

Learn Python by Building Data
Science Applications

A fun, project-based guide to learning Python 3 while building
real-world apps

Philipp Kats
David Katz

BIRMINGHAM - MUMBAI

Learn Python by Building Data Science
Applications
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair
Content Development Editor: Tiksha Sarang
Senior Editor: Afshaan Khan
Technical Editor: Romy Dias
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite

First published: August 2019

Production reference: 1300819

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-536-5

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Philipp Kats is a researcher at the Urban Complexity Lab, NYU CUSP, a research fellow at
Kazan Federal University, and a data scientist at StreetEasy, with many years of experience
in software development. His interests include data analysis, urban studies, data
journalism, and visualization. Having a bachelor's degree in architectural design and a
having followed the rocky path (at first) of being a self-taught developer, Philipp knows the
pain points of learning programming and is eager to share his experience.

I would like to thank my wife, Anna, and son, Solomon, for their support and patience.

David Katz is a researcher and holds a Ph.D. in mathematics. As a mathematician at heart,
he sees code as a tool to express his questions. David believes that code literacy is essential
as it applies to most disciplines and professions. David is passionate about sharing his
knowledge and has 6 years of experience teaching college and high school students.

I would like to thank my wife, Dina, for her support and help.

The authors would also like to thank the administration of the Kazan Federal University IT-Lyceum,
and its director, Timerbulat Samerkhanov, for the opportunity to conduct a course that laid the
foundation for this book. Our special thanks go to our students for their help and feedback:

Azat Davletshin
Danis Saifullin
Evdokimov Alexandr
Kasatkin Alexander
Kirill Kaidanov
Nikolai Plantonov

About the reviewers
Sri Manikanta is an undergraduate student pursuing his bachelor's degree in computer
science and engineering at SICET under JNTUH. He is a founder of the Open Stack
Developer Community at his college. He started his journey as a competitive programmer
and he always loves to solve problems that are related to the filed of data science. He has
worked on a couple of projects on deep learning and machine learning. He has published
many articles regarding data science, machine learning, programming and cyber security in
top publications such as Hacker Noon, freeCodeCamp, Towards Data Science, and DDI. He
completed his Python specialization at the University of Michigan, through Coursera.

I would like to express my deepest gratitude to my spiritual and biological parents for
everything that they have done for me.

A special thanks to my friends and well-wishers for supporting me, and to Packt
Publishing for giving me the opportunity to review this book.

Richard Marsden has 25 years of professional software development experience. After
starting in the field of geophysical surveying for the oil industry, he has spent the last 15
years running the Winwaed Software Technology LLC, an independent software vendor.
Winwaed specializes in geospatial tools and applications including web applications and
operates the Mapping-Tools website for tools and add-ins for geospatial applications such
as Caliper Maptitude, Microsoft MapPoint, Android, and Ultra Mileage.

Richard has been a technical reviewer for a number of Packt publications, including Python
Geospatial Development and Python Geospatial Analysis Essentials, both by Erik Westra; and
Python Geospatial Analysis Cookbook, by Michael Diener.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Getting Started with Python
Chapter 1: Preparing the Workspace 11

Technical requirements 12
Installing Python 12
Downloading materials for running the code 15

Installing Python packages 16
Working with VS Code 17

The VS Code interface 18
Beginning with Jupyter 21

Notebooks 22
The Jupyter interface 22

Pre-flight check 24
Summary 25
Questions 25
Further reading 25

Chapter 2: First Steps in Coding - Variables and Data Types 26
Technical requirements 27
Assigning variables 27
Naming the variable 29
Understanding data types 30

Floats and integers 31
Operations with self-assignment 32
Order of execution 33

Strings 33
Formatting 35

Format method 35
F-strings 36
Legacy formatting 37
Formatting mini-language 37

Strings as sequences 37
Booleans 38

Logical operators 39
Converting the data types 40
Exercise 41
Summary 42
Questions 43

Table of Contents

[ii]

Further reading 43

Chapter 3: Functions 44
Technical requirements 45
Understanding a function 45

Interface functions 45
The input function 46
The eval function 46

Variable properties 46
The help function 47
The type function 48
The isinstance function 49
dir 50

Math 50
abs 51
The round function 51

Iterables 51
The len function 52
The sorted function 52
The range function 52
The all and any functions 53
The max, min, and sum functions 53

Defining the function 54
Default values 56
Var-positional and var-keyword 57
Docstrings 59
Type annotations 61

Refactoring the temperature conversion 62
Understanding anonymous (lambda) functions 63
Understanding recursion 64
Summary 65
Questions 66
Further reading 66

Chapter 4: Data Structures 67
Technical requirements 67
What are data structures? 68

Lists 68
Slicing 70
Tuples 71
Immutability 71
Dictionaries 71
Sets 73

More data structures 74
frozenset 74
defaultdict 75
Counter 75

Table of Contents

[iii]

Queue 76
deque 77
namedtuple 78
Enumerations 79

Using generators 80
Useful functions to use with data structures 81

The sum, max, and min functions 82
The all and any functions 82
The zip function 82
The map, filter, and reduce functions 83

Comprehensions 83
Summary 85
Questions 85
Further reading 85

Chapter 5: Loops and Other Compound Statements 86
Technical requirements 86
Understanding if, else, and elif statements 87

Inline if statements 88
Using if in a comprehension 89

Running code many times with loops 90
The for loop 90
itertools 91

cycle 92
chain 92
product 93

Enumeration 94
The while loop 95
Additional loop functionality – break and continue 95

Handling exceptions with try/except and try/finally 96
Exceptions 97
try/except 98
try/except/finally 99

Understanding the with statements 100
Summary 101
Questions 101
Further reading 102

Chapter 6: First Script – Geocoding with Web APIs 103
Technical requirements 103
Geocoding as a service 104
Learning about web APIs 105

Working with HTTPS 105
Working with the Nominatim API 106

The requests library 106

Table of Contents

[iv]

Starting to code 107
Caching with decorators 111
Reading and writing data 113

Geocoding the addresses 115
Moving code to a separate module 118
Collecting NYC Open Data from the Socrata service 119
Summary 120
Questions 120
Further reading 120

Chapter 7: Scraping Data from the Web with Beautiful Soup 4 121
Technical requirements 121
When there is no API 122

HTML in a nutshell 122
Scraping with Beautiful Soup 4 124
CSS and XPath selectors 124

Developer console 126
Scraping WWII battles 128

Step 1 – Scraping the list of battles 129
Unordered list 131

Step 2 – Scraping information from the Wiki page 132
Key information 134
Additional information 135

Step 3 – Scraping data as a whole 137
Quality control 139

Beyond Beautiful Soup 141
Summary 142
Questions 143
Further reading 143

Chapter 8: Simulation with Classes and Inheritance 144
Technical requirements 145
Understanding classes 145

Special (dunder) methods 148
__init__ 148
__repr__ and __str__ 149
Arithmetical and logical operations 149
Equality/relationship methods 152
__len__ 153
__getitem__ 153
__class__ 154

Inheritance 154
Using super() 156
Data classes 157

Using classes in simulation 158
Writing the base classes 158

Table of Contents

[v]

Writing the Island class 160
Herbivore haven 163
Harsh islands 165
Visualization 166

Summary 171
Questions 171
Further reading 171

Chapter 9: Shell, Git, Conda, and More – at Your Command 172
Technical requirements 173
Shell 173

Pipes 174
Executing Python scripts 175
Command-line interface 176

Git 177
Concept 178
GitHub 178
Practical example 179
gitignore 180

Conda 181
Conda for virtual environments 182
Conda and Jupyter 183

Make 184
Cookiecutter 185
Summary 187
Questions 187

Section 2: Hands-On with Data
Chapter 10: Python for Data Applications 189

Technical requirements 189
Introducing Python for data science 190
Exploring NumPy 191
Beginning with pandas 193
Trying SciPy and scikit-learn 195
Understanding Jupyter 196
Summary 197
Questions 198

Chapter 11: Data Cleaning and Manipulation 199
Technical requirements 200
Getting started with pandas 200

Selection – by columns, indices, or both 201
Masking 203
Data types and data conversion 204

Table of Contents

[vi]

Math 205
Merging 206

Working with real data 207
Initial exploration 208
Defining the scope of work to be done 209

Getting to know regular expressions 212
Parsing locations 213

Geocoding 215
Time 217
Belligerents 220
Understanding casualties 221

Multilevel slicing 223
Quality assurance 223
Writing the file 224
Summary 225
Questions 225
Further reading 226

Chapter 12: Data Exploration and Visualization 227
Technical requirements 228
Exploring the dataset 228

Descriptive statistics 230
Data visualization with matplotlib (and its pandas interface) 231
Aggregating the data to calculate summary statistics 233

Resampling 235
Mapping 237

Declarative visualization with vega and altair 240
Drawing maps with Altair 243
Storing the Altair chart 245

Big data visualization with datashader 246
Summary 253
Questions 253
Further reading 253

Chapter 13: Training a Machine Learning Model 254
Technical requirements 255
Understanding the basics of ML 255

Exploring unsupervised learning 255
Moving on to supervised learning 260

k-nearest neighbors 260
Linear regression 263
Decision trees 267

Summary 270
Questions 270
Further reading 270

Table of Contents

[vii]

Chapter 14: Improving Your Model – Pipelines and Experiments 271
Technical requirements 271
Understanding cross-validation 272
Exploring feature engineering 273

Failed attempts 275
Optimizing the hyperparameters 276

Using a random forest model 279
Tracking your data and metrics with version control 281

Starting with data 282
Adding code to the equation 283
Metrics 284

Summary 286
Questions 286
Further reading 286

Section 3: Moving to Production
Chapter 15: Packaging and Testing with Poetry and PyTest 288

Technical requirements 289
Building a package 289

Bringing your own package 290
Using a package manager – pip and conda 290
Creating a package scaffolding 291

A few ways to build your package 292
Trying out code with Poetry 293
Adding actual code 294
Defining dependencies 295
Non-code resources 296
Publishing the package 296
Development workflow 297

Testing the code so far 297
Testing with PyTest 298
Writing our own tests 299

Automating the process with CI services 303
Generating documentation generation with sphinx 307
Installing a package in editable mode 312
Summary 313
Questions 313
Further reading 313

Chapter 16: Data Pipelines with Luigi 314
Technical requirements 314
Introducing the ETL pipeline 315

Redesigning your code as a pipeline 317
Building our first task in Luigi 317

Table of Contents

[viii]

Connecting the dots 319
Understanding time-based tasks 322

Scheduling with cron 323
Exploring the different output formats 324

Writing to an S3 bucket 325
Writing to SQL 326

Expanding Luigi with custom template classes 328
Summary 330
Questions 331
Further reading 331

Chapter 17: Let's Build a Dashboard 332
Technical requirements 332
Building a dashboard – three types of dashboard 333

Static dashboards 333
Debugging Altair 338
Connecting your app to the Luigi pipeline 339

Understanding dynamic dashboards 340
First try with panel 341
Reading data from the database 342
Creating an interactive dashboard in Jupyter 344

Summary 347
Questions 348
Further reading 348

Chapter 18: Serving Models with a RESTful API 349
Technical requirements 350
What is a RESTful API? 350

Python web frameworks 351
Building a basic API service 352

Exploring service with OpenAPI 354
Finalizing our naive first iteration 355
Data validation 356
Sending data in with POST requests 358
Adding features to our service 359

Building a web page 362
Speeding up with asynchronous calls 365
Deploying and testing your API loads with Locust 366
Summary 369
Questions 369
Further reading 369

Chapter 19: Serverless API Using Chalice 370
Technical requirements 370
Understanding serverless 371

Table of Contents

[ix]

Getting started with Chalice 372
Setting up a simple model 373

Externalizing medians 375
Building a serverless API for an ML model 376

When we're still out of memory 380
Building a serverless function as a data pipeline 380

S3-triggered events 382
Summary 385
Questions 385
Further reading 385

Chapter 20: Best Practices and Python Performance 386
Technical requirements 387
Speeding up your Python code 387

Rewriting the code with NumPy 389
Specialized data structures and algorithms 391
Dask 392

Dask-ML 395
Numba 396
Concurrency and parallelism 398

Different types of concurrency 398
Two types of problems 399
Before you start rewriting your code 400

Using best practices for coding in your project 401
Code formatting with black 401
Measuring code quality with Wily 405
Writing tests with hypothesis 407

Beyond this book – packages and technologies to look out for 410
Different Python flavors 410
Docker containers 412
Kubernetes 412

Summary 413
Questions 414
Further reading 414

Assessments 415

Other Books You May Enjoy 439

Index 442

Preface
There are no separate systems. The world is a continuum. Where to draw a boundary
around a system depends on the purpose of the discussion.

– Donella H. Meadows, Thinking in Systems: A Primer

Python has become one of the most popular programming languages in the world,
according to multiple polls and metrics. This popularity is, to no small extent, a direct result
of the simplicity of the language, its power, and scalability, allowing it to run even large-
scale applications, such as Dropbox, YouTube, and many others. It becomes even more
valuable with the rise in the adoption of machine learning techniques and algorithms,
including state-of-the-art algorithms on the edge of scientific advancements.

Consequently, there are hundreds of books, courses, and online tutorials on different
aspects of programming, machine learning, data processing, and more. Many sources
highlight the importance of learning-by-doing and building your own projects. Connecting
the dots and structuring all this vast knowledge into one big picture is not an easy
task. Seeing the big picture, in our opinion, is critical for the completion of any project.
Indeed, there are plenty of options and decisions to take at every step. It is the grand
schema of a project as a whole that helps you make those decisions, focus on what matters,
and spend your time wisely.

This book is designed to be an entry point for any newcomer or novice developer, aiming to
cover the whole life cycle of a data-driven application. By the end of it, you will be able to
write arbitrary Python code, collect and process data, explore it, and build your own
packages, dashboards, and APIs. Multiple notes and tips point to alternative solutions or
decisions, allowing you to alternate code for your specific needs.

This book will be a useful resource if any of the following apply to you:

You have just started to code.
You know the basics but struggle to build something handy.
You know your specific domain well—whether it be statistics, machine learning,
or development—but lack experience in other parts of building a project.
You're an experienced developer with little exposure to Python, trying to learn
about the Python package's ecosystem.

Preface

[2]

If you feel you fall into any of those categories, or want to build a project from scratch for
other reasons, please join us on this journey.

Who this book is for
This book is aimed at new Python developers with little to no prior programming skills
beyond basic computer literacy. The book doesn't require any previous background in data
science or statistics either. That being said, it covers a variety of topics, from data
processing to visualization, to delivery—including dashboards, building APIs, Extract,
Transform, Load (ETL) pipelines, or a standalone package. Thus, it is also suited to
experienced data scientists interested in productizing their work. For a complete novice,
this book aims to cover all major parts of the data application life cycle—from Python
basics to scripts, data collection and processing, and the delivery of your work in different
formats.

What this book covers
This book consists of three main sections. The first one is focused on language
fundamentals, the second introduces data analysis in Python, and the final section covers
different ways to deliver the results of your work. The last chapter of each section is
focused on non-Python tools and topics related to the section subject.

Section 1, Getting Started with Python, introduces the Python programming language and
explains how to install Python and all of the packages and tools we'll be using.

Chapter 1, Preparing the Workspace, covers all the tools we'll need throughout the
book—what they are, how to install them, and how to use their interfaces. This includes the
installation process for Python 3.7, all of the packages we'll require throughout the book,
how to install all of them at once in a separate environment, as well as two code
development tools we'll use—the Jupyter Notebook and VS Code. Finally, we'll run our
first script to ensure everything works fine! By the end of this chapter, you will have
everything you need to execute the book's code, ready to go.

Chapter 2, First Steps in Coding – Variables and Data Types, gives an introduction to
fundamental programming concepts, such as variables and data types. You'll start writing
code in Jupyter, and will even solve a simple problem using the knowledge you've just
acquired.

Preface

[3]

Chapter 3, Functions, introduces yet another concept fundamental to
programming—functions. This chapter covers the most important built-in functions and
teaches you about writing new ones. Finally, you will revisit the problem from the previous
chapter, and write an alternative solution, using functions.

Chapter 4, Data Structures, covers different types of data structures in Python—lists, sets,
dictionaries, and many others. You will learn about the properties of each structure, their
interfaces, how to operate them, and when to use them.

Chapter 5, Loops and Other Compound Statements, illustrates different compound statements
in Python—loops—if/else, try/except, one-liners, and others. These represent core logic
in the code and allow non-linear code execution. At the end of this chapter, you'll be able to
operate large data structures using short, expressive code.

Chapter 6, First Script – Geocoding with Web APIs, introduces the concept of APIs, working
with HTTP and geocoding service APIs in particular, from Python. At the end of this
chapter, you'll have fully operational code for geocoding addresses from the dataset—code
that you'll be using extensively throughout the rest of the book, but that's also highly
applicable to many tasks beyond it.

Chapter 7, Scraping Data from the Web with Beautiful Soup 4, illustrates a solution to a similar
but more complex task of data extraction from HTML pages—scraping. Step by step, you
will build a script that collects pages and extracts data on all the battles in World War II, as
described in Wikipedia. At the end of this chapter, you'll know the limitations, challenges,
and the main solutions of the scraping packages used for the task, and will be able to write
your own scrapers.

Chapter 8, Simulation with Classes and Inheritance, introduces one more critical concept for
programming in Python—classes. Using classes, we will build a simple simulation model of
an ecological system. We'll compute, collect, and visualize metrics, and use them to analyze
the system's behavior.

Chapter 9, Shell, Git, Conda, and More – at Your Command, covers the basic tools essential for
the development process—from Shell and Git, to Conda packaging and virtual
environments, to the use of makefiles and the Cookiecutter tool. The information we share
in this chapter is essential for code development in general, and Python development in
particular, and will allow you to collaborate and talk the same language with other
developers.

Section 2, Hands-On with Data, focuses on using Python for data processing analysis,
including cleaning, visualization, and training machine learning models.

Preface

[4]

Chapter 10, Python for Data Applications, works as an introduction to the Python data
analysis ecosystem—a distinct group of packages that allow simple work with data, its
processing, and analysis. As a result, you will get familiar with the main packages and their
purpose, their special syntaxes, and will understand what makes them work substantially
faster than normal Python for numeric calculations.

Chapter 11, Data Cleaning and Manipulation, shows how to use the pandas package to
process and clean our data, and make it ready for analysis. As an example, we'll clean and
prepare the dataset we obtained from Wikipedia in Chapter 7, Scraping Data from the Web
with Beautiful Soup 4. Through the process, we'll learn how to use regular expressions, use
the geocoding code we wrote in Chapter 6, First Script – Geocoding with Web APIs, and an
array of other techniques to clean the data.

Chapter 12, Data Exploration and Visualization, explains how to explore an arbitrary dataset
and ask and answer questions about it, using queries, statistics, and visualizations. You'll
learn how to use two visualization libraries, Matplotlib and Altair. Both make static charts
quickly or more advanced, interactive ones. As our case example, we'll use the dataset we
cleaned in the previous chapter.

Chapter 13, Training a Machine Learning Model, presents the core idea of machine learning
and shows how to apply unsupervised learning with the k-means clustering algorithm, and
supervised learning with KNN, linear regression, and decision trees, to a given dataset.

Chapter 14, Improving Your Model – Pipelines and Experiments, highlights ways to improve
your model, using feature engineering, cross-validation, and by applying a more
sophisticated algorithm. In addition, you will learn how to track your experiments and
keep both code and data under version control, using data version control with dvc.

Section 3, Moving to Production, is focused on delivering the results of your work with
Python, in different formats.

Chapter 15, Packaging and Testing with Poetry and PyTest, explains the process of packaging.
Using our Wikipedia scraper as an example, we'll create a package using the poetry
library, set dependencies and a development environment, and make the package
accessible for installation using pip from GitHub. To ensure the package's functionality, we
will add a few unit tests using the pytest testing library.

Chapter 16, Data Pipelines with Luigi, introduces ETL pipelines and explains how to build
and schedule one using the luigi framework. We will build a set of interdependent tasks
for data collection and processing and set them to work on a scheduled basis, writing data
to local files, S3 buckets, or a database.

Preface

[5]

Chapter 17, Let's Build a Dashboard, covers a few ways to build and share a dashboard
online. We'll start by writing a static dashboard based on the charts we made with the
Altair library in Chapter 12, Data Exploration and Visualization. As an alternative, we will
also deploy a dynamic dashboard that pulls data from a database upon request, using
the panel library.

Chapter 18, Serving Models with a RESTful API, brings us back to the API theme—but this
time, we'll build an API on our own, using the fastAPI framework and the pydantic
package for validation. Using a machine learning model, we'll build a fully operational API
server, with the OpenAPI documentation and strict request validation. As FastAPI supports
asynchronous execution, we'll also discuss what that means and when to use it.

Chapter 19, Serverless API Using Chalice, goes beyond serving an API with a personal server
and shows how to achieve similar results with a serverless application, using AWS Lambda
and the chalice package. This includes building an API endpoint, a scheduled pipeline,
and serving a machine learning model. Along the way, we discuss the pros and cons of
running serverless, its limitations, and ways to mitigate them.

Chapter 20, Best Practices and Python Performance, is comprises of three distinct parts. The
first part showcases different ways to make your code faster, by using NumPy's vectorized
computations or a specific data structure (in our case, a k-d tree), extending computations
to multiple cores or even machines with Dask, or by leveraging performance (and,
potentially, GIL-release) of just-in-time compilation with Numba. We also discuss different
ways to achieve concurrency in Python—using threads, asynchronous tasks, or multiple
processes.

The second part of the chapter focuses on improving the speed and quality of development.
In particular, we'll cover the use of linters and formatters—the black package in particular;
code maintainability measurements with wily; and advanced, data-driven code testing
with the hypothesis package.

Finally, the third part of this chapter goes over a few technologies beyond Python, but that
are still potentially useful to you. This list includes different Python interpreters, such as
Jython, Brython, and Iodide; Docker technology; and Kubernetes.

To get the most out of this book
This book is designed for complete beginners and people who have just started to learn to
code. It does not require any specific knowledge besides basic computer literacy.

Preface

[6]

The execution of the code examples provided in this book requires an installation of Python
3.7.3 or later on macOS, Linux, or Microsoft Windows. The code presented throughout the
book makes use of many Python libraries. In each chapter, a list of required libraries is
given at the beginning. A full list of libraries is stored in the GitHub repository, in
the environment.yaml file. The same file can be used to install Python and all of the
required libraries in bulk—full instructions are given in Chapter 1, Preparing the Workspace.

The code for this book was developed in and extensively uses two development
environments—VS Code editor with its Python bundle, and Jupyter. We recommend using
both for better alignment with the book's narrative.

The code for Chapter 6, First Script – Geocoding with Web APIs, Chapter 7, Scraping Data
from the Web with Beautiful Soup 4, Chapter 11, Data Cleaning and Manipulation, and Chapter
16, Data Pipelines with Luigi, requires an internet connection.

The first chapter will provide you with step-by-step instructions and some useful tips for
setting up your Python environment, the core libraries, and all the necessary tools.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications. In case there's
an update to the code, it will be updated on the existing GitHub repository.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Preface

[7]

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789535365_​ColorImages. ​pdf.

Code in Action
Visit the following link to check out videos of the code being run: http:/ ​/​bit. ​ly/ ​2MIb3Pn

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "As you can see, pi is a float, name is a string, age is an integer, and
sky_is_blue is a Boolean."

A block of code is set as follows:

import pandas as pd

for word in 'Hello Word!'.split():
 print(word)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

pi = 3.14159265359 # Decimal
name = 'Philipp' # Text
age = 31 # Integer
sky_is_blue = True # Boolean

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn
http://bit.ly/2MIb3Pn

Preface

[8]

Often code will be shown as a print of an interactive console, with both code and the output
being mixed. In this case, all input code lines will start with a triple "greater than" sign.
Lines with no such sign represent the output:

>>> import pandas as pd
>>> for word in 'Hello Word!'.split():
>>> print(word)

Hello
Word

Any command-line input or output is written as follows:

> conda install <mypackage>
> conda install -c <mychannel> <mypackage>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Just use the Clone or download button on the right-hand side (1), and select Download
ZIP (2)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

http://www.packt.com/submit-errata

Preface

[9]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Getting Started with

Python
This section focuses on becoming familiar with general-purpose Python, making use of
existing libraries, writing our first scripts, learning the basics of Git, and using the IDE. In
this section, we will also lay the foundation for our projects, building pipelines to process
(project 1), collect (project 2), and simulate (project 3) data.

This section comprises the following chapters:

Chapter 1, Preparing the Workspace
Chapter 2, First Steps in Coding – Variables and Data Types
Chapter 3, Functions
Chapter 4, Data Structures
Chapter 5, Loops and Other Compound Statements
Chapter 6, First Script – Geocoding with Web APIs
Chapter 7, Scraping Data from the Web with Beautiful Soup 4
Chapter 8, Classes and Inheritance
Chapter 9, Shell, Git, Conda, and More – at Your Command

1
Preparing the Workspace

Welcome! We're very excited to start learning and building things with you! However, we
need to get ourselves ready first.

In this chapter, we'll learn how to download and install everything you'll need throughout
the book, including Python itself, all the Python packages that we'll need, and two
development tools we will be using extensively: Jupyter and Visual Studio Code (VS
Code). After that, we'll go through a brief overview of Jupyter and VS Code
interfaces. Finally, you will run your very first line of Python, so we need to ensure that
everything is ready before we dive in.

In this chapter, we'll cover the following:

The minimum computer configuration required
How to install the Anaconda distribution
How to download the code for this book
Setting up and getting familiar with VS Code and Jupyter
Running your first line of code to ensure everything runs smoothly

By the end of this chapter, you will have learned about the hardware requirements for
Python and this book, and what you can do if you don't have a sufficiently powerful
computer. You will also learn how to install Python 3.7.2 and all required packages and
tools using the open source Anaconda distribution.

Preparing the Workspace Chapter 1

[12]

Technical requirements
Python can be very humble and does not require an advanced computer. In fact, you can
run Python on a $10 Raspberry Pi or an Arduino board! The code and data we use in this
book do not require any special computational power, any laptop, or any computer made
after 2008. At least 2 GB of RAM, 20 GB of disk space, and an internet connection should
suffice. Your operating system (OS) shouldn't be a problem either, as Python and all the
tools we will use are cross-platform and work on Windows, macOS, and Linux.

Throughout the book, we'll use two main tools to write the code: Jupyter and VS Code.
Both of them are free and aren't demanding.

All the code for the book is publicly available and free to access at https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications.

Installing Python
There are multiple Python distributions, starting with the original, vanilla Python, which is
accessible at https:/ ​/ ​www. ​python. ​org/ ​. Data analysis, however, adds unique requirements
for packaging (https:/ ​/ ​www. ​youtube. ​com/ ​watch? ​v= ​QjXJLVINsSA ​feature= ​youtu. ​be​t=
3555). In this book, we use Anaconda, which is an open source and free Python
distribution, designed for data science and machine learning. Anaconda's main features
include a smooth installation of data science packages (many of which run C and Fortran
languages under the hood) and conda, which is a great package and environment manager
(we will talk more about environments and conda later in Chapter 9, Shell, Git, Conda, and
More – at Your Command). Conveniently, the Anaconda distribution installs all the packages
(https:/​/​docs.​anaconda. ​com/ ​anaconda/ ​packages/ ​pkg- ​docs/ ​) we need in this book and
many more!

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://www.youtube.com/watch?v=QjXJLVINsSA&feature=youtu.be&t=3555
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/

Preparing the Workspace Chapter 1

[13]

In order to install Anaconda, follow these steps:

First, go to the Anaconda distribution web page at https:/ ​/​www. ​anaconda. ​com/1.
distribution/ ​.
Select the Python 3.7 graphical installer for your platform and download it (at the2.
time of writing, there is no graphical installer for Linux, so you'll have to use the
one for the command line). The following screenshot shows what the interface
looks like—we've marked the link we're interested in with dotted lines:

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

Preparing the Workspace Chapter 1

[14]

Run the installation. Keep all settings as default. When you're asked if you want3.
to install PyCharm, select no (until you personally want to, of course, but we
won't use PyCharm in this book):

Voila! Now we have Python up and running! Next, let's download all the materials for this
book.

We use Anaconda build 3-2018.12, which is the most recent version at the
time of writing this book. Until a new version is released, this build will
be accessible at https:/ ​/​repo. ​anaconda. ​com/ ​archive/ ​.

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/

Preparing the Workspace Chapter 1

[15]

Downloading materials for running the code
All code in this book is also available as a separate archive of files—either Python scripts or
Jupyter notebooks. You can download the full archive and follow along with the book
using the relevant code from GitHub (https:/ ​/​github. ​com/​PacktPublishing/ ​Learn-
Python-​by-​Building- ​Data- ​Science- ​Applications). Everything is stored on GitHub, which
is an online service for code storage with version control. We will discuss both Git and
GitHub in Chapter 9, Shell, Git, Conda, and More – at Your Command, but in this case, you
won't need version control, so it is easier to download everything as an archive. Just use the
Clone or download button on the right side (1), and select Download ZIP (2):

Once the download is complete, unzip the file and move it to a convenient location. This
folder will be our main workspace throughout the book.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Preparing the Workspace Chapter 1

[16]

Installing Python packages
Many of the chapters in this book teach you how to make use of specific packages. Most of
them are included in the standard Anaconda distribution, so if you installed Python using
the Anaconda distribution, then you will have them already. Some packages might not be
installed though, so we'll have to install them separately as per our requirements for every
chapter. This is totally fine, and we'll specify which packages will be used at the beginning
of each chapter.

In order to install a specific package, you have two options:

Installing via Anaconda by running either of the following commands.
Specifying a channel is required if a package is rare and not present on the
default channels of Anaconda and conda-forge:

> conda install <mypackage>
> conda install -c <mychannel> <mypackage>

Some packages are not present in conda at all. You can search for packages
through the channels at https:/ ​/​anaconda. ​org/ ​.

Most packages can be installed using pip:

> pip install <mypackage>

Generally speaking, we recommend using conda over pip for installation.

Alternatively, there is a single specification in the root of the repository that you can use to
install everything at once. To do so, you need to go in your Terminal, and then to the
repository's root (we will explain how to do that in Chapter 9, Shell, Git, Conda, and More –
at Your Command, but VS Code's Terminal will open in the root of the given folder
automatically). Once there, run the following command:

conda env update --name root -f environment.yml

Then, follow the instructions. Here, conda uses the environment.yml specification file as
a list of packages to install.

Now, let's install our main development tools: VS Code and Jupyter.

https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/
https://anaconda.org/

Preparing the Workspace Chapter 1

[17]

Working with VS Code
VS Code is invaluable for Python development and experimentation. VS Code—not to be
confused with Visual Studio, which is a commercial product—is a sophisticated, completely
free, and open source text editor created by Microsoft. It is language-agnostic and will work
perfectly with Python, JavaScript, Java, or any other language. VS Code has hundreds of
built-in features and thousands of great plugins to expand its capabilities.

In order to install VS Code, head to its main web page, https:/ ​/​code. ​visualstudio. ​com/ ​,
and download the package for your OS. The installation is pretty straightforward; there is
no need to change any of the default settings. Assuming you installed VS Code as part of
the previous steps, you now need to open the VS Code application. Next, switch to the
plugin marketplace menu (as shown in the following screenshot), type Python, and install
the plugin. Python binding for VS Code provides plenty of Python-specific features and
will prove very useful for us throughout the book.

In the following screenshot, 1 represents the plugin marketplace. Once switched, type
Python in the search form (2), select the plugin (3), and hit install (Python was already
installed in this screenshot, hence it offers to uninstall it instead):

Once that's done, let's briefly review the interface of the tool.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Preparing the Workspace Chapter 1

[18]

The VS Code interface
Let's go over the VS Code interface. In the following screenshot, you can see five distinctive
sections:

Section 1 of VS Code has six icons (more will appear after installing certain plugins). The
last one at the bottom of the toolbar, which is a gear symbol, represents the settings. All the
others represent different modes, from top to bottom:

Explorer mode, which allows us to look for the files that are open in the given1.
workspace
Search mode, which allows us to look for a particular text element throughout2.
the whole workplace

Preparing the Workspace Chapter 1

[19]

A built-in Git client (more on that in Chapter 3, Functions)3.
Debugger mode, which halts and inspects code in the middle of the execution in4.
order to understand what's happening under the hood
VS Code's plugin marketplace5.

Every mode changes the content of section 2. This is as an area that is dedicated to working
with the workspace as a whole, which includes adding new files, removing existing ones,
working with the workspace, or traversing through variables in debugging sessions.

Section 3 is the main one. Here, we actually write and read the code. You can have multiple
tabs or even split this window into many: vertically, horizontally, or both. Most of the time,
each tab represents one file in the workspace.

If you don't have section 4 open, then go to View | Terminal or use the Ctrl + ` shortcut.
You can also drag this section out from the upper edge of section 5 using your mouse, if
you prefer.

Section 5 has four subsections. In PROBLEMS, VS Code will point you to some potential
issues in the code. The OUTPUT and DEBUG CONSOLE tabs' roles are self-explanatory,
and we won't use them much. The most important tab here is Terminal: it duplicates the
Terminal built into your OS (hence, it does not directly relate to VS Code itself). Terminals
allow us to run system-wide commands, create folders, write to files, execute Python
scripts, and run any software, which is essentially everything you can do via your OS
graphical interface, but done just using code. We will cover the Terminal in more depth in
Chapter 9, Shell, Git, Conda, and More – at Your Command. Conveniently, VS Code's
Terminals open in the root directory of the workspace, which is a feature we will constantly
utilize throughout the book.

Lastly, section 5 is an information bar that shows the current properties of the workspace,
including the interpreter's name, Git repository and branch names (more on that in Chapter
3, Functions), and cursor position. Most of those elements are interactive!

Preparing the Workspace Chapter 1

[20]

One more feature that is hidden from the newcomers, but is an extremely powerful feature
of VS Code, is its command palette, as shown in the following screenshot:

You can open the command palette using the Ctrl (command on macOS) + Shift + P shortcut.
The command palette allows you to type in, select, and execute practically any feature of
the application, from switching the color theme to searching for a word, to almost anything
else. This feature allows programmers to avoid using a mouse or trackpad, and once
mastered, it drastically increases productivity.

Preparing the Workspace Chapter 1

[21]

For example, let's create a new file (Ctrl/command + N) and type Hello Python!. Now, in
order to switch that text to uppercase, all we need is to do the following:

Select all of the text by using Ctrl/command + A.1.
Open the command palette (Ctrl/command + Shift + P) and type Upper. Select2.
the Transform to Uppercase command (note that the command palette also
shows shortcuts).

Spend some time learning VS Code's features! One great place for that is the Interactive
Playground: you can jump straight into it by typing the name into the command palette.

Another great feature of VS Code is that it can use the key bindings that
you use in other editors, including Vim, Sublime, and Atom. If you're
used to their bindings, then switch to them, as they will save you a lot of
time and frustration.

Beginning with Jupyter
Another development environment we'll use is Jupyter. If you have installed Anaconda,
then Jupyter is already on your machine, as it is one of the tools that come with Anaconda.
To start using Jupyter, we need to run it from the Terminal (you might need to open a new
Terminal to update the paths). The following code will run a newer version of the tool's
frontend face, and that is what we'll use:

$ jupyter lab

Alternatively, it also supports an older version of the frontend via Jupyter Notebook.
The two have their differences, but we'll stick with the lab.

The app's behavior depends on the folder from which it was started; it is more convenient
to run it directly from the project's root folder. That's why it is so handy that VS Code's
Terminal opens in a workspace folder by itself, as we don't need to navigate there every
time. But why do we need another developer tool, anyway? That's what the next section is
all about.

Preparing the Workspace Chapter 1

[22]

Notebooks
As we mentioned earlier, Jupyter is designed with a different approach to programming
than VS Code. Its central concept is so-called notebooks: files that allow the mixing of actual
code, text (including markdown and LaTeX equations), as well as plots, images, videos, and
interactive visualizations. In notebooks, you execute code interactively, one cell after
another. This way, you can experiment easily—write some code, run it, see the outcomes,
and then tweak it again.

The outcomes are shown along with the code so that you can open and read the notebook,
even without executing it. Because of that, notebooks are especially useful in
scientific/analytical contexts, as on the one hand, they allow us to describe what we're
doing with text and illustrations, and on the other hand, they keep the actual code tied to
the narrative so that anyone can inspect and confirm that your analysis is valid. One great
example of that is LIGO notebooks, which represent the actual code that was used to
discover gravitational waves in the universe (this research won the Nobel Prize in 2017).

Notebooks are also great for teaching (as in the case of this book), as students can interact
with each and every part of the code by themselves. However, while Jupyter is good for
exploration, it feels less convenient when your code base starts to grow and mature.
Because of this, we will switch back and forth between Jupyter and VS Code throughout
the course of this book, picking the right tool for each particular job.

Let's now look at Jupyter's interface.

The Jupyter interface
Let's get familiar with Jupyter's interface. This software works differently to VS Code:
Jupyter works as a web server that is accessible through a browser. To make it run, just
type jupyter lab in VS Code's Terminal window and hit Enter. This will start the server.
Depending on your OS, either a link will be printed in the Terminal (starting with
localhost://...), or your default web browser will just open the page automatically.
You can stop the Jupyter server by hitting Ctrl + C within the Terminal and typing yes, if
prompted, or by closing the window.

Preparing the Workspace Chapter 1

[23]

Jupyter's layout, as shown in the following screenshot, is somewhat similar to that of VS
Code:

Here, again, the tabs in section 1 show all the modes available for section 2, including a file
browser, a list of running notebooks, a list of available commands, and tabs. The second
section represents one of the modes previously described. Finally, the main section,
section 3, shows all open tabs, similar to section 3 in VS Code. The default tab is Launcher.
From here, we can create new notebooks, text files (such as classic code or data files),
Terminals, and consoles.

Note that the launcher explicitly states Python 3 for both notebooks and consoles. This is
because Jupyter is also language-agnostic. In fact, the name Jupyter comes from the Julia-
Python-R triad of analytical languages, but the application supports many others,
including C, Java, and Rust. In this book, we'll only use Python.

If everything went smoothly with Jupyter, then we're ready to go! But before we dive into
coding, let's do one last pre-flight check.

Preparing the Workspace Chapter 1

[24]

Pre-flight check
Before we proceed to the content of this book, let's ensure our code can actually be executed
by running the simplest possible code in Jupyter. To do this, let's create a test notebook and
run some code to ensure everything works as intended. Click on the Python 3 square in the
Notebook section. A new tab should open, called Untitled.ipynb.

First, the blue line highlighted represents the selected cell in the notebook. Each cell
represents a separate snippet of code, which is executed simultaneously in one step. Let's
write our very first line of code in this cell:

print('Hello world')

Now, hit Shift + Enter. This shortcut executes the selected cells in Python and outputs the
result on the next line. It also automatically creates a new input cell if there are none, as
shown in the following screenshot. The number on the left gives a hint as to the order in
which cells are executed, so the first cell to be executed will be marked with 1. The asterisk
means the cell is under execution and computation is underway:

If everything worked properly, and you see Hello world in the output, then
congratulations—you are ready for the following chapters!

Cells can also include markdown, which is useful for including
explanations, images, or equations. For that, just switch from Code to
Markdown by using the dropdown at the top.

Preparing the Workspace Chapter 1

[25]

Summary
In this chapter, we prepared our working environment for the journey ahead. In particular,
we installed the Anaconda Scientific Python Distribution with Python 3.7.2, which includes
all the packages we'll need throughout the course of this book. We also installed and
learned about the basics of VS Code, which is a sophisticated and interactive development
environment that will be our primary tool for writing arbitrary code, and Jupyter, which we
use for experimentation and analysis. Finally, we discussed and even ran some code
already! We did this in Jupyter, which is a coding environment that is perfect for
prototyping, experimentation, analysis, and educational purposes.

In the next chapter, we'll begin our introduction to Python, learning about variables,
variable assignment, and Python's basic data types.

Questions
What version of Python do we use?1.
Will it work on a Windows PC?2.
Do I need to install any additional packages?3.
What is a Jupyter Notebook?4.
When and why should I use Jupyter Notebooks?5.
When should I switch to VS Code?6.
Can I run the code from this book on my smartphone/tablet?7.

Further reading
Python for Beginners: Learn Python Programming (Python 3) [Video] (https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​python- ​beginners- ​learn- ​python-
programming- ​python- ​3- ​video)
Data Science Projects with Python (https:/ ​/ ​www.​packtpub. ​com/ ​big- ​data- ​and-
business- ​intelligence/ ​data- ​science- ​projects- ​python)
The Scientific Paper Is Obsolete (https:/ ​/ ​www.​theatlantic. ​com/ ​science/ ​archive/
2018/​04/ ​the- ​scientific- ​paper- ​is- ​obsolete/ ​556676/ ​)

https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/application-development/python-beginners-learn-python-programming-python-3-video
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/

2
First Steps in Coding -

Variables and Data Types
Having set up all the tools, you're now ready to dive into development. Fire up Jupyter—in
this chapter, we will get our hands dirty with code! We'll start with the concept of
variables, and learn how to assign and use them in Python. We will discuss best practices
on naming them, covering both strict requirements and general conventions. Next, we will
cover Python's basic data types and the operators they support, including integers, decimal
numbers (floats), strings, and Boolean values. Each data type has a corresponding behavior,
typing rules, built-in methods, and works with certain operators.

At the end of this chapter, we will put everything we learned into practice by writing our
own vacation budgeting calculator.

The topics covered in this chapter are as follows:

Assigning variables
Naming the variables
Understanding data types
Converting the data types
Exercise

First Steps in Coding - Variables and Data Types Chapter 2

[27]

Technical requirements
You can follow the code for this chapter in the Chapter02/first_code.ipynb notebook.
No additional packages are required, just Python.

You can find the code via the following link, which is in the GitHub repository in the
Chapter02 folder (https:/ ​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building-
Data-​Science-​Applications).

Important note: In this and many other chapters, we'll include both
snippets of code and interactive shells, similar to what your code will look
like in Jupyter. In order to distinguish the code we ran from the output, in
every code block that has an interaction, the running code will start after a
triple greater than sign (>>>), similar to how it is present in Python
consoles. By the way, you still can copy and paste the code—Jupyter will
simply ignore this symbol and will run correctly.

Assigning variables
At the end of the previous chapter, we ran a simple Python function for the sake of testing:

print('Hello world!')

Here, "Hello world" is an argument, that is, a data point used as an input for the
function. In this particular case, we used a raw data value. However, this approach won't
get us far—what if we need to change this value, or use it in some other code? This can be
done by using variables!

Variables are one of the most basic and powerful concepts in programming. You can think
of them as aliases, similar to variables in math equations. Variables are representations of
the actual underlying data in the code, which allow us to write operations and describe
relations without knowing the exact values the code will operate on. This allows us to write
generalized code, which can be used multiple times and in different situations.

In order to assign any value to the variable, we use the equals sign (=), as shown in the
following line of code:

<variable_name> = <value>

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

First Steps in Coding - Variables and Data Types Chapter 2

[28]

Take a look at these examples showing the equals sign used to assign any type of value to
variables:

pi = 3.14159265359 # Decimal
name = ‘Philipp' # Text
age = 31 # Integer
sky_is_blue = True # Boolean

Note the text after the # sign on the same lines as code. Those are
comments. They are ignored by the code (because of the symbol before
them) and are very useful for explaining the code, jotting an idea, or
commenting on specific solutions. Most editors, including VS Code and
Jupyter, comment and uncomment whole lines with the command/Ctrl +
/ shortcut key.

Once a variable is assigned, it is stored in the machine's memory for the entire session, until
script execution is over or the notebook's kernel is shut down. Now we can use them in our
code:

>>> print(pi)
3.14159265359

Sometimes, it is convenient to assign a few variables on the same line by
using packing, which makes the code more readable:

>>> x, y = 10, 5
>>> print(x)
10

>>> print(y)
5

We can always reassign the variable by using the same process:

>>> pi = 'Philipp'
>>> print(pi)
Philipp

Reassignment can be also done with packing, like this: x, y = y, x.

First Steps in Coding - Variables and Data Types Chapter 2

[29]

If a variable is not defined, then Python will raise an error. This is a classic Jupyter rookie
mistake: people tend to skip cells with variable assignment in the notebooks. The following
is an example code block for this:

>>> print(non_existent_variable)

NameError Traceback (most recent call last)
<ipython-input-1-4e13ec8d6c49> in <module>()
----> 1 print(non_existent_variable)
NameError: name 'non_existent_variable' is not defined

In addition to the notation used in the preceding snippet, integers and
floats have additional ways to be defined. Integers can use an underscore
(_) to mark the number of thousands for readability purposes, for
example, ten_million = 10_000_000. Floats do not need this first zero
if the value is lower than one, for example, small = .25. On top of this,
floats support scientific notations, for example, sci_thousand = 10e3.

Naming the variable
Naming variables may seem to be a minor topic, but trust us, adopting a good habit of
proper naming will save you a lot of time and nerves down the road. Do your best to name
variables wisely and consistently. Ambiguous names will make code extremely hard to
read, understand, and debug, for no good reason.

Now, technically there are just three requirements for variable names:

You cannot use reserved words: False, class, finally, is, return, None,
continue, for, lambda, try, True, def, from, nonlocal, while, and, del,
global, not, with, as, elif, if, or, yield, assert, else, import, pass,
break, except, in, or raise. You also cannot use operators or special symbols
(+, -, /, *, %, =, <, >, @, &) or brackets and parentheses as part of variable names.
Variable names can't start with digits.
Variable names can't contain whitespace. Use the underscore symbol instead.

First Steps in Coding - Variables and Data Types Chapter 2

[30]

On top of that, there are also some general naming conventions. You don't have to, but it is
strongly recommended to follow them:

Name your variables meaningfully and consistently, so that readers will
understand what they are meant to be. Some examples are counter, car,
and today.
Apply snake_case for naming: Use lowercase letters that are joined by an
underscore. Some examples are my_car, app_counter, and get_settings.

For broader recommendations on naming and coding style in general, please read PEP8 --
 Style Guide for Python Code (https:/ ​/ ​www. ​python. ​org/​dev/ ​peps/ ​pep- ​0008/ ​#function-
and-​variable-​names).

Understanding data types
Every data point in programming has a type. This type defines how much memory is
allocated, how the value behaves, what operations Python will allow you to do with it, and
more. Understanding the properties of different data types is vital for effective
programming in Python.

You can always check the value's type with another built-in function, type():

>>> type(pi)
float

>>> type(name)
str

>>> type(age)
int

>>> type(sky_is_blue)
bool

As we can see, pi is a float, name is a string, age is an integer, and sky_is_blue is a
Boolean value. These four types represent the most popular data types that are built into
Python. The fifth one is None (of the NoneType type): the data type of one value that
represents, well, nothing (a non-existent value). There are a few more data types, such as
complex numbers, but we won't use them in this book.

https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names

First Steps in Coding - Variables and Data Types Chapter 2

[31]

Floats and integers
Floats and integers represent rational numbers with and without a decimal part,
respectively. Those types are quite intuitive to use, as they can be added, subtracted,
multiplied, divided, and more. Let's take a look at the following example. First, we assign
two variables:

A = 6
B = 5

Now, let's go over some possible operations:

>>> A + B
11

>>> A - B
1

>>> A / B
1.2

>>> A * B
30

You can also raise numbers to a power by using double asterisks:

>>> 2**3
8

>>> 3**2
9

You might have noticed that the division of two integers will result in a float. This happens
even if the remainder is zero:

>>> 10 / 2
5.0

First Steps in Coding - Variables and Data Types Chapter 2

[32]

If you need to keep the integer division result as an integer (rounded, if needed), then use a
double slash instead; this operation has significantly higher performance. However, if any
of the two values is a float, then it will keep the result as a float, although rounded. The
following code shows this:

>>> 9 // 4
3

>>> 10.0 // 4
2.0

Finally, you can also get the remainder (or modulus) by using a percentage sign:

>>> 10 % 3
1

Starting with Python 3.5, the @ symbol is reserved for matrix
multiplication. Core Python does not have a notion of matrices, and
therefore can't use it. Multiple third-party libraries, however, respect and
accept this symbol.

Operations with self-assignment
Most operators can be modified to allow variable self-assignment. For example, if we want
to update the count variable by adding 1 to it, then we can write a simpler notation:

count += 1 # instead of cound = count + 1

 The same approach works with other operators as well:

count -= 1
count *= 2
count /= 2
count //= 2
count **= 2
count %= 4

As you can see, operators with self-assignment are useful, should we ever have to make a
repetitive operation on one variable.

First Steps in Coding - Variables and Data Types Chapter 2

[33]

Order of execution
The order of execution works as in standard arithmetic calculations. This means we can use
parentheses in our code:

>>> (2 + 10) / 2
6.0

>>> 10 / (1 + 1)
5.0

There could be any number of nested parentheses.

Strings
Strings represent text of any kind. As Python needs to distinguish between code (what it
should execute) and strings (data), strings have to be wrapped with quotes: single quotes,
double quotes, or triple single quotation marks. This last option can be used with multiline
text, while the first two options will only work on the same line.

Let's see some examples. Here is a string that is surrounded by single quotes. In this case,
you can use double quotes within your text string, and this won't break the parsing
mechanism:

text1 = ‘This is a so-called “speakeasy”'

Here is a similar example with double quotes. In this case, we can use single quotes in the
text without breaking the code:

text2 = “This is Sam's Tavern”

Finally, triple single quotes allow us to write multiline text:

text3 = ''' This is Sam's Tavern.
 "Welcome everyone!" - is written on the door.'''

Another way to enter text that will be multiline in representation is to use a special newline
symbol (\n) within your text, on the same line:

>>> print('Hello\nWorld!')
Hello
World!

First Steps in Coding - Variables and Data Types Chapter 2

[34]

Strings don't work with most operators. The only exceptions are addition and
multiplication. The addition will concatenate two strings, while multiplication (by an
integer) will repeat the string:

>>> ‘Hello' + ‘ World!'
'Hello World!'

>>> ‘Hello' * 3
'HelloHelloHello'

However, strings do have multiple built-in methods. Methods are essentially functions that
are attached to a particular object, and whose behavior often depends on this object.
Methods are defined by the data type or object's class. The following are the most useful
methods of strings. The upper, lower, and title methods help us to change the casing of
the strings:

>>> “Hello World”.upper()
'HELLO WORLD'

>>> “Hello World”.lower()
'hello world'

>>> “hello world”.title()
'Hello World'

Another method, replace, returns the string with the matching values replaced:

>>> “Hello world”.replace(“world”, “planet”)
'Hello planet'

Similarly, the find and rfind methods provide a convenient way to find the index of the
first occurrence for the matching string in the initial string. find provides the index starting
from the beginning, while rfind finds it from the end:

>>> 'To be or not to be'.find('be')
3

>>> 'To be or not to be'.rfind('be')
16

First Steps in Coding - Variables and Data Types Chapter 2

[35]

Finally, the startswith and endswith methods will return True or False (more on those
values later in this chapter) depending on whichever your base string starts or ends with:

>>> 'To be or not to be'.startswith('T')
True

>>> 'To be or not to be'.startswith('t')
False

There also are some other methods that are supported by strings.

Formatting
There are a number of ways to format strings to how you desire.

For example, .rjust and .ljust format the length of the string, adding symbols—if
needed—to the right and left, respectively:

>>> ‘hello'.rjust(10, ' ')
' hello'

>>> ‘hello'.ljust(10, ' ')
'hello '

Similarly, .zfill adds zeros at the beginning of the string:

>>> ‘999'.zfill(10)
'0000000999'

Another important option is to embed values into an existing string using formatting.
Indeed, this is very handy as it allows us to embed any type of values without converting
them to strings explicitly, and furthermore, defining representation rules and putting them
in place. There are a few ways to do that. Let's take a look!

Format method
A string's format method will inject its arguments into the string, replacing the fields
defined by curly braces. A specific field can be defined either by the number (in this case,
you just should keep arguments in the same order) or by using keywords. Here are some
examples:

The following example has no placement strategy and simple curly brackets:1.

>>> ‘Hello {} world and our blue {}'.format(‘beautiful', ‘planet')
'Hello beautiful world and our blue planet'

First Steps in Coding - Variables and Data Types Chapter 2

[36]

The following example uses a numeric order (note the change of order and the2.
repetition in the template):

>>> ‘{0} {2} {1} and our {2}
{3}!'.format('Hello','World','Beautiful', 'Planet')
'Hello Beautiful World and our Beautiful Planet!'

The following example uses keywords:3.

>>> ‘Hello {adj} world!'.format(adj='beautiful')
'Hello beautiful world!'

Personally, we prefer the last one, as it is explicit and prevents any mistakes with the
position of the arguments. However, there is one more way to format strings on the go: via
F-strings.

F-strings
F-strings are relatively new features of Python. They were released in version 3.6 and are
both elegant and faster to execute because everything is computed on the go. Here is one
example (note the letter f before the starting single quote symbol):

>>> adj = ‘beautiful'
>>> f'Hello {adj} world!'
Hello beautiful world

Everything inside the curly brackets is actually executable code. Inside this brackets, you
can use arithmetic or even run functions:

>>> N = 99
>>> f'{N-1} bottles of milk on the wall.'
'98 bottles of milk on the wall.'

>>> name = 'pHILIPP'
>>> f'Hello mr{name.title()}'
'Hello mr. Phillipp'

First Steps in Coding - Variables and Data Types Chapter 2

[37]

Legacy formatting
Lastly, we want to show a legacy way to format, which uses percentage symbols. This
approach predates Python 3. Don't use it—just be aware that it exists and can be seen in
some old code bases. There is nothing particularly wrong with this approach, of course, but
it is considered a legacy. Subjectively, we think that it is less readable, but that is our
personal view:

>>> name = 'David'
>>> print('Hello mr. %s' % name)
Hello mr. David

Formatting mini-language
In all cases, you can format injected values along the way by using Python's formatting
mini-language. Just add a colon after your expression in the curly brackets, and then write
the mini-language notation. Take this example:

>>> pct = .345
>>> value = 45500
>>> f‘Price grew by {pct:.1%} or ${value:,}'
'Price grew by 34.5% or 45,500'

More information on the Python formatting language can be accessed via the official
documentation (https:/ ​/​docs. ​python. ​org/​3/ ​library/ ​string. ​html#formatspec).

Strings as sequences
Python also treats strings as sequences. We'll cover sequences in depth in Chapter 4, Data
Structures, and in Chapter 5, Loops and Other Compound Statements. Generally speaking,
strings can be seen as ordered arrays of characters that allow us to traverse through, get
characters one by one, use slicing to get substrings, and check whether it includes a
substring.

All indices in Python are integers, starting with zero. If we want to get the first symbol of a
string, then we should use index 0:

>>> “Hello World”[0]
'H'

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

First Steps in Coding - Variables and Data Types Chapter 2

[38]

Here, square brackets after the value indicate slicing. We can also specify a subsequence of
characters to retrieve by using a colon (:), and a subsequence for the start and finish
indices. In this case, the character corresponding to the first index will be included, but the
last one will not:

>>> “Hello World”[0:5]
'Hello'

Finally, because strings are sequences, we can find out whether one string contains another
one by using the in keyword:

>>> “World” in “Hello World!”
True

Booleans
Booleans can have only one of two values: either False or True. They are used to describe
logical operations, for example, tests or conditions. There are a few operations that result in
Boolean values:

First, you can use the equality test for any type of data:

>>> 'World' == 'World'
True

>>> pi == pi
True

In the previous section, we ran into another example, which was inclusion test:

>>> “World” in “Hello World!”
True

!= is the opposite of equal, not equal:

>>> pi != pi
False

First Steps in Coding - Variables and Data Types Chapter 2

[39]

There are more test operators, including greater than (>), less than (<), greater than or equal
to (>=), less than or equal to (<=), and nonequal (<>). Those tests will also work with strings
by comparing them lexicographically. Python will compare the order of the first elements
of each string. If they are equal, then Python will go to the next pair, and so on. If any pair
is not equal (not the same character), or one string is shorter than another, then this will
define the outcome.

Logical operators
There are four logical operators that work specifically on Boolean values:

!—the NOT keyword (inverse of the resulting value):

>>> not (5 > 4)
False

Jupyter interprets cells with an exclamation mark at the beginning as
Terminal commands, so we can't use it there.

|—the OR keyword (one or another, or both the values):

>>> (5 > 4) | (6 < 5)
True

&—the AND keyword (one and another value):

>>> (5 > 4) & (6 < 5)
False

^—the XOR keyword (either one or another, but not both of the values):

>>> (5 > 4) ^ (5 < 6)
False

The following are built-in functions that work on Boolean arrays:

all(): Will return true only if all elements are True
any(): Will return true if at least one element is True

First Steps in Coding - Variables and Data Types Chapter 2

[40]

Python has strong typing—it does not convert data types implicitly. The
only exception is tests for True/False: any data type will work as a
Boolean in any test, following these general rules: While using variables
like that in tests looks nice, be careful; it often introduces bugs, for
example, if you mean variable to be None in the tests, but it was returned
as an empty string. If you're not sure, better check for a specific value.

Zero (both float and int), empty string, and None behave in tests as
False. Anything else behaves as True. Consider this example:

>>> not ''
True
>>> bool('')
False

We will cover working with arrays and other structures in Chapter 4, Data Structures.

Converting the data types
Quite often, there is a need to convert one data type to another, such as a float to an integer,
or a string into a number and back. No worries! It is easy to achieve using built-in
functions. However, there are some conversion rules to be learned. A string to a float is as
follows:

>>> float(“2.5”)
2.5

A string to an integer is as follows:

>>> int(“45”)
45

A float to an integer and vice versa are as follows:

>>> int(4.521)
4

>>> float(5)
5.0

First Steps in Coding - Variables and Data Types Chapter 2

[41]

Booleans to integers, floats, and strings are as follows:

>>> int(True)
1

>>> float(False)
0.0

>>> str(True)
'True'

If Python cannot convert values, then it will raise an error:

>>> int(“2.5”)
File "<ipython-input-11-cf753495344d>", line 1
 int(“2.5”)
 ^
SyntaxError: invalid character in identifier

Python data types are strong. Python does not convert them implicitly
under the hood, as some other languages, such as JavaScript, do. There is
one exception to that: Booleans can behave as integers, specifically 0
(False) and 1 (True). This is a direct result of a not-so-hidden secret.

Exercise
As a practical exercise, let's solve a simple, yet annoying, problem: converting the
temperature from Celsius to Fahrenheit and back. Indeed, the formula is easy, but every
time we need to do it in our head, it takes some time. The formulas are as follows:

T(°F) = T(°C) × 9/5 + 32

T(°C) = (T(°F) - 32) × 5/9

Let's calculate the Celsius equivalent of 100°F!

First, let's store the constants and our input as variables:

CONST = 32
RATIO = 5/9

T_f = 100

First Steps in Coding - Variables and Data Types Chapter 2

[42]

Now, let's do the conversion:

>>> T_c = (T_f - CONST) * RATIO
>>> T_c
37.77777777777778

Now, let's convert it back:

>>> T_f2 = (T_c / RATIO) + CONST
>>> T_f2
100.0

What is the simplest way to compute the following code for a different temperature? It
seems that the easiest way is to change the initial value of the variables, and everything else
should follow. Let's run the code for 70°F:

>>> T_f = 70
>>> T_c = (T_f - CONST) * RATIO
>>> T_c
21.11111111111111

Pretty neat! In the next chapter, we'll learn how to make this calculation even more
convenient and easy to reuse by writing it as a function.

Summary
In this chapter, we learned about the concept of variables. We now know how to assign and
update variables, and use them as function arguments. Next, we learned about Python's
basic data types, which represent text, numerical, and logical values. Each data type
behaves differently and works with different operators. We had to review each of them on
their own and execute snippets of code. That included numerical operations, the order of
computation, string methods, and logical operations. As a result, in the last section of this
chapter, we were able to compute the answer to a specific problem and generate a simple
textual report as a result.

In the next chapter, we'll start by reviewing our solution and discuss how we can make it
better by introducing functions.

First Steps in Coding - Variables and Data Types Chapter 2

[43]

Questions
Why do we need to use variables in code?1.
What is the recommended way to name variables? Why does it matter?2.
What do data types mean and why do they matter for computation?3.
What are the four most popular data types in Python?4.
What does the @ operator stand for? Why doesn't it work?5.
What are the two operators that will work with strings?6.
How would you combine the results of two tests if we need to return a True7.
value, but only when both of them return True? What about when at least one
returns True? What about if only one (but not both) returns True?

Further reading
Everything you need to know to become a developer can be found here: https:/ ​/​docs.
python.​org/​3/​library/ ​string. ​html#formatspec.

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

3
Functions

At the end of the previous chapter, we solved a simple conversion problem, and while the
problem was solved, it can be argued that the code we used wasn't exactly perfect; of
course, it allowed us to change variable names (for instance, update hotel pricing), but it
was still hard to read and error-prone. In addition, some particular elements of the code
were repetitive, as we performed the same operations on different values.

This is exactly the opposite of one measure of code quality employed by
programmers—Don't Repeat Yourself! (DRY) code—code that has no repeating parts. In
other words, operations that we use multiple times should be articulated and defined once.
This will allow us to keep the code short, concise, and expressive. It will be easier to
maintain, debug, and change when needed. But how can this be achieved? First of all, it is
necessary to use functions.

In this chapter, we will understand the concept of functions, review those functions built
into Python, and learn how to build our own ones, including, as usual, strict technical
requirements, common design patterns, and general conventions. In the process, we will
rewrite our solution from Chapter 2, First Steps in Coding – Variables and Data Types, and
practice on other practical examples.

In particular, we will cover the following topics:

Built-in functions
Defining the function
Refactoring the budget code
Anonymous (lambda) functions
Recursion

Functions Chapter 3

[45]

Technical requirements
This chapter requires no additional packages to install. All the code is available in
the Chapter03 folder on GitHub, https:/ ​/​github. ​com/​PacktPublishing/ ​Learn- ​Python-
by-​Building-​Data- ​Science- ​Applications.

To access and run example notebooks for this and other chapters, open the folder you
cloned from GitHub in your VS Code, then switch to its Terminal window (that way, you're
guaranteed to be in the correct folder) and type jupyter lab. On running, the application
will either open a JupyterLab Notebook in your default browser or print a link. Via this
link, go to the Chapter03 folder and run the Functions notebook. Once the notebook is
running, you're ready to proceed!

Understanding a function
What is a function anyway? In programming, a function is a named section of code that
encapsulates a specific task and can be used relatively independently of surrounding code.
Most (but not all) functions are stateless—their outcome depends solely on the function's
explicit inputs.

Functions are ubiquitous in Python code. In fact, we have used some functions
already; print is one example. Those functions are part of Python's default arsenal of built-
in functions. There are 69 built-in functions in total in modern pandas. Before we start
writing functions on our own, let's review these built-in functions first.

In the following sections, we will discuss just a handful of functions that we'll use
frequently throughout the book; some others we'll discuss later. We have grouped all
functions into four groups depending on the topic, starting with the interface.

Interface functions
Here, we have put together two functions that help us to interact with the code in a more
convenient way.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Functions Chapter 3

[46]

The input function
A function that is basically the opposite of print, is input. This function takes some sort of
question/statement as an argument, prints it, and requires a user to give an answer—this
answer will be returned as a result of the function. It does work in Jupyter, but is mostly
used in standalone scripts.

Let's have a look at the following example:

>>> name = input('Your name?')
Your name? Guido

>>> name
Guido

As you can see, when we run the input function, it halts the whole computation, waiting
for the operator to type in the value; once a value is added, the program resumes.

The eval function
The eval function takes a string as an argument and attempts to parse and execute it as
Python code. This can be used if you get the code from external sources (although this is
potentially dangerous from the security standpoint).

Here is an example:

>>> problem = "2 + 2"
>>> answer = int(input(problem + ' = '))
2 + 2 = 4

>>> eval(problem) == answer
True

What is happening here? First, we store the operation "2 + 2" as a string. On the next line,
we use that string, concatenating the equals sign, to ask the user for an answer. Once input
is received, the value is converted to an integer. Finally, we evaluate this string, as if it was
a Python code, and check whether the result matches the typed-in answer.

Using that approach, you could generate dozens of arithmetic puzzles and create a simple
educational game to train math skills, and all without knowing the answers yourself!

In the next section, we'll go meta, talking about functions allowing us to inspect the
properties of variables.

Functions Chapter 3

[47]

Variable properties
As we have learned already, variables are a critical part of any code. Sometimes, however,
they can be confusing, as we won't be sure what type of value is hiding behind the alias,
and what properties it has. The functions explained in the following sections help us to
inspect the values, look at the documentation, and explore their types, methods, and
attributes.

The help function
Most obvious, and perhaps most useful for a novice, the help function provides the
information on a given value type, function, or other entity. Let's get meta and see how the
help function works by itself. If you type help(help), this is what you'll get in VS Code
(press q to exit):

Functions Chapter 3

[48]

In Jupyter, there is a similar built-in command—the question mark (?). Here is an example
using a question mark in Jupyter—help?:

Generally speaking, help provides a longer description and works everywhere, but the
question mark works on variables as well.

In the most recent versions of JupyterLab (versions 1 and above), you can
open a window called Contextual Help next to your code. Once opened,
the window will show the documentation for the closest function or
variable automatically.

The type function
The type function returns the type of variable that was passed to it. As in the following
example, for the string variable, it will return str; for the number variable, int or float,
and so on and so forth:

>>> type(‘Hello world')
str

Functions Chapter 3

[49]

Here, the function returns the type of the Hello world value, which is a string. This
function allows us to differentiate between values, even if this is not very clear. Take a look
at the following example:

>>> type(101)
int

>> type('101')
str

Here, type identifies the fact that similar looking values are an integer and a string. Often,
however, we don't need to know the specific type of the value, but rather whether the value
is of a certain type (and adjust our methods accordingly). For this, there is isinstance.

The isinstance function
Similar to type, isinstance checks whether a variable is of a particular data type,
structure, or class. This makes it very useful for testing purposes, or if you want to check
arguments for the correct type:

>>> isinstance('Hello world', str)
True

Here, we checked whether the value is a string—and indeed it is! We can also pass multiple
variable types, in which case isinstance will return True if the value matches any of the
given types:

>>> isinstance(1, (int, float))
True

Note the second parenthesis, surrounding two value types we pass in. This parenthesis
represents a tuple, one of the data structures, which we'll discuss in the next chapter.

Finally, there is dir, which is invaluable if we need to work with obscure, badly
documented code.

Functions Chapter 3

[50]

dir
When run, dir will return all the corresponding values and methods, connected to the
given object, as an array of strings. This is a convenient way to drill down and investigate
all the methods and values of the particular variable:

>>> dir('Hello world')

['__add__',
 '__class__',
 '__contains__',
 '__delattr__',
 '__dir__',

...

 'rsplit',
 'rstrip',
 'split',
 'splitlines',
 'startswith',
 'strip',
 'swapcase',
 'title',
 'translate',
 'upper',
 'zfill']

We removed some lines in order to save some space in the book in the preceding code. Feel
free to execute that function yourself. As you can see, the list includes all the methods we
described in the previous chapter—including title, upper, and zfill, and many others
besides.

Let's now take a look at the built-in mathematical functions.

Math
Of course, there are a few functions dedicated to math. In fact, quite a few are stored in
dedicated math and statistics built-in libraries. The most frequent ones, though, are
incorporated directly into the language. Let's cover them in the following sections.

Functions Chapter 3

[51]

abs
The abs function's name stands for absolute. As you may expect, it returns an absolute
(positive) representation of the passed number by removing the negative sign, if there is
one. For example, if we pass -1 or 1 as an argument, we'll get 1 as a result, as you can see in
the following code:

>>> abs(-1)
1

>>> abs(1)
1

Another function is round, and it is also easy to guess what this does

The round function
The round function takes a float and an integer as its arguments. The second value defines
the desired number of digits after the decimal point. This second value is optional—if
nothing is passed, the function will return an integer as a result. The following is an
example for the round function:

>>> round(3.14159265359, 2)
3.14

>>> round(3.14159265359)
3

In accordance with standard procedure, the function rounds the values up if the next digit
is equal to 5 or above; otherwise, it rounds it down.

The following section is focused on functions that work with iterables—collections
composed of multiple values.

Iterables
We will talk about iterables and other data structures, in the next chapter. For now, you can
imagine iterables as collections composed of many values. The following functions operate
on such collections.

Functions Chapter 3

[52]

The len function
The len function expects a collection as input and returns the length of this collection—in
other words, how many elements it consists of.

We measure the length of the string object in the following code, which is also
iterable—you can think of it as a collection of characters:

>>> len('Hello')
5

Indeed, there are five characters in this word!

The sorted function
This function takes an iterable as an input and returns it, sorted. This function can take two
additional arguments—reverse (Boolean) and key (iterable). The reverse argument
allows us to get the values in reverse order, from big to small. key, if specified, is expected
to be of the same length as the first one and will be used to sort by.

Let's look at the following example:

>>> sorted('Hi there!')
[' ', 'H', 'e', 'e', 'h', 'i', 'r', 't']

>>> sorted('Hi there!', reverse=True)
['t', 'r', 'i', 'h', 'e', 'e', 'H', '!', ' ']

The next function does not expect you to pass an iterable—instead, it generates one.

The range function
The range function generates a sequence of integers. It takes from one to three arguments,
and each of those is expected to be an integer. If only one is defined, it will be treated as a
right-hand limit of the range and will be not included. If two are defined—the first one will
be the left-hand limit, and included in the range, while the second will take the role of the
right-hand limit. If a third value is specified, it will be used as a step—the default step is
equal to 1.

The range function returns a generator—a special type of iterable that
computes its values on the fly. That is why, in order to see the actual
result, we need to convert it to a list.

Functions Chapter 3

[53]

Let's look at the following example. Here, we generate a range of three values. We convert
the outcome to a list in order to show the values:

>>> list(range(3))
[0, 1, 2]

>>> list(range(2, 5))
[2, 3, 4]

In the second example, we pass two arguments instead. In this case, the first argument
defines the starting value, and the range will go up until the second argument.

The all and any functions
all and any both take an array as their input and are logical expansions of & and | for
more than two variables. Essentially, they are equal to repeating & or | for all the elements
of the array. Here is an example:

>>> all((True, False, True))
False

>>> any((True, False, False))
True

In the first case, the function returns False, as there is at least one False instance in the
iterable. In the second case, there is at least one True instance, so that function returns
True as well.

The max, min, and sum functions
The max, min, and sum functions all take an array of numbers and return the maximum,
minimum, or sum value as a result. Here are some examples:

>>> T = 1,2,3
>>> min(T)
1
>>> max(T)
3
>>> sum(T)
6

As you can see, a tuple can be assigned to a variable without any brackets. All three results
are expected—of values 1, 2, and 3, 1 is the minimum, 3 is the maximum, and the sum of
those three values is equal to 6.

Functions Chapter 3

[54]

So now that we know what a function is and its properties, let's see how we can define
them and why defining is important.

Defining the function
Now that we have reviewed built-in functions, you probably have some understanding of
how to use them as a consumer. But how can a custom function be created? It's very simple!
You just have to observe the following structure:

def function_name(arguments):
 ‘''Documentation string'''
 # code inside, using arguments
 return result

Let's break this down. Here, def is a reserved keyword that tells Python that we are going
to create a function. After that comes the name of the function—following the same rules as
variables. The name is followed by a parenthesis. If the function requires any argument we
should state them here by name (you can think of them as new variables). If you don't
anticipate any arguments, a parenthesis should be kept empty.

Functions do have access to variables and functions outside—so you can
use variables defined somewhere else in your function, even without
defining them as arguments. The context will be preserved—the function
will use those variables even if imported into another context. This
approach is, however, regarded as a bad practice, since it makes code less
readable and transparent.

The colon after the parenthesis marks the start of the function's inner scope. Note that when
you hit Enter, both Jupyter and VS Code adds an indentation of four white spaces on the
next line – stick with it! This indentation is important; in contrast to other languages, in
Python, it is part of the syntax and directly impacts the computation. Everything within the
same indentation stays in the same scope, for example, in our case – a function's internal
level. Variables assigned here, including function arguments, will be dropped once we get
out of this indentation.

On the first line of the function's internal scope, we usually define docstring – a small note
on what functions achieve and how to use it. The docstring is not required, but we really,
really recommend that you write them up; you will thank yourself later.

Functions Chapter 3

[55]

Both help and ? print out a docstring of the function. VS Code will show
the docstring in a tooltip, whenever you start typing the function name if
the function is declared in this space.

Finally, we can write the actual code of the function, also preserving the indentation. Inside
this code, we can use the function's arguments as variables, even though there is no value
in them yet.

To exit the function and return a value, use the return keyword – it will return whatever
variable is stated after. Once the function executes return, Python exits the function, and
no code after the return statement will be executed, ever. Of course, functions do not have
to return anything. For example, a function that creates a new folder on a filesystem won't
need to return any result within Python.

Here is an example. Imagine we want to compute a negative value v to the power of p.
Here is how we should define our function:

def negative_power(v, p):
 '''Return negative value v in to the power of p'''
 return -1 * (v**p)

Here, we first declare the function with the def keyword. Next, we state the name of the
function—negative_power. Then, we declare two required arguments—v and p. On the
next line, we define a docstring, explaining the meaning of this function. Lastly, we define
the actual code that that function runs—in this case, it will return a negative value of v to
the power of p.

Let's try this function out. The value of 2 to the power of 3, multiplied by -1, is -8. This
seems correct, and the same for 3 to the power of 2—the outcome is -9:

>>> negative_power(2, 3)
-8

>>>negative_power(3, 2)
-9

So far, Python has assigned v and p by their order. We can also specify them explicitly, by
assigning them as arguments. This way, the order does not matter. The following is an
illustration of that – we assigned the arguments in reverse order, and everything works
fine:

>>> negative_power(p=2, v=3)
-9

Functions Chapter 3

[56]

The named (explicit) assignment is arguably more desirable as the code is then easier to
read and more prone to human errors.

Actually, functions always return something. Even if you don't use
return in your function, it will just return None. Jupyter does not print or
show None, and, because of that, it seems nothing was returned, but you
can store it in the variable if you want.

In many cases, functions require a lot of arguments, many of which could be optional and
tedious to restate on every function call. To avoid that, there is a way to state the
argument's default value. In the next section, we will cover how to do that.

Default values
In some cases, it is convenient to have a default value for a specific argument, so that we
won't need to state it explicitly every time. For example, we can assume that most of the
time, we need to get a negative square root (depending on the case, of course), and it would
be a waste of time to explicitly define p=2 every time. In this case, we'll have to modify our
code just a bit, by p=2 within the parentheses. Here is how the code would appear:

def negative_power(v, p=2):
 ‘''Return negative value v in power p'''
 return -1 * (v**p)

We still have to define v every time, but p is now optional – if we don't state it explicitly, it
will be assumed to be equal to 2. The following code illustrates the case. Once we don't
explicitly state the value of p, the function falls back to p=2; therefore, every value (2 in this
case) of v will be squared and returned with a negative sign:

negative_power(2, 3)
>>> -8

negative_power(2)
>>> -4

There is an important rule to follow here. According to Python syntax, arguments with the
default values have to be defined after all the others with no default values, otherwise
Python will raise a syntax error:

>>> def negative_power(p=2, v):
 '''Return negative value v in power p'''
 return -1 * (v**p)

File "<ipython-input-9-9a12e59bef45>", line 1

Functions Chapter 3

[57]

 def negative_power(p=2, v):
 ^
SyntaxError: non-default argument follows default argument

There is some logic to that – the important parameters should be kept both first and
required (to avoid any possibility of forgetting to state them), and the optional ones kept in
the end.

Var-positional and var-keyword
In some cases, we don't know beforehand the exact number of arguments that will be
passed to the function. For example, the print function will take and print any number of
arguments. The same can be done for our custom function, using *args. In this case, args
itself is not a keyword, but rather a conventional name of all those multiple values, packed
– technically, you can use any name you want. All of the actual job is done by the asterisks
– it indicates that all passed values will be packed into one tuple (we'll discuss tuples in
Chapter 4, Data Structures). Within the function's scope, you can use args as a tuple
variable, or pass it using the same asterisks.

Similarly, in some cases, those multiple values are named. In order to pass multiple name
arguments, use **kwargs (which stands for keyword arguments). As with args, the name
itself is a mere convention; all the heavy lifting is done by the double asterisks, which
groups those arguments into a dictionary (another type of data structure that will be
explained in the next chapter). Within the function, kwargs can be used as a single entity
(dictionary), or passed down using similar double asterisks. Both args and kwargs should
be defined after all normal arguments. Consider this example:

def f(a, b, *args, **kwargs):
 return a + b

This function simply adds two arguments. It will, however, accept any number of
additional arguments without any effect on its result. Here is an illustration.

Here, we pass two first arguments as 1 and 2, respectively. After that, we pass 10. Lastly,
we pass one more, a named argument. As we specified both *args and **kwargs in the
function, both these parameters won't raise any errors on the execution. In fact, they will be
completely ignored, as we use neither args nor kwargs in the function code, as shown
here:

f(1,2, 10, other_argument=0)
>>> 3

Functions Chapter 3

[58]

args and kwargs are indeed very useful. One frequently encountered case is when your
function runs an external function within your code, with plenty of optional parameters.
Instead of declaring all of them one more time in your function, you can just pass kwargs.
This way, the code will remain both concise and flexible (also, you won't need to change
your code if the external function's interface changes). Consider the following example:

sets up plotting in jupyter
%matplotlib inline

import pylab as plt

def draw_scatter(x, y, color='k', **kwargs):
 plt.scatter(x, y, color=color, **kwargs)

In the preceding code, we use pylab – one of the interfaces for matplotlib, a data
visualization library. Like most of the visualization functions, plt.scatter (which, you
guessed, is here to draw a scatter plot) has dozens of optional parameters, defining the title,
title font, title size, the same for the x axis title, and the y axis title, as well as color, shape,
opacity, size, position of the markets, and many other parameters besides. It would be
insane to replicate all those options (and their documentation) within your code. Instead,
we can pass kwargs as a set of the arguments you want to pass to the scatter function.

Here is an example of function usage. As you can see, we can pass any variable that the
original scatter function accepts – and it will be passed, and used:

draw_scatter([1,2,3], [3,2,1], s=[10, 100, 300])

As a result, we get the following diagram. Obviously, the data is meaningful, but the size
argument we passed is reflected in the resulting chart:

Functions Chapter 3

[59]

In the preceding example, we imported the pylab library, one of the
interfaces for the matplotib plotting language. The particle as in the
import line, import pylab AS plt, allows us to define alias names for
the libraries. While the name of the alias is arbitrary and could be
anything you want, most popular libraries, including pylab, have widely
adopted, near-standard aliases. It makes sense to stick with the popular
ones to make the code easier to read and understand. Some other libraries
with well-known aliases are pandas (pd), numpy (np), and seaborn (sns).

We'll cover import in depth in the following chapters.

Docstrings
As with naming, docstrings might seem to be a minor issue – but they are not. Always add
a docstring to your code; it will double your productivity! Also, it will help you to keep
good relationships with your colleagues and clients.

As we mentioned before, docstrings are short explanation texts bound to specific module
(.py file), function, or class. All you need is to write it as a string at the beginning of the
corresponding scope – beginning of the file, function, or class. At the execution time, those
strings are stored as a __docs__ variable. What's even more important is the fact that all
coding environments, including VS Code and Jupyter, understand docstrings and how to
handle them.

As we mentioned previously, in Jupyter, adding a question mark before or after any class,
module, or function, will print out corresponding documentation. This will work for any
function – including the ones you declared. The following is an example of a function
declaration that includes a docstring:

def myfunction(a, b):
 '''this is my favorite function!

 it uses arguments:
 a: argument a
 b: argument b
 '''
 return a + b

Functions Chapter 3

[60]

Once the function is declared (or imported), we can pull the documentation by using the
question mark – similar to how we approached the print function before:

>>> myfunction

Signature: myfunction(a, b)
Docstring:
this is my favorite function!
it uses arguments:
a: argument a
b: argument b
File: ~/<ipython-input-2-a0cabd3ba678>
Type: function

VS Code will do even more – it will show docstrings in a tooltip while you're typing.

But that is not the only thing you can use your docstrings for! Using the sphynx package,
you can generate full stack documentation such as a static website, PDF, or an EPUB
electronic book, which extracts all the information from the docstrings. If you are
wondering why there are so many similar cookie-cutter documentation websites around,
that's why! An enhanced version even encourages you to add example code within the
docstring – and there are packages that will test and validate this code-within-the-
docstrings!

There is no standard format for the docstrings. Instead, there are a few style formatting
conventions used in different companies and groups. Among the most popular ones are the
REST, Google Style, and numpydoc styles. For example, here is an example of a docstring
defined according to Google Style:

"""
This is an example of Google style.

Args: parameter1: This is our first parameter.
 parameter2: This is our second parameter.

Returns:
 This is a description of what is returned.

Raises:
 KeyError: Raises an exception.
"""

It does not really matter which style to use. If you like restructured text, use REST. If you
don't, use the Google Style or NumPy style. There are plugins that help to generate
docstring templates from your function arguments on the fly – they save some time.
Further time can be saved using type annotations.

Functions Chapter 3

[61]

Type annotations
Starting with version 3.6, Python introduced type annotations – these hint at what data
types the function expects to get, and what data type it will return.

Let's look at the following example. Here is the negative power function we declared
already. This time, however, we added the type annotations both for the function
arguments and the outcome:

def negative_power(v:int, p:int)-> int:
 '''Return negative value v in power p'''
 return -1 * (v**p)

First of all, those additional characters do not affect code execution in any direct way. Those
are type annotations – merely hints at the function's expected data types for arguments and
return value, stored within the function – in the same way docstrings are.

While there is no effect on the code itself, those annotations can be used for testing
purposes and raise an error, if the function is fed with the wrong data. The most popular
tool for that testing is called mypy, developed at Dropbox. Once installed, mypy can run
through your code and test whether any of the operations with data type annotations are
used inappropriately.

There are other use cases as well. For example, a FastAPI web framework that we'll use in
Chapter 18, Serving Models with a RESTful API, of this book, uses type annotations to
validate inbound API calls, while Cython and Numba, which we'll discuss in Chapter
20, Best Practices and Python Performance, can use type annotations to efficiently compile
Python into optimized C code.

Type annotations are not bound to basic variable types either. You can describe more
complex requirements using the standard typing package; for example, you can explicitly
describe any type using the Any class, or state that you expect a tuple, filled with string
variables. Nevertheless, type annotations are a very recent phenomenon, not widely
adopted, and have limited support throughout the libraries. In this book, we will use them
only in Chapter 18, Serving Models with a RESTful API.

This concludes the main body of information that you'll need in order to write effective
functions. Given all that, let's revisit our budgeting example!

Functions Chapter 3

[62]

Refactoring the temperature conversion
In Chapter 2, First Steps in Coding – Variables and Data Types, we've performed a simple
exercise by converting temperature from Fahrenheit to Celsius, and back. The approach
was similar to how we'd use a calculator, except that we were able to store parameters
beforehand, and then rerun the calculations for the new inputs. At this point, you can
probably see that this is a great case for a separate function. So, let's refactor our code into a
pair of functions:

def fahrenheit_to_celsius(temp):
 CONST, RATIO = 32, 5/9
 return (temp – CONST) * RATIO

def celsius_to_fahrenheit(temp):
 CONST, RATIO = 32, 5/9
 return (temp/RATIO) + CONST

Let's now test these function as follows:

>>> fahrenheit_to_celsius(100)
37.77777777777778

>>> celsius_to_fahrenheit(37.77777777777778)
100.0

>>> fahrenheit_to_celsius(70)
21.11111111111111

Sweet! Everything seems to work as it should. Be aware that now, we don't need to reassign
variables—all we need in order to get a new computation is to call this function with a new
argument. While this particular function is rather simple, it is still better than having raw
code around. For one, having a function reduces the cognitive complexity of the code – you
don't need to remember the code that is stored inside, nor distinguish it from the other. In a
broader sense, functions also add modularity – if needed, you can change the behavior and
features of the function, without the need to change any code that uses this function. Last
but not least, having your code wrapped in functions reduces the chance of human error –
you can't mess with code you're not working with.

Now, let's talk about a special type of functions – anonymous functions.

Functions Chapter 3

[63]

Understanding anonymous (lambda)
functions
In some cases, it is convenient to declare simple one-time functions in place; for that, we can
use lambdas – anonymous functions (they are anonymous in the sense that you won't store
them in-memory, so there is no name for them). Lambdas use simplified syntax:

lambda <arguments>: <code>

Note that there is no return keyword – lambda will return the result of the code
automatically. It also does not accept multiline code.

Take a look at this example:

models = [
 ‘Bimbus-3000',
 ‘Nimbus-1000',
 ‘Timbus-2000'
]

sort(models, key=lambda x: x[-4:])

The output for the preceding code would be as follows:

>>> [‘Nimbus-1000',‘Timbus-2000', ‘Bimbus-3000']

Here, the array of strings are sorted – however, the string's alphanumeric order is only
applied to the last four characters, as we use lambda to return them as keys.

Technically, you can store lambda to a variable, and then use it as a
regular function. Don't do it! This is really bad practice.

After learning about anonymous functions and how they work, let's move on to what
recursion means for a function.

Functions Chapter 3

[64]

Understanding recursion
Recursion is a process of internal, nested repetition. A well-known example of recursion are
fractals, for example, the Sierpiński carpet – shapes repeat themselves while you keep
zooming in. In the context of programming, recursion represents an ability of the function
to call itself from its body. In some cases, this makes your code shorter and more
expressive, as you can split complex problems into sets (Russian dolls?) of simple ones.

Consider an example of a factorial function (N! in math). A factorial of a value is a
multiplicative of all numbers from 1 to the given one – for example, for 3, it will be 6: 1 * 2 *
3. The following is one way to compute a factorial through recursion:

def factorial(n):
 if n == 1:
 return n

 return n * factorial(n-1)

Here, the factorial of 1 will always return 1. For any other positive N, the function will
return N, multiplied by the factorial of (N-1).

Because of recursion, this will happen again and again – the function will keep calling itself
on a smaller value until the sequence reaches 1. From that moment, it will start returning
the values, multiplying, returning again – going all the way back up the stack. Finally, it
will return the value we're looking for. For us, though, the entire process will appear fast
and simple:

>>> factorial(4)
24

The factorial of 4 is 24 = 1*2*3*4.

In the preceding function, we used the if statement for the first time. We
will look at all types of statements in Chapter 4, Data Structures. Here, the
statement checks whether the test value is true – in this case, if n is equal
to 1, and, if yes, executes all the indented code. As return exits the
function, none of the following code will be executed in this case. As you
can see, indentations are also used here as well, and can be nested.

Functions Chapter 3

[65]

Another (more real-live) case for recursion is traversing over a complex structure. Take, for
example, a website. If we need to collect all (or some) data from the site, we'll have to go to
the main page, collect the info here, collect a number of links, and then start going over
those links, and so on.

For an arbitrary website, we don't know the links and the overall number of pages. So, this
is a good place to use recursion. We can run a data collection function on the main page.
This function can then find the links, and, for each link, call itself. In their turns, those
instances of the function will call more and more functions. While the overall process could
be long and complicated, the code, in this case, will be short – and we won't need to know
or even store the links in the process!

Summary
In this chapter, we learned one of the main pillars of code – functions. Functions allow us to
write concise and expressive code that can be reused multiple times. Functions serve as
building blocks of our programs – be it report generation, interaction with the APIs, or
training the model. We discussed how to declare both standard and anonymous functions,
how to set arguments, and their default values, and how to use args and kwargs for more
flexible interface design. We also learned how to write good quality documentation strings
and add type annotations. Finally, we did rewrite our code from the previous chapter,
using functions, which made it slightly more expressive and error-prone.

In the last section, we defined recursion – an approach where a function is called from
within itself, and which allows us to solve rather complex tasks with simple, chained
snippets of code.

In the next chapter, we will talk about data structures. Data structures are the way in which
the program can compose many data values into collections. There are quite a few different
ways to structure your data – some variants are good for general-purpose cases, while
others are better for specific tasks. Knowing data structures is an essential part of
programming.

Functions Chapter 3

[66]

Questions
What are functions, and when should we use them?1.
How can data be provided to functions?2.
What does indentation mean? Is it required?3.
What should be covered in the docstring function? How can I read the docstring4.
function?
When could it be useful to use type annotations?5.
How can a function be designed if I don't know the exact number of arguments6.
or their names beforehand?
What does anonymous function mean? When should they be used?7.

Further reading
Functional Python Programming – Second Edition, by Steven F. Lott, published by
Packt (https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​functional-
python-​programming- ​second- ​edition)
Functional Programming in Python, by Sebastiaan Mathôt, published by Packt
(https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​functional-
programming- ​python- ​video)
Python Type Checking, by Geir Arne Hjelle (https:/ ​/​realpython. ​com/ ​python-
type-​checking/ ​)

https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-python-programming-second-edition
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://www.packtpub.com/application-development/functional-programming-python-video
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

4
Data Structures

In the previous chapters, we worked with single variables. It is not hard to see the
limitations of this approach—many tasks involve repetitive processes and rich data
structures. In fact, the actual number of values can often vary, so our code should be able to
work with values in bulk. Of course, Python has a handful of built-in data structures to
meet those requirements!

In this chapter, we will discuss the most popular data structures and each of their APIs,
benefits, and shortcomings. Data structures are essential to programming skills, as they are
required for most tasks and their behaviors. The pros and cons of each specific type of
structure are deeply rooted in their underlying mechanisms, which significantly affect the
performance of their code. Understanding data structures allows us to write shorter and
more expressive code.

In this chapter, we will go through the following topics:

What are data structures?
More data structures
Using generators
Useful functions to use with data structures
Comprehensions

Technical requirements
This chapter does not require any additional packages; all the code is available in
the Chapter04 folder of the GitHub repository (https:/ ​/​github. ​com/​PacktPublishing/
Learn-​Python-​by- ​Building- ​Data- ​Science- ​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Data Structures Chapter 4

[68]

What are data structures?
What exactly do we mean by data structures? Generally speaking, they are objects capable
of storing and retrieving an arbitrary number of values of any type in a systematic way. In
other words, data structures are similar to basic data types: they can be stored via variables,
removed, changed, and more.

Built-in data structures provide a standard and highly performant way to work with bulk
data. However, there is simply no silver bullet or one-size-fits-all data structure. The
benefits and shortcomings of each are built-in and inseparable from the general design.
Let's go through the main data structures and discuss both the pros and cons of each one.
The following sections will go over the main data structures in Python, starting with the
most popular one: lists.

Lists
Lists are probably the most frequently used type of data structure in Python. A list is a
simple and ordered 1D array of elements. Each element has its own index number, starting
with 0, so the last element always has an index of L-1, where L is the number of elements in
the list. Lists can store any mix of data types. They can also store any other data structure.
For example, a matrix (2D array) can be represented as a list of lists, or a 3D matrix can be
represented as a list of lists of lists. Lists are dynamic, which means you can add or drop
items in any number, or even change their order in place, without rebuilding the list from
scratch.

You can create a new list by using the list() function, or by using square brackets, with
the elements separated by commas:

fruits = ['banana', 'apple', 'plum']

If needed, you can create an empty list as well:

basket = []
another_basket = list()

As with strings, we can check the length of the list by using the built-in len function:

>>> len(fruits)
3

>>> len(basket)
0

Data Structures Chapter 4

[69]

We can always add new elements to the end of the list via the .append method:

>>> fruits.append('pineapple')
>>> fruits
['banana', 'apple', 'plum', 'pineapple']

Alternatively, we can insert them into a specific position:

>>> fruits.insert(2, 'orange')
>>> fruits
['banana', 'apple', 'orange', 'plum', 'pineapple']

We can also merge them with another list by using .extend:

>>> fruits.extend(['melon', 'watermelon'])

In some cases, you may want to retrieve one element and also remove it from the list. One
such example is if you need to process elements one by one. For that, the .pop() method is
ideal, as it will return the element from the end of the list and remove it from the list at the
same time. In the following example, we pop (remove) the last value from the list. After
that, unsurprisingly, the length of the list is decreased by one:

>>> len(fruits)
7

>>>fruits.pop()
'watermelon'

len(fruits)
>>> 6

Finally, you can use the in statement to check whether the list contains a certain element.
This will also work with any other iterables:

>>> 'melon' in fruits
True

Now, let's talk about an important property of lists, strings, and many other data structures:
slicing.

Data Structures Chapter 4

[70]

Slicing
As with strings, in order to get a single value from the list, you need to use its index in the
square brackets after the value, as shown in the following code snippet:

>>> fruits[0]
'banana'

You can also obtain a subset of list values by using slices: intervals of indexes that are
defined by two numbers and separated by a colon. The numbers represent start and end
indices; the former number is inclusive, but the latter number is not. If one or both numbers
are missing, then Python assumes those to be the ends of the list. Here is an example:

>>> fruits[0:2]
['banana', 'apple']

>>> fruits[:2]
['banana', 'apple']

In both cases, we're pulling the first two elements. In this case, it doesn't matter whether we
include 0 or not.

This is exactly the same interface we used with strings. As with strings, we can use negative
indices. For example, -1 will represent the last element in the list, no matter what is
the actual index of the value. One more feature of slicing is its ability to define the step of
the increase. By default, the step is equal to 1. However, if you state it as 2, only even
elements will be retrieved:

>>> fruits[::2]
['banana', 'orange', 'pineapple']

 Similarly, -1 will retrieve all elements, but in the reverse order:

>>> fruits[:2:-1]
['melon', 'pineapple', 'plum']

Slicing is widespread across data structures. Apart from lists and strings, it can be used
with tuples (see the next section) and a few other types, so it is a good idea to master the
skill of slicing.

Data Structures Chapter 4

[71]

Tuples
Tuples often stay in the shadow of lists. On the surface, they are very similar: they are also
1D arrays, can mix different types, use the same indices, and can be sliced. Similar to lists,
tuples can be created using the tuple() function, or by only using parentheses:

breakfast = ('oatmill', 'scrambled eggs', 'orange juice')

There is one major difference that makes tuples work better for some tasks, but less so
for others. As we mentioned before, lists are dynamic and can be modified in place. Tuples
are not; once built, tuples remain static and cannot be changed (therefore, they don't have
append and extend methods). This property is known as immutability.

Immutability
Immutable objects can't be changed in place; without creation of a new variable, you have
to create a new object. In of itself, this is inconvenient, but it also implies that none of the
internal values can be changed, which—by definition—means that tuples cannot contain
lists or any other dynamic objects.

They are made like this on purpose, and this has serious merits. First, the dynamic nature
of lists comes with a price: in order to be both dynamic and highly performant, they reserve
more memory than they need. Tuples, by comparison, use up to two times less memory!
Secondly, and this is the most important part, as tuples are guaranteed to be static, they can
be used as an immutable part of other data structures, such as sets or dictionaries.
Essentially, once we guarantee that the value cannot change, we can use it to generate its
unique ID—hash—and to retrieve either itself or other data, using this hash as a key.

Dictionaries
Dictionaries are a different type of structure. Instead of being ordered arrays, they are key-
value storage types. Dictionaries do not have any order, per se. Instead, they store
everything as key-value pairs. As physical keys, the dictionary's keys have to be unique
and unambiguously static. In other words, immutable. Hence, there cannot be two keys of
the same value, and lists cannot be used as keys, but tuples can. Frequently, however, keys
are strings, as they allow us to add some sort of semantics to the structure:

person = {'name': 'Jim',
 'surname': 'Hawkins',
 'age':17
}

Data Structures Chapter 4

[72]

As you can see, dictionaries are defined by the curly brackets, with key-value pairs
separated by the colon and split by the comma. Once the dictionary is assigned, you can
retrieve values by using square brackets. This is the same as for lists and tuples, but it uses
keys instead of indices:

>>> person['age']
17

Note that dictionaries do not support slicing. You can't push two keys at once, or
reverse dictionary, as there is no order to start with.

Similarly, you can add key-value pairs to the dictionary, like this:

person['hair'] = 'red'

As there cannot be two keys of the same value, another assignment will override the
previous value with no warnings:

person['hair'] = 'ginger'

As with lists, you can merge two dictionaries. One way to do that is through the .update
method:

additional_info = {
 'gender': 'male',
 'nationality': 'british',
 'age': 16
}

person.update(additional_info)

Similar to lists, dictionaries have a .pop() method. But in this case, the .pop() method
requires a specific key, for which the value will be retrieved and removed:

>>> person.pop('age')
16

On top of the preceding methods, dictionaries have a couple of handy methods up their
sleeve. First, you can get either keys or values as list-like structures by using .keys() or
.values(), respectively. Sometimes, it is convenient to get iterables of key-value pairs.
This can be achieved by using the .items() method:

>>> print({'name':'Jim', 'surname': 'Hawkins'}.items())
dict_items([('name', 'Jim'), ('surname', 'Hawkins')])

Data Structures Chapter 4

[73]

When you try to get values by submitting a key that is not in the dictionary, KeyError is
raised. In cases where you don't want this behavior, use the .get() method. It takes two
values: the first value is for the key and the second value is for the default value. The
default value is one that .get() will return if there is no data in the dictionary:

>>> person.get('eye color', 'brown')
'brown'

Lastly, dictionaries can behave as iterables, as you can loop through them (more on that in
Chapter 5, Loops and Other Compound Statements) or check whether an element is in them.
However, both of these cases work with keys, but not values:

>>> 'name' in person
True

>>> 'Jim' in person
False

Sets
Sets are—in a way—dictionaries without values. First, they use the same curly brackets,
and second, their members cannot be duplicated, which are both similar to dictionary keys.
Because of that, they are handy to use for deduplication or membership tests. On top of
that, sets have built-in mathematical operations, unions, intersections, differences, and
symmetrical differences:

>>> names = set(['Sam', 'John', 'James', 'Sam'])
>>> names
{'James', 'John', 'Sam'}

>>> other_names = {'James', 'Nikolai', 'Iliah'}
>>> names.difference(other_names)
{'John', 'Sam'}

>>> names.symmetric_difference(other_names)
{'Iliah', 'John', 'Nikolai', 'Sam'}

Sets don't have an order and, compared to dictionaries, do not guarantee that the order of
representation and the order of retrieval will be equal to the order of insertion.

Data Structures Chapter 4

[74]

As sets are based on hash tables, it is way faster to check for membership with sets, rather
than lists, especially when a lot of elements are present. Let's use Jupyter's magic to compare
the performance. Using %timeit for a specific line or %%timeit for a whole cell will
estimate the time that it takes to compute this code on your machine:

>>> l = ['apple', 'banana', 'orange', 'grapefruit', 'plum', 'grape',
'pear']
>>> s = set(l)

>>> %timeit 'pear' in l
84.9 ns ± 1.99 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops
each)

>>> %timeit 'pear' in s
31.6 ns ± 1.21 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops
each)

As you can see, even for the shorter array, the performance is essentially more than two
times better (faster). This difference will only increase on the larger arrays. Next, let's move
on to learning about data structures in more depth.

More data structures
Lists, tuples, dictionaries, and sets are the most popular and widespread data structures in
Python. However, they are not the only ones, and—even in the barebone Python
distribution—there are many more. As these data structures are way more niche, we'll
cover each of them with a brief overview. You can find additional information in the
Python documentation (https:/ ​/​docs. ​python. ​org/ ​3/​tutorial/ ​datastructures. ​html).

frozenset
frozenset lives in Python itself, so there is no need to import anything. They are 100%
similar to ordinal sets, except that they are immutable. Just like tuples, you cannot change
them, and they can be used as dictionary keys, among other similarities:

>>> frozenset('Hello')
frozenset({'e', 'H', 'l', 'o'})

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Data Structures Chapter 4

[75]

defaultdict
defaultdict lives in the built-in collections module. It has a default value set upon
creation, and if a missing key is passed, it will return this default value instead of raising
KeyError. While this behavior can be achieved through the get method of an ordinary
dictionary, defaultdict performs twice as quickly as those that have missing values. In
the following snippet, we define a dictionary that will return an empty string if the key
value is missing:

from collections import defaultdict
d = defaultdict(str) # returns empty string as default value

d['name'] = 'John'

Now, let's get the values out:

>>> d['name']
John

>>>d['surname']
>>> ''

As you can see, defaultdict does not raise KeyError if the key is missing. Instead, it
passes a default value that is defined by the function we added upon initiation (in our case,
str).

Counter
The Counter structure from the collections module is designed to count the values. You
can create it from an iterable. In this case, it will count the frequency of all values.
Alternatively, you can feed it a dictionary with values that are all integers, and it will
consider keys as elements to count and values as corresponding frequencies. It's easy to add
to or subtract from the Counter structures one by one. You can also feed them more
iterables, update them with dict, or with another Counter instance:

>>> from collections import Counter

>>> Counter('Hello')
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})

>>> c1 = Counter({'banana': 2, 'apple': 1})
>>> c1['apple'] += 1
>>> c1
Counter({'banana': 2, 'apple': 2})

Data Structures Chapter 4

[76]

If treated as an iterable, counter will go over all the encountered elements—counter with
frequencies of 'a':2, 'b':3 will iterate as if was a list of ['a', 'a', 'b', 'b', 'b'].

Queue
The Queue module provides a set of queue structures, which are efficient at adding and
releasing values. A classic Queue object, also known as first-in, first-out (FIFO), provides a
convenient way to manage things such as tasks. You don't need to worry about order of
instances, as the first submitted task will be retrieved first, and so on.

Queues have a maxsize argument and will raise an exception if you try to add more
elements than the maxsize value. They also have the .task_done() method, which you
can run from your code, indicating that the task is done and allowing Queue to safely drop
it, thus decreasing the number of tasks in the queue.

As queues are designed with multithreading in mind (multiple tasks
running at the same time), queues also support waiting for the vacant space
in the queue on put and get methods, maximum wait time can be
defined by a timeout argument—infinite by default.

Let's have a look at the following example. First, we are creating a queue and adding two
tasks into it. We can see the number of tasks by using the qsize method:

>>> from queue import Queue
>>> Q = Queue(maxsize=2)

>>> Q.put('wash dishes')
>>> Q.put('water flowers')

>>> Q.qsize()
2

As our Queue has a maximum size of 2, it is now full and if we attempt to add one more
task it will wait (in our case, forever) for the existing tasks to be removed. We could,
however, override this by adding another task with the put_nowait method if we wanted
to. Now, let's pull tasks from the queue. The first task will be wash dishes, as it was the
first to enter the queue:

>>> Q.get()
'wash dishes'

Data Structures Chapter 4

[77]

Once we have pulled the task, we can pretend that it is done and tell the queue. We can
further check the number of tasks that need to be done via the following commands:

>>> Q.task_done()
>>> Q.qsize()
1

As the number is now smaller than the maximum, we can push new tasks without needing
to wait for tasks to be removed from Queue:

>>> Q.put('check mail')
>>> Q.qsize()
2

A last-in, first-out (LIFO) queue, also known as a stack, works the same way, except that it
releases the last submitted task first, so that the first submitted task will be retrieved last.
A priority queue manages the order of tasks by the corresponding priority value.

Starting with Python 3.7, the Queue module also has SimpleQueue, which is a simpler
FIFO data structure that cannot track tasks and, hence, does not have the .task_done()
method.

deque
Another similar data structure, deque, also lives in the collections module and is similar
to queues, but with one nuance. As they are double-ended queues, which is what the name
refers to, they can efficiently add and release values from both sides, rather than from one
end.

Let's have a look at the following code:

from collections import deque
D = deque(['wash dishes', 'water flowers', 'check mail'])

As we mentioned, deque can efficiently remove values both from the right and the left end
of the queue. In the following code, pop represents the rightmost end, while popleft pulls
the value from the left side:

>>> D.pop()
'check mail'

>>> D.popleft()
'wash dishes'

Data Structures Chapter 4

[78]

Similar to .pop_left(), deque has the .append_left() and .extend_left() methods.
They also support rotation, where items move from the left end to the right, either in one
direction or the opposite direction.

Queues, stacks, and dequeues are highly performant data structures for very specific tasks.
For example, dequeues are used in certain task scheduling algorithms, where different
workers can add tasks for themselves on one side and—if their job is done—steal another
worker's job from the other side. Still, these kind of problems are very low-level and
specific. Throughout this book, we will not use any of them, but it is still important to know
about them.

namedtuple
The namedtuple collection makes it convenient to store data in an expressive way. You can
think of them as a hybrid of tuples and dictionaries, as they get the small memory footprint
and immutability from the former and keyword access from the latter. They are very
effective if you work with multiple data points of the same structure that have no bound
logic, for example, users or goods in the eShop. Before we actually create an instance, we'll
have to specify the properties of our future record (immutability, remember?). In the
following code snippet, we create a data structure for users that contains the name,
surname, and age properties. Once a named tuple is defined, there is no way to change it:

from collections import namedtuple
user = namedtuple('User', 'name, surname, age')

Now, we can add the instances, which are based on the previously defined tuples:

peter = user(name='Peter', surname='Pan', age=13)
wendy = user(name='Wendy', surname='Darling', age=13)

One of the reasons namedtuple is efficient is that its argument structure is stored once,
rather than for every instance. Once we have instances, their properties can be retrieved by
using an index, slicing, or the name of the property:

>>> peter[0]
Peter

>>> peter[:2]
('Peter', 'Pan')

>>> wendy.surname
'Darling'

Data Structures Chapter 4

[79]

If for any reason, we need to retrieve a property by its name as a string value or test
whether such an argument exists, we can use Python's built-in getattr
and hasattr functions:

>>> hasattr(wendy, 'age')
True

>>> getattr(wendy, 'age')
13

A namedtuple collection is a class that inherits from a tuple; the resulting instances of the
tuple are 100% normal class instances. You can see the code under the hood by passing
a verbose=True argument. With that being said, Python 3.7 introduces data classes, which
are pure Python classes that can solve a somewhat similar set of problems. They are a little
more descriptive and flexible, although they take more memory than the earlier data
classes.

Enumerations
Enumerations are somewhat less popular data structures in Python. They are quite similar
to named tuples, as they are immutable and their attributes are named. Enumerations also
have one interesting property: they are always singletons. In other words, you can't have
more than one instance of an Enum class at the same time. With that, enumerations work
well as semantic layers (aliases) for a set of specific values; for example, for categories, we
can define colors in the palette, aliasing specific implementation. The singleton property
means that the value will always be exactly the same throughout the code.

In the following example, we define an Enum class for the color theme. Our Enum object
supports three colors: MAIN, SECONDARY, and ACCENT. Note how we alias the values:

from enum import Enum

>>> class Colors(Enum):
... MAIN = 'darkblue'
... SECONDARY = 'lightgrey'
... ACCENT = 'teal'

In this example, we indeed use the class keyword, and, in this case, the
Colors class inherits from the Enum class. We'll talk more about classes
and inheritance in Chapter 8, Simulation with Classes and Inheritance.

Data Structures Chapter 4

[80]

As a result, we have a clear representation of the color palette (theme) in the code. Now, we
can access the values without explicitly stating them. In the following code, we define a
function that generates a div HTML object that is colored with the SECONDARY color. This
level of semantics allows us to swap color themes later, with no need to adjust the
code. Note that we don't need to create an instance of the class here:

def mainblock(content):
 return f"<div style='color:{Colors.SECONDARY.value}'>{content}</div>"

>>> mainblock('Hello!')
<div style='color:lightgrey'>Hello!</div>

While Enum can be useful in certain cases, it was rarely used in code until recently. With the
new feature of a type annotation being introduced in Python 3, enumerations have turned
out to be a useful structure to represent an argument to be within a set of possible values. In
particular, we will use Enum as a type hint in Chapter 18, Serving Models with a RESTful
API, where it will help us to define a correct endpoint for the API we will build.

Next, after data structures, let's move on to generators and see what they are like.

Using generators
Generators are not exactly data structures—they are functions. However, while normal
functions compute their results and return them at once, generators can be stopped and
resumed on the fly, resulting in an iterable-like behavior. In other words, you can loop over
a generator, retrieving one value at a time. Unlike classic iterables, however, generators are
lazy. They compute values once we ask for them, but not before we do. As a result of that,
there are a few significant differences in their behavior as compared to iterables:

First, generators use a fixed amount of memory. Even if you ask one to compute
zillions of values, a generator will produce and store just one value every time
you ask, which is great! In fact, generators can produce an infinite number of
values with no memory issues.
Second, as generators do not store the values, there is no way to retrieve values
by their index. In order to get the third element, you need to compute the first
two, first. Similarly, there is no way to get back to the previous element. If you
didn't store it, the value is lost. Also, there is no way to estimate the length of the
generator other than computing all the values, but again, generators can be
infinite.

Data Structures Chapter 4

[81]

For a function to work as a generator, it needs to emit multiple yield statements instead of
return statements. Once the function is called, you can loop over it as if it were a list or a
tuple, or retrieve one value at a time by using Python's built-in next() function:

def my_generator(N, power=2):
 # for loop, which we'll cover in depth in the next chapter.
 # note that loops require another level of indentation
 for el in range(N):
 yield el**power

N = my_generator(4, power=2)

next(N)
>>> 0

for el in N:
 print(el)
>>> 1 # zero was computed already
>>> 4
>>> 9

In the preceding example, we used the range() function, which takes one to three integer
arguments, with only 1 required. If 1 is provided, range will return a generator of numbers
from 0 to this number, excluding it. If 2 is provided, the former will become the starter, and
the latter, which is at the end of the generator will, again, be excluded. If 3 is provided, it
will be used as a step. There are plenty of other functions within Python that return
generators. Don't worry if you need a list or tuple as a result—just convert them:

list(range(5))
>>> [0, 1, 2, 3, 4]

The range object has some syntactic sugar functionality. For example, it can check for
inclusion without actually calculating the values (which is a very easy thing to do, if you
think about it thoroughly):

20346 in range(0, 100_000_000, 2) # even numbers
>>> True

Useful functions to use with data structures
There are a few functions and interfaces that are useful for working with data, from simple
ones such as sum, max, and min, to complex ones such as zip, map, filter, and reduce.

Data Structures Chapter 4

[82]

The sum, max, and min functions
These functions are pretty much self-explanatory: they will try to summarize or compare
values in iterables. Just remember that for the dictionary, its keys—not values—will be
used:

sum({1:'A', 2:'B'})
>>> 3

Note that min and max don't require elements to be integers or floats:

max({'A':1, 'B':2})
>>> 'B'

The all and any functions
all and any are self-explanatory as well. Simply put, they are extended and and
or operators, and work with multiple values at once:

all([False, True, True])
>>> False

any([False, True, False])
>>> True

The zip function
zip is useful when you have N lists of M elements, and you need to transpose them, so as
to get M lists of N elements. Similar to range, it will return a generator object:

data1, data2 = (1, 2, 3, 4, 5), ('A', 'B', 'C', 'D', 'E')

result = list(zip(data1, data2))

result
>>> [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]

zip can also be done in reverse by using the result variable as args:

list(zip(*result))
>>> [(1, 2, 3, 4, 5), ('A', 'B', 'C', 'D', 'E')]

Data Structures Chapter 4

[83]

zip can also be used to create data structures:

dict(zip(data1, data2))
>>> {1: 'A', 2: 'B', 3: 'C', 4: 'D', 5: 'E'}

The map, filter, and reduce functions
Other functions that you might find useful with data structures are map, filter, and
reduce. These are very useful in conjunction with other functions, such as lambdas.

map runs given functions on every element of the iterable, returning a generator:

>>> data1, data2 = (1, 2, 3, 4, 5), ('A', 'B', 'C', 'D', 'E')

>>> list(map(lambda x: x**2, data1))
converting to list in order to seE results
[1, 4, 9, 16, 25]

>>> list(map(lambda x: x.lower(), data2))
['a', 'b', 'c', 'd', 'e']

Similarly, filter returns a subarray of elements for which the function returns a true or
truthy value:

list(filter(lambda x: x > 3, data1))
>>> [4, 5]

Finally, reduce—which was moved to the itertools package in Python 3—runs given
functions on pairs and in cascades, with the expectation to get one value as a result so that
all the values will triple down to one. For example, the sum function can be seen as a
specific case of reduce.

While it is useful to know that those functions exist, there is another more
expressive method that can achieve the same results—comprehensions.

Comprehensions
Comprehensions are a nice and expressive way to work with data structures. Let's start
with a simple example:

{el**2 for el in range(3)}
>>> {0, 1, 4}

Data Structures Chapter 4

[84]

Here, the curly brackets define our result. We use range to create the initial iterable, and
then loop over its values, computing the square value of each. This is not a real loop,
though. List comprehensions are actually faster than loops and even map, as there are no
lambdas, and thus, no additional costs for stack lookups:

>>> %%timeit
... s = set()
... for el in range(10):
... s.add(el**2)
3.35 µs ± 134 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit set(map(lambda x: x**2, range(10)))
3.72 µs ± 207 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit {el**2 for el in range(10)}
3.11 µs ± 309 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

On top of that, comprehensions can be nested, use if statements (thus, replace the filter
function), and operate on different data structures. In the following example, we use a
comprehension to run over a list of dictionaries, and create a new list that contains
character names, but only for characters with an age that is below 15 (only they can go to
Neverland, you know):

>>> characters = [
 {'name': 'Peter Pan', 'age': 13, 'type': 'boy'},
 {'name': 'Wendy Darling', 'age': 14, 'type': 'girl'},
 {'name': 'Captain Cook', 'age': 45, 'type': 'pirate'}
 # just guessing
]

>>> [el['name'] for el in characters if el['age'] < 15]
['Peter Pan', 'Wendy Darling']

We can even use the comprehension to swap keys and values of the dictionary that way. In
the following code, we create a new dictionary by using the values of the existing one as
keys, and by using keys as values:

D = {'A':1, 'B':2 }

{v:k for k, v in D.items()}
>>> {1:'A', 2:'B'}

This concludes our exposé into data structures. In the following chapters, we'll be using
everything we just learned more extensively.

Data Structures Chapter 4

[85]

Summary
In this chapter, we learned about the basic and more advanced data structures in Python.
We covered how to create, interact with, and operate on those structures. In addition to
structures, we covered generators, which are functions that pretend to be iterable structures,
and comprehensions, which are a concise and fast way to create and work with data
structures. We also briefly touched on loops and if statements and learned how they work.

In the next chapter, we'll discuss different types of loops and statements, which will allow
us to operate on datasets dynamically and embed logic into our code.

Questions
How do we retrieve one element from a list? How do we retrieve the last element1.
of the list without computing its length explicitly?
How do we get all elements of a list—except the first one and the last one—in the2.
reverse order?
How do we merge two dictionaries, and what happens if some of the keys are3.
the same in both of them?
What is the best data structure to check for membership?4.
Can we get the last element of the generator without getting all the others?5.
How do we combine elements from N triplets into three arrays of N one by one?6.
What is the shortest way to generate a list of specific dictionary7.
properties—which are retrieved from a list of dictionaries—if a certain other
property of each dictionary is in the set?

Further reading
Python Data Structures and Algorithms (https:/ ​/ ​www.​packtpub. ​com/ ​application-
development/​python- ​data- ​structures- ​and- ​algorithms)

https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms

5
Loops and Other Compound

Statements
In the previous chapter, we learned how to create and operate on data structures. Now, let's
discuss how to operate on them effectively.

We will first cover loops—a special type of compound statement (code that compounds
other code, just like functions)—that allows the same code to be run over and over—any
number of times, or even indefinitely. After loops, we will discuss if-
else statements—logical forks that allow us to split code execution based on test results.
Finally, we will cover two less popular, but still very useful, clauses—try, which helps to
save the day if something goes wrong (an error is raised) within the code, and with , which
helps to close the context safely (for example, close the file correctly).

Hence, this chapter will cover the following topics:

Understanding if, else, and elif statements
Running code many times with loops
Handling exceptions with try/except and try/finally
Understanding with statements

Technical requirements
The code in this chapter does not require any additional packages. All the code is available
in the Chapter05 folder in the repository (https:/ ​/​github. ​com/ ​PacktPublishing/ ​Learn-
Python-​by-​Building- ​Data- ​Science- ​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Loops and Other Compound Statements Chapter 5

[87]

Understanding if, else, and elif statements
Conditional execution is one of the cornerstones of programming. It allows us to execute
one code, but not the other, depending on the condition. This condition is described in
Python as an if statement. It is pretty self-explanatory: code within the scope will be
executed if the condition is met:

if rain is True:
 agenda = 'Stay Home'

Here, if the rain variable is true, the agenda is to stay at home.

This statement can make functions more flexible. In the following example, if b is equal to
0, we can't use it as a denominator, so we can check the value, and return None instead.
As return terminates all the code of the function, the division does not happen:

def percentage(a, b):
 if b == 0:
 return None

 return round(a / b, 2)

On many occasions, there could be more than one outcome of the logical fork. If you need
an alternative code to run if the statement is false, you can use the else keyword. The
following code checks whether the name is equal to Annie. If the name matches, the code
would print a greeting. If, and only if, it does not (which is the case here), an alternative
statement (I don't know you...) will be printed:

name = 'Adrian'

if name == 'Annie':
 print('Hello Annie!')
else:
 print("I don't know you...")

Since the name is not Annie, this code will print the I don't know you... phrase.

We are not just bound by two options either! You can have more than two logical branches,
using the elif keyword (which works like an else-if statement).

Loops and Other Compound Statements Chapter 5

[88]

Consider the following code. Here, we have four logical branches! First, if the name is in the
first set of people we know, the code will print a greeting. If not, but the name is in another
set, the greeting will be different. The third option checks whether the name is in our
blacklist, in which case we'll ignore the person by passing on execution. Finally, as a last
resort, the code will state that we don't know the person:

if name in {'Adrian', 'Annie'}:
 print('I know you!')

elif name in {'Agnus', 'Angela'}:
 print("Hi! I thing we've met somewhere...")

elif name in {'Boris', 'Brunhilde'} :
 # don't talk with them
 pass
 # pass can be used in code when sintaxis requires some code,
 # but none is needed

else:
 print("I don't think I know you...")

While that is absolutely feasible, we generally don't recommend writing more than one or
two elif branches—they are verbose and hard to read and debug; very often, there are
better options in terms of structuring the logic.

So far, we have used else/if statements with indentation, but we also can use them on the
same line. In the next section, we'll cover how to use if in inline statements.

Inline if statements
In some cases, you just want to assign (or reassign) variables. Bad practice would involve
doing the following:

name = name or 'Sigizmund'

Here, name will have a value of Sigizmund if it was equal to Sigizmund before, or is
untruthy (equal to None, False, or zero). This is fine in certain cases, but can lead to
uncertainty due to ambiguity. A better solution would be to use if instead:

name = name if name is not None else 'Sigizmund'

Loops and Other Compound Statements Chapter 5

[89]

Here, the logic is exactly the same—name will have a value Sigizmund if not None, but
stated more explicitly. One key difference is that the preceding statement will not consider
untruthy values as None—if name is equal to False or zero, it will not be overwritten.
Perhaps counterintuitively, this is considered a better practice—if the value is somehow
invalid, it is better to know this as soon as possible.

Another option is to use if as part of the comprehension—we actually did just that in the
previous chapter. Let's revisit that example in the next section.

Using if in a comprehension
In the previous chapter, we discussed comprehensions, one-liner code expressions, which
usually create iterable objects from one or a few other iterables. They do support the if
condition as well. For example, the following comprehension loops over a list of
dictionaries, and returns a list of character names, one per dictionary in the first list, if the
surname of the corresponding character is equal to Rabbit:

>>> characters = [
 {'name': 'Peter', "surname": 'Rabbit'},
 {'name': 'Josephine', 'surname': 'Rabbit'},
 {'name': 'Michael', 'surname': 'McGregor'}
]

>>> rabbits = [el['name'] for el in characters if el['surname'] ==
'Rabbit']
>>> rabbits
['Peter', 'Josephine']

Using comprehensions with if is a great practice; most of the time, comprehensions are
very expressive and easy to grasp, while short and performant—a rare win-win scenario.

One-liners are great, but they can't completely replace loops. Besides, there are different
types of loops, and some are quite different from the one-liners in terms of what they do.
Let's take a look.

Loops and Other Compound Statements Chapter 5

[90]

Running code many times with loops
Loops are compound statements that repeat the code within them many times, a specific
number of times, until a certain test is met, or even indefinitely. By doing so, loops enable
us to incrementally update the values or traverse over a collection of values, computing
something for each of them. For example, the factorization function we wrote at the end of
the last chapter to illustrate recursing can be written with loops, multiplying the value by
the next value in the row each time.

Python loops have two main forms—for and while. Let's now look at them in detail.

The for loop
The for loop is the classical form of the loop—it literally goes over an iterable (collection of
values) and performs the same computation for each value, consecutively. The code within
the loop may or may not be using the value for which it is computed.

For example, if we just need to run some specific code N times, we can run the loop over
the range object that contains N values. Consider the following example:

>>> for i in range(3):
>>> print(i)
0
1
2

Here, we execute a built-in range function (which we discussed in Chapter 3, Functions)
and run a loop, printing each element in this loop.

Any other iterable would suffice as well, including strings, sets, lists, tuples, dictionaries,
and generators. All the code in the scope of the loop will be repeated as many times as there
are elements in the iterable. In the following code, we loop through the characters in a
string, printing each of them:

>>> for char in 'Jack':
>>> print(char)
J
a
c
k

Loops and Other Compound Statements Chapter 5

[91]

Loops require indentation—just like functions. In contrast to functions, however, variables
assigned in the loop (the last value they were assigned to), will be accessible from the
outside of this indentation. The looping variable (el in the first example, and char in the
second) can be named as you see fit.

In fact, we can pass more than one value using unpacking. Here is one example. We're
iterating over a dictionary, using its items method. In the first line of the loop, we can
define two variables, the first representing the key, and the second the value. Once defined,
both variables can be used in the code—in this case, printed. If we were to state one
argument instead, it would be assigned a tuple of key-value pairs:

>>> person = {
 'name':'Jim',
 'surname':'Hockins'
}

>>> for k, v in person.items():
 print(k, ':', v)

name : Jim
surname : Hockins

As a result, key and value are printed for each pair in the dictionary—name : Jim.

Any number of loops can be nested one within the other—as many as you
like. In that case, an internal loop will require an additional level of
indentation. Note, however, that loops are generally time-consuming, and
nesting increases time exponentially. Typically, pay attention if you need
to nest two or more loops; there may be a better way.

The power of loops can be expanded, leveraging built-in additional tools. Let's take a look.

itertools
There is a built-in library for working with iterations—itertools. This library provides a
large set of sophisticated iterable constructors in three main categories:

Infinite iterators: Iterators that allow us to loop an arbitrary number of times
through the same collection until certain criteria are met.
Terminating on the shortest input sequence: Functions that somehow group
iterators, merging or filtering their elements.
Combinatoric iterators: These combine multiple iterators, producing a
combination of them.

Loops and Other Compound Statements Chapter 5

[92]

There are a lot of functions, so be sure to check the documentation (https:/ ​/​docs. ​python.
org/​3/​library/​itertools. ​html). Here, we will discuss just a handful of them.

cycle
itertools.cycle allows the iterable to be gone through, repeating itself multiple times,
or until the certain criteria are met. For example, if you have a plot with colors assigned by
a category, and there is a chance there are more categories than colors in the style guide,
you can make use of cycle. Consider the following example; we first initialize the cycle
object, passing categories as arguments:

from itertools import cycle
colors = cycle(('red', 'green', 'blue'))
categories = (1, 2, 3, 4, 5)

Next, we loop over both iterators by using the zip function. As you know, generally, zip
loops until the shortest collection ends. In this case, there are five categories but just three
colors, so without cycling, the loop will only print the first three categories:

>>> for cat, color in zip(categories, colors):
>>> print(cat, color)

1 red
2 green
3 blue
4 red
5 green

With cycling, however, colors is essentially an infinite iterable—so the shortest one is
now categories.

chain
chain allows multiple iterables to be added together. This is especially useful if both
iterables are generators, as chain does not execute them. Consider this example. First, we
create two iterables—a generator and a string:

from itertools import chain

generator = range(3)
iterable = 'Python'

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html

Loops and Other Compound Statements Chapter 5

[93]

Now, we chain them together, and iterate over them:

>>> for el in chain(generator, iterable):
>>> print(el)

0
1
2
P
y
t
h
o
n

As you can see, the two are merged together seamlessly. chain is a fast operation that can
be extremely useful in certain cases.

product
itertools.product generates a Cartesian product (a set of all permutations), a concise
equivalent of a nested for loop. Here is how it appears. First, we create three sets (product
can take any number of iterables):

s1 = {'Peter', 'Benjamin'}
s2 = {'Flopsy', 'Mopsy', 'Cottontail'}
s3 = {'McGregor', 'Thomas', 'Bea'}

Next, we call a product function on all of them, printing the result:

>>> from itertools import product
>>> for el in product(s1, s2, s3):
 print(el)

('Peter', 'Mopsy', 'Bea')
('Peter', 'Mopsy', 'Thomas')
('Peter', 'Mopsy', 'McGregor')
('Peter', 'Cottontail', 'Bea')
('Peter', 'Cottontail', 'Thomas')
('Peter', 'Cottontail', 'McGregor')
('Peter', 'Flopsy', 'Bea')
('Peter', 'Flopsy', 'Thomas')
('Peter', 'Flopsy', 'McGregor')
('Benjamin', 'Mopsy', 'Bea')
('Benjamin', 'Mopsy', 'Thomas')
('Benjamin', 'Mopsy', 'McGregor')

Loops and Other Compound Statements Chapter 5

[94]

('Benjamin', 'Cottontail', 'Bea')
('Benjamin', 'Cottontail', 'Thomas')
('Benjamin', 'Cottontail', 'McGregor')
('Benjamin', 'Flopsy', 'Bea')
('Benjamin', 'Flopsy', 'Thomas')
('Benjamin', 'Flopsy', 'McGregor')

As you can see, the product function generates all the permutations of the elements from
three sets.

Enumeration
Sometimes, you want to keep the record of the iteration you're at while using an iterable. A
naive approach would be to get the length of the iterable, use the range function, and then
use each number to get values from the iterable—indeed, that is how loops work in other
languages, such as Java and JavaScript. But don't do that! Indeed, this construct requires
two function calls in its basic case, and more if we need to numerate iterations, starting
from a number other than zero. In Python, there is a better solution! Just use
enumerate—this will create a generator that will return an index and a corresponding
value from the original iterable, as a tuple. This can be used even if you had tuples
already—just use parentheses for the unpacking. Here is an illustration using
the person data structure. All we need is to run the enumerator over our iterable. In this
case, the iterable contains a number of key-value pairs as tuples. In order to name them, we
unpack values, describing the entire composition after the for keyword; here, i is the
index generated by the enumerate function, while k and v are the key-value pair. Number
1 in the enumerator indicates the beginning of the enumeration:

>>> person = { 'name':'Jim', 'surname':'Hockins'}
>>> for i, (k, v) in enumerate(person.items(), 1):
>>> print(f'{i}. {k}: {v}')

1. name : Jim
2. surname L Hockins

With that, we can use each element by its name within the loop—in our case, we use this to
format each line properly.

Loops and Other Compound Statements Chapter 5

[95]

The while loop
while loops are quite similar to for loops, with one major distinction: they don't need an
iterable to run over—instead, they are driven by a simple Boolean value. While this value is
true, the loop will continue to run, potentially an infinite number of times. Consider the
following example. Here, we run a while loop until the counter value is less than 5. Once
that is no longer the case, the loop stops. As the initial value of the variable is zero, it is easy
to deduce that the loop ran five times:

counter = 0
while counter < 5:
 print(counter)
 counter += 1

Be careful! It is easy to make this loop infinite by accident. In some cases, however, that is
exactly what we want, so we can make this explicit through the pattern:

while True:
 compute()

The preceding loop is explicitly infinite: it will run forever, or, realistically, until something
stops the script—either from inside (code error), or outside (you terminating the script, or
the computer rebooting). This pattern is useful for continuous tasks—for example,
collecting data from the streaming endpoint.

Additional loop functionality – break and
continue
At any point, the loop can be broken from inside. Using the break keyword, the loop will
be terminated immediately. The following code loops over the string and halts the loop
once the letter is equal to t. As t is the third letter, the loop is only able to print the first two
letters:

>>> for letter in "Data":
>>> if letter == 't':
>>> break
>>> print(letter)
D
a

Loops and Other Compound Statements Chapter 5

[96]

The break keyword is especially useful for infinite loops, which can be triggered to stop if a
certain condition is met.

Alternatively, if you just need to skip one round without stopping the entire loop, you can
use the continue keyword. We execute the same example—except this time, if the letter is
equal to 't', the loop will skip one round of execution and jump to the next one for the
letter 'a':

>>> for letter in "Data":
>>> if letter == 't':
>>> continue
>>> print(letter)
D
a
a

break and continue will work with both types of loops. Both are relatively rare, but could
prove invaluable in specific cases; for example, when you need to stop the traverse on a
certain condition. It could be because you need it as part of your algorithm, or if you want
to halt/pass on an invalid case, which can cause errors.

Our next compound statement is designed specifically to handle the errors so that your
code will survive and adjust accordingly. Let's see how this is done.

Handling exceptions with try/except and
try/finally
try/except is here to save the day if some code fails. We've seen errors before. In Jupyter,
they appear as text highlighted in red when we do something wrong. In many cases,
however, it is hard to predict whether an error will occur—for example, if we're working
with an external database or service, there is no guarantee that everything will work as it
should all the time. Before we learn how to mitigate those potential exceptions, let's briefly
review what the exception is and why we should create our own ones.

Loops and Other Compound Statements Chapter 5

[97]

Exceptions
But what are the exceptions? You can think of them as warning messages letting us know
about computation issues and halting the computation. For example, when we're trying to
divide by zero, the computer knows it's wrong and raises a corresponding
ZeroDivisionError type error, stopping the process. We can raise exceptions from within
our own code by using the raise keyword. There are a handful of built-in exception types,
such as KeyError, ValueError, and IndexError. The only significant difference between
these is the name, which helps us to understand and differentiate between issues. All those
exceptions inherit from the base exception type—Exception. Each exception can be raised
with supporting text if you so desire. Consider the following example. Here, we declare a
function, which checks whether a given instance is of a certain type, using the isinstance
function. If it is not, the function will raise a ValueError exception. Predictably, the
function won't raise anything when we pass Hello and str as its arguments—indeed,
Hello is a string:

def _check_raise(inst, type_, text=None):
 text = text if text is not None else f'Wrong value: requires {type}
format, got {type(inst)}'

 if not isinstance(inst, type_):
 raise ValueError(text)

>>> _check_raise('Hello', str)

But when we replace str with int, this throws the error, as intended:

_check_raise('Hello', int)
--
ValueError Traceback (most recent call last)
<ipython-input-50-145b6e9f288c> in <module>
----> 1 _check_raise('Hello', int)

<ipython-input-49-b95b042dc54b> in _check_raise(inst, type_, text)
 3
 4 if not isinstance(inst, type_):
----> 5 raise ValueError(text)

ValueError: Wrong value: requires <class 'type'> format, got <class 'str'>

In many cases, it makes sense to create our own exceptions—we'll do that in Chapter 8,
Simulation with Classes and Inheritance.

Loops and Other Compound Statements Chapter 5

[98]

Many new learners consider exceptions as a bad thing, and which should
be resolved immediately in situ. Not only is it hard to do and adds a lot of
additional code, but also makes your program obscure and hard to debug.
So, don't run from exceptions—instead of trying to resolve all possible
issues in situ (within each script or function), let them occur—and do raise
them yourself, adding a helpful message. This will help your code to fail
fast, as well as help you to detect and resolve the issue at its root and
handle issues at the right level.

Now that we know about exceptions, let's circle back to the try clause.

try/except
The try/except construct allows you to handle the errors within and fall back on
alternative code if something goes wrong. You can use it for an exception as an umbrella
case (any error), or specify precise exceptions to catch. In the following code, we're trying to
run a bad code, dividing by zero. In this case, Python raises a specific
exception—ZeroDivisionError. Knowing that, we add an except
ZeroDivisionError clause, printing a string in it:

>>> try:
>>> result = 1 / 0
>>> except ZeroDivisionError:
>>> print('something is wrong!')
something is wrong!

Because we are catching specific ZeroDivisionError exceptions, everything else will still
raise an exception. As it is precisely the exception that was raised, we caught it, a print
statement was executed, and the code continued the execution. If necessary, we can specify
multiple types of errors, use caught exceptions in our code, and even add different behavior
for a different type of issue.

Let's illustrate this with another example, using a built-in example for warnings.
Warnings are a more explicit way to catch attention, as opposed to printing, and won't halt
the code, as exceptions do. In the following code, we define a function that calculates the
percent, taking the value and the total arguments. It handles ZeroDivisionError as the
preceding code. In addition, it handles TypeError and KeyError (the latter was added
just to illustrate how to pass multiple exceptions in the same statement). Finally, there is a
fallback scenario for all other types of exceptions:

import warnings
built-in library that helps warning people - similar to exceptions, but

Loops and Other Compound Statements Chapter 5

[99]

won't halt code,
you can also set up filter for different warning types

def percentage(value, total):
 try:
 return 100 * (value / total)

 except ZeroDivisionError:
 warnings.warn('Total cannot be zero!')

 except (TypeError, KeyError) as e:
 # Keyerror here would never occur - just used it for example
 warnings.warn(f"Something with the wrong: {e}")
 except Exception as e:
 raise Exception(value, total, e)

Let's test it in practice. In the following code, we run a function for a proper set of values,
for total equal to 0, and, finally, for two strings. In all cases, a proper exception (or lack
thereof) was used:

>>> percentage(1, 10)
10.0

>>> percentage(10, 0)
/Users/philippk/anaconda3/envs/py36/lib/python3.7/site-
packages/ipykernel_launcher.py:10: UserWarning: Total cannot be zero!

>>> percentage('Hello', 'world')
/Users/philippk/anaconda3/envs/py36/lib/python3.7/site-
packages/ipykernel_launcher.py:14: UserWarning: Something with the wrong:
unsupported operand type(s) for /: 'str' and 'str'

try/except/finally
The try statement supports yet another option – the finally clause. When
added, finally represents the code that will be executed, irrespective of which branch of
try/except actually did run in the end. It is usually used to release external resources—a
close connection to the file or the database. Consider this example. Here, we're attempting
to open the file and perform certain computations:

try:
 file = open("test.txt")
 # some operations on file
finally:
 file.close()

Loops and Other Compound Statements Chapter 5

[100]

No matter what happens within try, the file will be properly closed. This on the way out
principle will work with other events as well, including break, continue, and return.

Note that the as variable assigns the raised exception to the e variable, but
it will be deleted once we're out of the except clause.

try/except statements allow us to dodge an exception if something goes south. This is a
great solution in terms of adding some fault tolerance to the code. The danger with this
approach is being overly fault tolerant, meaning that the code will keep working OK in a
situation where you'd ideally want to intervene and halt it. Let's now talk about our last
statement for today—the with statement.

Understanding the with statements
Last but not least, the with statement is usually used with any kind of connections or
managed resources such as file handles. Consider the following example:

with open('./text_file.txt', 'r') as file:
 data = file.read()

print(data)

Here, we use a with clause together with the open() function. The open function returns a
file-like object that has __enter__ and __exit__ methods, representing the opening and
closing of the file. Both can be used directly, but the file needs to be closed properly once it
is opened. The close() function along together with the with clause does exactly that – it
opens an object, and makes sure it is closed (using those two methods) at the end.
Essentially, it is the equivalent of the following try/finally statement:

try:
 file = open('./text_file.txt', 'r').__enter__()
 data = file.read()
finally:
 file.__exit__()

Loops and Other Compound Statements Chapter 5

[101]

You can see that this statement is quite similar to try/finally, but definitely more
expressive and clean. As always, with Python, with is designed around the duck
typing principle (if it quacks like a duck and walks like a duck, consider it a duck): if any
arbitrary object has __enter__ and __exit__ methods, it can be used in the with clause
as the statement does not care what actually is happening in those functions. Most database
connections and cursors support this feature.

Summary
In this chapter, we covered a wide spectrum of compound statements. In particular, we
covered the if clause, which allows us to build logical forks – parts of code that are
executed if a condition is met. We also discussed two types of loops, which allow us to run
the same code multiple times, in repetition. Lastly, we covered try/except/finally and
with clauses, which gives us options in terms of catching errors on the fly, without halting
execution of the script, and guaranteeing that given connections, such as open files, are
handled properly.

This chapter concludes our tour of the basics of the language. By no means have we
covered it all! However, from now on, we will depart from the sandbox example and start
writing code that is actually useful.

In the next chapter, we'll start communicating with external APIs and process data. See you
there!

Questions
Can the if clause work with multiple (more than two) logical branches?1.
What is the difference between for and while loops?2.
How can I loop through multiple (two or more) arrays of the same length? Or of3.
different lengths?
Why do we need exceptions? How can I catch one?4.
What is the difference between finally and except?5.
When should the with clause be used?6.
How can I use with on a custom object?7.

Loops and Other Compound Statements Chapter 5

[102]

Further reading
Python Data Structures and Algorithms (https:/ ​/ ​www.​packtpub. ​com/ ​application-
development/ ​python- ​data- ​structures- ​and- ​algorithms)
Errors and Exceptions (https:/ ​/ ​docs. ​python. ​org/ ​3/ ​tutorial/ ​errors. ​html)

https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

6
First Script – Geocoding with

Web APIs
Now that we know how to write functions, let's apply that knowledge to a practical task.
In this chapter, we will build a function that will communicate with a web service via a
REST API in order to get the latitude and longitude of a given address. Furthermore, we'll
discuss how to use built-in Python libraries to read and write data from and to files.
Finally, we will wrap this functionality into a standalone script, so that it can be used from
the command line, with no Jupyter Notebook attached.

In this chapter, we will learn how to do the following:

Work generally with Python's built-in libraries and requests in particular
Communicate with web services via APIs
Read and write data using the CSV file format
Wrap code into a standalone script with the command-line interface, using the
built-in sys.argv library, and import functionality back into a Jupyter Notebook

Technical requirements
In this chapter, we will use two third-party libraries—requests and tqdm. Both are
included in Anaconda Distribution, so if you use Anaconda, they are already installed.
Otherwise, please install them.

To install a new package, type the following:

If you have conda installed, use conda install requests.
Otherwise, if you have pip, use pip install requests.

First Script – Geocoding with Web APIs Chapter 6

[104]

You will also need an internet connection, as we'll be working with a web service API.

The code for this chapter is available in the GitHub repository, specifically the Chapter06
folder (https:/​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data-
Science-​Applications).

Geocoding as a service
Often, the data we work with requires preprocessing; sometimes, that includes gathering
additional information to add context or transform existing information. Typical examples
of that are geocoding and reverse geocoding—the processes of converting an address into
geocoordinates and vice versa, respectively. Converting an address into coordinates allows
us to visualize data on a map, measure distances, and check membership (seeing things
such as what country, neighborhood, or school district an address belongs to).

This is actually a hard task, as it requires you to have a large hierarchical database of
relevant addresses and a complex parsing engine to make sense of semi-structured, often
misspelled and ambiguous, addresses. Realistically, a service like that requires a large
investment of time and resources.

The good news is that we can use some existing services to do this job. In fact, every
mapping service—including Google Maps, Apple Maps, Bing Maps, Yandex Maps,
OpenStreetMap (OSM), and Esri—has geocoding services; the chances are you used one of
them when you last typed an address into the search bar of a browser-based map. But how
can we connect to geocoding services from Python? Via a web API.

Some services are paid for. Most of them are free—at least, for a limited
number of requests. Beware: they still have a corresponding license
and—often strict—requirements and limitations. Here, we will be using
the Nominatim API, which allows the use of data under the Open
Database License (ODbL). Any usage for educational/informational
purposes (such as the use of the code in this chapter) will fall under the
fair trade/fair deals policy. As well as only using it for
demonstration/education purposes, let's try to play nice and not flood the
server with lots of requests in a short period. Adding a short delay
between each request is often advisable. OSM can and will block access
for certain users if they find they're flooding their servers (this also
includes the tile server).

So, now let's move on to our next topic, which is on web APIs.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

First Script – Geocoding with Web APIs Chapter 6

[105]

Learning about web APIs
First, what is an API? Well, an Application Programming Interface (API) is an interface for
working with a specific application programmatically—that is, via code. Think of Twitter
bots or email clients—all of them use APIs to work with their corresponding applications
(Twitter and email servers, respectively).

An API does not have to involve the web—many local applications on your computer have
APIs of their own, so we can interact with them through Python or any other language. In
our case, however, we need to work with a web API. Those APIs operate via HTTP requests
and responses. Many contemporary APIs follow REST guidelines—a set of six design
constraints that were put forward by Roy Fielding. You can learn more about REST
architecture via REST API Tutorial (https:/ ​/​restfulapi. ​net/ ​) or the Packt books cited at
the end of this chapter. We will also talk about REST APIs in more detail in Chapter 18,
Serving Models with a RESTful APIs, when we'll actually build one ourselves.

All REST APIs communicate with the consumer via the HTTP protocol—the same protocol
we're using in our browsers. Let's briefly discuss them now.

Working with HTTPS
Hypertext Transfer Protocol (HTTP) and modern HTTPS (S for Secure) requests have
three parts: the required request line, and the optional body and headers. Every request
has a certain method—the most popular are GET and POST. The specific usage of different
methods can vary for specific API endpoints. Most web APIs have parameters defined
within their URLs.

HTTP responses have a similar structure, but also a universal HTTP status code,
representing the request status. The most frequently used codes are 200 (success), 403
(forbidden, bad authentication), and 404 (URL not found). You can read more on different
status codes at Mozilla's MDN website (https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/
Web/​HTTP/​Status).

With this general understanding of APIs and HTTP requests, let's take a look at a particular
geocoding service—Nominatim.

https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

First Script – Geocoding with Web APIs Chapter 6

[106]

Working with the Nominatim API
In this particular case, we are going to use OSM's Nominatim service. Its API is simple, free,
does not require authorization, and has a relatively open license. Moreover, as OSM is open
source, we theoretically can add and improve its content, if that is necessary for our project.

In order to work with an API, we first need to read its documentation. Often,
documentation includes example snippets of code to use with the service in question—the
code is usually in Python. Nominatim's documentation can be found at
nominatim.openstreetmap.org. According to it, to get information for a given address,
we should send a request to the following URL:

https://nominatim.openstreetmap.org/search?

All our parameters—the address, response format, geographic limitations, and so on—need
to be added using standard URL escaping (don't worry—Python will take care of it for us).
For example, to receive information on the Eiffel Tower in Paris as a JSON object, you could
use the following URL:

https://nominatim.openstreetmap.org/search.php?q=Eiffel+tower%2C+Paris&form
at=json

If we drop the last parameter—format—the response will be a valid HTML page, showing
the search results. This might be useful for debugging purposes.

Now, let's write some Python code to work with this API!

The requests library
As in many other cases, Python has a built-in library to deal with HTTP requests—urllib.
It is a great package that allows the handling of requests via a low-level technical interface.
We will, however, use requests—a third-party library with a high-level (simpler)
interface that uses urllib under the hood. As a third-party library, requests requires
separate installation. However, if you have Anaconda Distribution installed, don't
worry—requests is already installed!

The library supports many advanced options, including sessions, authentication, and
Secure Sockets Layer (SSL) certificates. In this case, however, the only thing we need is
the get method of requests, which takes the request URL and optional parameters as
arguments. Let's now try using requests.

First Script – Geocoding with Web APIs Chapter 6

[107]

Starting to code
Let's try to put into practice everything we've learned so far in code.

First, our request will go to a specific URL. It makes sense to store that URL as a variable:

base_url = 'https://nominatim.openstreetmap.org/search?'

Nominatim requires us to add at least two parameters:

format: This will define the format of the data we'll get in return.
q: This stands for the address query—in other words, the address we want to
geocode.

Due to the way requests work, we need to store those parameters in a dictionary:

params = {
 'format':'json',
 'q': 'Eiffel Tower'
}

Finally, as we have everything we need now, we can send our request and get the answer.
In the following snippet, we import the library and pass a GET request (using the get
method of the library) to the URL we stored, passing the parameters we defined. We also
store the response in a new variable:

import requests

result = requests.get(base_url, params=params)

Once we get the response, we can check the status code. 200 means that everything went
well:

>>> result.status_code
200

First Script – Geocoding with Web APIs Chapter 6

[108]

Success! Now, let's take a look at the result. As we explicitly specified that we need the
result to be in JSON format, we can safely convert it into a Python structure, and requests
can do that easily. All we need to do is call the response's json method:

>>> result.json()
[{'place_id': '69121935',
 'licence': 'Data © OpenStreetMap contributors, ODbL 1.0.
https://osm.org/copyright',
 'osm_type': 'way',
 'osm_id': '5013364',
 'boundingbox': ['48.8574753', '48.8590465', '2.2933084', '2.2956897'],
 'lat': '48.8582602',
 'lon': '2.29449905431968',
 'display_name': 'Tour Eiffel, 5, Avenue Anatole France, Gros-Caillou, 7e,
Paris, Île-de-France, France métropolitaine, 75007, France',
 'class': 'tourism',
 'type': 'attraction',
 'importance': 0.653772102971417,
 'icon':
'https://nominatim.openstreetmap.org/images/mapicons/poi_point_of_interest.
p.20.png'},
...
]

The response is a list that contains 10 data points, representing different locations
associated with the Eiffel Tower, sorted by their importance scores. The original tower is
first—but there are many replicas built all over the world, as well. Those are also returned
but have a smaller importance score, and so are placed lower on the list. Every single one
has osm_id, coordinates, display_name, a link to the icon, a class, and a type. Here, 10 is a
default limit of points to return—we can explicitly change it. Note that if Nominatim fails to
find the address, it will return an empty list:

>>> params = {
 'format':'json',
 'q': 'Cair Paravel, Narnia', 'limit':1
 }

>>> requests.get(base_url, params=params).json()
[]

First Script – Geocoding with Web APIs Chapter 6

[109]

Now that we know the code is working, let's wrap all that into a clean and flexible function.
As we don't want to hit the limits and cause trouble for OSM, we will delay our requests
using a built-in function, time.sleep. Here is how we'll approach it. First, we'll import all
the libraries we need, and store the base URL:

import requests
from time import sleep

base_url = 'https://nominatim.openstreetmap.org/search?'

Next, we can declare the function itself. As its arguments, we'll need an address itself, the
format (that can be defaulted to JSON), the limit of points to return (we defaulted it to 1),
and kwargs (keyword arguments)—those will be passed to parameters, as Nominatim has
quite a few additional parameters for this API endpoint; in some cases, we might need
them. In the function itself, we add a docstring (note that we added a link to the
documentation in the function's docstring—this might save you tons of time in the future!):

 def nominatim_geocode(address, format='json', limit=1, **kwargs):
 '''thin wrapper around nominatim API.
 Documentation: https://wiki.openstreetmap.org/wiki
 /Nominatim#Parameters
 '''

Next, we set the parameter dictionary, based on the function arguments. Note how we used
unpacking to pass the key-value arguments of kwargs to this new dictionary. With that
dictionary, we send a request and store the answer in a new variable—the same as how we
did it previously. In order to be sure that the interaction went well, we use the
raise_for_status method of requests, which will raise an exception if something goes
wrong (that is, if the status code is not 200):

params = {"q": address, "format": format, "limit": limit, **kwargs}

response = requests.get(base_url, params=params)
response.raise_for_status()

Finally, we set the function to sleep for a second (that is more than enough, and we can
adjust it to fit Nominatim's limitations properly in the future). Once that is done, we can
finally return the result as parsed JSON. Here is how the code looks as a whole:

import requests
from time import sleep

base_url = 'https://nominatim.openstreetmap.org/search?'

def nominatim_geocode(address, format='json', limit=1, **kwargs):
 '''thin wrapper around nominatim API.

First Script – Geocoding with Web APIs Chapter 6

[110]

 Documentation: https://wiki.openstreetmap.org/wiki
 /Nominatim#Parameters
 '''
 params = {"q": address, "format": format, "limit":
 limit, **kwargs}

 response = requests.get(base_url, params=params)
 response.raise_for_status()
 sleep(1)
 return response.json()

Now, let's try our new function:

nominatim_geocode('Eiffel Tower')

>>> [{'place_id': '69121935',
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0.
https://osm.org/copyright',
'osm_type': 'way',
'osm_id': '5013364',
'boundingbox': ['48.8574753', '48.8590465', '2.2933084', '2.2956897'],
'lat': '48.8582602', 'lon': '2.29449905431968',
'display_name': 'Tour Eiffel, 5, Avenue Anatole France, Gros-Caillou, 7e,
Paris, Île-de-France, France métropolitaine, 75007, France',
'class': 'tourism',
'type': 'attraction',
'importance': 0.653772102971417,
'icon':
'https://nominatim.openstreetmap.org/images/mapicons/poi_point_of_interest.
p.20.png'}
]

Perfect!

Remember how, at first, Nominatim gave us 10 different Eiffel Towers in different places
around the world? Often, the addresses we have on hand are all in the same country or
even city, and we'll know that—but, by default, Nominatim won't. In this case, we can
make sure Nominatim looks in the specific area by specifying a countrycodes parameter,
which represents one or multiple (joined with a comma) country codes, as
in countrycodes='fr'. With a city, the situation is slightly different—Nominatim offers a
structured address search, which means that you need to provide an address as a set of
parameters, including the street (house number and street name), city, and additional
information such as the county, state, country, and postal code.

First Script – Geocoding with Web APIs Chapter 6

[111]

The API documentation also states that this structured address should not be mixed with a
query parameter, which totally makes sense, but makes it a little harder for us to use the
preceding function. Luckily, requests will not add an argument to the URL if the value is
None, so we can use None as a default value. In the following, we explicitly state the
address as None, while passing a structured address (split into a set of parameters: country,
city, and street):

nominatim_geocode(address=None, street='221B Baker Street', city='London',
country='Great Britain')

>>> [{'place_id': '50843439',
 'licence': 'Data © OpenStreetMap contributors, ODbL 1.0.
https://osm.org/copyright',
 'osm_type': 'node',
 'osm_id': '3916613190',
 'boundingbox': ['51.5237104', '51.5238104', '-0.1585445', '-0.1584445'],
 'lat': '51.5237604',
 'lon': '-0.1584945',
 'display_name': 'The Sherlock Holmes Museum, 221B, Baker Street,
Marylebone, City of Westminster, London, Greater London, England, NW1 6XE,
UK',
 'class': 'tourism',
 'type': 'museum',
 'importance': 0.5209999999999999,
 'icon':
'https://nominatim.openstreetmap.org/images/mapicons/tourist_museum.p.20.pn
g'}]

Perfect!

Now that we can work with the Nominatim API, we can start collecting some data. But
how do we store it—and how would we read some addresses from another file? Let's see
how that's done in the next section.

Caching with decorators
As you can see, geocoding takes time—working with a server takes time, as does being nice
and waiting between requests. Thus, we probably don't want to waste time asking the same
questions over and over again. For example, if many records within the same sessions have
the same address, it makes sense to pull that data once, and then reuse it. Specifics may
depend on the nature of the data. Namely, if we're checking air ticket availability, we
shouldn't cache the results—the data might change any second. But for geolocation, we
don't anticipate any changes any time soon.

First Script – Geocoding with Web APIs Chapter 6

[112]

The process of storing data we've pulled locally and then using it instead of getting the
same data again is called caching. For example, all modern browsers do this—they cache
some secondary elements of the web page for you to use and they're kept for a certain
period of time. Caching can have different forms. We can store information in memory for
the current session, or store it to a disk to be able to retrieve it in other sessions (or by other
processes).

Here, we'll go with the first option—especially as everything we need is built into Python
itself. All hail the lru_cache function, part of the functools standard library. The name
LRU represents a specific algorithm we use and stands for Least Recently Used.
lru_cache stores N last requests, starting with the most recent one (so that it will be
retrieved faster). Once the limit is surpassed, the oldest values will be thrown out.

But how can we neatly intervene in the request process to pull local data or cache the new
result? Here, we'll use one more trick from up Python's sleeve—decorators. Consider the
following example:

def title(f):
 def _title(*args, **kwargs):
 return f'<h1>{f(arg)}</h1>'
 return _title

Here, title is a decorator function that wraps a given function, f, and returns another
function that executes f from inside. Here is how it can be used:

>>> def mytext(x):
 return str(x)

>>> MyTitle = title(mytext)
>>> MyTitle('hello')
<h1>hello</h1>

In other words, we inject our function inside another one that can run something else
before and/or after running it! The preceding operation is a little clumsy (and long)—that's
why Python has decorators, which are merely a syntactic sugar to make this pattern
shorter. Here is exactly the same code, using decorator:

>>> @title
>>> def MyTitle(x):
 return str(x)

>>> MyTitle('hello')
<h1>hello</h1>

First Script – Geocoding with Web APIs Chapter 6

[113]

As you can see, the actual function we're running is _title, which is using
MyTitle inside—and we don't need to create this "initial" function. Neat! But when is it
useful?

Actually, quite often! Decorators are usually nice when you need some sort of framework
to take your code and run within a certain context. We'll see this pattern quite often in
Chapter 17, Let's Build a Dashboard, and Chapter 18, Serving Models with a RESTful
APIs—for many web-related frameworks, it is easy to decorate your code with the
application, which will then route and execute a given function when needed.

Now, how is that connected to caching? Simple: because it follows the same pattern. For a
given function, we can initiate a caching data store, and then on any invocation of a
function, check whether the corresponding values are pulled already and use them if they
are. If they are not, we can run the function, store data in the cache, and return the values.
See? It is exactly the decorator pattern. And, indeed, here is how it might look (we show
only the first lines of the function to keep it short):

from functools import lru_cache

@lru_cache(maxsize=2000) # lru decorator added
def nominatim_geocode(address, format='json', limit=1, **kwargs):
 '''thin wrapper around nominatim API.
 ...

As you can see, using the cache required just two lines here: one to import the function, and
another right before the function declaration. Here, maxsize means the maximum number
of values to store before starting to drop the old ones. The great part is that we—or anyone
using the code—don't need to change anything in the external code; everything looks like it
was an ordinary function with no caching.

lru_cache will only store results for the time of the session. If your script
timed out or exits with an exception, everything is lost. If you want to
store cached data to disk, consider using third-party tools, such as joblib
or python-diskcache. Both can store information to disk and retrieve it
from any session, as long as the files are intact.

Reading and writing data
Now that the function works, we can put it to work using any address, or an array of
addresses using loops. For that, addresses could be copied and pasted into Jupyter, but that
is not a sustainable solution. Most of the time, our data is stored somewhere in a database
or a file. Let's learn how to read addresses from a file and store the results to another file.

First Script – Geocoding with Web APIs Chapter 6

[114]

CSV is a popular text-based format for tabular data, where each line represents a row and
cells are separated by separator symbols—usually commas, but it could be a semicolon or a
pipe. Cells containing separator or newline symbols are usually "escaped" using quotes.
This format is not the most efficient, but it is widespread and easy to read using any text
editor.

Python has a built-in library for dealing with .csv files—it is called csv. It has two ways to
parse files: representing each row as a list or as a dictionary. We'll use the second approach:

from csv import DictReader, DictWriter
path = './cities.csv'

with open(path, 'r') as f:
 data = list(DictReader(f))

Here, DictReader is a generator that treats the first row of the CSV file as the header
(which would be the column names) and uses it to create an ordered dictionary (which is
just a standard dictionary with the order ensured) for each row. Its content requires the file
to be open, so we need to either convert it to a list (storing all the data in memory) before
closing the file or run all our geocoding within the scope of the open file. The second
approach can handle a file of any size, storing only one row at a time in memory, but is
more complex. So, for now, we'll stick with the first, simpler approach, which is still
sufficient in the vast majority of cases.

Let's wrap this code into another function, and, since we’re working with files, write
another one to write CSV files:

def read_csv(path):
 '''read csv and return it as a list of dictionaries, one per row'''
 with open(path, 'r') as f:
 return list(DictReader(f))

def write_csv(data, path, mode='w'):
 '''write data to csv or append to existing one'''
 if mode not in 'wa':
 raise ValueError("mode should be either 'w' or 'a'")
 with open(path, mode) as f:
 writer = DictWriter(f, fieldnames=data[0].keys())
 if mode == 'w':
 writer.writeheader()

 for row in data:
 writer.writerow(row)

First Script – Geocoding with Web APIs Chapter 6

[115]

The preceding store_csv function is capable of writing a new file or appending data to an
existing one, assuming it is similarly structured, without adding a header a second time.
With this code, we can now read and write data!

For testing purposes, we prepared a tiny CSV file called cities.csv, which covers the top
10 largest cities in the world, according to the ArchDaily website (https:/ ​/​www. ​archdaily.
com/​906605/​the-​20- ​largest- ​cities- ​in- ​the-​world- ​of- ​2018). Here is what the first two
rows of the data look like:

Name Population Country
Tokyo 38.05 Japan
Jakarta 32.27 Indonesia

Before we start geocoding, let's test our reading function on this sample. We use the
function we just wrote to read the file in the following sections.

Once it's done, we check the first element in the resulting list (the one representing the first
row in the CSV file):

cities = read_csv('./cities.csv')
cities[0]
>>> OrderedDict([('name', 'Tokyo'), ('population', '38.05'), ('country',
'Japan')])

Again, for the sake of testing, let's try writing the data into another file:

write_csv(cities, './my_cities.csv')

Once the operation is done, feel free to check the new file. Having read all the addresses
into memory, we are now ready to geocode!

Geocoding the addresses
Now we know how to read and write data, let's now loop over the addresses from the file
and store the results into another .csv file. For that, we'll create another function that loops
over the addresses and geocodes them one by one. One reason to do so is to make the code
more robust; currently, if something goes wrong with a specific request (say, the address is
not found), our geocode function will raise an error, halting the whole process and,
potentially, leading to the loss of all previously geocoded data. Arguably, a better way
would be to keep the script running and store the dataset, reporting issues and the
corresponding rows of the original dataset separately. So, let's catch errors and append
them and the corresponding rows to another list. If there are no issues but no results either,
we'll print the address and go to the next one.

https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018
https://www.archdaily.com/906605/the-20-largest-cities-in-the-world-of-2018

First Script – Geocoding with Web APIs Chapter 6

[116]

The process will take some time—at least a second for each row, and then some. To keep us
informed and entertained while we wait, let's add a progress bar. For that, we'll use another
popular library, tqdm, that does exactly that. The library is very easy to use. To get our
progress bar, the only thing we need is to loop over a tqdm object, initiated with our
original iterable as an argument. Take a look at the following:

>>> from tqdm import tqdm:
>>> collection = ['Apple', 'Banana', 'Orange]

>>> for fruit in tqdm(collection):
>>> pass

100%|██████████| 3/3 [00:1<00:00, 0.20s/it]

Here, we have a collection of three strings. To add a progress bar over a loop, we initiate
a tqdm object to our collection and loop over it instead, as if it was the original collection.
Easy!

Now, let's break the function we want to write into chunks and go over it. First of all, we
declare the function itself, specifying the data; the column property in each dictionary to
use as an address; and lastly, a Boolean argument, verbose (that is, if we want the function
to be verbose on what is happening under the hood). After a docstring, we create two
lists—one for the good geocode, and one for the errored values:

def geocode_bulk(data, column='address', verbose=False):
 '''assuming data is an iterable of dicts, will attempt
 to geocode each, treating {column} as an address.
 Returns 2 iterables - result and errored rows'''
 result, errors = [], []

Now we can build the loop. As we planned, let's wrap data into a tqdm object to get the
loop. Within the loop, we'll try to run the geocode and check the result. If no result is found,
and we're in verbose mode, the event can be printed and the row can be added to the
results list. If Nominatim found something, we can merge the first result with our initial
information and also store it in our results:

try:
 search = nominatim_geocode(row[column], limit=1)
 if len(search) == 0: # no location found:
 result.append(row)
 if verbose:
 print(f"Can't find anything for {row[column]}")

First Script – Geocoding with Web APIs Chapter 6

[117]

As we don't want to lose all our progress because of an error, we use except so that errors
for a particular address (troubles with the internet connection, for example) will lead to an
empty result for this specific address but won't cause the whole of the code to fail. In this
case, we'll add an error message to the record and pass it to the errors list:

except Exception as e:
 if verbose:
 print(e)
 row['error'] = e
 errors.append(row)

Finally, we report the total number of errors, if in verbose mode, and return two lists.
Here is the function as a whole:

from tqdm import tqdm

def geocode_bulk(data, column='address', verbose=False):
 '''assuming data is an iterable of dicts, will attempt to
 geocode each, treating {column} as an address.
 Returns 2 iterables - result and errored rows'''
 result, errors = [], []

 for row in tqdm(data):
 try:
 search = nominatim_geocode(row[column], limit=1)
 if len(search) == 0: # no location found:
 result.append(row)
 if verbose:
 print(f"Can't find anything for {row[column]}")
 else:
 info = search[0] # most "important" result
 info.update(row) # merge two dicts
 result.append(info)
 except Exception as e:
 if verbose:
 print(e)
 row['error'] = e
 errors.append(row)
 if len(errors) > 0 and verbose:
 print(f'{len(errors)}/{len(data)} rows failed')

 return result, errors

First Script – Geocoding with Web APIs Chapter 6

[118]

Shall we try it out? It seems that it is working: it took us 13 seconds to geocode the cities by
their name:

result, errors = geocode_bulk(cities, column='name', verbose=True)

100%|██████████| 10/10 [00:14<00:00, 1.40s/it]

As a result, we now have two lists: one with successfully geocoded addresses—including
the latitude and longitude of each—and another with problematic entries. If there are any
errored rows, we can make one more attempt to geocode them or investigate the causes and
tweak either the code or the data.

The code we just wrote is rather opinionated, as we made many assumptions. For example,
it uses only one column for geocoding, takes only the first geocode result, and can be very
verbose; you might want to tailor it to your own needs or write different versions for
different projects.

Let's now talk about how to store those useful functions so that we can use them (and we
will) in the future.

Moving code to a separate module
Now we have everything to process data and get the coordinates in bulk. In the Jupyter
Notebook, this could be something as short as the following three lines, assuming we have
the path_in and path_out variables predefined (of course, here we don't actually do
anything with the errors):

path_in = './cities.csv'
path_out = './geocoded.csv'

data = read_csv(path_in)
result, errors = geocode_bulk(data, column='address', verbose=True)
write_csv(result, path_out)

It is not very convenient, however, to fire up Jupyter and run through all the cells every
time just to load the functions we write. Instead, we can store our functions in a separate
module—a text file with the .py extension—and import the functions from there.

Let's create a new text file using Visual Studio Code (which is what we recommend). Here
is what you should do:

Create a new file and call it geocode.py in the same folder as that for the1.
notebooks we run.

First Script – Geocoding with Web APIs Chapter 6

[119]

Once the file is open, copy and paste all the functions we created so far in the file.2.
Visual Studio Code will highlight all possible mistypes and list code issues in the
PROBLEMS section for you.
Once the file is ready, we can return back to Jupyter and import the code from3.
this file (no need to use the extension) just as if it was a library:

from geocode import nominatim_geocode
result = nominatim_geocode('Eiffel Tower')

This is important! For the preceding code to work, geocode.py needs to
be in the same folder as a Jupyter Notebook. If you want to call this
module from somewhere else, you need to either copy (or symlink) the
code, or (better) create a package, which we'll do in Chapter 15, Packaging
and Testing with Poetry and PyTest.

Of course, you can also import specific functions—or even variables, if you want. This
ability to use Python files as modules is very useful. All the generic code that can be used
for a broad range of applications, and all the code that is too long and not as relevant for the
notebooks, should be moved into Python files and imported. This will improve notebook
readability and helps you reuse existing code in other projects.

Now that we know how to move the code, let's see how to collect the data in the next
section.

Collecting NYC Open Data from the Socrata
service
In Chapter 12, Data Exploration and Visualization, Chapter 16, Data Pipelines with
Luigi, Chapter 17, Let's Build a Dashboard, Chapter 18, Serving Models with a RESTful API,
and Chapter 19, Serverless API Using Chalice, we'll be working with the New York City 311
complaints (a non-urgent version of the 911 service) dataset. This data is available via a
public portal (https:/ ​/​data. ​cityofnewyork. ​us/​Social- ​Services/ ​311-​Service-
Requests-​from-​2010- ​to- ​Present/ ​erm2- ​nwe9), both via a web interface and
programmatically via an API. The code for pulling this data via the API is rather dull and
similar to what we've written already, so we won't cover it in detail. In Chapter 16, Data
Pipelines with Luigi, we'll discuss how to pull this dataset systematically and on a scheduled
basis. If you want, however, feel free to check out the code—we added a corresponding file
to this chapter's folder.

So, that is all there is for collection.

https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9

First Script – Geocoding with Web APIs Chapter 6

[120]

Summary
We've done a lot in this chapter. First, we learned about geocoding in general, including
geocoding services and their web APIs. We also discussed how you can interact with web
APIs programmatically, from Python, using the requests library. Then, we experimented
with a specific API from Nominatim and wrote a thin wrapper function that geocodes any
arbitrary address. On top of that, we wrote another function to geocode addresses in bulk
that keeps working even if a specific request fails or no location was found for some
addresses. We used the built-in csv library both to read data from and write to CSV files.
Finally, as the code we used seemed as though it might be useful in the future, we moved it
from a notebook into a dedicated Python file, which can be used as a standalone script with
its own interface or as a module to import functions from.

In the next chapter, we'll go even further, covering cases when there is no simple API so
data has to be scraped from raw HTML pages.

Questions
What is an API? Why would we use it?1.
What do the various HTTP response status codes mean?2.
Is there a built-in library for dealing with HTTP? Why do we use requests3.
instead?
How do you define command-line interface parameters for Python scripts?4.
What does if __name__ == '__main__' mean and why do we need it at the5.
end of a script?

Further reading
Hands-On RESTful API Design Patterns and Best Practices by Pethuru Raj, Harihara
Subramanian, Packt Publishing (https:/ ​/​www. ​packtpub. ​com/ ​application-
development/ ​hands- ​restful- ​api-​design- ​patterns- ​and- ​best- ​practices)
What is REST? (https:/ ​/ ​restfulapi. ​net/​)

https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://www.packtpub.com/application-development/hands-restful-api-design-patterns-and-best-practices
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/

7
Scraping Data from the Web

with Beautiful Soup 4
In the previous chapter, we wrote a piece of code that communicates with the Nominatim
web service in order to collect information. Frequently, however, there is no API in place,
and data could be scattered throughout hundreds of web pages, or, even worse, files with a
complex structure (PDFs). In this chapter, we'll explore another data collection
path—scraping raw HTML pages. In order to do so, we will use another library, Beautiful
Soup 4, which can parse raw HTML files into objects, and help us to sift through them,
extracting bits of information. Using this tool, we will collect a relatively large dataset of
historic battles of World War II, which we will, in the chapters to come, process, clean, and
analyze.

In this chapter, we will cover the following topics:

When there is no API
Scraping WWII battles
Beyond Beautiful Soup

Technical requirements
In this chapter, we'll make use of requests and BeautifulSoup libraries—both are
included in the Anaconda distribution. If you don't use Anaconda, make sure to have them
both installed. Given that you will scrape data from the web, an internet connection is also
required. As usual, the code for this chapter is stored in Chapter07 folder in the GitHub
repository, https:/ ​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data-
Science-​Applications.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[122]

When there is no API
As with API services, web pages have their owners, and they may or may not be open to
the idea of scraping their data. If there is an API in place, this is always preferred over
scraping, for the following reasons:

First, it is usually way better and simpler to use, and there are a number of
guarantees that API owners will retain its structure, or at least let you know of
upcoming changes in advance. With HTML web pages, there is no guarantee
whatsoever; the website will often change, and they won't tell you ahead of time,
so expect lots of emergency breaking changes!
Second, being a good citizen, it is substantially cheaper, computation-wise, to
serve raw data than a full-blown HTML page, so the service owners will be
thankful.
Lastly, some data (for example, historic changes) will not be available via the web
page.

However, there are plenty of examples of web pages with no API. Some information is not
intended for sharing (for example, electronic shops are not excited about their prices being
tracked), and many organizations simply don't have the capacity to maintain them.

As a practical exercise, we will now scrape data from Wikipedia, which is, paradoxically,
both an extremely good and extremely bad example of a website to scrape. It is a great
example because Wikipedia fully supports scraping; in fact, it openly shares the whole
dataset, so we can download and work with it if we want. At the same time, it is a bad
example, because, by its very nature, Wikipedia has no strict template and data structure –
every page can be unique in its structure and layout, and even a raw dataset won't change
that. Most of the websites are pre-generated using the same templates, so data scraping, on
average, is easier. But it is always dirty, semi-manual hard work.

But before we dive into coding, let's discuss what HTML is and how to work with it.

HTML in a nutshell
You are probably aware that web pages are written in three main languages – HTML, CSS,
and JavaScript, of which only the latter is an actual language. In this triad, CSS is used to
style objects visually, for example, set the color or font of the elements. JavaScript is a
language that runs on the client's machine, and allows basic interactions on the website –
for example, sending information back to the server, and selecting elements from the drop-
down menu.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[123]

The main body of a page is described with HTML. Its goal is to present the hierarchy and
the layout of the page. HTML is a subset of XML, a general-purpose markup language,
designed specifically for web pages. Like XML, HTML describes the document via nested
series of objects, defined with tags. It has a large nomenclature of those objects, each
describing specific behavior. For example, the tag describes an ordered list; its
children elements, , will be enumerated. Similarly, <table> describes a table (duh),
and the <a> element represents links. Each element can have the following:

Internal text.
Child elements.
An ID attribute – unique identification for a specific element.
A class attribute – non-unique type identification. One or more classes and IDs
help to apply specific designs and interactions to the right elements.
Any other attribute. For example, <a> elements encode their link as an href
attribute (a hyperlink reference).

For the sake of scraping, we don't really need to understand how elements behave and
differ from one another. Scrapers usually use a combination of element names, properties
(IDs, classes, and so on), their relative position, and the content to find specific elements. As
pages tend to differ slightly both in structure and content, in order to scrape, we have to
understand the logic of the page builder, which might be tricky.

It is important to note that this approach works only with the pre-generated, static content
on the page.

Most modern pages use JavaScript – client-side code, in order to execute some interactions;
for example, to send a note to Google Analytics, or adjust the layout depending on the
window size. Some, however, use JavaScript intensively; for example, for data acquisition
(for example, the Facebook news feed). Beautiful Soup does not run JavaScript, so it won't
work with these kinds of systems. There are ways to overcome this limitation, for example,
by using special headless browsers. This approach, however, is significantly more complex
and computation-demanding. We'll talk a little bit more about this topic and how to scrape
JavaScript-intensive pages in the final section of this chapter.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[124]

Scraping with Beautiful Soup 4
Any publicly accessible HTTP can be pulled with a requests library. As you remember, if
the resulting value is stored as a JSON, requests have a built-in parsing method. For
HTML, it is different: parsing HTML is no simple task. It is much more complex than your
ordinary JSON; HTML files are large and can be invalid (browsers will often still "fix" and
render them).

In order to do so, we'll be using Beautiful Soup 4 (BS4), one of the two main libraries for
parsing HTML, together with LXML. Beautiful Soup also knows how to parse HTML, and
can even repair invalid files. Once the document has Pythonic representation, we can drill
down and retrieve specific elements we're interested in by using a combination of element
ID, class, CSS properties, their order, and so on using either CSS selectors or the XPath
mini-language.

CSS and XPath selectors
As mentioned previously, Beautiful Soup parses the HTML from string to a Python object.
Even parsed, this structure is not an easy thing to navigate. This is especially true for bulk
retrieval when we operate on multiple pages at once due to the dynamic nature of the web.
Even the same page can change constantly, with some elements being added or removed,
let alone different pages, even those with apparently the same structure. This is the moment
when you'll start appreciating well-defined and stable APIs!

To navigate HTML document structures, also known as Document Object Models
(DOMs), two common and widely adopted techniques are used. The first one, CSS
Selectors, is a pattern language built to work with HTML and identify elements using a
combination of the element type, class, and ID properties, their nested structure, and a
number of other options. Here is a full example of a CSS Selector for the main image on an
arbitrary Wikipedia page:

body div#content.mw-body div#bodyContent.mw-body-content div@mw-content-
text.mw-content-itr div.mw-parser-output table.infobox.vevent tbody tr td
a.image img

As you can see, it is a very specific sequence of HTML elements – div tags, table, table
body, table row, image, and so on.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[125]

Many of those elements have IDs – unique identifiers for the exact elements. IDs are
defined after the element type, separated by the # symbol. Any element can have only one
ID, and IDs are supposed to be unique, but that won't break the page.

Some elements have one or multiple classes – non-unique identifiers. Classes are not
unique, so HTML elements can have any number of classes at the same time. Also, classes
are separated by the dot (.) element.

The sequence of elements represents the required nesting structure for writing a code—for
example, an element that fits the preceding pattern needs to be an image, nested within
an a element with a class image, and nested within a td element.

This makes the preceding query extremely specific for scraping purposes; any change to
this structure will break the retrieval, so we need to design a query that is as simple and
general as possible so that it doesn't break, but specific enough to pull the correct
information. Defining such queries is almost an art by itself. An example of an arguably
better query for the same element could be something like the following:

 table.infobox.vevent a.image img

This query is much shorter! The trick here is that the sequence does not require nesting to
be direct or complete (for direct nesting, a > symbol can be used). We start by specifying
that we're only interested in a table with two classes, infobox and vevent. In that table,
we're looking at the a element with the image class, and pulling an image (img element)
from it. Of course, there is a change here. There will be more than one image on the page.
Inside that table, we can either decide to pull all of them, or just the first occurrence, by
using a corresponding retrieval command in Python or adding :first-of-type to the
CSS. There are many other properties and tricks of querying with CSS. To learn more, check
out the Mozilla CSS documentation (https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
CSS).

CSS attributes are at the core of navigation and the querying of HTML, but we don't have to
use a CSS Selector to run a query. While CSS querying is usually short and readable, they
don't provide advanced tooling for operating the structure of the document, for example,
going up the document tree, or of the sibling elements. An alternative tool, one that can be
used beyond HTML, is XPath, the XML path language. XPath has a lot of flexibility and
power when it comes to locating objects.

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[126]

XPath can sometimes look like a filesystem path – nesting is represented by a slash, while a
double slash means recursive nesting (more than one level inside). Elements can be indexed
with square brackets (similar to Python iterables). The existence of a certain attribute, or the
matching of certain criteria (predicates), can also be specified within square brackets (we'll
see a similar approach in Python, in Chapter 11, Data Cleaning and Manipulation). For
example, here is the same query as earlier, but using XPath:

//table[contains(@class, 'infobox') and contains(@class,
'vevent')]//a[contains(@class, 'image')]//img

As you can see, this path is much longer! In fact, it has some problems as well – contains
only checks for partial inclusion, so theoretically, contains(@class, 'vevent') will
also match a class name such as veventTest. This may be a problem for some cases, but
not in ours. Despite being verbose, on many other occasions, XPath works better than CSS,
especially regarding the bulk retrieval of values. If you want more information on XPath,
MDN (https:/​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​XPath) keeps you covered,
again.

Both CSS Selectors and XPath are capable of retrieving almost any set of elements from a
page. In addition, Beautiful Soup itself has quite a few tricks of its own. Here, we're using
only CSS Selectors, as Beautiful Soup does not support XPath (LXML does, however).

Building a proper scraper requires a lot of testing and manual sifting through the web page
to get the structure of HTML and CSS attributes just right. An invaluable tool at our
disposal to this end is a browser developer console; both Chrome and Firefox have one.
Let's have a look.

Developer console
Before we pull specific elements of a page, we first need to know where to search for them.
In order to understand the page structure, we'll use the Chrome Developer console, which
is built into the Chrome browser. Firefox has a similar tool – Firefox Developer Tools.

In order to see the HTML structure of any page, simply open it in Chrome, hover over any
specific element of the page, right-click on the mouse button, and select Inspect—a new
window will appear, showing a page's HTML centered on the element you just hovered
over (refer to the following diagram):

https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[127]

Note that when you hover over other elements in this new window, corresponding
elements on the page are highlighted. Now, go to the element you're interested in – find it
in this new window. Notice the line following the window – it describes the path from the
root of the document all the way to the element you see. This path is very important for
us—we will use it to pull specific values from the path from Python.

Let's now see how all of this works in practice.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[128]

Scraping WWII battles
The goal of this chapter is to collect the information on all battles in WWII from Wikipedia.
A corresponding list is provided: https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​List_ ​of_ ​World_ ​War_
II_​battles. As you can see, it contains links to a large set of pages, one for each battle,
operation, and campaign. Furthermore, the list is structured, so battles are grouped
according to the campaign or operation, which are, in turn, grouped by the theaters – it
would be great to preserve this hierarchy! Most elements of the list also have a date. We'll
work with those lists in a minute.

Now, if you check a couple of pages for specific battles, you may notice that they have a
similar structure. For most of them, the large information card on the right has a set of
similar subsections, including the main section with dates, locations, and outcomes, and a
few additional sections, such as strengths, commanders, casualties, and belligerents. This
is great news – we can use this structure to write generally applicable code, and collect
specific information for each battle in a uniform fashion.

Given all that, the task can be executed in three steps:

First, we'll collect all the links and names from the initial list of battles,1.
preserving the nested nature.
Next, we will create a scraper that will extract specific information, such as2.
locations, dates, sides, leaders, and casualties from a page pertaining to a
particular battle.
Finally, we will loop over all the links we collected in the first part and collect3.
information for each.

In doing so, we will try to use several approaches that we have found to be useful:

Write simple, universal functions first, moving all decisions and opinions to the
functions of a higher level.
Collect and store raw data – clean and process it afterward. Any exception or
error might lead to the loss of the data.
Don't clean data within the scraper – it will be way easier to do that afterward, in
bulk, having the "raw" data as a reference.

Let's do it!

The scraper we're building in this chapter does work at the time of
writing. It may be broken in the future, however, by any design change in
the Wikipedia page. This is the unfortunate nature of scrapers.

https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles
https://en.wikipedia.org/wiki/List_of_World_War_II_battles

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[129]

Step 1 – Scraping the list of battles
Let's start with scraping the main page. For that, let's go through a few steps.

First, we need to collect the main page as a string, using the requests library – the same
way we pulled the information from Nominatim, using the HTTP GET request via the
library's get method:

import requests as rq

base_url = 'https://en.wikipedia.org/wiki/List_of_World_War_II_battles'
response = rq.get(url)

We can access the raw content of the page via response.content.

Next, we need to parse this string into a Python representation of the page using BS4:

from bs4 import BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')

Perfect! To structure the code, we create a new function, get_dom (DOM stands for
Document Object Model), which encloses all the preceding code:

def get_dom(url):
 response = rq.get(url)
 response.raise_for_status()
 return BeautifulSoup(response.content, 'html.parser')

Next, once we have a parsed DOM, it is a good idea to specify the area of the page we'll be
working in – the main content element. Using the Chrome Developer console, we can
observe that the main text is stored within the div element with the mw-parser-
output class, wrapped into another div element that has the mw-content-text ID. Let's
now use that information to get it in Python, using BS4.

Beautiful Soup has three separate ways to search for an element – find, find_all,
and select. The first and second approaches expect you to pass an object type and,
optionally, attributes. A recursive argument defines whether the search should be recursive
(deeper than one level in). The difference between these approaches is subtle – the first
method will only retrieve the first occurrence. The second one, in contrast, will always
return a list with all the elements. Finally, select will also return a list – and expects you
to pass a single CSS Selector string. Because of that, it is easier to specify a nested element to
retrieve:

content = soup.select('div#mw-content-text > div.mw-parser-output',
limit=1)[0]

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[130]

The objects they return are similar to the root BS4 object, but only cover the corresponding
section of the page.

In the next step, we need to collect the corresponding elements for each front, in our case,
h2 headers. All fronts are organized as sections – each section has a title (the h2 element),
but hierarchically, titles are not nested within the sections; all section content sits just below
the corresponding title. There is also the last title that we don't care about – citations and
notes. One way to filter would be just to drop the last element. Alternatively, we could use
a CSS Selector trick, using the following predicate: :not(:last-of-type). To keep things
simple and readable, we'll just drop the last element in the list in this case:

fronts = content.select('div.mw-parser-output>h2')[:-1]

Here, we are searching for all h2 headers in the content section, with no recursion. Did we
collect all the correct titles? Let's check! To remove the [edit] element from the title, we
simply remove the final six characters:

>>> for el in fronts:
>>> print(el.text[:-6])
African Front
Mediterranean Front
Western Front
Atlantic Ocean
Eastern Front
Indian Ocean
Pacific Theatre
China Front
Southeast Asia Front

This looks correct. Now we have all the fronts!

But how can we get the corresponding ul lists for each header? This may seem like a
problem – we need to retrieve elements that are based on, and associated with, other
elements on the same level. Luckily, BS4 can take care of that using the
find_next_siblings method. It works exactly like find_all, except that it won't look
within the element but in the overarching document starting right after it. In other words,
BS4 objects don't only store information on given HTML element – they are aware of the
HTML document as a whole.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[131]

Take a look at the following code snippet, we're taking the first title by using 0 as an index,
and then we run the method, passing the query properties—it should be a ul element
within the first div with three classes: div-col, columns, and column-width:

>>> fronts[0].find_next_siblings("div", "div-col columns column-
width")[0].ul
<a href="/wiki/North_African_Campaign" title="North African
Campaign">North African Campaign.....

It worked! We asked BS4 to find all the div elements with the "div-col columns
column-width" classes, after each header. There are many of them, but only the first
div element is related to the header. Thus, we need to retrieve the first one and obtain the
underlying ul element. And that is what we're going to do in the next section.

Unordered list
But how can we collect all the information from the nested list simultaneously? This seems
like a proper task for recursion – for each element of the list, we will store the link and the
date (where this exists), and, if it has some nested elements, we'll run the same function on
them as well. To keep track of the nesting levels, we also add a level property. Consider
the following example. It may seem overly complex at first, but all those try/else and if
statements keep the code working if some values are missing—the function will still work if
there is no date, or link, or nested elements. We're also using next as we don't want to get
all the text elements (and waste time and memory on them); we only need the first two:

def dictify(ul, level=0):
 result = dict()
 for li in ul.find_all("li", recursive=False):
 text = li.stripped_strings
 key = next(text)
 try:
 time = next(text).replace(':', '').strip()
 except StopIteration:
 time = None
 ul, link = li.find("ul"), li.find('a')
 if link:
 link = _abs_link(link.get('href'))
 r ={'url': link,
 'time':time,
 'level': level}
 if ul:
 r['children'] = dictify(ul, level=(level + 1))
 result[key] = r
 return result

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[132]

This function is not very elegant, but it does its job. Now, let's try running it on all the
fronts:

theaters = {}

for front in fronts:
 list_element = front.find_next_siblings("div", "div-col columns column-
width")[0].ul
 theaters[front.text[:-6]] = dictify(list_element)

If you want, you can print the resulting data out – it works! Now, we have all the links – all
that is left is to scrape them. But first, let's store what we have obtained so far as a JSON file.
For that, we need to open the file as we did with the CSVs, in 'w' (write) mode. Once that
is done, we can use the json package to dump the dictionary into the file. Take a look at
the following snippet:

import json

with open('all_battles.json', 'w') as f:
 json.dump(theaters, f)

That was easy! Now, let's parse the information from a specific battle's page.

In this chapter, and generally throughout the book, we are trying to keep
basic functions simple and universal – so that they can be used repeatedly
without any change. All specific decisions are made on a higher level. This
is not only helping to reuse the code; it also makes it more transparent and
predictable. You won't need to remember all the decisions you made on
the lower level.

Step 2 – Scraping information from the Wiki page
As we need to start from something, let's pick a battle page to test our code on – Operation
Skorpion (en.wikipedia.org//wiki/Operation_Skorpion). The following is a screenshot of
the page, with the areas in which we're interested highlighted in red:

http://en.wikipedia.org//wiki/Operation_Skorpion

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[133]

The code for this part of the chapter is stored in the
B_Scraping_part_2 notebook.

First, we can use the function we wrote in the earlier section to collect the page as a dom
object:

url = 'https://en.wikipedia.org/wiki/Opeation_Scorpion'
dom = get_dom(url)

Next, as in the previous case, we select the larger container that stores all the information
we're interested in – in this case, the info card (the larger, dotted red rectangle on the
screenshot). All the information we're interested in (dates, location, outcomes, belligerents,
and casualties) is there, below the map:

table = dom.find('table','infobox vevent')

Now that we have the card, all we need is to pull all the information out of it, which we'll
do in the next section.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[134]

Key information
Key information is stored right below the map and includes dates, locations, and outcomes.
Let's call this section the main one. As you can see via the developer console, this section is
designed as a table with two columns – the first column representing a key (metric names),
and the second, corresponding values. Indeed, it is very similar to how dictionaries are
structured, so let's write a generic converter from this two-column table to a dictionary.
Take a look at the following snippet. Here, we traverse through rows, adding the value of
the first column as a key, and the second as a value, to the dictionary:

def _table_to_dict(table):
 result = {}
 for row in table.find_all('tr'):
 result[row.th.text] = row.td.get_text().strip()
 return result

Now, we can select the section and parse it. Again, we can find all rows in the info card and
select this section by its order, but this approach will fail if there are a different number of
sections or a different order. In contrast to the previous task, we cannot tolerate this now;
given the dozens of links we have to hand, we have to write robust code that can work with
any structure. So, instead of the order, let's search by the content – say, all sections
containing the Location string. In the following code snippet, we do precisely that –
traverse through all the tables within the info card, and pull only those with the Location
word inside. Assuming that there is only one such table per page, we then pull the first one
and transform it into a dictionary:

def _get_main_info(table):
 main = [el for el in table.tbody.find_all('tr', recursive=False) if
'Location' in el.get_text()][0]
 return {'main': _table_to_dict(main) }

Now, let's test it by running table we pulled from the Operation Skorpion page. As you
can see here, it seems to work perfectly:

>>> _get_main_info(table)
{'main': {'Date': '26–27 May 1941', 'Location': 'Halfaya Pass, Egypt31°30′N
25°11′E\ufeff / \ufeff31.500°N 25.183°E\ufeff / 31.500; 25.183Coordinates:
31°30′N 25°11′E\ufeff / \ufeff31.500°N 25.183°E\ufeff / 31.500; 25.183',
'Result': 'Axis victory', 'Territorial': 'Axis re-captured Halfaya Pass'}}

Of course, the location string is a mess, but we should resist the temptation to parse it right
now – all parsing should be done once the data is collected! Also, as you'll see, many pages won't
have geocoordinates, so our attempt to parse those would fail in any case. Next, let's collect
the supplementary information from each page.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[135]

Additional information
There is a lot of additional information on the page that we'd want to have in the dataset –
sections such as belligerents, leaders, strengths, and casualties (refer to the lower rectangle
on the screenshot in Step 2 – Scraping information from the Wiki page section, named
Supplemental info). As you can see, each header here is a row in the table – and all the
actual information sits beneath it – similar to lists after headers in the previous task. You
will also observe that most of the sections are split horizontally into two cells, the first being
on allies, and the second on the axis. In fact, in some cases (refer to the Vilnius Offensive
page), Wikipedia adds third column for a third party involved in the event. For operation
Skorpion, some sections have only one column, representing overall outcomes (for
example, the total number of casualties), while for others (Operation Goodwood—https:/ ​/
en.​wikipedia.​org/ ​wiki/ ​Operation_ ​Goodwood), casualties are split between the two sides
involved. This needs to be addressed as well.

All titles appear to be consistent throughout all the pages. Thus, we can search for specific
headers – and if there are any, grab the corresponding data from the section beneath each.
Here is the code snippet that does exactly that; it looks for a header, and if there is one,
takes the next section:

def _find_row_by_header(table, string):
 header = table.tbody.find('tr', text=string)

 if header is not None:
 return header.next_sibling

Now that we know how to get each section, let's parse them. The following code checks for
the number of rows in the table. If there is only one, it will be stored as total. If there are
two or more, they will receive corresponding columns – allies, axis, and third party:

def _parse_row(row, names=('allies', 'axis', 'third party')):
 '''parse secondory info row
 as dict of info points
 '''
 cells = row.find_all('td', recursive=False)
 if len(cells) == 1:
 return {'total':cells[0].get_text().strip()}

 return {name:cell.get_text().strip() for name, cell in zip(names,
cells)}

https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood
https://en.wikipedia.org/wiki/Operation_Goodwood

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[136]

The order of belligerents is assumed to be consistent within the same page. Unfortunately,
the order of sides differs from page to page, and we failed to find any rationale for this.
Thus, the column that we're calling axis may actually refer to the allies side – we will
have to fix that during the data cleaning process in Chapter 11, Data Cleaning and
Manipulation.

Let's now collect all the additional information together, using a predefined set of headers
to look for:

def _additional(table):
 keywords = (
 'Belligerents',
 'Commanders and leaders',
 'Strength',
 'Casualties and losses',
)
 result = {}
 for keyword in keywords:
 try:
 data = _find_row_by_header(table, keyword)
 if data:
 result[keyword] = _parse_row(data)
 except Exception as e:
 raise Exception(keyword, e)
 return result

Note that the exception here is used to show the keyword for which the issue is raised,
thereby facilitating debugging.

Finally, let's wrap all the code for the page into one function that we'll run on all links:

def parse_battle_page(url):
 ''' main function to parse battle urls from wikipedia
 '''
 try:
 dom = _default_collect(url) # dom
 except Exception as e:
 warnings.warn(str(e))
 return {}

 table = dom.find('table','infobox vevent') # info table
 if table is None: # some campaigns don't have table
 return {}

 data = _get_main_info(table)
 data['url'] = url

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[137]

 additional = _additional(table)
 data.update(additional)
 return data

The preceding try/except clause helps to catch an exception if there is no such page – we
got one broken link in our database. You can find it on the initial page; it is highlighted in
red.

Now, as an added bonus, all the operation and campaign pages have the same structure, so
we collect all the info from them, using the same code. Nice!

To ensure that we have addressed most of the issues, test the code on a set of links, ideally,
the most diverse and exotic ones. As the preceding code will be used in another notebook,
it makes sense to copy it to a dedicated .py file.

Step 3 – Scraping data as a whole
Finally, we have all the links and code to scrape information from each one of them.

The code for this subsection can be found in the C_Scraping_part3
notebook.

First, let's import all the code we will require, and read the file with links:

import json
from wiki import parse_battle_page
import time

with open('./all_battles.json', 'r') as f:
 campaigns = json.load(f)

Once again, we need to write a recursive function that will scrape data for a given event
and call itself for all nested events:

def _parse_in_depth(element, name):
 '''attempts to scrape data for every
 element with url attribute – and all the children
 if there are any'''
 if 'children' in element:
 for k, child in element['children'].items():
 parsed = _parse_in_depth(child, k)
 element['children'][k].update(parsed)
 if element.get('url', None):

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[138]

 try:
 element.update(parse_battle_page(element['url']))
 except Exception as e:
 raise Exception(name, e)
 time.sleep(.1) # let's be good citizens!
 return element

Note that we actively use the try/except clause as it helps to understand the specific page
that needs to be resolved. Often, it is enough to look at the actual page to understand the
problem.

Fronts and campaigns do not have links themselves. In order to pull information on all
battles, we need to use a double loop. In the following code snippet, we loop over all fronts.
For each front, we add a new key to the dictionary and start looping over the campaign
links for this front. From here, our battle page parser can take over:

campaigns_parsed = {}

for fr_name, front in campaigns.items():
 print(fr_name)
 campaigns_parsed[fr_name] = {}
 for cp_name, campaign in front.items():
 print(f' {cp_name}')
 campaigns_parsed[fr_name][cp_name] = _parse_in_depth(campaign,
cp_name)

This process may take some time, mostly because we asked Python to sleep on each
element. Note that scraping failed for one link – Operation Wotan. It seems that this
operation is fictional, and the Wiki community decided to remove the page, which is fair
enough, and the good part is that this didn't cause our code to stop, so all the other pages
are collected.

Once it's done, let's check the overall quality of the data we just pulled. More on that in the
next section.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[139]

Quality control
As we mentioned already, there are plenty of issues with this data, as web pages are very
different in terms of their structure and offer different sets of information, formatted
differently. There are a lot of issues in the code – cleaning all of it will take another chapter
(and indeed, that's what we'll do in Chapter 11, Data Cleaning and Manipulation). It is good
practice, however, to perform a modicum of basic quality control, verifying that all the
pages have some minimal, requisite properties, and that they are not null. We could also
add some other checks, ensuring, for example, that the additional fields are not empty, at
least for a significant number of the pages.

The approach we'll be using is two-fold. First, we'll try to define a list of values we're
assuming are required for each record. Second, we already know that some information
will be missing for some of the pages, so let's at least calculate it. In order to do so, we
define one dictionary to store all the information. At the start, it will contain only zeros.
Consider the following example. Here, we cover all the battles we'll check (total), records
with missing locations, outcomes, and territorial sections. In addition, we'll calculate a
number of records with only total values for Casualties, Commanders, and Strength in
the total section. Similarly, we will check how many records are devoid of those sections:

STATISTICS = {
 'battles_checked':0,
 'location_null':0,
 'result_null':0,
 'territorial_null': 0,
 'total': {
 'Casualties and losses':0,
 'Commanders and leaders':0,
 'Strength':0
 },
 'none': {
 'Casualties and losses':0,
 'Commanders and leaders':0,
 'Strength':0
 }
}

Once the data structure is defined, let's write a checking function. It is a rather simple one,
in keeping with the others. It is recursive, as it calls itself on all the children of a given
record.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[140]

Note that we check for required values at the outset. In the end, we only kept the level
value as a required attribute:

def qa(battle, name='Unknown'):
 required = (
 # 'Location'
 # 'url',
 'level',
)
 for el in required:
 assert el in battle and battle[el] is not None, (name, el)

 STATISTICS['battles_checked'] +=1
 for el in 'Location', 'Result', 'Territorial':
 if el not in battle or battle[el] is None:
 STATISTICS[f'{el.lower()}_null'] += 1
 for el in 'Casualties and losses', 'Commanders and leaders',
 'Strength':
 if el not in battle:
 STATISTICS['none'][el] += 1
 continue
 if 'total' in battle[el]:
 STATISTICS['total'][el] += 1
 if 'children' in battle:
 for name, child in battle['children'].items():
 qa(child, name)

 With this function, we can now loop over the records and check our statistics:

for _, front in campaigns_parsed.items():
 for name, campaign in front.items():
 qa(campaign, name)

The preceding function, as defined, passes all the tests. But why did we
remove url and Location from required? It transpires that some records do miss them –
for example, Battle of Lang Son does not have a link at all, while a few others (for
example, the French West Africa—https:/ ​/​en. ​wikipedia. ​org/​wiki/ ​French_ ​West_ ​Africa_
in_​World_​War_​II page) are missing Location and Date. In this case, we decided to relax
our requirements but to add a note on those missing records. Feel free to modify the test –
this will give you an insight into some of the different types of issues we'll have to mitigate
with this dataset in the future.

https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II
https://en.wikipedia.org/wiki/French_West_Africa_in_World_War_II

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[141]

Once the test is over, we can check the statistics:

>>> STATISTICS

{'battles_checked': 624,
 'location_null': 37,
 'result_null': 40,
 'territorial_null': 553,
 'total': {'Casualties and losses': 7,
 'Commanders and leaders': 3,
 'Strength': 2},
 'none': {'Casualties and losses': 83,
 'Commanders and leaders': 44,
 'Strength': 109}}

Most records are missing a territorial section – and quite a few don't have any information
on the overall strength. Again, it is a good idea to collect that information for the future. For
now, let's store the dataset we obtained to another JSON:

with open('_all_battles_parsed.json', 'w') as f:
 json.dump(campaigns_parsed, f)

And we're done! The three steps in this section will help you to scrape up the data and
present it accordingly.

Beyond Beautiful Soup
In this example, we used the BS4 library to parse static HTML for us. Beautiful Soup is an
invaluable library for dealing with occasionally messy HTML, but when it comes to large
scales and dynamic pages, it simply won't suffice. For production scraping in large
quantities, perhaps on a regular basis, it is a good idea to utilize the Scrapy (https:/ ​/
scrapy.​org/​) package. Scrapy is an entire framework for downloading HTML, parsing
data, pulling data, and then storing it. One of its killer features is that it can run
asynchronously – for example, while it is waiting for one page to load, it can switch to
processing another, automatically. Because of that, Scrapy's scrapers are significantly faster
on large lists of websites. At the same time, its interface is more expressive for a developer,
as it is explicitly designed for scraping.

Depending on your goal, other alternatives may be available as well. For example, a
marvelous package, newspaper (https:/ ​/ ​newspaper. ​readthedocs. ​io/​en/ ​latest/ ​), can
collect data (articles) from news websites – it has built-in configurations for the most
popular ones, but also performs reasonably well on others with little guidance (for
example, it can find the body of an article on the page).

https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/
https://newspaper.readthedocs.io/en/latest/

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[142]

Now, the elephant in the room is that in all those cases, we only use static content – HTML
that is returned by the server when you get data from a URL. However, many modern sites
actively add content after the initial page is loaded – for example, they add an infinite scroll
by pulling new pieces of HTML while you scroll, a few steps ahead of you. If you need this
information, none of those tools will suffice. In this case, you'll have to emulate the
browser, rendering pages as if you were actually looking at them, running JavaScript, and
so on. For this, people use Selenium – a browser automation system that can emulate a full-
blown browser.

Selenium can pull a page, render the browser into an image, perform actions (for example,
click on a button or scroll), and get you the resulting HTML. There is only one caveat – the
process will be incredibly slow in this case. A more modern alternative is to use Splash, a
JavaScript renderer written in the Lua language. It is somewhat faster than Selenium and
does have integration with Scrapy, but is not as mature.

Scraping is no easy task. Ever-changing websites, data with no single structure, and
developers trying to prevent you from scraping can make your work hard. In this
environment, it is especially important to pick the right tool and design your code to be as
clean and fault-tolerant as possible.

Summary
In this chapter, we learned the hard work of scraping data from HTML pages through the
use of the Beautiful Soup 4 library. Using it, we were able to collect all the links from one
page, preserving the hierarchy, and retrieve the information for each of the collected links.
This skill is invaluable, as it allows you to collect information from the internet, for
research, business, or as a personal hobby.

We also touched on Selenium, which emulates a full-blown browser, can interact with the
page and execute JavaScript, giving us access beyond static content.

In the next chapter, we'll clean and use the data we collected, creating an interactive
visualization of the war.

Scraping Data from the Web with Beautiful Soup 4 Chapter 7

[143]

Questions
What does the term web scraping mean in this context?1.
What are the biggest differences between scraping and using an API? What are2.
the challenges?
What exactly does Beautiful Soup do? Can we scrape without it?3.
Why did we use recursion here?4.
Should we clean data during scraping?5.
What is the right approach to dealing with missing data or broken links?6.

Further reading
Python Web Scraping – Second Edition, by Richard Lawson and Katharine Jarmul,
published by Packt (https:/ ​/​www. ​packtpub. ​com/​big- ​data- ​and- ​business-
intelligence/ ​python- ​web- ​scraping- ​second- ​edition)
Python Web Scraping Cookbook, by Michael Heydt, published by Packt (https:/ ​/
www.​packtpub. ​com/ ​big- ​data- ​and-​business- ​intelligence/ ​python- ​web-
scraping- ​cookbook)

https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook

8
Simulation with Classes and

Inheritance
In the previous chapters, we described the entities we derived from libraries as objects with
no further explanation. For example, an entity describing a web page in our previous
chapter was an object with its own values and methods—bound functions that seem to have
access to objects internals.

In fact, we can create our own structures by defining classes. In this chapter, we'll do exactly
that—learn how to define and make the most of classes and their properties. Along the
way, we will use classes to create a rather complex system and monitor its
behavior—something that classes are very good for. Because of that, classes are used
extensively in games, computer graphics...in fact, any type of task where creating specific
entities seems useful.

In this chapter, we will cover the following topics:

Writing a class and generating its instances
Using special methods of a class
Class inheritance
Build upon newly introduced syntaxes—data classes
Demystifying the relationship between classes and functions in Python
Creating a simplified dynamic model of an ecosystem using classes
Learning the basics of visualization in Python with the Matplotlib library

Simulation with Classes and Inheritance Chapter 8

[145]

Technical requirements
The code in this chapter requires one additional library to be installed—matplotlib. It is
included in the default Anaconda distribution.

All the code is accessible via the GitHub repository, https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications.

Understanding classes
You can think of classes as blueprints for their instances—for example, a Car class will
describe the generic properties of a car, while a specific instance of this class will describe a
particular car with its own characteristics. As such, classes provide a way to store
information and related functions linked to the instances. In our example, the Car class can
store a drive function in its body, which will rely on the gasoline value for each specific
instance. This approach is extremely useful when we describe systems of entities, whether a
representation of a physical object (Car), personal information (Contact), or some abstract
entity (web page representation).

Let's start with the syntax. Take a look at this example:

class Person:
 '''person entity'''
 greeting = 'Hi {0}. My name is {1}!'
 def __init__(self, name, surname, age):
 self.name = name
 self.surname = surname
 self.age = age
 def __repr__(self):
 return f'Person(name={self.name}, surname={self.surname},
 age={self.age})'
 def say_hi(self, name):
 print(self.greeting.format(name, self.name))

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Simulation with Classes and Inheritance Chapter 8

[146]

To declare a new class, we will start with the class keyword, followed by the class
name—the same as we do for functions. As recommended in PEP8, class names are title-
cased—they should start with an uppercase letter. The name is then followed by
parentheses, if the class is based on (inherits from) another class (more on that later). You
don't need them if it does not. Again, as with functions, this initial line needs to end with
the colon, and all the following lines should start with an indentation.

In some code samples outside of this book, you might notice that a class
inherits from an object. This is a legacy style; there is no advantage in
inheriting from an object in Python 3. This code was probably written to
be compatible with Python 2.

Like functions, classes can (and should) contain a docstring. After that, you can describe its
internals, such as the values and methods the class instance would have.

Right after the docstring, we can add class attribute—those will shared across all instances,
until we overwrite them (in this case, a new value will be preserved for a specific instance).
Using class attributes is a great practice to declare default values. Class attributes also save
memory, as we store one value shared across all instances.

The functions within the class are called methods. While you can add any custom method
or variable to a class, it is important to know the special values and methods that are bound
to Python syntaxes and will change the class's behavior. To be easily distinguished, those
special methods and attributes are enclosed by a double underscore and are therefore called
dunder methods.

The __init__ method is used to initialize instances of each class. For example, when you
call Person('Pippi', 'Longstocking', 11), the __init__ function is called under
the hood. The first argument—traditionally called self (although you can name it
anything you want)—is the representation of the instance itself, so you can add, extract, or
change any of its values. All class methods expect to add the object itself as a first argument
(unless you set method to static using the @staticmethod decorator), but you won't need
to actually pass this variable on execution—see the following example.

Similarly, the class will call the __repr__ method whenever the instance needs to be
represented. For example, when you put a variable at the end of the cell in Jupyter, its
__repr__ method is called under the hood, as you can see from the following example
(note the mood attribute we just made up):

>>> P = Person('Pippi', 'Longstocking', 11)
>>> P
Person(name=Pippi, surname=Longstocking, age=11, mood=excited)

Simulation with Classes and Inheritance Chapter 8

[147]

According to general Python philosophy (remember duck typing?), Python does not care
much about what any of those functions are actually doing. There are some requirements,
though—for example, __repr__ is required to return a string.

The say_hi function is one we have added. Note that it prints out the string using both
internal and external data:

>>> P.say_hi('Kalle')
Hi Kalle. My name is Pippi!

Note that, even after initiation, we have full access to the properties and methods of a
particular instance and are free to change and modify them, simply by overriding
(assigning a new value):

>>> P.name, P.surname = 'Kalle', 'Blomkvist'
>>> P
Person(name=Kalle, surname=Blomkvist, age=11, mood=excited)

Special methods, such as __repr__ , can also be overridden, but they are
defined on the class level, not by instance. In order to override it, you
need to write this: P.__class__.__repr__ = lambda self: lambda
self: f'mr. {self.name} {self.surname}, Detective'. Note
that this will also override the behavior for other instances of the same
class as well.

It may be a great feature, but also a total disaster if used unintentionally.

The power of classes is unleashed as you use the same class to describe and operate on
multiple instances. We loop over a small dataset, initializing a Person object on every row
of data:

data = [
 {'name':"Pippi", 'surname':'Longstocking', 'age':11},
 {'name':"Kalle", 'surname':'Blomkvist', 'age':10},
 {'name':'Karlsson-on-the-Roof', 'surname': None, 'age':12}
 # not sure of the age
]

characters = [Person(**row) for row in data]
for character in characters:
 character.say_hi('Reader')

Simulation with Classes and Inheritance Chapter 8

[148]

The output should be the following:

>>> Hi Reader. My name is Pippi!
>>> Hi Reader. My name is Kalle!
>>> Hi Reader. My name is Karlsson-on-the-Roof!

As a result, we now have a list of objects, with every single one storing corresponding data
and methods. Of course, objects can use and change global values, or interact with each
other.

At the beginning of this section, we briefly mentioned two special methods for classes. Let's
now go on a tour of other special methods we can use.

Special (dunder) methods
In the preceding example, __init__ and __repr__ are special methods—Python uses
them in specific operations or if a special syntax is used. There are a lot of different methods
out there! Let's review the most interesting ones, starting with __init__.

__init__
As we mentioned already, this method represents the initialization of a class instance. It is
called any time you initialize a class. It is usually stored to add some properties you're
passing upon initialization, and running any kind of initialization setup. During
initialization, you can call any other method of the object. Here is an example:

class Animal:
 def __init__(self, age, diet):
 self.age = age
 self.diet = diet

In this example, we created an Animal class and stored two attributes, age, and diet, upon
initialization.

Simulation with Classes and Inheritance Chapter 8

[149]

__repr__ and __str__
These methods are assumed to return a string value that represents the object. The former is
meant to be more strict and specific—ideally, you should be able to copy the outcome, run
it as a code, and get an identical instance, like this:

class Animal:

 def __init__(self, age, diet):
 self.age = age
 self.diet = diet
 def __repr__(self):
 return f"Animal(age={self.age}, diet='{self.diet}')"

This is what the representation of this class will look like:

>>> Animal(1, 'worms')
Animal(age=1, diet='worms')

Indeed, if you copy that text and run it as a code, you'll get an identical copy. It should be
noted, though, that far from all libraries follow that rule.

The latter method, __str__, is meant to be more human-readable. If this function is not
defined, but __repr__ is, then it will be used instead:

>>> print(Animal(1, 'worms'))
Animal(age=1, diet='worms')

Now, let's take a look at Python operations.

Arithmetical and logical operations
In Python, when we add two numbers, what is happening under the hood is that one of
them is calling its method on the other.

Consider the following example:

>>> 1 + 2
3

Here, under the hood, 1 is calling its __add__ method on 2. Inside, 1 is checking whether 2
is of a supported type, and runs the computation.

Simulation with Classes and Inheritance Chapter 8

[150]

We don't want to mess with number behavior, but this process is exactly the same for any
custom class as well. In other words, if you define the __add__ function of your class,
you'll be able to add something to this class. In some cases, you might try to add something
that your class doesn't know how to handle. It should then raise a built-
in notImplemented exception. In this case, Python will try to run the __radd__ method of
this second instance (which stands for right add, of course), and, if it won't work, it raises an
exception.

Take a look at this snippet. Here, we define two classes—one for Fish and another one for
a School. The School class is expecting to get multiple fish. The Fish class has
an __add__ method that returns School of the two fish:

class School:
 def __init__(self, *fishes):
 self.fishes = list(fishes)

class Fish:
 def __add__(self, other):
 return School(self, other)

Let's see how it works:

>>> F1, F2 = Fish(), Fish()
>>> F1 + F2
<__main__.School at 0x104efdd68>

As you can see, the sum of two fish is now presented as a School object. Of course, this
feature is not limited to addition. Take a look at the following table, which covers quite a
few operations, both arithmetical and logical:

Basic function
"Right side" execution (if the element
on the left does not support
operation, method of the element on
the right is used)

Corresponding symbol and
arithmetical meaning

object.__add__(self,
other)

object.__radd__(self,
other)

+, addition

object.__sub__(self,
other)

object.__rsub__(self,
other)

-, subtraction

object.__mul__(self,
other)

object.__rmul__(self,
other)

*, multiplication

object.__matmul__(self,
other)

object.__rmatmul__(self,
other)

@, matrix multiplication

object.__truediv__(self,
other)

object.__rtruediv__(self,
other)

/, division

Simulation with Classes and Inheritance Chapter 8

[151]

object.__floordiv__(self,
other)

object.__rfloordiv__(self,
other)

//, floor division

object.__mod__(self,
other)

object.__rmod__(self,
other)

%, modulo

object.__divmod__(self,
other)

object.__rdivmod__(self,
other)

divmod(), for numbers, returns the
quotient and remainder

object.__pow__(self,
other[, modulo])

object.__rpow__(self,
other[, modulo])

**, power

object.__and__(self,
other)

object.__rand__(self,
other)

&, AND

object.__or__(self,
other)

object.__ror__(self,
other)

|, OR

object.__xor__(self,
other)

object.__rxor__(self,
other)

^, XOR

But where and when shall we use them? Wherever it feels natural. For example, a built-in
library called pathlib uses division to concatenate two paths. It makes sense, because we
use the slash symbol to add paths. Take a look at how it works:

>>> from pathlib import Path

>>> path = Path('.').parent / 'data'
>>> path.absolute()
PosixPath('/Users/philippk/Dropbox/personal_projects/Packt_book/Chapter08/d
ata')

The preceding code works fine for Notebooks. Since scripts could be
called from anywhere, they have a path to the file stored in the __file__
variable. Simply replace the dot with this variable and you're good to go.

The resulting path, in this case, will represent the relative path to the data folder, located
next to the running script, and does not depend on the absolute location of both.

Another good example is how the visualization package Altair uses these operations. For
Altair, the addition of two plots will overlay them, which seems intuitive (although it
breaks the rule of symmetry—here, the order of charts does matter). Similarly, using a pipe
(|) symbol (or) will put two charts side by side.

Simulation with Classes and Inheritance Chapter 8

[152]

Equality/relationship methods
There are six equality/relationship methods. They represent what happens if an object is
compared using any of the following symbols:

Function Corresponding symbol and meaning
object.__lt__(self, other) <, smaller
object.__le__(self, other) <=, smaller or equal
object.__eq__(self, other) ==, equal
object.__ne__(self, other) !=, not equal
object.__gt__(self, other) >, larger
object.__ge__(self, other) >=, larger or equal

Let's illustrate this function with an example based on our prior case—a Person class. We'll
add a function that will allow us to sort characters by their age:

class Person:
 '''person entity'''

 def __init__(self, name, surname, age):
 self.name = name
 self.surname = surname
 self.age = age
 def __repr__(self):
 return f'Person(name={self.name}, surname={self.surname},
age={self.age})'

 def __lt__(self, other):
 return self.age < other.age

Now, let's use the same characters:

data = [
 {'name':"Pippi", 'surname':'Longstocking', 'age':11},
 {'name':"Kalle", 'surname':'Blomkvist', 'age':10},
 {'name':'Karlsson', 'surname': 'on-the-Roof', 'age':12}
]

characters = [Person(**row) for row in data]

Simulation with Classes and Inheritance Chapter 8

[153]

Finally, we'll sort our characters. Under the hood, the sorting function uses the smaller
method:

>>> sorted(characters)
[Person(name=Kalle, surname=Blomkvist, age=10),
 Person(name=Pippi, surname=Longstocking, age=11),
 Person(name=Karlsson, surname=on-the-Roof, age=12)]

__len__
Earlier, we built a School class that groups multiple fish together. There are a few special
methods that can be used on classes if they represent a collection. The __len__ method, as
you can guess, represents the length of the object, and runs whenever the built-in
len function is called on the object. Let's modify our School class to return the number of
fish:

class School:
 def __init__(self, *fishes):
 self.fishes = list(fishes)
 def __len__(self):
 return len(self.fishes)

Now, let's recreate School of two fish and see how it will work:

>>> S = School(Fish(), Fish())
>>> len(S)
2

__getitem__
This method runs under the hood when someone attempts to retrieve a specific value from
an object using square brackets, as if it was a list or dictionary. Let's add one more section
to our School class so that we'll be able to get specific fish by their index:

class School:
 def __init__(self, *fishes):
 self.fishes = list(fishes)

 def __getitem__(self, i):
 return self.fishes[i]

Simulation with Classes and Inheritance Chapter 8

[154]

Now, let's test it:

>>> S = School(Fish(), Fish())
>>> S[0]
<__main__.Fish at 0x104d73d30>

Note that nothing prevents us from adding a different behavior—say, treating the object as
a dictionary, and thus using the value in the square brackets as a key.

__class__
This is not a method, but rather an attribute—and there is no need to overwrite it. Python
automatically stores the class that the instance is built upon under that alias. It comes in
handy if you want to create a new instance of the same class from within the instance but
don't want to explicitly specify the class itself:

>>> S.__class__
__main__.School

The great part is that if you'll later inherit from the class that uses this attribute, a new
wrapping class will be returned. We'll use __class__ later in this chapter.

Here, we mentioned inheritance, but we haven't yet discussed it. Let's do that right now!

Inheritance
Another important property of the classes is their ability to inherit—some would say it is
the most important feature of classes! What does inheritance mean? You can think of classes
as Russian dolls—once you define one class, you can use it as a basis, wrapping another
class around it. In this case, whenever there is a name collision, the new class will override
the properties and methods but will keep all the other ones. This allows two main patterns
of usage:

First and foremost, we can define a base class (for example, Fish) describing
some generic properties and logic that's relevant to the case. Once it is ready, we
can start adding classes of specific fish—say, tuna, clownfish, and guppy —all
inheriting from this base class, adding and modifying properties where
necessary. This way, we explicitly share certain properties between those classes.

Simulation with Classes and Inheritance Chapter 8

[155]

Another pattern is similar, but with a twist: the base class could have some
complex functionality and would be designed in such a way that it makes use of
specific functions. When you inherit, you can override those functions, changing
the behavior, while using the full potential of the base class's functionality—even
without knowing how it works. This pattern is often used in frameworks. For
example, Luigi, a data pipelining package that we'll cover in Chapter 16, Data
Pipelines with Luigi, has a base class called Task that defines the job it needs to
accomplish within its run function. By overriding this function, you create your
own tasks for the system to run without knowing the details of the process.

To inherit from a class, we state the class in the parentheses after the new class's name,
similar to an argument for a function. Consider the following example:

class Fish:
 weight = 5
 color = 'white'
 def __init__(self, w):
 self.weight = w

class ClownFish(Fish):
 color = 'red'

Here, we (yet again) define the Fish class, which will be used as a base class. Next, we
define the ClownFish class, which inherits from the Fish class, by passing it as an
argument within the parentheses. As a result, any instance of this new class has the default
properties of the base class—for example, it has a default weight of 5. At the same time, the
color property was overridden:

>>> c = ClownFish(w=15)
>>> c.weight
15

>>> c.color
red

But we won't stop there: Python has a rare capacity to inherit from multiple classes at the
same time! In this case, properties with collided names will be overwritten by the latter
class—but of course, most of the time you want to make sure they have different
functionality. Consider the following example. Here, we declare another class, Mammal, that
has a produce attribute. Another class, Dolphin, is then inheriting both from Fish and
Mammal:

class Mammal:
 produce = 'milk'

Simulation with Classes and Inheritance Chapter 8

[156]

class Dolphin(Fish, Mammal):
 pass

Thus, the Dolphin class gets properties from both classes. For example, it has a produce
property, equal to milk from Mammal, and a color property, equal to white, inherited
from the Fish class:

>>> d = Dolphin(w=20)
>>> d.produce
milk

>>> d.color
white

Mixing classes could be very helpful in certain cases. However, be careful with mixing, and
inheritance in general! It is easy to make things complex and unpredictable that way. For
example, it is very dangerous to inherit (especially in a sequence) from a class that is used
itself—you might end up tweaking a class and getting different behavior in many others
you didn't even think of. A safer approach is usually to create one or a few basic classes that
are not meant to be used directly and then base multiple classes on them. Here is a
discussion on the subject: https:/ ​/ ​softwareengineering. ​stackexchange. ​com/​questions/
312339/​are-​python- ​mixins- ​an- ​anti- ​pattern.

Using super()
Once in a while, you need to access parent class methods and attributes from within the
instance—for example, when you initiate a new one and need to execute the parent class's
initialization logic. For that, we can use a built-in function called super. It is very easy to
use—just call it from within a class—and it will return a proxy object of a direct parent with
access to all its methods and attributes. Take a look at the following snippet:

class Shark(Fish):

 def __init__(self, w=5000, teeth=121):
 self.teeth = teeth
 super().__init__(w=w)

https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern
https://softwareengineering.stackexchange.com/questions/312339/are-python-mixins-an-anti-pattern

Simulation with Classes and Inheritance Chapter 8

[157]

Here, we create a new class called Shark, inheriting from Fish. This new class has its own
custom initialization code, but it also utilizes the __init__ method of the Fish class via
the super method. By doing so, this new class is storing the weight of the fish without
writing the same code again:

>>> S = Shark()
>>> S.weight
50000

Data classes
Let's now discuss a new feature that was added in Python 3.7—data classes. First of all,
data classes are just syntactic sugar (simpler syntax). The end result is just an ordinary
instance of a class, and it can be achieved with normal classes, just in a few more lines. As
the name implies, data classes are a simple way to write data-focused classes.

What do we mean by data-focused? Basically, data classes have the __repr__ and __init__
methods defined out of the box. By specifying additional parameters, such as eq, order,
and frozen, we can make a data class generate additional boilerplate methods—such as
equality (eq), smaller/greater (order), and add immutability (frozen). One caveat is that
the default initiation function only assigns specified values. For any additional logic, you
can write a __post_init__ method—it will be executed upon initiation.

Let's take a look at the following example. We're defining our Person class (yes, again) as a
data class. For that, we need to import a dataclass object from the standard library. Next,
we define the class, using the dataclass object as a decorator (remember, we discussed
decorators in Chapter 3, Functions). In that class, we declare two variables, adding their
data type (yes, it is required—but won't be enforced at runtime):

from dataclasses import dataclass

@dataclass
class Person:
 name:str
 age:int

Simulation with Classes and Inheritance Chapter 8

[158]

That's it! This is way shorter than our previous solution. Let's try them:

>>> P1 = Person('Pippi', 11)
>>> P2 = Person('Pippi', 11)
>>> K = Person('Kalle', 10)

>>> P1 == K
False

>>> P1 == P2
True

Not only are we able to generate instances of the class, but they have a default, built-in
equality mechanism! Data classes are a neat solution if you need to compare
instances—they will save you quite a few lines of code (and, thus, reduce the chances of
making an error).

Having learned so much about classes, let's now put our new skill to the test by using
classes to simulate an ecosystem.

Using classes in simulation
Let's use this new knowledge for a fun project—modeling evolution. We are going to create
a closed, simplistic representation of an ecosystem, containing animals that can age, breed,
and survive (or not!) in harsh conditions. To test different scenarios, we will produce a few
of those ecosystems, islands, each having different environmental conditions. We'll run the
experiment by simulating the behavior of those systems and gather statistics on their
dynamics over time. In order to do so, we will build a dedicated class for each of those
entities.

Writing the base classes
Before we do any simulation, we should start by writing the basic classes we'll be using,
describing the behavior of the system's elements. To make our code easy to navigate, let's
write those classes in a dedicated file using VS Code, as we did in Chapter 6, First Script –
Geocoding with Web API, and Chapter 7, Scraping Data from the Web with Beautiful Soup 4.
Pay attention to the highlighting—VS Code is very helpful at spotting typos and other
problems with the code.

Simulation with Classes and Inheritance Chapter 8

[159]

Now, let's get to it. Let's first create a herbivore class. To keep it simple, our animals will
breed without mating, they will just add another instance of the same class, with a certain
probability. As we'll be dealing with certainty, we will use built-in random library, which is
capable of generating random values. Our animal should carry a few variables—age
(max_age), fertility (chance of breeding), and then we'll call mutation_drift—the level to
which a baby animal's properties can diverge from the parent. The initiation method sets
the age to 0 and allows us to pass a certain survival skill (an umbrella parameter for any
evolutionary improvements):

import random

class Herbivore:
 mutation_drift = 1
 fertility_rate = .25
 max_age = 4
 def __init__(self, survival_skill):
 self.age = 0
 self.survival_skill = survival_skill

Now we need to add a few other methods for those animals. In particular, they need to age
and breed. The aging is simple—we just need to add 1 (we'll be running our simulation as a
discrete system, once per year). The breeding is slightly more complex. First, we'll
randomly pick a newborn's survival_skill as a function of its parent's
survival_skill and a random value within a range between negative and positive
mutation_drift. Lastly, we'll return a new instance of the same class (a baby), with the
survival_skill we just calculated:

 def _age(self):
 self.age +=1

 def breed(self):
 drift = random.randint(-1*self.mutation_drift,
 self.mutation_drift)
 mutation = self.survival_skill + drift

 return self.__class__(survival_skill=mutation)

Here, we used the __cls__ method, because, that way, we're not explicitly stating the
class—if we'll want to inherit from that class later on, we won't need to tweak this function.
Later, if you want, you'll be able to expand the system by adding other animals (say,
carnivores, hunting our herbivores and hence both limiting and depending on their
number).

Simulation with Classes and Inheritance Chapter 8

[160]

Just in case, here is what the class looks like, overall:

import random

class Herbivore:
 mutation_drift = 1
 fertility_rate = .25
 max_age = 4
 def __init__(self, survival_skill):
 self.age = 0
 self.survival_skill = survival_skill

 def _age(self):
 self.age +=1
 def breed(self):
 drift = random.randint(-1*self.mutation_drift,
 self.mutation_drift)
 mutation = self.survival_skill + drift

 return self.__class__(survival_skill=mutation)

Writing the Island class
Next, let's describe the islands our animals will live on. Each island here is an isolated
system that tracks all the changes, including the death and birth of all the animals, ever-
changing conditions, and so on. For our purposes, these islands will also need to collect
stats on the animals.

Let's start small by defining attributes of each island:

A list of animals currently living on the island
Current year (turn)
Maximum population cap (integer)
Umbrella object for all the statistics

The preceding attributes are defined in the following code snippet:

class Island:
 stats = dict()
 animals = list()
 max_pop, year = 0, 0

 def __init__(self, initial_pop=10, max_pop=2500):
 self.year = 0
 self.max_pop = max_pop

Simulation with Classes and Inheritance Chapter 8

[161]

 self.stats = dict()
 self.animals = [Herbivore(survival_skill = random.randint(0,100))
for _ in range(initial_pop)]

Upon initiation, we set up a maximum population on the island to the passed variable. We
also generate some animals (initial_pop) with the survival uniformly random on the
range from zero to a hundred.

Now, we need to create an overarching function to compute on each turn. Within
computation, two steps should be executed:

If the population cap is not exceeded, animals will try to breed, until the cap is1.
achieved.
All animals need to age. Old animals should be removed from the list.2.

This is what it will look like:

def _simulate(self):
 new_animals = list()
 pop = len(self.animals)

 random.shuffle(self.animals)
 for animal in self.animals:
 # step 1. breeding
 if pop <= self.max_pop:
 if random.random() <= animal.fertility_rate:
 new_animals.append(animal.breed())
 pop += 1
 # step 2. Aging and dying
 animal._age()
 if animal.age <= animal.max_age: # dies of age
 new_animals.append(animal)

 self.animals = new_animals

Note that we highlighted two functions here. First, we shuffled the animals before looping
through it. It's subtle, but we don't want to introduce bias by letting the younger animals
breed before the older ones until the cap is exceeded, do we? Another function we use
is random.random, which, with default arguments, returns a random float in the range
between 0 and 1. This is our flip of a coin—the higher the animal's fertility rate, the higher
the chance it will breed. All the other code is rather trivial—we create a new list of animals
and added the newborns and existing animals that didn't pass the max_age limit. In the
end, we overwrite the existing list of animals with the new one.

Simulation with Classes and Inheritance Chapter 8

[162]

Finally, we need to record the stats on the island. For that, we'll add yet another method
that will also be run each turn. The metrics are rather simple—the number of animals
(population), average age and survival skill, and the percentage of animals with a survival
skill above 75. We could define average ourselves, but it is simpler to use the one from the
built-in math library. Just don't forget to move it outside of the class:

from math import mean

Now let's write our method. All the metrics will be stored in a dictionary, which itself will
be stored in the overall statistics dictionary of an object, with the corresponding year as a
key. First, we'll calculate the overall population and store it in a dictionary. Next, if the
population is non-zero, we will loop over all animals, pulling their age and survival skill
into separate lists. To make it in one loop, and on one line, we will use the zip function.
Once lists are there, we can run mean on each, storing the result in our dictionary.

Now, we will calculate the ratio of animals with good survival skills (above 75). Here, we're
using a conversion trick—in the loop, we're computing Boolean values (whatever survival
skill is above 75). Later, we run sum on this list; as the function expects numeric values, the
Boolean values are converted, with True being mapped to 1 and False to 0. Thus, the
outcome of the function will represent the overall number of animals with this skill set. The
only thing we'll need to do is to divide this value by the overall population:

def _collect_stats(self):
 '''run island statistics'''

 year_stats = {'pop': len(self.animals)}

 if len(self.animals) > 0:
 ages, skills, ss_75 = zip(*[(a.age, a.survival_skill,
 (a.survival_skill>75)) for a in self.animals])

 year_stats['mean_age'] = mean(ages)
 year_stats['mean_skill'] = mean(skills)
 year_stats['75_skill'] = sum(ss_75) / year_stats['pop']

 self.stats[self.year] = year_stats

Finally, we can combine the two functions into one function that will run them, step by
step, through a number of turns/years. It is very simple—just loop over the given number
of years, executing the simulation, collecting the stats, and incrementing the year value:

def compute_epoches(self, years):
 for _ in range(years):
 self._simulate()
 self._collect_stats()

Simulation with Classes and Inheritance Chapter 8

[163]

 self.year += 1

 return self.stats

The core code is now complete. Let's see how it will work in action!

Herbivore haven
Let's open a new Jupyter Notebook. Before running a full-blown simulation, let's test
whether our classes behave as we expect them to, starting with the Animal class. First of all,
let's import both classes and initiate one instance:

import random
from animals import Herbivore, Island

A = Herbivore(10)

Now, let's run a few tests on it, checking how our ecosystem ages and breeds:

>>> A.age
0
>>> A._age()
>>> A.age
1

So far so good—the initial value of the animal's age should be 0, and incremented every
time we run the _age method.

Now, let's check breeding. We used the random.seed method, which pins the following
outcomes of the random functions in the package in the following code. This allows us to
reproduce the exact results without compromising the randomness:

>>> random.seed(123)
>>> A2 = A.breed()

>>> A2.survival_skill
9

As you can see, the new animal has a survival skill of 9— one "skill" point away from it
parent's; it seems to be correct.

Simulation with Classes and Inheritance Chapter 8

[164]

Now let's create an instance of Island and test it. Take a look at the following snippet;
here, we initiate an island with a population of 10 and a population cap of 100:

I = Island(initial_pop=10, max_pop = 100)

Next, we check the initial year of the island and the number of animals on it:

>>> I.year
0

>>> len(I.animals)
10

Seems to be fine! We could add a few more tests, but let's cut straight to it and run the
simulation. All we need to do is just run compute_epoches for a given number of
years—we'll take 15:

stats = I.compute_epoches(15)

Feel free to investigate the results. However, as we've built a probabilistic model based on
random chance, we'd better simulate multiple systems at once and estimate the distribution
of results, rather than one outcome, which may or may not be representative of the system
as a whole. It is simple—all we need is to simulate multiple islands at once, with the same
initial conditions and store all the resulting statistics together. In the following snippet we
declare the parameters of the systems, and then simply create a list of islands (archipelago?)
and store the statistics from each of them:

params = {'initial_pop': 10, 'max_pop':100}
years, N_islands = 15, 1000

islands = [Island(**params) for _ in range(N_islands)]
stats = [island.compute_epoches(years) for island in islands]

The resulting statistics, en masse, should be more reliable for analysis. And, if anything,
adding more islands to the simulation is very easy.

Later in this chapter, we will visualize and discuss those metrics. Before that, let's add a
little more complexity to the system. In the default settings, survival_skill is declared,
but never used—all the animals survive until they die of old age. In the following section,
we'll add another type of island—harsh ones, where the weather conditions will constantly
kill the animals whose survival skill is too low.

Simulation with Classes and Inheritance Chapter 8

[165]

Harsh islands
Let's add harsh islands where, each turn, weather conditions change, killing animals below
a certain level of skills. Hypothetically, that should add space for the luckier and more
skillful ones, which, in turn, will result in a natural selection phenomenon—as baby's
survival skill is dependent on the parent's survival skill, the survival skill of the entire
population, on average, will start to grow. That's the theory—let's check if that will work,
and if it will, how fast this improvement will be.

The good news is, we don't need to add much code. We only need to introduce this new
type of island by inheriting from the original code and add just a few lines of code. Take a
look at the following snippet. Here, we're inheriting from the Island object. As we have to
add one more value to the initialization class, we use **kwargs and run the super method.
By doing so, we are executing the Island object's initialization with all the
corresponding values (passed via kwargs), but also storing the env_range as the object's
attribute. This parameter will define the bounds of how harsh or peaceful the weather can
be:

class HarshIsland(Island):
 '''same as Island, except
 has harsh conditions within [e_min,e_max] interval.
 Rabbits with survival skill below the condition die at the
 beginning of the epoch
 '''
 def __init__(self, env_range, **kwargs):
 self.env_range = env_range
 super().__init__(**kwargs)

One caveat is that the init function is now less readable and transparent—we won't see
the original parameters upon calling the help function. It will suffice for now, but we shall
keep that in mind for future class design.

Next, we will introduce the weather function. We compute the random integer within the
range we passed earlier, representing weather severity, and keep only the animals with a
survival skill equal to or greater than the result in the following code:

 def _compute_env(self):
 condition = random.randint(*self.env_range)
 self.animals = [a for a in self.animals if a.survival_skill >=
 condition]

Simulation with Classes and Inheritance Chapter 8

[166]

Finally, we need to somehow incorporate this function into the flow. Here, we can again
reuse super—all we need is to override the _simulate method, adding the function we
just wrote—and only then execute the original simulation:

 def _simulate(self):
 self._compute_env()
 super()._simulate()

But why are we overriding the existing method? Because it is already in use by the other
methods—namely compute_epoches. Once we overwrote the method, compute_epoch
will run it instead. In other words, our HarshIsland is ready.

You might need to restart the Notebook to be able to import new code
from the static .py files if you change them after the first import.

Now we can import this new class and run a simulation over hundreds of instances in the
Notebook. As before, we specified the parameters (exactly the same, but with the addition
of the env_range parameter). Everything else is also the same—except, of course, that we
initiate the new class instead of the old one:

from animals import HarshIsland

params = {'initial_pop':10, 'max_pop':100, 'env_range':[20,80]}
years, N_islands = 15, 1000

h_islands = [HarshIsland(**params) for _ in range(N_islands)]
h_stats = [island.compute_epoches(years) for island in h_islands]

It seems that the code runs without any issues. But what do we get as a result? And did the
animals survive? Comparing statistics for 200 islands is tough. In order to have at least
some understanding, we need to visualize them in charts in the next section.

Visualization
While we have all the stats for two types of islands, it is hard to make sense of the numbers.
To help the case, let's visualize our data as a set of timelines. To do so, we'll use arguably
the most popular (and one of the oldest) libraries for data visualization in Python,
Matplotlib. We'll use Matplotlib extensively in the second part of this book, using more
elegant interfaces, but, for now, let's keep it easy.

Simulation with Classes and Inheritance Chapter 8

[167]

Here are the steps we need to take:

First, we'll import the library and prepare the Notebook to show plots within the1.
Notebook itself, rather than in a separate window or as the library calls it,
inline.
Next, we set up the 538 style for the visualization. This step is optional and the2.
pick is arbitrary. Here is what it will look like in code:

1. sets jupyter to show plots within the notebook
%matplotlib inline

2. import matplotlib's most popular interface
from matplotlib import pylab as plt

3. (optional) style plots using "538" website style
plt.style.use('fivethirtyeight')

In the preceding code, we set the plotting style to 538. This step is
completely optional—it merely changes the visual style (background and
shapes colors) from the default style. There are plenty of built-in styles
(https:/ ​/​matplotlib. ​org/ ​gallery/ ​style_ ​sheets/ ​style_ ​sheets_
reference. ​html) and we can always define our own one.

Now, Matplotlib is ready to visualize the data.

For the next step, we need to create the chart objects to draw on. We have four metrics to
show—population, average age, average skill, and percentage of animals with a good
skillset. We also have two sources—two kinds of islands. The way Matplotlib works, we'll
need to iterate over the stats for each island and plot a line (remember, we're drawing
timelines?) by passing a pair of arrays—one for years (x axis) and a given metric (y axis). To
make code cleaner, let's prepare the data as a dictionary of two lists and make another one
for the corresponding colors. This is how to do that:

datas = {"Heaven Islands":stats,
 'Harsh Islands':h_stats}

colors = {
 'Heaven Islands': 'blue',
 'Harsh Islands': 'red'
}

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html

Simulation with Classes and Inheritance Chapter 8

[168]

Finally, we can plot the visualization itself. The following needs to be in the same cell; we'll
split the code in order to explain it, then show it as a whole, one more time:

On the first line, we are creating one chart with eight subplots—four rows (one1.
per metric), and two columns (one per island type). The size of the chart is
defined by the figsize argument. The sharex parameter sets the x axis to be
shared across charts, thus, the axis will be shown only once. The axes variable is
now a collection of four lists, representing rows, with two axes (subplot) objects
in each. Having them, we can start adding marks and properties:

fig, axes = plt.subplots(4, 2, figsize=(10,10), sharex=True)

Next, we'll set a y-axis title for each chart, and specify their x-axis limits to 152.
years:

for i, title in enumerate(('Population', 'Average age', 'Average
Survival Skill', '% with SSK > 75')):

 axes[i].set_ylabel(title)
 axes[i].set_xlim(0, 15)

Now, we will loop over two types of islands, and every string of statistics. For3.
each, we will pull a pair of arrays, and send them to plot as a polyline. We'll also
add titles to the plots in the first row. Using the colors dictionary, we'll pass a
corresponding color to each line:

for i, (k, v) in enumerate(datas.items()):
 axes[0][i].set_title(k, fontsize=14)

 for s in v: # for each island
 years = list(s.keys())
 axes[0][i].plot(years, [v['pop'] for v in s.values()],
 c=colors[k], alpha=.007)
 axes[1][i].plot(years, [v.get('mean_age', None)
 for v in s.values()], c=colors[k], alpha=.007)
 axes[2][i].plot(years, [v.get('mean_skill', None)
 for v in s.values()], c=colors[k], alpha=.007)
 axes[3][i].plot(years, [v.get('75_skill', None)
 for v in s.values()], c=colors[k], alpha=.007)

The following is the same code, pulled together:4.

fig, axes = plt.subplots(4, 2, figsize=(10,10), sharex=True)

for i, title in enumerate(('Population', 'Average age', 'Average
Survival Skill', '% with SSK > 75')):

Simulation with Classes and Inheritance Chapter 8

[169]

 axes[i][0].set_ylabel(title)
 axes[i][0].set_xlim(0, 15)
 axes[i][1].set_xlim(0, 15)

for i, (k, v) in enumerate(datas.items()):
 axes[0][i].set_title(k, fontsize=14)
 for s in v: # for each island
 years = list(s.keys())
 axes[0][i].plot(years, [v['pop'] for v in s.values()],
 c=colors[k], label=k, alpha=.007)
 axes[1][i].plot(years, [v.get('mean_age', None)
 for v in s.values()], c=colors[k], label=k, alpha=.007)
 axes[2][i].plot(years, [v.get('mean_skill', None)
 for v in s.values()], c=colors[k], label=k, alpha=.007)
 axes[3][i].plot(years, [v.get('75_skill', None)
 for v in s.values()], c=colors[k], label=k, alpha=.007)

Now, run the cell. If everything is fine, it will take a few seconds to execute. After5.
that, you'll get your visualization. Here is what it looks like for us:

Simulation with Classes and Inheritance Chapter 8

[170]

What can we get from this chart? Let's discuss every metric.

Please use the graphic bundle list of the book for viewing all color images
in the book.

As you can see on the first chart, Heaven Islands have no constraints but the maximum
population gap—so the animal population quickly grows to the maximum. For the Harsh
Islands population, this is not the case. In fact, many islands have no animals at all (see the
thick red line at the zero, starting on year 4).

Next, the average age seems to behave similarly—in both scenarios, it seems to bump into
the maximum age and then stay at half of the maximum age, which makes sense. Perhaps
the trend would be different if the initial skill window was more narrow.

Both charts for average skill and percentage of animals with skill above a certain threshold
tell us the same story. On the Heaven Islands there is no trend, but deviation starts to
accumulate—on some islands, it even falls below 20 percent, as it has no impact on
anything. For Harsh Islands, the picture is drastically different: it seems that in most cases,
unskilled animals were killed in the first year (this can be confirmed by the decline in the
population for the first two years). All those that survived started to breed—so the skill
skyrocketed from the get-go. For most of the Harsh Islands, 100% of the population got
survival skills beyond 75 after 1-2 years. In other words, our natural selection did indeed
work.

Of course, the model we created is very simplistic. It is also driven by a number of arbitrary
values and decisions—fertility rate, maximum age, harsh weather conditions, maximum
population, mutation_drift level, initial conditions, as well as uniform integer
distribution of weather conditions and order of computations on each stage. It is no
surprise that the system worked as we expected. There is, however, room for deeper
research and experimentation. For example, we could discuss the pace of improvement, or
the probability of island extinction with different initial values and assumptions.
Alternatively, we could create another type of animal (carnivores), whose survival depends
on killing herbivores (say, by having a larger survival skill), and research the dynamics of
the two species. We encourage the reader to play with this code, adding custom rules and
characteristics.

In the meantime, let's proceed to the next chapter, where we'll talk about some non-Python
tools that are essential for a productive workflow.

Simulation with Classes and Inheritance Chapter 8

[171]

Summary
In this chapter, we have discussed the concept of classes and how we can use them to
model entities with their properties and methods. Using classes, we created plenty of
dynamic systems, illustrated the rules of natural selection, and explored their behavior.
Finally, we discussed how to generate and collect a system's telemetry data and plot
timelines in order to understand how systems behave.

In the next chapter, we'll review a few important technologies that are beyond Python, but
that are extremely useful for productive programming.

Questions
What are classes? When should we use them?1.
Can we compare two instances of a class, or use arithmetic operations with2.
them?
When should we use inheritance?3.
What is the use case for data classes?4.

Further reading
Check out the Python docs on class special methods (https:/ ​/ ​docs. ​python. ​org/ ​3/
reference/​datamodel. ​html)

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

9
Shell, Git, Conda, and More –

at Your Command
In this chapter, we will review a bunch of non-Pythonic tools that will make your life as a
developer significantly easier, and that will help you communicate on the same terms with
other developers. While this book is focused on teaching Python, nothing exists in a
vacuum. Any developer (Python or not) uses multiple technologies and languages in their
daily routine, knowing that at least some of them will improve their productivity
significantly. Before we move on to building ever more complex substances, let's briefly
review some tools beyond Python itself.

In this chapter, we will cover the following topics:

Shell
Running Python scripts and designing command-line interfaces
Git and GitHub
Reproducible virtual environments with conda
Structuring your workflow with a Cookiecutter

Shell, Git, Conda, and More – at Your Command Chapter 9

[173]

Technical requirements
In this chapter, you'll need git, conda, and cookiecutter installed on your machine. The
first two are included in the standard Anaconda distribution. To install cookiecutter, if
you haven't already done so, run either of the following commands:

conda install -c conda-forge cookiecutter

pip install --user cookiecutter

The code for this chapter is available via the GitHub repository, in the Chapter09 folder
(https:/​/​github.​com/ ​PacktPublishing/ ​Learn- ​Python- ​by-​Building- ​Data- ​Science-
Applications).

Shell
Every operating system, by definition, has some sort of interface to work with. Most people
use the graphical user interface (GUI), as it is easy to understand and navigate, and does
not require any specific knowledge. However, graphical interfaces are complex,
demanding, and not reproducible. Even before the GUI existed, programmers used code-
based interfaces to interact with computers—shells. Both macOS and Linux systems are
Unix-based and, hence, leverage the same shell interface, Bash. Windows, on the other
hand, has two, a very basic command prompt, and a PowerShell (which we recommend
using). There are also ways to install and use Bash on Windows. All those systems allow
you to create, change, and delete files and folders, run programs and utilities, and so on. In
addition, because those systems are based on textual commands (code, essentially),
commands can be stacked, stored, and executed (and re-executed) together as scripts. As
text requires minimum memory to exchange, this interface is used to operate remote
servers.

You can access the shell on your computer in at least three ways:

Open the original shell terminal. All three operating systems have built-in shell
terminals.
In Jupyter, open the terminal window via the launcher tab.
Open the VS Code Terminal (window four in our interface overview).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Shell, Git, Conda, and More – at Your Command Chapter 9

[174]

Let's use VS Code for now—it has a handy feature for opening the terminal in the current
project's folder, thereby saving us time. Note that some commands differ in terms of the
name and interface between two systems, although many are similar. The following are a
few of the most frequent commands, which are the same on both systems:

Operation Bash command CMD commands Example (bash)

Change directory cd [path] cd [path]
cd
../anotherproject/data/

Move file/folders
mv [current path] [new
path]

move [current path]
[new path]

mv data.csv
../data/dataset1.csv

Copy file
cp [current path] [new
path]

copy [current path]
[new path]

cp data/data.csv
data/dataset2.csv

Retrieve the content of a
file cat [path] type [path] cat environment.yaml

Remove file or folder rm [path] del [path]

rm -r data/*.csv (note: this
will not move files to the trash bin.
Once deleted, the files will not be
available)

Show manual man [command] help [command]
man rm (use q to get out of the
manual)

Show current position
(the folder you're in) pwd echo %CD% pwd

Show files and folders
in the current folder ls [-l for table format] dir ls -l

Create file touch [filename] type NUL >> [filename] touch .gitignore

Create folder mkdir [folder_name] mkdir [folder_name] mkdir code

Send the string to an
output echo [options] [string] echo [options] [string] echo "Hello world"

Filter multiple strings grep [pattern]
findstr [pattern]
[filename]

echo -e "Hello\nworld"

In the following examples, we use the double period as a representation of going one level
up in the folders tree. Similarly, an asterisk (wildcard) can be used to specify all files/folders
following the pattern (for example, where there are any letters/numbers in its place). For
example, data/*.csv represents any CSV files in the data folder.

Pipes
Both systems allow commands to be combined in order to achieve even more complex
processes using pipes. This works with main commands, but also any tools and utilities
you use via the command line. The tree main pipes are as follows:

| Sends the result of the previous command to the next one

> Writes the result of the previous command to the file, overwriting it if it exists,
and creating one if it doesn't

>> Writes the result of the previous command to the file, creating a new one, or
appending it if it exists already

Shell, Git, Conda, and More – at Your Command Chapter 9

[175]

You can add the preceding pipes after any command that has output – and then specify
either a file or another command to be used.

For example, we can read, filter, and write a subset of addresses from Chapter 6, First
Script – Geocoding with Web APIs, to a new file, based on the row, as follows:

cat ../Chapter06/cities.csv | grep ,2 > cities2.csv

Here, we retrieve all the text from the file, redirect it to filter for those with a population
number that starts with 2, and store this text to another file.

Executing Python scripts
Python is no different to other tools—you can execute Python scripts via the command line,
using a Python command):

$ echo 'print("Hello world!")' > script.py`
$ python script.py
Hello world!

In the preceding code, we first created a simple Python script and then ran it in the second
line. Any Python script can be executed like that. In other words, you can write a program
in Python and share it with others, or use it yourself via the command line, without going
through the hassle of firing up Jupyter and executing cells one by one!

For learning purposes, let's modify the geocode.py file we wrote in Chapter 6, First Script
– Geocoding with Web APIs, into a full-blown script that geocodes addresses one by one, or in
batches.

First, let's copy it into a new folder (here, we assume we are in the chapter's folder):

cp ../Chapter06/geocode.py .

Now, the script has all functions, but there is no code that will be executed upon running:
python Chapter09/geocode.py will return nothing. Let's add some code:

echo 'print(nominatim_geocode("13 Rue de la Chapelle, 70250 Ronchamp,
France"))' >> geocode.py

Of course, you can also add the same code via the VS Code editor.

Shell, Git, Conda, and More – at Your Command Chapter 9

[176]

Now, let's run the script:

$ python Chapter09/geocode.py
[{'place_id': 84388496, 'licence': 'Data © OpenStreetMap contributors, ODbL
1.0. https://osm.org/copyright', 'osm_type': 'way', 'osm_id': 34915920,
'boundingbox': ['47.7043284', '47.7045899', '6.6202675', '6.6207617'],
'lat': '47.7044779', 'lon': '6.62051522099271', 'display_name': 'Chapelle
Notre-Damedu-Haut, 13, Rue de la Chapelle, Ronchamp, Lure, Haute-Saône,
Bourgogne-Franche-Comté, France métropolitaine, 70250, France', 'class':
'amenity', 'type': 'place_of_worship', 'importance': 1.14130071139371,
'icon':
'https://nominatim.openstreetmap.org/images/mapicons/place_of_worship_unkno
wn3.p.20.png'}]

Perfect! However, we need to solve two issues in order for this script to be useful:

First, the preceding code now runs every time you import from geocode.py.
Second, we need to create some sort of interface to feed information—address or
file paths—to our script.

First off, let's solve the first issue. Of course, we could separate the files we want to call
from others, but that makes things too complex. Instead, there is a special pattern for this:

if __name__ == '__main__':
 print(nominatim_geocode('13 Rue de la Chapelle, 70250 Ronchamp,
France'))

In the preceding clause, __name__ is a special variable in the file's local namespace (Jupyter
Notebooks don't have it). It is equal to __main__ if the file was called directly, and to other
values if we import from it. Now, our geocoding will run from the command line, but not
when we import from this file.

Command-line interface
Now, let's get back to the first issue. Essentially, we need to define a command line
interface (CLI) for our script. There are a few packages for building complex CLIs, but for a
simple one we can use the built-in argparse library. Let's design our interface so that we'll
be able to pass the address from the shell:

python geocoder.py --address 'Kremlin, Moscow, Russia'

Shell, Git, Conda, and More – at Your Command Chapter 9

[177]

For that, we need to import the library and create a parser to parse the commands we call.
We can add both to the beginning of the script:

import argparse
parser=argparse.ArgumentParser()

As a next step, we need to register the arguments we want to pass in with the parser
object, using the add_argument method, and passing the argument name (usually
beginning with a double dash) and a help test—it will be printed via the --help command
provided by argparse. We can also pass a default value, which will be used if no value is
passed:

parser.add_argument("--address", help=“address to search for", default="13
Rue de la Chapelle, 70250 Ronchamp, France")

Once arguments are registered, we can parse them—and use the results in the code.
Arguments will be stored as resulting object properties, returning None if the argument
wasn't specified and no default value is defined:

args=parser.parse_args()
 print(nominatim_geocode(address=args.address))

Now, this script can be used as a standalone tool whenever you need to geocode anything.
Perfect!

There are plenty of options for improvement—for example, we could add an interface to
run geocoding in bulk, using the given CSV file as a source, and storing the results in
another file.

Git
As you may have observed, the complexity of our code grows exponentially from chapter
to chapter, it would be a pity to lose or break any code due to the incident. Of course, for
any real-world business or service, this would be a disaster. That's why organizations make
sure the code is kept safe via version control. Any time we need, we can revert the code to
any of the previous versions—or even keep multiple versions of the same code, in parallel.
Historically, there were a few technological solutions that allowed this, the most popular
being mercurial, subversion, and Git systems. Currently, however, Git is by far the most
popular – it is open source, fast, and distributed. You don't have to have the main server for
the team to cooperate, but even for a single user, Git could be a life-saver!

Shell, Git, Conda, and More – at Your Command Chapter 9

[178]

In the following section, we will briefly discuss how Git works and where GitHub fits into
this equation. We will also perform a small practical exercise.

Concept
The main idea behind Git is to store code in atomic snapshots—commits. Ideally, every
commit should represent one logical step in development—say, an addition of one
function. For each commit, you can add a message, explaining the change. They can also be
tagged. This tag can be later used for ease of navigation between commits. When
committed, files are archived in a special folder, named after the commit hash. Git keeps
track of all the files that were changed, and stores a copy of only those in a new
commit. You can always switch to another commit, revert code to the previous state, look at
the history, or create "diffs," side-by-side comparisons of what changed between the two
versions of the file.

Another important concept is branches. Technically, they are similar to tags. Imagine that
you have a working project but want to add some features. To keep everything safe, you
don't want to mix the current (working) code with the one you're working on. To do so,
you can create another branch of the code base, and develop in parallel – all the new
commits will be kept separate from the original branch (called the master) until you
explicitly merge them. You can keep as many branches as you want at the same time; that
way, two developers can work securely in parallel, without any interaction or conflicts; that
is, until they decide to merge their branches, or merge them to the same third branch. In
some cases, repositories maintain a few dedicated branches constantly, for example, with
one code base for Windows machines, and a slightly different copy for Linux.

GitHub
It's easy to get confused between Git and GitHub, but there is a simple difference. Git is an
open source tool, while GitHub is a web service that can function as a remote host for Git
repositories. There is no strict dependency between the two, and you don't have to use
GitHub or any other remote service (there are some others, such as BitBucket and GitLab)
at all. Having said that, GitHub is a great way to store your code, collaborate on projects,
and learn best practices. And not only that; to a large extent, GitHub is a social network for
developers, and, on some occasions (say, while searching for a job), you might be judged
based on the existence of an account and the quality of the code exposed on the service.

Shell, Git, Conda, and More – at Your Command Chapter 9

[179]

GitHub serves as the remote server for your code. In the cloud, you can push your code
there, and pull a new version back, manage branches, and so on. Due to its remoteness,
GitHub can serve any machine; for example, you can develop the code on your local
machine, and deploy the code from GitHub to your production servers. Furthermore, there
is a large ecosystem of tools and services built around GitHub. Some of these will be
covered in Chapter 15, Packaging and Testing with Poetry and PyTest.

Practical example
If you're following the code for this book, you might have cloned it directly from GitHub.
In that case, there should be a hidden (your operating system won't show it by default)
.git folder inside—that's where all the old files are stored. You can access this folder at
.git, or see it using ls -la command—but you shouldn't change it manually until you're
sure you know what you're doing. As we don't want to break this repository, let's create a
new project.

First, let's create another, empty folder—you can do that via the standard graphical
interface on your machine, or via the Terminal. The following code will create a new folder
and add a README file to it:

$ cd ../../
$ mkdir MyProject;
$ cd MyProject;
$ echo MyProject > README.md

Now, we need to initiate git in the folder, and add the README file via the first commit:

$ git init
$ git add .
$ git commit -m "My first commit"

Now, we have our first commit, that is, the stored state of the project that we can always
revert to.

Now, try adding anything to README.md in the VS Code. As you may notice, the editor
highlights new lines with a green line on the left and marks deletions with a red triangle –
you can click on either to see how this part of the code appeared before the change. VS
Code will only show changes to the last commit. Once you store the new version in a new
commit, those lines disappear.

Shell, Git, Conda, and More – at Your Command Chapter 9

[180]

Similarly, VS Code will color files and folders in the Explorer menu to highlight those that
you have changed. If you switch to the third tab—Git interface—you can select which files
to add to the commit, and which you don't want to—and then commit the change with the
message. Now, let's try adding something to README and then committing this new change
via the VS Code interface. This interface is quite handy, but not necessary for working with
Git. For example, you can see the state of the repository by using git status in the
command line. Furthermore, you can go through the history of the commits by using git
log with one of multiple options, for example, oneline mode:

$ git log —pretty=oneline

6caa0f3ee610f50dc3fb48beec034a7870f7fb9 (HEAD -> master) another commit
5b0c88aa1a99a38d6c4d6db900d63c154c5127bf first commit

For you commit caches will be different! Now, let's go to the previous state by using the
hash for the first commit:

$ git checkout 5b0c88aa1a99a38d6c4d6db900d63c154c5127bf

The preceding code will return you to the first version, but it won't allow you to then go
back to the last one, or easily at least. Alternatively, you could return to the AND commit
and create a new branch based on it:

$ git checkout -b old-state

Here, the old state is the name of this new branch, and is stored in parallel with the original
branch, master. Feel free to work and commit other projects. Once you're bored with this
branch, just go back to the master one, using the checkout command:

$ git checkout master

gitignore
Git is very effective for storing and tracking code, which is usually distributed in relatively
small text-based files. It does not, however, behave well with data files, which are large and
change frequently. Also, there is no reason to store and track multiple backup files. And, of
course, never ever add any credentials to the repository!

Shell, Git, Conda, and More – at Your Command Chapter 9

[181]

A .gitignore file defines which file Git will ignore. It will accept wildcards – for example,
data/*.csv will mask all csv files in the data folder directly. Note that this will not
remove any files that are already tracked in the repository, as there are plenty of byproduct
utility files we don't need to track (such as __pycache__ and .ipynb_checkpoints files).
You can create and reuse your own gitignore files, or use any one of a few services to
generate a default one for you (https:/ ​/​www. ​gitignore. ​io/​).

Git is large and complex, and there is enough material to write many books on Git
specifically, but for now, we'll have to move on. Just don't forget to add and commit your
code in logical steps—you will thank yourself for this many times in the future!

Conda
Last, but not least, let's talk about Conda. Yes, this is a tool, developed by Anaconda, hence
the name. If you installed Python via Anaconda, you have it already. Conda represents two
things at the same time – a package manager, and a virtual environment manager. Let's
now discuss these two roles in more detail.

First, and foremost, Conda allows you to install Python packages (and other tools).
Compared to Python's original pip package manager, it is language-agnostic, and can
install any type of software; this feature is vital to the data science stack, as many tools are
based on code, written in the C, C#, and Fortran languages—Conda just pulls a binary
suitable for your operating system, if there is one.

In order to see all the packages already installed, type conda list in your terminal, and
hit Enter – this will print out all the packages Conda installed, with the version specified.
You can always install more—just type conda install my_package_name—this will
take care of the rest, installing the package and all its dependencies from the internet. The
packages available (most of them are) are grouped by channels. The default one, the
Anaconda channel, represents Anaconda Inc.'s official repository of packages—all packages
here are checked and guaranteed to install properly. The downside is the fact that only very
popular packages are stored here, and new ones are added slowly. Among many others,
representing different communities (such as Bioconda—a channel for biology-related
packages), the most prominent is conda-forge, an open channel for any kind of package
maintained by a group of volunteers. It is relatively easy to get your package on this
channel, so here you can find most of them. The downside is that some packages could be
abandoned, won't install properly, or – in theory – may even be malicious. It is a good idea
to specify the channel you want to install from (many of them overlap) by using the -c flag:

conda install -c conda-forge tqdm

https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/
https://www.gitignore.io/

Shell, Git, Conda, and More – at Your Command Chapter 9

[182]

By default, it will try to install the most recent version of the package that is available for
your system. You can, however, request a specific version explicitly, or even require a
version to be above the specific one:

specific version of the package
conda install -c conda-forge tqdm=4.31.1

most recent package available, with version larger
or equal to specified
if conda can't get the version recent enough –
it will not install it, and raise an Exception
conda install -c conda-forge tqdm>= 4.30

Now, let's discuss another use for Conda—as a virtual environment manager.

Conda for virtual environments
In many cases, it is beneficial to be able to switch between different versions of Python – for
testing purposes, or if some specific package or tool does not support the version you
normally use. Moreover, in some cases, it might be nice to switch between different sets of
installed packages (or different versions of the same ones), again for the purpose of testing,
or if they somehow conflict with one another. You can easily do both things using Conda
environments.

Compared to virtual machines, environments do not allocate resources, memory or CPU,
but merely substitute paths to specific tools – in our case, Python, and install packages,
temporarily, tricking a machine into running different versions as if they were just
swapped. In fact, you were using one Conda environment – root – all this time! Even if
you're not going to run tests, it is a very good idea to create a separate environment for
your work. Sooner or later, you will accidentally break your environment by either
installing something bad or in another way. If this is a secondary environment, you can
simply remove it, and then recreate it within 5 minutes. As a bonus, we can declare all the
packages required for the specific project in a text file and share it with others, so that they
can create an identical environment for their work.

In order to create a new environment, just type the following:

conda create -n myenv python=3.7 jupyter scikit-learn

In this code, myenv is the name of your new environment, and everything after this is the
base packages you want to install there – don't worry, those are optional, and the list
doesn't need to be complete.

Shell, Git, Conda, and More – at Your Command Chapter 9

[183]

Now, in order to start working in the environment, type conda activate myenv – you'll
notice that the start of the line will change. Now, anything that you install using Conda, or
PIP (Python's original package manager) will be installed in that environment – and every
Python operation will use the corresponding Python version. You can always exit the
environment by typing conda deactivate.

Now, by way of example, let's install pandas via conda install pandas and pretend
that the resulting environment is the final version we want to store, in order to recreate it
later, ourselves, or share it with colleagues. It's simple! Just type the following:

conda env export > environment.yml

This will generate and store specifications for the currently active Conda environment as a
YAML file. You can edit this file, by adding and removing packages, store it in Git, share it
with anyone, and so on. Once you want to use it, write the following:

conda env create -f environment.yml

You can further specify the preferred name of the environment, overriding the naming
from the file itself.

Conda and Jupyter
There is one non-obvious caveat to using Conda environments: it is easy to run Jupyter in
the wrong environment so that it won't see the packages you have installed, or the version
of Python will differ. In fact, while you can run Jupyter from a specific environment, this
method is not recommended: as Jupyter moved from a Python-specific workflow to the
concept of an abstract notebook-kernel protocol, it is recommended you execute it from the
base operating system, giving it access to all environments and kernels at once.

There are two ways to register a specific environment in Jupyter. First, you can use the
dedicated registration command of ipykernel from the environment:

conda activate myenv
python -m ipykernel install --user --name myenv --display-name "my new
environment"

Another way (it is just a semi-automated wrap around the preceding method, but is better
in our opinion) is to install the nb_conda package in your root environment:

conda deactivate
conda install nb_conda

Shell, Git, Conda, and More – at Your Command Chapter 9

[184]

This package, developed and supported by Anaconda, will scan all the Conda
environments available, and register all of them with Jupyter. Now, you can run Jupyter
from the root environment. Within the Jupyter launcher, you'll see new buttons for Python
in each new environment. You will be able to switch kernels (environments) from within
each notebook as well.

Make
GNU Make, or simply Make, is a utility tool designed initially to help to compile code from
its source. It is provided as part of any Unix system, so chances are you have it on your Mac
or Linux. On Windows, the NMake tool (https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​cpp/​build/
reference/​nmake- ​reference? ​view= ​vs- ​2019) can be used as a replacement.

In a nutshell, Make can run one of a few recipes from a Makefile – a tiny text file that is very
easy to write. While we obviously don't need to compile Python, Make's interface is so
simple, it is quite popular as a common interface for utility scripts or operations. Inside, it
has nothing but shell commands. The following is an example Makefile, containing two
recipes – test and upload. Both instructions are declared PHONY—this means that they
don't result in a file; if we don't declare that, Make will assume that the recipe will produce
a file of the same name, and if that file exists, Make will consider the recipe as already
having been done and won't run it:

.PHONY: test upload

test:
 echo 'testing!'

upload:
 aws s3 cp ./ s3://mybucket/wikiwwii --recursive --dryrun

To run instructions, all you need is to get to the folder and type the following:

$ make test
echo 'testing!'
testing!

It is that simple. Makefiles are especially neat if you have to type a long command with
many parameters, for example, uploading files using an AWS client somewhere or running
PyTest with some flags.

https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019

Shell, Git, Conda, and More – at Your Command Chapter 9

[185]

Make requires every line after the instruction name to begin with a tab –
and not whitespaces! If you're getting a Makefile:1: *** missing
separator. Stop error, you most likely have some whitespaces in place
of tabs. You can replace those in VS Code using a special command, or via
the terminal (for example, using nano)

In order to be used by Make, the file needs to be named Makefile. If you really need to
keep multiple Makefiles in the same folder, you can assign them a meaningful name, and
then specify the file, using the -f flag. If needed, Makefiles could become quite complex!
You can use recipes in other recipes. Documentation relating to Makefiles can be found at
https:/​/​www.​gnu. ​org/ ​software/ ​make/ ​manual/ ​html_ ​node/ ​Introduction. ​html. You are
also free to use environmental variables there, so Makefiles could be quite dynamic.

One byproduct of writing Makefiles is that they work as some sort of documentation for
your fellow developers – and yourself in the future. So do yourself a favor, and add these
whenever you anticipate repeating any shell command more than once. And, by the way,
our next tool, Cookiecutter, frequently includes Makefiles in its templates – do check them
out!

Cookiecutter
Another tool we find useful is Cookiecutter. In a nutshell, this is a templating engine for
projects. There are two main scenarios where Cookiecutter can be useful.

First, if you are usually working on multiple projects of a similar structure or purpose, you
may save some time and emotion by creating a single template of the project. That includes
the folder structure, its name, the default files or templates to include, Makefiles (https:/ ​/
krzysztofzuraw.​com/ ​blog/ ​2016/ ​makefiles- ​in- ​python- ​projects. ​html), proper
gitignore settings, and anything else you want. Specific variables can be injected into any
text-based files, depending on your selection and configurations. As an illustration, in our
practice, we adopted our own templates for our routine data analysis requests.

Second (and specific to programming), building a web app, package, library, or anything
based on a certain framework or stack, or with some specific focus will benefit from reusing
a single, thoroughly designed structure, and there are dozens of pre-designed ones
available for you to use (http:/ ​/ ​cookiecutter- ​templates. ​sebastianruml. ​name/ ​). In fact,
many framework/tool developers prepare such a template themselves—for their own
benefit, and to facilitate integration for new users.

https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
https://krzysztofzuraw.com/blog/2016/makefiles-in-python-projects.html
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/

Shell, Git, Conda, and More – at Your Command Chapter 9

[186]

The best part is the fact that Cookiecutter is itself language-agnostic (hence, there are plenty
of templates for projects in GO, Kotlin, and other languages), but is written in Python, so it
is easy to modify and add to it.

Now, let's execute a basic example. First, let's set up our configuration file. The default
location package is ~/.cookiecutterrc. You can redirect the tool to another location by
passing a COOKIECUTTER_CONFIG environmental variable, but for now, let's stick with the
default one. The following is a simple template for the configuration file:

default_context:
 author_name: "Philipp Kats"
 email: "myemail@emailservice.com"
 github_username: "casyfill"

You can pass any value you want to this config file. These values will be used as default
ones if a particular template has a corresponding variable in place.

Once a config file is in place, let's create a new project from a template. As has already
been mentioned, there are a vast number of templates for different cases; most of them are
stored as repositories – the tool can use both public and private repositories. One that is
particularly popular among the data community is Cookiecutter Data Science (https:/ ​/
drivendata.​github. ​io/ ​cookiecutter- ​data- ​science/ ​) – a template for a general-purpose
data science project. Let's give it a try.

First, we need to move in our terminal to the folder where our project should be placed.
Next, type the following code and hit Enter:

cookiecutter https://github.com/drivendata/cookiecutter-data-science

At this point, the program will start hammering you with questions. Note that it will
recognize your name from the configuration. In the future, you can add any other settings,
such as the S3 bucket name, to the config file. Once you're done with questions, it will
generate the path. Now, open the new folder in VS Code, using code <project_name>,
and explore it!

As you can see, there are many files already. These include a README file, with the full
project's tree and injected description – one you had to type in the questionnaire phase.
Your name is in place in setup.py. The Makefile, a convenient interface for frequent
command-line operations, knows the bucket you typed in and can upload all the data there.
There are a few other pre-generated features as well.

https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/

Shell, Git, Conda, and More – at Your Command Chapter 9

[187]

Now, this template is large, and perhaps too complex for some projects. In fact, an entire
web page (https:/ ​/ ​drivendata. ​github. ​io/​cookiecutter- ​data- ​science/ ​) is devoted to
how to use it. But that does not mean that you have to adapt to it. Instead, you could clone
their template and tailor it to your needs, or even build one of your own, from scratch. For
example, we will discuss another excellent tool, DVC, in Chapter 14, Improving Your Model
– Pipelines and Experiments. It seems reasonable to integrate it into this template.

The benefits of using templates may seem few in number at the start, but the returns are
somewhat cumulative – the more you use every template, and the more features you add,
the more value you'll get from it.

Summary
In this chapter, we covered three distinct technologies that don't directly connect to Python
but are extremely useful for productive and professional development. The shell allows
you to work on remote servers, automate simple file management, and stitch many utility
tools together, skyrocketing your development pace. Git and Conda both allow you to
maintain and reproduce your environment and your code, allowing you to experiment and
explore possibilities, without risking the safety and stability of your previous work.

In the next chapter, we will learn about Python for data science.

Questions
What is a shell? Why and when is it more advantageous compared with using1.
graphical interfaces?
What exactly does version control mean? Is it suitable for research projects?2.
What is the difference between Git and GitHub? Is Git owned by GitHub?3.
What are Git branches used for?4.
What are the two roles of the Conda tool?5.
How does Jupyter interact with multiple Conda environments?6.

https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/

2
Section 2: Hands-On with Data

This section introduces us to the world of scientific (or data-oriented) Python, including its
own IDE—Jupyter—and a suite of packages that assist in working with data. We will
perform exploratory data analysis, draw some charts, and train a number of models. All of
this will be implemented through our three projects, utilizing the data we collected in the
first section.

This section comprises the following chapters:

Chapter 10, Python for Data Applications
Chapter 11, Data Cleaning and Manipulation
Chapter 12, Data Exploration and Visualization
Chapter 13, Training a Machine Learning Model
Chapter 14, Improving Your Model – Pipelines and Experiments

10
Python for Data Applications

We have worked with data already in some of the previous chapters in this book, including
data collection and some statistical computations. The samples in all of those cases were
quite small, though. To run data analysis and train machine learning models smoothly on
datasets of millions of records, researchers built a distinctive ecosystem of Python packages.

In this introductory chapter, we won't code much—instead, we'll overview the
foundational packages and tools for the data science ecosystem, which we will be using
throughout this part of this book, including the following:

Introducing Python for data science
Exploring NumPy
Understanding pandas
Trying SciPy and scikit-learn
Understanding Jupyter

Technical requirements
The code for this chapter makes use of two packages—numpy and pandas, both of which
are included in the default Anaconda distribution. The notebook for this chapter is in the
Chapter10 folder in the repository (https:/ ​/​github. ​com/ ​PacktPublishing/ ​Learn-
Python-​by-​Building- ​Data- ​Science- ​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Python for Data Applications Chapter 10

[190]

Introducing Python for data science
The fundamental task of data analysis is to generalize some trends and shared properties
over a dataset of multiple—probably many—data points. Imagine how that would look in a
standard Python distribution: you'll have a list of, say, Person objects, each with its own
values. To run some aggregate statistics, we would have to loop over each object, pull its
properties, and calculate the statistics. If we need to get a few measurements, the code will
quickly grow large and unmaintainable.

Instead, many computations in data analysis can be vectorized. Here, vectorization is a
fancy term for saying the same exact loops will be run in C, rather than Python, which
speeds things up by a few orders of magnitude. At the same time, it means that we won't
need to explicitly write those loops, making code cleaner and more readable. For example,
we could represent our animals from Chapter 8, Simulation with Classes and Inheritance, as a
numeric 2-dimensional matrix, defining their properties as columns and each particular
animal as a row in this matrix. This could significantly simplify the code—for example, to
age animals and drop the old ones, we could write just one line:

animals['age'] += 1

See, no loops! And yet, age will be increased for every animal (row) in the matrix.

Consider the following example:

import pandas as pd
animals = pd.DataFrame({'survival_skill':[1,2,3], 'age':[0,0,0]})
max_age = 2

animals['age'] += 1 # this adds one to age of all
animals
animals = animals[animals.age <= max_age] # this drops all animals with
age above maximum

Here, the animals variable is a table of two columns (age and survival_skill) and
three rows, each representing a separate animal. Using that table, we now can
run vectorized operations: first, we add 1 to the age of every animal in the table. The next
line consists of two vectorized operations: code within the square brackets creates a
Boolean vector of three values, one per animal, each answering whether the corresponding
animal's age is below or equal to the maximum threshold (all of them do). This mask is then
used to filter rows in the table, essentially dropping animals that are too old.

Python for Data Applications Chapter 10

[191]

This approach is not only simpler but it's also a faster one. You see, Python has dynamic
typing—we don't have to strictly define the type of each variable beforehand, as in other
languages (C and Java). It makes it faster to write code but has its consequences, as the
computer needs to check the type of each value, on every operation—even if we are looping
through an age property of each of the thousands of animals. As properties of objects are
independent of each other (for example, the property of one object could have a different
type than one of the others), this means that each variable is treated as an independent
value—and is sent and cached on the CPU separately.

Instead, we could define the properties of all objects of the same type (or even all of their
properties) as having a specific type, and represent the whole collection of objects (for
example, all animals on the island) as one object (matrix), which the computer will then
treat as one entity, with no need to check the type each time, and this whole object could be
sent and cached on the CPU simultaneously. For that to happen, we have to
introduce arrays.

As you can now see, operating large sets of data and performing operations on them
quickly is a crucial task for modern data science. Using vectorized code allows us to not
only do that but also to write the code for those computations in a clean and expressive
fashion. At the core of those fast operations are efficient data structures—first of all,
multidimensional data arrays. And when we talk about numeric arrays in pandas, those are
likely to be NumPy arrays.

Exploring NumPy
NumPy is a library built around the notion of numeric arrays—multidimensional, index-
based (like a list) collection of data, which (unlike a list) guarantees the type of the stored
values to stay consistent and predefined—say, a 2-dimensional array of integers or 1-
dimensional array of floats. It is based on the C code and allows us to boost computation by
a few orders of magnitude, compared to base Python. The gap in performance is
staggering even on relatively small datasets and grows exponentially for large datasets and
complex algorithms. NumPy is capable of handling a few million rows of data and is
primarily bounded by the operational memory—not the CPU.

Python for Data Applications Chapter 10

[192]

Let's illustrate this staggering difference in performance with an example. Imagine that we
need to summarize three lists of values, pairwise. In pure Python, the code will be similar
to this one:

>>> A, B, C = [1,2,3,4,5]*1000, [2,3,4,5,6]*1000, [10,9,8,7,6]*1000

>>> %timeit result = [sum(row) for row in zip(A,B,C)]
635 µs ± 14.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Now, let's do the same, using NumPy, as follows:

First, we convert all three lists into NumPy arrays using the np.array function1.
(it takes any iterable as input). Here is the code:

import numpy as np

Anp = np.array(A)
Bnp = np.array(B)
Cnp = np.array(C)

Now, we summarize them:2.

>>> %timeit result2 = Anp + Bnp + Cnp
4.67 µs ± 22.4 ns per loop (mean ± std. dev. of 7 runs, 100000
loops each)

>>> 4.67 / 635
0.00735

It takes less than 1% of the time it took normal Python! Now, imagine what we'll gain on
more complex operations, where the number of operations grows exponentially with the
number of data points!

In the preceding example, we performed vectorized addition—the + symbol, in this case,
represented matrix summation. For more complex operations—for example,
the if switch—we have to use multiple functions and methods built into NumPy, such as
the numpy.where function for vectorized if/else operations. Even so, it is still possible to
run custom Python functions on each cell, row, or column of the matrices but, most often,
this code will be drastically slower than one using NumPy's native operations.

Python for Data Applications Chapter 10

[193]

This vectorized code requires a somewhat different way of thinking, as your code will be
running most often either on rows or columns of the matrices and not on single values.
Therefore, to achieve good performance, it is usually not recommended to write your own,
pure Python code, and, of course, loops are generally a no-go. Instead, most problems
usually can be redefined using typical operations—ones already made available and
efficient.

With the rise of neural networks and other computation-heavy
algorithms, scientists and developers are pushing the boundaries of
performance; recently, a new package was announced—CuPy—that aims
to be a plugin replacement for NumPy, based on leveraging graphical
boards instead of the CPU. Given that your computer has a good modern
graphical card, it can achieve even more impressive performance, with
little to no changes in the code over NumPy.

In this section, we've got to know NumPy, a foundational package for the Python data
science ecosystem. NumPy is built around the notion of multidimensional arrays of the
same data type. With this, most mathematical operations and matrix transformations can be
executed in vectorized form. This vectorized way of data processing is great for any type of
data operation, but NumPy can only support numeric operations. To work on a broader set
of data types and have an easier, more humane interface for matrices, we'll go to pandas.

Beginning with pandas
Of course, not all data—and data analysis—is numeric. To address that gap, and inspired
by the R language's dataframe objects, another package—pandas—was created by Wes
McKinney in 2008. While it heavily relies on NumPy for numeric computations, its core
interface objects are dataframes (2-dimensional multitype tables) and series (1-dimensional
arrays). Dataframes, in comparison to NumPy matrices, don't require all data to be of the
same type. On the contrary, they allow you to mix numeric values with Boolean, strings,
DateTimes, and any other arbitrary Python objects. It does require (and enforce), however,
the data type to be uniform vertically—within the same columns. Compared to NumPy, it
also allows dataframe columns and rows to have arbitrary numeric or string names—or
even hierarchical, multilevel indices.

Python for Data Applications Chapter 10

[194]

Also, pandas allows simple grouping and aggregation of data, merging tables à la SQL,
time-based transformations, plotting, and many, many other tools. It also makes reading
and writing to dozens of different formats—from CSV file to SQL database, to JSON and
HDFS/Arrow binaries—a breeze. As a result, it is extremely powerful for data analysis and
remains the de facto standard for most data analysis, period.

Let's showcase pandas with a simple example:

Here, we'll read a CSV file with geocoded cities we created in Chapter 6, First1.
Script – Geocoding with Web API:

>>> import pandas as pd

>>> df = pd.read_csv('../Chapter06/geocoded.csv')
>>> len(df) # number of rows in the table
10

Next, we'll filter data to only the cities in the Eastern Hemisphere (positive2.
longitude):

>>> eastern = df[df.lon > 0] # those with non-negative longitude
(easter hemisphere)
>>> len(eastern)
8

Now, we calculate how many cities there are and what their median population3.
is for each country:

>>> result = eastern.groupby('country').agg({'population':'mean',
'icon':'count'})
>>> result.rename(columns={'icon':'cities'}, inplace=True)
>>> result

 population cities
country
China 22.6825 2
India 25.2725 2
Indonesia 32.2700 1
Japan 38.0500 1
Philippines 24.6500 1
South Korea 24.2100 1

We'll finally store our results as a new CSV file:4.

result.to_csv('aggregation.csv')

Python for Data Applications Chapter 10

[195]

That's it! Note that pandas also plays well with Jupyter—all tables are nicely rendered as
HTML tables!

Working with pandas requires the same type of thinking as with NumPy—you should try
to avoid loops at all costs. Most of the time, there are predefined ways to do what you want,
written by others. The resulting code may be somewhat less readable and expressive than
pure Python—but will be way faster.

One of the most popular spin-offs from pandas is the geopandas package, which offers a
pandas-like interface for geospatial visualization and analysis. It represents collections of
geospatial objects (points, lines, or polygons) as a special kind of dataframe. We'll
work with geopandas in Chapter 12, Data Exploration and Visualization.

So far, we've reviewed two fundamental packages—NumPy and pandas. Both of them
provide serious power in reading, processing, and operating on data—be it numeric arrays
or tables of different data types. On top of those complex and fast data structures, yet
another layer of packages allows the running of complex algorithms—packages such as
SciPy, SimPy, and scikit-learn. You can think of them as a bunch of textboxes on core
mathematical, physical, and general-purpose scientific equations and models, all brought to
life as a set of Python packages.

Trying SciPy and scikit-learn
The SciPy package essentially kicked off the entire era of scientific Python. Created in 2001
by researchers Travis Oliphant, Pearu Peterson, and Eric Jones, it was formed as a collection
of basic and universal scientific techniques. Over time, the package grew and now offers
generic tooling and popular techniques for scientific analysis. Its submodules cover linear
algebra, integration, optimization, interpolation, statistics, and many more.

With the rise of machine learning, the corresponding submodule of SciPy grew more and
more complex. At some point, it became so big, the decision was made to reintroduce it as a
separate, independent package—scikit-learn. As the mark of its origins, the package
kept its name, defined earlier as SciPy kit—learn. Due to its simple and unified interface
and a large variety of models, scikit-learn quickly became the main go-to tool for
machine learning in Python, and its interface for the models is essentially an industry
standard. Indeed, many other packages, such as xgboost and fbprophet, replicate
scikit-learn model interfaces for their models, allowing us to quickly swap and stack
different machine learning algorithms.

Python for Data Applications Chapter 10

[196]

As a foundational package for machine learning, scikit-learn offers this tooling:

Data preparation—scalers and transformers
Model selection—cross-validations, hyperparameter optimization, pipelines, and
so on
Multiple metrics and score/loss functions
Dimensionality reduction
Clusterization
Regression and classification with multiple models

scikit-learn assumes data to be in 2-dimensional structures similar to NumPy arrays, so
both NumPy arrays themselves and pandas dataframes will work. We are going to
use scikit-learn to build a predictive model in Chapter 13, Training a Machine Learning
Model, and Chapter 14, Improving Your Model – Pipelines and Experiments.

There are hundreds of scientific Python packages for any given domain—economic, social
sciences, game theory, physics, metallurgy, genomics, psychology, neuroscience, and
history—the list can go on and on. The vast majority of those packages, though, share their
origins, in that, they all use NumPy arrays as data structures and functions from SciPy and
scikit-learn at the core of their operations. But the list of packages essential to the
popularity of Python's data science is not complete without mentioning a crucial
environment for all of this code—Jupyter.

Understanding Jupyter
Finally, there is Jupyter. We're familiar with this tool already, as it proved invaluable for
teaching—and learning Python on simple examples, but it especially shines for data
science; given its rich media and visualization capabilities, Jupyter is an excellent
environment for data analysis. It allows quick iteration and experimentation, supports
markdown documentation and rich media—images, plots, interactive widgets, video, and
so on. Of course, Jupyter is 100% open source and free.

Jupyter is also language agnostic. At the moment, there is a handful of languages to use
with Jupyter, including Ruby, C, Rust, R, and many more. It also supports third-party
plugins, for example, leaflet and Mapbox viewers for GeoJSON files or the Vega data
visualization viewer. Another advantage is that Jupyter Notebooks are properly rendered
on GitHub, so you can read other people's code from the repository with no need to run
your own server.

Python for Data Applications Chapter 10

[197]

On top of that, Jupyter can be spawned remotely using JupyterHub, on one server or even
on a cluster of machines via Kubernetes or similar orchestration software. Hence, it is a
perfect engine for remote work (if, for example, your data is too big to access on one
machine or cannot be transferred due to security reasons). It is also a great environment for
teaching, as it helps teachers to ensure all students have the same environment and are
generally in an equal position. Finally, it is proven to be a good tool for writing code-related
books—this way, all code is executable and can be tested.

Recently, notebooks started to get traction as some sort of interactive logs: large data-driven
companies, such as Netflix, realized they can parametrize notebooks and ran them via some
pipeline scheduler (Apache airflow, for example—more on pipelines in Chapter 17, Let's
Build a Dashboard). Once the pipeline is executed (or failed), a notebook can be stored as an
artifact —with all of the warnings, printed samples, and plots. Using certain data
visualization libraries and techniques allows the storing of snippets of data within the
notebook, keeping the resulting plots interactive.

Jupyter is a great environment for research and constantly adds more functionality. Here,
we're finishing our exposé—it is now time to get our hands dirty with data!

Summary
In this chapter, we covered the foundation of Python's data science stack—the NumPy,
pandas, SciPy, scikit-learn, and Jupyter libraries. By doing so, we were able to gather
an understanding of this ecosystem, why and when we need all of these packages, and how
they relate to each other. Understanding their relationships helps to navigate and search for
a specific functionality or tool to use.

We also touched upon the reasons why NumPy-based computations are so fast, and why
this leads to a somewhat different philosophy of data-driven development. We further
showcased how pandas complements NumPy arrays by supporting plenty of data formats
and types, and SciPy and scikit-learn build upon those data structures, allowing us to
quickly train and use machine learning models. Finally, we discussed why Jupyter plays
such an important role in this process and what are the current developments and new use
cases for Jupyter Notebooks.

In the following chapters, starting right with the next one, we'll use all of the packages and
tools we mentioned and more, to process data and build data-driven projects. In the next
chapter specifically, we'll explore and process the data on WWII battles we collected in
Chapter 7, Scraping Data from the Web with Beautiful Soup 4, so that it will be ready for data
analysis and visualization.

Python for Data Applications Chapter 10

[198]

Questions
Why should we use a special stack of packages for data analysis?1.
Why are NumPy computations so fast compared to normal Python?2.
What is the use case and benefit of using Pandas over NumPy?3.
What does sklearn stand for?4.

11
Data Cleaning and

Manipulation
Before we dive into data analysis, data needs to be properly prepared and structured. Some
datasets, for example, structured computer logs, are ready to go from the start, but, most of
the time, the majority of the time is spent preparing data properly. This process inevitably
requires certain decisions that depend on the specifics of the task.

In this chapter, we will learn how to prepare the data with pandas, using the dataset we
collected from Wikipedia in Chapter 7, Scraping Data from the Web with Beautiful Soup 4, as
an example.

We will cover the following topics in the chapter:

Quick start with pandas
Working with real data
Regular expressions
Using custom functions with pandas dataframes
Writing the file

Data Cleaning and Manipulation Chapter 11

[200]

Technical requirements
The code for this chapter makes use of two packages: pandas, which is included in the
default Anaconda distribution, and missingo, which we included in the
environment.yml file. If you skipped the step of conda environment creation, just install
missingo using the pip or conda package managers. As always, all the notebooks are
stored in the repository, in the Chapter11 folder (https:/ ​/​github. ​com/ ​PacktPublishing/
Learn-​Python-​by- ​Building- ​Data- ​Science- ​Applications).

Getting started with pandas
Pandas is the tool for data manipulation in Python—it combines speed and convenience,
allowing the rapid processing and manipulation of data. Let's first overview a number of
basic operations: pandas is simple and intuitive to use, but it is still a learning curve.

pandas does have two main data structures:

Series is a one-dimensional array of one data type that also has an index. The1.
index could be numeric, categorical, a string, or datetime.
DataFrame is a two-dimensional table consisting of a set of columns—each of2.
one single data type. Dataframe has two indexes—index and columns. Columns
of Dataframe can be thought of as Series. Rows can be retrieved as
Series but, in this case, data in the cells will likely be converted to one shared
data type object (more on that later).

Most of the time, we get our data from external sources: a database, a link, or a file. To do
that in pandas, just use one of the many pd.read_... functions, including, but not limited
to, the following:

pd.read_csv and pd.read_excel for CSV and Excel formats. There is also
pd.read_html to read tables for a given HTML page.
pd.read_sql and pd.read_sql_table for SQL databases (the first expects a
query as an argument, while the second will try to collect the whole table).
pd.read_pickle, pd.read_feather, pd.read_hdfs, pd.read_parque and
so on for different binary formats.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Data Cleaning and Manipulation Chapter 11

[201]

Be aware that most of those functions support (where applicable) not only local paths, but
also web URLs. In addition, many of them can detect and unarchive archived files—for
example, the ./data.csv.gz file will be unzipped and read in memory, seamlessly.

All of the preceding functions have plenty of arguments. For example, for read_excel,
you can specify which sheet to use, and, for read_csv , which row to treat as column
names (if any), and how many rows to skip at the beginning and drop at the end of the file.
You can also specify which columns to parse as a date or time values and whether those
should be stitched together; for example, if one column defines the date, and the other the
time.

Writing data to a file or database is as easy as reading. pandas support all the same formats
for data write—available via multiple df.to_csv, df.to_excel, and many more. As with
reading, you can add an archive extension to the end of the path, and pandas will
automatically detect those and use the corresponding archiving algorithm.

We now know how to read and write data using pandas. Let's now talk about how to select
and edit values.

Selection – by columns, indices, or both
Now, let's learn how to access and edit specific values in pandas data structures. We'll start
with a toy example—here, I will generate a dataframe from a dictionary of lists:

import pandas as pd

data = {'x':[1,2,3], 'y':['a', 'b', 'c'], 'z': [False, True, False]}
df = pd.DataFrame(data)

Now, we can take a look at the data we just stored:

>>> df
 x y z
0 1 a False
1 2 b True
2 3 c False

Data Cleaning and Manipulation Chapter 11

[202]

As you can see, this frame has three rows and two columns. Let's see how it works:

First, let's start selecting columns. Any column can be selected using indexing via1.
square brackets with the column name. As we're asking for one column, it will be
returned as a pandas Series object:

>>> df['x']
 1
 2
 3
Name: x, dtype: int

Now, a similar approach can be taken to select multiple columns—to do this, we2.
just pass a list of column names instead of one name:

>>> df[['x', 'y']]
 x y
0 1 a
1 2 b
2 3 c

In this case, a dataframe will be returned. Even if we have only one column name in the
list, df[['x']], it will return a dataframe.

If we need to get a specific row or rows, we need to use the loc method. You can use
loc in a similar way to columns: df.loc[0] will select one row as a pandas Series. In
order to select multiple rows, pass a list of indices—df.loc[[0,2]]. In both cases,
numbers represent indices of the rows, which have to be neither ordered, nor numeric, nor
unique.

In fact, .loc can be used to select both rows and columns; in other words, any arbitrary
subset of a dataframe. To do so, just pass any definition of rows first, and then the
definition of columns as a second argument:

>>> df.loc[[0,1], 'z'] # first two rows, column z
 False
 True
Name: z, dtype: bool

If one index and one column name are passed, loc will return a raw value, not a series!

Data Cleaning and Manipulation Chapter 11

[203]

Selection can be used for both reading and writing data—or even creating new columns
provided there are none with the same name:

>>> df['new_column'] = -1
>>> df['new_column']
0 -1
1 -1
2 -1
Name:new_column, dtype: int

You can pass either a collection of the same length (same number of rows) or a scalar
(single) value. You can also write to a specific cell or a specific subset of cells. If needed, you
can even pass multiple columns at once as a dataframe.

In some cases, you might need to select according to the order of columns or rows, for
example, the first five rows, no matter what their indices say. For that, there is another
method—.iloc. .iloc works similar to list slicing; it supports negative indices and much
more besides:

>>> df.iloc[-2:, 1:]
 y z new_column
1 b True -1
2 c False -1

Also, if you just want to get first, last, or random N rows, you can use the .head, .tail, or
.sample functions, respectively. Each takes an integer as an argument, defining how many
rows to return.

Masking
Now, both loc and simple square brackets accept masks. Mask can be represented by a
Series, a NumPy array, or a simple list of Boolean values of the same length as the
number of rows in the dataframe. If given, this collection will be interpreted as a
mask—essentially, an explanation of which rows to return. For example, we can use our
third column, z, as a mask to filter on. Because we only have a True value in the first row, a
dataframe of one row will be returned:

>>> df[df['z']]
 x y z new_column
1 2 b True -1

Data Cleaning and Manipulation Chapter 11

[204]

This is a very important technique, which we'll be using all the time! Such a mask can be
generated using any logic operations, for example, an equality operator. Take a look: here,
we are creating a mask by checking whether the values in column x are equal to 2:

>>> mask = df['x'] == 2
>>> mask
0 False
1 True
2 False
Name:x, dtype:bool

This mask can now be used to filter rows in our dataframe or any other one with the same
indices. Only the second row will be retrieved—as only the second value in the masking
series is true:

>>> df.loc[mask, 'y']
1 b
Name: y, dtype: object

Data types and data conversion
As you may notice, when we print out a Series object, its data type will be declared in the
last line. An alternative way is to call dtype for each Series, or .dtypes for the entire
dataframe (it will return a Series object). Those data types are defined in C, and not
Python. The majority of them largely match Python ones; for example, integers, floats, and
Booleans. There are, however, a few caveats to be aware of regarding the data types:

First, there is no existing data type for strings. As you may notice in the last code
block, all strings are defined as objects, that is, an arbitrary Python object. This
type is the last resort, the type that suits any Python value but does not give any
computation benefits.
Next, None. This is an NaN (Not a Number, numpy.nan) data type—but it is a
subclass of float. Most of the time, it does not bother you, but there are two
cases where it does: since NaN isn't None, neither an equality operation
(df['col'] == None) nor an is statement will work. The only way is to check
using pd.isnull() and pd.notnull() (or their NumPy analogs). Both
functions will work on scalars and collections of values. As NaN is a subclass of
float, and values have to be of the same type in the Series or NumPy arrays,
any column of integers, once an NaN is added, will be converted to floats.

Data Cleaning and Manipulation Chapter 11

[205]

Finally, some data types—specifically, strings and DateTime types, have corresponding
special commands in pandas, accessible via column.str and column.dt, respectively.
These include split, replace, slicing, and case changes for strings and retrieving a
specific number of minutes/hours/days/months/years, and weekdays (we will get to that
later in this chapter). Strings can also be added similar to vanilla Python. Datetimes can be
subtracted, resulting in time delta objects.

The situation with the data types may change in the near future for two
reasons. First, NumPy defined a standard API for arrays and vectorized
functions, allowing other parties to add data types to the ecosystem.
Second, Pandas 2.0 will be published soon, based on the arrow dataframe
representation, instead of NumPy. Arrow promises to support NaN for
integers.

Math
Of course, mathematical operations are well present in pandas, which actively leverages
NumPy's functionality and supports an extra-wide specter of math and statistical
functionality. To get a sum, mean, median, max/min, or percentile of a numerical column,
just call it as a column's method:

>>> N = pd.Series([1,2,3,10])

>>> N.mean()
4.0

>>> N.median()
2.5

>>> N.sum()
16

>>> N.max()
10

It also supports operations such as correlation (just call it on another numeric column of the
same length), and many more. Most of the time, you can run the very same functions on the
dataframes—in this case, axis (direction of operation) will be used as an argument. The
default, all operations are run vertically—for example, for df.sum() you will get a series of
sums, one for each column in the original dataframe. The very same operations with
axis=1 will summarize every row, so you will get Series with a cell for each row in the
dataframe.

Data Cleaning and Manipulation Chapter 11

[206]

Merging
On occasion, we need to join multiple dataframes together. There could be different ways to
do that—let's take a look.

First and foremost, if you have multiple dataframes with the same columns, and you want
to join them—never do that iteratively—try to do that once, by passing a list of all of them
to the pd.concat function with the axis=0 and sort=False arguments (unless you need
to sort them):

>>> df.shape
(3, 4)

>>> double = pd.concat([df, df], axis=0, sort=False)
>>> double.shape
(6, 4)

Similarly, pd.concat can merge multiple dataframes horizontally if axis=1:

>>> pd.concat([df, df], axis=1)
 x y z new_column x y z new_column
0 1 a False -1 1 a False -1
1 2 b True -1 2 b True -1
2 3 c False -1 3 c False -1

In this example, we group two copies of the same dataframe, so they, by definition have the
same columns and indices. If, however, columns or indices do not match entirely—or at all,
an outer join will be performed—the new dataframe will have all indices or columns—filled
with null for dataframes that didn't have those indices/columns.

Another way to pull dataframes together is provided by merge. If column names overlap,
merge will use a suffix. Most importantly, merge has the following two features:

It can join dataframes on an index or any other column or group of columns.
If the values in columns we're merging are not unique, the merge will behave
depending on the mode—one of left, right, inner, and outer, similar to SQL
join modes.

For example, if the mode is left, and the left dataframe has multiple occurrences of the
same value in the column we're merging by, corresponding rows from the right dataframe
will be pulled multiple times. In the same situation, with right mode, only the first
occurrence of the value in the left merge column—and a corresponding row—will be
merged.

Data Cleaning and Manipulation Chapter 11

[207]

In the following, we are merging the dataframe with its own first 2 rows:

>>> df.merge(df.head(2), on='y', how='left')
 x_x y z_x new_column_x x_y z_y new_column_y
0 1 a False -1 1.0 False -1.0
1 2 b True -1 2.0 True -1.0
2 3 c False -1 NaN NaN NaN

As the second dataframe only has 2 rows, the third one is filled with NaN values.

An interesting trick is to merge two dataframes on a column, which has
the same values for all rows, both in the right and left dataframes. In this
case, pandas will return a permutation of all combinations of rows on the
left and right sides.

Now that we know some basics of working with pandas, let's get our hands dirty with real
data processing.

Working with real data
Let's now try using pandas on real data. In Chapter 7, Scraping Data from the Web with
Beautiful Soup 4, we collected a huge dataset of WWII battles and operations—including
casualties, armies, dates, and locations. We never explored what is inside the dataset,
though, and usually, this kind of data requires intensive processing. Now, let's see what
we'll be able to do with this data.

As you may recall, we stored the dataset as a nested .json file. pandas can read from
JSON files of different structures, but it won't understand nested data points. At this point,
the task for us is straightforward (you may think of writing a recursive function, for
example), so we won't discuss this much. If you want, you can check the
0_json_to_table.ipynb notebook in this chapter's folder on GitHub at the following
link: https:/​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data- ​Science-
Applications/​tree/ ​master/ ​Chapter11. The only new operation there is
the pandas.io.json.json_normalize function, which expects an array of dictionaries,
representing rows, and flattens their nested properties, concatenating keys (in our case,
nested belligerents, casualties, strengths, and leader elements). We stored the resulting data
as a set of CSVs, representing different theaters of war (see Chapter11/data/...csv in
the repository). Note that no additional processing, with the exception of unnesting, was
undertaken.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/tree/master/Chapter11

Data Cleaning and Manipulation Chapter 11

[208]

With this done, we can now look closer at the data we collected. Let's dive into one of the
CSV files and see what we're working with:

df = pd.read_csv('./data/Eastern Front.csv')

This will read the report and present the data.

Initial exploration
Before anything else, we need to take a look at the data itself, as well as its columns and
rows. It's reasonable to start data exploration by understanding the following:

How do specific values look like, for example, using df.head(N), df.tail(N) ,1.
or df.sample(N) to retrieve (and print) the first N, last N, or random N rows
from the dataset? As regards heads and tails, by default, N = 5. For our sample, it
is 1 (one row). Alternatively, the sample method can take a frac argument,
which will return a fraction of records—for example, df.sample(frac=0.25)
will return 25% of the initial dataset. Note that printing will omit some columns
in the middle if there are too many of them.
The overall shape of the dataset—the number of rows and columns. To do this,2.
we can use the df.shape attribute, which returns a tuple of two numbers: the
first stands for the number of rows, and the second the number of columns.
Alternatively, len(df) will return the number of rows. For a width dataframe
with many columns, it is often useful to print all the column names by converting
the index to a list: list(df.columns). Without being converted, columns will
hide those names in the middle (this hiding behavior—both for Series and rows
in dataframe—can be changed via the pandas settings, if needed).
Learning data types for each column by using the df.dtypes attribute on the3.
dataframe, or the df[col].dtype attribute of a particular column. The first one
will return (so we can print) a series of strings representing the data types for
each column. The latter will return one string.

In our case, all but one column in this dataset are objects, which usually means strings.
Furthermore, many are vaguely structured, and clearly not ready for quantitative
analysis—before we run the numbers, we first need to extract them. From the output of
df.head(), it is clear that most columns require cleaning in order to be useful. So that's
what we'll do next.

Data Cleaning and Manipulation Chapter 11

[209]

Defining the scope of work to be done
Before we dive into the process of data cleaning, which might be very time-consuming, it is
always useful to define the scope of work—which columns and rows we actually need to
clean. For this chapter, let's restrict the scope to the lowest level of the hierarchy—specific
battles (level=100—pages for events with no children). We can use the equality operator
to generate a Boolean mask, and then use this mask to filter the dataset:

>>> battles = data[data.level == 100]
>>> battles.shape
(147, 23)

There are many columns in the dataset—enough for pandas to omit the middle part when
printing. As we'll be mostly focused on time, geolocation, names, and casualties of each
side, let's define those columns of interest in a list and investigate them more closely:

columns = ['Location', 'name', 'Date', 'Result', 'Belligerents.allies',
'Belligerents.axis']
battles[columns].head(3)

As a result of this code, we'll get the following table:

Location Name Date
Result
s

Belligerents.all
ies

Belligerents.ax
is

Casualties and
losses.allies

Casualtie
s and
losses.ax
is

0

Westerplatt
e, harbor
of Free
City of
Danzig54°..
.

Battle of
Westerplatte

1–7
September
1939

German
victor
y

Poland Germany Danzig
15 dead at least 40
wounded Remainder
captured

50 dead
at least
150
wounded

1

Mokra,
Kielce
Voivodeship
, Poland

Battle of
Mokra

September
1, 1939

Polish
victor
y

Germany Poland
800 killed,
missing, captured,
or wounded 50 tanks

500
killed,
missing
or
wounded
300
horses
sever
a...

2

Near Mława,
Warsaw
Voivodeship
, Poland

Battle of
Mlawa

1–3
September
1939

German
victor
y

Germany Poland
1,800 killed 3,000
wounded 1,000
missing 72 tanks..

1,200
killed
1,500
wounded

3

Near
Tuchola
Forest,
Pomeranian
Voivodeship
, P...

Battle of
Tuchola
Forest

1–5
September
1939

German
victor
y

Germany Poland
506 killed \n\n743
wounded

1600
killed
750
wounded
Unknown
number
cap...

4

Jordanów,
Kraków
Voivodeship
, Poland

Battle of
Jordanów

1–3
September
1939

Pyrrhi
c
German
victor
y

Poland Germany 3+ tanks
70+ tanks
and AFVs

Data Cleaning and Manipulation Chapter 11

[210]

Now, let's investigate the missing values in the data if the particular column is mostly
empty. It makes no sense to spend time cleaning and processing it. The best way to explore
the missing values is to make a plot. With the help of the missingno library, it is an easy
task. Take a look at the code:

import missingno as msno
msno.matrix(battles, labels=True, sparkline=False)

As a result, the following chart will be plotted:

Here, the black rectangles represent non-empty values. As you can see, a few auto-
generated columns (level, name, parent, and URL) don't have any misses. Some others, on
the other hand, do have just a few non-empty ones (for example, all the columns related to
the third party). What is even more important is the fact that there is a clear correlation
between the missing values on some of the columns—it seems that rows with missing data
in Belligerents also lack values for Date and Location. Let's first investigate those
columns:

>>> mask = battles[['Date', 'Location']].isnull().all(1)
>>> battles.loc[mask, ['name', 'url']]
 name
url
39 Pripyat swamps (punitive operation)
https://en.wikipedia.org/wiki/Pripyat_swamps_(...
42 Bombing of Tallinn in World War II

Data Cleaning and Manipulation Chapter 11

[211]

https://en.wikipedia.org/wiki/Bombing_of_Talli...
46 Operation Wotan
https://en.wikipedia.org/w/index.php?title=Ope...
47 Nevsky Pyatachok
https://en.wikipedia.org/wiki/Nevsky_Pyatachok
48 Operation Nordlicht (1942)
https://en.wikipedia.org/wiki/Operation_Nordli...
61 Operation Büffel
https://en.wikipedia.org/wiki/Operation_B%C3%B...
67 Operation Kremlin
https://en.wikipedia.org/wiki/Operation_Kremlin
68 Operation Braunschweig
https://en.wikipedia.org/wiki/Operation_Brauns...
70 Malaya Zemlya
https://en.wikipedia.org/wiki/Malaya_Zemlya
96 Concert (operation)
https://en.wikipedia.org/wiki/Concert_(operation)
97 Zhitomir–Berdichev Offensive
https://en.wikipedia.org/wiki/Zhitomir%E2%80%9...
152 Operation Nordlicht (1944-1945)
https://en.wikipedia.org/wiki/Operation_Nordli...
157 Operation Konrad
https://en.wikipedia.org/wiki/Operation_Konrad
175 Operation Margarethe
https://en.wikipedia.org/wiki/Operation_Margar...

From the outcome, it seems that the web pages actually lack this kind of information.
Moreover, many of them are not exactly standard battle pages, so perhaps we'd be better
off without them—let's throw them out for good:

battles=battles.dropna(subset=['Date', 'Location'])

Now that we're done with missing values, let's get back to the table we printed. As you can
see, there are a few serious issues, including an incorrectly stated axis and allies
belligerents (refer to rows 3 and 4 of the preceding example), and Date, Location, and
Casualties (among others) values stored in an unstructured way. Those issues have to be
taken care of before we can move on to analysis. In other words, we need to correct the
sides, parse dates, convert locations into coordinates, and parse multiple types of casualties
as numbers. Unfortunately, there is no one silver bullet here. To process all those records
accurately would require a lot of time. Usually, our time is limited, so we'll have to find
some sort of compromise, depending on our end goals.

In this section, we explored the dataset in general, which allowed us to throw away what
we won't use, and identify issues with the data that we'll have to fix in the next sections.

Data Cleaning and Manipulation Chapter 11

[212]

But first, how do we even approach data cleaning and parsing? The former is simple – just
use masks, filters, and/or imputation strategies. The latter, however, will require us to use
yet another technological trick—regular expressions.

Getting to know regular expressions
Strings that store data usually have certain patterns, which can be leveraged to retrieve
actual data values in a unified fashion. For example, some location cells have distinctive
coordinates, and numbers and symbols of degrees, minutes, and seconds. To extract those
values, we could write a custom Python code, but this will be verbose and time-consuming.

This problem – extracting values from text by defining a pattern – sounds like something
quite general and useful in many situations. When a problem can be stated as something
universal, it usually means that it is, and someone has a solution! This is, by the way, a
good approach for programming in general.

Indeed, there is a universal solution, called regular expressions, or regex. Regex is a special
mini-language that defines patterns in a text to look for. It is language-agnostic, and there
are implementations for most languages. Python, for example, has a built-in re library but,
in this case, we don't even need to invoke it explicitly, as pandas has the corresponding
built-in functions.

In order to use regex, we first need to define our pattern as a string, using its language. This
language is relatively easy to write (at least for simple queries), but notoriously hard to
read. Here is an example of a regex that detects emails in text:

(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)

Don't worry—it will start making sense soon (also, we won't write the regex in such a
complex manner). Here are the basics:

Rule Example
text Example pattern Result

Any character except the special ones (., ?, !, /, *, +, |, (), [], {})
represents themselves (have to be exact in the string). This includes white
spaces as well.

Hello! llo llo

The plus sign (+) means that the character before it can be repetitive
(appears one or more times consecutively). Hello! l+o llo

Similarly, the asterisk (*) means that the previous character can be repeated
any number of times, or not exist at all.

Hello! r*o o

Figure brackets with one or two numbers in them will specify a permissible
range of repetition for the character before them. Hello! l{2}o llo

Data Cleaning and Manipulation Chapter 11

[213]

Square brackets ([]) define a choice. Within the brackets, a pipe symbol (|)
means or (as in Python), so you can define an option of sub-patterns.
Another symbol, ^, within brackets mean anything apart from the
following characters.

many or
menu m[a|e]n[^y] menu

Square brackets also support a number or alphabet ranges: A-Z, a-z, and 0-9
will fit any digit or character. Hello! [a-z]+ ello

There is a handful of special characters, such as \d for any digit, \D for any
non-digit, \s for any type of white space (including tabs and newline
characters), \S for any type of non-white space, \w for any alpha-numeric,
and \W for any non-alphanumeric, and many more. A slash before special
symbols (for example, an exclamation mark) will escape them, so regex will
treat them as an actual, literal character.

Hello! \w\! Hello!

The period (.) represents any character. It can be combined with a plus
sign, asterisk, or square brackets.

Hello! .+ Hello!

A parenthesis defines a capture group—which substrings (there could be
more than one) to retrieve. Groups can be named in pandas; this will return
a dataframe with columns named after group names.

name:
Huckleberry
Finn

(\w+\s+\w+) Huckleberry
Finn

^ and $ match the beginning and end of the string, respectively. Hello! He$ no match

Those are just a few main rules and symbols, but that should suffice for our goals.
Combined, those rules can form formidable, complex patterns that are perhaps hard to read
(as someone said, regex is meant to write but not to read), but extremely powerful. To learn
more about regular expressions, take a look at this documentation (https:/ ​/ ​www.​regular-
expressions.​info/ ​). There are also quite a few free online editors that help to test your
patterns. As regex has a number of minor differences between implementations, we
recommend using editors with Python-flavored regex, like this one (http:/ ​/​pythex. ​org/​).
There are even regex games (https:/ ​/​alf.​nu/ ​RegexGolf)!

Now, let's try using it on the data we collected!

Parsing locations
Let's start with the location column. As you remember, data in this column is supposed to
represent the location where the battle took place. In many cases, the value was stored as
Wikipedia GeoMarker, which includes latitude/longitude coordinates. Here is what the
raw value of this marker looks like:

>>> battles['Location'].iloc[10]
'Warsaw, Poland52°13′48″N 21°00′39″E\ufeff / \ufeff52.23000°N 21.01083°E\ufeff
/ 52.23000; 21.01083Coordinates: 52°13′48″N 21°00′39″E\ufeff /
\ufeff52.23000°N 21.01083°E\ufeff / 52.23000; 21.01083'

https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf
https://alf.nu/RegexGolf

Data Cleaning and Manipulation Chapter 11

[214]

Note that this geotag has both a nice latitude/longitude pair (with minutes and seconds), as
well as its float representation, which is easier to use. In fact, the very same coordinates are
repeated at the very end in their most simple form—and that's what we'll extract.

Let's write our first pattern. Usually, it is easiest to write a draft pattern, which will match
our example string, and then work from there—adopting, relaxing, and tightening the
pattern, where needed. Here is our attempt—a slash, and then two groups, each containing
either numeric characters or a period (which we have to escape with a slash):

pattern = r'/ ([\d|\.]+); ([\d|\.]+)'

It is usually easier to tailor the pattern in an interactive way. Our favorite
tool for the job is Pythex (https:/ ​/​pythex. ​org/​), an online console for
interactive regex testing, tailored specifically for Python-flavored regex
(yes, there are some differences).

Let's test this pattern:

battles.head(10).Location.str.extract(pattern)

It works! You may want to go over addresses and check that ones with no numbers
extracted indeed do not have it. We can store the results in two new columns:

battles[['Latitude', 'Longitude']] = battles.Location.str.extract(pattern)

Note that both columns are still strings, but now they can be converted into floats:

for col in 'Latitude', 'Longitude':
 battles[col] = battles[col].astype(float)

Still, many locations did not have coordinates to start with. But how many? Let's check the
percentage of empty cells in Latitude:

>>> 100 * (battles['Lattitude'].isnull().sum() / len(battles))
78.2312925170068

That is, 78% of our locations are empty—too many! Other cells don't have any coordinates,
but most of them do have an address as a string. Let's try to geocode them using the
nominatim_geocode function that we wrote in earlier in this book.

https://pythex.org/
https://pythex.org/
https://pythex.org/
https://pythex.org/
https://pythex.org/
https://pythex.org/
https://pythex.org/
https://pythex.org/

Data Cleaning and Manipulation Chapter 11

[215]

Geocoding
As you should recall, geocoding is the process of converting address as a text into latitude
and longitude coordinates. As the task is quite complex and requires large datasets, it is
usually handled by web-based services, using their API. in Chapter 6, First Script –
Geocoding with Web API, we wrote a Python function that communicates with such an API,
allowing us to send addresses and get latitude/longitude pairs back.

To use it, let's first import the function (we copied the file to the local folder). We will also
use tqdm to see how the process goes—it has a solution for pandas—a progress bar will
appear on any progress_apply method execution once we register tqdm with pandas:

from geocode import nominatim_geocode
from tqdm import tqdm
tqdm().pandas()

Now, the function returns many values, but we only want a few. We can deal with that
later, but it is easier to define a local wrapper function, instead. In the following code block,
we define such a wrapper, which returns only four attributes and only for the first resulting
address:

def vectorized_geocode(x):
 result = nominatim_geocode(x)
 if len(result) == 0:
 return dict()
 return {k:result[0][k] for k in ('lat', 'lon', 'importance',
'display_name')}

Now, let's take a look at those locations that are lacking any coordinates:

>>> geo_mask = battles['Lattitude'].isnull()
>>> battles.loc[geo_mask, 'Location'].sample(15, random_state=2019)

46 NaN
49 Southern shore of Lake Ladoga, near present-da...
54 Kharkov, Ukrainian SSR, Soviet Union
99 175 km sector of the front between Uman and Ki...
27 Brest, Belarusian SSR, Soviet Union (nominally...
133 near Radzymin, Poland
160 Poznań and nearby area, Poland
25 Petsamo, Finland
132 Western Ukraine/Eastern Poland
148 West Estonian archipelago (Moonsund archipelag...
126 Eastern Poland/Western Belarus
56 Crimean Peninsula, Russian SFSR, Soviet Union
154 Budapest, Kingdom of Hungary

Data Cleaning and Manipulation Chapter 11

[216]

7 Piotrków Trybunalski, Poland
105 Leningrad region, Soviet Union; Narva, Estonia
Name: Location, dtype: object

One potential issue here is the word near, so let's get rid of it! Also, the Soviet Union no
longer exists, and neither does Ukrainian SSR, and so on.

By the way, this is a great idea for a new service—support time-specific
geocoding so that you can identify which country a given location
belonged to, at a specific moment in history, or geocode an address for a
specific period—for example, knowing what city was called
Constantinople.

In order to get all the locations right, we need to process all the addresses carefully. For
now, let's make a short errata array of values and correct the addresses accordingly:

location = battles['Location'].str.lower().str.replace('near ', '')

replacements = {
 'Ukrainian SSR, Soviet Union': 'Ukraine',
 'Russian SFSR, Soviet Union': 'Russia',
 'Russian SFSR': 'Russia',
 'Belorussian SSR': 'Belorus',
 'Soviet Union': '',
 'USSR': '',
 ', Poland (now Ukraine)': 'Ukraine',
 'east prussia (now kaliningrad oblast)': 'Kaliningrad Oblast, Russia',
 ', czechoslovakia': ', czech republic',
 'königsberg, germany (now: kaliningrad, russia)': 'Kaliningrad Oblast,
Russia',
 'lwów, lwów voivodeship, poland': 'Lvov, Ukraine',
 'leningrad region, ; narva, estonia': 'Narva, Estonia',
 'Kingdom of Hungary': 'Hungary'
}

for k, v in replacements.items():
 location = location.str.replace(k.lower(), v.lower(), regex=False)

In the future, we can add more addresses to this dictionary, but now let's move on to the
geocoding:

response = location[geo_mask].progress_apply(vectorized_geocode)

Data Cleaning and Manipulation Chapter 11

[217]

The resulting series has a dictionary in each cell. It is easier to convert it to list and
build DataFrame out of it:

geo_df = pd.DataFrame(response.tolist(), index = response.index)
geo_df.rename(columns={'lat': 'Lattitude', 'lon': ' Longitude'},
inplace=True)

Now, let's see how many locations we're still missing:

>>> rmask = geo_df['importance'].isnull()
>>> rmask.sum() / len(battles)
0.2585034013605442

26% is still a lot, but we can definitely go through the list and clean it better or, if needed,
add locations to the dataset manually, via, for example, a CSV table. Let's now save the
latitude/longitude pairs back into battles. As geo_df has the same index as the
original battles dataframe, we can write values there directly:

battles[['Lattitude', 'Longitude']] = geo_df[['lat', 'lon']]

It is also a good habit to add a flag, noting that those latitude/longitude pairs are from
OSM. Precision, in this case, can vary significantly, and it will be easier to debug and find
the root of a problem in the future:

battles['geocoded'] = geo_df['lat'].notnull()
battles['geocoded'].fillna('False')

We're done with the locations, at least for now. Let's now move on to the next column to
parse the time column.

Time
Another column is time. Now, pandas has a built-in DateTime parser and a very good one!
Just use pd.to_datetime() on your scalar value or a collection. In this case, however, it
won't work, and neither will any external packages that usually help (dateparser is our
favorite). And all that because cells describe a time range, and not just one specific date.

Again, let's (at least, for now) see whether we can make our life simpler. Indeed, we
probably don't care about specific dates—all we need is the month and year. Luckily, all
months are properly stated and uniform—and pd.to_datetime can parse them. So, all we
need is to correctly extract two month-year pairs from each.

Data Cleaning and Manipulation Chapter 11

[218]

Now, it seems hard to define one regular expression that will work here. Instead, we can
try to get all years (we know all of them are four-digit numbers, starting with 19) and all
months (there are just 12 variants). Then, we can combine them, using the year twice if
there is only one value.

Let's try it out! First, we define the patterns:

d = ('January', 'February', 'March', 'April', 'May',
 'June', "July",' August', 'September', 'October', 'November',
'December')

month_pattern = r'(' + "|".join(d) + ')'
year_pattern = r'(19\d\d)'

Now, instead of str.extract, we will use the str.extractall method—it will try to
retrieve ALL occurrences of the pattern in the string. As a result, it will
create multiindex—an index with multiple levels. In this case, the first level will be the
original one, taken from the argument. The second one will represent the number of
occurrences within the string. Here, we should use the .unstack() function, which will
rotate Series into DataFrame, so that the first level will be its index, and the second its
columns.

As you may have guessed, there is an opposite function, stack(), which
converts a dataframe into a series with a multilevel index.

In the following code, we run a regex to extract two values—the start and end of the
column:

year_extracted = battles['Date'].str.extractall(year_pattern).unstack()

Notice that there are four, not two, columns here. Those are empty for most of the columns,
but its mere existence means that there is at least one row where this last column is not
empty. In the following code block, we mask our dataframe to show only records where the
last column is not null:

>>> year_extracted[year_extracted.iloc[:, -1].notnull()]
 0
match 0 1 2 3
94 1943 1943 1943 1943

Data Cleaning and Manipulation Chapter 11

[219]

It seems that only one record has a value in there. Let's take a look at the corresponding raw
value:

>>> battles.loc[94, 'Date']
'3 November 1943 – 13 November 1943(Offensive operation) 13 November 1943 –
22 December 1943(Defensive operation)'

The corresponding record indeed has four-year values, but all of them are the
same. Another row has three values, but again, all of them are the same—so there is no
harm in dropping all but the first two columns:

year_extracted = year_extracted.iloc[:, :2]

We can also fill empty cells of the second row with values from the first one, using
the fillna() function. This function can fill empty cells in a series with a given scalar
value, or corresponding values from another series of the same length (our case), or even
from the series itself, using one of a few methods (for example, using the value in the
previous cell). The following code does precisely that in that it fills the empty second
column with the corresponding values from the first one:

year_extracted.iloc[:, 1].fillna(year_extracted.iloc[:, 0], inplace=True)

Now, let's do the same with Months except that this time, we'll use the fillna from left to
right, and use the first and the last columns (as we require the beginning and end of the
event):

month_extracted = battles['Date'].str.extractall(month_pattern).unstack()

for i in range(2, month_extracted.shape[1]+1):
 month_extracted.iloc[:, -1].fillna(month_extracted.iloc[:, -i],
inplace=True)

month_extracted = month_extracted.iloc[:, [0, -1]]

Finally, we need to combine the two. Let's rename the columns so that we can use .loc,
and then just loop over them:

year_extracted.columns = month_extracted.columns = ['start', 'end']
I = battles.index

for col in 'start', 'end':
 combined = month_extracted.loc[I, col] + ' ' + year_extracted.loc[I, i]
 battles[col] = pd.to_datetime(combined)

Data Cleaning and Manipulation Chapter 11

[220]

Yay! We're done with our second column – time. It wasn't easy, but we were able to convert
the text into datetime values so that we can analyze them in the future. Next in line is
belligerents.

Belligerents
Lastly, as we noticed, in some rows, the axis and allies parties are swapped. It is slightly
confusing for this specific dataset. For example, in this dual model, we'll have to mark
Soviets as axis when they attacked Poland during the initial stages of the war. Let's take
a look at all the possible combinations:

battles['Belligerents.allies'].value_counts()

Here, value_counts() calculates a number of occurrences of each value. Hence, the index
of those series represents unique values. There is a more intuitive alternative –
the unique() function (which is also faster). However, this is a NumPy function and it
returns a NumPy array, which Jupyter prints badly—that's the only reason we prefer to use
value_counts.

From the examination, we can observe that all the incorrect values contain either one
of 'Germany', 'Italy', or 'Estonian conscripts'. We can use these to run our swap
operation:

words = ['Germany', 'Italy', 'Estonian conscripts']
for word in words:
 mask = battles['Belligerents.allies'].fillna('').str.contains(word)

 axis_party = battles.loc[mask, 'Belligerents.allies']
 battles.loc[mask, 'Belligerents.allies'] = battles.loc[mask,
'Belligerents.axis']
 battles.loc[mask, 'Belligerents.axis'] = axis_party

Note that we had to use fillna(), as pandas won't run string operations if any values in
the column are not strings.

OK, that was relatively easy. Finally, we've reached our final column to parse—casualties.
This is the most complex task we're doing so far in this chapter!

Data Cleaning and Manipulation Chapter 11

[221]

Understanding casualties
Casualties are probably the most verbose and non-structured columns of the dataset. It will
be extremely hard to make use of all the nuances of information here, so again—perhaps
we can simplify the task, getting only the things we really want to use. Perhaps we can use
code words to extract any digit preceding them; for example, ([\d|,]+)\s*dead should
extract any consecutive digits or commas before the word 'dead'. We can define similar
patterns for all types of casualties and loop over all of them, testing the patterns. There are,
unfortunately, many keywords that mean the same thing ('captured', 'prisoners', and
many more), so we have to make them optional, similar to the preceding month expression:

digit_pattern = '([\d|\,]+)(?:\[\d+\])?\s*(?:{words})'

keywords = { 'killed': ['dead', 'killed', 'men'],
 'wounded': ['wounded', 'sick'],
 'captured': ['captured', 'prisoners'],
 'tanks': ['tanks'],
 'airplane': ['airplane'],
 'guns': ['artillery', 'gun'],
 'ships': ['warships', 'boats'],
 'submarines': ['submarines']
}

Now, for each keyword, we can generate a custom regular expression and extract all their
cells with multiple occurrences (casualties from the different countries involved). In this
case, however, we can preemptively convert them into numbers and summarize. By itself
this is easy—but before we do that, we need to remove commas, filter empty cells, and
convert strings to integers. There is probably a way to do some of that using regex, but it
seems easier in this particular case to write a custom pure-Python function (note—it may or
may not be the slowest part of the timeline):

def _shy_convert_numeric(v):
 if pd.isnull(v) or v == ',':
 return 0
 return int(v.replace(',', ''))

This function can be applied to every cell via applymap. After that, we can finally
summarize every row. The result can be viewed as follows:

results = {
 'allies' : pd.DataFrame(index=battles.index), # empty dataframes with
the same index
 'axis' : pd.DataFrame(index=battles.index)
}

Data Cleaning and Manipulation Chapter 11

[222]

for name, edf in results.items():
 column = battles[f'Casualties and losses.{name}']

 for tp, keys in keywords.items():
 pattern = digit_pattern.format(words="|".join(keys))
 extracted = column.str.extractall(pattern).unstack()
 edf[tp] = extracted.applymap(_shy_convert_numeric).sum(1)
 results[name] = edf.fillna(0).astype(int)

Let's now see the result of results['axis'].head(5):

killed wounded captured tanks airplane guns ships submarines

0 50 150 0 0 0 0 0 0

1 500 0 0 1 0 0 0 0

2 1200 1500 0 0 0 0 0 0

3 1600 750 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

Note, that there is a caveat to our casualties parsing approach that we'll have to keep in
mind—due to the pattern we use, in all cases where a range of casualties is stated, we take
the last number mentioned. It will be the maximum digit in the range (for example,
the 100-150 killed pattern will return 150) and the minimum in other cases (for example,
the 10+ tanks pattern will return 10).

Finally, let's reconnect both of those new dataframes to the original one. This time, let's
create a multilevel column structure of our own so that we can select casualties for
axis/allies without the need for the long column name. We're going to use the
pd.concat function, which can join dataframes both vertically or horizontally. Our
allies/axis casualties data is already in the proper dictionary format; we just need to
add the rest of the data to the dictionary and then join the datasets together:

results['old_metrics'] = battles
new_dataset = pd.concat(results, axis=1)

As a result, we now have a clean, numeric dataframe of casualties for both sides in the
conflict, divided by the type of casualty—be it a warship, plane, tank, or soldiers.

Data Cleaning and Manipulation Chapter 11

[223]

Multilevel slicing
The good part is that given a dictionary of dataframes, pd.concat will create a multilevel
column index, which will come in handy in a bit. This means, however, that it's not enough
now to pass the column name as a string; we need to use multilevel slicing. Let's use an
alias:

idx = pd.IndexSlice

Now, if we want to get a specific column in this dataframe, we have to use .loc with this
indexing object for columns. The IndexSlice interface is very similar to loc. For one
column, we'll use it like this:

df.loc[:, idx['old_metrics', 'url']]

Note that because we defined a specific value on all the levels, the result will be pandas
Series. We can, however, relax our query, by using colons: for example, df.loc[:,
idx[:, 'killed']] will return a dataframe of two columns—killed for axis and for
allies.

This multilevel index can be quite handy if we compare multiple attributes of multiple
sources or entities—exactly our case. This is the final cleaning operation we're doing. Our
dataset is finally ready to be used and analyzed. Before we move on to analysis, though, it
is a good and often critical practice to check the quality of the result.

Quality assurance
I know we have spent a lot of time cleaning the data, but there is still one last task we need
to perform – quality assurance. Proper quality assurance is a very important practice. In a
nutshell, you need to define certain assumptions about the dataset (for example, minimum
and maximum values, the acceptable number of missing values, standard deviation,
medians, the number of unique values, and many more). The key is to start with something
that is somewhat reasonable, and then run tests to check whether the data fits your
assumptions. If not, investigate specific data points to check whether your assumptions
were incorrect (and update them), or whether there are still some issues with the data. It
just gets a little more tricky for the multilevel columns. Consider the following code:

assumptions = {
 'killed': [0, 1_500_000],
 'wounded': [0, 1_000_000],
 'tanks': [0, 1_000],
 'airplane': [0, 1_000],

Data Cleaning and Manipulation Chapter 11

[224]

 'guns': [0, 10_000],
 ('start', 'end'): [pd.to_datetime(el) for el in ('1939-01-01',
'1945-12-31')]
}

def _check_assumptions(data, assumptions):
 for k, (min_, max_) in assumptions.items():
 df = data.loc[:, idx[:, k]]
 for i in range(df.shape[1]):
 assert df.iloc[:, i].between(min_, max_).all(), (df.iloc[:,
i].name, df.iloc[:, i].describe())

_check_assumptions(data, assumptions)

Here, we use a dictionary to describe our assumptions—a key representing the column, and
a value being minimum and maximum values. Using multilevel slicing, we can treat the
key as the lowest column name—hence, testing both allies and axis casualties in the
same pass. The describe() method returns a series of descriptive statistics for the column
(in this case) or the entire dataframe—minimum and maximum values, most frequent
value, and many more.

Note that the preceding assumptions will not hold. Feel free to run them and investigate
which battles go beyond your expectations and whether their values are correct. The QA
checkup process usually does require some back-and-forth on the first try, as you usually
have to relax your requirements somewhat. This is a valuable process on its own—even
here, you're usually learning some new information about your data.

Finally, let's write our resulting clean dataset so that we can use it in our next section.

Writing the file
Finally, we have all the data we wanted, in a more-or-less good condition. Let's store it in
CSV format. We can always use other formats instead. For example, the pickle format, by
definition, preserves all the data types and properties of the dataframe (we won't need to
convert dates from strings again), but can't be read manually (it also has a number of
security risks). CSV, on the other hand, can be opened manually or with something like
Excel, edited, and then stored again if you observed that there are factual errors in the data
or something that is easier to correct manually.

Data Cleaning and Manipulation Chapter 11

[225]

In the following code block, we export our CSV file into a dataframe just to specify a
relative path to the file we want it to be. The index=None argument is optional—this
ensures that the index (a generic range of numbers in our case) won't be written:

new_dataset.to_csv('./data/EF_battles.csv', index=None)

With that, our data is processed, converted, checked, and stored as a new CSV file. We're
now ready to move on and (finally) analyze the data we obtained.

Given the sensitivity of the subject, we went ahead and cross-checked the
main values, row by row, manually, and indeed, had to correct a few
values. This work cannot be completely automated. The corrected version
is stored as EF_battles_corrected.csv and will be used in all further
chapters referring to the WWII dataset.

Summary
In this chapter, we spent time cleaning the data we acquired in Chapter 6, First Script
– Geocoding with Web APIs. Unless data was carefully prepared for the exact purpose of
analysis, the chances are that cleaning will take a lot of time and effort. Here, we learned
the basics of pandas, and how to filter and mask the data. We discussed how to investigate
missing values, saw how to use regular expressions to extract specific values from non-
structured text, creating data of a proper structure and type, and learned how to apply
custom functions to each cell in the entire Series or DataFrame and then used that
information to geocode locations where we lacked coordinates.

Finally, we stored all the data we processed, along with the original values, in another CSV
file, ready to be explored in our next chapter.

Questions
Why, if there is an empty cell in the Pandas column, are integer values in this1.
column converted into floats?
What is the benefit of plotting missing values?2.
What is regex? Is it a separate language?3.
How can we use regex in Python?4.

Data Cleaning and Manipulation Chapter 11

[226]

How is a regex pattern defined? How can we combine and modify patterns5.
dynamically within the code?
Is it a good idea to run ordinary Python functions on dataframe cells? What are6.
the pros and cons of that approach? Should we use loops for that?

Further reading
Pandas Cookbook, by Packt (https:/ ​/​www. ​packtpub. ​com/ ​big- ​data- ​and- ​business-
intelligence/ ​pandas- ​cookbook)
Python Regular Expressions, by Packt (https:/ ​/​www. ​packtpub. ​com/ ​application-
development/ ​mastering- ​python- ​regular- ​expressions)
2018 Python Regular Expressions – Real-World Projects, by Packt (https:/ ​/​www.
packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​2018- ​python- ​regular-
expressions- ​real- ​world- ​projects- ​video)

https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/application-development/mastering-python-regular-expressions
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/2018-python-regular-expressions-real-world-projects-video

12
Data Exploration and

Visualization
In the previous chapter, we went deep into data cleaning and preparation. But what is
inside this dataset? What story does it tell about the war, and how can we make those
stories clear? Knowing how to dissect data, understand it, and extract insights is one of the
crucial skills for data analysis and is a mandatory step before building anything driven by
this data. In this chapter, we'll learn how to explore a dataset, compute aggregate statistics,
and understand outliers and general trends through data visualization. The skills we'll
learn are essential to any data analysis and are used throughout the industry and academia.

In particular, the following topics will be covered in this chapter:

Descriptive statistics
Aggregation and resampling
The ecosystem of modern visualizations using matplotlib with pandas,
altair, and datashader
Basic data visualization with pandas and matplotlib
Interactive charts with altair
Visualizing millions of records with datashader

Data Exploration and Visualization Chapter 12

[228]

Technical requirements
In this chapter, we'll make use of three additional visualization libraries:
geopandas, altair, and datashader. All of them can be installed via Anaconda or PIP
and are included in our environment.yaml file. As always, if you followed the
instructions in Chapter 1, Preparing the Workspace, you're all set. If not, you can install them
using conda.

Exploring the dataset
For this chapter, we'll use the dataset on WWII battles we collected earlier in Chapter 7,
Scraping Data from the Web with Beautiful Soup 4. As you may remember, the dataset includes
dates, results, sides, leaders, and the number of troops and casualties of those battles. But
what questions can we answer with this information? Let's start with something simple:
which battles took the most casualties on both sides? Where were most of the tanks
destroyed? How was the number of casualties distributed over time and geography?

In the previous chapter, we cleaned and processed most of the data;
however, given the sensitivity of the subject, we went ahead and cross-
checked main values row-by-row, manually, and, indeed, had to correct a
few values. This work cannot be completely automated. In this and
further chapters, we'll work with the corrected version, stored in this
chapter's folder.

Before we start answering those questions, we have to import the libraries and load our
data. As we know that the start and end columns contain properly structured DateTime
values, we can tell pandas to parse those while reading. The library has a certain capacity to
deduce dates, but it is better—and slightly faster—to explicitly state them (we can always
convert them later, as well). To let pandas know of the DateTime columns, we pass
a parse_dates argument. In the following code, we import pandas and load the data:

import pandas as pd
raw_data = pd.read_csv('./data/battles_corrected.csv',
parse_dates=['start', 'end'])

Data Exploration and Visualization Chapter 12

[229]

We didn't drop any columns from the original dataset, but we're unlikely to use many of
them. Let's now, within the Notebook and without touching the underlying data, specify
the columns we're interested in and their order:

cols = ['name',
 'allies killed', 'axis killed',
 'allies tanks', 'axis tanks',
 'allies airplane', 'axis airplane',
 'Lattitude', 'Longitude', 'start', 'end', 'Location', 'url',
'parent']

data = raw_data[cols].set_index('name')

Finally, we may want to look at a small sample of data— for example, with df.head—and
the data type for each column, with data.dtype, to assure everything parsed fine. Let's
print the first three rows of the dataset and take a closer look.

Let's print the first three rows of the table, first:

data.head(3)

As a result of this code, this table will be shown:

Name Allies
killed

Axis
killed

Allies
tanks

Axis
tanks

Allies
planes

Axis
planes Latitude Longitude Start End Location URL Parent

Battle of
Westerplatte 21 400 0 0 0 0 54.4075 18.67139 1939-09-01 1939-09-01

Westerplatte,
harbor of
Free City of
Danzig54°...

https:/​/
en.
wikipedia.
org/​wiki/
Battle_​of_
Wester.​.​. ​

German
Invasion
of
Poland

Battle of
Mokra 500 800 1 50 0 0 NaN NaN 1939-09-01 1939-09-01

Mokra,
Kielce
Voivodeship,
Poland

https:/​/
en.
wikipedia.
org/​wiki/
Battle_​of_
Mokra

German
Invasion
of
Poland

Battle of
Mlawa 1,200 1,800 0 72 0 0 NaN NaN 1939-09-01 1939-09-01

Near Mława,
Warsaw
Voivodeship,
Poland

https:/​/
en.
wikipedia.
org/​wiki/
Battle_​of_
Mlawa

German
Invasion
of
Poland

From the table, we can get a general understanding of the features. This small sample,
however, does not give us any understanding of the overall shape of the data—a range of
the values, averages, and so on. For that, we need to calculate some descriptive statistics.

https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Wester...
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mokra
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa
https://en.wikipedia.org/wiki/Battle_of_Mlawa

Data Exploration and Visualization Chapter 12

[230]

Descriptive statistics
Now, having a dataframe in place, let's answer some simple questions; for example, which
battles took the most lives on both sides? To answer that, we need to add two columns, sort
the dataframe by the result, from larger to smaller, and print out first N records. Let's do it:

>>> kill_cols = ['allies killed', 'axis killed']
>>> data['killed total'] = data[kill_cols].sum(1)
>>> data['killed total'].sort_values(ascending=False).head(3)

>>> name
Battle of Stalingrad 1997993.0
Battle of Moscow 1203428.0
Battle of Kiev (1941) 661958.0
Name: killed total, dtype: float64

The next question might be on the typical number of casualties for each battle. Before we
calculate the statistics, we have to filter rows with unknown (NaN) or zero values—in both
cases, records shouldn't be included. Here, we'll use the pipe operator, |, as a vectorized
equivalent to or in ordinary Python.

Consider the following code. We're assigning a mask as a logic OR of two Boolean arrays
(hence the pipe). The first array checks whether any of the values in the kill_cols
columns we assigned previously is null. As there are multiple columns, the result will be
in the form of a 2-dimensional array. To convert it into a 1-dimensional array, we further
use the any method, passing 1 to identify horizontal (axis=1) direction of the operation—in
other words, the result will tell us, for each row, whether any value in this row is True.

The second operation (after the pipe) works similarly, but, instead, we check whether the
value is zero. As a result, the mask variable will be a 1-dimensional array with a Boolean
value for each row in the original dataset. Those values tell whether, in this row, values in
any of kill columns is null or equal to zero:

mask = data[kill_cols].isnull().any(1) | (data[kill_cols] == 0).any(1)

Next, we need to drop rows for which mask is true and keep the rest. For that, we need to
invert our mask, using the tilde symbol; similar to the pipe, the tilde ~ works as a
vectorized not (or exclamation mark). In the following, we're filtering data, keeping only
rows with the proper "kill" columns, and computing the median only for them. Here is an
example: we use ~mask as NOT; for example, the row does not have zero nor null values.

Data Exploration and Visualization Chapter 12

[231]

Using this inverted mask, we filter the dataset and compute the median of the killed
total values:

>>> data.loc[~mask, 'killed total'].median()
37316.0

This mask can now be used on many occasions. As a final example, let's compute the main
statistics for the tanks columns for both sides, using the describe method (here, we use
mask as a proxy for good records with meaningful results). Many battles have casualties,
but no tanks lost or reported to be lost, and this seems fine:

>>> data.loc[~mask, ['allies tanks', 'axis tanks']].describe()
 allies tanks axis tanks
count 79.000000 79.000000
mean 352.683544 65.911392
std 897.692848 235.066831
min 0.000000 0.000000
25% 0.000000 0.000000
50% 0.000000 0.000000
75% 254.000000 18.000000
max 4799.000000 1500.000000

The values are interesting—as you can see, most battles don't have tank losses on either
side. On average, though, the allies lost six times more tanks than the axis. Furthermore, in
75% of battles, the axis lost 18 or fewer tanks—but the allies lost 254—an even larger ratio!

Our analysis is getting more complex. It is getting hard to manually read and understand
more than 10 numbers at once. To make sense of larger sets, we need to start visualizing
our dataset on the charts.

Data visualization with matplotlib (and its pandas
interface)
We had experience working with matplotlib already—first, in Chapter 3, Functions, and
later, in Chapter 8, Simulation with Classes and Inheritance. Luckily, pandas has a built-in
interface for working with matplotlib, making visualization very easy and intuitive. But
first, we need to prepare the Notebook to display charts:

%matplotlib inline
import pylab as plt
plt.style.use('fivethirtyeight')

Data Exploration and Visualization Chapter 12

[232]

Now, let's plot the histogram of total casualties. It's possible to do that with the
matplotlib itself—but pandas has a simple interface built-in. For better or worse, we still
have to set labels and titles via a standard matplotlib interface—in this case, as follows:

data.loc[~mask, 'killed total'].hist(bins=20, figsize=(10,10))

plt.suptitle('Histogram, overall casualties per battle')
plt.xlabel("killed")
plt.ylabel("frequency")
plt.tight_layout();

We will get the following result:

We were able to gather a general understanding of the data, but some pieces are still
missing. To drill down and understand the properties of significant subsets—for example,
several events in a period of time or average casualties for specific fronts and
operations—we need to aggregate our data.

Data Exploration and Visualization Chapter 12

[233]

Aggregating the data to calculate summary
statistics
To aggregate values over some grouping, pandas has the groupby operation—one of the
library's killer features. This function creates a GroupBy object, which can behave as an
iterable of (name, group) tuples, or similar to a dataframe, you can select one or many
columns the same way you'd do for a dataframe.

Most importantly, those objects have two special methods:

agg, which will perform the given aggregation function (say, calculate averages)
for each group, and return them as a dataframe with one row per each group.
 transform does all of the same—except that it will return the corresponding
group's aggregate values for each row in the original dataframe.

The great part of both of those functions is their flexibility—they both accept a handful of
options as their arguments, including the following:

Strings with operation names (count, median, and more).
Custom functions.
A dictionary with specific operations (either strings or functions) for specific
column names; we can even pass a dictionary with a list of multiple operations
for one column.

For example, let's see how the casualties statistics change for each operation, which we
store in the parent column:

aggregate = data[~mask].groupby('parent').agg({'axis killed': ['sum',
'median', 'count'],
 'allies killed': ['sum', 'median'],
 'killed total': ['sum',
'median']}).astype(int)

Here are the first three rows of the outcome:

Axis killed Allies killed Killed total
Parent Sum Median Count Sum Median Sum Median
Axis invasion of the Soviet
Union 440,560 20,364 12 2,811,366 103,166 3,251,926 111,681

Battle for Narva Bridgehead 200 200 1 3,000 3,000 3,200 3,200
Battle of Berlin 60,000 60,000 1 20,000 20,000 80,000 80,000

Data Exploration and Visualization Chapter 12

[234]

Note how the result has multilevel columns, the first level being the original column names
and the second, the specific operations we performed. In many ways, this multilevel index
is useful but can also make things more complex. In particular, now we can't select a
column by name—instead, we need to use so-called pandas.IndexSlice. For example, to
get a column, 'axis killed', 'sum', we need to use this code:

>>> idx = pd.IndexSlice
>>> aggr[idx['axis killed', 'sum']].head(3)

parent
Axis invasion of the Soviet Union 440560
Battle for Narva Bridgehead 200
Battle of Berlin 60000
Name: (axis killed, sum), dtype: int6

The nice part is that IndexSlice, similar to normal pandas slicing, supports semicolons
and non-specified levels. For example, we can pull 'sum' values for both sides like this (for
some reason, it requires a loc method):

>>> aggr.loc[:, idx[:, 'sum']].head(3)
 axis killed allies killed killed total
 sum sum sum
parent
Axis invasion of the Soviet Union 440560 2811366 3251926
Battle for Narva Bridgehead 200 3000 3200
Battle of Berlin 60000 20000 80000

Now, in continuation of our visualization spree, let's plot all given operations as a
scatterplot, using casualties for both sides as x and y coordinates. For that, pandas has a
dedicated interface, as well. Consider the following example:

idx = pd.IndexSlice

aggr.plot(kind='scatter',
 x=idx['allies killed', 'sum'],
 y=idx['axis killed', 'sum'],
 figsize=(7,7),
 title='Deaths on both sides')

plt.axis('equal');
plt.tight_layout();

Data Exploration and Visualization Chapter 12

[235]

Here, all we need is to execute the plot command, specifying the kind of a plot, the
columns to be used for the x and y coordinates, and a few other parameters. Here, we also
have to use IndexSlice to specify columns. The plt.axis('equal') method ensures
that the x and y coordinates preserve the same scale for comparison. The following is the
resulting image, showing the trend of axis/allies casualties by battle. Note that, in this case,
we didn't have to specify axis labels—they were generated automatically from the column
names:

The scatterplot we made definitely tells a lot, but we have to guess which battle is
represented by which point. Don't worry—we'll get to interactive charts very soon.

Let's now finish with aggregation methods by covering another technique: time-based
resampling.

Resampling
A separate form of aggregation is time-based resampling. You can think of this practice as
grouping by time period—except that statistics will be filled for missed time periods, too.

Data Exploration and Visualization Chapter 12

[236]

For example, let's count casualties for each month of the war, assuming the end of each
battle as a time point. For that, we'll have to set DateTime as an index, first. For the sake of
simplicity, let's create a copy of the dataframe to perform on:

ts = data[['axis killed', 'allies killed', 'end']].copy()
ts = ts.set_index('end').sort_index()

Now, all we need to do is define the frequency and aggregation method, and we're good to
go:

>>> timeline = ts.resample('1Y').agg('sum')
>>> timeline
 axis killed allies killed
end
1939-12-31 23727.0 166092.0
1940-12-31 36682.0 2741.0
1941-12-31 226230.0 1644334.0
1942-12-31 346949.0 2300836.0
1943-12-31 1110704.0 1456498.0
1944-12-31 640690.0 770208.0
1945-12-31 684689.0 622996.0

Moreover, for all of the dataframes and series with the DateTime index, pandas will plot
the line charts automatically, one per column. Running timeline.plot() will get us to
the following diagram. Here, we can estimate the number of casualties on both sides every
year:

Data Exploration and Visualization Chapter 12

[237]

Starting with version 0.25.0, pandas offers a unified specification for
visualizations. This means that any visualization library that supports
certain methods can be registered and used instead of matplotlib. This
is a brand-new feature and, as far as we know, there are no alternatives to
matplotlib just yet. That being said, later in this chapter, we'll work
with altair, another library for visualization. It won't surprise me if it
will soon be possible to register altair as a renderer and get altair
charts instead of matplotlib, preserving the same interface for the
preceding clients we used!

The resulting time series is remarkable! It also reminds us that, aside from time, we have
location coordinates for most of the battles. Can we use those to create maps? You bet!

Mapping
In Chapter 11, Data Cleaning and Manipulation, we spent a considerable amount of time
geocoding battles. Let's use the coordinates to pin battles on the map—perhaps this will
give us some better understanding of the data.

For that, we'll use a special (and spatial) library: geopandas. As you can guess, geopandas
is based on pandas and provides multiple geospatial methods. In essence, geopandas
allows us to read geospatial data and work with it as a pandas dataframe, providing
geospatial methods (adjacency, spatial inclusion, Boolean operations, and more) and
plotting capabilities.

Before we start plotting, it would be nice to have some sort of a base map for our data, as a
context. Here, we used an open dataset of modern country boundaries, based on
the Natural Earth dataset (https:/ ​/​www. ​naturalearthdata. ​com/ ​). We don't even need to
download it—the data is small enough for us to read it from the web on every run. As the
boundary file is naive—there is no specific projection; we'll add the MERCATOR reference
system manually—this is optional but will help us to remap to a different projection:

import geopandas as gp
url = 'https://unpkg.com/world-atlas@1/world/50m.json'
MERCATOR = {'init': 'epsg:4326', 'no_defs': True}

borders = gp.read_file(url)
borders.crs = MERCATOR

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/

Data Exploration and Visualization Chapter 12

[238]

Now, let's see what the borders look like overall:

borders.plot(figsize=(10, 5))

This code will result in the following screenshot:

Okay, we see that the borders cover the whole planet (there is a glitch with Russia as its
territory stretches over 180 degree longitude, into negative degrees—luckily, we won't have
this issue once we zoom in).

As we'll be plotting Europe, let's use an appropriate projection, ETRS-LAEA. Its EPSG
number can be found on https:/ ​/​spatialreference. ​org/ ​.

To convert into other projections, just use the to_crs method:

borders = borders.to_crs(epsg=3035)

Next, we need to convert our existing dataframe into GeoDataFrame with points. Luckily,
geopandas has a built-in helper function for that. We'll convert them into the same
projection, as well:

gdf = gp.GeoDataFrame(
 data, geometry=gp.points_from_xy(data['Longitude'],
data['Latitude'])).to_crs(borders2.crs)

https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/
https://spatialreference.org/

Data Exploration and Visualization Chapter 12

[239]

Now, we can combine the two, encoding the total casualties for the marker size:

ax=borders2.plot(color='lightgrey', edgecolor='white', figsize=(12,12))

gdf.plot(ax=ax, color='red', markersize=(data['killed
total']/1000).clip(lower=1), alpha=.2);

ax.margins(x=-.4, y=-0.4) # Values in (-0.5, 0.0) zooms in to center
ax.set_axis_off()

Note how we use the output of the first plot and store it in ax variable, which we then path
to the second chart—this way, both will plot on the same canvas in the order they execute
as margins essentially "zooming in" on Europe while set_axis_off removes axes for the
chart.

Here is the outcome:

Data Exploration and Visualization Chapter 12

[240]

The circles represent battles, with the size matching the number of total casualties. As you
can see, the Stalingrad siege is quite an outlier—both spatially and by the number of
casualties.

Please refer the graphic bundle of the book for all images of the book

Great! We were able to plot our graphics on the map, and indeed it gives us a better
understanding of the data we're working on. One limitation with this map and all of the
other charts we made so far is that they are static. matplotlib has some interaction
capacity; for example, you can set your chart to be pannable and zoomable, but it won't
provide tooltip, selection, or any other advanced interaction. Luckily, we have other
visualization libraries that can do that, for example, altair.

Declarative visualization with vega and altair
Until now, we have used the matplotlib library, via the built-in pandas interface.
matplotlib is powerful and essential to Python's data visualization ecosystem. It is not,
however, the only visualization library we can use. In fact, there are a plethora of
visualization tools, different in their format, focus, or even philosophy. In this section, we'll
introduce you to a different tool—and different concept of data visualization—and that
is altair, which is a Python library based around the Vega engine. What makes it so
different? A couple of things, in fact.

First of all, its core philosophy is based on the declarative approach, which can be boiled
down to the following principle: the core idea is to write each chart in code as a
declaration—basically, a recipe. This declaration would define what to do with the data but
doesn't have to include data, implementation, or aesthetical features—colors, fonts, and
more. There are a few outcomes of that approach:

First, the declaration itself is a plain JSON file that can be written either manually
or in any language. Hence, Vega is language-agnostic in its nature. In our case,
Altair is a Python-side declaration generator; the declaration is then passed to the
Vega engine, so that we don't need to work (or even know) JavaScript, per se.
Also, because of the way the declaration works as an intermediate, the resulting
visualization can be easily published as a standalone chart.

Data Exploration and Visualization Chapter 12

[241]

Second, the default engine of Vega is based on JavaScript (D3) and supports svg
and canvas (raster). However, as Vega's interface is defined as a mini-language,
decoupled of the specific implementation, there can be other engines. In fact,
there are a few alternative engines already.
Because both style and data can be stored independently of the declaration, Vega
is perfect for branded visualizations—as a user, you won't need to even think of
the style guides, and designers can iterate over designs independently. Similarly,
as data can be stored separately, one visualization can be re-used for other
datasets or can even be used to show live data—you just need to update the
linked dataset.
Vega also supports advanced interactions, allowing the developer to build
complex systems without going into specifics. This interaction can be very useful
for exploration analysis!

Let's test Altair out by replicating the charts we just built. We always start by creating an
Altair Chart object:

import altair as alt

chart = alt.Chart(data)

Next, we define the type of marks—for example, to build a scatterplot, we use circle marks.
Here, we can provide the properties of the mark, which are not dependent on the data:

chart = chart.mark_circle(size=60)

Finally, we add encodings, defining which column in the data should be encoded as x
coordinates and which features to show in the tooltip. If we want the model to be
interactive, all we need to do is call an interactive() method at the end. By default, this
will add zoom and pan capabilities. We'll also pass the result property, representing the
winner of a particular battle, to be encoded as shapes. Here is the code:

chart.encode(
 x='allies killed',
 y='axis killed',
 shape='result',
 tooltip=['name', 'allies killed', 'axis killed', 'start']
).interactive()

Data Exploration and Visualization Chapter 12

[242]

And here is the outcome! This diagram is similar to the one we made in matplotlib—but
this time, we can zoom, pan, and hover over specific points, allowing us to better explore
the data:

In the making of this chart, we had to overwrite the chart object multiple times; usually,
most of the settings are done in one piece, like this:

chart = alt.Chart(data).mark_circle(size=60).encode(
 x='allies killed',
 y='axis killed',
 color=alt.Color('parent', legend=None),
 tooltip=['name', 'allies killed', 'axis killed', 'start']
).interactive()

The great feature of Altair's design is that all of the properties can be overwritten—and the
chart object will always return the resulting object; hence, we can create the templates,
swapping only what we need for a particular visualization.

Note the triple-dot button in the upper-right corner of the chart—this
menu (which, by the way, can be removed) offers to export the chart into a
vector or raster, open it in the online editor, or store the specification.

Data Exploration and Visualization Chapter 12

[243]

What else can we visualize with Altair? A lot! For a fair comparison, let's draw another map
of the battles.

Drawing maps with Altair
Now, let's reproduce the map. It is actually pretty straightforward. First, we need to specify
the source for the boundaries dataset and the properties of the projection:

url = 'https://unpkg.com/world-atlas@1/world/50m.json'

data_geo = alt.topo_feature(url, feature='countries')
proj = {'center':[10, 52], 'type':'conicEquidistant', 'scale':800}

As you can see, Altair can be linked to the data source and will pull the data from the web
during runtime. It is a nice feature, as we can similarly link it to the dataset we'll be
constantly updating, hence getting a real-time data snapshot. We'll use that option in
Chapter 17, Let's Build a Dashboard, to build a dashboard. Now, we will create another
chart object, using projection and the data source—this will be our base map:

basemap = alt.Chart(data_geo).mark_geoshape(
 clip=True,
 fill='lightgray',
 stroke='white',
).properties(
 width=700,
 height=700,
).project(**proj)

Finally, we need to get the points and create another chart object, encoding coordinates,
marker size, and the projection:

mask = data[['Latitude', 'Longitude']].notnull().all(1)
points = alt.Chart(data[mask]).mark_circle(clip=True, color='red',
opacity=.5).encode(
 latitude='Lattitude',
 longitude='Longitude',
 size=alt.Size('killed total:Q', scale=alt.Scale(type='linear',
range=[10, 1000], domain=[10, 1_500_000]), title='Casualties'),
 color=alt.value('red'),
 tooltip=['name', 'killed total'],
 href = 'url'
).project(**proj)

Data Exploration and Visualization Chapter 12

[244]

Finally, we need to overlay the two charts into one. In Altair, it is very easy—all we need is
to add them together (note, however, that, in this case, the order of charts is
important—whichever is last in the operation will be on top of the other). Similarly, the
pipe and division symbols put charts on a side or below one another:

map = basemap + points;
map

Here is the resulting map. Note that we have tooltips with the values we defined, and,
thanks to the href argument, a Wiki page will be opened on a click for each object:

Data Exploration and Visualization Chapter 12

[245]

Unfortunately, due to various reasons, Vega—and, therefore, Altair—does
not support pan/zoom for maps, for now. If you need to zoom into your
map, the Folium library (a Python wrapper around the famous
leaflet.js library) might be a better choice. Folium supports both
geopandas dataframes and Altair specifications.

Now, Altair charts can be useful inside your Notebooks—but how to export them as a static
image or—better yet—a standalone interactive application?

Storing the Altair chart
One simple way to export your chart as a raster or vector image is via the triple-dot button.
But you can also do this programmatically if you need to. First, we need to store the
composite chart as an object. Next, we just execute the save; the method-specific type of
export will be inferred from the file type:

chart = basemap + points
chart.save('chart.png') # or 'chart.svg' for vector

Programmatic export for both png and svg requires the Selenium package and either
Google Chrome or Mozilla Firefox browser, plus a corresponding driver to be
installed—check the documentation via https:/ ​/ ​altair- ​viz. ​github. ​io/ ​user_ ​guide/
saving_​charts.​html#png- ​and- ​svg- ​format.

An alternative to this is to store a raw specification. For that, just change the path to
chart.vl.json. This specification can be later used by another instance of a Vega-Lite
application. JupyterLab will render this specification automatically, and there is a plugin
for VS Code that will do the same.

Finally, the simplest way to publish your chart on the web is to export it as an HTML
application (in fact, it just stores exactly the same HTML app every time, just with a
different JSON specification):

chart.to_html('chart.html')

https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format
https://altair-viz.github.io/user_guide/saving_charts.html#png-and-svg-format

Data Exploration and Visualization Chapter 12

[246]

Go ahead and open this HTML in your browser—it should show up and behave (including
all of the interactions) exactly the same way it did in the Notebook! Now, the only thing left
to do is to move this file somewhere online, for example, onto an Amazon S3 bucket or
similar service.

In this section, we just scratched the surface of what is possible with altair, but no
worries! We'll go for a deeper round in Chapter 17, Let's Build a Dashboard, when we'll
build an interactive data dashboard.

Big data visualization with datashader
Big data also needs to be visualized! Big data visualizations are somewhat rare; in part
because they are hard to do, but also because they are hard to interpret and communicate
insights. A big data visualization is usually either a network, a map, or a mapping
(similarity-based, computed 2- or 3-dimensional distributions). They are usually
astonishing and complex! In fact, a few early inventors of big data visualizations, such as
Eric Fisher, became famous for their work with big data.

As we mentioned, big data visualizations are generally hard due to the mere size of the
dataset. Standard tools won't work— for matplotlib, even with a raster engine, it will
take hours to plot millions of points, and Altair won't do it at all. For a long time, there
wasn't an easy solution to this problem. This changed with the announcement of yet
another Python library: datashader. datashader leverages a few modern techniques and
packages for fast computation (specifically Numba, another package for fast computation
that leverages just-in-time compilation, which we'll discuss in Chapter 20, Best Practices and
Python Performance), and a smart approach to the visualization itself—it bins data to a grid
of pixels, computing the aggregate for this grid under the hood. Indeed, binning can save a
lot of time on visualization, and using a pixel grid resolves all of the drawbacks of larger
bins—you can't see anything within a pixel, anyway. On top of that, once datashader
computes a matrix of pixel values, we can change the appearance of the picture without the
need to re-aggregate values.

Let's try datashader on one example. None of the datasets we've worked with so far are
large enough, so we'll use a new one—an open dataset of 311 complaints for New York City
for the whole year of 2018. We briefly mentioned this data, and shared code to collect it, in
Chapter 6, First Script – Geocoding with Web API. Just in case, the code we used to collect
this data is also stored in this chapter's folder, as an _pull_311.py script. To get the data,
just run this script from the Terminal: python _pull_311.py. The code for visualization
is stored in the 3_big_data_viz_311.ipynb notebook.

Data Exploration and Visualization Chapter 12

[247]

311 is a municipal public service that is meant to process citizens' input regarding non-
urgent issues; in other words, it is something similar to 911, but for non-threatening, non-
urgent issues such as noise, litter, fallen trees, graffiti, and more. Complaints can be filed
via a phone call, text message, email, application, or web form. The city of New York shares
anonymized records of such complaints daily, including the time of the complaint,
coordinates, type of complaint, relevant city department or institution, and time of
complaint closing and some other information.

The data we collected is stored in 12 CSV files, one for each month of 2018, and includes
2,747,985 records. This is not big data per se—at least it can fit in memory on modern
machines, but it is hard to work with and definitely already non-trivial to visualize.

Let's try to load the data, first. Because we're dealing with multiple CSVs, let's use glob,
a built-in Python function for getting multiple files from a pattern:

import pandas as pd
from glob import glob

Now, we need to specify a pattern, and run glob on it:

>>> paths = './data/311/*.csv'
>>> files = glob(paths)
>>> files
['./data/311/2018-06.csv',
 './data/311/2018-12.csv',
 './data/311/2018-07.csv',
 './data/311/2018-11.csv',
 './data/311/2018-05.csv',
 './data/311/2018-04.csv',
 './data/311/2018-10.csv',
 './data/311/2018-01.csv',
 './data/311/2018-03.csv',
 './data/311/2018-02.csv',
 './data/311/2018-09.csv',
 './data/311/2018-08.csv']

And finally, we can now traverse over those files, load them one by one, and concatenate
into a single dataframe:

data = pd.concat([pd.read_csv(p, low_memory=False, index_col=0) for p in
glob(paths)])

Here, we used the low_memory=False flag, which helps pandas to correctly match the
data type of each column.

Data Exploration and Visualization Chapter 12

[248]

If your machine has a small memory size, you might want to load fewer
months. Alternatively, and only for some maps, data can be read by
month, aggregated with datashader separately within the generator, and
then summarized all together. datashader stores canvas matrices as
simple 2-dimensional numeric numpy matrices, so it is easy to do.

Now, we can plot a simple density distribution of complaints. First, let's load datashader:

import datashader as ds
import datashader.transfer_functions as tf
from datashader.colors import inferno

Now, we'll create a canvas (essentially, a 2-dimensional matrix of pixels). Next, we'll use
this canvas to aggregate our data. The last argument, ds.count(), is an aggregation
function, in this case, counting the number of records (complaints) for each pixel:

cvs = ds.Canvas(plot_width=1000, plot_height=1000)
agg = cvs.points(data, 'x_coordinate_state_plane',
'y_coordinate_state_plane', ds.count())

Once this is done, we can move to the actual visualization with a single command:

tf.shade(agg, cmap=inferno, how='eq_hist')

Here, we essentially just colorize the agg matrix, converting values into colors. Notice the
last argument: it describes how to distribute values along the color map. A linear strategy
will map values to color without any distortion— maximum values will get edge colors,
and all values in between will get color proportionally. However, often data is not
distributed evenly—there are spikes and long tails with relatively small values—leading to
small blurbs of distinct colors, and everything else in the same color. To fight that, other
strategies can be used, for example, log and cube will colorize the logarithm and cubic
root of the values, respectfully. A weapon of last resort, eq_hist will, essentially, colorize the
rank of the value—this way, there will be about the same number of pixels of each tone. A
choice of strategy depends on the specifics of a dataset.

Because of the high density of elements on the plot, and the nature of
visualization itself, we couldn't use anything but color; not all colors are
properly represented on B/W images, so we recommend checking those
visualizations in the repository (https:/ ​/​github. ​com/ ​PacktPublishing/
Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications/ ​blob/ ​master/
Chapter12/ ​3_ ​big_ ​data_ ​viz-​311. ​ipynb).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications/blob/master/Chapter12/3_big_data_viz-311.ipynb

Data Exploration and Visualization Chapter 12

[249]

Here is the resulting chart. The map is gorgeous—and very detailed. From the distribution,
we can see a distinct shape of two islands, roads, towns, and structures:

Let's look closer at the chart. Here, lighter colors (yellow, originally) represent a higher
density of complaints. Darker colors mean a smaller number of complaints.

Since the colors are not visible here, please refer to the graphics bundle
link (https:/ ​/​static. ​packt- ​cdn.​com/ ​downloads/ ​9781789535365_
ColorImages. ​pdf) for all images in the book.

As you see, density generally decreases from the center of the city to its edges, and that
makes sense. At the same time, we can eyeball areas of a higher or lower number of
complaints, compared to the surroundings. Most of them are quite meaningful for the
person familiar with the city: for example, why is the Bergen Beach (dark corner in the
lower center of the image) so distinctive from the surroundings? Why is the eastern edge of
the Central Park (the white rectangular on Manhattan) so dark compared to the
surroundings? Why is the density so high on the eastern side of Prospect Park (the right-
hand white shape in the middle of Brooklyn) than on the western side? The high level of
resolution allows us to drill down to the smallest elements on the map, questioning even
small spatial irregularity.

https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789535365_ColorImages.pdf

Data Exploration and Visualization Chapter 12

[250]

Let's do a similar map, but this time aggregate by the most typical source of complaint,
which is stored in the open_data_channel_type column. First, let's check all of the
possible sources:

>>> data['open_data_channel_type'].value_counts()
PHONE 1469034
ONLINE 565348
UNKNOWN 366890
MOBILE 314247
OTHER 32466
Name: open_data_channel_type, dtype: int64

As there are only five sources, it seems easier to manually define a color to each:

colors = {
 'PHONE':'red',
 'ONLINE':'blue',
 'UNKNOWN':'grey',
 'MOBILE':'green',
 'OTHER': 'brown'
}

We also have to convert this column into the category data type. The category data type
is way more compact than strings (it stores an integer number for each category), but is also
required by datashader for category-based operations—otherwise, datashader simply
won't work:

data['open_data_channel_type'] =
data['open_data_channel_type'].astype('category')

Now, let's aggregate by most typical cause:

agg_cat = cvs.points(data, 'x_coordinate_state_plane',
'y_coordinate_state_plane',
 ds.count_cat('open_data_channel_type'))

With color keys, there is no need to specify a coloring method—you just pass colors:

tf.shade(agg_cat, color_key=colors)

Data Exploration and Visualization Chapter 12

[251]

Here is our result. Here, we're looking at exactly the same dataset, just colored by the most
frequent source for each pixel:

As with the previous map, this one contains multiple interesting patterns—we can eyeball
it for hours! For example, we could notice chains of pixels on Staten Island (lower-left
corner)—perhaps those are highways. Through the city, we can notice clusters of blue
(online) and green (mobile)—those, most likely, can be attributed to offices and transit
areas.

At our final step, let's see how the average time it takes to close the complaint is distributed
across the city. Before mapping, we need to compute this time as a number—for example,
subtract two timestamps, and convert the timedelta object into a number of minutes as an
integer:

data['created_date'] = pd.to_datetime(data['created_date'])
data['closed_date'] = pd.to_datetime(data['closed_date'])
data['time_to_close'] = (data['closed_date'] -
data['created_date']).dt.seconds

Data Exploration and Visualization Chapter 12

[252]

Now, we can calculate the average of time_to_close for each pixel:

agg_time = cvs.points(data, 'x_coordinate_state_plane',
'y_coordinate_state_plane', ds.mean('time_to_close'))

tf.shade(agg_time, cmap=inferno, how='eq_hist')

And here is the outcome:

Again, there is plenty of interesting stuff here (most likely, a large difference in time to close
is a result of the different nature of complaints). Even more interesting is to compare
different maps—some areas share similar properties in one context, but drastically different
in the others. The best part is that we, relatively easily, created a bunch of insanely detailed
maps that communicate both the overall picture of the dataset and all of the intricacies of
specific locations. Indeed, big data visualizations often introduce us to unexpected patterns
that are hard to catch in any other way.

Data Exploration and Visualization Chapter 12

[253]

Summary
In this chapter, we discussed how to derive insights from the raw data—compute
descriptive statistics and aggregates and draw basic plots of relationships—and use special
tools for big data visualization. As a result, we've learned how to start working with the
dataset, investigate its overall properties, and drill down to specific details. We also learned
how to visualize data, a vital skill for both personal data exploration and sharing the
insights with a broad audience. These skills are fundamental for data analysis—knowing
what to ask and how to answer your question with the data and noticing patterns and
anomalies in the data and being able to interpret them and speculate on their origins.

In our next chapter, we'll go a step further in that direction, leveraging statistical and
machine learning models to guide our interpretation.

Questions
How can we understand some general properties of dataset in pandas?1.
What does the resample function do in pandas? How is it different from2.
aggregation?
How does visualization work in pandas?3.
What are the benefits of declarative data visualization (for example, with Altair)?4.
In which cases can big data visualization be useful?5.

Further reading
Data Visualization with Python, by Mario Döbler, Tim Großmann, et al., published
by Packt (https:/ ​/​www. ​packtpub. ​com/ ​in/ ​big-​data- ​and- ​business-
intelligence/ ​data- ​visualisation- ​python)
Learning Python Data Visualization, by Benjamin Walter Keller), published by
Packt (https:/ ​/ ​www. ​packtpub. ​com/ ​big-​data- ​and- ​business- ​intelligence/
learning- ​python- ​data- ​visualization- ​video- ​0)

https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/in/big-data-and-business-intelligence/data-visualisation-python
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0
https://www.packtpub.com/big-data-and-business-intelligence/learning-python-data-visualization-video-0

13
Training a Machine Learning

Model
As we have learned in the last chapter, data always contains valuable insights. Exploring
with statistics, filters, and charts is a great tool for this. However, data has another internal
value—its predictive power; it can be used to fit an algorithm (machine learning model)
that will then be able to predict the values of interest and explain its judgment.

Machine learning (ML) is a large and complex topic that is clearly out of the scope of this
book. Indeed, building an advanced and complex model requires deep theoretical
knowledge of the specific domain and a lot of time and exploration. However, some ML
models are very simple and easy to comprehend, and the basic underlying principles are all
the same. Many ML models don't provide a good interpretation—but here, we'll use the
ones that do.

In this chapter, we'll discuss the basics of ML and train a few basic ML models on our
WWII dataset. We'll further interpret their behavior and caveats and how to mitigate some
of the issues. In particular, we'll cover the following:

Basics of ML
Unsupervised learning (clustering) using the k-means algorithm
Supervised learning with k-nearest neighbors and linear models

Training a Machine Learning Model Chapter 13

[255]

Technical requirements
The code for this chapter requires two packages—scikit-learn and pydotplus. As
usual, you can find all of the code in the repository, in the Chapter13 folder.

Understanding the basics of ML
As it's implied in its name, Machine Learning (ML) is the science of building machines
(algorithms) that can learn from data. In other words, this class of algorithms generates
certain outcomes (predictions) based on the relations they infer from the training data—not
from the hardcoded, predetermined rules. Usually, ML is described as having two main
branches—supervised and unsupervised ML.

Unsupervised models attempt to find structure in the data itself, without any given
supervision or target to focus on. The usual task is to find clusters of similar records (for
example, users) to understand the underlying latent logic (for example, using target
audiences and the corresponding use cases for the service).

Supervised learning is all about training the model by feeding it pairs of independent
features and the correct values of the target variable of interest as a training set. For
example, supervised ML is used to detect fraudulent activity, given a user's actions or to get
an estimate of a certain value (for example, the price of a house)—all by inferring the result
from the training dataset, which includes the target variable.

Many models use complex math and require huge computation power, but that is not
always the case—some of them are very simple to use and easy to comprehend. Most
importantly, ML runs solely on mathematics; although it might be incredibly useful and it
can empower and enable, it can never replace common sense and critical thinking.

Let's now go around and see how different supervised and unsupervised models can be
trained and used to analyze our WWII dataset.

Exploring unsupervised learning
First, let's try clustering our data. Clustering is a type of unsupervised learning with the goal
of grouping records based solely on their features. It is often used to get a better
understanding of the data before building a supervised model or as part of the exploratory
analysis. It also could be used on its own. One common task is defining the target audience
for the service or product. In our case, this should reveal the similarities between the battles
across the dataset.

Training a Machine Learning Model Chapter 13

[256]

This task may seem to be simple for a 1- or 2-dimensional (one- or two-column)
datasets—indeed, our eyes and brains are splendid at finding clusters visually. It is,
however, a near-impossible task for a human when the number of dimensions grows
beyond three. To automate that process, we will use a k-means clustering
algorithm—simple, performant, and easy to interpret and debug.

k-means is one of the most popular algorithms for the task, mainly due to its fast
performance and the small set of hyperparameters—external parameters of the model,
which have to be chosen outside of the training process itself. The main drawbacks of this
method are the inability to catch complex shapes (k-means only supports convex and
isotropic shapes) and the number of clusters that have to be predefined. This necessity to
specify the number of clusters can be both a curse and a blessing. There are methods to find
the best number of clusters (for example, the elbow method), or there can be an obvious,
business-driven need for a specific number of clusters.

Before we run the model, we'll need to load and prepare the dataset:

First of all, let's think about which features can and should be used here. For our1.
first attempt, let's use the raw number of soldiers, tanks, and guns on each side:

cols = [
 'allies_infantry', 'axis_infantry',
 'allies_tanks', 'axis_tanks',
 'allies_guns', 'axis_guns'
]

This choice is arbitrary but will have a direct impact on the outcome, as
we'll soon see.

We didn't use any time-specific or belligerent-specific values as these
values will just group records together based on their place in history,
which is what we know already.

As with most ML models, k-means does not itself support empty cells and can2.
only run on numeric values. There are multiple ways to resolve both
issues—depending on the specifics of the goal and other considerations. All of
the features we picked are numeric already, but we'll have to take care of the
missing values. For now, we'll take only records with existing infantry numbers
and fill empty cells in other columns:

mask = data[['allies_infantry', 'axis_infantry']].notnull().all(1)
data_kmeans = data.loc[mask, cols].fillna(0)

Training a Machine Learning Model Chapter 13

[257]

Finally, we can run the clustering on this dataset.3.
Let's split our data into five groups. It is, again, an arbitrary number. There are4.
some methods to define the best number of clusters in terms of particular metrics
(for example, inertia), but we won't do that in our case for the sake of simplicity.
We also set a random_state seed for reproducibility—k-means is robust, but not
deterministic and can randomly swap cluster numbers:

from sklearn.cluster import KMeans
model = KMeans(n_clusters=5, random_state=2019)

After this, the algorithm is ready to spit out the labels. The following code does5.
exactly that by running a standard predict method on our data. Labels are just
integers representing each group, starting with zero. For visualization purposes
(so that there won't be Cluster O), we add 1 to each:

>>> labels = model.fit_predict(data_kmeans) + 1

>>> print(labels)
[1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 1 1 4 4 1 4 1 4 1 1 1
4 5 1 3 5 4 2 3 1 1 1 1 3 4 3 1 1 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
1 1 4 3 1 1 1 1 1 1 3 3 4 1 1 2 1]

Let's now take a look at the result by visualizing the dataset with the new6.
column:

data_kmeans['label'] = ('Cluster ' +
 pd.Series((labels+1)).astype(str)).values
data_kmeans[['name', 'result', 'start']] = data.loc[mask, ['name',
'result', 'start']]

c = alt.Chart(data_kmeans).mark_point().encode(
 color=alt.Color('label:N', legend=alt.Legend(title='Cluster')),
 x='allies_infantry', y='axis_infantry', shape='result',
 tooltip=data_kmeans.columns.tolist()).interactive()

c

And here is the outcome. As you can see, there is a somewhat distinctive7.
pattern—clusters tend to be grouped together, both by x and y coordinate axes as
if only those two properties were used:

Training a Machine Learning Model Chapter 13

[258]

Why is that so? To answer this question, let's talk about how the algorithm works, first.
There are a few simple steps:

k centroids are generated randomly in the features space (in other words, we1.
generate k random rows with the same features and within the same range as the
dataset).
For each of those centroids, a Euclidean distance to all of the data points of the2.
dataset is calculated (theoretically, k-means can use other distances as well, but
that is quite rare).
All data points are then assigned to the closest center point. For each group, a3.
centroid is calculated, and the center point is moved there.
From that, the cycle is repeated—points are re-assigned, centroids are4.
recalculated, and center points are moved. This happens over and over again
until center points stop moving.

As a subsequence of that approach, the model is always in Euclidean space—that is, all
units for all of the features are viewed as equal. At the same time, we obviously have
thousands of soldiers but only dozens of tanks and airplanes in our dataset. Therefore,
infantry features are treated as way more important by definition.

One way to make the model to pay more attention to tanks, airplanes, or any other feature,
is to standardize them—for each feature, we will subtract its mean and divide the result by
the standard error—that way, they will all be spread equally around zero. In fact, sklearn
has built-in functionality for that task.

Training a Machine Learning Model Chapter 13

[259]

In the following code, we're using the sklearn function, scale, to scale multiple columns
at once. The function may give you a warning if some of the columns are integers —it will
convert them into floats as part of the scaling process. It also returns a numpy array, not a
dataframe, but that's okay in this case:

from sklearn.preprocessing import scale
data_to_scale = data_kmeans.drop(['label', 'name', 'start', 'result'],
axis=1)
data_scaled = scale(data_to_scale)

labels_scaled = model.fit_predict(data_scaled) + 1
data_kmeans['label 2'] = ('Cluster ' +
 pd.Series((labels_scaled)).astype(str)).values

But does the scaling affect labels? Let's see! We will re-run the model again, as follows:

c.data = data_kmeans
c.encode(color=alt.Color('label 2:N',
 legend=alt.Legend(title='Cluster')))

This time, shapes are mixed—clearly, infantry numbers are not the only features in play.
Here is what the new clustering looks like:

Training a Machine Learning Model Chapter 13

[260]

But does it offer any insights? We'd argue that it does. Combined with the interactivity
given by Altair, clusters help us to highlight some internal similarities. For example,
Cluster 1 clearly represents battles with small numbers on both sides. Cluster 2 represents
battles with a considerably larger number of infantry for allies. Cluster 3 groups together
battles where allies have a lot of tanks and/or guns. Cluster 4 represents battles with a small
to none number of vehicles—including a battle for Voronezh and Prague offensive—in both
cases, it is clear that the number of tanks wasn't reported due to the mere scale of the
operations. Finally, Cluster 5 seems to represent battles with a large number of axis tanks.

Moving on to supervised learning
Now, let's try supervised learning. As we discussed earlier, supervised models are
designed to predict, or estimate, target variables—either a continuous value (regression
problem) or a specific category (classification problem). Other types of problems (tagging,
semantic segmentation, and many more)—can then be defined as one of those two.
Let's glance over a suite of relatively simple models now.

One simple yet often pretty performant model is the k-nearest neighbors (KNN)
algorithm. It is quite similar to k-means, as it also performs in Euclidean space.

k-nearest neighbors
KNN is both interpretable and fast and for small and medium datasets (for large ones,
there is a scalable modification—approximate KNN). It also has an important
property—similar to k-means, it works on distances, and therefore sees the interaction
between the features, which many other algorithms can't do.

The logic behind KNN is very simple—for each record it predicts, it finds k nearest records
(neighbors—hence the name) most similar (close in the feature space) to the given one in
the training set and infers data from them. The algorithm can be used both for classification
(in this case, a most frequent class for the neighbors will be taken) or regression (calculated
as a weighted average of the neighbors' values). The following sections explain these in
detail.

Of course, KNN has its drawbacks as well:

It can't extrapolate beyond the training set—similar to k-means, it depends on the
unit scales.
It also has to store all data in the object itself, so it won't be a great choice (at
least, in its basic version) to run on big datasets.

Training a Machine Learning Model Chapter 13

[261]

This algorithm cannot ignore features or treat them as less important. Adding
bad features to the dataset may lead to a decrease in performance.
KNN has also a somewhat limited value for interpretation—it can spill out the
neighbors but won't reveal any meaningful trends, nor estimate the relationship
between the target value and particular features.

Let's try to use KNN to predict the outcome of each battle, using the same scaled dataset we
used for the clustering problem. Let's see how it is done:

Before we run the model, we first need to convert the result variable into a1.
numeric feature, as well. As some battles have no clear victory, we'll have three
outcomes—negative for an axis victory, positive for an allies victory, and
zero for a tie as shown here in the code. The following code will replace
axis with -1, allies with 1, and fill all null values with 0. For debugging
purposes, we then count the number of all unique values in the column:

>>> data['result_num'] = data['result'].map({'axis':-1,
'allies':1}).fillna(0) # 0 for tie
>>> data['result_num'].value_counts()

-1.0 93
 1.0 34
 0.0 6
Name: result_num, dtype: int64

Next, we need to split the data into two parts: training and testing, as we'll need2.
to measure the quality of the outcome. Luckily, there is a sklearn helper
function for that, as well. All we need is to specify a test size (as a fraction) and
random_state—to be sure the change in the metrics is not attributed to change
in the data splits:

from sklearn.model_selection import train_test_split

mask = data[cols].isnull().any(1)
X = data.loc[~mask, cols]
y = data.loc[~mask, 'result_num']

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,
 test_size=0.2, random_state=2019)

Training a Machine Learning Model Chapter 13

[262]

To scale the data or not depends on the case. Scaling ensures that all given3.
features are equally contributing to the clustering—this may be important for the
performance, but will undermine the interpretability of the model and, especially
for KNN, may decrease the accuracy—KNN cannot ignore features. In this
specific case, accuracy for the unscaled dataset is better—perhaps as points are
further away from each other.
The fit method, in this case, essentially internalizes the training dataset. The4.
following code initializes the model, fits it to the training set, and predicts values
for the test set:

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5) # again, arbitrary
number
model.fit(Xtrain, ytrain)
y_pred = model.predict(Xtest)

But how to measure the performance of the model? For the classification model, it seems
logical to start with accuracy—a ratio of correct predictions to the total number of them.
This metric—and many others—is also built into sklearn. Let's use it to measure our
model's performance. The following code does exactly that:

>>> from sklearn.metrics import accuracy_score
>>> accuracy_score(y_test, y_pred)
0.5

The result is, of course, not very impressive—we didn't perform better than a coin flip. The
round number, however, can give us hints—as we dropped any data points with missing
values, our testing sample is very small. With this sample size, metrics are very volatile and
hard to interpret. Still, this model can be used to further explore our dataset, as KNN can
spill out the neighboring records in addition to the estimate.

In the following table, we're getting the five neighbors for the first record in the test dataset,
using the model's kneighbors method:

>>> Xtest.head(1)
 allies_infantry axis_infantry allies_tanks axis_tanks allies_guns
axis_guns
106 378000.0 100000.0 1000.0 350.0 3241.0
2000.0

>>> Xtrain.iloc[model.kneighbors(Xtest.head(1))[1][0]]

 allies_infantry axis_infantry allies_tanks axis_tanks allies_guns
axis_guns
55 1173500.0 1040000.0 894.0 950.0 13451.0

Training a Machine Learning Model Chapter 13

[263]

3000.0
66 1286000.0 300700.0 2409.0 625.0 26379.0
5500.0
98 1002200.0 900000.0 1979.0 900.0 11265.0
6300.0
126 1171800.0 270000.0 1600.0 772.0 5425.0
434.0
73 822000.0 500000.0 550.0 146.0 4600.0
2389.0

The preceding table shows the records for the data points in the metrics. Here, the first row
with index 106 represents the Battle of the Dukla Pass in the Carpathian mountains. Its five
most similar neighbors are Operation Uranus, Operation Kutuzov, the Lvov–Sandomierz
Offensive, the Vienna Offensive, and the Leningrad–Novgorod Offensive, all solely in
terms of the number of troops. It seems that they all share advantages in the number of
troops for the allies and that they were all fought in the second half of the war by the
Soviets—the model didn't know all that, but it is hidden behind the values. In other words,
only Soviets on that front had armies of that scale, and only in the second part of the
war—it's not really hard to guess, but still useful for understanding the data.

Linear regression
Finally, let's review yet another model—arguably, the most established and popular around
the world. Linear regression is actually a statistical model with a long history. The idea
behind linear regression is as follows.

Assuming that variables have linear relationships, independent variables are not correlated,
and there is a certain variance in the features, we can estimate the linear relationship
between independent and target variables. As a result, our model will be present as a set of
coefficients, one per each feature (independent variable), plus one for bias:

Here, i stands for the record index and p for the index of the feature. Epsilon represents an
error that the model couldn't explain. This way, to calculate our estimate of y for the record
(row) i, we simply need to multiply each feature in the row by the corresponding coefficient
and add them up together with the bias (beta zero). All coefficients are universal and
calculated beforehand, during the model training. Take a look at the following diagram:

Training a Machine Learning Model Chapter 13

[264]

The preceding is a scatterplot of the allies' casualties, plotted against the number of tanks
the allies had in each battle. The (red) line here represents a linear model—it is defined by a
bias (its Y coordinate at X=0) and the slope—coefficient for our feature—represents the
number of tanks. As you can see, the direct correlation here is positive; the trend is set
upward, which is not surprising—more tanks means larger armies on both sides, hence
larger casualties overall. Note the three outlier records beyond all others—they significantly
impact the model.

Linear models have distinctive properties, in particular:

Linear models are easy to interpret. Essentially, they define an interpretable
coefficient of impact for each feature. Say we predict the price of the apartments:
it will attach a price tag, in dollars, for every square foot that would be the price
of that square foot, on average.
They don't require scaling.

Training a Machine Learning Model Chapter 13

[265]

Assuming non-collinearity (that features are not correlated between themselves),
those coefficients are independent of other features—for example, the price of a
square foot will be estimated on average, independently of the location.
Linear models are easy to train and very easy to infer (even manually), as it boils
down to simple multiplication of a few numbers.
In contrast to KNN, linear regression generalizes to the absolute—all you get is a
set of coefficients, one per feature (plus bias constant), each answering what is
the impact, on average, of this feature on a target variable. It is useful and easy to
digest—but there is no way to go deeper than that.

At the same time, due to its linear nature, this algorithm can't account for complex nuances
in the data and usually performs badly as a prediction model. It is also not robust to
outliers—if there are outliers in the dataset, it is a good idea to drop them before training
the model.

Let's try building a linear model on our dataset. Here, we need to predict a continuous
value, so let's try to predict the number of casualties for the allies:

First, let's prepare the dataset:1.

cols = [
 'allies_infantry', 'axis_infantry',
 'allies_tanks', 'axis_tanks',
 'allies_guns', 'axis_guns',
 'start_num'
]

mask = data[cols + ['allies killed']].isnull().any(1)

Now, we can split the features and prepare training and testing sets:2.

y = data.loc[~mask, 'allies killed']
X = data.loc[~mask, cols]

Xtrain, Xtest, ytrain, ytest = train_test_split(X,
 y,
 test_size=0.3,
 random_state=2019)

Training a Machine Learning Model Chapter 13

[266]

Finally, we can train the data and see how it performs.3.
In the following code, we initiate the linear regression model and train it. Lastly,4.
we predict values for the test and store them in the ypred variable:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import median_absolute_error

model = LinearRegression()
model.fit(Xtrain, ytrain)

ypred = model.predict(Xtest)

But how should we measure the performance of the model? The model itself
usually uses the mean of the squared errors, but for interpretation, we can use the
median (or mean) absolute error as it will preserve units—in our case, the number
of casualties. Indeed, our model does not perform extremely well—it has a
median error of 42584 people, as shown here:

>>> median_absolute_error(ytest, ypred)
42584.419274116095

As the test dataset is very small, we can print the errors and check them manually.

Here, we're calculating the errors, as follows:

>>> (ypred - ytest)

111 4.934710e+04
27 -3.582174e+04
42 2.148667e+04
106 -1.191980e+03
54 -1.007381e+06
49 -9.226890e+05
Name: allies killed, dtype: float64Summary

You can see the difference between correct and predicted values of y. As you can see, all but
two cases underestimate the real number of casualties. Well, we didn't expect it to be
perfect; despite the large errors, this linear model can give us a bird's-eye view of the
trends—something easy to digest and discuss. Let's take a look at the coefficients
representing the impact of each feature on casualties:

>>> pd.Series(model.coef_, index=X.columns)

allies_infantry 0.024922
axis_infantry 0.079912
allies_tanks -25.215543

Training a Machine Learning Model Chapter 13

[267]

axis_tanks -19.178557
allies_guns 3.797002
axis_guns 0.387496
start_num -50.093280
dtype: float64

In this table, each coefficient represents the number of deaths associated with one unit for
each feature, on average. For example, we see that each tank for the allies decreases
casualties by -25. If that was a causal relationship, this digit would be an actionable point
for generals and government to consider. However, correlation is not causation! If you look
underneath, each axis tank decreases the number of casualties as well. Isn't it supposed to
be the other way around? It is unclear, but perhaps we know the answer: larger tank armies
could mean battles outside of the cities and we can imagine that those usually have way
less infantry involved—hence, fewer casualties. One trend that is worth discussing is that
the number of casualties decreases over time.

Decision trees
Finally, we arrive at our last model in this chapter: decision trees. Similar to linear models,
decision trees are spread out and good—although not as easy to digest—for interpretation.
The core idea behind trees is very different from linear models but is easy to comprehend.
To estimate the outcome, the model generates a binary tree—a tree-like diagram—where
each note (intersection) represents a single question, based on the known features, with a
yes/no answer. Usually, it is something like the number of casualties is smaller than 1,000. At
the end of each branch, a corresponding estimate is attached. The tree is generated so that
the average accuracy of predictions is maximized.

As the depth of the tree can vary, decision trees can, in theory, predict 100% accuracy on the
training set—simply by asking questions until there is only one record on each end. This
will, however, decrease the accuracy of any external data. This phenomenon is called
overfitting. We will talk about how to mitigate it in the next chapter.

Another weak spot of decision trees is that they work on each feature separately—no more
of the interactions we enjoyed with KNN. Hence, it is way harder for them to detect any
interaction between multiple features. Creating a smart set of features, for example, a ratio
of axis troops to allied troops, might lead to a significant gain in performance. For the same
reasons, decision trees do not care about scaling, as they don't compare features to each
other in any way.

Training a Machine Learning Model Chapter 13

[268]

Let's try building a decision tree on our dataset—the same data we ran for the KNN:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree_model = DecisionTreeClassifier(random_state=2019)
>>> tree_model.fit(Xtrain, ytrain)
>>> accuracy_score(ytest, tree_model.predict(Xtest))
0.5

In this case, the decision tree performed at the same level the KNN did—perhaps we need
to work on our features. But how can we diagnose the model? The sklearn algorithm for
decision trees can generate a diagram, defined in the dot language of the Graphviz software.
This definition can then be rendered, in our case, straight in the notebook.

Following is the code for the diagram generation:

First, we need to import a corresponding function from1.
sklearn export_grapvis, together with the pydotplus package for
rendering, StringIO for in-memory, file-like objects, and IPython's Image object
for visualization within the notebook:

from sklearn.tree import export_graphviz
from io import StringIO
from IPython.display import Image
import pydotplus

Now, we need to create a file-like object (we can write like a real file to the disk,2.
instead, if we want).
After that, we run the export_graphviz command, passing the tree to be3.
written to the file as a diagram:

dot_data = StringIO()

export_graphviz(tree_model, out_file=dot_data,
 filled=True, rounded=True,
 special_characters=True, feature_names=cols)

Finally, we ask pydotplus to render the chart from our pseudo-file and use4.
Image to show the resulting image within the notebook:

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

Training a Machine Learning Model Chapter 13

[269]

Here is the outcome:5.

As you can see, according to the model (and our training set), of all features available, the
axis infantry is the most significant predictor, followed by the number of guns on the axis
side.

In this section, we reviewed unsupervised and supervised machine learning models, which
help us to understand the data, their internal relationships, and attempts at predicting
values. The models can also be useful beyond prediction itself as, in doing so, they allow
the highlighting of relationships within the dataset, quirks in the data, and the role of
different properties of each record.

Training a Machine Learning Model Chapter 13

[270]

Summary
In this chapter, we learned about two branches of machine learning—the supervised and
unsupervised learning—and practiced building four machine learning models, each with
its pros and cons. Each of those models can be used directly to create an estimate or
analyzed to understand the most important features or trends. In many instances, the latter
is more important and useful than the estimate itself. While these models are not as hot and
complex as others (ahem, neural networks), they are widely adopted and used
everywhere—in healthcare, military, engineering, city planning, policy analysis, logistics,
and operational management—chances are one of them is running in some form on the
device you have in your pocket or the computer that's sitting on your desk, right now.

The particular models we trained in this chapter had the default settings and used raw
features we collected from Wikipedia.

In the next chapter, we'll learn how to improve the models—by engineering a better set of
features, optimizing the hyperparameters, or switching to a more complex model. Using
this process as a starting point, we will also learn to run computational experiments,
keeping track of both code and data and ensuring reproducible outcomes.

Questions
What is machine learning?1.
What is the difference between supervised and unsupervised learning?2.
What are the drawbacks of k-means clustering? Why do we need to use a scaler?3.
How does the KNN model work? What are the benefits and limitations of such a4.
model?
Why does linear regression give more interpretations? Do we need to scale data5.
in this case?
How do decision trees work compared to other models we described?6.

Further reading
For further information, you can visit the following link: https:/ ​/​www. ​packtpub. ​com/ ​tech/
machine-​learning.

https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning
https://www.packtpub.com/tech/machine-learning

14
Improving Your Model –

Pipelines and Experiments
In the previous chapter, we trained a basic machine learning (ML) model. However, most
real-world scenarios require models to be accurate, and that means the model and features
need to be improved and fine-tuned for a specific task. This process is usually long,
iterative, and based on trial and error.

So, in this chapter, we will see how we can improve and validate model quality and keep
track of all of the experiments along the way. As a result, we will improve the quality of the
model and learn how to track our experiments and log metrics and parameters. In
particular, we'll learn the following:

Understanding cross-validation and overfitting
Adding features in order to improve models
Wrapping models and transformations into pipelines
Version control of our datasets and metrics using the dvc package

Technical requirements
In this chapter, we will introduce you to the dvc package. If you don't use the environment
for this book, you can install it with pip install dvc. The last part, visualization of the
tree, will also require the pydotplus package.

As usual, all of the code is shared via a notebook, stored in the repository under
Chapter14 (https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by-​Building- ​Data-
Science-​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Improving Your Model – Pipelines and Experiments Chapter 14

[272]

Understanding cross-validation
In the previous chapter, we built a model with certain assumptions and settings, measuring
its performance with accuracy metrics (the overall ratio of correctly classified labels). To do
this, we split our data randomly into training and testing sets. While that approach is
fundamental, it has its problems. Most importantly, this way, we may fine-tune our model
to gain better performance on the test dataset but at the expense of other data (in other
words, we might make the model worse while getting a better metric on the specific
dataset). This phenomenon is called overfitting.

To combat this issue, we'll use a slightly more complex approach: cross-validation. In its
basic form, cross-validation creates multiple so-called folds or data subsections. Usually,
each fold has approximately the same size and can be further balanced by target variable
representation or any other criteria. Additionally, cross-validation generates all
combinations of folds, so that there is one combination with each fold being the test set, and
everything else is the train set. It further trains the same model on training data from each
combination and measures performance on the corresponding test set. Once it is done, we
estimate the average value for each metric across all splits.

Before we start improving our model, let's recreate our model from Chapter 13, Training a
Machine Learning Model:

model1 = DecisionTreeClassifier(random_state=2019, max_depth=10)

cols = [
 'allies_infantry', 'axis_infantry', 'allies_tanks', 'axis_tanks',
 'allies_planes', 'axis_planes', 'duration'
]

y = data['result_num']

It is easier not to create the X variable, but to get a subset of columns instead, as we'll be
adding more features throughout this chapter.

We don't need to split the data into training and testing sets—cross-validation will do that
for us. Let's import the function and run it. We will split the data into 4, as we only have
4 tie cases:

from sklearn.model_selection import cross_validate

cv = cross_validate(model1,
 data[cols], y,
 cv=4)

Improving Your Model – Pipelines and Experiments Chapter 14

[273]

Now, let's convert cv from a dictionary into a dataframe:

>>> cv = pd.DataFrame(cv)
>>> cv
 fit_time score_time test_score
0 0.003015 0.001030 0.500000
1 0.003033 0.000937 0.571429
2 0.002311 0.000868 0.428571
3 0.001939 0.001125 0.250000

>>> cv['test_score'].mean()
0.4375

This function, cross_validate, is the basic, core function. In the next sections, we'll
use cross_val_score—a simple wrapper around cross_validate, that returns only
scores. As you can see here, on average, our performance is pretty sad—45% accuracy. This
is our starting point; let's now improve it. For that, let's first understand how feature
engineering works!

Exploring feature engineering
Now that we made a system to fairly compare models with no fear of overfitting, let's think
about how we can improve our model. One way would be to create new features that
might add more context. One way to go about this is to create features of our own, for
example, calculate a proportion of armies on different sides or the absolute difference in the
number of soldiers—we can't say in advance which would work better. Let's try it out with
the help of the following code:

First, we'll create a ratio of soldiers on either side:1.

data['infantry_ratio'] = data['allies_infantry'] /
data['axis_infantry']
cols.append('infantry_ratio')

Now, we won't do that for tanks, planes, and so on, as the numbers here are very2.
small and we'll have to deal with division by zero. Instead, we'll compute the
difference in absolute numbers:

for tp in 'infantry', 'planes', 'tanks', 'guns':
 data[f'{tp}_diff'] = data[f'allies_{tp}'] - data[f'axis_{tp}']
 cols.append(f'{tp}_diff')

Improving Your Model – Pipelines and Experiments Chapter 14

[274]

Now that we have created those five new features, let's run our model over3.
again:

scores = cross_val_scores(model,
 data[cols],
 data['result_num'],
 cv=4)

Now, let's print the resultant score (fingers crossed):4.

>>> pd.np.mean(scores)
0.5141774891774892

Accuracy is now at 51.4%—almost 8% improvement over the previous 43.7%!

Let's see what else we can add to the mix. One feature we haven't used quite yet is the
leaders columns—each containing a few names. Let's count how frequent each name is in
the dataset and create a binary (one-hot) feature for the most frequently mentioned leaders.
For that, we can use the Counter object we learned about in Section 1, Getting Started with
Python, of this book!

Consider the following code:

from collections import Counter

def _generate_binary_most_common(col, N=2):
 mask = col.notnull()
 lead_list = [el.strip() for _, cell in col[mask].iteritems() for el in
cell if el != '']
 c = Counter(lead_list)
 mc = c.most_common(N)
 df = pd.DataFrame(index=col.index, columns=[name[0] for name in mc])
 for name in df.columns:
 df.loc[mask, name] = col[mask].apply(lambda x: name in
x).astype(int)
 return df.fillna(0)

The _generate_binary_most_common function, as follows, generates a dataframe with
the top most frequent names as columns and the original data index. All values are binary,
indicating whether each name is present in the original column.

 With that, we can add our new features to the dataset. Consider the following code:

axis_pop =
_generate_binary_most_common(data['axis_leaders'].str.split(','), N=2)
allies_pop =
_generate_binary_most_common(data['allies_leaders'].str.split(','), N=2)

Improving Your Model – Pipelines and Experiments Chapter 14

[275]

Here, we run the function we just created on the leaders columns for each side, with N=2.
This results in a dataframe of two columns, filled with binary (0 and 1) values. These values
represent whatever specific leader (one of the two most common) took part in each
particular battle.

Now, all we need is to add those dataframes to our features and run cross-validation one
more time:

data2 = pd.concat([data, axis_pop, allies_pop], axis=1)
cols2 = cols + axis_pop.columns.tolist() + allies_pop.columns.tolist()

scores = cross_val_score(model1,
 data2[cols2],
 data2['result_num'],
 cv=4)
pd.np.mean(scores)
>>> 0.5369047619047619

This added 2% to our performance on average. N=2 was found by manual iteration—it
seems that both an increase and a decrease of the value from here leads to a drop in
performance.

Failed attempts
The example-based narrative of this book may mislead you into thinking that each
hypothesis or idea improves accuracy. In fact, in order to write this chapter, we had to try
and test a handful of other features and methods that didn't work out. For example, one
idea we tried was to use the dates of each battle as a feature; you would think that allies lost
more battles in the first half of the war and won more in the second. In reality, it actually
lowered our performance on the testing dataset.

We also tried filling the missing values. At the very beginning of this chapter, we filled
empty cells for planes, tanks, and guns with zeroes. In reality, the authors of Wikipedia had
different sources; some of them had detailed data on the number of guns/planes/tanks, and
some didn't. Most of the time, though (at least for a large number of soldiers), there were at
least some values—but not others. It seems natural to inject at least an approximate
number—for example, an average—into each empty cell. However, this didn't help the case
either—filling with averages also lowered the score for the model.

Improving the model is a constant process of iterations, trial, and error. It can be an
exhausting and frustrating experience and, generally, the performance gains get smaller on
each iteration. So, brace yourself, think strategically, and be ready to work hard, with no
guarantee of a result at all.

Improving Your Model – Pipelines and Experiments Chapter 14

[276]

Feature engineering is the king, but there is a second way to improve your performance,
parallel to the features selecting the model and model parameters and that is parameter
selection. Let's talk about parameter selection in the next section.

Optimizing the hyperparameters
There are probably a lot of other features to add, but let's now shift our attention to the
model itself. For now, we assumed the default, static parameters of the model, restricting
its max_depth parameter to an arbitrary number. Now, let's try to fine-tune those
parameters. If done properly, this process could add a few additional percentage points to
the model accuracy, and sometimes, even a small gain in performance metrics can be a
game-changer.

To do this, we'll use RandomizedSearchCV—another wrapper around the concept of cross-
validation, but this time, one that iterates over parameters of the model, trying to find the
optimal ones. A simpler approach, called GridSearchCV, takes a finite number of
parameters, creates all of the permutations, and runs them all iteratively using, essentially,
a brute-force approach.

Randomized search, on the other hand, takes parameter distributions and gets random
samples. It has two advantages over the grid search:

Randomized search can find the parameters you didn't explicitly offer (some
very specific ratio value).
It usually converges faster than grid search.

Let's take a look at how it works:

First, we need to import a randint method and RandomizedSearchCV:1.

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint as sp_randint

Now, we'll declare a feature space to search for a better combination. Here, each2.
key represents a model parameter, and the value, the options to search in. The
randint function allows us to specify range boundaries for a random value
search:

param_dist = {"max_depth": sp_randint(5, 20),
 "max_features": sp_randint(1, len(cols2)),
 "min_samples_split": sp_randint(2, 11),
 "criterion": ["gini", "entropy"]}

Improving Your Model – Pipelines and Experiments Chapter 14

[277]

Finally, having this feature space, we can run our randomized search:3.

rs = RandomizedSearchCV(
 model1,
 param_distributions=param_dist,
 cv=4, iid=False,
 random_state=2019,
 n_iter=50
)

In lieu of the general philosophy of scikit-learn, RandomSearchCV behaves as if it was
a model—it has fit and predict methods. Under the hood, it iterates over parameters,
averaging parameters over folds. As a result, it can return both the best score and the best
corresponding estimator—the one that got the highest score on average. Consider the
following code:

>>> rs.fit(data2[cols2], data2['result_num'])
>>> rs.bestscore
0.5613636363636363

>>> rs.best_estimator_
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=5,
 max_features=3, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=8,
 min_weight_fraction_leaf=0.0, presort=False,
 random_state=2019, splitter='best')

As you can see, the process was indeed able to tweak the parameters, finding the most
generally performant model configuration, and it improved our accuracy by ~2%. Let's
generate a diagram for the resultant model:

dot_data = StringIO()

export_graphviz(rs.best_estimator_, out_file=dot_data,
 filled=True, rounded=True,
 special_characters=True, feature_names=cols2)

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

Here, the code is similar to the one we ran in the previous chapter—we emulate a file with
an in-memory object, generate a diagram, render it with pydotplus, and inject it into the
notebook.

Improving Your Model – Pipelines and Experiments Chapter 14

[278]

And here is the resultant diagram:

As you can see, the difference in guns, the infantry ratio, and a difference in tanks pop up
all over the diagram—those are the main features the model makes use of.

Did it use our leaders features? Only one! The only commander who got into the model is
Leonid Govorov—which is quite interesting. As we mentioned in the previous chapter,
correlation is not causation, especially given the causal relationship between the events and
imperfect data—but it is still a useful insight to spur a discussion or direct further research.
What context are we completely missing? Is it true that artillery (guns) on average is more
important than tanks or planes? Do those features play as important a role in the different
theaters of war?

Improving Your Model – Pipelines and Experiments Chapter 14

[279]

The visual representation of the decision tree allowed us to understand the logic of the
model and better navigate the data. The model, in this case, works as an objective analytical
tool. As a result, we are able to generate quite a few questions and hypotheses on the nature
of data and the underlying historical events.

So far, we have been working with simple models, which are easy to interpret. However,
these models are usually not as good at predictions, so why don't we try something more
complex and performant, now that we know our dataset pretty well?

Using a random forest model
Decision trees, introduced in Chapter 13, Training a Machine Learning Model, and which we
have been using so far, are fast and easy to interpret. Their weak point, however, is
overfitting—many features might seem to be a great predictor on the training dataset, but
turn out to mislead the models on the external data. In other words, they don't represent
the general population. The problem is that decision trees (another algorithm) don't have
any internal mechanics to detect and ignore those features.

A suite of more sophisticated models was developed on top of decision models to fight
overfitting. These models are usually called tree ensembles, as all of them train multiple
decision trees and aggregate their predictions. There are a few models in this family,
namely, Adaptive Boosting, Extra-Trees, and random forest. The last one is, arguably, the
simplest one to understand of them all—random forest is essentially a flat collection of
decision trees, each of which was trained on the subset of the records and a subset of the
features of given training data. The result is then aggregated as a majority vote (for
classification) or weighted average (for regression). Because each tree gets its own subset of
features and records, all trees are trained differently. The mere number and diversity of the
trees results in the overall model's robustness and tolerance to overfitting and enables it to
capture more nuanced dependencies, at the same time.

Let's see if we'll be able to squeeze more performance from our WWII data using the
random forest model! Luckily, all sklearn models share the same interface, so we won't
need to change much in the code. Let's run a model with the default properties, first:

In the following code, we initiate the model with the default values and a specific1.
random state and run cross-validation on this model:

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state=2019, n_estimators=10)

scores = cross_val_score(rf,
 data2[cols2],

Improving Your Model – Pipelines and Experiments Chapter 14

[280]

 data2['result_num'],
 cv=4)

>>> pd.np.mean(scores)
0.5346861471861473

As you can see, it didn't outperform the decision tree just yet.

Let's now tune the parameters. As all of the parameters are the same, except for2.
the number of estimators, we can reuse our old parameter distribution, as
follows:

param_dist['n_estimators'] = sp_randint(50, 2000)

rs2 = RandomizedSearchCV(
 rf,
 param_distributions=param_dist,
 cv=4, iid=False,
 random_state=2019,
 n_iter=50
)

Now, let's run the search and check the results:3.

rs2.fit(data2[cols2], data2['result_num'])

>>> rs2.bestscore
0.5812229437229437

Indeed, now the model outperformed decision trees by ~2%. Great!

In this section, we were able to replace the decision tree model we were using before with
another, more complex algorithm—random forest. As a result, just this swap allowed us to
boost the accuracy of the prediction by 2%, and we didn't even run any hyperparameter
optimization. Random forest is prone to overfitting, can learn more complex dependencies,
and generally performs better than decision trees. There is no free lunch, though; the
random forest is too complex to be directly interpretable (although there are tools such as
SHAP (https:/​/ ​github. ​com/ ​slundberg/ ​shap) that can help with that) and takes longer to
run.

As you can now see, there are plenty of directions to try and experiment. With all of this
feature engineering, different models, hyperparameter optimization, and whatnot, it is easy
to lose track of your work. While Git and GitHub are great for using code, they are not as
useful for experimentation—you can't store your data, features, models, and metrics there.
To help to track your progress and control different versions of your data and models, let's
introduce DVC.

https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap

Improving Your Model – Pipelines and Experiments Chapter 14

[281]

Tracking your data and metrics with version
control
As with all ML projects, there is always room for improvement—especially if we converge
on the actual use case scenario. But let's switch gears and talk about the technical side of the
question.

As you probably noticed, in this chapter, we had to constantly iterate, adding and
removing features from the data or settings to the model. And again, as we mentioned, only
one-third of the initial experiments went into this book. This is probably fine for this toy
dataset and this third of the code but eventually, we might be swamped in different
versions and iterations of the model.

In Chapter 9, Shell, Git, Conda, and More – at Your Command, of this book, we learned
about git—a system that stores versions of code, so you can safely switch to the previous
version or even keep work on different versions of the code in parallel. This definitely will
work for the code behind the model, especially if we carefully explain the differences in the
commit messages.

However, in a real-world situation, ML pipelines won't be enough. We need to track
metrics and store data and models for each version of the code, especially if the models take
hours or even days to train, which is quite often. There is a need for reproducibility when
storing not only code but also data, and by data, we mean not only the datasets but also any
derivatives, models, and metrics so you can compare different iterations (experiments) and
reproduce every one of them, on demand. It may be tentative to use git itself and, for the
small datasets, it will work. It won't work for even a medium-size dataset, however, let
alone the large ones.

There are a few systems and technologies that help to track experiments, but the field is
very young and dynamic. The most popular solutions seem to be sacred, mlflow,
and dvc. While all three products generally address similar goals—experimentation and
reproducibility—each operates under a certain set of predefined conditions and opinions.
For example, sacred is a Python library that helps to store the outcomes and settings of
experiments and visualize them later on a dashboard, while mlflow is a powerful
framework that prefers to have a separate server for tracking and supports a few languages.

Improving Your Model – Pipelines and Experiments Chapter 14

[282]

The last one, dvc, is focused on data version control (DVC literally stands for Data Version
Control), is small and language-agnostic, and does not require any servers—everything is
communicated via the flat files. It also does not require any changes nor additions to the
code itself, which is good. dvc tries to keep its interfaces very similar to git and relies on
git itself for many of its features. It supports multiple cloud providers but can be used
without a remote as well (similar to git). Let's now try to use DVC on our small pipeline.

Starting with data
It is very easy to incorporate dvc into your workflow. First, we need to install it with pip
install dvc. After that, we gradually set it up. You should always start by adding the
raw data to dvc. Let's assume data is collected outside of the workflow; we'll just store the
files. To do so, perform the following steps:

First, open the Terminal (in VS Code, for example), make sure you're in the right1.
folder—the same place where git was initialized (and therefore the .git folder
is located)—and type this:

dvc init

If you succeed, DVC will print out a few links to documentation and offer to2.
commit changes to git. If you type git status, you'll notice a new
folder generated, .dvc, with two files in it: .gitignore and config. So, let's
commit this change to git:

git add .
git commit -m "dvc initialized"
git push # optionally

Now, let's register our data file in DVC:3.

dvc add Chapter14/data/EF_battles_corrected.csv

If you check the git status, you'll notice a new file was
generated—EF_battles_corrected.csv.dvc. Feel free to open it in the text editor. The
most important element here is the string of gibberish—the unique MD5 hash. This string is
generated using a special deterministic algorithm and represents your data. If the data
changes, the new hash won't match the one stored in the .dvc file, so DVC will understand
that it is changed and store a new version.

Improving Your Model – Pipelines and Experiments Chapter 14

[283]

This is the same reason it is used as the path to the file in the .dvc folder and on the remote
server. By committing this file to git, you essentially entwine this specific version of the
code with a specific version of data: anyone who pulls the code and the .dvc file will be
able (given access to a server, of course) to pull a specific version of the dataset. Given that
git tracks all versions of this file, we'll always be able to align the version of code with the
corresponding version of data.

Let's commit it to git:

git add .; git commit -m "adding the first dataset to dvc"

It should be noted that the data itself will not be uploaded—DVC explicitly adds it
to gitignore; given there is no remote storage for DVC, it will be kept locally. For now,
we won't use remote storage for DVC—but if you have an S3 bucket, FTP server, or Azure
or Google Cloud account, feel free to use them with dvc remote. Once the remote is set
up, just run dvc push every time data is updated (this can also be set to run automatically
on every git commit). Others can then clone the git repository and pull the data, using
the .dvc file with the hash.

Adding code to the equation
Now, let's say that we want to keep track of the metrics for each consecutive iteration of the
code, using a specific dataset. There is no simple way to do that with a Jupyter Notebook
(this could be done using a papermill package: https:/ ​/​github. ​com/​nteract/
papermill), so we copied the code from the notebook and stored it in the
script, predict_result.py. This takes data and writes down accuracy and model settings
to the metrics.json file.

One nice feature of VS Code is that it can convert Jupyter Notebooks into
code and back. Just type import jupyter in the command palette and
select the notebook. It will still require some tweaks but saves a sufficient
amount of time anyway.

With that (and the script itself is very simple—just some basic structuring), we can run the
code under DVC with the dvc run command (this time, we can do that from the chapter
folder):

dvc run -f Dvcfile -d ./predict_result.py -d
./data/EF_battles_corrected.csv -m ./data/metrics.json python
./predict_result.py

https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://github.com/nteract/papermill

Improving Your Model – Pipelines and Experiments Chapter 14

[284]

Here, the dvc run part tells DVC that we're running something, with dependencies (the -d
flag) and a metric output (the -m flag). Once it's done, all information will be stored to
Dvcfile (it is the same .dvc file we generated for data, just for the outcome metrics). Open
the file—it will describe both the script and the data as its dependencies and store a hash
function for both.

Let's commit to git one more time:

git commit -am "first ran of a script"

This time, we entwined the whole sequence—dataset, code, and resultant metrics. Try
running dvc repro (by default, it will use Dvcfile—that's why we named it that way); it
won't run the script because the hash functions are the same.

Metrics
Now, let's play with the metrics functionality, as follows:

First, we'll tag our current version to name it, so we can navigate and understand1.
what is inside each commit (metrics are always tracked, but the command-line
interface will show them for either tagged commits or branches):

git tag -m leaders -a "basic-features-and-leaders"

Now, for the sake of testing, let's test our model without the leaders feature;2.
just temporarily remove the corresponding feature from the list of features to
use, which we defined in the code. Now, let's reproduce the model:

dvc repro

Once the new model is done, we commit changes and tag a new commit:3.

git commit -m "same model with no leader features";
git tag -m no-leaders -a "basic-features"

Improving Your Model – Pipelines and Experiments Chapter 14

[285]

Feel free to push all changes to the remote to pass tags; we need to push with4.
the --tags flag, but none of that is required for DVC.
Finally, let's check in the code with the random forest model. Add the random5.
forest model to the script and run DVC again, as follows:

dvc repro;
git commit -am "random forest";
git tag -m rf -a "random-forest"

Now that metrics for the two models are cached, we can use DVC to show the
changes (here, a draft is our current branch and last commit).

The following code will ask DVC to show metrics (for example, the file we6.
specified as metric) across all tagged commits:

dvc metrics show -T -x accuracy
>>>
working tree:
 data/metrics.json: [0.5965367965367965]
basic-features:
 data/metrics.json: [0.5488095238095239]
basic-features-and-leaders:
 data/metrics.json: [0.5959415584415585]
random-forest:
 data/metrics.json: [0.5965367965367965]

As you can see, this command allows us to check changes in accuracy across all of the
tagged commits. Using a combination of git and DVC, we can always switch to any of
those commits and have a correct version of both the code and data pulled.

According to this list, the leaders feature added substantial performance gain to the
model. Switching to the random forest model adds a little more gain too. The best part is
that we can continue working on our model, keeping track of metrics for the next iterations
as well. All of the data, code, and metrics are properly stored and easy to get back to.

It is hard to overestimate the importance of proper tracking and version control for
experimentation and reproducibility—both in academic environments and in the industry.
This level of transparency allows you to showcase your improvements and communicate
and collaborate in a breeze. Now, let's review what we learned in this chapter.

Improving Your Model – Pipelines and Experiments Chapter 14

[286]

Summary
Over the course of this chapter, we worked iteratively on improving the machine learning
model we built in Chapter 13, Training a Machine Learning Model—adding features and
tuning it to achieve maximum performance. As the code and iterations get more complex
and multiple trial-and-error attempts are required, it is important to keep track of your
research. Therefore, we further discussed how to keep track of not only the code but also
data and metrics, making sure we can always switch back and reproduce any of the
previous versions.

In the next chapter, we'll take another stab at our Wikipedia scraping code, building it into
an independent Python library you could share with your friends and colleagues.
Throughout the rest of this book, we will focus on different ways of delivering our code as
a product to the client—as a standalone package, scheduled data pipeline, online
dashboard, or API endpoint.

Questions
What is overfitting?1.
Why should we use cross-validation?2.
Why can it be bad if our metrics are improving on the test set? Which features are3.
useful for improving model performance on cross-validation?
Why do some features decrease the performance of a decision tree on test data or4.
in cross-validation?
What is the difference between the random search and grid search algorithms for5.
parameter optimization?
Why is Git not sufficient for data version control?6.
What are the alternatives to DVC for data version control and experimentation7.
logging?

Further reading
You can refer to this book for further information: Data Science Projects with Python
(https:/​/​www.​packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​data- ​science-
projects-​python).

https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python
https://www.packtpub.com/big-data-and-business-intelligence/data-science-projects-python

3
Section 3: Moving to Production

In this final part, we'll discuss how to prepare your code to be used in a production
environment, as a package, as a scheduled process, or through an API. We will use the
three projects to implement these different approaches.

This section comprises the following chapters:

Chapter 15, Packaging and Testing with Poetry and PyTest
Chapter 16, Data Pipelines with Luigi
Chapter 17, Let's Build a Dashboard
Chapter 18, Serving Models with a RESTful API
Chapter 19, Serverless API Using Chalice
Chapter 20, Best Practices and Python Performance

15
Packaging and Testing with

Poetry and PyTest
Until now, all our code has lived in either notebooks or Python files. While that is totally
fine, with the growth in volume and complexity of our code, it is increasingly becoming a
good idea to form one or more go-to sources for the code we use most frequently, as well as
sources for the complex code that we don't want to risk adding mistakes to.

In this chapter, we will learn how to build our own packages for use in multiple projects or
to be easily shared with others, using the poetry package. A package can work as a
deliverable—something you can pass to or share with your client! Building and testing
packages is a vital skill that increases your productivity and allows you to save time and
reduce stress by enabling you to reuse the same properly tested body of code again and
again.

Building packages also likely to improve your overall coding skills, as packages require
code to be abstract and flexible and allow you to spend time on efficient implementation.

The following topics will be covered in this chapter:

The benefits of having a custom package
A few ways to develop a package
Defining dependencies and resources with Poetry
Workflow with the editable package installation
Testing your code with PyTest
Documentation with sphinx
Testing with CI

Packaging and Testing with Poetry and PyTest Chapter 15

[289]

Technical requirements
For this chapter, we will need the following packages (as always, they are included in our
base environment):

poetry

pytest

sphinx

As we're creating an independent package, all the code is stored on GitHub at https:/ ​/
github.​com/​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications.

Building a package
So far in this book, we have been either using third-party packages, such as requests and
pandas, or writing raw code as .py scripts or notebooks. While using Python files directly
is absolutely fine for certain projects, it makes it hard for code to be reused and built upon;
it is not sustainable for complex algorithms and tools that can be used over and over again.
Such code is also hard to share as it has no overall structure, tends to decay over time, and
doesn't have a robust dependency system; the code may not work on other systems with
other packages (or other versions of packages) installed. Last but not least, this kind of
practice affects the quality of our code, as we tend to write and use the code as a one-time
solution. The best way to mitigate all those issues at once is to form your code into a
package.

But what is a package? In Python, packages are defined as specific bodies of code that are
registered in the system (via a system path) and thus can be imported and used in any
specific code base. Packages are stored on the dedicated system paths and are not meant to
be changed or deployed manually. Instead, it is preferable to use dedicated tools, such as
the built-in setuptool package or package managers (for example, pip or conda). We'll
learn about these in detail in the coming sections.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Packaging and Testing with Poetry and PyTest Chapter 15

[290]

Bringing your own package
Most of the packages that we've taken a look at so far are very generic—for instance,
requests works with HTTP on the client side, while pandas is focused on data analysis.
Why should you write your own package with a very specific task in mind that's not
necessarily useful or applicable to another person's use case? Simply put, because you'll be
the first to benefit!

The main goal that packages solve is to create a deliverable; any new user on a new
machine will be able to install the package, as well as all the packages it requires to work
properly, at once. As a byproduct, packages remain isolated from the code you write every
day. This isolation is a good thing—it makes you, as a package designer, build your
packages in a structured and more abstract and extendable fashion. Finally, packages are
explicitly versioned. Using version control, you will always be able to run any specific
version you need at any moment, without worrying about new features or interfaces
breaking your code.

In other words, if the code you've made might be used on more than one project, you
definitely should consider converting it into a package. The good news is, it is actually a
pretty easy task to do.

Using a package manager – pip and conda
All the packages we've introduced so far are publicly accessible for everyone via one of two
package managers—pip and conda. The role of the package manager is to provide a
unified interface to securely install, upgrade, and uninstall packages in a system. As most
packages depend on other packages (usually specific versions), it is also the job of the
package manager to resolve those dependencies—that is, to install packages that fit the
version criteria for all installed packages that will depend on them.

pip and conda are by far the two most popular package managers for Python. The first one
is officially supported by the Python Software Foundation. It is the main Python package
management, period.

Why do we use conda at all, then? Historically, pip and PyPI (a corresponding online
service) did not support binaries as part of packages. Binaries have to be compiled for each
OS separately, and they are (obviously) written in languages other than Python itself. Thus,
providing support for binaries was considered too demanding.

Packaging and Testing with Poetry and PyTest Chapter 15

[291]

It turned out, however, that this is exactly what is required for fast numeric operations—as
we've mentioned before, numpy, pandas, and sklearn all run C and even Fortran under
the hood. For a long time, the lack of support meant that everyone had to compile binaries
locally every time they installed those new packages. As such, the Python leadership
offered to build a package manager that would support binaries—and conda was born. As
an additional bonus, conda can also create separate virtual environments, so you can safely
replicate a full Python environment from a shared .yaml file or have multiple versions of
Python and packages at the same time.

Unfortunately, conda requires a bit more effort to work with, compared to pip. Most
critically for us, it does not support the installation of packages from a Git repository (even
a private one), while pip does. Another feature of pip is that it allows the installation of
packages in editable mode—that is, with the code stored on a non-system path and ready to
be edited. In this chapter, we will build a package targeted at pip.

Creating a package scaffolding
So, how do we start? First of all, we need to create a scaffolding—a default package
structure with all the necessary folders, files with metadata and configs, and so on. Our
code will be stored on GitHub, so let's start by creating a new repository:

This step is easy. Go to https:/ ​/​github. ​com/ ​, log in, hit the New button, and fill1.
in all the information. In our case, we'll name the repository the same as the
package—wikiwwii. We'll also add a standard Python .gitignore file and
a README.MD file. You can also add a license of your choice for your repositories.
Next, we create the repository and copy the path to the clipboard. With that, we2.
can open a terminal, go to the proper location on the hard drive, and write this,
replacing <repo> with the path you copied from GitHub:

git clone <repo>

With that, a copy of the repository will be downloaded, with a link to the remote version
being stored. Try adding notes to README.MD. Now commit the change by typing git -am
commit "adding to README", and then use git push. This will send our first commit to
the master branch on GitHub.

Now let's see how we can build a package.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Packaging and Testing with Poetry and PyTest Chapter 15

[292]

A few ways to build your package
The structure of a Python package is defined by a few specifications (https:/ ​/​packaging.
python.​org/​specifications/ ​) and PEPs (short for Python Enhancement Proposals, such
as PEP517—https:/ ​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep- ​0517/ ​, PEP518—https:/ ​/​www.
python.​org/​dev/​peps/ ​pep- ​0518/ ​, and PEP427—https:/ ​/​www. ​python. ​org/​dev/ ​peps/ ​pep-
0427/​), and the overall definition comes from the Python Packaging Authority (PyPA). In
essence, a package is required to have, in addition to the actual code, a special file with
metadata, including the package name, the description version, the tags, Python version
support details, the authors, and the dependencies. This file could be a
Python setup.py file—which was the standard solution for a long time—or
a pyproject.toml file. The latter is a new, safer approach, but does not have as well-
designed a specification.

It is entirely possible to build a package manually. All it takes is a little structure and a file
with the metadata. It is, however, a tedious task, so there are quite a few packages designed
to help with packaging. A standard bundle is distutuls. There is also setuptools. Both
of them expect a setup.py file.

One of the challenges with package building is managing dependencies between packages.
One package may depend on another, which may depend on several more—so don't be
surprised if your package requires the installation of dozens of other packages. There is
even a fair chance that some of those packages will depend upon different versions of the
same package, so someone will have to figure out a way to install versions that suit all the
requirements or somehow install two versions of the same package. This is a challenge that
the previous generation of package builders didn't fully solve.

Recently, a few new tools arrived—namely, flit and poetry—and both of them
support pyptoject.toml files and work well to resolve dependencies. In this chapter, we
will use poetry to build our package. This package has a slick and expressive interface and
supports .toml format. It also builds a dedicated virtual environment for developers and
has two levels of dependency description: a flexible list of packages required for the user,
and one explicit and precise package, for developers, which contains a list of exact versions
of all dependency packages installed on the developer's machine. It also has tools for
dependency diagnostics and package publishing.

https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://packaging.python.org/specifications/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/
https://www.python.org/dev/peps/pep-0427/

Packaging and Testing with Poetry and PyTest Chapter 15

[293]

Trying out code with Poetry
Poetry, like flit, is one of the most recent packages aimed at helping with package
development in Python. Among its features are the ability to write a pyproject.toml file,
which is more secure and easy than the older approach with setup.py, and the ability to
create a dedicated virtual environment for a project, with all dependencies pinned. Even
more importantly, it has a thorough dependency resolution engine that makes sure all
dependency versions fit with each other, and an interface to monitor and bump your
dependency tree.

But first, we will start by creating a project template. First, type this:

poetry new --name=wikiwwii my-package

This will generate a new folder, my-package, with default files and folders within. Copy
and paste everything from this folder into our existing repository folder; delete the
REAMDE.rst file (we already have README.md). The most important thing we've got from
poetry, for now, is the pyproject.toml dummy file—this specification will be used to
generate a setup.py file upon installation.

Let's check the structure of our repository:

>>> tree wikiwwii
├── README.md
├── pyproject.toml
├── tests
│ ├── __init__.py
│ └── test_wikiwwii.py
└── wikiwwii
 └── __init__.py

If everything looks fine, feel free to commit the changes to GitHub (generally, you should
commit after each and every logical step—we can always squash commits into one later, for
readability purposes).

Packaging and Testing with Poetry and PyTest Chapter 15

[294]

Adding actual code
Now that the package structure is in place, we can start adding the actual code. For starters,
we copy and paste the code from Chapter 7, Scraping Data from the Web with Beautiful Soup
4, for the wiki.py package. As we want to have code for both collecting and cleaning in the
same package, it sounds smart to create two sub-folders—collect and parse. The code
from Chapter 7, Scraping Data from the Web with Beautiful Soup 4, will go to the latter one.
For now, we will create two files—battles.py and fronts.py—in the parse folder. In
Python, upon import, they will be mapped to a path such
as wikiwwii.parse.battles, enabling access to all the functions and variables in them.

Next, we add the code for cleaning in a similar fashion. However, most of the cleaning code
here is stored in the 1_data_cleaning.ipynb notebook. Of course, we could run a
Jupyter server and copy and paste all the files into Visual Studio (VS) Code, but there is an
even better option. Instead, open the command palette (Shift + command/Ctrl + P by
default), select Python: Import Jupyter Notebook, and pick our notebook. As you'll see, VS
Code will convert the file into a normal script, marking cells with the comments.

VS Code actually even allows the running of converted cells interactively, step by step.
Moreover, it supports converting this file back into a notebook. This is useful when you
need to tweak something in a notebook from within VS Code.

Here is the folder tree after we moved the actual code:

wikiwwii
├── README.md
├── pyproject.toml
├── tests
│ ├── __init__.py
│ └── test_wikiwwii.py
└── wikiwwii
 ├── __init__.py
 ├── collect
 │ ├── __init__.py
 │ ├── battles.py
 │ └── fronts.py
 └── parse
 ├── __init__.py
 ├── bellengerets.py
 ├── casualties.py
 ├── dates.py
 ├── geocode.py
 └── qa.py

Packaging and Testing with Poetry and PyTest Chapter 15

[295]

The code in packages is not generally meant to be run directly on import;
thus, it (usually) consists only of functions, variables, and objects. Until it
is clearly needed, consider it a bad practice to actually execute code
directly in a package—it will then be executed every time someone import
from this file. Similarly, where possible, try not to import packages you
don't need, or generate big structures, until you actually need them. It is a
good practice to import dependency packages only where they are
necessary so that even if the package is missing, some code will still be
executable.

Defining dependencies
Now, as you may have noticed, our code from Chapter 7, Scraping Data from the Web with
Beautiful Soup 4, relies on two libraries—requests and BeautifulSoup4—to work.
Parsing requires another package, pandas. For our imaginary user, it would be preferable
to install those packages and, even better, make sure that we install versions we think will
support what we need. This is where poetry thrives. In your Terminal, type the following:

poetry add requests beautifulsoup4 pandas

Poetry will scan our current environment, detect the version of those packages we use, and
add their characteristics to both pyproject.tamp and a new file, poetry.lock. The
former is a (recently added) standard specification—it will be used, upon publication, by
PyPI or pip. Note that it specifies only direct dependencies and you don't have to define a
specific version of them. The poetry.lock file is specific to the poetry package; it will
ensure a precise version match on installation, as it defines the versions of all dependencies
recursively.

Once every package is added, you may check the list of dependencies in the .toml file and,
perhaps, tweak the versions as required:

[tool.poetry.dependencies]
python = "^3.6"
requests = "^2.22"
beautifulsoup4 = "^4.7"
pandas = "^0.24.2"

Packaging and Testing with Poetry and PyTest Chapter 15

[296]

Here, ^ means any versions that are the same or later as the one specified. It might be safer
to replace it with a tilde, ~, which represents any version that is equal or above but only
within minor updates. So, ^3,6 will fit any version that is numerically larger or equal to
3.6; ~3.6 will fit any version within the range (3.6, 4,0). By general semantic
versioning convention, major numbers represent breaking changes, while minor numbers
(numbers after the dot) do not. Alternatively, a wildcard, *, can be used instead. In our
Python example, 3.* will fit any value within the (3.0, 4.0) range.

Non-code resources
If your package needs to include something besides the Python files—for example, a small
dataset or a query template—you'll need to add it explicitly as part of the package in
pyproject.toml, as here:

[tool.poetry]
include = ["*.sql"]

In some cases, you may not want to include some Python scripts in the actual package (for
example, some support scripts). For that, you need to add a similar exclude line in the
same section:

[tool.poetry]
include = ["*.sql"]
exclude = ["wikiwwii/uploader.py"]

We don't have any files to add or exclude in the package we're building—at least right
now—so we won't have this section in the .toml file.

Publishing the package
Now, assuming everything looks good, we can try installing dependencies with poetry
install. This won't (despite the somewhat misleading name) install that package in your
current environment—instead, poetry creates its own virtual environment for testing
purposes.

Once that's done, we can build and publish our package to PyPI (using poetry build and
poetry publish) so that it will be available for everyone. Let's not hurry—our package is
in its infancy and is not yet tested and secured.

Packaging and Testing with Poetry and PyTest Chapter 15

[297]

Instead, let's use GitHub as a sharing platform. Once your current version is pushed to the
repository, the package can be installed straight from GitHub itself—pip supports that as
well:

pip install git+https://github.com/Casyfill/wikiwwii.git

If needed, pip can install from the specific branch or tag. This way, we can keep our
packages private for, say, commercial use, using private repositories. At the same time,
your friends and colleagues can install and reuse your package, raise issues, or even
contribute to the project.

Development workflow
Now, with great power comes great responsibility. For now, we are committing to the
master branch, which is the default one for installation, so we probably don't want to add
some unreliable code there. So, let's adhere to the following, rather simple, practice—we
should never push code directly to the master branch. Instead, we should work on a
separate development branch, push it to GitHub, and then—once we're satisfied with
results—merge the branch into the master. For that, GitHub even supports code review and
discussions. Let's switch to a development branch now:

git checkout -b tests

As you may notice, VS Code will mark the current branch in the lower-left corner of the
window. In fact, you can click on it and switch to a different branch or even create a new
one manually. Next comes testing the code and checking how it works.

Testing the code so far
How would we know whether the code is good, anyway? The only good way is to
rigorously test your code. While it may sound like a lot of somewhat unnecessary work, it
is a practice that will repay you many times over in the future—once you're sure your code
behaves as intended, it is much easier to add new features and be sure that they didn't
break any of the existing ones. Furthermore, you can upgrade dependencies or compare
different implementations, all being sure that your code behaves as intended.

Packaging and Testing with Poetry and PyTest Chapter 15

[298]

As for many other things, Python has a standard library for testing—unittest. In contrast
to most of the standard libraries, however, unittest is fairly unpopular. Instead, another
library, pytest, is considered the de facto industry standard for Python testing, as it
provides a clean and reusable pattern of code and has support for plugins—indeed, there
are a lot of plugins available to support.

When poetry generated a scaffolding for our package, it generated a tests folder. That is
where our tests will live; this way, they live separately from the package and won't be
installed with it. Now let's dive in and write our first test.

Testing with PyTest
In fact, poetry even generates a test function for us, though it doesn't test our code;
instead, it checks the version. Take a look at the code here:

from wikiwwii import __version__

def test_version():
 assert __version__ == '0.1.0'

Here, two things are worth discussing. First, as you can see, the test is just a function with
the word "test" in its name. Having this word is necessary—this is the way pytest finds all
the tests. Second, each test results in one or a few assert statements. To pass the test,
assert should not raise any issues. That's all the basics of test development.

Now let's run this existing test; generally speaking, all we need is to type pytest tests on
the command line. With poetry, however, we have a hidden virtual environment intended
for development, so that's where we should run our tests; for that, type poetry run
pytest tests. If everything is okay, pytest should print out a small report with the
version of Python, pytest, the package, and a description of the tests, as follows:

>>> poetry run pytest tests
========================= test session starts
===
platform darwin -- Python 3.7.1, pytest-3.10.1, py-1.8.0, pluggy-0.12.0
rootdir: /Users/philippk/Dropbox/personal_projects/wikiwwii, inifile:
collected 1 item

tests/test_wikiwwii.py .
[100%]

============================ 1 passed in 0.02 seconds
=====================================

Packaging and Testing with Poetry and PyTest Chapter 15

[299]

Yay! This test has passed.

Writing our own tests
But seriously, let's write a test of our own now. First, let's start with something relatively
basic, such as finding out how our functions extract data from a given page and its
elements.

There is not much value in testing the ability of the requests library to collect pages from
the web—it is safe to assume it does, and it has its own tests. Because of that, we moved all
the parsing code from the parse_battle_page function into a private _parse_page
function. This way, we can focus on testing the parsing, not the internet.

First, we'll store an HTML page of a few battles in the tests/data/pages folder. Now we
will create a file called test_collect_battles.py—here we'll store all our tests for this
particular module. Inside, we use import pytest and create a test function:

import pytest
from pathlib import Path
data_folder = Path(__file__).parent / 'data' / 'pages'

def test_parse_page(dom, answer):
 from wikiwwii.collect.battles import _parse_page
 result = _parse_page(dom)
 assert result == answer

To feed this test with specific dom and answer instances, we write a utility script that pre-
generates answers from data and stores them in the same location. The code of this script is
trivial enough not to discuss here but it is stored as a part of both repositories.

Note that as a result, we store some HTML and JSON as part of the
repository. None of those files are too big to worry about, but generally
speaking, it might be a good case to use with DVC tool we discussed in
Chapter 9, Shell, Git, Conda, and More – at Your Command.

Now let's load the resulting file and create a helper function that loads an HTML file and
converts it to a DOM object, all in the same file as our test:

with (data_folder / 'answers.json').open('r') as f:
 answers = json.load(f)

def _load_dom(path):
 from bs4 import BeautifulSoup

Packaging and Testing with Poetry and PyTest Chapter 15

[300]

 with path.open('r') as f:
 return BeautifulSoup(f.read(), 'html.parser')

With that, we could loop through the names and answers and assert each of them from
within our test itself. But there is an even better way for that, that is already built
into pytest. Using a pytest decorator, we can externalize the loop, generating multiple
actual tests from our code. The benefit of that, aside from the proper counting, is that
pytest will outline the specific inputs if any case fails. In order to use it, just add a special
decorator to the function:

@pytest.mark.parametrize("name, answer", answers.items())
def test_parse_page(dom, answer):
 from wikiwwii.collect.battles import _parse_page
 result = _parse_page(dom)
 assert result == answer

Here, the decorator maps our answers dictionary to the name and answer parameters,
running the test suite for each pair.

Let's try our tests now. They should work and show all five tests (one pre-existing test, and
four tests for each of the four web pages we downloaded).

Now comes the most important part: we have to manually look over the answers file and
ensure we agree with all the content there. Right now, those tests are not helpful, but they
will raise an issue any time we'll change the parsing functions, making it safe to add
functionality and work on the code - as long as tests are passing and they are extensive,
we'll be sure we won't break anything. And a good practice would be to add a new
example or test for every new issue, edge case or problematic page we'll encounter.

Let's now shift focus to our other submodule—parse. For example, let's test the most
complex function, _parse_casualties. For that, we'll create another file,
test_parse.py. As the function works on a series of text elements, we could create one
test with all the caveats; here, we will create our own cases, rather than use the real ones.
Because we won't iterate over it, it should be marked as fixture:

import pytest
import pandas as pd

@pytest.fixture()
def case():
 return {
 'col': pd.Series([
 '10,000',
 '37,000 dead, 7,000 POW (Soviet est)',
 '29 aircraft destroyed (ground)',

Packaging and Testing with Poetry and PyTest Chapter 15

[301]

 '20 men, 4 tanks, 20 guns',
 ''
]),

 'answer': pd.DataFrame({
 'killed':[10_000, 37_000, 0, 20, 0],
 'airplane': [0, 0, 29, 0, 0],
 'guns': [0, 0, 0, 20, 0],
 'tanks': [0, 0, 0, 4, 0]
 })
 }

def test_parse_casualties(case):
 from wikiwwii.parse.casualties import _parse_casualties

 parsed = _parse_casualties(case['col'])

 for col in case['answer'].columns:
 mask = parsed[col] == case['answer'][col]
 comp = pd.DataFrame({'col': case['col'],
 'result': parsed[col]})

 assert mask.all(), (col, comp[~mask].to_string())

The two tests we wrote are just a start. Ideally, we need to cover all lines of our code with
our tests. In fact, the amount of lines covered by tests is a standard metric called coverage,
and it's used to track test coverage over time. Let's compute our coverage using a plugin for
pytest—pytest-cov. To compute the coverage, first we need to add pytest-cov to the
poetry environment, as we would for other packages:

poetry add pytest-cov

Now, poetry automatically adds all dependencies to the .toml file. But this package is not
a dependency per se—it is required for testing, but not for the functioning of the package
itself. Thus, we have to move this dependency under a separate
header—[tool.poetry.dev-dependencies].

Now we can run our tests as before, just pointing out that we need to compute the coverage
for our package:

poetry run pytest --cov wikiwwii tests

Packaging and Testing with Poetry and PyTest Chapter 15

[302]

Once all the test information is printed, another report will be generated:

---------- coverage: platform darwin, python 3.7.1-final-0 -----------
Name Stmts Miss Cover
--
wikiwwii/__init__.py 1 0 100%
wikiwwii/collect/fronts.py 34 34 0%
wikiwwii/collect/battles.py 55 15 73%
wikiwwii/parse/__init__.py 4 0 100%
wikiwwii/parse/bellengerets.py 12 10 17%
wikiwwii/parse/casualties.py 19 0 100%
wikiwwii/parse/dates.py 15 10 33%
wikiwwii/parse/geocode.py 41 30 27%
wikiwwii/parse/qa.py 8 8 0%
--
TOTAL 189 107 43%

Now, the computed metric is 43%. Generally, your coverage should be at least at 70%-75%,
so we have quite a lot of room for improvement. This metric is useful to motivate the team
and prevent coverage from degrading (for example, it may call for tests to be required for
every new feature of a project). At the same time, this metric alone does not ensure that the
tests are meaningful and will protect your code from mistakes and errors—this is a
challenge for us to work on. In general, the following strategy is most useful:

Write tests for all new code. In fact, it may be a good idea to write tests first, as a1.
way to think of the different use cases for the new functionality.
For existing code, start with large tests that cover the main, most important2.
functions; this will, at least, make sure that any new code or changes you
introduce won't break your existing code.
Spend time learning about pytest and testing in general. There are many tools3.
and features that help you to keep tests lean and structured and to reuse existing
code. Another great package to use is hypothesis, as it generates edge cases for
your tests automatically, depending on the argument types. We will talk more
about the hypothesis in Chapter 20, Best Practices and Python Performance.

If all our tests do pass, it is a great moment to commit our code one more time. At this
point, we have a suite of tests that we can run or ask our collaborators to run, before
committing the code. Over time, this test suite may grow, making testing a time-consuming
process. Furthermore, while we can test our code for different Python versions, it is hard to
test it for different OSes locally. Lastly, the process is a little opaque—there is no easy way
to share testing results with team members. To mitigate all those complications, an external
service can be used; simply put, all your tests could run externally, in the cloud, and shared
with the team via GitHub as part of the development process. Let's learn how to do that!

Packaging and Testing with Poetry and PyTest Chapter 15

[303]

Automating the process with CI services
Now, as you may recall, we are working on a tests branch of our repository. If you go to
GitHub, it may offer to create a pull request—a procedure meant to merge your branch into
the master branch or any other branch, as in the yellow section of the following
screenshot. Even if the interface does not offer this (it won't if there was already a pull
request a few minutes before), you can create a pull request yourself, via the New pull
request button. See the following screenshot:

Packaging and Testing with Poetry and PyTest Chapter 15

[304]

Using GitHub, you can request other people to review your changes, comment on them,
and more; GitHub will also confirm whether merging is possible or whether you'll need to
resolve conflicts first.

While, in our case, we did run our tests locally and we know it is safe to merge, there is no
way for others to check that easily. In order to make life simpler for everyone, and save
some time for you (for large projects, proper testing might take a while), continuous
integration (CI) services are used. Most of the time, all CI services do is trigger on a new
commit, pull code to a virtual machine, run your tests, then report back whatever the tests
succeeded in determining. Because of CI services' automatic nature, it is easy to run even
multiple machines with different environments—say, one service could test your code on
Python 3 and one on Python 2.

Note that CI services can do more than this. For example, they can
automatically re-generate documentation from a repository and publish it,
push your package to the registry, and upload any other artifact objects
somewhere else. Explore these options!

Generally speaking, CI services do cost money. Most of them, though, have free tiers for
open source projects. As our package is open source and open to anyone, let's leverage the
free tier of a CI service. There are plenty of great services around, and all of them are more
or less the same. We will use Azure pipelines, but you can pick something else if you want.

To get started, we need to go through a few simple steps:

First, we need to go to the Azure DevOps website (https:/ ​/ ​azure. ​microsoft.1.
com/​en- ​us/ ​services/ ​devops/ ​) and register. We'll give it access to our GitHub
account and create a build pipeline for the wikiwwii repository. In a moment,
Azure will offer you a few scenarios, starting with Python—this is what we need.
Next, it will show a simple pipeline as a YAML file. It will, by default, offer to2.
run multiple instances with different Python versions. We can drop all but 3.7.
As we are using poetry, we can replace the pip install line with the3.
command for poetry installation as per Poetry's installation guide. On the next
line, the pytest-azurepipelines package is installed. We can't use that,
because we need to install it via poetry, so we'll have to add it into the poetry
development dependency list. At the same time, there is no sense in having this
package locally, so we can mark it as an extra:

poetry add --dev --extras azure pytest-azurepipelines

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

Packaging and Testing with Poetry and PyTest Chapter 15

[305]

Here is the first step of our pipeline:4.

script: |
 curl -sSL
https://raw.githubusercontent.com/sdispater/poetry/master/get-poetr
y.py | python
 source $HOME/.poetry/env
 poetry --version
 poetry install -E azure
 displayName: 'Install dependencies'

Now, the second step is simple—just run pytest from within Poetry:5.

- script: |
 poetry run pytest --cov=wikiwwii tests
 displayName: 'pytest'

Last but not least, the default pipeline works on any activity on the master6.
branch. Instead, let's trigger it on a pull request to the master. To do that, just
replace the trigger with pr in the YAML:

pr:
- master

And we're done! Now allow Azure to submit that code to the master branch; don't forget to
commit the new version of the package with pytest-azurepipelines added. Let's try a
pull request.

If everything worked as it is supposed to, GitHub will show a small yellow circle near the
last commit in a list in the pull request section. If you hover on it, it will show the current CI
status as either queued or running. Once the pipeline runs, the circle will turn either green
or red, depending on the results. The following screenshot shows this:

Packaging and Testing with Poetry and PyTest Chapter 15

[306]

And now we're done with CI. All other CI systems are very similar; most of them use
YAML as a declaration of processes, so it is easy to switch between different CI systems if
needed.

Up next, let's generate some documentation for our pet project.

Packaging and Testing with Poetry and PyTest Chapter 15

[307]

Generating documentation generation with
sphinx
Documentation is king when it comes to supporting consumers of your code and
convincing newcomers that it actually makes sense to buy in and use your package. For
most people, a documentation website is the first place they go to learn about the package.
It is, by definition, assumed to be the single source of truth on the code in its current
version.

The role of documentation is usually threefold:

Explain how to install your package and what the general requirements are (for
example, which Python versions are supported)
Show how to use the package (preferably with a quick example showing its
immediate value)
Express the general idea and philosophy of the package

A documentation website does benefit from having tutorials, example cases, and a
roadmap. With that being said, the core of any documentation website is, obviously,
documentation—lists of all functions, classes, and modules, for instance, with explanations
of what they do, how to use them, and which variables to pass.

Now, it may sound like a large task on its own (and it generally is), but there are tools to
make this bearable—especially the code documentation part. Remember how we tasked
you with writing docstrings in Chapter 3, Functions? Now is the payday—those docstrings
can (and will, in a minute!) be used to form documentation. Cool, huh? In order to generate
a static website with documentation, we'll use sphinx—a Python package and a tool that is
designed to build documentation.

Let's give it a try. First, go to your package's root directory in a terminal. Assuming sphinx
is installed, run the following command:

sphinx-quickstart ./docs --ext-autodoc --ext-coverage

Here, we pass a docs folder as a place to store everything related to documentation (there
will be a lot of files, so you'd better separate them from the package itself). The two
parameters that we've passed will tell sphinx to use two built-in plugins for our
project—autodoc and coverage. The first is the piece of code that will utilize your
docstrings. The other calculates the overall documentation coverage (for example, the
percentage of functions/modules/classes that have docstrings) in your code—don't confuse
this with test coverage.

Packaging and Testing with Poetry and PyTest Chapter 15

[308]

Next, this script will ask you a series of questions. The default values are pretty good, so
there's no need to change them. Besides, everything can be changed later, or you can
always delete the docs folder and re-run the script, if you want.

Once that's all done, the script will generate all the settings necessary for the tool to run.
Now you can run the tool manually, like this (replacing directories as you wish):

$ sphinx-build -b html <sourcedir> <builddir>

If you agreed to create a makefile, this will help sphinx add the directories you picked to it
automatically. Here is how to run it:

$ cd docs;
$ make html

It should be noted that in the wikiwwi package, we copied and pasted part of the code
from the docs/makefile to the Makefile in the root, to avoid going in and out of the folder.

We're focusing on web page documentation (HTML), but Sphinx can also
generate documentation in other formats, including PDF, JSON, and
LaTeX.

If everything goes as expected, a (mostly empty) documentation package will be generated
under docs/build/html. You can open the files in the browser, or spin a simple server
(we use VS Code's Live Server plugin). The index (root) file is generated from a
corresponding file, docs/source/index.rst. In order to add more content, just edit this
file. For example, let's add a small introduction, which will then be shown at the beginning
of the web page:

`wikiwwii` is a package aiming at collecting and processing the data on
WWII battle from the Wikipedia. The list of all battles is taken from
Battles_.

The underscore in Battles_ is an rst-specific symbol, adding a reference to the link. At
the bottom of the page, we'll use it to link to Wikipedia:

.. _Battles: https://en.wikipedia.org/wiki/List_of_World_War_II_battles

Packaging and Testing with Poetry and PyTest Chapter 15

[309]

Once the file is stored, we re-generate the page and the text should appear.

By default, sphinx is using reStructuredText (rst) format. If you prefer
Markdown (which is a similar but simpler and more limited format),
follow these instructions: https:/ ​/​www. ​sphinx- ​doc. ​org/ ​en/​master/
usage/ ​markdown. ​html.

Now, let's focus on our main task—showing our Python documentation on this site. To do
that, we first need to do a few more tweaks:

First, open the conf.py file and uncomment the code after -- Path setup --.1.
This path needs to point at the root directory of your repository, where your
Python package lives. Here is how it will look in our case:

import os
import sys
sys.path.insert(0, os.path.abspath('../..'))

Next, go to the extensions section and add one more2.
extension—sphinx.ext.napoleon. It only does one thing: it can parse non-rst
docstrings. It is a subjective choice, but we're not fans of it. Here is how the
section will look afterward:

extensions = [
 'sphinx.ext.autodoc',
 'sphinx.ext.coverage',
 'sphinx.ext.napoleon'
]

Finally, let's add an autodoc directive to our web pages. Here is the one for the3.
geocoding file (yes, we'll need to add one per file, but it actually makes sense;
you wouldn't want to get everything on the same page):

.. automodule:: wikiwwii.parse.geocode
 :members:

https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://www.sphinx-doc.org/en/master/usage/markdown.html

Packaging and Testing with Poetry and PyTest Chapter 15

[310]

Upon building, this should result in a list of functions from that file, such
as geocode_location and extract_latlon. Before we move on, there are a few things
worth mentioning regarding the docstrings and the code itself:

First of all, while sphinx won't fail on bad docstring formatting, it won't be able1.
to format them nicely either. Please check your docstrings and format them to
one of the standards that Napoleon supports, such as NumPy or Google style.
As you might have noticed, there is no documentation for some functions, such2.
as _get_dom from the collect.fronts module, even though we do have a
small docstring for that function! That's because its name starts with an
underscore, which, according to a widespread convention, means that the
function is private (not meant to be used directly by module consumers) and
sphinx respects that. It is a great feature, allowing you to declutter your
documentation. Use it wisely!
In the original version of the code for wikiwwii, we passed a few dictionaries as3.
default arguments for some functions. While code-wise this is okay, sphinx tries
to print their values in the documentation and the result is hard to read. The
choice to do this is completely subjective and optional, but to keep
documentation little cleaner, you can (and this is what we did for this package)
pass a different default value, such as none or default, and if the argument is
equal to that, then replace it with the true default value—just make sure to make
that clear in the documentation. A side benefit of that solution is that Git won't
see any difference in documentation files if you change those defaults.

As our package is twofold, we created a separate file for each subpackage and added all the
corresponding docstrings there. Then we linked the root page to both submodule ones
via toctree (see the following code):

.. toctree::
 :maxdepth: 2
 :caption: Contents:

 collect
 parse

Packaging and Testing with Poetry and PyTest Chapter 15

[311]

And that, essentially, is it! The re-built documentation is now actually useful. Of course, it
is missing the installation part, tutorials, and examples, but the first step has been taken.
Here is a screenshot of our version 1.0 documentation web page:

In a few lines, we have deployed a simple web page with auto-generated documentation,
including a place on the web page for the basic information working search and index
functionalities. You can add more text, a logo, charts, and more to the documentation in the
same way. You can even change the look of the site by swapping one of many themes
(https:/​/​sphinx-​themes. ​org/ ​). You can always customize the templates to your taste, as
well.

Any time you add new features to the package, you can regenerate the
documentation—with one script! Once built, this documentation can be copied (for
example, using the same CI process that we followed before) to any host (such as an AWS
S3 bucket) or readthedocs.org—a service that hosts public documentation for free (and
monetizes by injecting ads).

https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://sphinx-themes.org/
https://readthedocs.org/

Packaging and Testing with Poetry and PyTest Chapter 15

[312]

Now that a documentation page has been set up, let's move on to the last topic we'll cover
in this chapter—the useful trick of working with packages in editable mode.

Installing a package in editable mode
As we have mentioned, you can install a package from GitHub and it will behave the same
as any other installed package—it can be upgraded or uninstalled.

Often, however, you will want to use a package while developing it. It would be hard to do
both in the normal installation routine; you'd have to either update or re-install the package
every time you made any developmental changes, just to reflect those changes. To get
around this, there is a great feature that keeps the advantages of both worlds—your code is
treated as a package but can be easily modified in place. This feature is called editable
mode. Essentially, it means the folder on your filesystem is registered as a package, and so
the imported package will always reflect all the changes that you've made.

In order to reap these benefits, you have to have a repository of the package in question on
your local machine. We obviously have our package, but it is also easy to pull the raw code
via git clone my/package/url. Next, you open the terminal, and while being one step
above the package folder, you type the following:

pip install -e wikiwwii

Boom! You have an editable package. You can test it in your Jupyter Notebook:

>>> import wikiwwii

See? It behaves as if it is a properly installed package but you can make changes to your
code and they will be immediately applied upon your next import.

At the time of writing this book, editable mode is not supported for the
TOML-based packages. This should change soon.

This section helped you to install a package in editable mode, so now we should be good to
try out some new code files!

Packaging and Testing with Poetry and PyTest Chapter 15

[313]

Summary
In this chapter, we went over all the processes of packaging code. In particular, we created
a GitHub repository, generated a template via poetry, and added all the dependencies,
meaning everyone can now install the package from GitHub using pip. We then went
further, adding a few tests to make sure our package works as expected throughout future
development. To simplify the process and make it transparent, we integrated a CI service,
Azure pipelines, to run tests on each pull request in order to prevent us from merging
failing code into production.

In the next chapter, we will review another case, building a robust, secure, production-
ready data pipeline using luigi.

Questions
What are the benefits of packaging code?1.
What is the main difference between conda and pip as package managers?2.
What is dependency resolution, and why is it hard?3.
What are the benefits of poetry over standard setuptools?4.
Why do we need tests?5.
What is the purpose of CI?6.

Further reading
Getting Started with Python Packages (https:/ ​/​hub. ​packtpub. ​com/ ​getting-
started- ​python- ​packages/ ​)
Writing a Package in Python (https:/ ​/​hub. ​packtpub. ​com/ ​writing- ​package-
python/​)
Testing Tools and Techniques in Python (https:/ ​/​hub. ​packtpub. ​com/ ​testing-
tools-​and- ​techniques- ​python/ ​)

https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/getting-started-python-packages/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/writing-package-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/
https://hub.packtpub.com/testing-tools-and-techniques-python/

16
Data Pipelines with Luigi

Until now, we have been writing code as separate notebooks and scripts. In the previous
chapter, we learned how to group those scripts into a package so that it can be distributed
and tested properly. In many cases, however, we need to execute certain tasks on a strict
schedule. Often, it is needed to process certain data—pull off analytics, collect information
from external sources, or re-train an ML model. All of this is prone to errors: tasks may
depend on other tasks, and some tasks shouldn't run before others. It is important that
tasks should be easy to orchestrate, monitor, and re-run for ease of use.

In this chapter, we will learn to build and orchestrate our own data pipelines. Building
good pipelines is an important skill that can save tons of time and stress for anyone who
masters it.

In particular, we will cover the following topics:

Introducing the ETL pipeline
Building the first task in Luigi
Scheduling with cron
Time-based task scheduling
Structuring with Luigi

Technical requirements
For this chapter, we'll use a package called luigi. Last few tasks will require two more
packages—boto3 and sqlalchemy. We will also use the wikiwwii package we built in
Chapter 15, Packaging and Testing with Poetry and PyTest. You can build it yourself by
following the chapter or install it by running this:

pip install git+https://github.com/Casyfill/wikiwwii.git

All of the code is in the repository, in the Chapter16 folder (https:/ ​/​github. ​com/
PacktPublishing/​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Data Pipelines with Luigi Chapter 16

[315]

Introducing the ETL pipeline
Data pipelines are important and ubiquitous. Even organizations with a small online
presence run their own jobs: thousands of research facilities, meteorological centers,
observatories, hospitals, military bases, and banks all run their internal data processing.

Another name for the data pipelines is ETL, which stands for Extract, Transform, and
Load—three conceptual pieces of each pipeline. At first glance, the task may sound trivial.
Most of our notebooks are, in a way, ETL jobs—we load some data, work with it, and then
store it somewhere. However, building and maintaining a good pipeline requires a
thorough and consistent approach. Processes should be reliable, easy to re-run, and
reusable. Particular tasks shouldn't run more than once or if their dependencies are not
satisfied (say, other tasks haven't finished yet).

It is not, however, something new—a market for ETL and the corresponding programmatic
solutions is well established. There are quite a few frameworks on the market, both
enterprise and open source. To name a few, there is Airflow, Pinball, Azkaban, Bubbles,
and a dozen others. There is also a new kid on the block, Prefect. Airflow is arguably the
most popular at the moment. Developed by Airbnb, Airflow allows the running of tasks on
a cluster using arbitrary tasks (not necessarily written in Python) and orchestrating them
from a web-dashboard—the user does not need to have anything installed in their machine.
Airflow is a great tool but requires significantly more hassle to deploy and maintain, which
makes it a hard choice for this book or any one-off, simple pipeline, in general.

In this chapter, we'll use luigi, a relatively lightweight and flexible framework that allows
the running of pipelines locally, with no remote server required, and with a comparatively
small overhead. Because of that, luigi is easy to play and experiment with and might be
very useful for structuring any, even a small, process—for example, training a machine
learning model.

Let's start our introduction from a conceptual overview. luigi is based on a few core
principles:

Every project should be represented as a Directed Acyclic Graph (DAG), where
each node represents one logical step in the process, usually called tasks. Edges
define the sequence and dependency of each task. Some tasks will depend on the
completion of one or a few other tasks.

Data Pipelines with Luigi Chapter 16

[316]

Tasks can be parameterized (say, run for a specific date) and can send
information (including those parameters) to each other.
For every task, there is a simple and unambiguous way to check whether the task
is complete. The scheduler will not run the same task twice.

In luigi, DAGs are not predefined—you operate on the tasks, specifying for each its
outcomes (say the file or table it will store its data to) and dependencies and which tasks
are required to be running before this one. The following is a basic form of a luigi task. As
you can see, it inherits from a template class and has one parameter, date, and two
methods, output and run:

class MyTask(luigi.Task):
 date = luigi.DateParameter(default='2019-06-01')

 def output(self):
 return luigi.LocalTarget(f'./data/data/{self.date:%Y/%m-
 %d}.csv')
 def run(self):
 # do stuff
 # ...
 data.to_csv(self.output().path)

Luigi is meant to be used via class inheritance. On execution, luigi will do the following:

Check whether MyTask is complete, using its complete method, built into1.
luigi.Task. By default, it returns true if the output file exists.
If not, luigi will check whether MyTask has any dependencies, defined in the2.
requires method. As we didn't override the method, luigi uses the one from
the template, which returns no dependencies. If a task does have dependencies,
and they are not complete (as shown in the preceding code), the scheduler will
look at them first (go to the start of this list). Once they are executed successfully,
the scheduler will eventually switch back to this task.
As MyTask doesn't have any dependencies, it will be executed immediately, by3.
running the run function.
The parameter (date) will be encoded in the output path.4.

For each and every task we add, the key is to define (override) the run, requires, output,
and, if necessary, complete functions (for example, if the task produces more than one file,
and you want to check completeness by the existence of a particular one).

Data Pipelines with Luigi Chapter 16

[317]

Redesigning your code as a pipeline
But how can you define a pipeline? What are the best steps to split your code to keep it both
cost-efficient and low-maintenance? From our experience, it mainly depends on a
combination of two factors:

How reliable is the data source?
How critical is this information, or will the data be available to re-pull after a
while?

As a rule of thumb, if the dataset is external and hence unreliable (for example, a Wikipedia
page or Open Data Portal), we'd recommend splitting your injection pipeline into
distinctive steps. In the first step, you'll collect all of the data the way it is provided—say,
store the whole HTML page. For data, use JSON or CSV—something with no strict schema.
After raw data is stored, you can extract the clean data. Even if something goes wrong, you
keep an original on hand.

If the source is reliable (for example, specific internal data with a defined schema) or the
dataset can be re-pulled at any time, you can probably wrap your code into a single task.
You may still want to keep one task per logical step—so that tasks could be used for other
purposes or as part of a different pipeline.

Enough talk! Let's build a task of our own!

Building our first task in Luigi
Luckily, luigi allows us to start small. We'll start by building a task that pulls all of the
links on the battles, using the code from our wikiwwii package. First, we will import all we
need in a separate file, luigi_fronts.py:

luigi_fronts.py
from pathlib import Path
import json

import luigi
from wikiwwii.collect.battles import collect_fronts
URL = 'https://en.wikipedia.org/wiki/List_of_World_War_II_battles'
folder = Path(__file__).parents[1] / 'data'

Data Pipelines with Luigi Chapter 16

[318]

Here, we declared a link for the battles, imported our collect_fronts function, and
specified a relative folder to store the data in. Now, let's write the task itself. In the
following, we'll create a task class, define the URL as a luigi parameter with a default
value (more on that later), and add (or, rather, override) two methods—output, which
returns a local target with the path data, and run, which describes the actual code to
run—it collects the data and writes it to the file, defined in output. Indeed, the actual
business logic here is in one line—thanks to the wikiwwii package we made in the
previous chapter:

class ScrapeFronts(luigi.Task):
 url = luigi.Parameter(default=URL, description='page url')

 def output(self):
 name = self.link.split('/')[-1]
 path = str(folder / f'{name}.json')
 return luigi.LocalTarget(path)

 def run(self):
 data = collect_fronts(self.url)
 with open(self,output().path, 'w') as f:
 json.dump(data, f)

Let's run it! Luigi provides a convenient command-line interface for that:

$ python -m luigi --module luigi_fronts ScrapeFronts --local-scheduler

Here, we specify the file to use luigi_fronts and a specific task, ScrapeFronts. As a
result, you should get the following summary:

===== Luigi Execution Summary =====

Scheduled 1 tasks of which:
* 1 ran successfully:
 - 1
ScrapeFronts(url=https://en.wikipedia.org/wiki/List_of_World_War_II_battles
)

This progress looks :) because there were no failed tasks or missing
dependencies

===== Luigi Execution Summary =====

Data Pipelines with Luigi Chapter 16

[319]

The most important indicator here is the smiley face—which means that everything ran
smoothly—and, as you can check, the data file was created. For the sake of experiment, try
running it one more time. It will result in the following:

===== Luigi Execution Summary =====

Scheduled 1 tasks of which:
* 1 complete ones were encountered:
 - 1
ScrapeFronts(url=https://en.wikipedia.org/wiki/List_of_World_War_II_battles
)

Did not run any tasks
This progress looks :) because there were no failed tasks or missing
dependencies

===== Luigi Execution Summary =====

This means I checked and the result file is already there. If we need to re-run the task anyway,
we'll have to delete or rename the file.

Connecting the dots
So far, we've created just one task. Even on its own, it has some value, as it formalizes the
work and the output. Now, let's add tasks to collect data for battle. It will look very similar
to the previous one—we create a task, inheriting from the Task class:

luigi_battles.py
from misc import _parse_in_depth
from luigi_fronts import ParseFronts

class ParseFront(luigi.Task):
 front = luigi.Parameter()

 def requires(self):
 return ScrapeFronts()
 def output(self):
 path = str(folder / 'fronts' / (self.front + '.json'))
 return luigi.LocalTarget(path)

 def run(self):
 with open(self.input().path, 'r') as f:
 fronts = json.load(f)

Data Pipelines with Luigi Chapter 16

[320]

 front = fronts[self.front]
 result = {}

 for cp_name, campaign in front.items():
 result[cp_name] = _parse_in_depth(campaign, cp_name)

 with self.output().open('w') as f:
 json.dump(result, f)

We also introduced a few additional elements:

First, we use the requires method, which, as we mentioned earlier, defines the
prerequisite task.
Next, we use the input method, which is tied to prerequisites and represents
access to the corresponding data, similar to output().
Finally, we added a parameter—this is how the luigi task can be
parameterized.
Note that output and input objects (targets, really) do have an open method. It is
a good idea to use it—you'll see why soon.

Use Luigi parameters! It is essentially free command-line interface and
could be of tremendous value. There are quite a few parameter options,
allowing you to pass dates, Booleans, and time periods; specify a range or
list of possible values and so on. Luigi will even parse data types
according to the expected parameter type. For more information on
parameters, check the documentation.

For example, we can add a Boolean flag for production mode so that
everything will be written to the staging path by default or the production
path, on request. In one line, we get away to safely run tasks without
affecting our production. Another example—with date parameters, Luigi
can run multiple tasks by pre-generating multiple dates within the given
range—and running the task for each of those days.

Given that, we now can collect data for a specific front:

$ python -m luigi --module luigi_battles ParseFront --front "Eastern Front"
--local-scheduler

Finally, let's collect data for all of the fronts, at once:

class ParseAll(luigi.Task):
 fronts = ["African Front", "Mediterranean Front",
 "Western Front", "Atlantic Ocean", "Eastern Front",

Data Pipelines with Luigi Chapter 16

[321]

 "Indian Ocean","Pacific Theater", "China
 Front","Southeast Asia Front"]

 def requires(self):
 return [ParseFront(front=f) for f in self.fronts]

As you can see, this task has neither run nor output methods overwritten, as we don't
need them. At the same time, we return not one task but many as the outcome of the
requires method. Luckily, Luigi supports both lists, generators, and even dictionaries, as
the outcome of the requires and output functions.

Here is how this process looks like a graph. Here, each box represents one task, and
arrow—task dependency. We always run the last task in the graph if we want to run all of
them. The system then checks whether its dependencies are resolved. If they are not, it then
checks their dependencies, and many more, until it finds tasks that are ready to run. All
other tasks then run, one by one:

Now, as there will be a few tasks running in parallel, and all of them are heavy on I/O, it
may be beneficial to run them in parallel, which is very easy to do with Luigi, you just need
to specify the number of workers, as follows:

$ python -m luigi --module luigi_battles ParseAll --workers 2 --local-
scheduler

Data Pipelines with Luigi Chapter 16

[322]

And voilà! We just collected all of the battle information in a robust, production-ready
manner. At any step, we can change the code, delete the output file, and re-run luigi. The
system will understand which tasks it needs to run and which ones are done already.

We were able to pull data from Wikipedia as a one-time job, but how would we use luigi
with scheduled processes? Let's talk about that in the next section.

Understanding time-based tasks
Pipelines are especially useful to schedule data collection, for example, downloading new
data every night.

Say we want to collect new data on 311 calls in NYC for the previous day, every morning.
First, let's write the pulling function itself. The code is fairly trivial. You can take a look at
the Socrata (the data-sharing platform New York uses) API documentation via this link,
https:/​/​dev.​socrata. ​com/ ​consumers/ ​getting- ​started. ​html. The only tricky part is that
the dataset can be large—but Socrata won't give us more than 50,000 rows at once. Hence, if
the length of the input is equal to 50,000, most likely, the data was capped, and we'll need
to make another pull with the offset, over and over until the number of rows is smaller.
resource in the arguments represents a unique ID of the dataset—you can obtain it from
the dataset's web page:

def _get_data(resource, time_col, date, offset=0):
 Q = f"where=created_date between '{date}' AND '{date}T23:59:59.000'"
 url =
f'https://data.cityofnewyork.us/resource/{resource}.json?$limit=50000&$offs
et={offset}&${Q}'

 r = rq.get(url, headers=headers)
 r.raise_for_status()

 data = r.json()
 if len(data) == 50_000:
 data2 = _get_data(resource, time_col, date, offset=(offset +
 50000)
 data.extend(data2)

 return data

https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html
https://dev.socrata.com/consumers/getting-started.html

Data Pipelines with Luigi Chapter 16

[323]

Now, let's write the task itself. It is actually fairly short—all we do is define a resource,
time_column (on which we'll query the API), and the date to pull for:

class Collect311(luigi.Task):
 time_col = 'Created Date'
 date = luigi.DateParameter()
 resource = 'fhrw-4uyv'

 def output(self):
 path = f'{folder}/311/{self.date:%Y/%m/%d}.csv'
 return luigi.LocalTarget(path)

 def run(self):
 data = _get_data(self.resource, self.time_col, self.date,
 offset=0)
 df = pd.DataFrame(data)
 self.output().makedirs()
 df.to_csv(self.output().path)

The task can essentially be used on any dataset Socrata provides—all you need is to specify
resource and the column on which to query. The data parameter also defines the outcome
path to the file. Now, we can run the task from the command line:

$ python -m luigi --module luigi_311 Collect311 --date 2019-06-07 --local-
scheduler

We can now run this task even in batches, using the DateRange feature:

$ python -m luigi --module luigi_311 RangeDaily --of Collect311 --start
2019-06-01 --days-back 10 --local-scheduler

The preceding code will generate up to 10 tasks, one for each of the 10 days—today and 10
days back, but no further than June 1, 2019. This trick is especially nice for
scheduling—even if something will prevent the task from running on the date, it will re-run
the next day or the day after that, and so on.

Scheduling with cron
We have mentioned scheduling multiple times already—but how do we do it? For better or
worse, this is not something Luigi is capable of on its own. But fear not—this is a proper
task for your operating system. On Windows, it can be done using the Schtasks utility. On
macOS and Linux, scheduling is managed by the cron tool, via so-called crontabs.

Data Pipelines with Luigi Chapter 16

[324]

Crontab has its own mini-language for scheduling: every command starts with five
symbols, representing the specific minute, hour, day, month, and day of the week (an
asterisk can be used when we have no specific value). For example, if we want to run a task
every day at 05:00, we'll use the following command:

0 5 * * * <our command>

Crontab supports multiple values, as well. For example, if we need a task to run on the first
day of every quarter, we can just specify 4 months:

0 5 1 1,4,7,10 * <our command>

We want to run our task every day, so we'll use the first example:

$ python -m luigi --module luigi_311 RangeDaily --of Collect311 --start
2019-06-01 --days-back 10 --local-scheduler

This will run your task every day, at 05:00. If you're running on a local machine, keep in
mind that it won't run if your computer is turned off at the time it is supposed to run. The
safest solution would be to deploy the code on a dedicated server. Alternatively, you can
use the anacron utility, which will run the skipped tasks once the computer is turned on.

In any scenario, another level of security is that Luigi can automatically try to back-fill tasks
on each run: this way, if some previous task didn't run (or failed), it will be re-executed.

Next, let's talk about how to use luigi to store data remotely and in different data formats.

Exploring the different output formats
In the code of the Scheduling with cron section, we used local targets, writing to the
filesystem of our computer. In a real-world scenario, that will rarely suffice—you'll be
probably writing either to a database or file stored in the cloud. In fact, we highly
encourage you to write tasks to the cloud (for example, S3 buckets) from the get-go, if there
is no reason not to. Luigi supports FTP, S3, Azure Blobs, Google Cloud, Spark, MongoDB,
SQL databases, and many more. The only question is to create those resources and set up
credentials to access them. The best part for many of them is that the interface is very
similar, so it is easy to swap targets for existing tasks, by changing only a few lines of code.

Data Pipelines with Luigi Chapter 16

[325]

Writing to an S3 bucket
S3 buckets and similar blob storage services have proven to be a great tool. Given the small
price and ease of use, they are arguably the best solution for shared data exchange in the
cloud. Here, we won't go in depth on S3 and Amazon Web Services (AWS) in general.
Instead, we'll show how to modify your existing pipelines to redirect them to S3. Aside
from data being in the cloud, this has the benefit of a shared state—if another computer or
user tries to run the pipeline, they will find that the data is there already.

Let's assume you have registered as an AWS customer and have an S3 bucket. To work
with buckets, luigi uses the boto3 package, an official library for AWS-related operations,
built by Amazon. This means that luigi will accept any forms of authorization that work
with boto3—via the AWS configuration file or credentials as environmental variables.
Alternatively, you can specify credentials in luigi configs, under the s3 header:

[s3]
aws_access_key_id = <your-key-id>
aws_secret_access_key = <your-secret-access-key>

Now, our access to the S3 service should be ready. Let's rewrite our luigi_battles.py
file, to throw all of the information to S3. First, let's import all we need in the code and
specify the bucket name:

luigi_battles_s3.py
from luigi.contrib.s3 import S3Target, S3Client
bucket = 'your_bucket_name'

Next, we need to add client as a task attribute and swap the LocalTarget object with
S3Target:

class ParseFront(luigi.Task):
 front = luigi.Parameter()
 client = S3Client() # <<< client if needed, you can add credentials
here, as well

def requires(self):
 return ScrapeFronts()

 def output(self):
 path = f's3://{bucket}/wikiwii/fronts/{front}.json'
 return S3Target(path=path, client=self.client) # <<< swapped local
target with s3

 def run(self):
 with open(self.input().path, 'r') as f:
 fronts = json.load(f)

Data Pipelines with Luigi Chapter 16

[326]

 front = fronts[self.front]
 result = {}

 for cp_name, campaign in front.items():
 result[cp_name] = _parse_in_depth(campaign, cp_name)

 with self.output().open('w') as f:
 json.dump(result, f)

Note that we didn't have to change anything to write here, as both LocalTarget and
S3Target support the open method. Another nice part is that we don't need to change
anything else in the pipeline. Even if you read the data in the next package, you can keep
the same code, assuming you also use the open method of the target. Let's run the code and
check whether the files are there:

$ python -m luigi --module luigi_battles_s3 ParseAll --local-scheduler

Seems that everything is now stored in the bucket.

Writing to SQL
In many cases, it is preferable or more convenient to write to a database rather than a flat-
file. Let's illustrate this case with our 311 data pipeline.

Writing data to a database is quite similar and we won't need to change much. One major
difference is task completion detection—for an obvious reason, there is no file to check for
existence. As a workaround, luigi creates a utility table that stores unique records of the
complete tasks. This process is integral to the framework, so most of the time, there is no
reason for us to think about it. With that being said, SQL-based pipelines have two, pretty
strong, caveats:

As the task does not result in an isolated task, there is no simple way to pull data
from this specific task. A new task or your external code will need to query for
the right slice of data.
For the same reason, if something goes wrong, you will need to remove both a
specific subset of data (as mentioned previously) and a marker record in the
utility database.

On the flip side, Luigi has a couple of helper tasks to make use of. For example, we can use
a CopyToTable task object instead of the default one. As the name suggests, this task has
everything predesigned to upload certain data to a certain SQL table. To make it run, we
need to add just a few bits of information.

Data Pipelines with Luigi Chapter 16

[327]

For our example, we will use an SQLite database, for the sake of simplicity. Luigi has a set
of solutions, tailored for PostgreSQL, MySQL, MSSQL, Hive, and others. It doesn't have a
specific code for the SQLite, so we'll have to fall back to the universal SQLAlchemy
solution. Here is how it works:

We inherit from the luigi.contrib.sqla.CopyToTable task.1.
The task has to contain certain attributes, including table (the table to write to),2.
connection_string for the SQLAlchemy connection, and the columns iterable,
which contains the sqlalchemy data types for each column.
Finally, we don't need to override the run function, which contains an3.
implementation of data inset. Instead, we will override the rows method. This
method should return tuples of values, one for each row of data, and is
compatible with the columns we mentioned.

Let's see the following example. First, we have to define a table schema. Both for simplicity
and security, we decided to keep everything as a string, except unique_key, which we will
use as a primary key. A few columns with rather long values we defined them as a Text
data type:

from sqlalchemy import String, Integer, Text

COLUMNS_RAW = [
 (["address_type", String(64)], {}),
 (["agency", String(64)], {}),
 (["bbl", String(64)], {}),
 (["borough", String(64)], {}),
 ...
 (["y_coordinate_state_plane", String(64)], {}),
 (["resolution_action_updated_date", Text()], {}),
 (["resolution_description", Text()], {}),
 (["location", Text()], {}),
 (["unique_key", String(64)], {"primary_key": True})
]

Note that, alternatively, we can create the database separately and then pull the data types
from the table itself on each run—sqlalchemy supports that. Let's rewrite our task now.
All we need is to add a few attributes, rename run as rows, and make it yield rows. It
seems that the simplest way to do that is via df.values.tolist(). Consider the
following code:

class Collect311_SQLITE(sqla.CopyToTable):
 time_col = "Created Date"
 date = luigi.DateParameter(default=date.today())
 resource = "fhrw-4uyv"

Data Pipelines with Luigi Chapter 16

[328]

 columns = COLUMNS_RAW
 connection_string = SQLITE_STRING
 table = "raw"

 def rows(self):
 data = _get_data(self.resource, self.time_col, self.date,
 offset=0)
 df = pd.DataFrame(data).astype(str)
 df['unique_key'] = df['unique_key'].astype(int)

 for row in df.values.tolist():
 yield row

As you can see, our task has barely changed—that's the power of luigi!

Expanding Luigi with custom template
classes
In the previous section, we used the CopyToTable class as the template instead of
luigi.Task. In fact, this is a good pattern to use! If there is any custom configuration or
code you can use from one task to another, feel free to create a custom task class of your
own. For example, in our practice, we use a custom S3Task class, similar to the one that
follows:

from luigi.contrib.s3 import S3Client, S3Target
import pandas as pd
from io import StringIO, BytesIO

class S3Task(luigi.Task):
 client = S3Client()

 def _upload_csv(df, path):
 content = df.to_csv(float_format="%.3f", index=None)
 self.client.put_string(
 content=content, destination_s3_path=path,
 ContentType="text/csv"
)

 def _upload_binary(self, df):
 format_ = path.split(".")[-1]
 funcs = {"msg": "to_msgpack", "fth": "to_feather", "pkl":
 "to_pickle"}

Data Pipelines with Luigi Chapter 16

[329]

 if format_ not in funcs:
 raise ValueError(
 f"format {format_} is not supported yet, should be one
 of {funks.keys()}"
)

 buffer = BytesIO()
 getattr(df, funcs[format_])(buffer, **kwargs)
 buffer.seek(0)

 bucket, key = self.client._path_to_bucket_and_key(path)
 self.client.s3.meta.client.upload_fileobj(
 Fileobj=buffer,
 Bucket=bucket,
 Key=key,
 ExtraArgs={"ContentType": "application/octet-stream"},
)

This class has an S3 client by default and can easily write both CSV and binary formats to
the cloud, given the dataframe. You might want to expand customization even further. For
example, for a special type of task, make sure the data lands on a proper path and the need
for a task-specific code is minimal:

class NYCOD(S3Task):
 resource:str = None # resource to pull
 timecol:str = 'CreationDate'
 project:str = 'Undefined'
 date = luigi.DateParameter(default=date.today())
 s3_path:str = 's3://mybucket/{project}/{date:%Y/%m/%d}.csv

 def output(self):
 path = self.s3_path.format(project=self.project,
 date=self.date)
 return S3Target(path, client=self.client)

 def run(self):
 data = _get_data(self.resource, self.time_col, self.date,
 offset=0)
 df = pd.DataFrame(data)
 self._upload_csv(df, self.output().path)

Let's say you have a few tasks collecting data from the NYC OpenData portal. All of them
are scheduled and you want to store a CSV file for each day and for each project. Then, we
can wrap more shared code in a class on top of our S3Task.

Data Pipelines with Luigi Chapter 16

[330]

With that template, our 311 complaint collection task will be quite short:

class Collect311(NYCOD):
 time_col = "Created Date"
 resource = "fhrw-4uyv"
 project = '311'

And, even better, we can create tasks for other datasets from the portal with the same four
lines! For example, here is a task that will collect and properly store building permits:

class CollectBuildingPermits(NYCOD):
 time_col = "Issued Date"
 resource = "rbx6-tga4"
 project = 'building_permits'

As you can see, these tasks are now ridiculously short and simple to write, all thanks to the
thorough layers of class inheritance. It's not only the concise form—the unification of tasks
allows us to concentrate solutions in one place. It makes it easy to test and maintain the
code, make it DRY, and change the behavior of all of the corresponding pipelines, at once.

Ease of customization is one of the advantages of Luigi. A thorough arsenal of custom tasks
will significantly boost your development pace. All in all, adopting luigi will solidify your
processes and make you work on the new stuff, not plumbing the same leaking data
pipes—making it true to its name.

Summary
In this chapter, we learned how to form our code into production-level data pipelines that
can be scheduled and re-run on demand. Building good pipelines is an important skill, as it
enables you to have the data up to date and work on your business logic (for example,
parsing the information), rather than running and re-running pipeline scripts or building
your own bicycle solution. This reliable and robust solution is a good way to deploy and
schedule your code as a deliverable. In the later part of this chapter, we learned about the
different output formats and custom templates in luigi.

In the next chapter, we'll build on top of the pipeline we set up. We will use the data we
collected to build a couple of interactive dashboards, allowing us to monitor the process
and analyze ongoing trends in the data.

Data Pipelines with Luigi Chapter 16

[331]

Questions
What are the benefits of writing tasks rather than using simple scripts?1.
What is the base element of Luigi jobs?2.
How are DAGs defined in Luigi? What are the benefits of that architecture?3.
How can we parametrize a task?4.
What is the best way to run time-based tasks in bulk?5.
How can we schedule a job with Luigi?6.

Further reading
Data Pipelines (https:/ ​/ ​hub. ​packtpub. ​com/​data- ​pipelines/ ​).

https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/
https://hub.packtpub.com/data-pipelines/

17
Let's Build a Dashboard

In the previous chapter, we learned how to create robust pipelines and schedule them so
that we have metrics updated every day. With that, our valuable data product is
automated! What should we do? Perhaps it is a good moment to discuss dashboards.
Dashboards are essentially the entry point for you to monitor the behavior of the system
(your service, markets, users, or anything else) via a set of data visualizations. Dashboards
help teams and companies to ensure the business is running smoothly or to detect—and
adjust to—changes or anomalies. So, to help us understand them better, let's see how they
work.

The following topics will be covered in this chapter:

Different ways to build a dashboard
Building a static dashboard
Building and serving a dynamic dashboard
Pros and cons of different approaches
Debugging Altair

Technical requirements
The following packages are required for the code in this chapter to run:

matplotlib

The altair visualization package, version 3 or above
panel

As usual, all of the code for this chapter is in the GitHub repository, in the Chapter17
folder: https:/​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data-
Science-​Applications.

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Let's Build a Dashboard Chapter 17

[333]

Building a dashboard – three types of
dashboard
In Chapter 12, Data Exploration and Visualization, we explored a dataset by visualizing
different features, using two packages—matplotlib and altair. The differences between
those visualizations and a dashboard are twofold:

The audience for the dashboard is meant to be wide, so it should be easily
accessible via an internet browser. Visualizations are often made for self-
consumption.
Dashboards are meant to be frequently updated and, to some extent, interactive.
Visualizations are often done on-the-spot, are static, and show only specific
aspects of the data.

To a large extent, dashboards are full-blown projects requiring regular improvement and
maintenance! However, as the demand for this kind of product is large, and the task is
easily generalizable, there are plenty of solutions, tools, and services at our disposal. We
can group them into three main categories:

Third-party services, such as Tableau (there is still a running server behind
it—it's just not yours to manage)
Static—those without an active server behind them and all interactions happen
on the client's machine
Dynamic—those with an active server (or servers) behind them

Throughout this book, we focus on building stuff with code, rather than consuming, so we
won't review services, of which there are dozens, now. If you're willing to build and
support your own dashboards, it is totally possible! Let's study these in the upcoming
sections.

Static dashboards
Despite the name, static dashboards are not static per se—they are not just still images.
Here, static refers to the fact that the dashboard is served as a flat HTML file; all of the
interaction happens in the client's browser. As a result, the dashboard can be uploaded
anywhere on the web (say, an S3 bucket or similar service) and stay there almost for free,
with little maintenance required. It is also easy to update the dashboard or data, with
essentially no downtime. And of course, this approach means you won't need to think
about the scalability and performance of the dashboard.

Let's Build a Dashboard Chapter 17

[334]

Obviously, that approach has its downsides, as well. First of all, it is limited to a specific
amount of data it can use, and the dataset will be basically available for everyone, directly.
If your dashboard requires complex queries and real-time aggregation, this approach will
not work. It would be hard to create authentication or to customize the dashboard for a
specific user. In a nutshell, this type of dashboard is perfect for the following:

Serving a wide audience.
It uses a relatively small dataset that is fine to share with everyone.
This data is updated occasionally—definitely not in real-time (the computation
may take a lot of resources).

One obstacle in going down that path for many backend developers and data scientists is
JavaScript itself. This is virtually the only option with which to write interactive web
applications. At the same time, most data scientists and Python developers don't know
JavaScript well enough to use it in production, and, often, don't even want to write
JavaScript. There are a few ways to dodge that, for example, compiling your code to
WebAssembly (which browsers can also run), but that, at least for now, is a hard task in its
own right and is a huge overkill.

Another, arguably better, alternative is to use one of the existing Python tools and packages
that will generate both HTML and JavaScript code for us. Earlier, we mentioned the
difference between visualizing in the notebook and on the dashboard, but this kind of tool
can generate charts for both cases.

In the previous chapter, we built a pipeline that collects data on 311 calls every day and
then generates a report. Now, let's built a static dashboard of this data, using the
altair library we used to plot interactive visualizations in the notebook. We will start in
the same way: in the Notebook then store it as HTML; finally, we will redirect the
visualization to use an external dataset—the one we're scheduled to update.

Let's start preparing our notebook and loading the dataset:

import pandas as pd
import altair as alt

alt.data_transformers.disable_max_rows()

data = pd.read_csv('./data/top5.csv', parse_dates=['date',]).fillna(0)

Let's Build a Dashboard Chapter 17

[335]

Now, what would we want to have on a dashboard? Usually, a primary goal is to highlight
any temporal abnormalities—say, a day that was skipped in data collection or whether the
number of complaints deviated significantly. One way to do that is to show a line chart of
the total number of complaints—say, split by boroughs:

timeline = alt.Chart(data, width=800).mark_line().encode(
 x='date',
 y='value',
 color='boro'
).transform_filter(
 (alt.datum.metric == 'complaints')
)

The code results in this diagram:

And already, we see some interesting stuff: missing values for June 7 and some peaks in
January and February. This is a good example of the type of insight quick graphical
overviews can give. We can also see different levels of complaints for different
boroughs—Brooklyn has, for some reason, more than the others.

Now, it would be great to see what this is all about—which types of complaint are the most
popular within a given interval of time. Let's first build a bar chart of the top five complaint
types for the entire period:

barchart = alt.Chart(data, width=800).mark_bar().encode(
 x='svalue:Q',
 y=alt.Y(
 'metric:N',
 sort=alt.EncodingSortField(
 field="svalue", # The field to use for the sort
 order="descending" # The order to sort in

Let's Build a Dashboard Chapter 17

[336]

)
),
 color=alt.value('purple'),
 tooltip=['metric', 'svalue:Q']).transform_filter(
 "datum.metric != 'complaints'").transform_filter(
 "datum.boro == 'NYC'").transform_aggregate(
 svalue='sum(value)',
 groupby=["metric"]).transform_window(
 rank='rank(svalue)',
 sort=[alt.SortField('svalue', order='descending')])
 .transform_filter('datum.rank <= 10')

Here, we have to filter for NYC (to avoid counting metrics twice) and for the complaints
metric, for the same reason. As we want to drop the long tail, we have to generate a rank
for each row and then filter by its value. The following is the result:

Finally, we want to combine the two: selecting the time period and seeing a distribution of
complaint types for that period. It is just a combination of the two, with a brush
element added:

brush = alt.selection_interval(encodings=['x'], empty='all')

T = timeline.add_selection(brush)

B = barchart.transform_filter(brush)

dash = alt.vconcat(A, B, data=data)

Here, the dash variable represents a combined chart that knows how to filter bars based on
the interval on the timeline. Feel free to play around and see how top complaints change
over time! Of course, there are plenty of features to add (for example, see different
complaint types for a particular time of the day), but those features and transformations
will quickly grow too exponentially complex for rapid design—that's the downside of
using a Vega stack and computing everything in the browser, in general.

Let's Build a Dashboard Chapter 17

[337]

On the following diagram, you can see a screenshot of the resulting dashboard:

The gray area on the timeline represents the selected range. The bar chart then shows the
overall number of complaints for the top 10 complaint types within the period. This
interactivity allows us to dive deeper into the data, exploring more nuanced trends of a
particular time period.

We could imagine linking our dashboard to an API as an alternative to
serving flat files. This way, the dashboard will show the data upto the
current moment; it is also possible to connect Altair/Vega to a data stream,
so that the dashboard will be updating in real time.

Working with Altair is great, as it is easy to create a beautiful visualization with advanced
interaction—except for the cases when it won't work. In the next section, let's talk about the
ways we can debug your plots and understand what is going wrong.

Let's Build a Dashboard Chapter 17

[338]

Debugging Altair
The preceding example works, but in the real world, any development is a process of trial
and error. Debugging might be daunting with the Vega stack due to the layered nature of
the product (Altair converts charts into Vega-Lite, Vega-Lite converts them into Vega, and
the Vega engine works in JavaScript) and because we're working in this non-Pythonic
world.

As with all code in general, the process is to isolate different parts and layers of the
application to identify the root of the problem. Identification will give you ideas on how to
solve the problem and work around it. Unfortunately, we can't just split parts of the
specification. So, what can we do if your chart does not work as intended?

Despite all of the issues, the stack has one advantage in that regard: everything lives upto
the specifications, which are human-readable and, generally speaking, human-writable.
The simplest way to debug is to open a chart in the Vega editor (for example, via the triple-
dot button) and start tinkering around. Here is a screenshot of the same dashboard in the
editor:

Let's Build a Dashboard Chapter 17

[339]

Sometimes, what you want is not available via the Vega-Lite specifications—then, in the
same editor, you can convert them into Vega and continue editing there. Once the issue is
resolved, you have two options: one is to adjust your Altair code accordingly— often, it is
easy. Alternatively, you can store the specifications separately and just use them via Altair
or the Vega app.

There are some other options, too. For example, the Voyager tool, also free and hosted on
the web, tries to help you to pick the right visualization for specific data, while Lira (also
hosted and free) is meant as drag-n-drop software, based on Vega. Both could help you at
the start of your project, and you can always juggle your specifications between the tools,
according to your current needs. All of the afore mentioned tools—and then some—can be
found on Vega's official web page: https:/ ​/​vega. ​github. ​io/ ​.

Connecting your app to the Luigi pipeline
Once the dashboard is working and looks good, we can discuss its deployment details. For
now, all of the data is internalized in the dashboard itself, which makes the specification
large and a little hard to update. Let's link the chart to the external CSV file we generated
with Luigi and stored on the S3 bucket. We could use the URL (path to the file) from the
beginning; it's just easier to be able to open and investigate the dataset. Copy the URL to the
dataset and override the attribute:

url = 'https:/path/to/your/dataset.csv'
dash.data = url

Make sure it is still working! Now, we can write the dashboard to the HTML, as follows:

dash.save('chart.html')

As we discussed in Chapter 12, Data Exploration and Visualization, this will store a
standalone HTML page with a working dashboard. The last step is to publish the chart
itself (for example, on the same S3 bucket). Published, the chart will reflect the changes
whenever we update the CSV. We can further automate that update by scheduling a Luigi
pipeline to run every day: with this, we'll get a "live" dashboard for monitoring 311
situations in the city.

https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/
https://vega.github.io/

Let's Build a Dashboard Chapter 17

[340]

This dashboard costs virtually no money (only whatever we spend on S3 buckets) and
requires no time to maintain. It could be easily customized and developed as an Altair
object, a Vega-Lite/Vega application, or a standard HTML/JS-based app. Lastly, this
dashboard can be easily styled and restyled according to your design guidelines. Being
cheap and simple, this approach has its limitations: as with most client-based visualization
solutions, Vega is limited in the amounts of data it can reflect, and the whole dataset needs
to be publicly exposed, which is not always an option.

All of that makes Altair a great solution for public-facing charts and dashboards. Often,
though, we need an internal dashboard, with access to large amounts of data and the ability
to drill-down to specific records. For that, a different type of dashboard should be used:
dynamic, server-dependent dashboards. Let's discuss them in the next section.

Understanding dynamic dashboards
An alternative approach to building a dashboard of your own is to make an actual web
application, with a live server running Python on a backend; this will, upon request, show
you a dashboard. This approach is, essentially, the exact opposite of a static dashboard in
terms of pros and cons: it requires maintenance, needs to be scaled if the traffic is heavy,
and could be slower. It also allows you to configure access, customize dashboards for any
user or group of users, and compute the results live, even for a comparatively large dataset,
without the need to share this dataset as a whole with the audience.

Of course, we could build an entire web application, controlling each and every feature (we
won't do that), or use one of the specialized dashboard packages, such as uperset
(essentially, a full-blown platform that requires database access) or Dash, a dashboarding
tool based on the plotly Python library (very similar to Altair/Vega, but not as flexible).
On the other side of the spectrum (further from static pages) are hybrid solutions, namely,
panel and Voila. The latter is extremely new at the moment, so let's try building a
dashboard using the panel package.

Let's Build a Dashboard Chapter 17

[341]

First try with panel
The idea behind panel (and Voila) is very simple and appealing: given that we essentially
build web pages with our code and charts—the notebooks—we simply convert them into
dashboards. The best part of that is that all of the code and every visualization library that
can be used in Jupyter can be used in the dashboards; we could even use our existing Altair
charts if we wanted. Let's try building something from the same dataset! As with Altair,
we'll start with a Jupyter Notebook:

import sqlite3

import param
import panel as pn
import datetime as dt
pn.extension()

Now, the panel package is designed to make it extremely easy to build interactive widgets
as part of your exploration process. To build an interaction, you just need a function with
default values—panel will use them to understand the value types and generate input
widgets accordingly. Here is an extremely naive example:

def interact_example(a=2, b=3):
 plot = plt.figure()
 ax = plot.add_subplot(111)
 pd.Series({'a':a, 'b':b}).plot(kind='bar',ax=ax)

 plt.tight_layout()
 plt.close(plot)
 return plot

pn.interact(interact_example)

Let's Build a Dashboard Chapter 17

[342]

The following screenshot is a result of the preceding code. The bar chart is interactive and
responds to changes in input:

Here, we use matplotlib as a base visualization tool. Let's now try it on with a more
complex task—showing the aggregate statistics on the 311 data we collected in Chapter 16,
Data Pipelines with Luigi, live.

Reading data from the database
Before we dive into the nitty-gritty of visualization, let's get our data. Here, we will use the
database connection to the SQLite file created. First, we'll create a connection to the file:

import sqlite
con = sqlite3.connect('../Chapter16/data/311.db')

Let's Build a Dashboard Chapter 17

[343]

Next, we will define a simple query to aggregate raw records into statistics:

Q = '''
SELECT date(created_date) as date, lower(borough) as boro, complaint_type,
COUNT(*) as complaints
FROM raw WHERE borough != 'Unspecified' GROUP BY 1,2,3;
'''

Finally, we will pull the data using the pandas SQL command. As we're dealing with
SQLite, we'll have to re-parse date-times in Python:

DATA = pd.read_sql_query(Q, con)
DATA['date'] = pd.to_datetime(DATA['date'])

Alternatively, we could create VIEW with that query in the same file. That
would allow us to pull data directly for this and other tasks.

For the timeline part of the chart, we could further aggregate our dataset:

>>> boro_total = DATA.groupby(['date',
'boro'])['complaints'].sum().unstack()

>>> boro_total.head(5)
 boro bronx brooklyn manhattan queens staten island
date
2019-01-01 995 1657 859 1237 249
2019-01-02 1675 2444 1307 1880 649
2019-01-03 1450 2532 1420 1799 484
2019-01-04 1472 2407 1417 1835 425
2019-01-05 1085 1551 954 1250 292

Now, our data is ready to be visualized! Let's get to it.

Let's Build a Dashboard Chapter 17

[344]

Creating an interactive dashboard in Jupyter
The functional approach we used in the previous section is convenient for exploration
within the notebook. For a complex dashboard, however, it is better to use a somewhat
declarative approach for more complex dashboards. In order to do that, we need to inherit
from the Panel's param.Parameterized object and declare the parameters as it's
attributed. For each view, we will create a separate method, using the
@param.depends('param1', 'param2') decorator to bind the view refresh with the
corresponding parameter updates. Let's give it a try:

First, we'll define the DateRange parameter, using a simple tuple of date-time1.
values:

bounds = (dt.datetime(2019,1,1),dt.datetime(2019,5,30))
dr = param.DateRange(bounds=bounds, default=bounds)

Another parameter we want to use is boroughs. As we want to be able to select2.
multiple boroughs at the same time, we'll have to explicitly pass them:

boros_list = ['Manhattan', 'Bronx', 'Brooklyn', 'Queens', 'Staten
Island']
boros = param.ListSelector(default=boros_list, objects=boros_list)

Once the parameters are defined, we can create our view object, based on the3.
dummy param.Parametrized class, as follows:

class Timeline(param.Parameterized):
 dr = dr
 boros = boros

Next, we need to draw visualizations. As everything here runs in Python, all we4.
need is to access the input parameters, filter data by them, and make a chart,
returning the plot. The decorator will tell the Panel which parameters we want
the chart to be updated on. We'll start with the timeline:

 # method for Timeline
 @param.depends('dr', 'boros')
 def view_tl(self):
 start, end = pd.to_datetime(self.dr[0]),
 pd.to_datetime(self.dr[1])
 tl_data = boro_total.loc[(boro_total.index >= start) &
 (boro_total.index <= end),
 [el.lower() for el in self.boros]]
 plot = plt.figure(figsize=(10,5))
 ax = plot.add_subplot(111)
 tl_data.plot(ax=ax, linewidth=1)

Let's Build a Dashboard Chapter 17

[345]

 ax.legend(loc=4)
 plt.tight_layout()
 plt.close(plot)
 return plot

Similarly, we will create a chart for the top five complaint types. It also consists of
a decorator, filtering, and visualization parts. Consider the following code:

 @param.depends('dr', 'boros')
 def view_top(self, N=5):
 start, end = pd.to_datetime(self.dr[0]),
 pd.to_datetime(self.dr[1])
 boro_mask = DATA.boro.isin([el.lower()
 for el in self.boros])
 time_mask = (DATA.date >= start)
 & (DATA.date <= end)
 top = DATA[boro_mask & time_mask]
 S = top.groupby(['complaint_type', 'boro'])
 ['complaint_type'].count().unstack()
 topN = S.iloc[S.sum(1).argsort()].tail(N)
 plot = plt.figure()
 ax = plot.add_subplot(111)
 topN.plot(kind='barh',stacked=True, ax=ax)
 plt.tight_layout()
 plt.close(plot)
 return plot

This concludes the logic behind the dashboard. Now, we need to define its layout. For that,
we will create a simple grid, using Panel's Row and Column objects. For more advanced
layouts, panel also has a Grid object, but we will not use it here:

panel = pn.Column('<h1>NYC 311 dashboard</h1>',
 T.view_tl,
 pn.Row(T.param, T.view_top,),
sizing_mode='stretch_width')

Now, all we need is to start serving panel:

panel.servable()

Let's Build a Dashboard Chapter 17

[346]

As a result, we'll get the following dashboard:

Let's Build a Dashboard Chapter 17

[347]

Dashboards can be represented as separate windows, using two object methods of
an—either panel.show() or panel.servable(). Both will result in a new browser tab,
serving the dashboard. The difference between them is that, with the second method, we
can also run the dashboard with no Jupyter Notebook attached, using a bash command:

 panel serve --show 2_panel.ipynb

Using panel serve, we can deploy our dashboard as an independent web application. All
we need is to deploy the environment (all of the packages we need and Python itself) on a
dedicated machine and make it run this command. In this case, we could swap the SQLite
connection with one to the external database, so that the data will be shared between the
dashboard and any other applications. The power of dynamic dashboards lies in their large
capacity and flexibility. Here, we ignored the intermediary step of computing top
complaint types per day and were able to run our analytics on the raw data. If needed, we
could always drill-down and check the properties of a specific record, as well.

As everything is running on the server, in Python, we can use any package and are very
flexible in designing the dashboard. As we mentioned, Panel supports any visualization
that can be rendered in the notebook, so you can even reuse some visualizations you
already have, including those we built in Altair.

One limitation to this approach is that we can only control the appearance of the
visualizations to the extent that all of the libraries we use allow us to do so; for example,
while we can use Altair, there is no way, at least currently, to pull back its parameters and
use it to interact with other packages.

Overall, dynamic dashboards allow a wide range of possibilities for exploring and
communicating your data. Compared to the static ones, they are easy to write, support any
Python package, and can do the heavy lifting of data consumption and aggregation, pulling
from raw data. This, of course, requires a dedicated server and may require maintenance
and governance, especially if available to the public.

Summary
In this chapter, we learned to build two similar dashboards—a static one, with no server
needed and using Altair, and a dynamic one, built from an ordinary Jupyter Notebook
with arbitrary code and visualization packages, using the panel package. We discussed the
pros and cons of each approach and when to select one over the other.

Let's Build a Dashboard Chapter 17

[348]

Either way, the dashboard is a great way to communicate your data product to your
colleagues and clients. Dashboards allow us to get insights into business processes and spot
issues early on. In many cases, that would make a perfect deliverable. In some cases,
though, you might need to create a programmatic access point for your code, for example, a
machine learning algorithm for an external application (a website, mobile app, or some
analyst from their Jupyter Notebook) to use.

In the next chapter, we'll do exactly that, by building our own data-serving RESTful API,
similar to the one we ourselves used not too long ago, in Chapter 6, First Script – Geocoding
with Web APIs, and Chapter 11, Data Cleaning and Manipulation. Building an API allows our
customers to directly access our application (for example, a predictive model) and use it on
their data within their environment.

Questions
What are the main differences between visualizing data in a notebook and on a1.
dashboard?
Why do we call some dashboards "static"? What are the pros and cons of a static2.
dashboard?
What are the benefits of using a dynamic dashboard?3.
What are the features of the panel package?4.

Further reading
Apache Superset Quick Start Guide by Shashank Shekhar, published by Packt
(https:/ ​/ ​www. ​packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​apache-
superset- ​quick- ​start- ​guide)
Visualization Dashboard Design (https:/ ​/​hub. ​packtpub. ​com/ ​visualization-
dashboard- ​design/ ​)

https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/apache-superset-quick-start-guide
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/
https://hub.packtpub.com/visualization-dashboard-design/

18
Serving Models with a RESTful

API
In the previous chapter, we discussed how to create dashboards. While one approach we
took was to build a static, serverless web page, another required a server and the client
parts of the application. In this chapter, we'll discuss the next logical step: providing
programmatic access to your data and/or algorithms, via a RESTful API—similar to the
ones we used in Chapter 9, Shell, Git, Conda, and More – at Your Command. An API is
arguably the most ubiquitous and convenient way of delivering your service; it has few
requirements for the consumer (essentially, an internet connection), is easy to publish and
distribute, and can be constantly improved upon. Knowing how to build your own API is
an essential skill for a developer.

The following topics will be covered in this chapter:

What is a RESTful API?
Building a basic API service
Building a web page
Speeding up with asynchronous calls
Deploying and testing your API service loads with the Locust package

Serving Models with a RESTful API Chapter 18

[350]

Technical requirements
In this chapter, we'll use the following libraries:

FastAPI
pydantic

uvicorn

locust

Make sure to install them, if you haven't done so already. To test our API, we'll use
the curl command-line tool. On Windows, you can install curl or use the built-in
Invoke-Webrequest tool, aliased to wget.

Alternatively, you can use Postman, https:/ ​/​www. ​getpostman. ​com, a standalone and free
application for testing and exploring web APIs with a nice graphical interface. To install
Postman, go to the website and hit Get Started, then select Download. Postman has
versions for Windows and Linux. Its interface is quite clean and easy to learn, so we won't
cover it here.

All of the code is available in the GitHub repository, in the Chapter18 folder (https:/ ​/
github.​com/​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications).

What is a RESTful API?
We worked with APIs before, in Chapter 9, Shell, Git, Conda, and More – at Your
Command, as clients. So, it would be safe enough to assume we have some idea about an
API: it is just an interface that allows us to exchange data with the service. Technically, APIs
can use any protocol or means of communication, and there are plenty of applications with
all types of interfaces. However, these days, when people say API, they likely mean
RESTful API. Here, the REST part stands for Representational State Transfer. REST is
based on six guiding architectural principles, but what is more important for us is that it is
based around HTTP requests, similar to the ones our browsers execute when we type in a
URL.

Behind each RESTful API is a server—or, most likely, a group of servers—ready to execute
the command; this command could serve the entire, rich HTML page, or—in the case of an
API—some information, either as a binary or some other kind of data structure—the most
popular ones are XML and JSON.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Serving Models with a RESTful API Chapter 18

[351]

The servers behind each API run a corresponding application. Python is a great language to
create such an application! As usual, there is a handful of packages designed to help with
the making of APIs. Due to the complexity of the task, these tools tend to be more proactive
and involved in the process than your average library, so they are usually
called frameworks. Indeed, as it is often said, libraries are what you use in your code and
frameworks are what you stick your code into. Let's take a look at the assortment of Python
web frameworks we can use in the next section.

Python web frameworks
Web frameworks play an important role as the backbone of the web application and an
intermediary between the web server and your custom code. Thanks to the web
framework, you can write just a handful of functions and classes, and make them accessible
for your clients via URLs and web interfaces; all of the internals of routing, protocols, error
handling, and security precautions are taken care of by the frameworks.

Python has a variety of web frameworks for any taste and scale. The most popular are
Pyramid, Django, and Flask. Both Pyramid and Django are great options for large and
complex applications and incorporate many useful features, including CMS, authentication
mechanisms, and many other features, out of the box. In contrast, Flask is a smaller and
simpler one and is often used for standalone APIs; it doesn't have many built-in features;
hence, it's smaller and simpler to learn, but you will have to integrate those features
yourself later on if you need them. All three are mostly focused on serving HTML web
pages but could be used to serve RESTful APIs, if needed. In this chapter, we'll use a
framework called FastAPI: it is very new, focuses 100% on APIs, and incorporates a handful
of nice features for building them.

In particular, FastAPI has the following features:

Lightweight
Performant
Can work in asynchronous mode (we'll talk about it later in this chapter)
Leverages Python typing for schema/validation
Supports data validation with OpenAPI (previously known as Swagger) and
JSON Schema off the shelf

The selection of a framework will have long-standing consequences, as you might have to
maintain and expand it for a long time. As FastAPI is small and simple, it is easy to learn
and to make your own opinion—and to switch it with something else, if needed. But how
does it all work in practice? Let's have a look.

Serving Models with a RESTful API Chapter 18

[352]

Building a basic API service
A good practice is to start with something simple, where we don't risk having issues in our
code—so we can test the framework, first. Let's start with a simple hello world application.

Let's dive in and start with a simple hello world-style application that will return the
predefined values, with no computations at all:

First, we will need to import the library and initialize the main application object:1.

from fastapi import FastAPI
app = FastAPI()

Next, let's define our toy database:2.

db = {'noise': 24,
 'broken hydrant': 2}

We now define the function that will be executed for each URL request and3.
return the value:

def complaints(complaint_type: str, hour:int) -> dict:
 return {"complaint_type": complaint_type, "hour": hour, "q":
db.get(complaint_type, None)}

Note that we use type annotations for the arguments. With FastAPI, this is
important—those type hints are used for validation and in the autogenerated
documentation.

Lastly, we need to register our function as an endpoint for the application, using4.
a decorator:

@app.get("/complaints/{complaint_type}")
def complaints(complaint_type: str, hour:int) -> dict:
 return {"complaint_type": complaint_type, "hour": hour, "q":
db.get(complaint_type, None)}

Note that we specify the type of the request via the app.get method (similar to
the methods of the requests library) and encode one variable, complaint_type,
as part of the URL, like an f-string. The framework will take care of the rest.

Serving Models with a RESTful API Chapter 18

[353]

Now, we can run the server locally:5.

uvicorn hello_world:app --reload

By doing so, we trigger uvicorn and ASGI server to run, serving app from the
hello_world.py file, locally.

Once the application is ready, uvicorn will print a line pointing to the correct IP6.
address, similar to this one:

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to
quit)

Now, this link itself won't do anything—there is no app served on the root
directly.

To test our application, we need to specify a resource, add the path we used in7.
our decorator, and specify the complaint type, as in the following example:

http://127.0.0.1:8000/complaints/noise?hour=12
>>> {"complaint_type":"noise","hour":12, "q":24}

Let's check that the application is indeed live—write something clearly wrong as8.
a complaint type, don't pass a value, and see what happens:

http://127.0.0.1:8000/complaints/wrong
>>> {"detail":[{"loc":["query","hour"],"msg":"field
required","type":"value_error.missing"}]}

http://127.0.0.1:8000/complaints/wrong?hour=2
>>> {"complaint_type":"wrong","hour":2,"q":null}

Let's now discuss what happens under the hood. In our function, we declared two
arguments: complaint_type and hour, each with a specified typing. The former is
defined within the route we provide; the latter is not specified there knowing that, FastAPI
assumes it will be provided as a parameter. Furthermore, everything in the URL is a string;
as FastAPI knows what to expect from the type annotation, it will attempt to parse our
values appropriately—note that, in the response, an hour is an integer, and it is not
wrapped in quotes.

When we pass an incorrect URL, the first thing that triggered is that there is no hour
parameter; therefore, FastAPI raises a scheme validation issue; once an hour is passed, the
request is considered successful (except there is no value, of course), as FastAPI does not
know which values are acceptable for complaint_type (and hour, for that matter). So,
what happens next?

Serving Models with a RESTful API Chapter 18

[354]

Exploring service with OpenAPI
Now, don't stop the server just yet; append /docs to the given IP address, and you'll open
an OpenAPI service:

As you can see, it shows the one (and only) API endpoint we have. This page is
interactive—you can open the endpoint's tab, write your own parameters (for example,
broken hydrant), execute the request, and check out the results. As if that isn't enough,
there is alternative documentation—to access it, just replace /docs with /redoc.

Once this is done, let's move on to finalizing the first iteration.

Serving Models with a RESTful API Chapter 18

[355]

Finalizing our naive first iteration
Let's imagine we're building a service for the 311 call center. The goal is to estimate the
expected time it will take to close the complaint. We will start with a terribly naive
model—one that returns a median value for a given type of complaint. As such, it is
essentially a pre-computed lookup, similar to the one we used earlier; computing the
median is trivial, so we won't cover it. If needed, the code is stored in the repository. As a
result, we have a JSON file with a simple key-value structure; for each type of complaint, it
stores the median time.

Now, let's modify our existing API to use this data:

First of all, copy the file and call it 311v1.py. Now, let's create a simple class that1.
resembles a scikit-learn model, using lookup data:

class naive_model:
 data = None

 def __init__(self, path='./data/model.json'):

 with open(path, 'r') as f:
 self.data = json.load(f)
 def predict(self, type_):
 return self.data.get(type_, None)

Why do we make it similar to the scikit-learn models? Because that way, it
would be easier to swap it with the real one in the future!

Now, we only need to initialize the model on load and replace the hardcoded2.
hour value with expected_time, predicted by the model:

app = FastAPI()
model = naive_model()

@app.get("/complaints/time/{complaint_type}")
def complaints(complaint_type: str):
 return {"complaint_type": complaint_type,
 "expected_time": model.predict(complaint_type)}

Serving Models with a RESTful API Chapter 18

[356]

Again, run it via Uvicorn:3.

uvicorn 311v1:app --reload

Specify the type of complaint, as in the following example:4.

$ http://127.0.0.1:8000/complaints/time/noise
{"complaint_type":"water quality","expected_time":19.29}

Next, let's see how to validate this data.

Data validation
There is one nasty problem with our current implementation: it is easy to misspell a
complaint type—and the API won't let us know of any issue; instead, it will pass it to the
model, which will return a null value because it couldn't find a corresponding complaint
type.

To make behavior more transparent and easy to work with and to not spend any
computations on the invalid requests, we'll need to validate all inputs. In order to do that,
let's pre-define the complaint types we have, using the Enum library; mixing with str
allows FastAPI to incorporate it into the schema, as follows:

class ComplaintType(str, Enum):
 other = "other"
 commercial = "commercial"
 park = "park"
 residential = "residential"
 street = "street"
 vehicle = "vehicle"
 worship = "worship"
 truck = "truck"

Now, we modify our app request function by adding ComplaintType as our type hint. We
added a simple formatting logic; in a real app, it would make sense to simplify the
complaint type in the data so that the app logic will be cleaner (and a tiny bit faster):

@app.get('/complaints/noise/{complaint_type}/time')
def complaints(complaint_type: ComplaintType):
 if complaint_type == ComplaintType.other:
 ct = "noise"
 else:
 ct = f"noise - {complaint_type.value}"

 return {

Serving Models with a RESTful API Chapter 18

[357]

 "complaint_type": complaint_type,
 "ct": ct,
 "expected_time": model.predict(ct),
 }

We didn't really change much in our code, but the class allows FastAPI to know which
values are valid and which ones are not; now, instead of returning null, our application will
raise a validation error, notifying us that our complaint type is invalid. Here is how it looks
in practice:

>>> curl -X GET http://127.0.0.1:8000/complaints/noise/wrong/time -H
"accept: application/json"

{"detail":[{"loc":["path","complaint_type"],"msg":"value is not a valid
enumeration member","type":"type_error.enum"}]}

And the best part is that this expectation is reflected in the documentation! Our OpenAPI
page now has a drop-down menu with all of the types our endpoint supports:

So, this is how our API finally looks. Next, let's move on to sending data with POST.

Serving Models with a RESTful API Chapter 18

[358]

Sending data in with POST requests
All of this time, we used the @app.get method, which represents the expected HTTP GET
request. As its name implies, this command is supposed to retrieve information and
therefore is designed to store small snippets of data in itself. This data could be passed
as resource—part of the URL, like complaint_type in the preceding example—or
appended as a parameter, like hour in our first example.

However, there are cases when you need to pass a significant data structure as part of your
request. For that, there is another command: POST. You see, every request, technically, has
three means of passing information:

URL, which can contain resources and parameters
BODY, which can store arbitrary data
HEADERS, a small section for metadata, which describes desired server behavior,
and should not be used for API behavior

On top of that, the HTTP specification recommends not to use a body part for GET requests,
as it goes against the semantics. The bottom line is this: if you need to pass a rich data
structure to an API, use the POST method and keep this data structure in its body.

Let's imagine that, for some reason, our application now needs to handle the input of new
complaints. Every complaint stores multiple pieces of information: location, time, type of
complaint, some description, and so on. And of course, there are some rules on what values
are acceptable for each data type.

To deal with data structures and validation, FastAPI uses another package: pydantic. Let's
describe the structure we're expecting as a pydantic object. As we'll have to specify the
complaint type, we'll reuse the Enum object from the preceding example:

from pydantic import BaseModel
from datetime import datetime

class Complaint(BaseModel):
 complaint_type:ComplaintType
 timestamp:datetime = datetime.now()
 lat:float
 lon:float
 description:str

@app.post("/input/")
def enter_complaint(body: Complaint):
 return body.dict() # for the sake of simplicity just returns value back

Serving Models with a RESTful API Chapter 18

[359]

Here, we declare a Complaint object, which includes the complaint type as Enum, and four
other parameters. As we wrap our function with a post method, a variable not defined in
the path is assumed to be the body. We define this parameter to be Complaint object, by
definition.

Adding features to our service
At this point, our API has two GET calls and one POST call. The GET call estimates the time it
will take for each type of complaint to be closed, based on the historic median for each type
of call. However, this approach is obviously very naive—it takes into account neither
location, time, nor a number of similar complaints in the queue for the same area. To
improve our estimate, let's use an ML model, trained to predict a given complaint type,
location, and time. You can find all of the details on model training in the
311model.ipynb notebook. What is important is that the trained model is stored as a
Pickle file and expects four features (we collected earlier): type of complaint, latitude,
longitude, and time complaint was filled.

Let's now modify our code so that it will take those features and run a model:

First, we need to load a model from pickle in our code (we use joblib, which1.
is a little more efficient for scikit-learn models, or any objects containing
NumPy arrays, for that matter):

clf = joblib.load('model.joblib')

Now, because we use a custom transformer for time features, we need to import2.
it into the file:

from ml import TimeTransformer # this line should be at the top

One inconvenient property of pickle (and joblib) objects is that they
don't store all of the dependencies internally; to make it all more
complicated, they reference those dependencies, expecting them to be at
the same location, relative to the object. In other words, you have to
import everything exactly as it was done when the object was stored.

Serving Models with a RESTful API Chapter 18

[360]

And finally, we can implement the method as follows:3.

@app.get('/predict/{complaint_type}', tags=['predict'])
def predict_time(complaint_type:ComplaintType, latitude:float,
longitude:float, created_date:datetime):

 obj = pd.DataFrame([{'complaint_type':complaint_type.value,
 'latitude':latitude,
'longitude':longitude,
 'created_date':created_date},])
 obj = obj[['complaint_type', 'latitude','longitude',
'created_date']]

 predicted = clf.predict(obj)
 logger.info(predicted)
 return {'estimated_time': predicted[0]}

Once the application is reloaded, go to the docs, and try to execute the method:4.

>>> curl -X GET
"http://127.0.0.1:8000/predict/vehicle?latitude=40.701258&longitude
=-73.935493&created_date=2019-06-08%2018%3A00%3A10" -H "accept:
application/json"

{
 "estimated_time": 0.59
}

Voilà! Our first ML model is up and running. Here is what it looks like via the5.
OpenAPI page:

Serving Models with a RESTful API Chapter 18

[361]

Serving Models with a RESTful API Chapter 18

[362]

We were able to build a working API application, serving predictions of our pre-trained
model. This application may be used by the government or concerned citizens, eager to
know how long it is likely to take 311 to review and close the application.

RESTful APIs are the bread and butter of data-driven software and services. Their technical
look, however, may intimidate and confuse the inexperienced person. As an alternative, we
could build and serve a web page that would be easy to read and understand for such an
audience. Let's see how that works in the next section.

Building a web page
While FastAPI is focused on the APIs, it is still entirely possible to serve HTML pages as
well. The code will be almost identical to the preceding code—except that our functions
need to return this HTML code.

The most common approach to generate HTML in Python is to use the Jinja2 templating
engine—that way, you write the template as an HTML code with some injections of Python
and later render them by feeding it with the variables; Jinja will execute and hide the
injections, returning the resultant page.

For the sake of building a simple example, however, we will use another package: VDOM,
which allows us to generate VDOMs (short for Virtual Document Object Models) in
Python and then convert them into HTML. Flask is great for smaller projects, but not for
large and complex applications.

To separate this page from the main API, let's create a separate file, as follows:

Add it to the main application. For that, we'll use routers:1.

webpage.py
from fastapi import APIRouter
router = APIRouter()

Now, we can create a new endpoint, using a router as if it is an app object:2.

@router.get('/dashboard', tags=["dashboard"])
def get_dashboard():
 pass

Serving Models with a RESTful API Chapter 18

[363]

Now, let's generate a very simple VDOM object. To make it a little bit more3.
interesting, let's use some pre-generated images:

image_url =
"https://pbs.twimg.com/profile_images/775676979655929856/jn13Vq3D.j
pg"
barplot_url =
"https://github.com/PacktPublishing/Learn-Python-by-Building-Data-S
cience-Applications/blob/master/Chapter18/barchart-01.png"
from vdom.helpers import b, div, h1, img, p, span

def dashboard():
 return div(
 span(img(src=image_url, style=dict(width='100',
 heigth='100')),
 h1('Smart 311 Dashboard')),
 img(width='400', src=barplot_url),
 p('Written in Python, 100%')
)

Here, we use multiple vdom.helpers objects. All of them represent corresponding HTML
tags and accept class, ID, and all other corresponding attributes, such as source for image
object, as well as a style argument, which expects to receive a dictionary with both keys
and values as strings. For now, this object is still a Python object. In a Jupyter Notebook, it
can be rendered using the IPython.display.display method. For FastAPI, we can
convert it into raw HTML, using the to_html method.

Now, one obstacle is that, by default, FastAPI converts all returning values into JSON,
using the built-in JSON response method of starlette, the underlying server FastAPI is
built upon. To prevent it from doing that, we can explicitly use another response, one built
for serving HTML.

Let's tweak the method we wrote earlier to return the dashboard, wrapped into HTML.
Consider the following code for it:

from starlette.responses import HTMLResponse

@router.get('/dashboard', tags=["dashboard"])
def get_dashboard():
 content = dashboard().to_html()
 return HTMLResponse(content=content)

Serving Models with a RESTful API Chapter 18

[364]

Lastly, we need to connect our router entity back to the main application, so that they can
coexist; adding routers is the proper way to add more endpoints to the application without
storing them in the same file. Open 311v2.py and add these two lines:

import webpage # here, webpage is the file with the router
app.include_router(webpage.router, prefix='/dashboard')

Now, you can check whether the dashboard is loading:

Serving Models with a RESTful API Chapter 18

[365]

Excellent! As we mentioned, FastAPI is focused on APIs and hence has little to offer in the
context of web pages, but it still can be used that way. For example, it makes sense to use
the same service to support both APIs and some sort of dashboard, if both are required.

Let's now address one more interesting feature FastAPI supports: asynchronous execution.

Speeding up with asynchronous calls
Now, let's turn to the question of performance. Once in a while, our application will need to
be constantly monitored and, if needed, scaled and optimized. There are a few ways to
speed things up incrementally, for example, by installing the ujson package, which works
exactly like built-in json but is more performant (because it is written in C). In that case,
FastAPI will automatically switch to using this library instead.

Potentially, more significant improvement in performance is built into FastAPI, Uvicorn,
and based on the new features of Python 3.4 and later versions, asynchronous calls. We did
spend some time discussing this feature in Chapter 3, Functions. In a nutshell, all of the
code we generally write in Python is executed sequentially—once one line is executed,
Python will go to the next, and so on. It means that, when the operation requires some data
to be acquired from the web or the database, or if the operation is computation-heavy but
runs on a single CPU, we could run some other tasks in the meantime. This is the promise
of an asynchronous computation.

As we said, FastAPI and Uvicorn both support asynchronous calls. What it means
practically is that every endpoint function, if it relies on something (library, database
connection, and so on) that supports asynchronous calls, or does not rely on anything at all,
could be asynchronous. To make it asynchronous, just add async before def. If it indeed
relies on some asynchronous call, you need to state that with await. Given that, Uvicorn
will automatically run those methods as asynchronous—this won't speed up each
individual call, but will allow the server to execute some other requests, when applicable,
scaling its overall performance. For example, here is our prediction model, made
asynchronously (we also changed the name to keep both methods in place):

@app.get('/predict_async/{complaint_type}', tags=['predict'])
async def predict_time_async(complaint_type:ComplaintType, latitude:float,
longitude:float, created_date:datetime):

 obj = pd.DataFrame([{'complaint_type':complaint_type.value,
 'latitude':latitude, 'longitude':longitude,
 'created_date':created_date},])
 obj = obj[['complaint_type', 'latitude','longitude',
 'created_date']]

Serving Models with a RESTful API Chapter 18

[366]

 predicted = clf.predict(obj)
 logger.info(predicted)
 return {'estimated_time': predicted[0]}

You can test that this endpoint runs as good as the non-asynchronous one.

We don't recommend trying to use asynchronous calls from the get-go, especially if you
don't have much experience. However, if you're on the lookout for better API performance,
asynchronous calls can be a good option. On many occasions, asynchronous calls can make
a drastic difference in performance, compared to traditional, synchronous execution. For
some features and entire products, the difference could be critical. But how do we measure
performance and how do we determine whether it is okay to publish an endpoint? For that,
let's go to the next section.

Deploying and testing your API loads with
Locust
Once the application is deployed, but before it is publicly announced or used, it is a good
idea to estimate how many requests it can handle. Usually, you can roughly predict the
requirements for the service by estimating the number of requests it needs to execute at
peak periods, how long those periods are, how fast it should respond, and so on. Once
you're clear on the requirements, you'll need to test-load your application.

Test-loads should be performed on the actual, deployed server, not your localhost. Here,
we skip over the whole topic of deploying your model. We also didn't use ngnix or any
similar gateway servers, which would cache requests, boosting the performance of the API
significantly. Deployment of the application deserves a separate book and can be achieved
in many ways, depending on your existing infrastructure and resources and the importance
of the application. One popular way is to generate a Docker container that can then be
pulled and deployed by any cloud infrastructure platform. We will touch on containers in
Chapter 20, Best Practices and Python Performance.

Serving Models with a RESTful API Chapter 18

[367]

To run a test-load, Locust requires a simple Python script, which they call a locustfile. Let's
see how to use it:

The following code is the file we wrote for our 311 API:1.

from locust import HttpLocust, TaskSet, task

class WebsiteTasks(TaskSet):
 @task
 def preduct(self):
self.client.get("/predict/residential?latitude=40.675719430504&long
itude=-73.860535138411&created_date=2019-06-14T00%3A02%3A11.000")
 @task
 def preduct_async(self):
self.client.get("/predict_async/residential?latitude=40.67571943050
4&longitude=-73.860535138411&created_date=2019-06-14T00%3A02%3A11.0
00")
 @task
 def dashboard(self):
 self.client.get("/dashboard/dashboard")

class WebsiteUser(HttpLocust):
 task_set = WebsiteTasks
 min_wait = 5000
 max_wait = 15000

Here, we target two prediction endpoints and a dashboard, keeping all of the
parameters the same.

For more rigorous testing, it would be a good idea to generate random request2.
parameters each time, but for now, let's keep it simple. Having the file, let's fire
up locust:

locust --host=http://127.0.0.1:8000

Now, head to http://127.0.0.1:8089.3.
In the Locust initial form, specify the desired number of users and growth (other4.
parameters could be set in locustfile.py) to simulate and hit Run. For the
following screenshot, we set 5,000 users maximum, with a growth of 10 per
second.

Serving Models with a RESTful API Chapter 18

[368]

Once the simulation is started, you can monitor the resultant performance, as5.
well as failures and thrown exceptions, in real time, via the Locust dashboard:

Upon running, Locust will offer you a plan of attack: how many users and at which rate of
growth to emulate. Once values are defined, it will start loading the traffic and will show
you the results in real time. It's now up to you to monitor and analyze the result, and give a
final verdict: did your application pass the test?

Building a web endpoint is an exciting phase of the work. Indeed, you're making your work
available for the world to use. Do not rush, skipping the testing part! Making sure your
application is written effectively and is fast and up to the traffic loads may save you a lot of
time—and nerves—down the road.

Serving Models with a RESTful API Chapter 18

[369]

Summary
In this chapter, we built our own API and deployed an ML model to send predictions as an
endpoint. Using FastAPI's built-in features, we were able to generate interactive
documentation and define a schema to validate both inputs and outputs. We further
created a simple HTML dashboard, generating charts upon request, and we learned how to
tune the performance of the API, leveraging asynchronous functionality. Lastly, we
modeled a traffic load on our system, using an open source tool, Locust.

By doing so, we made a fast run over the full cycle of API development: choosing a
framework, adding your business logic, and testing. The skills we learned along the way
are useful if you want to get the flexibility, scalability, and richness of providing your
service via an API.

Building your own web service is a great option—definitely the best if the API is popular
and needs to withstand constant and intensive loads of requests.

In the next chapter, we'll look at a different approach: running the same prediction model
as a serverless application, which allows us to keep the API cheaper and more scalable, if
we don't need to serve many requests or if the loads are sporadic.

Questions
What is a RESTful API?1.
What Python packages can be used to build a RESTful API?2.
What are the key features of the FastAPI framework?3.
Why OpenAPI (Swagger)?4.
Why do we need Uvicorn or Gunicorn servers?5.
What metrics does the Locust package measure?6.

Further reading
Building REST APIs with Python by Wayne Merry, published by Packt (https:/ ​/
www.​packtpub. ​com/ ​web- ​development/ ​building- ​rest- ​apis- ​python- ​video)
Building RESTful Python Web Services by Gaston C. Hillar, published by Packt
(https:/ ​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​building- ​restful-
python-​web- ​services)

https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/web-development/building-rest-apis-python-video
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services
https://www.packtpub.com/application-development/building-restful-python-web-services

19
Serverless API Using Chalice

In the previous chapter, we created a REST API that served our prediction model forecasts
by managing our own server and application. While that approach is by far the most
popular, there is another that is also very useful for specific tasks—using serverless
applications.

In this chapter, we will use the Chalice Python package to build an API that's similar to the
one we built in Chapter 18, Serving Models with a RESTful API, but it will run in the cloud
as a serverless application. Along the way, we will discuss along the way all the pros and
cons of this approach.

In this chapter, we will learn about the following:

What a serverless application is
How to build a simple application using the Chalice package
How to mitigate Chalice's limitations
Scheduling a serverless process
Deploying a larger-than-limit application with Zappa

Technical requirements
The code for this chapter requires the chalice package, version 1.9.1. We recommend
installing Chalice from conda-forge and use this specific version for reproductivity:
conda install -c conda-forge chalice=1.9.1.

As usual, the code for this chapter is in the GitHub repository, under the Chapter19
folder (https:/​/​github. ​com/ ​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data-
Science-​Applications).

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Python-Programming-Projects-Learn-Python-3.7-by-building-applications/tree/master/Chapter18

Serverless API Using Chalice Chapter 19

[371]

Understanding serverless
The word "serverless" might be somewhat misleading—serverless applications still do run
on servers. There is a major difference is responsibility zones, though. With serverless, we
don't rent computers and deploy our own APIs; instead, we send Python (or JavaScript, or
Go, or whatever else) functions, along with our requirements, to a provider (which could be
Amazon Web Services (AWS), Google Cloud Platform, or something else), and they
execute those functions on their servers when triggered to do so. We don't need to think
about configuring servers, turning them on and off, or scaling—the functions we trigger
will work when needed on the scale that is needed (the providers will add computers, if
required, behind the scenes). The best part? We'll only pay for the fact of execution—if a
function wasn't triggered, we'll pay nothing.

Because of that, serverless applications can be a great alternative to running your own
servers in the following cases:

If requests are infrequent and you would otherwise have to pay for a server with
little to no payload. Providers such as AWS provide solutions to trigger
serverless applications automatically on specific events, such as a new file being
uploaded to an S3 bucket. A serverless application could also serve as an API
endpoint, running when you request it to.
If the requests rate is hard to predict or very sporadic, so it would be hard to
scale and adjust the number of workers yourself.
If the function in question itself is relatively simple and fast.
If you only need a few simple and stateless endpoints (serverless functions can
invoke other services and serve their outcomes, such as serving the frontend for a
large and complex machine learning (ML) model).

Of course, serverless has its own limitations and caveats as well:

Code needs to be pre-packaged in a specific way.
There is a cap of 50 MB on the memory required to upload your code and assets,
including all the dependencies, except a few default ones.
The problem of cold starts: if an endpoint has not been used for a certain time,
the virtual server will be stopped and resumed on the next request. This means
that the first few requests after that period of having been stopped may take
longer to execute. If that is critical, we could ping the endpoint once in a while so
that the server won't stop—but that would mean some additional costs.

Serverless API Using Chalice Chapter 19

[372]

Building a serverless application manually requires some time and can be a tedious
process. Everything should be isolated and zipped, and the archive should meet certain
criteria. Luckily, there are a few Python packages that help to prepare and deploy code as a
serverless application.

To summarize, serverless applications are services that allow you to focus on the code for
your specific task; running the code, server configuration, scheduling, scaling, and so on are
taken care of by the service provider. You only pay for the fact of execution. The code for
the application needs to be prepackaged and has some requirements to meet. Luckily, there
are frameworks that help us to simplify the workflow.

Now that we know what serverless is, in the next section, we'll build our own serverless
application using Chalice.

Getting started with Chalice
Let's try replicating the API endpoint we did for 311 in the previous chapter as a serverless
application. For that, we'll use a framework called Chalice.

Chalice is a Python package for serverless applications on AWS, and is itself developed by
Amazon. It can take care of an application, from its template all the way to deployment. It's
also great for testing, as it emulates deployment with no fee, authentication, or even
internet connection required.

Before we start working on our serverless application, let's ask Chalice to generate a
template. In your terminal, type this:

chalice new-project

After this, type the name of the project: 311estimate. This will generate a new folder with
a few files:

311estimate/
|
├── .chalice/
│ └── config.json
|
├── .gitignore
├── app.py
└── requirements.txt

Serverless API Using Chalice Chapter 19

[373]

Those files are all you need to write and deploy an endpoint; first, take a look at app.py.
Inside, chalice invokes an app object—very similar to what FastAPI does (and other web
frameworks). To continue the pattern of similarity with FastAPI, Chalice uses a decorator
around the function with the GET method, defining the routing for the endpoint. The
dummy function returns a dictionary, which will be converted to JSON under the
hood—exactly like FastAPI would do.

Before we start adding our own code, let's try running this application locally:

$ chalice local
Serving on 127.0.0.1:8000

Now, we can pass a request in our browser or by using curl in the Terminal:

$ curl -X GET http://localhost:8000/
{"hello": "world"}

Clearly, Chalice is working—we're serving a dummy API as a serverless application. In the
next section, let's override the code to make it serve actual models!

Setting up a simple model
Similar to how we built a REST API in Chapter 18, Serving Models with a RESTful API, let's
start by serving median values from a JSON file. This will help us to set the model for
working with Chalice:

First of all, we need to load the JSON object:1.

import json

with open('./model.json', 'r') as f:
 model = json.load(f)

Now we will rename the route and define the last resource to map to the2.
complaint type (in the same way we would for FastAPI, again!). We will also
have to import a Response object:

from chalice import Response

@app.route('/predict/{complaint_type}', methods=['GET'])
def predict(complaint_type:str) -> Response:

Serverless API Using Chalice Chapter 19

[374]

Finally, finalize the function by adding simple lookup logic; here, we decided to3.
be nice and let our user know if they pass a wrong complaint type:

@app.route('/predict/{complaint_type}', methods=['GET'])
def predict(complaint_type:str) -> Response:
 if complaint_type in model:
 return Response(status_code=200,
 headers={'Content-Type':
 'application/json'},
 body={'status': 'success',
 'complaint_type': complaint_type,
 'estimated_time':
 model[complaint_type]})
 else:
 return Response(status_code=400,
 headers={'Content-Type':
 'application/json'},
 body={'status': 'failure',
 'problem': 'Complaint type is
 not in database',
 'complaint_type': complaint_type})

Then, we deploy it locally, as we did before:4.

$ chalice local
Serving on 127.0.0.1:8000

Now let's try it out from another terminal:5.

$ curl -X GET http://localhost:8000/predict/appliance
{"status":"success","complaint_type":"appliance","estimated_time":6
3.53}

Let's see what happens if we ask for a wrong complaint type: 6.

$ curl -X GET http://localhost:8000/predict/wrongtype
{"status":"failure","problem":"Complaint type is not in
database","complaint_type":"wrongtype"}

As you can see, it will return an error, with the message we passed. Let's now refactor our
code so that the data will be stored outside of the Python script.

Serverless API Using Chalice Chapter 19

[375]

Externalizing medians
This was quite a simple script so far, but you probably would want to update the JSON
constantly—without needing to re-deploy the function every time. Let's do exactly that.
We'll move the JSON to some public bucket (or not a public bucket—just make sure to use
credentials with the rights to access it), and let a function download it upon request or upon
deployment. We'll use the built-in urllib package, not requests, as we don't want to
spend our 50 MB memory on one more dependency package. Delete the local JSON to keep
the code slim, and add this code:

import json, urllib.request
url =
'https://raw.githubusercontent.com/PacktPublishing/Python-Programming-Proje
cts-Learn-Python-3.7-by-building-
applications/master/Chapter18/data/model.json'

obj = urllib.request.urlopen(url).read()
model = json.loads(obj)

Here, we have a choice: we could load json outside the function, which means it will be
pre-loaded on spawn and update ever so often. Alternatively, we could load the
measurements within the request function, meaning values will be updated via the API
the second we override the file on S3. This would, however, affect the execution time of the
function, so it's up to you to decide.

If everything works locally, let's deploy it! For that, just type this:

chalice deploy

It may take a few seconds to prepare the package, and does require AWS credentials to be
set up. Once done, Chalice will print out the name of the function and the URL to hit. Once
deployed, our function is publicly available for everyone! See here:

$ curl -X GET
https://<unique_aws_id>.execute-api.us-east-1.amazonaws.com/api/predict/app
liance
{"status":"success","complaint_type":"appliance","estimated_time":63.53}

In this section, we were able to deploy a basic prediction model API endpoint that reads
values from a JSON file stored on GitHub but is accessible for everyone on the web. Now
let's go one step further and set up an actual ML model.

Serverless API Using Chalice Chapter 19

[376]

Building a serverless API for an ML model
Getting public access to data in 10 lines of code is useful. But let's now do something more
complex than that—say, serving an actual ML model.

Let's create one more app—311predictions. As before, we would need to call chalice
new-project and type our new project's name.

Now, for the previous application, we didn't need any dependencies; in order to serve the
ML model we used in the previous chapter, we need to have pandas and sklearn. The
problem is that both of them cannot fit into the 50 MB limitation. In fact, until recently,
there was no easy way to fit either of them there—normal pip install requires all the
source code to be downloaded and compiled on the machine. Luckily, now a pre-compiled
version can be installed, and chalice will explicitly look for a pre-compiled binary,
generated for a Linux machine we'll be running.

Still, we have to decide how to shrink our memory usage. In this particular case, there are
not many options. We definitely can't serve the model without sklearn, so we'll have to
get rid of pandas. Let's add sklearn to the requirements (note that it has a different name
in pip):

scikit-learn==0.21.2

Now let's recreate the API, using only sklearn and NumPy (which is a dependency
of sklearn, anyway). First, let's load our model from S3:

import boto3

BUCKET, KEY = 'philipp-packt', 'model.pkl'

def _load_pickle(bucket, key):
 S3 = boto3.client('s3', region_name='us-east-1')
 response = S3.get_object(Bucket=bucket, Key=key)
 body = response['Body'].read()
 return pickle.loads(body)

model = _load_pickle(BUCKET, KEY)

Note that this model will be preloaded on each deployment, not for each request. To shave
even more time off the request itself, let's predefine a NumPy singleton object (a one-row
matrix that will be populated with data from the request:

singleton = np.empty(shape=(1, 4), dtype='object')

Serverless API Using Chalice Chapter 19

[377]

Unlike FastAPI, there is no built-in parsing mechanism, so we'll have to parse values on our
own. Let's predefine a parsing mechanism for each parameter, except complaint_type,
which does not need to be parsed:

dtypes = {
 'lon': float,
 'lat': float,
 'date': np.datetime64
}

Now we can start writing the endpoint itself. In the following code, we use
the app.current_request.query_params dictionary, which stores all the parameters in
the URL. There is a similar dictionary for the body of the request.

Another useful command is app.log.debug. If lambda is running in debug mode, this will
spill the values out to the logs:

@app.route('/predict/{complaint_type}', methods=['GET'])
def index(complaint_type:str):
 try:
 app.log.debug(app.current_request.query_params)
 singleton[0, 0] = complaint_type

 for i, col in enumerate(dtypes.keys(), 1):
 singleton[0, i] =
dtypes[col](app.current_request.query_params.get(col, np.nan))

 app.log.debug(singleton.astype(str).tolist())

Finally, we can add the prediction itself and define the responses—both for failure and
success cases. This part looks pretty similar to the FastAPI version. Here is the whole
function:

@app.route('/predict/{complaint_type}', methods=['GET'])
def index(complaint_type:str):
 try:
 app.log.debug(app.current_request.query_params)
 singleton[0, 0] = complaint_type

 for i, col in enumerate(dtypes.keys(), 1):
 singleton[0, i] =
dtypes[col](app.current_request.query_params.get(col, np.nan))

 app.log.debug(singleton.astype(str).tolist())
 prediction = model.predict(singleton)[0]
 app.log.debug(prediction)

Serverless API Using Chalice Chapter 19

[378]

 return Response(status_code=200,
 headers={'Content-Type': 'application/json'},
 body={'status': 'success',
 'estimated_time': prediction})
 except Exception as e:
 return Response(status_code=400,
 headers={'Content-Type': 'application/json'},
 body={'status': 'failure',
 'error message': str(e)})

This is all the code we need. If you try running it, however, it will throw an error—there are
still two issues we need to figure out.

First, the pickled model stores the objects, but not its dependencies (such as external
libraries). To make it even worse, it expects to find them exactly where they were imported
at the time of serialization, relative to the loaded pickle. For example, it
expects TimeTransformer to be not only available but available as part of
the ml namespace. Theoretically, we could hack the namespace, but it seems easier to copy
the ml.py file and import the object. Indeed, this is a better option—except that chalice
won't push any Python files from the folder, except app.py. To push our ml file, we need to
create a folder called vendor, then create another folder called ml and treat it as a package,
moving the code there. As we need to match the exact ml.TimeTransformer, we'll create
an __init__.py file—in fact, to keep it simple, we can just move ml.py there and rename
it.

The second issue is within TimeTransformer itself: it uses pandas, which we can't
ship—it's just too large. How can we drop pandas from the dependencies?

As you may remember, this object transforms any given array of dates into an array of
three numeric features: the time of the day, the day of the year, and the day of the week.
The first part of the question is how to execute that logic with NumPy. Luckily, every
DateTime object is just a large integer of seconds that have passed since midnight January
1, 1970, UTC. Therefore, all those operations can be viewed as a combination of subtraction,
division, and getting a reminder. We can use a hack of converting DateTime values to
different units and back. Consider the following code:

def day_of_week_num(dts):
 return (dts.astype('datetime64[D]').view('int64') - 4) % 7

def day_of_year_num(dts):
 return (dts.astype('datetime64[D]').view('int64') -
dts.astype('datetime64[Y]').astype('datetime64[D]').view('int64'))

def time_of_day_num(dts):

Serverless API Using Chalice Chapter 19

[379]

 return dts.astype('datetime64[s]').view('int64') -
dts.astype('datetime64[D]').astype('datetime64[s]').view('int64')

Similar to pandas implementations, all three functions will return the corresponding values
as numbers.

Great! But the TimeTransformer object still relies on pandas. One solution would be to
get rid of it completely—just use the preceding functions both in the application and in the
model training; after all, those operations are independent of the training set. This solution
is totally fine.

Alternatively, you might notice that TimeTransformer needs pandas to find DateTime
columns and operate on them. This means that we can store indices of the columns in the
same way we store column names and then use them if we get a NumPy array instead of a
DataFrame. Indeed, this is totally doable (see the repository for the full code). The best
part? We don't even need to retrain our model again—while our pipeline uses
the TimeTransform object under the hood, it does not require it to be identical to the one
used for training, as long as it has the same name and behaves similarly.

Finally, our ML model is ready to be served! Let's deploy the model and test it live, using a
URL like this:

<deployment_url>/predict/commercial?lat=40.636626&lon=-73.951694&date=2019-
06-08 00:00:09

We get a timeout. It seems that inference requires more operation memory. We could
change that via the AWS web console (there are tons of other options, too, such as the use
of environmental variables), or we could add a corresponding config
for lambda_memory_size to .chalice/config.json:

.chalice/config.json

{
 "version": "2.0",
 "app_name": "311predictions-v2",
 "stages": {
 "dev": {
 "api_gateway_stage": "api",
 "lambda_memory_size": 520
 },
 ""
 }
}

Serverless API Using Chalice Chapter 19

[380]

Redeploy it one more time. Now it works! See here:

$
<deployment_url>/predict/commercial?lat=40.636626&lon=-73.951694&date=2019-
06-08 00:00:09
{
 "status": "success",
 "estimated_time": 1.36
}

When we're still out of memory
We were able to shrink the size to just under the memory limit. However, it is not always
possible or desirable to do this. If our dependencies are complex and our files are large, we
have two more options:

First, the lambda can be just an entry point—it could invoke a Docker image (an
isolated virtual environment running somewhere else in the cloud), pass the
parameters there, and communicate the results back.
Alternatively—and this is a bit of a hack—we could download all the
dependencies in the same way that we downloaded our model: during runtime.
This data will be lost once the server is down, which will happen if a serverless
function is not triggered by anything. Redeployment can take a significant
amount of time, so it might make sense to try keeping the server running. All this
is an additional hassle, but luckily, it can be taken care of by another
package—Zappa (http:/ ​/ ​github. ​com/​Miserlou/ ​Zappa).

We won't do any of that in this book, but both of those options are available.

Let's now take a stab at using serverless for scheduled data pipelines.

Building a serverless function as a data
pipeline
So far, we have only used serverless functions as API endpoints, but they can serve in many
other ways as well. For example, they can be triggered to run for each new file uploaded to
a specific folder on S3, or scheduled to run at a specific time.

http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa
http://github.com/Miserlou/Zappa

Serverless API Using Chalice Chapter 19

[381]

Let's create one more application for data collection. We can specify that we need
the requests library in requirements.txt. We can also copy and paste
the _get_data function from Chapter 15, Packaging and Testing with Poetry and PyTest,
along with the resource and time columns. One part of the code that we are still missing is
that for uploading data to S3. Here is the code:

def _upload_json(obj, filename, bucket, key):
 S3 = boto3.client('s3', region_name='us-east-1')
 key += ('/' + filename)

 S3.Object(Bucket=bucket, Key=key).put(Body=json.dumps(obj))

Having all the necessary pieces, let's pull them together as one function. Here is the code:

from datetime import date, timedelta

def get_data(event):
 yesterday = date.today() - timedelta(days=1)

 data = _get_data(resource, time_col, yesterday, offset=0)
 _upload_json(data, f'{yesterday:%Y-%m-%d}.json', bucket=BUCKET,
key=KEY)

Finally, all we need now is to add a chalice decorator, @app.schedule('rate(1
day)'). Here, instead of the app.route decorator, we use app.schedule and define a
corresponding frequency. Here is how it will look as a whole:

import json
from datetime import date, timedelta
BUCKET, FOLDER = 'philipp-packt', '311/raw_data'
resource = 'fhrw-4uyv'
time_col = 'Created Date'
app = Chalice(app_name='collect-311')

def _upload_json(obj, filename, bucket, key):
 S3 = boto3.client('s3', region_name='us-east-1')
 key += ('/' + filename)

 S3.Object(Bucket=bucket, Key=key).put(Body=json.dumps(obj))

def _get_data(resource, time_col, date, offset=0):
 '''collect data from NYC open data
 '''
 Q = f"where=created_date between '{date:%Y-%m-%d}' AND '{date:%Y-%m-
%d}T23:59:59.000'"
 url =

Serverless API Using Chalice Chapter 19

[382]

f'https://data.cityofnewyork.us/resource/{resource}.json?$limit=50000&$offs
et={offset}&${Q}'
 r = rq.get(url)
 r.raise_for_status()

 data = r.json()
 if len(data) == 50_000:
 offset2 = offset + 50000
 data2 = _get_data(resource, time_col, date, offset=offset2)
 data.extend(data2)

 return data

@app.schedule('rate(1 day)')
def get_data(event):
 yesterday = date.today() - timedelta(days=1)
 data = _get_data(resource, time_col, yesterday, offset=0)
 _upload_json(data, f'{yesterday:%Y-%m-%d}.json', bucket=BUCKET,
key=FOLDER)

Once deployed, this function will run every day, collecting data for the previous date and
storing it as JSON in our S3 bucket. But can we go further and prepare medians for our
prediction model, automatically? Let's find out in the next section.

S3-triggered events
So far, we have written a lambda function that's driven by API requests or is scheduled to
be triggered. Now let's complete our application's data cycle by adding an S3-triggered task
that will compute the medians for each category every time a new dataset is collected—in
other words, once the scheduled task is finished.

In order to do so, we'll add one more operation to the same data collection application that
we've been working on:

First, let's redefine the median computation. The original code also used pandas,1.
so we have two options: use NumPy as we just did for the ML part, or use vanilla
Python. As our raw data collection doesn't need NumPy, let's stick with the
second option. Here is the no-dependency code for the medians:

from statistics import median
from datetime import datetime
parsestr = '%Y-%m-%d %H:%M:%S'

def _calc_medians(data):
 results = {}

Serverless API Using Chalice Chapter 19

[383]

 for record in data:
 ct = record["complaint_type"]
 if ct not in results:
 results[ct] = []
 spent = datetime.strptime(record['closed_date'], parsestr)
- datetime.strptime(record['created_date'], parsestr)
 spent = spent.seconds / 3600 # hours
 results[ct].append(spent)
 return {k : median(v) for k, v in results.items()}

Now we'll add two more functions:2.
One will check whether a new object fits the pattern for the data we're
interested in (the trigger will be executed on any file creation event in
the bucket).
The second one will pull the data using the requests library.

In both cases, the code is fairly trivial:

def _is_dataset(key):
 '''check if triggered by data we're interested in '''
 return ('311data' in key) and key.endswith('.json')

def _get_raw_data(bucket, key):
 r = rq.get(f'https://{bucket}.s3.amazonaws.com/{key}')
 r.raise_for_status()
 return r.json()

Finally, we can now pull all three functions together under one overarching3.
function. For data upload, we'll reuse the _upload_json function that we wrote
for the scheduled data collection:

MEDIANS_FOLDER = '311/'

def compute_medians(event):
 if _is_dataset(event.key):
 data = _get_raw_data(bucket=event.bucket, key=event.key)
 medians = _calc_medians(data)
 _upload_json(medians, 'medians.json', bucket=BUCKET,
key=MEDIANS_FOLDER)

Serverless API Using Chalice Chapter 19

[384]

Lastly, we need to add a decorator, setting the trigger. Here is how the code will4.
look as a whole:

def _is_dataset(key):
 '''check if triggered by data we're interested in '''
 return ('311data' in key) and key.endswith('.json')

def _calc_medians(data):

 results = {}
 for record in data:
 ct = record["complaint_type"]
 if ct not in results:
 results[ct] = []
 spent = datetime.strptime(record['closed_date'],
 '%Y-%m-%d %H:%M:%S')
 - datetime.strptime(record['created_date'],
 '%Y-%m-%d %H:%M:%S')
 spent = spent.seconds // 3600 # hours
 results[ct].append(spent)
 return {k : median(v) for k, v in results.items()}

def _get_raw_data(bucket, key):
 r = rq.get(f'https://{bucket}.s3.amazonaws.com/{key}')
 r.raise_for_status()
 return r.json()

@app.on_s3_event(bucket=BUCKET,
 events=['s3:ObjectCreated:*'])
def compute_medians(event):
 if _is_dataset(event.key):
 data = _get_raw_data(bucket=event.bucket, key=event.key)
 medians = _calc_medians(data)
 _upload_json(medians, 'medians.json', bucket=BUCKET,
 key=MEDIANS_FOLDER)

Chalice is capable of defining other events that would trigger your actions. Alternatively,
you can specify an event via the AWS web console, as it has more options. For example,
you can trigger your lambda by talking to Alexa—in fact, any conversation with Alexa that
you've had was running as a Lambda function!

Just a quick reminder—if you deployed your versions of API, especially the scheduler
pipeline, don't forget to stop them or you will start getting invoices in a few years.

Serverless API Using Chalice Chapter 19

[385]

Summary
In this chapter, we introduced you to serverless functions—a different approach to APIs
and computation in general. Serverless functions don't need maintenance, scale
automatically, are secure, and are simple to write. They may be a great option for
operations that don't need a huge amount of requests, or for when demand spikes
unpredictably. In addition to serving as APIs, lambdas can be scheduled with one line of
code or triggered by an external event, such as a new file landing in an S3 bucket. The
downside of serverless applications is that they have strict memory limitations that could
be a serious barrier for certain tasks. The response time could also be longer for the first
time after a long break—but there are ways to solve that issue to some extent.

As a practice exercise, we were able to recreate our 311 API endpoints as serverless
applications. In addition, we wrote two more functions for scheduled data collection and
the computation of medians. In other words, we used lambdas to recreate the functionality
we achieved in Chapter 17, Let's Build a Dashboard, and Chapter 18, Serving Models with a
RESTful API, together—all with serverless applications.

In the next chapter, we will learn about some best practices for using Python, a few issues
with using Python, and the performance of Python.

Questions
What does a serverless application mean?1.
What are the limitations of the serverless approach?2.
What are the benefits of serverless APIs?3.
What role does Chalice play in the development of a serverless application?4.

Further reading
Serverless Architectures with AWS by Mohit Gupta, published by Packt Publishing (https:/ ​/
www.​packtpub.​com/ ​networking- ​and- ​servers/ ​serverless- ​architectures- ​aws).

https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws
https://www.packtpub.com/networking-and-servers/serverless-architectures-aws

20
Best Practices and Python

Performance
After going through the preceding chapters and learning various things about Python, we
have come to the last chapter. Here, we want to discuss some general strategies that you
can implement and how to write code that works faster, is cleaner, and is easier to
maintain. These approaches can be used for data-oriented code—or any other type of code,
for that matter.

This chapter is split into three parts. The first section will discuss how you can analyze and
speed up your code, the second section will cover best practices for maintaining your code
so that you'll code faster and cleaner, and in the third and final section, we'll go through a
brief overview of the non-Python technologies that you might find useful for your projects.

The following topics will be covered in this chapter:

Ways to monitor performance and identify bottlenecks
Efficient computations with NumPy
Using specialized algorithms
Computing on many cores—or multiple machines—with Dask
Speeding up code by using LLVM with Numba

Adopting best practices for coding
Setting and following formatting standards with black
Measuring code quality with Wily
Advanced testing with Hypothesis

Tools and technologies beyond this book
Other flavors of Python
Docker
Kubernetes

Best Practices and Python Performance Chapter 20

[387]

Technical requirements
The code for this chapter can be found in this book's GitHub repository (https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​Python- ​by- ​Building- ​Data- ​Science- ​Applications), which is
stored in the Chapter20 folder. The code requires an array of packages to be installed,
including the following:

numpy

scipy

numba

dask

black

wily

hypothesis

line_profiler

python-graphviz and graphviz

Speeding up your Python code
In the previous chapter, we talked about different best practices, approaches, and ways to
boost code performance. As a toy example for performance, we'll build our own KNN
model, which we used in Chapter 13, Training a Machine Learning Model. As a reminder,
KNN is a simple ML model that predicts the target variable by identifying K closest records
in the training set, then taking a mode (for classification) or weighted average (for
regression) of the target variable. Obviously, there are quite a few implementations of KNN
already, and so we will use one as an example.

For starters, let's write a naive implementation; it has already been fairly optimized through
the use of NumPy commands. First, let's import all the Euclidean distance measuring
functions and define a function to get the N-closest records. Take a look at the following
code:

from sklearn.metrics.pairwise import euclidean_distances

def _closest_N(X1, X2, N=1):
 matrix = euclidean_distances(X1, X2)
 args = np.argsort(matrix, axis=1)[:, :N]
 return args

https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications
https://github.com/PacktPublishing/Learn-Python-by-Building-Data-Science-Applications

Best Practices and Python Performance Chapter 20

[388]

Here, we pass two datasets with the same number of features and pass the N argument.
First, a matrix of distances between the two datasets is computed. From that, for each row
(the data point in the first dataset) we sort the columns (the data points in the second
dataset), by their distance, take the N closest ones, and return their IDs. This function is the
main engine of an algorithm.

Now, we can write an estimator class, which will store X, y, and N arguments, and will
execute the preceding function on the predict method, sklearn-style. Here is the code:

class NearestNeighbor:
 X = None
 y = None
 N = None
 def __init__(self, N=3):
 self.N=N
 def fit(self, X, y):
 self.X = X
 self.y = y
 def predict(self, X):
 closest = _closest_N(X, self.X, N=self.N)
 result = pd.Series(np.mean(np.take(ytrain.values, closest)
 , axis=1))
 result.index = X.index
 return result

Note that even this naive model is vectorized (since we use pandas) and uses a specialized
function, euclidean_distances, from sklearn. Let's see how it performs. For this, we'll
use a sample of 2,500 records from the 311 complaints dataset we used previously. Here is
the measurement:

>>> %%timeit
>>> naiveKNN.predict(Xtest)
1.43 s ± 78.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

It predicts 1.43 s on average, which is quite a lot!

Premature optimization is the root of all evil—it usually results in bad, fragile code. In
order to avoid that, we need to understand what part of the code we should tinker with. It
is a bad idea to optimize before you know which specific part of your code is slow. If we
run lprun for the predict method, it is clear that 99.9% of the time is taken up by the
_closest_one function. Therefore, we should focus on this function alone.

Best Practices and Python Performance Chapter 20

[389]

Now, if we run the same lprun again for the _closest_one function, we'll get the
following:

>>> %lprun -f _closest_one naiveKNN.predict(Xtest)

Timer unit: 1e-06 s

Total time: 1.44122 s
File: <ipython-input-124-90edea23066c>
Function: _closest_N at line 4

Line # Hits Time Per Hit % Time Line Contents
==
 4 def _closest_N(X1, X2,
N=1):
 5 1 196149.0 196149.0 13.6 matrix =
euclidean_distances(X1, X2)
 6 1 1245072.0 1245072.0 86.4 args =
np.argsort(matrix, axis=1)[:, :N]
 7 1 1.0 1.0 0.0 return args

As you can see, approximately 86% of the time is taken up by sorting, while the remaining
14% is taken up by Euclidean distance computations.

Rewriting the code with NumPy
NumPy is a library that's used for fast numeric computation and serves as a foundation for
Python's scientific ecosystem. It's also the backbone for SciPy and Pandas. Since we have
slow, numeric code, NumPy is a great place to start with your optimization attempts.

The algorithm is mostly written in NumPy already—we couldn't perform a true closest-
N search in pandas since it doesn't support multidimensional indexing. However, there is
one low-hanging fruit: our naive model uses argsort to pick the N closest records, which
does sort the whole dataset. We don't need sorting, even for those N closest ones—let alone
any other element. Here, we can swap the np.argsort method with np.argpartition.
This function does exactly what we want—it puts the N smallest distances first (no matter
the order) and keeps all the rest to the right:

def _closest_N2(X1, X2, N=1):
 matrix = euclidean_distances(X1, X2)
 return np.argpartition(matrix, kth=N, axis=1)[:, :N]

Best Practices and Python Performance Chapter 20

[390]

To ensure that the functions are interchangeable, let's write a simple test function:

def _test_closest(f):
 x1 = pd.DataFrame({'a':[1,2], 'b':[20,10]})
 x2 = pd.DataFrame({'a':[2,1, 0], 'b':[10,20, 25]})

 answer = np.array([[1,0, 0]]).T
 assert np.all(f(x2, x1, N=1) == answer)

_test_closest(_closest_N2)

Feel free to add more test cases (this is where you can leverage PyTest suites)!

Now, we can create a new version of the KNN by using this new function:

class numpyNearestNeighbour(NearestNeighbor):
 def predict(self, X):
 closest = _closest_N2(X, self.X, N=self.N)
 return np.mean(np.take(ytrain.values, closest), axis=1)

Note that we also got rid of pd.Series. This will speed up the algorithm, but you'll
probably have to wrap values to the series outside. Let's get our customers to decide on
that.

Now, let's see how that version performs on the same dataset:

>>> numpyKNN = numpyNearestNeighbour(N=5)
>>> numpyKNN.fit(Xtrain.values, ytrain.values)

>>> %%timeit
>>> _ = numpyKNN.predict(Xtv)

448 ms ± 14.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

We went from 1.43 seconds to 448 ms—that's a boost of 69%! Let's look at the distribution
by line:

>>> %lprun -f _closest_N2 numpyKNN.predict(Xtv)

Timer unit: 1e-06 s

Total time: 0.440021 s
File: <ipython-input-134-29fa1851d880>
Function: _closest_N2 at line 1

Line # Hits Time Per Hit % Time Line Contents
==
 1 def _closest_N2(X1, X2, N=1):

Best Practices and Python Performance Chapter 20

[391]

 2 1 212103.0 212103.0 48.2 matrix =
euclidean_distances(X1, X2)
 3 1 227918.0 227918.0 51.8 return
np.argpartition(matrix, kth=N, axis=1)[:, :N]

This time, it seems that the matrix and partition take approximately the same time (this will
change for larger datasets, though). To summarize, vectorizing the code with NumPy
allowed us to boost our computations by 68%—all while making our code cleaner and more
expressive. For most tasks, NumPy remains the first solution to try out—and often, the
result is good enough already.

NumPy is essentially a foundation and industry standard for Python
numeric computations. Many libraries are based on NumPy or interact
with it. In fact, modern NumPy does a great deal of work defining the
interface, allowing other libraries to plug in the actual computations and
be interchangeable. One example of that is CuPy—a GPU-based
alternative for NumPy with a near-identical interface.

If you want to dive deeper into NumPy-based computations, take a look at these resources:

The "NumPy" Approach, by James
Powell: https://www.youtube.com/watch?v=8jixaYxo6kA
NumPy Essentials, by Leo (Liang-Huan) Chin and Tanmay Dutta: https:/ ​/​www.
packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​numpy- ​essentials

Specialized data structures and algorithms
Another (arguably the best one, in general) way to make things more performant is to make
use of the right data structures and algorithms—in other words, we need to design our
code better and use the right tools for the job in the first place. In our case, any spatial
query, especially for a large dataset, will gain from the use of a spatial index. Essentially,
this creates a hierarchical index, based on the spatial distribution itself. It allows it to
measure the distances within a small subset of records. Let's try to make use of it in our
model:

from scipy.spatial import cKDTree

class kdNearestNeighbor:
 _kd = None
 y = None
 def __init__(self, N=3):
 self.N=N
 def fit(self, X, y):

https://www.youtube.com/watch?v=8jixaYxo6kA
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials
https://www.packtpub.com/big-data-and-business-intelligence/numpy-essentials

Best Practices and Python Performance Chapter 20

[392]

 self._kd = cKDTree(X, leafsize=2*self.N)
 self.y = y

 def predict(self, X):
 d, closest = self._kd.query(X, k=self.N)
 return np.mean(np.take(ytrain.values, closest), axis=1)

As you can see, now, the code is even simpler—cKDTree takes care of most of the actual
logic, behind the scenes. Note that it also has a fair amount of parameters, which we could
tune for additional performance gain on a specific dataset. But how does it perform? Let's
take a look at the following code:

>>> kdKNN = kdNearestNeighbor(N=5)
>>> kdKNN.fit(Xtrain.values, ytrain.values)

>>> %%timeit
>>> _ = kdKNN.predict(Xtv)
11.3 ms ± 237 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

11.3 ms is less than one percent of our initial performance! Of course, there is a small trick
to this: cKDTree creates an index during the fit. Due to this, the fit method will be
considerably longer to run, but most of the time, this is a trade-off we're happy to make.

Here are a couple of resources on spatial indexes and other algorithms and data structures
in Python:

Spatial Range Queries Using Python In-Memory Indices, by Alexander
Müller: https:/ ​/ ​www. ​youtube. ​com/​watch? ​v= ​_​95bSEqMzUA

Python Data Structures and Algorithms, by Benjamin Baka: https:/ ​/​www.
packtpub. ​com/ ​application- ​development/ ​python- ​data- ​structures- ​and-
algorithms

Dask
So far, everything we've run was run on one CPU, sequentially—with the exception of
some ML models and transformations, which support the number of jobs (parallel
executors); for example, cKDTree supports multiprocessing, if needed.

The caveat here is the overhead—in order to run a multicore process, a lot of additional
memory needs to be allocated and data needs to be copied; it is essentially a fixed cost.
Because of that, most of the tasks we ran wouldn't benefit from multiple cores, except for
cases where data is very large and computations are fairly parallelized. On the flip side,
once we run a task on multiple cores, spreading it across multiple machines is simple.

https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.youtube.com/watch?v=_95bSEqMzUA
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-data-structures-and-algorithms

Best Practices and Python Performance Chapter 20

[393]

While the most typical task for Dask to deal with is heavy computation on
multiple cores or machines, it also allows you to run computations nicely
on data that wouldn't fit in a computer's memory (by loading and
operating chunks of data, one per core, at a time). Thus, in theory, it can
be used to run some analysis on small IoT devices—especially given that
it also supports streaming.

Most of the time, using multiple cores—or multiple machines—will not boost the
computations you're able to run on the local machine, loading all the data in memory.
However, if your data is big enough, you have to use chunks, and computation will take
hours to run. Due to this, using distributed computation could be your only choice
(obviously, assuming the bottleneck is not bad code).

For that, we need to introduce Dask—a system that allows you to run heavy computations
with big datasets on multiple cores of one machine, or on a cluster of machines. The best
part (for us) of Dask is that it emulates the behavior of Pandas or NumPy on the surface. In
many cases, Dask's dataframe can be used as if it was a Pandas dataframe—except that it is
spread across cores and machines. One big difference in using Dask is that no computation
is executed until you ask it to compute.

Let's try pulling the same data we were using for 311 predictions. Since Dask is meant to be
used with large datasets and multiple files, it can handle path patterns—we don't need to
glob explicitly (also, it can glob on the S3 bucket and read from there). To do so, we'll
import the dask dataframe, specify a path, pattern, using an asterisk (wildcard) to
identify parts of the path that vary. Finally, we will use the read_csv method to read
those, just like we'd do with pandas (we do this because Dask runs Pandas' read_csv
method under the hood here). Setting blocksize to None here explicitly makes Dask use
one worker (core) per file. We also explicitly set Dask to use processes (multicore)
scheduler. Here's what this looks like in code:

from dask import dataframe as dd
import dask
dask.config.set(scheduler='processes')

As you will notice, the code won't take long to execute—this is because it didn't actually
run anything. For now, df is just a schedule object that will execute once we call
a compute() method. Let's continue coding as if it was a dataframe:

df = df[df.complaint_type.str.lower().str.contains('noise')]
cols = ['x_coordinate_state_plane', 'y_coordinate_state_plane',
'created_date', 'closed_date', 'complaint_type', 'open_data_channel_type']

df = dg.dropna(subset=cols)

Best Practices and Python Performance Chapter 20

[394]

X = df[['x_coordinate_state_plane', 'y_coordinate_state_plane']]
X['dow'] = df['created_date'].dt.dayofweek
X['hour'] = df['created_date'].dt.dayofweek
X['doy'] = df['created_date'].dt.dayofyear

Like before, the code didn't take long to execute—for the same reason. The tasks are
combining, though, and are forming a directed graph. We can cross-check that graph as
follows:

X.visualize(filename='chart.png')

This is what we'll get:

Best Practices and Python Performance Chapter 20

[395]

Here, each separate graph represents a chunk that could live on a separate CPU, while each
node represents an operation. It is very useful to cross-check those graphs, especially for
complex operations (think groupby and similar). Once you're ready, hit compute:

data = X.compute()

The best part is that while the preceding code will execute on the local machine, it is easy to
deploy a cluster of machines on the cloud. Once that is done, Dask can be configured to
spread your computation to those machines, with no changes needing to be made to the
code on Dask's side (obviously, it will benefit from having data stored in storage
that's accessible to all the machines in the cluster).

Dask is a Python-based framework for big data computation. Its more
famous alternative is Spark, and the PySpark package for Python. Spark is
a great tool and can scale easily. At the same time, the core code of this
technology is written in Java, and so you'll have to be prepared to debug
Java code. Dask, on the other hand, is 100% Python and has familiar APIs,
so you won't need to change that much code.

For more information on Dask, take a look at Scalable Data Analysis with Dask,
by Mohammed Kashif: https:/ ​/​www. ​packtpub. ​com/ ​web- ​development/ ​scalable- ​data-
analysis-​python- ​dask- ​video

Dask-ML
Dask is not necessarily a good way to scale up your model training—most models require
interaction, and therefore should stay within one machine. At the same time, most sklearn
models can work on multiple CPUs on their own, and so Dask isn't required.

With that being said, there are plenty of cases when using Dask could be beneficial. For
that, there is an additional layer over Dask—Dask-ML. Dask-ML helps connect Dask to
sklearn and other ML libraries (for example, XGBoost and TensorFlow), thereby allowing
you to run some parallelizable models (linear models, for example, or some clustering
algorithms), execute hyperparameter searches with different hyperparameters being
executed on different servers, or connect distributed datasets to large modules, such as
XGBoost.

https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video
https://www.packtpub.com/web-development/scalable-data-analysis-python-dask-video

Best Practices and Python Performance Chapter 20

[396]

Numba
In this final subsection, we want to talk about Numba. It is probably one of the hottest ways
to speed up your Python code with almost no changes. Numba compiles Python
code—vanilla Python or NumPy-based—into C code using LLVM. By doing so—and by
leveraging a suite of optimizations along the way—it drastically increases the speed of the
code, especially if you use a lot of loops and NumPy arrays.

The great thing about Numba is that, in the best-case scenario, it will improve your code by
adding a simple decorator over your function or class—that is, if you're lucky. If you're not,
you'll have to work through the documentation and somewhat obscure error messages and
experiment with datatype annotations. In some cases, Numba could be more performant
than NumPy! As if that isn't enough, Numba can also compile your code for CUDA,
leveraging the heavy performance of GPUs—which are often an order of magnitude faster
than CPUs!

Here is a simple example. The compute_distances function resembles the behavior
of euclidean_distances and performs fairly well:

def distance(p1, p2):
 distance = 0
 for c1, c2, in zip(p1,p2):
 distance += (c2-c1)**2
 return np.sqrt(distance)

def compute_distances(points1, points2):
 A = np.zeros(shape=(len(points1), len(points2)))
 for i, p1 in enumerate(points1):
 for j, p2 in enumerate(points2):
 A[i, j] = distance(p1, p2)
 return A

%timeit compute_distances([(0, 0)]*100, [(1,1)]*200)

The performance (output) of the preceding code snippet is as follows:

>>> 43.8 ms ± 1.46 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

However, once we add a decorator to each function, performance increases more than
tenfold:

@jit()
def distance(p1, p2):
 distance = 0
 for c1, c2, in zip(p1,p2):
 distance += (c2-c1)**2

Best Practices and Python Performance Chapter 20

[397]

 return np.sqrt(distance)

@jit()
def compute_distances(points1, points2):
 A = np.zeros(shape=(len(points1), len(points2)))
 for i, p1 in enumerate(points1):
 for j, p2 in enumerate(points2):
 A[i, j] = distance(p1, p2)
 return A

%timeit compute_distances([(0, 0)]*100, [(1,1)]*200)

The performance (output) of the preceding code snippet is as follows:

>>> 3.02 ms ± 101 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

On that run Numba shows a deprecation warning—future versions will require to specify a
list type; in the current version it works as it is.

In our experience, Numba is great for non-trivial, multi-nested computations, where it is
easier to write in pure Python (and optimize with Numba) than in NumPy. At the same
time, it isn't very mature code (as NumPy is), and different changes occurring in the API
happen fairly often.

In this section, we covered a few ways to improve the performance of Python code. Starting
from a naive, slow, but easy algorithm implementation, we took on different angles in
order to make it faster, such as using vectorized C-based loops, specific data structures that
are efficient for the task, running operations on multiple cores or multiple machines, and
using modern compilers. Some of those solutions can and should be combined. All of them
have their own benefits, limitations, and requirements—larger memory, more CPUs and
computers, specific knowledge, and so on. Don't rush to implement any optimization
before you're sure you need it. Once you are sure, though, a wide range of possibilities is
available.

Numba is not the only way to compile Python into a more performant C
version. In fact, there are quite a few other ways to do this. Among the
most popular ones is Cython. The idea behind this package is somewhat
similar to Numba, but there is no LLVM involved, and code is compiled
to C directly—by doing this, you can store and use the compiled code. In
addition, Numba can be compiled to CUDA and run on a GPU!

Best Practices and Python Performance Chapter 20

[398]

For more information on Numba, check out the following resources:

Numba—Tell Those C++ Bullies to Get Lost, SciPy 2017 Tutorial, Gil Forsyth and
Lorena Barba: https:/ ​/​www. ​youtube. ​com/ ​watch? ​v=​1AwG0T4gaO0

Accelerating Python with the Numba JIT Compiler, SciPy 2015, Stanley
Seibert: https:/ ​/ ​www. ​youtube. ​com/ ​watch? ​v=​eYIPEDnp5C4

Now, let's talk about an important topic we've ignored so far—concurrency.

Concurrency and parallelism
Concurrency is the simultaneous execution of multiple pieces of code. Theoretically,
concurrency can significantly increase the speed of code execution and it is widely used in
software. For example, tasks that require some sort of big loop that does exactly the same
operation many times with no interaction between those operations (for example,
vectorized operations on dataset columns) are often called embarrassingly parallel and
present a good target for concurrent execution. That being said, it has its limitations and
suits some tasks (for example, where a number of tasks are independent of each
other) better than others—read about Amdahl's law for some theoretical background.

Different types of concurrency
There are various ways to achieve concurrency in Python, including threads, tasks,
processes, and so on. First, while we say that a concurrent task occurs simultaneously, this
is not always the case. In fact, threads and tasks don't really run concurrently—instead, the
CPU can switch between different threads really fast so that they seem to be running in
parallel, but it always executes one thread at a time. This is ensured by part of the Python
interpreter called Global Interpreter Lock, or GIL. Threading can still boost your code
execution, which it does by switching to other threads when the CPU is waiting for data to
be loaded from the network—we'll talk about that in a minute.

Even then, there are multiple ways to execute code on one CPU. Python's built-
in threading library allows the operating system to stop threads and switch between
them—the code itself doesn't need to do anything. The problem with threading, in general,
is that the OS can stop threads at any moment—even in the middle of writing or computing
data—so you should be extremely careful when sharing any data between threads and not
use it anywhere until all of the computations are complete. The problem of shared data is
often referred to as thread safety.

https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4
https://www.youtube.com/watch?v=eYIPEDnp5C4

Best Practices and Python Performance Chapter 20

[399]

Another built-in library, asyncio (one that allows asynchronous functions, which we
touched on in Chapter 18, Serving Models with a REST API), works slightly
differently—synchronous tasks declare that they are done or blocked, in which case another
task will start (or continue) running. Thus, tasks cannot be switched while the process
occurs until you allow that from within the task.

However, you can run parts of your code truly in parallel (this feature is usually
called parallelism). There are two ways to do this. First, we can leverage other CPUs on
your machine—many modern computers have at least two or four CPUs. In order to do
that, you can use the built-in multiprocessing library, or any code/library built on it (for
example, Dask can run on multiple CPUs of one machine). While this approach allows you
to actually run in parallel, it has a large overhead of copying data and orchestrating the
process. Because of that fixed cost, multiprocessing generally does not make sense, except
for computationally heavy operations.

Lastly, yet another option is to run code simultaneously on many machines. This option
was rarely feasible for ordinary developers, even a few years ago, but with the modern
cloud-based infrastructure that we have and software tools such as Kubernetes (which we'll
discuss later) that are quite accessible and relatively cheap, this is possible. There is no
built-in library for that, but frameworks such as Dask and PySpark can help. Running on
multiple machines has the same issues as multiprocessing, to the power of ten—deploying
machines, loading data, orchestrating tasks, then pulling results together is a huge
overhead! But, for better or for worse, there is simply no alternative for huge computations
with large datasets that wouldn't fit into one machine's memory. The good news is
that, once running a cluster, you can easily add more and more machines when
needed—there is virtually no limit (except for the price, of course).

Two types of problems
Now, let's get back to the task at hand. There are two general types of problems
concurrency can solve—CPU-bound and I/O-bound tasks. As you can guess from their
names, CPU-bound tasks require more computing power than one CPU can provide. For
obvious reasons, this kind of problem can't be solved by threading or asynchronous
execution, and so multiprocessing and cluster computing are our only options.

The second type, I/O-bound, is limited by the input/output (for example, it has to wait for
the database or network). Network resources are usually way slower than the CPU, so in
this case, our computer just waits for data to come. This is where threading and
asynchronous execution shines.

Best Practices and Python Performance Chapter 20

[400]

Before you start rewriting your code
Don't rush into rewriting your code in a concurrent fashion just yet. There are plenty of
reasons not to write concurrent code. Let's look at a few reasons here:

First of all, don't do it if you don't need that boost—any type of concurrency adds
code complexity and makes debugging exponentially harder.
Second, the code for many specific computation-demanding tasks is already
written. For example, multiple sklearn models support multicore
execution—you just need to specify the number of CPUs to use. Some solutions,
such as Numba, can release the GIL for specific operations, without large code
changes being made.
Some important packages do not support concurrent operations—asynchronous
execution in particular—such as sqlalchemy and most database access tools in
general.

All in all, make sure you really need your code to run concurrently or in parallel before
investing your time and effort. As cool as it sounds, concurrent code is notoriously difficult
and takes significantly more time to develop, optimize, and maintain.

If you want to get a deeper understanding of concurrency in Python (which is a very wide
topic), we can recommend the following resources:

Curious Course on Coroutines and Concurrency, by David Beazley: https:/ ​/​www.
youtube. ​com/ ​watch? ​v=​Z_ ​OAlIhXziw

Concurrent Execution (https:/ ​/ ​docs.​python. ​org/ ​3/​library/ ​concurrency. ​html)

PEP 554 (currently in draft status) proposes to use sub interpreters
(isolated instances, controlled by the main interpreter process) to allow
better multiprocessing without GIL getting in the way. To learn more
about this proposal, read the PEP: https:/ ​/​www. ​python. ​org/ ​dev/ ​peps/
pep-​0554/ ​#about- ​subinterpreters.

Speaking of maintenance, let's talk about the other side of the same performance coin —
apart from code performance, there is coding performance. On many occasions, the ability
to write code faster, add changes quickly, and introduce fewer bugs could be even more
valuable than the speed of code itself. Thus, let's talk about best practices when it comes to
coding and tools that will help you be a better developer.

https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://www.youtube.com/watch?v=Z_OAlIhXziw
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/concurrency.html
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters
https://www.python.org/dev/peps/pep-0554/#about-subinterpreters

Best Practices and Python Performance Chapter 20

[401]

Using best practices for coding in your
project
In this section, we'll switch to another, although adjacent, topic—best practices for
maintaining good quality code. Here, we will define "good" in a broad way—as dry,
concise, expressive, easy to read, change, and build upon. To illustrate this topic, we will
review the wikiwwii package we built in Chapter 15, Packaging and Testing with Poetry and
PyTest.

All the changes we make to the package throughout this chapter are
stored on the best-practices branch in this book's GitHub repository.

Code formatting with black
First of all, let's talk about formatting. It may sound like a minor issue—and it generally
is—but formatting won't affect your code performance. In a team, however, formatting
matters. It improves readability and allows quicker reading through the code; good
formatting highlights both typical and non-trivial areas of the code, helping to skim
through trivial parts and focus on what's important. At the same time, formatting, if not
automated, takes time and can cause arguments within a team, given that PEP8 does not
have strict rules on any single aspect, and there are always matters of taste.

Now, there are quite a few tools that help with formatting—and statically finding potential
issues in code—including wrong syntax, non-used variables, and so on. These tools are
called linters. Arguably the most popular linter for Python is flake8. Under the hood, it
combines three linters:

PyFlake 8
pycodestyle (formerly PEP8)
McCabe

Best Practices and Python Performance Chapter 20

[402]

Another popular one is pylama, which combines seven linters, including the preceding
ones, under the hood (it helps with linting docstrings, too!). Among others, there is Bandit,
Radon, and MyPy, which specifically check code versus the given type hints. The good
news is that many IDEs and code editors support running linters in the background,
highlighting potential errors while you code. In order to use one in VS Code, just go to the
command palette and type select linter—VS Code will offer you a list of supported
ones and will install and start running the chosen one all by itself.

You should definitely use linters! However, they were designed to inform you, and can be
configurable (for example, to ignore specific errors). To automate the process further—and
make everyone on the team follow the same set of formatting rules—we will
introduce black.

black is designed to be a deterministic, automated formatter. It is easy to set up as a pre-
commit hook (in other words, it will run automatically before every Git commit). Therefore,
you don't need to change your personal formatting habits (or lack thereof)—once the code
is ready to be committed, black will take over and process everything. The best part is that
black is not configurable, so there is no room for debates in the team regarding which
formatting style is the best.

Let's check whether we can improve the readability of our wikiwwii package. black has a
diff option and will show which files will be changed without changing them. Let's run
this first:

In the repository root folder, type the following in the Terminal:1.

black ./wikiwwii --diff

Quite a few lines were affected—black replaces all the single quotation marks
with doubles, makes sure that the comment symbol is separated from the code by
two whitespaces, and so on and so forth. Where possible, it keeps elements on the
same line—if not, it will keep every argument on the same indentation level.

Best Practices and Python Performance Chapter 20

[403]

Let's run that without --diff to reformat our code. Feel free to revise all the2.
changes via VS Code:

The preceding is a diff visualization (available via the GIT tab) of the file before
and after black formatting (on the left, red lines and characters with a minus sign
near the line number were removed/modified, while green ones with the plus
sign on the right were added or changed).

I think you'll agree that those changes make sense—some of them are more
important than others, but still, it definitely looks better than it did before.

Best Practices and Python Performance Chapter 20

[404]

Now, how could we set that to run automatically? The easiest way is to leverage3.
another package that deals with GitHub hooks, called pre-commit. In order to
use it, we'll create a new file in the repository's root and name it .pre-commit-
config.yaml. Inside, type the following settings:

repos:
- repo: https://github.com/python/black
 rev: stable
 hooks:
 - id: black
 language_version: python3.7

With that setting in place, we can run pre-commit install, which will "deploy"
the preceding settings into a hook.

Finally, we can set a few settings that black accepts. As per the developers'4.
recommendation, it is better to set that up via the pyproject.toml file:

[tool.black]
line-length = 88
target-version = ['py37', 'py38']
exclude = '''
/(
 \.eggs
 | \.git
 | \.hg
 | \.mypy_cache
 | \.tox
 | \.venv
 | \.dvc
 | _build
 | buck-out
 | build
 | dist
)/
'''

Now, everything should be in place. Let's try committing the changes.

For the first run, the black hook will take a few seconds to download and run. From now
on, if the code is not formatted on a Git commit, it will be reformatted, and the commit
process will halt (so that you can check the commit results). Once you feel safe to proceed,
commit one more time, and you're all good. The best part is that once this code is on
GitHub, every collaborator will have to format with those exact settings!

Best Practices and Python Performance Chapter 20

[405]

Lastly, we want to add black to our development dependencies in the
pyproject.toml file so that our fellow developers get black as part of their development
environment automatically:

[tool.poetry.dev-dependencies]
pytest = "^3.0"
pytest-cov = "^2.7"
pytest-azurepipelines = "^0.6.0"
black = "^19.3"

Don’t forget to run poetry add black and poetry update. For more on black (or,
rather, the motivation behind it), please check out this video from PyCon 2019 by Łukasz
Langa, the creator of black: https:/ ​/​www. ​youtube. ​com/​watch? ​v=​ia19n_ ​yK4Qs.

Good code formatting is important, and settling on one style within the team is even more
so. But what are the other dimensions of good code? And, more importantly, how can we
measure them? That's what we'll talk about in the next section.

Measuring code quality with Wily
So far, we've figured out how to keep code formatted, but is this the only factor when it
comes to code quality? Of course not; in fact, there are plenty of abstract metrics to take into
consideration when it comes to the quality of code, such as the following:

Lines of code (the fewer lines there are, the fewer bugs there will be).
Cyclomatic complexity, which counts the number of logical branches in the code;
for each if/else loop, or another indentation block, complexity grows by one.
Maintainability index—a measurement that mixes cyclomatic complexity, lines of
code, and the number of variables.

But how are those metrics useful? Every task is different, and there are problems that
require code that's complex and hard to maintain. Therefore, we shouldn't be too serious
when it comes to comparing metrics across different code bases. With that being said, it is a
great idea to track metrics over the same code base, measuring trends. Often, those metrics
can highlight problematic areas—or problematic new code—and spur a conversation, and,
perhaps, critical rethinking.

https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs
https://www.youtube.com/watch?v=ia19n_yK4Qs

Best Practices and Python Performance Chapter 20

[406]

To track our maintainability metrics over time, we'll use a wily package. First, we'll have to
build a cache of all the previous commits. It will take a couple of seconds for wikiwwii to
do this, but for larger datasets, it could take longer:

wily build wikiwwii

Now, we can measure the code's quality via a table, or by drawing a plot:

wily report wikiwwii cyclomatic.complexity -n 10

>>> --------History for ('cyclomatic.complexity',)------------
╒════════════╤══════════════╤════════════╤═══
══════════════════════╕
│ Revision │ Author │ Date │ Cyclomatic Complexity │
╞════════════╪══════════════╪════════════╪═══
══════════════════════╡
│ 865a172 │ Philipp Kats │ 2019-07-01 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ 4ff4c88 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ 537bca7 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ 462c514 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ f2fee0f │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ a46ff3a │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ e5eae97 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ 0be3db4 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ fd36181 │ Philipp Kats │ 2019-06-06 │ 5.3 (0.0) │
├────────────┼──────────────┼────────────┼───
──────────────────────┤
│ cd2ff2a │ Philipp Kats │ 2019-06-06 │ 5.3 (-1.92222) │
╘════════════╧══════════════╧════════════╧═══
══════════════════════╛

Best Practices and Python Performance Chapter 20

[407]

Since our package is very young, not many changes have to be made. We won't want to
check this report every time; instead, we'd rather automate this check and ensure we're not
decreasing the code's quality. For that, there are two ways to achieve that:

First, wily diff will show differences between the current version of the code
and the previous commit; it is a good idea to check code quality throughout your
work.
Second, we can integrate Wily as a pre-commit hook, similar to how we made it
with black; we'll start by adding a corresponding config to the .pre-commit-
config.yaml file, just below the black settings:

- repo: local
 hooks:
 - id: wily
 name: wily
 entry: wily diff
 verbose: true
 language: python
 additional_dependencies: [wily]

Now, we will rerun pre-commit install. Finally, it is a good idea to add wily as a dev-
dependency to poetry with poetry add wily and check the pyproject.toml file:

[tool.poetry.dev-dependencies]
pytest = "^3.0"
pytest-cov = "^2.7"
pytest-azurepipelines = "^0.6.0"
black = "^19.3"
wily = "^1.12.2"

With that, let's commit our new changes. Now, there are now two pre-commit processes.

Writing tests with hypothesis
Finally, we're going to go back to a topic we've already covered—unit tests. Unit tests are
very important; they will give you peace of mind during development—you really don't
want to play a whack-a-mole game with your bugs.

Best Practices and Python Performance Chapter 20

[408]

Now, testing a data-heavy application is hard. Depending on complex datasets, data
structures expose us to dozens of rare, but possible, quirks and edge cases. Often, we don't
even need to think of those possibilities, instead focusing on the datasets we have at hand.
For example, any function that operates on a dataframe should deal (one way or another)
with an empty dataframe, the dataframe of a wrong datatype, a NumPy array, a dataframe
of null values, and so on.

One approach to mitigate this problem is to use pre-generated suites of tests that are
focused on quirks and possible issues of specific data structures.

To illustrate this idea with an example, let's use hypothesis, as follows:

Let's play in a sandbox environment of a Jupyter Notebook. We'll start by1.
importing all the necessary pieces:

from hypothesis.strategies import integers, randoms, composite
from hypothesis.extra.pandas import series
from hypothesis import given, strategies as st

Now, we will define a custom strategy (a sample generator). Consider the2.
following code. Here, we are synthetically creating a series of strings that
resemble the ones from the Wikipedia entry—they do have numbers and
keywords to parse:

units = [
 ' men',
 ' guns',
 ' tanks',
 ' airplanes',
 ' captured'
]

def generate_text(values, r):
 r.shuffle(units)
 result = ''
 for i, el in enumerate(values):
 result += str(el)
 result += (units[i] + ' ')
 return (values, result.strip())

StrSintetic = st.builds(generate_text,
 st.lists(st.integers(min_value=1, max_value=2000),
 min_size=1, max_size=5),
 st.randoms())

SyntSeries = series(StrSintetic)

Best Practices and Python Performance Chapter 20

[409]

Now, we can pass SyntSeries as a sample value for our tests:3.

@given(SyntSeries)
def test_parse_casualties_h(s):
 from wikiwwii.parse.casualties import _parse_casualties

 values = _parse_casualties(s)
 assert (values.sum(1) > 0).all(), values

A new sample will be generated every time. It won't be completely random,
however — strategies memorize previous examples—and failed tests—and will
start with the values that failed on the previous runs, and new examples if
everything prior passed. This particular test has passed.

Just to illustrate, let's add an explicit case of an empty string—it will be raised.4.
Parsing the empty strings will result in a zero value sum:

@given(SyntSeries)
@example(pd.Series(["", ""]))
def test_parse_casualties_h(s):
 from wikiwwii.parse.casualties import _parse_casualties
 values = _parse_casualties(s)

The output on adding an explicit case of an empty string is as follows:

> assert (values.sum(1) > 0).all(), values.to_string()
E AssertionError: killed wounded captured tanks airplane guns ships
submarines
E 0 0.0 0 0 0 0 0 0 0
E 1 0.0 0 0 0 0 0 0 0
E assert False

As we can see, this failed. Note that if you run the code for a second time, it will fail
faster—Hypothesis will run the same failed sample first. Those generators, called strategies,
are the main superpower of the package. Due to this, Hypothesis ensures that the code
behaves well not only on a few hand-picked cases but also in the wild when fed with
synthesized datasets. The test we added may seem not-so-useful (we tested that function
before), but it will be quick to catch if we break parsing by mistake—and will start with the
failed case on the next run to check whether the code was fixed. It also has a set of smart
strategies that have been built for the most popular datatypes.

Hypothesis is a great tool for data-driven testing, as it will automatically generate most of
edge cases and make us cover edge cases we haven't even thought about. Because of that, it
proves to be a valuable asset for any data-heavy application.

Best Practices and Python Performance Chapter 20

[410]

Beyond this book – packages and
technologies to look out for
Throughout this book, we've shared a wide range of Python frameworks and libraries for
data-driven development. However, there are some tools we couldn't fit in, but that you
need to be aware of. We'll discuss some of them here. In particular, we want to cover three
somewhat connected topics—Python flavors, Docker containers, and Kubernetes.

Different Python flavors
In the Numba section, we showed you how to use Numba to speed Python code up. To do
so, Numba uses a modern compilation engine. It does so by exploiting the C nature of
Python. Another project, Cython, does the same—it compiles Python code into C using a
somewhat different approach.

A third (or, chronologically, the first) option is PYPY (not to be confused with PYPI)—a
totally separate interpreter for the Python language. Compared to Numba and Cython,
PYPY does not need any changes to be made in the code itself—all the optimization is done
under the hood in the interpreter. While this is convenient, the problem is that PYPY
requires some work since it needs a proper installation of Numpa, sklearn, and basically
any other beyond-simple-Python package, so it is rarely used on data-heavy applications.

But there is a whole slew of other options as well! For example, Jython (as you can guess
from the name) is a Java-based Python interpreter, which can come in handy if you want to
integrate your Python code as part of broader Java code or applications. Another, known as
Brython, is a JavaScript-based interpreter that you can use to write both the backend and
frontend of your website in Python. In fact, there is a package called vue.py (https:/ ​/
stefanhoelzl.​github. ​io/ ​vue. ​py/ ​), based on the Brython and Vue frontend framework,
that attempts to cover both backend and frontend web development at the same time. Of
course, we should note that while Numba and Cython try to make Python faster, Brython's
goal is to run JavaScript via a Python interface. Due to this, performance is a lot slower.

Something that sits aside from other projects is the PyIodide project. It does not mimic
Python in any other language. Instead, it compiles it into WebAssembly format—a special
type of binary format that can be executed in a browser, and so anywhere you can open a
browser—whether it be a mobile phone, a tablet, or a smart fridge. It can also interact with
web pages similar to JavaScript, on any major browser! While being somewhat slower, this
approach works and is very promising.

https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/
https://stefanhoelzl.github.io/vue.py/

Best Practices and Python Performance Chapter 20

[411]

As an example, Pyodide offers a notebook-style application to try out (https:/ ​/ ​github.
com/​iodide-​project/ ​pyodide)—it almost looks like Jupyter—except that this time, there is
no Python server—everything (for example, matplotlib, sklearn, and so on) runs on
your machine. Here's what it looks like:

Similarly, the PyIodide package can run other languages—Rust, Go, and more—all in a
browser, with no installation required. For more information on PyIodide, check out this
video by Michael Droettboom for PyData New York, 2018: https:/ ​/​www. ​youtube. ​com/
watch?​v=​iUqVgykaF- ​k.

Another far-fetched but very interesting application for PyIodide (and WebAssembly in
general) is as a lingua franca for packaging so that you don't need to worry about adding
dependencies, Python, and so on—just download the file and run it. But this is all
perspective—for now, we have Docker containers to do that.

https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://github.com/iodide-project/pyodide
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k
https://www.youtube.com/watch?v=iUqVgykaF-k

Best Practices and Python Performance Chapter 20

[412]

Docker containers
Docker containers allow developers to isolate and package certain code and some parts of
the surrounding operating system as a binary file. This file can then be run on any other
machine with a similar OS, with no changes needed. Because Docker images do not include
the whole OS, they are relatively small (a few gigabytes in size) and can be pulled over the
internet. At the same time, they are fairly isolated and can be run with little exposure.
Multiple containers can run on the same machine at once. Using Docker software, an image
can be compiled into a set of layers, similar to how classes inherit from each other. For this
compilation, you should use a short text file, commonly called a Dockerfile, that's
convenient to store in a Git repository.

Compared to, say, Python packages, Docker containers may be a better way to deliver your
code to a customer as they won't need to install anything, except the image. In fact, many
CI/CD and web services use Docker internally.

For more information on Docker and its application for data-driven applications, please
refer to this video by Andy Terrel: https:/ ​/​www.​youtube. ​com/ ​watch? ​v=​i8vrWFZW2xk.

In the repository for this book, you will find a Dockerfile that was used to generate a
corresponding image—one that has Python 3.7, all the Python packages that we used
throughout this book, and the code from the repository, installed. Alternatively, you can
download this image instead of Python.

Kubernetes
Kubernetes (also known as K8S) is an orchestrating engine that operates over a pool of
machines—physical or virtual—and can spawn and wind off containers dynamically.
Technically, any container technology can be used, but Docker is by far the most popular
one.

For example, it is typical to use Dask on Kubernetes—in this case, Kubernetes will spawn
more worker machines when you need them, and can either shut them down or switch to
other users, once you're done—all without your intervention. Similarly, it can preserve a
composition of containers performing different roles—for example, a load balancer for a
web API, which then will redirect requests to different workers, who might operate on one
or many database servers—all under the control and orchestration of a Kubernetes server.

https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk
https://www.youtube.com/watch?v=i8vrWFZW2xk

Best Practices and Python Performance Chapter 20

[413]

This may seem like an approach that's too large and complex for a beginner developer and
small services, but it is way easier to operate your services that way: you won't need to log
and manually set up specific containers. Many technologies, including load balancers,
databases, and so on, have pre-generated images already. In fact, you can even find and
reuse predefined instructions on how to start running systems as a whole—including
multiple servers—by default.

For more context on this technology, check out this video on Using Kubernetes for Machine
Learning Model Deployment, by Niels Zeilemaker, PyData Amsterdam, 2017: https:/ ​/ ​www.
youtube.​com/​watch? ​v=​f3I0izerPvc.

Being a developer means constantly learning new things. I can guarantee that, next year,
there will be at least a couple of new, cool packages that every developer should learn
about. New technologies usually boost productivity and streamline the development
process. The secret to productive learning is understanding the scope and requirements of
what you actually need—not jumping on a new cool thing just because it is cool.

Summary
In this final chapter, we covered multiple topics on code performance and quality and
discussed a few important technologies beyond Python. In particular, we discussed how
the combination of efficient code, a better understanding of requirements, and smart usage
of appropriate data structures can significantly speed up the performance of code—in our
case, a hundred times more performant! Then, we discussed how we can deal with big data
by computing in parallel on multiple CPUs—or multiple machines in the cluster.

In the second part of this chapter, we discussed a few ways to keep code quality under
control—by running sophisticated non-deterministic test suits, automating code formatting,
and tracking code maintainability.

Both code performance and quality are important. Knowing ways to measure and improve
both are necessary skills for a professional developer, and will increase your productivity
and the complexity of what you can build by orders of magnitude.

https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc
https://www.youtube.com/watch?v=f3I0izerPvc

Best Practices and Python Performance Chapter 20

[414]

Questions
How can we measure which line in the code took the most time to complete?1.
Does NumPy run faster than Pandas?2.
When should we use Numba? What are the challenges and benefits of using3.
Numba?
When should we use Dask?4.
Does code formatting matter? Why is Black better than linters?5.
How does Hypothesis help you test your code?6.

Further reading
Architectural Patterns and Best Practices with Python, by Anand Balachandran Pillai: https:/ ​/
www.​packtpub.​com/ ​application- ​development/ ​architectural- ​patterns- ​and- ​best-
practices-​python- ​video

https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video
https://www.packtpub.com/application-development/architectural-patterns-and-best-practices-python-video

Assessments

Chapter 1
What version of Python do we use?

Throughout this book, we are using the Anaconda distribution, along with Python version
3.7.3.

Will it work on a Windows PC?

Absolutely! Python is a cross-platform language and will run on any Windows, Mac, or
Linux device. In fact, it can even run on Raspberry Pi, Lego Mindstorms, and Arduino
boards!

Do I need to install any additional packages?

Not if you've installed them in bulk using the environment.yaml file from the repository,
or using a Docker image. Otherwise, you need to install packages using PIP or Conda.

What is a Jupyter Notebook?

Jupyter Notebook is a special file format, based on JSON, and used by Project Jupyter; in a
nutshell, it represents code in an interactive and descriptive manner and can mix code with
text, rich media, and interactive widgets.

When and why should we use Jupyter Notebooks?

Jupyter Notebooks are great for research and educational projects as they allow you to
tweak and debug your code in an interactive manner, mix code with text and equations,
and show the outcome of each code snippet immediately.

When should I switch to VS Code?

Compared to the Jupyter Notebooks, VS Code is a classical text-oriented editor. VS Code
has a built-in Git client, debugger, terminal, code analyzers, testing interface, and hundreds
of other features, making it very convenient when it comes to writing large amounts of
Python code and developing complex apps and packages. We will switch to VS Code to
build standalone scripts, packages, and applications.

Assessments

[416]

Can I run the code from this book on my smartphone/tablet?

Yes and no. There is no way to run the code from this book on a smartphone/tablet
(although the Pythonista app on iOS will be able to run some snippets), but you can
access the MyBinder service (or, as an alternative, Azure Notebooks or Google Colab),
which will deploy a virtual machine with all this book's code on it and everything to run it.
This way, you can run the code through any device that has a browser! This has one
limitation, though—all of those services have limitations on computations; MyBinder will
discard the virtual machine after a 2-hour session, dropping any new code and changes you
make.

Chapter 2
Why do we need to use variables in code?

Variables work as aliases or symbols in mathematic equations. With variables, we can write
business logic, or how, without knowing specific values, or what, beforehand – we don't
have to repeat doing so over and over again.

What is the recommended way of naming variables? Why does it matter?

There are a few simple requirements when it comes to naming variables that are
mandatory—they can't start with a number, contain whitespaces, or special characters.
Finally, none of the keywords that are reserved by Python can be used.

That being said, there is some guidance on to better naming; first of all – PEP8. According
to PEP, it is recommended to name variables meaningfully and consistently so that they are
easy to understand. It is also suggested to use "snakecase" (lowercase whitespace
represented by an underscore) for functions and variables and "camelCase" (words joined
together, with second and further words beginning with an uppercase letter). None of this
execution, but it will help you navigate the code.

What do data types mean and why do they matter for computation?

Data types define core properties of values—how much memory to allocate for them, what
the corresponding methods are, and how other objects interact with them.

What are the four most popular data types in Python?

The most popular (common) data types are string, integer, float, and Boolean.

Assessments

[417]

What does the @ operator stand for? Why doesn't it work?

Starting with Python 3.5, it is reserved for matrix multiplication, but it is not implemented
(neither are matrices) in core Python.

What are the two operators that will work with strings?

Addition (+) will concatenate two strings together; for example:

>>> 'Good ' + 'Morning'
'Good Morning'

Multiplication by an integer (*) will repeat a string a corresponding number of times; for
example:

>>> 'Repeat'*3
'RepeatRepeatRepeat'

How would you combine the results of two tests if we need to return a True value, but
only when both of them return True? What about when at least one returns True? What
about if only one (but not both) returns True?

This can be done using the AND, OR, and XOR operators. Take a look:

>>> (1 > 0) and (0 > -1)
True
>>> (1 > 0) or (0 > 1)
True
>>> (1 > 0) ^ (0 > -1)
False

Simple!

Chapter 3
What are functions, and when should we use them?

In programming, a function is the named section of the code that encapsulates a specific
task and can be used relatively independently from the surrounding code.

How can data be provided to functions?

Conceptually, code in a function can access data from outside. The best way to pass the
data, however, is via arguments—special temporary variables used exactly for that.

Assessments

[418]

What does indentation mean? Is it required?

Yes; in Python, indentation is required and defines the grouping of code.

What should be covered in the docstring function? How can I read the docstring
function?

Ideally, every module, function, and class should have a docstring. In all those cases, a
docstring can be shown using the help function, or accessed programmatically via
the __doc__ attribute.

When could it be useful to use type annotations?

Type annotations do not affect computation, per se (at least when it comes to standard
Python), but could be helpful to identify incorrect usage of the code, or as a way to validate
incoming data in different frameworks, such as the FastAPI framework.

How can a function be designed if I don't know the exact number of arguments or their
names beforehand?

For that, we can use *args and **kwargs as arguments – both allow us to pass an
arbitrary number of values, represented within the function as a list or dictionary,
respectively.

What does "anonymous function" mean? When should they be used?

Anonymous functions are different types of functions—smaller in size and shorter in
definition, they are great to be used, for example, as a one-time function to be passed as
argument (as a key argument for sort function). You shouldn't use anonymous functions for
something non-trivial as they are somewhat harder to debug.

Chapter 4
How do we retrieve one element from a list? How do we retrieve the last element of the
list without computing its length explicitly?

To retrieve any element from a list, we can pass its index (order, starting with zero) in
square brackets: mylist[0] will get the first element. Similarly, negative indices will
return elements in reverse order—mylist[-1] will get the last element, no matter how
many of them are stored.

Assessments

[419]

How do we get all the elements of a list – except the first one and the last one – in reverse
order?

For that, we can use slicing. In a slice, the first number represents the start, the second
number represents the end, and the third one represents the step. A negative number will
lead to the reverse order. Since we're using all three values and the step is negative, we
need to swap the start and end values. Since the start is already included but the end isn't,
we'll have to shift indices accordingly:

>>> mylist = [1,2,3,4,5]
>>> mylist[-2:0:-1]
[4,3,2]

Alternatively, we can do that in two steps:

>>> mylist[1: -1][::-1]
[4,3,2]

How do we merge two dictionaries, and what happens if some of the keys are the same
in both of them?

The best way to merge two dictionaries is to update one with another. In this case,
overlapping values will be overwritten by the values of the second dictionary:

>>> D1, D2 = {'a':1, 'b':2} {'b':3, 'c':4}
>>> D1.update(D2)
>>> D1
{'a':1, 'b':3, 'c':4}

What is the best data structure to check for membership?

The best structure to check for membership is a set.

Can we get the last element of the generator without getting all the others?

No, it is not feasible by definition—to get the last value in a generator, you have to go over
all previous ones—and besides, generators can be infinite.

How do we combine elements from N triplets into three arrays of N, one by one?

For that, there is the zip function. Consider the following example (N is equal to 4):

>>> arrays = ((1,2,3), (4,5,6), (7,8,9), (10,11,12))
>>> list(zip(*arrays)) # list is needed for printing
[(1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12)]

Assessments

[420]

What is the short way of generating a list of specific dictionary properties – which are
retrieved from a list of dictionaries – if a certain other property of each dictionary is in
the set?

Here, we need to execute multiple operations at once – filter dictionaries and get a specific
value out of them. The shortest way to do that is via one-liners:

>>> dicts = [{'a':1, 'keep':False},
 {'a':2, 'keep':True},
 {'a':3, 'keep':True}]

>>> [D['a'] for D in dicts if D['keep']]
[2,3]

That's it!

Chapter 5
Can the if clause work with multiple (more than two) logical branches?

Yes! For that, you can use an additional keyword—elif. This way, you can have an
unlimited number of logical branches, though it's recommended to use no more than four
to five at a time.

What is the difference between for and while loops?

for loops are explicitly finite—they run for every element in a given iterable (although you
can pass an infinite iterable if you need to). They are also meant to use that iterable.

while loops are explicitly infinite until certain criteria are met—so they are good if you
don't know the number of iterations it would require to meet them (or want an explicitly
infinite loop, which would be stopped from within the loop itself).

How can I loop through multiple (two or more) arrays of the same length? Or of different
lengths?

The best way to do that is by using the zip function, which combines those arrays into one
array with elements of the same order combined together. If the length is different, zip will
cut off the tails of the longer arrays.

Assessments

[421]

Why do we need exceptions? How can I catch one?

Exceptions are the way Python (or any other language) halts execution and returns a
corresponding message or error code. If you anticipate that the code will fail, you can catch
the exception and define an alternative execution by
using try/except/finally statements. This will ensure that the execution of the script as a
whole won't be halted. That being said, make sure not to mute exceptions you don't want to
– this might cause way more problems in the future!

What is the difference between finally and except?

In the try/except/finally clause, you have to use the first keyword, try, but can choose
between using except, finally, or both of them. The difference is simple—code
within finally is used under any circumstances—even if the exception is raised and not
caught before the code halts and exits. Thus, the finally clause is invaluable if we need to
properly close a certain channel—a database connection, file, or anything else.

When should the with clause be used?

The with clause is, to some degree, syntactic sugar for the try/finally clause. It is used to
work with objects that have __enter__ and __exit__ methods and executes them before
and after the code within the clause. Once the __enter__ method is run successfully, an
execution of __exit__ is guaranteed, even if the code within fails to run—similar to
how finally behaves. All file objects and many database connections use these methods,
as it is a convenient and expressive method to ensure the connection is closed once work
has been done. That being said, you can use this keyword in other contexts as well,
whenever a similar behavior is desired.

How can I use the with clause on a custom object?

To use the with clause on a custom object, all you need is to provide two methods for that
object—__enter__ and __exit__. All this statement does is run the former before the
code within, and the latter afterward, under any circumstances (even if an exception is
raised).

Assessments

[422]

Chapter 6
What is an API? Why would we use it?

An API is a programmatic interface; for example, a way to interact with a given tool or
service using code. Generally speaking, any tool can (and many do) have an API; for
example, every Python package has some, but usually, it is used in the context of a Web
API—in other words, an interface for a certain service that's accessible programmatically
via the internet. You use Web APIs all of the time—most applications on your phone
communicate with the corresponding servers via their APIs. For us, a Web API is a way to
leverage the power and information of web services from within our Python code.

What do the various HTTP(S) response status codes mean?

HTTP response statuses are integers that define the status of interactions and are defined by
a server. For example, if routing servers can't find a URL you're passing, they will return a
famous status, 404. Similarly, if an interaction with the server is successful, the server will
return a code 200, along with the other data. Checking for good status codes is the simplest
way to check an interaction status programmatically.

Is there a built-in library for dealing with HTTP? Why do we use requests instead?

Indeed, there is the built-in urllib package. It is a good option if you don't want to add
extra dependencies. For most use cases, however, it is too low-level and requires some
boilerplate—it is way nicer to use the requests package, with its clean and beautiful
interface.

How do you define command-line interface parameters for Python scripts?

There are quite a few options—such as the lightweight docopt and the production-
grade click. There is also the built-in argparse. To use it, you need to create an instance
of a parser and add the parameters you need.

What does if __name__ == '__main__' mean and why do we need it at the end of a script?

This is a standard Pythonic way to ensure certain code is executed only when a file is called
directly, as a script. On execution, Python assigns a few special variables to the root
namespace, including __name__. If the script is called directly, its value is equal
to __main__. Of course, this code can be located anywhere in the code, as long as
everything within is defined—but it is easier and cleaner to put it at the end.

Assessments

[423]

Chapter 7
What does the term web scraping mean?

Web scraping is the process of collecting information directly from HTML web pages. Just
like mining, we have to first collect ore of the HTML, from which we can then refine the
valuable data points.

What are the main differences between scraping and using a web API? What are the
challenges?

The main difference is the lack of any guarantees – there is no promise that the web page
won't change in terms of its structure, or will be shown at all. In fact, many services actively
attempt to prevent web scraping. Another challenge is processing raw HTML into valuable
information, as it often requires some custom code.

What exactly does Beautiful Soup do? Can we scrape without it?

In our stack (requests and BeautifulSoup), the latter allows us to navigate the
document and query it, pulling specific values. We can definitely scrape web pages without
processing them and, theoretically, we write our own processing code—at the end of the
day, every page is just text.

Why do we use recursion for scraping?

Recursion is a technique that's used in scraping, as we often don't know the depth of the
links beforehand—for example, a specific page may have links to other pages, which lead to
others, and so on. In this case, recursions seem like a natural fit, at least for a relatively
modest number of pages.

Should we clean the data during scraping?

No! Often, processing and cleaning are not trivial, and we can't ensure that all the edge
cases are working properly until we collect all the data. At runtime, this can halt the whole
process, with the possibility of losing some information. It is both safer and cleaner to
collect all the data first and then deal with it as the next step.

What is the right approach when it comes to dealing with missing data or broken links?

During the scraping process, it is better not to do anything—just keep the values as they
are. You can define an appropriate strategy in the next step while processing the data.

Assessments

[424]

Chapter 8
What are classes? When should we use them?

Classes represent a way in which we can create complex objects, with the corresponding
data (attributes) and functions (methods). Classes are a useful concept to represent
any entity, such as a database connection, file object, algorithm, and so on. There's also a set
of special methods and variables that's used by Python to change the behavior of certain
instances.

Can we compare two instances of a class or use arithmetic operations with them?

Yes—this is one of the use cases for special methods. For example, in order for us to check
instances for equality, we need to set the __eq__ method of the class. Here, we are
checking whether the instance is greater, smaller, and so on—there is a corresponding
special method for each operation.

When should we use inheritance?

Inheritance is an important property of classes. By inheriting from another class, you let
your class acquire all the methods and attributes of the class you're acquiring from. If there
is an overlap in the names, the values of your class are preserved. Inheritance is useful to
avoid repetition; for example, if multiple classes have shared attributes or methods, it
makes sense for all of them to inherit from the base class. Another frequent case for
inheritance is to use a base class with some non-trivial behavior, for example, that's
provided by an external framework, and override special attributes and methods that will
be executed.

What is the use case for data classes?

Data classes are merely syntactic sugar—they simplify the code that's required to create a
class and provide some properties, such as equality, initialization, and hashing, by default.
They are extremely useful if your class is mostly required to store data.

Assessments

[425]

Chapter 9
What is a shell? Why and when are command-line interfaces advantageous compared to
graphical interfaces?

A shell is a user interface that you use to interact with the operating system of a computer.
Usually, people use this term to refer to a command-line shell that allows you to control the
OS with a set of textual commands. There are three main advantages of command-line
interfaces over GUIs. First, textual commands can be combined and stored and thus form
scripts. Second, they require a minimal amount of memory and thus are way more suitable
for interacting with remote machines via the internet. Third, command-line interfaces are
quite unified across different operating systems—commands on Linux and macOS are
identical, and even Windows has either similar or aliased commands.

What exactly does version control mean? Is it suitable for research projects?

Version control (VC) is a way you can track changes over multiple versions of your work –
a piece of code, a dataset, or any other piece of information. Usually, version control
systems allow users to collaborate, split, and merge different versions, and revert to any
stored version of the project. The version control of the code is critical for modern
development as it allows developers to safely add changes to the same body of code.

What is the difference between Git and GitHub? Is Git owned by GitHub?

Git is an open source technology that allows decentralized version control. It is free and
works on any operating system. GitHub, on the other hand, is both a company and a web
service, with the main purpose of working as central storage for your code repositories. It
allows you to read and provide the overall interaction for the online repository, as well as
to provide plenty of social interactions around code. GitHub is free and allows an unlimited
number of public repositories; the majority of open source projects are stored and tracked
with GitHub. That being said, it is not the only service that provides this functionality.

What are Git branches used for?

Technically, Git branches are just pointer objects, pointing at specific commits. Practically,
they represent different parallel flows of code development. As such, they are useful, for
example, for when you want to work on adding new functionality without affecting the
master version; that is, until this new functionality is ready.

Assessments

[426]

What are the two roles of the Conda tool?

Conda software has two roles. First, it is used as a package manager, allowing you to install
and update certain packages and software (not necessarily Python-related) from Conda's
cloud. The second role of Conda is to provide virtual environments for development,
isolating a specific version of Python and the tools that are required, from other
environments. On one hand, this allows you to work on different versions of Python and
packages on the same machine, while on the other hand, it allows you to reproduce a
specific environment on other machines.

How does Jupyter interact with multiple Conda environments?

Jupyter can work from within an environment. However, we recommend that you run
Jupyter from the root environment. With the nbconda package installed, Jupyter will see all
environments.

Chapter 10
Why should we use a special stack of packages for data analysis?

Data analysis requires a fast and easy way to operate on multiple elements at once—a so-
called vectorized approach. Python's scientific stack allows this by using numpy—a package
for fast array operations.

Why are NumPy computations so fast compared to normal Python?

NumPy is drastically faster than vanilla Python on numerical operations. This is all thanks
to a different data representation—NumPy arrays, in contrast to standard Python
collections, require all the elements to be of the same data type. Because of that, an array
can be passed to a CPU as one entity and computed more effectively.

What is the use case and benefit of using Pandas over NumPy?

NumPy only supports numeric arrays. Pandas, on the other hand, supports datetime,
string, and categorical arrays. In addition, it has tons of helpful functions and operations
that are useful for everyday data processing, such as groupby aggregation, resampling, and
plotting.

What does sklearn stand for?

sklearn stands for SciPy kit for machine learning and has this name due to its origin as a
SciPy subpackage.

Assessments

[427]

Chapter 11
Why, if there is an empty cell in the Pandas column, are integer values in this column
converted into floats?

This happens since NumPy (and based on it, Pandas) does not support null integers—every
null is a special case of a float. Thus, to keep the datatype consistent across the column,
NumPy has to convert all integers into floats.

What is the benefit of plotting missing values?

Often, missing values in a dataset can have a certain pattern—for example, records with a
missing value in one column also miss values in others. Having a bird's-eye view allows
you to find those patterns and define an appropriate imputation strategy.

What is RegEx? Is it a separate language?

Indeed, Regular Expressions, or regex, is a distinct mini-language for text extraction and
search. RegEx is implemented in most programming languages—including Python.

How can we use regex in Python?

There is a dedicated built-in package for this, known as re. On top of that, most string
operations in pandas, such as replace and match, accept regex as an argument.

How is a RegEx pattern defined? How can we combine and modify patterns dynamically
within code?

A RegEx pattern is defined as a simple string (text). In order to dynamically modify a
pattern in Python, we can simply manipulate this string as we would any other string.

Is it a good idea to run ordinary Python functions on dataframe cells? What are the pros
and cons of that approach? Should we use loops for that?

Generally speaking, no—they will run significantly more slowly than similar vectorized
ones. Not everything can be easily defined using built-in vectorized operations, though. In
some cases, it is easier—or the only option—to execute normal Python. Don't use loops,
though—for that purpose, Pandas has the built-in apply method.

Assessments

[428]

Chapter 12
How can we understand some general properties of a dataset with pandas?

Using either specific statistics, such as mean, median, or standard deviation, on specific
columns. Alternatively, you can use the describe method—it will compute descriptive
statistics (the ones above it, plus the minimum/maximum, quartiles, and a few more) for all
the columns in a dataframe.

What does the resample function do in pandas? How is it different from aggregation?

This method is meant to be used on a dataframe of time-based records. resample works
similar to aggregation, except that it groups by a time period and returns rows (with empty
values) for missing periods as well.

How does visualization work in pandas?

Pandas has an extensive and simple interface for visualization, but it doesn't create charts
on its own; all the actual visual stuff is done by matplotlib. Starting with version 0.25,
pandas allows other visualization engines to be used instead.

What are the benefits of declarative data visualization (for example, with Altair)?

There are multiple benefits to this approach. First, declaration (also known as a
specification) is decoupled from the engine – so, in theory, it can be used with different
engines. Next, specification is also decoupled from the data, and so it can be used on
different datasets with no change. Third, it is decoupled from the aesthetical parts, so
colors, fonts, and margins can be defined externally and easily adjusted outside of the
specification. As a result, the declarative approach allows for a very flexible and effective
workflow, allowing ease of change, iteration, and reuse.

In which cases can big data visualization be useful?

Big data visualization can be extremely useful if you wish to understand the overall
distribution of the dataset. This is especially true if you're working with spatial data,
networks, or embeddings.

Assessments

[429]

Chapter 13
What is machine learning?

Machine learning is a discipline (a branch of artificial intelligence) that focuses on
automatic model building. Machine learning algorithms allow us to automatically find
patterns or a hierarchy in data (unsupervised learning), or even predict the property of a
given sample after training on the prepared "training" dataset (supervised learning).

What is the difference between supervised and non-supervised learning?

Unsupervised learning algorithms operate on any given dataset with no special preparation
required and aim to find patterns or structures without any prior knowledge. Supervised
learning models are trained on a properly labeled "training set," which they do by building
a generalized model, and then are able to infer values for the new data samples it hasn't
seen before.

What are the drawbacks of k-means clustering? Why do we need to use a scaler?

K-means can't define clusters of a non-convex shape since this requires a predefined
number of clusters to group by and proper scaling. Scaling is needed to align scales of
different units to one scale, but that affects the interpretability of the cluster.

How does the KNN model work? What are the benefits and limitations of such a model?

KNN predicts new records by finding N (hence the name) nearest records in the "training"
dataset and inferring value from them (for example, by getting a weighted average). It is
very simple, works relatively well on a certain type of data, and needs no time to
train—most computations are done in the prediction phase. The limitations of such a model
are limited scalability (as it needs access to the whole training set at prediction time), it can't
predict beyond the training set, and it has limited accuracy. Most importantly, though, the
KNN model makes use of all the features that are provided equally—if it is fed with a non-
useful, random feature, it may decrease the performance of the model.

Why does linear regression give more interpretation than KNN? Do we need to scale
data in this case?

In contrast to KNN, the linear model generalizes all of the knowledge it gains from training
in a simple one-dimensional array of coefficients—one per feature, plus a bias. This is very
simple and fast to predict, and provides bird's-eye, simple but relatable interpretability,
putting a direct "price tag" on each feature. In this case, scaling is not strictly necessary and
will obviously affect interpretation.

Assessments

[430]

How do decision trees work?

The decision trees model is yet another machine learning algorithm. To predict values, the
DT model generates a binary tree of "questions," each asking whether a certain feature is
greater or smaller than a certain threshold. On each iteration, the algorithm finds a feature
and threshold with the maximal difference between the target value. The final "leaves" of
this tree are associated with the average/most frequent target variable for the
corresponding sample in the training dataset. Decision trees offer good interpretation as
they are fast and can perform relatively well, but they are extremely prone to overfitting.

Chapter 14
What is overfitting?

Many ML models (for example, decision trees) actively fit to perform well on the training
set at hand, but at some point, this process goes beyond generalizable knowledge that's
valuable for the task, with some parts being irrelevant to the test set. This is not only
meaningless but will also affect the model's performance on other data. This phenomenon
is known as overfitting, and there are ways to overcome it.

Why should we use cross-validation?

Cross-validation is a technique that's aimed at overcoming the issue of overfitting. In its
basic form, it splits a training set into multiple folds, trains multiple models with the same
settings on different combinations of those folds, and measures their performance on other
folds—and then averages the performance across all models. As a result, this sampling and
prediction on the data each model never saw prevents it from reporting "better" results on a
dataset by addressing its specifics. Thus, using cross-validation allows for safe feature-
engineering and model adjustments.

Why can it be bad if our metrics are improving on the test set? Which features are useful
for improving model performance on cross-validation?

Improvements on the test set can represent an actual increase in model performance—or
overfitting. To improve a model's "actual" performance, you need to either tune the model's
parameters, add new features or process existing features to better represent underlying
dependencies. One usual trick, for example, is to convert date features into a set of features
representing cycles, such as day of the week, time of the day, month/day of the year, and so
on.

Assessments

[431]

Why do some features decrease the performance of a decision tree on test data or in
cross-validation?

Certain features with little to no value for prediction but a high enough variance "appear"
to be useful for decision trees (and other algorithms) on their training sets – and thus lead
to a decrease in out-of-sample performance. To prevent that, you need to either filter
features thoroughly or use algorithms that have fewer issues with overfitting.

What is the difference between the random search and grid search algorithms for
parameter optimization?

Both algorithms are designed to find the best combination of the model's
hyperparameters—a set of parameters that can only be optimized by running the model on
a specific dataset. GridSearch is the most simple, brute-force solution – all it does is run the
model over a finite number of combinations ("grid") of those parameters. Due to
dimensionality reduction, even a small, finite number of choices for each quickly leads to
huge computations. Random search, on the other hand, is similar, but does not require a
finite set of choices, instead deriving from distributions, and attempts to pick each other
combination based on the results of the previous runs. As a result, it is a faster and better-
resulting solution to use than GridSearch in most cases.

Why is Git not sufficient for data version control?

Git, at its core, is an immutable file-based system – which means that, on each commit, it
stores a copy of each file that was changed since the last commit. Thus, any kind of change
in any dataset beyond basic metrics will result in a copy of the whole file, which will
quickly lead to huge memory consumption. In fact, GitHub prevents uploading files above
a certain threshold, so using Git to control data is not an option for data version control.

What are the alternatives to DVC for data version control and experimentation logging?

Currently, there are plenty of alternative solutions to data version control. All of them have
different flavors and focus on different aspects. Among the most popular alternatives are
MLflow and Sacred, but both are language-specific and require some custom code.

Chapter 15
What are the benefits of packaging code?

Packaging code is a great way to do the following:

Make certain code available to use from multiple other packages
Share code with colleagues or make it easy to install for yourself

Assessments

[432]

Set a project to collaborate on with others
Add reliability to your code by constantly running tests
Structure code better and isolate it from your day-to-day work

What is the main difference between Conda and pip as package managers?

At this moment, the difference is not as great as it was before. Historically, pip didn't
support adding non-Python code as a binary for various reasons. This is a problem for data
analysis projects since many data-related packages, namely NumPy, SciPy, and sklearn,
use C and even Fortran under the hood.

This is where Conda comes into play—it allows you to install any tool in any language,
even one that's totally unrelated to Python. Today, Conda is a well-established package
manager and is especially popular among data scientists.

One additional feature of Conda is that it has multiple channels—from personal channels,
to shared, and community-driven channels (conda-forge), to the most conservative,
carefully curated Anaconda channel. If needed, you can also pay for a private channel,
dedicated to your company.

What is dependency resolution, and why is it difficult?

Dependency resolution is the process of finding the right versions of all the packages that
are required to run software. It is difficult and not always achievable because, for an
arbitrary package, there are dozens of direct and indirect dependencies. That's why
building a package requires a thorough, sufficiently relaxed, and minimal definition of the
required packages.

What are the benefits of poetry over the standard setup tools?

First and foremost, poetry supports a new, TOML-based specification for packages. This is
fundamentally safer as a client won't be running arbitrary code from the web on
installation. Next, poetry generates a dedicated virtual environment for the development
process and provides a locked specification of that environment for exact replication. Last
but not least, it has a powerful dependency resolver and can analyze the depth and status
of your dependencies.

Why do we need tests?

Tests are a critical part of any software development. They allow you to ensure that code is
behaving as expected, thus allowing for the safe alteration of existing code.

Assessments

[433]

What is the purpose of CI?

CI, or continuous integration, is a term that represents an automated pipeline connected to
a version control system. CI usually runs tests and security checks on code and returns a
status to the version control system so that developers can safely merge commits and move
code to production. CI can also generate and store artifacts (binaries, for example) or trigger
updates for live servers. CI plays an important role in the continuous process of rolling out
new versions of products to clients. It can also save time by running tests on multiple
machines in parallel, compared to running them locally on the developer's machine.

Chapter 16
What are the benefits of writing tasks rather than using simple scripts?

Scripts are great for simple and one-off jobs. If you have a repetitive task to do – or even
more so if there is a set of tasks that depend on each other, and you need to ensure that they
don't run without a dependency missing, or that they won't override (or append to)
existing data—then ETL pipelines and tasks are for you. As a free bonus, frameworks such
as Luigi have a lot of utility code that helps to build pipelines – you won't need to write a
solution for writing to S3 or a database, or parse a command-line command.

What is the base element of Luigi jobs?

The base element of Luigi jobs (pipelines) is the Task class. All the business logic of a task
needs to be wrapped in the run method. Its output and dependencies are defined within
the output and requires methods.

How are DAGs defined in Luigi? What are the benefits of that architecture?

Luigi forms DAGs (pipelines) automatically; there is no need to set them up explicitly. To
define a DAG, you need to run the last task in the pipe—Luigi will check for its
dependencies if they are not met, will check for theirs, and so on. Once the queue of tasks to
computing is ready, Luigi starts to compute them, one by one, starting with the earliest
dependency—and adding others once their requirements are met.

This allows the pipeline to be flexible and easy to build, one step at a time. If something
"external" to the pipeline task needs to be dependent, all it needs is to refer to a task.

Assessments

[434]

How can we parameterize a task?

To parameterize a task, all we need to do is set a task attribute to be of
the luigi.Parameter type, or its derivative. Once set, the parameter can be used as an
argument that's passed on class initiation, or passed on the command line. Parameters can
be used to run the task on a specific subset of data, or with a specific mode – for example,
you can pass a production flag that will direct the dataflow to the production database or
staging if the flag is not raised.

What is the best way to run time-based tasks in bulk?

For time-based jobs, Luigi provides built-in functionality for bulk execution – with the main
focus on backfill. By using the DailyRange (or other ranges) built-in utility, you can pass
either the start and end date, or one of those and a number of days to fill. The program will
automatically spawn and execute the given task for each day in this range. However, this
has one caveat—a task can only have one DateTime parameter, which will be used.

How can we schedule a job with Luigi?

Luigi itself does not provide a scheduling mechanism. To schedule a task, an external tool
such as cron should be used. Cron is a tool that's used for scheduling arbitrary tasks and is
built into all Mac and Linux OS systems. Windows has its own similar tool such as
schtasks or PyCron.

Chapter 17
What are the main differences between visualizing data in the notebook and on a
dashboard?

The main differences are as follows:

The audience for the dashboard is meant to be wide—so the dashboard should1.
be easily accessible, for example, via an internet browser, and well-explained.
One-off visualizations, on the other hand, are often made for self-consumption,
and thus don't need to be self-explanatory.
Dashboards are meant to be frequently updated and exploratory. Visualizations2.
are often static and show a specific aspect of data.

Assessments

[435]

Why do we call some dashboards "static"? What are the pros and cons of a static
dashboard?

In common terms, static web pages are ones that are provided "as-is," as flat files, and there
is no active server behind them. Static dashboards are easier to maintain and provide for a
wide audience but have some limitations in terms of computation and data access.

What are the benefits of using a dynamic dashboard?

Dynamic dashboards are actively served by dedicated servers and thus have considerable
computation power behind them. The servers can also have access to the "raw" data and
compute metrics on the fly, allowing for much deeper exploration possibilities.

What are the features of the panel package?

panel is a package that was developed by Anaconda (the same company that produces the
Conda package manager). Its main feature is that it is agnostic to actual visualization
tools—any tool can be used if it produces content that can be present in the Jupyter
Notebook.

Chapter 18
What is the REST API?

REST, or REpresentational State Transfer, is a general architecture for APIs interaction that
uses the HTTP protocol. The main features of REST-compliant systems are being stateless
and their separation of concerns between the client and the server.

What Python packages can be used to build a REST API?

At this point, there are quite a lot of frameworks that can be used to build a REST API in
Python. The most popular ones are Flask, Django REST, Hug, Falcon, CherryPy, Quart, and
many others. In this book, we're using the FastAPI framework.

What are the key features of the FastAPI framework?

FastAPI has a few unique characteristics. First, it is designed specifically with API in mind,
which is different to many others. Second, it fully supports asynchronous execution and
can work with a Uvicorn-Gunicorn inspired asynchronous server. Third, it makes use of
type annotations, using them to generate interactive documentation (OpenAPI) and, most
importantly, to validate passed data automatically. Finally, it provides simple tools for the
validation and conversion of data—all that's left is to write the business logic.

Assessments

[436]

Why OpenAPI (Swagger)?

OpenAPI, previously known as Swagger, is an API description specification that allows
you to define an API with a simple file and then generate web-based interactive
documentation from that file. In fact, while the documentation is autogenerated by FastAPI,
this specification can also be used to do the following:

Autogenerate client libraries in multiple languages, including Python
Autogenerate API stubs (API-serving server code templates) from the file, also in
multiple languages

Why do we need Uvicorn or Gunicorn servers?

Both Uvicorn and Gunicorn are Web Server Gateway Interface (WSGI) tools. Their job is
to deploy multiple instances of an application, restart them if needed, and pass requests to
them and responses back to the client. WSGI servers usually run under a web server, such
as nginx, which takes care of requests, returns files, and directs only correct requests to the
WSGI (which then passes them to the application). Uvicorn is specifically focused on
asynchronous execution and has a slightly different implementation of asynchronous work.

What metrics does the Locust package measure?

Locust is a package that's designed to test the traffic loads of a service (for example, an
API). Its main metrics are requests per second, average response time, and the number of
errors.

Chapter 19
What does a serverless application mean?

Serverless applications still run on normal servers, but control over the server's behavior
and the stack are completely handled by the cloud provider—all that's required from the
developer is to write a function that describes the business logic. This function can be set to
trigger on a request to a certain API endpoint, on a certain event (for example, a file
addition to the S3 bucket), or on a scheduler so that it runs every day.

What are the limitations of the serverless approach?

Serverless applications are mainly bound by the memory they can use and, therefore, the
packages that can be installed. For AWS Lambda, the limit is 50 MB.

Assessments

[437]

What are the benefits of serverless APIs?

Serverless APIs have quite a few benefits. First and foremost, you don't need to spend time
on the development and maintenance of servers, load balancers, and so on. Serverless APIs
are generally paid for each execution, which means that multiple APIs can sit for free,
without you paying for a running instance. At the same time, they are scalable – if needed,
a vendor will just spawn more machines to work on all the requests!

What role does Chalice play in the development of a serverless application?

Chalice is a Python package for Lambda functions, developed by Amazon. It provides
invaluable help with Lambda function development—it handles packaging the code,
testing it locally, and uploading it to the server. In other words, it helps with the whole life
cycle.

Chapter 20
How can we measure which line in the code took the most time to complete?

The simplest way to do that is via a utility called line__profiler. This utility will show
each line of the given code and show how much time was spent on each line. Knowing the
distribution of the time that was required helps us focus on the right parts of the code.

Does NumPy run faster than Pandas?

In most cases with numeric computations, Pandas uses NumPy under the hood, so the
difference is minimal. It does, however, spend certain additional time on building series
and dataframes, when needed. So, for a well-scoped and purely numeric task, it makes
sense to switch to pure NumPy.

When should we use Numba? What are the challenges and benefits of using Numba?

Numba uses a modern C compiler with some modern techniques to significantly improve
performance. It can also be run on a GPU. Its "superpower" is that it's arbitrary Python code
with only a few lines of alterations. This makes Numba a great tool of choice if you have a
large set of pure Python code that needs to run faster. The challenges of Numba are
twofold—first, it requires an LLVM compiler that is relatively large in size. Second, it is not
trivial, and in some cases it's impossible to house with existing C code, which means it has
problems with SciPy and sklearn.

Assessments

[438]

When should we use Dask?

Dask is a powerful and nicely designed library for parallel computations—it can work on
multiple cores of a single machine, or on many machines at the same time. Best of all, it has
a few different interfaces that "resemble" (actually, just use under the hood) popular
libraries, such as NumPy and pandas. As a result, on many occasions, you only need to
change a few lines to run the same code in a distributed fashion.

Does code formatting matter? Why is Black better than linters?

It does. Good, standardized formatting helps improve the readability of code, decreases
cognitive loads, and helps to avoid syntactic errors and typos. In addition, a unified
approach to formatting decreases the number of pointless formatting changes that
complicate the use of Git.

Black is an automated formatter—not a linter. Compared to linters, it not only finds code
that needs to be edited but also edits it itself. Black is perfect to use on Git pre-commit
hooks—it will automatically format the code on every commit.

How does Hypothesis help you test your code?

Standard unit tests provide one of a few cases for code to be tested against. While this is
fine most of the time, there are usually plenty of options you wouldn't have thought of
beforehand. Hypothesis tries to address that—it allows you to create a probabilistic dataset
or set of arguments that follow certain rules—and then will test your code against different
data. In doing so, it will use a few known edge cases, such as empty strings or data frames,
and some random data. If a certain test fails, Hypothesis will start a new test from the data
that led to a failure previously.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Expert Python Programming - Third Edition
Tarek Ziadé, Michał Jaworski

ISBN: 978-1-78980-889-6

Explore modern ways of setting up repeatable and consistent development
environments
Package Python code effectively for community and production use
Learn modern syntax elements of Python programming such as f-strings, enums,
and lambda functions
Demystify metaprogramming in Python with metaclasses
Write concurrent code in Python
Extend Python with code written in different languages
Integrate Python with code written in different languages

https://www.packtpub.com/application-development/expert-python-programming-third-edition

Other Books You May Enjoy

[440]

Mastering Object-Oriented Python - Second Edition
Steven F. Lott

ISBN: 978-1-78953-136-7

Explore a variety of different design patterns for the __init__() method
Learn to use Flask to build a RESTful web service
Discover SOLID design patterns and principles
Use the features of Python 3's abstract base
Create classes for your own applications
Design testable code using pytest and fixtures
Understand how to design context managers that leverage the 'with' statement
Create a new type of collection using standard library and design techniques
Develop new number types above and beyond the built-in classes of numbers

https://www.packtpub.com/programming/mastering-object-oriented-python-second-edition

Other Books You May Enjoy

[441]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abs function 51
Adaptive Boosting model 279
addresses
 geocoding 115, 116, 117, 118
all function 53, 82
Altair chart
 storing 245, 246
Altair
 declarative visualization 240, 242
 used, for drawing maps 243, 244, 245
Amazon Web Services (AWS) 325, 371
Anaconda
 distribution, reference link 13
 package lists, reference link 12
anonymous (lambda) functions 63
any function 53, 82
API loads
 deploying, with Locust 366, 367, 368
 testing, with Locust 366, 367, 368
API service
 building 352, 353
 data validation 356, 357
 data, sending with POST requests 358, 359
 features, adding 359, 362
 naive first iteration, finalizing 355, 356
 OpenAPI service, exploring 354
Application Programming Interface (API) 105
asynchronous calls
 used, for speeding up performance 365, 366

B
Bandit 402
base classes
 writing 158, 159
Beautiful Soup 4 (BS4)

 about 124
 used, for scraping 124
belligerents 220
bias constant 265
big data visualization
 with datashader 246, 247, 248, 249, 250, 251,

252

boolean
 about 38, 39
 logical operators 39, 40

C
caching
 about 112
 with decorators 111, 113
Cascading Style Sheets (CSS)
 reference link 125
casualties 221, 222
Chalice
 working with 372, 373
CI services
 used, for automating process 303, 304, 305,

306

classes, dunder methods
 __class__ 154
 __getitem__ 153
 __init__ 148
 __len__ 153
 __repr__ and __str__ 149
 arithmetical operations 149, 150, 151
 equality/relationship methods 152, 153
 logical operations 149, 150, 151
classes
 about 145, 146, 147, 148
 base classes 158, 159
 data classes 157, 158
 dunder methods 148

[443]

 harsh islands 165, 166
 Herbivore haven 163, 164
 inheritance 154, 155, 156
 Island class 160, 161, 162
 super(), using 156
 using, in simulation 158
 visualization 166, 167, 168, 169, 170
classification problem 260
Cluster O 257
code tests
 writing 299, 300, 301, 302
code
 executing, with loops 90
 formatting, with black 401, 402, 404, 405
 moving, to separate module 118, 119
 quality, measuring with Wily 405, 407
 testing 297
coding, in project
 best practices, using 401
comprehensions 83, 84
Conda
 about 181, 183
 for virtual environments 182, 183
Constantinople 216
continuous integration (CI) 304
Cookiecutter
 need for 185, 186, 187
 reference link 185
counter 75
coverage 301
cron
 time-based tasks, scheduling with 323, 324
cross-validation 272, 273
CSS selectors 124, 125, 126
CSV 114
custom template classes
 Luigi, expanding with 328, 329, 330

D
dashboard, types
 about 333
 static dashboards 333, 334, 335, 337
dashboard
 Altair, debugging 338, 339
 building 333

Dask-ML 395
data pipeline
 serverless function, building as 380, 382
data science
 Python, using for 190, 191
data structures, functions
 about 81
 all 82
 any 82
 filter 83
 map 83
 max 82
 min 82
 reduce 83
 sum 82
 zip function 82
data structures
 about 68, 74
 counter 75
 defaultdict 75
 deque 77, 78
 dictionaries 71, 72, 73
 enumerations 79, 80
 frozenset 74
 immutability 71
 lists 68, 69
 namedtuple 78, 79
 queue 76, 77
 sets 73, 74
 slicing 70
 tuples 71
data types
 about 30
 boolean 38, 39
 converting 40, 41
 floats 31, 32
 integers 31, 32
 operators, with self-assignment 32
 order of execution 33
 strings 33, 34, 35
Data Version Control (DVC) 282
data
 exploring 208
 reading 113, 115
 scope of work, defining 209, 210, 212

[444]

 tracking, with version control 281, 282, 283
 working with 207
 writing 113, 115
dataset
 data, aggregating to calculate summary statistics

233, 234, 235
 descriptive statistics 230, 231
 exploring 228, 229
 mapping 237, 238, 239, 240
 visualizing, with matplotlib 231, 232
datashader
 used, for big data visualization 246, 247, 248,

249, 250, 251, 252
decision trees 267, 268, 269
declarative visualization
 with Altair 240, 242
 with vega 240, 242
decorators
 used, for catching 111, 112, 113
defaultdict 75
deque 77, 78
developer console 126, 127
dictionaries 71, 72, 73
dir function 50
Directed Acyclic Graph (DAG) 315
Docker containers 412
docstrings 59, 60
Document Object Model (DOM) 124, 129
documentation generation
 with Sphinx 307, 308, 310, 312
double-ended queues 77
dunder methods 146
dynamic dashboards
 about 340
 data, reading from dashboard 342, 343
 working, with panel 341, 342

E
elbow method 256
elif statement 87, 88
else statement 87, 88
embarrassingly parallel operations 398
enumerations 79, 80, 94
ETL pipeline
 about 315, 316

 code, redesigning as 317
eval function 46
exceptions
 about 97
 handling, with try/except 96
 handling, with try/finally 96
Extra-Trees model 279
Extract, Transform, and Load (ETL) 315

F
f-strings 36
feature engineering
 exploring 273, 274, 275
 failed attempts 275, 276
file
 writing 224, 225
filter function 83
first-in, first-out (FIFO) 76
flake8 401
floats 31, 32
for loop 90, 91
Format Specification Mini-Language
 reference link 37
frameworks 351
frozenset 74
functions
 about 45
 default values 56, 57
 defining 54, 55, 56
 docstrings 59, 60
 type annotations 61
 var-keyword 57, 58
 var-positional 57, 58

G
generators
 about 81
 using 80, 81
geocoding
 about 215, 216, 217
 using, as service 104
Git
 about 177
 concept 178
 example 180

[445]

 gitignore 180
 versus GitHub 178
GitHub
 versus Git 178
gitignore
 about 180
 reference link 181
Global Interpreter Lock (GIL) 398
GNU Make 184, 185
graphical user interface (GUI) 173

H
harsh islands
 adding 165, 166
help function 47, 48
Herbivore haven 163, 164
HTML 122, 123, 142
HTTP response status codes
 reference link 105
hyperparameters
 about 256
 optimizing 276, 277, 278, 279
 random forest model, using 279
Hypertext Transfer Protocol (HTTP)
 body 105
 headers 105
 request line 105
 working with 105

I
if statement
 about 87, 88
 used, in comprehension 89
immutability 71
inline if statement 88
input function 46
integers 31, 32
interactive dashboard
 creating, in Jupyter 344, 345, 347
interface functions
 about 45
 eval function 46
 input function 46
isinstance function 49
Island class

 writing 160, 161, 162
iterables functions
 about 51
 all function 53
 any function 53
 len function 52
 max function 53
 min function 53
 range function 52, 53
 sorted function 52
 sum function 53
itertools 91
itertools, iterable constructors
 combinatoric iterators 91
 infinite iterators 91
 input sequence, terminating 91
itertools, iterators function
 chain 92
 cycle 92
 product 93
 reference link 92

J
Jupyter interface 22, 23
Jupyter
 about 183, 196, 197
 interactive dashboard, creating 344, 345, 347
 notebooks 22
 working with 21

K
k-means clustering algorithm 256
k-nearest neighbors (KNN)
 about 260, 262, 263
 disadvantages 260
keyword arguments 57
Kubernetes 412

L
last-in, first-out (LIFO) queue 77
latent logic 255
Least Recently Used (LRU) 112
len function 52
linear regression
 about 263, 264, 265, 266, 267

[446]

 distinctive properties 264
linters 401
Lira 339
lists 68, 69
locations
 geocoding 215, 216, 217
 parsing 213, 214
Locust
 used, for deploying API loads 366, 367, 368
 used, for testing API loads 366, 367, 368
logical operators 39, 40
loops
 break functionality 95, 96
 code, executing with 90
 continue functionality 95, 96
 enumeration 94
 for loop 90, 91
 itertools 91
 while loop 95
Luigi pipeline
 app, connecting to 339, 340
Luigi task
 dots, connecting 319, 320, 322
Luigi
 expanding, with custom template classes 328,

329, 330
 task, building 317, 318, 319

M
machine learning (ML) 254, 255, 371
Makefiles
 reference link 185
map function 83
maps
 drawing, with Altair 243, 244, 245
mask 203
materials
 downloading, for code execution 15
math functions
 about 50
 abs function 51
 round function 51
Matplotlib
 reference link 167
 used, for visualizing data 231, 232

max function 53, 82
medians
 externalizing 375
memory
 limitations 380
methods 146
metrics
 equation, adding to code 283, 284
 tracking, with version control 281, 284, 285
min function 53, 82, 83
ML model
 serverless API, building 376, 377, 378, 379,

380

model
 setting up 373, 374
multilevel slicing 223
MyPy 402

N
namedtuple 78, 79
Natural Earth dataset
 reference link 237
newspaper package
 reference link 141
NMake tool
 reference link 184
Nominatim API
 code, implementing 107, 108, 109, 111
 requests library 106
 working with 106
Not a Number (NaN) 204
notebooks 22
Numba 396, 397
NumPy
 exploring 191, 193
 used, for rewriting Python code 389, 391
NYC Open Data
 collecting, from Socrata service 119

O
Open Database License (ODbL) 104
OpenAPI service
 exploring 354
Operation Skorpion
 reference link 132

[447]

OpeStreetMap (OSM) 104
output formats
 exploring 324
overfitting 267

P
package manager, conda
 using 290, 291
package manager, pip
 using 290, 291
package scaffolding
 creating 291
package
 actual code, adding 294
 building 289
 building, ways 292
 creating 290
 dependencies, defining 295, 296
 development workflow 297
 installing, in editable mode 312
 non-code resources 296
 publishing 296, 297
pandas, data structures
 DataFrame 200
 series 200
pandas
 about 200, 201
 data conversion 204, 205
 data types 204, 205
 masking 203, 204
 math 205
 multiple dataframes, merging 206, 207
 selection, by columns 201, 202, 203
 selection, by indices 201, 202, 203
 working with 193, 195
papermill package
 reference link 283
parallelism 399
PEP427
 reference link 292
PEP517
 reference link 292
PEP
 reference link 400
pipes

 using 174
Poetry
 used, for coding 293
pre-flight check 24
priority queue 77
pyodide
 reference link 411
Python code
 algorithms, specializing 391, 392
 concurrency 398
 concurrency, types 398
 Dask 392, 394, 395
 data structures, specializing 391, 392
 Numba 396, 397
 parallelism 398
 problems, types 399
 rewriting 400
 rewriting, with NumPy 389, 391
 speeding up 387, 388, 389
Python Enhancement Proposals (PEP) 292
Python flavors
 about 410
 types 410, 411
Python packages
 installing 16
Python Packaging Authority (PyPA) 292
Python scripts
 executing 176
Python-flavored regex
 reference link 213
Python
 installing 12, 14
 using, for data science 190, 191

Q
quality assurance 223, 224
queue 76, 77

R
Radon 402
random forest model
 using 280
range function 52, 53
recursion 64, 65
regex games

[448]

 reference link 213
regression problem 260
regular expressions (regex)
 about 212, 213
 example 212
 reference link 213
Representational State Transfer (REST) 350
requests library 106
resampling 235, 237
RESTful API 350
reStructuredText (rst) 309
round function 51

S
S3 bucket
 output formats, writing to 325, 326
S3-triggered events 382, 383, 384
scikit-learn
 using 195, 196
SciPy
 using 195, 196
scraping
 about 142
 with Beautiful Soup 4 (BS4) 124
Scrapy
 reference link 141
Secure Sockets Layer (SSL) 106
Selenium 142
serverless 371, 372
serverless API
 building, for ML model 376, 377, 378, 379, 380
serverless function
 building, as data pipeline 380, 382
sets 73, 74
SHAP tool
 reference link 280
shell 173, 174
slicing 38, 70
Socrata service
 NYC Open Data, collecting from 119
Socrata
 reference link 322
sorted function 52
Sphinx
 used, for generating documentation 307, 308,

310, 312
SQL
 output formats, writing to 326, 327, 328
stack 77
static dashboards 333, 334, 335, 337
strings
 about 33, 34, 35
 format method 35, 36
 formatting 35
 legacy, formatting 37
 mini-language, formatting 37
 treating, as sequences 37
sum function 53, 82
super()
 using 156
supervised learning 260

T
tasks 315
temperature conversion
 refactoring 62
thread safety 398
time 217, 218, 219, 220
time-based tasks
 about 322, 323
 scheduling, with cron 323, 324
try/except
 about 96, 98, 99
 used, for handling exceptions 96
try/finally
 about 96, 99
 used, for handling exceptions 96
tuples 71
type annotations 61
type function 48, 49

U
unit tests
 writing, with hypothesis 407, 409
unsupervised learning
 exploring 255, 256, 257, 258, 259, 260

V
var-keyword 57, 58
var-positional 57, 58

variable properties, functions
 about 47
 dir function 50
 help function 47, 48
 isinstance function 49
 type function 48, 49
variables
 about 27
 assigning 27, 29
 naming 29, 30
vega
 declarative visualization 240, 242
version control
 used, for tracking data 281
 used, for tracking metrics 281
Virtual Document Object Models (VDOMs) 362
Visual Studio Code (VS Code)
 download link 17
 interface 18, 19, 21
 working with 17
visual style
 reference link 167
Voyager tool 339
vue.py package
 reference link 410

W
web APIs

 learning 105
web frameworks 351
web page
 building 362, 363, 365
 without API 122
while loop 95
Wily
 used, for measuring code quality 405, 407
with statement 100, 101
WWII battles
 additional information, scraping from Wiki page

135, 136, 137
 data, scraping 137, 138
 key information, scraping from Wiki page 134
 list, scraping 129, 130, 131
 quality control 139, 140, 141
 scraping 128
 unordered list, scraping 131, 132
 Wiki page, information scraping from 132, 133

X
XPath selector 124, 125, 126
XPath
 reference link 126

Z
zip function 82

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started with Python
	Chapter 1: Preparing the Workspace
	Technical requirements
	Installing Python
	Downloading materials for running the code
	Installing Python packages

	Working with VS Code
	The VS Code interface

	Beginning with Jupyter
	Notebooks
	The Jupyter interface

	Pre-flight check
	Summary
	Questions
	Further reading

	Chapter 2: First Steps in Coding - Variables and Data Types
	Technical requirements
	Assigning variables
	Naming the variable
	Understanding data types
	Floats and integers
	Operations with self-assignment
	Order of execution

	Strings
	Formatting
	Format method
	F-strings
	Legacy formatting
	Formatting mini-language

	Strings as sequences

	Booleans
	Logical operators

	Converting the data types
	Exercise
	Summary
	Questions
	Further reading

	Chapter 3: Functions
	Technical requirements
	Understanding a function
	Interface functions
	The input function
	The eval function

	Variable properties
	The help function
	The type function
	The isinstance function
	dir

	Math
	abs
	The round function

	Iterables
	The len function
	The sorted function
	The range function
	The all and any functions
	The max, min, and sum functions

	Defining the function
	Default values
	Var-positional and var-keyword
	Docstrings
	Type annotations

	Refactoring the temperature conversion
	Understanding anonymous (lambda) functions
	Understanding recursion
	Summary
	Questions
	Further reading

	Chapter 4: Data Structures
	Technical requirements
	What are data structures?
	Lists
	Slicing
	Tuples
	Immutability
	Dictionaries
	Sets

	More data structures
	frozenset
	defaultdict
	Counter
	Queue
	deque
	namedtuple
	Enumerations

	Using generators
	Useful functions to use with data structures
	The sum, max, and min functions
	The all and any functions
	The zip function
	The map, filter, and reduce functions

	Comprehensions
	Summary
	Questions
	Further reading

	Chapter 5: Loops and Other Compound Statements
	Technical requirements
	Understanding if, else, and elif statements
	Inline if statements
	Using if in a comprehension

	Running code many times with loops
	The for loop
	itertools
	cycle
	chain
	product

	Enumeration
	The while loop
	Additional loop functionality – break and continue

	Handling exceptions with try/except and try/finally
	Exceptions
	try/except
	try/except/finally

	Understanding the with statements
	Summary
	Questions
	Further reading

	Chapter 6: First Script – Geocoding with Web APIs
	Technical requirements
	Geocoding as a service
	Learning about web APIs
	Working with HTTPS

	Working with the Nominatim API
	The requests library
	Starting to code

	Caching with decorators
	Reading and writing data
	Geocoding the addresses

	Moving code to a separate module
	Collecting NYC Open Data from the Socrata service
	Summary
	Questions
	Further reading

	Chapter 7: Scraping Data from the Web with Beautiful Soup 4
	Technical requirements
	When there is no API
	HTML in a nutshell
	Scraping with Beautiful Soup 4
	CSS and XPath selectors
	Developer console

	Scraping WWII battles
	Step 1 – Scraping the list of battles
	Unordered list

	Step 2 – Scraping information from the Wiki page
	Key information
	Additional information

	Step 3 – Scraping data as a whole
	Quality control

	Beyond Beautiful Soup
	Summary
	Questions
	Further reading

	Chapter 8: Simulation with Classes and Inheritance
	Technical requirements
	Understanding classes
	Special (dunder) methods
	__init__
	__repr__ and __str__
	Arithmetical and logical operations
	Equality/relationship methods
	__len__
	__getitem__
	__class__

	Inheritance
	Using super()
	Data classes

	Using classes in simulation
	Writing the base classes
	Writing the Island class
	Herbivore haven
	Harsh islands
	Visualization

	Summary
	Questions
	Further reading

	Chapter 9: Shell, Git, Conda, and More – at Your Command
	Technical requirements
	Shell
	Pipes
	Executing Python scripts
	Command-line interface

	Git
	Concept
	GitHub
	Practical example
	gitignore

	Conda
	Conda for virtual environments
	Conda and Jupyter

	Make
	Cookiecutter
	Summary
	Questions

	Section 2: Hands-On with Data
	Chapter 10: Python for Data Applications
	Technical requirements
	Introducing Python for data science
	Exploring NumPy
	Beginning with pandas
	Trying SciPy and scikit-learn
	Understanding Jupyter
	Summary
	Questions

	Chapter 11: Data Cleaning and Manipulation
	Technical requirements
	Getting started with pandas
	Selection – by columns, indices, or both
	Masking
	Data types and data conversion
	Math
	Merging

	Working with real data
	Initial exploration
	Defining the scope of work to be done

	Getting to know regular expressions
	Parsing locations
	Geocoding

	Time
	Belligerents
	Understanding casualties
	Multilevel slicing

	Quality assurance
	Writing the file
	Summary
	Questions
	Further reading

	Chapter 12: Data Exploration and Visualization
	Technical requirements
	Exploring the dataset
	Descriptive statistics
	Data visualization with matplotlib (and its pandas interface)
	Aggregating the data to calculate summary statistics
	Resampling

	Mapping

	Declarative visualization with vega and altair
	Drawing maps with Altair
	Storing the Altair chart

	Big data visualization with datashader
	Summary
	Questions
	Further reading

	Chapter 13: Training a Machine Learning Model
	Technical requirements
	Understanding the basics of ML
	Exploring unsupervised learning
	Moving on to supervised learning
	k-nearest neighbors
	Linear regression
	Decision trees

	Summary
	Questions
	Further reading

	Chapter 14: Improving Your Model – Pipelines and Experiments
	Technical requirements
	Understanding cross-validation
	Exploring feature engineering
	Failed attempts

	Optimizing the hyperparameters
	Using a random forest model

	Tracking your data and metrics with version control
	Starting with data
	Adding code to the equation
	Metrics

	Summary
	Questions
	Further reading

	Section 3: Moving to Production
	Chapter 15: Packaging and Testing with Poetry and PyTest
	Technical requirements
	Building a package
	Bringing your own package
	Using a package manager – pip and conda
	Creating a package scaffolding

	A few ways to build your package
	Trying out code with Poetry
	Adding actual code
	Defining dependencies
	Non-code resources
	Publishing the package
	Development workflow

	Testing the code so far
	Testing with PyTest
	Writing our own tests

	Automating the process with CI services
	Generating documentation generation with sphinx
	Installing a package in editable mode
	Summary
	Questions
	Further reading

	Chapter 16: Data Pipelines with Luigi
	Technical requirements
	Introducing the ETL pipeline
	Redesigning your code as a pipeline

	Building our first task in Luigi
	Connecting the dots

	Understanding time-based tasks
	Scheduling with cron

	Exploring the different output formats
	Writing to an S3 bucket
	Writing to SQL

	Expanding Luigi with custom template classes
	Summary
	Questions
	Further reading

	Chapter 17: Let's Build a Dashboard
	Technical requirements
	Building a dashboard – three types of dashboard
	Static dashboards
	Debugging Altair
	Connecting your app to the Luigi pipeline

	Understanding dynamic dashboards
	First try with panel
	Reading data from the database
	Creating an interactive dashboard in Jupyter

	Summary
	Questions
	Further reading

	Chapter 18: Serving Models with a RESTful API
	Technical requirements
	What is a RESTful API?
	Python web frameworks

	Building a basic API service
	Exploring service with OpenAPI
	Finalizing our naive first iteration
	Data validation
	Sending data in with POST requests
	Adding features to our service

	Building a web page
	Speeding up with asynchronous calls
	Deploying and testing your API loads with Locust
	Summary
	Questions
	Further reading

	Chapter 19: Serverless API Using Chalice
	Technical requirements
	Understanding serverless
	Getting started with Chalice
	Setting up a simple model
	Externalizing medians

	Building a serverless API for an ML model
	When we're still out of memory

	Building a serverless function as a data pipeline
	S3-triggered events

	Summary
	Questions
	Further reading

	Chapter 20: Best Practices and Python Performance
	Technical requirements
	Speeding up your Python code
	Rewriting the code with NumPy
	Specialized data structures and algorithms
	Dask
	Dask-ML

	Numba
	Concurrency and parallelism
	Different types of concurrency
	Two types of problems
	Before you start rewriting your code

	Using best practices for coding in your project
	Code formatting with black
	Measuring code quality with Wily
	Writing tests with hypothesis

	Beyond this book – packages and technologies to look out for
	Different Python flavors
	Docker containers
	Kubernetes

	Summary
	Questions
	Further reading

	Appendix: Assessments
	Other Books You May Enjoy
	Index

