	handle	many	thousands	of
simultaneous	connections	in	a	single	process.	These	servers	also	leverage	preforking,
maintaining	a	number	of	event-driven	processes	in	line	with	the	number	of	CPU	cores	in	a
machine,	and	hence	making	sure	the	server’s	resources	are	fully	utilized	while	also
receiving	the	benefits	of	the	event-driven	architecture.

WSGI
Python	web	applications	were	originally	written	against	these	early	integration	protocols:
CGI,	FastCGI,	and	a	now	mostly	defunct	mod_python	Apache	module.	This	proved
troublesome	though	since	Python	web	applications	were	tied	to	the	protocol	or	server	they
had	been	written	for.	Moving	them	to	a	different	server	or	protocol	required	some
reworking	of	the	application	code.

This	problem	was	solved	with	PEP	333,	which	defined	the	Web	Services	Gateway
Interface	(WSGI)	protocol.	This	established	a	common	calling	convention	for	web
servers	to	invoke	web	application	code,	similar	to	CGI.	When	web	servers	and	web
applications	both	support	WSGI,	servers	and	applications	can	be	exchanged	with	ease.
WSGI	support	has	been	added	to	many	modern	web	servers	and	is	nowadays	the	main
method	of	hosting	Python	applications	on	the	Web.	It	was	updated	for	Python	3	in	PEP
3333.

Many	of	the	web	frameworks	we	discussed	earlier	support	WSGI	behind	the	scenes	to
communicate	with	their	hosting	web	servers,	Flask	and	Django	included.	This	is	another
big	benefit	to	using	such	a	framework—	you	get	full	WSGI	compatibility	for	free.

There	are	two	ways	a	web	server	can	use	WSGI	to	host	a	web	application.	Firstly	it	can
directly	support	hosting	WSGI	applications.	Pure	Python	servers	such	as	Gunicorn	follow
this	approach,	and	they	make	serving	Python	web	applications	very	easy.	This	is	becoming
a	very	popular	way	to	host	Python	web	applications.

The	second	approach	is	for	a	non-Python	server	to	use	an	adapter	plugin,	such	as	Apache’s
mod_wsgi,	or	the	mod_wsgi	plugin	for	nginx.

The	exception	to	the	WSGI	revolution	is	event-driven	servers.	WSGI	doesn’t	include	a
mechanism	to	allow	a	web	application	to	pass	control	back	to	the	calling	process,	hence
there	is	no	benefit	to	using	an	event-driven	server	with	a	blocking-IO	style	WSGI	web
application	because	as	soon	as	the	application	blocks,	for	example,	for	database	access,	it
will	block	the	whole	web	server	process.

Hence,	most	event-driven	frameworks	include	a	production-ready	web	server—making
the	web	application	itself	event-driven	and	embedding	it	in	the	web	server	process	is
really	the	only	way	to	host	it.	To	host	web	applications	with	these	frameworks,	check	out
the	framework’s	documentation.

Hosting	in	practice
So	how	does	this	all	work	in	practice?	Well	as	we	saw	with	Flask,	many	frameworks	come
with	their	own	built-in	development	web	servers.	However,	these	are	not	recommended
for	use	in	a	production	environment	as	they’re	generally	not	designed	to	be	used	where
security	and	scalability	are	important.

Currently,	probably	the	quickest	way	to	host	a	Python	web	application	with	a	production
quality	server	is	with	the	Gunicorn	server.	Using	our	Flask	application	from	earlier,	we
can	get	it	up	and	running	using	just	a	few	steps.	First	we	install	Gunicorn:

$	pip	install	gunicorn

Next	we	need	to	slightly	modify	our	Flask	app	so	that	it’s	use	of	__builtins__	works
correctly	under	Gunicorn.	In	your	tinyflaskapp.py	file,	find	the	line:

objs	=	__builtins__.__dict__.items()

Change	it	to:

objs	=	__builtins__.items()

Now	we	can	run	Gunicorn.	From	within	your	Flask	application	project	folder,	run	the
following	command:

$	gunicorn	--bind	0.0.0.0:5000	tinyflaskapp:app

This	will	launch	the	Gunicorn	web	server,	listening	on	port	5000	on	all	available
interfaces	and	serving	our	Flask	application.	If	we	now	visit	it	in	a	web	browser	via
http://127.0.0.1:5000,	we	should	see	our	documentation	index	page.	There	are
instructions	to	daemonize	Gunicorn,	so	that	it	runs	in	the	background	and	starts	and	stops
automatically	with	the	system,	available	in	the	documentation	pages	at	http://gunicorn-
docs.readthedocs.org/en/latest/deploy.html#monitoring.

Gunicorn	uses	the	pre-fork	process	model	described	earlier.	You	can	set	the	number	of
processes	(Gunicorn	calls	them	workers)	using	the	-w	command	line	option.	The	‘Design’
section	of	the	documentation	contains	details	on	determining	the	best	number	of	workers
to	use,	though	a	good	place	to	start	is	(2	x	$num_cores)	+	1,	where	$num_cores	is	the
number	of	CPU	cores	available	to	Gunicorn.

Gunicorn	offers	two	standard	worker	types:	sync	and	async.	The	sync	type	provides
strictly	one-worker-per-client-connection	behavior,	the	async	type	uses	eventlet	(see
Chapter	8,	Client	and	Server	Applications,	for	details	and	installation	instructions	for	this
library)	to	provide	an	event-based	worker,	which	can	handle	multiple	connections.	The
sync	type	is	only	recommended	if	you	are	using	Gunicorn	behind	a	reverse	proxy	(see
below),	as	using	the	sync	type	to	serve	directly	to	the	Internet	leaves	your	application
vulnerable	to	Denial	of	Service	attacks	(see	the	Design	section	of	the	documentation	for
more	details).	If	you	are	not	using	a	reverse	proxy,	the	async	type	should	be	used	instead.
The	worker	type	is	set	on	the	command	line	using	the	-k	option.

One	effective	way	to	improve	performance	and	scale	further	is	to	employ	a	fast,	event-

http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#monitoring

driven	web	server,	such	as	nginx,	as	a	reverse	proxy	in	front	of	your	Gunicorn	instance.	A
reverse	proxy	acts	as	a	first	line	server	for	incoming	web	requests.	It	directly	responds	to
any	requests	it	can	determine	are	erroneous,	and	can	also	be	configured	to	serve	static
content	in	place	of	our	Gunicorn	instance.	However,	it	is	also	configured	to	forward	any
requests	that	do	require	dynamic	content	to	our	Gunicorn	instance	so	our	Python	web
application	can	handle	them.	In	this	way,	we	get	the	performance	benefits	of	nginx	to	deal
with	the	bulk	of	our	web	traffic,	and	Gunicorn	and	our	web	application	can	focus	on
delivering	just	the	dynamic	pages.

Note
Detailed	instructions	on	configuring	this	reverse	proxy	configuration	can	be	found	on	the
Gunicorn	pages	at	http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#nginx-
configuration.

If	you’re	more	comfortable	with	Apache,	then	another	effective	hosting	method	is	Apache
with	the	mod_wsgi	module.	This	takes	a	little	more	configuring,	and	full	instructions	can
be	found	at:	https://code.google.com/p/modwsgi/.	mod_wsgi	defaults	to	running
applications	in	embedded	mode,	where	the	web	application	is	hosted	in	each	Apache
process,	and	which	results	in	a	setup	like	the	preceding	pre-forking	example.	Alternatively
it	provides	a	daemon	mode,	where	mod_wsgi	manages	a	pool	of	processes	external	to
Apache,	similar	to	the	earlier	FastCGI	example.	Daemon	mode	is	in	fact	recommended	for
stability	and	memory	performance.	See	the	mod_wsgi	quick	configuration	documentation
for	instructions	on	this	configuration,	it	can	be	found	at:
https://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide.

http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#nginx-configuration
https://code.google.com/p/modwsgi/
https://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide

Summary
We’ve	taken	a	whistle-stop	tour	of	putting	Python	applications	on	the	Web.	We	got	an
overview	of	web	application	architectures	and	their	relationship	to	web	servers.	We	looked
at	the	utility	of	Python	web	frameworks,	noting	how	they	give	us	tools	and	structure	to
write	better	web	applications	more	quickly,	and	help	us	integrate	our	applications	with
web	servers.

We	wrote	a	tiny	application	in	the	Flask	web	framework,	we	saw	how	it	can	help	us
elegantly	manage	our	URL	space,	and	how	templating	engines	can	help	us	cleanly	manage
the	seperation	of	application	logic	and	HTML.	We	also	highlighted	a	couple	of	common
potential	security	vulnerabilities—	XSS	and	CSRF—	and	looked	at	some	basic	mitigation
techniques.

Finally,	we	discussed	web	hosting	architectures	and	the	various	methods	that	can	be	used
to	deploy	Python	web	applications	to	the	Web.	In	particular,	WSGI	is	the	standard
protocol	of	web	server/web	application	interaction,	and	Gunicorn	can	be	used	for	rapid
deployment	and	scaled	with	an	nginx	reverse	proxy.	Apache	with	mod_wsgi	is	also	an
effective	hosting	approach.

We’ve	covered	a	lot	of	ground	in	this	book,	and	there’s	still	plenty	more	exploring	to	be
done.	We	hope	this	book	has	given	you	a	taste	of	what’s	possible	and	an	appetite	for
discovering	more,	and	that	this	is	just	the	start	of	your	adventures	in	network
programming	with	Python.

Appendix	A.	Working	with	Wireshark
When	developing	network	applications,	it’s	often	useful	to	be	able	to	see	exactly	what’s
being	transmitted	over	the	network.	Maybe	something	weird	is	going	on	with	your
framing,	you’re	trying	to	discover	the	user	agent	for	your	browser,	or	you	want	to	see
what’s	happening	in	the	IP	protocol	or	lower	layers.	We	can	employ	a	class	of	tools	called
packet	sniffers	to	do	this.

Packet	sniffers
Packet	sniffers	are	designed	to	capture	all	the	network	traffic	that	enters	and	leaves	a
computer,	allowing	us	to	see	the	full,	raw	contents	of	all	packets	that	our	programs	send
and	receive,	and	all	the	headers	and	payloads	of	all	the	protocols	on	the	stack.

We’re	going	to	take	a	quick	look	at	one	of	these	applications.	It	not	only	provides	us	with
a	very	useful	debugging	tool	for	network	programming,	it	also	gives	you	a	direct	view	of
the	structure	of	network	traffic	and	gives	you	a	better	feel	for	the	concepts	of	layering	and
encapsulation.

A	small	word	of	caution	before	we	begin	though;	if	you’re	using	a	computer	on	a	network
you	do	not	own,	such	as	at	your	place	of	work	or	study,	you	should	get	permission	from
your	network	administrator	before	running	a	packet	sniffer.	On	networks	that	use	network
hubs	rather	than	switches,	sniffers	may	capture	data	destined	for	computers	other	than
your	own.	Also,	running	a	packet	sniffer	may	be	against	your	network’s	usage	policy.
Even	if	it’s	not,	packet	sniffers	are	powerful	network	monitoring	tools	and	administrators
generally	like	to	be	aware	of	when	they’re	being	used.

If	this	turns	out	to	be	difficult,	don’t	panic!	This	book	doesn’t	rely	on	having	access	to	a
packet	sniffer	at	any	point;	we	just	think	that	you’ll	find	them	handy	while	programming
for	networks.

Wireshark
The	program	that	we’re	going	to	take	a	look	at	is	called	Wireshark.	It’s	an	open	source
packet	sniffer	with	support	for	interpreting	a	vast	range	of	network	protocols.

Installation
For	Windows	and	Linux,	Wireshark	can	be	downloaded	from	http://www.wireshark.org.
On	Debian,	Ubuntu,	RHEL,	CentOS,	and	Fedora	it’s	available	as	the	wireshark	package.

You’ll	need	to	have	root	or	administrator	access	in	order	to	install	this.	On	Windows,
make	sure	that	you	install	or	update	the	WinPcap	library	if	it	asks	you	to	do	so,	and	also
allow	it	to	start	the	WinPcap	driver	at	boot	time	when	prompted.

On	Debian	and	Ubuntu,	you	will	need	to	configure	Wireshark	to	allow	regular	users	to	run
captures.	Run	the	following	command:

$	sudo	dpkg-reconfigure	wireshark-common

Say	Yes	to	Should	non-superusers	be	able	to	capture	packets?	Note	that	this
doesn’t	automatically	allow	all	non-super	users	to	use	Wireshark,	they	still	need	to	be
added	to	the	wireshark	group.	Do	this	now	for	your	own	user,	for	example:

$	sudo	usermod	-aG	wireshark	myuser

You	may	need	to	log	out	and	log	in	again	for	this	to	take	effect,	or	possibly	even	reboot.
For	other	Linux	distributions,	check	their	documentation,	or	there	are	instructions	on	the
Wireshark	wiki	for	assigning	these	rights	at
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges.

If	you	run	into	trouble	at	any	point,	you	can	get	further	help	regarding	the	installation	on
the	wiki	at	http://wiki.wireshark.org/CaptureSetup.

Once	configured,	on	Linux,	just	run	wireshark	in	an	X	session	to	start	the	graphical
interface.

http://www.wireshark.org
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
http://wiki.wireshark.org/CaptureSetup

Capturing	some	packets
Once	you	have	Wireshark	installed	and	running,	you’ll	see	a	window	that	looks	like	this:

Packet	sniffing	usually	works	in	two	steps:	first,	we	run	a	traffic	capture	session,	and	then
we	analyze	the	captured	traffic.	During	a	capture,	Wireshark	asks	the	operating	system	for
a	copy	of	all	the	network	traffic	it	processes,	which	Wireshark	then	keeps	in	a	buffer	for	us
to	analyze.	Wireshark	provides	us	with	tools	that	let	us	filter	the	captured	data	so	that	we
can	work	on	only	the	data	streams	we	want,	and	drill	into	each	packet	in	order	to	take	a
look	at	the	header	data	and	the	payloads.

So	first,	we	need	to	select	the	interfaces	on	which	we	want	to	capture	the	traffic.	We	can
see	that	there’s	a	list	of	interfaces	below	the	Start	button.	Wireshark	captures	all	the
network	traffic	that	passes	over	all	the	interfaces	that	we	select;	this	usually	means	that	we
end	up	capturing	a	lot	of	data	that	we’re	not	actually	interested	in.	In	order	to	reduce	this
noise,	it’s	best	to	capture	as	few	interfaces	as	possible,	ideally	just	one.

We’re	going	to	use	the	first	RFC	downloader,	from	Chapter	1,	Network	Programming	and
Python,	RFC_downloader.py,	to	generate	some	network	traffic	to	analyze.	Since	this
program	communicates	with	a	host	on	the	Internet,	we	want	to	capture	the	network

interface	that	provides	our	Internet	connection.

If	you’re	not	sure	which	interface	is	your	Internet	interface,	then	click	on	the	Interface
List	button	above	the	Start	button	to	bring	up	the	window,	as	shown	in	the	following
screenshot:

On	the	right-side	of	the	dialog	box,	you	can	see	the	live	counts	of	the	number	of	packets
that	have	passed	through	each	of	the	interfaces,	since	we	opened	the	window.	You	can
generate	some	Internet	traffic	by	browsing	a	website	if	there’s	not	much	happening.	The
interface	with	the	fastest	rising	packet	count	will	be	the	Internet	interface	(ignore	the	any
interface	on	Linux).	Make	a	note	of	the	interface’s	name	and	close	the	window.

Network	interfaces	can	capture	packets	in	one	of	two	modes:	promiscuous	mode	and	non-
promiscuous	mode.	In	promiscuous	mode,	the	interface	will	pass	all	traffic	that	it	receives
on	to	the	sniffer,	even	if	it	is	traffic	that	is	not	destined	for	our	computer.	In	non-
promiscuous	mode,	the	interface	filters	out	any	traffic	that	is	not	for	our	computer.	Unless
you	have	a	very	specific	reason	to,	it’s	usually	best	to	run	in	non-promiscuous	mode,	as
this	reduces	the	amount	of	extraneous	traffic	we	need	to	filter	manually.	Wireshark	enables
promiscuous	mode	by	default.	To	disable,	go	into	Capture	|	Options…	and	ensure	‘Use
promiscuous	mode	on	all	interfaces’	is	unticked.	Then	check	the	‘Prom	Mode’	column	in
the	interfaces	list	at	the	top	of	the	options	window,	and	ensure	it’s	says	disabled	for	the
interfaces	you’re	capturing	on.	When	done,	close	the	options	window	to	return	to	the	main
screen.

Select	your	Internet	interface	from	the	interface	list,	which	is	below	the	Start	button	on
the	main	screen,	and	click	on	Start	to	begin	a	capture.	After	a	moment	or	two,	we	should
see	some	packets	coming	in:

While	Wireshark	is	capturing	packets,	let’s	generate	some	traffic	that	we’re	interested	in
analyzing.	Run	the	RFC_downloader.py	RFC	downloader	program	in	a	terminal	to
download	RFC	2324:

$	python3	RFC_downloader.py	2324

...

Network	Working	Group																																					L.	Masinter

Request	for	Comments:	2324																															1	April	1998

Category:	Informational

...

Once	the	download	has	run,	return	to	Wireshark	and	stop	the	capture	by	clicking	on	the
Stop	button	in	the	toolbar.	If	something	goes	awry	with	the	capture,	don’t	worry,	we	can
try	it	again;	just	stop	the	capture,	then	click	on	the	Start	a	new	live	capture	button	in	the
toolbar,	and	don’t	save	changes	to	the	previous	capture	when	prompted.	When	it’s
running,	run	RFC_downloader.py	again.	Once	you	have	a	capture	that	contains	the	RFC
downloader	traffic,	let’s	take	a	closer	look	at	it.

As	shown	in	the	preceding	screenshot,	the	Wireshark	capture	screen	is	broken	into	three
sections.	The	top	section	lists	the	captured	packets,	one	packet	per	row,	and	provides	basic
information	for	each	packet,	such	as	the	source	and	destination	addresses,	and	the	name	of
the	highest	layer	protocol	for	which	the	packet	contains	data.

The	middle	section	contains	a	breakdown	of	the	protocols	present	in	the	selected	packet.
The	top	line	is	equivalent	to	layer	1	in	the	network	stack,	with	subsequent	lines
corresponding	to	the	higher	layers.

The	bottom	section	contains	a	raw	listing	of	the	entire	captured	packet.	This	is	broken	into
three	main	vertical	areas.	The	numbers	in	the	first	column	on	the	left-hand	side	are	the
byte	offsets	in	hex	of	the	start	of	the	line	from	the	beginning	of	the	packet.	The	middle
section	consists	of	two	columns	of	8	hexadecimal	numbers	each;	this	section	shows	each
byte	in	the	packet	as	a	hexadecimal	integer.	The	section	on	the	right-hand	side,	consisting
of	two	columns	of	ASCII	characters,	is	the	ASCII	representation	of	the	bytes	in	the
packet.	Dots	are	used	here,	where	a	byte	value	maps	to	a	nonprintable	character.

Filtering
Let’s	see	if	we	can	find	the	packets	that	our	downloader	program	has	generated.	There’s
probably	a	fair	amount	of	extra	network	data	in	the	capture,	so	first,	we	need	to	filter	this
out.

Wireshark	lets	us	filter	using	any	property	of	any	of	the	protocols	it	supports.	To	filter,	we
use	the	filter	box	that	is	under	the	toolbar.	Wireshark	has	a	complete	filter	language,	which
you	can	investigate	with	the	help	system.	For	now,	we’re	just	going	to	do	a	few	basic
queries	to	find	our	packets.	Type	http	in	the	filter	box,	and	click	on	the	Apply	button.
This	restricts	the	displayed	packets	to	just	those	that	involve	the	HTTP	protocol,	as	shown
in	the	following	screenshot:

Even	if	the	only	HTTP	traffic	that	you	deliberately	generated	during	the	capture	session
was	through	the	downloader	program,	it’s	possible	that	we’ll	see	more	HTTP	packets	than
just	those.	This	is	because	some	programs,	such	as	file	cloud	storage	clients,	communicate
with	their	services	in	the	background	quite	frequently	through	HTTP.	Also,	Wireshark
currently	identifies	SSDP	protocol	packets	as	HTTP,	since	SSDP	is	derived	from	HTTP.

Not	a	problem	though,	we	can	refine	our	filter.	The	unique	identifying	feature	of	our
downloader	packets	is	the	server	that	we	communicated	with,	www.ietf.org.	If	we	take	a
look	at	the	packet	list,	you	can	see	that	the	source	and	destination	addresses	of	the
captured	packets	are	IP	addresses,	so	before	we	write	our	new	filter,	we	need	to	find	out
the	IP	address	of	www.ietf.org.

Retrieving	the	IP	address	of	a	hostname	is	called	name	resolution,	and	this	is	exactly	the

http://www.ietf.org
http://www.ietf.org

task	that	DNS	was	designed	for.	There	are	several	mechanisms	that	we	can	use	to	interact
with	DNS.	On	Linux	and	Windows,	we	can	use	the	nslookup	command-line	tool.	Run	the
following	command:

$	nslookup	www.ietf.org

Server:								127.0.1.1

Address:							127.0.1.1#53

Non	Authoritative	answer:

www.ietf.org				canonical	name	=	www.ietf.org.cdn.cloudflare-							

																																	dnssec.net.

Name:			www.ietf.org.cdn.cloudflare-dnssec.net

Address:	104.20.1.85

Name:			www.ietf.org.cdn.cloudflare-dnssec.net

Address:	104.20.0.85

The	output	indicates	that	www.ietf.org	is	actually	hosted	at	two	IP	addresses:	104.20.1.85
and	104.20.0.85.	This	is	becoming	increasingly	frequent	as	more	websites	deploy	load
balancing	and	content	delivery	networks	to	spread	the	workload	across	servers.

A	quick	glance	at	our	captured	HTTP	packets	list	will	probably	allow	us	to	see	which
server	we	ended	up	connecting	to.	In	the	preceding	example,	it’s	104.20.0.85.	However,
to	make	sure,	we	can	filter	for	both	the	IP	addresses.

Note	that	nslookup	may	return	different	IP	addresses	than	those	shown	in	the	preceding
example.	Web	services	can	change	IP	addresses	of	their	servers	for	various	reasons.

So	now,	we	can	filter	for	www.ietf.org.	Using	the	IP	addresses	you	just	resolved,	enter	this
new	query	in	the	filter	box:

http	and	(ip.addr	==	104.20.1.85	or	ip.addr	==	104.20.0.85)

Click	on	the	Apply	button	again.	This	query	adds	the	extra	condition	that,	as	well	as
involving	the	HTTP	protocol,	packets	must	have	an	IP	source	or	destination	address	of
either	104.20.1.85	or	104.20.0.85.

The	ip.addr	syntax	is	a	typical	example	of	filtering	on	a	property	of	a	protocol.	There	are
many	more.	For	example,	if	we	want	to	filter	by	just	the	source	address	rather	than	both
the	source	and	destination	addresses,	we	can	use	the	following	command:

http	and	(ip.src	==	104.20.1.85	or	ip.src	==	104.20.0.85)

To	explore	all	the	available	protocols	and	their	properties,	click	on	the	Expression…
button	to	the	right	of	the	filter	box.	In	the	left-hand	pane	of	the	window	that	appears,	we
can	see	all	the	protocols	listed,	and	we	can	expand	one	by	clicking	on	the	corresponding
triangle	or	+	symbol,	which	will	show	its	properties.	In	this	window,	IP	is	listed	as	IPv4.

http://www.ietf.org/
http://www.ietf.org/

Inspecting	packets
Getting	back	to	our	RFC	downloader	packets,	let’s	close	the	expression	window	if	it’s
open,	and	turn	our	attention	to	the	main	window.	After	applying	the	http	and	(ip.addr
==	104.20.1.85	or	ip.addr	==	104.20.0.85)	filter,	we	should	see	two	packets	listed
in	the	top	section	of	the	screen:

The	first	is	the	HTTP	request	that	urlopen()	sent	to	the	server,	and	the	second	is	the
server’s	HTTP	response.

Click	on	the	first	packet	to	select	it,	and	turn	your	attention	to	the	middle	section	of	the
window.	We	can	see	five	lines	of	information.	Each	corresponds	to	a	layer	in	the	network
stack	and	the	protocol	that	is	being	used	in	this	layer.	While	keeping	an	eye	on	the	raw
listing	of	the	packets	in	the	bottom	section	of	the	screen,	click	on	the	different	lines	in	the
middle	section.	You’ll	see	that	different	areas	of	the	raw	packet	listing	get	highlighted.
The	highlighted	areas	are	the	sections	of	the	raw	packet	that	are	relevant	for	the	protocol
that	you	clicked	on.	For	the	first	layer	(the	line	beginning	in	Frame),	it	highlights	the
whole	packet,	since	the	whole	packet	is	what’s	sent	over	the	wire.	For	the	last	layer,
Hypertext	Transfer	Protocol,	it	highlights	the	section	of	the	packet	that	is	the	HTTP
request,	as	shown	in	the	preceding	example.	For	the	layers	in	between,	it	just	highlights
the	header	for	that	protocol’s	encapsulated	packet.

We	can	drill	into	the	header	data	for	each	encapsulated	packet	by	clicking	on	the	triangle
or	+	symbols	to	the	left	of	each	protocol	line	in	the	middle	section.	If	we	do	this	for	the
Hypertext	Transfer	Protocol	line,	we	get	something	like	this:

The	HTTP	headers	in	our	request	have	been	interpreted	by	Wireshark	and	broken	out	to
make	them	more	readable.	You	can	explore	the	other	protocols’	data	in	the	same	way.

Let’s	inspect	the	second	packet	that	we	captured,	the	HTTP	response.	Click	on	it	now	in
the	top	section	of	the	window:

You’ll	notice	some	extra	lines	for	this	packet	in	the	middle	section.	The	line	that	refers	to
reassembled	TCP	segments	indicates	that	the	HTTP	response	was	actually	large	enough	to
be	broken	across	four	TCP	packets.	Wireshark	recognized	this	and	reassembled	the	full
HTTP	packet	by	combining	the	relevant	TCP	packets,	so	when	we	click	on	the	Hypertext
Transport	Protocol	line,	we	see	the	whole	HTTP	packet.

Note
If	you	don’t	see	this,	you	may	need	to	switch	it	on	in	the	options	menu.	Go	to	Edit	|
Preferences…	to	bring	up	the	preference	window,	then	expand	Protocols	in	the	list	on	the
left-hand	side	of	the	screen,	and	scroll	down	and	find	HTTP.	Make	sure	that	both	the
options	that	mention	spanning	multiple	TCP	segments	are	checked.

Finally,	the	Line-based	text	data	line	shows	us	the	response	content	media	type
(described	in	Chapter	2,	HTTP	and	Working	with	the	Web),	and	expanding	the	line	shows
us	the	text	data	of	the	body	of	the	response.

A	versatile	tool
As	you’ll	probably	notice	from	browsing	the	menus,	Wireshark	is	a	very	feature-rich
network	analyzer,	and	we’ve	barely	even	scratched	the	surface	of	its	full	capabilities.	I
encourage	you	to	keep	it	handy	as	you	work	with	this	book,	and	do	use	it	wherever	you’d
like	to	take	a	closer	look	at	the	data	being	sent	or	received	over	the	network.

Index
A

absolute	URL	/	Paths	and	relative	URLs
access	/	Alternative	oAuth	flows
Access	ID	/	Setting	up	an	AWS	user
Access	Secret	/	Setting	up	an	AWS	user
ACK	/	TCP
ACLs	(Access	Control	Lists)	/	Retrieving	an	uploaded	file	through	a	web	browser
Amazon	S3	API

about	/	The	Amazon	S3	API
AWS,	registering	with	/	Registering	with	AWS
regions	/	Regions
S3	buckets	/	S3	buckets	and	objects
objects	/	S3	buckets	and	objects
S3	command	line	client	/	An	S3	command-line	client
file,	downloading	with	/	Downloading	a	file	with	the	API
XML,	parsing	/	Parsing	XML	and	handling	errors
error	handling	/	Parsing	XML	and	handling	errors,	Handling	errors
elements,	searching	/	Finding	elements
enhancements	/	Further	enhancements
boto	package	/	The	Boto	package
wrapping	up	/	Wrapping	up	with	S3

Amazon	Web	Services	(AWS)
about	/	The	Amazon	S3	API
registering	with	/	Registering	with	AWS
URL	/	Registering	with	AWS

application	layer,	TCP/IP	networks
about	/	Layer	5	–	The	application	layer

asyncio	based	chat	server	/	An	asyncio-based	chat	server
asyncio	documentation

URL	/	More	on	frameworks
atomic	/	Queues
attribute	/	Element	attributes
authentication,	Amazon	S3	API

about	/	Authentication
AWS	user,	setting	up	/	Setting	up	an	AWS	user

authentication,	for	Twitter
about	/	Authentication	for	Twitter
application,	registering	for	Twitter	API	/	Registering	your	application	for	the
Twitter	API
requests,	authenticating	/	Authenticating	requests
Twitter	client	/	A	Twitter	client

AWS	console
URL	/	Setting	up	an	AWS	user

B
Baiduspider

URL	/	Choosing	a	User	Agent
base.html	file

about	/	Templating
boto	package

about	/	The	Boto	package
broadcast	address

about	/	Routing	with	IP

C
CGI

about	/	CGI
chat	protocol

about	/	A	chat	protocol
chat	server

designing	/	Designing	a	chat	server
CherryPy

URL	/	Python	and	the	Web,	Web	frameworks
CIDR	notation

about	/	Routing	with	IP
client/server	model	/	Client	and	server
CommunityData()	parameter	/	Fetching	Simple	Network	Management	Protocol	data
concurrent	I/O

about	/	Concurrent	I/O
connection	header

URL	/	What’s	in	a	web	server?
consumer	/	Alternative	oAuth	flows
content	negotiation

about	/	Content	negotiation
content	types	/	Content	types

content	types	/	Content	types
cookies

about	/	Cookies,	Know	your	cookies
handling	/	Cookie	handling

CPython	interpreter
about	/	Threading	and	the	GIL

Cross-Site	Request	Forgery	(CSRF)	/	CSRF
URL	/	CSRF

custom	SSL	client/server
creating	/	Creating	a	custom	SSL	client/server
interaction,	inspecting	/	Inspecting	interaction	between	a	custom	SSL
client/server

D
data

handling,	on	persistent	connections	/	Handling	data	on	persistent	connections
dele()	method

about	/	Retrieving	e-mails	by	using	POP3	with	poplib
Django

URL	/	Web	frameworks
DNS	look-up

about	/	DNS	look-ups
DNS	client/server	communication,	inspecting	/	Inspecting	DNS	client/server
communication

dnspython	library
URL	/	DNS	look-ups

docstring.html	file
about	/	Templating

Domain	Name	System	(DNS)
about	/	DNS

dot-decimal	notation	/	IP	addresses
Dynamic	Host	Configuration	Protocol	(DHCP)	/	Assigning	IP	addresses

E
e-mail

about	/	E-mail	terminologies
sending,	with	SMTP	/	Sending	e-mails	with	SMTP
sending,	with	TLS	/	Sending	e-mails	securely	with	TLS
retrieving,	POP3	used	with	poplib	/	Retrieving	e-mails	by	using	POP3	with
poplib
retrieving,	IMAP	used	with	imaplib	/	Retrieving	e-mails	by	using	IMAP	with
imaplib

e-mail	attachments
sending	/	Sending	e-mail	attachments

e-mail	message
composing	/	Composing	an	e-mail	message
sending	/	Sending	an	e-mail	message

echo	protocol
about	/	An	echo	protocol
framing	/	Framing

ElementTree
about	/	The	XML	APIs
basics	/	The	basics	of	ElementTree
child	/	The	basics	of	ElementTree
parent	/	The	basics	of	ElementTree
siblings	/	The	basics	of	ElementTree
output	format	/	Pretty	printing
element	attributes	/	Element	attributes
converting,	to	text	/	Converting	to	text

email
sending,	via	logging	module	/	Sending	e-mails	via	the	logging	module

event-driven	architecture	/	Concurrent	I/O
event-driven	model	/	Event-driven	servers
event-driven	servers	/	Event-driven	servers,	Event-driven	servers
eventlet	based	chat	server	/	An	eventlet-based	chat	server
event	loop	/	Event-driven	servers
Extended	SMTP	(ESMTP)	protocol

about	/	Sending	e-mails	with	SMTP

F
files

transferring,	through	SFTP	/	Transferring	files	through	SFTP
transferring,	through	FTP	/	Transferring	files	with	FTP
sharing,	with	SAMBA	/	Sharing	files	with	SAMBA

first-in	first-out	(FIFO)	/	Queues
Flask

URL	/	Web	frameworks
about	/	Flask	–	a	microframework
templating	/	Templating
templating	engines	/	Other	templating	engines
some	style,	adding	/	Adding	some	style
security	/	A	note	on	security
finishing	up	/	Finishing	up	with	frameworks
URL,	for	tutorial	/	Finishing	up	with	frameworks

Flask	site
URL	/	CSRF

frameworks	/	Frameworks
framing

about	/	Framing
FTP

files,	transferring	through	/	Transferring	files	with	FTP
URL	/	Transferring	files	with	FTP

FTP	packets
inspecting	/	Inspecting	FTP	packets

G
gateway	/	Networks
GeoIP	look-ups

about	/	GeoIP	look-ups
Global	Interpreter	Lock	(GIL)	/	Threading	and	the	GIL

URL	/	Threading	and	the	GIL
graphical	user	interface	(GUI)

about	/	E-mail	terminologies
Gunicorn

URL	/	Python	and	the	Web
Gunicorn	pages

URL	/	Hosting	in	practice
Gunicorn	web	server	/	Hosting	in	practice

H
handshake	/	TCP
header	/	Packets
host	identifier

about	/	Routing	with	IP
HTTP

request	/	Request	and	response
response	/	Request	and	response
requests	with	urllib	/	Requests	with	urllib
response	objects	/	Response	objects
status	codes	/	Status	codes
problems,	handling	/	Handling	problems
requests,	customizing	/	Customizing	requests
content	negotiation	/	Content	negotiation
user	agents	/	User	agents
cookies	/	Cookies
redirects	/	Redirects
URLs	/	URLs
formal	inspection	/	Formal	inspection

HTTP	headers
headers	/	HTTP	headers
body	/	HTTP	headers
about	/	HTTP	headers

HTTP	methods
about	/	HTTP	methods
HEAD	method	/	The	HEAD	method
POST	method	/	The	POST	method

HTTPS
about	/	HTTPS

HTTP	status	code	/	Looking	deeper

I
IETF	landing	page,	for	RFCs

URL	/	Taking	it	from	the	top
IMAP

about	/	E-mail	terminologies
IMAP,	with	imaplib

used,	for	retrieving	e-mail	/	Retrieving	e-mails	by	using	IMAP	with	imaplib
imaplib

about	/	Retrieving	e-mails	by	using	IMAP	with	imaplib
index.html	file

about	/	Templating
inheritance

about	/	Templating
installation

Wireshark	/	Installation
Internet	Assigned	Numbers	Authority	(IANA)	/	IP	addresses	on	the	Internet
Internet	Engineering	Task	Force	(IETF)

about	/	An	introduction	to	TCP/IP	networks
URL	/	An	introduction	to	TCP/IP	networks

Internet	media	types	/	Content	types
Internet	Message	Access	Protocol	(IMAP)	/	E-mail	terminologies
Internet	Message	Format	(IMF)

about	/	Sending	e-mails	with	SMTP
Internet	Protocol	version	4	(IPv4)	/	An	introduction	to	TCP/IP	networks
Internet	Service	Provider	(ISP)

about	/	Networks
in_reply_to_status_id	/	Sending	a	reply
IP	addresses,	manipulating

about	/	Manipulating	IP	addresses
IP	network	objects	/	IP	network	objects
network	interface	objects	/	Network	interface	objects
IP	address	objects	/	The	IP	address	objects
IP	address,	planning	for	local	area	network	/	Planning	IP	addresses	for	your	local
area	network

J
JSON

about	/	JSON
encoding	/	Encoding	and	decoding
decoding	/	Encoding	and	decoding
dicts,	using	with	/	Using	dicts	with	JSON
object	types	/	Other	object	types

L
layer	4,	TCP/IP	networks

network	ports	/	Network	ports
UDP	/	UDP
TCP	/	TCP

LDAP
about	/	Reading	Light-weight	Directory	Access	Protocol	data
data,	reading	/	Reading	Light-weight	Directory	Access	Protocol	data
packets,	inspecting	/	Inspecting	LDAP	packets

Library	Reference
URL	/	Taking	it	from	the	top

list()	method
about	/	Retrieving	e-mails	by	using	POP3	with	poplib

localhost	/	Network	interfaces
locks	/	Locks
logging	module

email,	sending	via	/	Sending	e-mails	via	the	logging	module
loopback	interface	/	Network	interfaces
low-level	event-driven	chat	server	/	A	low-level	event-driven	chat	server

M
Mail	Transfer	Agent	(MTA)

about	/	E-mail	terminologies
main	thread

about	/	Multithreading	and	multiprocessing
management	information	base	(MIB)

about	/	Fetching	Simple	Network	Management	Protocol	data
man	in	the	middle	(MITM)	attack	/	Securing	sockets	with	TLS/SSL
MibVariable	parameter	/	Fetching	Simple	Network	Management	Protocol	data
micro	frameworks	/	Web	frameworks
Microsoft’s	Internet	Information	Services	(IIS)	/	Hosting	Python	web	applications
MIME	types	/	Content	types
Mozilla/5.0	compatible;	bingbot/2.0

URL	/	Choosing	a	User	Agent
Mozilla/5.0	compatible;	Googlebot/2.1

URL	/	Choosing	a	User	Agent
Multi-purpose	Internet	Mail	Extensions	(MIME)

about	/	Composing	an	e-mail	message
multiprocessing	/	Multithreading	and	multiprocessing
multithreaded	chat	client	/	A	multithreaded	chat	client
multithreaded	chat	server

about	/	A	multithreaded	chat	server
queues	/	Queues
locks	/	Locks

multithreaded	echo	server
about	/	A	multithreaded	echo	server

multithreading	/	Concurrent	I/O,	Multithreading	and	multiprocessing

N
name	resolution	/	Filtering
netmask

about	/	Routing	with	IP
network	address

about	/	Routing	with	IP
Network	Address	Translation	(NAT)	/	IP	addresses	on	the	Internet
network	configuration,	of	local	machine

retrieving	/	Retrieving	the	network	configuration	of	a	local	machine
network	location	/	URLs
network	ports

about	/	Network	ports
network	prefix

about	/	Routing	with	IP
network	programming,	with	Python

about	/	Network	programming	with	Python
network	stack

about	/	Breaking	a	few	eggs
traceback,	generating	/	Breaking	a	few	eggs
using	/	Taking	it	from	the	top
RFC,	downloading	/	Downloading	an	RFC
program,	modifying	/	Looking	deeper
TCP/IP	networks,	programming	for	/	Programming	for	TCP/IP	networks

non-blocking	socket	I/O
about	/	A	non-blocking	socket	I/O

non-blocking	sockets	/	Concurrent	I/O
nslookup	tool	/	DNS
NTP	client

about	/	NTP	clients
/server	communication,	inspecting	/	Inspecting	the	NTP	client/server
communication

NTP	protocol
URL	/	NTP	clients

O
oAuth

URL	/	Authenticating	requests
octets	/	IP	addresses
OWASP	site

URL	/	CSRF

P
packet

about	/	Packets
packetization	/	Packets
packet	sniffers

about	/	Packet	sniffers
parameters,	Twitter

‘count’	/	Polling	for	Tweets
‘include_entities’	/	Polling	for	Tweets
‘include_rts’	/	Polling	for	Tweets
‘since_id’	/	Polling	for	Tweets

path	/	URLs
payload

about	/	Packets
percent	encoding	/	URL	encoding
persistent	connections

data,	handling	on	/	Handling	data	on	persistent	connections
POP3

about	/	E-mail	terminologies
POP3,	with	poplib

used,	for	retrieving	e-mail	/	Retrieving	e-mails	by	using	POP3	with	poplib
poplib

about	/	Retrieving	e-mails	by	using	POP3	with	poplib
port	numbers

URL	/	Network	ports
ports

about	/	Network	ports
POST	method

about	/	The	POST	method
pre-forking	/	Recycling	for	a	better	world
private	addresses	/	IP	addresses	on	the	Internet
process	/	Multithreading	and	multiprocessing
programming	Q&A	page

URL	/	Taking	it	from	the	top
protocol	/	Working	with	TCP	sockets
protocols,	e-mail

Simple	Mail	Transfer	Protocol	(SMTP)	/	E-mail	terminologies
Post	Office	Protocol	3	(POP3)	/	E-mail	terminologies
Internet	Message	Access	Protocol	(IMAP)	/	E-mail	terminologies

pull	option	/	A	chat	protocol
push	option	/	A	chat	protocol
PyPI

URL	/	Secure	shell	–	access	using	Python

Pyramid
URL	/	Web	frameworks

Python
URL	/	Threading	and	the	GIL
web	server	/	Python	and	the	Web
web	framework	/	Web	frameworks

python-geoip	/	GeoIP	look-ups
Python	package	index

URL	/	Taking	it	from	the	top
Python	Standard	library	documentation	page

URL	/	Retrieving	e-mails	by	using	IMAP	with	imaplib
Python	templating	engines

about	/	Other	templating	engines
URL	/	Other	templating	engines

Python	web	applications
hosting	/	Hosting	Python	web	applications
CGI	/	CGI
recycling	/	Recycling	for	a	better	world
event-driven	servers	/	Event-driven	servers
WSGI	/	WSGI
hosting,	in	practice	/	Hosting	in	practice

Python	web	frameworks
Django	/	Web	frameworks
CherryPy	/	Web	frameworks
Flask	/	Web	frameworks
TurboGears	/	Web	frameworks
Pyramid	/	Web	frameworks
Tornado	/	Web	frameworks

Q
queues	/	Queues
quit()	method

about	/	Retrieving	e-mails	by	using	POP3	with	poplib

R
race	condition	/	Queues
redirects

about	/	Redirects
Regional	Internet	Registries	(RIRs)	/	IP	addresses	on	the	Internet
regional	routers

about	/	Networks
relative	URLs	/	Paths	and	relative	URLs
request

about	/	Request	and	response
Request	for	Comments	(RFC)	/	Taking	it	from	the	top
request	line	/	HTTP	headers
request	method	/	HTTP	headers
requests,	customizing

about	/	Customizing	requests
content	compression	/	Content	compression
multiple	values	/	Multiple	values

requests,	with	urllib
about	/	Requests	with	urllib

requests-oauthlib	documentation
URL	/	Alternative	oAuth	flows

Requests	for	Comment	(RFCs)	/	An	introduction	to	TCP/IP	networks
Requests	library

about	/	The	Requests	library
URL	/	The	Requests	library
errors	handling	with	/	Handling	errors	with	Requests

response
about	/	Request	and	response

response	objects
about	/	Response	objects

REST	(Representational	State	Transfer)	/	The	Amazon	S3	API
REST	API	/	The	Amazon	S3	API
retr()	method

about	/	Retrieving	e-mails	by	using	POP3	with	poplib
reverse	proxy	/	Hosting	in	practice
RFC	2822

URL	/	Sending	e-mails	with	SMTP
RFC4251

URL	/	Secure	shell	–	access	using	Python
RFC	4291

URL	/	IPv6
Robots.txt	file

URL	/	The	Robots.txt	file

about	/	The	Robots.txt	file
root	/	Paths	and	relative	URLs
router

about	/	Networks
routing	table

about	/	Networks

S
S3	buckets

about	/	S3	buckets	and	objects
S3	command	line	client

about	/	An	S3	command-line	client
bucket,	creating	with	API	/	Creating	a	bucket	with	the	API
file,	uploading	/	Uploading	a	file
uploaded	file,	retrieving	through	web	browser	/	Retrieving	an	uploaded	file
through	a	web	browser
uploaded	file,	displaying	in	web	browser	/	Displaying	an	uploaded	file	in	a	web
browser

SAMBA
files,	sharing	with	/	Sharing	files	with	SAMBA
packets,	inspecting	/	Inspecting	SAMBA	packets

SAX	/	The	XML	APIs
scheme	/	URLs
screen	scraping,	HTML

about	/	HTML	and	screen	scraping
HTML	parsers	/	HTML	parsers
data,	displaying	/	Show	me	the	data
HTML,	parsing	with	lxml	/	Parsing	HTML	with	lxml
zeroing	in	/	Zeroing	in
XPath,	searching	with	/	Searching	with	XPath
XPath	conditions	/	XPath	conditions
script,	writing	/	Pulling	it	together

secure	file	transfer	protocol	(SFTP)	/	Transferring	files	through	SFTP
files,	transferring	through	/	Transferring	files	through	SFTP

Secure	Socket	Layer	(SSL)	/	Securing	sockets	with	TLS/SSL
security

about	/	A	note	on	security
Cross-site	scripting	(XSS)	/	XSS
Cross-Site	Request	Forgery	(CSRF)	/	CSRF

server	name	indication	(SNI)	support	/	Securing	sockets	with	TLS/SSL
simple	echo	client

about	/	A	simple	echo	client
simple	echo	server

about	/	A	simple	echo	server,	The	server	itself
received	data,	handling	/	Handling	the	received	data

Simple	Object	Access	Protocol	(SOAP)	/	Layer	5	–	The	application	layer
SMTP

about	/	E-mail	terminologies
e-mail,	sending	with	/	Sending	e-mails	with	SMTP
e-mail	message,	composing	/	Composing	an	e-mail	message

e-mail	message,	sending	/	Sending	an	e-mail	message
SNMP

about	/	Fetching	Simple	Network	Management	Protocol	data
data,	fetching	/	Fetching	Simple	Network	Management	Protocol	data
packets,	inspecting	/	Inspecting	SNMP	packets

socket	family	/	Working	with	TCP	sockets
sockets

basics	/	Basics	of	sockets
securing,	with	TLS/SSL	/	Securing	sockets	with	TLS/SSL

socket	type	/	Working	with	TCP	sockets
some	style

adding	/	Adding	some	style
source	port	number

about	/	Network	ports
spoofing

about	/	User	agents
SSH

about	/	Secure	shell	–	access	using	Python
accessing,	Python	used	/	Secure	shell	–	access	using	Python
packets,	inspecting	/	Inspecting	the	SSH	packets

SSL
about	/	Sending	e-mails	securely	with	TLS

ssl_wrap_socket()	function
sock	parameter	/	Securing	sockets	with	TLS/SSL
keyfile	parameter	/	Securing	sockets	with	TLS/SSL
certfile	parameter	/	Securing	sockets	with	TLS/SSL
cert_reqs	parameter	/	Securing	sockets	with	TLS/SSL
ca_certs	parameter	/	Securing	sockets	with	TLS/SSL
server_hostname	parameter	/	Securing	sockets	with	TLS/SSL
ssl_version	parameter	/	Securing	sockets	with	TLS/SSL

standard	SSL	client/server	communication
inspecting	/	Inspecting	standard	SSL	client/server	communication

stat()	method
about	/	Retrieving	e-mails	by	using	POP3	with	poplib

stateless	protocol
about	/	Cookies

static	content	/	What’s	in	a	web	server?
status	/	Sending	a	reply
status	codes

about	/	Status	codes
URL	/	Status	codes

streaming	APIs
about	/	Polling	and	the	Twitter	streaming	APIs

subnet

about	/	Routing	with	IP
subnet	mask

about	/	Routing	with	IP
synchronization	primitive	/	Locks

T
TCP/IP	networks

about	/	An	introduction	to	TCP/IP	networks
IP	addresses	/	IP	addresses
network	interfaces	/	Network	interfaces
IP	addresses,	assigning	/	Assigning	IP	addresses
IP	addresses,	on	Internet	/	IP	addresses	on	the	Internet
packets	/	Packets
networks	/	Networks
routing,	with	IP	/	Routing	with	IP
DNS	/	DNS
protocol	stack	/	The	protocol	stack	or	why	the	Internet	is	like	a	cake
layer	4	/	Layer	4	–	TCP	and	UDP
layer	5	/	Layer	5	–	The	application	layer

TCP/IP	networks,	programming
firewall	/	Firewalls
Network	Address	Translation	(NAT)	/	Network	Address	Translation
IPv6	/	IPv6

TCP	port	forwarding
about	/	TCP	port	forwarding

TCP	sockets
working	with	/	Working	with	TCP	sockets
client/server	communications,	inspecting	/	Inspecting	the	client/server
communication
TCP	servers	/	TCP	servers
client/server	interaction,	inspecting	/	Inspecting	client/server	interaction

template	designer	documentation
URL	/	Templating

templating
about	/	Templating

threading
about	/	Threading	and	the	GIL

threads
about	/	Multithreading	and	multiprocessing
URL	/	Threading	and	the	GIL

thread	safe	/	Queues
TLS

e-mail,	sending	with	/	Sending	e-mails	securely	with	TLS
about	/	Sending	e-mails	securely	with	TLS

Tornado
URL	/	Web	frameworks

Transmission	Control	Protocol	(TCP)
about	/	Layer	4	–	TCP	and	UDP,	TCP

Transport	Layer	Security	(TLS)	/	Securing	sockets	with	TLS/SSL
TurboGears

URL	/	Web	frameworks
Twitter	API

about	/	The	Twitter	API
URL	/	The	Twitter	API
Twitter	world	clock	/	A	Twitter	world	clock
authentication	/	Authentication	for	Twitter
tweets,	polling	for	/	Polling	for	Tweets
tweets,	processing	/	Processing	the	Tweets
rate	limits	/	Rate	limits
reply,	sending	/	Sending	a	reply
final	touches	/	Final	touches

Twitter	streaming	APIs
about	/	Polling	and	the	Twitter	streaming	APIs
alternative	oAuth	flows	/	Alternative	oAuth	flows

U
UDP	sockets

working	with	/	Working	with	UDP	sockets
UdpTransportTarget()	parameter	/	Fetching	Simple	Network	Management	Protocol
data
upstream

about	/	Networks
URLs

about	/	URLs
path	URLs	/	Paths	and	relative	URLs
absolute	URL	/	Paths	and	relative	URLs
relative	URLs	/	Paths	and	relative	URLs
query	string	/	Query	strings
URL	encoding	/	URL	encoding
in	summary	/	URLs	in	summary

user	agents
about	/	User	agents
URL	/	Choosing	a	User	Agent

User	Datagram	Protocol	(UDP)
about	/	Layer	4	–	TCP	and	UDP,	UDP
versus	Transmission	Control	Protocol	(TCP)	/	UDP	versus	TCP

V
views	/	Flask	–	a	microframework

W
web	framework

about	/	Web	frameworks
basic	services	/	Web	frameworks

webmaster
about	/	With	great	power…
user	agent,	selecting	/	Choosing	a	User	Agent
Robots.txt	file	/	The	Robots.txt	file

web	server	/	Client	and	server
about	/	What’s	in	a	web	server?

Web	Services	Gateway	Interface	(WSGI)	protocol	/	WSGI
Wireshark

about	/	Wireshark
installing	/	Installation
URL	/	Installation
URL,	for	wiki	/	Installation
packets,	capturing	/	Capturing	some	packets
filtering	/	Filtering
packets,	inspecting	/	Inspecting	packets
versatile	tool	/	A	versatile	tool

X
XML	API

about	/	Getting	started	with	XML
approaches	/	The	XML	APIs
ElementTree	/	The	basics	of	ElementTree

XML	parsing,	Amazon	S3	API	/	Parsing	XML	and	handling	errors
XSS	(Cross-site	scripting)	/	XSS

URL	/	CSRF

	Learning Python Network Programming
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Virtual environments
	Installing Python 3
	Ubuntu and Debian
	RHEL, CentOS, Scientific Linux
	Fedora
	Alternative installation methods
	Pythonz
	JuJu
	Windows
	Other requirements
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Network Programming and Python
	An introduction to TCP/IP networks
	IP addresses
	Network interfaces
	Assigning IP addresses
	IP addresses on the Internet
	Packets
	Networks
	Routing with IP
	DNS
	The protocol stack or why the Internet is like a cake
	Layer 4 – TCP and UDP
	Network ports
	UDP
	TCP
	UDP versus TCP
	Layer 5 – The application layer
	On to Python!
	Network programming with Python
	Breaking a few eggs
	Taking it from the top
	Downloading an RFC
	Looking deeper
	Programming for TCP/IP networks
	Firewalls
	Network Address Translation
	IPv6
	Summary
	2. HTTP and Working with the Web
	Request and response
	Requests with urllib
	Response objects
	Status codes
	Handling problems
	HTTP headers
	Customizing requests
	Content compression
	Multiple values
	Content negotiation
	Content types
	User agents
	Cookies
	Cookie handling
	Know your cookies
	Redirects
	URLs
	Paths and relative URLs
	Query strings
	URL encoding
	URLs in summary
	HTTP methods
	The HEAD method
	The POST method
	Formal inspection
	HTTPS
	The Requests library
	Handling errors with Requests
	Summary
	3. APIs in Action
	Getting started with XML
	The XML APIs
	The basics of ElementTree
	Pretty printing
	Element attributes
	Converting to text
	The Amazon S3 API
	Registering with AWS
	Authentication
	Setting up an AWS user
	Regions
	S3 buckets and objects
	An S3 command-line client
	Creating a bucket with the API
	Uploading a file
	Retrieving an uploaded file through a web browser
	Displaying an uploaded file in a web browser
	Downloading a file with the API
	Parsing XML and handling errors
	Parsing XML
	Finding elements
	Handling errors
	Further enhancements
	The Boto package
	Wrapping up with S3
	JSON
	Encoding and decoding
	Using dicts with JSON
	Other object types
	The Twitter API
	A Twitter world clock
	Authentication for Twitter
	Registering your application for the Twitter API
	Authenticating requests
	A Twitter client
	Polling for Tweets
	Processing the Tweets
	Rate limits
	Sending a reply
	Final touches
	Taking it further
	Polling and the Twitter streaming APIs
	Alternative oAuth flows
	HTML and screen scraping
	HTML parsers
	Show me the data
	Parsing HTML with lxml
	Zeroing in
	Searching with XPath
	XPath conditions
	Pulling it together
	With great power...
	Choosing a User Agent
	The Robots.txt file
	Summary
	4. Engaging with E-mails
	E-mail terminologies
	Sending e-mails with SMTP
	Composing an e-mail message
	Sending an e-mail message
	Sending e-mails securely with TLS
	Retrieving e-mails by using POP3 with poplib
	Retrieving e-mails by using IMAP with imaplib
	Sending e-mail attachments
	Sending e-mails via the logging module
	Summary
	5. Interacting with Remote Systems
	Secure shell – access using Python
	Inspecting the SSH packets
	Transferring files through SFTP
	Transferring files with FTP
	Inspecting FTP packets
	Fetching Simple Network Management Protocol data
	Inspecting SNMP packets
	Reading Light-weight Directory Access Protocol data
	Inspecting LDAP packets
	Sharing files with SAMBA
	Inspecting SAMBA packets
	Summary
	6. IP and DNS
	Retrieving the network configuration of a local machine
	Manipulating IP addresses
	IP network objects
	Network interface objects
	The IP address objects
	Planning IP addresses for your local area network
	GeoIP look-ups
	DNS look-ups
	Inspecting DNS client/server communication
	NTP clients
	Inspecting the NTP client/server communication
	Summary
	7. Programming with Sockets
	Basics of sockets
	Working with TCP sockets
	Inspecting the client/server communication
	TCP servers
	Inspecting client/server interaction
	Working with UDP sockets
	TCP port forwarding
	A non-blocking socket I/O
	Securing sockets with TLS/SSL
	Inspecting standard SSL client/server communication
	Creating a custom SSL client/server
	Inspecting interaction between a custom SSL client/server
	Summary
	8. Client and Server Applications
	Client and server
	An echo protocol
	Framing
	A simple echo server
	Handling the received data
	The server itself
	A simple echo client
	Concurrent I/O
	Multithreading and multiprocessing
	Threading and the GIL
	A multithreaded echo server
	Designing a chat server
	A chat protocol
	Handling data on persistent connections
	A multithreaded chat server
	Queues
	Locks
	A multithreaded chat client
	Event-driven servers
	A low-level event-driven chat server
	Frameworks
	An eventlet-based chat server
	An asyncio-based chat server
	More on frameworks
	Taking our servers forward
	Summary
	9. Applications for the Web
	What's in a web server?
	Python and the Web
	Web frameworks
	Flask – a microframework
	Templating
	Other templating engines
	Adding some style
	A note on security
	XSS
	CSRF
	Finishing up with frameworks
	Hosting Python web applications
	CGI
	Recycling for a better world
	Event-driven servers
	WSGI
	Hosting in practice
	Summary
	A. Working with Wireshark
	Packet sniffers
	Wireshark
	Installation
	Capturing some packets
	Filtering
	Inspecting packets
	A versatile tool
	Index

