Learning Python Application
Development

Take Python beyond scripting to build robust, reusable,
and efficient applications

PACKT :

Learning Python Application
Development

Take Python beyond scripting to build robust, reusable,
and efficient applications

Ninad Sathaye

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Learning Python Application Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016
Production reference: 1290816

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-919-6

www . packtpub.com

[FM-2]

www.packtpub.com

Credits

Author
Ninad Sathaye

Reviewer
Will Ware

Commissioning Editor
Priya Singh

Acquisition Editor
Kevin Colaco

Content Development Editor
Deepti Thore

Technical Editors
Kunal Chaudhari

Sunith Shetty

Copy Editor
Zainab Bootwala

[FM-3]

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

Disclaimers

The names, characters, businesses, places, events, and incidents mentioned in

this book are either the products of the author's imagination or used in a fictitious
manner. Any resemblance to actual persons, living or dead, or actual events is purely
coincidental.

The views and opinions expressed in this book are solely of the author and do not
reflect those of author's employer or its clients.

For this book, the cartoons representing imaginary game characters, such as the
Dwarf, Knight, Orc, Fairy, Elf, and so on, are created and copyrighted by Packt
Publishing.

[FM-4]

About the Author

Ninad Sathaye has spent several years of his professional career designing and
developing performance-critical engineering applications written in a variety of
languages, including Python and C++. He has worked as a software architect in the
semiconductor industry, and more recently in the domain of Internet of Things. He
holds a master's degree in mechanical engineering.

I would like to thank my wife, Arati, for her creative input on the
book's game theme. This book wouldn't have been possible without
her continued support. I would also like to express my sincere
gratitude to Will Ware for technically reviewing this book. His
feedback was valuable and really helped me take this book to the
next level! Thank you Deepti, Kunal, Zainab, and the whole Packt
Publishing team for your hard work and support. I owe a special
thanks to Abhinash Sahu from Packt Publishing for creating the
awesome graphics art for all the fictional characters in this book.
My sincere thanks to Steve Furkay, Neeshma, and Kevin for their
valuable feedback during the initial phase of this book. Finally, I
would like to thank my whole family for their encouragement and
support!

[FM-5]

About the Reviewer

Will Ware is a software engineer in the Boston area. He has worked with
embedded systems, mobile phones, and web development. He received degrees

in electrical engineering and mathematics from M.L.T. His interests include STEM
education and 3D printing.

[FM-6]

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[lﬂ PACKTL 1°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

[FM-7]

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[FM-8]

To my daughter, Anvita

[FM-9]

Table of Contents

Preface xiii
Chapter 1: Developing Simple Applications 1
Important housekeeping notes 2
Installation prerequisites 2
Installing Python 3
Option 1 — official distribution 3
Option 2 — bundled distribution 4
Python install location 5
Verifying Python installation 6
Installing pip 7
Installing IPython 7
Choosing an IDE 8
The theme of the book 9
Meet the characters 10
Simple script — Attack of the Orcs v0.0.1 1"
The game — Attack of the Orcs v0.0.1 11
Problem statement 12
Pseudo code — version 0.0.1 12
Reviewing the code 13
Running Attack of the Orcs v0.0.1 17
Using functions — Attack of the Orcs v0.0.5 18
Reuvisiting the previous version 19
Pseudo code with attack feature — Version 0.0.5 22
Reviewing the code 24
Running Attack of the Orcs v0.0.5 28
Using OOP - Attack of the Orcs v1.0.0 29
Prioritize the feature requests 30

Problem statement

w
—_

[i]

Table of Contents

Redesigning the code 31
Painting the big picture 32
Pseudo UML representation 33
Understanding the pseudo UML diagram 34
Reviewing the code 35
Running Attack of the Orcs v1.0.0 40
Abstract base classes in Python 40
Exercise 42
Summary 43
Very important note for e-book readers 44
Chapter 2: Dealing with Exceptions 45
Revisiting Attack of the Orcs v1.0.0 45
Debugging the problem 46
Fixing the bugs... 48
Exceptions 49
What is an exception? 49
Most common exceptions 49
Exception handling 51
Raising and re-raising an exception 52
The else block of try...except 54
finally...clean it up! 55
Back to the game — Attack of the Orcs v1.1.0 58
Preparatory work 58
Adding the exception handling code 59
Running Attack of the Orcs v1.1.0 60
Defining custom exceptions 61
Preparatory work 61
Custom exception — The problem 61
Writing a new exception class 63
Expanding the exception class 65
Inheriting from the exception class 68
Exercise &
Summary 71
Chapter 3: Modularize, Package, Deploy! 73
Selecting a versioning convention 74
Serial increments 74
Using a date format 76
Semantic versioning scheme 76

Lii]

Table of Contents

Modularizing the code

Attack of the Orcs v2.0.0
Creating a package

Importing from the package
Releasing the package on PyPI

Prepare the distribution
Step 1 — Setting up the package directory
Step 2 — Writing the setup.py file
Step 3 — Updating the README and LICENSE.txt files
Step 4 — Updating the MANIFEST.in file
Step 5 — Build a deployment-ready distribution

Uploading the distribution
Step 1 — Creating an account on PyPI test website
Step 2 — Creating a .pypirc file
Step 3 — Register your project
Step 4 — Uploading the package
A single command to do it all
Installing your own distribution
Using a private PyPI repository
Step 1 — Installing pypiserver
Step 2 — Building a new source distribution
Step 3 — Starting a local server
Step 4 — Installing the private distribution
Making an incremental release
Packaging and uploading the new version
Upgrading the installed version
Version controlling the code
Git resources
Installing Git
Configuring your identity
Basic Git terminology

Creating and using a Git repository
Creating a bare remote repository
Clone the repository
Copying the code to the cloned repository
Staging the code and committing
Pushing the changes to the central repository

Using GUI clients for Git
Exercise
Summary

77
77
80
80
82

82
83
84
85
86
86

88
88
88
89
90

92
92
94
94
94
95
96
97
97
97
98
98
98
99
99

100
101
101
102
102
103

104

104

105

Liii]

Table of Contents

Chapter 4: Documentation and Best Practices 107
Documenting the code 109
Docstrings 110
Introduction to reStructuredText 11
Section headings 111
Paragraphs 112
Text styles 113
Code snippets 113
Mathematical equations 113
Bullets and numbering 114
Dosctrings using RST 114
Docstring formatting styles 117
Automatically creating docstring stubs 118
Generating documentation with Sphinx 120
Step 1 — Installing Sphinx using pip 121
Step 2 — cd to the source directory 121
Step 3 — Running sphinx-quickstart 122
Step 4 — Updating conf.py 123
Step 5 — Running sphinx-apidoc 124
Step 6 — Building the documentation 125
Python coding standards 127
Code analysis — How well are we doing? 130
Code analysis using IDE 131
Pylint 132
Pylint in action 132
PEPS8 and AutoPEP8 136
Exercise 137
Summary 137
Chapter 5: Unit Testing and Refactoring 139
This is how the chapter is organized 140
Important housekeeping notes 140
Why test? 140
A new feature was requested 141
You implemented this feature 141
But something wasn't right... 142

It required thorough testing 144
Unit testing 144
Python unittest framework 145
Basic terminology 145
Creating tests with unittest.TestCase 146
Controlling test execution 148
Using unittest. TestSuite 150

[iv]

Table of Contents

Writing unit tests for the application
Setting up a test package
Creating a new class for unit testing
First unit test — Injured unit selection
Running the first unit test

Second unit test — Acquiring the hut
Running only the second test

Creating individual test modules
Batch executing unit tests

Unit tests using mock library
Quick introduction to mock
Let's mock!
Using Mock objects in a unit test
Working with patches

Using patch in a unit test

Third unit test — The play method
Is your code covered?

Resolving import errors, if any
Other unit testing tools

Doctest

Nose

Pytest
Refactoring preamble

Take a detour — Refactor for testability
Refactoring

What is refactoring?

Why refactor?

When to refactor?

How to refactor?
Renaming
Extracting
Moving
Pushing down
Pulling up
Refactoring tools for Python
Unit testing revisited
Refactoring for testability

Fourth unit test — setup_game_scenario

153
154
154
156
156

157
160

160
161
162
162
164
166

168
169

171
175
177
177
178
178
179
180
181
181
182
182
182

184
184
184

186
186
188
188

189

189

191

[v]

Table of Contents

Exercise 192
Refactoring and redesign exercise 192
Summary 192
Chapter 6: Design Patterns 193
Introduction to design patterns 194
Classification of patterns 194
Behavioral patterns 195
Creational patterns 195
Structural patterns 195
Concurrency patterns 195
Python language and design patterns 196
First-class functions 196
Classes as first-class objects 197
Closures 197
Miscellaneous features 199
Class method 199
Abstract method 199

The __getattr__ method 199
Duck typing 200
Structure of the rest of the chapter 201
Fast forward — Attack of the Orcs v6.0.0 202
Strategy pattern 205
Strategy scenario — The jump feature 205
Strategy — The problem 207
Strategy — Attempted solution 209
Strategy — Rethinking the design 211
Strategy solution 1 — Traditional approach 212
Strategy solution 2 — Pythonic approach 218
Simple factory 220
Simple factory scenario — The recruit feature 220
Simple factory — The problem 221
Simple factory — Rethinking the design 222
Simple factory solution 1 — Traditional approach 224
Simple factory solution 2 — Pythonic approach 225
Abstract factory pattern 228
Abstract factory scenario — An accessory store 229
Abstract factory — The problem 233
Abstract factory — Rethinking the design 234
Simplifying the design further 235

[vi]

Table of Contents

Abstract factory solution — Pythonic approach 236
Advanced topic — enforcing an interface 238
Adapter pattern 239
Adapter scenario — Elf's distant cousin 240
Adapter — The problem 240
Adapter — Attempted solution 242
Adapter solution — Pythonic approach 244
Adapter — Multiple adapter methods 246
Summary 247
Chapter 7: Performance — Identifying Bottlenecks 249
Overview of three performance chapters 249
More focus on the runtime performance 250
The first performance chapter 250
The second performance chapter 251
The third performance chapter 251
Sneak peek at the upcoming application speedup 251
Scenario — The Gold Hunt 253
High-level algorithm 255
Reviewing the initial code 256
Running the code 260
The problem 260
Identifying the bottlenecks 262
Measuring the execution time 262
Measuring the runtime of small code snippets 263
Code profiling 263
The cProfile module 263
The pstats module 266
The line_profiler package 269
Memory profiling 271
The memory_profiler package 271
Algorithm efficiency and complexity 272
Algorithm efficiency 272
Algorithm complexity 273
Big O notation 273
Big O complexity classes 274
O(1) — constant time 275
O(log n) — logarithmic 275
O(n) — Linear time 276
O(nlog n) — Log linear 276
O(n?) — Quadratic 277
O(n®) — cubic 277

[vii]

Table of Contents

Upper bound of the complexity 278
Complexity for common data structures and algorithms 279
Wrapping up the big O discussion 280
Summary 281
Chapter 8: Improving Performance — Part One 283
Prerequisite for the chapter 284
This is how the chapter is organized 284
Revisiting the Gold Hunt scenario 285
Selecting a problem size 285
Profiling the initial code 286
Optimizing Gold Hunt — Part one 287
Tweaking the algorithm — The square root 287
Gold Hunt optimization — Pass one 290
Skipping the dots 291
Gold Hunt optimization — Pass two 292
Using local scope 294
Gold Hunt optimization — Pass three 294
Performance improvement goodies 297
List comprehension 297
Recording execution time 299
Dictionary comprehension 300
Swapping conditional block and for loops 300
'try' it out in a loop 302
Choosing the right data structures 303
The collections module 304
The deque class 304
The defaultdict class 305
Generators and generator expressions 307
Generator expressions 309
Comparing the memory efficiency 309
Generator expressions or list comprehensions? 311
The itertools module 312
The itertools.chain iterator 312
Exercises 315
Summary 315
Chapter 9: Improving Performance — Part Two, NumPy
and Parallelization 317
Prerequisites for this chapter 317
This is how the chapter is organized 318
Introduction to NumPy 319

[viii]

Table of Contents

Installing NumPy 319
Creating array objects 320
Simple array operations 321
Array slicing and indexing 322
Indexing 322
Slicing 323
Broadcasting 325
Miscellaneous functions 325
numpy.ndarray.tolist 326
numpy.reshape 326
numpy.random 326
numpy.dstack 327
numpy.einsum 328
Computing distance square with einsum 331
Where to get more information on NumPy? 333
Optimizing Gold Hunt — Part two 333
Gold Hunt optimization — pass four 334
Gold Hunt optimization — pass five 336
Parallelization with the multiprocessing module 341
Introduction to parallelization 341
Shared memory parallelization 341
Distributed memory parallelization 342
Global interpreter lock 342
The multiprocessing module 342
The Pool class 342
Parallelizing the Gold Hunt program 346
Reuvisiting the gold field 347
Gold Hunt optimization — Pass six, parallelization 349
Other methods for parallelization 354
Further reading 355
JIT compilers 355
GPU accelerated computing 356
Summary 356
Chapter 10: Simple GUI Applications 359
Overview of GUI frameworks 360
Tkinter 360
PyQt 360
PySide 361
Kivy 361

wxPython 361

[ix]

Table of Contents

GUI programming design considerations
Understanding user requirements
Developing a user story
Simplicity and accessibility
Consistency
Predictability and familiarity
Miscellaneous design considerations

Event-driven programming
Event
Event handling
Event loop

GUI programming with Tkinter
Tkinter documentation links
The mainloop() in Tkinter
Simple GUI application — Take 1
Simple GUI application — Take 2
GUI Widgets in Tkinter

Geometry management
Grid geometry manager
Pack geometry manager
Place geometry manager

Events in Tkinter
Event types
Event descriptors
Event object attributes

Event handling in Tkinter
Command callback (Button widget)
The bind() method
The bind_class() method
The bind_all() method
Project-1 — Attack of the Orcs V10.0.0
Background scenario
Problem statement
Writing the code
Overview of the class HutGame
The __init__ method
The occupy_huts method
The create_widgets method
The setup_layout method
The radio_btn_pressed and enter_hut methods
The announce_winner method

Running the application

362
362
362
362
363
363
363
364
364
364
365
365
365
366
367
369
371

374
374
375
375

376
376
376
377

377
378
378
379
380

380
381
381

382
383
384
384
385
387
389
390

390

[x]

Table of Contents

MVC architecture
Model
View
Controller
Advantages of MVC

Project 2 — Attack of the Orcs v10.1.0
Reuvisiting the HutGame class
Creating MVC classes

Communication between MVC objects
Controller to Model or View communication
Model to Controller communication
View to Controller communication
Communication between View and Model

Reviewing the code
The Controller class

The Model class

The View class

Running the application
Testing GUI applications

Testing considerations
Unit testing and MVC
Manual testing
Automated GUI testing

Exercises
Further reading
Summary

Index

392
392
393
393
394
394
395
395

396
397
397
400
400

401
402

403
404
405
405

405
406
406
406

407
408
410

413

[xi]

Preface

Python is one of the most widely used dynamic programming languages. It supports
arich set of libraries and frameworks that enable rapid development. Such fast-paced
development often comes with its own baggage that can bring down the overall
quality, performance, and extensibility of the application. This book will help you
push your Python skill level by teaching you how to build and deploy interesting
applications.

Starting with a simple program, the book takes you all the way through designing
and developing robust and efficient applications. It touches upon several important
topics in an accessible and fun way.

A fantasy theme is used as a vehicle to explain various concepts. During the course
of this book, you will meet many fictional game characters. While you learn different
topics, these imaginary characters will talk to you, ask questions, and request new
features.

Each chapter targets a different aspect of application development. A few initial

ones focus on software robustness, packaging, and releasing the application code.
The next few chapters are about improving the application's lifetime by making the
code extensible, reusable, and readable. You will learn about refactoring, unit testing,
design patterns, documentation, and best practices.

Techniques for identifying bottlenecks and improving performance are covered in a
series of three chapters devoted to performance. The last chapter introduces you to
GUI development.

[xiii]

Preface

Important things to note

The book uses a fun, text-based game theme as a vehicle to explain various
application development aspects. However, the book itself is not about
developing game applications!

* Every chapter will have its own set of Python source files. Although we will
talk through most of the code, you should keep the relevant files at hand. See
the Downloading the example code section for more details.

* The following is relevant if you are reading the electronic version of this
book. Most of the code illustrated in this book is created as images. Try to use
100% zoom for a better reading experience as these code snapshots should
appear crisp at zoom level.

* The solutions to the exercises (if any) are generally not provided.

* This book provides several external links (URLs) for further reading. Over
time, some of these links might end up being broken. If that ever happens,
try searching the web with the appropriate search terms.

* Some experienced readers may find the code explanation a bit verbose. In
this case, you can review the code provided in the supporting material for
the book.

Very important note for e-book readers

The code illustrations that you see in this book are actually image files or code
snapshots.

The rendering quality of these images will vary depending on your PDF reader's
page display resolution and the zoom level.

If you have trouble clearly reading this code, you may try the following in your PDF
or e-book reader:

e Set the zoom level to 100%

* Use the page display resolution of 96 pixels/inch or similar
If the problem still persists, you can try with a different resolution.

How do you set this resolution? It will depend on your e-book reader. For example,
if you are using Adobe Reader, go to Edit | Preferences and then select Page
Display from the left panel. You will see Resolution as an option in the right panel.
Select 96 pixels/inch or similar and see if that helps render the images better.

[xiv]

Preface

What this book covers

Chapter 1, Developing Simple Applications, starts with installation prerequisites and
the theme of the book. The first program is a fantasy text-based game presented as a
script. An incremental version of this program with new features is then developed
using functions. With more features added, the code becomes difficult to manage.
To address this, the game application is redesigned using OOP concepts. This
application now becomes the reference version for the next few chapters.

Chapter 2, Dealing with Exceptions, will teach you how to fix the obvious issues that
the code written in the previous chapter has. You will learn how to add exception
handling code to make the application robust. You will also learn about the try...
except..finally clause, raising and re-raising exceptions, creating and using custom
exception classes, and so on.

Chapter 3, Modularize, Package, Deploy!, will teach you how to modularize and
package the code written in the earlier chapters. After preparing a package, it will
show you how to deploy a source distribution, make incremental releases, set up a
private Python package repository, and bring the code under version control.

Chapter 4, Documentation and Best Practices, dives into coding standards, which are a
set of guidelines that you should follow while developing the code. Complying with
these standards can make a significant impact on code readability and the life of

the code. In this chapter, you will learn about another important aspect of software
development, code documentation, and best practices. It starts with an introduction
to the reStructuredText format and uses it to write docstrings. You will create HTML
documentation for the code using the Sphinx document generator. The chapter also
talks about some important coding standards for writing a Python code and using
PyLint to check the code quality.

Chapter 5, Unit Testing and Refactoring, starts with an introduction to the unit testing
framework in Python. You will write some unit tests for the game application
developed so far. It covers many other topics, such as using Mock library in unit tests
and measuring effectiveness of the unit tests with code coverage. The later part of the
chapter talks about many code refactoring techniques. This is the last chapter that
makes use of the code developed in the earlier chapters. The following chapters will
have their own simplified examples tied to the same high-fantasy theme.

[xv]

Preface

Chapter 6, Design Patterns, tells you how, during development, you often encounter a
recurring problem. Many times, a general solution or recipe exists, which just works
for this problem. This is often referred to as a design pattern. This chapter introduces
you to some commonly used design patterns. It covers the strategy, simple and
abstract factory, and adapter patterns. For each pattern, a simple game scenario will
demonstrate a practical problem. You will learn how the design pattern can help solve
this problem. Each of these patterns will be implemented using a Pythonic approach.

Chapter 7, Performance - Identifying Bottlenecks, is the first one in a series of three
chapters on performance improvements. You will write a simple program called Gold
Hunt that looks harmless until you tweak some parameters. The parameter tweaking
reveals performance problems. In this chapter, you will identify the time-consuming
blocks of the code. It covers the basic ways to clock the application runtime, profiling
the code to identify performance bottlenecks, the basics of memory profiling, and
using big-O notation to represent computational complexity.

Chapter 8, Improving Performance — Part One, teaches you how to fix some of the
performance bottlenecks identified in the previous chapter. Additionally, you will
also learn about several techniques, such as algorithm changes, list comprehension,
generator expressions, the right choice of data structures, and so on, to improve the
application performance.

Chapter 9, Improving Performance — Part Two, NumPy and Parallelization, is the final
chapter on performance improvements, wherein you will drastically improve the
performance of the gold hunt application. The chapter will introduce you to the Numpy
package. It will also introduce you to parallel processing using Python.

Chapter 10, Simple GUI Applications, is the final chapter and introduces you to simple
GUI application development. The chapters so far covered several key aspects of
application development using command-line programs. In this chapter, however, you
will learn about the Tkinter module, MVC architecture, and develop a GUI version of
the first application developed in Chapter 1, Developing Simple Applications.

What you need for this book

The code illustrated in this book is compatible with Python version 3.5. The
supporting code bundles also provide files compatible with version 2.7.9; however,
throughout the book, Python version 3.5 is assumed. See the Installation prerequisites
section of Chapter 1, Developing Simple Applications, for details on the basic packages
that need to be installed. Additionally, there are some Python package dependencies
that need to be installed. Most of these packages can be installed using pip (Python
package manager). These dependencies are mentioned in the chapters that require
them.

[xvi]

Preface

Who this book is for

Do you know the basics of Python and object-oriented programming?

Do you wish to go the extra mile and learn techniques to make your Python
application robust, extensible, and efficient?

This is the book for you if you answered yes to these questions. It is also for those
with a different programming background (for instance, C++ or Java) and wish to
get to grips with Python application development.

This book is not for you if either of the following statements apply to you:

* You are completely new to Python or do not have any background in
OOP. The first chapter covers some basics but further understanding
will be required.

* You are looking for a reference on specific application domains, such as
Web, GUI, database, or game applications. Except for GUI, this book does
not cover such domain-specific topics. Nonetheless, the techniques you will
learn in this book should provide a solid foundation to all such domains.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"There are some changes to the GoldHunt . find_coins method."

A block of code is set as follows:

results = pool.starmap async(self.find coins,
zip (itertools.repeat (x_list),
itertools.repeat (y list),

X_centers,

Any command-line input or output is written as follows:

export PATH=$PATH:/usr/bin/

[xvii]

Preface

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "As mentioned
earlier, at the time of installation, you should select the Add Python 3.5 to PATH
option."

a Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

[xviii]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS Uk N

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Python-Application-Development. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub. com/
sites/default/files/downloads/LearningPythonApplicationDevelopment
ColorImages.pdf.

[xix]

https://github.com/PacktPublishing/Learning-Python-Application-Development
https://github.com/PacktPublishing/Learning-Python-Application-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/LearningPythonApplicationDevelopment_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningPythonApplicationDevelopment_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningPythonApplicationDevelopment_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub. com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[xx]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Developing Simple
Applications

Python is one of the most widely used dynamic programming languages. It supports
a rich set of packages, GUI libraries, and web frameworks that enable you to build
efficient cross-platform applications. It is an ideal language for rapid application
development. Such fast-paced development often comes with its own baggage that
could bring down the overall quality, performance, and extensibility of the code.
This book will show you ways to handle such situations and help you develop better
Python applications. The key concepts will be explained with the help of command-
line applications, which will be progressively improved in subsequent chapters.

This chapter will be an introductory one. It will serve as a refresher to Python
programming. That being said, it is expected you have some knowledge of Python
language, as well as object-oriented programming (OOP) concepts.

Here is how this chapter is organized:
* We will start with installation prerequisites and set up a proper environment

for Python development.

* To set the tone right for the rest of the book, the next section will be a brief
introduction to the high fantasy theme of the book.

* What follows next is our first program. It is a simple text-based fantasy game,
presented as a Python script.

* We will add some complexity to this game and develop an incremental
version of the game using simple functions.

* Moving ahead, we will add more features to the game and redesign the code
by applying OOP concepts.

* The last topic will briefly cover Abstract Base Classes (ABCs) in Python.

[11]

Developing Simple Applications

The code explanation will be a bit verbose. More experienced readers can breeze past
the examples and go to the next chapter, but be sure to understand the theme of the
book and review the code in the ch01_ex03.py file. In the next few chapters, you
will learn techniques to progressively improve this code.

Important housekeeping notes

Before diving into the rest of the chapter, let's get some housekeeping out of the way.
If you haven't already, you should read the Preface, which documents most of the
following things:

Every chapter will have its own set of Python source files. Although we will
talk through most of the code, you should keep the relevant files at hand.

The source code can be downloaded from the Packt Publishing website.
Follow the instructions mentioned in the Preface.

The code illustrated in this book is compatible with Python version 3.5.1. The
supporting code bundles also provide files compatible with version 2.7.9.

As noted before, it is assumed that you are familiar with basics of the Python
language and know OOP concepts.

The book uses a fun, text-based game theme as a vehicle to explain various
application development aspects. However, the book itself is not about
developing game applications!

The solutions to the exercises (if any) are generally not provided.

The book provides several external links (URLs) for further reading. Over
time, some of these links might end up being broken. If that ever happens,
try searching the web with appropriate search terms.

Installation prerequisites

Let's make sure that we have installed the prerequisites. Here is a table that
summarizes the basic tools we need for this chapter and beyond; more verbose
installation instructions follow in the next section:

[2]

Chapter 1

Tool Notes

Python 3.5 The code illustrated in this book is compatible with version
3.5. See the next table for available Python distributions.
Supporting code bundles also provide 2.7.9 compatible files.

pip (package manager for | The pip is already available in the official distribution for

Python) versions 3.5 and 2.7.9.
IPython Optional installation. IPython is an enhanced Python
interpreter.

Integrated development | Use the Python editor or any IDE of your choice. Some good
environment (IDE) IDEs are listed in a table later in this chapter.

In subsequent chapters, we will need to install some additional dependencies.
The Python package manager (pip) will makes this a trivial task.

M Have you already set up the required Python environment or know
Q how to do it? Just skip the setup instructions that follow and move
on to the The theme of the book section, where the real action begins!

Installing Python

There are two options to install Python. You can either use the official Python version
or one of the freely available bundled distributions.

Option 1 — official distribution

For Linux or Mac users, Python is probably already installed on your system. If not,
you can install it using the package manager of your operating system. Windows
OS users can install Python 3.5 by downloading the Python installer from the official
Python website:

[3]

Developing Simple Applications

“ Python 3.5.1 (32-bi) Setup o] & |

Install Python 3.5.1 (32-bit) — Or €470

Select Install Now to install Python with default settings. or choose
Customize to enable or disable features.
YDH F W3Er name

2 Install Now /,.. e here
ChUsers\ N & ppata' Local\ Programs\ Pythont Python35-32

Includes IDLE, pip and documentation
Creates shortculs and file associations
Optionally, you can
specify amother
& Customize installation — install lscatien
Cheose locabon and features

Mﬂuh’t aure fa

L I_‘h[][‘] select this eprion
p :J Tar Install -I.-/lr' or all users (recommended)
windows [1 add pytnon 3.5 10 PaTH Cancel |

During the installation process, just make sure to select the option that adds Python
3.5 to the system environment variable, PATH, as shown in the preceding screenshot.
You can also visit the official Python website, https://www.python.org/
downloads, to get the platform-specific distribution.

Option 2 — bundled distribution

Alternatively, there are several freely available Python distributions that bundle
together useful Python packages, including pip and IPython. The following table
summarizes some of the most popular Python distributions, including the official one:

[4]

https://www.python.org/downloads
https://www.python.org/downloads

Chapter 1

https://python-xy.github.
io/

Distribution Supported | Notes
platforms
Official Python distribution Windows, * Freely available
https://www.python.org Linux, Mac e Versions 2.7.9 and 3.5
include pip by default
Anaconda Windows, * Freely available
http://continuum.io Linux, Mac * Includes pip, IPython and
Spyder IDE
* Bundles packages
primarily for science, math,
engineering, and data
analysis
Enthought Canopy Express Windows, * Freely available
https://www.enthought.com/ Linux, Mac * Includes pip and IPython
canopy-express/ ¢ Integrates a Python code
editor and application
development platform
Python(x, y) Windows * Freely available

* Includes pip, IPython, and
Spyder IDE

Python install location

Let's briefly talk about the path where Python is installed, and how to make sure
python is available as a command in your terminal window. Of course, things will
widely vary, depending on where you install it and which Python distribution you

choose.

The official Python documentation page has comprehensive
M information on setting up the Python environment on different
Q platforms. Here is a link, in case you need further help beyond what
we have covered: https://docs.python.org/3/using/index.

html.

[51]

https://www.python.org
http://continuum.io
https://www.enthought.com/canopy-express/
https://www.enthought.com/canopy-express/
https://python-xy.github.io/
https://python-xy.github.io/
https://docs.python.org/3/using/index.html.
https://docs.python.org/3/using/index.html.

Developing Simple Applications

Unix-like operating systems
On a Unix-like operating system such as Linux, the default location is typically
/usr/bin/python or /usr/local/bin/python.

If you used your operating system's package manager to install Python, the
command python or python3 should be available in the terminal window. If it isn't,
you need to update the PATH system environment variable to include the directory
path to the Python executable. For example, if you have a Bash shell, add the
following to the .bashrc file in your user home directory:

export PATH=$PATH:/usr/bin/

Specify the actual path to your Python installation in place of /usr/bin.

Windows OS

On Windows OS, the default Python installation path is typically the following
directory: C:\Users\name\AppData\Local\Programs\Python\Python35-32\
python.exe. Replace name with your Windows username. Depending on your
installer and system, the Python directory can also be Python35-64. As mentioned
earlier, at the time of installation, you should select the option Add Python 3.5

to PATH to make sure python or python. exe are automatically recognized as
commands. Alternatively, you can rerun the installer with just this option checked.

Verifying Python installation

Open a terminal window (or command prompt on Windows OS) and type the
following command to verify the Python version. This command will work if Python
is installed and is available as a command in the terminal window. Otherwise,
specify the full path to the Python executable. For instance, on Linux you can specify
itas /usr/bin/python, if Python is installed in /usr/bin:

$ python -V

Note that the $ sign in the previous command line belongs to the
\ terminal window and is not part of the command itself! Put another way,
~ the actual command is just python -V.The $ or % sign in the terminal
Q window is a prompt for a normal user on Linux. For a root (admin) user,
the sign is #. Likewise, on Windows OS, the corresponding symbol is >.
You will type the actual command after this symbol.

The following is just a sample output, if we run the preceding command:

[user@hostname ~]$ python -V
Python 3.5.1 :: Anaconda 4.0.0 (64-bit)

[6]

Chapter 1

Installing pip

The pip is a software package manager that makes it trivial to install Python
packages from the official third party software repository, PyPI. The pip is already
installed for Python-2 version 2.7.9 or higher and Python-3 version 3.4 or higher.

If you are using a different Python version, check out https://pip.pypa.io/en/
stable/installing for the installation instructions.

On Linux OS, the default location for the pip is same as that of the Python
executable. For example, if you have /usr/bin/python, then pip should be available
as /usr/bin/pip. On Windows OS, the default pip. exe is typically the following;:
C:\Users\name\AppData\Local\Programs\Python\Python35-32\Scripts\pip.
exe. As mentioned earlier, replace name with your Windows username. Depending
on your installer and the system, the Python directory can also be Python35-64.

Installing IPython

This is an optional installation. IPython is an enhanced version of the Python
interpreter. If it is not already bundled in your Python distribution, you can install it
with:

$ pip install ipython

After the installation, just type ipython in the terminal to start the IPython
interactive shell. Here is a screenshot of the IPython shell using the Anaconda
Python 3.5 distribution:

[uzer@hostname ~]% ~Sanaconda2.5/binfipython
Python 2.5.1 |Anaconda 4.0.0 (64-bit)| (default, Dec 7 2815, 11:16:@81)

Type "copyright", "credits" or "license" for more information.

IPython 4.1.2 -- An enhanced Interactive Python.

? -= Introduction and overview of IPython's features.
wquickref -> Quick reference,

help -= Python's own help system.

object? ->» petails about ‘'object', use 'object??' for extra details.
In [1]: import os

In [2]: |

[71

https://pip.pypa.io/en/stable/installing
https://pip.pypa.io/en/stable/installing

Developing Simple Applications

It is often very convenient to use the Jupyter Notebook to write and share
interactive programs. It is a web application that enables an interactive
% environment for writing Python code alongside rich text, images, plots,
Q and so on. For further details, check out the project homepage at http://
jupyter.org/. The Jupyter Notebook can be installed with:

$ pip install "ipython[notebook]"

Choosing an IDE

Using an IDE for development is a matter of personal preference. Simply put, an
IDE is a tool intended to accelerate application development. It enables developers
to write efficient code quickly by integrating the most common tools they need. The
Python installation comes with a program called IDLE. It is a basic IDE for Python,
which should get you started. For advanced development, you can choose from

a number of freely or commercially available tools. Any good Python IDE has the
following minimum features:

* A source code editor with code completion and syntax highlighting features
* A code browser to browse through files, projects, functions, and classes
* A debugger to interactively identify problems
* A version control system integration such as Git
You can get started by trying out one of the freely available IDEs. Here is a partial
list of popular IDEs. If you are just interested in a simple source code editor, you can

check out https://wiki.python.org/moin/PythonEditors, for a list of available
choices.

[8]

http://jupyter.org/
http://jupyter.org/
https://wiki.python.org/moin/PythonEditors

Chapter 1

Python IDE Notes

PyCharm Community Edition Has a free community edition. Excellent
https://www.jetbrains.com/ tool to begin Python development!
pycharm

Wing IDE 101 Free for non-commercial purposes only.

Commercial version available with

http://wingware.com/downloads/ o
P J additional features. Another excellent

wingide-101

Python IDE.
Spyder https://pythonhosted.org/ Freely available, open source. Also
spyder provided in bundled Python distributions

such as Python(x,y) and Anaconda.

Eclipse PyDev Freely available, open source.

www . pydev.org

Sublime Text 2 or Sublime Text 3 (beta) Free for evaluation purposes only. Highly
configurable IDE.

http://www.sublimetext.com/2

The theme of the book

Have you read high fantasy novels, such as The Lord of the Rings or The Hobbit by J. R.
R. Tolkien? Or watched the films based on these novels? Well, here is a high fantasy,
"Tolkienesque" themed book on Python application development.

To find out more about J.R.R. Tolkien's work, see https://
M en.wikipedia.org/wiki/J._R._R._Tolkien. The term high
Q fantasy is often used to represent a fantasy theme set in an alternate
fictional world. Check out https://en.wikipedia.org/wiki/
High fantasy for more information.

This book takes you to an imaginary world where you will develop a text game
based on the aforementioned theme. Yes, you can continue being a developer even
in this imaginary world! During the course of the book, you will be accompanied by
many fictional characters. While you learn different aspects of Python development,
these characters will talk to you, ask questions, request new features, and even fight
with the enemy.

It should be noted that this book is not about developing game applications. It uses a
simple text-based game just as a medium to learn various development aspects.

[o]

https://www.jetbrains.com/pycharm
https://www.jetbrains.com/pycharm
http://wingware.com/downloads/wingide-101
http://wingware.com/downloads/wingide-101
https://pythonhosted.org/spyder
https://pythonhosted.org/spyder
www.pydev.org
http://www.sublimetext.com/2
https://en.wikipedia.org/wiki/J._R._R._Tolkien
https://en.wikipedia.org/wiki/J._R._R._Tolkien
https://en.wikipedia.org/wiki/High_fantasy
https://en.wikipedia.org/wiki/High_fantasy

Developing Simple Applications

Off topic, if you are interested in playing a high fantasy theme game,
M there are quite a few to choose from. Among the open source ones,
Q Battle for Wesnoth is one of the most highly rated, free, turn-based
strategy games with a high fantasy theme. Check out https://www.
wesnoth.org, for more details.

Meet the characters

Let's meet the imaginary characters who will accompany you in various chapters:

Sir Foo

A human knight who is portrayed as a grand
knight guarding the southern plains. He is our main
character and will be talking to us throughout the
book.

Orc Rider

An Orc is a human-like imaginary creature. Here, it is
portrayed as an enemy soldier. The Orc is seen riding
a wild boar-like creature. You will see this creature in
this chapter.

Elf Rider

An Elf is a supernatural mythical being. The EIf is
mounted on an elvish horse. He is portrayed as a
friendly. You will meet Mr. Elf in Chapter 6, Design
Patterns.

Fairy

An intelligent fairy with an inherent capability

for magic. She will use her magic just once while
finding her enchanted locket in Chapter 7, Performance
Identifying Bottlenecks, (See O(log n)). You will first
meet her in Chapter 6, Design Patterns.

Dwarf

A Dwarf is a small human-like mythical being. He is
portrayed as "The Great Dwarf" of the Foo mountains.
He asks lots of questions. You will see him in the
second half of the book, starting with Chapter 6, Design
Patterns.

[10]

https://www.wesnoth.org
https://www.wesnoth.org

Chapter 1

With this fun theme as a vehicle, let's start our journey with a simple command-line
application. It will be a text-based game. The complexities added in subsequent
chapters will challenge you with interesting problems. The book will show you how
to gracefully handle such situations.

Simple script — Attack of the Orcs v0.0.1

We have the required tools and the environment set up. It is now time to write our
first Python program. It will be a simple game of chance, developed as a command-
line application. As we advance further, we will add more complexity to the game
and learn new techniques to develop efficient applications. So, get ready for action!

The game — Attack of the Orcs v0.0.1

The war between humans and their arch enemies, the Orcs, was in the offing. A
huge army of Orcs was heading toward the human establishments. They were
virtually destroying everything in their way. The great kings of the human race
joined hands to defeat their worst enemy for the great battle of their time. Men were
summoned to join the rest of the army. Sir Foo, one of the brave knights guarding
the southern plains, began a long journey toward the east, through an unknown
dense forest. For two days and two nights, he moved cautiously through the thick
woods. On his way, he spotted a small isolated settlement. Tired and hoping to
replenish his food stock, he decided to take a detour. As he approached the village, he
saw five huts. There was no one to be seen around. Hesitantly, he decided to enter a
hut...

[11]

Developing Simple Applications

Problem statement

You are designing a simple game in which the player is required to choose a hut for
Sir Foo. The huts are randomly occupied either by a friend or an enemy. It is also
possible that some huts remain unoccupied. If the chosen one turns out to be an
enemy hut, the player loses. In the other two scenarios, the player wins.

Pseudo code — version 0.0.1

Now that the goal is clear, open your favorite editor and note down the main steps.
This is sometimes referred to as a pseudo code.

While the user wishes to keep playing the game:

Print the game mission

Create a huts list

Randomly place 'enemy' or 'friend' or 'unoccupied' in 5 huts
Prompt the player to select a hut number

if enemy: print "you lose"

else: print "you win"

[12]

Chapter 1

As you will notice, the key piece of the code is to randomly occupy the five huts with
either enemy or friend and keep the remaining ones unoccupied. How do we do
this? Let's quickly work this out using the Python interpreter. If you have installed
[Python, start the IPython interpreter. Otherwise, just use the default Python
interpreter by typing the command python in a terminal window. First, we need

a Python list to hold all the occupant types. Next, we will use the built-in random
module and call random. choice to pick one element randomly from this list. This
code is shown in the following screen capture:

In [2]: import random
In [2]: occupants = ['enemy', 'friend', 'unoccupied']

In [4]: random.choice(occupants)
out[4]: 'unoccupied’

In [5]: random.choice({occupants)
out[s]: ‘friend’

in [6]: |}

Now, we just need to write the surrounding code. Let's review it next.

Reviewing the code

Download the source code, cho1_ex01.py, from the supplementary code bundle
provided for this chapter. The file extension, .py, indicates that it is a Python file.
Open it in a Python editor or an IDE of your choice. It is recommended that you keep
this file handy while reading the following discussion. It is often easier to glance at
the full code to understand it better. Observe the following code snippet. It is just a
small portion of the code inside the if _ name == ' main_ ' condition block in
the aforementioned file.

a1

~ If you have Python 2.7.9 installed, there is a separate Python 2.7.9
compatible source provided in the supporting code bundle.

[13]

Developing Simple Applications

import random
import textwrap

if _name__ == '_main__':
keep_playing = 'y’
occupants = ['enemy'., 'friend'. 'unoccupled']
width = 72
dotted line = '-' * width

Let's

print(dotted line)
print ("\033[1m" + "Attack of The Orcs v0.0.1:" + "\233[Cm")

review the code snippet in the preceding screenshot:

The first two lines import two built-in modules to gain access to the
functionality provided within these modules. The textwrap module
essentially provides features to nicely format the messages printed on the
command line.

The if condition block, 1f _ name_ == '__main__ ', isinvoked only when
the file is run as a standalone script. In other words, the code inside this
condition block won't be executed if you import this file in some other file.

Now, let's look at the code in this condition block. First, we will initialize
a few variables. As demonstrated earlier, the list occupants stores the
potential occupant types for the hut.

The last few lines are just to format the text printed in the terminal window.
The dotted_line is a string that will show a 72-character long line with
hyphen symbols.

The ASCII escape sequence is used to print the text in bold. The sequence
"\ 033 [1m" is to make bold text, and "\ 033 [om" is to go back to normal
printing style.

[14]

Chapter 1

The next few lines essentially print further information about the game in the console:

msg = (
"The war between humans and their arch enemies, Orcs, was in the
"offing. Sir Foo, one of the brave knights quarding the southern
“plains began a long journey towards the east through an unknown
"dense forest. On his way, he spotted a small isolated settlement.”
" Tired and hoping to replenish his food stock, he decided to take"
" a detour. As he approached the village. he saw five huts. There "
"was no one to be seen around. Hesitantly. he decided to enter..")

print(textwrap.fillimsg, width=width))

print("%033[1m" + "Mission:" + "\O33[om")
print{"\tChoose a hut where 5ir Foo can rest...")
print("\033[1m" + "TIP:" + "\033[Cm")

print("Be careful as there are enemies lurking arcund!")
print(dotted_line)

Let's have a look at the code from the preceding screenshot:
* The variable msg is a very long string. This is where the textwrap module
is used.
* The textwrap.£ill function wraps the message in such a way that each line

is 72 characters long, as specified by the width in our code.

Now, let's review the following while loop.

For Python 2.7.9, the only change required in the first example is to
~"@ replace all the calls to the built-in function input with raw_input:

For Python 2.7
user choice = raw_input (msg)

[15]

Developing Simple Applications

while keep playing == 'y':
huts = [I

L L

whiie-.{eﬁ:{ha.{;i ::5: -
computer choice = random.choice{occupants)
huts.append(computer_choice)

msq = "M033[1m" + "Choose & hut number to enter (1-5): " + "\O33[0m"
user _choice = input("%n" + msq)
idx = int(user_choice)

print("Revealing the occupants...")
msg = ""
for 1 in range(len(huts)):
occupant_info = "<%d:%s="%(i+1, huts[i])
if 1 + 1 == 1dx:
occupant_info = "\033[1m" + occupant_info + "\033[0m"
msg += occupant_info + " "
print("\t" + msg)
print(dotted Tline)

print ("%033[1m" + "Entering hut %d... " % idx + "\033[0Om", end=' ')
if hutslide-1] == ‘enemy':
print("\@33[1m" + "YOU LOSE :(Better luck next time!" +
"33 [0m")
else:

print("\@33[1m" + "Congratulations! YOU WIN!!!" + "\@33[Cm")
print(dotted_line)
keep_playing = input("Play again? Yes(y)/No(n):")

* This top-level loop gives the player an option to play the game again.

* Using random. choice, we randomly pick an occupant from the list of
occupants and add it to the huts list. This was illustrated earlier.

* The built-in input function accepts a hut number of the user's choice as an
integer. The idx variable stores a number.

Next, it reveals the occupants by printing related information. Finally, it determines
the winner by checking the list item corresponding to the hut number. Note that
the huts list index starts at 0. Therefore, to retrieve the list element for a given hut
number, idx, we need to check the list index at idx-1.

[16]

Chapter 1

Running Attack of the Orcs v0.0.1

Assuming you already have Python in your system environment variable, PATH
(available as either python or python3), run the program from the command line as:

$ python ch0l ex0l.py

That's all! Just play the game and try to save Sir Foo by choosing the right hut!
The following snapshot of a Linux terminal window shows our game in action:

[user@hostname src_chl]$ python chel_exol.py
Attack of The Orcs ve.9.1:
The war between humans and their arch enemies, Orcs, was in the offing.
Sir Foo, one of the brave knights guarding the southern plains began a
long journey towards the east through an unknown dense forest. on his
way, he spotted a small isoclated settlement. Tired and hoping to
replenish his food stock, he decided to take a detour. As he approached
the village, he saw five huts. There was no one to be seen around.
Hesitantly, he decided to enter..
Mission:

Choose a hut where Sir Foo can rest...
TIP:
Ee careful az there are enemies lurking around!

Choose a hut number to emnter (1-5): 1
Revealing the occupants...
<1 :umoccupied> =2:friend> =3:unoccupied> =4:enemy> =5:unoccuplieds=>

Entering hut 1... Congratulationms! YOU WIN!!!

Flay again? Tes(y}fmutn):yl

[171]

Developing Simple Applications

Using functions — Attack of the Orcs
v0.0.5

In the last section, you wrote a quick set of instructions to create a nice little
command-line game. You asked your friends to try it out and they kind of liked it
(perhaps they were just trying to be nice!). You received the first feature request for
the game.

"] think this game has good potential to grow. How about including combat in the
next version of the game? When Sir Foo encounters an enemy, he should not just
give up that easily. Fight with the enemy! Let the combat decide the winner.
"-your friend

Your friend is righ+!
T will a.ffnr:l\'{} fae

enemy ot firs+ aiﬂht
J'H&"f gi\fE me a Chﬁﬁ:‘ﬁ!

You liked the idea and decided to add this capability to the code in the next version.
Additionally, you also want to make it more interactive.

[18]

Chapter 1

The script you wrote for the first program was small. However, as we go on adding
new features, it will soon become a maintenance headache. As a step further, we will
wrap the existing code into small functions so that the code is easier to manage. In
functional programming, the focus is typically on function arrangement and their
composition. For example, you can build complicated logic using a simple set of
reusable functions.

Revisiting the previous version

Before adding any new features, let's revisit the script that you wrote in the previous
version (version 0.0.1). We will identify the blocks of code that can be wrapped into
functions. Such code chunks are marked in the two code snippets that follow:

if _ _name =="'_main_ ':
keep playing = 'y'

occupants = ['enemy', 'friend', 'unoccupied'] 1
width = 72 /-
dotted line = '-' * width

B -
print ("\033[1n" + "Attack of The Orcs v0.0.1:" + "\033[om")]
msg =

"The war between humans and their arch enemies, Orcs, was in the "
"offing. Sir Foo, one of the brave knights guarding the southern "

"plains began a long journey towards the east through an unknown "
“dense forest. On his way. he spotted a small isolated settlement.®
" Tired and hoping to replenish his food stock, he decided to take®
" a detour. As he approached the village, he saw five huts. There *
"was no one to be seen around. Hesitantly., he decided to enter.."l

w.print(textwrap, 1l nsg, width=width)) s £
print ("%033[1m" + "Mission:" + "\033[Cm")
print{"\tChoose a hut where Sir Foo can rest...")
print("\@33[1m" + "TIF:" + "\033[Cm") 2

print("Be careful as there are enemies lurking arcund!")
print(dotted_line)

[19]

Developing Simple Applications

We will wrap most of the highlighted code into individual functions, as follows:

o Ul W N

while keep playing == 'y

show_theme_message
show_game_mission
occupy_huts
process_user_ choice
reveal occupants
enter hut

huts = []

while len(huts) =< 5:
computer choice = random.choice (occupants) 3
huts.append (computer_choice)

msg = "\@33[1m" + "Choose a hut number to enter (1-5): " + "\G33[0m"
user_choice = input("\n" + msg)
idx = int(user_choice)
print("Revealing the occupants...")
msg = ""
for i in range(len(huts)):

occupant_info = "<%d:%s="%(1+1, huts[i])

if 1 + 1 == idx:

occupant_info = "\033[1m" + occupant_info + "\033[Cm"
msg += occupant_info + " "

print("\t" + msg) E;
fprint{dntted_line}
pront{"\@33[1m" + "Entering hut %d... " % idx + "\033[CGm", end=' ')
if huts[idx=1] == ‘enemy':
print("\@33[1m" + "YOU LOSE : (Better luck next time!" +
"WEI3[Em")
else:

print ("%033[1m" + "Congratulations! YOU WIN!!!'" + "\033[Cm")

kﬁrintidntted_line]

eep_playing = input("Flay again? Yes{y)/Noi(n):")

[20]

Chapter 1

In addition to these six blocks of code, we can also create a few top-level functions

to handle all this logic. In Python, the function is created using the def keyword,
followed by the function name and arguments in parentheses. For example, the
reveal occupants function requires the information about the huts list. We also
need to optionally pass the dotted_line string if we do not want to recreate it in the
function. So, we will pass the hut number idx, the huts list, and the dotted_line
string as function arguments. This function can be written as follows:

def reveal uccupants'ildx, huta]l

msg =
print("Revealing the occupants...")
for 1 in range(lenthuts)):
occupant_info = "<%d:%s=" % (i+1, huts[i])
if 1 + 1 == 1dx:
occupant_info = "\033[1m" + occupant_info + "\O33[Cm"
msg += occupant_info + " "

print{"\t" + msg)
print_dotted line()

After this initial work, the original script can be rewritten as:

def run_application():
keep_playing =
width = 72
dotted line = '-' * width

show_theme_message (dotted line, width)———— 1
show_game_mission(dotted linel— 2

while keep playing =
huts = occupy_ hutS()
idx = process user choice() 4
reveal_occupants(idx, huts, dotted line) 3
enter_hut(idx, huts, dotted_line) B
keep playing = input("Play again? Yes(y)/Moin):")

3

if _name_ == "'_main__
run_application()}

[21]

Developing Simple Applications

This is much easier to read now. What we just did is also referred to as refactoring;
more on various refactoring techniques in a later chapter. It makes it easier to

do changes to the individual methods. For example, if you want to customize

the mission statement or scenario description, you do not need to open the main
function, run_application. Similarly, occupy_huts can be expanded further
without any clutter in the main code.

\ The initial refactored version of the code is not perfect. There is plenty
~ of room for improvement. Can you reduce the burden of passing the
Q dotted_line parameter or think of some other way to handle the
printing of bold text?

Pseudo code with attack feature — Version
0.0.5

In the previous section, we wrapped the game logic into individual functions. This
not only improved the code readability, but also made it easier to maintain. Let's
move on and include the new attack () function in the game. The following steps
show the logic of the game with the attack feature included.

While the user wishes to keep playing the game:

* Print game mission
* Create a huts list
* Randomly place 'enemy', 'friend', or 'unoccupied' in 5 huts
* Prompt the player to select a hut number
* if the hut has an enemy, do the following:

° while the user wishes to continue the attack, use the attack ()
method on the enemy

After each attack, update and show the health of Sir Foo, and of
the enemy too; if enemy health <= 0: print "You Win".

But, if Sir Foo health <= 0: print "You Lose".

* else (huthas a friend or is unoccupied) print "you win"

[22]

Chapter 1

Initially, Sir Foo and the Orc will have full health. To quantify health, let's assign hit
points to each of these characters (or the game units). So, when we say the character
has full health, it means it has the maximum possible hit points. Depending on the
character, the default number of hit points will vary. The following image shows Sir
Foo and the Orc with the default number of hit points, indicated by the Health label:

The bar above the Health label in the image represents a health meter. Essentially,
it keeps track of the hit points. In the discussion that follows, we will use the terms
hit points and health meter interchangeably. During the combat, either the player or
the enemy will get injured. For now, neglect the third possibility where both escape
unhurt. An injury will reduce the number of available hit points for the injured unit.
In the game, we will assume that in a single attack turn only one of the characters is
hit. The following image will help you imagine one such attack turn:

Here, Sir Foo's health meter is shown as the maximum and the Orc has sustained

injuries!

[23]

Developing Simple Applications

alnej ofl, rne
ordinarausen Ore..
alne_j si|mc-3 bujar

aﬁh 'Fl-rogl.'

(me stronag no
ardinar}f re

. me attack knight
. me winﬂ

Hmm, the Orc thinks he can defeat Sir Foo! This is interesting. Let's develop the
game first and then see who has a better chance of winning!

With this understanding of the problem, let's review the code that implements this
feature.

Reviewing the code

Download the source file, ch01_ex02.py, from the chapter's code bundle and skim
through the code. The key logic will be in the attack () function. We will also need
a data structure to keep the health record of Sir Foo and the enemy. Let's start by
introducing the following utility functions that take care of some print business:

[24]

Chapter 1

def pr1n't hc-ldlimsq end \n)z

pr‘lntli \GSS[lm + maq - \GSS[Gm", end=end)

def prlnt dotted 11nel{w1dth ?2)

|:|r*1ntli '*w1dth]l

Now, look at the main function, run_application, and the supporting function,
reset_health_meter. In addition to introducing the dictionary health meter,
we have also encapsulated the game logic in play_game:

def run appllcatlunil
keep_playlnq - # T
health meter = {}
reset_health_meter(health_meter) keep frack of health

show_game_mission()
Write initial health
while keep_playing == 'y record for Sir Foe and

reset_health meter{health meter)
play_game(health_meter)
keep_playing = input("\nPlay again? Yes(y)/Nol(n): ")

= LLLS

Create empty dicﬁonar;.f to

'I'hﬂ potTeEn 'I"Iﬂ.l Erne r'n;,.r

At the start of a new game, the values of the health meter dictionary are set back to
the initial ones by calling reset_health meter:

def reset health meter(health meter]l

health meter‘[player‘ 1 =
health_meter['enemy'] = 3|

[25]

Developing Simple Applications

Next, let's review the play_game function. If the hut has the enemy, the player will
be asked if the attack should be continued (the start of the while loop). Based on the
user input, the code calls the attack function or exits the current game:

def play_game(health_meter):
huts = occupy_huts()
idx = process_user_choice() | bLofore

reveal_occupants(idx, huts)

if huts[idx - 11 != 'enemy':
print_bold("Congratulations! YOU WIN!!!")
else:
print_bold{'ENEMY SIGHTED! ', end='"')
show_health(health_meter, bold=True)
continue_attack = True

while continue attack:
continue_attack = input("....... continue attack? (y/ni: ")
if continue_attack == 'n':
print_bold("RUNNING AWAY with following health status...")
show_health(health_meter, bold=True)
print_bold("GAME OVER!")
break
funcrion to Fiahf the combar and
check if attack (health_meter)
W h-ﬂ.\"t L3

updare the health meter

winner! if health_meter['enemy'] == O:
print_bold("GOCD JOE! Enemy defeated! YOU WIN!!!")
break

if health_meter['player'] == O:
print_bold("YOU LOSE :({ Better luck next time")
break

[26]

Chapter 1

The enemy is attacked repetitively using the interactive while loop, which accepts
user input. Execution of the attack function may result in injury to Sir Foo, or the
enemy, or both. It is also possible that no one gets hurt. For simplicity, we will only
consider two possibilities: a single attack that will injure either the enemy or Sir Foo.
In the previous section, we used the built-in random number generator to randomly
determine the occupants of the huts. We can use the same technique to determine
who gets hurt:

injured unit = random.choice(['player', 'enemy'l])

But hold on a minute. Sir Foo has something to say:

Cafchlng rhe enemy
off 5uar‘d should Eive
me an edge. Chances
of enemy aua-ra.ining
in}ur‘ies are hiﬂher!

We should take into account the chance of an injury to the player and to the enemy.
In the attack function shown next, we will assume that for about 60% of the time,
the enemy will get hit and for the remaining 40%, it is Sir Foo who is on the receiving
end.

The simplest way is to create a list with 10 elements. This list should have six entries
of 'enemy' and four entries of 'player'. Then, let random. choice select an element
from this list. You can always introduce a difficulty level in the game and change this
distribution:

[27]

Developing Simple Applications

Crer the current hir points for
def attack(health_meter):

hit_list = 4 * ['player'] + & ¥ ['enemy’
injured unit = random.choice(hit list)
hit points = health _meter[injured unit]
injury = random.randint(10, 15}
health_meter[injured_unit] = max(hit_points = iInjury. O©)
print("ATTACK! ", end='"')

show_health(health_meter)

] the randomq}r picked injured urif

updare the health__merer for injured__unis

Once the injured_unit is selected randomly, the injury is determined by picking
a random number between 10 and 15, inclusive. Here, we use the random. randint
function. The final important step is to update the health_meter dictionary for the
injured unit by reducing its number of hit points.

Running Attack of the Orcs v0.0.5

We have discussed the most important functions in this game. Review the other
supporting functions from the downloaded file. The following screenshot shows the
game in action:

[userphoztname src_chl]$ python chel_exo2.py
Mission:

Choose & hut where Sir Foo can rest...
TIP:
Ee careful as there are enemies lurking around!

Choose a hut number to enter (1-5): 1
Revealing the occupants...
=l:enemy> =2.unocccupied> =3:enemy> =4.:friend> =5:friend=>
EMEMY SIGHTED! Health: Sir Foo: 48, Enemy: 20
....... continue attack? (yv/n): v
ATTACK! Health: Sir Foo: 48, Enemy: 17
....... continue attack? (v/n): vy
ATTACK! Health: Sir Foo: 48, Enemy: 4
....... continue attack? (yv/n): v
ATTACK! Health: Sir Foo: 48, Enemy: G
GOOD JOB! Enemy defeated! YOU WIN!!!

Play again? ves(y)/No(n): ||

[28]

Chapter 1

Using OOP - Attack of the Orcs v1.0.0

The attack feature that you added in the previous game has made it a lot more
interesting. You can see some friends coming back again and again to play the game.
The new feature requests have started pouring in.

Here is a partial list of the requested features:

1.

New mission to acquire all the huts and defeat all the enemies. This also
means the hut occupants should be revealed right at the beginning of the
game.

Ability to get healed in a friendly or unoccupied hut.

Ability to abandon combat (or run away from the enemy). This is a strategic
move to run away, get healed in a friendly hut, and resume combat.

Introduce one or more horse riders to assist Sir Foo. They can take turns to
acquire huts. Ideally, a user-configurable option.

Ability to configure the maximum hit points for each enemy unit and each of
the horse riders.

Configurable total number of huts; for example, increase it to 10.

Each hut can have either some gold or a weapon inside that Sir Foo and his
friends can pick up.

Have an elf rider join Sir Foo. His abilities give him a very high chance of
winning with fewer attacks.

This is quite a long list. You are preparing a plan. Here is a partial list of things you
will need to add to the existing code to implement some of these features:

Keeping track of the hit points of multiple enemy units occupying
various huts

Maintaining the health record of Sir Foo and all accompanying horse riders
Monitoring how many huts are acquired by Sir Foo's army

Another dictionary or list to keep track of the gold in each hut, and another
one for weapons; additionally, what if someone wants to put armor in the
hut?

Not to forget, yet another list of dictionary for each unit that accepts any of
these goodies

Ah! So they want an elf rider with its own traits and abilities...nice...thanks
for the additional trouble!

That is already a long list. While you could still continue to use the functional
programming approach, in such scenarios it will get tougher as the game evolves
and new features get added.

[29]

Developing Simple Applications

Thankfully, object-oriented programming comes to the rescue. How about making
Sir Foo an instance of a knight class? With this, it should be easy to manage
parameters relevant to Sir Foo. For example, an attribute, hitpoints, can be used
to keep track of Sir Foo's health instead of using the health_meter dictionary in
the earlier example. Similarly, the other attributes in the class can keep track of the
amount of gold or weapons collected while acquiring the huts (another requested
feature).

There is a lot more beyond this bookkeeping. The various methods of the class
would enable a specific implementation of behaviors, such as attack, run, heal,
and so on. The horse riders accompanying Sir Foo can also be instances of the class
Knight. Alternatively, you can create a new class called Horserider for all these
units that accept commands from Sir Foo.

Prioritize the feature requests

For this new version, let's hand pick a few requested features from the earlier list.
In fact, Sir Foo should be the one who makes this call:

T can defear all the

Enemies '|'F -r'ntr'e is a wny
L] [

to ger healed inside a

-Friendl}r hut.

: and obout hnving o few
more horseriders for
assistance .. no need to call
my men for now, I can deal

wifh -rhe:ae. ores myae”.
Nt

As you wish, Sir Foo...we will only add the new heal feature in this version.

[30]

Chapter 1

Problem statement

It is now time to clearly define the targets for this release. You are not just adding
new features to your application, but also making some fundamental changes to the
code to accommodate future requests.

In this version, the mission is to acquire all of the five huts. Here, you will implement
a new heal feature to regain all the hit points for Sir Foo. You will also implement
some strategic controls, such as running away from combat, getting healed in a
friendly hut, and then returning rejuvenated to defeat the enemy.

Redesigning the code

We already discussed how creating a Knight class will help simplify the handling of
data and all other things related to Sir Foo, be it the hit points or the way he attacks
enemies.

What other classes can be carved out? How about having the enemy as an object?
The enemy could occupy multiple huts. Remember that we need to defeat all the
enemies. Imagine the following scenario: Sir Foo injures an enemy in hut number
2, thereby reducing its hit points. Then, he moves on to another hut occupied by
another enemy. Now, we need to maintain two separate hit point counters for each
of these enemy units.

In a future version, you can expect users to ask for different enemy types with the
ability to attack or heal, just like how we have it for Sir Foo. So, at this point, it makes
sense to have a separate class, instances of which represent the enemy units. We

will name this class orcRider. It will have similar attributes to the Knight class.
However, for simplicity, we will not give the enemy capabilities such as healing,
changing huts, and so on.

Sir Foo says he is delighted to read that the enemy has been denied some important
capabilities. (But you can't see his happy face behind the helm.)

There is something else we should consider. So far, huts was just a simple Python
list object holding information about the occupant types as strings.

Looking at the requested features list, we also need bookkeeping for the amount of
gold and armor in the hut and to update its occupant, depending on the result of
the fight. In a future version, you may also want to show some statistics, such as a
historic record of the occupants, changes in the amount of gold, and so on. For all
this and more, we will create a class, Hut.

[31]

Developing Simple Applications

Painting the big picture

Take a pen and paper and write down the important attributes we need for each
class discussed so far. At this point, do not worry about classifying whether it is an
instance variable or a class method that encapsulates instructions to perform specific
tasks. Just write down what you think belongs to each class.

The following schematic shows a list of potential attributes for the knight, Hut, and
OrcRider classes. The attribute names in strikethrough text indicate the potential
attributes that won't be implemented in this illustration. But, it is always good to
think ahead and keep it at the back of your mind during the design phase of the
application:

Orc Rider Hut

name number name
health_meter occupant health_meter
show_health occupant_type show _health
info acquire info
-attack- Weapons- attack
-heat- gotd heal
-acquire—hut food- acquire hut
FUR-—away Fristory run_away
“Wweapons Wweapens
gotd- -goid

This is not a complete specification, but we have a good starting point now. When Sir
Foo enters an enemy hut, we have a choice to call the attack method of the knight
class. As before, the attack method will randomly pick who gets injured and deduct
the hit points for that character. In the knight class, it is convenient to have a new
attribute, enemy, that will represent the active opponent. In this example, enemy will
be an instance of the orcrider class.

[32]

Chapter 1

Let's develop this design further. Did you notice that the knight and orcrRider
classes have several things in common? We will use the inheritance principle to
create a superclass for these classes, and call it GameUnit. We will move the common
code to the superclass, and let the subclasses override the things they want to
implement differently. In the next section, we will represent these classes with a
Unified Modeling Language (UML)-like diagram.

Pseudo UML representation

The following diagram will help develop a basic understanding of how the various
components talk to each other:

1 Hut GameUnit
+ number +name
+ ocoupant T enemy
+ health_meter
+ acquire() I
+infof)
+ attack()
AttackOfTheOrcs + heal()
1
+ huts ~ + run_away()
+ player A
+ play()

Knight f OrcRider

+ infof)
+ acuire_hutf)

The preceding diagram is similar to a UML representation. It helps create a visual
representation of a software design. In this book, we will loosely follow the UML
representations. Let's call the diagrams used here pseudo UML diagrams (or UML-
like diagrams).

[33]

Developing Simple Applications

Understanding the pseudo UML diagram

An explanation is in order for the UML-like convention used here. We will represent
each class in the schematics as a rounded rectangle. It shows the class name followed
by its attributes. The plus sign (+) before the attribute indicates that it is public. A
protected or private method is generally represented with a negative sign (-). All the
attributes shown in this diagram are public attributes. So, optionally, you could add
a plus sign next to each attribute. In later chapters, we will follow this convention.
For ease of illustration, only a few relevant public attributes will be listed. Observe
that we are using different types of connectors in this diagram:

* The arrowhead with an empty triangle symbol represents inheritance; for
example, the Knight class inherits from the GameUnit class

* The arrowhead with a filled diamond symbol represents object composition,
for example, a Hut instance has an object of the GameUnit class (or its
subclasses)

* The arrowhead with an empty diamond symbol represents object
aggregation

Now, let's talk about the individual components of the diagram presented earlier.

The xnight and orcRider classes inherit from GameUnit. The knight class, in
this case, will override default methods, such as attack, heal, and run_away. The
orcRrider class will not have such overridden methods, as we will not give these
capabilities to the enemy.

The Hut class will have an occupant. The occupant can either be an instance of
the knight or the OrcRider, or the None type if the hut is unoccupied. The filled
diamond connector in the diagram indicates composition.

Object composition

Ky It is an important OOP principle. It implies a has-a relationship. In
Q this case, Hut contains, or is composed of, some other object that is
to be used to perform specific tasks. Just say it out loud; a Hut has-a
Knight, a Hut has-an OrcRider, and so on.

In addition to the four classes discussed, we will introduce another one to
encapsulate the top-level code. Let's call it AttackOfTheOrcs. As there are five huts,
a class method in AttackOfTheOrcs creates that number of Hut instances. This is
object aggregation, shown by the empty diamond shaped arrow in the preceding
diagram.

[34]

Chapter 1

Have you noticed another has-a relationship in AttackOfTheOrcs? The player
attribute in this class is an instance of the knight class, but in the future, this could
change. This relationship is indicated by the filled diamond-head connector joining
the Knight and AttackOfTheOrcs boxes.

Reviewing the code

With this high-level understanding, let's begin developing the code. Download the
Python source file, cho1_ex03.py. We will review only a few important methods in
the code. Refer to this source file for the complete code.

The code for this example, ch01 ex03.py, is all squished inside
o a single file. Is it good practice? Certainly not! As we go along, you
~ will learn about best practices. Later in the book, we will discuss
Q some important building blocks of application development, namely
refactoring, coding standards, and design patterns. As an exercise, try
to split the code into smaller modules and add code documentation.

The main execution code is shown here, along with some details of the
AttackOfTheOrcs class. Inthe init method, we will initialize some instance
variables and later update the values they hold. For example, self.player
represents the instance of the knight class when the game begins:

class Attack0fTheOrcs:))
def init (self) a list 1o hold the instances of class

self.huts = []/’/;" Hut ro be creared larer.

self.player = None
Hﬂﬁx"‘ The |::|::_yer 1o be instrantiated larer
def get_occupants(self):

def show _game mission(self): varicus metheds

def process user choice(se1f): of the class

[cﬂde is nort shawn]
def occupy huts(self):

def play(self):

if __name__ == '__main__': create an instence of the

= AttackOfThel
gane =~ MHAckOMTHOrCs) [lass and call irs play method

[35]

Developing Simple Applications

Just as a refresher, the _init method is somewhat similar to a
R constructor in languages such as C++; however, keep in mind some
~ differences. For example, you cannot overload init as you might
Q do in these languages. Instead, you can easily accomplish this using
optional arguments or the classmethod decorator. We will cover
some aspects later in the book.

Let's quickly review the play and _occupy_huts methods:

CFE(M’E an instfanse G‘F ‘|'|"'IE

def play(self): /Hn'ugh-r class
self.player = Knight()

self. _occupy_huts()

acquired_hut_counter = O An underscore ar the start

. . indicates vou intend to use
self.show _game mission() e e ! d

self.player.show_health(bold=True) this privately. But this is nor
. . enforced in Py-rhan...
while acquired hut counter < S5: _—
idx = self. process user choice()
self.player.acquire_hut(self . huts[idx-1])

if self.player.health_meter == O:
print_bold("YOU LOSE :(Better luck next time")

break
red self. player rakes

if self.huts[idx-1].1is_acquired: it frem here..
acquired hut counter += 1

if acquired_hut_counter == 5:
print_bold{"Congratulations! YOU WIN!!!")

The self.player is an instance of the knight class. We will call the acquire hut
method of this instance where most of the high-level action happens. After this, the
program simply looks for the health parameters of the player and the enemy. It also
queries the Hut instance to see if it is acquired.

[36]

Chapter 1

Moving ahead, in the _occupy_hut method, the objects of Hut are created and
appended to the self.huts list. This method is shown in the following figure:

def occupy huts(self):

for i in range(5): Creare an instance of
choice_1st = ['enemy', 'friend', None] Hur. Az the second
computer_choice = random.choice(choice_lst) ergumens for Hus, we
if computer choice == 'enemy': creare inatence of a
name = 'enemy-' + str{i+l) Crarmelnit
self.huts.append(Hut(i+1, OrcRider{name))])
elif computer choice == ‘friend’:
name = 'knight-' + str(i+l)
self.huts.append(Hut{i+l, Knight{name}))
else:

self.huts.append(Hut(i+l, computer_choice))

Public, protected, and private in Python

You will notice that some methods of the At tackOfTheOrcs class start
with an underscore, for example, process user choice (). Thatisa
way to say that this method is not meant for public use. It is intended to
be used from within the class. Languages such as C++ define class access
. specifiers, namely, private, protected, and public. These are used
& to put restrictions on the access of class attributes.
A

There is no such thing in Python. It allows outside access to the attributes
with a single underscore as game. process_user choice ().

If the attribute name starts with double underscores, you can't call

it directly. For example, you can't directly call game. process_

user choice (). That being said, there is another way to access such
attributes from outside. But let's not talk about it. Although Python
allows you to access such attributes, it is is not good practice to do so!

[37]

Developing Simple Applications

Observe the acquire_hut method of the Knight class:

def acquire hut (5217,

hut):

o S —— R O T oy EN

print_bold("Entering hut %d..."shut.number, end=' ')
1s_enemy = (isinstance(hut.occupant, Gamelnit)
N

and hut.occupant.unit_type == ‘'enemy’
continue_attack = 'y' |a5|ic to see
if is_enemy:
print_bold("Enemy sighted!") if the accupany

self.show_health(bold=True, end=' ')
hut.occupant.show_health(bold=True, end=" ')
while continue attack:

is an enemy

continue attack = input("....... continue attack? (y/n): ")
if continue_attack == 'n':
self. run_awa}r{] atl'F.aTTa.cH} trokes LRLMY &5 an
break argument. Fass the occupant

n'DJccT of the hut class. in our

self.attack (hut.occupant) case it is an instance of OrcRider

if hut.occupant.health _meter == O:

print("")
hut.acquire(self)
break
if self health_meter == 0:
print{"")
break
else:
if hut.get_occupant_type() == 'unoccupled':
print_bold("Hut is unoccupied") update the 'cccupant
else:

attribute of the hut
with an instance of

print_bold("Friend sighted!") /
hut.acquire(self)
self.heall) this cass

Let's talk through this method next:

First, we need to check whether the hut's occupant is a friend or an enemy.
This is determined by the variable is_enemy, as shown in the preceding
figure.

The hut's occupant can be of the following types: an instance of the knight
class, an instance of the orcRider class, or set to None.

The GameUnit class, and its subclasses knight and OrcRider, define aunit
type attribute. This is just a string that is set as either ' friend' or 'enemy'.

[38]

Chapter 1

Thus, to determine whether there is an enemy hiding in the hut, we will first
check whether the hut . occupant is an instance of the superclass GameUnit.
If true, we will know it has a unit_type parameter. So, we will check
whether hut . occupant .unit_type is equal to 'enemy'. For the orcrider
class, unit_type is set to 'enemy' by default.

The rest of the logic is simple. If the occupant is an enemy, it asks the user
what to do next: attack or run away.

The knight . attack method is similar to the one discussed earlier. One
change here is that we can access the health_meter attribute of the injured
unit and update it.

If hut . occupant happens to be 'friend' or None, it calls hut .acquire ().

What happens when the Hut . acquire () method is called? Here is the code snippet
for the Hut class:

class Hut:

def _init_ (self, number, occupant):

def acquire(self. new_occupant):

def get_occupant_type(sz1f):

self.occupant = occupant
self.number = number
self.is_acquired = False

self.occupant = new_occupant
self.is acquired = True
print_bold("GOOD JOB! Hut %d acquired" % self.number)

if self.is acquired:
occupant_type = 'ACQUIRED'

elif self.occupant is Mone:
occupant_type = 'unoccupied’

else:
occupant_type = self.occupant.unit_type

return occupant_type

The acquire method simply updates the occupant attribute with the object passed
as an argument to this method.

[39]

Developing Simple Applications

Running Attack of the Orcs v1.0.0

It's play time! We have reviewed the most important methods of the new classes.
You can review the rest of the code from the cho1_ex03.py file, or better try to write
these methods on your own. Run the application from the command line, like we did
earlier. The following screenshot shows the game in action:

[userghostname src_chl]$ python ch@l_ex@3, py
Mission:
1. Fight with the enemy.
2. Bring all the huts in the willage under your control

Health: 5ir Foo: 46

Current occupants: ['unoccupied', 'enemy', 'friend', 'friend', 'unoccupied']
Choose a hut number to enter (1-5): 2

Entering hut 2... Enemy sighted!

Health: 5ir Foo: 48 Health: enemy-2: 36 continue attack? (y/ni: v

ATTACKE! Health: 5ir Foo: 40 Health: enemy-20 18 continue attack? (y/n): v
ATTACK! Health: 5ir Foo: 40 Health: enemy-2: 5 continue attack? (y/n): v
ATTACK! Health: 5ir Foo: 29 Health: epemy-2: 5 continue attack? (y/n): v
ATTACK! Health::5ir Foo: 14 - Health: enemy-2: 5 continue attack? {(y/nj: n
RUMNING AWAY.

Current occupants: ['unoccupied', 'enemy', 'friend', 'friend', ‘unoccupied']
Choose a hut number to enter (1-5):3 1

Entering hut 1... Hut is unoccupied healed! Go back to hur 2

GOOD JOB! Hut 1 acquired J',;d.hd attack ﬂﬂﬂ.ih!

You are HEALED' Health: :5ir Foo: 468

Current occupants: ['ACQUIRED', 'enemy', 'friend', 'friend', 'unoccupied']
Choose a hut number to enter (1-5): 2 — -

Entering hut 2... Enemy sighted! - “"9“,1"”"’—":I earlier

Health: 5ir Foo: 48 Health: -enemy-2: 5:...... continue attack? (y/ni: v

ATTACK! Health: 5ir Foo: 40 Health: enemy-2: 0O [

GOOD JOB! Hut 2 acquired - ey

Current occupants: ['ACQUIRED', ‘ACQUIRED's ‘friend', 'friend', 'unoccupied']
Choose a hut number to enter (1-5): 3.

Abstract base classes in Python

In the previous section, we redesigned the code using the OOP approach. We

also demonstrated the use of inheritance by defining a superclass GameUnit, and
inheriting from it to create the knight and orcrRider subclasses. As the last topic in
this chapter, let's talk about using abstract base classes in Python.

[40]

Chapter 1

This section is intended to provide a basic understanding of ABCs
M in Python. The discussion here is far from being comprehensive but
Q will be just enough to implement an ABC in our application code. For
further reading, check out the Python documentation at https://
docs.python.org/3/library/abc.html.

If you are familiar with OOP languages such as Java or C++, you probably already
know the concept of an ABC.

A base class is a parent class from which other classes can be derived. Similarly,
you can have an abstract base class and create other classes that inherit this class.
So, where is the difference? One of the major differences is that an ABC can't be
instantiated. But that is not the only difference. An ABC forces the derived classes
to implement specific methods defined within that class. This much knowledge
about an ABC should be good enough to work through the examples in this book
For more details, see the aforementioned Python documentation link. Let's review a
simple example that shows how to implement an abstract base class in Python and
how it differs from an ordinary base class. The abc module provides the necessary
infrastructure. The following code snippet compares the implementation of an ABC
to an ordinary base class:

from abc import ABCMeta, abstractmethod 1:
class GameUnit:

def init (self):
pass

class AbstractGameUnit (metaclass=ABCMeta):
def _init_ (self): rd
pass 2

@abstractmethod —
def info(self): 3
pass

def info(selfl:
print("INFO: GameUnit")

class Knight (GameUnit):
def __dnit__ (self):
pass
def info(self):
print ("INFO: Knight")

class Knight (AbstractGameUnit):
def _init_ (s=1f):
pass
def info(self):
print("INFO: Knight")

if _name_ == "_main_ ":

if _name_ == "_main__":
k2 = Knight()

kl = Knight() .
k2. info()

kl.info()

[41]

https://docs.python.org/3/library/abc.html
https://docs.python.org/3/library/abc.html

Developing Simple Applications

The class on the left, AbstractGameUnit, is the abstract base class, whereas the
GameUnit class on the right is an ordinary base class. The three differences in the ABC
implementation are marked with numbers, as shown in the preceding screenshot.

* The argument metaclass=ABCMeta is used to define AbstractGameUnit as
an ABC.

* The ABCMeta is a metaclass to define the abstract base class. It is a broad
discussion topic, but the simplified meaning of a metaclass is as follows:
to create an object, we use a class. Likewise, imagine a metaclass as one used
to create a class.

* A Python decorator provides a simple way to dynamically alter the
functionality of a method, a class, or a function. This is a special Python
syntax that starts with an @ symbol followed by the decorator name. A
decorator is placed directly above the method definition.

¢ The @abstractmethod is a decorator that makes the method defined on the
next line an abstract method.

* The abstract method is the one that the ABC requires all the subclasses to
implement. In this case, AbstractGameUnit requires its Knight subclass
to implement the info () method. If the subclass does not implement this
method, Python simply doesn't instantiate that subclass and will throw
TypeError. You can try this by removing the knight . info method and
running the code.

* There is no such restriction if the knight class inherits from an ordinary base
class, such as GameUnit.

\ The code illustrated here is for Python version 3.5. For version 2.7, the
~ syntax is different. Refer to the ch01_ex03_AbstractBaseClass.py
Q file in the Python2 directory of the supporting material for an equivalent
example.

Exercise

In the cho1_ex03.py file, you will see some comments. These are intentionally kept
to give you an opportunity to improve portions of the code. There is plenty of room
for improvement in this code. See if you can rewrite portions of the code to make it
more robust. If you prefer a well-defined problem, here is one:

The Knight and OrcRider classes inherit from the GameUnit superclass. This
exercise is about converting GameUnit to AbstractGameUnit, an abstract base class.
Here is a cheat sheet for you; the skeleton code shown in the following figure is with
the Python 3.5 syntax.

[42]

Chapter 1

Refer to the ch01 ex03 AbstractBaseClass.py file:

class AbstractGameUnit (metaclass=ABCMeta):
def _init_ (self, name=""'):

@abstractmethod
def info(self):

def attack(se1f, enemy):
def heal (self, heal by=2, full_healing=True):
def reset_health meter(se1f):

def show_health(s=1f, bold=False, end="%n']}:

1
~ Note that for Python 2.7, there is a separate version of this code. Refer
to the src_chl_ Python2 directory in the supporting code bundle.

Summary

In this chapter, we touched upon some introductory concepts in Python to develop
a simple command-line application. We first equipped ourselves by setting up a
Python development environment.

The first program we wrote was a simple Python script. We soon realized that a
simple script would be hard to maintain if more features are added. As a next step,
we did a bit of refactoring and wrapped the code inside functions. This improved
the code readability and also made it easier to manage. The proposed introduction
of more features to the application made us rethink the design. We learned how to
transform the code into an object-oriented design and implemented a few of these
new features.

And how can we forget Sir Foo! He will accompany us throughout this book.

Is the code developed free from bugs? You might have already noticed some problems
while playing the game! In the next chapter, we will see how to make the application
more robust by handling exceptions.

[43]

Developing Simple Applications

Very important note for e-book readers

The code illustrations that you see in this book are actually image files or code
snapshots.

The rendering quality of these images will vary depending on your PDF reader's
page display resolution and the zoom level.

If you have trouble clearly reading this code, you may try the following in your PDF
or e-book reader:

e Set the zoom level to 100%

* Use the page display resolution of 96 pixels/inch or similar
If the problem still persists, you can try with a different resolution.

How do you set this resolution? It will depend on your e-book reader. For example,
if you are using Adobe Reader, go to Edit | Preferences and then select Page
Display from the left panel. You will see Resolution as an option in the right panel.
Select 96 pixels/inch or similar and see if that helps render the images better.

[44]

Dealing with Exceptions

In the previous chapter, we started with a simple command-line script and gradually
transformed it into an object-oriented code. Several new features were added in the
process. So far, we have paid little attention to the application quality. We neglected
to look for any obvious errors encountered during the program execution. Such
errors detected during the application runtime are referred to as exceptions. In this
chapter, you will learn techniques to make the application more robust by handling
exceptions.

Specifically, we will cover the following topics:

* What are the exceptions in Python?
* Controlling the program flow with the try..except clause
* Dealing with common problems by handling exceptions

* Creating and using custom exception classes

Let's start by reviewing the feedback you received from the users.

Revisiting Attack of the Orcs v1.0.0

The heal feature added in v1.0.0 became a hit among the core users. The OOP
approach put you in a better position to implement new features (or so you
thought!). As the feature requests started pouring in, so did the reported bugs.

The game is OK, but there are several annoyances. For example, when prompted
to choose a hut, sometimes I input a number greater than 5 or input a character
by mistake. After this, it just prints some weird error message and the application
terminates. Can you fix this?

[45]

Dealing with Exceptions

Don'+ get discaur‘agi!d my
friend. Busa ore part of the
npp|icm‘ion deve!opmenf life
cye:|z. Impar‘-ran-r fhinﬁ is to
make your code more robust
to avoid common mistakes.

Debugging the problem

Let's try to reproduce the reported problem. Run the example from Chapter 1,
Developing Simple Applications:

$ python ch0l ex03.py

When prompted for the hut number, enter any character, as shown in the following
screenshot:

Health: Sir Foo: 48
current occupants: ['unoccupied', Sfisdend', ‘enemy’', ‘enemy’', ‘friend']

Choose a hut number to enter (1-5)Ey i
Traceback (most recent call last): ""F Entering any character

File "chel_exez.py", line 219, in =module> instead of a number
game.play() between 1-5 results in
File "cheil_exez.py", line 283, in play a ValueErrer

idx = self._process_user_choice()
File "chel_exez.py", line 266, in _process_user_choice
idx = int{user_choice)
ValueError: invalid literal for int() with base 108: 'y’

[46]

Chapter 2

The application is terminated with an error traceback in the console. A traceback

is a snapshot of the call stack at the point where the exception (the error) occurred.
In this particular example, the _process_user_ choice method is called by the
play method, which is called directly from the module. The line numbers show
where these calls occur. It is useful for debugging. The reported error in this case

is ValueError. It occurred because we assumed the user choice as an integer. The
other problem reported is when the hut number does not fall in the range 1 to 5. The
traceback error received is IndexError. It occurs while accessing the entry in the
huts list corresponding to the user input:

choose a hut number to enter (1-5): 8 — sut of range |
Traceback (most recent call last):
File "chel_ex@2.py", line 219, in =module>

Eamﬂ-ﬁlﬂﬂi L L 2rrer cccurs in
File "chel_exez.py", line 283, in play)

idx = self._process_user_choice() _—— this merhod
File "chel_ex@2.py", line 2687, in _process_user_choice

if self (huts[idx-1]).is_acquired:

IndexError: list index out of range

If you look at the two tracebacks closely, both these errors occur in the _process_
user_choice method of the AttackOofTheOrcs class. Let's review the original
method:

def _process_user_choice(s=1f):

ValueErrar if user inpu«t: a

1dx =0

print{"Current cccupants:
while verifying choice:
user_choice = inputf"Choose a hut number to enter (1-3): ")
idx =30t (user choice]>
if self . hutslidx-I].15 acquired:
print{

"You have alrgady acquired this hut. Try again."”
"<INFO: You cafm~l0T get healed in already acquired hut.=")

TadexErrer’ if the ide=1" iz a
rnumber that exceeds the lengfh
return idx of the “huts’ lise

characrer such as "y

%5" % self.get occupants())

else:
verifying_choice = False

Good! We have pinpointed where the problem is. Now, the next task is to fix
these bugs.

[47]

Dealing with Exceptions

Fixing the bugs...

Sir Foo has some thoughts on fixing bugs. ..

Thﬂ"'ra [} nﬂ-brﬂlnﬂr!
Just use if-else
conditional blocks and
lay the problem to rest.

Sure. One way to fix the reported problems is to add conditional blocks which
ensure that the user input is a number between 1 and 5.

But like many other languages, Python provides an elegant way to handle such
situations using the try..except clause. It is based on the Easier to Ask for
Forgiveness than Permission (EAFP) principle.

The EAFP principle

When coding, you assume some things exist and try writing the code
accordingly. But if this turns out to be a wrong assumption, you ask
. for forgiveness by catching that exception. This is a very common
approach used in Python development. You can check out the Python 3

~ documentation (https://docs.python.org/3/glossary.html)
that defines this idiom. In some cases, exception handling can affect
the performance when compared to the use of the if condition blocks;
however, you will most likely find more good things than bad ones
when using the try..except clause.

[48]

https://docs.python.org/3/glossary.html

Chapter 2

Exceptions

Before jumping straight into the code and fixing these issues, let's first understand
what an exception is and what we mean by handling an exception.

What is an exception?

An exception is an object in Python. It gives us information about an error detected
during the program execution. The errors noticed while debugging the application
were unhandled exceptions as we didn't see those coming. Later in the chapter, you
will learn the techniques to handle these exceptions.

The valueError and IndexError exceptions seen in the earlier tracebacks are
examples of built-in exception types in Python. In the following section, you will
learn about some other built-in exceptions supported in Python.

Most common exceptions

Let's quickly review some of the most frequently encountered exceptions. The easiest
way is to try running some buggy code and let it report the problem as an error
traceback! Start your Python interpreter and write the following code:

=== import non_existant

Traceback (most recent call last):
File "<=stdin=", line 1, in =module>

ImportError: No module named 'non_existant'

e

=t

Traceback (most recent call last):
File "=stdin=", line 1, in =module=

MameError: name 'x' is not defined

P

=== gssert(2 == 10)

Traceback (most recent call last):
File "=stdin=", line 1, in =module=

AssertionError

[49]

Dealing with Exceptions

Here are a few more exceptions:

=== some_list = []

=»> some_list[1]

Traceback (most recent call last):
File "=stdin=", line 1, in =module=

IndexError: list index out of range

o

}}3wx
=Ry,
Tracéback"(Wost recent call last):

File "=stdin=", line 1, in =module=
AttributeError: 'int' object has no attribute 'thing'
a2
=== y/0
Traceback (most recent call last):

File "=stdin=", line 1, in =module=
ZerobDivisionError: diwvision by zero

As you can see, each line of the code throws an error traceback with an exception
type (shown highlighted). These are a few of the built-in exceptions in Python. A
comprehensive list of built-in exceptions can be found at https://docs.python.
org/3/library/exceptions.html#bltin-exceptions.

Python provides BaseException as the base class for all built-in exceptions.
However, most of the built-in exceptions do not directly inherit BaseException.
Instead, they are derived from a class called Exception that in turn inherits from
BaseException. The built-in exceptions that deal with program exit (for example,
SystemExit) are derived directly from BaseException. You can also create your
own exception class as a subclass of Exception. You will learn about that later in this
chapter.

[50]

https://docs.python.org/3/library/exceptions.html#bltin-exceptions
https://docs.python.org/3/library/exceptions.html#bltin-exceptions

Chapter 2

Exception handling

So far, we saw have seen the exceptions occur. Now it is time to learn how to use the
try..except clause to handle these exceptions. The following pseudocode shows a
very simple example of the try..except clause:

try:
things you hope will execute fine()
except:
print{"Uh oh..an exception occurred.")
exception_handling_code()
print("Gracefully handled!")

print{"Done with the exception handling code...move on!")

Let's review the preceding code snippet:

* First, the program tries to execute the code inside the try clause.

* During this execution, if something goes wrong (if an exception occurs),
it jumps out of this try clause. The remaining code in the try block is not
executed.

* It then looks for an appropriate exception handler in the except clause and
executes it.

The except clause used here is a universal one. It will catch all types of exceptions
occurring within the try clause. Instead of having this "catch-all" handler, a better
practice is to catch the errors that you anticipate and write an exception handling
code specific to those errors. For example, the code in the try clause might throw
an AssertionError. Instead of using the universal except clause, you can write a
specific exception handler, as follows:

try:
things_you_hope will_execute fine()
except AssertionError:
print("Uh oh..an exception occurred.")
exception_handling code()

"

print("Gracefully handled!")

print("Done with the exception handling code...move on!")

[51]

Dealing with Exceptions

Here, we have an except clause that exclusively deals with AssertionError. What
it also means is that any error other than the AssertionError will slip through as

an unhandled exception. For that, we need to define multiple except clauses with
different exception handlers. However, at any point in time, only one exception
handler will be called. This can be better explained with an example. Let's take a look
at the following code snippet:

def solve_something():

a = int{input("Enter a number 'a':"})) Errering o <=0
o

T

r£5u|-rs i an

assert a = 0

assertion failure

!

rest of the code

print("Number entered is OK.")

if & » 0. it reaches

\ P 0) is skippeﬂ
def some function(): ere and calls The
-try-: dThCr E!CCF\ﬁQﬁ l
solve_someghing() handler calls <his

except NameError as e:

print("Uh ch..Mame Error.", e.args)
except AssertionError: /

print("Uh oh..Assertion Error.")

ercepfion hand!er’

if __name_ == "'_main__':
some_function()

The try block calls solve something (). This function accepts a number as a user
input and makes an assertion that the number is greater than zero. If the assertion
fails, it jumps directly to the handler, except AssertionError.

In the other scenario, with a > 0, the rest of the code in solve something ()

is executed. You will notice that the variable x is not defined, which results in
NameError. This exception is handled by the other exception clause, except
NameError. Likewise, you can define specific exception handlers for anticipated
erTors.

Raising and re-raising an exception

The raise keyword in Python is used to force an exception to occur. Put another
way, it raises an exception. The syntax is simple; just open the Python interpreter
and type:

>>> raise AssertionError ("some error message")

[52]

Chapter 2

This produces the following error traceback:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AssertionError : sSome error message

In some situations, we need to re-raise an exception. To understand this

concept better, here is a trivial scenario. Suppose, in the try clause, you have an
expression that divides a number by zero. In ordinary arithmetic, this expression
has no meaning. It's a bug! This causes the program to raise an exception called
ZeroDivisionError. If there is no exception handling code, the program will just
print the error message and terminate.

What if you wish to write this error to some log file and then terminate the program?
Here, you can use an except clause to log the error first. Then, use the raise
keyword without any arguments to re-raise the exception. The exception will be
propagated upwards in the stack. In this example, it terminates the program. The
exception can be re-raised with the raise keyword without any arguments.

Here is an example that shows how to re-raise an exception:

def solve something():
b=20
a = int(input("Enter a number 'a':"}))
assert a » 0O
print ("Number entered is OK.")
print("a = {}, b = {¥., Now doing a/b".format(a. b))
g += a/b- - C divisi b
d = % + 7 AUSES IVIS12 }v‘ Zéro
g = 24%(LeroDivisionErrer is raised.

def some function():
try:
solve_something()
except MNameError as e:
print("Uh oh. MName Error.", e.args)
except AssertionError:
print("Uh oh.. Assertion Error."
except Exceptior™as 2:
print("Unhandled exception. Logging the error")

goes fo the carch=all

ErcEpTion c:| aUse

_\\ LDB the error (do somEThinﬂ useful).

' Thern re-raise the exception.

raise

if _ name =="'_main_ ':
some_function()

[53]

Dealing with Exceptions

As can be seen, a division by zero exception is raised while solving the a/b expression.
This is because the value of variable b is set to 0. For illustration purposes, we assumed
that there is no specific exception handler for this error. So, we will use the general
except clause where the exception is re-raised after logging the error. If you want to
try this yourself, just write the code illustrated earlier in a new Python file, and run it
from a terminal window. The following screenshot shows the output of the preceding
code:

[uzser@hostname src_ch2]% python test_zerodiv.py
Enter a number 'a':l@
Mumber entered is OK.
a =18, b = @, Now doing a‘b
Unhandled exception. Logging the error
Traceback (most recent call last):
File "test_zerodiv.py", line 41, in =module=
some_function()
File "test_zerodiv.py", line 28, in some_function
solve_something()
File "test_zerodiv.py", line 24, in solve_something
a += a’b
ZeroDivisionError: division by zero

The else block of try...except

There is an optional else block that can be specified in the try..except clause.
The else block is executed only if no exception occurs in the try..except clause.
The syntax is as follows:

try:

things_you hope will_execute fine()
except AssertionError:

print("Uh oh.. Assertion error occurred.")
else:

print("hWice! Mot exception raised so far.")

The else block is executed before the finally clause, which we will study next.

[54]

Chapter 2

finally...clean it up!

There is something else to add to the try..except..else story: an optional finally
clause. As the name suggests, the code within this clause is executed at the end of
the associated try..except block. Whether or not an exception is raised, the £inally
clause, if specified, will certainly get executed at the end of the try..except clause.
Imagine it as an all-weather guarantee given by Python! The following code snippet
shows the finally block in action:

def some function():
try:

a = int{input{"Enter a number 'a':")) [= =I (user inpuf}

assert a » 0
except ASS—:-rti-:unErr-:ur:]

print("Uh oh..Assertion E|‘|‘-:-|‘."]I:|
finally:

print("Do some special cleanup") im the end execute

. . , the "F'lna.”}r‘ clause
if _ _npame_ =="'_main_ ':

some_function()

Running this simple code will produce the following output:

$ python finally examplel.py
Enter a number: -1
Uh oh..Assertion Error.

Do some special cleanup

The last line in the output is the print statement from the £inally clause.

[55]

Dealing with Exceptions

Bu+t whr do we rneed the I‘Fir'wm“;‘r'
clause? I can _ju:-r call rhor Pier:e
of code AFTER the Try.except
clause. Don't you think it would
serve the same pu rpo:e?

See here. T am doing

def some function(): the same "u'k,
try: without final |;¢ [
a = int(input("Enter a number 'a':"J)
assert a = 0O
except AssertionError:
print{"Uh oh..Assertion Error.")

printl{"FUNCTION EMC: Do some special cleanup")

if name == "' main_ ':
some_function()

That's a good question! Let's add a twist to the tale. What if the new code in the
except clause forces a return from the function? In such a scenario, will your
solution execute the last line of code shown in the earlier screenshot?

[56]

Chapter 2

The code snippets with and without the £inally clause are shown in the following
screenshot. The code in the finally clause is assured to be executed in the end, even
when the except clause instructs the code to return from the function.

def some function(): WITHOOUT final |.7" clause:
try: Ear|ly return frem the
g = int{input("Enter a number 'a':")) funetion. Code afrer
assert a :'. o TF?"...E:CEPT Rat Fun
except AssertionError:
print("Uh oh..assertion Error.")
print{"Returning from the the function")
return

print){"FUNCTION END: Do some special cleanup")

Enter a number 'a':-1
Uh oh. . Assertion Error.
Returning from the the function

if name =="'_main_ ':
some_function()

REEETENEETEETEEEEEE

def some function():

try: WITH Fina“}r clause:
a = 1nt(input("Enter a number 'a':")) finally clause executed
;:SE” E'_t:_" 'E'E Fﬂﬂdr’dlﬂaﬂ of the return
except AssertionError: .

_ : Tat rin th T
print("Uh oh..Assertion Error.") al EMmEnT In The excep
print("Returning from the the function®)€'@4s€
return

finally:

print{"FINALLY: Do some special cleanup")
EEnter a numbher 'a':-1
EUh oh..Assertion Error.
iReturning from the the function
PIFINALLY: Do some special cleanup

SRR R

it name =="'_main_ ':
some_function()

The finally clause is typically used to perform clean-up tasks before leaving the
function. An example use case is to close a database connection or a file. However,
note that, for this purpose, you can also use the with statement in Python.

[571]

Dealing with Exceptions

Back to the game — Attack of the Orcs
v1.1.0

With this knowledge of the exception handling, let's work on the next incremental
version of the application.

Preparatory work

Before writing any code, let's first understand how the rest of the section is
organized. In a nutshell, we will start with v1.0.0 of the code from Chapter 1,
Developing Simple Applications, progressively add the exception handling code,
and call the new version v1.1.0.

The Python files in the supporting code bundle already include the
exception handling code to be discussed in this section as well as in

a later section of this chapter, Defining custom exceptions

The following points elaborate further details:

* We will start by downloading the v1.0.0 of the game from Chapter 1, Developing
Simple Applications. The file name is ch01_ex03_AbstractBaseClass.
py (recall that this was provided as a solution to an exercise in Chapter 1,
Developing Simple Applications). You can find this file in this chapter's
code bundle.

* Compare the aforementioned file with ch01_ex03.py. The only difference
here is the use of an abstract base class, AbstractGameUnit, instead of an
ordinary base class, GameUnit. The rest of the code is identical.

* Let'scopy ch0l_ex03_AbstractBaseClass.py and save it as
attackoftheorcs_vl_1.py. or give it any name you like. In the following
discussion, we will refer to the file by this new name and incrementally add
exception handling code to it.

* Asnoted before, the supporting code bundle has all the exception
handling code that we will review. You will find a file by the same name
(attackoftheorcs_vl_1.py) in the code bundle with all the changes
included.

[58]

Chapter 2

Adding the exception handling code

This will essentially be a bug-fix version with no new features added. The debugging
done earlier has already helped us find where the problems are. Open the Python file
(attackoftheorcs_vl_1.py)and update the process_user choice method of
the AbstractGameUnit class. The updated version of this method with the new try...
except clauses is shown in the following code snippet:

def _process_user_choice(se1f):

1dx = 0@
print("Current occupants: %s" % self.get_occupants())
while verifying _choice:
user_choice = input("Choose a hut number to enter (1-5): ")

T - int(hoice) Code thar
idx = int(user_choice
except ValueError as e:/ handles the
print("Invalid input, args: %s \n" % e.args) ValueError
continue exceptian
when raised
try:

if self. hutslidx-1].is _acquired:
print{"You have already acquired this hut. Try again."
"<INFO: You can NOT get healed in already acquired hut.=")
else:
verifying choice = False
except IndexError:
print("Invalid input : ", idx)
print{"Mumber should be in the range 1-5. Try again")

continue T Handle the TndexError

return idx exception

In case you missed reading this earlier, you should copy the
ch01 ex03 AbstractBaseClass.py file and name it
M attackoftheorcs_ vl 1.py. Then work with this new file to add
the preceding exception handling code. Alternatively, you can simply
review the file with the same name provided in the code bundle for this
chapter. It includes all the changes we will discuss next. The Python
B 2.7.9 compatible source file is also provided in the code bundle.

[59]

Dealing with Exceptions

Let's review the preceding code:

* Inthe try clause, if the user choice variable is not a number,
the valueError exception occurs, which is handled by except
ValueError as e

* The as keyword is used to assign exception to an e object
* Alternatively, you can just use the syntax except ValueError

* The second try..except clause takes care of the situation where the input
number goes out of range of the huts list

* When the IndexError exception occurs, the continue statement in the
except clause makes the user re-enter the input

That's all we need. Now, let's run the application next.

Running Attack of the Orcs v1.1.0

It is time to run the application and see if these changes fix the reported problems.
Run the program in a terminal window, as shown in the following code snippet:

$ python attackoftheorcs vl 1l.py

When prompted for an input, enter some unacceptable value for the hut number:

Health: Sir Foo: 48

current occcupants: ['friend', 'unoccupied', ‘'enemy', ‘'enemy', 'unoccupied']
Choose a hut number to enter [1-5):}(R R .

Invalid input : @ Nicel i+ is going back
Humber should be in the range 1-5. Try again— ro the while loop

choose a hut number to enter (1-5): }{
Invalid input, args: invalid literal for int{) with base 1@8: 'hi'

choose a hut number to enter (1-5): 2 -
Enterimg hut 2_.. Hut is unoccupied
GOOD JOB! Hut 2 acquired

Looks good! At least the reported problems have been resolved. It is easy to find
more such errors. For example, a user can still enter 0 or a negative number while
choosing a hut, or, when the program asks for permission to attack the enemy, any
input other than y or n is not handled gracefully. As an exercise, have a go at fixing
these issues yourself!

[60]

Chapter 2

Defining custom exceptions

You can define your own exception class by inheriting from the Exception base
class or any other exception class. Why do we need such customization? Firstly,
you can create an exception class with a descriptive name. This allows us to identify
the purpose of the exception just by looking at the descriptive name. For example,
instead of valueError, a custom exception named ValueGreaterThanFiveError
will immediately help identify the problem. There are other advantages as well.
You can use such classes to add customized messages based on error subcategories,
writing error logs, and so on. Let's learn how to define custom exceptions next.

Preparatory work

Here is a list of files we will use:

* attackoftheorcs vl 1.py: This is the file from the previous section that we
will use. As mentioned earlier, the supporting code bundle already has a file
by the same name. It includes all the modifications we will discuss.

* gameuniterror.py: This is a new module to hold a custom exception class.

* heal exception example.py: This is where the top-level control code will
be written. This is a simplified version of the game where we do not need to
play the whole game in order to reproduce the problem.

You need to put all the aforementioned files in the same directory.

Custom exception — The problem

To demonstrate the use of custom exceptions, let's identify a trivial problem. Observe
the heal method shown next (recall that it is defined in AbstractGameUnit, the
superclass of Knight). You can find it in the attackoftheorcs_v1_1.py file.

def heal (se1f, heal by=2. full_healing=True):
if self.health_meter == self.max_hp:
return
if full_healing:
self.health_meter = self.max_hp
else:
self.health_meter += heal by
print_bold("You are HEALED!", end=' ')
se1f.show_health(bold=True)

[61]

Dealing with Exceptions

The method has two optional arguments. If full_healing is set to True, the game
unit will regain all its lost hit points. The other option, heal_by, heals the game unit
by a small amount. In this version, we are not using the heal by option. Butin a
future version, you may want to introduce a turn-based feature in the game, where
the injured units are healed by a small amount on every turn.

To demonstrate how to create and use custom exceptions, let's introduce an artificial
bug in the heal_ by feature! Save the following code as heal_exception_ example.
py and place this file in the same directory as attackoftheorcs_vil_1.py.

from attackoftheorcs vl 1 import Knight
if _ _name =="'_main_ ':
print("Creating a Knight..")

knight = Knight("Sir Bar")

knight.health_meter = 10
knight.show_health()

knight.healfheal_by=100, full_healing=False]
knight.show_health()

This is a simplified version of the game where we do not need to play the whole
game in order to create this artificial bug! It is a top-level control code that creates a
Knight instance, forcefully reduces the hit points (check out knight .health _meter)
as if the knight has fought a combat and sustained injuries. In the end, it calls the
heal function with the heal by argument.

Have you noticed a problem here? Recall that the knight instance can have a
maximum of 40 hit points (check out the instance attribute knight .max_hp).

The preceding code is trying to heal the knight by 100 points using the heal by
argument. Clearly, it will exceed the limit. One way of preventing this is to add an
assertion statement in the heal method, as shown in the following code snippet:

assert (self.health meter + heal by <= self.max hp)

This will raise an AssertionError. This is an acceptable solution. Another way to
accomplish this is to use a custom exception class. It is demonstrated next.

[62]

Chapter 2

Writing a new exception class

It is trivial to create a new exception class derived from Exception. Open your
Python interpreter and create the following class:

>>> class GameUnitError (Exception):

pass

>>>

That's all! We have a new exception class, GameUnitError, ready to be deployed.
How to test this exception? Just raise it. Type the following line of code in your
Python interpreter:

>>> raise GameUnitError ("ERROR: some problem with game unit")

Raising the newly created exception will print the following traceback:

>>> raise GameUnitError ("ERROR: some problem with game unit")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_ main .GameUnitError: ERROR: some problem with game unit

Copy the GameUnitError class into its own module, gameuniterror.py, and save it
in the same directory as attackoftheorcs_vl_1.py.

Next, update the attackoftheorcs_v1_1.py file to include the following changes:

* First, add the following import statement at the beginning of the file:

from gameuniterror import GameUnitError

* The second change is in the AbstractGameUnit.heal method. The updated
code is shown in the following code snippet. Observe the highlighted code
that raises the custom exception whenever the value of self.health meter
exceeds that of self.max_hp.

[63]

Dealing with Exceptions

def heal (se1f, heal_by=2, full_healing=True):

if self.health_meter == self.max_hp:
return
if full_healing:
self.health_meter = self.max_hp
else:

self.health_meter += heal by

raise a custom exception

if self.health meter = self.max_hp:
raise GameUnitError("health_meter = max_hp!")

print_bold("You are HEALED!", end=' "'}
s21f.show_health(bold=True)

With these two changes, run heal exception_example.py created earlier. You will
see the new exception being raised, as shown in the following screenshot:

[user@hostname ch]% python heal_exception_example.py
Creating a Knight..
Health: Sir Bar: 18
Traceback (most recent call last):
File "heal_exception_example.py", line 45, in =module>
knight.heal({heal_by=188, full_healing=False)
File "Shomesch/attackoftheorcs_wvil_1.py", line 135, in heal
raise GameUniteError("health_meter > max_hp!")
gameuniterror.GameUniterror: health_meter > max_hp!

[64]

Chapter 2

Expanding the exception class

Can we do something more with the GameUnitError class? Certainly! Just like any
other class, we can define attributes and use them. Let's expand this class further.
In the modified version, it will accept an additional argument and some predefined
error code. The updated GameUnitError class is shown in the following screenshot:

class GameUnitError(Exception):

def _ init_ (self, message=''., code=000):

a NeEw instfance

super(). init_ (message)
self.error_message = '~'*30 y artribute te held
self.error_dict = {

000: "ERROR-000: Unspecified Errort®, €7 2" code into

101: "ERRCR-1G1: Health Meter Problem!",

102: "BERROR-102: Attack issue! Ignored”, prepoare
¥ /,_..-—-—--.. the error
try:

self.error_message += self.error_dict[code] méssane

except KeyError:
self.error_message += self.error_dict[000]
self.error_message += '\n' + '~'*¥50

Let's take a look at the code in the preceding screenshot:

First, it calls the __init method of the Exception superclass and then
defines some additional instance variables.

A new dictionary object, self.error_dict, holds the error integer code and
the error information as key-value pairs.

The self.error message stores the information about the current error
depending on the error code provided.

The try..except clause ensures that error_dict actually has the key
specified by the code argument. It doesn't in the except clause; we just
retrieve the value with the default error code of 00o.

[65]

Dealing with Exceptions

Now, let's take look at the consumer of this class. Observe the modified heal
method. The only change here is the additional argument to the GameUnitError
instance. Here, we pass an error code as the second argument:

def heal{531f heal hy 2 full heallnq-True]

_attackoftheorcs_vl_1.py

if 5J1f health meter == 531f max hp

return
it full healinq: Pass an ‘error code’ as
5-:'1.¥.|"IE!EI-|.1Z|"I_IHE1ZEF = 5-:'-'.'|:.H1EI}(_|"IFI an additienal pararmeter
else:

self.health_meter += heal_by

if self.health_meter = self . max_hp:
raise GameUnitError("health_meter = max_hp!", 101)

print_bold("You are HEALED!", end=' ')
self.show_health(bold=True)

So far, we have made changes to the GameUnitError class and the
AbstractGameUnit.heal method. We are not done yet. The last piece of the puzzle

is to modify the main program in the heal exception_example.py file. The code is
shown in the following screenshot:

from attackoftheorcs_vl_1 import kKnight heal exception_example.py

from gameuniterror import GamelUnitError = =

if _ _name =="'_main__ Will _
print{"Creating a Knight..") H reise
knight = Knight("Sir Bar") GameUnitError
knight.health_meter = 10
knight.show health()
try:

-:’_xct’_Pﬂan

knight.heal(heal_by=100, full_healing=False)
except GameUnitError as e:
print (e) Retrieve the error infe

-

print(e.error_message) with the new exception

knlqht . Shﬂ"ﬂ'_hEEl-l.'th |::| hﬂﬂd!ﬁr 'Fﬂr Gnmﬁ“niff—rrﬂr

[66]

Chapter 2

Let's review the code:

* Asthe heal by value is too large, the heal method in the try clause raises
the GameUnitError exception.

* The new except clause handles the GameUnitError exception just like any
other built-in exceptions.

* Within the except clause, we have two print statements. The first one
prints health meter > max_hp! (recall that, when this exception was
raised in the heal method, this string was given as the first argument to the
GameUnitError instance). The second print statement retrieves and prints
the error message attribute of the GameUnitError instance.

We have got all the changes in place. We can run this example from a terminal
window as:

$ python heal exception example.py

The output of the program is shown in the following screenshot:

try:

knight.heal(heal_by=100, full_healing=False)

except GameUnitError as e: .,
print(e} ",
print(e.error_message) ",

code anippef {:rom.
heal_exception_example.py

RS
&
/f [user@hostname src_ch2]% python healiexceptinn_example.py
Creating a Knight.. '
Health: Sir Bar: 10
health_meter = max_hp!

ikt i ik i ik kT ik 1 ik kT ik T T ik kT ik T i ik ik

ERROR-101: Health Meter Problem! print the error message.

ikt i ik i ik kT ik 1 ik kT ik T T ik kT ik T i ik ik

Health: Sir Bar: 110

dnacce(jifaHe '-ra|ue. reises
Crame nifEr’mr e:cepfion.
In the except c|au3£. W

In this simple example, we have just printed the error information to the console.
You can further write verbose error logs to a file and keep track of all the error
messages generated while the application is running.

[67]

Dealing with Exceptions

Inheriting from the exception class

Sir Foo has something to say about the error codes maintained in
GameUnitError.error dict seen earlier...

The er‘r‘or'_dir:-r will grow as
we add more error codes.
Remembering all these
codes would be a headache.
Is it the anly waoy forward?

You are right. While raising an exception, you need to remember what each error
number corresponds to. Let's discuss a few alternatives.

One option is to use unique strings as keys of error_dict in place of the error
numbers, for example:

self.error_dict = {

'health meter problem':"ERROR: Health meter problem!"}

[68]

Chapter 2

This alleviates the problem of remembering the error codes. However, this approach
is not suitable if you want to do something beyond just printing a message. For
example, depending on the error type, you may want to do some additional
processing.

A better approach is to use GameUnitError as a base exception class and derive new
classes that target specific errors. The descriptive names of these exception classes
should help convey the same information. The following code snippet shows an
example of how to do it. You can replace the existing code in gameuniterror.py
with the one shown in the following screenshot:

class GameUnitError(Exception): ey

def __ipit_ (self, message=''):
super(). init_ (message)
self. padding = '~'"*30 + '\n'
self.error_message = " Unspecified Error!”

class HealthHeterException(GameUnitError):

def __ipit_ (self, message=''):
super(). init_ (message)
self.error_message = (self.padding +
"ERROR: Health Meter Problem" +
"\n' + self.padding)

[69]

Dealing with Exceptions

Now, in the heal method, instead of raising the GameUnitError exception, just
raise the HealthMeterException. Be sure to import the HealthMeterException
module as indicated in the following code snippet:

from gameuniterror import HealthMeterException attackoftheorcs vl 1.py
Merhod of class AbsrracrGamellnir H“H Ir‘nparf statement ar the

/ fep af rhe file

def heal (se1f, heal by=2, full healing=True]:

if self. health_meter == self.max_hp:
return

if full_healing:

self.health_meter = self.max_hp
else:

self.health_meter += heal_by

if self.health_meter = self.max_hp:
raise HealthMeterException("health_meter = max_hp!"])

print_bold("You are HEALED!", end=' ')
self.show_health(bold=True)

Running the code with the aforementioned changes produces a similar output. It is
just that we have revised error_message of the HealthMeterException class. The
output is shown as follows:

$ python heal exception example.py
Creating a Knight..

Health: Sir Bar: 10

health meter > max hp!

e T e e e R e e R R el

e T e e e R e e R R e el

Health: Sir Bar: 110

Likewise, you can create other subclasses to deal with specific issues.

[70]

Chapter 2

Exercise

Identify any code that can benefit from exception handling. For example, create a
new HutError exception, and use it to raise errors related to the Hut class. Here is
a cheat sheet:

class HutError(Exception):
def _ init_ (self, code):
self.error_message =
self.error_dict = {
000: "EOQE: Unspecified Error code",
101: "E101: Out of range: Number = 5",
102: "E10Z2: Cut of range, MWegative number",
103: "E103: not a number!"”

I
try:

self.error_message = self.error_dictlcode]
except KeyError:

self.error_message = self.error_dict[000]
print{"s\n Error message:", self.error_message)

Instead of using error_dict, you can also create subclasses, such as:

class HutNumberGreaterThanFiveError (HutError) : pass
class NegativeHutNumberError (HutError) : pass

Summary

This chapter served as an introduction to the basics of exception handling in Python.
We saw how the exceptions occur, learned about some common built-in exception
classes, and wrote simple code to handle these exceptions using the try..except
clause. By handling exceptions, we fixed some obvious bugs in the Attack of the

Orcs game.

The chapter also demonstrated techniques, such as raising and re-raising exceptions,
using the finally clause, and so on. The later part of the chapter focused on
implementing custom exception classes. We defined a new exception class and used
it for raising custom exceptions for our application.

With exception handling, the code is in a better shape. However, we still have the
majority of the code squished inside a single file (attackoftheorcs_v1_1.py). In the
next chapter, you will learn how to package the application code and release it to a
broader audience.

[71]

Modularize, Package,
Deploy!

In the past few chapters, you wrote a simple application, added new features to it,
and made sure that some commonly encountered bugs were fixed. Now, it is time
to make it available to a broader audience. In this chapter, you will learn the
following topics:

Modularizing and packaging the code written in earlier chapters
Preparing and deploying a source distribution

Setting up a private Python package repository

Making incremental releases

Bringing your code under version control

Thanks to word of mouth publicity, the high fantasy game application is gaining
further attention. More and more people are requesting access to the code, either
to use the functionality in their own application or to simply play the game. So far,
you have sent the complete source code to the users requesting it. But, it is silly to
continue doing that because you have made quite a few frequent upgrades.

[73]

Modularize, Package, Deploy!

There are several ways to handle this. The most basic option is to host the code on
some server and ask the users to download it from that location. Another option is to
use a version control system such as Git to manage the code and let others clone it.
Yet another option, which we will see next, is to deploy this as a Python package.

whaf are we waiﬂnﬂ ‘For?

JH&T CIEFEQ}F TI‘|£ QPP{

The army is a.lso rgnd 'For'

dEPlG}O‘I"F‘I 2nT.. RIDERS,
CHARGE AHEADI

Not so fast, Sir Foo! We have to do some preparatory work first. Hold on to your
enthusiasm for now. By the way, your army is still far away. You will be reunited
with your comrades in arms in Chapter 6, Design Patterns.

Selecting a versioning convention

How do we name new versions of the code? There are several versioning schemes in
use. Let's quickly review a few popular ones.

Serial increments

In this scheme, you just increment the version number in a serial manner for each
upgrade, for example, v1, v2, v3, and so on. However, this does not give any
information on what a particular release is about. Just by looking at the version
number, it is tough to tell whether a particular version introduces a revolutionary
feature or just fixes a minor bug. It does not give any information on API compatibility.
You can choose this simple versioning scheme if it is a small application with a small
user base and a very limited scope.

[74]

Chapter 3

':"i'PI :ampa‘ribihf}r'
that's o new term.

Whaf is i+7

API compatibility

An Application Programming Interface (API), in simple terms,
enables a piece of a program, say a library or an application, to talk to
another one using a standard set of functions, methods, or objects.

Imagine a software library car that stores some data on a fancy car.
You have an application that wishes to get some information on the car
color. The library says, "just call my color () method to get what you
. need." Here, the color () method is an API method of the car library.
With this information, you have started using car.color () within
&—" your application.

In the latest version of the car library, color () has been renamed
toget_color (). If you switch to this new version, it will break your
application code as you are still using car.color () to retrieve the
color information from the library. In this case, the new APl is said

to be incompatible with the older releases of the library. Conversely,
a backward compatible API is where applications using the older
version of the library will continue to run smoothly even with the
newer one. This is just one way to look at API compatibility.

[751]

Modularize, Package, Deploy!

Using a date format

In this convention, the release name is tagged by embedding information on when
it was released. For example, it may follow the YYYY-MM convention to include the
year and month of release. Such a convention helps determine how old a particular
release is. However, as before, the release name itself does not give any information
about API compatibility unless you follow some hybrid naming convention. This
scheme is typically useful if you are following a regular release schedule or have
some time sensitive features in the release.

Semantic versioning scheme

This is a recommended versioning convention. In the application we have developed
so far, we loosely followed the semantic versioning scheme. In this scheme, the
release is represented by three numbers (MAJOR.MINOR.PATCH). For example,
when we say version 1.2.4, it implies that the major version number is 1, minor
version is 2, and patch or maintenance version number is 4. The major version
number is incremented when you introduce incompatible changes to the API that
access functionality from your package. The minor version is incremented when
some new minor functionality is added to the package while keeping the code
backward compatible. For example, you add a new internal feature to the next
version, but that does not break any code from the previous version. The API to
access functionality from the package remains the same as before. The last number
represents the patch. It is incremented when some bugs are fixed.

Python PEP 440 specification talks in depth about the semantic

versioning scheme for Python distributions. This is what the

Python community recommends. You can find this specification at
M https://www.python.org/dev/peps/pep-0440/. Choose the

Q versioning convention that best suits your application.

The versioning scheme illustrated in this book only loosely follows

semantic versioning. For instance, in earlier illustrations, after fixing

some important bugs, we updated the minor version number instead

of the patch version number.

With this understanding of various versioning conventions, let's go back to the Attack
of the Orcs code and split it into independent modules. This would be our first step
toward creating a package.

[76]

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

Chapter 3

Modularizing the code

We have been referring to modules in the earlier chapters. An explanation is in order.
A single Python file with a . py extension is a module. You can use this module in
some other source code using an import statement. The module name is the same as
the file name, except the .py extension. For example, if the file name is knight . py,
then import knight will import the module into your source file.

In this section, we will split the code in the attackoftheorcs_v1_1.py file into
individual modules. You can find this file in the supporting code bundle for the
previous chapter.

Attack of the Orcs v2.0.0

We will name this version 2.0.0. The major version is incremented to 2 as we are
about to make some API level changes. The way we access functionality from the
code will change after introduction of the new modules. Let's review the source file,
attackoftheorcs_vl_1.py, from Chapter 2, Dealing with Exceptions. The first step
is to create a module (a new file) for each of the classes. The module name should
preferably be all lowercase.

def weighted_random_selectionichbjl, obj2):

def print bold(msg, end='%n'}: > ga.meu-rih.P;;

class AbstractGameUnit(metaclass=ABCMeta): = & — ab:*ra:*ga.meu nitpy
class Knight{AbstractGamelnit): -_— knigh-r.P}:

class OrcRider{AbstractGamelnit):

or:r‘ider‘.Py

class Hut: —_— hu-r_P;;

7 ortackefrheo res.py

class AttackOfTheOrcs:

if name == "' main_ ':
game = AttackOfThelres()
game.playl)

[771]

Modularize, Package, Deploy!

Let's take a look at the code in the preceding screenshot:

* Create a new module called gameutils.py and copy the utility functions
weighted random selection and print bold into this module.

* The attackoftheorcs.py file holds the AttackofTheOrcs class. In the same
tile, copy the main execution code that runs the game. Optionally, create a
new module for the main code.

* Refer to the code from the previous screenshot and put the other classes in
their own modules.

We are not done yet. Splitting the code into a bunch of modules gives rise to
unresolved references. We need to fix these new errors now. This was not a problem
earlier as the entire code was in a single file. For example, while creating Hut instances
in the AttackOfTheOrcs class, Python could find the Hut class definition right in the
same file. Now, we need to import these classes from their respective modules.

If you are using an IDE such as PyCharm, it is very easy to detect such
M unresolved references using the code inspection feature. The IDE will
Q show a visual indication (for example, a red underline) for all problematic
references. Additionally, the Inspect Code feature lets you find all the
problem code in one go.

Add the following import statements at the beginning of the attackoftheorcs.py
file:

import random

from hut import Hut

from knight import Knight

from orcrider import OrcRider
from gameutils import print_bold

attackoftheorcs.py

Here, we import the Hut class from the new module called hut, and so on. The
following code screenshot shows the import statements in the knight . py file:

from abstractgameunit import AbstractGamelUnit

from gameutils import print_bold gl Ry

[78]

Chapter 3

The following code screenshot shows the import statements in the
abstractgameunit .py file:

import r"E”j'j'Z”“ - abstractgameunit.py
from abc import ABCMeta, abstractmethod

from gameutils import print_bold, weighted_random_selection
from gameuniterror import GameUnitError

Likewise, you have to update all the remaining files and include the necessary
import statements. Those changes are not discussed here. For further details, you
can refer to the corresponding files in this chapter's supporting code bundle.

Put all the new modules in a directory, call it wvargame or give it any name you

like. Recall that in Chapter 2, Dealing with Exceptions, we had created a class called
GameUnitError in a gameuniterror. py file. Make sure to copy this file into the new
directory. The directory structure after copying gameuniterror.py is shown in the
next screenshot:

~ Wargame
abstractgameunit.py

attackoftheorcs py
gameuniterrar.py

hut.py

Ed
]

Ed

¥ gameutils py
Pl

2 knight.py

Ed

arcrider.py
As the last step, let's verify that the application runs smoothly by executing the

following command:

$ python attackoftheorcs.py

Where python is either version 3.5 or 2.7.9 (or higher), depending on your
environment.

[79]

Modularize, Package, Deploy!

Creating a package

Now that we have modularized the code, let's create a Python package. What is

a package? It is a kind of fancy name for a directory where Python modules are
located. However, there is more to it than that. For such a directory to be called a
package, it must also containan __init__.py file. This file can be kept empty or you
can put some initialization code in this file. To transform the wargame directory as

a Python package, we will create an empty __init__ .py file in this directory. The
new directory structure is shown in the following screenshot:

= wargame

abstractgameunit.py
attackoftheorcs py
gameuniterror.py
gameutils.py

hut.py

knight.py

k! k! k) 5k g gk k) PR

arcrider.py

Importing from the package

Let's see how to use the functionality from this newly created package. To test this
out, create a new file, run_game. py, at the same directory level as the wargame
package. The directory structure will appear as follows. Here, mydir is the top-level
directory (it can be any name):

~ rmydir
[» wargame
¥ run_game py

[80]

Chapter 3

Add the following code to the run_game.py file:

from wargame . attackoftheorcs import AttackOfTheOrcs

game = AttackOfTheOrcs()
game.play()

The first line is the new import statement. Here, we are importing the
AttackOfTheOrcs class from the attackoftheorcs.py file. If you execute this file in
a terminal window, the program might abruptly end with the error traceback shown
in the following code:

$ python run game.py
Traceback (most recent call last):
File "run game.py", line 2, in <module>
from wargame.attackoftheorcs import AttackOfTheOrcs
File "/mydir/wargame/attackoftheorcs.py”, line 29, in <module>
from hut import Hut

ImportError: No module named 'hut'

Such an error will occur if the wargame directory path is not included in the Python
environment. In the error traceback, it is unable to find the hut . py file. The file is
located at /mydir/wargame/hut . py. However, the location /mydir/wargame is not
in Python's search path. As a result, it cannot find the modules in this directory.
There are several ways to fix this. The simplest option is to specify a PYTHONPATH
environment variable in the terminal. In the Bash shell of Linux OS, this can be
specified as follows:

$ export PYTHONPATH=$PYTHONPATH:/mydir/wargame

On Windows OS, you can set it from the command prompt, as follows:

> set PYTHONPATH=%PYTHONPATH%;C:\mydir\wargame

Just replace /mydir/wargame with the appropriate path on your system. Another
way to fix the problem is to add a sys.path.append ("/mydir/wargame")
statement at the beginning of the code in run_game . py before the import statement,
as shown in the following code:

import sys
sys.path.append (" /mydir/wargame")
from wargame.attackoftheorcs import AttackOfTheOrcs

[81]

Modularize, Package, Deploy!

With both these options, however, you have to specify the full path. Yet another way
to handle the problem is to add the following code in the wargame/__init__.py file:

import sys

import os

current path = os.path.dirname (os.path.abspath(file))
sys.path.append (current path)

optionally print the sys.path for debugging)

#print ("in _ init .py sys.path:\n ",sys.path)

The current path gives the absolute path to the directory where the __init_ .py file
is located. With this update, you should be all set to run the game.

Releasing the package on PyPI

The Python Package Index (PyPI) (https://pypi.python.org/pypi) is a package
distribution mechanism for the Python community. It is the official repository for
the third-party packages. By default, the Python package manager, pip, searches this
repository to install the packages.

This is the place where we will upload our source distribution and make it generally
available to the Python community. The PyPI repository has a devoted test server
(https://testpypi.python.org/pypi) for developers who are just learning to
package their code. As this is a learning activity, we will first deploy our package on
the test server.

Prepare the distribution

Let's start by laying out the ground work for the release. We first need to prepare the
distribution to be released. The following steps provide a minimal set of instructions
to prepare the distribution.

[82]

https://pypi.python.org/pypi
https://testpypi.python.org/pypi

Chapter 3

Step 1 — Setting up the package directory

Make a new directory, and call it testgamepkg or give it any name you like. In this
directory, copy the wargame package we created earlier. Now, create the following
four empty files in this directory, README, LICENSE. txt, MANIFEST. in, and a setup.
py file. The directory tree is shown in the following screenshot:

= testgamepkg
~ wargame

W init__py

@ abstractgameunit.py

¥l: aftackoftheorcs.py

@ gameuniterror.py

v gameutils.py

@ hut.py

v knight.py

@ orcrider. py

LICENSE .txt

MAMIFEST.in

README

setup.py

5]

It is not required to create a new directory, testgamepkg. Instead,
~ you can create these four files in the same directory where the

Q wargame package is present. All these files can also be found in the
supporting material for this chapter.

Next, we will add contents to each of these new files.

[83]

Modularize, Package, Deploy!

Step 2 — Writing the setup.py file
The setup.py file is a required file that contains the metadata for the package you
want to release. Let's write the following code in this file:

from distutils.core import setup

with open{'README') as file:
readme = file.readi)

setupl
name='some _unigque name',
version='2.8.8",
packages=['wargame'],
url="https://testpypl.python. org/pypl/some_unique_name/',
license='LICENSE. txt"',
description="my fantasy game',
long_description=readne,
author="your_name',
author_email='your email'

The import statement on the first line imports the built-in setup function. On the
next few lines, the contents of the README file are stored in a string called readme.
Finally, we call the setup function with various arguments, as shown in the
preceding code snippet.

Out of these arguments, only name, version, and packages are required fields.
You can add several other optional metadata arguments to the setup function.
In the preceding code, we have specified the most common ones.

M The setup function takes several optional arguments. See the API
Q reference (https://docs.python.org/3/distutils/apiref.
html) for details.

In the code, update the name field with a unique string. Make sure that the name

is not already taken as a PyPI package. The version field represents the current
version of the package. Earlier in the chapter, we gave the version number 2.0.0

to the modularized code. You can either go with this scheme or use your own
versioning convention. The third required field, packages, is a list of source
packages to be included in the distribution. In this case, it is just the wargame
package that contains all the code. The string stored in the 1long_description field
is used to display the home page for the package on the PyPI website. In the code,
we will put the contents of the README file as long_description.

[84]

https://docs.python.org/3/distutils/apiref.html
https://docs.python.org/3/distutils/apiref.html

Chapter 3

Step 3 — Updating the README and LICENSE.txt
files

In the LICENSE. txt file, simply copy the license description under which you want
to release the package. For example, if you are distributing this package under the
MIT License (https://opensource.org/licenses/MIT), copy and paste the MIT
License description in this file.

The README file is the file where you can add a detailed description of your project.
PyPI expects this file to be in the reStructuredText (RST) or . rst format. More
information on this format is available at http://docutils.sourceforge.net/
rst.html. Here is an example of the README file. Note that the new lines before each
heading and the one after the keyword .. code:: python are important:

Attack of the Orcs

This is a command line fantasy war game!

Documentation

Documentation can be found at...

Example Usage

Here is an example to import the modules from this package.
code:: python

from wargame.attackoftheorcs import AttackOfTheOrcs
game = AttackOfTheOrcs ()
game.play ()

LICENSE

See LICENSE.txt file.

[85]

https://opensource.org/licenses/MIT
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Modularize, Package, Deploy!

Step 4 — Updating the MANIFEST.in file

By default, distutils includes the following files while creating the distribution:

* The README, README . txt, setup.py, O setup.cfg files are present in the
top-level distribution directory

* All the ».py files implied by the packages list in setup.py

e All the test/test*.py files

* The c source files indicated by 1ibraries or ext_modules in setup.py
But what if you want to include some additional files in your project? For example, we
wish to ship LICENSE. txt along with the distribution. It won't get included as there

is no provision to add it by default. For this, distutils looks for a template file called
MANIFEST.in, where custom rules can be specified for the inclusion of additional files.

Let's edit the MANIFEST. in file and make a rule for the inclusion of LICENSE. txt.
Add the following line to this file and save it:

include *.txt

Each line in this template represents a command. The preceding line tells Python to
include all the . txt files in the top-level distribution directory. Thus, LICENSE. txt
will now get included in the distribution.

All the files are now updated. It is time to build the distribution now!

Step 5 — Build a deployment-ready distribution

Let's create a source distribution. In a terminal window, run the following commands:

$ cd testgamepkg
$ python setup.py sdist

The sdist command creates a distribution with the source files included. Running the
second command creates a new dist directory containing an archive file. For example,
in setup.py, if the name field is testgamepkg and the versionis 2.0.0, the archive
will be testgamepkg-2.0.0.tar.gz on Linux and testgamepkg-2.0.0.zip on
Windows OS.

[86]

Chapter 3

Additionally, it creates a MANIFEST file with a list of all the included files in the
package. The following screenshot shows the command-line output after running
the python setup.py sdist command:

[user@hostname testgamepkgld ls

LICENSE.txt MANIFEST.in README setup.py wargame
[user@hostname testgamepkgl]$ python3 setup.py sdist
running sdist

running check

reading manifest template 'MANIFEST.1In'
writing manifest file 'MANIFEST'

creating testgamepkg-2.0.0

creating testgamepkg-2.0.0/wargame
making hard links in testgamepkg-2.0.0...

hard linking
hard linking
hard linking
hard linking
hard linking
rgame

hard linking
game

hard linking
hard linking
hard linking
hard linking

creating dist

LICENSE. txt -> testgamepkg-2.8.0

README -> testgamepkg-2.0.0

setup.py -> testgamepkg-2.0.0

wargame/__init__ .py -= testgamepkg-2.0.08/wargame
wargame/abstractgameunit.py -> testgamepkg-2.0.0/wa

wargame/attackoftheorcs.py -= testgamepkg-2.0.0/war

wargame/gameutils.py -> testgamepkg-2.68.0/wargame
wargame/hut . py -> testgamepkg-2.0.8/wargame
wargame/knight.py -=> testgamepkg-2.0.0/wargame
wargame/orcrider.py -> testgamepkg-2.0.0/wargame

Creating tar archive

removing

'testgamepkg-2.0.0"

(and everything under 1t)

[user@hostname testgamepkgl$ [

[87]

Modularize, Package, Deploy!

Creating a bdist

The sdist command creates a source distribution. The examples in
this chapter will only use sdist . However, you can also create a built
distribution. The simplest way to create a built distribution is
$ python setup.py bdist. This creates a default built distribution for
your platform, such as dist/testgamepkg-2.0.0.1linux-x86_ 64.
tar.gz on Linux OS. As an exercise, create this distribution and see the
contents of the archive. Another way to create a bdist is with a Python
. package called wheel (https://pypi.python.org/pypi/wheel).
% It is a built package format, although there is some work involved to use
= wheel. You can try this as yet another exercise. You may need to do
the following;:

$ pip install pip --upgrade
$ pip install wheel
$ pip install setuptools -upgrade

Then, add the following import statement to setup . py file: import
setuptools. Finally, run the command $ python setup.py

bdist wheel. This will create a distribution archive in the dist
directory with a . whl extension.

Uploading the distribution

The distribution is ready for deployment. Let's deploy it now!

Step 1 — Creating an account on PyPI test website

If you do not have an account on the PyPI testing site, create one at https://
testpypi.python.org/pypi?:action=register form. Follow the steps on this
website to create a new account.

Step 2 - Creating a .pypirc file

This is an important step. Python assumes the default repository for uploading
distributions is https://pypi.python.org/pypi. However, the PyPI test server has
a different address that needs to be specified in a . pypirc file (notice the dot at the
beginning of the name). This file has a special format. Add the following contents to
the .pypirc file:

[distutils]
index-servers=
pypitest

[pypitest]

[88]

https://pypi.python.org/pypi/wheel
https://testpypi.python.org/pypi?:action=register_form
https://testpypi.python.org/pypi?:action=register_form
https://pypi.python.org/pypi

Chapter 3

repository = https://testpypi.python.org/pypi
username=<add username>

password=<add passwords>

The file has details of the PyPI test repository under the header [pypitest]. In this
file, you can store different profiles. Here, [pypitest] is a profile that stores the
repository URL and your user credentials for the PyPI test repository. This provides
a convenient way to specify the account credentials and repository URL while
registering or uploading the distribution. The name of the profile can be changed to
any other string, as long as the corresponding entry in the index-servers variable
is updated. For example, you can name it [test]. You can also create multiple such
profiles if you have multiple accounts on the PyPI or PyPI test websites.

In this file, update the username and password fields with your actual credentials
and save the file. On Linux OS, put this file in the user home directory: ~/.pypirc.
On Windows OS, create it at C: \Users\user_name\.pypirc. Replace user name
with the actual username.

Step 3 — Register your project

A simple way to register your project is to log in to the test PyPI website and
then use the package submission form: https://testpypi.python.org/
pypi?:action=register form

Alternatively, the project registration can also be done using the command line.
Open a terminal window and type the following commands. Replace the
/path/to/testgamepkg with the actual path to the directory containing setup.py:

$ cd /path/to/testgamepkg

$ python setup.py register -r pypitest

The -r option for the register command is used to specify the URL of the PyPI
test repository. Notice that, instead of the URL, we have simply written the profile

name, pypitest. Alternatively, you can also specify the full URL, as shown in the
following command:

$ python setup.py register -r https://testpypi.python.org/pypi

[89]

https://testpypi.python.org/pypi?:action=register_form
https://testpypi.python.org/pypi?:action=register_form

Modularize, Package, Deploy!

The following screenshot shows the output after command execution:

[user@hostname testgamepkgl$ ls

dist MANIFEST README wargame

LICENSE.tXt MANIFEST.in setup.py

[user@hostname testgamepkgl]$ python3 setup.py register -r https:
/ftestpypl.python.org/pypi

running register

running check

Registering testgamepkg to https://testpypl.python.org/pypl
server response (200): 0K

[user@hostname testgamepkgl$ [

If you log in to the test PyPI website, a new project with the unique name you have
chosen (in this example, it is testgamepkg) will show up.

Step 4 — Uploading the package
Finally, it is time to upload the package. This can be accomplished with the following
command:

$ python setup.py sdist upload -r pypitest

This command does two things. First, it creates the source distribution using the
sdist command and then the source distribution is uploaded to the PyPI test
repository with the upload command.

'H'a[d on for a aecond!
D‘rdn"r we a|r“eady creofre

the distribution using 'sdist’

executing the same
command before 'u P!aad'?

[90]

Chapter 3

That's a good point, Sir Foo! In the Prepare the distribution section (see Step 4 -
Updating the MANIFEST.in file), we indeed created the distribution using the
python setup.py sdist command.

At the time this book was written, setuptools did not have a provision to upload
an existing distribution — the distribution creation and upload need to happen in a
single command. The good news is that there is a third-party Python package called
twine that enables uploading an already created distribution.

This package can be installed using pip:

$ pip install twine

This will install twine at the same location as your Python executable. For example,
if Python 3 is accessed as /usr/bin/python, then twine can be accessed as /usr/
bin/twine. Now, upload the existing source distribution as:

$ twine upload -r pypitest dist/*

Uploading distributions to https://testpypi.python.org/pypi
Uploading testgamepkg-2.0.0.tar.gz

The distribution is now available for anyone to download and install on the PyPI
test repository! To verify this, visit the package home page on the PyPI test site,
https://testpypi.python.org/pypi/your package_name. The home page of
testgamepkg with a 2.0.2 version is shown in the following screenshot:

» Package Index - testgamepkg -~ 2.0.2
PACKAGE INDEX > testgaluepkg 2.0.2 Not Logged In
Browse packages Login
O —
Package submission test pkg Download Register
List trove classifiers tesigamepig-2.0.2 targz Lost Login?
test 40 updates) Introduction S
st 40 packages) Use OpenlD
PPl Tutorial This is a command line test pkg. ignore. Login with Google @
PyPI Security -
PyPI Support Documentation
PyPI Bug Reports Documentation can be found at..
PyPI Discussion
PyPI Developer Info Example Usage
ABOUT » .
Here is an example to import the medules from this package.
NEWS ki

DOCUMENTATION from something import Foo

DOWNLOAD g F = Foo()

COMMUNITY 3 . .
Contributing

FOUNDATION B3

CORE DEVELOPMENT * To contribute...

LICENSE

[91]

Modularize, Package, Deploy!

Security note

For older versions of Python (before v2.7.9 or v3.2), when you use
python seup.py sdist upload, a HTTP connection is used to
upload the files. What it means is that your user name and password
are a security risk if there is a cyber attack! In this case, it is highly
% recommended to use the twine package. It securely uploads the
distribution over HTTPS using a verified connection.

For Python 2.7.9+ and 3.2+, HTTPS is the default choice to upload
the distribution. But you can still use twine for the other advantages
as discussed. Visit https://pypi.python.org/pypi/twine for
more information.

A single command to do it all

Now that we know all the steps, let's combine these three steps, namely registering
the project, creating a distribution, and uploading the distribution into a single
command.

For this to work, we will make two small changes in setup.py, as follows:

1. Change the name field to another unique name. This should be different
from what you chose while following the earlier steps.

2. Update the url field to reflect this new name.
After these changes, run the following command in a terminal window:
$ python setup.py register -r pypitest sdist upload -r pypitest

This is a combination of three commands executed in a serial manner. The first

one, register -r pypitest, registers a new project; the second command, sdist,
creates a source distribution; and finally, the third command, upload -r pypitest,
submits the distribution to the PyPI test repository!

Installing your own distribution

The distribution is now available for installation using pip. Let's install it ourselves
to make sure there are no problems. Run the pip command shown in the following
code snippet. Replace testgamepkg with the distribution name you have uploaded:

$ pip install -i https://testpypi.python.org/pypi testgamepkg

[92]

https://pypi.python.org/pypi/twine

Chapter 3

The -1 (alternatively, - - index-url) option specifies the base URL of PyPL. If you
don't specify this option, it will default to https://pypi.python.org/simple.
Here is a sample response when the install command is executed:

Collecting testgamepkg

Downloading https://testpypi.python.org/packages/source/t/testgamepkyg/
testgame
pkg-2.0.0.tar.gz

Installing collected packages: testgamepkg
Running setup.py install for testgamepkg
Successfully installed testgamepkg-2.0.0

Once the package is successfully installed, test it by calling the functionality from that
package. For example, start your Python interpreter and write the following code:
>>> from wargame.attackoftheorcs import AttackOfTheOrcs

>>> game = AttackOfTheOrcs ()

>>> game.play ()

If you do not see any errors, everything is working as expected! The distribution is
now generally available to our users on the PyPI test website.

'H'mm, this is all fine if you

have an open source project.
Whet if you do not want to
release this Pubhcn” or
restrict access fto anry

}raar
team or custom er‘a?

You are right. We only talked about the open distributions using the Python
community repositories! If you want to create a private distribution, you should set
up and maintain your own PyPI repository. Let's talk about that next.

[93]

https://pypi.python.org/simple

Modularize, Package, Deploy!

Using a private PyPI repository

This section will briefly cover how to setup a private PyPI repository. The
discussion will be limited to creating a simple HTTP-based local server. There
are several packages that can help you do this. Let's use a popular package
called pypiserver (https://pypi.python.org/pypi/pypiserver). Let's
open a terminal window and get ready for action.

Step 1 — Installing pypiserver

First, install the required package:

$ pip install pypiserver

The pypi-server executable sits at the same location that you have the Python
executable. For example, if you have /usr/bin/python, pypi-server will be
available as /usr/bin/pypi-server.

Step 2 - Building a new source
distribution

Go to the directory where you have setup.py and all other files. In the
discussion earlier, we named it testgamepkg:

$ cd /path/to/testgamepkg

We have already installed testgamepkg in an earlier section. To simplify
things, in setup.py let's change the name field to something else. While you
are at it, also change the url and version field. The setup.py with these
changes is shown in the following screenshot. The changes are highlighted:

[94]

https://pypi.python.org/pypi/pypiserver

Chapter 3

from distutils.core import setup

with open('README') as file:
readme = file.read()

setup
name='testpkg_private',
version='2.0.0",
packages=["'wargame'],
url="http://localhost: 8081 /simple’,
license="LICENSE. txt',
description="test pkg private',
long_description=readme,
author='your_name',
author_email='your_email’

Now, let's create a new source distribution by the name of testpkg_private. As
before, the archive will be created in the dist directory:

$ python setup.py sdist

Step 3 — Starting a local server

Next, let's start a local server on your computer:
$ pypi-server -p 8081 ./dist

The -p option is used to specify a port number. You can choose a number other than
8081. The command also takes a directory as an argument. We have specified it as
the dist directory. This is where it will search for your private distribution packages.

[95]

Modularize, Package, Deploy!

Welcome to pypise... = | &

&« localhost | & »

Welcome to pypiserver!

This is a PyPI compatible package index serving 2 packages.

To use this server with pip, run the the following command:
pip install --extra-index-url http://localhost:8081l/sinples PACKAGE [PACKAGEZ...]

To use this server with easy install, run the the following command:
pasy_install -i http://localhost:B081/simple) PACKAGE

The complete list of all packages can be found here or via the simple index.

This instance is running version 1.1.8 of the pyvpiserver software.

The server will start listening on http://localhost:8081. That's it! Open this URL
in a browser. It will display a simple web page with instructions, as shown in the
preceding screenshot:

Step 4 - Installing the private distribution

The installation instructions at http://localhost:8081 are self explanatory. You
can click on the simple link to view all the available packages. It essentially shows
the contents of the dist directory specified when we started the server. If you want
to include any additional packages, you can simply copy those to this directory. The
following command installs this private distribution:

$ pip install -i http://localhost:8081 testpkg private

[96]

Chapter 3

This was a quick introduction to setting up a private PyPI repository.
For illustration, we just created a local server based on HTTP. In
practice, you should set up a secure server with the HTTPS protocol and
authenticate users, similar to what the PyPI website does. Also, we had
M a basic mechanism where the package was copied over to the repository
directory. In a real-world situation, you will need to support remote
uploads. For further reading, visit the GitHub page of pypiserver,
https://github.com/pypiserver/pypiserver. Some other
packages that help set up a private repository include pyshop at
https://pypi.python.org/pypi/pyshop and djangopypi at
https://pypi.python.org/pypi/djangopypi.

Making an incremental release

The package is released but that is not the end of the story. Very soon, you will
need to make changes to the code and make the newer version available again.
In this section, we will learn how to submit incremental patches to an already
deployed distribution.

Packaging and uploading the new version

Preparing for the new release is pretty simple. Just update the version number to,
for instance, 2. 0.1 in the setup.py file. After making this change, run the earlier
command that creates a source distribution and uploads the package in one go:

$ python setup.py sdist upload -r pypitest

The incremental release of v2.0.1 will now be available on the PyPI test repository.

Upgrading the installed version

If the previous version of the package is already installed on your computer, use the
- -upgrade option to update to the latest release version. This step is optional, but it
is always good practice to verify the released version is working as expected:

$ pip install -i https://testpypi.python.org/pypi testgamepkg --upgrade

As we did before, replace the name testgamepkg with the package name you
have chosen.

[97]

https://github.com/pypiserver/pypiserver
https://pypi.python.org/pypi/pyshop
https://pypi.python.org/pypi/djangopypi

Modularize, Package, Deploy!

Version controlling the code

Let's recap what we have done so far. We started application development with a
simple script. Gradually, we redesigned the application, added new features and
fixed bugs to transform it into its current state. What if you want to go back to an
earlier state of the code, say the code you wrote two days ago? You may want to do
this for various reasons. For instance, the latest code might have some bugs that you
didn't see two days ago. Imagine another scenario where you are collaborating with
your colleagues on a project and you all need to work on the same set of files. How
do we accomplish that?

In such situations, a version control system (VCS) comes to our rescue. It maintains a
record of changes you make to the code. The files and directories now have a version
associated with them. The VCS enables you to pull a specific version of any file.

There are several version control systems in use. Git, SVN, CVS, and Mercurial
are some of the most popular open source VCS. In this book, we will cover some
preliminary operational instructions on using Git, a distributed revision control
system.

Git resources

Git is a very powerful tool for collaborative development. It is a pretty big topic.
This chapter just gives a brief overview of some common use cases. The goal here is
to provide a minimal set of instructions to bring our Python application code under
version control.

The following are a few links to the resources that cover Git in a depth

well beyond our scope:
* https://git-scm.com/documentation

e http://gitref.org

If you are already familiar with Git, or have used another version control such

as SVN, jump directly to the final topic to solve an exercise. Also, the upcoming
discussion will primarily focus on using Git from the command line. If you prefer
a GUI client, the section Using GUI clients for Git will provide some pointers.

Installing Git

Git software can be downloaded from https://git-scm.com/downloads. The
website provides detailed installation instructions for various operating systems.

[98]

http://gitref.org
https://git-scm.com/downloads
https://git-scm.com/documentation

Chapter 3

With most Linux flavors, it can be simply installed using the package manager of the
OS. For example, on Ubuntu, it can be installed from a terminal like this:

$ sudo apt-get install git

For Windows OS, install using the installer available on the Git website. After the
installation, you should be able to access the Git executable from the command line.
If it is not available, add the PATH to its executable in your environment variables.

Configuring your identity

Before creating a Git repository and committing any code, you should tell Git who
you are:

$ git config --global user.name "YOUR NAME HERE"
$ git config --global user.email YOUR_EMAIL HERE

With this command, any commits you make will automatically be associated with
your username and e-mail address.

Basic Git terminology

Let's understand a few frequently used commands in Git. This list is far from being
comprehensive. The intention is to just learn the most common Git commands:

* add: This is a keyword used to bring any file or directory under the version
control. With the add command, the Git index is updated and the new files
are staged for the next commit, along with other changes in the directory.

* commit: This keyword, after making changes to any of the files under version
control, can be used to commit the files to the repository to register that
change. In other words, Git records a new revision for the file, which also has
information on who made those changes. While committing files, you can
also add an informative message on what changes were made.

* clone: This keyword, in Git terminology, means copying an original
repository into a new one. This cloned repository on your computer can be
used as a local or a working repository for your source code. Such a repository
keeps a track of all the local changes you make to the contained code.

* push: Suppose you have a central repository that you have shared with your
team. It could be located on a remote server. You have cloned this repository
on your computer and have made several changes within this repository.
Now you want to make these changes available to others. The push
command is used to send these changes to the central repository.

[99]

Modularize, Package, Deploy!

* pull: You have updated the central repository with the push command.
Now, if others want to use this code, their cloned repository needs to be
synchronized with the central one. The pull command can be used to
update the cloned repository with the new changes available in the central
repository. If any of the files being updated with this command have local
modifications, Git will try to merge the changes from the central repository

into the local one.

Creating and using a Git repository

Let's set up a Git repository for our application. The steps we are about to follow are
represented in the following simplified schematic.

T Y

e
@ pe

Creste a central bare’ RWBI’QE]]‘IEREPD gl&i
repositary r\,_ .
git --bare init "&__,x

‘g it elone

-

.t
(e)
when ready, updare the
central repositery by
'puahiw_q' the d‘mnj&& in
}rnul‘ war'lnns FEPD!.I'Tal‘r

~
A
_d
\

git push

-_
[ma)
WA

wargameRepo

I

-

wargame

Working copy of
the cemeral
reposlTary. Call i+

wargameRepo

.
(3)

Copy rhe wargame
package 1o the
working repesitery
dlrcrrnr'}-'

wargameRepo

= —
—[.g:i.t

5:5:',!{311: commit

P
-\j_l"; git add

wargame

=
=

In rhe warhns repasitary:
, " l:__"it add +he new files

3, 'l:__"it commit these files 1o brlnﬂ rhern
ander varsion control

You con then continue to make changes o
these files amd Per‘iadicﬂ l.:'f ‘cornmit these ro
the iocalfwcr’l':ing re.poai-rar}r..

[100]

Chapter 3

R There are many alternatives to bring the code under version control. What
~ is illustrated here is just one such option. For example, you can directly
Q start with git init in the existing wargame package directory instead
of creating a bare repository and then cloning it.

Creating a bare remote repository

First, we will create a bare Git repository. It is just a directory that stores the revision
history of your project. Note that it does not have any commits or branches. We will
use this bare repository as our central or remote repository.

Git uses the concept of remote repository. In this book, we won't really
\ set up a truly remote repository. The remote repository will be just
~ another local directory on your computer. To avoid confusion, we will
Q refer to the remote repository as the central repository in the upcoming
discussion. The details of the remote repository and Git branches are
stored in the .git/config file.

The convention is to add a .git extension to the name. On the command line,
execute the following commands to initialize a bare repository:

$ mkdir wargameRepo.git

$ cd wargameRepo.git

$ git --bare init

First, a directory by the name wargameRepo.git is created. Inside this directory, the
git --bare init command initializes a new repository. This command creates a
.git directory for your project. The dot prefix indicates that it is a hidden directory.
The - -bare option indicates that this is a bare repository.

Clone the repository

As seen earlier, the clone command can be used to create a copy of the central
repository. Here is the command to do this:

$ git clone ~/wargameRepo.git wargameRepo

Cloning into 'wargameRepo'...

warning: You appear to have cloned an empty repository.

done.

[101]

Modularize, Package, Deploy!

Here, it clones wargameRepo.git as wargameRepo (a new directory). This assumes
that you do not have any directory by this name. You can now use the cloned
repository, wargameRepo, as your working copy. This repository has the full working
tree. In this case, however, there is nothing in there except the . git folder. Next, we
will add files and directories to this working tree.

Copying the code to the cloned repository

After cloning, copy the wargame package created earlier into the cloned repository.
The directory structure after this operation is shown here:

+ [] wargameRepo
D i git
B] wargame

Staging the code and committing

Just copying the code into the repository doesn't mean it is version controlled. To
do this, open the command prompt and go to the wargameRepo directory using the
cd command.

$ cd wargameRepo

Now, run the following command. Notice the dot in the command. This assumes
that git is recognized as a command in your terminal window. If it isn't, you need to
update the PATH environment variable or just specify the full path to this executable.

$ git add

This tells Git to stage everything in the current directory for a commit. In this case,

it will add the wargame directory and all files inside it. If you run the git status
command, it will show all the new files prepared for the initial commit (whenever that
happens). The next step is to actually commit the files within our working repository:

[102]

Chapter 3

[user@dhostname wargameRepol$d 1s

[user@hostname wargameRepo]$ git commit -m “"initial commit of wargame app”
[master (root-commit) 104dZb7] initial commit of wargame app

7 fales changed, 430 1nsertions(+)

create mode 100644 wargame/__init__ . pyv

create mode 188644 wargame/sabstractgameunit. py

create mode 100644 wargame/attackoftheorcs. py

create mode 188844 wargame/gameutils.py

create mode 189644 wargameshut.py

create mode 1986844 wargame/knight. py

create mode 100644 wargamesorcrider. py

The -m argument in the git commit command is used to specify an informative
message on what the commit is all about. The messages after this command are
shown in the response received from Git after this command.

Pushing the changes to the central repository

This step is useful, especially when you are co-developing the code with other
developers. In such a scenario, there will be a central repository, which we created
earlier with the - -bare option. To make your changes available to others, you need
to push those to the central repository. As mentioned in a side note earlier, the
central repository in this case is just another Git directory on your computer.

We started with an empty repository. For the initial push into the central repository,
execute the following command:

$ git push origin master

What is origin here? Recall that our cloned repository, wargameRepo, originated
from the central repository, wargameRepo.git. The origin is simply the URL
pointing to your central repository. The second argument, master, is the Git branch
name where the changes will be pushed. The default branch is called master. You
can create different branches as well. We will limit this discussion to the default
branch. The .git/config file stores details about the origin and branches in your
local repository.

To summarize, the command mentioned earlier pushes the master branch in
your working repository to the new master branch in your central repository
(origin/master).

After the initial push, if you make any changes to the code, you first need to commit
those in the working repository:

$ git commit -m "some changes to files" foo.py

[103]

Modularize, Package, Deploy!

Assuming that you continue to work on the same branch (master), for any
subsequent push to the central repository, simply execute the following command:

$ git push

This will update the master branch of the central repository with your changes.
With this, you are all set to share your code with other developers using the central
repository. If you want to get changes made by other developers, you can use

$ git pull to fetch those changes and merge them with your working copy. We
did not discuss the other Git features, such as tagging your code, creating branches,
resolving conflicts, and so on. It is recommended you read the Git documentation,
https://git-scm.com/doc, to better understand these concepts.

Using GUI clients for Git

The earlier section exclusively discussed how to use Git from the command line.
These commands can also be accessed through a graphical user interface (GUI).
There are many GUI clients available for Git, for instance, gitk on Linux (http://
gitk.sourceforge.net/) or Github Desktop, available for Mac and Windows

7 or later (https://desktop.github.com/). The free Python IDEs, such as the
community edition of PyCharm, provide an easy-to-use GUI integration for Git and
other version control systems. PyCharm provides a context menu integration for Git
commands. For example, right-clicking on a file in the IDE will give you a context
menu option to add or commit the file to a repository.

Exercise

We released the distribution to the PyPlI test repository as it was just a toy problem.
For more serious stuff, you should deploy the package to the PyPI main repository,
https://pypi.python.org/pypi. As an exercise, deploy a package on the main
PyPI server. The process is similar to what we discussed earlier.

* Create a new account on the PyPI website. Note that you need to create a
separate account; the test PyPI account won't work here.

* Inthe .pypirc file, create a new profile to store credentials for the main
server. See the following illustration for an inspiration:

[distutils]
index-serverss=
pypitest
pypimain

[pypimain]

[104]

https://git-scm.com/doc
http://gitk.sourceforge.net/
http://gitk.sourceforge.net/
https://desktop.github.com/
https://pypi.python.org/pypi

Chapter 3

repository = https://pypi.python.org/pypi
username=<add PyPI main usernames>

password=<add PyPI main passwords>

[pypitest]
repository = https://testpypi.python.org/pypi
username=<add usernames

password=<add passwords>

* Appropriately, update the url field in setup.py.

* Follow the other steps in package creation and release. Remember to specify
the main repository everywhere, instead of the test repository. For example:

$ python setup.py register -r pypimain
$ python setup.py sdist upload -r pypimain

* See what happens if you do not specify the -r option Which repository
would it default to?

Summary

This chapter introduced you to some key aspects of application development in
general and Python application development in particular. The chapter started with
an introduction to different versioning conventions. It demonstrated how to create
Python modules and packages.

With step-by-step instructions, the chapter demonstrated how to prepare a
distribution (also called a package), deploy it on the PyPI test server, and install
this deployed package using pip. Additionally, it also showed you how to make
incremental releases and set up a private Python distribution. Finally, the chapter
provided an overview of version control using Git.

Coding standards are a set of guidelines that you should follow while developing
the code. Complying with these standards can have a significant impact on the
code readability and the life of the code. In the next chapter, you will learn another
important aspect of software development, code documentation, and best practices.

[105]

Documentation and Best
Practices

So far, the focus was on developing the code and getting the first release out the
door. We have not talked about another vital aspect of application development,
the documentation and coding standards. Although the code base is still quite
manageable, before it is too late, we should learn techniques to improve code
readability. In this chapter, we will cover the following topics:

* Understanding the basics of the reStructuredText (RST) format and how to
use it for writing docstrings

* Learning how to create HTML documentation for the code using the Sphinx
document generator

* Covering some important coding standards for writing the Python code

* Using Pylint to evaluate how well we are doing in following these guidelines

[107]

Documentation and Best Practices

As you can guess from the preceding topics, we are taking a short break from coding
to learn these very important concepts.

Timeout for underﬁandir&g
rules and r‘eguhﬂans?

why bafhar‘ w'lfh the
documentation? 1 know the
code inside outl

If you are well aware of the code, you might find documentation unnecessary. But
imagine you are assigned a different project that has a big code base with very little
documentation. How will you feel? Of course, you will have to review the code
anyway to get familiar with it. But your productivity will take a blow if it is not
well documented. The time you spend understanding such code also depends on
how well it has been written. This is where the coding standard aspect comes into
the picture.

In summary, never ignore coding standards and documentation. Make sure you
follow these guidelines while the code is being developed. It is also important
to maintain the documentation and not to over document. Let's start by learning
techniques to create good documentation for a Python project.

[108]

Chapter 4

Documenting the code

There are, broadly, three levels of documentation. At the top, you have project- or
distribution-level documentation. It is intended to give high-level information on

a project, such as installation instructions, licensing terms, and so on. In Chapter 3,
Modularize, Package, Deploy!, you already had a flavor of this documentation. We
created the README and LICENSE files to go along with the distribution. Additionally,
you can add more files to make the documentation comprehensive, such as INSTALL,
TODO, RELEASENOTES, CREDITS, and so on.

The second level is the API-level documentation. It summarizes how a function,
method, class, or module should be used. Python docstrings, which we will learn
next, are used to generate API-level documentation.

The third level of documentation is in the form of code comments. Such comments
help explain how a piece of code works.

Sphinx is a document generation tool for Python that is used to create project- and
API-level documentations. In this chapter, we will use Sphinx to create API-level
documentation from the docstrings. But, before jumping into this topic, let's first
understand what docstrings in Python are.

Python Enhancement Proposals (PEPs) provide a way to propose and
document various design standards for the Python language. There are
several PEPs, and each one is identified by a permanent number. For
example, PEP 8, PEP 257, PEP 287, and so on.

PEP 257 documents the guidelines to write docstrings, whereas PEP 287
% provides information on the reStructuredText docstring format (more on
L .
the reStructuredText format later in the chapter).

The purpose of this chapter is not to repeat what is already documented
by these PEPs. We will refer to these guidelines whenever appropriate in
the sections to follow. For a comprehensive understanding of these and
other PEPs, check out https://www.python.org/dev/peps.

[109]

https://www.python.org/dev/peps

Documentation and Best Practices

Docstrings

A docstring or document string is a string literal used to describe a class, method,
function, or module. The purpose of a docstring is to briefly describe features of the
code. It is different than a comment that elaborates details on the internal working
of a piece of code. It can be accessed using the built-in attribute, doc__. Let's write
an example to illustrate this concept. Open the Python interpreter and write the
following trivial function:

>>> def get number():

return 10

>>>

Let's see what the doc__ attribute for this function stores:

>>> get number. doc

>>>

The _ doc__ attribute for the function is an empty string as we have not written any
documentation for this function. Now let's write a docstring for the function and
print this attribute again:

>>> def get number():
nnnReturn a special number"""

return 10

>>> get number. doc

'Return a special number'

The _ doc__ attribute now shows the docstring for the function. As can be seen, a
docstrmg is represented differently than a comment. It is surrounded by triple double
quotes (recommended style), """Return a special number""", or triple single
quotes, ' ' 'Return a special number''', and is written as the first statement of that
class, method, function, or module.

[110]

Chapter 4

PEP 257

Y The simple example shown in the previous code is that of a single-line
Q docstring. Similarly, you can have multi-line docstrings. Review the PEP
257 convention (https://www.python.org/dev/peps/pep-0257)
for further details.

To generate effective documentation using Sphinx, the docstring should be written
in a markup language known as reStructuredText. Let's understand the basics of this
format next.

Introduction to reStructuredText

reStructuredText (RST), defines a simple markup syntax, mainly for Python
documentation. It is a part of the Python documentation processing system called
docutils (http://docutils.sourceforge.net/index.html).

RST

Does this sound familiar? In Chapter 3, Modularize, Package, Deploy,
M without much elaboration, we created a README file with the RST format.
Q In that chapter, refer to the section Prepare the distribution for more
information. This section will give you a bare minimum introduction to
the RST syntax. For further reading, comprehensive documentation is
available at http://docutils.sourceforge.net/rst.html.

Let's review some of the most frequently used features of RST.

Section headings

To distinguish a section title from the rest of the text, it is decorated with an underline
created using any one of the non-alpha numeric characters, such as ~~~~, ====, ----,
or ####. The decorated underline should be of the same length (or longer) as the
heading text, as shown in the following example header:

1. Introduction

[111]

https://www.python.org/dev/peps/pep-0257
http://docutils.sourceforge.net/index.html
http://docutils.sourceforge.net/rst.html

Documentation and Best Practices

Here, dashes (---) are used to decorate the heading. Suppose this is considered as
the Heading 1 style in the document; any subsequent use of this decorator will result
in the same style. In the following screenshot, the RST syntax is shown in the left
column; the right column shows how it will be displayed in a browser:

1. Imtroduction RST E}rh-ra: Web browser

""""""""" 1. Introduction

This is a command line fartasy war game!

1.1 Intro A This is a command line fantasy war game!
1.1.1 Inside Intro A 1 1 Illtr‘ﬂ A
2. Documertation 1.1.1 Inside Intro A

Documertation can be found at. .

2. Documentation
2.1 Documentation A

Documentation can be found at..

2.1 Documentation A

Al Try it yourself!

Q You can use online RST editors, such as http://rst.ninjs.org,
to quickly test how your RST file will be processed.

Paragraphs

To create a paragraph, simply write one. When done, leave at least one blank line
at the end of it. Also, if you indent a paragraph in the RST file, it will appear as an
indented block in the browser. Here is the RST syntax to write two paragraphs:

paral. Just write the sentences in the para
and end it by adding one or more blank line.

para2 . blah blah blah.
..more stuff in paragraph 2 See how it gets appended..

As an exercise, use any online RST editor and see how it will appear in a web browser.

[112]

http://rst.ninjs.org

Chapter 4

Text styles

You can apply a different text style inside a paragraph or to the body text. Decorate
the text with double asterisks to make it appear bold, for example, **bold_text**.
Similarly, a single asterisk decoration, *italics_textx, is used for italics style.

Code snippets

RST provides various directives to process formatted document blocks. The
code-block directive is specified with syntax, for example, .. code-block: :. Note
that there is a space between the word code-block and the two preceding dots. The
code-block directive can be specified along with the code language to construct a
literal block. In the sample RST shown next, we have specified Python as the

code language:

. code-block:: python

from wargame.attackoftheorcs import AttackOfTheOrcs
game = AttackOfTheOrcs ()
game.play ()

The argument to the code-block directive is specified as python. It tells the
document generator that it is Python syntax. Additionally, note that there should be
a blank line after the directive before writing the actual code. You can also use the
code directive, .. code: :, to represent a piece of code. For the syntax highlighting,
a Python package called Pygments is required. We'll talk more on this later, when
we learn about the Sphinx document generator.

Mathematical equations

The math directive is used to write mathematical equation. Note that you need to
leave a blank space before and after the mathematical equation block. The following
syntax (the left column) is one way to represent a mathematical formula. The right
column shows how it will be displayed in a web browser:

RST Syntax | Web browser

Some text before a cubic equation. @ ; 5
: Some text before a cubic equation.

. math:: :
ax"3 +bx"2 + cx +d =0 P axS+bx2+ex+d=0

Some text after the equation. ! Some text after the equation.

[113]

Documentation and Best Practices

Bullets and numbering

Bullets can be added using any of the following characters: *, +, or -. It is required to
have at least one blank line, immediately before the first bullet and immediately after
the last bullet item:

Text before the bullet points. A blank line follows...

* First bullet item

Some continuation text for first bullet,

Note that its alignment should match the bullet it is part of.
* second bullet item
* last bullet item

Text after the bullets. Again needs a blank line after the last
bullet.

Similarly, you can specify a numbered list, as follows:

Text before the enumerated list. A blank line follows...

item 1

item 2

some continuation stuff in item 2
3. item 3

Text after the enumerated lust. Again needs a blank line after the
last item.

Key things to remember

blocks. For example, when you write a code snippet, a mathematical
equation, or a paragraph, you need one blank line before and after these
documentation blocks. RST is indentation sensitive.

.\'Q The RST syntax requires you to leave blank lines between different style

Dosctrings using RST

To generate nice-looking documentation for our application, we need to first write
docstrings in the RST format. The PEP 287 proposes guidelines to write docstrings
using the RST format. For a comprehensive description, check out https: //www.
python.org/dev/peps/pep-0287. Here, we will discuss some of the most important
things to remember when you write docstrings. To illustrate the concept, let's write

a docstring for the wargame/hut . py module. The documentation is also provided in
the supplementary code for the chapter.

[114]

https://www.python.org/dev/peps/pep-0287
https://www.python.org/dev/peps/pep-0287

Chapter 4

The following code screenshot has a sample class-level docstring for the Hut class:

class Hut:

Summﬂl"r‘ lime
Q_I InPu+ args followed b_y a blank

line

Intfe 'Fitld for

dr_:.:r‘ibinﬂ variables

Directive for rt‘Ftrgncinj

reloted methods and meodules

def __init__ (self, number, occupant): No docstri for _init
self.occupant = occupant _— ¢ docsiring o —Init—
self.number = number methed

self.is acquired = False

Let's review this syntax now:

* The documentation standard recommends a one-line summary separated by
a blank line before the next descriptive block.

* The :arg fields describe the input arguments for this class, as given in the
__init _ method. You can also use the :param field for this.

* The :ivar field is used to describe the instance variables for the class. You
can, optionally, specify the type of the instance variable on the same line,
for example:

:ivar int number: A number assigned to this hut.
:ivar AbstractGameUnit occupant: The occupant of...

When Sphinx generates the HTML documentation, the instance variable type
will be displayed next to its name. It will also try to create a link to that type.

* The .. seealso:: field directive is used to reference anything related to this
class that you feel is important.

* The :py:meth: field is used for cross-referencing methods. Note that the
method name should be bound by the back quotes (symbol ™).

[115]

Documentation and Best Practices

* Observe that we have not written any docstring for the __init__ method.

The guidelines suggest that you either write a docstring for the class or for its
__init__ method. For simplicity, let's follow the style just illustrated, where

the docstring is written at the class level.

When Sphinx generates the documentation, by default, it
\ ignores the docstring for the init method. You can
~ change this default behavior using the autodoc-skip-
Q member event inside conf . py. For more information,
check out http://sphinx-doc.org/ext/autodoc.
html#skipping-members.

Sphinx-generated HTML documentation for the Hut class will appear as shown in

the following screenshot. You will learn how to create such documentation shortly!

wargame.hut module

class wargame. hut . Hut (number, occupant)

What was just presented should serve as a basic example. There is a lot more that you

Bases: object
Class to create hut objects in the game Attack of the Orcs

Parameters: « number (int) - Hut number to be assigned
e occupant (AbstractGameUnit) - The new occupant of
the Hut
Variables: « number (int) - A number assigned to this hut
e is_acquired (boolean) - A boolean flag to indicate if
the hut is acquired. In the current implementation
this is viewed from the players perspective.
e occupant (AbstractGameUnit) - The occupant of this
hut. Needs to be an instance of a subclass of
AbstractGameUnit

See also:
Where it is used -

attackoftheorcs.AttackOfTheOrcs.setup_game_scenario()

can do with RST and Sphinx. The following table lists some of the most commonly

used features (directives, information fields, and syntax) to write docstrings. Use these

fields in the same way as illustrated in the preceding example. For comprehensive
documentation, visit the Sphinx website (http://sphinx-doc.org).

[116]

http://sphinx-doc.org/ext/autodoc.html#skipping-members
http://sphinx-doc.org/ext/autodoc.html#skipping-members
http://sphinx-doc.org

Chapter 4

Information field or directive | Description

:param Parameter description.

:arg Used to describe input arguments.

:key Keyword description.

:type Type of the parameter or argument, for example,

int, string, and so on. You can also use the
alternate syntax, for example:

:param type param name: description

:ivar or :var Any variable description. Generally used for instance
variables.
:vartype Variable type description.
* :py:meth: Syntax to cross-reference a Python method,

function, class, or attribute receptively. For example,
:py:meth: "MyClassA.method_a will be shown
* :py:class: asMyClassA.method a().

* :py:attr:

e :py:func:

code: : Any code samples can be included here. The section
under this directive is processed as a code block by
the Sphinx document generator.

todo: : Use this directive to list the TODO items.

note: : Document anything worthy of mentioning using the
notes directive.

warning: : Directive to write warnings in the docstring. The
warning block will be generally rendered with a light
red background.

seealso:: Use this directive to reference anything (a method, a

function, and so on) related to the code for which you
are writing the docstring.

Docstring formatting styles

In this chapter, we will only use the default RST format to write the docstrings.
Various projects follow their own convention to write docstrings. Many of these
styles are compatible with the Sphinx document generator.

[117]

Documentation and Best Practices

The Google Python Style Guide (https://google.github.io/styleguide/
pyguide.html) will be briefly discussed here. This style is widely used because
of the simplicity it offers. It will become obvious when you see the following code
screenshot. It is the same docstring we wrote for the Hut class, rewritten using the
Google Python Style Guide:

class Hut:

':rooﬂ|£ nyhon 5-ry|£
':rulde e:amp|£

P
o~

For this to work with Sphinx, you need to install napoleon, an extension for Sphinx.
It is essentially a pre-processor that parses and converts the Google style docstrings
into the RST format. Check out https://pypi.python.org/pypi/sphinxcontrib-
napoleon/ for installation instructions for napoleon. Examples on the Google Python
documentation style can be found on the napoleon documentation page, http://
sphinxcontrib-napoleon.readthedocs.org.

R The Numpy style of documentation is another popular style used within
~ the Python community. It is also supported by the napoleon extension.
Q Check out http://sphinxcontrib-napoleon.readthedocs.org
for further details.

Automatically creating docstring stubs

This is bit of an advanced topic, mainly because it needs some background in using
command-line tools such as patch.

[118]

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://pypi.python.org/pypi/sphinxcontrib-napoleon/
https://pypi.python.org/pypi/sphinxcontrib-napoleon/
http://sphinxcontrib-napoleon.readthedocs.org
http://sphinxcontrib-napoleon.readthedocs.org
http://sphinxcontrib-napoleon.readthedocs.org

Chapter 4

In many situations, you do not even have the basic docstrings written for the
functions, methods, and classes. Or, you might be following a Google docstring style
but now you would like to switch to a different one, say a basic RST style. The open
source tool pyment is meant for such scenarios. It can be used to create or update
docstrings and also to convert between some common formatting styles, such as RST,
Google docstring, and numpydoc.

Read it again...the tool's name is "pyment" and not "payment" (not to
o be confused with the Python package Pygment). This tool is available
~ on GitHub (https://github.com/dadadel/pyment). It was not
Q available on the PyPi website at the time this chapter was written.
So you might not be able to install it using the pip $pip install
pyment command.

As pyment is not available using pip, the installation instructions are different.
Follow the install instructions on the GitHub project homepage (https://github.
com/dadadel/pyment). The alternative install instructions, which do not require the
use of Git, are provided here:

1. Download the ZIP archive of pyment from the project homepage.
2. Extract this ZIP file to some folder, for example, pyment-master.

3. Open the command prompt and execute the following commands:
$ cd pyment-master
$ python setup.py install

The last command should install pyment in the same directory where you have the
Python executable. Depending on where your Python is installed, you may need to
execute the preceding command as an administrator. After the installation, run this
tool from the command line as follows:

$ pyment hut.py

This generates a patch file called hut . py . patch where the basic docstring stubs
are written.

Here, it is important to note that pyment will only create a basic
M docstring stub. It is our responsibility to fill in the blanks. Put another
Q way, we should further improve these docstrings by writing the
appropriate summary of the function or method —a one-liner on what
each input argument (if any) does and so on.

[119]

https://github.com/dadadel/pyment
https://github.com/dadadel/pyment
https://github.com/dadadel/pyment

Documentation and Best Practices

Next, you are expected to merge this patch with the main file, hut . py. On Linux,
use the following patch command (check out https://en.wikipedia.org/wiki/
Patch_(Unix) for more details) to merge the generated docstrings with the main file:

$ patch hut.py hut.py.patch
patching file hut.py

=1 L
Windows users

The patch command described here is a Unix command. On Windows,
patching a file might not be straightforward. Here are a few options that
can be used to apply a patch:

* Gnu utilities for win32: This will also install a bunch of other
M utility tools commonly seen on the Unix platform. Use the
patch.exe executable to apply patches. You can check out
these utilities at (http://unxutils.sourceforge.net).

e python-patch: Check out this cross-platform Python utility at
https://github.com/techtonik/python-patch.

* TortoiseMerge: It is a GUI tool used to apply patches
(https://tortoisesvn.net/docs/release/
TortoiseMerge en/tmerge-dug.html).

With this, the hut . py module should show the basic docstring stubs. We
have developed a basic understanding on creating docstrings. Let's take the
documentation to the next level using Sphinx.

Generating documentation with Sphinx

Sphinx is the de facto standard document generation tool for Python. Do not confuse
it with a docstring. A docstring is something you write to summarize the behavior of
an object. For example, a class docstring typically lists instance variables and public
methods depending on your project's documentation guideline.

Sphinx uses such docstrings, or any RST file, to create nice-looking documentation.
It can generate documentation in various output formats, such as HTML, PDF, and
so on. Let's follow a step-by-step approach to generate API documentation in HTML
format with Sphinx.

[120]

https://en.wikipedia.org/wiki/Patch_(Unix)
https://en.wikipedia.org/wiki/Patch_(Unix)
http://unxutils.sourceforge.net
https://github.com/techtonik/python-patch
https://tortoisesvn.net/docs/release/TortoiseMerge_en/tmerge-dug.html
https://tortoisesvn.net/docs/release/TortoiseMerge_en/tmerge-dug.html

Chapter 4

Step 1 — Installing Sphinx using pip
Sphinx can be installed using pip, as shown in the following command line:

$ pip install Sphinx

< pip is the package manager used to install Python packages. Refer to
Chapter 1, Developing Simple Applications for more information on pip.

This creates four executable scripts, sphinx-autogen, sphinx-apidoc, sphinx-build,
and sphinx-quickstart.

On Linux, these executable are placed at the same location as your Python
R executable. For instance, if Python is available as /usr/bin/python,
~ Sphinx executables can be accessed from the same location. On Windows
Q OS, the Sphinx executables are put in the Scripts directory. It is the
same directory where you have pip.exe. Refer to Chapter 1, Developing
Simple Applications for further details.

For syntax highlighting the code, Sphinx uses a tool called Pygments (http://
pygments.org). Install this package using pip, if it is not already provided in your
Python distribution:

$ pip install pygments

Step 2 — cd to the source directory

In Chapter 3, Modularize, Package, Deploy, we created a Python package by the name
of wargame, containing all the modules. Open a terminal window and cd to this
directory. The directory contents are shown in the following screenshot of the
terminal window:

[121]

http://pygments.org
http://pygments.org

Documentation and Best Practices

File Edit View Search Terminal Help

[user@hostname ~]% cd Shomesbook/wargame_distribution/wargame
[userfhostname wargame]d 1ls -1

[user@hostname wargame]$ I

Step 3 — Running sphinx-quickstart
As the name suggests, this script will get you started with Sphinx. It sets up a

directory where the documentation files will be placed and also creates a default
configuration file, conf . py. Run the following command:

$ sphinx-quickstart

When you run this tool, it will ask you several questions to complete the basic
setup. Choose the default answers for most of the questions by pressing the return
key on Mac or Enter key for other systems. We will customize the answers for a
few questions, shown next. The first prompt asks for the directory to place the
documentation in. We will create a new directory called docs for this purpose:

> Root path for the documentation [.]: docs

> Separate source and build directories (y/n) [nl: y
> Project name: wargame

> Author name(s): Your Name

> Project version: 2.0.0

Please indicate if you want to use one of the following Sphinx
extensions:

> autodoc: automatically insert docstrings from modules (y/n) [nl: y

[122]

Chapter 4

The last answer enables the autodoc extension of Sphinx. This extension will help
us create the documentation from the docstrings created earlier. Leave the rest of
the questions with the default answers. In the end, sphinx-quickstart prints the
following summary information:

Creating Tile docsfsourcescont. py.
Creating file docs/sourcesindex, rst,
Creating tile docs/Hakefile.
Creating Tile docs/make.bat,

Finished: An initial directory structure has been created.

You should noWw populate your master Tile docsssourcesindex.rst and create other documentatio
n
source tiles, Use the Maketile to build the docs, like so!
make builder
where “puilder” is one of the supported builders, e.g. html, latex or linkcheck.

The directory structure created by this script is shown in the next screenshot:

[user@hostname wargame]s 1s

[user@hostname wargame]s ls -1 . Adocss

make. bat
Makefile

The generated Makefile (Linux/Mac) and make . bat (Windows OS) will be used in
the final section of this topic, Step 6 — Building the documentation. The docs/source
directory is where we need to put all the RST files (or the documentation source
files). By default, it creates an empty index.rst file. It also contains a file, conf . py,
which will be discussed next.

Step 4 — Updating conf.py

The sphinx-quickstart script creates a build configuration file, conf . py. Here, it

is located at docs/source/conf .py. This is the file where all the customization for
Sphinx is defined. For example, you can specify which Sphinx extensions to use while
generating the documentation. In the previous step, we enabled the autodoc extension
to include the documentation from docstrings. It is represented in conf . py as:

extensions = ['sphinx.ext.autodoc!', 1]

[123]

Documentation and Best Practices

To take care of some warnings related to the .. todo: : directive, add the following
to the extensions list (you can also specify this during sphinx-quickstart):

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo',]

We just need to make a small change in this file. As our source code is not in the
docs directory, we will need to add an appropriate path to avoid import errors while
generating the documentation. Uncomment the following line of code. You should
find this line immediately after the import statements:

#sys.path.insert (0, os.path.abspath('.'"))

You also need specify the full path to the directory containing the wargame package
on your system. An example is shown in the following code:

sys.path.insert (0,
os.path.abspath('/home/book/wargame distribution')
)

Step 5 — Running sphinx-apidoc

Now, it is time to create the documentation source files (RST files) using the sphinx-
apidoc tool. This tool uses the autodoc extension to extract the documentation from
the docstrings. The syntax is as follows:

$ sphinx-apidoc [options] -o <outputdir> <sourcedir> [pathnames ..]

In the terminal window, run the following commands (make sure you are in the
docs directory, using cd, before running the following command):

$ sphinx-apidoc -o source/ ../

The -o argument specifies the output directory where the generated RST files will

be placed. In this case, the output directory is the directory by the name of source.
This is a counterintuitive name, but remember that the source directory is where we
keep the documentation source files. In the next step, these files will be used to create
the final output (such as HTML files). The second argument represents the directory
path where we have the Python code. In this case, the directory path is specified
relative to the current working directory. Alternatively, you can also specify the full
path, for example:

$ sphinx-apidoc -o source/ /home/book/wargame distribution

[124]

Chapter 4

The command-line output after running this tool is shown next:

[user@hostname docs]¥ 1s
make.bat Makefile
[user@hostname docs]® sphinx-apidoc -0 sources ..Jf
Creating Tile source/setup.rst.
Creating Tile source/wargame.rst.
Creating Tile source/modules.rst.
[user@hostname docs]® nedit sourceswargame.rst
[user@hostname docs]® [

\ As an exercise, review the auto-generated file, source/wargame . rst. It
N contains the automodule directive of the autodoc extension. For further
Q details, refer to the Sphinx documentation (http://sphinx-doc.org/

ext/autodoc.html).

Step 6 — Building the documentation

The previous step created all the raw material we will need to create nice-looking
documentation! There are two ways to create HTML documentation. The first option
makes use of the sphinx-build tool and the other option uses the Makefile we
created earlier. Let's discuss these options next.

Using sphinx-build
The sphinx-build tool makes it trivial to generate the final documentation. Run the
following command while it is still in the docs directory:

$ sphinx-build source build

[125]

http://sphinx-doc.org/ext/autodoc.html
http://sphinx-doc.org/ext/autodoc.html

Documentation and Best Practices

The first argument is the source directory where we have all the RST files, and the
second argument is the directory where the final HTML documentation will be
created. Open the docs/build/index.html file in a web browser and navigate
through the links to view the documentation!

[welcome to wargame'= x

& [file:iiihome/bookiwargame_distributioniwargame/docs/build/index.htmi v =

Table Of Contents WEICOIne to Wargame, S

Welcome to wargame's documentation!
ic Contents:
This Page .
Indices and tables
Quick search . :;:Ed);le Index

Go

Enter search terms or a module, class
ar function name.

©2015, Ninad Sathaye. | Powered by Sphinx 1.3.3 & Alabaster 0.7.6 | Page source

Using Makefile

An alternative to sphinx-build is to use the Makefile (or make.bat) created in
Step 3 - Running sphinx-quickstart. On Linux, type the following commands (first
move to the docs/source directory using cd):

$ cd /home/book/wargame distribution/wargame/docs/source

$ make html

The last command creates HTML documentation in the docs/build directory.
If you are using Windows OS, use make . bat, for example:

> make.bat html

Now that you have learned how to write good documentation, let's proceed further
and see what guidelines should you follow while writing your Python code.

[126]

Chapter 4

Python coding standards

Coding standards serve as guidelines to write good quality code. Complying with
these standards can have a significant impact on code readability, and in general on

the life of the code.

PEP 8 Style Guide for Python Code

The PEP 8 convention provides a style guide for writing Python code.
If you are working on a project that follows its own set of coding

~\| conventions, rather than enforcing the PEP 8 standards, you should

Q adhere to the project-specific conventions. What matters the most is

consistency. For any new project, you are strongly recommended to use
the PEP 8 style guide. In this section, we will cover a bare minimum set
of guidelines that you should be aware of. For a comprehensive overview,
check out https://www.python.org/dev/peps/pep-0008.

The following table lists some of the important guidelines documented in PEP 8 to

write Python code:

PEP 8 Style Guide For Python Code

Details

Use four spaces per indentation level

This can be set as a preference in most
Python editors.

Use spaces instead of tabs for indenting

Mixed use of tabs and spaces is not allowed
in Python 3. Most editors have an option to
convert tabs to spaces.

Limit maximum line length to 79 characters

This may vary across projects. Some
projects follow a limit of 80 characters. The
illustrations in this book use an 80-column
limit. Most editors will give you an option
to draw a line at a specified column that
serves as a visual indication.

Put all import statements at the top of
the file

Don't put import statements inside the
class or function bodies. Bring those out and
put them at the top.

One import statement per line

An exception to this guideline is that, if you
are importing multiple objects from a single
module, it is OK to use a single import for
all. The following imports are acceptable:

import os
import sys

from numpy import trapz, polyfit

[127]

https://www.python.org/dev/peps/pep-0008

Documentation and Best Practices

PEP 8 Style Guide For Python Code

Details

Module names

Try to keep these short. They should be all
lowercase. For example:

attackoftheorcs.py

Class names

Use UpperCamelCase with the first letter of
every word capitalized. For example:

class AttackOfTheOrcs:

Function and method names

These should be in all lowercase; use
underscores if it improves readability.
For example:

def show game mission(self):

Avoid the following style:
showGameMission (lowerCamelCase).
Use such names only if you are working

on a project that uses this convention. This
might surprise you if you are coming from a
different programming background, such as
C++. Using underscores in the method and
function names is the Pythonic way.

Comparing with None

Always compare a variable against None
like this:

if my var is None:
do something
Or like this:
if my var is not None:
do something else.
Never compare it like this:

if my var == None OR my var !=
None

[128]

Chapter 4

PEP 8 Style Guide For Python Code

Details

Exceptions:

When catching an exception, specify
the exception type instead of just
using the bare except clause.

Use the Exception class to derive
exceptions instead of using the
BaseException class.

Avoid writing a lot of code inside a
single try clause; doing so makes it
difficult to isolate the bugs.

Refer to Chapter 2, Dealing with Exceptions,
which discusses some of these guidelines.

Public and non-public attributes:

Non-public attributes should have a
leading underscore.

When in doubt, make attributes
non-public.

As discussed in

Chapter 1, Developing Simple Applications,
Python does not enforce any rule to make
non-public attributes inaccessible to the
outside world. However, a good practice is
to refrain from using non-public attributes
outside the scope. If you are unsure
whether it should be scoped as public or
non-public, as a starter, make it non-public.
Later, change it to a public attribute if
necessary. Refer to Chapter 5, Unit Testing
and Refactoring, where we discuss the
testing strategies for a non-public method,
_occupy_huts.

As mentioned earlier, this is just a representative sample of the comprehensive PEP 8
guidelines. Read the PEP 8 documentation for further details.

[129]

Documentation and Best Practices

Code analysis — How well are we doing?

In this section, we will talk about tools that help to detect coding standard violations.

'Pr‘aﬁr‘ammer'a are PEGPIE.
P\Eﬂplﬂ make F‘ﬁi&‘rﬂkﬂﬁ-. IT
is TGHSH o rememe.ber
d.l":ld adher‘e to so many
gﬂidﬁliﬁﬁﬁ-l

Good to have you back, Sir Foo! You've been awfully quiet, hope you are following
along. You have raised a valid concern. Developers might get overwhelmed while
trying to adhere to so many guidelines. Initially, it could appear like a challenge
but practice should make you perfect. That said, there is still a likelihood that you
will forget a guideline. Luckily, there are tools available that not only detect coding
standard violations, but also inspect the code for errors. Some tools also try to
reformat the code to adhere to coding standards. Let's learn that next.

[130]

Chapter 4

Code analysis using IDE

Some popular Python integrated development environments (IDEs) were listed

in Chapter 1, Developing Simple Applications. Before looking at any of the inspection
tools discussed next, start with your IDE. Many IDEs come well equipped with code
inspection and reformatting tools. For example, PyCharm Community Edition has
excellent support for code inspections. The following screenshot shows some options
offered under the Code menu:

Comment with Line Comment Ctri+5lash

Eeformat Code Ctri+Alt+L
Auto-Indent Lines Ctrl+ A+
Optimize Imparts Ctrl+ AL+ 0
Mave Statement Down Ctri+5hift+ Down
Move Statement Lip Ctrl+Shift+Up
IWove Line Down Alt+5hift+Down
Move Line Up Alt+5hift+Up

Code Cleanmk..
Eun Inspection by Mame. .. Ctri+Alt+5hift+1
Configure Current File Analysis... Ctrl+Alt+5hift+H

View Offline Inspection Results ...

Using an IDE with a good code analysis tool has a major advantage. It can help
you detect the problems as you write the code. The tool can continuously monitor
the code for common coding violations and show a visual indication of the error or
warning next to the code. Typically, this indication appears just how a spellchecker
shows spelling mistakes in a word processor. These timely indications help
immensely in addressing common coding mistakes right when they occur.

[131]

Documentation and Best Practices

Pylint

Pylint is a tool that inspects the code for errors and also warns you about coding
standard violations. It is integrated with several IDEs (check out http://docs.
pylint.org/ide-integration for a list of IDEs and editors where Pylint is
either available or can be installed as a plugin). We will see how to use Pylint

as a command-line tool. First, install it using pip —depending on your Python
installation, you might need administrative access in order to install it:

$ pip install pylint

This installs pylint (or pylint.exe on Windows) at the same location where you
have Python executable. Now, you should be able to use this tool from the command
line. On Linux, the syntax is as follows:

$ pylint module name.py

Where module_name.py is the file you want to check for errors and coding style
problems. When you run pylint from the command line, it prints a detailed report
of the analysis. This report has information on coding style, warnings, errors, and
refactoring needs. In the end, it rates your code on a scale out of 10.

You can also customize the default settings to fit to your project needs. This is done
using a configuration file. On Linux, run the following command in a terminal:

$ pylint --generate-rcfile > ~/.pylintrc

This creates a default template for your Pylint configuration and saves it in your
$HOME directory (~/.pylintrc). Even on Windows OS, this file can be created in
your user's home directory Alternatively, you can specify the PYLINTRC environment
variable, which holds the complete path to the file.

Pylint in action

It is time for some action. Run the Pylint code analysis on the wargame/hut . py file.
Recall that in an earlier section, Dosctrings using RST, we added a class-level docstring.
That's pretty much the documentation we have for this file. Pylint will not like this so
be prepared to get beaten up!

$ cd wargame

$ pylint hut.py

[132]

http://docs.pylint.org/ide-integration
http://docs.pylint.org/ide-integration

Chapter 4

The last command prints a detailed report on the command line. Let's see what we
have got. The following screenshot shows the final report—the code has been rated
5.00 out of 10 points:

File Edit View Search Terminal Help

Messages

i I +
|message id |occurrences |
B e e b e e bt o
|[missing-docstring |3
i I +
|wrong-import-position |1 |
i I +
|pointless-string-statement |1 |
i I +
|import-error |1 |
i I +

Your code has been rated at 5.00/10 (previocus run: 5.00/710, +0.00)

That's pretty bad! Let's look at where we can improve by reviewing the report

Pylint has generated. In the report, it complains about an import error. Well, there

is nothing wrong with the imports. Clearly, it is missing the Python directory PATH.
This can be fixed by editing the .pythonrc file. Look for a commented line that reads
init-hook (it should appear near the beginning of the file). Uncomment it and write
the following code:

init-hook='import sys; sys.path.append("/path/to/wargame/")"'

[133]

Documentation and Best Practices

Replace /path/to/wargame with the actual path on your system to the wargame
directory. With this change, rerun Pylint on this file. The new evaluation is shown
next:

File Edit View Search Terminal Help

Messages

i I +
|message id |occurrences |
B e e b e e bt o
|[missing-docstring |3
i I +
|wrong-import-position |1 |
i I +
|pointless-string-statement |1 |
i I +

Your code has been rated at 7.50/10 (previocus run: 5.00/10, +2.50)

Not bad! Just fixing the import error has already improved the score by 2.50 points.
Let's review the generated report one more time. At the beginning of the report,
Pylint lists all the issues present in the file. In this case, it complains about missing
docstrings for the module and the methods of the class. The other thing it is not
happy about is the import statement, from __ future import print_function,
as the first line of the module.

[134]

Chapter 4

PEP 236 convention
M Although the _ future_ import statement must appear as the first
line, the exception to this rule is a module docstring. A module docstring
Q can be written before writinga _ future_ import statement. Review
the PEP 236 convention (https://www.python.org/dev/peps/pep-
0236) for more information.

We can easily fix both these issues. A reworked module docstring along with the
rearranged _ future _ import statement is shown in the following code screenshot:

from future import print_function
from gameutils import print_bold

class Hut:

[135]

https://www.python.org/dev/peps/pep-0236
https://www.python.org/dev/peps/pep-0236

Documentation and Best Practices

Let's see how are we doing by running Pylint again after this change:
File Edit View Search Terminal Help

Messages by category

R L Fommmm=oa- teccmccaa=== +
| type |number |previous |difference |
F======c=c===—=+======—=+t====—=—====H%====—=—======+
|convention |@ |4 |-4.06 |
I Fomm o= e R +
|refactor |G |G |= |
Frmrmrm == Fommm == b Fommrr === +
|warning |G |1 |-1.06 |
o - - E Fomm e - +
|error |@ Lt |= |
- L O R o 1

Your code has been rated at 10.00/10 (prewvious run: 7.50/10, +2.50)

Yey! We have got full points for this module! Follow the similar process to improve
the rest of the code. As an exercise, add the docstrings for the class methods. You can
also download wargame/hut . py from the supplementary material for this chapter,
which already has all the docstrings written.

PEP8 and AutoPEP8

pep8 is another tool that inspects the code to check whether it confirms to the PEP 8
coding style guide. It can be installed using pip as follows:

$ pip install pepS8

To know how to use pep8, visit the project page (https://pypi.python.org/pypi/
pep8). There is another handy tool called autopep8 that will automatically reformat
the code to confirm to the style recommended by PEP 8 guidelines. This tool can also
be installed using pip:

$ pip install autopepS8

[136]

https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pep8

Chapter 4

Note that this tool requires pep8 to be installed. Check out https://pypi.python.
org/pypi/autopeps for more information and usage examples.

Exercise

In this chapter, you learned how to document code, use Sphinx to generate
documentation, and analyze the code using tools such as Pylint. Here is an exercise
that covers these three aspects:

* Download the code illustrated in Chapter 3, Modularize, Package, Deploy (you
can also use your own Python code instead).

* Write docstrings for this code (be sure to write docstrings at module, class,
and method/function levels). You can use the default RST format to write the
docstring or choose the Google Python Style Guide.

* Generate an HTML documentation using Sphinx.

* Run code analysis, using Pylint or any other tool, to fix coding errors and
style problems.

The supporting code for this chapter is already documented to an extent. You can use
this code as a reference and also try to improve the existing documentation further.

Summary

You learned how to document the code using the RST format. The chapter introduced
the Sphinx document generator that was used to create an HTML documentation for
our application code. You also learned about some important Python coding standards
that helped improve readability. Finally, we saw how to check our application code for
errors and style violations using code analysis.

In an ideal world, you wish your code fully confirms to the coding convention. Often,
that is not the case for various reasons, ranging from new team members to tight
project deadlines. Sometimes, to make it compliant with the coding standards, you
will need to refactor it at a later stage. While doing so, you will also need to make sure
no functionality gets broken. This is accomplished by writing unit tests. We will study
these inter-related aspects in the next chapter.

[137]

https://pypi.python.org/pypi/autopep8
https://pypi.python.org/pypi/autopep8

Unit Testing and Refactoring

Here is a quick recap of what you have learned so far. You developed a command-
line application using the OOP approach, and then learned techniques to make
your code robust by handling exceptions. You modularized the code, prepared a
distribution, and released it to a broader audience. Finally, you learned about coding
standards and documentation.

So far, we have not paid much attention to testing the application. We relied solely
on manual testing, where some features were tested by playing the game. The task of
manual testing becomes increasingly difficult with the complexity of the application.
Soon you will be overwhelmed, and the bugs will start to creep in. While manual
testing may not be avoided completely, we need an automated way to make sure the
features work as expected. In this chapter, you will do the following:

Learn about unittest, the unit testing framework in Python

Write some unit tests for our application

See how to use the mock library in unit tests

Learn how to measure the effectiveness of unit tests (code coverage)
Understand what is code refactoring, why, when, and how to do it

Come back to the unit testing discussion after doing some code refactoring

[139]

Unit Testing and Refactoring

This is how the chapter is organized

The chapter starts with a game scenario, where a bug slips through to production
and stays hidden until a user discovers it. This scenario underlines the need for
automated testing, and then leads into a discussion on unit testing framework in
Python. You will be introduced to the unittest framework and the mock library in
Python. The chapter will demonstrate the use of these libraries by writing a few unit
tests for our project.

Moving ahead, it shows an example where it is difficult to write a unit test without
refactoring the code first (see Refactoring preamble). This is where we take a detour,
learn the basics of refactoring, refactor the code, and then develop the last unit test.

Important housekeeping notes

These notes will be useful in case you haven't read the earlier chapters. Otherwise,
just move on to the next heading. Like every other chapter, this one has its own set
of Python source files. The source code can be downloaded from the Packt Publishing
website. Just follow the instructions mentioned in this book's Preface.

This is the last chapter that depends on the code developed in the earlier chapters.
Starting with Chapter 6, Design Patterns, we will have independent, simplified
examples to demonstrate various concepts. That said, everything will be tied back to
the same high fantasy theme.

Why test?

Did you play the game developed so far? If not, just try playing it once. During the
combat with the enemy, the following can be observed. For each attack, either Sir
Foo or the enemy sustains injuries. This is indicated by the reduced hit points. For
example, in the sample game output shown next, sir Foo gets hit in the first attack
turn, whereas the enemy is injured in the next two attack turns.

Health: Sir Foo: 48

current occupants: ['enemy', 'friend', 'friend', 'enemy', 'friend']
Choose a hut number to enter (1-5): 1
Entering hut 1... Enemy sighted!

Health: Sir Foo: 48 Health: enemy-1: 38
Lo.continue attack? (y/n): v

ATTACK! Health: Sir Foo: 27 Health: enemy-1: 2@
Lo.continue attack? (y/n): v

ATTACK! Health: Sir Foo: 27 Health: enemy-1: 16
Lo.continue attack? (y/n): v

ATTACK! Health: Sir Foo: 27 Health: enemy-1: 2
..continue attack? (v/n): I

[140]

Chapter 5

A new feature was requested

A user requested an enhancement to the combat scenario:

"During combat, the program asks whether you want to continue attacking the
enemy. In each attack move, one of the warriors, the player or the enemy, gets
injured. Can you make it more interesting? What if both the warriors escape
unhurt sometimes?"

I can't ima-gihe +the enemy
ascn{fing unhurt even after
my ierce attackl Do not

entertain this feature
request.. what say yau?

It will benefit you as well Sir Foo! We will go ahead and implement this minor
enhancement. Despite Sir Foo's stiff opposition, you rushed to implement this
new feature.

You implemented this feature

Recall that the gameutils.weighted random selection function randomly selects
an element from weighted_list. The list is populated such that, for approximately
30% of the time, the unique identifier of obj1 gets selected, and for the rest of the
time, the unique identifier representing obj2 gets chosen. Put another way, the
chance of Sir Foo (obj1) getting injured is approximately 30%, and that of the enemy
(obj2) is nearly 70%.

[141]

Unit Testing and Refactoring

To add the likelihood that no one gets hurt, you changed the composition of
weighted_ list by adding a new element, None. The new chances of injury to the
warriors are as follows:

* The chances of the enemy (obj2) getting hurt are ~ 60%

* The chances of Sir Foo (obj1) getting hurt are ~30%

* Both escaping unhurt (None) are ~10%

The following is the weighted_random_selection function before and after the
aforementioned change:

def weighted random selection(objl, ohj2):
weighted_list = 3 * [id(cbjl)] + 7 * [id(obj2}]
selection = random.choice (weighted 1list)

if selection == id(objl):
return objl

ﬂr‘igina' function

return obj2

def weighted random selection(objl, obj2):
welghted_list = 3 * [1d(objl)] + & * [1d(obj2)] + 1*[Monel -—ﬁ

selection = random.cholce (weighted 1list)

if selection == id(objl): An additional

] return thl . . randem choice
ehfri:}ler;t;E?z: id(obj2): ‘None' added to
else: the selection n|ﬂarifhm

return None

That was easy, wasn't it? You played the game once to make sure nothing is broken.
It looked all fine. Without any delay, you released a new version.

But something wasn't right...

However, soon after release, user complaints started pouring in. This was
unexpected. Your commit introduced a new bug!

[142]

Chapter 5

What did you do?” 1 was
obout 1o eliminare the
enemy butr the a.pplicm‘mn
choked during the arrack()!
Didn'r you hear me soy

the feature was a bad idea?

Calm down Sir Foo! You are still in war mode! Relax and take a deep breath. We
will address this issue soon.

So what went wrong? There is no problem with the function you wrote. It is
behaving as intended. However, you forgot to make some changes to the code that

calls weighted random_selection. As a result, the following uncaught exception
is seen:

Health: Sir Foo: 48

current occupants: ['unoccupied', 'friend', 'unoccupied', ‘enemy', ‘enemy’]
Choose a hut number to enter (1-5): 4
Entering hut 4... Enemy sighted!

Health: Sir Foo: 49 Health: enemy-4: 30
Loacontinue attack? (yv/nlr oy
Traceback (most recent call last):
File "attackoftheorcs.py", line 188, in =module>
game.play()
File "attackoftheorcs.py", line 172, in play
self.player.acquire_hut{self. huts[idx-1])
File "shomesch/wargamesknight.py", line 27, in acquire_hut
self.attack({hut.occupant)
File "/home/ch/wargamesabstractgameunit.py", line 74, in attack
injured_unit.health_meter = max(injured_unit.health_meter - injury, @)
AttributeError: 'NoneType' object has no attribute 'health_meter’

[143]

Unit Testing and Refactoring

The error traceback points to the AbstractGameUnit .attack method. This method
calls the weighted_random_selection function to randomly select an injured unit.
The problem occurs when injured_unit is None. The trouble-causing line of code is
shown in the following code snippet:

def attack(self, enemy): returns Nore
injured unit = weighted random_selection(self, enemy)

Jinjury = random, randint(10, 15)
injured unit.health meteri= max@injured unit.health meter:i- injury., Q)
pront(ATTACK!T ™, "end=""] T-

self.show_health({end=" ')
enemy.show_health(end='

results in unharndled
+ + + [[
exception when this is None

It required thorough testing

You had done basic testing by running the game once. But then why didn't you
notice this problem? The chances that the function returns None are slim. For
example, for every 10 calls to the function weighted_random_selection, the value
None would be on average returned only once. In this case, the testing you did was
not enough to reproduce the problem.

This is just one of the scenarios where thorough testing is required. At the same time, it
is prone to human error because of the random nature of the output. If you had some
automated means to test this functionality, the bug could have been easily avoided.

So let's learn how to create automated tests in Python using the unittest framework.
After you know how to write a unit test, we will come back and write a unit test for
the weighted random selection function that was discussed here.

Unit testing

In unit testing, you tinker with a code fragment within the application. The main task
is to verify that this piece of code continues to work as expected throughout the life
of the application. This is accomplished by writing a test for that functionality.

A unit test can be better explained with an example. Consider a trivial function that
returns the sum of two numbers. In a unit test, you invoke this function by passing
two numbers as arguments, and then verify the value returned by the function is
indeed the sum of the given numbers.

[144]

Chapter 5

There are many frameworks available for writing unit tests. The examples in this
chapter will be based on the built-in unit testing framework called unittest. See the
heading Other unit testing tools, which gives a very short overview of alternative unit
testing tools and frameworks.

Python unittest framework

The unittest module provides the functionality to automate tests. Before we
implement any tests for our application, let's first start with the terminology.

Basic terminology

Test case: When you write a unit test, it is referred to as a test case. TestCase
is the superclass for creating different test cases.

Test suite: When you group together various test cases, it becomes a test
suite. A test suite may also represent a collection of other test suites.
unittest.TestSuite provides a superclass for creating a suite. The
TestSuite does not define any unit tests, but it just accumulates the tests or
other test suites. This is a major difference between TestSuite and TestCase.

Test fixtures: These are preparatory methods for the smooth running of the
unit tests. For example, TestCase . setUp is called just before executing a
test case. It can be used to feed the required data to the test cases. Similarly,
TestCase. tearDown method is called immediately after the test execution.
Such methods could be used in combination, for instance to start and stop a
service consumed by a unit test.

Test runner: The runner helps execute a test case or a test suite. It also provides
a way to represent the results after running the tests. For example, the results
can be displayed on the command line or in some graphical form. The basic
implementation is provided by the unittest.TextTestRunner class.

[145]

Unit Testing and Refactoring

Creating tests with unittest.TestCase

To understand the basics of constructing and running the tests, let's write a trivial
program. Observe the following code:

import unittest

class HyUnitTests(unittest.TestCase):

def setUp(self): .
SrNt("In setlp. ") Inherited metheds of

TestCase
def tearDown(sz1f):
print("Tearing Down the test.")
print("~"*10
def test 2(self): Methods with prefix ‘test

print{"in test_2")

., are recognized as test cases
self.assertEqual(1+1, 2) 3

b}r the test runner
def test_1(self):
print("in test_1")
self.assertTrue(l+l == 2)

B?' defoult this is net

def will_not_be called(se1f): — identified as a test merhod
print{"this method will not be called automatically")

if _ name_ ="

unittest.main()

_ITIEIE___._:'___ Load and run the tests

As mentioned earlier, the setUp and tearDown methods are known as fixtures.
MyUnitTests.setUp () is called before executing each test. This allows the
initialization of some common variables before the test gets executed. The
MyUnitTests.tearDown () method is called after every test.

[146]

Chapter 5

When the unittest.main () program is invoked, the tests defined in the MyUnitTests
class are run one after the other. This program can also accept a test runner as an
optional argument (not used in this example). By default, the program loads and runs
only the methods that have names starting with test. In the MyUnitTests class, the
tests defined in the test 1 and test 2 methods will be executed as shown in the
following command-line output:

[user@hostname ch5]% python testcasedemo.py
In setUp..

in test_1 First test
Tearing Down the test.

In setUp..

i tESt—E Second test
Tearing Down the test.

Ran 2 tests in 0.001s All is well. No Pr'a|::a|e.ma found

Q/" while running these ftests
]

Now that we know how the test cases are executed, let's review one of the methods,
which is as follows:

def test 2(self):
print ("in test 2")
self.assertEqual (1+1, 2)

The assertEqual method is a built-in method of the Testcase class. It essentially
checks whether the two input arguments are equal, otherwise an assertion error is
raised. The test illustrated in the preceding code fragment will pass. Let's review a
test that would fail:

def test 2(self):
print ("in test 2")
self.assertEqual (1+1, 3)

[147]

Unit Testing and Refactoring

Obviously, 1+1 1= 3, s0 we would expect the test to fail, as shown in the following
command-line output. For a failed test, it also prints the letter F in the output:

[user@hostname ch5]% python testcasedemo.py
In setUp..

in test_1

Tearing Down the test.

.In setUp..

in test_2

Tearing Down the test.

FATL: test_2 (__main__ . MyUnitTests)

Traceback (most recent call last):
File "testcasedemo.py", line 14, in test_2
self.assertEqual({li+l, 3)
AssertionError: 2 1= 3

Ran 2 tests in @.002s

FATLED (failures=1)

Similarly, the unittest.TestCase class defines a bunch of convenient methods. For
example, the assertTrue and assertFalse methods verify a condition. Another
method, assertRaises, is used to check whether a certain exception is raised by

the code.

Controlling test execution

Is there a way to run only selected test cases? One way is to use Python decorators
for the tests you want to ignore. Let's add this decorator to both the test cases from
the previous example:

[148]

Chapter 5

gunittest.skip("Skipping test_2")

def test 2(self):
print{"in test_2")
self.assertEqual(l+l,

L

)

gunittest.skip("Skipping test_1")
def test_1(self):
print("in test_1")
self.assertTrue(l+l == 2)

Essentially, none of the test cases would be run. The output, after running the code,
indicates that these tests have been skipped. For each skipped test, it prints s in
the output:

[user@hostname ch5]% python testcasedemo.py
55

Ran 2 tests in 0.000s

0K (skipped=2)

\ There are two more decorators not covered here, namely skipIf
S and skipUnless. These decorators are used for the condition-based
Q skipping of the test. See the following documentation page for details:
https://docs.python.org/3/library/unittest.html.

Sometimes, you do expect a few test cases to fail. For example, a test may fail due

to a difference between a development versus a production environment, or due to
the presence or absence of expected database content. Such expected failures can be
tagged with another decorator. We know that test_2 fails, so let's add the decorator
for this test:

@unittest.expectedFailure
def test_2(s=17):
print{"in test_2")
self.assertBqual (1+1, 3)

gunittest.skip("Skipping test_1")
def test_1(s=17):
print("in test 1")
self.assertTrue(l+l == 2)

[149]

https://docs.python.org/3/library/unittest.html

Unit Testing and Refactoring

For each anticipated failure, it prints x in the output. At the end, it summarizes how
many tests were expected to fail:

[user@hostname ch5]% python testcasedemo. py
sIn setUp..

in test_ 2

Tearing Down the test.

Fan 2 tests in 0.002s

OK (skipped=1, expected failures=1)

Using unittest.TestSuite

Refer to the testsuitedemo. py file in the supporting code bundle for this chapter. The
module contains two classes, namely MyUnitTestA and MyUnitTestB. Each of these
inherit from unittest . TestCase, and define some trivial methods as unit tests.

M In Chapter 3, Modularize, Package, Deploy! we created a separate module for
Q each class. Here, the testsuitedemo.py module contains two classes.
As an exercise, you can put these classes in separate modules.

The following code snippets show these classes. For compactness, the code
comments are omitted here:

[150]

Chapter 5

import unittest

class HyUnitTestA(unittest.TestCase):
def test_az(s=17):

print{"MyUnitTestA. test_az")

self.assertNotBqualil + 1, 3)

def test_al(s=1f):
print("MyUnitTesta. test_al")
self.assertTrue(l + 1 == 2]

def not_called by default(s=1f):
print("MyUnitTesta: This method will not be called by default")

class HyUnitTestB(unittest.TestCase):
def test b2(s=17):
print("MyUnitTestE. test_bZ2")
self.assertNotBqual(4*4 , 15)

def test bl(s=1f):
print("MyUnitTestB. test_bl")
self.assertTrue(4 + 4 == 3)

def not_called by default(s=1f):
print("MyUnitTestB: This method will not be called by default")

The makeSuite function of the unittest module can be used to create an instance
of TestSuite:

suite a = unittest.makeSuite (MyUnitTestA)

The preceding line of code will construct a test suite using all the unit tests defined in
the MyUnitTestA class. Only the method names starting with test* are added to the
test suite. In this example, these methods are test_a2 and test_al. The third method,
not_called by default, will not be automatically considered as a unit test.

S Non-test methods (such as not _called by default in this example),
are often useful for sharing code between the tests.

[151]

Unit Testing and Refactoring

Let's

see how to include such methods in the test suite. The code snippet that follows

shows a function suite () defined in this module:

def

Let's

suite():

print{"Inside suite()...")

suite a

unittest.makeSuite (MyUnitTestA)

suite b = unittest.makeSuite (MyUnitTestE)

suite_b.addTest(MyUnitTestB({"not_called_by default"))

return unittest.TestSuite((suite_a, sulte_bl)

review the preceding code snippet:

This function creates two instances of TestSuite, namely suite_a and
suite b.

The MyUnitTest .not called by default method is added as a test case in
the test suite using the addTest method.

The function returns a new TestSuite object. It takes a Python tuple as an
argument. In this example, the tuple includes the two instances of TestSuite
created before.

[152]

Chapter 5

The last part of this module is the execution code:

if __name_ == "'_main_ ':

unittest.main{defaultTest="suite"')

Running the testsuitedemo.py module produces the following output. Observe
that it has also executed the test defined in MyUnitTestB.not called by default:

[user@hostname ch5]% python testsuitedemo.py

Inside suite()...

MyUnitTestA. test_al

MyUnitTestA., test_a2

MyUnitTestE. test_bl

MyUnitTestE. test_b2

MyUnitTestB: This method will not be called by default

Ran 5 tests in 0.000s

0K

\ Test suites are also very convenient for grouping test cases, depending on

~ their runtime. For example, you can group together fast-running tests and

Q slow-running tests, and give the test runner script a command-line option
to choose which one to run.

Writing unit tests for the application

It is time to write some unit tests for the application. We will make a new subclass of
unittest.TestCase to hold all the unit tests.

[153]

Unit Testing and Refactoring

Setting up a test package

As a first step, let's create a new package for holding the test cases. Create a new
directory called test at the same level where you have the rest of the code. Next,
create two new files inside this test directory, as shown here:

=~ Wargame

e init__ .py

v test_wargame.py
e init__.py

v abstractgameunit.py
v attackoftheorcs . py
¥ gameuniterrar.py
v gameutils.py

s hut.py

v knight.py

v orcrider.py

The test_wargame . py module is where new unit tests will be created. To recognize
the directory as a Python package, add an empty __init__ .py file.

< If you haven't already, read Chapter 3, Modularize, Package, Deploy! for
Q details on creating a Python package.

Creating a new class for unit testing

The test_wargame . py file can also be found in the supporting code. It has all the
code to be discussed next. In the following discussion, it is assumed that you will
code from scratch to an empty file.

Create a new subclass of unittest.TestCase, and call it TestWarGame or any name
you like. The class is shown here:

[154]

Chapter 5

import unittest

from knight import Knight

from orcrider import OrcRider

from abstractgameunit import AbstractGameUnit
from gameutils import weighted random_selection
from hut import Hut

from attackoftheorcs import AttackOfTheOrcs
class TestWarGame(unittest.TestCase):

def setlp(self):

591%.Eniéﬂf-=-KﬁiéH{kj
self.enemy = OrcRider()
def test_injured_unit_selection(self):

pass # 7o be implemented

if _ _name_ =="'_main__ ':
unittest.main()

We start by making the necessary imports. Recall that the setUp () fixture is called
immediately before running the unit tests. Inside setUp, instances of the knight and
orcRider classes are created, and are then used in the unit test we are about to write:
test_injured unit selection. As seen before, the call to unittest.main () will
automatically execute methods whose names start with test. In this example, it will
run test_injured unit_selection().

You can write the same code without using fixtures as well. Simply create

the required instances inside the test you are writing. As you will see

next, the test_injured_unit_selection () unit test uses the objects
N created in setUp (). Alternatively, you can create those instances locally,

~ inside the test, like so:
def test injured unit selection(self) :

knight = Knight ()
enemy = OrcRider ()

rest of the test code...

[155]

Unit Testing and Refactoring

First unit test — Injured unit selection

Let's go back to the scenario we discussed under the section Why test? Recall that
you changed the behavior of the weighted random_ selection function so that it
can also return None (nobody injured). This new feature broke the program, and the
application terminated because of an uncaught exception.

The test we are about to write will verify the original behavior of this function. The
original behavior was to select either Sir Foo (the knight instance) or the enemy (the
OrcRider instance) as the injured unit. The unit test we are about to write will verify
exactly that. Observe the following code:

def test_injured unit_selection(sz1f):

for 1 in range (100):
injured_unit = weighted_random_selection(self.knight.
self.enemy)
self.assertIsInstance(
injured unit,
AbstractGamelnit,

"Injured unit must be an instance of AbstractGamelUnit")

With this preceding function, the chance of self.enemy getting injured is
approximately 70%, and that of sel1f.knight (Sir Foo) is nearly 30%. The top-level
for loop just ensures it is called 100 times to account for the random nature of the
function return value. TestCase.assertInstance () raises an assertion error if
injured_unit is not an instance of Knight or OrcRider. Let's run this test now.

Running the first unit test

In a terminal window, run this test from the top-level wargame directory:

$ cd wargame

$ python -m unittest test.test wargame

-m is a built-in command line option in Python. It allows you to run a library module
as a script. In this case, it will run the unittest module as a script. The argument
test.test_wargame represents the file test /test_wargame.py. The unittest
script will run the tests defined in this module.

[156]

Chapter 5

If the old behavior of weighted_random_selection is left unchanged, the test will
pass. However, if you implement the new behavior where the function could also
return None, it will fail by raising an AssertionError, as shown next:

[userPhostname wargame]d python -m unittest test.test_wargame

FAIL: test_injured_unit_selection (test.test_wargame.TestWarGame)
Unit test to check if the function

Traceback (most recent call last):
File "shomesbookuser/wargamesteststest_wargame.py", line 72, in test_
injured_unit_selection
“Injured unit must be an instance of AbstractGameUnit™)
AssertionError: Mone is not an instance of =class ‘abstractgameunit.Abs
tractGameUnit'= : Injured unit must be an instance of AbstractGameUnit

Ran 1 test in 0.001s

FAILED (fTailures=1)

\ There is no need to run the for loop 100 times. Just make sure to call the

~ function at least 10 times. As an exercise, update the test to verify further

Q details. For example, verify that the function returns the Knight instance
approximately 30% of the time, and so on.

Second unit test — Acquiring the hut

Let's pick another functionality for testing. This time, it is a method from the Hut class:

def acquire(self, new_occupant):
self.occupant = new _occupant
self.is acquired = True
print_bold{"G0CD JOB! Hut %d acquired" % self.number)

In this method, what do you think we can test? The method serves the following
purposes: (a) It updates the occupant information, and (b) It sets the is_acquired
flag to True.

[157]

Unit Testing and Refactoring

Redesign exercise:

In this application, we assume everything from the context of the player.
For example, the is_acquired flag of the Hut instance is from the point
of view of the player. If it is set to True, it means the hut is acquired by
the player and not the enemy. This is already prone to bugs. Imagine an
OrcRider instance calling this method! You can add assertions to make
sure it accepts only the Knight instance. As an exercise, remove the
dependence on the is_acquired flag from the code.

When writing a test, we will ensure that the new occupant is the same object as the
one passed as an argument to the method.

Tsn't thar aome-r'ninﬂ
acquir‘e{} method is aireac{_y
daing? There is no bug in
+his me-r'nad. then w’ny

write this test 7

[158]

Chapter 5

Good question Sir Foo. Why write this test if the method is already working fine?
Keep in mind the scenario we discussed earlier. An intentional change in the
functionality caused us so much trouble. Why wait for such a bug to show up?

Today, this code is behaving as expected. The unit test is meant for tomorrow.
Imagine multiple developers contributing to this application. As a result, more code
would get added, and someone may inadvertently introduce code that will break the
intended functionality of this method. In such a scenario, how do you ensure that the
fundamental behavior remains unchanged? A unit test will notice such changes.

A future requirement might even change the fundamental behavior of the method.
This was illustrated in the scenario under the heading Why Test? When that
happens, the unit test you wrote would obviously fail. You do expect it to fail now,
and that would make it imperative to update the test to match the new requirement.

In short, a unit test will make sure that accidental changes to the code are captured
right away, and don't become your nightmare, such as when someone reports a bug
and you learn the hard way that it was caused by a silly mistake in the code you
wrote a few months ago.

Let's write a new method in the same class, TestWarGame:

def test_acquire hut (s211):

orint("wnCalling test_hut.test_acquire_hut..")

hut = Hut(4, None)
hut.acquire(self.knight)
self.assertIsthut.occupant, self.knight)

In the preceding code, we first create an instance of Hut. In the second line, this
hut is acquired by self.knight. The TestCase.assertIs checks whether the
object representing the hut's occupant is the same as self.knight, otherwise an
AssertionError is raised.

[159]

Unit Testing and Refactoring

Running only the second test

If we execute the following command, it would run all the tests defined in the
test wargame.py module:

$ cd wargame

$ python -m unittest test.test wargame

What if you just want to run test_acquire_hut? Assuming you are already inside
the wargame directory, here is a command to accomplish this:

$ python -m unittest test.test wargame.TestWarGame.test acquire hut

This command-line argument can be read as package_name.module_name.class_
name.method name.

The output after running this test is shown here:

[user@hostname wargame]$% python -m unittest M
> test.test_wargame . TestWarGame . test_acquire_hut
GOOD JOB! Hut 4 acquired

Ranm 1 test in 0.000s

QK

Creating individual test modules

The last unit test we wrote was meant for testing the functionality in the Hut class. We
created this as a method of the TestWarGame class in the test _wargame .py module.

Do we have to put all the tests for the application inside a single module? No! You
can, optionally, create individual test modules for each class.

\ For large applications, it is often convenient to have separate test modules
~ at the class level or the package level. Choose a strategy that best suits
Q your project. If it makes sense, you can also create a test class that clubs
together some common functionality in your application.

[160]

Chapter 5

Let's rework the previous example. We will create a new module, test_hut.py, as a
home for a new class, TestHut. The source code is also available in the supplementary
material for this chapter —see wargame/test/test_hut.py. Next, we will move the
TestWarGame.test acquire hut method into this class. This is shown here:

from knight import Knight
from hut import Hut

class TestHut (unittest.TestCase):
def setlp(self):
self.knight = Knight()
def test acquire hut(se1f):

print("wnCalling test_hut.test_acquire_hut..")
hut = Hut(4, Mone)

hut.acquire(self.knight)
self.assertIs(hut.occupant, self.knight)

if _name__ == '_main__"':
unittest.main()

The syntax to execute the unit test is similar to the one used before:

$ cd wargame

$ python -m unittest test.test hut

Batch executing unit tests

If your test directory contains multiple test modules, how do you run all the tests

at once inside the directory? One option is to write a script listing commands to
execute the unit tests one after the other. The unittest module, however, provides a
discover option to batch execute the tests on the command line:

$ python -m unittest discover

[161]

Unit Testing and Refactoring

The following command-line output shows the batch execution of two test modules
inside the test directory:

[user@hostname wargame]$ 1s -1 test | cat

__init__ . py

tE‘St_hUt. Py TEst madulta

test_wargame. py

[userghostname wargame]$ python -m unittest discover ./test/

Calling |test_hut.test acquire_hut] .
GOOD JOB! Hut 4 acquired

Calling |te5t_1-rargame. test_injured_unit_selection|. .

Ran 2 tests in 0.001s

Ok

Unit tests using mock library

The two tests we wrote earlier were pretty straightforward to implement. Often, it

is not trivial to write a test for verifying the functionality. The reasons could vary. In
some scenarios, the code is required to be refactored in order to access the functionality
you would like to test. In another scenario, the code might have dependencies that
require you to write a lot more code than necessary. It is also possible that the
functionality to be tested needs time consuming preparatory work such as crunching
some numbers. This adds to the total test execution time. We will now learn how to
write a unit test in such situations using the mock library. Before working on the actual
code, let's understand what functionality this library provides.

Quick introduction to mock

The mock library provides a flexible way to create dummy objects that can be used to
replace some parts in the program that you are testing.

[162]

Chapter 5

Mock is available in the Python standard library (v3.3 onwards) as
\l unittest.mock. If you are using a prior distribution, install it using

~Q this command:
$ pip install mock
Visit https://pypi.python.org/pypi/mock for further information.

With a mock object, you can focus on the main functionality to be tested without
worrying much about the things on which this functionality depends. It provides a
way to decouple the supporting chunks of code from the functionality being tested.
This can be better explained with an example. Refer to the following cartoon:

: Hb«:k ol::jr_cf here!l Use me in

Hella! T am functien cem uu[} uF upit fest te mimic

i 10 be tested I call the fol ewing umetion 3gm¢fhin3[}_ T will
‘funetions thar pm\ridﬁ SOMe I'Elp you focus on the main
intermediate data. i-rnak oand also shorten the test
i i rur fime i

T am funetion aumcfhingf}.
I setup a few fhir‘:as thar __..*
rake a lot of time Can't
l"£||:: here. Just deal with it!

I am nnnfhcr_fhingf}.
I process data and ﬂi\re it
to com pufcf}.

0 e o ok o B |
me 1o mock another__thing()

Imagine you are writing a unit test for a function called compute () that does a lot

of scientific computations. Within this function, you are calling other supporting
functions that process some data. This is a time-consuming operation. If you know
what information is being provided by the supporting functions, you can define their
behavior using mock objects.

[163]

https://pypi.python.org/pypi/mock

Unit Testing and Refactoring

Let's mock!

It's time for some action. Open your Python interpreter, and start writing the
following code. It is assumed that the mock module is already available. If it isn't,
install it using pip, as suggested earlier. First, import the Mock class as follows:

>>> from unittest.mock import Mock

Next, create a Mock object:

>>> mockObj = Mock()

The object type and its unique ID can be found as follows:

>>> mockObj
<Mock id='140524045365320"'>

Moving on, type the following code in the Python interpreter:

>>> mockObj. foo

Wa.if a minuﬂ:! We
rnever defined the

ortribure foo' Wouldn '+
that give an artribute
errort And by the way,
why are you uaing my
name here? Can + you
find other names?

Good observation! Apologies for using your name here...that was unintentional. In
the developer world, people just love your name! So the question is, would it really
give an attribute error? Try it yourself!

[164]

Chapter 5

Executing this last line of code will print an output similar to the following;:

>>> mockObj. foo

<Mock name='mockObj.foo' id='140524032172664"'>

This is the interesting part! It did not complain about the missing attribute; instead,
it created a new mock object. You can access any arbitrary attribute of this object as if
it was already defined. It will create and return a new Mock object representing that
attribute. Here, foo is also called a child mock of mockObS.

Let's see how to make use of this feature. Mock .mock_calls can be used to track all
the calls of a mock object along with its child mocks. The results are returned as a
Python list. Write the following line of code in the Python interpreter:

>>> mockObj.mock calls

[1

Here, it returns an empty Python list, as we have not called the mockobj or its
child mocks.

Next, let's see how this list gets populated. The Mock objects are callable. Write the
following code to call mockobj . foo:

>>> mockObj.foo ()

<Mock name='mockObj.foo()' id='140524032173280"'>

We will create and call another new child mock like so:

>>> mockObj.foo2 (return value = 20)

<Mock name='mock.foo2()' id='140271893632056"'>

Now, let's invoke mockObj .mock calls one more time:

>>> test call list = mockObj.mock calls
>>> test call list

[call.foo(), call.foo2(return value=20)]

The returned list now contains two objects, namely call.foo () and call.foo2 ().
These are the helper objects provided by unittest.mock.call.

How do we use this information? When you write a unit test, you can use this list to
make assertions on which objects are invoked and in what order. To understand this
concept better, we will write a simple unit test in the next section.

[165]

Unit Testing and Refactoring

Using Mock objects in a unit test

Let's write a unit test for the compute method of a class, MyClassa. The class is
shown next. You can also download the wargame/test /mockdemo. py file from the
supporting code bundle:

import unittest
from unittest . mock import Mock, call

class Hy(lassA:

def foo(se1f):

return 100

def foo2(self, num):

return num + 200
def compute(se1f):

¥l = self.foo()

x2 = self.foo2(xl)

print("xl = %d, x2 = %d"%(x1, x2))

result = x1 + %2

print("In MyClassA.compute, result = x1 + x2 = ", result)
return result

This is a trivial example. The compute method depends on the values returned by
two methods, foo and foo2. It uses these values to compute and return the result. In
this example, the methods foo and foo2 are simple.

Imagine a scenario where the aforementioned methods perform tasks that take a
very long time. Now, to write a unit test that verifies the functionality of the compute
method, you would need to check the final value of result. Naturally, it would

take a long time to finish because of the time spent in foo and foo2. If you know the
expected outcome of these methods, you can simply replace them with Mock objects
in the test. We can do this because foo and foo2 are assumed to be the supporting
functions, and the main functionality to be tested is the value of result.

The Mock objects would behave as if they are the original methods, and return the
output you need. But in reality, we bypass the time consuming computations. In
this illustration, we already know that foo is expected to return a value of 100. The
return value of the foo2 method depends on the input argument x.

[166]

Chapter 5

Looking at the compute method, we can easily deduce that the return value of foo2
would be 100 + 200 = 300. So let's write a unit test that mocks these method calls.

The code is shown here:

class TestA{unlttest TeatCaaeJ

def test cumpute(5:1fj

= Myclasshil

4 rreste a mock obiect and mock methods of

mncka] ank(]
a.foo = mockObj.foo
a.foo2 = mockObj. foo2

=10 N els A Lrnn Fhoa rFroafiier = o
Mo .a L L L =) CLou o LUESa o] g e g =

.foo. return value = 100
.foo2. return_value = 300

IIIIIIII

o raepl aced T+ R maehk AR Tact o e Fhat rFaFiren F A

result ;. cnﬁpute()

5=1f aasertEqual(result 400)

~F 1 mFAa oAn e Fha mark AhT1artc ara ooFs -

test call list - mncth] mnck calla
print("test call list =", test call list)

re%érence_call;list [call fnn(l call fnn?()]
self.assertBqual (test_call_list, reference_call_list)

if __name_ == "'_main__
unittest.main()

Let's review the method in the preceding code snippet

* Thea.fooand a.foo2 methods are now represented by new Mock objects,

mockObj . foo and mockObj . foo2, respectively. Inside a. compute ()

, the

self.foo() and self.foo2 () calls are now mocked with these new objects.

[167]

Unit Testing and Refactoring

* The test verifies the value of the parameter result. This is done by calling
TestCase.assertEqual.

* The test also verifies which objects are called and the order in which they
are called. As seen before, test _call list is used to track all the calls to

mockObj and its child mocks. This list is compared with some reference
list that stores the expected calling order of the objects. In this example,

reference call_ list stores this information. It expects the foo and foo2
methods be called in that order. In future, if someone tweaks this order in

MyClassA.compute, this test would help catch the change.

The MagicMock class:

MagicMock is a subclass of Mock. It essentially provides all the
functionality that you would expect from a Mock class. Additionally,
it provides default implementation for many of the magic methods in
Python. A magic method is a special method whose name has double
underscores as both prefix and suffix. Some examples of magic
methods include init , iter , len ,andsoon.Inthe
illustrations, you can use MagicMock instead of the Mock class. For
further details, go to the following page: https://docs.python.
org/3/library/unittest.mock.html.

Working with patches

Under the previous heading, we covered some basics of the Mock class. The mock

library provides another important functionality in the form of patch decorators.
Patching is a mechanism that allows you to change the behavior of an object
temporarily within a test. This is a broad topic. In this book, we will limit our
discussion to creating patches using unittest.mock.patch.

a1

Q

Patches can be invoked in four different ways, namely patch,
patch.object ,patch.dict, and patch.multiple. For further
information, see the documentation at https://docs.python.
org/3/library/unittest .mock.html.

The patch decorator function takes target as the required argument, followed
by a long list of optional arguments. Only one of the optional arguments (new)
is shown here. Refer to the unittest documentation for information on other
optional arguments:

patch(target, new=DEFAULT)

[168]

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html

Chapter 5

* In the preceding function, the target argument is the thing you would like
to patch. It can be any function, class method, or an object.

* The target is imported, and should be represented by a string, which
resembles a typical import statement (without the keyword import).

* For example, if you want to patch a method inside a test case, the target
should be represented like so: pkg.module.myclass.mymethod.

* If this method is in the same file where you are creating the patch (for
example, the method and its test are in the same Python file), then target
should be written as: main .myclass.mymethod.

Among the optional arguments, we will only discuss and use new. The new argument
tells which object would replace the target. It can be any class or a Mock object. This
can be better understood with an example. See the following line of code:

patch(' main .MyClassA.foo', new=Mock (return value=500))

The first argument is target. It is a method foo of MyClassa, whose behavior needs
to be changed temporarily within a test. Put another way, this is the method (or
target) that needs to be patched. The new argument specifies the object that would
replace this method. In other words, the target is patched with the new object. If you
do not specify the new argument, the target would be automatically patched with a
MagicMock object.

Using patch in a unit test

To demonstrate the use of a patch decorator, we will use the example discussed under
the heading Using Mock objects in a unit test. Before reading the following discussion,
review the MyClassA.compute method. It was illustrated in the aforementioned
heading, and the code can also be found in the file wargame/test /mockdemo. py.

The following is a unit test written for MyClassA.compute using patch:

def test compute with_patchisz1f):

print{"Running test_compute_with_patch...")
with unittest . mock.patch('__main__ MyClassa.foo',
new = Mock (return_value = 503)):
a = MyClassa()
result = a.compute()

self.assertBEqual (result, 400)

[169]

Unit Testing and Refactoring

In the preceding unit test:

* patchis a context processor invoked using the with statement.
* The with keyword cleans up the resources used after the code execution.

* The method MyClassa. foo gets replaced with a Mock object created by the
optional argument new.

* In other words, the call self.foo () in MyClassA.compute () is replaced with
return_value of this Mock object. At runtime, the expression x = self.foo ()
becomes x = 500 without actually invoking the method foo.

Would the test in the earlier illustration pass? For that, review
M the code in the MyClassA. compute method. The Mock object
Q created by the new argument returns a value of 500. In the unit
test, if the result is not 400, it raises an assertion error. So, this
test is expected to fail.

What happens if you do not specify the new argument? As mentioned earlier,
target would automatically get replaced with a new MagicMock object. Here is
another way you can write the same test. As an exercise, run this test, and print
foo_patch._ class__to find out which class it belongs to:

def test_compute with_patch_alternate(s=17):

print("Running test_compute_with_patch_alternate...”)

mockObj = Mock ()

with unittest mock.patch('_ main__ .MyClassA.foo') as foo_patch:
foo_patch. return_value = 500
a = MyClassA()
result = a.compute()

self.assertEqual{result, 400)

With this introduction to the mock library, let's write a unit test for a method in our
application using the patch decorator.

[170]

Chapter 5

Third unit test — The play method

In this section, we will use the mock library to write a unit test for
AttackOfTheOrcs.play. Let's review the method first. You can also find the source

code in the wargame/attackoftheorcs.py file:

def play(self):

self.setup_game_scenario()

acquired hut counter = 0O

while acquired hut counter = S:
idx = self. process user choice()
self.player.acquire_hut(self.huts[idx-1])

if self.player.health_meter == O:
print_bold("YOU LOSE :(Better luck next time")
break

if self. hutslidx-1].is_acquired:
acquired hut counter += 1

C,

if acquired hut counter == S:
print_bold("Congratulations! YOU WIN!!!")

This preceding method does many things. It starts by creating some necessary
objects such as the player and huts. Then the program runs until all the huts are
acquired by the player or the player loses the combat. Observe the code closely. It
depends on a user input for selecting a hut. This is not the only user input it needs.
The call to the Knight .acquire_hut method would again ask the user whether to

continue the attack.

[171]

Unit Testing and Refactoring

In an automated test, you cannot expect someone to enter the hut number, and other
inputs to continue the execution. So how do we write a unit test for this method?
This is where we can use patch decorators to mimic the user input:

The P|a?-ﬂ method seems
to be doing so many

things. So what do we
‘test here exactly?

What should we test here? We should test the overall functioning of the method.
There are a couple of thing to test here:

* The winning or losing criterion. The player is declared a winner when all the
huts are acquired.

* For this to happen, the player must also be in good health, meaning the value
of player.health _meter should be greater than zero.

Thus, the winner is declared only when both these conditions are true. Similarly,
there will be a losing criterion that you can easily determine. For precise control,
you should also write separate unit tests for individual methods invoked within the
play method. For example, there should be a separate test to verify the working of
Knight.acquire_ huts.

[172]

Chapter 5

Let's write a test to verify the overall functionality. This test will use patch to handle
the user input. As before, you can find this test in the wargame/test/test_wargame.
py module. The following code snippet shows the TestWarGame. test_play method
in this module. At the beginning of the module, the mock library is imported like so:

from unittest import mock

The rest of the code in this module will not be discussed here. Review the
aforementioned file for further details:

def test_play(self): The patch rarget is the built-

ir 'ir‘-pufl furcrion. R£p|a.c£ it

game = AttackOfTheOrcs()

self.hut_selection counter = 0

with mock.patch('builtins.input', new = self.user input _processor):
game.play ()

with our custom mefhod

acquired_hut_list = [h.is_acquired for h in game.huts]

if all(acquired_hut_list):

self.assertTrue(game.player.health_meter = Q)
else:

self.assertFalse (game.player.health_meter = 0]

The important part in the preceding code is mock . patch. Our first goal is to make
sure that the user input is properly handled. Recall that in Python 3, the user input

is handled by the built-in function input (). So, we need to patch this function with
something that would simulate the user input. In other words, replace the builtins.
input function with the handling function represented by the new argument.

The self.hut_selection_counter attribute is used as a simple counter to simulate
the user input. The rest of the code implements the logic to verify that the winning

and losing criteria are honored. The acquired_hut_1list is generated using list
comprehension. More on list comprehension later when we talk about the performance
improvements. The a1l function returns True if all the list elements are True.

[173]

Unit Testing and Refactoring

If you are using Python 2.7.9, try replacing builtins. input with
__builtin .raw_input. However, this technique does not seem to

I work well, as it will still prompt you while running the test! With Python
3.5, this is not a problem. As said elsewhere, before Python 3.3, mock
was not a built-in module (unittest.mock). So for Python 2.7.9, you
may need to install mock as pip install mock, and make appropriate
changes to the import statement.

Next, we will review the user_ input_processor that patches the built-in input
function:

def user_input_processor(se1lf, prompt):

if 'hut' in prompt.lower():

self.hut_selection_counter += 1

assert se1f.hut_selection _counter == 5

return s21f.hut_selection_counter
elif 'attack' in prompt.lower():

return 'y’
else:
raise Exception("Got an unexpected prompt!", prompt)

It takes user prompt as an argument, and returns an answer (user input) to that
prompt. For example, when prompted to enter the hut number, it increments
self.hut_selection_ counter by 1, and returns the updated value. This attribute is
initialized to 0 in the test play method. To better understand this code, add some
print statements to these two methods, and execute the test as follows:

$ cd wargame

$ python -m unittest test.test wargame.TestWarGame.test play

[174]

Chapter 5

The output on executing the test is shown in the following screenshot. Notice
that it does not print the user prompts such as Continue attack?(y/n) in the
command-line output:

[user@hostname wargamel$ python -m unittest test.test_wargame.TestWarGame.test_play
Missien:

1. Fight with the enemy.

2. Bring all the huts in the willage under your control

Health: 5ir Foo: 48

Current occupants: ['friend', 'friend', 'unoccupied', 'friend', 'enemy']

Entering hut 1... Friend sighted!

GOOD J0B! Hut 1 acquired

Current occupants: ['ACQUIRED', 'friend', ‘unoccupied', 'friend', 'enemy’]

Entering hut 2... Friend sighted!

GOOD JOB! Hut 2 acquired

Current occupants: ['ACQUIRED', 'ACQUIRED', 'unoccupied', "friend', 'enemy']

Entering hut 3... Hut is unoccupied

GOOD J0B! Hut 3 acquired

Current occupants: ['ACQUIRED', 'ACQUIRED', 'ACQUIRED', 'friend', 'enemy’]

Entering hut 4... Friend sighted!

GOOD JOB! Hut 4 acquired

Current occupants: ['ACQUIRED', 'ACQUIRED', 'ACQUIRED', 'ACQUIRED', 'enemy']

Entering hut 5... Enemy sighted!

Health: S5ir Foo: 48 Health: 5: 38 ATTACK! Health: Sir Foo: 25 Health: 5: 30 ATTACK!
Health: 5ir Foo: 25 Health: 5: 15 ATTACK! Health: 5ir Foo: 25 Health: 5: 2 ATTACK!
Health: Sir Foo: 25 Health: 5: @

GOOD JOB! Hut 5 acquired

Congratulations! YOU WIN!!!

Ran 1 test in B.001s

oK

Is your code covered?

Is there a way to check how well you are doing as far as testing is concerned? How
much code is covered by the unit tests? For this, you need a Python package called
coverage. It can be installed using pip as follows:

$ pip install coverage

The preceding command creates an executable called coverage at the same location
as your Python installation. In Linux, if Python 3 is installed in /usr/bin/, coverage
will be available at the same location as /use/bin/coverage. In Windows OS, it

will be available in the Scripts directory, at the same location as pip . exe. Run the
coverage command as follows:

$ cd wargame

$ coverage run -m test.test_wargame && coverage report

[175]

Unit Testing and Refactoring

This command is a combination of two commands separated by && and executed one
after the other. The first command runs the tests: coverage run -m test.test
wargame. This is similar to how we run the unit tests. The run option runs a Python
program, and measures the code execution. As noted before, the -m option instructs
coverage to consider the next argument as an importable Python module instead

of treating it as a script. This is why we specify the next argument as test.test_
wargame (just like an import statement) instead of writing test/test_wargame.py.

The second command, coverage report, generates the report indicating the test
coverage. Here is how the coverage report is presented after running this command.
For ease of illustration, the output pertaining to the execution of the test cases (the
first command) is not shown in the following screenshot:

Ran 4 tests in 0.002s

0K

Name Stmts Miss Cover
abstractgameunit. py 39 4 90%
attackoftheorcs. py 79 20 75%
gameuniterror. py 12 a 33%
gameutils. py 19 T 63%
hut. py 19 0] 100%
knight. py 41 T 83%
orcrider. py 12 1 92%
tests/__init__ .py 5] 160%
test/test_wargame. py 55 12 78%
TOTAL 281 59 T9%

[user@hostname wargame]$ I

To see a different coverage report, try disabling some tests in test_wargame.py, and
rerun the coverage command noted earlier.

[176]

Chapter 5

Resolving import errors, if any

Read this section only if you encounter any import errors while executing the
coverage. If you run coverage as instructed, you are unlikely to encounter any
import errors such as no module named knight. In other words, run the test from
the top-level directory wargame, and make sure to run it as a module (the -m option)
instead of a script. If you run coverage in the following way, you would likely see
import errors:

$ cd wargame/test

$ coverage run test wargame.py && coverage report

In the preceding case, it is unable to find the right PATH for the modules from the
wargame directory. Make sure that both wargame and test directories are in your
sys.path. One quick and dirty hack is to add the following code to test_wargame.
py. Assuming you are running coverage from within the test directory, add the
following code before the import statements, such as from knight import Knight:

import sys

Append the directory one level up to the sys.path .
Alternatively specify the full path to that dir.
sys.path.append('../")

Other unit testing tools

In this chapter, we have exclusively used the built-in unittest framework for
writing the tests. There are several other tools available for unit testing that were
not discussed. The purpose of this section is only to introduce you to the other unit
testing tools available out there besides the built-in unittest module. For instance,
there are tools such as nose or pytest that make it easier to write the unit tests to a
large extent. Let's briefly review some of these unit testing tools.

[177]

Unit Testing and Refactoring

Doctest

This is a built-in module, which looks for text that resembles Python code written
in an interpreter. Here is a trivial example that shows a docstring with an example
usage of the function:

def add nums(a, b):
"nnReturn sum of two numbers

Example usage:
. doctest::

>>> add nums (10, 20)
30

return (a + b)

Doctest identifies such code, and runs it to check if it really does what it says. This
is quite an effective way to verify the correctness of the code examples you write in
the documentation and/or in the docstrings. While this is very useful, it is worth
noting here that the extensive code samples in the docstring could be distracting.
See https://docs.python.org/3/library/doctest . html#module-doctest for
further details.

Nose

Nose is a popular third-party tool that simplifies writing and running unit tests.
Install it using pip as follows:

$ pip install nose

Nose extends unittest. One of the advantages of using this tool is it doesn't require
you to write tests as inherited class methods of unittest.TestCase. You can even
write tests as separate functions. Let's write a simple test, and run it with nosetests.
Create the following function in a file called test_nose.py:

def test al():
assert(1 == 1)

[178]

https://docs.python.org/3/library/doctest.html#module-doctest

Chapter 5

Run this test from the command line as follows:

$ nosetests test nose.py

That's all. It will run the test. Obviously, this test will pass. As can be seen, we

did not need to put the test inside the subclass of unittest.TestCase. The

function name needs to contain test or Test, since we are using the default nose
configuration. Try renaming the function so that it does not have the word test. For
example, name it foo_a. If you run nosetests again, it will exclude this function.
To consider function names that do not have the word test, use the command-line
option - -tests like so:

$ nosetests --tests foo a test nose.py

See https://nose.readthedocs.org to learn how to use nose effectively.

Pytest

Pytest is yet another popular tool that simplifies writing unit tests. It can be installed
using pip as follows:

$ pip install pytest

You can run the same test we wrote for nose. Let's save the following code in a file,
test pytest.py:

def test _al():
assert(1 == 1)

Run the preceding test from the command line as follows:
$ py.test test pytest.py

See http://pytest.org/ to find out more about this tool.

[179]

https://nose.readthedocs.org
http://pytest.org/

Unit Testing and Refactoring

Refactoring preamble

Let's write one more unit test for the game. This time we will focus our attention on
the main class At tackOfTheOrcs. When the play method is called, the first thing it
does is to randomly occupy the five huts. We will write a test to verify that there are
exactly five huts. Another thing to test is that the hut occupant must be an instance of
the class AbstractGameUnit, or should be of the type None.

The _occupy_hut method has the related code. But this necessitates writing a test for
a non-public method (or call it protected or private).

Didn't we learn that
)J"OH 3hau|dn'f bE
ca.“ing -rhﬁ non"PuHic
class members from
aufsidE?

What you say is right! Although Python does not restrict you from calling methods
that start with an underscore, we should be nice to others, and try to avoid calling
such methods.

So how do we handle this situation? Here is a list of the available options:
1. In the test, create an instance of AttackOfThOrcs, and directly call the

protected method.

2. Transform this method into a public method (remove the underscore prefix
from the name).

3. Call the play method, which then calls occupy huts.

Refactor the play method, and wrap the occupy huts into a public
method that could be tested.

[180]

Chapter 5

We already have a moral conflict with the first option, as _occupy_huts is a non-
public method. The second option suggests turning it into a public method. That is
possible, but if this method is not supposed to be called from outside for any reason,
we should avoid such a change. We will keep this option in mind, and look for some
other alternative.

The third option needs to call the play method. We have already done that in the last
example using the patch decorator. Although possible, it is inefficient to run a large
block of code for testing a small functionality. Let's leave that option aside for now.
The fourth option suggests refactoring the code. Let's discuss it further.

In the simple application that we have developed, there is no harm
in changing occupy huts to a public method! We could simply
\l rename it occupy huts (no underscore prefix), then update the
~ calling code, and happily write a test! In fact, renaming is also a form
Q of refactoring that will be covered next. In the real world, however,
you may not have the luxury to transform a protected method to a
public one. Keeping this situation in mind, we will refactor the code to
illustrate one way of making the code test friendly.

Take a detour — Refactor for testability

Step 4 in the previous section needs us to refactor the play method before writing
the test. This refactoring will improve our ability to write cleaner tests. So what is
refactoring? How is it performed? The good news is that you have already done a
form of refactoring in Chapter 1, Developing Simple Applications while transforming
the initial command-line script into a set of functions. Let's take a detour and learn
some refactoring techniques. We will then come back with the refactored code, and
develop the final unit test for our application.

Refactoring

You have already come across the word refactoring in earlier chapters, and might
have wondered what it means. An explanation is in order.

Just look around. Peep inside your closet or open your desk drawer. On day one,
everything looks tidy and manageable. The drawer is meant to store all your
important financial documents. Things begin to accumulate over time, and the
drawer is now stuffed with not just with financial documents, but anything varying
from scribbled notes, office documents, to greeting cards. Very soon, you cannot find
that important document you need right now. You spend a lot of time digging out
what you need.

[181]

Unit Testing and Refactoring

The golden moment finally arrives. You begin the cleanup operation! Several things
are found to be useless, and are thrown away. A few other things are still useful,
such as tickets to a football game next week. You move this stuff to a different
drawer where it really belongs. You also find several papers laying around belonging
to a single category: house maintenance bills. You put these papers together inside a
single folder. Finally, with all this rearrangement and cleanup, your drawer breathes
the new day one!

What is refactoring?

Refactoring is something very similar to your desk drawer. The application code is
analogous to the drawer filled with documents. As the code evolves, both the good
and bad stuff creeps in. From outside, the behavior of the drawer remains the same.
You can still put documents (code) in it, and business goes on as usual. In the absence
of refactoring, someday it reaches a tipping point, and becomes non-accommodating
to new documents.

With refactoring, you make internal changes to your code without
— affecting its external behavior.

Why refactor?

The short answer is, do it if you wish your code a long and healthy life! Timely
refactoring is important to keep the code maintainable and extensible. You could
rather spend more time working on a cool new feature than burning the midnight oil
to fix a petty issue —a bug that could have been fixed within minutes had the code
been properly maintained.

[Refactoring should be more of a habit than an obligation.]

When to refactor?

So when do we refactor the code? You have to seek the optimal balance. If you
realize it too late in the development life cycle, it affects productivity, as you would
need to spend a considerable amount of time doing the code cleanup. Many times,
the project deadline makes you turn your back on refactoring. Unfortunately, the
user-visible part of the software wins over the internal cleanup. You only think of
the immediate deliverable, and overlook the fact that refactoring will only help you
deliver the product faster.

[182]

Chapter 5

One strategy is to review the code at fixed intervals, and allocate some time for
refactoring. If you are following a Scrum methodology, you can devote a sprint

to some smaller refactoring projects. Such maintenance sprint will pay off in the
long run. If you are staring at a big legacy code that needs immediate refactoring
for survival, the required changes could be disruptive. In such situations, consider
breaking it down into smaller problems, and use the other strategy discussed in the
next paragraph.

Agile development methodology
This is often tied to a set of non-traditional software development
methods for managing a project. In this method, you define targets
achievable in a short time duration. There are regular checkpoints
known as sprints or iterations. The end of a sprint should result in
an incremental and releasable version of the product. This is useful
in complex projects, where it is tough to plan the complete project,
or predict what to expect next because of the dynamic nature of
+ the project. The methodology adopts an incremental and iterative
% approach to handle this task. For further reading, see the following
e wiki page: https://en.wikipedia.org/wiki/Agile_

software development.
Scrum

It is a product development methodology. It is a framework based on
the agile development methodology for managing complex systems.
It implements an incremental and iterative (sprints) strategy for
product development. The following is the link to the wiki for further
details: https://en.wikipedia.org/wiki/Scrum (software
development).

Another strategy is to take up the refactoring task immediately after a major release.
The customers just got what they were asking for. In the absence of any show-stopper
bugs, you would typically find some free work cycles during this period. It is a good
time for the next release planning and working on code refactoring tasks. This will
vary from project to project. It depends on how actively the application is being
developed, its size, architecture, and so on.

[183]

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)

Unit Testing and Refactoring

How to refactor?

Now that we have seen what refactoring means, let's see how to do it. The first
task is to identify the piece of trouble-making code, and then restructure it. The
restructuring should not affect the external behavior of the code. At the same time,
it should help make the developer's life easy by simplifying the internal machinery
(the code). We will discuss some of the most commonly performed refactoring
operations. To help understand these operations, we will use the UML-like
representative blocks wherever appropriate.

3 Unified Modeling Language (UML) representation. See
Q http://www.uml.org.

Renaming

Imagine a developer introducing a new feature in the game Attack of the Orcs. Each
hut has a secret box. Whenever a unit acquires a hut, the contents of the box are
revealed to the new owner as a print statement. This developer has introduced a new
method called showstuff () in the class Hut. However, the name used here is not
intuitive. It is not clear whether it shows what is inside the box, or whether it gives
some information about some other stuff in the hut. Renaming such methods is one
of the simplest forms of code refactoring. You could rename it to something verbose,
such as show_box_contents or reveal_box_contents. However, make sure you
perform the renaming task thoroughly by renaming all the method calls as well.

Coding standards:

This example brings forward an interesting topic, the Python coding
M standards. In case you have jumped straight to this chapter, read
Q Chapter 4, Documentation and Best Practices that talks about the coding
standards! These standards basically provide a coding style guide for
Python programmers. Following these standards and defining your own
guidelines for the project would help reduce such renaming tasks.

Extracting

In Chapter 1, Developing Simple Applications we had a single script representing the
game. We identified pieces of code that could be written as individual functions.
The name of each function was chosen such that it represented what the function
body was supposed to do. This is shown in the following code snippets:

[184]

http://www.uml.org

Chapter 5

if _name__ == '_ main__': Before funetion extraction
keep _playing = 'y'
occupants = ['enemy', 'friend', ‘unoccupied']

Print the game mission
width = 72
dotted line = '-' * width

def show theme message(dotted line, width): After funcrion extraction

“""Print the game theme in the terminal window"""

print(dotted_line)

print{"\033[1m" + "Attack of The Orcs vG.0.1:" + "\033[Cm")

msg =
"The war between humans and their arch enemiles, Orcs, was 1n the
"offing. Sir Foo. one of the brave knights guarding the southern
"plains began a long journey towards the east through an unknown
"dense forest. On his way, he spotted a small isolated settlement.”
" Tired and hoping to replenish his food stock, he decided to take"”
" a detour. As he approached the village, he saw five huts. There "
"was no one to be seen around. Hesitantly, he decided to enter..")

print(textwrap.fill(msg, width=width))

if __name =="'_main_ ':
keep playing = 'y’
occupants = ['enemy', 'friend', 'unoccupied']
Print the game mission
width = 72
dotted line = '-' * width

This refactoring operation is called function extraction. Likewise, you can group
together relevant code fragments to extract a method within a class or extract a

new class.

[185]

Unit Testing and Refactoring

Moving

In Chapter 3, Modularize, Package, Deploy! we did yet another type of refactoring
operation. Can you guess what it was? The application code was contained within a
single file. We modularized it by moving each class to its own file, and updating the
referenced code.

Imagine you have a method of Class A, which is used mostly by various features
in Class B. Depending on the nature of the problem, see if this method better fits in
Class B than in the existing Class A. If it does, moving this method to Class B could
be an option.

Pushing down

There is a new feature request. This time it is coming from Sir Foo!

M_y hor‘se is ﬂr‘ed and
needs a break. How

do T ger off? Add

this capabiiify in the
3nm£!

[186]

Chapter 5

The kKnight and OrcRider are mounted units riding a horse and a wild boar-like
creature respectively. You introduced a new method, unmount, in the superclass
AbstractGameUnit. It gives them the ability to get off the animal they are riding;:

AbstractGamelnit

However, you have now introduced several other imaginary characters in the
game. For a majority of the characters, the method has become irrelevant. Now

it makes sense to push down the unmount method in the inheritance hierarchy to
the subclasses where it is relevant. This is shown in the diagram that follows. The
unmount method is moved to the subclasses Knight and OrcRider:

AbstractGamelnit

=

Extands

r Footpad

[187]

Unit Testing and Refactoring

"Q associated with movement. One option is to define a move behavior here.

While pulling up (see the next heading) or pushing down type of
refactoring simplifies things, it may not always serve its purpose. The
unmount method was intended just as an illustration. The horse is

For example, move using a horse, move using a wild boar, and so on.
Another alternative is to define the unit types as mounted or unmounted.
Refer to Chapter 6, Design Patterns on design patterns, which shows an
elegant way to handle a similar situation.

Pulling up

It is the opposite of pushing down, where we use the inheritance principle. A
subclass defines some functionality. The exact same method is defined in other
subclasses. This method can be pulled up and defined in the superclass to make
it available to all the subclasses.

Refactoring tools for Python

There are tools that automate certain types of refactoring. For example, if you
want to rename a method, the tool will rename it, and automatically update all the
references to the method in the code. Here is a partial list of such tools:

Use a Python IDE: Assuming you are using an IDE for Python application
development, the most convenient option is to use the built-in features of
the IDE to refactor the code. IDEs such as PyCharm provide a menu item
for refactoring, and support the most frequently performed refactoring
operations, like the ones discussed in previous sections.

Rope: Rope is an open source library for refactoring Python code. If you are
a fan of editors such as vim or emacs, plugins are available to integrate the
refactoring feature in the editor. The library can be installed using pip. For
more information, see the GitHub page https://github.com/python-rope.

Bicycle repair man: This is another refactoring tool available for Python. The
library can be installed using pip. Visit https://pypi.python.org/pypi/
bicyclerepair for more information.

[188]

https://github.com/python-rope
https://pypi.python.org/pypi/bicyclerepair
https://pypi.python.org/pypi/bicyclerepair

Chapter 5

Unit testing revisited

Here is a quick recap of where we left the discussion on unit testing. The intention
was to write a unit test for the functionality found in the non-public method,
AttackOfTheOrcs._occupy_huts. One straightforward option was to call this
method directly from the unit test. However, calling a non-public method is not
considered best practice, so we started looking for alternatives. Another option was
to refactor AttackOfTheOrcs.play, and use an extracted public method in the
unit test. At this point, we took a detour from unit testing and learned the basics of
refactoring. Now it is time to refactor AttackOfTheOrcs. play using the techniques
we have just learned.

Refactoring for testability

The source code for the game Attack of the Orcs gives enough opportunity for
refactoring. The play method is shown next. The code comments are omitted for the
sake of illustration:

def play(self): Before refactorin 9

self.player = Knight()

self. _occupy_huts()
s2lf.show_game_mission()
self.player.show_health(bold=True)

acquired hut counter = G
while acquired hut counter < S
idx = self. process user choicel()
self.player.acquire_hut(self huts[idx-11)
if self.player.health_meter <= 0:
print_bold{"voU LOSE :(Better luck next time")
break

if self. huts[idx-1].1is_acquired:
acquired hut counter += 1

if acquired hut counter == S:
print_bold("Congratulations! YOU WIN!!!")

[189]

Unit Testing and Refactoring

The first part of the preceding code does some preparatory work to create the objects
needed. It creates the Knight and the Hut instances, along with the objects that
represent the hut occupants. Additionally, it prints some information on the game.
As an initial refactoring, we will extract a new public method, as shown here:

def setup _game scenario(s=17):

self.player = Knight()

self. _occupy_huts()
self.show_game_mission()
self.player.show_health(bold=True)

def play(s=1f): Afrer refa:foﬁng

self.setup_game_scenario()

acquired_hut_counter = 0
while acquired_hut_counter = S:
idx = self. process user choice()
self.player.acquire_hut(self.huts[idx-1])

if self.player.health_meter <= 0:
print_bold("vYOU LOSE :{ Better luck next time")
break

if self.huts[idx-1].1s _acquired:
acquired hut counter += 1

C

if acquired hut _counter == 5:
print_bold("Congratulations! YOU WIN!!!")

The new method primarily improves code readability, and also makes it simpler to
write a test.

[190]

Chapter 5

As noted in the Refactoring preamble section, this is a toy problem. The
refactoring strategy used here is to extract a new method for improved
readability and testability. You could refactor this by some other means

M as well. For example, the setup code creates things such as the player and
huts. May be you should also rename occupy huts to create huts?
Choices may vary, and so do the refactoring strategies. More than
answering the question what is the best strategy to refactor here, this
section mainly serves as an example of how refactoring could help
simplify the task of writing a unit test.

This basic refactoring of the play method will enable writing a unit test for the
setup_game_scenario method, which in turn, will help test the functionality in
occupy huts.

Fourth unit test — setup_game_scenario

As discussed in the Refactoring preamble section, this test will verify the following
things: (a) there are exactly five huts, and (b) the hut occupant is an instance of
AbstractGameUnit, or of the type None.

This test is shown next. You can also find this test in the supporting code along with
the other tests. See the wargame/test/test wargame.py file. The code comments
should make it self-explanatory:

def test occupy huts(self):
game = AttackOfTheOrcs()

game.setup_game_scenario()

self.assertEqual({len(game. huts), 3)

for hut in game.huts:
assert ((hut.occupant is None) or
1sinstance (hut.occupant, AbstractGamelnit))

Run the preceding unit test as follows:

$ cd wargame

$ python -m unittest test.test wargame.TestWarGame.test occupy huts

[191]

Unit Testing and Refactoring

Exercise

Some exercises have already been suggested in various sections of this chapter. Try
those exercises. For example, split the unit tests so that you have separate modules for
testing functionality from different classes. Add more unit tests to improve the code
coverage. Also, try running nosetests on the tests that we have already written.

Refactoring and redesign exercise

There are several low-hanging fruits for refactoring! Review the
AttackOfTheOrcs._occupy_huts method. It creates hut objects, and puts an

occupant in each of them. As the first step, you can rename it create_huts. The code
in this method could be better written. It uses if . . .else conditions to decide which
occupant to create. Although it works in this simple application, if you add other types
of occupant (elves, dwarfs, wizards, and so on) it will become a maintenance headache.

What could we do here? One strategy is to let the Hut class manage the creation of
the occupant object. The hut could ask a factory to randomly create an occupant.
You will learn about the factory pattern in Chapter 6, Design Patterns. Since we are
looking at this as a refactoring problem, you could try the following:

* Change the signature of Hut.__init__ so that you can optionally specify
the occupant.

* Inside the Hut class, create an occupant (if not already available) by calling
a new utility function, create_unit. You will need to write this new utility
function (the solution is not provided). The function should not be a method
of the class Hut.

Summary

The chapter started by emphasizing the need for testing. It introduced you to the
unit testing framework in Python. You learned how to write and execute unit

tests. The next topic served as an introduction to Python mock library. The chapter
demonstrated the use of Mock objects in unit tests. Next, it showed an example where
it was difficult to write a unit test without refactoring the code first. At this point,
you learned the basics of refactoring, refactored the code, and then developed a unit
test for this example.

During development, you often encounter a recurring problem. Often, a general
solution (or a recipe) exists that works for this problem. This is often referred to as
a design pattern. In the next chapter, we will review a few commonly used design
patterns in Python.

[192]

Design Patterns

This chapter will introduce you to some commonly used design patterns. Here is
how the chapter is organized:

* We will start with a quick introduction to design patterns, followed by a
discussion on some Python language features that help to simplify their
implementation.

* Next, with the help of a fantasy game theme, we will discuss the following
design patterns:

[e]

Strategy pattern

o

Simple and abstract factory pattern

° Adapter pattern

* For each pattern, a simple game scenario will demonstrate a practical
problem. We will see how the design pattern can help solve this problem.

* We will also implement each of these patterns using a Pythonic approach.

There are several known design patterns out there. As outlined earlier, we will
discuss only a few. The idea is not to present a new cookbook on patterns, but just to
show you how design patterns help solve some commonly encountered problems,
and how to implement them in Python. Beyond this book, you can explore other
traditional design patterns and try adding a Pythonic flavor to them.

By the way, you are about to get introduced to some new game characters. So get
ready to learn design patterns with Sir Foo and friends!

[193]

Design Patterns

Introduction to design patterns

Let's say that during application development, you stumble upon a problem that
pops up again and again. Frustrated, you ask your co-developers or a community
for help. Guess what, you are not alone. Many have encountered a similar problem
in their code. Luckily, you get a response from someone who has found a solution.
This solution seemed to have worked reliably on similar problems. You change
your problematic code so that it conforms to the suggested design, and voila! Your
problem is resolved!

What we just discussed is a software design pattern. A software design pattern is a
tried and tested solution or a strategy that helps us solve a commonly encountered
problem in the code. Let's start with the broad categories of design patterns followed
by some important design principles.

The Gang of Four book:

Before beginning any discussion on the design patterns in Python, it
is worth noting that there is an excellent book you may want on your
bookshelf, Design Patterns: Elements of Reusable Object-Oriented Software, by
. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. These
% four authors are commonly referred to as the Gang of Four (GoF). Their
- book illustrates design patterns using C++ and Smalltalk examples. If you
have a background in programming languages such as C++ or Java, this
might be of more interest to you. As you will see in this chapter, some
high-level language features in Python make many design patterns much
simpler to implement. The GoF book is still a great reference, and will help
you understand the core concepts behind the design patterns.

Classification of patterns

Software design patterns can be broadly classified into four categories, namely
behavioral patterns, creational patterns, structural patterns, and concurrency patterns.
In this book, we will limit our discussion to just three design patterns. We will see

one example each of behavioral, creational, and structural patterns. The concurrency
patterns are not covered here, as it is an advanced topic, beyond the scope of this book.
For an in-depth understanding of other design patterns, you can grab a book on design
patterns, such as the GoF book mentioned earlier. With this in mind, let's briefly talk
about each of these categories next.

[194]

Chapter 6

Behavioral patterns

The behavioral design patterns try to simplify how different objects communicate
with each other. While doing so, these patterns help keep these objects loosely
coupled or less dependent on each other. The following is a partial list of behavioral
design patterns: chain of responsibility, command, strategy, observer, iterator, visitor
pattern, and many more. In this chapter, we will see how to implement the strategy
pattern in Python.

Creational patterns

These patterns are all about instance creation mechanisms. These design patterns
show a better way to create objects depending on the situation you are dealing with.

Here is a list of the major creational design patterns: abstract factory, factory method,
builder, prototype, and singleton pattern. We will discuss the abstract factory pattern
in this chapter.

Structural patterns

The structural design patterns typically deal with the relationship between the
components, such as objects or classes, so that it is easier to make these entities work
together in a larger and more complex system. Some examples of structural design
patterns include adapter, composite, decorator, facade, flyweight, proxy pattern, and
so on. In this chapter, we will see a Pythonic implementation of the adapter pattern.

Concurrency patterns

In a nutshell, concurrency means simultaneously performing multiple things.
Concurrency enables your application to execute one task (for example, updating

a database) while it is also working on something else (such as responding to a

user query). Concurrency design patterns, in general, deal with the multi-threaded
programming paradigm. The following is a partial list of concurrency patterns: active
object, balking, monitor object, double-checked locking, and so on. As mentioned
before, we will not talk about any of the concurrency patterns in this book. That said,
Chapter 9, Improving Performance - Part two, NumPy and Parallelization will introduce
you to some aspects of multi-threaded programming in Python. Visit the wiki for
more information at https://en.wikipedia.org/wiki/Concurrency pattern.

[195]

https://en.wikipedia.org/wiki/Concurrency_pattern

Design Patterns

Python language and design patterns

Thanks to the high-level built-in language features in Python, many of the formal
design patterns are easy to implement. In some cases, the patterns appear so natural
to the language that it becomes tough to realize them as formal design patterns. For
example, an iterator pattern can be realized by using any iterable object, such as lists,
dictionaries, and so on. Let's quickly review such language features or paradigms in
this section. It is not an exhaustive list, but we will cover some important aspects.

The idioms that you are about to read (first-class functions, closures, and so
on) might sound onerous. But do not get overwhelmed by these terms! If
N you are a Python programmer, it is very likely that you have already used
~ many of these features knowingly or unknowingly. If these idioms mean
Q nothing to you at the moment, skip ahead to the next section where we fast
forward to an imaginary game scenario. In the upcoming discussion, we
will use some of these language features. You can then come back to this
section whenever you need a handy reference.

First-class functions

There is a programming idiom called first-class citizens. In Python, any function, a
class, a class method, or an object, all qualify as first-class citizens. On each of these
entities, you can freely perform operations that are typically supported on other
entities.

For example, you can assign a function to a variable as if you are assigning a value
to that variable. Likewise, you can pass this function as an argument, or get it as a
return value of some other function. Any programming language that supports such
operations on functions is said to have first-class functions. The following is a simple
piece of code that illustrates what we can accomplish with a first-class function

in Python. In this example, a function, test, is assigned to a variable, x. After the
assignment, the function can be called either x () or as test ():

>>> def test():

print ("inside test function")

>>> x = test

>>> x()

inside test function
>>> x

<function test at 0x7fca460efbf8>

[196]

Chapter 6

Here is another example that illustrates the first-class function feature. It shows how
we can pass the same function, test, as an argument to another function, called
some_function:

>>> def some function(y):

y ()

>>> some_function(test)

inside test function

Let's see what we can do with the other first-class entity, Python classes.

Classes as first-class objects

Just like functions, Python classes are first-class citizens. They can be passed around
as an argument, assigned to variables, or returned from a function. Here is an
example where a class, Foo, is assigned to a variable bar. After this assignment, you
can use bar to create an instance of Foo:
>>> class Foo:
def say hi(self):
print ("hi!")

>>> bar = Foo
>>> z = bar()

>>> z.say hi()

hi!
M We will not be using closures in this chapter. It is a bit of an advanced
Q topic that is included for completeness. You can optionally skip the
next section.
Closures

Take any function in Python that defines some local variables. You can use these
variables inside the function, but those can not be accessed by the outside world
(unless you return it from the function). In some sense, the functions can be considered
as closed. When the function executes, it uses these local variables; when the function
is done, the local variables go out of scope. Their job is done, that's the end of the story.
Now what if you want a function that keeps its local environment at the time it was
created?

[197]

Design Patterns

We want some way to wrap this function along with its local environment. It could
be better explained with the following example:

def initial_number(x):
print{"l. Initial number "
“{orig environment during function creation): {}".format(x))

def modified number(y):
print (" w: {3,y {3 . ox+y: {3 " format(x,y.x+y))
return x+y

return modified number

if _ _name =="'_main_ ':
foo = initial number{100)
print("2. Mow calling this function with "
"its original environment loaded:")
foo(l)
foo(5)

In the preceding example:

* modified number is a nested function within the function initial number.

* This nested function uses a local variable, x, which is in the scope of the
top-level function.

* In the main program, we create foo, which is the return value of
initial number. But look at the return value of the initial number
function. It returns the nested function, modified number.

¢ What this means is that the foo variable becomes the nested function,
modified number

What did we achieve here? We accomplished two things —first, it enabled access to
a nested function from the main program, and second, the nested function still has
the original working environment we used while instantiating initial_ number. In
this example, the working environment refers to the x argument with a value of 100,
passed to this function. The following is the program output:

1. Initial number (orig environment during function creation): 100
2. Now calling this function with its original environment loaded:
x: 100, y: 1 , x+y: 101
x: 100, y: 5 , x+y: 105

[198]

Chapter 6

Observe that the value of x remains unchanged. Any subsequent calls to foo retain
this original local environment, which is used by the nested function modified
number. Likewise, you can create another instance of initial_ number with a
different value of x. This is called a closure in Python. Closures can be used to realize
design patterns such as the observer pattern.

Miscellaneous features

Let's review some built-in functions and decorators that would come in handy while
implementing some design patterns. Again, it is not a complete list, but enough to
aid us in the upcoming discussion on design patterns.

Class method

A class method (eclassmethod) is something that you can call without the need to
create an instance of that class. Unlike a regular instance method, which takes the
instance of the class (self) as its first argument, a class method takes the class as its
first argument. The decorator @classmethod is just one convenient way to create

a class method. We will see how to use a class method in the discussion on simple
factory.

Abstract method

The @abstractmethod decorator is used to indicate that the given method is

abstract and must be reimplemented in subclasses. Recall that we have already used
this to implement AbstractGameUnit.info () as an abstract method using this
decorator. See the Abstract base classes in Python section in Chapter 1, Developing Simple
Applications for further details. In this chapter, we won't be using this decorator.

The __getattr__ method

Python automatically calls the _ getattr _method when you try to access an
instance attribute that is not already defined in your class. You can implement
__getattr__inyour class, and use it to add special handling code for all such
undefined attributes. The use of this method will be later illustrated in the adapter
pattern.

[199]

Design Patterns

Duck typing

The term duck typing is often exemplified as, if it swims and quacks like a duck, then
we will treat that object as a duck. Let's see what this means with a simple example. We
have a class, knight, with the methods move and attack, as follows:

class Knight:
def move (self) :
pass
def attack(self) :
pass

A function takes an instance of Knight as an argument, and calls these methods like
so:

def do_something(a thing) :
a_thing.move ()
a_thing.attack()

However, the function does not check whether the input argument is really an
instance of the Knight class. As long as the object has the move and attack methods,
it will not complain. Thus, in duck typing, the language does not make any
verification of the object. The only thing it cares about is whether or not it can call
certain attributes using that object. One advantage of duck typing is code reusability.
You can reuse the do_something function in some other code by passing an object of
a different class.

For example, imagine a Lion class that implements the move and attack methods.
You would like to reuse the aforementioned do something function in some other
project that is already using this class:

class Lion:

def move (self) :
pass

def jump (self) :
pass

def roar(self):
pass

The do_something function will work just fine as long as the input object has the
move and attack methods defined. How does this all translate to a design pattern
discussion? Other programming languages, such as Java, define a formal interface in
the code to implement certain design patterns, such as the abstract factory pattern. In
C++, an abstract base class is defined with pure virtual functions. In Python, we have
an option to use duck typing instead of implementing an interface or an abstract base
class. For clarity on the design pattern itself, you may still want to document such an
abstract base class or interface.

[200]

Chapter 6

In Python, we could still use Java-style interfaces. The Zope web
M framework (not covered in this book) is a good example. Visit the
Q following link for more information: https://docs. zope.org/
zope.interface/README.html. Also, see a note in the abstract
factory discussion later that shows how to enforce an interface in Python.

Duck typing offers a lot of freedom to programmers, so much freedom that it has the
potential to introduce bugs that are difficult to notice just by looking at the code. But
such errors can be detected with extensive unit testing. Another way to reduce such
problems is to enforce strict coding standards and documentation. For example, you
can create some custom coding standards that can avoid confusion arising due to
duck typing.

With this basic introduction to some key language features, let's move on and discuss
how to implement some design patterns, and what problems they address.

Structure of the rest of the chapter

Before diving into the discussion on design patterns and their implementation, let's
first lay out a strategy for the rest of the discussion. As mentioned before, we will
review the strategy pattern, the simple and abstract factory patterns, and the adapter
pattern. The discussion on design patterns will be roughly structured as follows:

* Start with a formal definition of the pattern

* Present an imaginary scenario where a new feature is requested

* Talk about the problem encountered in introducing this new feature

* Make an attempt to solve this problem, quickly realizing that we need to
rethink the design

* The solution(s) to the problem using the design pattern
For a few design patterns, we will discuss two approaches to solving the problem.

A traditional approach that resembles the one followed in languages like C++, and
the other, the Pythonic approach.

NG Skip the traditional solution if you are interested only
in the Pythonic approach.

[201]

https://docs.zope.org/zope.interface/README.html
https://docs.zope.org/zope.interface/README.html

Design Patterns

The following is a list of files from the supporting code bundle that will be reviewed:

abstractfactory_pythonic.py
adapterpattern_multiple_methods.py
adapterpattern. py
simplefactory_pythonic_alternatesolution.py
simplefactory_pythonic.py
simplefactory_traditional.py
strategypattern_pythonic.py
strategypattern_traditional.py

It is also worth noting that we will not be developing a full-fledged game
application. The idea is to use this game theme as an aid to understanding some
design patterns. The code used in this chapter is quite simple. While most of the code
is illustrated in the upcoming discussion, you can also download and review the
source from the supplementary code bundle for this chapter.

Fast forward — Attack of the Orcs v6.0.0

Let's fast forward to a future imaginary version of the game!

This imaginary version is one of the most downloaded open source Python
applications. Now you have a team of developers helping you with application
development. The game has evolved quite a bit. It is no longer a simple application
where you gain control of a hut by defeating the enemy. It is now a turn-based
fantasy game, where the player and the enemy take turns attacking each other, or
use that turn to move towards or away from the opponent.

You have introduced several new game missions, and have redesigned and
refactored the code to accommodate the new requirements. In the most recent
version, you have the following game characters: Knight, Orc Rider, and EIf Rider.

M An Elf is an imaginary supernatural mythical being. Read the The
Q theme of the book section in Chapter 1, Developing Simple Applications for
some references on Elves.

Each game character in this version has an ability to attack the enemy, move towards
or away from the enemy, or get healed inside a hut. Let's not worry about the actual
logic that implements these features in the application. We shall rather focus on the
high-level design of the application. The following pseudo-UML diagram shows
various classes and a few of their public methods:

[202]

Chapter 6

F

AbstractGamelUnit

+ info()
+ attack()

+ move()

+ heal()

Extends Extends Extends

OrcRider

+ infaf)

+ attack()

As indicated in Chapter 1, Developing Simple Applications, we will loosely
follow the UML representation. We referred to it as a pseudo-UML
. schematic. An explanation for the convention used here is in order.
% Each class in the schematics is represented by a rounded rectangle.
L= It shows the class name followed by its attributes. The plus sign

(+) before the attribute indicates it is public. A protected or private
method is generally represented with a negative sign (-). For ease of
illustration, only a few relevant public attributes will be listed.

As illustrated in the class diagram, all the game characters inherit from a common
superclass, AbstractGameUnit. Each of the subclasses has its own implementation
of info () and attack (). In other words, each subclass has its own way of attacking
the enemy. Further assume that in the aforementioned version, all the subclasses use
a common move () method defined in the superclass. This could be better imagined if
you see the game instructions in action.

[203]

Design Patterns

See the following screenshot that shows how the player will be prompted to perform
a move:

[user@hostname vh.0.0]1% python attackoftheorcs.py

Missiom:
1.Defeat all the enemy units in 20 turns.

TIPS:
1. This is an open battle. Enemy units could be present anywhere.
2. Use the 'huts' to get 'healed' but watch out for hiding enemies!
3. You will get automatic help from your army during your turn.

Health: 5ir Foo: 40
Friendly units under your command: &, Enemies to defeat: 19, Huts: 4

Surroundings:
1. East : A HUT {(reachable in 2 turns)
2. West : An ENEMY (you are facing the enemy right now!)
3. North: A FRIEND {reachable in 1 turn)
4, South: A FENCE wou CAN NOT cross!

Move (M) or Attack(A)? M

You have decided to mowve. ..

Select direction East/West/MNorth/South: South

You CAN MNOT move South. There is a FENCE'! Try again

Select a direction to mnve:l

Cool! I want to play this new game scenario. Where is the source code?

The intention here is not to develop the full game logic. This is an
imaginary scenario that is used just to highlight some commonly

%@‘ encountered problems in application development. With this scenario, we
will see how design patterns could help tackle such problems. No code
has been provided to actually "play" this new game. The supporting code
illustrates how to implement various design patterns discussed here.

As can be seen from the command-line output, it gives the player a choice to move
in one of four directions. It also indicates what lies ahead in each direction. In this
particular case, the player decides to go South, but this movement is restricted by
a fence.

[204]

Chapter 6

Strategy pattern

A strategy design pattern is a behavioral pattern that is used to represent a family
of algorithms. An algorithm within such a family is represented as a strategy object.
The pattern enables easy switching between different strategies (algorithms) of a
particular family. This is generally useful when you want to switch to a different
strategy at runtime. We will revisit this definition towards the end of the discussion
on strategy pattern.

Strategy scenario — The jump feature

There is a high priority feature request. Rather, it is a complaint. The users just
hate the movement restriction imposed by the fence. Now even Sir Foo has joined
the protest...

whﬂf yau hﬂ\'ﬂ s Erﬁﬂf I
can move() around Bur
m}!’ harﬁﬁ is not ﬂ.“ﬂWﬂd

to J'ump” over the fencel

I am €m bar‘r“aased!'

Rather than removing the fence from the scenario, how about a new feature that
enables units to jump over the fence or any similar obstacle?

[205]

Design Patterns

You have introduced a new method, jump (), in the superclass AbstractGameUnit.
All the classes inherit this method, as shown in the following class diagram:

-
AbstractGamelUnit

+ info()

+ attack()
+ move()
+jump()

+ heal()

Extends Extends Extends

+ info()

+ attack()

The fence no longer prevents the player from moving around. The new jump option
enables crossing the fence without any problem. That was easy, wasn't it? Everyone
is happy (especially Sir Foo)!

[206]

Chapter 6

Strategy — The problem

Let's fast forward to a few more major releases of the application.

You have introduced two new imaginary characters to the game, a Dwarf and a
Fairy, offering unique skills. For example, the Fairy has powers to heal nearby
injured units in your army, and the Dwarf units offer a solid line of defense against
enemy attack. With this, the number of application downloads per week has now
reached a new high. However, there is a new problem that the users have reported.
Let's hear it from The Great Dwarf:

Greor Dwarfs of the
eastern Too mountain don't
Jur‘nPO! We J'us-r break fhr‘augh

the fencel

H'a.! Wh}f is it so ha.r‘cl 'For
you to accept the facr
rhot you cannoft _jump??

[207]

Design Patterns

Do you see the problem here? The jump feature has an unwanted side effect. It
allows even a Fairy or a Dwarf to jump over the fence. The Knight, ElfRider, and
OrcRider are all mounted units. It is easier to imagine these units jumping over the
fence. However, it is not intuitive to think this way for a game character like a Dwarf.
We encounter this issue because all the classes use the default implementation of the
AbstractGameUnit . jump method. This is shown in the following class diagram:

-
AbstractGamelUnit

+ infof)

+ attack()
+ move()
+ jump()

+ heal()

Fairy

+ infof) + infof)

+ attack()

+ aftack()

[208]

Chapter 6

Strategy — Attempted solution

The Dwarf and Fairy game units should not have the jump feature. So what can we
do here? The Fairy has something to say:

AbstractGamelnit

+ infol)
+ attack()
+ move(l)

+ jump()

+ heall)

That's almp'cl’ Just override .".
the ‘jumpﬂ methed in my

class (Fairy) and in the

o
DwarfFighter. We will take DwarfFighter Fairy
core of the resr. Problem + info) + info)
solved!
i+ attack() + aftack()
/ £ jump() + jump()

Using inheritance is certainly one approach. You can override the jump method and
make it a no operation inside the new classes. However, in the next release, you are
planning to introduce a number of new characters that are not supposed to jump, or
need to jump differently. Some of the new classes are represented in the following
class diagram. All of these need to override and implement their own logic.

[209]

Design Patterns

”
AbstractGameUnit Grawlng st of classes

needlnj 1'|"|e|r L=]

+ infol)

Imp|emen1'a.1'lan a¥Jumpﬂ
+ aftack() —
+ move())

+ jump() Mermaid

Hobhit

+ heall})

1 DwarfGuard

1 Wizzard

4

+ infal)

+ infol)
+ aftack()
+ jump()

The jump feature is just one of the many things where you will see this problem. We
don't even need to look beyond what we already have. In the preceding diagram,
look at the move and attack methods. Do you see the same problem brewing?

The game characters are evolving. They have their own rules to move. For example,
a Knight riding a horse may cross a river in two turns, whereas a DwarfFighter
would need 10 turns for the same task.

Similarly, each unit has its signature style for attacking the enemy. An old wizard
in your army can cast magical spells on the enemy. The E1fRider character attacks
twice in a single turn using a bow and arrows. The DwarfFighter character uses a
hammer to attack, and so on.

[210]

Chapter 6

If we continue to use the inheritance principle here, it would soon become a
maintenance nightmare. Why so? This is because each class that you write is
responsible for implementing and maintaining its own logic for its move, jump, and
attack abilities. Initially, you may see this as a trivial issue, where overriding the
functionality in the subclasses just works. But with a growing number of character
types and their ever-growing set of abilities (move, jump, swim, defend, hide,
regenerate, and so on), this will turn out to be a daunting task. The code might also
get repeated across classes.

Every small change to the logic will require you to update the corresponding
methods in all the classes. It could also invite new bugs if you miss out a few
methods during the update process. We need to rethink the design to accommodate
future requirements easily. Let's do that next.

Strategy — Rethinking the design

What can we do in such situations? Observe that the implementation code defining
these abilities varies across subclasses. In this example, the DwarfFighter cannot
jump whereas a Knight jumps using a horse.

The first question to ask is why do these classes carry the burden of defining
abilities? Can this be outsourced to a different class or a function? We will redesign
the AbstractGameUnit class (and its subclasses) so that the various abilities are
now handled by objects dedicated to those tasks. In other words, we will use object
composition to take this load off AbstractGameUnit and its subclasses.

Recall that in Chapter 1, Developing Simple Applications, we used object
_ composition in the Hut class where its occupant was represented by a
% different object. Object composition allows you to represent a complex
L= object by putting together simple objects. Just say it out loud, a Knight
has-the ability to move, a Knight has the ability to jump, and so on. Each
of these abilities will be represented by separate objects.

How do we implement this new design? We will discuss two approaches to solving
this problem. The first one is more of a classical approach that resembles the one
typically followed in other languages, such as C++. If you have such a development
background, this approach will look more familiar. The second approach is more
Pythonic. It uses first-class functions, a language feature in Python. This second
approach will make the whole problem appear trivial. If you are not interested in the
traditional approach, skip ahead to the Pythonic solution for the strategy pattern.

[211]

Design Patterns

Strategy solution 1 — Traditional approach

In the preceding section, we decided to create dedicated objects to represent abilities
such as jump. Let's draw a class diagram that explains this better:

-
AbstractGameUnit

AttackStrategy —,

+ name r:
+ aftack() 1 | JumpStratng]r_]
" + jumpi) J
'|| ~— "+ move_strateqgy \
NGW dedlca.fed - 1
classes for ¥ Jump_strategy
Imp|emen1‘ln5| .
varicus abiliries +infof)
These merthods no |oh5er
? __ha'-re the imp|£m£hfa-rion
(MweStriteg'; —_— + move() 4 | code THEKJUST make
+ move i calls o the appmpr’ia-re
L 0 y + jump() hahdhhﬂ objecf&.
\+ heal() y

Here is a more verbose description of what is represented in the preceding diagram:
e Three new classes, AttackStrategy, MoveStrategy, and JumpStrategy,
now handle the logic for the attack, move, and jump methods respectively.

* The class AbstractGameUnit is now composed of the instances of these
classes, namely attack_strategy, move_strategy, and jump_strategy.

* The AbstractGameUnit . jump method just calls jump_strategy.jump (). A
similar implementation for the move and attack methods is followed.

[212]

Chapter 6

As the game characters need their on-jump implementation, we will create
subclasses of JumpStrategy. For example, a subclass canNotJump can be used for
game units that are unable to jump. This is illustrated in the following class diagram:

AttackStrategy JumpStrateg

+ aftack()

Exterds Exterds

SwordAttack | BEME HammerAttack

+ attack() + attack()

MagicAttack
p
N attack() MoveStrategy

+ move()

Extends Exterds Extends

r MoveTwisted r CanNotMove

Revisiting the strategy pattern definition:

We started the discussion on strategy pattern with a definition. This
design pattern represents a family of algorithms. Take a closer look at the
preceding class diagram. The JumpStrategy and its subclasses represent
a family of algorithms. Functionality defined in each of these classes is
* equivalent to an algorithm or a strategy. These classes are part of the
same family, because the execution of any of the algorithms is related to a
jump. As an example, the PowerJump class defines an algorithm different
from the HorseJump class. Likewise, MoveStrategy defines a family
of algorithms for movement, and AttackStrategy for attacking the
enemy. There is one last missing piece to complete the strategy pattern.
We need a way to dynamically switch between algorithm families. Let's
see how to implement this next.

[213]

Design Patterns

Let's review the new class, JumpStrategy. It now defines the jump behavior that
was earlier defined in AbstractGameUnit. The overall logic is represented by the
following schematic diagram and the code fragments. For easier understanding, we
will only discuss the methods related to the jump ability:

AbstractGamellnit

+ name

+ jump_strategy

+ zet_jump_strategy()

+ jump()

:jum ' dﬁlﬂalﬂ.‘rﬂd
.._ T HFT‘IFJETFMEH:{

def]ulpESt—:-lﬂ
Extends| : "*“Perform jump operation (delegated)"™'
i try: :

self.jump strategy.jump()
except AttributeError as e:
print("Error: AbstractGameUnit.jump",

e.args)
Jurn strategy fo be
DwarfFighter if _name_ == '_ main__ ': " use |:=:.-' Dwar‘FFijhfﬁr

jump strategy = CanNotJump()
dwarf = DwarfFighter ("Dwarf", jump_strategy)
dwarf. jump(}

[214]

Chapter 6

Thus, we have a family of algorithms represented by Jumpstrategy and its subclasses.
Here is the related code fragment that shows the classes AbstractGameUnit and
DwarfFighter. The supporting file, strategypattern_traditional.py, contains

this code:

from abc import ABCMeta, abstractmethod

class AbstractGameUnit (metaclass=ABCMeta):
def dnit (se21f, name, jump_object=None):

def

def

self.jump_strategy = Hone
self.name = name
self.set_jump_strategy(jump_object)

set_jump_strategy(s=1lf, jump_object = None):
if i;inéténgéfi&ﬁp;ngieéi,-J&ﬁpét;a{éq;lz-
self.jump_strateqy = jump_ohject
else:
self.jump_strategy = JumpStrategy()

jump(self):

try:
self. jump_strategy.jump()
except AttributeError as e:
print ("Error: abstractGamelUnit. jump:", e.args)

@abstractmethod

def

info(self):
pass

class DwarfFighteri{AbstractGameUnit]):

def

info(s=1f):
print("I am a great dwarf of the eastern foo mountain!")

[215]

Design Patterns

The instance variable self.jump_strategy is used to represent a strategy or an
algorithm for the jump behavior. The subclasses of AbstractGameUnit get to choose
any jump strategy from the family of algorithms defined by the Jumpstrategy

class and its subclasses. For example, the DwarfFighter subclass can use the
algorithm defined in the canNotJump class as its jump strategy, and so on. The
AbstractGameUnit . jump method is now an API method for the calling code. This
method relies on the strategy object for the actual jump implementation. It simply
calls the corresponding method of that strategy object, as shown in the preceding
class diagram.

The subclass DwarfFighter in this simple example just overrides the abstract method
info. You may include some additional customization to this class. Now let's look at
the family of algorithms for the jump feature:

class JumpStrategy:

def jump(self):
print("--= JumpStrategy.jump: Default jump")

class CanMot Jump (JumpStrateqgy):
def jump(se1lf):
print("--= CanNotJump. jump: I can not jump")

class PowerJump (JumpStrategy):
def jump(selfl:
print{"--= Powerdump.jump: I can jump 100 feet from the ground!")

class HorseJump(JumpStrategy):
def jump(self):
print{("--= Horselump.jump: Jumping my horse.")

[216]

Chapter 6

As mentioned earlier, the purpose is not to develop a full-fledged game application,
but just to understand the important concepts in application development. In this
trivial example, we just print an informative message to illustrate the concept. In a
practical implementation, these are the classes where your algorithms need to be
defined. Finally, let's review the calling code that instantiates a game character, and
dynamically sets up different jump strategies:
if __name_ == "'_main__ ':

jump_strategy = CanMNotJump()

dwarf = DwarfFighter("Dwarf", jump_strategy)

print ("\n{STRATEGY-I} Cwarf trying to jump:")

dwarf. jump()

print("-"*56)

print ("\n{STRATEGY-II} Dwarf given a 'maglc potion' to jump:")
dwarf.set_jump_strategy (PowerJump ()]}

dwarf. jump()

print("-"*56)

We start by creating jump_strategy, an object that defines how the unit should
jump. In this case, it is passed as an argument to the __init _ method for
DwarfFighter. Alternatively, you could also define a default strategy object in this
class, as we know the default behavior for this class (the unit cannot jump). You can
then call set_jump_strategy to switch to a different jump algorithm, as illustrated
in the code fragment. Here is the output of this program:

[user@hostname chB]% python strategypattern_traditional.py

{STRATEGY-I} Dwarf trying to jump:
--= CanNotJump. jump: I can not jump

{STRATEGY-II} Dwarf given a 'magic potion' to jump:
--= Powerldump. jump: I can jump 106 feet from the ground!

[217]

Design Patterns

Strategy solution 2 — Pythonic approach

What we discussed in the last section was more of a traditional approach, typically
followed in programming languages such as C++. Given the flexibility that the
Python language offers, there is no real need to define the various strategy classes as
illustrated in the previous solution. We will exploit first-class functions, the language
feature discussed earlier. Let's look at the revised code. You can also find this code in
the strategypattern pythonic.py file in the code bundle:

from abc import ABCMeta, abstractmethod
from collections import Callable Make sure
class AbstractGameUnit (metaclass=ABCMeta): f/,f’ %ﬂ:j:;:frafesyla @
def __init_ (self, name, jump_strategy):
assert (1sinstance(jump_strategy., Callablel)
self.name = name
self.jump = jump_strategy

@abstractmethod T~ Assign the fumetion Jump__strategy
def info(s=11): o +Ee variable 3£|‘F;jur'n|::.
pass fSee the ca||in5 cade)

class DwarfFighter(AbstractGameUnit):
def info(selfl:
print("I am a great dwarf of the eastern foo mountain!")

def (ﬂl'l_l'lﬂt_jl.ll'ﬂl]'::': E'IF'I"IPlE ‘FHI")CTIGI")S
print("--> CanNotJump.jump: I can not jump") — defining various
Jump strategies
def power jump():
print("--= Powerlump.jump: I can jump 100 feet from the ground!")

def horse jump():
print("--= HorseJump.jump: Jumping my horse.")

In the preceding code, we have used the Python language feature that supports
assigning a function (jump_strategy) to a variable (self.jump). Why do we do this?
It will become clear when we review the next code fragment. Before that, let's quickly
discuss the preceding code snippet.

[218]

Chapter 6

What exactly do we accomplish with the following assert statement? -
assert (isinstance (jump_strategy, Callable))

This statement is from AbstractGameUnit. init method in
the earlier code snippet. Before assigning the function to a variable, we
need to make sure that it is indeed a function. The assertion prevents
" further execution of the code if this condition is not met. The idea is
% simple. You want to make sure that jump strategy is a callable
object. Any callable object defines a built-in __call () method. The
collections.abc.Callable class is an abstract base class for all
the classes that provide a built-in __call () method. In the assert
statement, we check whether jump strategy is an instance of this
Callable class. For Python 2.7.9, this class should be imported directly
- ascollections.Callable. -

As before, let's review the code fragment that instantiates a game character (dwarf),
and dynamically sets up different jump strategies:

if _name__ == '_main__"':
dwarf = DwarfFighter("Cwarf", can_not_jump)
print ("\n{STRATEGY-I} Cwarf trying to jump:")
dwarf. jump ()
print("-"*56)

print ("\n{STRATEGY-II} Dwarf given a 'maglc potion' to jump:")
dwarf.jump = power_jump

dwarf. jump()

print("-"#*55)

Compare this code with the first approach discussed earlier. There is a difference. In
the previous solution, while instantiating DwarfFighter, we passed an instance of
the class canNotJump that deals with the jump behavior. Here, we pass the function
can_not_jump as an argument, just like any simple variable. To dynamically change
the jump algorithm, we just assign dwarf . jump to power_jump, as shown. Now when
we call dwarf . jump (), it actually executes the code in the power jump () function.

[219]

Design Patterns

Remarks on the Pythonic way:

What we just saw was a cool Pythonic way that made things very easy.

If you are coming from a C++ or Java programming background, at

~ first you might feel uncomfortable with the freedom that Python offers.

Q For example, there could be situations where a programmer mistakenly

treats a function argument as a simple variable, leading to potential
bugs. But this should not stop you from using this excellent language
feature. To avoid such problems, you should document the code well
so that the purpose of each input argument is clear.

Simple factory

A simple factory is generally not viewed as a formal design pattern, but you will find
it quite useful in your day-to-day programming. The understanding we gain at the
end of this section will be helpful in the discussion on a more formal pattern called
abstract factory design pattern. Let's start with the definition of a simple factory.

A factory encapsulates the instance creation piece. The client code doesn't need to
know the logic of instance creation. It just knows that whenever it needs an object
of a specific type, the factory is the go-to place. Any class, or function, or class
method that is used to construct such objects is often referred to as a factory. A
simple factory is something you will use quite often. It is typically considered a
better object-oriented technique than a formal design pattern.

Simple factory scenario — The recruit feature

Recall that we had fast-forwarded the game to an imaginary future version called
Attack of the Orcs v6.0.0. This version introduced another much-anticipated
feature that enabled recruiting new units to fight against the enemy.

Here is the initial version of the recruit method of a new class, Kingdom. Other
methods are not shown. Let's assume those exist. Further assume that the player
or the enemy is allowed to recruit any of the following game characters: E1fRider,
Knight, DwarfFighter, OrcRider, and OrcKnight:

[220]

Chapter 6

class Kingdom:
def recruit(se1f, unit_typel:
unit = Hone
if unit_type == 'ElfRider':
unit = ELfRider()

elif unit type == 'Knight':
unit = Knight()

elif unit type == "DwarfFighter":
unit = DwarfFighter()

elif unit type == 'OrcRider':
unit = OrcRider()

elif unit type == 'Orcknight':

unit = OrckKnight()

self.pay_gold{unit)
self.update_records(unit)
return unit

The recruit method has the logic to create a game unit based on user input (the
if..else block). Once the character is created, Kingdom pays for the hiring fees
(pay_gold), and a central database is updated to reflect the new addition to the
army (update_records).

Simple factory — The problem

As expected, users liked this feature, and now want the ability to recruit even more
unit types. Let's see what Sir Foo has to say:

Heow you recruit is going fo make a
big impacf on the znd result of the
game. 1 would like o recruit even

mare fypes units. As a starfer, add

Wizard, ElfLord, Fairy..

.. amd for heaver's sake, get rid

af Thaf Orcﬁr‘ﬂ&hf! Na On: shauld

ever beceme a ﬁnigh-r[

[221]

Design Patterns

Let's add new recruit types, and to avoid Sir Foo's wrath, remove Orcknight:

class Kingdom:
def recruit(se1f, unit_typel:
unit = Hone
if unit_type == 'ElfRider':
unit = ElfRider()
elif unit type == 'Knight':
unit = Knight()

elif unit_type == "DwarfFighter":
unit = DwarfFighter()
elif unit type == 'OrcRider':

unit = OrcRider()

elif unit type == 'Fairy':
unit = Fairy()
elif unit type == 'Wizard':

unit = Wizard()

elif unit type == 'ElfLord':
unit = ElfLord()

elif unit type == 'OrcFighter':
unit = OrcFighter()

self.pay_gold{unit)
self.update _records(unit)
return unit

As can be seen in the preceding code snippet, this is already becoming difficult to
maintain. Tomorrow, you may decide to support even more units, or remove some
of the existing ones. How do we handle this problem? Let's see that next.

Simple factory — Rethinking the design

What can we say about that big if. .else block in the recruit method? It is subject
to change. The rest of the code in the method is just the bookkeeping (for example,
updating records) and remains unchanged. What if we take out the variable piece

of code and give it a new home? It will take the load off the recruit method so that
you don't need to open it for editing every time there is a change in the requirements.
The next question to ask is where do we put this code?

[222]

Chapter 6

Thaf's simple‘ Pur it in a
new mefhod,
Kingdom.creofe_unif()

Yes Fairy, that is an option. You can create a new method in the Kingdom class, and
dump all this object creation code in there.

But imagine a game scenario where there is a grand galactic army, represented by a
GalacticArmy class. This class needs a way to recruit or get various game characters.
It is not at all related to the Kingdom class. Thus, we won't be able to reuse the object
creation code in Kingdom.recruit.

Let's free the Kingdom class of the responsibility for creating new units. Once again,
we will use the object composition principle. Let there be a new class (or even a
function) that encapsulates the instance creation piece. We will call this a simple
factory. The client code (the Kingdom or GalacticArmy class in this discussion) can
now use this factory to get specific types of objects.

[223]

Design Patterns

Simple factory solution 1 — Traditional
approach

It is now time to implement the simple factory. Let's review a traditional approach

first.

This is the bare minimum code, without any exception handling.
The purpose is just to illustrate a simple factory using a style

M that somewhat resembles a C++ implementation. You can make
it more robust as an exercise. The code can be found in the
simplefactory traditional.py file. This example is written
as a single module for ease of understanding. Ideally, you should
refactor this, and put classes in their own modules.

Take a look at the following reworked code. We start with the new class,
UnitFactory, which encapsulates the object creation piece:

class UnitFactory:
def create unit(se1f, unit_type):

unit = None

if unit_type == 'ElfRider':
unit = ElfRider()

elif unit type == 'Knight':
unit = Knight()

elif unit_type == "DwarfFighter":
unit = DwarfFighter()
elif unit type == 'OrcRider’':

unit = OrcRider()

elif unit type == 'Fairy':
unit = Fairy()

elif unit_type == 'Wizard':
unit = wizard()

elif unit type == 'ElfLord':
unit = ElfLord()

elif unit type == 'OrcFighter':
unit = OrcFighter()

return unit

In the preceding code, we have refactored out the big i f. .else clause in the

Kingdom.recruit method discussed earlier, and put it in the create_unit method
of the UnitFactory class. The create_unit method only has a single responsibility
to create and return an instance of a game character for the given input argument

(unit_type). The following is the Kingdom class after this refactoring:

[224]

Chapter 6

class Kingdom:
def __init_ (self, factory):
self.factory = factory

def recruit(s=lf, unit_type):
unit = self. factory.create unit{unit_type)
self.pay_gold{unit)
self.update _records(unit)
return unit

def pay_gold(self, something):
print("GOLD PAID")

def update_records(s=1f, something):
print{"Some logic (not shown) to update database of units")

The self.factory instance represents UnitFactory. In the recruit method, the
responsibility for creating game characters is delegated to this factory object. The
pay_gold and update_records methods are just shown for completeness. Let's not
worry about the logic inside these two methods. They remain unchanged. Finally,
the following is one way to use the factory. The code is self-explanatory:
if _name_ == "_main_ ":
“factory = UnitFactory()

k = Kingdom(factory)

elf unit = k.recruit("ELfRider")

print{elf_unit)

What we have not shown in this example is the actual implementation of the concrete
product classes that our factory uses to create products, such as E1fRider, Knight,
and so on. These classes are going to be similar to the ones we have discussed so far.
For example, all these concrete classes can be subclasses of AbstractGameUnit. These
details were not shown in the example we just covered. However, this is not the only
way to implement a simple factory. In Python, we can deal with this problem in other
ways as well. One such approach will be discussed next.

Simple factory solution 2 — Pythonic approach

There is one problem with the solution presented in the previous section. You still
need to maintain the if. .else block in create_unit. Another thing to ask is, do we
really need to instantiate UnitFactory? Depending on your application, the answer
could be yes or no. In this example, the create_unit code would be identical for
each instance of the factory you create. So, we do not really need an instance of
UnitFactory. Let's discuss how to implement a simple factory without actually
instantiating it.

[225]

Design Patterns

What is illustrated here is not the only way to implement a simple
factory. The source code is available in the supporting material as

N simplefactory pythonic.py. Depending on the type of problem

~ you are dealing with, you can tweak this approach further, and

Q come up with a different solution. For example, you can choose a
factory instance, and access its methods as normal instance methods.
This approach is illustrated in the simplefactory pythonic
alternatesolution.py file.

Here is the reworked UnitFactory class from the file simplefactory pythonic.py:

class UnitFactory:
units dict = |

'elfrider': ElfRider, A P;,--rhgn dic-rignalr'?‘

knight': Knight, created as a class variable
‘dwarffighter': DwarfFighter,

‘orcrider': OrcRider,

"fairy': Fairy,

'wizard': Wizard,

‘elflord': ElfLord,

‘orcfighter': OrcFighter Defined as a class merhod
¥ [:@,do.::me-rhod}. See the

/ cal |ir‘:5 code

gclassmethod

def create unit(cls, unit_type):
key = unit_type.lower()
return cls.units_dict.get(key)()

Earlier in the chapter, we reviewed some Python language features that come in
handy for design patterns. Let's see how first-class classes and class methods can be
used in a simple factory:

* units_dict is a Python dictionary object declared as a class variable
(for the class UnitFactory).

* Python classes are first-class objects. So we can simply put them as values
of the dictionary, units_dict. The dictionary keys can be unique strings
of your choice. Just make sure that the calling code knows which key
corresponds to which class.

* The method create_unit is defined as a class method using the decorator
@classmethod. What this means is that the first argument passed to this
method is the class itself (denoted by c1s) instead of being self (an instance
of the class).

[226]

Chapter 6

Now look at the return statement of the create unit method:

return cls.units_dict.get (key) ()

Here, we access units_dict, a class variable, as c1s.units_dict, and get
the value for a particular key given as an input argument. This can be better
explained with an example. Assume that the given key is el1frider. The
corresponding value in the dictionary is the E1frRider class. So, the

create unit method will return E1fRider (), which is an instance of the
ElfRider class.

Compare this code with the one we saw in the previous heading, Simple factory
solution 1 - Traditional approach. As can be noticed, the number of lines of code has
not been reduced significantly. But the code clarity is much better here. You still need
to maintain the dictionary object (units_dict) for all future requirements, which is
relatively easy compared to maintaining the i f. .else clause.

Now observe the Kingdom class. It has just a few changes:

class Kingdom: Facmr'}r is declared as a

factory = UnitFactory —

c|a55 variaHe

def recruit(s=1f, unit_type):

def pay_gold(self, something):

unit = typelself).factory.create_unit(unit_type)
self.pay_gold{unit)
self.update_records (unit)
return unit

f}:pefsem.{:acmry is
equi‘ua|£hf fo

Hihﬂdam:{:ac tery
print("GOLD PAID")

def update_records(s=1f, something):

print{"Some logic (not shown) to update database of units")

Let's review the preceding code snippet

First, we assign the UnitFactory class to a class variable, factory.
Again, we can do this because Python classes are first-class objects.

The recruit method is just a normal instance method of Kingdom.
The class variable factory is accessed as type (self) . factory.

In this example, type (self) .factory.create_unit is equivalent to
UnitFactory.create_unit. We could have directly written it that way,
but if a subclass of Kingdom defines its factory as a different class, say
DwarfUnitFactory, then it will require you to write some extra code,
such as overriding the recruit method.

[227]

Design Patterns

Finally, here is the calling code. Notice that we are not creating any factory instances:

if __name_ =="_main__":
k = Kingdom()
elf_unit = k.recruit("ELfRider")
arint{elf_unit)

The discussion on the simple factory has set the stage for the formal design pattern
called the abstract factory pattern. Let's review that next.

Abstract factory pattern

We have just learned how to create and use a simple factory in a program. Let's go a
little further and study a formal pattern known as the abstract factory pattern.

Imagine we have a master factory and some follower factories. Further assume

that each follower factory is responsible for producing its own trademark products
(objects). The follower factories are related in some sense. They create products that
share a common theme. For example, each follower factory produces its own version
of tomato ketchup. The factories have their own ordering form for their product.

The customers have a hard time in keeping up with so many forms for ordering a
tomato ketchup. For example, one factory says you should call it
MyRedTomatoKetchup, otherwise it won't understand. So, the master factory says:

We make products that are like a part of an extended family. Our customers would
benefit if we can simplify and standardize the procedure to order these products
from our group of factories. From now on, every follower factory is required to
implement a common ordering form.

The customers benefit, as they just need to know the high-level name tomato ketchup
and the factory that can supply this product. Let's put this into programming
terminology:

* The master factory is an abstract factory, and the follower factories are
concrete factories.

* The tomato ketchup is an abstract class. Every concrete factory creates its
custom version of tomato ketchup; we will call this a concrete object (an
instance of a concrete class).

[228]

Chapter 6

The standardization procedure referenced earlier is called an interface.
The abstract factory declares such an interface (or in Python terms, a set
of abstract methods) that is required to be implemented by the concrete
factories for creating families of concrete objects.

e The customer is the client code. It doesn't need to know the details of
the concrete object received from a concrete factory. It just needs to have
knowledge of the abstract class.

The Java programming language has a provision to create an abstract
type called interface. If a class implements an interface, it must
implement all the methods described by that interface. For more
information on interface in the Java language, visit the wiki page:

%@‘\ https://en.wikipedia.org/wiki/Interface (Java).In

g Python, there is no such formal provision to create and implement an

interface. Instead, we can use inheritance, where concrete factories
inherit from the abstract factory. Instead, we can use the first-class

L features offered by Python, as discussed earlier. Let's see these next.

Quite a mouthful? Let's dig deeper into the abstract factory pattern with a game
scenario.

Abstract factory scenario — An accessory
store

Imagine you have implemented a new feature that enables buying accessories for
your army. At the moment, you can buy an armored jacket or a gold locket, as
shown in the following code fragment:

class Kingdom:
def buy accessories(self):
armor = Jacket()
locket = GoldLocket()

accesories = [armor, locket]
self.pay_gold(accesories)
self.update_records (accesories)

def pay gold(s=1f):
print("GOLD PAID")
def update_records(self, accesories):

orint |: [

Some logic (not shown) to update database of accesories”)

[229]

https://en.wikipedia.org/wiki/Interface_(Java)

Design Patterns

More choices for armor and lockets were added as follows:

class Kingdom:
def buy accessories(self, armor_type, locket type):

if armor_type == 'ironjacket':
armor = Ironlacket()

elif armor_type == "powersuit":
armor = PowerSuit()

elif (type == 'mithril'):
armor = Mithrilarmor()

if locket type == "goldlocket":
locket = GoldLocket()

elif locket_type == "superlocket":
locket = SuperLocket()

elif locket type == "magiclocket":
locket = MagicLocket()

accesories = [armor, locket]
self.pay_gold({accesories)
self.update_records (accesories)

You reworked the preceding piece of code, and implemented a simple factory
instead. This factory would produce all the accessories for the game characters. In
this example, it would return armor and locket objects.

[230]

Chapter 6

The reworked code, which implements a simple factory, is shown next:

class AccessoryFactory:

armor _dict = {
‘ironjacket': Ironlacket,
‘powersult’: PowersSuit,
‘mithril': MithrilArmor

T

locket dict = {
'goldlocket': GoldLocket,
‘superlocket': SuperlLocket,
‘magiclocket’: MagiclLocket

b

@classmethod
def create_armor(cls, armor_type):
return cls.armor_dict.get{armor_type)()

@classmethod
def create locket(cls, locket_typel:
return cls.locket dict.get(locket typel ()

The Kingdom class and the main execution code is shown next. The Kingdom class has
an instance variable, self . factory, which represents our simple factory:

class Kingdom:
def __init__ (self, factory):
self. factory = factory

def buy_accessories(s=1f, armor_type, locket_typel:
armor = self. factory.create_armor{armor_type)
locket = self.factory.create locket(locket type)
print("Kingdom armor:", armor)
accesories = [armor, locket]
self.pay_gold(accesories)
self.update_records(accesories)

def pay_goldi{s=1f, accessories):
print ("GOLD PAID")
def update_records(s=1f, accesories):
print("Some logic (not shown) to update database of accesories")
if __name_ == "'_main__':
factory = AccessoryFactory()
k = Kingdom(factory)
k.buy_accessories("mithril", "magilclocket")

[231]

Design Patterns

The self.factory variable is used to create armor and locket instances, as
indicated in the buy accessories method.

M As illustrated in the section on simple factories, the factory can also be
Q specified as a class attribute accessed as Kingdom. factory, instead
of creating an instance, self . factory.

H’ey, checkout my cool
new Iron jacke-ri I

just LOVE +his new

accessory s-ror'e'.

The changes you made simplified the implementation. Looks like Sir Foo is quite
happy with his new Iron jacket, however, that doesn't seem to be the case with
others! There is a new problem...

[232]

Chapter 6

Abstract factory — The problem

Ome size doesn't fit all! The DwarfKingdom is now using this AccessoryFactory,
and has reported problems with the products:

T'f'i-e ew accaaaar}r sfore is

no 3and. The IronJackert is
ave.raized. Thf. GaldLackef

does not have Grear Dwarf'
ImPr‘ihfed on it 1 wauid J’us-r

:Ioa£ it down.

The Great Dwarf has reason to be annoyed. The factory does not support
customization for the products it creates. How do we address this?

This is one scenario where we can use the abstract factory pattern.

[233]

Design Patterns

Abstract factory — Rethinking the design

Observe the following class diagram. It represents a typical abstract factory pattern,
our approach to solve the problem:

(AbstractArmor \ AbstractLochket

Exterds Exterds

ElfGoldLocket

ElfironJachket Extords Gold Locket

l. IronJackst I
F— DwarflronJacket

| Mithrilarmor Exterde

MagicLockeat

“I.I'fGﬂldLﬂm —

L%
(AbstractAccessoryFactory 1
+create_armaor)
L + create_|ocket() Extard s
Extands ElfAccessoryFactory

+ create_armaori)

(Dnlrf.ﬁmn Eﬂerl.{t{lrj'-] +create_locket()
" + creats_armor)
1

+create_|ochket) 4

Let's review the components of the UML-like diagram presented here, and correlate
them with the terms used in the earlier definition of an abstract factory:

* DwarfAccessoryFactory, ElfAccessoryFactory: The follower or concrete
factories. Recall that each concrete factory creates products that share a
common theme. Here, they create accessories for the game characters. As
mentioned earlier, they are required to implement standard procedures set
by the master factory.

[234]

Chapter 6

* AbstractAccessoryFactory: This is the abstract factory class, or what we
referred to as a master factory earlier. It defines an interface (a set of abstract
methods) that must be implemented by the concrete factories. In this case,
each of the concrete factories is required to implement methods to create
armors and lockets.

* In this example, each concrete factory implements the create_armor and
create_locket methods. These methods return instances of concrete
product classes. Thus, each factory creates its own flavor of the products. For
instance, create locket of DwarfAccessoryFactory returns an instance
of DwarfGoldLocket, whereas the same method in E1fAccessoryFactory
returns an instance of E1fGoldLocket.

* AbstractArmor, AbstractLocket: These are abstract product classes. There
could be several concrete product types that inherit from these abstract
classes. For example, the concrete product classes DwarfGoldLocket and
SuperLocket inherit from AbstractLocket, and so on.

* The client code: This is not shown in the class diagram. The client code
doesn't need to know which concrete product class gives it the desired
product. It just knows the high-level name of the product (for example,
create_locket). Essentially, it chooses the factory, and invokes the standard
API methods, such as create_locket, to get the required objects. See the
next solution section for an example.

Simplifying the design further

The preceding class diagram shows a classic way of implementing the abstract
factory pattern. For ease of understanding, let's simplify the problem further. We
will assume that all the concrete factories define the required methods without the
abstract factory enforcing the rule (interface) to do so.

With this assumption, we could even remove the AbstractAccessoryFactory class
from the design, and just have the concrete factories. Recall that we discussed duck
typing at the beginning of this chapter. So as long as the concrete factories implement
the required methods, the client code (see Knight .buy accessories in the next
example) won't complain.

For conceptual understanding, we will retain the inheritance hierarchy in the
upcoming discussion. We will call this class simply AccessoryFactory, and won't
define create_armor and create_locket as abstract methods. Enforcing an
interface will require some minor adjustments in the code. We will briefly discuss
this as an optional or advanced topic at the end of the next section, where we look at
the actual implementation.

[235]

Design Patterns

Abstract factory solution — Pythonic approach

In the previous section, we saw a representative class diagram that shows the
implementation details for the abstract factory pattern. We will discuss only a
Pythonic solution for implementing this pattern. Since we have already covered

the simple factory in depth, the abstract factory pattern is just a few steps away.

We will limit our discussion to some of the important classes. Look at the
abstractfactory pythonic.py file in the supporting code for the complete source.

The Kingdom and DwarfKingdom classes are shown next. The code is self explanatory,
and was pretty much discussed earlier:

class Kingdom:
factory = AccessoryFactory

def

def
def

def

buy_accessories(self, armor_type. locket_type):

armor = type(self).factory.create_armor{armor_type)
locket = type(self). factory.create_locket(locket_type)
accessories = [armor, locket]
self.pay_gold(accessories)

self.update_records (accessories)
self.print_info(armor, locket)

pay_gold(self, accessories):

print ("GOLD PAID")

update_records(s=1f, accessories):

print{"Updated database of accessories")

print_info(se1f. armor, locket):

print("CDone with shopping in ", typelself).__name__)
print(" concrete class for armor ", typelarmor). name_)
print(" concrete class for locket ", type{locket). name)

class Dwarfkingdom(Kingdom) :
factory = DwarfAccessoryFactory

Let's look at the AccessoryFactory class (see a note on design simplification under
the previous heading, Simplifying the design further):

[236]

Chapter 6

class AccessoryFactory:
armor_dict = {
‘ironjacket': Irondacket,
'powersult': PowerSuit,

'mithril': MithrilArmor
b
locket_dict = {
‘goldlocket': GoldLocket,
'superlocket': SuperLocket,
'magiclocket': MagiclLocket
b

@classmethod
def create_armor(cls, armor_typel:
return cls.armor dict.get(armor_type) ()

@classmethod
def create locket(cls, locket_type):
return cls.locket dict.get(locket type) ()

This is very similar to the UnitFactory class we reviewed in the section on simple
factory implementation. The only difference is that the factory produces two separate
products, armor and locket. So, we have two different class methods (factory
methods) for creating each of the concrete products. The armor_dict dictionary
holds armor-related concrete classes as its values, and locket dict is used for the
locket-related classes. Both of these are defined as class variables.

The following code snippet is for DwarfAccessoryFactory, one of the concrete
factories. Here, we have only redefined the armor dict and locket_dict dictionaries.
Nothing else changes. Likewise, you can define other concrete factories such as
ElfAccesoryFactory. If you want a strict abstract factory pattern implementation,
you should also enforce an interface in the concrete factory. This is briefly discussed at
the end of this section:

class DwarfAccessoryFactory(AccessoryFactory):
armor_dict = {
‘ironjacket’: DwarfIronJacket,
‘powersult’': DwarfPowerSuit,
'mithril': DwarfMithrilarmor

b

locket_dict = {
‘goldlocket' @ DwarfGoldLocket,
‘superlocket’': DwarfSuperLocket,
'magiclocket’: DwarfMagicLocket

b

[237]

Design Patterns

The last piece of the puzzle is the main execution code. It creates two kingdoms,
the first is a default Kingdom, and the second is a kingdom of The Great Dwarfs—
DwarfKingdom. This is done as follows:

if __name_ == "'_main__':
print("Buying accesories in default Kingdom...")
k = Kingdom()
k.buy_accessories("ironjacket”, "goldlocket")
print("-"#*58)
print("Buying accesories in DwarfKingdom...")
dwarf_kingdom = DwarfKingdom()
dwarf_kingdom.buy_accessories("ironjacket", "goldlocket")

Observe that buy_accessories is invoked for both the kingdoms with the same
arguments, ironjacket and goldlocket. But what each kingdom gets as the
concrete product depends on the factory chosen. For example, as the DwarfKingdom
has selected DwarfAccessoryFactory as its factory, for the abstract product named
ironjacket it would get an instance of DwarfIronJacket. The following is a sample
output of the code in the abstractfactory_ pythonic.py file:

[user@hostname chB]% python abstractfactory_pythonic. py
Buying accesories in default Kingdom. ..

GOLD PAID

Updated database of accessories

Done with shopping in : Kingdom
concrete class for armor : Irondacket

concrete class fTor locket : GoldLocket

Buying accesories in DwarfTKingdom. . .

GOLD PAID

Updated database of accessories

Done with shopping in . DwarfkKingdom
concrete class Tor armor @ DwarfIrondacket

concrete class for locket : DwarfGoldLocket

Advanced topic — enforcing an interface

This section illustrates one way of enforcing an interface in Python. If this does not
mean anything to you right now, just ignore this and move on to the next topic.

[238]

Chapter 6

Recall that for ease of illustrating a Pythonic solution, we had simplified the
problem. AccessoryFactory does not enforce any rule that requires the subclasses
to implement the create_armor and create_locket methods. Actually, it is easy to
do so. If you are using Python 3.3 or higher, you can simply define these methods as
abstract methods in addition to being class methods, using the two decorators,
@classmethod and @abstractmethod, like so:

@classmethod
@abstractmethod
def create armor(cls, armor type):
return cls.armor dict.get (armor type) ()

In subclasses such as bwarfAccessoryFactory, you just need to implement these
class methods. For completeness, make AccessoryFactory abstract by inheriting
from aABcMeta. Technically, that would confirm the formal design of an abstract
factory. But if you look at the code inside this method (create_armor), it hasn't
changed a bit. Thus, in this example, declaring an abstract method would help only
to enforce the rule that subclasses must implement certain methods.

Adapter pattern

The adapter design pattern enables a handshake between two incompatible
interfaces. Here, the incompatible interface of a class or a library is transformed into
the one expected by your client code. This transformation is accomplished by an
adapter class. The other class with a different interface than what the client expects is
often referred to as an adaptee.

There are two broad categories of adapter pattern, namely a class adapter pattern
and an object adapter pattern. In the former, the adapter inherits from the adaptee. It
is possible to implement a class adapter in Python, as the language supports multiple
inheritance. However, it is better to choose object composition (has a relationship)
over inheritance. In the object adapter pattern, the adapter object has an adaptee
object instead of inheriting from the adaptee class. The object adapter pattern helps
maintain a loose coupling between the adaptee and the client code, wherein the
client does not need to have any knowledge of the adaptee interface. This offers more
flexibility when compared to the class adapter pattern.

In the upcoming discussion, we will only talk about the object adapter pattern.

[239]

Design Patterns

Adapter scenario — Elf's distant cousin

Let's fast-forward to an imaginary future one more time. A group of developers has
approached you. They have been working on a similar fantasy game application.
Given the popularity of your game, they would like to collaborate. It's a win-win
situation for both parties. You happily accept this proposal, as it will give you
access to several game characters in their collection.

Adapter — The problem

You begin the integration work, and notice a problem. Let's hear it from our friend,
the EIf:

Good decision to include
new units from these
develapera! T am hﬂ.PP}-‘
ro see WoodEl{, my
di-&'l‘ﬂhf cousin | H‘awever,
he deesn't understand
some instructions..

When asked m_jumpf} he
throws an exceptrion. The
Equivaie.nf aFJumpr in his
‘wood=evlish is leapﬂ. Can
we have some way to

convey this 1o himr? &

The code that follows highlights this problem further. What is shown here is a
simplified version of the new WoodE1f class that only shows the leap () method.
Assume that all its other methods match our existing interface.

[240]

Chapter 6

There is no correlation between the jump method (rather, the jump
strategies) discussed in the section on Strategy pattern with the one

I illustrated here. For easier understanding of the pattern, only the
bare minimum code is shown. For example, the AbstractGameUnit
class is not used here. As an exercise, try to use the code from the
strategy pattern here, and implement an adapter so that we can talk to
WoodELf (the solution is not provided)!

class WoodELT:

def leap(se1f):
print("Inside WoodELf.leap")

class ElfRider:
def jump(selfl:
print("Inside ELfRider.jump"}

class Knight:
def jump(self):
print("Inside Knight.jump")

if __name_ == "'_main__':

elf = ELfRider()
knight =knight()
elf. jump()
knight. jump()

wood_elf = WoodELT()

wood_elf. leap()

[241]

Design Patterns

Adapter — Attempted solution

The new class doesn't have a 1eap () method. How can we solve this problem?
Any thoughts, Fairy?

51rnp|ef Yﬂﬂ just cpen HP *hﬂ
class WoodElf and add o new
method jump() thar delegares
this 1o ica.F:l

class WoodElf:
def jump(s=1lf):
self.leap()

def leap(self):
print("Inside WoodELf.leap")

\

We could have possibly done that, but this code is owned by a third party. If they
have shared the source, then you can update it. But that is going to be a maintenance
overhead for you. If you don't have the source code, then you have to depend on
them to get this method supported. For all these reasons, the solution suggested by
the Fairy may not be the best way to go forward. That said, the Fairy is on the right
track! She has a jump () method that delegates this to the 1eap () method. Let's see
how the adapter pattern can help here.

[242]

Chapter 6

How about adding a new class that enables a handshake between these two
interfaces? Look at the following code fragment:

class WoodELfAdapter:
def init (self, wood elf):
self.wood_elf = wood_elf
def jump(self):
self.wood elf.leap()

class WoodELT:

def leap(self):
print("Inside WoodElf.leap")

if _name_ == '_main__':
elf = ELfRider()
elf. jump(}

wood_elf = WoodElf()
wood_elf adapter = WoodElfadapter(wood elf)
wood elf adapter. jump()

This last code fragment seems to address one issue. We do not need to make any
changes to the third-party class woode1l£. We feed an instance of WoodE1£ to the
adapter, WoodElfAdapter. This adapter class has a jump method, which calls the 1eap
method of WoodE1£. The client code simply needs to use this adapter instance instead
of the WoodE1 £ instance. However, there are two main problems with this solution:

* The adapter class seems to be tied to the WwoodE1f£ class. What if we have
a new class, MountainEl£, which implements the spring method as an
equivalent of the jump method?

* Imagine that the woodE1f class has other methods such as attack, info,
climb, and so on. Some might already be compatible with the existing
interface, while for others, there is no equivalent. All such methods can be
directly called without any special processing like what was done for leap ().
If we follow the approach discussed in the preceding code fragment, you will
have to define each of these methods in the adapter class WoodE1fAdapter.
Without implementing them, you won't be able to use the adapter class
seamlessly in your client code. That's quite a bit of work.

It is very easy to address both these problems. Let's write a generalized solution next.

[243]

Design Patterns

Adapter solution — Pythonic approach

To summarize the problem, a new class, WoodE1£, provided by third-party
developers, has a 1eap () method instead of jump (). Put another way, it has an
incompatible interface. We are seeking a solution that doesn't require us to touch
the WoodE1f class. We created an adapter, WoodElfAdapter, but it had its own
shortcomings, as discussed in the previous section, Adapter — Attempted Solution.

Let's generalize the adapter class further to address these issues. See the
supplementary adapterpattern.py file for the source code. This will be illustrated
next. First look at the following code fragment, and then we will talk through it:

class ElfRider:
def jump(self):
print("Inside ELfRider.jump")

class WoodELT:
def leap(self):
print("Inside WoodELf.leap")
def climb(se1f):
print{"Inside WoodElf.climb")

class HountainElf:
def spring(sz1f):
print("Inside MountainELf.spring")

[244]

Chapter 6

class ForeignUnitAdapter:
def _ init_ (self, adaptee, adaptee_method):
self.foreign_unit = adaptee We can assign a F}”fhm
self. jump = adaptee_method function to a variable.

def _ getattr_ (self, item):
return getattr(self. foreign_unit, item)

if —name__ Py '_main_' : calls getaffr as
EH.?LE;E?“PU c|ir'n|':=fj is hot defined

in the adap-rer elass.

wood elf = WoodELf()
wood_elf_adapter = ForeignUpitAdapter(wood_elf, wood_elf.leap)
wood_elf_adapter. jump ()
wood elf adapter.climb()

mountain_elf = MountainELf()

mountain_elf adapter = ForeignUnitAdapter(mountain_elf,
mountain_elf.spring)

mountain_elf adapter.jump()

The following things are to be noted in the preceding code screenshots:

* The adapter class is renamed as ForeignUnitAdapter.

* The first input argument, adaptee, represents the instance of the class for
which we need an adapter. The second argument, adaptee_method, is the
instance method that needs to be adapted (for example, wood_elf.leap
needs to be interpreted as a jump method).

* Next, we take advantage of the Python first-class functions to assign
adaptee_method to self.jump. For example, calling self.jump () is now
equivalent to calling wood_elf.1leap (). This eliminates the need to create a
separate jump method inside the adapter class.

* Earlier in the chapter, we learned about the getattr method. Here, we
have implemented it in the adapter class ForeignunitAdapter. The client
code assumes that the adapter object (which represents a third-party game
character), has defined methods such as info (), attack (), and climb ().
The client calls these methods using the adapter object. In reality, the adapter
class has not defined any of them. It relies on self.foreign_unit to provide
these methods.

* This handling code is written in the __getattr__ method. Here,
getattr(self.foreign_unit, item) would simply return self.foreign_
unit.item.

[245]

Design Patterns

* You can create multiple adapter objects by passing in different instances
of the game units, and the method that needs to be the adapter. One such
example is shown in the preceding code fragment.

Adapter — Multiple adapter methods

In the earlier illustration, we assumed that self.jump would be the handling
adapter method. What if we have multiple methods that need to be an adapter to
conform to our existing API? You can generalize this implementation further. Here
is one way to handle multiple methods. This source can be found in the supporting
code bundle. Look for the adapterpattern multiple methods.py file:

class FooELlT:
def leap(se1f):
print("FooElf. leap")
def hit(s=17):
print("FocELTf hit")

class ForeignUnitAdapter:
def _init_ (self, adapiee):
self.foreign_unit = adaptee

def _ getattr_ (self, item):
return getattr(self. foreign_unit, item)

def set_adapter(self. name. adaptee_method):
setattr(self, name, adaptee_method)

The following is the main execution code:

if _ _name_ =="'_main_ ':
foo_elf = FooElf()
foo_elf adapter = ForeignUnitAdapter({foo_elf)

foo_elf_adapter.set_adapter('jump', foo_elf.leap)
foo_elf_adapter.set_adapter('attack'. foo_elf.hit)

foo_elf_adapter.attack()
foo_elf_adapter.jump()

[246]

Chapter 6

Again, we take advantage of the Python first-class functions. The set_adapter method
uses a built-in method, setattr (), to set new attributes for the ForeignUnitaAdapter
class. These act as the adapter methods. Alternatively, you can also set the attributes as
follows:

foo elf adapter.jump = foo elf.leap
foo elf adapter.attack = foo elf.hit

Summary

This chapter provided an introduction to design patterns in Python, an important
aspect of application development. We started this chapter with an introduction and
saw how design patterns are classified. Next we reviewed some key features offered
by the Python language that help simplify several design patterns. With practical
illustrations, you learned how design patterns can be implemented to provide a
solution to recurring problems in application development. More specifically, you
learned about strategy, abstract factory, and adapter patterns. For each of these
patterns, we first used an interesting game scenario to describe the problem. We then
discussed how the design pattern can tackle this problem, and further implemented
the design pattern using a Pythonic approach. For some patterns, we also reviewed
a traditional approach to implementing the design pattern. Last but not the least, we
met some of Sir Foo's new friends.

So far, we have discussed several important aspects of application development.
This discussion helped us write better code, make the application more robust, and
increase the application's life expectancy. In the next three chapters, we will learn
various ways to improve the performance of the application.

[247]

Performance — Identifying
Bottlenecks

So far, you have learned various ways to make the application robust and
accommodating for new features. Now, let's discuss techniques to improve the
application performance. This broad topic is split into a series of three chapters — this
is the first one in this series. It will cover the following topics:

* Basic ways to clock the application runtime
* How to identify the runtime performance bottlenecks by profiling the code
* Basic memory profiling with the memory profiler package
* Big O notation for the computational complexity
To understand these concepts better, we will develop an interesting game scenario
called Gold Hunt. You will soon realize that the application runs very slow when

you increase the input data size. This chapter will elaborate on techniques to
pinpoint such problems.

Overview of three performance chapters

Before we dive into the main discussion, let's first understand how the chapters on
performance improvement are organized. As mentioned earlier, this discussion is
split into a series of three interlinked chapters.

[249]

Performance - Identifying Bottlenecks

More focus on the runtime performance

The term performance improvement can mean several things. One can be talking
about improving the runtime (CPU usage), making the application memory efficient,
reducing the network consumption, or a combination of these. In this book, we will
primarily focus on the runtime performance improvement. We will also discuss

the memory consumption aspect, but the discussion will be limited to the memory
profiling technique and the use of generator expressions.

The first performance chapter

You are reading the first chapter in this series. It does some preparatory work to
improve the application performance. This preparation involves measuring the
runtime, identifying pieces of the code that cause the performance bottlenecks,
understanding the big O notation, and so on.

...ﬂﬁd we &rﬂﬁlf sain

anywher‘e! Yau WI” hElP

Of course! We will develop the earlier mentioned Gold Hunt scenario, and then
identify the performance bottlenecks in the code. The next two chapters will use this
groundwork to gradually improve the application performance.

[250]

Chapter 7

The second performance chapter

The next chapter is all about learning various performance improvement
techniques. The first half aims at improving the application runtime for the Gold
Hunt application. The second half teaches several tricks to optimize the code. The
chapter covers some built-in modules designed for high performance and memory
efficiency. It also talks about list comprehension, generator expressions, choice of
data structures, algorithmic changes, and so on.

The third performance chapter

The last chapter in this series will briefly talk about the NumPy package and
parallelization using the multiprocessing module in Python. We will use these
techniques to drastically improve the runtime performance of the application.

Sneak peek at the upcoming application
speedup

Here is a preview of how the Gold Hunt program will evolve from a turtle to a rabbit.
The following figure shows the approximate runtime after each major step of
performance improvement. By the time we complete Chapter 9, Improving Performance
- Part two, NumPy and Parallelization, the application runtime will be brought down
to approximately 14 seconds from an initial value of nearly 106 seconds.

[251]

Performance - Identifying Bottlenecks

2 C’ﬂld Huﬁ'l' Per{arr'nﬁﬂce {:]P'flr'ﬁ|tﬁ'|'l¢l'l
‘Data Size : T
186 Fleld coinz: 2 millien H Ihlfl#l l':ﬂdﬂ

0o i E:Eca.nzh radius: &l milei ﬁlﬂarifhm chmnaf_a
—_ eceeeeed Num?}-
i)
u | W
§ a0 gcoed | [Farallelization
b L
)
£
= &0
5
£ 43,5
g 4o
by
o
o
<

20

o | S | :,' . §)
Initial code ﬁ'sarnhm :hnngﬁ: Num‘Pjr Farallelizaticrn

Oprimization Milestones

No need to spend any time trying to understand the elements presented in this chart;
things will become clear once you read all three chapters on performance. For now,
all you need to know is that we will learn some techniques to drastically improve the
application runtime in the upcoming chapters.

Caution

M The chapters on performance will show some examples of inefficient
code. Running these examples can consume a lot of compute
Q resources. Instead of using the problem size illustrated in these
chapters, you should choose an appropriate data size depending on
what your machine can handle.

[252]

Chapter 7

Scenario — The Gold Hunt

You recently introduced a new scenario in the game — to meet the expenses of his
army, Sir Foo is out on a mission to collect gold from a recently acquired territory.
The scenario starts with Sir Foo arriving at a place full of gold coins, jewelry, and
so on. There are a couple of problems though. Firstly, the gold is scattered all over
the field. Secondly, Sir Foo doesn't have time to collect all the gold on the field.

.‘* Thﬂrﬂ.ﬁ PIEH"I’?" 0{ ﬂﬂid out
there. But I have 1o return
o o the bartle céuicH,y.., o

£ _.
s "%

i| Pic:n
|y|n3 ﬂtlf)ﬂﬂ !"I"i}" pnrh Thr‘ﬂﬂgh
TI"IE ‘Fil!ld. LEfIE NOT warry

ﬂbﬂﬂ‘\' *hﬂ r‘emaining 3ﬂ|d

What you see behind Sir Foo is an imaginary gold field. Sir Foo will enter from
the left side and travel across the field. He will only collect the coins lying along his
path and ignore all the remaining gold scattered across the field.

[253]

Performance - Identifying Bottlenecks

Let's represent this gold field as a circle with a radius of nearly 10 miles (diameter
of 20 miles), and center located at coordinates x = 0 and y = 0, as shown in the
following screenshot:

b (oo o (g o (ke & 4 &..cf 4." u #ff
v A Gold A S b &

e o !
v % , . <
a P :‘ s » :-.-.._. . :... . :_ Ee : ‘-l-' h h

St

Gold hunt &
b-e.sina‘

-

-

‘ LY & = 5 =
W Feeseeses

Observe the following screenshot. The dotted line (the diameter of the field) shows the
path that Sir Foo traverses on his way out. During this 20 mile journey, he stops at 10
equally spaced points. In other words, these points are 2 miles apart, represented by the
centers of the small "search circles". For each stop, he collects the gold within a search
circle. The total collected gold is the sum of the coins inside each of those 10 tiny
circles. Let's not worry about the gold lying outside of these search circles.

[254]

Chapter 7

Assume that the remaining gold on the field is irrelevant for the problem we
are solving.

1 "'-ﬁ"" *t"

Gold hun + RIS R RS Cold hun
besinaf 0 ends!

On the way our,
Sir Foo collecrs gold
coins insldc cacE a'r

\ these "Search Cireles™

&%

‘{F N

Tgrere the rest of
the gofd on fhe field

High-level algorithm

With the preceding screenshot as a reference, let's write the high-level algorithm.
We will keep it simple. The task is to collect the gold coins found inside each of the
small circles in this image (recall that these circles are referred to as search circles).
We will call the radius of each of these circles a search radius. In the present scenario,
the search radius is 1 mile, or let's simply call it 1 unit:

1. Randomly create points representing the gold coins inside a gold field. The
gold field is represented by a large circle with a radius of 10 units and center
at (x =0, y = 0). Each gold coin is represented with a (x,) location.

2. Start with the leftmost search circle, the center of which represents Sir Foo's
current location. The coin hunt is constrained within this search circle.

[255]

Performance - Identifying Bottlenecks

3. For each search circle:

o

Get Sir Foo's current location coordinates.

° Find the distance between each gold coin on the field and Sir Foo's
location, the center of a search circle.

Collect all the coins with distance less than the search radius. These are
the coins lying inside the perimeter of the current search circle.

Advance Sir Foo to the center of the next search circle.

Repeat the preceding steps until you reach the rightmost circle.

4. Report the total number of collected gold coins.

Reviewing the initial code

Let's review the code next (it can also be found in the supporting code bundle, just
look for the goldhunt inefficient.py file). Here is a new GoldHunt class:

class GoldHunt:

def dpit (self, field coins=5000, field radius=10.0,
search_radius=1.0):
self,field coins = field coins
self.field radius = field radius
self.search_radius = search_radius

self.x_ref = = (self.field_radius = self.search_radius)

- A aTe

self.y_ref = 0.0
i‘“"..,.-.-"'; E' ;»-"“""'i....w"f
self.move distance = 2%self.search_radius H

“— rmove distance

[256]

Chapter 7

The play method of this class contains the main logic, as shown in the following
screenshot:

def play(self):

total collected coins = []

x_list, y_list = generate random_points(self.field radius,
self.field_coins)

while self.x _ref == 9.0;

coins = self.find coins(x_list, y list)
total _collected coins,extend(coins)

self.x_ref += self.move distance

print{"Total collected coins: ", len(total collected coins))

Let's review the code in the preceding screenshots:

The input arguments for the play method, field coins and field_radius,
set the number of coins and the radius of the circular gold field, respectively.
These are optional arguments with default values, as shown inthe __ init_
method. The third optional argument, search_radius, helps define the
radius of the smaller search circles.

The x_ref and y_ref variables represent the center of the current search
circle. We simplified the problem by assuming a constant y_ref of 0. 0.

The play method starts by generating random points representing the
scattered gold coins. The generate_random_points function returns two
Python lists containing the x and y coordinates of all the coins on the field.

In a while loop, the total collected coins list stores the coordinates of
coins inside the search circles, starting with the leftmost one.

The actual search operation is performed by the £ind_coins method.

[257]

Performance - Identifying Bottlenecks

Next, let's review the GoldHunt .find coins method:

def find coins(self. x_list, y_list):

cnlléé;ced_n.:gn-iraﬁ? []
for x, y in zip(x_list, y_list):

deita;x-=-s-.-—:-11-“.x_"r"e1-‘.; X
delta y = self.y _ref -y
dist = math.sqrt(delta_x*delta x + delta_y*delta y)

if dist <= self.search_radius:
collected coins.append((x, y3)

return collected coins

This method loops over all the points (gold coins) on the field and for each point, it
computes its distance from the center of the search circle. With this distance, we can
determine whether or not the given gold coin lies inside the perimeter of the search
circle. This is shown schematically in the following diagram. The (x_ref, y_ref)
coordinates represent the center of the search circle. The (x, y) parameters are the
coordinates of any gold coin on the field.

. dist = \[(xret = X)2 + (yres - y)?

AR

[258]

Chapter 7

In this diagram, the distance between a point and the center is represented by dist.
It shows two representative points (or coins). The first one with a check mark next to
it lies inside the circle, whereas the other one with a cross mark is outside. Only the
point lying inside the circle is collected. The method returns a collected_coins list
that contains the location tuples (x,y) of all such points.

Let's review the function that creates random points on the field:

def generate_random_points(ref_radius, total_points):

¥ =[]
y =[]
for 1 in range(total_points):
theta = random.uniform{3.0, Z*math.pi)

r = ref_radius*math.sqrt(random.uniform(2.Q, 1.0})
x.append (r¥math.cos (theta))
y.append (r*math.sin(theta))

return x, vy

You should be able to understand this code fragment fairly easily if you have a basic
math background. Here is how it works:

* Consider a point with radius r and an angle theta.
* The Cartesian coordinates of this point are x = r*cos(theta) and y = r*sin(theta).

* The built-in function, random.uniform, is used to randomly vary r between
0.0 (the field center) and ref radius (the field radius). Note that the import
statements are not shown. For that, refer to goldhunt inefficient.py.

* Similarly, the theta angle is randomly varied between 0.0 and 2*math.pi
(360 degrees).

Plotting the points

You can visualize the generated random distribution of gold coins using
M matplotlib, a Python plotting library. We won't discuss the plotting
techniques here. Check out their website (http://matplotlib.org)
Q that hosts a number of tutorials and installation instructions. Python
distributions, such as Anaconda, come preinstalled with matplotlib.
You can also use the plotting function, plot_points, provided in the
goldhunt inefficient.py file.

[259]

http://matplotlib.org

Performance - Identifying Bottlenecks

Running the code

The main execution code is as follows:

if name == ' main ':
game = GoldHunt ()
game.play ()

This code uses the default arguments to instantiate GoldHunt. With the default
arguments, the code should run smoothly and finish within a few seconds. The
actual time will vary depending on your machine configuration, available RAM,
and so on. You can add some informative print statements to see how the game
is progressing. Here is a sample output using the default arguments:

[user@hostname ch7]$ python goldhunt inefficient.py
Circle# 1, center:(-9.0, 0.0), coins: 55

Circle# 2, center:(-7. .0), coins: 37

’

Circle# 3, center: (-5. .0), coins: 54

’

0
0
Circle# 4, center:(-3.0, .0), coins: 47
0 .0), coins: 53

’

Circle# 6, center: (1. .0), coins: 60

Circle# 7, center: (3. .0), coins: 44

Circle# 8, center: (5.

2
3
4
Circle# 5, center:(-1.
6
7
8 .0), coins: 50
9

o O o o

0,
0,
0,
0,

Circle# 9, center: (7. .0), coins: 51

Circle# 10, center:(9.0, 0.0), coins: 51

Total collected coins = 502

The problem

In the game scenario, you allowed the users to tweak certain parameters. For
example, the users can control the total number of coins on the field or modify the
radius of the search circle. Unknowingly, you opened a new can of worms. For a
large input size, the program runs very slow. For example, one variant of the game,
The Great Dwarf of the Foo mountain, is performing the gold hunt. Let's hear
what he has to say:

[260]

Chapter 7

Just 5000 coinst Are you
ki&ding mef.. Put o million

cnrwci 'TPMET? we are fcn|kir15".

..and by the way, I am the
new ih—:ha.rge. of this search
op. The search radius is too

|a.r5e. for me. Make i+ smaller!

If you change field_ coins from 5000 to 1000000 and set search_radiusto 0.1,
the application will take quite a bit of time to finish. Here is the updated main
execution code with these new parameters:

if name == ' main ':
game = GoldHunt (field coins=1000000, search radius=0.1)
game.play ()

If you increase the coins further or make the search radius even smaller, it will
severely affect the application runtime.

Warning!
M If you run the following code, depending on your machine configuration,
it can slow down your machine, take longer time to finish, and in some
Q cases (a machine with an average configuration) the computer can stop
responding. If you are unsure, it is better not to run it! It is presented here
just as an example. If you really want to, then do it at your own risk!

For example, it can take several seconds or minutes to complete this operation. What
can we do here to improve the performance? Before jumping to that, let's first review
some techniques to identify the bottlenecks.

[261]

Performance - Identifying Bottlenecks

Identifying the bottlenecks

In the previous section, we saw how a different choice of input parameters degrades
the application runtime. Now, we need some way to accurately measure the
execution time and find out the performance bottlenecks or the time consuming
blocks of the code.

Measuring the execution time

Let's start by monitoring the time taken by the application. To do this, we will use
Python's built-in time module. The time.perf_counter function is a performance
counter that returns a clock with the highest available resolution. This function can
be used to determine the time interval or the system-wide time difference between
the two consecutive calls to the function.

The time.perf counter function is available in Python versions 3.3
\ onwards. If you have an older version of Python (for example, version
~ 2.7), use time.clock () instead. On Unix, time.clock () returns a
Q floating point number within seconds that represents the processor time.
On Windows, it returns the elapsed wall-clock time within seconds after
the first call to the function.

The original file, goldhunt_inefficient.py, already has the following code:

import time

if name == ' main ':
start = time.perf counter ()
game = GoldHunt ()
game.play ()
end = time.perf counter()
print ("Total time interval:", end - start)

At the beginning of the file, we import the time module. The start variable marks
the beginning of the performance counter, and the end variable represents its second
consecutive call. In between, we will run the main execution code. The difference
between the two values of the counter can be used as an indicator for the runtime of
the application. Similarly, you can insert these calls elsewhere in the code to monitor
individual code fragments.

[262]

Chapter 7

Measuring the runtime of small code snippets

The built-in timeit module is a useful tool for quickly checking the execution time
of a small code fragment. It can be used from the command line or imported and
called inside the code. Here is one way to use this functionality using the command-
line interface:

$ python -m timeit "x = 100*100"
100000000 loops, best of 3: 0.0155 usec per loop

The -m option allows running the timeit module from the command line. In the
preceding example, it measures the execution time for the x = 100*100 statement.

Let's review the output of this execution. The 100000000 loops in the output
indicates how many times the code is executed by timeit. It reports the best of three
timings. In this example, the best time taken is 0. 0155 microseconds for a single
execution. You can also tweak the number of times the code is run by using the

- -number argument, as shown in the following code snippet. Here, the code is run
only 10 times:

$ python -m timeit --number=10 "x = 100*100"
10 loops, best of 3: 0.0838 usec per loop

Internally, timeit uses time.perf counter to measure the time taken. This is the
default implementation since Python version 3.3. For further details, check out the
documentation (https://docs.python.org/3/library/timeit.html).

Code profiling

The performance measurement techniques that we have seen so far work quite
well, especially when you want to run benchmarks for the application. However,
it is often cumbersome to implement these timers throughout your project to get a
full execution profile. This is where the code profiling helps. It is a technique that
analyzes a program while it is running and gathers some important statistics. For
example, it reports the duration and frequency of various function calls within that
program. This information can be used to identify the performance bottlenecks in
the code.

The cProfile module

Let's see how to use cProfile, Python's built-in module for code profiling. For
illustration purposes, we will use the profile_ex.py file from the supporting code
bundle. It has three simple functions that do some trivial tasks, as shown in the
following screenshot:

[263]

https://docs.python.org/3/library/timeit.html

Performance - Identifying Bottlenecks

def test 1():
return 100*100

def test 2():
¥ =[]
for 1 in range (1000C
temp = 1/1000.0

¥.append (temp*temp)

return x

def test_3(condition=False):

if condition:

test 3()
if _name_ == "_main__":
a = test 1()
b = test 2({)
c = test_3(True)

The cProfile command can either be run from the command prompt or by
importing it inside the module to be tested. Here is the output when run from the

Command Prompt:

File Edit View Search Terminal

Ordered by: standard name
ncalls tottime percall
2/1 0,000 B.000

1 0,000 B.000

1 Epelele] 0,000

1 o.eay 0,007

1 0,000 B.000

16000 0,001 0,000

1 0,00 0,000

[user@hostname ch]5 [

Help

[user@hostname ch]¥ python -m cProfile profile_ex.py
10007 function calls (10006 primitive calls) in 0.008 seconds

cumtime

0.
. 008
elele]
el
. 008
L0061
elele]

D2 oo e @

oeo

percall

Q.
.0e8
Loee
.0es
.0e8
Loee
Loee

Do oo

efelt]

filename: lineno(function
profile_ex. py:12(test_3)
profile_ex.py:2(<module>
profile_ex.py:2(test_1)
profile_ex. py:5(test_2)
{built-in method exec}
{method ‘'append' of 'lis
{method 'disable' of '_1

[2]

[«]

[264]

Chapter 7

. The IPython interactive shell also provides a convenient magic command
% called $prun. With this, you can quickly profile a Python statement.
i For more information, check out https://ipython.org/ipython-
doc/3/interactive/magics.html.

Let's understand the output of this run:

* The first line of the output shows the total number of function calls
monitored. A majority of these are due to for loop inside test_2. For each
iteration, it calls the append function of the Python 1ist datatype.

* On the same output line, it also reports the number of primitive calls.
These are the function calls that do not involve recursion. The test_3
function shows an example of recursion. To understand this better, run the
code by printing the value of the input argument condition. In this case,
there is only one recursive function call.

* The ncalls column indicates the number of function calls. If you add them
up, the total number of calls becomes 10007, same as the ones reported on
the first line of the output. Notice that for test_3, it reports the function
calls as 2/1. It means that the function was called twice but one of the calls
was recursive.

* The tottime column indicates the total time spent in a given function.
* The percall column records the quotient of the totcall/ncalls division.

* The time spent inside a particular function, including its sub-functions, is
reported by cumtime (the cumulative time).

* The percall column reports the cumtime/primitive calls quotient.

* The last column is, essentially, the data related to the functions. It includes
the built-in function calls, such as the append method of the Python 1ist,
and so on.

By default, the output is sorted by standard name. To understand the bottlenecks,
this sorting order is not quite useful. Instead, you can sort by cumulative time,
number of function calls, and so on. This is accomplished using the command-line
option, -s. For a complete list of available sorting options, refer to https://docs.
python.org/3/library/profile.html.

[265]

https://ipython.org/ipython-doc/3/interactive/magics.html
https://ipython.org/ipython-doc/3/interactive/magics.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html

Performance - Identifying Bottlenecks

The following screenshot shows the output sorted by tottime. Observe that it
spends the most time in the test_2 function.

g Edit View Search Terminal Help emsnmssssssEnnn
erffhostname ch]% python -m cProfile s tottime:profile_ex. py

106087 function calls (10006 primitive 'calls) in 0.008 seconds

Ordered by: internal time

ncalls :tottime spercall cumtime percall filename:lineno(function
1: 0.007 @ 0.007 B.008 0,008 profile_ex.py:5(test_2)
leeee = 0.001 : 0.000 B.oe1 0.000 {method 'append' of 'lis
1: 0.000 : 0.000 B.008 0.008 profile_ex.py: 2(<=module>
1: 0.000 @ 0.000 B.oes 0,008 {built-in method exec}
2/1 = 0.000 : 0.000 G.000 0.000 profile_ex.py:12(test_3)
1: 0.000 : 0.000 B.0o60 0,000 profile_ex.py:2(test_1)
1: 0.000 @ 0.000 G.000 0.000 {method 'disable' of '_1

Now that we know how to use cprofile, let's use it to analyze the Gold Hunt
problem. Run the original goldhunt_inefficient.py file with all the default
options, as follows:

$ python -m cProfile goldhunt inefficient.py

It prints a lot of information in the terminal window as there are several of the
internal function calls involved. Optionally, you can redirect stdout to a text file.
To effectively analyze this data, Python provides a built-in module called pstats.
Let's see how to use it in the following section.

The pstats module

The pstats module can be used to further process the profiling data generated by
cProfile. It gives you greater control over creating your reports as compared to
the limited options provided by cprofile. The analysis of the data generated by
cProfile is done using the pstats.Stats class. To make the cProfile output
usable by pstats, we will need to write it to a file using the command-line option,
-0, as follows:

$ python -m cProfile -o profile output goldhunt inefficient.py

The profile_output file, thus generated, is not human readable. While we can go
on and feed this file to pstats. Stats, it is better to automate the whole process by
stitching together these two utilities. Here is a simplified code that does this:

[

[

[266]

Chapter 7

import cProfile
import pstats
from goldhunt inefficient import GoldHunt

def view stats(fil, text_restriction):

stats = pstats.Stats(fil)
stats.strip_dirs()
sorted stats = stats.sort_stats('ftottime’
sorted stats.print_stats("goldhunt")

def play game():

game = GoldHunt()
game.play()

if _ _name_ =="'_main_ ':
filname = 'profile output_new'
cProfile. run{'play_game()'.filname)

view stats(filname, "goldhunt")

Warning

the code does not check if the output file already exists. To make
the code robust, add such checks and the try..except clauses
wherever appropriate.

.\'Q This is a simplified example without any error checks! For example,

This code is also available as profiling_goldhunt.py in the supporting code
bundle for this chapter. Let's quickly review what this code does:

* The main execution code shows a way to run cprofile using its run method.
The first argument to run is the function (or statement) to be monitored,
whereas the second argument is the filename where the profiling output
is stored.

* The view_stats function is where we use the functionality from pstats.
This function takes the generated profiling output (£i1lname) as the first
argument. It is used while creating an instance of pstats.Stats.

[267]

Performance - Identifying Bottlenecks

* The strip_dirs method of the Stats class is used to remove all leading
path information strings from filenames. This reduces the clutter in the final
output by just displaying the name of the file.

* Using the print_stats method, we can impose some restrictions in the
final output. In this example, it looks for the goldhunt string in the rightmost
columns and displays the matching row, ignoring all others. Put in another
way, it limits the information related to the function calls inside
goldhunt inefficient.py.

The pstats.Stats class provides several other useful
. features. For example, the print callees method prints
& a list of all the functions that were called by the function
L being monitored. For further details, check out the Python
documentation (https://docs.python.org/3/library/
profile.html#pstats.Stats).

This code can be run from the command prompt, as follows (it has a dependency on
goldhunt_inefficient.py so put it in the same directory as this file):

$ python profiling goldhunt.py

Here is the sample output of this run (only the output pertaining to the statistics
is shown):
95556 function calls in 0.042 seconds

Ordered by: internal time
List reduced from 19 to 5 due to restriction <'goldhunt'=

ncalls tottime percall cumtime percall Tilename:lineno(function)
10 0.023 0.002 0.027 0.003 goldhunt_inefficient.py:101(find_coins)

1 0.008 0.008 0.0815 0.015 goldhunt_inefficient.py:32(generate_random_points)
1 0.000 0.000 0.042 0.042 profiling_goldhunt.py:30(play_game)

1 0.000 0.000 0.042 0.042 goldhunt_inefficient.py:119(play)

1 0.000 0.000 0.000 0.000 goldhunt_inefficient.py:85(__init_)

This is significantly less output and is restricted to the function calls from the
program we wish to monitor. As indicated in the output, only s out of 19 function
calls are listed. The list is sorted by the total internal time taken to execute the
functions. The two functions, £ind_coins and generate_random points, top the
chart! Their order may vary depending on the values we choose for the field coins
and search_radius variables. But essentially, the code profiling has helped us
identify the most time consuming code in our application.

[268]

https://docs.python.org/3/library/profile.html#pstats.Stats
https://docs.python.org/3/library/profile.html#pstats.Stats

Chapter 7

OK, we have identified the

functions cauaiha the

bortlenecks. Is there a way
to pinpoint the FmHem
inside -rhe.se ‘Ft.th-:'l‘iaha?

Good question! It will certainly help if we can peep inside the function and see the
line-by-line profiling output. Luckily, there is a tool that enables exactly this. Let's
review it next.

The line_profiler package

The line_profiler package is a third-party Python package that can be installed
using pip:

$ pip install line profiler

This package can be used to monitor the performance of a function, line by line.
When you install the package, it also creates an executable kernprof.

On Linux, this executable is created at the same location as your Python executable.
For example, on Linux, if Python is available as /usr/bin/python, this executable is
created as /usr/bin/kernprof (or look for the kernprof . py script). On Windows
OS, it should be created at the same location as pip.exe. Refer to Chapter 1,
Developing Simple Applications for the pip . exe path.

\ On Windows OS, if you encounter any error, such as error: Unable to find
~ vevarsall.bat, you will probably need to use Visual C++ Express. Check
@ out https://www.visualstudio.com/en-US/products/visual-
studio-express-vs for more information.

[269]

https://www.visualstudio.com/en-US/products/visual-studio-express-vs
https://www.visualstudio.com/en-US/products/visual-studio-express-vs

Performance - Identifying Bottlenecks

Using this tool requires trivial changes to the code. All you need to do is add
a @profile decorator above the function or method name, as shown in the
following screenshot:

@profile|
def find coins(se1f, x_list, y_list):

collected coins = []

Then, run the tool using the kernprof command as follows:
$ kernprof -v -1 goldhunt inefficient.py

The -v or - -view option displays the results of the profile output in the terminal
window. The profiler also creates an output file, goldhunt inefficient.py.lprof.
The -1 or --1line-by-1line option uses the line-by-line profiler from the

line profiler module.

Be sure to remove the decorator @profile when you are not profiling
Wl the application using the 1ine profiler. In other words, remove it

~Q while running the application, as:
$ python goldhunt inefficient.py

Otherwise, it will raise a NameError exception.

The line_profiler output for the £ind_coins method is shown below.

As you can see, quite a bit of time is spent computing the distance between the
points (gold coins) and the center of the search circle.

Total time: 0.147367 s
File: goldhunt_inefficient.py
Function: find_coins at line 1006

Line # Hits Time Per Hit % Time Line Contents
160 fprofile
161 def find_coins(self, x_list, y list):
102 """Return list of coins that lie within a given distanc
103
104 rparam x_list: List of x coordinates of all the coins |
165 iparam y_list: List of y coordinates of all the coins (
106 ireturn: A list containing (x,y) coordinates of all the
107 e
108 18 11 1.1 6.0 collected_coins = []
109 # Rest if the code follows (not shown)...
116 50010 26679 6.5 18.1 for x, y in zip(x_list, y_list):
111 50000 28873 0.6 19.8 delta_x = self.x_ref - x
112 50000 26053 0.5 17.7 delta_y = self.y_ref - y
113 50000 36244 0.7 24.6 dist = math.sqrit{delta_x*delta_x + delta_y*delta_y)
114
115 560000 29127 0.6 19.8 if dist == self.search_radius:
116 467 373 0.8 6.3 collected_coins.append({{x, ¥))

[270]

Chapter 7

Similarly, if you see the output for the generate_random_point function, the
majority of the time is spent while creating a random combination of the theta angle
and the r radius, which is used to define a point (a gold coin).

Memory profiling

The profiling techniques we have covered so far aim at finding the runtime
bottlenecks. Let's briefly discuss memory profiling, another important aspect
of profiling.

The memory_profiler package

For memory profiling, we will use a popular Python package called memory profiler.
It can be installed using pip. Here is how to install it on Linux from the command line:

$ pip install memory profiler

The documentation highly recommends installing the psutils module. It also
suggests that, in order for memory_profiler to work on Windows OS, you will need
the psutil module. The psutil module can be installed using pip, as follows:

$ pip install psutil

S For more information on memory profiler, check out the following
page: https://pypi.python.org/pypi/memory profiler.

Justlike 1ine_profiler, the memory profiler package uses the eprofile
decorator above the function name. Let's add the decorator eprofile just above
the generate_random_points function, and then run the memory profiler on the
goldhunt inefficient.py file. The command to run this is as follows:

$ python -m memory profiler goldhunt inefficient.py

[271]

https://pypi.python.org/pypi/memory_profiler

Performance - Identifying Bottlenecks

Here is the output of the memory profiler. It reports the line-by-line memory
consumption. Note that the profiler prints the whole function, including the
docstrings. For ease of illustration, part of the docstring is not shown.

Line # Mem usage Increment Line Contents

30 52.188 MiB 0.000 MiB @profile

31 def generate_random _points(ref_radius, total_points):

32 ""MReturn x, y coordinate lists representing random points
33 52.188 MiB 0.000 MiB X = []

34 52.188 MiB 0.000 MiB y = []

35 52.188 MiB 0,000 MiB show_plot = False

36

37 52.574 MiB 0.387 MiB for i in range(total_points):

38 52.574 MiB 0.000 MiB theta = random.uniform(@.08, 2*math.pi)

39 52.574 MiB 0.000 MiB r = ref_radius*math.sqrt{random. uniform(@.0, 1.0))
40 52.574 MiB 0.000 MiB . append(r*math.cos(theta))

41 52.574 MiB 0.000 MiB y.append(r*math. sin(theta))

42

43 52.574 MiB 0.000 MiB if show_plot:

44 plot_points(ref_radius, x, y)

45

46 52.574 MiB 0.000 MiB return x, vy

The line number in the code is shown in the first column. The second column, Mem
Usage, tells us how much memory the Python interpreter consumes after executing
that line number. The unit of the memory is mebibyte (MiB).The third column,
Increment, gives the memory difference between the current line and the previous
line. If the memory is released by the current line of code, then the Increment
column shows a negative number. The last column shows the actual line of code. As
can be seen from the Increment column, the memory is mainly consumed in the for
loop. We will use the memory profiler in the next chapter to compare the memory
efficiency of a generator expression and a list comprehension.

Algorithm efficiency and complexity

An algorithm is a set of instructions to solve a particular problem. In this context, an
algorithm can be a function or even a simple operation that adds two numbers. Let's
understand two related terms: algorithm efficiency and algorithm complexity.

Algorithm efficiency

Algorithm efficiency indicates the computation resources consumed by an algorithm.
Typically, the lower the resource consumption, the better the efficiency. The
computational resources can mean several things. One can be talking about the
runtime (CPU usage), the memory consumption (RAM or hard disk) or the network
consumption, or a combination of these.

[272]

Chapter 7

The application requirement determines which resource takes precedence over the
others. For example, in a web application, the network usage can be more important
than the disk space. For a scientific application, you might have all the memory you
need but the runtime can be a pain in the neck, and so on. In this book, we will limit
our discussion to the runtime efficiency only.

Algorithm complexity

Suppose you have a program (an algorithm) that processes some data in five
minutes. If you increase the size of the data, how much time will the program need?
The answer lies in the algorithm complexity. It tells us how well the algorithm will
scale if you increase the size of the problem. In other words, the computational
complexity influences the performance of the algorithm. In the next section, you will
learn how to represent the computational complexity.

Big O notation

In simple terms, the big O or big Oh notation is a way to represent the computational
complexity of an algorithm. Here, the O is the letter O, as in order, and not the
number zero. The big O indicates an upper bound or the worst-case scenario of the
complexity of an algorithm (details to follow in the next section). This concept can be
better explained with an example. Let's take a look at the following code:

num = 100

x = []

for i in range (num) :
x.append (i)

Let's call this trivial code fragment an algorithm. It is a simple operation that
appends a number to the 1ist inside a for loop. Here, num represents the size of the
input used by the algorithm. If you increase num, the algorithm will have to do more
work inside the for loop. Increase it further, and the poor algorithm will have to do
even more work. Thus, the time taken by the algorithm depends on the value of num
and can be expressed as a growth function, f(1n). Here, n represents the size of the
input that corresponds to num in this example.

< Making sense so far? You can also test this by measuring the execution
time. To see a real difference, choose a larger value of num.

[273]

Performance - Identifying Bottlenecks
In this algorithm, the most time consuming piece is the for loop, and it will

determine the overall runtime of the algorithm. Inside the for loop, each call to
x.append (1) takes constant time, £, to finish. For a large value of num, the total

time taken by the loop will be approximately num*(t). Thus, the runtime efficiency
of the whole algorithm relative to num is linear. In terms of the big O notation, this

particular algorithm is said to have O(n) complexity.

Big O complexity classes
Let's review some big O complexity classes. The following chart annotates various
complexity classes and shows how f(n) influences the running time of algorithms:

30 - T ; ; ;
n{_“ 3) [0(n™2) " Tirme car‘np|egi-r>¢ of
' | Z = different algorithms
.l R e I,". . e I S . ﬂ{n :L'?g I"I} i
: I.'II :B-e;;ohd rhis value -f'"
L I ek [T S S S th-}oﬂ.n) .'.'.' i
= L .' - becomes costlier,+”
* [than Ofn) L.t : .
1 e T A .__._P_LI‘I_] |
n

On the y axis, we have the f(n) function, and the x axis represents the input size,
n (the num variable in the previous discussion). The plot compares some common

functions that represent the time complexity of algorithms.

[274]

Chapter 7

It should be noted that the big O representation does not include the constants.

So, even if two algorithms share the same big O complexity, they can clock a

very different runtime performance. The circle marker in the plot shows a typical
crossover point between two complexity functions. In this example, this is between
O(n) and O(n log n). As noted earlier, the individual algorithms representing these
complexity functions will have different constant multipliers (not reflected in the big
O notation). Tweaking those multipliers can change where this crossover happens.

Let's briefly review these notations now.

O(1) — constant time

Regardless of the value of the input size, the time taken by the algorithm remains
constant. Getting the length of a Python list (1en (x), where x is the list) or the
append list operation we saw earlier, are a few examples of O(1) complexity.

O(log n) — logarithmic

The time required by the algorithm is proportional to the logarithm of the input size.
One of the examples of logarithmic complexity is a binary search algorithm. It starts
with inspecting the middle element of a sorted array. If the value being searched is
lower than the middle element, the entire upper half, including this middle element,
is eliminated from the search. We can do this because it is a sorted array. This process
is repeated for the remaining half and it continues until we find the desired value.

Confused? Let's see what Fairy is up to these days...

Fairy has lost her enchanted locket in a room full of treasure chests. These boxes
are numbered 1 to 100 and are arranged in increasing order. In other words, the
boxes are sorted and the locket is placed in one of them. She is trying to find it with
the help of her magical wand. The wand knows that the locket is in, for instance,
box number 82, but it won't give a straight answer! It expects her to ask the right
questions.

She is standing exactly in the middle of the room and in front of box 50. Towards
her left, she sees numbers 1 to 49; and towards the right, numbers 51 to 100, in that
order.

She asks her wand, is the locket in box 50?7 The wand says "no". She further asks, is
the number greater than 50 or less than 507 The wand answers "greater than 50".

With this answer, she ignores the boxes on the left side (1-49), including box 50,
and stands in the middle of the group, to her right (51-100). Now, she has box 75 in
front of her. She repeats the questions with box 75 as the reference. Each time, half
of the remaining chests are eliminated. The search operation goes on until she finds
her locket in box 82.

[275]

Performance - Identifying Bottlenecks

This is the binary search in a nutshell. You can find more information on Wikipedia
(https://en.wikipedia.org/wiki/Binary search algorithm). In the worst case
scenario, the time complexity of this search is O(log). Another way to look at the
logarithmic complexity is as follows. For an exponential increase in the size of the
problem 7, the time taken by the algorithm increases linearly. As can be seen in the
earlier chart, the O(log n) time complexity is better compared to the O(n) (linear-time)
complexity, but not as good as O(1).

O(n) — Linear time
We already saw an example where a for loop makes the algorithm of the O(n)

complexity. Finding a min or max element in a Python list and copying a list or a
dictionary are some other examples of this complexity.

O(n log n) — Log linear
An example of a log linear time complexity is a quicksort algorithm. Let's call Fairy
one more time to get a better idea of the working of this algorithm.

Fairy enters another treasure room and finds it extremely disorganized. The
treasure chests are randomly scattered everywhere in the room. Not liking this, she
decides to sort the chests in an increasing order of their value (or price). Initially,
the chests are randomly placed, like this:

[53249788]

Here, the number represents the value of each chest. Fairy starts picking a pivot chest,
say with a value tag of 5. She then rearranges the chests into three sections: (i) The
ones with a value lower than 5 are on the left side of the pivot, (ii) the pivotal chest 5,
(i1i) and the values greater than 5 are on the right side. This is shown below:

[324 5 9788]

Next, with 5 fixed to its position, she repeats the preceding procedure to the items
on the left and right sides of 5. For example, consider only the left side of 5:

[324]

The fairy chooses number 3 as a new pivot and arranges the values to the left and
right of 3, as shown earlier. This rearrangement results in:

[234]

The process goes on until all the chests are sorted in the increasing order of the
valuables, as shown below:

[23457889]

[276]

https://en.wikipedia.org/wiki/Binary_search_algorithm

Chapter 7

This is the basic quicksort operation and has the complexity of O(n log n). As shown
in the earlier chart, for a higher value of n, the O(n log n) complexity is expensive
compared to O(n), but it is much better than the quadratic complexity.

\ It should be noted that O(n log n) is the average-case complexity of
~ the quicksort algorithm. Refer to the section, Upper bound (worst-case)
Q of the complexity, of this chapter to learn about average-case and
worst-case complexities.

O(n?) — Quadratic
This represents the quadratic runtime complexity. The time required to run the

program grows as square of the size of the input to the algorithm. Let's extend the
previous example to understand this further:

num = 100
x = []
for i in range (num) :
for j in range (num) :
x.append (i)

It is a nested for loop. Let t be the time it takes to append an element to the list. As
mentioned earlier, a single append operation is of O(1) complexity. The inner for
loop will take approximately n*t (or num*t) to execute. Since we have an outer for
loop, the total time complexity becomes n*(n*t). A classic example of this complexity
is a bubble sort algorithm (https://en.wikipedia.org/wiki/Bubble_sort). This
algorithm sorts a list in an iterative manner, and it repeatedly swaps the adjacent
elements of the list if these elements are placed in a wrong order.

O(n®) — cubic

This is a cubic complexity, which is worse than the quadratic complexity. A small
increase in the problem size will result in a big increase in the runtime. Adding
another outer for loop in the illustration on quadratic complexity will make it O(n°).

M This is only a partial list of complexity classes. There are many more. For
Q further information, check out https://en.wikipedia.org/wiki/
Big O notation.

[277]

https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

Performance - Identifying Bottlenecks

Upper bound of the complexity

Let's revisit the statement we made earlier: "Big O notation indicates an upper bound
or the worst-case scenario of the complexity of an algorithm". Quite a mouthful? An
explanation is in order. We will reuse the illustration used in the discussion on the
O(n?) complexity:

num = 100
x = []
for i in range (num) :
for j in range (num) :
x.append (1)

We already saw that a single x. append (i) operation is O(1), the inner loop is O(N),
and the full nested for loop has the time complexity of O(n?). Then why do we say
that the complexity of the algorithm as a whole is O(n?)?

If you look at the earlier chart that compared various complexities, O(n?) is the
costliest among these three complexities and thus the most significant part of it. In
other words, the algorithm complexity cannot get worse than O(n?). Now, read the
earlier statement on upper bounds one more time. The big O notation represents the
worst-case scenario of the complexity of the algorithm. This is the reason why the big
O complexity class for this algorithm is represented as O(n?).

_— L
Average-case time complexity:

Most of the time, an algorithm is analyzed by measuring its worst-case
complexity. However, there are some problems where it makes practical
sense to measure the average-case time complexity. Here, the amount
of time taken to run the algorithm is averaged over all possible inputs.

%j%‘\ The quicksort algorithm we saw earlier is a classic example where

/ average-case complexity is useful. It determines the real (or practical)

efficiency of the algorithm. The average-case time complexity of this
algorithm is O(n log n), whereas the worst-case complexity is O(n?). For
more information, check out https://en.wikipedia.org/wiki/
Average-case complexity.

[278]

https://en.wikipedia.org/wiki/Average-case_complexity
https://en.wikipedia.org/wiki/Average-case_complexity

Chapter 7

Complexity for common data structures and
algorithms

The following table summarizes the time complexity of a few frequently performed
operations on some Python data structures. This is not an exhaustive list, for that, see
the Python wiki (https://wiki.python.org/moin/TimeComplexity). It documents
the time complexity of several other operations on these data structures.

Data structure Operation Time complexity Example
search (check for membership) ofn) x in st
index (accessing a value) oL x[1]
list append orl) x. append(10)
delete ofn) del 1st[1]
iteration ofn) for i in 1st
search (check for membership) Of1) (average-case) % in d
) index (accessing a value) 0Of1) (average-case) dlkey]
dict delete 0Of1) (average-case) del dlkey]
iteration ofn) for key in d
search (check for membership) (1) (average-case) % in s
index (accessing a value) (1) (average-case) dx]
st delete Of1) (average-case) del s[e]
iteration oln) for 1 in s

The following table summarizes the time complexity of some common algorithms
along with the Python functions that implement them. Note that the functions
listed are from the NumPy library. Although the next chapter will introduce you to
NumPy, we won't specifically talk about these functions in this book.

Time complexity Python functions
Algorithm {=stardard functions in numpy Notes
Ave rage-case Worst-case |ihrar-_.‘|:|

Binary search Oflog n) Oilog n) numpy, searchsorted Alsocalled half-interval search algorithm
Quicksort 0in log n) oin?) numpy ., sort Use optional argument kind="quicksart’
Mergesort Qin log n) Oin log n numpy. sort Uze optional argument kind="me rgesort’
Heapsort 0in log n) 0in log n numpy. sort Lse optional argument kind="heapsart’
Bubblesart Qin) oin?) Mo standard Python function available

[279]

https://wiki.python.org/moin/TimeComplexity

Performance - Identifying Bottlenecks

The first algorithm listed in the preceding table is a binary search algorithm. This
was already illustrated when we talked about the O(log 1) or logarithmic complexity.
The numpy . searchsorted function uses binary search to find array indices where
the elements need to be inserted to maintain order. The remaining algorithms in this
table are a few common sorting algorithms that put elements in a list in a specific
order. We already talked about quicksort. To learn more about the other algorithms,
refer to https://en.wikipedia.org/wiki/Sorting algorithm.

Wrapping up the big O discussion

Let's summarize what you learned about the big O notation so far:

* Big O enables us to compare different algorithms in terms of their time (or
space) complexity. This helps us choose the right algorithm (if possible) or
determine the strategy to implement changes that speed things up.

* It gives us the growth rate of an algorithm, but it will not give us the absolute
value of the runtime. For example, some algorithm A takes 10 minutes to
execute. On the same machine, algorithm B takes 200 minutes to execute, and
guess what —both algorithms have the same complexity, say O(n). Although
they have different execution times, they have one thing in common, the time
taken linearly increases with their problem size.

You 'far'go+ fo
mentieon ané fhins...

is one 'O'
Tto ru|-: -rhern a||' I

- yes, I am fa"-:ing nbauf
the worst=—case camp|eri1'}'
of the algaﬁfhm

[280]

https://en.wikipedia.org/wiki/Sorting_algorithm

Chapter 7

Glad you brought that up! The big O notation indicates the worst-case scenario
of an algorithm, and it rules other (less costly) complexity classes present in that
algorithm. In other words, the worst-case complexity drives the performance of
that algorithm.

It is good to be aware of the complexity, especially when the problem size is large.
For a very small problem, it may or may not make a huge difference. A good practice
is to analyze the existing algorithm for the performance bottlenecks, and then see if
it is worth revamping the algorithm for speedup. Weigh in the factors, such as the
time you spend on changing the algorithm and its impact on the quality (bugs and
testing) versus the long term benefit of the speedup accomplished. In a nutshell,
choose the strategy that best fits your needs.

It is also worth noting that sometimes you have to live with an algorithm with a certain
complexity class. But that is not the end of the road. You can still implement techniques
to speedup the code without changing its order of complexity. The performance
improvement obtained will depend on the problem in hand. For example, you can
parallelize the code or compute some parameters in advance to achieve speedup.

Later in this book, we will cover basics of parallelization in Python.

Summary

This chapter was the first one in the series of three chapters based on performance.
It laid the ground work to improve application performance. We learned how to
record the runtime using the time module. We also saw how the timeit module
can be used to measure the performance of small pieces of code. We took a practical
problem where an application ran fine when working with a small input, but, as the
input grew larger, it slowed down considerably. With this example, we learned how
to identify the bottlenecks using cProfile and display the results using pstats.

We saw how the 1ine profiler module can help locate the time consuming
statements inside a function. While most of the discussion was focused on the runtime
performance, we briefly covered the memory profiler module. This module enabled
line-by-line analysis of memory consumption for the given functions. Finally, we
learned about the big O notation that represents the computational complexity of

an algorithm.

Now that we have identified the performance bottlenecks, let's move on to the next
chapter to improve the application performance.

[281]

Improving Performance —
Part One

Let's recap what you learned in the previous chapter. We started with a program
that appeared harmless until some parameters were tweaked. This change revealed
performance issues. Hence, we performed a search operation (profiling) to catch the
culprits (the bottlenecks). Now, let's see what we can do to speed up the application
code. To be specific, we will cover the following topics:

* Cutting down the runtime of the Gold Hunt application
* Learning to improve the application performance using the following ways:

o

Making changes to the algorithm

o

Avoiding the function re-evaluation

° Using the list and dictionary comprehensions

o

Using generator expressions

[e]

Using tricks to improve the performance of code involving loops

o

Choosing the right data structures
° Discussing the collections and itertools modules briefly

In summary, this chapter will cover several (but not all) techniques to speed up
the application. Some of these can be directly applied to alleviate the performance
problems of the Gold Hunt scenario from the previous chapter. For the rest, we will
use generic examples to illustrate the efficacy of those techniques.

[283]

Improving Performance — Part One

Prerequisite for the chapter

Have you already read Chapter 7, Performance - Identifying Bottlenecks? It teaches
you how to identify the performance bottlenecks. A part of this chapter uses the
same problem that was discussed in the previous chapter and gradually improves
its performance. Also, in this chapter, it is assumed that you already know how to
profile the code.

This is how the chapter is organized

We will start with first part of the performance improvements for the Gold Hunt
scenario. The aim is to provide you with a practical example of how to approach the
problem and gradually cut down the runtime. The following chart shows a preview
of what will be accomplished by the end of this chapter — this is the same chart
shown in the previous chapter. The application runtime is about to be cut down by
more than 50%!

- Geold Hurnt Performance Optimization
{Dara Size : -
186 Fleld coins: 2 il lisn i Ihlﬂﬂl l':t'dﬂ

a0 E:scarch radius: &l mile ﬁ|3at’i1‘hm chanﬂf_a
— Eeanes | Num?}-
_g
£ an e o Farallelization
b .
=
E Ir‘r-Pro\-'cr'r-er-r I
= &0 : Ir/‘H‘.Is,- -:“.chpfdr’
a
g
E 43.5
8 4o
b
o
o
<

20

13.5
] : | 1 :
Initial code ﬁ'sarnhm chnnge:\ Farallelizaticn

Oprimization Milestones

The second half of this book will show you many ways to improve the application
speed. For this discussion, we will use generic examples, as not all techniques can
be applied directly to the Gold Hunt scenario. The second half will serve as a handy
reference for performance improvements.

[284]

Chapter 8

Some of these will be covered here. Refer to https://wiki.python.

M The Python wiki has documented several performance improvement tips.
Q org/moin/PythonSpeed/PerformanceTips for further details.

Revisiting the Gold Hunt scenario

At this point, you should go back to Chapter 7, Performance - Identifying Bottlenecks,
and refresh your memory on the Gold Hunt scenario. To summarize the problem, a
circular field has gold coins scattered all over and you need to pick as many coins as
you can while traveling across the field. However, you can only pick the coins lying
inside the small search circles. We wrote an application code and discussed how
tweaking the search _radius and field coins (total scattered coins) parameters
impact the performance. In the upcoming discussion, we will gradually improve the
performance of this code.

Selecting a problem size

In order to see a real difference in the timing after optimizing the code, let's
increase the problem size further. In the previous chapter, The Great Dwarf
wanted us to put one million coins on the field. Let's double the deal. Now, there
are two million gold coins up for grabs! In short, search_radius and field_
coins will be set to 0.1 and 2000000, respectively.

Caution! Read this before running any example

Running the examples in this chapter can consume a lot of computational
resources (the sample output will be shown in this chapter so you don't
have to run these). The goldhunt 0.py file, for instance, takes nearly
M two minutes to complete on a 64 bit Linux machine with an 8 GB RAM
and a good processor with only a few running tasks. It also consumes
Q quite a bit of memory during the execution. The performance is not
that bad for this system configuration. In general, it will depend on
the specifications of your machine. So, be careful! One strategy is to set
field coins=5000 and search radius=1 and see how well the
application runs. Then, progressively tweak these parameters to an
acceptable configuration.

[285]

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Improving Performance — Part One

Profiling the initial code

We will start with the source goldhunt_0.py file (see the supporting code for the
chapter). This is same as goldhunt_inefficient.py except for the following:

* It profiles the game execution using cProfile and prints the statistics. Thus,
it also includes the functions from the profiling goldhunt.py module.
Although combining these two modules is not the best practice, it will help
simplify the upcoming illustrations.

* The updated play game () function is shown next. It uses the new parameter
values, as shown:

def play game():

game = GoldHunt{field coins=2000000, search_radius=0.1})]
game.play()

if _ _name_ =="'_main_ ':
filname = 'profile_output_new'
cProfile.run{'play_game()',filname)
view_stats(filname, "goldhunt")

The code can be run as follows —if necessary, tweak the input arguments to
GoldHunt ():

$ python goldhunt 0.py
The following screenshot shows the profiling statistics for this run:

208019639 function calls in 106,265 seconds

Ordered by: internal time
List reduced from 21 to 5 due to restriction <'goldhunt'=

ncalls tottime percall cumtime percall filename:lineno(function)
95 87.911 0.925 100,041 1.053 goldhunt_0.py:105(find_coins)

1 3.469 3.469 6.172 6.172 goldhunt_0.py:35(generate_random_points)
1 0.045 0.045 106,265 106.265 goldhunt_0.py:163(play_game)

1 0.002 0.002 106.220 106.220 goldhunt_0.py:124(play)

1 0.000 0.000 0.000 0.000 goldhunt_@.py:88(__init__)

Notice that £ind_coins eats up a significant amount of time. The next on the list is
generate_ random_points. Let's see what we can do to improve the performance.

[286]

Chapter 8

Optimizing Gold Hunt — Part one

It is time for some action. This section is organized in the following manner —you
will learn some techniques to optimize the code and speedup the application. These
techniques will be directly applied to improve the performance of the Gold Hunt game.

This is the first part of the optimization task. Here, the performance will be improved
in three steps. We will call these optimization pass one, pass two, and pass three. After
implementing each of these strategies, the code will be re-profiled to get an
understanding of the speedup accomplished. Let's get started with optimization

pass one.

Tweaking the algorithm — The square root

The profiling output (refer to the Profiling the initial code section) shows the
find_distance method as the bottleneck. As a starter, let's make some changes to
this algorithm so that it runs faster. Here is the original method that was presented in
the Reviewing the initial code section in Chapter 7, Performance - Identifying Bottlenecks:

def find coins(self, x_list, y_list):

collected_coins = []

for x, y in zip(x_list, y_list):
delta x = self.x_ref - x
delta_y = self.y_ref -y

dist = math.sqrt(delta_x*delta_x + delta_y*delta_y)

if dist == self.search_radius:
collected coins.appendi{x, yJ)

return collected coins

[287]

Improving Performance — Part One

The method computes the distance to each gold coin from the center of the search
circle and determines whether or not the given gold coin lies inside the search circle.
The computed distance, denoted by dist, is a square root.

Do we really need to compute a square root? The square root computation is time
consuming and in this case unnecessary. All we are doing is just comparing two
numbers. Can we avoid that by comparing the square of two numbers instead?
Confused? Have a look at the following comparison:

=4, b=9 = a=<b

ﬁ:?, ‘JEZBI == JEG‘-‘.J’E

We have two positive numbers, =4 and b=9. Obviously, a is smaller than b. So, the
comparison a < b will always return true. This is applicable even for the comparison
of their square roots. The same logic can be applied to our problem. The dist and
self.search_radius variables can be considered as square roots of two numbers.
We have got the following code:

dist = math.sgrt(delta_x*delta x + delta y*delta y)

Or, we can say dist is the square root of some number, dist_square, given
as follows:

dist_square = delta x*delta x + delta y*delta y

Next, we already know the value of self.search radius. Now, imagine it as a
square root of another number, search_radius_square. This number is not already
available, and it needs to be computed as follows:

search radius_square = self.search radius*self.search radius

[288]

Chapter 8

As the last step, we will need to compare these two numbers instead of their
square roots:

if dist square <= search radius_ square:
more code follows...

Gﬁ. we are not -Findinﬂ +he
'square root, but now it requires
us to da a naw compu'rﬂ.ﬂah... ‘rhﬂ
‘'square of the search radiusl
How is -rha-r gaing fo help??

That's a good observation! It requires us to do an extra computation to find out the
square of self .search_radius. But, we do not need to compute that for every
iteration inside the for loop. The self.search_radius does not change inside
the loop. So, this computation can be done just once before the for loop.

[289]

Improving Performance — Part One

Gold Hunt optimization — Pass one

Putting it all together, the updated £ind_coins method is shown next:

def find coins(self, x_list, y_list):

collected_coins =

[l

search_radius_sguare

for x, y in

delta x =

delta_y

self.search_radius#*self.search_radius

self.x_ref - x
self.y_ref -y

zip(x_list, y_list):

dist square = delta_x*delta_x + delta_y*delta_y

if dist_square == search_radius_square:
collected coins.append({x, y))

return collected coins

It is now time to profile this code again and see if we get any improvement in the
performance. The supporting source file, goldhunt_pass1.py, has these changes

incorporated. It can be run as follows:

$ python goldhunt passl.py

The following screenshot shows the profiling statistics for this run:

18019402 function calls in 55,740 seconds

Ordered by: internal time
List reduced from 21 to 5 due to restriction <'goldhunt'=

ncalls tottime

95 49,703
1 3.260
1 0.043
1 0,062
1 0. 000

percall

0.
. 260
.043
.0n2
elelcl

[= e ev I #%]

523

cumtime

49,
5.
55,
55,
0.

708
981
740
697
oje]c]

percall

0.
5.
55,
55,
0.

523
981
740
697
oee

filename: lineno(function)

goldhunt_passi.
goldhunt_passil.
goldhunt_passl.
goldhunt_passl.
goldhunt_passil,

»107(find_coins)
»3B(generate_random_points)
:169(play_game)

2127 (play)

191(__init_)

[290]

Chapter 8

Compare the timings with that of the original code. There is a significant
improvement in the application's runtime. Earlier, the total runtime was more than
100 seconds, but this optimization has brought it down to less than 60 seconds!

You can also compare the first row in the output (£ind_coins) against the original
timings. The timings noted by the profiler will depend on the machine specifications
and the input values chosen.

The timings will vary slightly even if you run the same program again.
There are two reasons behind this; first, we are distributing the gold coins
randomly on the field. As a result, for each run, there will be a variation
. in the total number of coins appended to the list. The second factor that
% influences this is the other running processes on your system. Ideally, you
L should run it under the same environment to reduce these variations (or
noise). For example, close other running applications so that they don't
interfere with the timing. During the performance benchmarking process,
quite often, the same application is run multiple times and an average
time is noted to reduce the effect of these variations.

Skipping the dots

The dot notation in Python enables access to the attributes of the given object. Take
a look at the following code from the previous example. This is taken from the for
loop of the £ind_coins method:

for x, y in zip(x list, y list):
Some code follows...
...
if dist_square <= search radius_ square:
collected coins.append((x, y))

In this loop, for every iteration, the collected_coins.append function is re-evaluated.
Recall that in Chapter 6, Design Patterns, you learned about the first-class functions. Let's
represent collected coins.append with a local function. This avoids the function
re-evaluation (skips the dots) and will help speed up the loop.

[291]

Improving Performance — Part One

Gold Hunt optimization — Pass two

In pass two, we will improve the code from the earlier pass (optimization pass one).
The goldhunt_pass2.py file in the supporting code bundle incorporates all the
changes to be discussed next. Here is the modified find coins method:

def find coins(self, x_list, y_list):
collected coins = []
search_radius_square = self.search_radius*self.search_radius
append _coins function = collected coins.append

local_xref
local_yref

self.x_ref
self.y_ref

for x, y in zip(x_list, y_list):
delta x = local xref = x
delta y = local_yref -y
dist square = delta_x*delta_x + delta_y*delta y

if dist sguare == search_radius_square:

kppend coins_function((x, y))

return collected_coins

Here, a local function called append_coins_function is assigned to the built-in
append function of a Python 1ist. This avoids the re-evaluation of the append
function. Similarly, self.xref and self.yref are represented with local variables.
Let's profile this new code and see if we get any improvements. The command is

as follows:

$ python goldhunt pass2.py

[292]

Chapter 8

18019513 function calls in 44,545 seconds

Ordered by: internal time
List reduced from 21 to 5 due to restriction <='goldhunt'=

ncalls tottime percall cumtime percall filename:linenoffunction)
95 38.553 0.406 38.559 0.406 goldhunt_pass2.py:107(find_coins)

1 3.247 3,247 5.935 5,935 goldhunt_pass2.py:38(generate_random points)
1 0.044 0.044 44,545 44,545 goldhunt_pass2.py:172(play_game)

1 0.002 0,002 44,501 44,501 goldhunt_pass2.py:130(play)

1 G.0060 0,000 0.000 (3.000 goldhunt_pass2.py:91(__init__)

There is an improvement in the performance, but the results are not as impressive
as the first pass of the optimization. It is still a reasonable improvement of about 10
seconds or more than 15%.

You can make similar changes elsewhere in the code, but before you jump the gun,
Sir Foo has an important message for you.

H’mm.. infercsﬂng a*rm:rcgy o
avoid function reevaluation.
IBE‘? it CRFTDEIIFS o Cieviﬁkre 'Frarn

the spirit of best practices. Is
it really worth it?

T sense evil here. Such
local references will make
the code hard to read and
maintainl

That is an excellent point! Care should be taken while adopting such techniques.
You should document the code or define a project-specific coding convention so that
the local functions clearly stand out. This will help other developers understand the
purpose of such assignments. More generally, do not overdo it and see if there is a
real benefit.

[293]

Improving Performance — Part One

Using local scope

While looking for a variable or a function definition, Python first searches the
following namespaces in that order: local, global, and built-in. In simpler terms,

it first looks for local variables or functions, then performs the search at the module
level, and if nothing can be found, it looks for a built-in function or variable name.
So, the look up for local variables or functions is the fastest. Using a local function in
place of a global or built-in function may help improve the performance. The amount
of speedup you get will depend on the problem.

Let's review the generate_random_points function. The original code is shown
next. Refer to the Reviewing the initial code section in Chapter 7, Performance -
Identifying Bottlenecks, where it was explained.

def generate random_points(ref radius, total points):

x =[]

y =[]

for 1 in range(total_points):
theta = random.uniform(2.0, 2*math.pi)
r = ref_radius*math.sqrt{random.uniform(Q.Q, 1.0})
¥.append (r*math.cos (theta))
y.append(r*math.sin(theta))

return x, vy

In the original function, we are calling various functions of the built-in modules,
random and math. Let's update generate_random_points in the next optimization
pass.

Gold Hunt optimization — Pass three

Let's go further into the optimization process. We will replace the built-in function
calls in the generate random points function with local ones. The reworked
code is shown next. Here, the 1 _uniform variable represents the random.uniform
function. Likewise, you can see the other assignments in this code snippet.

[294]

Chapter 8

def generate_random_points(ref_radius, total_points):

A

¥y o=

1_uniform =

1 _sqrt = math.sqgrt
1 pi = math.p1

1 cos = math.cos

1 sin = math.sin

random.uniform

for 1 in range(total_points):
theta = 1_uniform(0.0, 2¥1_pi)

r =

x.append (r*l_cos(theta))
y.append (r*1_sin(theta))

return

Q

¥,

y

ref_radius*1_sqrt{l_uniform(2.0, 1.3})

The optimization accomplished after this step is a combination of

using local scope and skipping the dots. As an exercise, you can try to
separate these components. For example, to avoid using dots, at the
top of the module, import pi, cos and other symbols, and directly use
them in the function. Then compare the performance with and without

the use of local functions.

Also, before implementing such a code, ask yourself a few questions:

By using local scope, is the code quality getting compromised (is it

harder to read and maintain)? Does the final performance improvement

outweigh all other factors?

You can also find this code in goldhunt_pass3.py. The following is the cProfile
output for this file. There is only a minor improvement in the overall timing. The real
difference will be noticeable if you compare the second row of the list (generate_
random_points) with the corresponding output of optimization pass two:

18019605 function calls in 43,564 seconds

Ordered by:

internal time

List reduced from 21 to 5 due to restriction ='goldhunt'=

ncalls tottime

95 38.
1 2.
1 0.
1 0.
1 0.

267
618
044
ee2
elefe]

percall

0.
618

Do oM

403

044

@02

oee

cumtime
38.272
5.240
43.564
43.520
0.000

percall filename:lineno(function)

¢}
5.
43,
43,
¢}

.403 goldhunt_pass3.py:114(Tind_coins)

240 goldhunt_pass3.py:38(generate_random_points)

564 goldhunt_pass3.py:179(play_game)
520 goldhunt_pass3.py: 137(play)

. 000 goldhunt_pass3.py:98(__init__)

[295]

Improving Performance — Part One

The total runtime has been reduced to ~2.6 seconds from an initial ~ 3.2 seconds.

Increasing the problem size (number of coins) could make this difference further
noticeable.

But it looks like someone is not quite impressed with the speedup...

That's all yau've 591‘? My
army is waifing for my
refturm. Cd.n you ma.ke
the code run even faster?

Absolutely! The task to improve the Gold Hunt game performance is far from
over! Before we do that, let's discuss some other techniques that help speed up

the application. We will use generic examples as many of these techniques are not
relevant in the context of the previously mentioned game scenario.

In the next chapter, we will revisit the Gold Hunt problem and speed up

the application further using NumPy and parallelization. It will be a drastic
improvement in the performance. If you do not want to break the continuity, read
the next chapter first and then come back here for the rest of the discussion.

[296]

Chapter 8

Performance improvement goodies

Let's spend some time discussing miscellaneous tips and tricks that help improve the
runtime performance of the code. You can still apply a few of these techniques to the
Gold Hunt problem, but let's just use generic examples to explain these concepts.

All the illustrations in this section can be found in the supporting
o file, nisc_performance.py. To compare the performance, we will
~ use the t imeit module that was discussed in Chapter 7, Performance
Q - Identifying Bottlenecks (refer to the Measuring runtime of small code
snippets section). See also the t imeit documentation, https://docs.
python.org/3/library/timeit.html.

List comprehension

List comprehension is a compact way of creating a Python 1ist. It is often used
to replace the nested for loops or the map and filter functionality. Besides being
compact, it is also efficient compared to, for instance, an equivalent for loop. The
basic syntax is as follows:

a = [i*¥i for i in range(5)]
This creates a list with elements: [0, 1, 4, 9, 16]

The preceding syntax is equivalent to the following:

mylist = []
for i in range(5):
mylist.append (i*i)

Let's wrap these code blocks in two functions. We will measure the performance

of each function using the timeit module. The previously mentioned file,
misc_performance.py, also has these functions. To get a better idea of the
performance gain, we will select a larger problem size. As noted a few times earlier
in this book, select a problem size depending on what your machine can comfortably
handle.

[297]

https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html

Improving Performance — Part One

The following code fragment shows these functions:

import timeit

sample_size 1 = 1000000
def list comprehension ex1():
mylist = [i*1 for i in range (sample_size 1)]

def no list comprehension ex1():
mylist = []
for 1 in range(sample_size 1):
mylist.append(i*i)
if __name_ == "'_main_ ':
tl = timeit.timeit(
"no_list_comprehension_ex1()",
setup="from _ main__ import no_list comprehension_exl")
12 = timelt.timeit(
"list_comprehension_ex1()",
setup="from _ main__ import list_comprehension_ex1")
print("wWithout Tlist comprehension :", t1)
print("with list comprehension t,ot2)

The sample_size_ 1 variable is chosen sufficiently large to see a difference. The
runtime is captured using the timeit.timeit method, whose first argument is a
string representing the function name. The second argument is a setup parameter
that tells us where to look for this function. The runtime performance can be
compared by executing the script, as:

$ python misc preformance.py

As can be seen from the following output, the list comprehension is faster compared
to an equivalent for loop:

Without list comprehension : 1.218718248004734
With list comprehension : 0.8486306999984663

o As an exercise, try comparing the timings of a nested
~ for loop and an equivalent list comprehension syntax.
Q Refer to the 1ist comprehension ex2 function in the
misc_performance.py file.

[298]

Chapter 8

In the Gold Hunt problem, it is also possible to use list comprehension in the
generate_random_points function. For example, you can optionally write theta
as follows:

theta = [random.uniform(0.0, 2*math.pi)
for i in range(total points)]

But before making such changes, read the next chapter, which shows how the
NumPy package drastically improves the performance of this function.

Recording execution time

In the previous section, we used the timeit.timeit function to record and compare
the performance of list comprehension against a classical for loop. Let's wrap

the timeit code into a utility function so that we can reuse it for the rest of the
discussion. The run_timeit function is shown next:

def run timeit (func 1, func_2, num=l):

t1 = timeit.timeit ("%s () "%func_1,
setup="from _ main__ import %s"%func_l, number=num)
t2 = timeit.timeit("%s () "sfunc_2,

setup="from _ main__ import %s"%func_2, number=num)

print("Function: {funck, time: {t}".format(func=func_1l, t=t1})
print("Function: {func}, time: {t}".format(func=func_2, t=t2))

Here, func_1 and func_2 are the function names (strings) whose execution time
needs to be recorded. The number argument in the timeit.timeit function indicates
the number of times the given function is executed. The callers of run_timeit can
tune this number by using the optional num argument. See the documentation for
further details.

M This function does not do any error checking. As an exercise, you can
Q add that capability. For example, add the try..except clause to catch
errors if the function is not found.

In the upcoming discussion, we will use run_timeit to compare the performance of
two functionally equivalent code blocks.

[299]

Improving Performance — Part One

Dictionary comprehension

Just like the list comprehension, a dictionary comprehension is the syntactic
construct to create a Python dictionary object. The following functions show two
ways to create a dictionary. The first one (no_dict_comprehension) uses a for
loop to create a dictionary, whereas the second function shows the dictionary
comprehension syntax.

def no_dict_comprehension(]:

d=1{F
for 1 in range(sample_size 1):
dli] = i*1

def dict_comprehension():

d ={i: i*i for 1 in range(sample size 1)}
if _name__ == '_mailn__"':

run_timeit("dict comprehension”, "no_dict comprehension®)

As noted in the previous section, from now onwards, we will use the run_timeit
utility function to record timings. The timeit output after executing this code is
shown next:

Function: no_dict_comprehension, time: 0.14393422298599035
Function: dict comprehension, time: 0.13295511799515225

Swapping conditional block and for loops

Consider the following trivial code. There is a top-level for loop with an if..else
condition block. Depending on the value of the num variable (assume it changes),
either if or else condition is executed. As before, an appropriate integer for the
sample size 1 variable should be chosen:

def no_if condition loop opt():

T

num = 1200
val = 0
for 1 in range(sample_size 1):
if num = 100:
val += 1*1
else:
val 4= 1%*i*1
return val

[300]

Chapter 8

We can write the same code by swapping the for loop and the if..else block. The
new function has a top-level if..else block. Inside each condition statement, we
have the same for loop. The following if condition_loop_opt function shows this
(its output remains the same):

def if condition loop_opt():
num = 1030
val = 0
if num = 100:
for 1 in range (sample_size 1):
val += 1%1
else:
for 1 in range (sample_size_1):
val += 1*1%1

return val
if _name__ == '_mailn__"':
run_timeit("no_if condition loop_opt", "if condition_loop_opt")

Let's find out the winner between these two functions:

Function: no_if condition_loop_ opt, time: 0.1894498920009937
Function: if condition loop opt, time : 0.15955313100130297

To summarize, the function with a top-level if..else block runs faster compared to
the function with a top-level for loop.

This was a simple example where the swapping of the for loop and
condition blocks was easy. However, in the real world, weigh in the

Y advantages of making such modifications over the risk of introducing
bugs. Does the profiling really show this code block as a major
bottleneck? If you finally decide to go ahead with it, add enough
automated tests to make sure that the function output remains the same!
See Chapter 5, Unit Testing and Refactoring, to learn how to write unit tests.

[301]

Improving Performance — Part One

‘try' it out in a loop

Remember the Easier to ask for forgiveness than permission (EAFP) principle

that encourages using the try..except clause? It was discussed briefly in Chapter 2,
Dealing with Exceptions. Let's see how a try..except clause can save some execution
time. Consider the following function, which populates a list in a for loop based on
the value of i.Only for the first iteration of the for loop (i=0), the if statement is
executed. For all other values of i, it executes the else block, val /=i.

def not_using try():

mylist = []
val = 1
for 1 in range(sample_size_1):
if (1 == 0):
val /= 1C
else:
val /=1

mylist.append(val)

Let's replace the if..else block with a try..except clause. The try clause will
always try to execute the val /= i statement. When we have i=0, it raises the
ZeroDivisionError exception, which is handled in the except clause.

def using try():
mylist = []
val =1
for 1 in range(sample_size_1}:
try:
val /=1
except ZeroDivisionErrar:
val /= 10
mylist.append(val)
if _name_ == "'_main_ ':
run_timeit("not_using_try"., "using_try")

Here, we need to catch the error only for the initial value, i=0. For the rest of the
loop, the code should run smoothly. The try..except clause effectively gets rid of
the extra checks imposed by the if..else condition block. In other words, we will
no longer need to check if i==0 for each value of i. As a result, the code runs
faster. The execution time for these functions is shown next—clearly, the using_try
function performs better:

Function: not using try, time: 0.1821241550205741
Function: using try, time : 0.09502803898067214

[302]

Chapter 8

Choosing the right data structures

This is fairly a broad topic. The choice of data structure largely depends on the
problem you are trying to solve. In this section, we will limit our discussion to just
one example that shows how the right choice of data structure improves the runtime
performance. Observe the data_struct_choice_list function; it first creates a list
object, mylist. Next, inside a for loop, the code checks if j is one of the elements of
mylist and updates the val parameter accordingly.

def data struct choice list():

if {j in mylist):

val +=]
else:
val += J*2
return val

Now look at the following data_struct_choice_set function. Instead of a 1ist
object, it creates a set object denoted by the myset variable. The syntax is similar
to the 1ist or dictionary comprehension syntax we saw earlier (the rest of the code
remains the same and both the functions return the same value).

def data struct choice set():

I
-
-

-
[
-
=]
=
.
[Y
=
-3
ol
=

(=]
[4E]

I
[

[

[
o

myset
val = 0
for j in range (100000) :
if (] in myset):
val +=]
else:
val += J#*2

return val

if _name_ == "'_main
run_timeit("data_struct choice list", "data_struct choice set")

When it comes to checking the membership of an element, the Python set is faster
compared to a 1ist. In other words, the "if (j in myset)" operation is faster
compared to "if (j in mylist)". Assummarized in a table in Chapter 7,
Performance - Identifying Bottlenecks, the average-case time complexity of this
operation is O(1) for set and O(n) for list.

[303]

Improving Performance — Part One

The timeit output for these two functions is shown next. Clearly, the function that
implements set is much faster compared to the one that implements 1ist:

Function: data struct choice list, time: 1.7527358299994376
Function: data struct choice set, time: 0.015494994004257023

Have you noticed a problem in this example? The runtime reported by
M timeit includes the time required to create the 1ist and set objects.
Q For an accurate comparison, you should only compare the for loops in
these functions. In other words, move the 1ist and set creation part
out of the function definition and then do the timing comparison.

Let's continue the discussion on the data structures and review Python's
collections module next.

The collections module

The collections module offers a number of special purpose container data types.
Let's review a few of the common ones. If you want to know about the other data
structures in this module, see the Python documentation (https://docs.python.
org/3/library/collections. html).

The deque class

The deque class enables appending or deleting elements from either side of the
deque data structure. The append and pop operations in deque class are memory
efficient and thread-safe with a complexity of O(1). The following code shows a
simple way to create deque and then remove the rightmost element:

>>> dgq = deque (range (10))

>>> dg

deque ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> dg.pop ()

9

>>> dg

deque ([0, 1, 2, 3, 4, 5, 6, 7, 8])

Let's compare the performance of deque with an equivalent 1ist. Observe the
following two functions, where we call the pop () method of the 1ist and deque
classes —note that we are creating the 1ist and deque objects outside of these
functions to make sure that the reported timing is not influenced by the object
creation:

[304]

https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html

Chapter 8

from collections import deque

1st = list(rangs(sample_size_1))
dq = deque(range(sample_size 1))

def list_example():
for 1 in range(sample_size 1):
1st.pop ()

def deque example():
for 1 in range(sample_size 1):
dq.pop ()

if __npame_ =="'_main_ ':
run_timeit("list_example”,

"deque_example")
The following timeit output shows that the pop () operation on deque is faster
compared to that of 1ist:

Function: list example, time: 0.1243858500092756
Function: deque example, time: 0.0937135319982189

So, when should we use deque? In general, if your code involves a lot of operations
where the data needs to be appended or popped from one of the ends, deque is
preferred over a 1ist. But, if the code needs fast random access to the elements, 1ist
is a better choice of data structure.

The defaultdict class

The defaultdict class is derived from the built-in dict class. If you try to access a
key that doesn't exist, a simple Python dictionary throws a KeyError exception. But,
a defaultdict class creates a new key instead. This can be better explained with the
following example:

>>> dl = {}

>>> dl['a']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'a'

[305]

Improving Performance — Part One

The standard dictionary object, d1, doesn't have an 'a' key, so it throws an error. If
you try to access this key with a defaultdict class, it simply creates it, as shown in

the following example:

>>> from collections import defaultdict
>>> d2 = defaultdict (int)

>>> d2['a']

0

>>> d32

defaultdict (<class 'int's>, {'a': 0})

The built-in setdefault () method of the standard dictionary does a

similar job. If the key you are trying to access does not exist, it inserts
M a new key in the dictionary, assigns a default value to it, and returns

this default. However, using defaultdict is faster compared to

the setdefault method. Refer to the documentation (https://

docs.python.org/3/library/stdtypes.html#dict) for more

information.

This is just one of the features offered by defaultdict. It also provides an efficient
means to count the number of times an element occurs in a container. Let's see this

with an example. The following dict_counter function defines a 1ist called
game_characters. There are many repeating elements in this 1ist. The function

uses a standard dictionary to count how many times each element occurs, and then

returns this dictionary.

def dict_counter():
unit_headcount = {}
game_characters = ['elf', 'knight', 'orc',
‘orc', ‘'knight', 'knight'l*sample_size 1

for unit in game_characters:
if unit in unit_headcount:
unit_headcountlunit] += 1
else:

unit_headcountlunit] =1

return unit_headcount

[306]

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chapter 8

For example, the output of this function will be a dictionary:

{rorc': 2000000, 'knight': 3000000, 'elf': 1000000}

The sample_size_1 is just a multiplication factor to make this list big enough to see
the difference in the execution time. In this example, it is chosen as 100000. Now,
let's write a function that uses a defaultdict class to do the same job. Take a look at
how compact the resulting code is:

from collections import defaultdict

def defaultdict counter():
unit_headcount = defaultdict(int)
game_characters = ['elf', 'knight'., ‘'orc',
‘orc', ‘'knight', ‘'knight'l*sample_size 1

for unit in game_characters:
unit_headcountlunit] += 1

return unit _headcount

if __name_ == "'_main__':
run_timeit("dict counter", "defaultdict counter")

Let's compare the performance of these two functions. The following timeit output
confirms that the function implementing defaultdict runs faster:

Function: dict counter, time: 0.6270602609729394
Function: defaultdict counter, time: 0.4926446119789034

The counting operation can also be performed using the collections.Counter
class. The syntax is simple and efficient compared to a defaultdict class (we will
not discuss the Counter class in this book). As an exercise, read the documentation
and write a function that uses the Counter class for the earlier example.

Generators and generator expressions

A generator is basically an iterator. It is a powerful tool to handle a very large, or an
infinite data set. A generator function is written just like a regular function, but is
characterized by the use of the yield statement. It is similar to a return statement,
in the sense that it returns a value. However, a generator function "freezes" the
current environment after it yields. So, the next time you want a value, the generator
function continues from where it left off and yields the next value.

[307]

Improving Performance — Part One

In other words, a generator returns values (say from a list) one at a time, keeps track
of the current state of the iteration (remembers all the values it has returned in the
previous calls), and when called again, it picks up from the position where it left off.
When you add a yield statement to a function, it automatically becomes a generator
function. Let's write a trivial example to understand this concept better:

>>> def get dataf():
for i in range(3):
yield i*i

>>> g = get _data()
>>> g

<generator object get data at 0x7£704c55fb40>

The get_data () function returns a generator object, g. The next () function is just
one way of getting the values from the generator:

>>> next (g)
0

For the first iteration in the get _data () function, we have i=0 . So, the value
returned by the generator is i*i=0. Now comes the interesting part. Let's call the
next () function again:

>>> next (g)
1

It returned the value as 1. This corresponds to the next value of the iterator in the
get_data () function, i=1, which makes i*i=1. If we call next () one more time,
it will return the result for i=2, as follows:

>>> next (g)
4

This will continue until the generator is exhausted with all the values. If we call
next () again, it raises a StopIteration exception, as shown next:

>>> next (g)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Using the yield statement is one way of creating a generator function, and hence a
generator object. Let's learn about the generator expression, which provides another
way to create a generator object.

[308]

Chapter 8

Generator expressions

The generator expression is proposed as PEP 289 and is summarized as a high
performance memory efficient generalization of list comprehension and generators.

1
< Refer to https://www.python.org/dev/peps/
pep-0289 for further details on PEP 289.

The basic syntax for a generator expression is similar to that of a list comprehension.
Instead of square brackets [1, it uses the round brackets () to create a generator
object:

>>> g = (i*i for i in range(3))
>>> g

<generator object <genexpr> at 0x7f£0b71b0c8b8>

We already saw how to use the next () function to get values out of a generator
object. You can also get the data from a generator using a for loop, as follows:

>>> g = (i*i for i in range(3))
>>> for data in g:
print (data)

Let's see a simple example where a generator expression can be used. The built-in
sum function accepts an iterable as an input. It sums all the elements of that iterable
and returns the total sum as a single value:

>>> g = (i*i for i in range(3))
>>> sum(g)
5

Note that you can even pass a 1ist to the sum() method to get the same result.
Next, we will compare the memory efficiency of a generator expression with that
of a list comprehension.

Comparing the memory efficiency

For a moderately-sized problem, the runtime performance of a list comprehension
is typically better compared to an equivalent generator expression. We won't make
that comparison here. Instead, we will see how the generator expression and the list
comprehension compare when it comes to memory consumption.

[309]

https://www.python.org/dev/peps/pep-0289
https://www.python.org/dev/peps/pep-0289

Improving Performance — Part One

In the previous chapter, we saw how to use the memory_ profiler package. Let's use
it here to profile the memory usage. Create a compare_memory . py file or download it
from the supporting code bundle for this chapter. The code is shown next:

@profile

def list_comp_memory () :
sample _size =]
my_data = [1 for 1 in range(sample_size)]

@profile
def generator_expr_memory():

sample _size = 10000
my data = (i for i in range(sample_size))

if __name_ == "' _main_ ':
list_comp_memory ()
generator_expr_memory ()

The 1ist_comp_memory function creates a 1ist using the list comprehension syntax.
The generator_expr_memory function creates a generator object using the generator
expression syntax. The eprofile decorator marks the function for profiling by the
memory profiler. Let's run the memory profiler function on this file:

$ python -m memory profiler compare memory.py
Here is the output of this run:

Filename: compare_memory.py

Line # Mem usage Increment Line Contents

14 19.625 MiB 0.000 MiB @profile

15 def list_comp_memory():
16 19.629 MiB 0.004 MiB sample_size = 10000
17 20,008 MiB 0.379 MiB my_data = [1 for 1 in range(sample_size)]

Filename: compare_memory.py

Line # Mem usage Increment Line Contents

19 19,840 MiB 0.000 MiB @profile

20 def generator_expr_memory():
21 19.840 MiB 0.000 MiB sample_size = 10000
22 19.840 MiB 0.000 MiB my_data = (i for i in range(sample_size))

[310]

Chapter 8

Let's review the output achieved from the profiling done on the compare_memory.py
file:

* The Increment column indicates that the list comprehension creates a 1ist
and puts it in the memory. In the present example, it consumes about 0.37
MiB.

* The memory profiler reports the usage in MiB. For the generator expression,
it reports 0.0 MiB or interprets it as only a few bytes in this example.

* If you increase the sample_size variable further, the memory consumed by
the list comprehension will increase accordingly.

* For a very large sample_size, your computer may even choke while creating
the 1ist with the list comprehension.

* With the generator expression, the memory consumed will remain constant,
no matter how large the data size gets. This is an extremely useful feature
when operating on a very large or an infinite data set.

Generator expressions or list comprehensions?

So we have gor list
comprehenaion on one aide and
enerator expression on the other.
oW da W Chao-ﬁﬁ bﬁfwaﬂn Thﬂaﬁ
Twor

Good question. How to decide between generator expressions and list
comprehensions? The choice depends on the type of problem you are dealing with.
The following points should help you make that decision:

[311]

Improving Performance — Part One

* Use generator expressions when you are working with a very large (or
infinite) data set, iterated over only once. The list comprehension puts the
whole list in the memory, which works fine on small or mid-sized data
sets. However, as the data size grows bigger, you will notice problems. The
generator expression, on the other hand, uses constant memory. It returns
data on the fly. Once the data is generated, the memory is freed.

* This is really another way to put the first point. Do not use generator
expressions if you want to loop over the whole data set several times.
In such cases, use the list comprehension.

* Generator expressions do not support list operations such as slicing.
So, if you want to perform such operations, use the list comprehension.

The itertools module

Now that we know how the generator expressions work, let's briefly review
itertools, another important built-in module in Python. It provides functionality
to create iterators for efficient looping. The itertools module offers several
building blocks for iterators. Some of the frequently used iterators include

count (), repeat (), chain (), groupBy (), tee (), product (), permutation(),
combination (), and so on. This is just a partial list of the supported functionality.
In this chapter, we will only review the chain () iterator.

Refer to https://docs.python.org/3/library/itertools.html
s for information on other iterators offered by the itertools module.

The itertools.chain iterator

This iterator is used to chain multiple iterators together. It can take lists, tuples,
generators, or even a combination of these iterators as an input. Let's review a simple
example that shows how to create a chain object:

>>> from itertools import chain

>>> mylist 1 = [1, 2, 3]
>>> mytuple = ('x', 'y')
>>> mylist 2 = [10, 20]

>>> mychain = chain(mylist 1, mytuple, mylist 2)
>>> mychain
<itertools.chain object at 0x7fcé6fcclc2e8>

[312]

https://docs.python.org/3/library/itertools.html

Chapter 8

The simplest way to view the contents of this chain object is to print it as a new
list object:

>>> print (list (mychain))
[lr 2! 31 'X'r 'Y', 10! 20]

As can be seen, the chain iterator combined the two input lists and a tuple (or the
iterators). Sometimes, you want to perform identical operations on more than one list
or any other iterable data structures. The chain iterator enables this by combining or
chaining these data structures. More importantly, it does not consume any significant
amount of memory. Just like a generator, the memory consumed by a chain object
remains constant even when the size of the data grows bigger. It is also important to
note that, just like a generator, a chain object can be used to iterate over a given data
set only once. This is illustrated by the following code:

>>> mychain = chain(mylist 1, mytuple, mylist 2)
>>> for item in mychain:
print (item)

oW N R .

Y
10

20
>>> next (chain)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'type' object is not an iterator

[313]

Improving Performance — Part One

You can compare the memory efficiency of a chain object with an equivalent code
that combines the input lists. The code is shown next. The for loop in these functions
is just to illustrate how the chain object can be used in a loop.

from itertools import chain

data_ 1 = ['x']*10000
data_2 = ['y']*10000
data_3 = ['z']*10000
@profile

def chain_memory():
mychain = chain(data_1, data_2. data_3)
for 1 in mychain:
pass

gprofile
def list memory():
mylist = data_1 + data 2 + data_3
for 1 in mylist:
pass

if _name__ == '_mailn__"':
chain_memory ()
list_memary ()

You can also find this code in compare_memory.py. In this file, just add the eprofile
decorator. With this change, run the memory profiler as an exercise. The following
can be observed from the memory profiler output (not shown here):

* The chain object consumes about 0.004 MiB memory and the consumption
remains constant even after you increase the size of the input lists, data_1,
data 2 and data_ 3.

* The list_memory function consumes nearly 0.383 MiB of memory to create
the mylist object. The memory consumed by this function increases with the
input data size.

[314]

Chapter 8

Exercises

A few exercises were already suggested. Let's list a few of these. (Note that the
solution are not provided for these exercises.):

* Write a list comprehension syntax for a nested for loop. Compare the
timings of a nested for loop and the list comprehension. Here is an example:

x = [1*j for i in range(4) for j in range(4)]

* Write a generator expression for the preceding list comprehension. You just
need to change the outer square brackets [] to the round brackets ().

Summary

In this chapter, you learned many techniques that help cut down the application's
runtime. We started by improving the speed of the Gold Hunt application. The total
time taken to run this application was improved by more than 50% —we accomplished
this by changing the algorithm so that it does not need to compute the square root for
distance comparison. Two more changes knocked off a few more seconds from the
total execution time. We avoided the function re-evaluation (skipped the "dots") and
preferred local scope for the variables over global scope. This was the end of part one of
the performance improvement for the Gold Hunt program.

Moving on, the chapter taught you a number of ways that help speed up the code.
It illustrated how a list comprehension does a better job compared to an equivalent
for loop. We also saw how the choice of data structure affects the performance.
The chapter further introduced us to the generator expressions that offer memory
advantage over the list comprehensions. Additionally, we also briefly reviewed the
functionality offered by the itertools and collections modules.

We promised The Great Dwarf further improvements to the application. In the next
chapter, let's learn the things that will help us keep our promise!

[315]

Improving Performance
— Part Two, NumPy and
Parallelization

This is the final chapter in the series of the three chapters on performance
improvement. It will introduce you to two important libraries, NumPy, a third-party
package, and the built-in multiprocessing module. In this chapter, we will cover the
following topics:

* A brief introduction to the NumPy package
* Using NumPy to speed up the Gold Hunt application
* Anintroduction to parallel processing using the multiprocessing module

* Using the multiprocessing module to further improve the application
runtime

Prerequisites for this chapter

You should read the last two chapters, Chapter 7, Performance - Identifying Bottlenecks,
and Chapter 8, Improving Performance - Part one, on performance that teaches you how
to identify the performance bottlenecks and improve the runtime using built-in
functionality. This chapter takes the application to the next level by drastically
improving performance.

[317]

Improving Performance — Part Two, NumPy and Parallelization

This is how the chapter is organized

This chapter will be the Part two of performance improvement. Just like the previous
chapter, the performance of the Gold Hunt program will be improved in steps. We
will start with a quick introduction to NumPy, just enough to use its functionality
for optimization passes four and five, which follow next. Moving ahead, there will be

a superficial introduction to the multiprocessing module. In optimization pass six,
we will use this module to parallelize a portion of the application code. Let's pull up
the same bar chart from the previous chapter. The last two bars indicate the speedup
accomplished by the end of this chapter.

20 Gold Hunt Performance Optimization
;Da-'ro Size i —
186 éFIdd coimz: 2 millisn] Ihlf|ﬂl r:ad‘e
oo i5=w=|‘- redus: ol mle; ﬁlﬂﬂl’i‘fhm chmﬁﬂda
= o NumP:r
-“ llllll
E = . Farallelization
b
)
£
= &0
%I Improvcmen-r:,
E 43.5 in this chaprer
3 4o
N
(=
o
<
{ 21.5
e ! U s
(]

i | L] L) i :
Tritial code ﬁlsarlthm :hnnsﬁa Numlpr Parallelizarion

l:'pﬂrn-z@finn Mllt:-""-?ﬁﬁ-'\.‘

But the chart does not tell the full story. The optimization pass four, will significantly
speedup the generate_random_points function of the Gold Hunt program. This
speedup is not reflected in the chart as the function does not significantly contribute
to the runtime in this scenario. Towards the end, the chapter will provide preliminary
information on PyPy for further reading. PyPy is a Python interpreter that provides a
Just In Time (JIT) compiler.

[318]

Chapter 9

Running Gold Hunt optimization examples

. If youlook closely at the profiling output shown in the upcoming
a discussion, you will notice a filename, goldhunt_run master.py.
/<~ Using this file is optional but it provides a convenient way to run
any of the optimization passes. You can find this file in this chapter's
supporting code bundle.

Introduction to NumPy

NumPy is a powerful Python package for scientific computing. It provides a
multidimensional array object that enables efficient implementation of numerical
computations in Python. It also has a relatively smaller memory footprint when
compared to a list. An array object is just one of the many important features of
NumPy. Among other things, it offers linear algebra and random number generation
capabilities. It also provides tools to access codes written in other languages, such

as C/C++ and Fortran. Let's start with a short introduction that gives a flavor of its
capabilities. What we will discuss in this book is more like scratching the surface

of NumPy! This chapter covers some features to be used later to speed up the Gold
Hunt application.

Review the official NumPy documentation (http://docs.scipy.org)
W1 to learn about several other features that are not covered here.

Q If you are already familiar with NumPy, you can optionally skip this
introduction and directly move on to the Optimizing Gold Hunt - Part
two section.

Installing NumPy

Some Python distributions, such as Anaconda (https://www.continuum.io/
downloads), provide NumPy by default. If unavailable, use pip to install it. Here is
how to do it on Linux, assuming pip is available as a command in the terminal:

$ pip install numpy

This should install NumPy. If you encounter problems, refer to the platform specific
installation instructions at http://www.scipy.org/install.html. Alternatively,
you can use the earlier mentioned Anaconda Python distribution.

[319]

http://docs.scipy.org
https://www.continuum.io/downloads
https://www.continuum.io/downloads
http://www.scipy.org/install.html

Improving Performance — Part Two, NumPy and Parallelization

Once installed, open the Python interpreter and type the following command:

>>> import numpy as np

Assuming the installation is successful, it should import NumPy. For the rest of the
discussion, we will use the notation np as the alias for numpy. Keep the interpreter
window open. For the rest of the introduction, we will run some simple NumPy
operations.

Creating array objects

As noted before, a multidimensional (N-dimensional) array object is one of the core
NumPy capabilities. This array is provided by a built-in class, numpy . ndarray. It
represents a collection of elements of the same type. In other words, it is a
homogeneous array. There are several ways to create a Numpy array. Type the
following code in your Python interpreter:

>>> import numpy as np
>>> x = np.array([2, 4])
>>> x

array ([2, 4])

This creates an array instance denoted by the x variable with two elements. This is of
the numpy . ndarray type. It is a single dimensional array. You can access any element
or change its value, just like a Python 1ist:

>>> x[0]

2

>>> x[0]=8

>>> X

array([8, 4])

In this simple example, the size of the array is 2. This is also called the shape of an
array. NumPy represents the array shape as a tuple of integers. It gives the size
of the array along each dimension. This is shown in the following line of code:

>>> x.shape

(2,)
Continuing further, here is another example that creates a two-dimensional array:

>>> p = np.array([[4, 8], [10, 2011)

>>> p

[320]

Chapter 9

array([[4, 81,
[10, 2011)

>>> p.ndim

2

>>> p.shape

(2, 2)

Here, ndim represents the number of dimensions of an array. The array shape
indicates the size of two in each dimension.

Let's review the numpy . arange function. This is similar to the Python range
function. But, arange returns an array object instead of a 1ist. The following is
another way to create an array using numpy . arange:

>>> a = np.arange(10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

There are many other ways to create arrays in NumPy. Refer to the documentation,
(http://docs.scipy.org/doc/numpy/reference/) for more details. Specifically,
look for array creation routines.

Simple array operations

We will review some basic mathematical operations that can be performed on NumPy
arrays. Let's create two arrays, x and y (these are one-dimensional arrays or vectors):
>>> import numpy as np

>>> x = np.array([2, 4])

>>> y = np.array([2, 4])

Using these arrays, you can perform mathematical operations, such as addition,
subtraction, multiplication, and so on. NumPy performs all these operations element
by element:

>>> x - ¥
array ([0, 0])
>>> X + Y
array ([4, 8])
>>> x*y

array ([4, 16])

[321]

http://docs.scipy.org/doc/numpy/reference/

Improving Performance — Part Two, NumPy and Parallelization

It is important to note here that x*y is not the inner product. It is just a multiplication
of the corresponding elements in the x and y arrays. The inner product of these
vectors can be accomplished using the dot function, as follows:

>>> x.dot (y)
20

The following code illustrates the concept using a two-dimensional array.
Here, x2.dot (y2) is a matrix multiplication operation:
>>> x2 = np.array([[2, 4], [6, 811)
>>> y2 = np.array([[2, 4], [1, 2]1)
>>> x2%y2
array([[4, 161,
[6, 1611)
>>> x2.dot (y2)
array([[8, 161,
[20, 40]1])

Array slicing and indexing

For single dimensional arrays, the indexing and slicing operations are similar to
a Python 1ist. If you are unfamiliar with the 1ist slicing operation, refer to
https://docs.python.org/3/tutorial/introduction.html#lists. Thisis

an important concept. In this chapter, we will only need to perform a few basic
indexing operations.

Indexing

Array indexing is essentially an operation that enables us to access a particular
element in an array. Here is a simple one-dimensional array with a size of five:
>>> b = np.arange(5)

>>> b

array ([0, 1, 2, 3, 41)

The simplest indexing operation is shown below, which accesses an element of this
array. This operation is similar to how it is done for a Python 1ist:

>>> b[2]
2

[322]

https://docs.python.org/3/tutorial/introduction.html#lists

Chapter 9

Here is how you can retrieve elements from a two-dimensional array:

>>> p = np.array([[2,2], [4,4]1])
>>> p
array([[2, 2],
[4, 411)
>>> pl[0]
array ([2, 2])

Once complete, it returns an array with only the first row.

It is important to note that the basic array indexing does not return a copy
M of the original array. It just points to the same memory location as the
Q original array. Refer to the following link where the basic and advanced
indexing has been comprehensively documented: http://docs.
scipy.org/doc/numpy/reference/arrays. indexing.html

The following code will retrieve a single value from a two-dimensional array:
>>> pl0] [1]
2

With this basic introduction to array indexing, let's learn about some common slicing
operations.

Slicing
Suppose you want to get an array with only the first two elements. Just like a 1ist,

you will need to specify a start and an end. For example, b [start :stop] means the
resulting (sliced) array will begin at the start index and end at the stop-1 index:

>>> b[0:2]

array ([0, 1]1)

Similarly, to get any array with only the elements at the positions 1 and 2, you can do
as follows:

>>> b[1:3]
array ([1, 2])

[323]

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Improving Performance — Part Two, NumPy and Parallelization

For the N-dimensional arrays, you have to give the slicing instructions in each
direction. Consider the following array with four rows and columns:

>>> z2 = np.array([[2, 4, 6, 81, [1, 5, 7, 91, [3, 3, 3, 31, [4, 4,
9, 411)
>>> z2
array([[2, 4, 6, 8],
[1, 5, 7, 91,
[3, 3, 3, 31,
[4, 4, 9, 411)
>>> z2.shape

(4, 4)
Let's slice this array so that it returns only the first row. Here is the syntax to do that:

>>> z2[0:1, :]
array([[2, 4, 6, 81])

If you want to get only the first column of z2 instead, then specify the slicing
as follows:

>>> z2[:, 0:1]
array ([[2],
[11,
[31,
[411)
The following slicing operation will create a new array using elements of the first
two rows and columns:
>>> z2[0:2, 0:2]
array([[2, 41,
[1, 511)
To gain a better understanding of array slicing operations, try more examples in a

Python interpreter. See the documentation for details (search the Web for NumPy
array slicing).

[324]

Chapter 9

Broadcasting

Broadcasting is another important NumPy feature. Let's understand this concept with
a simple example. We have two arrays, po and p1, as shown in the following example:

>>> p0 = np.array([10])
>>> pl = np.array([[1, 2], [3,41])

The shapes of these arrays are as follows:

>>> p0.shape
(1,)

>>> pl.shape
(2,2)

Although the arrays have different shapes, NumPy can perform arithmetic operations
on these arrays. A basic multiplication operation is shown next:

>>> pO0*pl
array([[10, 20],
[30, 401])

This is referred to as broadcasting. The po array has a smaller shape relative to p1.
The broadcasting enables this array to work with p1. In this example, it enables the
multiplication operation. Of course, the two arrays need to meet certain requirements
to take advantage of this feature. Refer to the NumPy documentation to learn more
about broadcasting.

Miscellaneous functions

Let's look at some advanced mathematical operations that you can perform using the
NumPy arrays.

M Most of the operations illustrated here will be used in the upcoming
Q discussion on performance improvement using NumPy. So, pay close
attention to this section.

[325]

Improving Performance — Part Two, NumPy and Parallelization

numpy.ndarray.tolist

This is a handy function that returns the NumPy array as a Python 1ist object.
Depending on the array dimension, it can be a nested list. Here is an example that
shows this function in action:

>>> X = np.array([2, 4])

>>> x list = x.tolist()

>>> x list

[2, 4]

numpy.reshape

As the name suggests, it changes the shape of an array without actually changing
its data. Look at the following code; the x array is one dimensional and has a size
(shape) of 9:

>>> X = np.arange(9)

>>> X

array([0, 1, 2, 3, 4, 5, 6, 7, 8]1)

>>> x.shape

(9,)

Let's see how to reshape this into a matrix that has three rows and columns. In other
words, the following code returns an array with a new shape of (3,3):
>>> np.reshape(x, (3,3))
array([[0, 1, 21,
[3, 4, 51,
6, 7, 811)

The new shape selected should be compatible with the original shape of the array;
otherwise, it will throw an error. For the preceding example, if you reshape it as
np.reshape (x, (3,2)),itwill throw a value error complaining about changed size.

numpy.random

This module provides several functions for random sampling. For a detailed list,
refer to http://docs.scipy.org/doc/numpy/reference/routines.random.html.

Let's review np . random. uniform that draws samples from a uniform distribution:

>>> np.random.uniform(0.0, 2.0, size=3)

array ([0.24061728, 0.66123504, 1.86137435])

[326]

http://docs.scipy.org/doc/numpy/reference/routines.random.html

Chapter 9

>>> np.random.uniform(0.0, 2.0, size=4)

array ([1.81382452, 1.20355728, 1.07085075, 0.9653697 1)

The first two arguments of this function represent the lower (0.0) and upper (2.0)
boundaries of the output interval. You can specify any float value as the limit. All the
random values or samples generated by the function lie within these two limits. The
default lower and upper limits are 0.0 and 1. 0, respectively. The size argument
represents the shape of the output array. In the preceding example, it is specified as
a single integer value. If you do not specify the size argument, it defaults to None.

In that case, the function will simply return a single floating point number. The
following is a slightly complicated example of when the size (or shape) argument is
atuple (2,2):

>>> np.random.uniform(0.0, 2.0, size=(2,2))

array([[1.02970767e+00, 4.48798719e-02],
[5.20609066e-04, 6.10167655e-0111)

Have you already noticed a difference between Python's built-in random.uniform
function and NumPy equivalent's np . random. uniform? The Numpy np. random.
uniform function, can optionally give us an array object with samples drawn from
uniform distribution, whereas the built-in random.uniform can only give us a single
number. We will use this NumPy function in optimization pass four.

numpy.dstack

This provides a simple way to stack or concatenate a sequence of arrays along a third
axis. Consider two NumPy arrays, x and y, representing the x and y coordinates of
some points in space. These arrays are shown below:

>>> x = np.array((1, 2, 3, 4))
>>> y = np.array((10, 20, 30, 40))

Thus, x[0]1=1 and y [0] =10 represent a point (1, 10). Likewise, we can represent
other points for the remaining elements. Sometimes, it is convenient to use a single
array to express the coordinates of several such points, as follows:

points = [[1,10], [2,20], [3, 30], [4, 40]]

How do we create such an array using the x and y arrays shown earlier? There are
multiple ways to do this. One option is to use numpy . dstack. This function enables
stacking arrays along a third axis to create a single array. The following code shows
how to create a points array discussed earlier using the input x and y arrays:

>>> points = np.dstack((x,y))

>>> points

[327]

Improving Performance — Part Two, NumPy and Parallelization

array ([[[1, 101,
[2, 20],
[3, 301,
[4, 40111)

Notice that the resultant array is three-dimensional:

>>> points.ndim

3

The size of the array along each axis (or dimension) is given by its shape:

>>> points.shape

(1, 4, 2)

We will use this function in optimization pass five. Similarly, there are other ways
of stacking arrays, for example, numpy . hstack or numpy . vstack. These are not
discussed in this book. Refer to the NumPy documentation for further details.

numpy.einsum

This function provides a way to compute the Einstein notation (or Einstein
summation convention) on the input arrays for the operations (called operands). In
terms of performance, this function offers great efficiency. Later in the chapter, we
will exploit it to find the square of the distance between two points.

Understanding the mathematical concept behind einsum can be a
bit challenging, especially if you do not have a math background. In
that case, just remember one key thing about numpy . einsum—Itis a
function that allows you to perform some highly efficient operations
involving arrays. For example, a matrix multiplication operation
Lo~ between two NumPy arrays or a dot product can be done more
efficiently using numpy . einsum.

Refer to the NumPy documentation for more information on
this function. Also, see https://en.wikipedia.org/wiki/
Einstein notation for information on Einstein notation.

[328]

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation

Chapter 9

This can be better explained with an example. Consider the following equations that
represent two vectors, A and B:

A - Ax+AY+ A2

B

These are two points in space with some x, y, and z coordinates. The dot product of
these vectors is represented as follows:

"
L7 w]
x
b4
+
¥]
e 4
o
+.
L7]
]
N}

A -B> = AB,+ AB, +A,B,

3 To learn more about a dot product, see
https://en.wikipedia.org/wiki/Dot_ product.

It is a scalar product and can be represented as a summation, as shown in the
following equation:

The Einstein summation convention for the preceding equation is written as follows:
Y
A-B=AB

Here, it is implied that AiBi is a summation over i with a lower bound of 1 and upper

bound of 3. This is the Einstein summation convention in a nutshell.

numpy . einsum evaluates the Einstein summation convention on the given input
arrays. The basic syntax is shown below — there are other optional arguments as well,
but those are not shown here:

numpy .einsum(subscripts, *operands)

[329]

https://en.wikipedia.org/wiki/Dot_product

Improving Performance — Part Two, NumPy and Parallelization

The first argument, subscripts, is a string that represents a list of subscript labels.
These are separated by a comma and each label represents a dimension of a particular
operand. In the example we just saw, there was only one subscript label, i. The second
argument, operands, represents the input arrays (A and B in the example).

Suppose the A and B vectors are one dimensional. Their inner product can be
represented with the subscript string ' i, i'. This can be better explained with the
following example:

>>> import numpy as np
>>> a = np.array([2, 2])
>>> b = np.array([4, 4])
>>> np.einsum('i,i', a, b)

16

The arrays a and b are one dimensional. You can also cross-check the answer using
the numpy . inner function, which returns the same answer:

>>> np.inner(a,b)

16

The numpy . einsum function is faster and also memory efficient. Now, take a look
at the following code —it represents a dot product (or matrix multiplication) of two
vectors, a2 and b2:

>>> a2 = np.array([[1,1], [2, 2]11])
>>> b2 = np.array([[4,4], [6, 611])
>>> np.einsum('ij,jk', a2, b2)
array([[10, 10],

[20, 20]1])

The subscript string for numpy . einsum is 'ij, jk', where ij is the subscript for two
dimensions of array a2, and jk is the one for array b2. The dot product can also be
obtained by following this example:

>>> np.dot (a2, b2)
array([[10, 101,
[20, 20]11)

[330]

Chapter 9

Computing distance square with einsum

The examples shown so far should just give you a flavor of the einsum function.
Let's only discuss how to use this function to calculate the square of the distance
between two points. Again, for a comprehensive reference, refer to the NumPy
documentation.

Consider any point p1 with coordinates (0, 2). Furthermore, assume that the center
is located at (0, 0). As the x coordinate of the p1 point is 0, you can easily determine
the distance between p1 and center as 2 units. The square of the distance can be
found using the einsum function, as follows:

>>> pl = np.array([0,2])

>>> center = np.array ([0, 0])
>>> d = pl - center

>>> d

array ([0, 2])

>>> np.einsum('i,i', d, d)

4

Now, imagine that there are multiple such points and you want to find the square
of the distance of each point from the center. Here is one way to compute this
using einsum:

>>> points = np.array([[0,2], [0,41, [2, 21, [4, 411)

>>> center = np.array([0,0])

The points array represents a list of points. For each of these points, we will find
a vector, with center as its starting point and the given point (from the points
array) as its end. Let's represent the array of such vectors as diff, as shown in the
following example:

>>> diffs = points - center
>>> diffs.shape
(4, 2)
>>> diffs
array([[0, 2],
[0, 41,
[2, 21,
[4, 411)

[331]

Improving Performance — Part Two, NumPy and Parallelization

As the center is (0, 0), the diff array is essentially the same as the points array.
The following line of code shows the einsum syntax —it uses the ellipsis notation (...),
to the left of each term in the subscripts argument:

>>> np.einsum('...i,...i', diffs, diffs)

array([4, 16, 8, 32])

It returns an array that contains a square of the distances for each point in the points
array. That's all we need!

What does this ellipsis notation do? Why didn't we use the earlier syntax?
>>> mnp.einsum('i,i', 4, 4)

The earlier syntax involved single dimensional arrays (d) that had only one subscript
label. We cannot use it here as the operand (or the diffs array) for the Einstein sum
is a two-dimensional array. To understand this, let's look at the diffs array one
more time:

>>> diffs

array([[0, 2],
[0, 41,
[2, 2],
[4, 411)

Consider any row of this array. It is essentially a vector between a point and the
center. For example, [0, 2] represents a vector between a center [0, 0] and a point
[0, 2]. The other dimension of the array is to hold many such vectors. The ellipsis
symbol, "..", is a convenient way to broadcast the second dimension. The alternative
syntax to get the same result is as follows:

>>> np.einsum('ij,ij->i', diffs, diffs)

array([4, 16, 8, 321)

However, if the array shapes change further, you will need to work on constructing
a proper subscript string for the einsum function again. The NumPy documentation
has several examples that show how to use einsum. Here is a NumPy version 1.10
documentation: http://docs.scipy.org/doc/numpy-1.10.0/reference/
generated/numpy.einsum.html.

[332]

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.einsum.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.einsum.html

Chapter 9

Where to get more information on NumPy?

In the NumPy introduction, you were presented with several links to the
documentation. Just for the completeness, let's summarize where to find more
information on NumPy. You can start by visiting their website (http://www.numpy .
org/) or just do a web search on NumPy to get to its homepage.

SciPy is another project worth mentioning. It is a library that integrates several
open source tools for mathematics, science, and engineering disciplines. NumPy,
matplotlib, and pandas are some of its core packages. See the project website
(https://www.scipy.org/) for more information.

In an earlier discussion, several links were provided to the NumPy documentation.
Looking at those links, you must have already noticed that they all point to the SciPy
website. The documentation for both NumPy and SciPy is located at http://docs.
scipy.org/doc/.

The open source pandas library is used for data analysis using Python. It provides
high performance data structures and tools to analyze data. Refer to http://
pandas.pydata.org/ for more information.

Optimizing Gold Hunt — Part two

The previous section served as a short introduction to NumPy. Recall that, in earlier
chapters, we gradually improved the runtime performance of the game. The last
recorded timing was the one obtained with optimization pass three. We successfully
reduced the total runtime down to nearly 44 seconds from the original time of about
106 seconds. NumPy supports vectorized calculation routines such as element-wise
multiplication. It internally uses efficient C loops that help run such operations faster.
Let's leverage NumPy capabilities to speed up the Gold Hunt game even further.

[333]

http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://pandas.pydata.org/
http://pandas.pydata.org/

Improving Performance — Part Two, NumPy and Parallelization

Gold Hunt optimization — pass four

It is now time to resume the optimization operation for the Gold Hunt problem.

Let's start with optimization pass four. We will focus our attention once again on the
function, generate_random numbers. As a refresher, the cProfiler output of the
last optimization run reported the total time as ~ 2.6 seconds and a cumulative time,
which includes the time spent by sub-functions, was ~ 5.2 seconds.

But this function *akea_jus-r
about 5 seconds. Is it
war*rl"\ apﬂmizing?

You are right. For this example, it is not worth optimizing this piece of code. The
5.2 seconds time doesn't look that bad. At this time, the function is called only
once, as indicated by the ncalls column of the cProfile output. But any future
requirements can potentially make this function a new bottleneck. As an example,
imagine a new game scenario where there are hundreds of such gold fields or places
full of abandoned weapons. We might need to call such a function many times. This
will increase the total time spent in generating points. Keeping this in mind, let's
work on improving its performance.

We will revamp the code from the previous optimization run (goldhunt_pass3.py).
The supporting source code is in the goldhunt_pass4 . py file. The first thing we will
add is the NumPy import statement at the beginning of the file:

import numpy as np

[334]

Chapter 9

The reworked generate random_points function is illustrated in the following

code

def

snippet:
generate_random_points(ref_radius, total_points):

1 uniform = np.random.unifaorm
1_sgrt = np.sgrt

1 pi =np.pl

1 cos = np.cos

1 sin = np.sin

theta = 1_uniform(0.Q, 2.0%1_pi, total points)

radius = ref_radius*1_sqrt(l_uniform(0.0, 1.0, total_points))
¥ = radius*1_cos(theta)
y = radius*1_sin(theta)

return x.tolist(), y.tolist()

It is optional to use local variables such as 1_uniform. Those are used here to skip
the function reevaluation. This was already discussed in the Skipping the dots section

from

Let's
pass.

the previous chapter. Let's review this function next:

Compare the new function with the previous implementation. The key thing
to note here is the use of the NumPy functions, such as np.random.uniform,
np.sqrt, and others in place of the built-in functions.

Another major difference is that we no longer need a for loop. The
np.random.uniform function returns a NumPy array. The last argument
specifies its size. Refer to the earlier introductory section on NumPy for more
information on the random.uniform functionality.

The x and y coordinates are computed using the radius and theta arrays.
Note that the variables, x and y, are created as NumPy arrays. For efficiency
reasons, we will return these as Python lists. This is accomplished by using
numpy .ndarray.tolist (), a method accessible to NumPy array objects.

profile this code and compare the performance with the previous optimization
Here is the command to execute this code:

$ python goldhunt pass4.py

[335]

Improving Performance — Part Two, NumPy and Parallelization

The profiler output is shown next:

19434 function calls in 38.391 seconds

Ordered by: internal time
List reduced from 18 to 5 due to restriction <'goldhunt'=

ncalls tottime percall cumtime percall Tilename:lineno(function)
95 37.993 0.400 37.999 0.400 goldhunt_passd4.py:107(find_coins)

1 0.164 0.164 0. 346 G.346 goldhunt_pass4.py:48({generate_random_points)
1 0.038 0.038 38.391 38.391 goldhunt_passd.py:173(play_game)

1 0.002 0.002 38,353 38.353 goldhunt_passd.py:131(play)

1 0.000 0.000 0.000 0.000 goldhunt_passd.py:91(__init_)

Observe the cumulative time column for the generate random points function.
The cumulative time for the original function was ~ 5.2 seconds, that is now reduced
to 0.346 seconds. This is already a significant improvement.

It is possible to further improve the performance of the generate
random_points function. For example, at the beginning of the function,
~ you can compute the product 2*1_pi, for example:
two pi = 2*np.pi
Then use this variable in the computation of theta. However, this will
only result in a marginal improvement in the runtime.

Gold Hunt optimization — pass five

In this optimization pass, we will further improve the runtime performance of the
GoldHunt.find_coins method. The original method is shown in the following
code snippet for convenience. You can also find it in an earlier goldhunt_pass4.py
file. For more details, see the previous chapter's, Gold Hunt Optimization — Pass two
section.

[336]

Chapter 9

def

find coins(self, x_list, y_list):

collected coins = []

search_radius_sguare = self.search_radius#*self.search_radius
append coins_function = collected coins.append

local_xref
local_yref

self.x_ref
self.y_ref

. _ _ _ Gp-rimiza:rion pass—H
for x, y im zip(x_list, y list):
delta_x = local_xref - x
delta y = local_yref -y
dist square = delta _x*delta _x + delta_y*delta y

if dist sguare == search_radius_square:

kppend_coins_function((x, y))

return collected coins

Recall that the last recorded runtime for this method was about 38 seconds. Our
task is to improve it further. We will start the optimization work by making a small
change to the generate_random_points function. Recall that this function returns
the x and y coordinates of the gold coins on the field as Python lists. Instead, let's
return these as NumPy arrays.

a1

‘@ uses the NumPy functions discussed in that section. More specifically,

If you have skipped reading the earlier introductory section on NumPy,
now would be the time to go back and read it! The optimization pass five

the code presented next uses the einsum and dpstack functions. You
may find the einsum syntax confusing. Therefore, it is recommended
that you read the introduction first before diving into the code.

[337]

Improving Performance — Part Two, NumPy and Parallelization

In the £ind_coins method, we will use the NumPy functions that work efficiently
with these NumPy arrays. The following code fragment shows the updated function:

def generate_random_points(ref_radius, total_points):

1_uniform = np.random.uniform

1 sqrt = np.sgrt

1 pi =np.p1

1 cos = np.cos

1 sin = np.sin

theta = 1T_uniform(0.Q, 2.0%1_pi, total_points)

radius = ref_radius*1_sqrt(l_uniform(0.3, 1.0, total_points))

% = radius*1_cos(theta)

¥ = radius*1_sin(theta)

Unlike optimization pass-4 (which returns x and y as Python lists,|

[338]

Chapter 9

With this change, let's quickly review the reworked find_coins method next:
def find coins(s=1f, x_list, y_list):
collected coins = []
search_radius_square = self.search_radius*self.search_radius
append_colns_function = collected_coins.append
Dp-rimiza.-rion pass—5
points = np.dstack (({x_list, y_list))

center = np.array([self.u_ref, self.y_refl)
diff = points = center

distance_squares = np.eilnsumi'...1,...1", diff, diff)
dist sq list = distance squares[0].tolist()
for 1, d in enumerate(dist_sq_list):

if d == search_radius_square:
append _coins_function((x_Tist[i]. y Tist[i]]})

return collected coins

Let's review the preceding code snippet:

* Recall that our task is to find the square of the distance between any gold
coin on the field and the center of the search circle, and then use this value to
check if the gold coin lies inside the search circle.

* The input argument, x_list and y_1list, are the NumPy arrays representing
the x and y positions of the gold coins on the field.

* Using these coordinates, we will create a single points array that contains
(x, y) coordinate pairs as its elements. This is accomplished using numpy .
dstack. See the earlier introductory section on NumPy for an example usage.

* Next, we will find the vector between each point in the points array and the
center array for the search circle. These vectors are stored as the elements of
the diff array.

[339]

Improving Performance — Part Two, NumPy and Parallelization

* Using this diff array, we will find the square of the distances between all the
gold coins from the center using einsum. See an earlier, Computing distance
square with einsum section, where this was discussed in detail.

* Finally, we will check if the gold coin lies inside the circle by comparing
the distance squares. The enumerate () function is a built-in function that
presents a cleaner way to get the current index (1) of the loop and the
corresponding value (d).

The code is ready. Now, it is time to profile it:

$ python goldhunt pass5.py

The profiler output is shown below:

21345 function calls in 21.487 seconds

Ordered by: internal time
List reduced from 25 to 5 due to restriction ='goldhunt'=

ncalls tottime percall cumtime percall filename: lineno(function)
95 14.843 0.156 19.504 0.205 goldhunt_pass5.py:148(find_coins)

1 1.754 1.754 21.483 21.483 goldhunt_pass5.py:192(play)

1 0.161 B.161 0.219 0.219 goldhunt_pass5.py:40(generate_random_points)
1 0.003 0.0063 21. 488 21.486 goldhunt_run_master.py:37(play_game)

1 0.000 0.000 G.000 0.000 goldhunt_passS.py:132(__init__)

Observe that the cumulative time taken by the find_coins function has gone down
to ~19.5 seconds from the earlier ~ 38 seconds. It is nearly a 50% improvement for
this function alone. Also, the total runtime is now ~ 21.5 seconds compared to the
previous timing of ~38 seconds.

It is possible to improve the performance of find_coins by
using list comprehension instead of the for loop. However, the

M improvement will be marginal. You can try it as an exercise (no solution is
provided). Here is a sample code that uses list comprehension:
collected coins = [(x list[i], y 1list[il)

for i, d in enumerate(dist sqg list)

if d <= search radius_ square]

[340]

Chapter 9

Parallelization with the multiprocessing
module

Before jumping onto the discussion of the multiprocessing module, let's first
understand what we mean by parallelization. This will be a very short introduction
to parallelization, just enough to understand how to use some features of the
multiprocessing module.

Introduction to parallelization

Imagine you are standing in a long queue at a checkout counter in a grocery store,
waiting for your turn. Now, three more counters are opened to serve the customers
and the existing queue is split. As a result, you can pay and get out of the store quickly.

Parallelization, in some sense, accomplishes similar results. In this example, each
counter can be imagined as a separate process, carrying out independent tasks of
accepting payments. The initial queue of the customers can be imagined as your
program. This long queue is then divided into independent queues (or tasks),
processing them parallely on separate counters (processes).

The Gold Hunt program we have written so far runs serially. The program executes
a set of tasks one after another on a single processor. This is analogous to the single
counter in the previously mentioned grocery store example. Many times, it is
possible to split the program into smaller tasks and run them independently using
multiple processes or threads.

Let's quickly review two broad programming models that handle parallel process
communications. These are shared memory and distributed memory parallelization.

Shared memory parallelization

In the shared memory programming model, the parallel processes access the same
memory segment. Thus, the exchange of data and the communication between
processes happens through this common memory. This programming model is often
referred to as threaded programming. The disadvantage of the shared memory model
is something known as a race condition. Here, multiple threads compete to access or
modify, for instance, data at a memory location. The race condition can be avoided
by controlling access to that critical information using locks. However, this adds to
the programming overhead. Refer to https://en.wikipedia.org/wiki/Shared_
memory for further information.

[341]

https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Shared_memory

Improving Performance — Part Two, NumPy and Parallelization

Distributed memory parallelization

Here, each process gets its own memory space. The processes do not share any
memory resources, and they run independent of each other. The communication
between the processes happens over inter-process communication channels. This
is referred to as message passing. To learn more about message passing, see
https://en.wikipedia.org/wiki/Message passing. Since the processes do
not share the same memory space, there is an additional communication overhead
associated with the distributed memory mechanism.

Global interpreter lock

In Python, the threading module provides a high-level interface for thread based
parallelization. To avoid the race condition discussed earlier, Python employs a
mechanism called global interpreter lock (GIL). When a thread is executing a

block of code, a global lock is acquired. This lock makes sure that only one thread is
executed at a time in the Python interpreter environment. The disadvantage of GIL is
that you cannot take full advantage of a multiprocessor machine.

The multiprocessing module

The multiprocessing module addresses the GIL problem and provides a simple
way to parallelize Python programs. Instead of using threads, it uses sub-processes
and avoids GIL. In this module, the exchange of data between processes is supported
using two communication channels, a Queue class and a Pipe function. This module
also provides several other useful features, such as managers and proxy objects.

The Manager object is created using multiprocessing.Manager (). It controls a
server process that manages the Python objects. The manager also enables other
processes to manipulate these Python objects using proxies. Discussing these
features is beyond the scope of this book. Python documentation has great examples
of how these features work. Refer to https://docs.python.org/3/library/
multiprocessing.html for more information.

In this chapter, we will cover only a few features of the pool class.

The Pool class

The multiprocessing. Pool class provides a simple approach to parallelize the
program. It is used to manage a pool of worker processes and defines methods that
enable various ways to run the given tasks parallely.

[342]

https://en.wikipedia.org/wiki/Message_passing
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html

Chapter 9

S The other basic approach is to use the Process class, which is not
discussed in this book. See the previous documentation link for details.

The Pool.map and Pool . apply methods are among the ones frequently used. These
are the parallel equivalents of the Python built-in map and apply functions. Both
these methods block the main program until a worker process is finished and the
results are ready. The blocking nature is useful if you are interested in getting a
sequential output from the parallel processes. They also have their asynchronous
variants, namely map_async and apply_async. The asynchronous variants are better
suited to run parallel jobs where you don't care about the order in which results are
returned by the processes.

However, it was supported in Python 2.7. You can refer to Python 2

M The apply function is no longer a built-in function in Python 3.
Q documentation to learn what this function does.

Let's work on a simple example that shows how to use the pool class and its
methods, map and apply. Observe the following code:

import multiprocessing

def get_result (num):

process_name = multiprocessing.current_process().name
print("Current process:", process_name, ", Input Mumber:", num)
return 1C*num

if __name_ == "'_main_ ':

numbers = [2, 4, &, 8]

pool = multiprocessing.Pool(2)

mylist = pool.map(func=get_result, iterable=numbers)
pool.close ()

pool. join()
print("Output:", mylist)

[343]

Improving Performance — Part Two, NumPy and Parallelization

Let's review the preceding code snippet:

We start by importing the multiprocessing module.

The pool instance is created with two worker processes. You can specify the
number of worker processes as an optional input argument.

After creating a pool of workers, the pool . map method is called. As
previously stated, this is a parallel equivalent of the built-in map function.
The first argument is a trivial function called get_result. This function is
applied to the iterable specified as the second argument.

In this case, the get_result function is applied on each element of the
numbers list. Inside this function, we also print the name of the current
worker process doing the job.

The pool.close () method stops the worker processes after execution,
whereas the pool.join () method blocks until the worker process
terminates. This mimics the API provided by the threading module.

The preceding code can also be found in pool_example.py. In this file, you just need
to enable the relevant code and disable the other function calls. The file can be run
from the Command Prompt, as follows:

$ python pool example.py

Here is a sample command-line output after this execution:

Current process: ForkPoolWorker-1 , Input Number:

Current process: ForkPoolWorker-2 , Input Number:

2
Current process: ForkPoolWorker-2 , Input Number: 4
6
8

Current process: ForkPoolWorker-1 , Input Number:

Output: [20, 40, 60, 80]

Notice that the elements of the output list (mylist) are arranged in the same order as
the input list (numbers). In other words, we have the inputas [2, 4, 6, 8] and the
output is 10 times each element, given as [20, 40, 60, 80].This may or may not
be the case for asynchronous variants. It will depend on which order the processes
finish and return the results for.

[344]

Chapter 9

With just a single line change, we can run the same example using Pool.apply. The
following code snippet shows how to do this. The get_result function is not shown
as it remains the same as before, as follows:

if _name_ == "'_main__ ':
numbers = [2, 4, &,]

pool = multiprocessing.Pool(2)
mylist = [pool.apply(get_result, args=(num,}) fer num in numbers]
pool.close()

pool.join()
print{"Output:", mylist)

Here, we created mylist using list comprehension. For each element of the numbers
list, it calls the Pool . apply method. The first argument to the method is the name

of the function whereas the second argument, args,is used to specify the other
arguments to this function. This method offers convenient syntax to specify any
number of arguments to the function being sent to the worker processes. The rest

of the code and programming output remains the same, as shown in the Pool .map
method example. Let's review one of the asynchronous variants, Pool.apply_async.
The code is shown as follows:

if __name_ == "'_main_ ':

numbers = [2, 4, &, 3, 10]

pool = multiprocessing.Pool(2)

results = [pool.apply_asyncliget_result, args=(num,))
for num in numbers]

mylist = [p.get() for p in results]

pool.close()

pool.join()
print ("Output:", mylist)

[345]

Improving Performance — Part Two, NumPy and Parallelization

Let's talk through this code:

* This involves two changes. The first one is a trivial one. The apply method is
simply replaced with apply async (shown highlighted). There is no change
in the method syntax.

* However, the output of the apply_async call does not directly give us the final
values we need. Instead, it returns the object of a Pool . ApplyResult class.

* In this example, apply_async is used inside a list comprehension. So, the
elements of the results list are objects of the ApplyResult class.

* The final value can be obtained using the ApplyResult.get () method.
We do this using a list comprehension, as shown in the preceding image.
Alternatively, you can also use the generator expression syntax discussed
in the previous chapter.

With this short introduction on parallelization, let's see how to parallelize some
functionality from the Gold Hunt application.

Parallelizing the Gold Hunt program

Looking at the previous profiler output, the £ind_coins function is still the main
bottleneck with ~19.5 seconds of cumulative time. Let's see how parallelization can
help speed it up further.

[346]

Chapter 9

Revisiting the gold field
Here is the gold field image from Chapter 7, Performance - Identifying Bottlenecks:
A AL & &
& 58
- e

... N | H‘*: .

: 2 B Gold hunt
. ends!

On the way our,
Sir Foo collects Eold

~ coins Inside each of e

-\ these "Search Circles™ &= LT *ﬂ*

%= T e *u b ¢
Ignore the rest of . =

i regafdon fﬁe ﬁe."d - *“*%

J v -« J**.

**‘Lf h l.‘u’ s‘#q‘u!‘u T L4 ‘

[347]

Improving Performance — Part Two, NumPy and Parallelization

Let's quickly summarize what we already saw in Chapter 7, Performance - Identifying
Bottlenecks:

* The find coins method is called for each of the small search circles shown
in the figure. So, if there are 10 search circles, £ind_coins will be called 10
times, one after the other.

* The £ind_coins method returns the coordinates of the gold coins lying
inside the given search circle.

* The information about all such collected coins is maintained in a list object.
There is one important thing to note here. It is a serial execution. You start with the

first circle, collect the coins and move on to the next one, and repeat the procedure
until you hit the other end of the field.

So how can we further enhance the search operation? Any thoughts,
Myr. Great Dwarf?

We can perform a parallel
search apermion' Imogine) £
have a ‘pool of workers'

They can independently _
start the search and finish §

the Job qmckly

Chapter 9

Perfect! The search operation inside each circle is independent of the others.
Therefore, the £ind_coins function can be independently executed for each search
circle. This is an ideal candidate for parallelization.

. and by the way,

T dorn't care about the
ORIER in which the
workers search and
return the coins.

I+ i:_ju:-r the OOLP

Thﬂ.‘f I care ﬂbﬂh‘.‘f ﬂﬁd

how qui:H}r carn we

find i+l

That is even better!

Since the order in which the results are returned (by the worker processes) is not
important, we can use Pool .apply_async to parallelize this task.

Gold Hunt optimization — Pass six,
parallelization

As a first step, you should skim through the play method of the last optimization pass
five. Most of the changes we are about to make will be in this method. Additionally,
we will pass some more arguments to the find coins method.

[349]

Improving Performance — Part Two, NumPy and Parallelization

So, we decided to use a pool of worker processes represented by a Pool object.

The work queue of this Pool object consists of all the search circles inside the gold
field shown earlier. Each worker process will parallely run the search operation
(find_coins), and it doesn't depend on other search circles. Generally, the worker
processes within a Pool object are not terminated until the complete work queue is
processed. When a worker process is done finding the coins in a particular search
circle, it may get assigned to perform this operation for another search circle.

So what changes are required to be done to the play method? The code will be very
similar to the basic example of apply async, as seen earlier. Does anything else
need to be changed in the existing method? Our friend EIf has a question...

def play(se1lfl:
- Froem Opﬂmizaﬂan Paaa-E
total _collected coins = []
¥_list, y_list = generate_random_points(self.field_radius,
self.field coins)

count = @
while self.x_ref == 9.0:
count += 1

coins = self.find_coins(x_list, y_list)
print("Circlez {num}, center: ({x}, {y}). coins: {gold}".format(
num=count, x=self.x_ref, y=self.y_ref, gold=len{coins)})

total_collected_coins.extend(coins)

print("Total collected coins =", len{total colle

/The code depends on the

instance variables at_r'e.*F and

}‘_r‘ﬁ{ Thi’.’&i’.’ are HPdﬂfﬁd
e'.ve'.r'}r tTime we ﬂd?dﬁﬁt’.‘ to fht’.

mext ae.a.r'-:h ﬁ-lr'ﬁlt'.. Wau|dn'1'

Qhﬂf bﬁ o blﬂ:l‘:ﬁf‘ ht’.’f‘t’.’?

[350]

Chapter 9

You are spot on! The existing play method serially runs the search operation. It
starts with the leftmost circle, finds the coins, and moves on to the next circle by
updating x_ref. Note that we have chosen y_ref as 0.0 in this example.

When we run this search operation on parallel processes, each circle will have

its unique center coordinates. We need to provide appropriate values of these
coordinates to each parallel process. To do this, let's remove the dependence on
x_ref and y_ref. The center coordinates of all the circles will be determined and
stored in a list before parallelizing the search operation.

The play method with the preceding changes is shown below:

def play(self):

x_ref = self.x_ref Op-rimiza.-rion pass—6&

¥_centers = []

circle numbers = []

¥_list, y_list = generate_random_points(self.field_radius,
self.field coins)

count =@
while ¥ ref == 2.0: .
— - Cirecle centers and
count +=1 b h I
x_centers.append(x_ref) numMbers are The two liaTs
x_ref += self.move_distance used in app|}-‘_na}fnc

circle _numbers.append(count)

pool = multiprocessing.Pooliprocesses=3)
results = [pool.apply_async(self.find_coins,
args=(x_list, y_list., x_ref, numl)
for x_ref, num in zip(x_centers, circle_numbers)]

pool.close()
pool.join()

output = [p.get() for p in results]

total_collected_coins = list(itertools.chain(*output))
print{"Total_collected_coins =", len({total_collected_coins))

[351]

Improving Performance — Part Two, NumPy and Parallelization

Let's talk through the important changes in this method:

In a while loop, we will first determine the centers of all the search circles
and store the coordinates in a list called x_centers. The y coordinate (y_ref)
is not updated because we have chosen it as constant (0.0) for all the circles.

In the same while loop, another circle number list is populated to
represent the circle ID. This is just for printing purposes so that we will know
which search operation is being performed.

After preparing the list, a pool of worker threads is created and then apply
async is called in a list comprehension.

Recall that the first argument to the Pool.apply_async method is the name
of the function (self.find coins), whereas the second argument, args, is
used to specify all the arguments to this function.

The rest of the code is similar to what we saw in the introduction of the
multiprocessing module. The apply async call returns a list containing
objects of the ApplyResult class. Then, the get () method of this class is
used to obtain the final values.

If you are using Python 2.7.9, you may have to create and
use a global function as the first argument to apply_async.
Wl This global function can then return the GoldHunt .
~ find_ coins method. This is a workaround to avoid a
Q PicklingError exception noticed while testing the code.
For Python 3.x, there is no problem. This code is provided in
the supplementary code bundle. See the Python 2 equivalent

of the goldhunt passé _parallel.py file for details.

Finally, there are some changes to the GoldHunt . find_coins method. It now takes
the process_x_ref and circle number functions as two new arguments. The
process_x_ref function represents the x coordinate of a given search circle. The
process_ prefix is added just to distinguish it from self.x_ref, and indicate that
its value will be different for each worker process.

[352]

Chapter 9

Using apply_async, we will run this method on separate parallel processes. Each
process gets its own circle center and number to be given as an input for the £ind_
coins method. The method is shown in the following code snippet. The highlighted
code indicates the changes in comparison with the previous optimization pass.

def find coins(self, x list, y list, process x ref, circle num):
collected_coins = []
search_radius_sguare = self.search_radius#*self.search_radius

append_coins_function = collected coins.append

0 primization Pa.:.:.-é

poilnts = np.dstack ((x_list, y_listl)

center = np.array([process_x_ref, s=1f.y_ref])
diff = points = center

distance_squares = np.elnsum({'...1,...1", diff, diff)
dist_sq_list = distance_squares[0].tolist()
for 1, d in enumerate(dist_sq_list):

if d == search_radius_square:
append_coins_function((x_list[1], y_list[i]))

print(“Circlez {num}, center:({x}, {y}), coins: {gold:". format(
num=circle num, x=process x_ref, y=self.y ref,
gold=len(collected_coins)})

return collected coins

The rest of the code remains the same as the previous optimization pass. The source
code is provided in the goldhunt_passé_parallel.py file. Let's run this code and
see the profiler output:

$ python goldhunt pass6é parallel.py

[353]

Improving Performance — Part Two, NumPy and Parallelization

This will print information on the search circles as it did earlier. Here is the
profiler output:

6382 function calls (6329 primitive calls) in 13,625 seconds

Ordered by: internal time
List reduced from 251 to 6 due to restriction <'goldhunt'=

ncalls tottime percall cumtime percall filename:lineno(function)

0.150 0.150 0.207 0.207 goldhunt_pass_parallel,py:41(generate_random_points)
0.001 0.001 13.625 13.625 goldhunt_run_master.py:37(play_game)

0.001 0.001 13.624 13.624 goldhunt_pass_parallel.py:149(play)

0.000 0.000 13,302 13,302 goldhunt_pass_parallel.py:171(<listcomp=)

0.000 0.000 0.004 0.004 goldhunt_pass_parallel.py:169(<listcomp=)

0. 000 0.000 0. 000 0.000 goldhunt_pass_parallel.py:93(__init_)

R R e

Note that the find coins call is not shown in the profiler output. It is hidden inside
the reported timing of the play method. Comparing the cumulative time (cumtime)
of the play method should give a reasonable estimate on the performance gain with
parallelization.

In summary, the parallelization has helped improve the total timing from earlier,
~21.5 seconds to ~13.5 seconds.

Depending on your machine specifications, you can try increasing the
number of worker processes by updating the argument to the Pool class.
N For example, instead of three processes you can run the program with
~ four processes. However, this is a simple case and the runtime is so short
Q that you will hardly see any further improvement. In fact, the overhead
of the sub-processes may even result in a slightly degraded performance.
Also, depending on the problem, beyond a certain number of processes,
the performance gain due to parallelization can fade away.

Other methods for parallelization

Is the apply_async method the only way to parallelize this problem? Certainly not.
There are other methods in the multiprocessing module that can do this efficiently.
Pool.starmap_async is one such method available in Python 3.3 and beyond. We
are not going to discuss this here, but the following code shows how to invoke it
along with the itertools.repeat function:

results = pool.starmap async(self.find coins,
zip (itertools.repeat (x _list),
itertools.repeat (y_list),
X_centers,
circle numbers))

[354]

Chapter 9

For more information on such methods, refer to the multiprocessing module
documentation.

Further reading

In the series of the three chapters on performance, we covered several important
aspects. The things learned here will help you with the majority of common
application performance enhancement tasks. Where do we go from here? There are
some other important topics that you can explore, among those are JIT compilers and
Graphics Processing Unit (GPU) programming. This section aims at providing some
basic information on these two topics. You can follow the links provided here for
further understanding.

JIT compilers

Python is an interpreted language. In simple terms, it means that the code is parsed
and executed directly without involving any code compilation. Although this offers a
great deal of flexibility, the program typically runs slower.

In high-level programming languages such as C++, the code is compiled ahead of
time or before the execution. Generally speaking, a compiled program (C++) runs
faster compared to the equivalent interpreted program (Python).

Thus, we have an interpreted code on one side which offers flexibility and a
compiled code on the other that runs faster. The JIT compiler gets the best of both
worlds. It compiles the code, but instead of compiling it ahead of execution, it does
this just-in-time or during the program execution.

PyPy is one such project that provides an alternative implementation of the Python
language that comes with a JIT compiler. Python programs often run faster with
PyPy. It is also memory efficient and offers high compatibility with the existing
Python code. To learn more about PyPy, check out http://pypy.org.

Numba is another project aimed at speeding up the application. It provides a JIT
compiler and a very simple syntax to mark a function for optimization using a JIT
compiler. You just need to use the numba.git () decorator. In other words, add ejit
above the function name to mark the function for optimization. If you are using the
Anaconda Python distribution discussed in Chapter 1, Developing Simple Applications,
it already provides the numba module by default. To learn more, visit the project
home page (http://numba.pydata.org).

[355]

http://pypy.org
http://numba.pydata.org

Improving Performance — Part Two, NumPy and Parallelization

GPU accelerated computing

GPU is traditionally used for applications involving heavy rendering, such as game
applications. It is now widely used for applications involving scientific simulations,
neural networks, financial modeling, and so on. The massively parallel architecture
of a GPU offers tremendous performance improvement (of the order of 100x or
more) over the CPU-based parallelization. A typical strategy is to identify the most
compute intensive part of your application, and then send it to a GPU. The rest of the
code can continue to use CPU. However, it is not as simple as it sounds, especially

if you are working on a legacy code. In such cases, the challenge can be to make it
compatible to fully utilize the GPU acceleration.

PyCUDA (https://pypi.python.org/pypi/pycuda) is a popular Python package
that provides a wrapper to access Nvidia's CUDA parallel API. CUDA is a parallel
computing platform by NVIDIA. More information can be found at http://www.
nvidia.com/object/cuda_home new.html.

PyOpenCL (https://pypi.python.org/pypi/pyopencl) is another Python
package. It provides an easy access to the Open Computing Language (OpenCL)
API. OpenCL is a framework for parallel computation. Refer to https://
en.wikipedia.org/wiki/OpencCL for further information.

Summary

With this chapter, we end the series of chapters focused on performance
improvements. Let's first summarize what you learned in this chapter. We started
with a basic introduction to the NumPy library and saw how to leverage it to
further speed up the Gold Hunt application. In particular, we used the array (numpy .
ndarray) data structure and other functionalities, such as numpy . random.uniform
and numpy . einsum to achieve the speedup. The final optimization pass involved
parallelizing the code. The chapter briefly introduced you to the basics of parallel
processing. We used functionality from Python's multiprocessing.Pool class to
further trim down the application runtime.

Finally, let's summarize the three performance chapters together. We started by
profiling the code to identify the performance bottlenecks and learned about the

big O notation. We gradually addressed these bottlenecks to improve the application
performance. This was accomplished by several means, ranging from changing the
algorithm and implementing efficient data structures to using the functionality from
a Python standard library. We further improved the runtime by using NumPy and
also by parallelizing the code.

[356]

https://pypi.python.org/pypi/pycuda
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://pypi.python.org/pypi/pyopencl
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/OpenCL

Chapter 9

\ The timings reported by the profiler will vary widely. It depends on your
~ machine specifications, and also on the current running tasks. So, the
Q timings observed in your case will likely be different than the numbers
reported in this book.

For the Gold Hunt example discussed in these chapters, the total runtime was
reduced almost by an order of magnitude, from an initial value of about 106 seconds
to a final runtime of nearly 13.5 seconds.

So far, in this book, you learned several key aspects of application development
using command-line programs. In the final chapter, we'll see how to develop simple
GUI applications in Python.

[357]

10

Simple GUI Applications

All the chapters so far were about learning to write better application code in
Python. Starting with a simple program, we saw how to develop robust and efficient
applications. We touched upon several important areas of software development.
More specifically, we covered exception handling, deploying applications,
documentation, adopting best practices, unit testing, refactoring, design patterns,
and performance improvements. The key concepts were explained using various
command-line applications that were progressively improved.

Where do we go from here? Beyond the command line, there are applications that
present an interactive user interface. Desktop, mobile GUI applications, or web
applications come under this category. Also, there are applications targeted for
specific domains such as network and database programming. These are broad
topics, and each has its own set of goodies that will help make the application robust.
Nonetheless, the techniques we have learned in this book provide a solid foundation
for all these domains.

This last chapter is designed to give you just a flavor of one such domain. It will be a
superficial introduction to desktop GUI application development using Python.

GUI programming is too big of a beast to fit into a single chapter. Let's

do that anyway, keeping in mind that there is plenty of opportunity to

% learn beyond what is discussed here. The chapter won't show you how
T to create full-fledged, complex GUI applications. Rather, we will just dip

a toe into GUI application development using Python's Tkinter library.

Here is how the rest of the chapter is organized:

* The chapter will start with an overview of the available GUI frameworks.

* Next, we will see what event-driven programming is, followed by a primer
on the Tkinter library.

[359]

Simple GUI Applications

* What follows next is our first project, a simple GUI application that uses
Tkinter. It is essentially the GUI version of the first ever application we
developed in Chapter 1, Developing Simple Applications.

* The next section will serve as an introduction to the Model-view-controller
(MVQ) architecture. This will be followed by our second project, where the
earlier application is rewritten to implement the MVC architecture.

* The chapter will also talk about testing GUI applications. This will be a high-
level discussion, and won't involve writing any code.

* This being the last chapter, we will conclude it, and hence the book, with a
brief discussion on various application frontiers.

Overview of GUI frameworks

A user interface is typically something that a user can see and use to communicate
with the application. So far, we have presented a text-based user interface. For
example, in the Attack of the Orcs application, the user was prompted to specify a hut
number, and based on the number entered, further actions were taken.

A Graphical User Interface (GUI), on the other hand, presents an interface to the
user that may have buttons, icons, text fields, graphics, and so on. There are several
Python GUI frameworks available. Many of these are based on cross-platform
technologies such as Tk, Qt, wxWidgets, and others. Let's briefly discuss some of
the most popular frameworks. The purpose is to just make you aware of the GUI
technologies available.

Tkinter

Tkinter provides Python bindings or interface to the open source Tk GUI widget
toolkit. For more information on Tk, see its official website, http://www.tcl.tk/.

It is available as a standard module in Python. What this means is that as long as
Python is installed, we do not need any additional installations to use it. In this book,
we will demonstrate basic GUI concepts using the Tkinter library.

PyQt

PyQt (https://wiki.python.org/moin/PyQt) is a widely used Python GUI library.
It is one of the most mature frameworks out there. It essentially provides Python
bindings for a popular Qt GUI application development framework. In order to use
this framework, you need to install Qt first.

[360]

http://www.tcl.tk/
https://wiki.python.org/moin/PyQt

Chapter 10

It is worth noting here that Qt has different licensing schemes depending on the
project. For example, if your project is an open source distribution, licensed under
the terms of LGPL or GPL, you can use Qt freely. If you are using it for a commercial
purpose, you have to purchase a license. Visit the Qt website, https://www.gt.io/,
for more details.

PySide
PySide is another Python binding for the Qt GUI framework. It is a free software,

released under the LGPL license. PySide supports Windows, Mac, and Linux OS.
For more information, see https://wiki.qgt.io/PySide.

Kivy

This is one of the most promising open source frameworks for creating cross-
platform interactive user interfaces. With kivy, you can rapidly develop native
multi-touch apps for mobile or desktop. It provides a design language called Kv for
GUI design. The kivy website lists many supported operating systems including
Windows, Mac OS X, Ubuntu, and Android for which an installer is available.

If you are using a different OS not listed on the kivy website, the
installation could be a challenge. For example, at the time of writing

M this book, there is no installer available for Red Hat Enterprise Linux
(RHEL) version 6.x. The other option is to build it from source code.
But that could be a challenge if you are not familiar with the code
compilation and building process. If you really want to use it, you could
also install it in a virtual machine running one of the supported OS.

wxPython

This package provides a wrapper for wxWidgets, a cross-platform GUI library. It is
an open source toolkit, and according to the project website (http://www.wxpython.
org), the supported platforms include 32-bit Windows, many Unix-like operating
systems, and Mac OS X.

While there are many choices available at our disposal, in this chapter we will

use the built-in Tkinter module mentioned earlier. The scope will be limited to
developing a simple application that demonstrates some of the major components
of GUI-based application development.

[361]

https://www.qt.io/
https://wiki.qt.io/PySide
http://www.wxpython.org
http://www.wxpython.org

Simple GUI Applications

GUI programming design considerations

Although the focus of this chapter is on developing simple GUI applications,

it is worth taking a moment to briefly discuss some important practical design
considerations or guidelines for developing user interfaces. These guidelines will also
come in handy for web-based or mobile applications. Some aspects that we are about
to discuss should actually be part of your GUI application development life cycle.

Understanding user requirements

The first and foremost task is to put yourself in the shoes of the end user. You are
developing the GUI application for consumption by the end users. It is important to
take their feedback on the features that they would like to see. This is typically a part
of requirements gathering.

Developing a user story

OK, so you know what features are requested, and have prepared a list that would be
supported in the upcoming version. It is often useful to prepare a mock user interface
that illustrates how various features could be accessed and how they interact. The
mock user interface could be in the form of a simple presentation. You can then take
feedback from the development team as well as from the key users of the product.

This will allow you to immediately identify the problems, if any, or refine your

design strategy even before writing a single line of code. Such discussions with the

key stakeholders could also unearth future requirements that you have not thought
through. This, in turn, will help you refine the software architecture to make provisions
for such requirements. Next, let's learn about some of the design principles.

Simplicity and accessibility

The GUI should be simple enough to make the most frequently used tasks easy to
access. What the developers think as simple may not always go well with the end
users. Getting user feedback and going through design iterations play an important
role. In general, keep the following things in mind when designing for simplicity:

* It matters how you lay out the various components in the application
window. Is it intuitive? Is it easily accessible?
* Place frequently used and important functionality prominently in the Ul

* Try to hide advanced or less frequently used features. If possible, you
could create an expert level mode in your GUI where these features appear
prominently.

[362]

Chapter 10

* Have default values wherever applicable.

* Common user actions should be easy to execute. For example, if changing the
background color is a common task, allow users to access this option with a
click of a button or with a keyboard shortcut.

* Try not to put too many things in the default display. Reduce the clutter.

Of course, this is not a complete list, and things will change depending on the
application and the domain.

Consistency

The user interface should be consistent. If you have similar features, they should
have a similar look and feel, similar steps to execute, and so on. The placement of
standard features or functions should not change. For example, in a text editor, the
Open button is typically placed near the top-left corner of the application window.
This default position should remain constant.

Predictability and familiarity

When a button is clicked, the user should be able to predict the next course of action.
A trivial example is the Save As... button —when clicked, the user anticipates a
dialog with the option to specify a location and file format. Why? Because he or she
is familiar with using a similar function in some other application. Further, the user
would anticipate some default directory location to save the file. The UI should not
surprise the user by changing this behavior.

Similarly, when you design an icon, it should speak for itself. For example, a gear
icon typically indicates some sort of configurable settings. The Ul design should be
such that the user can easily guess the next action to perform in a particular situation,
be it exiting the current mode or going back to the previous step, and so on.

Miscellaneous design considerations

We have covered some of the important factors you should know before designing a
GUI. There are many other design principles. Some of these principles are tied to the
aspects that we've already discussed. A few of these can be listed as follows:

* The GUI should have a visual appeal and clarity.

* It should be comprehensible. In other words, new users should quickly get
up to speed.

* It should anticipate common problems, and gracefully handle user errors.

[363]

Simple GUI Applications

Event-driven programming

In an algorithm-driven program, the flow of the program is dictated by the
predefined steps written in that program. The program may prompt the user with
these instructions for an input. An example is a command-line application asking for
user input in a predefined order.

In contrast, applications with a graphical user interface let the user dictate the
program flow. The application waits for the user actions, and then responds to those
actions. For example, if you are reading a PDF copy of a book, you can perform
actions like jumping to the next page, zooming-in, scrolling down, or closing the
window by clicking on the appropriate buttons. Here, you are essentially telling
the application what to do next. This is called event-driven programming. Here, the
control flow of the program is governed by the triggered events. The application
responds to these events as they occur. The response could be changing the state of
the graphical element or running some background task, and so on. For example,

if the user clicks a button representing the next page, the application will display
the next page of the book. Next, let's briefly talk about a few important concepts in
event-driven programming.

Event

In simple terms, an event represents an action happening inside the GUI window. An
event could be triggered by various sources. For example, when a user clicks a mouse
button, it generates a click event; pressing a key on the keyboard is recognized as
another event, and so on. An event could also be generated without a direct user input.
For example, the application might have completed running some calculations in the
background, and now wants to update the contents presented by the GUI. This could
automatically trigger some update event that would redraw the view.

Event handling

When an event is triggered, the application responds to that event. For example,
when you click on the close button of a browser, you expect the browser window to
close. In this example, closing the window is the application's response to the click
event generated due to user action. In other words, the application has a listener
object that handles this click event. Every GUI framework provides a way to bind (or
connect) an event to a handling function.

[364]

Chapter 10

Event loop

The event loop is the main controlling loop of the GUI program. When you start the
application, the main loop is started, and it waits for the events to occur. It monitors
the event sources, and dispatches the events when they occur.

With this short introduction, let's summarize what we have learned about
event-driven programming;:

* The overall flow of program execution is governed by events
* The application runs (the main loop starts) and waits for events to occur

* When an event is triggered, the application code, which is listening to the
events, responds by running a specific handling function

e Thus, the flow of a program depends on the triggered events

GUI programming with Tkinter

As mentioned earlier, a GUI provides a way to interact with an application. Instead
of a text-based input, the user is presented with elements such as text boxes, radio
buttons, tool bars, and so on. This section will introduce you to the basics of GUI
programming with Tkinter. This library is available as a standard module in Python.

Tkinter documentation links

Let's document some links for a handy reference. The official Tkinter documentation
page can be found at https://docs.python.org/3/library/tkinter.
html#module-tkinter. This page lists several external references. A good
introduction is available at http: //effbot .org/tkinterbook. Of course, you can
always perform a web search with search terms like python and Tkinter to find more
resources.

Alternatively, you can quickly find the supported functionality and documentation
using the Python interpreter!
>>> import tkinter

>>> dir(tkinter)

The preceding command lists the supported classes, functions, and so on. To pull out
a docstring, you can call the _doc__ on a given attribute. The following example
shows a docstring for mainloop () in Tkinter:

>>> tkinter.mainloop. doc

'Run the main loop of Tcl.'

[365]

https://docs.python.org/3/library/tkinter.html#module-tkinter
https://docs.python.org/3/library/tkinter.html#module-tkinter
http://effbot.org/tkinterbook

Simple GUI Applications

The mainloop() in Tkinter

In the discussion on event-driven programming, we learned about the main
controlling loop. Writing an event loop or the main loop in Tkinter is very simple.
The following code fragment shows the main loop in action. This is the simplest
possible GUI application that you can write using Tkinter:

from tkinter import Tk

if __name_ == '_main_ ':
mainwin = Tk ()
mainwin.mainloop ()

Let's talk through this code:

* The first statement imports the Tk class from the tkinter module.

* Next, we create a main application window by instantiating the Tk class.
It is represented by the variable mainwin. In Tkinter terminology, it is often
referred to as root or master. In this chapter, we will call it mainwin.

* The main event loop is started by calling the mainloop () method.

The output of this simple program is shown next. You can run it as any other Python

program. The code can also be found in the supporting material for this chapter
(see the file mainloop_example.py). Depending on your operating system and
environment, the look and feel of this window may vary.

$ python mainloop example.py

[366]

Chapter 10

~ Q following conditional import. The rest of the code remains the same.

In Python 2.x, there is a minor change in the import statement. The
module tkinter is available as Tkinter (first letter capital) for Python
version 2. The supporting code already takes care of this with the

if sys.version info < (3, 0):
from Tkinter import Tk
else:

from tkinter import Tk

Simple GUI application — Take 1

We just saw how to start a mainloop () method. Let's go one step further, and add
some widgets to this application. Observe the following code. You can also see the
file simple_application_ 1.py in this chapter's code bundle.

from tkinter import Tk, Label, Button, LEFT, RIGHT

if __npame_ == "_main_ ":

mainwin = Tk() size :Pe:ified a5
mailnwin.geometry ("140x40") — “Lidvh x height'

161 = Labelimainwin, text="Hello World!", bg='yellow')
1b1. pack (side=LEFT)

exit_button = Button(mainwin, text='Exit'., command=mainwin.destroy)
exit_button.pack (side=RIGHT)

\"'\.._,_,, |a.}-rau-r oP-rion thet Pu-r: the

mainwin.mainloop () widger along the right edge

The code comments pretty much explain what the code does. It is summarized next:

We start by importing the necessary classes and options from the tkinter
module. Note that you could also do the following: from tkinter import
*. However, the best practices that we saw earlier in the book do not
recommend doing that.

Next, the main window size is specified using the geometry () method.
This is optional.

[367]

Simple GUI Applications

* The next few lines of the code create two widgets, a Label widget that
will show the text Hello World!, and a Button, which will terminate the
application on being clicked.

* We need some way to arrange these widgets inside the application window.
This is referred to as geometry or layout management. There are three
options to do that. What is illustrated here is the pack () method. More on
geometry management later.

* When the Exit button is clicked, we need some way to process this event.
This is accomplished with the command option that is assigned to a callback
function. In this example, we simply terminate the application window and
also the mainloop () by calling mainwin.destroy ().

M Recall that Python functions are first-class objects. See Chapter 6, Design
Q Patterns where we discussed on this. The callback function, mainwin.
destroy, is assigned to the command variable.

Running this application from the command line displays a simple GUI window
like so:

$ python simple application 1l.py

Hello orld! Exit |

If you click on the Exit button, it will terminate the main application window.

Looks like Sir Foo is not quite impressed with this simple script...

[368]

Chapter 10

Is this how we write the
cade even for bigﬂer and

maore com Pl X

app|ica-rian sCr

For bigger and complex applications, it is better to follow the object-oriented
programming approach.

Let's rewrite this application, and wrap it in a class. However, keep in mind that it
is just a baby step towards creating a better application. Later in the chapter, you
will learn about the MV C architecture, and a basic example on implementing it in
your GUI application.

Simple GUI application — Take 2

It is time to add some object-oriented flavor to the mix. The application in the
previous section can be rewritten as follows:

[369]

Simple GUI Applications

from tkinter import Tk, Label. Button., LEFT, RIGHT

class HyGame:
def init (self, mainwin):
161l = Labelimainwin, text="Hello World!", bg='yellow')
exlt_button = Button(mainwin, text="Exit',
command=self.exit btn_callback)
1b1. pack (side=LEFT) The callback functien. We could

exit _button.pack(side=RIGHT) also dir'e:-rh-' write:
:ammahdﬂmainwin.deym}f
def exit btn_callback(sz17):

mainwin.destroy()

if __name_ == "_main_ ":

mainwin = Tk() N | hold +h .
mainwin.geometry ("140x40") ew class fo hold The main

game_app = MyGame (malnwin) _— |agir: and wi&ge-r creation code.
mainwin.mainloop()

Let's briefly discuss the preceding code:

* Compare this code against the previous code.
* The MyGame class is where we create the widgets and define the main logic.

¢ Notice that the command callback function for the button is set to
exit_btn callback.

* What this means is that when the Exit button is pressed, it will invoke
exit_btn_callback () instead of calling mainwin.destroy () directly.

* This is just to show you how to specify a different callback function. You can
always set it back to command=mainwin.destroy ().

[370]

Chapter 10

The rest of the code is self-explanatory. You can execute it to get the same Hello
world! window as in the first program. The command is shown next:

$ python simple application 2.py

The simple_application_2.py file in the supporting code bundle essentially has
the program we just reviewed.

In all the examples, we will use the Tk instance mainwin as the master
or parent object of the widgets created. In practice, it is often useful to
N create a container to hold other widgets in the GUI. The container could
~ be an instance of the Frame class or any other widget depending on the
Q application. For example, you could write the following;:
mainwin = Tk ()
container = Frame (mainwin)

some_label = Label (container, text="blah blah")

Now that we know how to create a simple application with a graphical user
interface, let's move ahead and talk about the various widgets available in the
Tkinter library.

GUI Widgets in Tkinter

In this section, we will briefly cover some of the frequently used widgets. Note that
the widgets we are about to cover are not specific to a GUI library. However, the
following discussion is tailored for the Tkinter library. For example, you will find a
Menu widget in many GUI libraries. Tkinter provides it with the class Menu, the PyQt
library calls it gMenu, and so on.

u What we are about to see is far from being a comprehensive list. You
~ are encouraged to explore the following wiki page that lists several
Q other GUI elements: https://en.wikipedia.org/wiki/List
of graphical user interface elements.

A widget is an element of a graphical user interface that enables user interaction.
In other words, the user can do certain actions like pressing a button and interacting
with the GUL

[371]

https://en.wikipedia.org/wiki/List_of_graphical_user_interface_elements
https://en.wikipedia.org/wiki/List_of_graphical_user_interface_elements

Simple GUI Applications

We already saw how to create the Label and Button widgets. The following table

summarizes some important widget classes in Tkinter.

command=parent.quit)

The optional command argument could
also be assigned to any user-defined
function.

Widget Class Basic Syntax Description
Menu menubar = Menu (parent) This widget represents a
menu, such as a menu bar or
a pop-up menu. It contains
menu items.
Frame container = This is typically used as
Frame (parent, a container to hold other
width=100, widgets. The frame widget
height=100, also has its own grid
bg='white"') layout, and like many other
widgets, you can specify the
background color, border,
and other properties.
Canvas my_canvas = This is a graphics widget.
Canvas (parent, This is where you can draw
or write stuff. For example,
width=100, you can render shapes,
plots, images, or use this
height=100) widget to write text.
Label 1bl = Label (parent, In a label, you can add a
text= "some text or an image. When you
text™", click on a label, no event is
bg = 'blue') triggered. Instead, you can
update a label in response to
some other event generated
elsewhere.
Button ok_button = A simple button widget.
Button (parent, When pressed or released, it
text="OK", triggers an event.

[372]

Chapter 10

Widget Class Basic Syntax Description
Radiobutton rbutton_ 1 = The radio button widget
Radiobutton (parent, allows a user to choose only
a single value from a given
text="Option 1", set of values. It can contain a
text or an image.
variable=var,
value=1)
rbutton 2 =
Radiobutton (parent,
text="Option 2",
variable=var,
value=0)
A group of radio buttons is tied to a
common variable, var. When you click
on a radio button, the value of that
variable is changed to a predefined one
given by the value.
Checkbutton c_button = This widget allows setting
two different values to a
Checkbutton (parent, variable. Typical usage is
text="Enable Audio", to toggle the state (on or off
variable=var) selection) of a variable.
The variable var has value of 1 when
the check button is selected, otherwise
the value is set to 0. This is the default
behavior.
Listbox lstbox = This widget is used
Listbox (parent) for showing a list of
You can then add elements to this list alternatives. The user can
box using the insert () method as select one or many elements
follows: from the Listbox widget.
lstbox.insert (END,
"iteml")
Entry text_edit= This is a text entry widget

Entry (parent)

that allows you to display
or input text. In some
other GUI frameworks, it
is referred to as a line-edit
widget.

[373]

Simple GUI Applications

The basic syntax shown in the previous table is for illustrative purpose only. You can
specify many other options. The parent argument given to the widget represents the
parent or the base widget.

In this book, we will just use the bare minimum options while creating
\ widgets. You could further configure each of these widgets by specifying
~ the appropriate optional arguments, or by calling the relevant methods.
Q For further learning, follow the various references listed on the official
Tkinter documentation page at the following link: https://docs.
python.org/3/library/tkinter.html#module-tkinter.

Geometry management

Layout or geometry management is about organizing various widgets within the
GULI In Tkinter, this layout management is accomplished with something referred
to as geometry managers. There are three different geometry managers to organize
the widgets, namely grid, pack, and place. Among these, the grid manager is the
recommended choice. Further in this chapter, we will demonstrate the use of a
grid manager.

Grid geometry manager

The grid manager offers flexibility in arranging various widgets, and is also very
easy to use.

* The parent widget of the grid manager (for example, a frame or a dialog) is
treated as a table with rows and columns.

* The smallest element of this table is a cell, which has a height and a width.

* You can place other widgets in such cells. It is also possible to have a widget
that spans more than one cells.

* The height of each row in the table is determined by the height of the tallest
cell (or a widget) in that cell. Likewise, the width of each column in this table
is governed by the widest cell in that column.

* Each row and column in a grid geometry manager can be configured with
a weight option. Weight determines how much a specific row or column
can expand if the master widget has free space available. The weight can be
specified using the methods grid_rowconfigure or grid_columnconfigure
for rows and columns respectively. The default value for weight is 0.

[374]

https://docs.python.org/3/library/tkinter.html#module-tkinter
https://docs.python.org/3/library/tkinter.html#module-tkinter

Chapter 10

The following screenshot shows a representative grid layout:

Cell [0,1] |
Cell [1,1] Cell [Lﬂm
_ Cell [3,0] to [3-3] {spanning 4 cols) |

In the preceding image, some Label widgets are arranged in a grid layout. The label
text Cell[0,0] indicates that we have put this label in row 0 and column 0 of the grid.
Observe that for Cell[3,0], it shows a label whose width occupies four columns.
Similarly, Cell [1,3] is a label whose height spans two rows.

Pack geometry manager

In our first Tkinter application, we've already used the pack geometry manager
to arrange the widgets. As a refresher, here is the relevant piece of code (the pack
method):

1bl = Label (mainwin, text="Hello World!", Dbg='yellow')
1bl.pack (side=LEFT)

The pack geometry manager provides options such as expand, fill, and side to
control widget placement. It is useful when you want to arrange multiple widgets,
either side by side or overlapping each other. The other use case is when you want
the widget to occupy the whole container that is holding it.

M Using both grid and pack geometry manager in the same main
window could lead to undesirable results. Do not use these layout
managers together.

Place geometry manager

The place geometry manager allows you to specify the absolute or relative position
of the widget and its size. It finds use in some special scenarios. We will not be
discussing this geometry manager further. In most cases, you could, instead, use the
grid geometry manager.

[375]

Simple GUI Applications

Events in Tkinter

Let's briefly talk about the various events supported in Tkinter, and the syntax that
describes them.

Event types

The following table shows some of the most frequently used event types. Read the
documentation to learn about other event types not listed here. The next section,
Event descriptors, will elaborate on how to use an event type to describe an event.

Event name Description

Button (or One of the mouse buttons is pressed. Which one? That is

ButtonPress) determined by the detail field of the event descriptor (see the
next section).

ButtonRelease One of the mouse buttons (that was pressed earlier) is released.

Enter The mouse pointer entered a widget. This has nothing to do
with the Enter or return key on the keyboard.

Leave The mouse pointer left a widget.

KeyPress A keyboard key is pressed. Which one? That is determined in
the detail field of the event descriptor.

KeyRelease A keyboard key is released.

FocusIn A widget gets an input focus.

FocusOut A widget no longer has the input focus.

Event descriptors

Tkinter has a special syntax for describing an event. It is a string with the following
general form:

<[modifier-]type[-detaill >

* The event specified is enclosed within the angular brackets <>.
* The type specifies the type of the event, such as a mouse click.
* The modifier and detail specifiers are optional.

* The modifier is the event modifier. Imagine that the Control button is pressed
along with a mouse button. Here, the Control button is the event modifier,
whereas the mouse button press is the type of the event.

* The detail specifier gives more information about the type of the event. If the
type is a mouse click, the details will describe whether it is the left mouse
button, the right button, or the middle one.

[376]

Chapter 10

The following table summarizes some of the common event specifiers.

Event syntax Description

<Button-1> Mouse button 1 pressed (the left mouse button).

<Button-2> Mouse button 2 pressed (middle button, if
available).

<Button-3> Mouse button 3 pressed (the right-most button).

<KeyPress-B> The B key is pressed. Likewise, you can write for
other keys, such as <KeyPress-G>.

<Returns> Return key pressed.

<Configure> Size of the widget is changed (for example,

window resized). The new size is stored as the
width and height attributes of the event object.

<Shift-Button-1> The Shift key is pressed along with the left mouse
button.

Event object attributes

An instance of the Event class holds the information that describes the event.
The following table lists some important attributes of the Event class.

Event attribute Description

widget The widget object which triggered this event.

X,y The current mouse position in pixels.

X_root,y root Mouse position in pixels, relative to the top-left corner.

width, height The changed size (width and height) for the
<Configures type of events.

Event handling in Tkinter

Earlier in the chapter, we learned about events and event handling (see the section
Event-driven programming). In this section, we will see how to bind the various events
triggered due to user interactions, with the appropriate handling functions.

[377]

Simple GUI Applications

Command callback (Button widget)

Recall that when we wrote our first Tkinter application, we tied a callback function to
the command argument of the But ton widget. The relevant line of code is reproduced
next for easy reference:

exit button = Button(mainwin,text='Exit', command=mainwin.destroy)

When you click on the Exit button, it calls mainwin.destroy (), represented by

the command argument. It should be noted that while the Button widget supports
command callback, this feature is not available for all the supported widgets. For
that, Tkinter provides the bind () method, which is defined on all widgets. The
bind () method is just one of the levels of event binding in Tkinter. Let's talk about a
few event-binding levels next.

The bind() method

This method provides an instance level binding. It binds an event to a specific widget
instance. Another way to think of this is as an ability to specify the exact GUI element
that is sensitive to a particular event. The basic syntax is as follows:

widget .bind (sequence=None, func=None, add=None)
It should be noted that you can also use this method for the toplevel window.

For ease of understanding, let's represent the optional argument sequence as
even_descriptor and func as event_handler. The third optional argument add
can be specified as a string +. It allows you to add a new function to an existing
binding. We will not discuss the add argument here. Refer to the documentation
for further details.

widget.bind (event descriptor, event handler)

In the preceding statement, widget is any widget that generates one or more
events. For example, the widget could be a Button, an Entry widget, and the like.
The event_descriptor is the actual event triggered, for instance, a key press, or
a click, and so on. event_handler is the function that gets called when the event
is triggered.

[378]

Chapter 10

Let's see how to use this method for the But ton widget, in place of a command
callback. Apart from the syntax, we also need to define a callback function that
handles the generated event. Let's rewrite the code illustrated in the section, Simple
GUI application.

from tkinter import Tk, Label. Button., LEFT, RIGHT
def exit_btn_callback(evi):

print("Inside exit btn_callback. Event object is: ", evt)
mainwin.destroy()

if _ _name_ == "_main_ ":

mainwin = Tk ()
mainwin.geometry ("140x40")

1b1 = Label(mainwin, text="Hello World!", bg="yellow')
1b1. pack (side=LEFT)
exlt_button = Button(mainwin, text='Exit')
exit_button.bind ("<Button-1=", exit btn_callback)
exlt_button.pack (s1de=RIGHT)

=] T TN = =T 4

L LL LN LLLL Lo L LAASIL A

mainwin.mainTloop()

Observe that we have defined a new event handling function, exit_btn_clicked(),
that takes the event object (evt) as an argument. The first argument to bind
represents the type of event or the event format. In this example, <Button-1>
represents a left mouse button press over the widget. In this chapter, we will only
use the bind () method. But before we go further, let's briefly talk about the other
levels of binding.

The bind_class() method

This method provides a class-level binding. It binds an event to a specific widget
class. The basic syntax is shown next:

bind class(className, event descriptor, event handler)

In the preceding syntax, className is a string representing the name of the widget
class. The other arguments are the same as discussed in the previous section.

[379]

Simple GUI Applications

Imagine that all the Button widgets in your application represent some numbers.
You can configure all of them to respond to the right mouse click event such that
each returns the square of that number. In this example, you can use the bind_class
method like so:

bind class('Button', '<Button-3>', compute square)

Here, it is assumed that you have defined a function, compute_square.

The bind_all() method

This method provides an application-level binding. As the name suggests, this
method binds an event to all the widgets at the application level. For example,

in some game application, you might want to configure a key to pause the game
regardless of the widget under focus. In such situations, you can use this method.
The basic syntax is as follows:

bind all (event descriptor, event handler)

Tkinter supports something referred to as bind tags. Every widget
M has its own list of bind tags. These determine the order in which the
Q events associated with a widget are processed. The built-in method
bindtags () can be used to set or get the tags associated with a
widget. See the documentation for further details.

Project-1 — Attack of the Orcs V10.0.0

You have developed a robust and popular command-line application, Attack
of the Orcs. While the users are happy with the current version, there is a new
and growing demand. The users now want a graphical user interface for the
application!

It is time to work on another simple program. Remember the first ever command-
line application we wrote in Chapter 1, Developing Simple Applications? Let's use the
same theme, and develop an equivalent GUI program.

[380]

Chapter 10

Background scenario

As a refresher, here is the game theme we saw in Chapter 1, Developing Simple
Applications:

On his way through a dense forest, Sir Foo spotted a small isolated settlement.
Tired and hoping to replenish his food stock, he decided to take a detour. As he
approached the village, he saw five huts. There was no one to be seen around.
Hesitantly, he decided to enter a hut...

Problem statement

The task is to design a simple GUI program. The player selects one of the five huts
where Sir Foo can rest. The huts are randomly occupied either by a friend or an
enemy. Some huts might also be left unoccupied. The player wins if the selected hut
is either unoccupied or has a friendly unit inside.

The following screenshot shows what's coming up. But don't get too excited! It is quite
a simple game that will help you learn some important GUI programming aspects.

L1 Attack of the Orcs Game S

aelect a hut to enter. You win if:
The hut is uhoccupied ar the occupant is a friend!

[381]

Simple GUI Applications

When you click on a hut, it will check who the occupant is, and then pop up a
message box declaring the winner. That's pretty much it!

Writing the code

We will use the code provided in the hutgame . py file. Download this file and also
the two images, Hut_small.gif and Jungle_small.gif from the code bundle for
this chapter.

o It is recommended that you open the file hutgame . py as a handy
~ reference while reading the following discussion. Quite often, it is
Q useful to skim through the full code in a source code editor for better
understanding!

We will start with the main execution code:

if name == "_main_ ":

mainwin = Tk()

WIDTH = 494

HEIGHT = 307

mainwin.geometry ("%sx%s" % (WIDTH, HEIGHT))
mainwin.resizable (0, Q)
mainwin.title("Attack of the Orcs Game")
game_app = HutGame (mainwin)
mainwin.mainloop()

Let's talk through this code:
* Compare this with the main execution block in the section Simple GUI
application — Take 2. Notice that there isn't much of a difference.

* We set the size and a title for the application window with the geometry and
title methods. The mainwin.resizable call freezes the window size. This
is optional, but will make sure the background image nicely fits the window.

* The HutGame class is where we create the widgets and define the main logic.

* The main event loop is started by calling mainloop ().

[382]

Chapter 10

Overview of the class HutGame

Before reviewing any code in the class HutGame, let's get the big picture first. The
important methods of this class are shown in the following diagram:

HutGame Merheods rhat Prir'naﬁ|}"

+ occupy_huts() _//c$n-r}:in the main |r::3ic
ot The game

+ enter_hut()

+ setup()
Metheds that deal with
+— GUI setup and upda.-re.

+ create_widgets()
+ setup_layout()

+ announce_winner()

The callback merhed
imveked whern a radie
button is pre::ed.

+radio_btn_pressed() ~L

As illustrated, these methods can be broadly divided into three groups based on
the functionality. We will talk about this grouping later when we discuss the MVC
architecture. Let's review the various methods in this class next.

A note to more experienced readers!

M In the following few sections, we will discuss the methods of the class
HutGame. You might find this discussion a bit verbose! Optionally,
Q you can just review the code from the file hutgame . py. The code is
documented reasonably well. If something is not clear, come back and
read the relevant section!

[383]

Simple GUI Applications

The __init__ method

Take a look at the code that gets called when HutGame is instantiated:

class HutGame:
def _init_ (self, parent):

self.village_image = PhotoImage (file="Jungle_small.gif")
self.hut_image = PhotoImage(file="Hut_small.gif")
self.hut_width = 40

self.hut_height = 35

self.container = parent

self.huts

= []
self.result =

self.occupy_huts()

self.setup()

The following is a description of the __init__ method:

* The PhotoImage class is used for displaying a background image in widgets
such as labels, buttons, and so on. It supports the GIF image format. There is
also a way to load an image using Python Imaging Library (PIL). We won't
discuss those details here.

* We will use hut image on a RadioButton, and village image will be set as
the application background.

* The self.setup() call ensures that widgets are created and appropriately
placed in the application window.

The occupy_huts method

The following method is the same as the one illustrated in the first example of
Chapter 1, Developing Simple Applications:

[384]

Chapter 10

def uccupy hutSESnlfJ

Do e occup the huts £ ST Aar Fryand ar kFoan naoecnna
J Qg O

nccupants = [Enemy "friend', 'unoccupied']
while len(self.huts) <= 5:
computer choice = random.cholce(occupants)
5ﬂlf huts.append (computer_ chnlcel

CAVeLy you Ccan aLso use (15T Ccomol

5]

= = L CE L] DL LA [L

prlnt(Hut Dccupants are:", self. huts]

sal f. huts random. choical occupant s £ - T
=

There are exactly five huts. This code essentially populates the self.huts list with a

random choice of occupant from the given occupants list.

The create_widgets method

As the name suggests, this method is about creating the widgets for our application.
Actually, there aren't many widgets. We just have a label to display some information

and a bunch of radio buttons to represent the huts. The method is shown next:

def create wlqutSESnlfJ

FaoFa ST mlc atc 11 Fha FnFar main T e
4...-:_-_._ Li L LML I LET Vel L WL L

self.var = IntVar{J

self.background label = Label(self.container,
image=self.village _image)

txt = "Select a hut to enter. You win if:\n"

txt += "The hut is unoccupiled or the occupant 1s a friend!"

aﬂlf info_label

G1CT1anal VoL (=30 SNy NN CONT1g aprtlons

r btn cnnflq { 'variable': self.var,
'bg': '2ABBBAC',
‘activebackground': 'yellow',
‘image': self.hut_image,
‘height': self.hut_height,
'width': self.hut_width,
‘command': self.radic btn_pressed }

self.rl = Radiobutton(self.container, r_btn_config, value=l)
self.r2 = Radiobutton(self.container, r_btn_config, value=2)
self.r3 = Radiobutton(self.container, r_btn_config, value=3)
self.rd = Radiobutton(self.container, r_btn_config, value=4)
self.r5 = Radiobutton(self.container, r_btn_config, value=3)

Label(self.container, text txt, hq "yellow')

[385]

Simple GUI Applications

The preceding method can be explained as follows:

self.var is a Tkinter variable. It is an instance of a variable class supported
by Tkinter. Here, it represents an integer variable (Intvar class). Likewise.
there are other classes such as stringvar to deal with string variables, and
SO on.

Simply put, the Tkinter variables enable tracking changes. We have five radio
buttons that are tied to the single Tkinter variable, self.var. A value option
can be specified for each radio button. This value gets assigned to self.var
when the radio button is selected.

The dictionary r_btn_config is used to set configuration options common to
all the radio buttons. It is passed as an argument to Radiobutton.

An example would help in understanding how a radio button works. The
button self.r4 has an associated value of 4, which represents the hut number.
When you select the button, this value gets assigned to self.var. This invokes
self.radio btn pressed(), the command callback for the button.

self.background_label is used to set a village background for our
application window. There are other ways to accomplish this. We won't be
discussing such customization details in this book.

I+ would help if you
could pinpain*r these
widgets in the main

?ica:rian window!

app

Certainly! Have a look at the following application window where some of these
widgets or configuration options are annotated.

[386]

Chapter 10

self.info label self.r2 (Radiobutton)

Attack of the Orcs Game

Select a hut to enter. ou win if: H
The hut is unoccupied or the occupant is a friend

self.background label ' activebackground':
- 'yellow' :

A

The setup_layout method

The following code fragment shows the setup_layout () method. and how it is
invoked in the top-level setup () method:

[387]

Simple GUI Applications

def setup(self):

self.create_widgets()
self.setup layout()

def setup layout(self):

self.container.grid_rowconfigure(l, weight=1)

self.container.grid _columnconfigure(d, weight=1)
self.container.grid _columnconfigure(4, weight=1)
self.background_label.place(x=0, y=0, relwidth=1, relheight=1)
self.info_Tlabel.grid(row=0, column=0, columnspan=5, sticky='nsew')
self.rl.grid{row=1, column=0)

self.r2.grid(row=1, column=4)

self.r3.grid(row=2, column=3)

self.rd.grid(row=3, column=0)

self.r5.grid{row=4, column=4)

The grid layout offers a lot of flexibility in arranging widgets. In this
U illustration, we are just scratching the surface of Tkinter! To gain

Q expertise, you should create your own GUI widgets, and experiment

with different layout configuration options. Refer to the documentation
for other available options.

Now let's talk through this code snippet:

Recall that we can assign a relative weight to a specific row or a column in a
grid layout. This is accomplished using the grid_rowconfigure and grid_
columnconfigure methods. weight determines how much free space the
row or column will occupy relative to the others. A default value of 0 means
it won't grow even if there is free space available.

In this example, row 1 of the container is given a relative weight or 1,
allowing it to expand and occupy more free space. Likewise, the column 0
and column 4 are assigned with a relative weight of 1. Experiment with this
option, and see how it influences the layout. The other option to try out is
pad, which adds padding to the widget.

For background_label, we use the place () geometry manager. The label is
anchored at (0, 0).The arguments relwidth and relheight indicate the
fraction of the height and width of the parent. The value of 1.0 means the
label size will be the same as its parent (the main application window).

[388]

Chapter 10

* The sticky option for info_label ensures the widget is aligned along the
four edges of the cell. The value nsew aligns the widgets along the north,
south, east, and west cell edges respectively. You can also specify a few
values, for example, sticky="'ew' will align the widget along the left and
right edges.

The radio_btn_pressed and enter_hut methods

Let's review these methods together. In the create_widgets () method, we specified
the command option as indicated in the following code fragment:

r btn config = { 'variable': self.var,
'bg': '#AS884C’,
‘activebackground': "yellow',
‘image’: self.hut_image,
‘height': self.hut_height,
spddiht s ==a1f byt widibh,
‘command' : self.radio_btn_pressed }]

self.rl = Radiobutton(self.container, r_btn _config, value=l)

radio btn pressed is a command callback for all the radio buttons. It is shown next:

def radio btn pressed(sz1f):

self.enter_hut(self.var.get(})

The method just calls self.enter_hut. When the radio button is selected, it updates
the value stored in the Tkinter variable, self.var. This value is nothing but the

hut number assigned to the selected hut, and can be obtained by calling the get ()
method of Tkinter's IntVar class.

[389]

Simple GUI Applications

Let's take a look at the enter hut method:

def enmter_hut (s21f, hut_number):

print{"Entering hut #:", hut_number)
hut_occupant = self.huts[hut_number-1]
print({"Hut occupant 1s: ", hut_occupant)

if hut_occupant == 'enemy’:
self.result = "Enemy sighted in Hut # %d “nswn" % hut_number
self.result += "YOU LOSE :{ Better luck next time!"

elif hut_occupant == 'unoccupiled':
self.result = "Hut # %d i1s unoccupiediniwn® % hut_number
self.result += "Congratulations! YOU WIN!!I®

else:
self.result = "Friend sighted in Hut # %d “nwn" % hut_number
self.result += "Congratulations! YOU WIN!!!"

self.announce_winner(self.result)

The preceding code is self-explanatory. It checks the occupant, and announces the
result. The winner announcement is done with a messagebox widget.

The announce_winner method

This is the last method we will review:

def announce_winner(s=17, data):

messagebox.showinfo ("Winner Announcement", message=data)

In the preceding method, we use the messagebox module in Tkinter to show an
information box. This module provides several other types of dialog boxes. Refer to
the documentation for more details.

Running the application

It is time for some action! Run this application as follows:
$ python hutgame.py

This last command should display the GUI window shown earlier. The following
screenshot shows the game in action. First you select one of the huts:

[390]

Chapter 10

[Attack of the Orcs Game

Select a hut to enter. You win if:
The hut is unoccupied or the occupant is a friend!

)

When you click on the radio button, it displays the information box notifying
the winner.

il Attack of the Orcs Game - O x

Select a hut to enter. *ou win if:
The hut is unoccupied or the occupant is a friend!

[Winner Announcement

@ Friend sighted in Hut # 1

Congratulations! ¥YOU WIN!!

[391]

Simple GUI Applications

MVC architecture

MVC is a widely used software architectural pattern in GUI-based applications.
It has three components, namely a model that deals with the business logic, a view
for the user interface, and a controller to handle the user input, manipulate data,
and update the view. The following is a simplified schematic that shows the basic
interactions between the various components:

Model

updo.*e. diap|a.}: >
Controller View

user action
-}

EThe: user uses —e—— ;The user sees
‘the controller | ithe view

(sends input) é{au-rpuf]

Let's further discuss each of these components.

Model

The model component of the MVC architecture represents the data of the
application. It also represents the core business logic that acts on such data. The
model has no knowledge of the view or the controller. When the data in the model
changes, it just notifies its listeners about this change. In this context, the controller
object is its listener.

[392]

Chapter 10

View

The view component is the user interface. It is responsible for displaying the current
state of the model to the user, and also provides a means for the user to interact with
the application. If a user action (like the click of a button) changes this state, the view
is refreshed to display that change.

Controller

In some sense, the controller enables a handshake between the model and the view.
It monitors the changes to the model. When the user interacts with something in the
view, the controller works in the background and handles the events triggered by
the user actions, such as a mouse click. The handling function can further update the
model. When the model's state changes, the controller updates the view to reflect
those changes.

It's confusing. Perhaps an
example of MVC' would
help berrer understand
these components!

You are right. The individual MV C components and their working would be better
understood with an illustration. Let's use a trivial example given earlier in the
section Event-driven programming.

[393]

Simple GUI Applications

Imagine you have opened a PDF file for reading. In this context, MVC and its
components could be explained as follows:

* The PDF reader is the running application.

* It will show the contents of the file you have opened, and will also have
buttons to navigate through the file. This is the view component that deals
with the user interface.

* Tojump to the next page, you interact with the view and click on the next
page button. This is a user input that generates an event.

* Such an event is internally handled by the controller, which then updates the
model, or, in this context, retrieves the relevant data on the requested page.

e The model 's state has changed. The controller further communicates with
the view for updating it with the new contents.

* The view is refreshed, and finally, you see the desired page.

Advantages of MVC

The MVC architecture has been traditionally used in desktop GUI applications, and
is also widely used in web application development. As this is a three-component
architecture, one major advantage it offers is code reuse across several applications.
For example, imagine you have multiple applications with different user interfaces,
all needing the same business logic. With MVC architecture, you could just reuse the
business logic represented by the model object across these applications.

Moreover, the MVC enables user interface developers to focus on the Ul code
without worrying much about the code that handles the business logic. Likewise,
the developers working on the business logic can concentrate on that piece of code
alone without losing sleep over the choice of UI widgets and the related code. This
is referred to as separation of concerns. The model is concerned about the business
logic or data, the view worries about the user interface, and the controller code is
concerned about things such as enabling view manipulation and handling the input.

Project 2 — Attack of the Orcs v10.1.0

Let's work on another small project. In fact, this is exactly the same hut game we
developed in Project-1 — Attack of the Orcs V10.0.0 earlier. The difference is the
underlying architecture. We will rewrite the program to implement the MVC
architecture.

[394]

Chapter 10

Revisiting the HutGame class

In the first project, we wrote the HutGame class. Let's pull up the diagram
representing the high-level structure of this class:

The HurGame class frem
-rhr_' ear|i£r pr’ojecf

HutGame Merhods that Pr’imari|y
Modgl contain the main logic of
3
+ occupy_huts() _// the game
+ enter_hut()
+setup() _ Methods thar deal with
+ create_widgets() View GUI sefup and upclc:ld'-:.

+ setup_layout()

+ announce_winner() The callback method

+ radio_btn_pressed() C_or'}‘rr‘ol |-gr' invoked when a radio
button is pr’essed.

ﬁppr’o:imme division of the Funcfionahfy inte MVC

components ffhere are other changes as we”.r)

Based on the functionality, the methods of this class can be roughly placed into three
categories, namely model, view, and the controller. The preceding diagram shows
this division. We also need to further update a few of these methods.

Creating MVC classes

In the previous section, we earmarked the methods of the old class HutGame into
three broad categories. It is now time to say goodbye to this class. We will break
it down and split its methods among the three new classes, Model, View, and
Controller. Of course, you can give more descriptive names to the classes,

but let's continue to call them by the aforementioned names.

[395]

Simple GUI Applications

Observe the following UML-like representation that shows the classes in which these
methods are parked. Only the important attributes are listed here.

r)
Maodel
+ self.huts
i N
Controller
1 + occupy_huts()
+ self.model
1 N enter_hut()
+ self.view

+ model_change_handler()

\ View

+ radio_btn_pressed()
L

+ create_widgets()
+ setup_layout()

+ announce_winner()

L+ radio_btn_pressed()

o In Chapter 1, Developing Simple Applications, we briefly talked about
~ UML-like representation. One way to create such diagrams is to use
Q https://www.draw.io.Itis a free, online diagram software for
making flowcharts, UML diagrams, and so on.

Now that we know how the classes are laid out, let's understand how these classes
exchange information.

Communication between MVC objects

Before diving into the details on how MVC objects communicate, let's first list down
a few important points about the MVC architecture:
* The controller knows about the model as well as the view
* The model is unaware of the other two, namely the controller and the view
* The view (just like the model) knows nothing about the controller and

the model

There could be some other variants of the MVC architecture. In this book, we will
stick to the aforementioned points, and design a solution.

[396]

https://www.draw.io

Chapter 10

Controller to Model or View communication

Let's begin the discussion by learning how a controller sends the information to
either the model or the view.

The controller object can directly talk to the Model and view instances using
self.model and self.view respectively. For example, it can just call a view method
like so:

self.view.announce winner (data)

This is pretty straightforward. Now let's see how it receives the data from either the
model or the view.

Model to Controller communication

How does the controller receive information from the model? For example, in the
hut game scenario, a winner is determined depending on who is inside the selected
hut. Once the winner is determined, the Mode1l class needs to communicate it to the
controller class. This is accomplished with the model_change handler () method
of the controller class. It is invoked whenever the state of the Mode1l class changes.

About that last point, how
is model__change__handler
Cal”ed? The Model doea not
know any-rhins about the
Controller.

Good question! The Model class knows nothing about Controller and View.
Then how does Controller know that Model has changed? Let's see that next.

[397]

Simple GUI Applications

The controller class can receive information from the Model class in various ways.
Let's briefly talk about two such approaches.

Using method assignment

Recall that in Python, you can assign a method to a variable. The chapter on design
patterns talked about the first-class objects in greater detail. The following line of
code can be added to Controller. init .

self .model.changed = self.model_ change handler

Then, in the Model class, you could call self.changed (), like so:

def enter hut (self, hut number) :
Some code goes here (not shown)
self.changed()

This automatically notifies Controller that the model has changed. While this is
very convenient, we will instead use a publish-subscribe API which makes things
even simpler.

Using a publish-subscribe pattern

Publish-subscribe is a messaging pattern. The publisher can be any program that
broadcasts some data to a topic. There could be one or more applications that are
listening to this topic. These are called the subscribers, who receive the published
data. The publisher does not know (or does not need to know) anything about the
subscribers. Similarly, a subscriber has no knowledge of the publisher. The following
schematic gives a high-level overview of a publish-subscribe system:

oo 8% T 1 Subscriber |
Wﬁﬁll LT ll-r?'F:- ;
Fublisher |
¢ Subseriber 2

L L L]
-

Aﬂ'{& il f' ’
l'r" = . "
PN ST e N ,
0 O 17 e
Publisher N k-="~ e e, i ..
uBlisher " Sybseriber N

[398]

Chapter 10

The publish-subscribe concept can be better understood with a real-world analogy.
Imagine an online retailer running a weekly flash sale. You have opted in to receive
notifications in the form of SMS or e-mail alerts. There are several other customers
who would also like to get notified about the sale.

In a publish-subscribe world, the online retailer is a publisher who broadcasts the
sale information (the data) to a topic, say flash sale. You and several other customers
are the subscribers to this topic. Likewise, the online retailer can publish some other
information as different topics, for instance, Friday sale, Half price sale, and so on. Each
topic could have several subscribers. If you are not subscribed to Friday sale , you
won't get any notifications sent to that topic.

PyPubSub package

How do we implement a publish-subscribe framework in Python? One option is
to write the code from scratch. Instead, we will just use a Python package called
pypubsub. It provides a publish-subscribe API that simplifies the design and
improves code readability and testability. The package can be installed as follows:

$ pip install pypubsub

Here is a simple example that shows a typical usage. In fact, this syntax is all we
need in this chapter.

from pubsub import pub

def model change handler(data):
print("In model_change handler function, data=". data)

pub.subscribe (model change handler, "WINNMER AMMNCUMCEMENT")

pub.sendMessage ("WINNER AMMWOUNCEMENT", data="Flayer Won!")

When you run this script, it produces the following output:

$ "In model change handler function, data= Player Won"

The first argument to pub. subscribe () is the function you want to subscribe

to a given topic. The topic name here is WINNER ANNOUNCMENT. The last
line of the code shows how to broadcast a message to a specific topic using pub.
sendMessage () . The first argument to pub . sendMessage () is the topic name. You
can specify any number of optional arguments, just make sure that the subscriber
function accepts all those arguments! In this example, it sends data as the only
optional argument.

[399]

Simple GUI Applications

For more information on the PyPubSub package, see the project home
N page: http://pubsub.sourceforge.net/

Q PyDispatcher is an alternative to the PyPubSub package. While
we won't be using it, here is a link to the project: https://pypi.
python.org/pypi/PyDispatcher

View to Controller communication

Just like Mode1l, there is no direct communication link from the view object to the
Controller object. When the user presses a radio button, the controller needs to be
notified. We can employ similar approaches, as discussed in the previous section. For
example, you can assign a method of Controller to a View method. Alternatively,
you can use the publish-subscribe API to talk to the controller object.

Communication between View and Model

Let's discuss how view and Model talk to each other:

* When the user presses a radio button, view communicates with Controller
using one of the approaches discussed earlier

* The controller object then talks to Model instructing it to update

* The state of Model is updated, and the results are communicated back to
Controller

* Controller asks View to update the display

View and Model communication using a publish-subscribe API:

You could potentially use the publish-subscribe framework to
establish a communication channel between the Model and the View
object. Note that this still keeps the basic rules intact. Mode 1 does not
know anything about the View object. It just publishes the data to a
given topic. View doesn't have any knowledge of the Model object.
+ ltisjust registered as a subscriber to the same topic where Model is

% broadcasting the data. Thus, whenever there is a change of state in

/ Model, View could get a notification through the publish-subscribe
API Likewise for the communication from View to Model. The
potential flip-side is that these publish-subscribe signals are essentially
global variables, and could bring in the painful issues associated with
them. So use it with caution!

For this project however, we will stick to the classical approach, where
the communication happens through Controller.

[400]

http://pubsub.sourceforge.net/
https://pypi.python.org/pypi/PyDispatcher
https://pypi.python.org/pypi/PyDispatcher

Chapter 10

Reviewing the code

So far, you have got a high-level overview of the new classes and how they
communicate with each other. In the first project, we already reviewed most of the
methods listed under each new class. That said, to implement the MVC architecture
we need to make a few changes. Let's review only a few important methods from the
file hutgame mvc.py. Note that all the classes have been put in the same file. As an
exercise, split the individual classes in their own module!

As we won't be reviewing each and every line of the code, you
u should download the file hutgame_mvc . py and also the two images,
~ Hut small.gif and Jungle small.gif from the code bundle for
Q this chapter. Keep the source file handy while reading the upcoming
discussion. Quite often, it is useful to skim through the full code for
better understanding!

The main execution code is shown next. It is almost identical to the one we saw in
the first project. The only difference is game app (shown highlighted). It is now an
instance of the controller class instead of HutGame. In fact, there is no HutGame
class for this project! Recall that we broke it down, creating three new classes.

if __name_ == "_main_ ":

mainwin = Tk ()

WIDTH = 494

HEIGHT = 3207

mailnwin.geometry ("%sx%s" % (WIDTH, HEIGHT))
mainwin.resizable (o, 0)
mainwin.title("Attack of the Orcs Game"
game_app = Controller(mainwin}
mainwin.mainloop()

[401]

Simple GUI Applications

The Controller class

The controller class is quite small, as shown next:

class Controller:
def _init_ (self, parent):

self.parent = parent

self.model = Model()

self.view = View(parent)
self.view.set_callbacks(self. radio_btn_pressed)
self.view.setup ()

pub.subscribe (self.model _change_handler, "WINNER ANMOUMCEMENT")
def radio btn pressed(sz17):
self.model.enter_hut(self.view.var.get())

def model change handler(se1f, data):
self.view.announce_winner(data)

Let's talk through the code. You can skip reading these bullets if you have already
understood it!

* The Controller class is composed of Model and View instances. This allows
it to directly call the functionality from these classes.

* The self.view.set_callbacks () function essentially assigns the
radio_btn pressed method to an appropriate attribute of view. What this
simply means is that whenever the user presses a radio button, this method
is invoked. See the section View to Controller communication for more details.

* The controller class receives data from the Model instance by subscribing
to the topic, "WINNER ANNOUNCEMENT". We have already seen an example
of the pub. subscribe () function. Simply put, the method model_change
handler is called whenever the winner is announced.

* The method model change handler calls the appropriate view method to
display a message that announces the winner.

[402]

Chapter 10

The Model class

There aren't many changes in the Mode1l class. The only significant change is the
highlighted line of the given code (the call to pub. sendMessage) in the enter_hut
method. The details of the other methods are not shown. These methods are shown
with their code collapsed in the editor.

class Hodel:

def init

(5e1f):

def occupy huts(s=17):

def enter_hut (s=1f, hut_number):

print("Entering hut ", hut_number)
hut_occupant = self.huts[hut_number=-1]

print({"Hut occupant 1is:

. hut_occupant)

if hut_occupant == enemy’

self.result = "Enemy sit |I1t~-| in Hut # %d ‘nsn" % hut_number
self.result += "YOU LOSE :(E:-att r luck next time!"

elif hut occupant == 'unoccupied’
self.result = "HL|t %d 1s unoccupledynsn® % hut_number
self.result += "Congratulations! YOU WIN!!!"

else:
self.result = "Friend sighted in Hut # %d “nwn" % hut_number
self. result +=

un||atulat1nn5' YOU WINM DY

| pub.sendMessage ("WINMER ANMWOUMCEMENT", data=self.result)

Compare this method against the one we wrote in the first project. Notice that it does
not call View.announce_winner directly. Instead, it notifies the Controller instance
using the pub . sendMessage () . The rest of the code remains unchanged, and you can
have a look at the hutgame mvc.py file for further details.

M As noted in the section Communication between View and Model, you
Q could potentially use the same publish-subscribe framework to notify
the Model state changes to the View and vice versa.

[403]

Simple GUI Applications

Object-relational mapper (ORM):

Simply put, it is a library that enables you to use an object-oriented
language like Python to access and update the data sitting in a
database. In Python, DJango ORM and SQLAlchemy are among the
popular ORM libraries. You can do a web search on these libraries to
find useful resources.

Model classes and ORMs: This book does not cover anything related to
web or database application programming, but it is worth mentioning
the following. It is quite common for the Model classes to inherit from
the ORMs, and represent database tables where each object is a row in
the table. Writing unit tests for such systems could be a challenge, as
you typically don't want to actually hit the database every time these
tests run. In Chapter 5, Unit Testing and Refactoring we saw how to use
Python's mock library. Quite often, mock is useful for unit testing such
systems (it is not covered in this book).

The View class

The view class is illustrated next. The only significant change is the method by the
name set_callbacks. The other methods are shown with their code collapsed.

class View:
def _init_ (self, parent):

def setup(self):

def set_callbacks(self, callback_function):

| self.radio bitn pressed = callback_function

def create widgets(sz1f):

def setup layout (s21f):

def announce winner(self, data):

Recall that in the Controller. _init__ method, we have the following code:

self.view.set callbacks (self.radio btn pressed)

The preceding code states that the radio_btn_pressed attribute of the view class
represents the method radio_btn pressed() of the Controller class. The rest of
the code is identical to the one seen in the first project.

[404]

Chapter 10

Running the application

In this project, we did not add any new features to the GUI. The idea was to just
show a rudimentary example on implementing the MVC architecture. You can run
this application as follows:

$ python hutgame mvc.py

This should show the same GUI window and features as in the first project.

Testing GUI applications

In a complex and feature-rich GUI application, the user is presented with many
choices of widgets, menus, keyboard shortcuts, and so on. As seen earlier in the
chapter, the event-driven nature of GUI programs lets the user dictate the program
flow. This often presents many possible ways for the user to perform certain
operations to arrive at the desired output.

It should be noted that we are not going to write any code here. This
M is just a high-level discussion that touches upon a few important
Q testing considerations. For further learning on this topic, start with
the following wiki page: https://en.wikipedia.org/wiki/
Graphical user interface testing.

Imagine a GUI application that allows selecting some object in the application
window, for example, a folder icon on the desktop. The user can hover the mouse
over the icon to highlight that object, and then click on it to select it. Alternatively,
he can do a window selection, where a selection window is drawn around the object
to select it. Yet another alternative could be using a combination of keys on the
keyboard. While the user is happy that he can accomplish the task in different ways,
it becomes a challenge for the developer to write a bug-free code.

The nature of event-driven programming makes it difficult to write a robust code
and comprehensive tests to account for the majority of the user input scenarios. The
bugs would creep in one way or the other. Of course, this varies depending on the
application and testing strategy, but it is typically a problem for large and complex
GUI applications.

Testing considerations

There are various testing strategies to make the GUI application code more robust.
Let's touch upon a few important testing considerations.

[405]

https://en.wikipedia.org/wiki/Graphical_user_interface_testing
https://en.wikipedia.org/wiki/Graphical_user_interface_testing

Simple GUI Applications

Unit testing and MVC

A unit test helps you test an individual chunk of the code. An integration test is
where you have many unit tests grouped together to test a larger functionality. In
a regression test, you typically have a combination of unit and integration tests.
Here, the tests are rerun to ensure that nothing is broken. A good regression test
framework is crucial as the first line of defense against the bugs. Unit testing
generally helps in addressing some common problems. In an earlier chapter, we
already covered this topic with examples from a command-line application.

The MVC architecture of the GUI program further helps in making the code robust.
The separation of concerns or breaking down of the code into the model, view, and
controller components allows us to write unit tests for particular types of error. For
example, in some applications, you may anticipate ZeroDivisionError in the Model
class instead of the view class. So you could write focused unit tests for the Model
class to gracefully handle such situations.

Manual testing

While having a good regression test suite helps with the common issues, the event-
driven nature of the program often presents scenarios that are not accounted for. In
manual testing, the software tester manually checks the working of the application
by playing with different features provided in the GUI. If something is not working
as expected, the tester creates a bug report to document the instructions to reproduce
the problem. Many hidden bugs surface in the manual testing phase.

With the growing complexity of the program, the repetitive manual testing job
becomes overwhelming for the testers. This is where automated GUI testing comes
to the rescue.

Automated GUI testing

Here, the testing tool records the user actions to create tests. If you run such a test,
the user actions are repeated automatically in the same sequence. This allows quick
identification of the broken functionality.

Automated testing should not replace manual testing. Unless the
M tool has artificial intelligence built into it, you still need someone
Q to test the new features, and use the existing ones in ways not
tried before. In general, automated testing should complement the
manual GUI testing activity.

[406]

Chapter 10

There are several open source and commercial tools available for automated GUI
testing in Python. The following table summarizes a few prominent, freely available
tools for GUI test automation. For a comprehensive list, see the Python wiki page at
https://wiki.python.org/moin/PythonTestingToolsTaxonomy.

Tool name and link

Notes

Sikuli (SikuliX) http://www.sikuli.
org/

Supported on Windows, Mac, and some
Linux OS. Visit the website to check if your
OS is supported.

pypi/StoryText

StoryText https://pypi.python.org/ Supported GUI frameworks include

Tkinter, PyGTK, wxPython, and others.
See the website for the complete list.

Dogtail https://fedorahosted.org/
dogtail/

Intended for Linux OS like Fedora. Check
if it is compatible with your OS.

One of the frailties of such automated testing systems is that the innocent-looking
GUI changes may require you to change a lot of tests, and depending on the
complexity of your GUI application, this could be a hassle.

Exercises

Here is a list of a few things you could do to further improve the GUI application.
With one exception, the solutions are not provided for these exercises.

Put the Model, Vview and, Controller classes in their own modules!

2. Use the publish-subscribe API for communication from view to Controller.
You can refer to the file hutgame mvc_pubsub.py for a solution.

3. Add more widgets such as a menu bar and buttons. Implement the Restart
Game button. When clicked, the game should restart. Do the following when

this button is clicked:

° Randomly distribute the occupants again by calling occupy_huts ().
° Clear the state of the radio buttons. All the buttons should be

deselected.

Add exception handling to the application.

5. Try to generalize the View.add_

set more callback functions.

callbacks method so that it can be used to

[407]

https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://www.sikuli.org/
http://www.sikuli.org/
https://pypi.python.org/pypi/StoryText
https://pypi.python.org/pypi/StoryText
https://fedorahosted.org/dogtail/
https://fedorahosted.org/dogtail/

Simple GUI Applications

Further reading

This book has touched upon several important aspects of application development.
The key concepts were taught primarily by developing command-line applications.
As noted earlier in the chapter, there are many applications that require you to
learn domain-specific techniques. For example, in this chapter, we learned about
the MVC architecture commonly implemented in GUI applications. Let's conclude
this chapter, and hence the book, with a brief discussion on some of the important
application domains. This will just give you some useful pointers (with lots of links!)
to the relevant libraries or application frameworks. To avoid clutter, the URLs with
further information are provided separately at the end of this section. The following
is a list of other important application domains; however, this is far from being an
exhaustive list:

1. Web and mobile application development:

These are important application development domains. To learn Python
Web application development, you can start exploring the Flask or DJango
frameworks in Python. Knowledge of MVC will also help you here. For
mobile application development, the kivy library is probably a good start.

2. Applications involving databases:

A database management system (DBMS) is another important application
domain. In a nutshell, DBMS provides you a way to create, access, and manage
your data. Python has several libraries that enable talking to a database.

SQLite3 is a simple, light-weight relational database system. The module
sqlite3 is a built-in Python module that provides a DB-API 2.0 compliant SQL
interface. There are several client libraries written in Python that provide a
way to talk to a database. For example, the PyMongo module provides tools
to work with MongoDB, and so on.

3. Machine and deep learning:

In the data science domain, the use of machine learning and deep learning
libraries is growing rapidly. The knowledge of GPU programming would
help here.

u Data science applications almost always involve visualizing some
~ data. It is very convenient to use IPython or Jupyter notebooks to
Q write and share interactive data science applications. See http://
jupyter.org/ for more details.

[408]

http://jupyter.org/
http://jupyter.org/

Chapter 10

For machine learning, you can explore Apache Spark. This is a general-
purpose cluster computing system that provides high-level APIs in Python
and other languages. MLIib is Apache Spark's scalable machine learning
library. For deep-learning applications, Caffe and Tensorflow are among the
popular deep-learning frameworks.

4. Internet of Things:

This is is yet another rapidly emerging field where Python is one of the
favored languages for developing applications. Here you could use Python
to not only process data (Analytics applications) on the server side but also
have a Python client running on the end device. You can find use of the
publish-subscribe messaging pattern in such applications, where the device
publishes data to a topic, and the server side application is a subscriber that
receives this data.

5. Multimedia and game applications:

This is broad topic, and there are several frameworks and libraries available
for developing multimedia applications:

o

Python wiki documents many tools that deal with audio and video
processing. GStreamer, MoviePy, and MLT are among the popular
frameworks. See also the PyMedia module.

There are quite a few options for image processing. Check out scikit-
image, Opencv, and pillow (a fork of Python Imaging Library or PIL).

There are many libraries useful for developing game- and animation-
related applications. Check out PyGame and Pyglet. Again, you can
find a comprehensive list on the Python wiki page.

The following table lists a few useful web links that provide more information on
various tools or domains discussed earlier.

At the time of writing this book, all the web links (URLs) presented
o throughout the book are accessible. As noted in Chapter 1, Developing
~ Simple Applications, these links might end up being broken over time. If
Q that ever happens, do a web search with the appropriate search terms.
For example, if you find the link to the PyMongo module broken, you can
Google search PyMongo Python MongoDB to find some useful resources!

[409]

Simple GUI Applications

Tool or application
domain

Web link for further information

Flask http://flask.pocoo.org

Django https://www.djangoproject.com

Kivy https://kivy.org

sqlite3 https://docs.python.org/3/library/sqglite3.html
PyMongo https://api.mongodb.com/python/current/

Jupyter notebook http://jupyter.org/

Apache Spark https://spark.apache.org

Caffe framework

http://caffe.berkeleyvision.org

Tensorflow https://www.tensorflow.org/

Internet of Things https://en.wikipedia.org/wiki/Internet of
(IoT) things

Audio, video https://wiki.python.org/moin/AudioVideo
processing

Game and animations https://wiki.python.org/moin/PythonGameLibraries

Summary

This chapter served as an introduction to the Python GUI programming. Starting
with an overview of the different GUI frameworks, it touched upon some important
practical design considerations for developing user interfaces. You saw what event-
driven programming is, and learned about events and event handling. With a quick
introduction to Tkinter library, we developed a simple Hut Game, an equivalent
GUI version of the first ever application developed in Chapter 1, Developing Simple
Applications.

The second half of the chapter introduced you to the MVC architecture, and we
transformed the Hut Game to implement this architecture. The chapter concluded
with a high-level discussion on testing GUI applications.

[410]

http://flask.pocoo.org
https://www.djangoproject.com
https://kivy.org
https://docs.python.org/3/library/sqlite3.html
https://api.mongodb.com/python/current/
http://jupyter.org/
https://spark.apache.org
http://caffe.berkeleyvision.org
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://wiki.python.org/moin/AudioVideo
https://wiki.python.org/moin/PythonGameLibraries

Chapter 10

That's all folksl I+ was a
pleasure having your
Cﬂmpﬂny. Nﬂw WeE must
jﬂin fht rest G{ fhl ﬂ.l"l‘l‘l?‘

o c:lebrm-c our vicfor‘?,..
o Yca wWe wWan fh: ba-rfh:l

[411]

A

abstract base classes, Python 40-42
abstract factory pattern
about 228
accessory store 229-232
design, rethinking 234, 235
design, simplifying 235
problem 233
Pythonic approach 236-238
adapter design pattern
about 239
attempted solution 242, 243
Elf's distant cousin 240
multiple adapter methods 246, 247
problem 240
Pythonic approach 244-246
advanced mathematical operations, NumPy
arrays
numpy.dstack 327
numpy.einsum 328-330
numpy.ndarray.tolist 326
numpy.random 326
numpy.reshape 326
Agile development methodology
about 183
reference 183
algorithm complexity 273
algorithm efficiency 272
API compatibility 75
API level documentation 109
Application Programming
Interface (API) 75
array objects
creating 320, 321
array operations 321

Index

Attack of the Orcs v0.0.1 application

about 11

code, reviewing 13-16

custom exceptions, demonstrating 61, 62
exception class, expanding 65-67
inheritance, from exception class 68-70
new exception class, writing 63
preparatory work 61

problem statement 12

pseudo code 12,13

running 17

Attack of the Orcs v0.0.5 application

about 18

code, reviewing 24-28
pseudo code 22-24
running 28

Attack of the Orcs v1.0.0 application

about 45

bugs, fixing 48

code, redesigning 31

code, reviewing 35-39

feature requests, prioritizing 30
OOQOP, using 29, 30

problem, debugging 46, 47
problem statement 31

pseudo UML representation 33
running 40

Attack of the Orcs v1.1.0 application

about 58

exception handling code, adding 59, 60
preparatory work 58

running 60

Attack of the Orcs v2.0.0 application 77-79
Attack of the Orcs v6.0.0 application 202-204
Attack of the Orcs v10.0.0 application

__init__ method 384

[413]

about 380 big O complexity classes
announce_winner method 390 (nlogn) - log linear 276, 277
background scenario 381 O(1) - constant time 275

(
code, writing 382 O(log n) - logarithmic 275
create_widgets method 385, 386 O(n2) - quadratic 277
enter_hut method method 389, 390 O(n3) - cubic 277
HutGame class 383 O(n) - linear-time 276
occupy_huts method 384, 385 reviewing 274
problem statement 381 upper bound of complexity 278
radio_btn_pressed method 389, 390 big O notation
running 390, 391 about 273, 274
setup_layout method 387-389 reference 277
Attack of the Orcs v10.1.0 application binary search algorithm
about 394 about 275
code, reviewing 401 reference 276
communication, between MVC objects 396 bottlenecks, Gold Hunt application
Controller class 402 code profiling 263
Controller to Model, or View execution time, measuring 262
communication 397 identifying 262
HutGame class, writing 395 runtime, measuring of small code
Model class 403 snippets 263
Model to Controller broadcasting 325
communication 397, 398 bubble sort algorithm
MVC classes, creating 395, 396 reference 277
running 405 built-in exceptions
View class 404 reference 50
View to Controller communication 400 bundled distribution, Python
autopep8 136 Anaconda 5
average-case complexity 277 Enthought Canopy Express 5
average-case time complexity official Python distribution 5
about 278 Python(x, y) 5

reference 278

B

C

classes
backward compatible API 75 as first-class objects 197
bare Git repository closures 197,198
creating 101 code
Bash shell 6 documenting 109
batch executing modularizing 77
unit tests 161 version controlling 98
bdist code analysis
creating 88 about 130
behavioral patterns 195 IDE used 131
bicycle repair man code comments 109
about 188 code inspection feature 78

reference 188

[414]

collections module
defaultdict class 305, 307
deque class 304
concurrency patterns
about 195
reference 195
coverage package 175
coverage report command 176
cProfile module 263, 265
creational patterns 195
CUDA
about 356
reference 356
custom exceptions
defining 61

D

decorators 148
design patterns
about 194
behavioral patterns 195
concurrency patterns 195
creational patterns 195
structural patterns 195
design patterns, miscellaneous features
__getattr__ method 199
about 199
abstract method 199
class method 199
dictionary comprehension 300
distance square
computing, with einsum 331, 332
distributed memory parallelization 342
distribution
installing 92, 93
distribution, deploying
.pypirc file, creating 88, 89
about 88
account, creating on PyPI test website 88
package, uploading 90, 91
project, registering 89
distribution level documentation 109
distribution, preparing
about 82

deployment ready distribution, building 86

LICENSE.txt file, updating 85

MANIFEST .in file, updating 86
package directory, setting up 83
README file, updating 85
setup.py file, writing 84
djangopypi package
reference 97
docstring 110, 111
docstring stubs
creating, automatically 118, 119
documentation, generating within Sphinx
about 120
cd, to source directory 121
conf.py, updating 123
documentation, building 125
sphinx-apidoc, running 124
Sphinx, installing with pip 121
sphinx-quickstart, running 122, 123
documentation, levels
API level documentation 109
code comments 109
distribution level documentation 109
docutils
reference 111
Dogtail
reference 407
dot notation 291
dot product
reference 329
duck typing 200, 201
Dwarf 10

E

Easier to Ask for Forgiveness than
Permission (EAFP) principle 48
Einstein notation
about 328
reference 328
einsum
distance square, computing with 331, 332
reference 332
EIf 202
Elf Rider 10
else block, of try...except 54
error traceback 47
event 364

[415]

event descriptors 376
event-driven programming 364
event handling 364
event handling, in Tkinter
about 377
bind_all() method 380
bind_class() method 379
bind() method 378, 379
command callback (Button widget) 378
event loop 365
event object attributes
about 377
widget 377
width, height 377
x_root, y_root 377
x,y 377
events, in Tkinter
about 376
Button (or ButtonPress) 376
ButtonRelease 376
Enter 376
event descriptors 376, 377
event object attributes 377
event types 376
FocusIn 376
FocusOut 376
KeyPress 376
KeyRelease 376
Leave 376
event specifiers
<Button-1> 377
<Button-2> 377
<Button-3> 377
<Configure> 377
<KeyPress-B> 377
<Return> 377
<Shift-Button-1> 377
exception handling 51, 52
exceptions
about 45, 49, 50
else block, of try... except 54
finally clause 55, 57
raising 52-54
re-raising 52-54
extracting 184

F

Fairy 10
features, reStructuredText (RST)

bullets 114

code snippets 113

docstrings 114-117

docstrings formatting styles 117
mathematical equations 113
numbering 114

paragraphs 112

section headings 111

text styles 113

finally clause 55
first-class citizens 196
first-class functions 196
function extraction 185

G

Gang of Four (GoF) 194
generator expression 272
geometry management

about 374

grid geometry manager 374, 375
pack geometry manager 375
place geometry manager 375

Git

about 74, 98

download link 98

GUI clients, using for 104
installing 98

reference 98

reference, for documentation 104

Git, commands

add 99
clone 99
commit 99
pull 100
push 99

gitk

reference 104

Git repository

changes, pushing to central repository 103
cloning 101
code, copying to cloned repository 102

[416]

code, staging 102, 103
creating 100
using 100
Global Interpreter Lock (GIL) 342
Gold Hunt application
about 253, 254, 285
bottlenecks, identifying 262
code, running 260
high-level algorithm 255
initial code, profiling 286
initial code, reviewing 256-259
optimizing 287
performance improvement goodies 297
problem 261
problem size, selecting 285
square root computation 288
Gold Hunt optimization
about 292-296, 333-353
find_coins method, updating 290, 291
Gold Hunt program, parallelizing
about 346
gold field 347-349
Google Python Style Guide
reference 118
GPU accelerated computing 356
Graphical User Interface (GUI) 360
Graphics Processing Unit (GPU) 355
grid geometry manager 374, 375
GUI applications
testing 405
testing considerations 405
GUI clients
using, for Git 104
GUI elements
reference 371
GUI frameworks
Kivy 361
overview 360
PyQt 360
PySide 361
Tkinter 360
wxPython 361
GUI programming 359
GUI programming design considerations
about 362
accessibility 362, 363

consistency 363

familiarity 363

miscellaneous design considerations 363
predictability 363

simplicity 362, 363

user requisites 362

user story, developing 362

GUI programming, with Tkinter

about 365
mainloop() 366
simple GUI application 367-371

GUI widgets, in Tkinter 371

IDE

selecting 8

identity

configuring 99

IDLE 8
imaginary characters

Dwarf 10
Elf Rider 10
Fairy 10
Orc Rider 10
Sir Foo 10

import errors

resolving 177

incremental release, making

about 97

installed version, upgrading 97
new version, packaging 97
new version, uploading 97

indexing

about 322
reference 323

inheritance principle 33
injured unit selection 156
install location, Python

about 5
on Unix-like operating systems 6
on Windows OS 6

interface, in Java language

reference 229

IPython

installing 7

[417]

IPython interactive shell
about 265
reference 265
itertools module
about 312
itertools.chain iterator 312-314
reference 312

J

JIT compilers 355

Jupyter notebook
about 8
reference 8

K

Kivy 361

L

line_profiler package 269, 270
list comprehension 272, 297
list slicing operation
reference 322
local scope
using 294
lowerCamelCase 128

MagicMock class 168
Makefile 126
matplotlib

reference 259
mebibyte (MiB) 272
memory_profiler package

about 271

reference 271
memory profiling 250, 271
message passing

about 342

reference 342
metaclass 42
MIT License

reference 85

mock library
about 162, 163
reference 163
used, for unit testing 162
working 164, 165
Mock objects
using, in unit test 166-168
Model to Controller communication, Attack
of the Orcs v10.1.0 application
method assignment, using 398
publish-subscribe pattern, using 398, 399
module 77
moving
about 186
pulling up feature request 188
pushing down feature request 186-188
multiprocessing module
about 317, 342
Pool class 342-346
reference 342
MVC architecture
about 392
advantages 394
controller 393
model component 392
view component 393

N

namespaces 294
nepolean

about 118

reference 118
new class

creating, for unit testing 154, 155
Nose

about 178

reference 179
Numba

about 355

reference 355
NumPy

about 319

installing 319

reference 333
numpydoc 119
NumPy package 251, 317

[418]

(0

object aggregation 34
object composition 34
object-oriented programming (OOP) 1
object-relational mapper (ORM) 404
official Python distribution
reference 5
online RST editors
reference 112
Open Computing Language (OpenCL)
about 356
reference 356
operands 328
Orc Rider 10

P

package
creating 80
importing from 80
releasing, on PyPl 82
pack geometry manager 375
pandas library
reference 333
parallelization
about 251, 341
distributed memory parallelization 342
shared memory parallelization 341
patch command
reference 120
patches
using, in unit test 169, 170
working with 168, 169
patterns
classifying 194
PEP 8 coding style guide
about 127
reference 127
PEP 236 convention
reference 135
PEP 257 convention
reference 111
PEP 287
reference 114
PEP 289
reference 309

PEP 440 specification
reference 76
performance improvement goodies, Gold
Hunt application
about 297
collections module 304
conditional block and for loop,
swapping 300, 301
dictionary comprehension 300
execution time, recording 299
generator 307, 308
generator expressions 307-309
itertools module 312
list comprehension 297-299
memory efficiency, comparing 309-311
right data structures, selecting 303, 304
try except clause 302
pip
installing 7
place geometry manager 375
private PyPI repository, using
about 94
local server, starting 95, 96
new source distribution, building 94, 95
private distribution, installing 96
pypiserver, installing 94
pseudo UML diagram 34
pstats module 266-268
pstats.Stats class
reference 268
PyCharm 78
PyCUDA
about 356
reference 356
PyDispatcher
reference 400
Pylint
about 132
reference 132
working 132-136
pyment
about 119
reference 119
PyOpenCL
about 356
reference 356

[419]

PyPI Python installation

about 7 about 3
package, releasing on 82 bundled distribution 4, 5
reference 82 official distribution 3, 4
pypiserver package verifying 6
reference 94, 97 Python language
PyPI testing site and design patterns 196
reference 88 Python Package Index. See PyPI
PyPubSub package python-patch
about 399 reference 120
reference 400
PyPy Q
about 318, 355
reference 355 Qt
PyQt reference 361
about 360 quicksort algorithm 276
reference 360
pyshop package R
Prgfiedr:nce 77 race condition 341
)ellbout 361 raise keyword 52
reference 361 recursion 265
Pytest Red Hat Enterprise Linux (RHEL) 361
“bout 179 refactoring
reference 179 about 22,180-182
Python class, moving 186
“bout 1 deadline 182

for testability 181, 189-191
need for 182
working 184

refactoring tools, Python
about 188
bicycle repair man 188
Python IDE 188

install location 5
refactoring tools 188
reference 4
Python coding standards
about 127
guidelines 127,129
Python decorator 42

Python Enhancement Proposals (PEPs) Rope. 188
about 109 refatoring
reference 109 renaming task 184
Python IDE reStructuredText (RST)
Eclipse PyDev 9 about 111
features 8 features 111
PyCharm Community Edition 9 Rreference 85,111
Spyder 9 ope
about 188

Sublime Text 2, or Sublime Text 3 (beta) 9
Wing IDE 101 9
Python Imaging Library (PIL) 384

reference 188
runtime performance 250

[420]

S

SciPy
about 333
reference 333
Scrum methodology
reference 183
shared memory parallelization
about 341
reference 341
Sikuli (SikuliX)
reference 407
simple factory
about 220
design, rethinking 222, 223
problem 221, 222
Pythonic approach 225-227
recruit feature 220, 221
traditional approach 224, 225
Sir Foo 10
slicing 312, 322-324
sorted array 275
sorting algorithm
reference 280
sorting options
reference 265
Sphinx
about 109
reference 116
sphinx-build tool
using 125
StoryText
reference 407
strategy pattern
about 205
attempted solution 209-211
design, rethinking 211
jump feature 205, 206
problem 207, 208
Pythonic approach 218, 219
traditional approach 212-217
structural patterns 195

T

test case 145
test execution
controlling 148-150
test fixtures 145
testing considerations, GUI applications
automated GUI testing 406
manual testing 406
unit testing, and MVC 406
test modules
creating 160, 161
test runner 145
tests
creating, with unittest. TestCase 146-148
test server, PyPI
reference 82
test suite 145
timeit
reference 263
timeit documentation
reference 297
Tkinter
about 360
documentation links 365, 374
reference 360
widget classes 372,373
tools, for GUI test automation
Dogtail 407
reference 407
Sikuli (SikuliX) 407
StoryText 407
TortoiseMerge
reference 120

U

unhandled exceptions 49

Unified Modeling Language (UML) 33
reference 184

unit testing
about 144, 145, 189
new class, creating for 154, 155

[421]

unit testing tools
about 177
Doctest 178
Nose 178
Pytest 179
unittest module 145
unit tests
batch executing 161
Mock objects, using in 166-168
patches, using in 169, 170
play method 171-174
running 156-160
setup_game_scenario 191
unit tests, writing for application
about 153
test package, setting up 154
unittest.TestCase
tests, creating with 146-148
unittest.TestSuite
using 150-153
UpperCamelCase 128

Vv

version control system (VCS) 98
versioning convention selection
about 74
date format, using 76
semantic versioning scheme 76
serial increments 74
Visual C++ Express
reference 269

w

wheel package
reference 88
widget classes, in Tkinter
Button 372
Canvas 372
Checkbutton 373
Entry 373
Frame 372
Label 372
Listbox 373
Menu 372
Radiobutton 373
wxPython
about 361
reference 361
wxWidgets 361

Y4

Zope web framework
reference 201

[422]

	Cover
	Copyright
	Credits
	Disclaimers
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Developing Simple Applications
	Important housekeeping notes
	Installation prerequisites
	Installing Python
	Option 1 – official distribution
	Option 2 – bundled distribution
	Python install location
	Verifying Python installation
	Installing pip
	Installing IPython
	Choosing an IDE

	The theme of the book
	Meet the characters

	Simple script – Attack of the Orcs v0.0.1
	The game – Attack of the Orcs v0.0.1
	Problem statement
	Pseudo code – version 0.0.1
	Reviewing the code
	Running Attack of the Orcs v0.0.1
	Revisiting the previous version
	Pseudo code with attack feature – Version 0.0.5
	Reviewing the code
	Running Attack of the Orcs v0.0.5

	Using OOP – Attack of the Orcs v1.0.0
	Prioritize the feature requests
	Problem statement
	Redesigning the code
	Painting the big picture
	Pseudo UML representation
	Understanding the pseudo UML diagram

	Reviewing the code
	Running Attack of the Orcs v1.0.0

	Abstract base classes in Python
	Exercise

	Summary
	Very important note for e-book readers

	Chapter 2: Dealing with Exceptions
	Revisiting Attack of the Orcs v1.0.0
	Debugging the problem
	Fixing the bugs…

	Exceptions
	What is an exception?
	Most common exceptions
	Exception handling
	Raising and re-raising an exception
	The else block of try…except
	finally...clean it up!

	Back to the game – Attack of the Orcs v1.1.0
	Preparatory work
	Adding the exception handling code
	Running Attack of the Orcs v1.1.0

	Defining custom exceptions
	Preparatory work
	Custom exception – The problem
	Writing a new exception class
	Expanding the exception class
	Inheriting from the exception class

	Exercise

	Chapter 3: Modularize, Package, Deploy!
	Selecting a versioning convention
	Serial increments
	Using a date format
	Semantic versioning scheme

	Modularizing the code
	Attack of the Orcs v2.0.0

	Creating a package
	Importing from the package

	Releasing the package on PyPI
	Prepare the distribution
	Step 1 – Setting up the package directory
	Step 2 – Writing the setup.py file
	Step 3 – Updating the README and LICENSE.txt files
	Step 4 – Updating the MANIFEST.in file
	Step 5 – Build a deployment-ready distribution

	Uploading the distribution
	Step 1 – Creating an account on PyPI test website
	Step 2 – Creating a .pypirc file
	Step 3 – Register your project
	Step 4 – Uploading the package

	A single command to do it all
	Installing your own distribution

	Using a private PyPI repository
	Step 1 – Installing pypiserver
	Step 2 – Building a new source distribution
	Step 3 – Starting a local server
	Step 4 – Installing the private distribution

	Making an incremental release
	Packaging and uploading the new version
	Upgrading the installed version

	Version controlling the code
	Git resources
	Installing Git
	Configuring your identity
	Basic Git terminology
	Creating and using a Git repository
	Creating a bare remote repository
	Clone the repository
	Copying the code to the cloned repository
	Staging the code and committing
	Pushing the changes to the central repository

	Using GUI clients for Git
	Exercise
	Summary

	Chapter 4: Documentation and Best Practices
	Documenting the code
	Docstrings
	Introduction to reStructuredText
	Section headings
	Paragraphs
	Text styles
	Code snippets
	Mathematical equations
	Bullets and numbering

	Dosctrings using RST
	Docstring formatting styles
	Automatically creating docstring stubs
	Generating documentation with Sphinx
	Step 1 – Installing Sphinx using pip
	Step 2 – cd to the source directory
	Step 3 – Running sphinx-quickstart
	Step 4 – Updating conf.py
	Step 5 – Running sphinx-apidoc
	Step 6 – Building the documentation

	Python coding standards
	Code analysis – How well are we doing?
	Code analysis using IDE
	Pylint
	Pylint in action
	PEP8 and AutoPEP8

	Exercise
	Summary

	Chapter 5: Unit Testing and Refactoring
	This is how the chapter is organized
	Important housekeeping notes

	Why test?
	A new feature was requested
	You implemented this feature
	But something wasn't right...
	It required thorough testing

	Unit testing
	Python unittest framework
	Basic terminology
	Creating tests with unittest.TestCase
	Controlling test execution
	Using unittest.TestSuite

	Writing unit tests for the application
	Setting up a test package
	Creating a new class for unit testing
	First unit test – Injured unit selection
	Running the first unit test
	Second unit test – Acquiring the hut
	Running only the second test

	Creating individual test modules
	Batch executing unit tests

	Unit tests using mock library
	Quick introduction to mock
	Let's mock!
	Using Mock objects in a unit test
	Working with patches
	Using patch in a unit test

	Third unit test – The play method

	Is your code covered?
	Resolving import errors, if any

	Other unit testing tools
	Doctest
	Nose
	Pytest

	Refactoring preamble
	Take a detour – Refactor for testability

	Refactoring
	What is refactoring?
	Why refactor?
	When to refactor?
	How to refactor?
	Renaming
	Extracting

	Moving
	Pushing down
	Pulling up
	Refactoring tools for Python

	Unit testing revisited
	Refactoring for testability
	Fourth unit test – setup_game_scenario

	Exercise
	Refactoring and redesign exercise

	Summary

	Chapter 6: Design Patterns
	Introduction to design patterns
	Classification of patterns
	Behavioral patterns
	Creational patterns
	Structural patterns
	Concurrency patterns

	Python language and design patterns
	First-class functions
	Classes as first-class objects
	Closures
	Miscellaneous features
	Class method
	Abstract method
	The __getattr__ method

	Duck typing

	Structure of the rest of the chapter
	Fast forward – Attack of the Orcs v6.0.0
	Strategy pattern
	Strategy scenario – The jump feature
	Strategy – The problem
	Strategy – Attempted solution
	Strategy – Rethinking the design
	Strategy solution 1 – Traditional approach
	Strategy solution 2 – Pythonic approach

	Simple factory
	Simple factory scenario – The recruit feature
	Simple factory – The problem
	Simple factory – Rethinking the design
	Simple factory solution 1 – Traditional approach
	Simple factory solution 2 – Pythonic approach

	Abstract factory pattern
	Abstract factory scenario – An accessory store
	Abstract factory – The problem
	Abstract factory – Rethinking the design
	Simplifying the design further

	Abstract factory solution – Pythonic approach
	Advanced topic – enforcing an interface

	Adapter pattern
	Adapter scenario – Elf's distant cousin
	Adapter – The problem
	Adapter – Attempted solution
	Adapter solution – Pythonic approach
	Adapter – Multiple adapter methods

	Summary

	Chapter 7: Performance – Identifying Bottlenecks
	Overview of three performance chapters
	More focus on the runtime performance
	The first performance chapter
	The second performance chapter
	The third performance chapter
	Sneak peek at the upcoming application speedup

	Scenario – The Gold Hunt
	High-level algorithm
	Reviewing the initial code
	Running the code

	The problem
	Identifying the bottlenecks
	Measuring the execution time
	Measuring the runtime of small code snippets
	Code profiling
	The cProfile module
	The pstats module
	The line_profiler package

	Memory profiling
	The memory_profiler package

	Algorithm efficiency and complexity
	Algorithm efficiency
	Algorithm complexity

	Big O notation
	Big O complexity classes
	O(1) – constant time
	O(log n) – logarithmic
	O(n) – Linear time
	O(n log n) – Log linear
	O(n2) – Quadratic
	O(n3) – cubic
	Upper bound of the complexity
	Complexity for common data structures and algorithms
	Wrapping up the big O discussion

	Summary

	Chapter 8: Improving Performance – Part One
	Prerequisite for the chapter
	This is how the chapter is organized
	Revisiting the Gold Hunt scenario
	Selecting a problem size
	Profiling the initial code

	Optimizing Gold Hunt – Part one
	Tweaking the algorithm – The square root
	Gold Hunt optimization – Pass one

	Skipping the dots
	Gold Hunt optimization – Pass two

	Using local scope
	Gold Hunt optimization – Pass three

	Performance improvement goodies
	List comprehension
	Recording execution time
	Dictionary comprehension
	Swapping conditional block and for loops
	'try' it out in a loop
	Choosing the right data structures
	The collections module
	The deque class
	The defaultdict class

	Generators and generator expressions
	Generator expressions
	Comparing the memory efficiency
	Generator expressions or list comprehensions?

	The itertools module
	The itertools.chain iterator

	Exercises
	Summary

	Chapter 9: Improving Performance – Part Two, NumPy and Parallelization
	Prerequisites for this chapter
	This is how the chapter is organized
	Introduction to NumPy
	Installing NumPy
	Creating array objects
	Simple array operations
	Array slicing and indexing
	Indexing
	Slicing

	Broadcasting
	Miscellaneous functions
	numpy.ndarray.tolist
	numpy.reshape
	numpy.random
	numpy.dstack
	numpy.einsum
	Computing distance square with einsum

	Where to get more information on NumPy?

	Optimizing Gold Hunt – Part two
	Gold Hunt optimization – pass four
	Gold Hunt optimization – pass five

	Parallelization with the multiprocessing module
	Introduction to parallelization
	Shared memory parallelization
	Distributed memory parallelization

	Global interpreter lock
	The multiprocessing module
	The Pool class

	Parallelizing the Gold Hunt program
	Revisiting the gold field
	Gold Hunt optimization – Pass six, parallelization
	Other methods for parallelization

	Further reading
	JIT compilers
	GPU accelerated computing

	Summary

	Chapter 10: Simple GUI Applications
	Overview of GUI frameworks
	Tkinter
	PyQt
	PySide
	Kivy
	wxPython

	GUI programming design considerations
	Understanding user requirements
	Developing a user story
	Simplicity and accessibility
	Consistency
	Predictability and familiarity
	Miscellaneous design considerations

	Event-driven programming
	Event
	Event handling
	Event loop

	GUI programming with Tkinter
	Tkinter documentation links
	The mainloop() in Tkinter
	Simple GUI application – Take 1
	Simple GUI application – Take 2
	GUI Widgets in Tkinter
	Geometry management
	Grid geometry manager
	Pack geometry manager
	Place geometry manager

	Events in Tkinter
	Event types
	Event descriptors
	Event object attributes

	Event handling in Tkinter
	Command callback (Button widget)
	The bind() method
	The bind_class() method
	The bind_all() method

	Project-1 – Attack of the Orcs V10.0.0
	Background scenario
	Problem statement
	Writing the code
	Overview of the class HutGame
	The __init__ method
	The occupy_huts method
	The create_widgets method
	The setup_layout method
	The radio_btn_pressed and enter_hut methods
	The announce_winner method

	Running the application

	MVC architecture
	Model
	View
	Controller
	Advantages of MVC

	Project 2 – Attack of the Orcs v10.1.0
	Revisiting the HutGame class
	Creating MVC classes
	Communication between MVC objects
	Controller to Model or View communication
	Model to Controller communication
	View to Controller communication
	Communication between View and Model

	Reviewing the code
	The Controller class

	The Model class
	The View class
	Running the application

	Testing GUI applications
	Testing considerations
	Unit testing and MVC
	Manual testing
	Automated GUI testing

	Exercises
	Further reading
	Summary

	Index

