

Learning Python Data
Visualization

Master how to build dynamic HTML5-ready SVG charts
using Python and the pygal library

Chad Adams

BIRMINGHAM - MUMBAI

Learning Python Data Visualization

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1180814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-333-4

www.packtpub.com

Cover image by Sabine Mehlstäubl (sabine@blumen-schmidl.de)

Credits

Author
Chad Adams

Reviewers
Aniket Maithani

Atmaram Shetye

Giuseppe Vettigli

Ron Zacharski

Commissioning Editor
Akram Hussain

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Parita Khedekar

Technical Editor
Venu Manthena

Copy Editors
Janbal Dharmaraj

Insiya Morbiwala

Sayanee Mukherjee

Aditya Nair

Deepa Nambiar

Stuti Srivastava

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexers
Hemangini Bari

Tejal Soni

Priya Subramani

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Chad Adams is a web and mobile software developer based in Raymore,
Missouri, where he works as a mobile frontend architect creating visually appealing
application software for iOS, Windows Phone, and the Web. He also creates project
build systems for large development teams using programming languages such
as Python and C#. He has a B.F.A. in Commercial Art and a Microsoft certification
in HTML5, JavaScript, and CSS3. He has also spoken at conferences on topics that
include Windows Phone development and Google Dart. In his off hours, Chad
enjoys relaxing at his home and spending time with his wife, Heather, and son, Leo.

About the Reviewers

Aniket Maithani is a budding engineer and is currently pursuing a B.Tech
in Computer Science and Engineering from Amity University. He is primarily
interested in contributing to open source projects and believes in the FOSS/FLOSS
ideology. He has been working in the field of embedded systems and open
hardware for the last two years. Apart from coding and hacking around with
regular stuff, he loves to play the guitar and write on his blog. He can be reached
at me@aniketmaithani.net.

There are a few people I would like to thank for helping me out.
Firstly, my dad, who introduced me to the world of computers!
Also, I would like to thank my professor Mr. Manoj Baliyan and my
senior Mr. Anuvrat Parashar, who introduced me to the world of
Python and its awesomeness. I would also like to thank my mentor,
Satyakaam Goswami for always guiding me. Lastly, God Almighty
for his kind grace and blessings.

Atmaram Shetye is a Computer Science and Engineering Graduate from Goa
University. Having worked in a variety of companies, from start-ups to large
multinational enterprises, he is a strong supporter of polyglot programming. He
has spent most of his time programming in Python, while also using C, Objective-C,
C++, and JavaScript at work. His areas of interest include artificial intelligence and
machine learning. He is currently working as a Principal Software Engineer at CA
Technologies, Bangalore.

Giuseppe Vettigli is a data scientist who has worked in the research industry
and academia for many years. His work is focused on the development of machine
learning models and applications to utilize information from structured and
unstructured data. He also writes about scientific computing and data visualization
in Python on his blog at http://glowingpython.blogspot.com.

Ron Zacharski completed a PhD in Computer Science at the University of
Minnesota, focusing on artificial intelligence and computational linguistics. He
is the author of the free online Python-based book, A Programmer's Guide to Data
Mining: The Ancient Art of the Numerati (http://www.guidetodatamining.com).
He is an Associate Professor of Computer Science at the University of Mary
Washington. Ron is a novice Zen Buddhist monk.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Setting Up Your Development Environment	 7

Introduction	 7
Setting up Python on Windows	 7
Installation	 9
Exploring the Python installation in Windows	 15
Python editors	 20
Setting up Python on Mac OS X	 25
Setting up Python on Ubuntu	 31
Summary	 34

Chapter 2: Python Refresher	 35
Python basics	 35

Importing modules and libraries	 40
Input and output	 42
Generating an image	 45

Creating SVG graphics using svgwrite	 48
For Windows users using VSPT	 48
For Eclipse or other editors on Windows	 50
For Eclipse on Mac and Linux	 50

Summary	 59
Chapter 3: Getting Started with pygal	 61

Why use pygal?	 61
Installing pygal using pip	 64
Installing pygal using Python Tools for Visual Studio	 66
Building a line chart	 67

Stacked line charts	 69
Simple bar charts	 71

Table of Contents

[ii]

Stacked bar charts	 72
Horizontal bar charts	 73
XY charts	 74
Scatter plots	 77
DateY charts	 78
Summary	 83

Chapter 4: Advanced Charts	 85
Pie charts	 85

Stacked pie charts	 86
Radar charts	 88
Box plots	 89
Dot charts	 91
Funnel charts	 94
Gauge charts	 96
Pyramid charts	 98
Worldmap charts	 101
Summary	 104

Chapter 5: Tweaking pygal	 105
Country charts	 105
Parameters	 108

Legend at the bottom	 109
Legend settings	 111

Label settings	 116
Chart title settings	 120
Displaying no data	 123
pygal themes	 124
Summary	 126

Chapter 6: Importing Dynamic Data	 127
Pulling data from the Web	 127
The XML refresher	 130
RSS and the ATOM	 131
Understanding HTTP	 131

Using HTTP in Python	 132
Parsing XML in Python with HTTP	 134
About JSON	 136
Parsing JSON in Python with HTTP	 136
About JSONP	 143
JSONP with Python	 144
Summary	 144

Table of Contents

[iii]

Chapter 7: Putting It All Together	 145
Chart usage for a blog	 145

Getting our data in order	 146
Converting date strings to dates	 149
Using strptime	 150
Saving the output as a counted array	 156

Counting the array	 158
Python modules	 160

Building the main method	 161
Modifying our RSS to return values	 162

Building our chart module	 163
Building a portable configuration for our chart	 164
Setting up our chart for data	 165
Configuring our main function to pass data	 167

Project improvements	 168
Summary	 170

Chapter 8: Further Resources	 171
The matplotlib library	 171

Installing the matplotlib library	 172
matplotlib's library download page	 173
Creating simple matplotlib charts	 173

Plotly	 179
Pyvot	 186
Summary	 187

Appendix: References and Resources	 189
Links for help and support	 189
Charting libraries	 189
Editors and IDEs for Python	 190
Other libraries and Python alternative shells	 190

Index	 191

Preface
Greetings, this is Chad Adams, and welcome to Learning Python Data Visualization.
In this book, we will cover the basics of generating dynamic charts and general
graphics with code using the Python programming language. We will use the pygal
library, a simple yet powerful graphing library written for Python, to explore the
different types of charts we can create for various kinds of data.

We will also review the Python language itself and discuss working with file
I/O and cover topics on working with data. We will then parse that data into a
chart to create a dynamic charting application. We will also touch on more popular
(and more advanced) libraries such as matplotlib and Plotly and build charts using
these libraries and explore their features.

With this book, we will explore and build data visualizations using the basic toolsets
used in many popular charting applications for the scientific, financial, medical, and
pharmaceutical industries.

What this book covers
Chapter 1, Setting Up Your Development Environment, will discuss the installation
process for Python on Windows, Mac, and Ubuntu. We will review the easy_install
and pip package managers for Python and discuss common issues when installing
third-party libraries for Python.

Chapter 2, Python Refresher, will quickly review the Python language and common
libraries found in most Python developers' tool belts. We will also ease into building
charts by creating custom graphics with nothing but code and learn about saving
files to the filesystem.

Preface

[2]

Chapter 3, Getting Started with pygal, will cover the basics of the pygal library, a simple
charting library that generates charts in HTML5-ready SVG files. We will build some
basic charts using the library, some of which include line charts, bar charts, and
scatter plots.

Chapter 4, Advanced Charts, will cover more complex charts in the pygal library such
as box plots, radar charts, and worldmap charts.

Chapter 5, Tweaking pygal, will discuss the optional settings we can give our pygal
charts such as adjusting the font size and the positioning of labels and legends.
We will also cover the French country map chart in the pygal library using it as
an example.

Chapter 6, Importing Dynamic Data, will go over the finer points of pulling data from
the Web using the Python language and its built-in libraries and cover parsing XML,
JSON, and JSONP data.

Chapter 7, Putting It All Together, will build a simple chart that takes what we learned
from the past chapters and builds a dynamic pygal-based chart using data from
the Web.

Chapter 8, Further Resources, will review some very popular charting libraries such
as matplotlib and Plotly, go over building sample charts for each library, and cover
resources for further reading.

Appendix, References and Resources, will list some popular data visualization libraries
for Python as well as some helpful utilities.

What you need for this book
You will need Windows, Mac, or an Ubuntu system that is running Python 2.7
32-bit or Python 2.7 64-bit. You will need to have administrator rights on this
system. You will also need a Python text editor such as Eclipse or Visual Studio
with Python Tools. For Chapter 8, Further Resources, you will also need Python 3.4
or higher. Python 2.7 and 3.4 can be installed alongside each other.

Who this book is for
If you're new to the Python language and are looking at getting into building charts
using Python, this is a great resource to get started. If you have done a bit of Python
development already but have not ventured into graphics and charts, there is plenty
of information in this book with regards to creating these.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a text file called PyREADME.txt and save it to your project's directory."

A block of code is set as follows:

def main():
 print("Hello, World")
main()

Any command-line input or output is written as follows:

sudo pip install pygal

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on OK on both windows to save and reboot your PC again."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setting Up Your
Development Environment

Introduction
In this chapter, we will review how to set up the Python 2.7 32-bit edition on
Windows, Mac, and Ubuntu Linux. We will walk through the Python interpreter
and build a few Hello-World-style Python applications to ensure our code is working
properly. This will be covered primarily in the Windows section of the chapter, but it
will be reiterated in other OS sections.

We will also review how to install and use easy_install and pip, which are package
managers that are commonly used in Python development. We will also review
how to install lxml, which is a popular xml parser and writer that we will need
in later chapters.

Setting up Python on Windows
If you're fairly new to Python, you might have heard that Python doesn't have the
right build tools to run on Windows or that Python is optimized for Unix-based
systems such as Mac OS X and Linux variations. In part, this is true; most libraries,
including ones that are covered in this book, work better and are easier to install if
you are on an operating system that isn't Windows.

I want to spend a little extra time in this section in case you, the reader, want to use
Windows as your development OS while working through this book. Firstly, I want
to cover why Windows is known to have issues with Python developers. Typically,
it's not the language that causes issues, and nor the lack of editors. In fact, Windows
has even more high-quality editors for Python, including Visual Studio with Python
Tools, and more text editor options such as Notepad++.

Setting Up Your Development Environment

[8]

The real problem that plagues developers is library compatibility, specifically,
Python libraries that reference C-based code to achieve results that are not possible
using the Python language directly. Unlike Mac OS X or Linux variations, Windows
does not include a C compiler as a part of the OS. Typically, when a Python library
author mentions Windows's "lack of build tools", this usually refers to Windows not
including a C compiler.

Another issue is the command prompt; it's typical in Python development to install
libraries and assets using the terminal or using the command prompt in Windows
commands. The two common commands to install libraries are easy_install and
pip. If you're not familiar, easy_install is a command-line based package manager for
Python. It uses Python eggs, (a renamed .zip file specific to easy_install) to bundle
the scripts and required files for a library. The easy_install package manager is also
an older package manager and has been in the Python tool belt for ages. It's typical
to find older Python libraries using easy_install. The following screenshot shows you
the PyPI website:

The other command, called pip, is also known as Python Package Index (PyPi).
Whereas easy_install has been community driven, PyPi is the official package
manager of the Python Software Foundation, the group that is in charge of updates
and taking care of the Python language. The site also hosts third-party packages.

Chapter 1

[9]

The following screenshot shows you the Python website:

Newer libraries are usually created using pip for two reasons. One, pip
has more features than easy_install and two, pip libraries are searchable
on Python's official package site repository at https://pypi.python.
org/pypi.

Installation
Let's start with installing Python on your Windows machine. For this book,
I'll be using Windows 8.1, though this workflow should be fine if you're running
Windows 7 or Windows Vista. First, open up your browser of choice and navigate
to http://www.python.org/.

Setting Up Your Development Environment

[10]

On the home page, you should see a download link as shown in the preceding
screenshot. For Windows, we are looking for Python Version 2.7+ (the 32-bit
Version). Go ahead and click on that link and you'll be taken to the download page:

On the download page, you'll want to download the Windows x86 MSI installer.
We want the 32-bit installer rather than the 64-bit installer. This will ensure optimal
compatibility with packages in upcoming chapters. The following screenshot shows
you the general installation window for Python on Windows (shown here with
a 64-bit version of Python for demo purposes):

Chapter 1

[11]

Once you've downloaded the installer, double-click on the installer to run it.
Follow the wizard and leave the defaults alone, particularly the path where Python
is installed as shown in the preceding screenshot. Let the installer work through the
installation and reboot your system.

After rebooting your system, if you're in Windows 8 on the desktop tile, right-click
on the Start screen icon and click on System. Then, click on Advanced system
settings (if you're in Windows 7 or Vista, you can find this by navigating to Control
Panel | All Control Panel Items | System), as shown in the following screenshot:

Setting Up Your Development Environment

[12]

Once you've done that, you'll want to click on Environment Variables, as shown in
the preceding screenshot, and look for Path under System variables. These variables
allow the command prompt to know what programs it has access to anywhere
in your system. We have to edit the Path as shown in the following screenshot,
select Path, and click on Edit:

With the Edit menu visible, type C:\Python27;C:\Python27\Lib\site-
packages\;C:\Python27\Scripts\; (including the semicolon at the front
to differentiate paths) at the end of the variable value. Click on OK on both
windows to save the changes and reboot your PC again.

Now, let's test your Python installation! Open up your command prompt, and type
python in lowercase and press Enter. Assuming the installer worked properly, you
should see the command prompt path cursor location change to precede >>>,
as shown in the following screenshot:

Chapter 1

[13]

You are now in the Python interpreter; here, you can run simple one line scripts such
as the following command:

print('Hello Reader!')

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Setting Up Your Development Environment

[14]

The next line will output Hello Reader!, showing your Python script print to
the console, with the following >>> waiting for your next command. You can also
process commands such as: 2 + 2, hit Enter, and you will see 4 on the next line.

Let's try to save a variable to the prompt; type the following command on the
next line:

authorsName = 'Chad'

Press Enter. Then, type the following command and press Enter again:

print(authorsName)

The output is shown in the next screenshot:

Now, your command prompt will look like the preceding screenshot. Notice on
the resulting line that Chad is the output for the authorsName Python variable. This
means that you've installed the Python compiler correctly! We've confirmed that
Python works on Windows by testing the function object, the math object, and the
variable objects.

With that tested, you can return to the standard command prompt from the Python
compiler by exiting the compiler. Simply type exit(0) to exit the Python instance.

Chapter 1

[15]

Exploring the Python installation in
Windows
Now that we have reviewed the command line on Windows, we need to know a
few other things before we start writing code. Let's start with where Python and any
libraries are installed on your machine. Open Windows Explorer and navigate to
C:\Python27, as shown in the following screenshot:

Inside the Python27 directory, you can see the python.exe file; this is the application
that our Path in System variables looks for to run Python scripts and commands.
This folder also contains other libraries that are to required be run by Python,
including libraries downloaded from easy_install or pip.

You can find the third-party libraries by navigating to C:\Python27\Lib\site-
packages. Any libraries and any third-party dependencies downloaded through
pip or easy_install will be installed in this directory by default.

Setting Up Your Development Environment

[16]

Next, let's pull down a few libraries we will need for this book. Python 2.7 on
Windows pip and easy_install are included with Python's Windows Installer by
default. First, we will need the lxml library. Now, on Windows, the lxml library is
a very popular C-based XML parser and writer library for Python libraries and is
notoriously incompatible with Windows systems due to its C-based implementation.
Let's install the lxml library before pulling packages that might depend on this, staring
with lxml, as shown in the following screenshot:

lxml does come in both pip and easy_install flavors; however, since it's C-based,
we require the Windows installer found at https://pypi.python.org/pypi/
lxml/3.3.3. Grab the lxml-3.3.3.win32-py2.7.exe file or a newer Version 2.7
library and run the installer. Once it's installed, we can confirm the installation
by navigating to the site-packages directory and checking whether any new
folder called lxml has been created. When installed, the site-packages directory
should look like the following screenshot:

Chapter 1

[17]

After lxml is installed, we will set up easy_install and pip. First, let's download
easy_install and install it. The steps are as follows:

1.	 Navigate your browser of choice to
https://pypi.python.org/pypi/setuptools.

2.	 Then, download the ez_setup.py file.
3.	 Save the file to C:\Python27\ez_setup.py. You can find the file on the page

here, as shown in the following screenshot:

Now, open your command prompt again with administrator privileges, then type
the following command, and press Enter:

cd c:\Python27

Next, type the following command and press Enter:

python ez_setup.py

Setting Up Your Development Environment

[18]

When you're finished, your command prompt should look like the
following screenshot:

Now, let's test easy_install and install pip at the same time! Again, open the
command prompt and set your directory like you did previously:

cd c:\Python27

Then, type the following command and press Enter:

easy_install pip

Chapter 1

[19]

If you're successful, your command prompt should look something like the
following screenshot:

With that done, let's test pip! We want to try to install a library called
BeautifulSoup. It's a common Python library for scrapping HTML content.
We won't be using BeautifulSoup but we need to test the pip installation, and
BeautifulSoup is a good library that works with most installations. To install
BeautifulSoup in your console while still it's open and the path is still pointing
to your C:\Python27 directory, type the following command:

pip install beautifulsoup

Setting Up Your Development Environment

[20]

You'll see a message at the end, as shown in the following screenshot:

Python editors
We have now installed the necessary libraries and frameworks that are required
to build Python scripts, so let's pick a code editor. For first-time (and even veteran
Python) developers, I recommend an IDE as an editor of choice over a plain text editor.
This is mainly for two reasons. One, an IDE typically includes code hinting of some
kind to give the developer an idea of what Python packages are available or even
installed on the developer's system. Two, most good IDEs include Python-specific
code-documentation templates and helpers that help write large code bases.

One of the more popular IDEs is Eclipse with PyDev; it's free and is a very good
starter IDE for Python. We will cover Eclipse in more depth in the next sections for
other platforms, but if you intend to use Eclipse on Windows, be sure to install the
latest Java runtime and JDK installers for your version of Windows. Read ahead to
learn more about Eclipse with PyDev.

Chapter 1

[21]

If you come from a .NET background or prefer Visual Studio in general, check
out Python Tools for Visual Studio. This allows you to run Python code in a
Visual Studio project and be able to keep Python code in Team Foundation Server
(Microsoft's source control system). The following screenshot shows the Python
Tools for Visual Studio website:

Setting Up Your Development Environment

[22]

To install Python Tools for Visual Studio, grab the installer from http://pytools.
codeplex.com/ (shown in the preceding screenshot). Also, if you don't own Visual
Studio, the Python Tools can be installed on Visual Studio for Desktop or Visual
Studio for Web, which are free downloads by Microsoft. You can download the
express editions at http://www.visualstudio.com/products/visual-studio-
express-vs.

If you intend to use the express editions, I recommend that you download
Visual Studio Express for Web, since we will use some HTML and CSS
later in the book.

The following screenshot shows the IronPython website:

Chapter 1

[23]

You might also notice IronPython at http://ironpython.net/. IronPython is
Python optimized for Windows with access to the .NET libraries, which means
that you can access .NET properties with Python, such as System.Windows.Forms.

For this book, we will use CPython, (typically referred to as normal Python libraries
with nothing added). Keep in mind that some libraries written in Python might or
might not work in IronPython, depending on its dependencies.

Let's build a quick Python script in Visual Studio with Python Tools before moving
on to OS X. In the following screenshot, you will see the New Project window.
Notice the options for normal (CPython) called Python Application as well as
other project types such as Django and IronPython. We want Python Application
for this book.

Setting Up Your Development Environment

[24]

Once you've installed the Python Tools for Visual Studio, open Visual Studio, create
a new project under Python, choose Python Application, and name it Pyname, as
shown in the preceding screenshot. Right-click on the Pyname project and click on
Properties. Set your interpreter to Python 2.7 and click on Save in the toolbar,
as shown in the following screenshot:

Now, take a look at Solution Explorer and expand your Python Environments |
Python 32-bit 2.7. You'll be able to see that the third-party libraries we've installed
are now visible in Visual Studio, as shown in the following screenshot (shown here
with a 64-bit version of Python for demo purposes):

Chapter 1

[25]

Let's write our authorName script that we used earlier, and run it in Visual Studio.
Type the following into the Pyname.py file:

authorName = ('Chad')
print(authorName)

Now hit Start and you'll see the command prompt automatically launch with Chad
printed on the screen. Success; you just wrote Python in Visual Studio!

In this section, we covered the following topics:

•	 Installing Python in Windows
•	 Installing easy_install and pip
•	 Installing lxml, a common Python library

Setting up Python on Mac OS X
From here on, Python gets easier to install. If you're on a Mac, many consider Python
the best to be run on due to the inclusion of build tools and compilers. Before we
install Python, it's important to know that OS X includes Python with the OS. One
issue, though, is that it doesn't include everything that the base installer does. Also,
OS X locks out some command-line features that are common in Unix systems that
can cause issues for some Python modules and libraries.

Setting Up Your Development Environment

[26]

In this section, we will review the Eclipse IDE on OS X with PyDev 3.0
and review using easy_install and pip using OSX. First, install Python by
going to https://www.python.org/ and downloading the 2.7.7 (or higher)
32-bit .dmg installer.

Once it's installed, open the terminal and test easy_install. Since easy_install is
included by default, we can use easy_install to install pip. Type the following
command in your console:

sudo easy_install pip

Remember, using sudo in the console will prompt you for your administrator
password. Depending on your version, your output might mention that you have it
already installed; that's okay, this means that your package managers for Python are
ready. Now, try testing the Python compiler. In the terminal, type python and press
the return key.

Chapter 1

[27]

This should look something like the following screenshot; notice the version number
in the interpreter to confirm which version is active.

Now, let's test the interpreter; try typing the following command:

print('Hello Reader!')

The output should be Hello Reader!. Now, let's try our authorName variable script
(shown in the following screenshot) to confirm that variables in Python are being
saved. Type both lines shown in the following screenshot, and it should look like
the following example. If so, congrats; Python and its base libraries are installed!

With Python installed, we can now focus on an editor. There are several Python IDEs
out for OS X, Aptana, and Pycharm, but the one we will use (and the one that tends
to be popular among Python developers) is PyDev for Eclipse. At the time of writing
this, Eclipse Kepler (4.3.2) has released, as has PyDev Version 3.0. Both require Java
7 and JDK 7 or higher installed for PyDev to work properly. So, before installing
Eclipse and PyDev, install the latest JRE and JDK by visiting the following links:

•	 http://java.com/en/download/

•	 http://www.oracle.com/technetwork/java/javase/downloads/index.
html

Setting Up Your Development Environment

[28]

Once you've installed both Java runtime and JDK, reboot your Mac and navigate
your browser of choice to http://www.eclipse.org and download the Eclipse
Kepler (4.3.2) classic edition (32-bit or 64-bit, depending on your system). The classic
edition is Eclipse by itself, with no plugins or project types included. Once this is
done, extract the Eclipse .zip file to a folder on your desktop and open the Eclipse
application. On launching Eclipse the first time, set your workspace path and click
on OK. Eclipse will reboot and relaunch Eclipse. Also on Safari, we might get a
Plug-in blocked for this site message. To continue, the user must click on Trust.
This is a security measure to confirm that the user wants to install an external
package or a plugin. Click on Trust to install.

Also, you'll need the JDK and Java 7 runtime or higher, since it's required for the
current version of PyDev. The process for the OS X installation should be the same.

Now, with Eclipse loaded, navigate to Help | Eclipse Marketplace. Then, in the
Search field, type Pydev. You should see something like the following screenshot:

Chapter 1

[29]

Click on Install Now and follow the prompts, including approving the certificate
by selecting the I agree radio button for PyDev and clicking on Finish, followed
by quitting Eclipse. Once Eclipse is restarted, you can change the IDE for Python
development by navigating to Window | Open Perspective | Other | Pydev and
clicking on OK.

Next, let's configure our interpreter so that when we run our Python code, the IDE
can process our run requests. The easiest way is in Eclipse.

Navigate to Window | Preferences | PyDev | Interpreter (Python/Jython/
IronPython).

Then, run Auto Config by clicking on Auto Config in the interpreter window. Your
paths will be set up automatically. If you run into an issue, you can set it manually
and point to the executable by navigating to Library | Frameworks | Python.
Framework | Versions | 2.7 | bin | python2.7-32.

Now, let's write some code with Eclipse. With Eclipse restarted, navigate to
File | New | Pydev Project.

Setting Up Your Development Environment

[30]

Create a project with the Pyname name, as shown in the following screenshot.
Next, create a pyname.py file in the project explorer on the right.

Finally, type the following code as shown in the following screenshot and click on
Run. If successful, you will see Chad in the output window.

In this section, we covered how to install Python on OS X, installing pip using
easy_install, working with the terminal, and setting up Eclipse with PyDev.

Chapter 1

[31]

Setting up Python on Ubuntu
Linux-based operating systems such as Ubuntu are Python's home in many ways.
The Ubuntu marketplace is written in Python, and many Linux apps usually have a
Python code base. Ubuntu features many of the same terminal commands OS X uses,
if not the same commands. For Ubuntu, we will focus on Ubuntu 13.10. If you're
using a derivative of Ubuntu, Lubuntu, Xubuntu, or Linux Mint, there are a few
points that need to be kept in mind.

Most of these commands should be the same, with a few minor differences
depending on your setup. Reach out to your search engine of choice if you run
into issues loading each software component. The same can be said for Debian or
Red Hat-based Linux distros.

Like OS X, you'll need the Java 7 runtime or higher and JDK 7 runtime or higher.
Ubuntu does not include these in its included package manager, but you can install
them via the command line.

The good news is that Python 2.7 is included with Ubuntu 13.10, so we will not need
to install Python. We can even test this by opening the terminal and typing python in
the Bash prompt, as shown in the following screenshot:

We will then be taken into the Python interpreter, which will show you the version
number of the default Python instance, in this case, 2.7.5+.

Setting Up Your Development Environment

[32]

The easy_install and pip Python package managers are commonly used to install
and update our packages. Next, grab both easy_install and pip, and install both
of these tools using the following commands:

sudo apt-get install python-setuptools

sudo apt-get install python-pip

Remember, in Ubuntu the sudo command will ask for a password before installing
the python-setuptools and python-pip. Now, if this is successful, the terminal
should return the following message, as shown in the following screenshot:

Next, before installing Eclipse with PyDev, let's download Java 7 and JDK.
To do this, we will add it to our system package repository and install Java.
Open the terminal and type the following commands:

sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java7-installer

Chapter 1

[33]

Be sure to use the keyboard keys on the licensing agreement in the terminal,
as shown in the following screenshot:

When this is complete, you can test the installation by typing Java –version in the
terminal. This command will return the installed version of Java.

Now, let's install Eclipse and PyDev. Navigate to http://www.eclipse.org/ using
your browser of choice, and download Eclipse Classic. Unpack the download and
open Eclipse, then select a workspace path, and click on OK.

At the time of writing this, there is a bug for Eclipse's menus being
reskinned in Ubuntu. If you're experiencing this issue, check online for a
command-line fix, as this can vary between updates. Ubuntu 14.04 LTS is
planned in order to have this bug resolved in the release.

Once this is done, open Eclipse Marketplace by navigating to Help | Eclipse
Marketplace and search for PyDev. Install the plugin and agree to the certificate,
then reboot Eclipse.

Setting Up Your Development Environment

[34]

Assuming everything is installed properly, you'll see PyDev in the Preferences
section of Eclipse.

One final note on Ubuntu: since Ubuntu has its own package manager, apt-get,
we can install packages for Python using it as well, for example, using lxml:

sudo apt-get install python-lxml

Notice that we add a python- prefix before our package. This helps apt-get specify
package types, since apt-get works with multiple languages.

At this point, you should be all set for the Python development. Try recreating our
authorName script from our OS X and Windows sections.

Summary
In this chapter, we went over the basics of installing Python and tools for Windows,
Mac OS X, and Linux-based Python development. Next, with our tools ready,
we will go over some Python coding basics to warm up to building charts with
Python code.

Python Refresher
In this chapter, we'll go over some Python programming basics and common Python
first- and third-party libraries used in Python development. In this chapter, we'll
be working on Python Tools for Visual Studio, which works well for new Python
developers, using standard 2.7 CPython. It will be fine if you're working on Mac,
Linux Eclipse, or an editor of your choice. We will be using pip and easy_install in
Visual Studio, but I will include notes for Mac and Linux commands as well.

Python basics
Let's start with creating a project in Visual Studio with Python Tools (VSPT).
Go to File | New Project, then Python | Python Application, and call this
solution Chapter2, as shown in the following screenshot:

Python Refresher

[36]

Next, navigate to Solution Explorer and click on Add/Remove Environments.
You'll see the prompt as shown in the following screenshot. If you have multiple
Python installs, you'll be able to select which one you want to specify. Click on the
Python 2.7 environment and click on OK.

So what does this do? A common problem with Python development is that libraries
installed on your host system using pip or easy_install are kept outside your project
files. This makes using Python scripts with different libraries installed on one system
unable to run on another system without the exact same setup. It will also update
Visual Studio's IntelliSense for any Python libraries installed as best as it can.

Now look at your Solution Explorer. You'll see that Python 2.7 has been added
under Python Environments. You can see where the copied environment is saved
in your project by right-clicking on Python 2.7 and clicking on Open Folder in File
Explorer. You'll see a Lib folder with a subfolder called site-packages that has
been created with its own lib structure for third-party modules and libraries.

Now let's write some code by starting with the canonical Hello World application for
Python. Type in the following code in your editor and click on Start at the top:

print("Hello, World") #This will execute the quickest and fastest, but
doesn't scale well in Python.

Chapter 2

[37]

Many small Python scripts are written this way with no structure or containment.
This can be an issue as your application gets bigger. Let's wrap this in a function.
Type the following code in your editor again, and click on Start at the top:

#A simple python function.
def main():
 print("Hello, World")

main() #Called after main() is loaded into memory.

Here, we have created a function called main() and included our print statement
inside it. On the next line, we called main() to trigger the console to print Hello
World. If you're coming from a C# or JavaScript background, this may look a little
funny, and you're right to think so. Python is a very loose language—there are no
braces wrapping the function and no semicolons to terminate a line of code.

This keeps typing to a minimum, which is great, but for those who have never
coded Python before, this can cause issues. Python is very specific on how its code
is structured in order for it to work. Remember that at the start of the book, errors
like these can trip up development. Let's look at an example:

#A simple python function.
def main():
 print("Hello, World") '''A function needs to be indented and not
be further away more than one line break.'''
main()

By using an IDE like Visual Studio or Eclipse, we can see issues like these, whereas
a simple text editor might not show these issues. The following is Visual Studio
showing an indent issue. Move the mouse over the print() method and you'll
get help on what the issue is.

Python Refresher

[38]

So far, this is working well for a small Python script, but let's start moving our
code to a more object-oriented structure. Now, we want to wrap our main()
function and have it trigger with one of our Python built-in script events, specifically,
our __main__ event. Note the double underscores, which indicate that it's a built-in
event in Python. Here's an example of the __main__ event being triggered on the
main() function:

#Same function as before.
def main():
 print("Hello, World")
if __name__ == '__main__': #Here Python checks if the runtime event
__main__ is called if so run the code below.
 main()

You can see that we check the __name__ event for __main__; if it is present, the
function or functions are executed. This is similar to a private void function in
C# or window.onload in JavaScript. It's also important to wrap functions this way
should you want to create your own Python module library, so that each can be
called only when the module is fully loaded and not before.

Now, let's add a parameter so we can reuse our main() function. Here, I'll add the
username to the main() function so I can pass a string to our Hello print statement:

#Main function with passed in parameter.
def main(readersname):
 print("Hello, " + readersname)

if __name__ == '__main__':
 main('Chad')

Note that you can append strings using + just as when using JavaScript or C#.
You also have the option of string formatters in Python. Here's the preceding
code with a string formatter passing in our readersname parameter:

#Here we use string formatting to better construct our strings.
def main(readersname):
 print("Hello, %s" % readersname)

if __name__ == '__main__':
 main('Chad')

Chapter 2

[39]

Let's add another parameter to our main() method. This time, we will use a number,
specifically an integer. Let's pass the number 35 as a set number of pages the reader
has read and update our print() statement to include both:

#Main function with two passed in parameters.
def main(readersname, amt):
 print("Hello, " + readersname + ", you have read " + str(amt) + "
pages.")

if __name__ == '__main__':
 main('Chad', 35)

Run the script and the output will be Hello, Chad, you have read 35 pages..
Next, let's use string formatting here rather than using string concatenation.
I've changed the string concatenation to a string formatter using %i to indicate
that the format is an integer:

#Here we use string formatting to better construct our strings.
def main(readersname, amt):
 print("Hello, %s, you have read %i" % (readersname, amt))

if __name__ == '__main__':
 main('Chad', 35)

String formatting can also help parameters output in unique ways. Let's say we
wanted to show 35 as a float with decimal points. We can change our string integer
formatter %i to a float formatter, %f. Look at this example:

#Let's format the string to output a float with decimal places.
def main(readersname, amt):
 print("Hello, %s, your total pages read are %f." % (readersname,
amt))

if __name__ == '__main__':
 main('Chad', 50)

Python Refresher

[40]

If we run the Python script, you'll see the output Hello, Chad, your total
pages read are 50.000000.. As we can see, the integer value we passed is now
50.000000 with our float formatter modifying our string without any conversion
code. Now what if we wanted this to display only two decimal points? Well, we
can tweak our modifier and specify how many decimal points as shown in the
following code:

#Let's format the string to output a float with two decimal places.
def main(readersname, amt):
 print("Hello, %s, your total pages read are %0.2f." %
(readersname, amt))

if __name__ == '__main__':
 main('Chad', 50)

If we run the Python script now our output looks like this: Hello, Chad, your
total pages read are 50.00.

Formatters work on floats to integers as well; look at this code sample:

def main(readersname, amt):
 print("Hello, %s, your total pages read are %i." % (readersname,
amt))

if __name__ == '__main__':
 main('Chad', 50.652)

Now, let's look at our result: Hello, Chad, your total pages read are 50..
We notice that it removed the decimal places and even though the .652 value
should round our 50 integer to 51, it didn't. The integer formatter simply trimmed
the value and didn't round up the value. This is very important to keep in mind for
integer formatters.

This is great. Now we have a quick and easy way to convert values to floats (decimal
points) and back to integers again should we need to convert values in our charts
later on. Remember that Python is a dynamically-typed language, meaning that all
variables can be any type without specification, and the Python interpreter assigns
a type based on what's available. Now that we have a handle on functions and
strings, let's take a look at some common libraries to help us understand file
inputs and outputs.

Importing modules and libraries
What we've covered so far could work for very small Python scripts, but we want
to use premade libraries and functions to take full advantage of Python to allow us
to write maintainable code. In this section, we'll review importing existing Python
modules and libraries and using those functions in our code.

Chapter 2

[41]

Recall that in Chapter 1, Setting Up Your Development Environment, we covered
installing pip and easy_install. Well, pip at least is a Python library, but one thing
you may not recollect is that in that chapter, we in fact installed many libraries and
modules. If you recall, we also installed the Python language interpreter and tools
from https://www.python.org/. Our install came with hundreds of bundled
libraries to be used. These are considered the general release libraries for Python.
These are common language libraries used in Python development and tested by the
Python Software Foundation for cross-platform development, which removes the
need for OS-specific development in the core language.

Let's try importing the sys module. The sys module provides access to some
variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter.

To import a module, type in the following on the topmost line of your Python script.

import sys

Have a look at this step in the following screenshot:

Python Refresher

[42]

In Visual Studio, you can call up IntelliSense while you type by pressing Ctrl + Space
bar. You can see IntelliSense filter more and more as you type. Also, whatever is
highlighted will show Python docstrings that are written for that file to provide
help and notes to the developer implementing those libraries.

If you're in Eclipse, the Eclipse PyDev also provides code hinting, just like
IntelliSense. Even the keyboard shortcut is the same, Ctrl + Spacebar. Now let's test
our import. Since sys can look up Python arguments and environment variables,
let's check what platform we're running. Type in the following in your editor:

import sys

platform = sys.platform;

print("%s" % platform)

Now run the script and if you're in a Windows-based OS, your output would be
win32; if you're on Mac OS X, your output would be darwin (this is referring to the
FreeBSD Apple implementation of FreeBSD, which is the core of OS X). If you're on a
Linux OS like Ubuntu, your output will be linux2.

Next, let's check the version using sys.version_info. The version_info list
returns an array of what the current version used for this script, a major release
number (int), a minor release number (int), and a micro release number (int).
To test this, let's run the script shown in the following code:

import sys

pyversion_major = sys.version_info[0];
pyversion_minor = sys.version_info[1];
pyversion_micro = sys.version_info[2];

print("Python version: %s.%s.%s" % (pyversion_major, pyversion_minor,
pyversion_micro))

Run the script and your output should be Python version: 2.7.6 or a newer
version of Python 2.7. Now that we have a grasp on imports, let's start with the
basics of Python file I/O using the os module with its user and path functions.

Input and output
A core skill when working with Python is understanding input and output. If you're
coming from a client-side web development background, where file access is not
possible, take extra note in this section, because when creating charts, we will need
to be able to save our charts to our hard drive.

Chapter 2

[43]

The os module is one of the most used modules in Python mostly because of how
it handles getting common filepaths cross-platform. Let's demonstrate how we
can read files. Create a text file called PyREADME.txt and save it to your project's
directory. Copy the following text in the PyREADME.txt file and save the file:

Hello Reader,
This copy is being read in Python, and saved as a string to a
variable.

Once saved, it should look like the following screenshot:

Now, in your Python editor, we will import the os module by including import os
on the topmost line and then add the following code. Be sure your PyREADME.txt file
is in the same directory as your running Python script.

import os

#Open the file to be read.
openFile = os.open('PyREADME.txt', os.O_RDONLY)

#Save the file's inner content to a Python variable string. This take
two parameters, the file to be opened and how many characters to read.
readmeText = os.read(openFile, 100)

print(readmeText)

Python Refresher

[44]

If everything is successful, your output window should show what's in the
next figure.

If you are having issues, double-check your file type and see if you have
file extensions such as PyREADME.txt.

Now let's review our code. We open our file using the open() function, and we have
two parameters: our file name with an extension and an r string. The r string tells
the open() method what permissions we have when working with the file. After
we open the file, we read the file and print it to the console. Lastly, we close our
openFile; this keeps us from having a potential memory leak, since our file I/O
won't close until we tell it to close.

Next, let's create a text file. We will have Hello World as its content, and name it
content.txt. Replace your Python file with this bit of code:

import os

txtContent = 'Hello World'
openFile = open('content.txt', 'w') #Open the file to be written.
readmeText = openFile.write(txtContent) #Write the file's inner
content to the text file.

openFile.close() #Close the file.

Chapter 2

[45]

If successful, you should have a new text file with Hello World written in the file,
as shown in the next screenshot. You can find the file in the same directory as your
Python script. Let's review the code. You'll notice that we changed our open()
permission's parameter to w, which means write-only, and we've set the filename to
content.txt to indicate the name of the file (even if it doesn't exist prior to running
the script). Beyond that, the only code that's changed is because we've swapped
openFile.read() with openFile.write(), telling Python to write a content
string to the file rather than the output from a file.

Generating an image
Now that we understand imports and reading and writing a file to the hard drive of
our computer, let's generate an image with some text. The first thing to be done is
downloading an imaging library to use since Python doesn't include one by default.
The most common of these is the Python Imaging Library (PIL). PIL allows text
input to be printed as an image and is very commonly used for CAPTCHA
password systems.

Python Refresher

[46]

To install PIL, we will need to use easy_install. If you have Mac OS X or Linux,
the command is as follows:

sudo easy_install PIL

On Windows, you can run the following in the command line as the administrator
in the Python directory:

easy_install PIL

Better yet, if you're using Visual Studio as your editor, set your project to Python 2.7
and click on Install Python Package under the Python Environments 2.7 instance.
Type in pil under easy_install and check Run as Administrator as shown in the
following screenshot:

If successful, you should be able to see pil included in your environments, as shown
in the following screenshot:

In other environments such as Eclipse, you can check your import by using the
following command:

from pil import *

Chapter 2

[47]

This will import all modules from the PIL library. Now that we have that set, we are
going to reuse the content.txt file we created earlier and generate an image with
its content. Since this is a bit more complicated, I'll move both steps into their own
functions, as shown in the following code:

from pil import *
import Image
import ImageDraw
import os

def readcontent():
 '''Open the file to be read. Note the file's permission is set to
read-only.'''
 openFile = open('content.txt', 'r')
 '''Save the file's inner content to a Python Variable string.'''
 readmeText = openFile.read()
 '''Close the file to save memory.'''
 openFile.close()
 '''Return the results to each as a reference variable.'''
 return openFile, readmeText

def generateImage():
 '''Create our references.'''
 img = Image.new("RGBA", (100, 80), "white")
 '''Draw the images size and background to the screen.'''
 draw = ImageDraw.Draw(img)
 '''Position the text with an x/y of 10 x 10, assign it the text
value and text color of red.'''
 output = draw.text((10, 10), readmeText, fill=(255,0,0,255))
 '''Draw the text to the screen.'''
 draw = ImageDraw.Draw(img)
 '''Save the image.'''
 img.save("output.png")
 '''Return the results to each as a reference variable.'''
 return draw, img, output

'''trigger the read content function.'''
openFile, readmeText = readcontent()

'''Generate our image.'''
draw, img, output = generateImage()

Python Refresher

[48]

We should now have a simple image like the one shown in the following screenshot.
Feel free to modify the content.txt file for different results if you want to set the
font size and font.

There is a bug in the current version of PIL through easy_install.
Some of the C-based code doesn't install properly. You may want to
check out pillow (a bundled version of PIL), which you can download
here: https://code.google.com/p/rudix/downloads/
detail?name=pillow-1.7.7-0.pkg&can=2&q.

Creating SVG graphics using svgwrite
Before we close this chapter, let's take a look at how to generate SVG graphics that
are based on vectors and computer-drawn lines and shapes that are scalable. To do
this, we are going to use a Python library called svgwrite, which you can find here:
https://pypi.python.org/pypi/svgwrite. Since this is a Python library on PyPi,
we can use pip to install it.

For Windows users using VSPT
Add your current Python instance to your Python environments in your Solution
Explorer and type in svgwrite in the Install Python Package prompt as shown in
the following screenshot:

Chapter 2

[49]

If successful, you should see the packages in your Solution Explorer as shown in the
following screenshot. If you can't see them, try opening your Python Environments,
and then your version of Python in your solution:

Python Refresher

[50]

For Eclipse or other editors on Windows
Type in the following command in your command prompt with admin rights:

cd C:\Python27

pip install svgwrite

The following is a screenshot of a command prompt for Windows:

For Eclipse on Mac and Linux
Open the terminal and type in the following command:

sudo pip install svgwrite

We are using sudo here to ensure everything for svgwrite has been installed
properly. Next, create your project in PyDev and be sure to set the project path to
src. This sets the path to its own directory rather than your Python root. Have a
look at the following screenshot showing the start of a new PyDev project in Eclipse
on OS X:

Chapter 2

[51]

In Eclipse, you can also inspect code using the Python console. In your console,
click on the New Console View icon at the top-right of the window and select
Pydev Console as shown in the following screenshot:

Python Refresher

[52]

You can also verify in PyDev what packages you have installed. In your
PyDev Package Explorer, expand the python root and go to System Libs |
2.7/site-packages. Once open, if you can find svgwrite, you should be set.
In the following screenshot, you can see how it looks on my system:

Chapter 2

[53]

Once you're ready, we will create a new project and Python file to generate our
SVG file. Start by creating an import of svgwrite (in lowercase) as shown in the
following code:

import svgwrite

Now let's reference the root svgwrite library and assign it to a variable that we can
output as an SVG file. For this, we will use the Drawing method in svgwrite. The
Drawing method enables us to create an SVG file. It's where we will drop our other
objects such as text, lines, circles, and so on.

Let's take a look at the following example:

drawObj = svgwrite.Drawing('username.svg', profile='tiny', width=444,
height=300)

Here, we have a drawObj variable and we have created an instance of the svgwrite
object and called the Drawing method with a few parameters. Our first parameter is
a string where we declare our filename; in this case, username.svg. Note that we are
not including a path, so for this script, the file will be saved in our project directory.

The profile attribute sets the base profile for SVG. You have two values that you
can use: tiny and full. We can also set the width and height of the SVG tag with
the width and height attributes.

Now, we have the base drawing object to draw shapes on. We will append the
drawObj variable with an SVG text node. Take a look at the following line:

drawObj.add(drawObj.text('Test', insert=(0, 0), fill='red', font_
size=70, font_family='sans-serif', font_weight='bold'))

So here we have a series of parameters for our line. The first is a string for the text
copy we want to write into the node and the next is a map (a map is a group of
two parameters). This map sets the X and Y coordinates for our top-left text block
element in the SVG node.

Following that is our fill color for this text block; in this case, we have a value
of red. We can also use hex values here if we need it to be similar to a color hex
in CSS. We also have three more parameters here: font_size, font_family, and
font_weight, all of which are pretty self-explanatory. The font_size parameter
uses simple int values to increase or decrease size. The font_family parameter
will work with any regular font included on the system (no file path needed). And
font_weight can set the font's weight to be bold or light depending on the selected
font's properties. Take note, without the font_family parameter, the font_weight
parameter will not work.

Python Refresher

[54]

Lastly, we will save the drawObj variable to a file using the save() function.
This will save the file with the parameters we added. With that added, here's
a completed script ready to run. Here's our save() function:

drawObj.save()

Now let's run the application from our IDE. Check your code as you follow along
with the drawObj sample shown in the previous code, and assuming no errors are
encountered, you should see a terminal (or a command prompt) window with Press
Enter to continue… displayed just like the previous example, indicating success.

We can check this by going into our project directory and opening our newly
generated username.svg file in our browser of choice and taking a look:

We're almost there. It looks like our SVG file is fine, but our text node is off-center.
Remember our insert map, where we defined our X and Y coordinates? Let's tweak
that; also, if you are working on Ubuntu or any other Linux distro, you may need to
format the X and Y coordinates to fit your platform's browser:

drawObj.add(drawObj.text('Test', insert=(15, 64), fill='red', font_
size=70, font_family='sans-serif', font_weight='bold'))

Let's rerun and refresh our SVG file in our browser:

Chapter 2

[55]

There is our text, showing up as an SVG we generated. Note that we can even select
the text. Since this is a text node, we should be able to highlight and even search
it inside the web content. Having the output as SVG gives us a range of uses to
create graphics.

Let's add a few lines around our text node, like an X and Y chart baseline, just
to show some basic drawing. Before your save() function, include the line()
functions as shown in in the following example:

import svgwrite

drawObj = svgwrite.Drawing('username.svg', profile='tiny', width=444,
height=300)
drawObj.add(drawObj.text('Test', insert=(15, 64), fill='red', font_
size=70, font_family='sans-serif', font_weight='bold'))
drawObj.add(drawObj.line((10, 10), (10, 70), stroke=svgwrite.rgb(0, 0,
0, '%')))
drawObj.add(drawObj.line((10, 70), (370, 70), stroke=svgwrite.rgb(0,
0, 0, '%')))
drawObj.save()

Now let's rerun our project and take a look at the results:

Python Refresher

[56]

Now we have the start of what would be a very simple chart exported as an SVG file
that we can manipulate in HTML (using an SVG-compliant browser). Take a look
at the following screenshot. Here, we can change the fill color using Chrome's
Web Inspector:

Neat! So now we can print text and objects to an SVG file! We can draw lines, boxes,
and circles in SVG, and as you see this come along, you start to get an idea how to
build charts and graphs from scratch. Let's make this script a bit more functional,
as though we were using this as an application. Let's reuse our text file reader
module from our Hello World image script.

Before starting with this code, ensure your content.txt file is at the root of your
project directory. Next, let's reuse our readcontent() function from our earlier
script. Breaking up that code in a module early on helps us reuse the code in new
projects by copying and pasting!

Firstly, include your imports, which will contain svgwrite, just like before to access
your text file:

import svgwrite

def readcontent():
 '''Open the file to be read. Note the file's permission is set to
read-only.'''

Chapter 2

[57]

 openFile = open('content.txt', 'r')
 '''Save the file's inner content to a Python Variable string.'''
 readmeText = openFile.read()
 '''Close the file to save memory.'''
 openFile.close()
 '''Return the results to each as a reference variable.'''
 return openFile, readmeText

'''trigger the read content function.'''
openFile, readmeText = readcontent()

Now let's wrap our svgwrite in its own function and give it a parameter; in this
case, username, to pass our content.txt file's output. Your Python script should
resemble the following code:

import svgwrite
def readcontent():
 '''Open the file to be read. Note the file's permission is set
to read-only.'''
 openFile = open('content.txt', 'r')

 readmeText = openFile.read()
 '''Save the file's inner content to a Python Variable string.'''

 openFile.close()
 '''Close the file to save memory.'''

 return openFile, readmeText
 '''Return the results to each as a reference variable.'''

def createSVGText(usrname):
 drawObj = svgwrite.Drawing('username.svg', profile='tiny',
width=444, height=300)
 drawObj.add(drawObj.text(usrname, insert=(15, 64), fill='red',
font_size=70, font_family='sans-serif', font_weight='bold'))
 drawObj.add(drawObj.line((10, 10), (10, 70), stroke=svgwrite.
rgb(0, 0, 0, '%')))
 drawObj.add(drawObj.line((10, 70), (400, 70), stroke=svgwrite.
rgb(0, 0, 0, '%')))
 drawObj.save()
 return drawObj

'''trigger the read content function.'''

Python Refresher

[58]

openFile, readmeText = readcontent()
'''Grab the 'readmeText' file content and pass that into our
createSVGText function.'''
drawObj = createSVGText(readmeText)

Rerun the script and let's take a look at our username.svg file:

There we are! We have created a dynamic script that pulls in data from a local text
file and imports it into a chart-like layout and updates dynamically for each run.
Play around with the options and see what you can make, and type other words
into the content.txt file.

Now this is still a simple script; obviously, if we type in a very long string in our text
file, it will overflow the SVG file. This is just one element. What if you were building
a chart from scratch and needed everything to work properly? We can assume this
will only get more and more complex, and ultimately that is the point of this chapter.

Chapter 2

[59]

Summary
To wrap up, in this chapter, we reviewed some basic Python skills, variables,
functions, and parameters; saw how to import libraries and how to install libraries
on multiple IDEs; and generated PNG graphics using the Python Imaging Library,
a common Python library.

We took a moment to understand paths and file I/O in Python, reading and writing
to files and variables in our Python code. We also learned about SVG graphics: how
to work with them and generate them in Python using the svgwrite library.

Now that we have done some basic generation of graphics with Python and worked
with some basic imaging libraries, we are ready to start the data visualization part of
this book.

As you now know, building graphics, let alone charts, can be a monumental task
to perform without some helper libraries. Fortunately, Python provides library
after library of tested and great-looking charting tools that are ready for your
Python projects.

In the next chapter, we will start with a very easy-to-use, almost turnkey library for
building SVG charts that is ready with high-end multimedia content: pygal!

Getting Started with pygal
In this chapter, we will start with building some basic SVG charts using the pygal
charting library for Python and look at common chart types and styles.

Why use pygal?
In the world of Python development, there are many libraries for charts (Matplotlib
and Plotly being a few examples), and cookbook-style books have been written
for many of them. Since this is an introduction to data charting, we need a simple,
easy-to-use library where developers new to Python charting, or Python charting
in general, could easily take code from this book and build Python applications.
The following screenshot shows the pygal website with some chart examples:

Getting Started with pygal

[62]

This is where pygal comes in; pygal (http://pygal.org/) is a Python-based SVG
Charts Creator, developed by the Kozea Community (http://community.kozea.
fr/), as shown in the following screenshot. This is a group dedicated to building
quality open source libraries (mainly Python based, but for HTML5 projects as well).

The pygal library offers multiple charting options beyond what I consider standard
charts: bar charts, line charts, and pie graphs. It includes a world map, funnel charts,
radar charts, and box plots, to name just a few.

It also includes prebuilt themes and styles, which you do not have to customize if
you are not inclined to do so. Also, since the chart library's output is SVG, this makes
it a highly flexible output type for HTML5 or even print media. One issue with some
charting libraries in Python is that the output defaults to the PNG format with a
specified image size. Since SVG is a vector graphic (a type of graphic that is scalable
without losing image quality), it can be scaled and resized for any need without loss
of quality.

Chapter 3

[63]

Take a look at the following screenshot of the documentation page for
http://pygal.org/:

The pygal website also includes pretty good and easy-to-read documentation.
One thing that's quite common with third-party Python libraries is that the
documentation can range from a well-documented, online-searchable wiki to a
simple readme.txt file that only shows how to install the library. The pygal library
also doesn't require a lot of dependencies, which is crucial for an introductory book,
as a very dependent library might cause issues for new developers or developers
who are new to pygal.

Getting Started with pygal

[64]

Many Python frameworks have some very picky dependencies that you might need
for your project, but they might or might not work with your system.

The lxml library is the only library required for pygal, but it has a few issues
depending on which operating system you are running your Python code on.
I encourage you to reread the notes on lxml (specifically if you're running
Windows) before we cover the installation of pygal.

With that covered, let's install pygal and build some charts!

Installing pygal using pip
First and foremost, if you haven't installed lxml, if you're working on Windows,
you'll want to install the lxml installer, as mentioned in Chapter 1, Setting Up Your
Development Environment; otherwise, the following commands should install lxml
for you. Next, we will use pip and install pygal using the following commands
for Windows and Mac/Linux systems (note that sudo is used in the Mac and
Ubuntu install).

Chapter 3

[65]

If you are a Windows user, type the following command:

pip install pygal

If you are a Mac or Ubuntu user, type the following command:

sudo pip install pygal

Next, open Eclipse with PyDev and create a new Python project, followed by a
new file (the settings aren't important since this is a test project). Once the project
is created, create the new file, call it importtest.py, and type the following:

import pygal

If successful, you should be able to press Ctrl + Space bar and see PyDev's code
hinting pull all of the libraries installed on the system. In the following screenshot,
you can see pygal being recognized in my system:

Getting Started with pygal

[66]

Installing pygal using Python Tools for
Visual Studio
If you plan on working in Visual Studio for the remainder of the book, here's a
note on installation: first, if you haven't already installed lxml, as noted in Chapter 1,
Setting Up Your Development Environment, then run easy_install with your
Python environment in the Install Python Package window, as shown in
the following screenshot:

If successful, your Solution Explorer window should look like what is shown in the
following screenshot with lxml included:

Chapter 3

[67]

Lastly, install the pygal library. Right-click on your environments and select Install
Python Package, this time with pygal, as shown in the following screenshot:

Building a line chart
Line charts typically show how particular data changes at different intervals of time.
In charting, this is the simplest chart that you can make, typically with the x and
y axes and each axis on the chart indicating time, value, or another parameter.

Let's build a simple chart, in this case, on how many hits a website has received in
the past two years (2012–2014). Take a look at the first line in the following code; this
is a declarative line by the Python interpreter to specify the type of string encoding
to the file. Also, you'll notice on line.x_labels that we use an inline function called
range(). This lets us create an array of numbers, starting from the lowest number to
the highest number; in the following case, 2012 and 2014 would print as 2012, 2013,
2014 in an array. Now, copy the following code into your project's main Python file:

-*- coding: utf-8 -*-
import pygal

#create a new line chart.
line = pygal.Line()
line.title = 'Website hits in the past 2 years' #set chart title
line.x_labels = map(str, range(2012, 2014)) #set the x-axis labels.
line.add('Page views', [None, 0, 12, 32, 72, 148]) #set values.
line.render_to_file('linechart.svg') #set filename.

Getting Started with pygal

[68]

The following screenshot shows a basic pygal line chart output:

In your main project file where you ran your script, you can see the linechart.svg
file created. Open it, and your chart will look like what's shown in the preceding
screenshot. To find the file, open the directory your project is in and find the
linechart.svg file. Note that you can hover over the dots and get the values
of each marker in the chart; these are some of the functionalities that come
prebuilt with the pygal library.

Chapter 3

[69]

We will also see that the chart's timeline starts from 0.0 on 2013. If you take a look at
the line.add() statement, the first parameter is None; this adds a spacer in our chart
to push the chart data out a little bit rather than forcing the chart to start at 2012.
This is a common trick to setting up chart layouts.

Another feature is that if you hover over the line label (in this case, Page views)
the entire line will be highlighted, indicating which dataset you're viewing with
that label. The pygal library will also review your data and emphasize certain lines
on the data axis, such as 0.0, 50.0, and 100.0, to break up some of the chart lines for
easier readability.

Code hinting support for the appearance of the line() function for
pygal depends on the IDE you are using. The pygal library is written
in a slightly unusual way when compared to most Python libraries. The
library generates each chart type dynamically using a for loop, which
checks each chart class in the pygal library. Due to this, IDEs that require
static, hardcoded functions in Python will throw an error, but not break
when they are run. In other words, using code hinting might or might not
work well depending on the editor you're using.

Stacked line charts
Stacked line charts work in a manner similar to traditional line charts, but they
stack multiple sets of data over each other to show the specific values for a group.
Copy the following code into your project's main Python file and run the file. Also,
take note of the multiple add() functions on our chart. Since the chart has multiple
datasets in one chart, we need to create a dataset for each:

-*- coding: utf-8 -*-
import pygal

#create a new stacked line chart.
line = pygal.StackedLine(fill=True)
line.title = 'Web hits in the past 2 years' #set chart title
line.x_labels = map(str, range(2012, 2014)) #set the x-axis labels.
line.add('Site A', [None, 0, 12, 32, 72, 148]) #set values.
line.add('Site B', [2, 16, 12, 87, 91, 342]) #set values.
line.add('Site C', [42, 55, 84, 88, 90, 171]) #set values.
line.render_to_file('linechart.svg') #set filename.

Getting Started with pygal

[70]

The following screenshot shows the results of our script:

Once rendered, your stacked chart will look like what's shown in the preceding
screenshot. Open the directory your project is in to find the linechart.svg file.
Note how pygal overrides your original SVG file by default; keep this in mind
when working with this library. Also, you will notice that we added a fill=True
parameter to our StackedLine function when we declared our chart; this is a chart
parameter. More on this later, but here we can see that filled colors are added below
the chart's line.

Chapter 3

[71]

Simple bar charts
Bar charts are typically used like line charts, but they fill the full area of the chart.
They also help show values to categories of information. Let's build a simple bar
chart, copy the following code into a new file called bar_chart.py, and run
the script:

-*- coding: utf-8 -*-
import pygal

#create a new bar chart.
bar = pygal.Bar()
bar.title = 'Searches for term: sleep'
bar.x_labels = map(str, range(2011, 2015))
bar.add('Searches', [81, 88, 88, 100])
bar.render_to_file('bar_chart.svg')

Go to your project directory and open bar_chart.svg in your browser. Note that
the code hasn't changed much beyond the data provided and the type of chart
defined (in this case, it is pygal.Bar()). The following screenshot shows the
results of our script:

Getting Started with pygal

[72]

Stacked bar charts
Just like the line chart, stacked bar charts overlay different bars one over the other by
data order. Let's copy the following code example and run this script:

-*- coding: utf-8 -*-
import pygal

#Create a new stacked bar chart.
bar = pygal.StackedBar()
bar.title = 'Searches for term: sleep'
bar.x_labels = map(str, range(2011, 2015))
bar.add('Men', [81, 88, 88, 100])
bar.add('Women', [78, 84, 69, 92])
bar.render_to_file('bar_chart.svg')

The following screenshot shows the results of our script:

Since this is a stacked value, we have two sets of data; in this case, men and women
searches. The preceding screenshot is the finished chart that shows the combined
dataset with separated segment values of total searches for the term "sleep".

Chapter 3

[73]

Horizontal bar charts
For the last bar chart type offered by pygal, we will use a horizontal chart and reuse
our data from the simple bar chart. Horizontal bar charts are designed more to show
data at one point in time. For this, we will remove our x_labels property since
we only want a single month displayed, hence removing the years. Now, copy the
following code and run the script:

-*- coding: utf-8 -*-
import pygal

#create a new bar chart.
bar = pygal.HorizontalBar()
bar.title = 'Searches for term: sleep in April'
bar.add('Searches', [81, 88, 88, 100])
bar.render_to_file('bar_chart.svg')

Open the bar_chart.svg file; the result is shown in the following screenshot:

Getting Started with pygal

[74]

XY charts
XY charts are typically used in scientific data to show multiple values at various
points. They can display negative values as well. They also overlay multiple sets of
values for easy readability. Let's build a simple XY chart with two points. Copy the
following code into your Python file and run the application, and save your SVG file
output as xy_chart.svg:

-*- coding: utf-8 -*-
import pygal

xy_chart = pygal.XY()
xy_chart.add('Value 1', [(-50, -30), (100, 45)])

xy_chart.render_to_file("xy_chart.svg")

Open the xy_chart.svg file; the result is shown in the following screenshot:

Chapter 3

[75]

Note how pygal highlights the 0 lines on both the x and y coordinates; again, this is
free styling provided by the pygal library to indicate negative values. Also, take note
of the add() function, of how each value is noted as an (x, y) coordinate, grouped
together in an array. Let's build another chart, this time with two plots; in this case,
we build with Value 1 and Value 2. Copy the following code and run it:

-*- coding: utf-8 -*-
import pygal

xy_chart = pygal.XY()
xy_chart.add('Value 1', [(-50, -30), (100, 45)])
xy_chart.add('Value 2', [(-2, -14), (370, 444)])
xy_chart.render_to_file("xy_chart.svg")

Open the xy_chart.svg file; note that two line plots are present, as shown in the
following screenshot:

Getting Started with pygal

[76]

We will now see how to make a basic line plot in an XY chart, but what if we have
multiple values on one line? Let's write one more XY chart with three values and
six points per value. Let's look at the following code for this and run it:

-*- coding: utf-8 -*-
import pygal

xy_chart = pygal.XY()
xy_chart.add('Value 1', [(-50, -30), (100, 45), (120, 56), (168,
102), (211, 192), (279, 211)])
xy_chart.add('Value 2', [(-2, -14), (370, 444), (391, 464), (399,
512), (412, 569), (789, 896)])
xy_chart.add('Value 3', [(2, 10), (142, 164), (184, 216), (203, 243),
(208, 335), (243, 201)])
xy_chart.render_to_file("xy_chart.svg")

When it is finished, open the xy_chart.svg file; it should look like what is shown in
the following screenshot:

Note how we can easily read each dataset. We can discern that Value 2 has the most
values that are on the higher side, and also that Value 3 reached a higher point than
Value 1 but dropped down quickly, which makes XY charts great for scientific data.
Now, let's take a look at a variation of XY charts called scatter plots.

Chapter 3

[77]

Scatter plots
Scatter plots work the same as XY charts, but they do not have lines that link
together. In the pygal library, there is no "scatterplot" function to use this time.
Instead, we simply reuse the XY chart function and set a parameter; in this case,
stroke is equal to False (the default for stroke is True). Let's reuse our XY code
from the last chart, add the stroke parameter, and take a look:

-*- coding: utf-8 -*-
import pygal

xy_chart = pygal.XY(stroke=False)
xy_chart.add('Value 1', [(-50, -30), (100, 45), (120, 56), (168,
102), (211, 192), (279, 211)])
xy_chart.add('Value 2', [(-2, -14), (370, 444), (391, 464), (399,
512), (412, 569), (789, 896)])
xy_chart.add('Value 3', [(2, 10), (142, 164), (184, 216), (203, 243),
(208, 335), (243, 201)])
xy_chart.render_to_file("xy_chart.svg")

Open the xy_chart.svg file; it should look like what's shown in the
following screenshot:

Getting Started with pygal

[78]

Note how this chart can be a bit easier to read with many more data points. Usually,
a good rule of thumb to use XY charts versus scatter plots is if you have more than
10 points per dataset or more than 6 datasets to display. Before we wrap up this
chapter, let's take a look at one more variation of the XY chart library in the pygal
library: DateY.

DateY charts
DateY charts work the same as any XY chart, with one exception. Each data point
is associated with a date, not a string type in Python with a date but a physical
datetime object in our Python code. Each X label will be associated with a date
object in our Python code, and Y will either be an integer or a float supplied by us.

Unlike our scatter plots, DateY does include its own function with its own rules
to be followed. Let's build a very simple DateY chart to see what we are dealing
with. Firstly, before running the following code, take a look at the datetime library,
specifically datetime and timedelta.

The datetime library is a built-in library for Python and is pretty straightforward.
It allows dates to be saved to code from the local machine's internal clock and
includes methods to convert strings to dates and count back or forwards in time.
The timedelta function belongs to the datetime library. What timedelta()
represents is the duration, and the difference between two dates or times, with
date-based parameters. Let's build a quick script called timedelta.py and copy
the following code to view the result:

-*- coding: utf-8 -*-
import datetime

from time import sleep
start = datetime.datetime.now()
sleep(5) #delay the python script for 5 seconds.
stop = datetime.datetime.now()

elapsed = stop - start
if elapsed > datetime.timedelta(minutes=4):
 print "Slept for greater than 4 minutes"

if elapsed > datetime.timedelta(seconds=4):
 print "Slept for greater than 4 seconds"

The output is shown in the following screenshot. Note that we passed 4 seconds in
our script using the sleep() function to set a delay of 5 seconds before setting the
stop variable's date.

Chapter 3

[79]

The time.sleep() function is a common Python function and is great
for process-intensive code that can't be multithreaded, such as copying
or deleting files on a hard drive or setting a delay for a network activity
using Python.

Next, let's write our DateY chart. For this chart, we will timestamp an array of
dates with values; in this case, passengers arriving from St. Louis at a given time.
Let's write the following code and save the output as datey_chart.svg:

-*- coding: utf-8 -*-
import pygal
from datetime import datetime, timedelta

Date_Y = pygal.DateY()
Date_Y.title = "Flights and amount of passengers arriving from St.
Louis."
Date_Y.add("Arrival", [
 (datetime(2014, 1, 5), 42),
 (datetime(2014, 1, 14), 123),
 (datetime(2014, 2, 2), 97),
 (datetime(2014, 3, 22), 164)
])
Date_Y.render_to_file('datey_chart.svg')

Getting Started with pygal

[80]

Now, let's take a look at the following chart. We can see that a full date time is
associated with each data point as well as our chart value, in this case, passengers.
We can also see a range of time on the x axis labels. However, there is an issue with
this. Take a look at the following chart and look at the labels on the x-axis:

Note how the labels bunch up and crop off if they don't fit. This is not a worry for
us as the DateY chart has an optional parameter to help render these labels. We can
rotate them along the x axis using the parameter shown in the following code:

-*- coding: utf-8 -*-
import pygal
from datetime import datetime, timedelta

Date_Y = pygal.DateY(x_label_rotation=25)
Date_Y.title = "Flights and amount of passengers arriving from St.
Louis."
Date_Y.add("Arrival", [
 (datetime(2014, 1, 5), 42),

Chapter 3

[81]

 (datetime(2014, 1, 14), 123),
 (datetime(2014, 2, 2), 97),
 (datetime(2014, 3, 22), 164)
])
Date_Y.render_to_file('datey_chart.svg')

Now, let's re-render our chart as shown in the following screenshot. We can see that
the labels are formatted in a way that helps with readability:

Let's add one more chart before we finish this chapter. Here, we're going to capture
two points in time called by our code, one will be delayed with a sleep delay just
like our timedelta example; we're going to have two flights come in at two separate
points in time.

Getting Started with pygal

[82]

Here, we will set a delay between two arrivals and set the time for each data point.
We will use time.sleep() to delay the script. Run the following script. Keep in
mind that since the chart has a delay in its code, the SVG file will need 277 seconds
to process:

-*- coding: utf-8 -*-
import pygal, time
from datetime import datetime

#Set pre-defined arrival dates for compare.
arrival1 = datetime.now()
time.sleep(277)
arrival2 = datetime.now()

delta = arrival2 - arrival1
result = str(delta.seconds) + ' seconds'

Date_Y = pygal.DateY(x_label_rotation=25)
Date_Y.title = "Flights and amount of passengers arriving from St.
Louis."
Date_Y.add("Arrival", [
 (datetime(2014, 1, 5), 42),
 (datetime(2014, 1, 14), 123),
 (datetime(2014, 2, 2), 97),
 (datetime(2014, 3, 22), 164)
])
Date_Y.add("Arrivals today (time between flights %s)" % result, [
(arrival1, 14),
(arrival2, 47)
])

Date_Y.render_to_file('datey_chart.svg')

Now, let's take a look at the results. Since the times aren't too far apart, you might want
to hover over for a more granular look at how much time has passed. According to our
label, 277 seconds have passed:

Chapter 3

[83]

Summary
Well done! You've completed the first round of charts using the pygal library!
We reviewed common charts, such as line and bar charts, scatter plots, and XY
charts; learned about using charts with DateY, including comparisons between
two datetime variables; and created a chart that simulated a real-world scenario.

If you struggled with this chapter, that's okay. Just begin to work through the first
few charts (the line and bar charts), and create some of your own graphs with your
own data until you get more confident.

In the next chapter, we will cover much more advanced chart types in the pygal
library, including world maps, with much more complex data.

Advanced Charts
In this chapter, we will explore and build some more advanced SVG charts using
the pygal charting library for Python. We will also explore the worldmap chart
with pygal and explore data types that are specific to that chart.

Pie charts
Pie charts work well with displaying data of a group or the total sum of a set of data,
which is broken out like a pie. Let's build a simple pie chart with some dummy data.
Take a look at the following code and incorporate it into your own Python file. Note
that we are saving the file output to pie_chart.svg this time:

-*- coding: utf-8 -*-
import pygal

pie_chart = pygal.Pie()
pie_chart.title = 'Total top tablet sales in 2013 (in %)'
pie_chart.add('iPad & iPad mini', 49.7)
pie_chart.add('Surface Pro 2', 36.3)
pie_chart.add('Surface 2', 24.5)
pie_chart.add('Nexus 7', 17.5)

pie_chart.render_to_file('pie_chart.svg')

Advanced Charts

[86]

The following screenshot shows you the results of our script:

As we can see in the preceding chart, each add() function to the pie chart adds
a different device as a slice to the pie chart. The pie function also includes our
standard legend based on the string given in our first parameter.

Stacked pie charts
Stacked pie charts work just as they sound; they stack values in each slice of the
pie chart, giving you a more in-depth look at data. As stacked charts can include
multiple values that aren't a part of the pie as a whole, we will build this chart
without checking for errors. Let's build our chart with the following code sample;
notice that we are still using the Pie() function, which is similar to our scatter plot
and XY charts from the previous chapter. One limitation is that stacked pie charts in
pygal only accept one other value on top of the main value. We can also use single
values as shown on the Nexus 7 dataset. This is shown in the following code:

-*- coding: utf-8 -*-
import pygal

Chapter 4

[87]

pie_chart = pygal.Pie()
pie_chart.title = 'Total top tablet sales in 2013 (in %)'
pie_chart.add('iPad & iPad mini', [19.7, 21.3])
pie_chart.add('Surface 2 (& Pro 2)', [24.5, 36.3])
pie_chart.add('Nexus 7', 17.5)

pie_chart.render_to_file('pie_chart.svg')

Open the pie_chart.svg file and the result will be as shown in the
following screenshot:

In the preceding example, we can see the sublayer slices within each pie slice. Taking
a look at our code sample, notice that the extra slice comes from the Python list array
inside our second parameter for each add() function that we add to our chart object.

Advanced Charts

[88]

Radar charts
Radar charts are great at displaying multiple variables for one data object. Radar
charts typically look like what you would expect to see on a radar at an airport,
showing you a map area with a zero point in the middle. A common place you
can find radar charts in is the application performance. They have also been used
in sports charts, displaying a player's or team's strengths and weaknesses. For this
chart, we will build a budget estimate and the actual budget spend for a single
project combined in one chart:

-*- coding: utf-8 -*-
import pygal

radar_chart = pygal.Radar()
radar_chart.title = 'Product Budget Figures'
radar_chart.x_labels = ['Sales', 'Marketing', 'Development', 'Customer
support', 'Information Technology', 'Administration']
radar_chart.add('Estimate', [40, 20, 100, 20, 30, 20, 10])
radar_chart.add('Actual Spending', [70, 50, 40, 10, 17, 8, 10])
radar_chart.render_to_file('radar_chart.svg')

Open the radar_chart.svg file, and the result will be as shown in the
following screenshot:

Chapter 4

[89]

Take note of the x_labels shown in the previous code. In this case, we have Sales,
Marketing, Development, Customer support, Information Technology,
and Administration as one array item.

The order of each item in the array is important, as the radar chart sets the value for
each dataset in the order of the array, setting that label to each endpoint of the radar
in a counter-clockwise fashion. Keep this in mind when building radar charts.

Box plots
Box plots, sometimes called box and whisker plots, are a type of graph that shows
you a low, medium, and high range in a value in a bar chart-like way. Box plots
typically contain a box that is defined as the high range of the data then tapers on top
and bottom vertically to lines indicating medium values, and the smallest values at
the lines at the end of the box plot are also called whiskers.

Box plots work well with estimated values over a given range of time or supply.
They also work well to show you data distribution. Box plots also use arrays for data,
like in our radar chart. Let's build a simple box plot showing the cost of whole milk
during the start of 2014 using the following code. Ensure that you use box_plot.svg
as the filename in your render_to_file() function, as shown in the following code:

-*- coding: utf-8 -*-
import pygal

box_plot = pygal.Box()
box_plot.title = 'Cost of Whole Milk in early 2014'
box_plot.add('US Dollars', [2.08, 3.14, 3.89, 3.91, 3.94, 3.98])

box_plot.render_to_file('box_plot.svg')

Advanced Charts

[90]

This is a pretty simple pygal chart; let's look at our example:

With box plots, we can add more than one box plot to the chart. Let's do that and
see the results by adding another currency market. In this case, we will use Pound
sterling. Copy the following code, and see the results:

-*- coding: utf-8 -*-
import pygal

box_plot = pygal.Box()
box_plot.title = 'Cost of Whole Milk in early 2014'
box_plot.add('US Dollars', [2.08, 3.14, 3.89, 3.91, 3.94, 3.98])
box_plot.add('Pound Sterling', [2.78, 3.84, 1.69, 4.71, 4.84, 4.92])

box_plot.render_to_file('box_plot.svg')

Chapter 4

[91]

The following screenshot shows the results of our script:

Now, with this example, we can see and compare medians of the box plots and
notice, by hovering our mouse over our SVG chart, that the median for the US Dollar
falls near the top of range and has remained constant, while the Pound's median is
set in the middle-to-high range of the box plot, thereby showing some variation.

Dot charts
Dot charts (also known as dot plots) are similar to old computer punch cards.
They are a very simple form of conveying datasets and can be an alternative to pie or
bar charts. In pygal, the dot_chart class allows each dot to be resized based on the
given value, with no extra code from the programmer. This keeps the data simple
but allows the data to still be interesting to a consumer of the chart data. Commonly,
you can find dot charts in datasets, also used in bar charts and allows for even easier
reading of small sets of data. Some voter registration and/or statistics will use dot
charts and punch in a result to a line on a card or a piece of paper.

Advanced Charts

[92]

Let's build a simple dot chart. We will reuse the datasets from our box plot charts.
First, we will use the US currency dataset. Copy the following code into your editor
of choice, and ensure that you save your file as dot_chart.svg:

-*- coding: utf-8 -*-
import pygal

dot_chart = pygal.Dot()
dot_chart.title = 'Cost of Whole Milk in early 2014'
dot_chart.add('US Dollars', [2.08, 3.14, 3.89, 3.91, 3.94, 3.98])

dot_chart.render_to_file('dot_chart.svg')

Dot charts work well with only small amounts of data with no more than
30 values per dataset. If you're considering a dataset that is bigger than
20-25, consider a bar, line, or pie chart.

Open the dot_chart.svg file, and the result will be as shown in the
following screenshot:

Chapter 4

[93]

Looking at the preceding chart, you can see that the bigger the value, the bigger
the dot. Traditional dot charts don't resize the dots, usually; they are kept a
consistent size.

Let's add our Pound Sterling dataset from our box chart example and update the
variable. We will also add the months in order to better clarify our chart using the
x_labels property, and we will also add in a rotation to our x axis. This will add
a slight rotation to our labels that will appear to overlap each other with multiple
datasets. Copy the following code:

-*- coding: utf-8 -*-
import pygal

dot_chart = pygal.Dot(x_label_rotation=45)
dot_chart.title = 'Cost of Whole Milk in early 2014'
dot_chart.x_labels = ['Jan', 'Feb', 'Mar', 'April', 'May', 'June']
dot_chart.add('US Dollars', [2.08, 3.14, 3.89, 3.91, 3.94, 3.98])
dot_chart.add('Pound Sterling', [2.78, 3.84, 1.69, 4.71, 4.84, 4.92])

dot_chart.render_to_file('dot_chart.svg')

Open the dot_chart.svg file and the result will be as shown in the
following screenshot:

Advanced Charts

[94]

Here, with the x axis labels, we now have a better understanding of data across
datasets. This looks pretty good, and with the resizing dots, we can see general
values for each month.

Dot charts are easy to build with a library, but building them
from scratch from libraries is not. The issue is to create a properly
sized dot, as each data value requires a great deal of mathematical
knowledge. Be forewarned of this if you attempt to build or restyle
a library with dot charts.

Funnel charts
Funnel charts (also known as funnel plots) are a type of graph that highlight certain
shared properties of some stages in the data in which datasets come from multiple
data sources, but seem to overlap each other across one central point. Typically,
these charts are intended to show you a commonality around a group of datasets.

One advantage of funnel charts in pygal is that they work well, displaying data with
large value sets, for instance, aeronautics and rocket science, being able to test and
read data of airspeed, pounds of fuel used for thrust, and so on. Let's take a look
at an example with a chart like those mentioned previously; here, we have a code
sample that shows us the amount of thrust used by a space shuttle over the time
of takeoff. Copy the following code, and let's run this code sample in our editor
of choice. Again, ensure that you save this in a separate chart name, this time,
funnel_chart.svg. We will also add an x_label_rotation property to the
chart in order to help show our datasets:

-*- coding: utf-8 -*-
import pygal

funnel_chart = pygal.Funnel(x_label_rotation=40)
funnel_chart.title = 'Amount of thrust used in a space shuttle at
takeoff (in lbs)'
funnel_chart.x_labels = ['Pre-takeoff', '5 min', ' 10 min', '15 min',
'20 min']
funnel_chart.add('Main Engine', [7000000, 6115200, 5009600, 4347400,
2341211])
funnel_chart.add('Engine #1', [1285000, 1072000, 89000, 51600, 12960])
funnel_chart.add('Engine #3 & #4 (mid-size)', [99000, 61600, 21960,
17856, 11235])

funnel_chart.render_to_file('funnel_chart.svg')

Chapter 4

[95]

Open the funnel_chart.svg file, and the result will be as shown in the
following screenshot:

Take a look at our chart. On the x axis, where Main Engine ends and Engine #1
takes over, we can see a tapered amount of thrust as we reach different stages from
launch. Then, we see the Main Engine separation, and then we see the burning
Engine #1, followed by Engine #3 & #4, after Engine #1 is disengaged. This,
of course, shows us space shuttle points at the time of launch and the initial thrust
output when heading to space.

Advanced Charts

[96]

Gauge charts
Gauge charts display data in a graph style that is similar to speedometers in
automobiles. They also work well with multiple datasets but not one with a single
dataset. In the following code, we have an example of a gauge chart, which is a very
simple pygal chart. This time, we will use some new data; in this case, we will use a
dataset that represents the space shuttle speed from the time of launch to 20 minutes.

Let's look at our sample code and our chart in the following code snippet.
Copy the code into your editor of choice, and ensure that you save the file
to gauge_chart.svg:

-*- coding: utf-8 -*-
import pygal

gauge_chart = pygal.Gauge()
gauge_chart.title = 'Speed of space shuttle during takeoff'
gauge_chart.x_labels = ['Pre-takeoff', '5 min', ' 10 min', '15 min',
'20 min']
gauge_chart.add('Pre-takeoff', 0)
gauge_chart.add('5 min', 96)
gauge_chart.add('10 min', 167)
gauge_chart.add('15 min', 249)
gauge_chart.add('20 min', 339)

gauge_chart.render_to_file('gauge_chart.svg')

Open the gauge_chart.svg file, and the result will be as shown in the
following screenshot:

Chapter 4

[97]

Looking at gauge_chart.svg in our browser, we can see a simple gauge chart.
However, notice that the speed values are floats. If we are working with complex
floats with multiple decimal points, we can simplify this chart and trim those
floats off using human_readable=True in our Gauge() function, as shown in
the following code:

-*- coding: utf-8 -*-
import pygal

gauge_chart = pygal.Gauge(human_readable=True)
gauge_chart.title = 'Speed of space shuttle during takeoff'
gauge_chart.x_labels = ['Pre-takeoff', '5 min', ' 10 min', '15 min',
'20 min']
gauge_chart.add('Pre-takeoff', 0)
gauge_chart.add('5 min', 96)
gauge_chart.add('10 min', 167)
gauge_chart.add('15 min', 249)
gauge_chart.add('20 min', 339)

gauge_chart.render_to_file('gauge_chart.svg')

Now, let's update our chart and look at the results.

Advanced Charts

[98]

This looks good; using human_readable=True will help trim long values in our
charts and help prevent overlapping. Notice the values in the preceding screenshot;
any decimal values are now trimmed for our chart's labels.

A neat user-interface feature of gauge charts is that if you hover over one
of the values of a gauge label in a SVG-compatible browser, a dashed line
will appear, indicating closeness to your dataset value.

Pyramid charts
Typically, pyramid charts are used to display large amounts of data with high data
values, such as population data, voter turnout, election results, and so on.

Let's try to build a chart; now, this pygal chart will look a little different. Pyramid
charts look best with lots of data, and in this case, I've typed out a bunch of data
you can use to practice with. For this chart, I'm going to create an array inside
of another array, with each set of parenthesis as a subarray. This will be called
miles_traveled.

Next, I'll create another array, thankfully not as large, called craft_type. This will
keep an array of strings that represent types of space craft, which is equal to our
amount of subarrays, in this case, Apollo Rockets, Russian rockets, US Space
Shuttles, and Satellites. We will also use a built-in Python function called zip()
inside a for loop to iterate through our miles_traveled. The zip() function allows
us to return a list of tuples or a small array of only two values:

-*- coding: utf-8 -*-
import pygal

#Array of miles each with a subarray of miles traveled.
miles_traveled = [(364383, 359443, 360172, 345780, 333968, 326914,
323053, 312576, 302015, 301277, 309874, 318295, 323396, 332736,
330759, 335267, 345096, 352685, 368067, 381521, 380145, 378724,
388045, 382303, 373469, 365184, 342869, 316928, 285137, 273553,
250861, 221358, 195884, 179321, 171010, 162594, 152221, 148843,
143013, 135887, 125824, 121493, 115913, 113738, 105612, 99596, 91609,
83917, 75688, 69538, 62999, 58864, 54593, 48818, 44739, 41096, 39169,
36321, 34284, 32330, 31437, 30661, 31332, 30334, 23600, 21999, 20187,
19075, 16574, 15091, 14977, 14171, 13687, 13155, 12558, 11600, 10827,
10436, 9851, 9794, 8787, 7993, 6901, 6422, 5506, 4839, 4144, 3433,
2936, 2615),
 (349909, 340550, 342668, 346788, 319010, 312898, 308153, 296752,
289639, 290466, 296190, 303451, 309786, 317436, 315487, 316696,
325772, 331694, 345815, 354696, 354899, 351727, 354579, 341702,

Chapter 4

[99]

336421, 321116, 292261, 261874, 242407, 229488, 208939, 184147,
162662, 147361, 140424, 134336, 126929, 125404, 122764, 116004,
105590, 100813, 95021, 90950, 85036, 79391, 72952, 66022, 59126,
52716, 46582, 42772, 38509, 34048, 30887, 28053, 26152, 23931, 22039,
20677, 19869, 19026, 18757, 18308, 14458, 13685, 12942, 12323, 11033,
10183, 10628, 10803, 10655, 10482, 10202, 10166, 9939, 10138, 10007,
10174, 9997, 9465, 9028, 8806, 8450, 7941, 7253, 6698, 6267, 5773),
 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 81, 312,
1319, 2987, 5816, 10053, 16045, 24240, 35066, 47828, 62384, 78916,
97822, 112799, 124414, 130658, 140789, 153951, 168560, 179996, 194471,
212006, 225209, 228886, 239690, 245974, 253459, 255455, 260715,
259980, 256481, 252222, 249467, 240268, 238465, 238167, 231361,
223832, 220459, 222512, 220099, 219301, 221322, 229783, 239336,
258360, 271151, 218063, 213461, 207617, 196227, 174615, 160855,
165410, 163070, 157379, 149698, 140570, 131785, 119936, 113751,
106989, 99294, 89097, 78413, 68174, 60592, 52189, 43375, 35469, 29648,
24678, 20365),
 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72, 344, 1478,
3901, 7878, 12899, 19948, 29108, 42475, 58287, 74163, 90724, 108375,
125886, 141559, 148061, 152871, 159725, 171298, 183536, 196136,
210831, 228757, 238731, 239616, 250036, 251759, 259593, 261832,
264864, 264702, 264070, 258117, 253678, 245440, 241342, 239843,
232493, 226118, 221644, 223440, 219833, 219659, 221271, 227123,
232865, 250646, 261796, 210136, 201824, 193109, 181831, 159280,
145235, 145929, 140266, 133082, 124350, 114441, 104655, 93223, 85899,
78800, 72081, 62645, 53214, 44086, 38481, 32219, 26867, 21443, 16899,
13680, 11508),
 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 11, 13, 31,
34, 38, 35, 45, 299, 295, 218, 247, 252, 254, 222, 307, 316, 385, 416,
463, 557, 670, 830, 889, 1025, 1149, 1356, 1488, 1835, 1929, 2130,
2362, 2494, 2884, 3160, 3487, 3916, 4196, 4619, 5032, 5709, 6347,
7288, 8139, 9344, 11002, 12809, 11504, 11918, 12927, 13642, 13298,
14015, 15751, 17445, 18591, 19682, 20969, 21629, 22549, 23619, 25288,
26293, 27038, 27039, 27070, 27750, 27244, 25905, 24357, 22561, 21794,
20595),
 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 9, 9, 10, 20,
34, 49, 84, 97, 368, 401, 414, 557, 654, 631, 689, 698, 858, 1031,
1120, 1263, 1614, 1882, 2137, 2516, 2923, 3132, 3741, 4259, 4930,
5320, 5948, 6548, 7463, 8309, 9142, 10321, 11167, 12062, 13317, 15238,
16706, 18236, 20336, 23407, 27024, 32502, 37334, 34454, 38080, 41811,
44490, 45247, 46830, 53616, 58798, 63224, 66841, 71086, 73654, 77334,
82062, 87314, 92207, 94603, 94113, 92753, 93174, 91812, 87757, 84255,
79723, 77536, 74173)]

#Array of miles each with a sub array of miles traveled.
craft_type = ['Apollo Rockets', 'Russian Rockets', 'US Space
Shuttles', 'Satellites']

pyramid_chart = pygal.Pyramid()

Advanced Charts

[100]

pyramid_chart.title = 'Miles traveled of earth spacecraft'

#loop thru miles_traveled for each sub-array and add them to a craft_
type as a data set.
for type, miles in zip(craft_type, miles_traveled):
 pyramid_chart.add(type, miles)

pyramid_chart.render_to_file('pyramid_chart.svg')

Now, let's look at our new pyramid chart in the next screenshot. We can see quite a
bit of data. Each horizontal line shows you the number of miles traveled per mission,
and as more of the launch time progresses, we can see the miles taper off for some of
the earlier forms of space travel with satellites and shuttles using more miles.

Open the pyramid_chart.svg file, and the result will be as shown in the
following screenshot:

Chapter 4

[101]

Worldmap charts
I don't think the worldmap charts need much introduction. It's a worldmap that
is separated into countries, which outputs to an SVG file. The worldmap chart is a
fantastic feature of the pygal library and is partially why I like this Python charting
library. This is because not many Python charting libraries have maps as a feature,
let alone ones that use the SVG output, making the map charts pygal produce very
portable chart files, in our modern HTML5 mobile world we live in today.

A simple worldmap is easy to build with a little bit of dummy data using the
pygal library. Let's build a simple worldmap with only United States and China
highlighted as an example. Copy the following code into your editor of choice, run
your Python script, and let's take a look at the results. Also, ensure that you save
your output SVG file as world_map.svg.

-*- coding: utf-8 -*-
import pygal

worldmap_chart = pygal.Worldmap()
worldmap_chart.title = 'Highlighting China and the United States'
worldmap_chart.add('China', ['cn'])
worldmap_chart.add('United States', ['us'])

#Render file.
worldmap_chart.render_to_file('world_map.svg')

Open the world_map.svg file, and the result will be as shown in the
following screenshot:

Advanced Charts

[102]

So, in the preceding screenshot, we have our output worldmap, and we can verify
that both China and United States are highlighted. We can also see Hawaii and
Alaska properly highlighted in United States. Let's review our code and see
what's different with the worldmap in comparison with our other charts.

Take a look at our add() functions for our world_map variable, and take a look at the
two parameters passed in it, as shown in the following code:

worldmap_chart.add('China', ['cn'])
worldmap_chart.add('United States', ['us'])

Notice that our add() function works similar to our past chart; however, this time,
we are passing in a string instead of a number inside an array, in this case, a single
item array with a string. This string is actually a two-letter country code, and since
it's a standard country code pygal can set values to a specific country on our map.

Going back to the array in our add() method, what happens if we add multiple
countries to an array for a single add() function? Let's rework our chart in order
to allow multiple countries to be highlighted.

This time, we will rename United States and change the label to U.S. Allies.
Let's add these allies along with our us country code and see what happens. Also,
I'll break our array up to a new line for each country code (each country code is
taken to a new line in the code bundle) so that we can easily read or if we need to
update our code:

-*- coding: utf-8 -*-
import pygal

worldmap_chart = pygal.Worldmap()
worldmap_chart.title = 'United States Allies and China'
worldmap_chart.add('China', ['cn'])
worldmap_chart.add('U.S. Allies', ['al',
'be','bg','ca','hr','cz','dk','ee','ff','de','hu','is','it',
'lv','lt','lu','nl','no','pl','pt','ro','si','sk','tr','us','uk'])

#Render file.
worldmap_chart.render_to_file('world_map.svg')

Chapter 4

[103]

Open the world_map.svg file, and the result will be as shown in the
following screenshot:

Not bad; we can easily see the chart highlighting our U.S. Allies with the same
color, while China is highlighted with another color on a separate dataset.

Worldmaps are great SVG charts. One thing to note is that worldmaps
are very complex SVG images, so consider the amount of data your own
charts will include, and steer clear of extremely complex datasets. Some
mobile platforms that render SVGs with animations might turn out
sluggish when deployed.

Advanced Charts

[104]

Summary
With that finished, this chapter comes to a close. In this chapter, we covered the
remainder of the charts of the pygal library, features, and proper uses of more
advanced charts and very complex datasets. At this point, consider building your
own charts with your own data. Experiment and play with the results; the more you
play with the library, the better your understanding of how you should structure
data. In the next chapter, we will start learning about pygal themes, optional
features, and customizations.

Tweaking pygal
In this chapter, we will cover how to apply themes and use some of the optional
features used in the pygal library. We will also look at themes and styling of
our charts.

Country charts
The pygal library has a chart that we didn't review in the past chapters; this is
a good time to bring the topic up and discuss the chart. It's called the country
chart. Like the worldmap chart, it shows the deeper detailed regions of a country;
unfortunately, at the time of writing this book, it's limited only to the country of
France, and it works pretty similar to the world map.

If you remember our introductory chapter, you might remember our discussion on
Kozea, the open source community originating in France that developed the pygal
library. Since they came from France, they created a map for their own country,
including sectioned areas called departments and regions. France's regions are
similar to states, and departments are similar to counties in a state.

Let's take a look at some sample code for this map, and we can then build on it using
some extra features of pygal's frameworks. First, let's build a simple example using
departments. Create a new Python file and copy the following code into your editor
of choice. Notice the similarities between this and our worldmap code in Chapter 4,
Advanced Charts. Be sure to use france_map.svg as the file output:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Departments()
france_chart.title = 'Sample departments'
france_chart.add('Data-set 1', ['17'])
france_chart.add('Data-set 2', ['27'])

Tweaking pygal

[106]

france_chart.add('Data-set 3', ['38'])
france_chart.add('Data-set 4', ['42'])
france_chart.add('Data-set 5', ['19'])
france_chart.render_to_file('france_map.svg')

Open the france_map.svg file, and the result will be what's shown in the
following screenshot:

Let's take a look at our france_chart type. Note that we used pygal.FrenchMap_
Departments() with our chart type suffixed with Departments. With this chart,
there are two modes—one for departments and the other for regions. Use the
following code to see how region-based charts are created. Note the suffix this time:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions()
france_chart.title = 'Sample Regions'
france_chart.add('Centre', ['24'])

Chapter 5

[107]

france_chart.add('Lorraine', ['41'])
france_chart.add('Picardy', ['22'])
france_chart.add('Upper Normandy', ['23'])
france_chart.add('Corsica', ['94'])
france_chart.render_to_file('france_map.svg')

Open the france_map.svg file, and the result will be what's shown in the
following screenshot:

Looking closer at the code, we might wonder why we aren't using abbreviations
for regions, or ask how to set our active regions or departments. The reason for
the numbers is that France uses its own INSEE numbers.

Institut National de la Statistique et des Études Économiques (INSEE) is France's
national institute for statistics and economics, which created the numbering system
for its departments and regions. Since this is a common system to identify sections
of France, the pygal library developers use the same numbers to assign highlights to
the map chart. Now that we know how to use this chart, let's modify it this time, not
with data, but with parameters, methods, and themes included in the pygal library.

Tweaking pygal

[108]

Parameters
We have seen parameters used in our pygal-related chapters throughout the book.
Here, we will start with our regions-based France chart, but first let's go ahead and
fill in the rest of the regions on the chart. Copy the following code into your editor of
choice and render the chart:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions()
france_chart.title = 'Sample Regions'
france_chart.add('Alsace', ['42'])
france_chart.add('Aquitaine', ['72'])
france_chart.add('Auvergne', ['83'])
france_chart.add('Brittany', ['53'])
france_chart.add('Burgundy', ['26'])
france_chart.add('Centre', ['24'])
france_chart.add('Champagne-Ardenne', ['21'])
france_chart.add(unicode('Franche-Comté', 'utf-8'), ['43'])
france_chart.add(unicode('Île-de-France', 'utf-8'), ['11'])
france_chart.add('Languedoc-Roussillon', ['91'])
france_chart.add('Limousin', ['74'])
france_chart.add('Lorraine', ['41'])
france_chart.add('Lower Normandy', ['25'])
france_chart.add(unicode('Midi-Pyrénées', 'utf-8'), ['73'])
france_chart.add('Nord-Pas-de-Calais', ['31'])
france_chart.add('Pays de la Loire', ['52'])
france_chart.add('Picardy', ['22'])
france_chart.add('Poitou-Charentes', ['54'])
france_chart.add(unicode('Provence-Alpes-Côte d\'Azur', 'utf-8'),
['93'])
france_chart.add(unicode('Rhône-Alpes', 'utf-8'), ['83'])
france_chart.add('Upper Normandy', ['23'])
france_chart.add('Corsica', ['94'])
france_chart.add('French Guiana', ['03'])
france_chart.add('Guadeloupe', ['01'])
france_chart.add('Mayotte', ['05'])
france_chart.add('Reunion', ['04'])
france_chart.render_to_file('france_map.svg')

Chapter 5

[109]

When done, you should see what is shown in the following screenshot:

In the preceding screenshot, we can see quite a few regions in our legend. Notice
how much space they take up in our chart. Let's tinker with some formatting
parameters to clean this up.

Legend at the bottom
We can reposition the legend for the chart using the legend_at_bottom parameter and
passing in a value either as True or False. Here's an example and the output screen.
Notice the legend_at_bottom parameter in the FrenchMap_Regions() method:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions(legend_at_bottom=True)
france_chart.title = 'Sample Regions'
france_chart.add('Alsace', ['42'])
france_chart.add('Aquitaine', ['72'])
france_chart.add('Auvergne', ['83'])
france_chart.add('Brittany', ['53'])

Tweaking pygal

[110]

france_chart.add('Burgundy', ['26'])
france_chart.add('Centre', ['24'])
france_chart.add('Champagne-Ardenne', ['21'])
france_chart.add(unicode('Franche-Comté', 'utf-8'), ['43'])
france_chart.add(unicode('Île-de-France', 'utf-8'), ['11'])
france_chart.add('Languedoc-Roussillon', ['91'])
france_chart.add('Limousin', ['74'])
france_chart.add('Lorraine', ['41'])
france_chart.add('Lower Normandy', ['25'])
france_chart.add(unicode('Midi-Pyrénées', 'utf-8'), ['73'])
france_chart.add('Nord-Pas-de-Calais', ['31'])
france_chart.add('Pays de la Loire', ['52'])
france_chart.add('Picardy', ['22'])
france_chart.add('Poitou-Charentes', ['54'])
france_chart.add(unicode('Provence-Alpes-Côte d\'Azur', 'utf-8'),
['93'])
france_chart.add(unicode('Rhône-Alpes', 'utf-8'), ['83'])
france_chart.add('Upper Normandy', ['23'])
france_chart.add('Corsica', ['94'])
france_chart.add('French Guiana', ['03'])
france_chart.add('Guadeloupe', ['01'])
france_chart.add('Mayotte', ['05'])
france_chart.add('Reunion', ['04'])
france_chart.render_to_file('france_map.svg')

The following screenshot shows the results of our script:

Chapter 5

[111]

Legend settings
We can also format the legend box using the legend_box_size parameter which
allows for an integer value; this will change the colored box sizes for each legend
item. Here is an example:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions(legend_at_bottom=True, legend_
box_size=3)
france_chart.title = 'Sample Regions'
france_chart.add('Alsace', ['42'])
france_chart.add('Aquitaine', ['72'])
france_chart.add('Auvergne', ['83'])
france_chart.add('Brittany', ['53'])
france_chart.add('Burgundy', ['26'])
france_chart.add('Centre', ['24'])
france_chart.add('Champagne-Ardenne', ['21'])
france_chart.add(unicode('Franche-Comté', 'utf-8'), ['43'])
france_chart.add(unicode('Île-de-France', 'utf-8'), ['11'])
france_chart.add('Languedoc-Roussillon', ['91'])
france_chart.add('Limousin', ['74'])
france_chart.add('Lorraine', ['41'])
france_chart.add('Lower Normandy', ['25'])
france_chart.add(unicode('Midi-Pyrénées', 'utf-8'), ['73'])
france_chart.add('Nord-Pas-de-Calais', ['31'])
france_chart.add('Pays de la Loire', ['52'])
france_chart.add('Picardy', ['22'])
france_chart.add('Poitou-Charentes', ['54'])
france_chart.add(unicode('Provence-Alpes-Côte d\'Azur', 'utf-8'),
['93'])
france_chart.add(unicode('Rhône-Alpes', 'utf-8'), ['83'])
france_chart.add('Upper Normandy', ['23'])
france_chart.add('Corsica', ['94'])
france_chart.add('French Guiana', ['03'])
france_chart.add('Guadeloupe', ['01'])
france_chart.add('Mayotte', ['05'])
france_chart.add('Reunion', ['04'])
france_chart.render_to_file('france_map.svg')

Tweaking pygal

[112]

The following screenshot shows the results of our script:

Check out how we used both the legend_at_bottom and legend_box_size
parameters. We can stack them using a comma between parameters and allow
many combinations. We still have an excess of labels bleeding into the next
columns of the legend; let's go ahead and tweak them with these other properties.

For the next few code samples, I'll trim out the datasets so that we can focus on
understanding parameters. If you need to regrab, refer to our initial chart from the
Parameters section. Now, let's shrink down the font size of our labels and resize our
boxes with the legend_font_size parameter:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions(legend_at_bottom=True, legend_
box_size=8, legend_font_size=8)
///Data-sets (continued)

Chapter 5

[113]

The following screenshot shows the results of the script:

Nice! Now, one legend item is still a bit small; let's trim it along with the others for
consistency, using the truncate_legend parameter, as shown in the following code:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions(legend_at_bottom=True, legend_
box_size=8, legend_font_size=8, truncate_legend=6)

Tweaking pygal

[114]

The following screenshot shows the results of our script:

Well done! This is now looking more and more organized. We can even disable the
legend_at_bottom parameter by either removing or setting it to False. It will look
something like what is shown in the following screenshot:

Chapter 5

[115]

One more thing to note about legends is that you can disable them if you don't need
them. Keep in mind that chart legends help users of the charts to help consume the
data. Since we don't have an x and y axes labels, we should be fine to disable the
legend. To do this, you just need to set the show_legend parameter to False, as
shown in the following code:

-*- coding: utf-8 -*-
import pygal

france_chart = pygal.FrenchMap_Regions(show_legend=False, legend_box_
size=8, legend_font_size=8, truncate_legend=6)

Tweaking pygal

[116]

The following screenshot shows the results of our script, without a legend:

Excellent! Now, we've modified the legend to allow greater flexibility for our charts.

Label settings
Let's take a look at a traditional line chart where we can use labels. Here's a simple
chart with some dummy datasets. Copy the code into your editor of choice and run
the script. Your output should be what is shown in the next screenshot.

You can also set label settings using similar parameters used with our legend.
Let's build a simple line chart that we can see our changes on. Add the following
code to an editor of your choice and run the script. Be sure to save the output as
lineparam.svg:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line()

Chapter 5

[117]

param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])
param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Line charts have some specific parameters, such as fill=true, as mentioned in
Chapter 3, Getting Started with pygal. You can also resize the specified labels using
the label_font_size parameter, as shown in the following code:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(fill=True, label_font_size=20)
param_line_chart.title = 'Parameter Line Chart'

Tweaking pygal

[118]

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])
param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

We can rotate the labels using the x_label_rotation parameter, and remove
the lines all together using the stroke=false parameter, as shown in the
following code:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(fill=False, stroke=False, label_font_
size=20, x_label_rotation=50)
param_line_chart.title = 'Parameter Line Chart'

Chapter 5

[119]

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])
param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Line charts have one specific parameter, interpolate='cubic', which allows the
line to curve in the data. Here's an example:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(interpolate='cubic', label_font_size=20,
x_label_rotation=50)
param_line_chart.title = 'Parameter Line Chart'

Tweaking pygal

[120]

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])
param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Chart title settings
We are pretty familiar with chart titles from the past two chapters, but it is good to
know that we can also give titles to the x and y axes. Take a look at the following code:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(interpolate='cubic', label_font_size=20,
x_label_rotation=50)

Chapter 5

[121]

param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_title='Data-Sets (X Axis)'
param_line_chart.y_title='Values (Y Axis)'

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])

param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Tweaking pygal

[122]

We can adjust the font sizes for the x, y, and chart titles using the title_font_size,
x_title_font_size, and y_title_font_size parameters, as shown in the
following code:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(interpolate='cubic', label_font_size=20,
x_label_rotation=50, title_font_size=24, x_title_font_size=24, y_
title_font_size=24)
param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_title='Data-Sets (X Axis)'
param_line_chart.y_title='Values (Y Axis)'

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])

param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Chapter 5

[123]

Displaying no data
One parameter worth looking at is the no_data_text parameter, which allows us
to set a text overlay for our chart, just in case we create a chart without loading data.
This is helpful if we are building a dynamic chart where we pull data from a data
source, either online or locally, through a file or command-line parameters. Here's
an example of the no_data_text parameter in action:

-*- coding: utf-8 -*-
import pygal

param_line_chart = pygal.Line(no_data_text='Unable to load data')
param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_title='Data-Sets (X Axis)'
param_line_chart.y_title='Values (Y Axis)'

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])

#param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
#param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
#param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Tweaking pygal

[124]

pygal themes
So far, we have used the default theme, known simply as Default, for pygal charts.
However, pygal offers 14 prebuilt themes. Let's update our line chart code with
another theme called Neon:

-*- coding: utf-8 -*-
import pygal
from pygal.style import NeonStyle

param_line_chart = pygal.Line(interpolate='cubic', fill=True,
style=NeonStyle)
param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_title='Data-Sets (X Axis)'
param_line_chart.y_title='Values (Y Axis)'

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])

param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

The following screenshot shows the results of our script:

Chapter 5

[125]

As we can see, the Neon style is similar to the Default style; however, compared to
our earlier fill parameter using the Default style, the fill parameter of the Neon
style has a slight transparency applied. Also, if we check our code, we will see that
the style is simply a parameter applied to the chart instance with a suffix of Style
after the name of the style selected; for the full list of themes in pygal, check out the
framework documentation on themes at http://pygal.org/builtin_styles/.

Also, take a look at the line below import pygal in the previous code, which reads
from the line pygal.style import NeonStyle. By default, the built-in styles are
not included with our import pygal statement, so we need to add them, and in
this case, we specify that we want to import the NeonStyle theme. Let's try a lighter
style using the Red Blue theme and override our NeonStyle, both in our import and
style parameters, as shown in the following code:

-*- coding: utf-8 -*-
import pygal
from pygal.style import RedBlueStyle

param_line_chart = pygal.Line(interpolate='cubic', fill=True,
style=RedBlueStyle)
param_line_chart.title = 'Parameter Line Chart'
param_line_chart.x_title='Data-Sets (X Axis)'
param_line_chart.y_title='Values (Y Axis)'

param_line_chart.x_labels = map(str, ["Data Object 1", "Data Object
2", "Data Object 3", "Data Object 4", "Data Object 5", "Data Object
6"])

param_line_chart.add('Data-Set 1', [8, 16, 24, 32, 48, 56])
param_line_chart.add('Data-Set 2', [2, 4, 6, 8, 10, 12])
param_line_chart.add('Data-Set 3', [1, 3, 5, 7, 9, 12])

param_line_chart.render_to_file('lineparam.svg')

Tweaking pygal

[126]

The following screenshot shows the results of our script:

Looks good! If you're curious about finding a specific theme, refer to pygal's website
for full documentation on themes at http://pygal.org/styles/. You can also test
themes online using pygal's style tool at http://cabaret.pygal.org/.

Summary
In this chapter, we covered quite a bit on pygal, and we should have a pretty good
handle of working with pygal building charts and modifying them to what we need.
In the next chapter, we will take a break from charting and start working with the
data side of building dynamic charts.

Importing Dynamic Data
Since we now have an understanding of how to work with the pygal library and
building charts and graphics in general, this is the time to start looking at building
an application using Python.

In this chapter, we will take a look at the fundamentals of pulling data from the
Web, parsing the data, and adding it to our code base and formatting the data into
a useable format, and we will look at how to carry those fundamentals over to our
Python code. We will also cover parsing XML and JSON data.

Pulling data from the Web
For many non-developers, it may seem like witchcraft that developers are magically
able to pull data from an online resource and integrate that with an iPhone app, or a
Windows Store app, or pull data to a cloud resource that is able to generate various
versions of the data upon request.

To be fair, they do have a general understanding; data is pulled from the Web
and formatted to their app of choice. They just may not get the full background of
how that process workflow happens. It's the same case with some developers as
well—many developers mainly work on a technology that only works on a locked
down environment, or generally, don't use the Internet for their applications.
Again, they understand the logic behind it; somehow an RSS feed gets pulled
into an application.

In many languages, the same task is done in various ways, usually depending on
which language is used. Let's take a look at a few examples using Packt's own news
RSS feed, using an iOS app pulling in data via Objective-C.

Importing Dynamic Data

[128]

Now, if you're reading this and not familiar with Objective-C, that's OK, the
important thing is that we have the inner XML contents of an XML file showing
up in an iPhone application:

#import "ViewController.h"

@interfaceViewController ()
@property (weak, nonatomic) IBOutletUITextView *output;

@end

@implementationViewController

- (void)viewDidLoad
{
 [super viewDidLoad];
	 // Do any additional setup after loading the view, typically from
a nib.

 NSURL *packtURL = [NSURLURLWithString:@"http://www.packtpub.com/
rss.xml"];
 NSURLRequest *request = [NSURLRequestrequestWithURL:packtURL];
 NSURLConnection *connection = [[NSURLConnectionalloc] initWithRequ
est:requestdelegate:selfstartImmediately:YES];

 [connection start];
}

- (void)connection:(NSURLConnection *)connection
didReceiveData:(NSData *)data {
 NSString *downloadstring = [[NSStringalloc] initWithData:dataencod
ing:NSUTF8StringEncoding];

 [self.outputsetText:downloadstring];

}

- (void)didReceiveMemoryWarning
{
 [superdidReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

@end

Chapter 6

[129]

Here, we can see in iPhone Simulator that our XML output is pulled dynamically
through HTTP from the Web to our iPhone simulator. This is what we'll want to
get started with doing in Python:

Importing Dynamic Data

[130]

The XML refresher
Extensible Markup Language (XML) is a data markup language that sets a series of
rules and hierarchy to a data group, which is stored as a static file. Typically, servers
update these XML files on the Web periodically to be reused as data sources. XML
is really simple to pick up as it's similar to HTML. You can start with the document
declaration in this case:

<?xml version="1.0" encoding="utf-8"?>

Next, a root node is set. A node is like an HTML tag (which is also called a node).
You can tell it's a node by the brackets around the node's name. For example,
here's a node named root:

<root></root>

Note that we close the node by creating a same-named node with a backslash.
We can also add parameters to the node and assign a value, as shown in the
following root node:

<root parameter="value"></root>

Data in XML is set through a hierarchy. To declare that hierarchy, we create another
node and place that inside the parent node, as shown in the following code:

<root parameter="value">
 <subnode>Subnode's value</subnode>
</root>

In the preceding parent node, we created a subnode. Inside the subnode, we have an
inner value called Subnode's value. Now, in programmatical terms, getting data
from an XML data file is a process called parsing. With parsing, we specify where in
the XML structure we would like to get a specific value; for instance, we can crawl
the XML structure and get the inner contents like this:

/root/subnode

This is commonly referred to as XPath syntax, a cross-language way of going
through an XML file. For more on XML and XPath, check out the full spec at:
http://www.w3.org/TR/REC-xml/ and here http://www.w3.org/TR/xpath/
respectively.

Chapter 6

[131]

RSS and the ATOM
Really simple syndication (RSS) is simply a variation of XML. RSS is a spec that
defines specific nodes that are common for sending data. Typically, many blog feeds
include an RSS option for users to pull down the latest information from those sites.
Some of the nodes used in RSS include rss, channel, item, title, description,
pubDate, link, and GUID.

Looking at our iPhone example in this chapter from the Pulling data from the Web
section, we can see what a typical RSS structure entails. RSS feeds are usually easy to
spot since the spec requires the root node to be named rss for it to be a true RSS file.

In some cases, some websites and services will use .rss rather than .xml; this is
typically fine since most readers for RSS content will pull in the RSS data like an
XML file, just like in the iPhone example.

Another form of XML is called ATOM. ATOM was another spec similar to RSS,
but developed much later than RSS. Because of this, ATOM has more features than
RSS: XML namespacing, specified content formats (video, or audio-specific URLs),
support for internationalization, and multilanguage support, just to name a few.

ATOM does have a few different nodes compared to RSS; for instance, the root node
to an RSS feed would be <rss>. ATOM's root starts with <feed>, so it's pretty easy to
spot the difference. Another difference is that ATOM can also end in .atom or .xml.

For more on the RSS and ATOM spec, check out the following sites:

•	 http://www.rssboard.org/rss-specification

•	 http://tools.ietf.org/html/rfc4287

Understanding HTTP
All these samples from the RSS feed of the Packt Publishing website show one
commonality that's used regardless of the technology coded in, and that is the
method used to pull down these static files is through the Hypertext Transfer
Protocol (HTTP). HTTP is the foundation of Internet communication. It's a
protocol with two distinct types of requests: a request for data or GET and a
push of data called a POST.

Importing Dynamic Data

[132]

Typically, when we download data using HTTP, we use the GET method of HTTP
in order to pull down the data. The GET request will return a string or another data
type if we mention a specific type. We can either use this value directly or save to
a variable.

With a POST request, we are sending values to a service that handles any incoming
values; say we created a new blog post's title and needed to add to a list of current
titles, a common way of doing that is with URL parameters. A URL parameter is an
existing URL but with a suffixed key-value pair.

The following is a mock example of a POST request with a URL parameter:

http://www.yourwebsite.com/blogtitles/?addtitle=Your%20New%20Title

If our service is set up correctly, it will scan the POST request for a key of addtitle
and read the value, in this case: Your New Title. We may notice %20 in our title for
our request. This is an escape character that allows us to send a value with spaces;
in this case, %20 is a placehoder for a space in our value.

For the rest of this book, we will stick with GET requests, since we will only be
reading data from the Web; however, this will give you an overview to get
started in working in requests.

Using HTTP in Python
The RSS samples from the Packt Publishing website show a few commonalities we
use in programming when working in HTTP; one is that we always account for the
possibility of something potentially going wrong with a connection and we always
close our request when finished. Here's an example on how the same RSS feed
request is done in Python using a built-in library called urllib2:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2

try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 #Read the file to a variable we named 'xml'

Chapter 6

[133]

 xml = response.read()
 #print to the console.
 print(xml)
 #Finally, close our open network.
 response.close()
except:
 #If we have an issue show a message and alert the user.
 print('Unable to connect to RSS...')

If we look in the following console output, we can see the XML contents just as we
saw in our iOS code example:

In the example, notice that we wrapped our HTTP request around a try except
block. For those coming from another language, except can be considered the same
as a catch statement. This allows us to detect if an error occurs, which might be
an incorrect URL or lack of connectivity, for example, to programmatically set an
alternate result to our Python script.

Importing Dynamic Data

[134]

Parsing XML in Python with HTTP
With these examples including our Python version of the script, it's still returning
a string of some sorts, which by itself isn't of much use to grab values from the full
string. In order to grab specific strings and values from an XML pulled through
HTTP, we need to parse it. Luckily, Python has a built-in object in the Python main
library for this, called as ElementTree, which is a part of the XML library in Python.

Let's incorporate ElementTree into our example and see how that works:

-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree

try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')

 tree = ElementTree.parse(response)
 root = tree.getroot()

 #Create an 'Element' group from our XPATH using findall.
 news_post_title = root.findall("channel//title")

 #Iterate in all our searched elements and print the inner text for
each.
 for title in news_post_title:
 print title.text

 #Finally, close our open network.
 response.close()
except Exception as e:
 #If we have an issue show a message and alert the user.
 print(e)

Chapter 6

[135]

The following screenshot shows the results of our script:

Importing Dynamic Data

[136]

As we can see, our output shows each title for each blog post. Notice how we used
channel//item for our findall() method. This is using XPath, which allows us
to write in a shorthand manner on how to iterate an XML structure. It works like
this; let's use the http://www.packtpub.com feed as an example. We have a root,
followed by channel, then a series of title elements.

The findall() method found each element and saved them as an Element type
specific to the XML library ElementTree uses in Python, and saved each of those into
an array. We can then use a for in loop to iterate each one and print the inner text
using the text property specific to the Element type.

You may notice in the recent example that I changed except with a
bit of extra code and added Exception as e. This allows us to help
debug issues and print them to a console or display a more in-depth
feedback to the user. An Exception allows for generic alerts that the
Python libraries have built-in warnings and errors to be printed back
either through a console or handled with the code. They also have
more specific exceptions we can use such as IOException, which is
specific for working with file reading and writing.

About JSON
Now, another data type that's becoming more and more common when working
with web data is JSON. JSON is an acronym for JavaScript Object Notation, and as
the name implies, is indeed true JavaScript. It has become popular in recent years
with the rise of mobile apps, and Rich Internet Applications (RIA).

JSON is great for JavaScript developers; it's easier to work with when working
in HTML content, compared to XML. Because of this, JSON is becoming a more
common data type for web and mobile application development.

Parsing JSON in Python with HTTP
To parse JSON data in Python is a pretty similar process; however, in this case,
our ElementTree library isn't needed, since that only works with XML. We need a
library designed to parse JSON using Python. Luckily, the Python library creators
already have a library for us, simply called json.

Chapter 6

[137]

Let's build an example similar to our XML code using the json import; of course, we
need to use a different data source since we won't be working in XML. One thing we
may note is that there aren't many public JSON feeds to use, many of which require
using a code that gives a developer permission to generate a JSON feed through a
developer API, such as Twitter's JSON API. To avoid this, we will use a sample URL
from Google's Books API, which will show demo data of Pride and Prejudice, Jane
Austen. We can view the JSON (or download the file), by typing in the following URL:

https://www.googleapis.com/books/v1/volumes/s1gVAAAAYAAJ

Notice the API uses HTTPS, many JSON APIs are moving to secure
methods of transmitting data, so be sure to include the secure in HTTP,
with HTTPS.

Let's take a look at the JSON output:

{
 "kind": "books#volume",
 "id": "s1gVAAAAYAAJ",
 "etag": "yMBMZ85ENrc",
 "selfLink": "https://www.googleapis.com/books/v1/volumes/
s1gVAAAAYAAJ",
 "volumeInfo": {
 "title": "Pride and Prejudice",
 "authors": [
 "Jane Austen"
],
 "publisher": "C. Scribner's Sons",
 "publishedDate": "1918",
 "description": "Austen's most celebrated novel tells the story of
Elizabeth Bennet, a bright, lively young woman with four sisters, and
a mother determined to marry them to wealthy men. At a party near the
Bennets' home in the English countryside, Elizabeth meets the wealthy,
proud Fitzwilliam Darcy. Elizabeth initially finds Darcy haughty and
intolerable, but circumstances continue to unite the pair. Mr. Darcy
finds himself captivated by Elizabeth's wit and candor, while her
reservations about his character slowly vanish. The story is as much
a social critique as it is a love story, and the prose crackles with
Austen's wry wit.",
 "readingModes": {
 "text": true,
 "image": true
 },
 "pageCount": 401,
 "printedPageCount": 448,

Importing Dynamic Data

[138]

 "dimensions": {
 "height": "18.00 cm"
 },
 "printType": "BOOK",
 "averageRating": 4.0,
 "ratingsCount": 433,
 "contentVersion": "1.1.5.0.full.3",
 "imageLinks": {
 "smallThumbnail": "http://bks8.books.google.com/books?id=
s1gVAAAAYAAJ&printsec=frontcover&img=1&zoom=5&edge=curl&imgtk=
AFLRE73F8btNqKpVjGX6q7V3XS77QA2PftQUxcEbU3T3njKNxezDql_KgVko
fGxCPD3zG1yq39u0XI8s4wjrqFahrWQ-5Epbwfzfkoahl12bMQih5szba
Ow&source=gbs_api",
 "thumbnail": "http://bks8.books.google.com/books?id=s1
gVAAAAYAAJ&printsec=frontcover&img=1&zoom=1&
edge=curl&imgtk=AFLRE70tVS8zpcFltWh_7K_5Nh8BYugm2RgBS
Lg4vr9tKRaZAYoAs64RK9aqfLRECSJq7ATs_j38JRI3D4P48-2g_k4-
EY8CRNVReZguZFMk1zaXlzhMNCw&source=gbs_api",
 "small": "http://bks8.books.google.com/books?id=s1gVAAAAYAAJ
&printsec=frontcover&img=1&zoom=2&edge=curl&imgtk=AFLRE71qcidjIs
37x0jN2dGPstn6u2pgeXGWZpS1ajrGgkGCbed356114HPD5DNxcR5XfJtvU5DKy
5odwGgkrwYl9gC9fo3y-GM74ZIR2Dc-BqxoDuUANHg&source=gbs_api",
 "medium": "http://bks8.books.google.com/books?id=s1gVAAAAYA
AJ&printsec=frontcover&img=1&zoom=3&edge=curl&imgtk=AFLRE73hIRCi
GRbfTb0uNIIXKW4vjrqAnDBSks_ne7_wHx3STluyMa0fsPVptBRW4yNxNKOJWjA4
Od5GIbEKytZAR3Nmw_XTmaqjA9CazeaRofqFskVjZP0&source=gbs_api",
 "large": "http://bks8.books.google.com/books?id=s1gVAAAAYAAJ
&printsec=frontcover&img=1&zoom=4&edge=curl&imgtk=AFLRE73mlnr
Dv-rFsL-n2AEKcOODZmtHDHH0QN56oG5wZsy9XdUgXNnJ_SmZ0sHGOxUv4sWK6
GnMRjQm2eEwnxIV4dcF9eBhghMcsx-S2DdZoqgopJHk6Ts&source=gbs_api",
 "extraLarge": "http://bks8.books.google.com/books?id=s1gVAAAA
YAAJ&printsec=frontcover&img=1&zoom=6&edge=curl&imgtk=AFLRE73KIX
HChsznTbrXnXDGVs3SHtYpl8tGncDPX_7GH0gd7sq7SA03aoBR0mDC4-euzb4UCI
DiDNLYZUBJwMJxVX_cKG5OAraACPLa2QLDcfVkc1pcbC0&source=gbs_api"
 },
 "language": "en",
 "previewLink": "http://books.google.com/books?id=s1gVAAAAYAAJ&hl=&so
urce=gbs_api",
 "infoLink": "http://books.google.com/books?id=s1gVAAAAYAAJ&hl=&sour
ce=gbs_api",
 "canonicalVolumeLink": "http://books.google.com/books/about/Pride_
and_Prejudice.html?hl=&id=s1gVAAAAYAAJ"
 },

Chapter 6

[139]

 "layerInfo": {
 "layers": [
 {
 "layerId": "geo",
 "volumeAnnotationsVersion": "6"
 }
]
 },
 "saleInfo": {
 "country": "US",
 "saleability": "FREE",
 "isEbook": true,
 "buyLink": "http://books.google.com/books?id=s1gVAAAAYAAJ&hl=&buy=&s
ource=gbs_api"
 },
 "accessInfo": {
 "country": "US",
 "viewability": "ALL_PAGES",
 "embeddable": true,
 "publicDomain": true,
 "textToSpeechPermission": "ALLOWED",
 "epub": {
 "isAvailable": true,
 "downloadLink": "http://books.google.com/books/download/Pride_and_
Prejudice.epub?id=s1gVAAAAYAAJ&hl=&output=epub&source=gbs_api"
 },
 "pdf": {
 "isAvailable": true,
 "downloadLink": "http://books.google.com/books/download/Pride_and_
Prejudice.pdf?id=s1gVAAAAYAAJ&hl=&output=pdf&sig=ACfU3U3dQw5JDWdbVgk2V
RHyDjVMT4oIaA&source=gbs_api"
 },
 "webReaderLink": "http://books.google.com/books/reader?id=s1gVAAAAYA
AJ&hl=&printsec=frontcover&output=reader&source=gbs_api",
 "accessViewStatus": "FULL_PUBLIC_DOMAIN",
 "quoteSharingAllowed": false
 }
}

Importing Dynamic Data

[140]

One downside to JSON is that it can be hard to read complex data. So, if we run
across a complex JSON feed, we can visualize it using a JSON Visualizer. Visual
Studio includes one with all its editions, and a web search will also show multiple
online sites where you can paste JSON and an easy-to-understand data structure will
be displayed. Here's an example using http://jsonviewer.stack.hu/ loading our
example JSON URL:

Next, let's reuse some of our existing Python code using our urllib2 library to
request our JSON feed, and then we will parse it with the Python's JSON library.
Let's parse the volumeInfo node of the book by starting with the JSON (root) node
that is followed by volumeInfo as the subnode. Here's our example from the XML
section, reworked using JSON to parse all child elements:

-*- coding: utf-8 -*-

import urllib2
import json

Chapter 6

[141]

try:
 #Set a URL variable.
 url = 'https://www.googleapis.com/books/v1/volumes/s1gVAAAAYAAJ'
 #Open the file via HTTP.
 response = urllib2.urlopen(url)

 #Read the request as one string.
 bookdata = response.read()

 #Convert the string to a JSON object in Python.
 data = json.loads(bookdata)

 for r in data ['volumeInfo']:
 print r

 #Close our response.
 response.close()

except:
 #If we have an issue show a message and alert the user.
 print('Unable to connect to JSON API...')

Here's our output. It should match the child nodes of volumeInfo, which it does in
the output screen, as shown in the following screenshot:

Importing Dynamic Data

[142]

Well done! Now, let's grab the value for title. Look at the following example and
notice we have two brackets: one for volumeInfo and another for title. This is
similar to navigating our XML hierarchy:

-*- coding: utf-8 -*-

import urllib2
import json

try:
 #Set a URL variable.
 url = 'https://www.googleapis.com/books/v1/volumes/s1gVAAAAYAAJ'

 #Open the file via HTTP.
 response = urllib2.urlopen(url)

 #Read the request as one string.
 bookdata = response.read()

 #Convert the string to a JSON object in Python.
 data = json.loads(bookdata)

 print data['volumeInfo']['title']

 #Close our response.
 response.close()

except Exception as e:
 #If we have an issue show a message and alert the user.
 #'Unable to connect to JSON API...'
 print(e)

The following screenshot shows the results of our script:

Chapter 6

[143]

As you can see in the preceding screenshot, we return one line with Pride and
Prejudice parsed from our JSON data.

About JSONP
JSONP, or JSON with Padding, is actually JSON but it is set up differently
compared to traditional JSON files. JSONP is a workaround for web cross-browser
scripting. Some web services can serve up JSONP rather than pure JSON JavaScript
files. The issue with that is JSONP isn't compatible with many JSON Python-based
parsers including one covered here, so you will want to avoid JSONP style JSON
whenever possible.

So how can we spot JSONP files; do they have a different extension? No, it's simply a
wrapper for JSON data; here's an example without JSONP:

/*
 *Regular JSON
 */
{ authorname: 'Chad Adams' }

The same example with JSONP:

/*
 * JSONP
 */
callback({ authorname: 'Chad Adams' });

Notice we wrapped our JSON data with a function wrapper, or a callback. Typically,
this is what breaks in our parsers and is a giveaway that this is a JSONP-formatted
JSON file. In JavaScript, we can even call it in code like this:

/*
 * Using JSONP in JavaScript
 */
callback = function (data) {
 alert(data.authorname);
};

Importing Dynamic Data

[144]

JSONP with Python
We can get around a JSONP data source though, if we need to; it just requires a bit
of work. We can use the str.replace() method in Python to strip out the callback
before running the string through our JSON parser. If we were parsing our example
JSONP file in our JSON parser example, the string would look something like this:

#Convert the string to a JSON object in Python.
data = json.loads(bookdata.replace('callback(', '').) .replace(')',
''))

Summary
In this chapter, we covered HTTP concepts and methodologies for pulling strings
and data from the Web. We learned how to do that with Python using the urllib2
library, and parsed XML data and JSON data. We discussed the differences between
JSON and JSONP, and how to work around JSONP if needed.

In the next chapter, we will build a working simple application with the pygal
library using dynamic web data.

Putting It All Together
Together we have been through a long process of learning Python data visualization
development, handling data, and creating charts using the pygal library. Now it's
time to put these skills to work. Our goal for this chapter is to use our knowledge
to create a chart with dynamic data from the Web. In this chapter, we will cover
the following topics:

•	 Import 2 months of RSS blog posts from the Web
•	 Format our RSS data for a new bar chart's dataset
•	 Build a simple bar chart to display blog posts for the past two months,

passing in the number of posts
•	 Create a main application script to handle the execution and separate our

code into modules, which we will import into our main script

Chart usage for a blog
We are going to start with the RSS feed from Packt Publishing and create a chart
using data from the RSS feed. This chart will specifically comprise how many article
posts are made in a month; at this point, we are familiar with parsing XML from
a location found on the Web using HTTP. Then, we are going to create our own
dataset from this feed.

To accomplish this, we will need to perform the following tasks:

•	 Find out how many posts are made in a given month
•	 Filter the count of posts for each month
•	 Finally, generate a chart based on this data for both months

Like any programming task, the key to success in both ease of writing and code
maintainability, is breaking up the tasks required to accomplish the job. For this,
we will break up this task into Python modules.

Putting It All Together

[146]

Getting our data in order
Our first task is to pull the RSS feed from the Packt Publishing website into our
Python code. For this, we can reuse our Python HTTP and XML parser example from
Chapter 6, Importing Dynamic Data, but instead of grabbing the titles for each title
node, we will grab the date from pubDate. The pubDate object is an RSS standard
convention to indicate the date and time in an XML-based RSS feed.

Let's modify our code from Chapter 6, Importing Dynamic Data, and grab the pubDate
object. We will create a new Python script file and call it LoadRssFeed.py. Then, we
will use this code in our editor of choice:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree

try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #List of post dates.

 news_post_date = root.findall("channel//pubDate")

 '''Iterate in all our searched elements and print the inner text
for each.'''
 for date in news_post_date:
 print(date.text)

 #Finally, close our open network.
 response.close()

except Exception as e:
 #If we have an issue show a message and alert the user.
 print(e)

Chapter 7

[147]

Notice rather than finding all titles, we are now finding pubDate using the XPath
path channel//pubDate. We also updated our date's list name to news_post_date.
This will help clarify our code. Let's run the code and see our results:

Putting It All Together

[148]

Looking good; we can tell we have a structured date and time format, and now we
can filter by what is in the string, but let's dig a little more into this. Like in most
languages, Python also has a time library that will allow for strings to be converted
to datetime Python objects. How can we tell if these values aren't date objects
already? Let's wrap our print (date.text) method in a type function to render
the type of the object rather than the object's output, like this: print type(date.
text). Let's rerun the code and take a look at the results:

Chapter 7

[149]

Converting date strings to dates
Before moving on, we need to convert any string we take in to useable types in Python,
for instance, we pull in the publication date from our RSS feed. Wouldn't it be nice to
have some already made functions to format or search our dates? Well, Python has a
built-in type for this called time. Converting strings to time objects is pretty easy, but
first, we need to add our import statement for time at the top of our code, for example,
import time. Next, as our pubDate node isn't multiple strings that we easily set up to
parse, let's split these up to an array using the split() method.

We will remove any commas in our string using the replace() method. We can
even run this and our output window will show brackets around each pubDate with
commas between each array item showing that we successfully split our single string
to a string array.

Here we use a loop with a list of different time elements pulled from the RSS feed:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree

try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #List of post dates.
 news_post_date = root.findall("channel//pubDate")
 print(news_post_date)
 '''Iterate in all our searched elements and print the inner text
for each.'''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a new
array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')
 '''Show each array in the Command Prompt(Terminal).'''
 print(datestr_array)

 #Finally, close our open network.
 response.close()

except Exception as e:
 '''If we have an issue show a message and alert the user.'''
 print(e)

Putting It All Together

[150]

Here, we can see as we loop through our our code, a list for each time object, month,
day, year, time, and so on; this will help up grab specific time values in relation to
our RSS feed we've parsed:

Using strptime
The strptime() method or strip time is a method found in the time module, and
it allows us to create a date variable using our string arrays. All we need to do
is specify the year, month, day, and time in our strptime() method. Let's create
a variable for our string array created in our for loop. Then, create a date type
variable with our strptime() method formatting it with our string array.

Chapter 7

[151]

Take a look at the following code and notice how we structured the for loop using
news_post_date list to match up our string array to show our list of dates received
from the RSS feed, which we parse into Python time objects with the strptime()
method. Let's go ahead and add the following code and take a look at our results:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2, time
from xml.etree import ElementTree

try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #Array of post dates
 news_post_date = root.findall("channel//pubDate")

 #Iterate in all our searched elements and print the inner text for
each.
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a new
array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')
 '''Create a formatted string to match up with our strptime
method.'''
 formatted_date = "{0} {1}, {2}, {3}".format(datestr_array[2],
datestr_array[1], datestr_array[3], datestr_array[4])

 #Parse a time object from our string.
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 print blog_datetime

 #Finally, close our open network.
 response.close()

except Exception as e:
 #If we have an issue show a message and alert the user.
 print(e)

Putting It All Together

[152]

As we can see, each loop through the RSS feed shows a time.struct_time object.
The struct_time object allows us to specify which part of the time object we want
to work with; let's print only the month to the console:

Chapter 7

[153]

We can now do this easily by printing blog_datetime.tm_mon, which references the
tm_mon named parameter from our struct_time method. For example, here we get
the number of the month for each post like this:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree
import time

def get_all_rss_dates():

 '''Create a global array to our function to save our month
counts.'''
 month_count = []

 try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #Array of post dates.
 news_post_date = root.findall("channel//pubDate")

 '''Iterate in all our searched elements and print the inner
text for each.'''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a
new array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')

 '''Create a formatted string to match up with our strptime
method.'''
 formatted_date = "{0} {1}, {2}, {3}".format(datestr_
array[2], datestr_array[1], datestr_array[3], datestr_array[4])

 '''Parse a time object from our string.'''
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 '''Add this date's month to our count array'''
 month_count.append(blog_datetime.tm_mon)

Putting It All Together

[154]

 #Finally, close our open network.
 response.close()

 except Exception as e:
 '''If we have an issue show a message and alert the user.'''
 print(e)
 for mth in month_count:
 print(mth)

#Call our function.
get_all_rss_dates()

The following screenshot shows the results of our script:

Chapter 7

[155]

With this output, we can see the number 6, which indicates June, and the number
5, which indicates May. Great! We have now modified our code to consume data
from the Web and display the same type data that we specify in our output. If you're
curious about the string formats on blog_datetime, you can reference the string
format index, which I've included in the following table. There is also a detailed list
available at https://docs.python.org/2/library/datetime.html#strftime-
strptime-behavior.

Placeholder Description
%a This is the abbreviated weekday name
%A This is the weekday name without abbreviation
%b This is the abbreviated month name
%B This is the month name without abbreviation
%c This is the preferred date and time representation
%C This is the century of the date (2000 would return 20, 1900

would return 19)
%d This shows the day of the month
%D This is same as %m/%d/%y
%g This is just like %G, but without the century
%G This gives the four-digit year, such as 2014
%H This shows the hour in the 24 hour format (00 to 23); most blogs use a

24-hour clock
%I This gives the hour in the 12 hour format (01 to 12)
%j Day of the year (001 to 366)
%m Month (01 to 12)
%M Minute
%p Uses either a.m. or p.m.
%S This displays the seconds of the date
%T This gives the current time, which is equal to %H:%M:%S
%W This is the week number of the current year
%w Day of the week as a decimal, Sunday=0
%x This gives the preferred date representation without the time
%X This gives the preferred time representation without the date
%y This only returns the last two digits of the year (for example,

2014 would return 14)

Putting It All Together

[156]

Placeholder Description
%Y This gives the year including the century (if the year is 2014, the output

would be 2014)
%Z or %z This gives the name of the time zone or abbreviation for the time zone (for

example, Eastern standard time, or EST)

Saving the output as a counted array
With our data types in order, we want to count how many posts happen in a given
month. For this, we will need to put each post into a grouped list we can use outside
our for loop. We can do this by creating an empty array outside the for loop and
add each blog_datetime.tm_mon object to our array.

Let's do this in the following code, but first, we will wrap this in a function as our
code files are starting to get a bit large. If you remember back in Chapter 2, Python
Refresher, we wrapped our large code blocks in functions so that we can reuse or
clean up our code. We will wrap our code in the get_all_rss_dates name function
and call it on the last line. Also, we will add the month_count array variable prior to
our try catch ready-to-append values, which we did in our for loop, then print the
month_count array variable. Let's take a look at what this renders:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree
import time

def get_all_rss_dates():
 #create a global array to our function to save our month counts.
 month_count = []

 try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #Array of post dates.
 news_post_date = root.findall("channel//pubDate")

 '''Iterate in all our searched elements and print the inner
text for each.'''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a
new array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')

Chapter 7

[157]

 '''Create a formatted string to match up with our strptime
method.'''
 formatted_date = "{0} {1}, {2}, {3}".format(datestr_
array[2], datestr_array[1], datestr_array[3], datestr_array[4])

 '''Parse a time object from our string.'''
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 '''Add this dates month to our count array'''
 month_count.append(blog_datetime.tm_mon)

 '''Finally, close our open network.'''
 response.close()

 except Exception as e:
 '''If we have an issue show a message and alert the user.'''
 print(e)

 print month_count

#Call our function
get_all_rss_dates()

The following is a screenshot that shows our list of months and the numbers to
correspond with the month. In this case, 5 is for the month of May and 6 is for the
month of June (your numbers may change depending on the month):

Putting It All Together

[158]

Counting the array
Now that our array is ready to work with, let's count the posts in both June and May.
At the time of writing this book, we have seven posts in June and quite a lot in May.

Let's print out the number of blog posts the month of May has had on the Packt
Publishing website news feed. To do this, we will use the count() method,
which lets us search our array for a specific value. In this case, 5 is the value
we are looking for:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree
import time

def get_all_rss_dates():

 '''create a global array to our function to save our month
counts.'''
 month_count = []

 try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 #Array of post dates.
 news_post_date = root.findall("channel//pubDate")

 '''Iterate in all our searched elements and print the inner
text for each. '''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a
new array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')

 '''Create a formatted string to match up with our strptime
method.'''
 formatted_date = "{0} {1}, {2}, {3}".format(datestr_
array[2], datestr_array[1], datestr_array[3], datestr_array[4])

Chapter 7

[159]

 '''Parse a time object from our string.'''
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 '''Add this date's month to our count array'''
 month_count.append(blog_datetime.tm_mon)

 '''Finally, close our open network. '''
 response.close()

 except Exception as e:
 '''If we have an issue show a message and alert the user. '''
 print(e)

 print month_count.count(5)

#Call our function
get_all_rss_dates()

As we can see in the following console, we get the number of posts that were written
in the given month (in the screen and code, this is the month of May):

Putting It All Together

[160]

In our output window, we can see our result was 43 posts for the month of May
in 2014. What if we change our count search to June, or rather, 6 in our code?
Let's update our code and rerun:

Our output shows 7 as the total blog posts for the month of June. At this point,
we've tested our code and now we have a working dataset to display for both
May and June.

Python modules
Alright, so we've set up the data side of our chart, pulling data from the Web and
parsing this data into useable objects in Python. We might think that it's now easy
to plug these values into a pygal chart and call it a day, and in a way, this is correct;
however, we want to be smart with our code.

Remember our discussion on how to wrap large chunks of Python code into
functions; well, for a larger project, we would want to go even higher with modules;
so, our first thought is: what is a module? Have we even used modules in the course
of this book?

Yes, we have been using time, pygal, or urllib2 any time we use an import
statement in our code. That's a module, (sometimes called a library), and more
interestingly, we can make our own modules, thereby allowing us to modularize
our code.

Chapter 7

[161]

Building the main method
In many programming languages, there exists a concept of a main function that is
the very first function called in a program's execution. Let's create one here called
main_chartbuild by simply creating the main_chartbuild.py file in our IDE.

Next, we want to remove the get_all_rss_dates() method call found during our
initial testing in LoadRssFeed and then call our get_all_rss_dates() function's
dates method using import in our main_chartbuild.py file. We will then
reference our method but prefix it with our import name like this:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import LoadRssFeed

#Call our 'LoadRssFeed' function.
LoadRssFeed.get_all_rss_dates()

If we rerun the script, we should see the same result as with our June post count,
which is 7:

Putting It All Together

[162]

Modifying our RSS to return values
As we are using our LoadRssFeed as a library module now, we will want to modify
the end result to return an array we can use in our chart module that we will build
shortly. We will return two counts both in an array, one for May and one for June.

Also, we will remove the print statement as we understand that it is working
properly. So, remove the print line at the end of the LoadRssFeed, get_all_rss_
dates function and replace it with return [month_count.count(5), month_
count.count(6)]. This will allow us to return a single object but keep two
values for our chart. Here's the implementation of the file:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree
import time

def get_all_rss_dates():

 '''create a global array to our function to save our month
counts.'''
 month_count = []

 try:
 '''Open the file via HTTP.'''
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 '''Array of post dates.'''
 news_post_date = root.findall("channel//pubDate")

 '''Iterate in all our searched elements and print the inner
text for each.'''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a
new array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')

 '''Create a formatted string to match up with our strptime
method.'''

Chapter 7

[163]

 formatted_date = "{0} {1}, {2}, {3}".format(datestr_
array[2], datestr_array[1], datestr_array[3], datestr_array[4])

 '''Parse a time object from our string.'''
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 '''Add this date's month to our count array'''
 month_count.append(blog_datetime.tm_mon)

 '''Finally, close our open network.'''
 response.close()

 except Exception as e:
 '''If we have an issue show a message and alert the user.'''
 print(e)

 '''Return two counts for both months.'''
 return [month_count.count(5), month_count.count(6)]

Packt Publishing's website's RSS feed only accounts for the past two
months of posts, so if you're reading this in October, for example, you
would need to set the count to 10 for October and 9 for September for
each month_count item.

Building our chart module
Next, let's create a new Python file to be our chart building library that uses pygal.
We will name this file chart_build.py and add this in our project root along with
our LoadRssFeed.py and main_chartbuild.py files.

Next, open the chart_build.py file and let's build a simple bar chart that shows
the number of posts for the months of May and June. Like our LoadRssFeed
module we built, we will wrap our chart code in a function with a parameter
called dataarr, indicating a data array. Before we add our data to our chart,
let's set up our chart configuration.

Putting It All Together

[164]

Building a portable configuration for our chart
In pygal, we typically create a chart, and inside it, we specify parameters to set
settings for the chart and add our parameter values to the chart object that we call.
The pygal library offers a way to modularize our configuration options.

This is helpful because in this example, we use only one chart but what if we had
eight or twelve more charts to build? Having a portable configuration to set up the
chart layout and theme can be very useful rather than rewriting the configuration
each time.

Take a look at the following code. Here, I'm creating a Python class called
ConfigChart, which has a parameter called Config that basically overrides
the Config object in the chart we assign this to. Inside the class, I have a list of
parameters that I can cleanly update and modify. Notice that I also import pygal,
and using from pygal, I also import Config to work as a separate object:

import pygal
from pygal import Config

'''Creating our own class with values to pass in as parameters to our
chart.'''
class ConfigChart(Config):
 show_legend = True
 human_readable = True
 fill = True
 '''explicit_size sets a fixed size to our width height
properties.'''
 explicit_size = True
 width = 860
 height = 640
 title= 'Posts per month on Packtpub.com'
 y_label = 'Posts'
 x_label = 'Month'
 y_title = 'Posts'
 x_title = 'Month'
 show_y_labels = True
 show_x_labels = True
 stroke = False
 tooltip_font_size = 42
 title_font_size = 24
 '''Always include an error message for any dynamic data.'''
 no_data_text = 'Unable to load data'

Chapter 7

[165]

As you can see, I've added many of the values we discussed in Chapter 5, Tweaking
pygal, and also ensured that our no_data_text parameter had a value in case of any
connection issues. Also, as we want to render this in a browser, I've set the width
and height as well as set a parameter called explicit_size to True to force the
SVG output to a fixed size.

Setting up our chart for data
Now, let's finish setting up our chart to receive data in our chart_build.py file.
Here, I've wrapped my pygal chart creation code in a function called generate_
chart and added a parameter to handle our chart's data pulled from the RSS feed.

Here's the final code for the chart, including our ConfigChart class, applied to our
chart object. Notice that for the add() methods for the chart, I simply added dataarr
with an array index to specify the value for May and June, respectively:

import pygal
from pygal import Config

'''Creating our own class with values to pass in as parameters to our
chart.'''
class ConfigChart(Config):
 show_legend = True
 human_readable = True
 fill = True
 '''explicit_size sets a fixed size to our width height
properties.'''
 explicit_size = True
 width = 860
 height = 640
 title= 'Posts per month on Packtpub.com'
 y_label = 'Posts'
 x_label = 'Month'
 y_title = 'Posts'
 x_title = 'Month'
 show_y_labels = True
 show_x_labels = True
 stroke = False
 tooltip_font_size = 42
 title_font_size = 24
 '''Always include an error message for any dynamic data.'''
 no_data_text = 'Unable to load data'

Putting It All Together

[166]

'''Generate chart based on imported array, (with 2 values)'''
def generate_chart(dataarr):

 '''Initialize the chart with our ConfigChart class.'''
 mychart = pygal.Bar(ConfigChart())

 '''Add data to the chart for May and June.'''
 mychart.add('May', dataarr[0])
 mychart.add('June', dataarr[1])

 '''Launch our web browser with our SVG, (we can also render to
file as well)'''
 mychart.render_in_browser()

Check our code in the LoadRssFeed.py file before running main_chartbuild.py.
We made one change here; we changed the print exception to throw, an exception if
we encounter a data connection issue in our try/catch block. If we were deploying
this application publically, we would add a UI error for a consumer rather than
an exception.

In this code, we've updated to return two values that we will pass into our chart:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import urllib2
from xml.etree import ElementTree
import time

def get_all_rss_dates():
 '''create a global array to our function to save our month
counts.'''
 month_count = []

 try:
 '''Open the file via HTTP. '''
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 '''Array of post dates.'''
 news_post_date = root.findall("channel//pubDate")

Chapter 7

[167]

 '''Iterate in all our searched elements and print the inner
text for each. '''
 for date in news_post_date:
 '''Create a variable striping out commas, and generating a
new array item for every space.'''
 datestr_array = date.text.replace(',', '').split(' ')

 '''Create a formatted string to match up with our strptime
method.'''
 formatted_date = "{0} {1}, {2}, {3}".format(datestr_
array[2], datestr_array[1], datestr_array[3], datestr_array[4])

 '''Parse a time object from our string.'''
 blog_datetime = time.strptime(formatted_date, "%b %d, %Y,
%H:%M:%S")

 '''Add this date's month to our count array'''
 month_count.append(blog_datetime.tm_mon)

 '''Finally, close our open network. '''
 response.close()

 except Exception as e:
 '''If we have an issue show a message and alert the user.'''
 throw

 #Return two counts for both months.
 return [month_count.count(5), month_count.count(6)]

Configuring our main function to pass data
One more task to do is set up our main function, which is our main_chartbuild.py,
which is called when our script is executed. As our LoadRssFeed module returns
an array that we pass into our chart, we will call the generate_chart() method
from our chart module that we build and pass in the result, as shown in the
following code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import LoadRssFeed, chart_build

#Call our 'LoadRssFeed' function.
chart_build.generate_chart(LoadRssFeed.get_all_rss_dates())

Putting It All Together

[168]

Let's run our main_chartbuild.py file and take a look at the results:

Project improvements
Success! We built a dynamic chart by pulling data from a web source and generated
a chart with specific configurations that can be moved, updated, and replicated
easily! Now, for our time together, this is a pretty simple example on a dynamic
chart. Depending on the real-life situation, this script might auto-update every ten
minutes, for example, on a chart-build server, or be called from another language
with shell access that can trigger a Python script.

Also, think of the data and how it can create different kinds of charts. We can create
arrays using our LoadRssFeed module we built together and pull how many posts
a specific author has, or how many times a specific word shows up in a blog post's
title. We have experienced working through a complex application in Python and
taking live data on the web pulling into our chart to be displayed.

Chapter 7

[169]

The following is the modified code that is independent of a month:

import pygal
from pygal import Config

'''Creating our own class with values to pass in as parameters to our
chart. '''
class ConfigChart(Config):
 show_legend = True
 human_readable = True
 fill = True
 #explicit_size sets a fixed size to our width height properties.
 explicit_size = True
 width = 860
 height = 640
 title= 'Posts per month on Packtpub.com'
 y_label = 'Posts'
 x_label = 'Month'
 y_title = 'Posts'
 x_title = 'Month'
 show_y_labels = True
 show_x_labels = True
 stroke = False
 tooltip_font_size = 42
 title_font_size = 24
 #Always include an error message for any dynamic data.
 no_data_text = 'Unable to load data'

'''Generate chart based on imported array, (with 2 values) '''
def generate_chart(dataarr):

 '''Initialize the chart with our ConfigChart class. '''
 mychart = pygal.Bar(ConfigChart())

 '''Add data to the chart for May and June. '''
 for data in dataarr:
 mychart.add(data[0], data[1])
 #mychart.add('June', dataarr[1])

 '''Launch our web browser with our SVG,
 (we can also render to file as well) '''
 mychart.render_in_browser()

Putting It All Together

[170]

if __name__ == '__main__':
 generate_chart([('May', 10), ('June', 20), ('July', 30)])

LoadRssFeed.py

import urllib2
from xml.etree import ElementTree
from collections import defaultdict

def get_all_rss_dates():

 month_count = defaultdict(int)

 try:
 #Open the file via HTTP.
 response = urllib2.urlopen('http://www.packtpub.com/rss.xml')
 tree = ElementTree.parse(response)
 root = tree.getroot()

 news_post_date = root.findall("channel//pubDate")

 #Iterate in all our searched elements and print the inner text
for each.
 for date in news_post_date:
 month_count[date.text[8:11]] += 1

 response.close()

 except Exception as e:
 #If we have an issue show a message and alert the user.
 throw

 return list(month_count.items())

if __name__ == '__main__':
 print(get_all_rss_dates())

Summary
In this chapter, we put together a basic, yet real-life working dynamic chart
application using the RSS data pulled dynamically from the Web using HTTP. We
created a chart using the pygal library, then modified our chart using the pygal's
Config class, and automatically launched the web browser to display the chart.

Further Resources
So we may ask, what now? What else is there to know? Well, quite a bit actually,
as mentioned at the beginning back in Chapter 1, Setting Up Your Development
Environment, and other chapters as well, this is an introduction to data visualizations
using Python, but not the entirety.

Building dynamic charts in Python is a skillset that's very much in demand these
days. The reason being is twofold; for one, Python is free and cross-platform
allowing build servers to exist on a Linux server, a Microsoft IIS server; or a
Mac server, you get the idea.

The other reason is that Python works very fast with processing data computations,
specifically regarding medical, atmospheric, or even financial data to name a few.
Depending on the types of data needing different styles of charts with different
interactivity, we will need to use different charting libraries, which begs the
question, what else is out there beyond pygal?

The matplotlib library
In the Python world of graphics and data charting, one of the most popular libraries
out there is matplotlib. While the name may sound silly, matplotlib is simply put,
a 2D and 3D plotting library that generates production quality, hardcopy graphics
and charts. Now, the matplotlib library can be easy to work with early on, but it
can get very complex quickly.

Remember back in Chapter 2, Python Refresher, we discussed creating our own
graphics, and charts from scratch? Well, matplotlib allows us to not only build charts
and graphs, but also draw graphics, widgets, and run animations both in 2D static
images and 3D objects created within the framework. Check out the examples on the
matplotlib website: http://matplotlib.org/examples/index.html.

Further Resources

[172]

Installing the matplotlib library
Remember back at the start of Chapter 3, Getting Started with pygal, pygal required
the installation of lxml? Well, so does matplotlib, but with a different set of libraries,
on Linux systems; matplotlib is easily installable through most Linux general
Python package managers with all its required dependencies by using the
following command, thus you don't require a Debian installer:

sudo apt-get install Python-matplotlib

If you are using a Windows-based system, consider using a Mac
or Linux-based system, since they require a bit of extra work to get
matplotlib installed properly. If you only have access to Windows,
consider installing a virtual machine with an OS such as Ubuntu.

The following screenshots shows the matplotlib Downloads page:

Chapter 8

[173]

matplotlib's library download page
Now, if you're working in Windows or Mac-based OS, matplotlib recommends
downloading a binary installer for matplotlib, for which the developers' created an
exe installer for Windows machines, or dmg installer for Mac systems. This allows C
imaging code to be installed properly to the machine, like lxml in Chapter 1, Setting
Up Your Development Environment, for Window's systems. You can grab the installer
for Windows and Mac here: http://matplotlib.org/downloads.html.

For Mac users for matplotlib, the links at the time of writing this show
10.6 as the only installer; these will work on any Intel Mac, including
10.9 Mavericks.

If you do run into an issue with matplotlib on Linux systems, tarball installers for
that platform can be found on that page as well; be sure to install the version that
goes along with your Python's runtime.

One dependency is that matplotlib uses Numeric Python or NumPy to handle
complex math, and is commonly used in basic chart creation, and/or for creating
curves in data. Downloading this dependency is a bit easier through pip, by using
the pip command shown in the following command. If you run into issues, check
out installing the SciPy stack at http://www.scipy.org/, which also includes
maplotlib along with extra plugins.

sudo pip install numpy

For Windows users, NumPy does not include a 64-bit version.
You will need a 32-bit version of Python 2.7 to run it.

Creating simple matplotlib charts
Most basic charts in matplotlib are fairly easy to build once your libraries and
dependencies are installed. In the following code, we have a sample code with
standard Python and Unicode declarations and we simply create a list numbers
using a range of 0 – 541, then we add values to our chart using a simple for
loop, and save the file while also showing it in the matplotlib viewer:

#!/usr/bin/env Python
-*- coding: utf-8 -*-

from matplotlib import pyplot

Further Resources

[174]

#Create a range from 0 - 541
X = range(0, 541)

#Set the values for Y by iterating thru X's range.
Y = [i*i for i in X]

'''Assign a range of values to the graph, the dash goes between each
value.'''
pyplot.plot(X, Y, '-')

#Set chart's labels and title
pyplot.title('Plotting x*x')
pyplot.xlabel('X Axis')
pyplot.ylabel('Y Axis')

#Save the chart as a PNG to our project directory.
pyplot.savefig('Simple.png')

#Show the chart in the Python runtime viewer.
pyplot.show()

The following screenshot shows the result of our script:

Chapter 8

[175]

Notice here that our chart's Simple.png file that was created with the savefig()
function is actually transparent. This is due to how matplotlib renders PNG charts.
Now, if we look at the last line, pyplot.show(), this will tell matplotlib to display
the following window showing the same chart we saved to our Simple.png file.

The following is our chart using Python's chart viewer supplied by matplotlib.
You can manipulate the chart using the controls at the bottom-left:

Further Resources

[176]

One of the controls that can be found next to the save button is the Subplot
Configuration Tool. Clicking that opens a subset of controls to tweak the
chart, as shown in the following screenshot:

When satisfied with how your chart looks, you can save it with the save button.
If you make a mistake, you can click on reset or click the home button on the main
window's toolbar.

The matplotlib library includes many standard chart types as well as 3D-supported
charts. Let's build a simple 3D chart. Take a look at the following code:

#!/usr/bin/env Python
-*- coding: utf-8 -*-

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.gca(projection='3d')

#Create a curve on the z axis.
x = np.linspace(0, 1, 100)
y = np.sin(x * -1 * np.pi) / 2 + 0.5

ax.plot(x, y, zs=0, zdir='z', label='Our random sin curve, only for
z-axis')

'''Specify colors, and loop thru each and randomize the scatter dots,
and add them to the chart data.'''
colors = ('r', 'g', 'k', 'b')
for c in colors:
 x = np.random.sample(42)
 y = np.random.sample(42)

Chapter 8

[177]

 ax.scatter(x, y, 1, zdir='x', c=c)

#Apply the legend.
ax.legend()

#Add the X, Y, and Z axis.
ax.set_xlim3d(0, 1)
ax.set_ylim3d(0, 1)
ax.set_zlim3d(0, 1)

#Show the chart.
plt.show()

For this chart, notice we are using mpl_toolkits, a module of matplotlib; this
includes the Axes3D module. This allows us to draw 3D-based charts. Here we're
going to draw a curve on the z axis, and randomly scatter multicolored dots on the
x axis. Let's run the code and look at the results:

Further Resources

[178]

One great feature of 3D charts with matplotlib is that we can rotate 3D charts with
a mouse, by dragging the mouse over the chart image; here's an example of updating
the chart to get a better angle with the dots and the curve:

This is just a taste of what matplotlib offers to chart visualization developers, many
of the same types of charts we covered in pygal translate over to matplotlib, but it
includes all kinds of plugins and more 3D charts and drawing tools.

Chapter 8

[179]

For more on this library, check out the matplotlib website. Considering its popularity,
there are plenty of books on the topic to get you started with various entry points into
the library.

Plotly
Plotly (https://plot.ly/) is a new charting library in the Python data visualization
space. What separates Plotly from other charting Python libraries is that it is very
business- and organization-oriented. Plotly is a company, unlike some other libraries
on the Web. Python developers need to sign up on the website for a developer
account to receive an API key to use in code, as shown in the following screenshot:

Further Resources

[180]

The concept of Plotly is simple. Charts are created in either an online tool hosted on
Plotly's website, or by code; in our case, a Python library that integrates with Plotly's
services, since Plotly hosts each saved chart, and it allows hosted charts to be shared.
This is helpful in sharing data with non-technical users. For example, the following is
a screenshot of a chart made in the Plotly editor that a user can share on the web:

Chapter 8

[181]

The advantage Plotly gives is that it's easy to share interactive charts. Plotly also has
an online tool shown in the preceding screenshot, to create charts without any code,
and upload data to display to an online shareable chart. Developers can also use
Plotly on Chrome OS by using its Chrome app.

On the flip side, Plotly works well as a cloud-based library. It's important to know
that Plotly's library requires Python 3 or higher; so before installing, we will need
to download Python 3 from Python's website (http://www.python.org/). Before
installing Plotly, you can also run Python 3 alongside 2 if required. Installation for
Plotly with Python 3 is very easy as well. The plotly library can be installed easily
using pip, as shown in the following code:

pip install plotly

Remember that Plotly requires Python 3 or higher to work. Otherwise, if pip is run in
Python 2.7, some of the dependencies won't be installed. Now, once we've installed
our library, we need to specify our login information for the API, this is specific to
the login or OpenID used on the https://plot.ly/ site. Be sure to include the login
information requested; otherwise, any charts will result in a dialog similar to what is
shown in the following screenshot:

Fortunately, Plotly has a page where if you're logged in, it will generate a sample
login object with user-specific information. We can find this at https://plot.ly/
Python/getting-started/.

Further Resources

[182]

With that added, let's build a simple chart in Plotly. Here, we will import Plotly to
our script and again as a module, all the chart types for us to use, and finally our
information to use the API.

Here, we will build a simple line chart with some sample data. Copy the following
code and run the script, keeping in mind a registered username and API key will be
needed to run the script. In the following code sample, I've added placeholders in
brackets to fill in:

#!/usr/bin/env python
-*- coding: utf-8 -*-

'''import Plotly, and the main plotly object as a variable.'''
import plotly;
import plotly.plotly as py

'''import all chart types.'''
from plotly.graph_objs import *

'''Set the username, APIKey, and streaming IDs as given on https://
plot.ly/python/getting-started/'''
plotly.tools.set_credentials_file(username='[username]', api_
key='[apikey]', stream_ids=['[streamingkey1]', '[streamingkey2]'])

'''Create a data-set for a Plotly scatter plot.'''
trace0 = Scatter(
 x=[5, 10, 15, 20],
 y=[20, 40, 35, 16]
)

'''Assign the chart's data to an array typed variable (in this case
trace0) to hold data.'''
data = Data([trace0])

'''Create a URL with the data loaded via the API, and open a web
browser to the chart on success.'''
unique_url = py.plot(data, filename = 'basic-line')

If successful, we should see our default web browser open the chart, which we can
share easily via the social network icons in the left-hand side of our Plotly viewer
on the Web. Notice that if we hover over the chart, we can get animations and data
similar to pygal, but we can also zoom into the charts or select specific areas of the
chart for more complex data.

Chapter 8

[183]

Well done! Let's build one more chart. This time it will be a scatter plot with two
datasets. We will do a mock chart comparing NASCAR fans with Formula 1 fans
sampled from Europe and the United States (keep in mind, this is just sample data).

In this chart, we will also incorporate some labels to better style the chart, and
format the dots with our own styles. Again, we will need our API login and keys;
placeholders have been set up in this code sample:

#!/usr/bin/env python
-*- coding: utf-8 -*-

'''import Plotly, and the main plotly object as a variable.'''
import plotly;
import plotly.plotly as py

'''import all chart types.'''

Further Resources

[184]

from plotly.graph_objs import *

'''Set the username, APIKey, and streaming IDs as given on https://
plot.ly/python/getting-started/'''

plotly.tools.set_credentials_file(username='[username]', api_
key='[apikey]', stream_ids=['[streamingkey1]', '[streamingkey2]'])

'''Create a data-set for a scatter plot.'''
trace0 = Scatter(
 #Create an array for each value.
 x=[27984, 9789],
 y=[34, 27],
 text=['Formula 1 Fans', 'Nascar Fans'],
 name='European automotive fans',
 mode='markers',
 marker=Marker(
 line=Line(
 color='rgb(124, 78, 42)',
 width=0
),
 size=48,
 color='rgb(124, 78, 42)'
)
)

trace1 = Scatter(
 #Create an array for each value.
 x=[10117, 340159],
 y=[38, 31],
 text=['Formula 1 Fans', 'Nascar Fans'],
 name='North America automotive fans',
 mode='markers',
 marker=Marker(
 line=Line(
 color='rgb(114, 124, 195)',
 width=0
),
 size=48,
 color='rgb(114, 124, 195)'
)
)

'''Set chart's titles, labels, and values.'''
layout = Layout(
 title='Fan comparisons of automotive sports in the United States
and Europe',
 xaxis=XAxis(
 title='Amount of fans',
 showgrid=True,

Chapter 8

[185]

 zeroline=False
),
 yaxis=YAxis(
 title='Average age of fans sampled',
 showline=True
)
)

'''Assign the data to an array typed variable to hold data.'''
data = Data([trace0, trace1])

'''Add full chart labels to the chart.'''
fig = Figure(data=data, layout=layout)

'''Create a URL with the data loaded via the API, pass the data to the
figure which is passed here, and then open a web browser to the chart
on success.'''
unique_url = py.plot(fig, filename = 'line-style')

The following screenshot shows the result of our script:

Further Resources

[186]

So as we can see, Plotly is very easy to work with, and with our pygal background,
this will work well for any future projects. For info on the Plotly API with Python,
check out the developer site at https://plot.ly/Python/.

Pyvot
Pyvot (http://pytools.codeplex.com/wikipage?title=Pyvot) is a Python data
to Microsoft Excel converter, which is a very handy tool for exporting chart data or
general Python values to Excel. It can be installed using pip like this:

pip install Pyvot

You can also install it with easy_install:

easy_install Pyvot

One thing to be noted is that at the end of writing this book, Pyvot is no
longer maintained by the author, and is mostly being used for tech demos
for Python in Visual Studio by Microsoft staff or Microsoft MVPs, so
we will refrain from posting sample code in this book. Should you need
documentation on Pyvot's CodePlex site, http://pytools.codeplex.
com/wikipage?title=Pyvot is helpful. Another thing to note is that
Pyvot can be commonly found in some Python charting projects, mainly
due to the tight integration with Visual Studio and Excel.
The library itself still works very well with Python 2 and 3 projects, but
if a maintained library is desired, check out: PyXLL (https://www.
pyxll.com/) or DataNitro (https://datanitro.com/).

The following screenshot shows the CodePlex site for Pyvot with a download link
and video documentation walkthrough:

Chapter 8

[187]

Summary
In this chapter, we wrapped things up with an overview and basic usage of both
matplotlib and Plotly. We touched upon exporting data by using libraries such
as Pyvot, PyXLL, and DataNitro.

One takeaway from this book is that the choices for data visualization are huge in
the Python language. My advice for new and current Python developers is to find a
library that works well for your needs and the goals of your projects. For this book,
we covered the pygal library due to its simplicity and its easy to use documentation,
as mentioned in Chapter 3, Getting Started with pygal. Now try some of these other
libraries mentioned in this chapter and see what data visualization library works
best for you.

References and Resources
The Python community offers quite a few resources and tools when working with
data visualization libraries, as well as community help. Here is a list of sites for
further reading, including the libraries covered in this book.

Links for help and support
The following are links for help and support:

•	 Kozea, creators of pygal, and a general open source discussion board can be
found at http://community.kozea.fr

•	 Stack overflow for general Python questions can be found at
http://stackoverflow.com/questions/tagged/Python

•	 Stack overflow questions for data visualizations with Python can be
found at http://stackoverflow.com/questions/tagged/data-
visualization+Python

•	 Snipplr for Python code (great for Python code snippets) can be found at
http://snipplr.com/all/language/Python

Charting libraries
The following are links for different charting libraries:

•	 matplotlib can be found at http://matplotlib.org
•	 pygal can be found at http://pygal.org
•	 Plotly can be found at https://plot.ly
•	 PyChart can be found at http://home.gna.org/pychart/
•	 iGraph: can be found at http://igraph.org/redirect.html
•	 NetworkX can be found at http://networkx.github.io

References and Resources

[190]

•	 Graphviz can be found at http://www.graphviz.org/Gallery.php
•	 pygooglechart (a Python wrapper for Google charts) can be found at

https://github.com/gak/pygooglechart

Editors and IDEs for Python
The following are links for different editors and IDEs for Python:

•	 Python tools for Visual Studio (used primarily with this book, and works
well with pygal) can be found at http://pytools.codeplex.com

•	 PyDev for Eclipse can be found at http://pydev.org
•	 CodeRunner for Mac (a nice editor for running quick Python scripts

and works well with matplotlib projects) can be found at
http://krillapps.com/coderunner/

•	 Sublime Text (a great, lightweight editor for cross-platform editing) can be
found at http://www.sublimetext.com

•	 PyCharm (a full IDE alternative to PyDev and Visual Studio) can be found at
http://www.jetbrains.com/pycharm/

Other libraries and Python alternative
shells
The following are links for other libraries and Python alternative shells:

•	 Anaconda can be found at https://store.continuum.io/cshop/anaconda/
•	 Canopy can be found at https://www.enthought.com/products/canopy/
•	 Python Imaging Library (PIL), a common imaging library in Python, can be

found at http://www.Pythonware.com/products/pil/
•	 IPython (a feature rich shell, commonly used for matplotlib projects) can be

found at http://iPython.org
•	 IronPython (Python plus access to the .NET framework and WPF

visualization tools) can be found at http://ironPython.net
•	 Jython (Python with Java access) can be found at http://www.jython.org
•	 Pyvot can be found at http://pytools.codeplex.com/

wikipage?title=Pyvot

•	 PyXLL can be found at https://www.pyxll.com/
•	 DataNitro can be found at https://datanitro.com/

Index
A
Anaconda

URL 190
array

counting 158-160
ATOM

about 131
URL, for specification 131

B
bar chart

about 71
building 71

basics, Python
about 35-40
image, generating 45-48
input 42-45
libraries, importing 40-42
modules, importing 40-42
output 42-45

blog
chart, used for 145

box plots 89-91

C
Canopy

URL 190
chart

portable configuration,
building for 164, 165

setting up, for data 165, 166
used, for blog 145

chart module
building 163

chart title settings 120-122
chart usage, for blog

data, rearranging 146-148
date strings, converting to dates 149
output saving, as counted array 156-160
strptime, using 150-154

CodePlex site
URL 186

CodeRunner, for Mac
URL 190

counted array
creating 156, 157

country chart 105-107
craft_type array 98

D
data

chart, setting up for 165, 166
extracting, from Web 127-129
passing, via main function

configuration 167
rearranging 146-148

DataNitro
URL 186, 190

dataset
creating 145

dates
date strings, converting to 149

date strings
converting, to dates 149

datetime library 78
DateY charts

about 78
building 78-82

dot_chart class 91
dot charts 91-94

[192]

E
easy_install 7, 48
Eclipse Classic

URL 33
Eclipse Kepler

URL 28
editors, Python

URL 190
Extensible Markup Language. See XML

F
findall() method 136
funnel charts

about 94, 95
advantage 94

G
gauge charts 96-98
Graphviz

URL 190

H
horizontal bar charts 73
HTTP (Hypertext Transfer Protocol)

about 131, 132
JSON, parsing in Python 136-143
using, in Python 132, 133
XML, parsing in Python 134-136

I
IDEs, Python

URL 190
iGraph

URL 189
installation, PIL 46
installation, Python

in Windows 15-19
installer, Mac

URL 173
installer, Windows

URL 173
IPython

URL 190

IronPython
about 23
URL 23, 190

J
JSON

about 136
parsing, in Python 136-143
URL 137

JSONP (JSON with Padding)
about 143
using, with Python 144

Jython
URL 190

K
Kozea

URL 189

L
label_font_size parameter 117
label settings 116-120
legend_at_bottom parameter 109, 110
legend box

formatting, legend_box_size parameter
used 111-116

legend_box_size parameter
used, for formatting legend box 111-116

legend settings 111
line.add() statement 69
line chart

building 67-69
lxml library 16, 64

M
Mac OS X

Python, setting up on 25-30
main function

configuring, for passing data 167
matplotlib

URL 189
matplotlib charts

creating 173-178

[193]

matplotlib library
about 171
download page 173
installing 172
matplotlib charts, creating 173-178

matplotlib website
URL 171

N
Neon 124
NetworkX

URL 189
no data

displaying 123
no_data_text parameter 123

P
parameters

about 108, 109
legend_at_bottom parameter 109, 110
legend box formatting, legend_box_size

parameter used 111-116
legend settings 111

pie charts
about 85, 86
stacked pie charts 86, 87

Pie() function 86
PIL

about 45
installing 46
URL 190

pip
about 7
used, for installing pygal 64, 65

Plotly
about 179-186
advantage 181
URL 179, 189

Plotly API
URL 186

portable configuration
building, for chart 164, 165

project improvements 168
pubDate object 146

PyCharm
URL 190

PyChart
URL 189

PyDev, Eclipse
URL 190

pygal
about 61-64
DateY charts 78
features 61, 62
horizontal bar charts 73
installing for Visual Studio, Python Tools

used 66, 67
installing, pip used 64, 65
line chart, building 67-69
scatter plots 77
simple bar chart 71
stacked bar charts 72
stacked line charts 69
URL 62
XY charts 74

pygal charting library
about 85
URL 189

pygal style tool
URL 126

pygal themes
about 124-126
URL 126

pygooglechart
URL 190

pyramid charts 98-100
Python

alternative shells 190
basics 35-40
HTTP, using in 132, 133
installing, on Windows 9-14
installing, URL 26
JSON, parsing in 136-143
JSONP, using with 144
setting up, on Mac OS X 25-30
setting up, on Ubuntu 31-34
setting up, on Windows 7, 8
XML, parsing in 134-136

Python 3
URL 181

[194]

Python editors
about 20-25
IDE 20

Python Imaging Library. See PIL
Python modules

about 160
main method, building 161

Python Package Index (PyPi)
about 8
URL 9

Python Tools
URL 190
used, for installing pygal 66, 67

Python Tools installer
URL 22

Pyvot
about 186
URL 186, 190

PyXLL
URL 186, 190

R
radar charts 88
range() function 67
Really simple syndication. See RSS feed
Red Blue theme 125
replace() method 149
Rich Internet Applications (RIA) 136
RSS feed

about 131
modifying, for returning values 162, 163
URL, for specification 131

RSS feed, modifying
chart module, building 163
chart, setting up for data 165, 166
main function, configuring

for passing data 167
portable configuration, building

for chart 164, 165

S
scatter plots 77, 78
SciPy stack

URL 173
Snipplr, Python code

URL 189

stacked bar charts 72
stacked line charts

about 69
building 69, 70

stacked pie charts 86, 87
Stack overflow, data visualizations

URL 189
Stack overflow, Python questions

URL 189
string format index

%a 155
%A 155
%b 155
%B 155
%c 155
%C 155
%d 155
%D 155
%g 155
%G 155
%H 155
%I 155
%j 155
%m 155
%M 155
%p 155
%S 155
%T 155
%w 155
%W 155
%x 155
%X 155
%y 155
%Y 156
%z 156
%Z 156

strptime
using 150-154

strptime() method 150
struct_time object 152
Sublime Text

URL 190
SVG graphics

creating, svgwrite used 48
SVG graphics, creating with svgwrite

for Eclipse, on Linux 50-58
for Eclipse, on Mac 50-58

[195]

for Eclipse, on Windows 50
for editors, on Windows 50
for Windows users, with VSPT 48

svgwrite
URL 48
used, for creating SVG graphics 48

T
timedelta function 78

U
Ubuntu

Python, setting up on 31-34

V
values

returning, via RSS feed
modification 162, 163

Visual Studio
pygal, installing for 66, 67

W
Web

data, extracting from 127, 129
whisker plots. See box plots
Windows

Python installation, exploring 15-19
Python, installing on 9-14
Python, setting up 7, 8

Windows installer
URL 16

worldmap charts 101-103

X
x_label_rotation parameter 118
x_labels property 93
XML

about 130
parsing, in Python 134-136
URL, for specification 130

XPath
about 130
URL, for specification 130

XY charts
about 74
building 74-76

Z
zip() function 98

Thank you for buying
Learning Python Data Visualization

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs
using advanced techniques

1.	 Identify the bottlenecks in your applications
and solve them using the best profiling
techniques.

2.	 Write efficient numerical code in NumPy
and Cython.

3.	 Adapt your programs to run on multiple
processors with parallel programming.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1.	 Learn how to set up an optimal Python
environment for data visualization.

2.	 Understand the topics such as importing
data for visualization and formatting data
for visualization.

3.	 Understand the underlying data and how to
use the right visualizations.

Please check www.PacktPub.com for information on our titles

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and
data visualization

1.	 A practical step-by-step tutorial which will
help you to replace the Python console with the
powerful IPython command-line interface.

2.	 Use the IPython notebook to modernize the way
you interact with Python.

3.	 Perform highly efficient computations with
NumPy and Pandas.

Matplotlib for Python Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the
easy way

1.	 Create high quality 2D plots by using
matplotlib productively.

2.	 Incremental introduction to matplotlib, from
the ground up to advanced levels.

3.	 Embed matplotlib in GTK+, Qt, and wxWidgets
applications as well as websites to utilize them
in Python applications.

4.	 Deploy matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Your
Development Environment

	Introduction
	Setting up Python on Windows
	Installation
	Exploring the Python installation in Windows
	Python editors
	Setting up Python on Mac OS X
	Setting up Python on Ubuntu
	Summary

	Chapter 2
: Python Refresher
	Python basics
	Importing modules and libraries
	Input and output
	Generating an image

	Creating SVG graphics using svgwrite
	For Windows users using VSPT
	For Eclipse or other editors on Windows
	For Eclipse on Mac and Linux

	Summary

	Chapter 3
: Getting Started with pygal
	Why use pygal?
	Installing pygal using pip
	Installing pygal using Python Tools
 for Visual Studio
	Building a line chart

	Stacked line charts
	Simple bar charts
	Stacked bar charts
	Horizontal bar charts
	XY charts
	Scatter plots
	DateY charts
	Summary

	Chapter 4
: Advanced Charts
	Pie charts
	Stacked pie charts

	Radar charts
	Box plots
	Dot charts
	Funnel charts
	Gauge charts
	Pyramid charts
	Worldmap charts
	Summary

	Chapter 5 : Tweaking pygal

	Country charts
	Parameters
	Legend at the bottom
	Legend settings

	Label settings
	Chart title settings
	Displaying no data
	pygal
 themes
	Summary

	Chapter 6
: Importing Dynamic Data
	Pulling data from the Web
	The XML refresher
	RSS and the ATOM
	Understanding HTTP
	Using HTTP in Python

	Parsing XML in Python with HTTP
	About JSON
	Parsing JSON in Python with HTTP
	About JSONP
	JSONP with Python
	Summary

	Chapter 7 : Putting It
All Together
	Chart usage for a blog
	Getting our data in order
	Converting date strings to dates
	Using strptime
	Saving the output as a counted array
	Counting the array

	Python modules
	Building the
 main method

	Modifying our RSS to return values
	Building our chart module
	Building a portable configuration for our chart
	Setting up our chart for data
	Configuring our main function to pass data

	Project improvements
	Summary

	Chapter 8
: Further Resources
	The matplotlib library
	Installing the matplotlib library
	matplotlib's library download page
	Creating simple matplotlib charts

	Plotly
	Pyvot
	Summary

	Appendix:
References and Resources
	Links for help and support
	Charting libraries
	Editors and IDEs for Python
	Other libraries and Python alternative shells

	Index

