

Introduction to
Python for Science and

Engineering
Introduction to Python for Science and Engineering offers a quick and incisive
introduction to the Python programming language for use in any science or
engineering discipline. The approach is pedagogical and “bottom up,” which
means starting with examples and extracting more general principles from that
experience. No prior programming experience is assumed.
Readers will learn the basics of Python syntax, data structures, input and output,
conditionals and loops, user-defined functions, plotting, animation, and visual-
ization. They will also learn how to use Python for numerical analysis, including
curve fitting, random numbers, linear algebra, solutions to nonlinear equa-
tions, numerical integration, solutions to differential equations, and fast Fourier
transforms.
Readers learn how to interact and program with Python using JupyterLab and
Spyder, two simple and widely used integrated development environments.

All the major Python libraries for science and engineering are covered, includ-
ing NumPy, SciPy, Matplotlib, and Pandas. Other packages are also introduced,
including Numba, which can render Python numerical calculations as fast as
compiled computer languages such as C but without their complex overhead.

David J. Pine has taught physics and chemical engineering for over 40 years
at four different institutions: Cornell University (as a graduate student), Haver-
ford College, UCSB, and NYU, where he is a Professor of Physics, Mathematics,
and Chemical & Biomolecular Engineering. He has taught a broad spectrum of
courses, including numerical methods. He does research on optical materials
and in experimental soft-matter physics, which is concerned with materials such
as polymers, emulsions, and colloids.

Intelligent Data-Driven Systems and Artificial Intelligence
Series Editor: Harish Garg

Cognitive Machine Intelligence
Applications, Challenges, and Related Technologies
Inam Ullah Khan, Salma El Hajjami, Mariya Ouaissa, Salwa Belqziz and
Tarandeep Kaur Bhatia

Artificial Intelligence and Internet of Things based Augmented Trends for
Data Driven Systems
Anshu Singla, Sarvesh Tanwar, Pao-Ann Hsiung

Modelling of Virtual Worlds Using the Internet of Things
Edited by Simar Preet Singh and Arun Solanki

Data-Driven Technologies and Artificial Intelligence in Supply Chain
Tools and Techniques
Mahesh Chand, Vineet Jain and Puneeta Ajmera

For more information about this series, please visit: www.routledge.com/Intelli-
gent-Data-Driven-Systems-and-Artificial-Intelligence/book-series/CRCIDDSAAI

https://www.routledge.com/Intelligent-Data-Driven-Systems-and-Artificial-Intelligence/book-series/CRCIDDSAAI
https://www.routledge.com/Intelligent-Data-Driven-Systems-and-Artificial-Intelligence/book-series/CRCIDDSAAI

Introduction to
Python for Science and

Engineering
Second Edition

David J. Pine

https://www.crcpress.com

Designed cover image: David J. Pine
MATLAB• and Simulink• are trademarks of The MathWorks, Inc. and are used with per-
mission. The MathWorks does not warrant the accuracy of the text or exercises in this
book. This book’s use or discussion of MATLAB• or Simulink• software or related prod-
ucts does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB• and Simulink•software.

Second edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 David J. Pine

First edition published by CRC Press 2018

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and re-
cording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please
contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-65033-3 (hbk)
ISBN: 978-1-032-67390-5 (pbk)
ISBN: 978-1-032-67395-0 (ebk)

DOI: 10.1201/9781032673950

Typeset in Nimbus font
by KnowledgeWorks Global Ltd.

mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781032673950
https://www.copyright.com
https://www.copyright.com

To Alex Pine
who introduced me to Python

http://www.taylorandfrancis.com

Contents

Preface to First Edition xvii

Preface to Second Edition xxi

About the Author xxiii

CHAPTER 1 � Introduction 1

1.1 INTRODUCTION TO PYTHON FOR SCIENCE AND
ENGINEERING 1

1.2 INSTALLING PYTHON 3

CHAPTER 2 � Launching Python 4

2.1 INTERACTING WITH PYTHON: THE IPYTHON SHELL 4

2.2 THE IPYTHON SHELL 6

2.3 INTERACTIVE PYTHON AS A CALCULATOR 6

2.3.1 Binary Arithmetic Operations in Python 7
2.3.2 Types of Numbers 7
2.3.3 Numbers as Objects 9

2.4 VARIABLES AND ASSIGNMENT 10

2.4.1 Names and the Assignment Operator 10
2.4.2 Legal and Recommended Variable Names 14
2.4.3 Reserved Words in Python 14

2.5 SCRIPT FILES AND PROGRAMS 15

2.5.1 Editors for Python Scripts 15
2.5.2 First Scripting Example 16

2.6 PYTHON MODULES 19

2.6.1 Python Modules and Functions: A First Look 20

vii

viii � Contents

2.6.2 Some NumPy Functions 22
2.6.3 Scripting Example 2 23
2.6.4 Different Ways of Importing Modules 24

2.7 GETTING HELP: DOCUMENTATION IN IPYTHON 25

2.8 PERFORMING SYSTEM TASKS WITH IPYTHON 26

2.8.1 Magic Commands 26
2.8.2 Tab Completion 29
2.8.3 Recap of Commands 30

2.9 PROGRAMMING ERRORS 30

2.9.1 Error Checking 30
2.10 EXERCISES 31

CHAPTER 3 � Integrated Development Environments 33

3.1 PROGRAMMING AND INTERACTING WITH PYTHON 33

3.2 PROGRAMMING STYLE AND CODING ERRORS: PEP 8
AND LINTERS 34

3.3 THE SPYDER IDE 35

3.3.1 Autoformatting and Linting in Spyder 36
3.3.2 Running Python Code in Spyder 37

3.4 THE JUPYTERLAB IDE 39

3.4.1 Jupyter Extensions 41
3.5 JUPYTER NOTEBOOKS 43

3.6 LAUNCHING A JUPYTER NOTEBOOK 43

3.7 RUNNING PROGRAMS IN A JUPYTER NOTEBOOK 45

3.8 ANNOTATING A JUPYTER NOTEBOOK 45

3.8.1 Adding Headings and Text 46
3.8.2 Saving a Jupyter Notebook 48
3.8.3 Editing and Rerunning a Notebook 48
3.8.4 Quitting a Jupyter Notebook 49
3.8.5 Working with an Existing Jupyter Notebook 49

CHAPTER 4 � Strings, Lists, Arrays, and Dictionaries 50

4.1 STRINGS 51

Contents � ix

4.1.1 Unicode Characters 52
4.2 LISTS 53

4.2.1 Slicing Lists 55
4.2.2 Multidimensional Lists 56
4.2.3 Appending to Lists 57
4.2.4 Tuples 58

4.3 DICTIONARIES 59

4.4 NUMPY ARRAYS 61

4.4.1 Creating Arrays (1-d) 61
4.4.2 Mathematical Operations with Arrays 63
4.4.3 Slicing and Addressing Arrays 66
4.4.4 Fancy Indexing: Boolean Indexing 67
4.4.5 Multidimensional Arrays and Matrices 69
4.4.6 Broadcasting 73
4.4.7 Differences Between Lists and Arrays 75

4.5 OBJECTS 76

4.6 EXERCISES 78

CHAPTER 5 � Input and Output 83

5.1 KEYBOARD INPUT 83

5.2 SCREEN OUTPUT 85

5.2.1 Formatting Output with str.format() 85
5.2.2 Formatting with f-strings 89
5.2.3 Printing Arrays 89

5.3 FILE INPUT 91

5.3.1 Reading Data from a Text File 91
5.3.2 Reading Data from an Excel File: CSV Files 92

5.4 FILE OUTPUT 94

5.4.1 Writing Data to a Text File 94
5.4.2 Writing Data to a CSV File 96

5.5 EXERCISES 97

x � Contents

CHAPTER 6 � Conditionals and Loops 100

6.1 CONDITIONALS 102

6.1.1 if, elif, and else Statements 102
6.1.2 More about Boolean Variables, Operators, and

Expressions 107
6.2 LOOPS 110

6.2.1 while Loops 110
6.2.2 for Loops 113
6.2.3 Loop Control Statements 118
6.2.4 Loops and Array Operations 119

6.3 LIST COMPREHENSIONS 120

6.4 HANDLING EXCEPTIONS 122

6.5 EXERCISES 125

CHAPTER 7 � Functions 127

7.1 USER-DEFINED FUNCTIONS 128

7.1.1 Looping Over Arrays in User-Defined Functions 130
7.1.2 Fast Array Processing for User-Defined Functions 131
7.1.3 Functions with More than One Input or Output 133
7.1.4 Type Hints 134
7.1.5 Positional and Keyword Arguments 134
7.1.6 Variable Number of Arguments 136
7.1.7 Passing a Function Name and Its Parameters as

Arguments 137
7.2 NAMESPACE AND SCOPE IN PYTHON 140

7.2.1 Scope: Four Levels of Namespaces in Python 140
7.2.2 Variables and Arrays Created Entirely Within a

Function 142
7.2.3 Passing Lists and Arrays to Functions: Mutable and

Immutable Objects 143
7.3 ANONYMOUS FUNCTIONS: LAMBDA EXPRESSIONS 146

7.4 NUMPYOBJECTATTRIBUTES:METHODSAND INSTANCE
VARIABLES 148

Contents � xi

7.5 EXAMPLE: LINEAR LEAST SQUARES FITTING 150

7.5.1 Linear Regression 151
7.5.2 Linear Regression with Weighting: χ2 153

7.6 EXERCISES 155

CHAPTER 8 � Plotting 163

8.1 AN INTERACTIVE SESSION WITH PYPLOT 164

8.2 BASIC PLOTTING 166

8.2.1 Specifying Line and Symbol Types and Colors 171
8.2.2 Error Bars 174
8.2.3 Setting Plotting Limits and Excluding Data 176
8.2.4 Subplots 179

8.3 LOGARITHMIC PLOTS 180

8.3.1 Semi-Log Plots 181
8.3.2 Log-Log Plots 183

8.4 MORE ADVANCED GRAPHICAL OUTPUT 183

8.4.1 An Alternative Syntax for a Grid of Plots 187
8.5 PLOTS WITH MULTIPLE AXES 189

8.5.1 Plotting Quantities that Share One Axis but not the
Other 189

8.5.2 Two Separate Scales for a Data Set 190
8.6 PLOTS WITH INSETS 191

8.7 MATHEMATICS AND GREEK SYMBOLS 193

8.7.1 Manual Axis Labeling 198
8.8 THE STRUCTURE OF MATPLOTLIB: OOP AND ALL THAT 199

8.8.1 The Backend Layer 200
8.8.2 The Artist Layer 202
8.8.3 The PyPlot (scripting) Layer 204

8.9 CONTOUR AND VECTOR FIELD PLOTS 206

8.9.1 Making a 2D Grid of Points 206
8.9.2 Contour Plots 207
8.9.3 Streamline Plots 211

xii � Contents

8.9.4 Vector Field (quiver) Plots 215
8.10 THREE-DIMENSIONAL PLOTS 217

8.10.1 Cartesian Coordinates 217
8.10.2 Polar Coordinates 219

8.11 EXERCISES 220

CHAPTER 9 � Numerical Routines: SciPy and NumPy 225

9.1 SPECIAL FUNCTIONS 226

9.1.1 Important Note on Importing SciPy Subpackages 229
9.2 SPLINE FITTING, SMOOTHING, AND INTERPOLATION 229

9.2.1 Interpolating Splines 230
9.2.2 Smoothing Splines 234
9.2.3 Finding Roots (zero crossings) of Numerical Data 236

9.3 CURVE FITTING 236

9.3.1 Linear Fitting Functions 237
9.3.2 Polynomial Fitting Functions 240
9.3.3 Nonlinear Fitting Functions 242

9.4 RANDOM NUMBERS 247

9.4.1 Initializing NumPy’s Random Number Generator 247
9.4.2 Uniformly Distributed Random Numbers 247
9.4.3 Normally Distributed Random Numbers 248
9.4.4 Random Distribution of Integers 249
9.4.5 Poisson Distribution of Random Integers 249

9.5 LINEAR ALGEBRA 250

9.5.1 Basic Computations in Linear Algebra 251
9.5.2 Solving Systems of Linear Equations 251
9.5.3 Eigenvalue Problems 253

9.6 SOLVING NONLINEAR EQUATIONS 255

9.6.1 Single Equations of a Single Variable 255
9.6.2 Solving Systems of Nonlinear Equations 258

9.7 NUMERICAL INTEGRATION 258

9.7.1 Single Integrals of Functions 259

Contents � xiii

9.7.2 Double Integrals 263
9.7.3 Integrating Numerical Data 264

9.8 SOLVING ODES 265

9.8.1 A First-Order ODE 265
9.8.2 A Second-Order ODE 269

9.9 DISCRETE (FAST) FOURIER TRANSFORMS 273

9.9.1 Continuous and Discrete Fourier Transforms 273
9.9.2 The SciPy FFT Library 274

9.10 EXERCISES 276

CHAPTER 10 � Python Classes: Encapsulation 284

10.1 A VERY SIMPLE CLASS 286

10.2 A BRIEF INTRODUCTION TO MODULES AND PACKAGES 290

10.2.1 Pythonpath 291
10.3 A CLASS FOR READING AND PROCESSING DATA 293

10.3.1 The Data 294
10.3.2 The Class 295
10.3.3 The Code 297

10.4 A CLASS OF RELATED FUNCTIONS 300

10.5 INHERITANCE 304

10.6 EXERCISES 305

CHAPTER 11 � Data Manipulation and Analysis: Pandas 306

11.1 DATA STRUCTURES: SERIES AND DATAFRAME 307

11.1.1 Series 307
11.1.2 DataFrame 310

11.2 INDEXING DATAFRAMES 315

11.2.1 Pandas iloc Indexing 315
11.2.2 Pandas loc Indexing 316

11.3 READING DATA FROM FILES USING PANDAS 317

11.3.1 Reading from Excel Files Saved as CSV Files 317
11.3.2 Reading from an Excel File 324
11.3.3 Getting Data from the Web 326

xiv � Contents

11.4 EXTRACTING INFORMATION FROM A DATAFRAME 328

11.5 PLOTTING WITH PANDAS 332

11.6 GROUPING AND AGGREGATION 336

11.6.1 The groupby Method 337
11.6.2 Iterating Over Groups 338
11.6.3 Reformatting DataFrames 341
11.6.4 Custom Aggregation of DataFrames 343

11.7 EXERCISES 346

CHAPTER 12 � Animation 351

12.1 ANIMATING A SEQUENCE OF IMAGES 351

12.1.1 Simple Image Sequence 352
12.1.2 Annotating and Embellishing Videos 355

12.2 ANIMATING FUNCTIONS 357

12.2.1 Animating for a Fixed Number of Frames 358
12.2.2 Animating until a Condition is Met 362

12.3 COMBINING VIDEOS WITH ANIMATED FUNCTIONS 368

12.3.1 Using a Single Animation Instance 368
12.3.2 Combining Multiple Animation Instances 370

12.4 EXERCISES 372

CHAPTER 13 � Speeding Up Numerical Calculations 374

13.1 NUMBA’S BASIC FUNCTIONS 375

13.1.1 Faster Loops and NumPy Functions 376
13.1.2 Vectorizing Functions with Numba 382
13.1.3 Numba Signatures 383

13.2 SIMULATIONS 385

13.2.1 A Brownian Dynamics Simulation 385
13.2.2 Nondimensional Simulation Variables and

Parameters 387
13.2.3 Simulation with the Numba Decorator 389
13.2.4 Performance and Saving/Reading Large Data Files 392
13.2.5 Isolating Numerical Code for Numba 392

Contents � xv

13.3 USING NUMBA WITH CLASSES 393

13.4 OTHER FEATURES OF NUMBA 396

13.5 EXERCISES 396

Appendix A � Maintaining Your Python Installation 400

A.1 UPDATING PYTHON 400

A.2 TESTING YOUR PYTHON INSTALLATION 400

A.3 INSTALLING FFMPEG FOR SAVING ANIMATIONS 402

A.4 ADDING FOLDERS/DIRECTORIES TO YOUR PYTHON
PATH 402

A.4.1 Spyder 403
A.4.2 macOS 403
A.4.3 Windows 404
A.4.4 Linux 405

Appendix B � Glossary 406

Appendix C � Python Resources 409

C.1 PYTHON PROGRAMS ANDDATA FILES INTRODUCED IN
THIS TEXT 409

C.2 WEB RESOURCES 409

C.3 BOOKS 410

Index 413

http://www.taylorandfrancis.com

Preface to First Edition

The aim of this book is to provide science and engineering students a practi-
cal introduction to technical programming in Python. It grew out of notes I
developed for various undergraduate physics courses I taught at NYU. While
it has evolved considerably since I first put pen to paper, it retains its original
purpose: to get students with no previous programming experience writing
and running Python programs for scientific applications with a minimum of
fuss.

The approach is pedagogical and “bottom up,” which means starting with
examples and extracting more general principles from that experience. This
is in contrast to presenting the general principles first and then examples of
how those general principles work. In my experience, the latter approach is
satisfying only to the instructor. Much computer documentation takes a top-
down approach, which is one of the reasons it’s frequently difficult to read and
understand. On the other hand, once examples have been seen, it’s useful to
extract the general ideas in order to develop the conceptual framework needed
for further applications.
In writing this text, I assume that the reader:

• has never programmed before;

• is not familiar with programming environments;

• is familiar with how to get around a Mac or PC at a very basic level; and

• is competent in basic algebra, and for Chapters 8 and 9, calculus, linear
algebra, ordinary differential equations, and Fourier analysis. The other
chapters, including 10–12, require only basic algebra skills.

This book introduces, in some depth, four Python packages that are im-
portant for scientific applications:

NumPy, short for Numerical Python, provides Python with a multidimen-
sional array object (like a vector or matrix) that is at the center of virtu-
ally all fast numerical processing in scientific Python. It is both versatile

xvii

xviii � Preface to First Edition

and powerful, enabling fast numerical computation that, in some cases,
approaches speeds close to those of a compiled language like C, C++,
or Fortran.

SciPy, short for Scientific Python, provides access through a Python interface
to a very broad spectrum of scientific and numerical software written in
C, C++, and Fortran.These include routines to numerically differentiate
and integrate functions, solve differential equations, diagonalize matri-
ces, take discrete Fourier transforms, perform least-squares fitting, as
well as many other numerical tasks.

Matplotlib is a powerful plotting package written for Python and capable of
producing publication-quality plots.While there are other Python plot-
ting packages available, Matplotlib is the most widely used and is the de
facto standard.

Pandas is a powerful package for manipulating and analyzing data formatted
and labeled in a manner similar to a spreadsheet (think Excel). Pandas
is very useful for handling data produced in experiments and is partic-
ularly adept at manipulating large data sets in different ways.

In addition, Chapter 12 provides a brief introduction to Python classes
and to PyQt5, which provides Python routines for building graphical user in-
terfaces (GUIs) that work on Macs, PCs, and Linux platforms.

Chapters 1–7 provide the basic introduction to scientific Python and
should be read in order. Chapters 8–12 do not depend on each other and,
with a few mild caveats, can be read in any order.

As the book’s title implies, the text is focused on scientific uses of Python.
Many of the topics that are of primary importance to computer scientists, such
as object-oriented design, are of secondary importance here. Our focus is on
learning how to harness Python’s ability to perform scientific computations
quickly and efficiently.

The text shows the reader how to interact with Python using IPython,
which stands for Interactive Python, through one of three different interfaces,
all freely available on the web: Spyder, an integrated development environ-
ment, Jupyter Notebooks, and a simple IPython terminal. Chapter 2 provides
an overview of Spyder and an introduction to IPython, which is a powerful
interactive environment tailored to scientific use of Python. Appendix B pro-
vides an introduction to Jupyter notebooks.

Python 3 is used exclusively throughout the text with little reference to
any version of Python 2. It’s been nearly 10 years since Python 3 was intro-
duced, and there is little reason to write new code in Python 2; all the major

Preface to First Edition � xix

Python packages have been updated to Python 3. Moreover, once Python 3
has been learned, it’s a simple task to learn how Python 2 differs, which may
be needed to deal with legacy code. There are many lucid web sites dedicated
to this sometimes necessary but otherwise mind-numbing task.

The scripts, programs, and data files introduced in this book are available
at https://github.com/djpine/python-scieng-public-2, the GitHub site for this
book.

Finally, I would like to thank Étienne Ducrot, Wenhai Zheng, and Stefano
Sacanna for providing some of the data and images used in Chapter 12, and
Mingxin He and Wenhai Zheng for their critical reading of early versions of
the text.

https://github.com/djpine/python-scieng-public-2

http://www.taylorandfrancis.com

Preface to Second Edition

The aim of the second edition remains the same as the first: to provide science
and engineering students a practical introduction to technical programming
in Python. This new edition adds nearly 100 pages of new material.

Among the changes, the concept of an object is developed more thor-
oughly, starting in Chapter 2 with the discussion of variables and assignment.
This perspective is continued throughout the text as the various aspects of ob-
jects are revealed and developed. The chapter on Python classes, now Chapter
10, has been completely rewritten with new examples. Here, we emphasize the
concept of encapsulation and its use in science and engineering.

Chapter 3 on the Spyder and Jupyter Lab integrated development environ-
ments (IDEs) is new. Some of the material on the Spyder IDE can be found in
the First Edition, but it has been updated and expanded in this edition. The
material on the Jupyter Lab IDE is entirely new, as Jupyter Lab has developed
significantly since the first edition and now offers a compelling IDE.

New examples have been added to Chapter 6 on conditionals and loops.
The chapter also includes a new section on exception handling.

The introduction of functions has been moved so that it now occurs be-
fore the chapter on plotting. Type hints, new to Python since the first edition,
are discussed. The subtle subject of namespace and scope and its relation to
functions has been expanded significantly.

The chapter on curve fitting has been eliminated. That material is now
covered in Chapters 7 and 9.

New material has been added to Chapter 8 on plotting, including an in-
troduction to the Seaborn package. New examples have been added, includ-
ing using two separate scales for a single axis, plots with insets, vector field
(quiver) plots, and plotting with polar coordinates.

Chapter 9 on the NumPy and SciPy packages has been expanded to in-
clude new material on interpolating and smoothing splines. Several updates
in various NumPy and SciPy packages have been incorporated into the text,
including changes in NumPy’s random number and polynomial packages.

xxi

xxii � Preface to Second Edition

Chapter 13 on speeding up numerical computations is new. It focuses on
the Numba package and how to effectively use it to address Python’s Achilles’
heel, its slow execution of long loops involving numerical code.

The programs and data files introduced in the Second Edition are available
at https://github.com/djpine/python-scieng-public-2.

The paper edition is printed in grayscale to reduce costs. However,
the original figures in full color are available at https://github.com/djpine/
python-scieng-public-2.

In addition to those who contributed to the First Edition, I would like
to thank Marc Gershow for helpful suggestions, Fan Cui for initial versions
code presented in Chapter 13, and Xinhang Shen for providing data used in
Chapter 8.

https://github.com/djpine/python-scieng-public-2
https://github.com/djpine/python-scieng-public-2
https://github.com/djpine/python-scieng-public-2

About the Author

David Pine has taught Physics and Chemical Engineering for more than 40
years at four different institutions: Cornell University (as a graduate student),
Haverford College, UCSB, andNYU, where he is a Professor of Physics, Math-
ematics, and Chemical and Biomolecular Engineering. He has taught a broad
spectrum of courses, including numerical methods. He does research on opti-
cal materials and soft-matter physics, which is concerned with materials such
as polymers, emulsions, and colloids.

xxiii

http://www.taylorandfrancis.com

CH A P T E R 1

Introduction

1.1 INTRODUCTION TO PYTHON FOR SCIENCE AND
ENGINEERING

This book is meant to serve as an introduction to the Python programming
language and its use for scientific computing. It’s ok if you have never pro-
grammed a computer before. This book will teach you how to do it from the
ground up.

Python is well suited for most scientific and engineering computing tasks.
You can use it to analyze and plot data. You can also use it to numerically solve
science and engineering problems that are difficult or even impossible to solve
analytically.

While we want to marshal Python’s powers to address scientific problems,
you should know that Python is a general-purpose computer language widely
used for a broad spectrum of computing tasks, from web applications to pro-
cessing financial data on Wall Street and various scripting tasks for computer
system management. Over the past decade, it has been increasingly used by
scientists and engineers for numerical computations and graphics and as a
“wrapper” for numerical software originally written in other languages, like
Fortran and C.

Python is similar to MATLAB®, another computer language frequently
used in science and engineering applications. Like MATLAB®, Python is an
interpreted language, meaning you can run your code without going through
an extra step of compiling, as required for the C and Fortran programming
languages. It is also a dynamically typed language, meaning you don’t have to
declare variables and set aside memory before using them.

DOI: 10.1201/9781032673950-1 1

https://doi.org/10.1201/9781032673950-1

2 � Introduction to Python for Science and Engineering

Don’t worry if you don’t know exactly what these terms mean.1 Their pri-
mary significance for you is that you can write Python code, test it, and use it
quickly with a minimum of fuss.

One advantage of Python compared toMATLAB® is that it is free. It can be
downloaded from the web and is available on all the standard computer plat-
forms, including Windows, macOS, and Linux. This also means that you can
use Python without being tethered to the internet, as required for commercial
software tied to a remote license server.

Another advantage is Python’s clean and simple syntax, including its im-
plementation of object-oriented programming. This should not be discounted;
Python’s rich and elegant syntax rendersmany tasks that are difficult or arcane
in other languages more straightforward and understandable in Python.

A significant disadvantage is that Python programs can be slower than
compiled languages like C. For large-scale simulations and other demanding
applications, there can be a considerable speed penalty in using Python. In
these cases, C, C++, or Fortran are recommended, although intelligent use of
Python’s array processing tools in the NumPy module can significantly speed
up Python code. Alternatively, several new tools have recently appeared that
can be used to speed up certain numerical computations in Python signifi-
cantly, often by one or two orders of magnitude. These are discussed in Chap-
ter 13. Another disadvantage is that, compared to MATLAB®, Python is less
well-documented. This stems from the fact that it is public open source soft-
ware and thus depends on volunteers from the community of developers and
users for documentation. The documentation is freely available on the web
but is scattered among a number of different sites and can be terse. This book
will acquaint you with the most commonly used websites. Search engines like
Google can help you find others.

You are not assumed to have had any previous programming experience.
However, the purpose of this manual isn’t to teach you the principles of com-
puter programming; it’s to provide a very practical guide to getting started
with Python for scientific computing. Once you see some of the powerful
tasks you can accomplish with Python, perhaps you will be inspired to study
computational science and engineering, as well as computer programming, in
greater depth.

1Appendix B contains a glossary of terms you may find helpful.

Introduction � 3

1.2 INSTALLING PYTHON

You need to install Python and four scientific Python libraries for scientific
programming with Python: NumPy, SciPy, Matplotlib, and Pandas. You can
install many other useful libraries, but these four are the most widely used
and are the only ones you will need for this text.

There are several ways to install Python and the necessary scientific li-
braries. Some are easier than others. For most people, the simplest way to
install Python and all the scientific libraries you need is to use the Ana-
conda distribution, which includes the JupyterLab and Spyder integrated de-
velopment environments (IDEs) for Python. These IDEs are introduced in
Chapter 3.

The Anaconda distribution package can be found at the website
https://www.anaconda.com/download/. Once you download and install it,
you can use the Anaconda-Navigator application to launch all of the applica-
tions introduced in this text, including Spyder, JupyterLab, and Qt Console.

Now, you are ready to go.

https://www.anaconda.com/download

CH A P T E R 2

Launching Python

In this chapter, you learn about IPython, an interface that allows you
to use Python interactively with tools optimized for mathematical and
computational tasks. You learn how to use IPython as a calculator to
add, subtract, multiply, divide, and perform other common mathemat-
ical functions. You also learn the basic elements of the Python program-
ming language, including functions, variables, and scripts, which are
rudimentary computer programs. You are introduced to Python mod-
ules, which extend the capabilities of the core Python language and al-
low you to perform advanced mathematical tasks. You also learn some
new ways to navigate your computer’s file directories. Finally, you learn
how to get help with Python commands and functions.

2.1 INTERACTING WITH PYTHON: THE IPython SHELL

There are many different ways to interact with Python. For simple comput-
ing tasks, people typically use the Python command shell, which is also called
the Python interpreter or console. A shell or console is just a window on your
computer that you use to issue written commands from the keyboard. For sci-
entific Python, which is the focus of this text, people generally use the IPython
shell (or console) instead of the Python shell. The IPython shell is specifically
designed for scientific and engineering use.We use the IPython shell through-
out this text.

To launch a Python or IPython shell, you first need to launch a terminal
application. If you are running the macOS, launch the Terminal application,
which you can find in the Applications/Utilities folder on your computer. If

4 DOI: 10.1201/9781032673950-2

https://doi.org/10.1201/9781032673950-2

Launching Python � 5

Figure 2.1 Qt console for IPython.

you are runningWindows, launch the Anaconda Powershell Prompt application
from the Start menu. Under Linux, you can open the Terminal application by
pressing <ctrl + alt + T>.

After launching a terminal application, type jupyter qtconsole at the
terminal prompt and press <return>. This launches a particularly powerful
version of the IPython shell called the Qt Console. Alternatively, instead of
launching a terminal, you can launch Qt Console directly from the Anaconda-
Launcher app that is downloaded with the Anaconda PythonDistribution.The
Qt Console for IPython will be used throughout this text. It should look like
the window in Figure 2.1. You should see the default input prompt of the
IPython shell, which looks like this:
In[1]:

Now you are ready to go.
By the way, if you type ipython at the terminal prompt, you will get a sim-

ilar but less powerful IPython shell. This is not what you want. If you type
python at the terminal prompt, you get the standard Python shell with the
prompt:
>>>

This is not what you want either. Type quit() after the >>> prompt to quit the
Python shell and return to the system terminal. By the way, you can also type
quit() to quit either of the IPython shells and return to the system terminal.

6 � Introduction to Python for Science and Engineering

2.2 THE IPython SHELL

The IPython prompt, shown here,
In[1]:

indicates that the IPython shell is running and ready to receive input from
the user (you!). By typing commands at the prompt, IPython can be used to
perform various tasks, such as running programs, performing arithmetic, and
creating and moving files around on your computer.

Before getting started, we note that, like most modern computer lan-
guages, Python is case sensitive. That is, Python distinguishes between upper-
and lower-case letters. Thus, two words spelled the same but having different
letters capitalized are treated as different names in Python. Please keep that in
mind in all that follows.

2.3 INTERACTIVE PYTHON AS A CALCULATOR

Let’s get started. You can use the IPython shell to perform simple arithmetic
calculations. For example, to find the product 3× 15, you type 3*15 (or 3 * 15,
spaces don’t matter) at the In prompt and press <return>:
In[1]: 3 * 15
Out[1]: 45

Python returns the correct product, as expected. You can domore complicated
calculations:
In[2]: 6 + 21 / 3
Out[2]: 13.0

Let’s try some more arithmetic:
In[3]: (6 + 21) / 3
Out[3]: 9.0

Notice that the effect of the parentheses in In[3]: (6 + 21) / 3 is to cause the
addition to be performed first and then the division. Without the parenthe-
ses, Pythonwill always perform themultiplication and division operations be-
fore performing the addition and subtraction operations. The order in which
arithmetic operations are performed is the same as formost calculators: expo-
nentiation first, then multiplication or division, then addition or subtraction,
then left to right.

Launching Python � 7

TABLE 2.1 Binary operators.
Operation Symbol Example Output
Addition + 19 + 7 26
Subtraction - 19 - 7 12
Multiplication * 19 * 7 133
Division / 19 / 7 2.7142857142
Floor division // 19 // 7 2
Remainder % 19 % 7 5
Exponentiation ** 19**7 893871739

2.3.1 Binary Arithmetic Operations in Python

Table 2.1 lists the binary arithmetic operations in Python. Python has all the
standard binary operators for arithmetic, plus a few you may not have seen
before.

“Floor division,” designated by //, means divide and keep only the integer
part without rounding. “Remainder,” designated by the symbol %, gives the
remainder after floor division.

2.3.2 Types of Numbers

There are three different types of numbers in Python: Integers, floating point
numbers, and complex numbers.

1. Integers in Python are simply, as their name implies, integers. They can
be positive or negative and can be arbitrarily long. In Python, a number
is automatically treated as an integer if it is written without a decimal
point. This means that 23, written without a decimal point, is an integer,
and 23., written with a decimal point, is a floating point number. Here
are some examples of integer arithmetic:
In[4]: 12 * 3
Out[4]: 36

In[5]: 4 + 5 * 6 - (21 * 8)
Out[5]: -134

In[6]: 11 / 5
Out[6]: 2.2

In[7]: 11 // 5 # floor divide
Out[7]: 2

8 � Introduction to Python for Science and Engineering

In[8]: 9734828*79372
Out[8]: 772672768016

For the binary operators +, -, *, and //, the output is an integer if the
inputs are integers. The output of the division operator / is a floating
point number (as of version 3 of Python).The floor division operator //
must be used if an integer output is desired when dividing two integers.

2. Floating point numbers are essentially rational numbers and can have
a fractional part; integers, by their very nature, have no fractional part.
Inmost versions of Python, floating point numbers go between approx-
imately±2×10−308 and±2×10308. Here are some examples of floating
point arithmetic:
In[9]: 12. * 3
Out[9]: 36.0

In[10]: 12 / 3.
Out[10]: 4.0

In[11]: 5 ** 0.5
Out[11]: 2.23606797749979

In[12]: 5 ** (1/2)
Out[12]: 2.23606797749979

In[13]: 11. / 5.
Out[13]: 2.2

In[14]: 11. // 5.
Out[14]: 2.0

In[15]: 11. % 5.
Out[15]: 1.0

In[16]: 6.022e23 * 300.
Out[16]: 1.8066e+26

Note that the result of any operation involving only floating point num-
bers as inputs is another floating point number, even in cases where the
floor division // or remainder % operators are used.The last output illus-
trates an alternative way of writing floating point numbers as amantissa
followed by e or E followed by a power of 10: so 1.23e-12 is equivalent
to 1.23 × 10−12.
Notice also that multiplying or dividing a floating point number by an
integer produces a floating point number.

Launching Python � 9

We used the exponentiation operator ** to find the square root of 5 by
using a fractional power of 0.5 and 1/2. In Section 2.6.2, an alternative
method is presented for finding the square root of a number.

3. Complexnumbers arewritten in Python as a sumof real and imaginary
parts. For example, the complex number 3−2i is represented as 3-2j in
Python, where j represents

√
−1. Here are some examples of complex

arithmetic: 2+3j * -4+9j = 2+(3j * -4)+9j = (2-3j), whereas (2+3j) *
(-4+9j) = (-35+6j).
In[17]: (2+3j) * (-4+9j)
Out[17]: (-35+6j)

In[18]: (2+3j) / (-4+9j)
Out[18]: (0.1958762886597938-0.3092783505154639j)

In[19]: 2.5-3j**2
Out[19]: (11.5+0j)

In[20]: (2.5-3j)**2
Out[20]: (-2.75-15j)

Notice that 2.5-3j**2 and (2.5-3j)**2 give different results. You need to
enclose the real and imaginary parts of a complex number in parenthe-
ses if youwant exponentiation to operate on the entire complex number
and not simply on the imaginary part. It works similarly with multipli-
cation and division of complex numbers, so be sure to enclose the en-
tire complex number with parentheses if you wish to multiply or divide
complex numbers.
If youmultiply an integer by a floating point number, the result is a float-
ing point number. If you multiply a floating point number by a complex
number, the result is a complex number. Python promotes the result to
the most complex of the inputs.

2.3.3 Numbers as Objects

Everything in Python is an object. Thus, the numbers we introduced above are
all objects. We will not fully define what an object is right now; we will explain
it little by little as needed as we proceed.

The first thing to know about objects is that they are the fundamental
things that Python manipulates and works with. As such, they have some in-
teresting properties, a few of which we explore here. For example, each object

10 � Introduction to Python for Science and Engineering

has an ID, which is just its location in your computer’s memory. We can de-
termine the ID of an object using Python’s id function.
In[21]: id(52)
Out[21]: 140294301609872

In[22]: id(241.3)
Out[22]: 140293508419248

In[23]: id(3+7j)
Out[23]: 140293508416368

The next thing to know is that every object has a type, which can be as-
certained using the function type. So, what are the types of the numbers we
introduced above?
In[24]: type(72)
Out[24]: int

In[25]: type(-11.4)
Out[25]: float

In[26]: type(3-36j)
Out[26]: complex

The results are not too surprising: int for integers, float for floating point
numbers, and complex for complex numbers.

An object’s type defines how it interacts with other objects. For exam-
ple, you can freely add, subtract, multiply, and divide objects of the types int,
float, and complex, as illustrated above. On the other hand, you can’t multiply
float and complex types by a string type such as “dog” (we introduce strings in
Chapter 4). Trying to do so will result in an error message. Surprisingly, you
can multiply strings by int types, but we defer that discussion to Section 4.1.

2.4 VARIABLES AND ASSIGNMENT

2.4.1 Names and the Assignment Operator

A variable is a way of associating a name with an object. Thus, when we write
In[1]: a = 32

Python binds the variable name a to the integer object 32. The equals sign = is
the assignment operator, and its function is to bind the variable name on the
left side to the object on its right side.

Consider the following code:
In[2]: leg_a = 3.7

Launching Python � 11

leg_a 3.7 leg_a 3.7

19.53

leg_b 8.3 leg_b 8.3

hypotenuse 9.08... hypotenuse 9.08...

leg_a = 19.53

Figure 2.2 Binding variable names to objects.

In[3]: leg_b = 8.3

In[4]: hypotenuse = (leg_a**2 + leg_b**2)**0.5

In[5]: hypontenuse
Out[5]: 9.087353850269066

The first two statements bind the variable names leg_a and leg_b to the float
objects 3.7 and 8.3, respectively. The third statement performs the calculation
to the right of the equals sign and then binds the variable name hypotenuse to
the resulting float object 9.087353850269066. Note that Python binds the result
of the calculation, not the calculation itself, to the variable hypotenuse. There-
fore, if we reassign the value of leg_a to a new value, the value of hypotenuse
does not change, as demonstrated here.
In[6]: leg_a = 19.53

In[7]: hypotenuse
Out[7]: 9.087353850269066

When we write leg_a = 19.53, Python reassigns the variable name leg_a to
a new float object 19.53, as illustrated in Figure 2.2. The old object, in this
case, the float 3.7, is still in memory. Eventually, Python gets rid of it to free
up memory; this process is called garbage collection and occurs behind the
scenes so that you do not need to worry about it.

The assignment operator “=” in Python is not equivalent to the equals
sign “=” you are accustomed to in algebra. Consider the following sequence
of commands.
In[8]: a = 5

12 � Introduction to Python for Science and Engineering

In[9]: a = a + 2

In[10]: a
Out[10]: 7

The statement a = a + 2makes no sense in algebra. But it makes perfect sense
in Python (and in most computer languages). It means take the current value
of a, add 2 to it, and assign the result to the variable name a. Python reassigns
the variable name a to a new object, with a value of 7 in this case.

This construction appears so often in programming that there is a special
set of operators dedicated to performing such changes to a variable: +=, -=, *=,
and /=. For example, a = a + 2 and a += 2 do the same thing; they add 2 to
the current value of a. Here are some other examples of how these operators
work:
In[11]: c = 4

In[12]: c += 3

In[13]: c
Out[13]: 7

In[14]: c *= 3

In[15]: c
Out[15]: 21

In[16]: d = 7.92

In[17]: d /= -2

In[18]: d
Out[18]: -3.96

In[19]: d -= 4

In[20]: d
Out[20]: -7.96

By the way, %=, **=, and //=, are also valid operators. Verify in the IPython
console that you understand how the above operations work.

Python also allows you to make multiple variable assignments in a single
statement
In[21]: p, q, r = 32.1, 81.6, 111.6

is equivalent to p = 32.1, q = 81.6, and r = 111.6. Having made that assign-
ment, what do you think p, q, r = r, p, q does? Try it out for yourself and

Launching Python � 13

see if you were able to predict the correct results. The key thing to remember
is that Python evaluates the right-hand side of the equation before assigning
the results to the left-hand side.

Finally, please note that the same object can have multiple names. For ex-
ample, in the following code, a and b point to (i.e., are bound to) the same
object, which you can verify by checking the ID of each of them.
In[22]: a = b = 3.4

In[23]: id(a)
Out[23]: 140293508599056

In[24]: id(b)
Out[24]: 140293508599056

In[25]: b = 5.8

In[26]: id(b)
Out[26]: 140293508598928

In[27]: id(a)
Out[27]: 140293508599056

Reassigning b to a different value creates a new object with a new ID distinct
from the ID of a, which remains the same after the reassignment of b.

We also point out here that an object doesn’t have to have a name associ-
ated with it. For example, when we write
In[28]: 5 * 6
Out[28]: 30

none of the objects for 5, 6, or 30 have names. They are all integer objects.
Not having variable names associated with them, we say that they are integer
literals.

2.4.1.1 Python Variables are Dynamically Typed

By the way, suppose that in the last step above, we had written b = 6 instead
of b = 5.8. Before trying this out, let’s first check the variable b’s type.Then we
will reassign the value of b by typing b = 6.
In[29]: type(b)
Out[29]: float
In[30]: b = 6

In[31]: type(b)
Out[31]: int

14 � Introduction to Python for Science and Engineering

Notice that after we wrote b = 6, its type changed from float to int. This fea-
ture of Python is called dynamical typing. A variable’s type can change on the
fly. That’s all we’ll say about dynamic typing for now, but we will return to this
topic.

2.4.2 Legal and Recommended Variable Names

Variable names in Python must start with a letter or an underscore “_” and
can be followed by as many alphanumeric characters as you like, including
the underscore character “_”. Spaces are not allowed in variable names. No
other character that is not a letter, number, or underscore is permitted.

Although variable names can start with the underscore character, you
should avoid doing so except in special cases, which we discuss in Chapter
10.

Recall that Python is case sensitive, so the variable velocity is distinct from
the variable veLocity.We recommend giving your variables descriptive names
as in the following calculation:
In[32]: distance = 34.

In[33]: time_traveled = 0.59

In[34]: velocity = distance / time_traveled

In[35]: velocity
Out[35]: 57.6271186440678

Giving variables descriptive names serves two purposes. First, it makes
the code (to some extent) self-documenting so that you or another reader
of the code can get some idea about what it does. The variable names
distance, time_traveled, and velocity immediately remind you of what is
being calculated here. Second, it can help you catch errors; if we had writ-
ten velocity = time_traveled / distance, you might be more likely to notice
that something’s amiss. So, using descriptive variable names is good practice.
But so is keeping variable names reasonably short, so don’t go nuts! When us-
ing two words for a variable name, it’s considered good practice in Python to
connect the two words with an underscore (e.g., time_traveled).

2.4.3 Reserved Words in Python

Python reserves certain names or words for special purposes.These names are
provided in Table 2.2 for your reference. You must avoid using these names as
variables.

Launching Python � 15

TABLE 2.2 Reserved names in Python.
False None True and as
assert async await break class
continue def del elif else
except finally for from global
if import in is lambda
nonlocal not or pass raise
return try while with yield
__peg_parser__

2.5 SCRIPT FILES AND PROGRAMS

Performing calculations in the IPython shell is handy if the calculations are
short. But calculations quickly become tedious when they are over a few lines
long. If you discover that you made a mistake at some early step, for example,
you may have to go back and retype all the steps subsequent to the error. Hav-
ing code saved in a file means you can correct the error and rerun the code
without having to retype it. Saving code can also be useful if you want to reuse
it later, perhaps with different inputs.

For these and many other reasons, we save code in computer files. The se-
quence of Python commands stored in a file is called a script or a program or
sometimes a routine. Programs can become quite sophisticated and complex.
In this chapter, we introduce only the simplest features of programming by
writing a very simple script. Later, we will introduce some of the more ad-
vanced features of programming.

2.5.1 Editors for Python Scripts

Python scripts are just plain text files. The only requirement is that the file-
name ends with .py. Because they are just plain text files, you canwrite Python
scripts using any simple text editor. No special editor is required. Some edi-
tors, however, automatically recognize any file whose name ends in the suffix
.py as a Python file. For example, the text editors Notepad++ (for PCs), BBE-
dit (for Macs), and Gedit (for Linux) automatically recognize Python files. All
three editors work very well and are available without charge on the internet.
These editors are nice because they color code the Python syntax, a helpful
feature called syntax highlighting. They also have other programming-specific
features that make the files easy to read and edit. Other editors have similar
features, and they also work very well.

16 � Introduction to Python for Science and Engineering

Note, however, that word processing programs like Microsoft Word® are
not suitable for this purpose because they produce files that, in addition to the
visible text, contain all sorts of formatting code that is invisible to the user but
not the computer (or the Python interpreter). You must use a plain text editor.

2.5.1.1 Create a Directory (Folder) for Python Scripts

You should create a directory (also known as a folder) on your computer to
store your Python scripts. For example, you might create a directory called
PyScripts inside the Documents directory. If possible, choose a filename with
no spaces in it. Avoiding spaces in directory names is not absolutely necessary
but, as you will see below, it can simplify navigation between directories.

2.5.2 First Scripting Example

Let’s work through an example to see how scripting works. Suppose you are
going on a road trip and would like to estimate how long the drive will take,
how much electricity you will need (you’re driving an EV), and the cost of the
electricity. It’s a simple calculation. As inputs, you will need the trip’s distance,
your average speed, the cost of electricity, and the mileage (average miles per
kilowatt-hour) for your car.

Writing a script to do these calculations is straightforward. First, launch
a text editor, which can be one of the three mentioned above, Notepad++,
BBEdit, or Gedit, depending on your operating system, or some other text
editor of your choosing. Enter the following code and save the code. Do not
include the small numbers 1–10 in the left margin. These are just for reference
and are not part of the Python code.

Code:my_trip.py

1 """Calculates time, electrical energy used, and cost of electricity
2 for a trip in an electric vehicle"""
3 # Get inputs
4 distance = 180. # [miles]
5 mpk = 3.9 # [miles/kilowatt-h] car mileage
6 speed = 60. # [miles/h] average speed
7 cost_per_kWh = 0.22 # [$/kW-h] price of electricity
8
9 # Calculate outputs

10 time = distance / speed # [hours]
11 energy = distance / mpk # [kW-h]
12 cost = energy * cost_per_kWh # [$]

Save the file with the name my_trip.py in the directory PyScripts that you
created earlier (see Section 2.5.1.1). This stores your script (or program) on
your computer’s disk. More generally, the name of a Python file can be almost

Launching Python � 17

anything consistentwith the computer operating systemas long the name ends
with the extension .py. The .py extension tells the computer this is a Python
program.

The code in the program is pretty straightforward: lines 4–7 set the values
of the inputs, while lines 10–12 calculate the desired information. All of the
variables are floats by virtue of the decimal point included in each assignment
statement. Notice that we included a blank line, line 8, between the input and
output blocks of code.This is not necessary, as the blank line serves no compu-
tational purpose. Rather, it indicates to the reader that the blocks do different
things, analogous to what paragraphs do in normal written text.

The text between the triple quotes at the beginning of the program is called
a “docstring” and is not executed when the script is run. Everything between
the triple quotes is part of the docstring, which can extend over multiple lines,
as it does here. It’s a good idea to include a docstring explaining what your
script does at the beginning of your file.

The hash (or number) symbol # is the “comment” character in Python;
anything on a line following # is ignored when the code is executed. A com-
ment in a Python script is a brief explanation or annotation added to help
people reading the program understand what the program is doing. Judicious
use of comments in your code will make it much easier to understand days,
weeks, or months after you write it. Use comments generously. For aesthetic
reasons, the comments on different lines have been aligned. This isn’t neces-
sary. The spaces needed to align the comments have no effect on the running
of the code.

Now you are ready to run the code. From a QtConsole, type
In[1]: run ~/Documents/PyScripts/my_trip.py

The string of text ~/Documents/PyScripts/ tells IPython where your script is
located on your computer: the tilde ~ designates the user’s home directory,
which might correspond to something like /Users/dp on a macOS or Linux
computer, or C:\Users\dp on a Windows computer. You don’t need to write
out the name of your home directory; just writing ~will do. Next comes the hi-
erarchy of directories, each separated by a forward slash (for any operating sys-
tem,MacOs,Windows, or Linux), where the Python script is located, and then
finally the name of the file my_trip.py containing the script. If a directory name
contains one or more spaces, such as My Files, for example, then on Mac you
should write cd ~/Documents/My\ Files or cd "~/Documents/My Files".That is,
you can either replace each space by a backslash and a space or you can en-
close the entire path in quotes, either single ' or double ". On a PC, you can
include a space without taking any special measures.

18 � Introduction to Python for Science and Engineering

When you run a script, Python executes the sequence of commands in the
order they appear. Afterward, you can see the values of the variables calculated
in the script by typing the name of the variable. IPython responds with the
value of that variable. For example:
In[2]: time
Out[2]: 3.0

In[3]: energy
Out[3]: 46.15384615384615

In[4]: cost
Out[4]: 10.153846153846153

Of course, you must remember that the time is in hours, and the cost is in U.S.
dollars.

You can change the number of digits IPython displays using the com-
mand %precision. To display two digits to the right of the decimal place, enter
%precision 2:
In[5]: %precision 2
Out[5]: ' %.2f'

In[6]: time
Out[6]: 3.00

In[7]: energy
Out[7]: 46.15

In[8]: cost
Out[8]: 10.15

Typing %precision returns IPython to its default state; %precision %e causes
IPython to display numbers in exponential format (scientific notation).

2.5.2.1 Note about Printing

If you want your script to return the value of a variable (that is, print the value
of the variable to your computer screen), use the print function. For example,
at the end of our script, if we include the code
print(time)
print(energy)
print(cost)

the script will return the values of the variables time, gallons, and cost that
the script calculated.Wewill discuss the print function inmuch greater detail,
as well as other methods for data output, in Chapter 5.

Launching Python � 19

2.6 PYTHON MODULES

The Python computer language consists of a “core” language plus a vast col-
lection of supplementary software that is contained inmodules (or packages,
which are collections of modules—we’ll not fuss about the distinction here).
Many of these modules come with the standard Python distribution and pro-
vide added functionality for performing computer system tasks. Other mod-
ules provide more specialized capabilities that only some users may want.
These modules are a kind of library from which you can borrow according
to your needs. You gain access to a module using the import command, which
we introduce in the next section.

We will need four Python modules that are not part of the core Python
distribution but are widely used for scientific computing. The four modules
are:

NumPy is the standardPythonpackage for scientific computingwith Python.
It provides the all-important NumPy array data structure, which is
at the very heart of NumPy. It also provides tools for creating and
manipulating arrays, including indexing and sorting, as well as ba-
sic logical operations and element-by-element arithmetic operations
like addition, subtraction, multiplication, division, and exponentia-
tion. It includes the basic mathematical functions of trigonometry,
exponentials, and logarithms, as well as a vast collection of special
functions (Bessel functions, etc.), statistical functions, and random
number generators. It also includes many linear algebra routines that
overlap with those in SciPy, although the SciPy routines tend to be
more comprehensive. You can find more information about NumPy at
http://docs.scipy.org/doc/numpy/reference/index.html.

SciPy provides a broad spectrum of mathematical functions and numerical
routines for Python. SciPy makes extensive use of NumPy arrays, so
when you import SciPy, you should always import NumPy too. In addi-
tion to providing basic mathematical functions, SciPy provides Python
“wrappers” for numerical software written in other languages, like For-
tran, C, or C++. A “wrapper” provides a transparent easy-to-use Python
interface to standard numerical software, such as routines for perform-
ing curve fitting and numerically solving differential equations. SciPy
dramatically extends the power of Python and saves you the trouble
of writing software in Python that someone else has already written
and optimized in some other language. You can find more information
about SciPy at http://docs.scipy.org/doc/scipy/reference/.

http://docs.scipy.org/doc/numpy/reference/index.html
http://docs.scipy.org/doc/scipy/reference

20 � Introduction to Python for Science and Engineering

Matplotlib is the standard Python package for making two- and three-
dimensional plots.Matplotlibmakes extensive use ofNumPy arrays. All
of the plots in this book use this package. You can find more informa-
tion about Matplotlib at the website http://matplotlib.sourceforge.net/.

Pandas is a Python package providing a powerful set of data analysis tools.
It uses data structures similar to those used in a spreadsheet pro-
gram like Excel and allows you to manipulate data in ways simi-
lar to spreadsheets. You can find more information about Pandas at
http://pandas.pydata.org/.

We will use these four modules extensively and, therefore, will provide in-
troductions to their capabilities as we develop Python.The links above provide
muchmore extensive information; you will certainly want to refer to them oc-
casionally.

2.6.1 Python Modules and Functions: A First Look

Because the modules listed above, NumPy, SciPy, Matplotlib, and Pandas, are
not part of core Python, they must be imported before we can access their
functions and data structures. Here, we show how to import the NumPymod-
ule and use some of its functions. We defer introducing NumPy arrays, men-
tioned in the previous section, until Section 4.4.

You gain access to the NumPy package using Python’s import statement:
In[1]: import numpy

After running this statement, you can access all the functions and data struc-
tures of NumPy. For example, you can now access NumPy’s sine function as
follows:
In[2]: numpy.sin(0.5)
Out[2]: 0.479425538604203

In this simple example, the sin function has one argument, here 0.5, and the
function returns the sine of that argument, which must be expressed in radi-
ans.

Note that we had to put the prefix numpy dot before the name of the actual
function name sin.This tells Python that the sin function is part of theNumPy
module that we just imported.

Another Python module called math also has a sine function. We can im-
port the math module just like we imported the NumPy module:
In[3]: import math

http://matplotlib.sourceforge.net
http://pandas.pydata.org

Launching Python � 21

In[4]: math.sin(0.5)
Out[4]: 0.479425538604203

These two sine functions are not the same, even though they give the same an-
swer in this case. Consider, for example, what happens if we ask each function
to find the sine of a complex number:
In[5]: numpy.sin(3+4j)
Out[5]: (3.853738037919377-27.016813258003932j)

In[6]: math.sin(3+4j)

--
TypeError Traceback (most recent call last)
<ipython-input-24-b48edfeaf02a > in <module >()
----> 1 math.sin(3+4j)

TypeError: can't convert complex to float

The NumPy sine function works just fine and returns a complex result. By
contrast, the math sine function returns an error message because it does not
accept a complex argument. In fact, the math sine function accepts only a single
real number as an argument while the numpy sine function accepts real and
complex NumPy arrays, which we introduce in Section 4.4, as arguments. For
single real arguments, the math sine function executes faster than the numpy
function, but the difference in execution speed is not noticeable in most cases.

The important lesson here is to appreciate how Python allows you to ex-
tend its capabilities by importing additional packages, while at the same time
keeping track of where these capabilities come from using the prefix dot syn-
tax. By using different prefixes, each module maintains its own namespace,
that is, a separate dictionary of names, so that functions with the same name
in different packages do not clash.

If you are using a lot ofNumPy functions,writing out numpydot before each
function can be a little lengthy. Python allows you to define an abbreviation for
the prefix when you import a library. Here we show how to do it for NumPy:
In[7]: import numpy as np

In[8]: np.sin(0.5)
Out[8]: 0.47942553860420301

The statement import numpy as np imports and assigns the abbreviation np for
numpy. In principle, you can use any abbreviation you wish. However, using np
for the NumPy module is common practice. You are strongly encouraged to
abide by this practice so that others reading your code will recognize what you
are doing.

22 � Introduction to Python for Science and Engineering

TABLE 2.3 Some numpy and math functions. Functions work for both the numpy
and math packages unless explicitly indicated.
Function Description
sqrt(x) square root of x
exp(x) exponential of x, i.e., ex
log(x) natural log of x, i.e., ln x
log10(x) base 10 log of x
degrees(x) converts x from radians to degrees
radians(x) converts x from degrees to radians
sin(x) sine of x (x in radians)
cos(x) cosine x (x in radians)
tan(x) tangent x (x in radians)
arcsin(x), math.asin(x) Arc sine (in radians) of x
np.arccos(x), math.acos(x) arc cosine (in radians) of x
arctan(x), math.atan(x) arc tangent (in radians) of x
fabs(x) absolute value of x
math.factorial(n) n! of an integer
np.round(x) rounds float to nearest integer
floor(x) rounds float down to nearest integer
ceil(x) rounds float up to nearest integer
np.sign(x) −1 if x < 0, +1 if x > 0, 0 if x = 0

2.6.2 Some NumPy Functions

NumPy includes an extensive library of mathematical functions. In Table
2.3, we list some of the most useful ones. A complete list is available at
https://docs.scipy.org/doc/numpy/reference/.

The argument of these functions can be a number or any expressionwhose
output produces a number. All of the following expressions are legal and pro-
duce the expected output:
In[9]: np.log(179.2)
Out[9]: 5.18850250054083

In[10]: np.log(np.sin(0.5))
Out[10]: -0.73516668638531424

In[11]: np.log(np.sin(0.5)+1.0)
Out[11]: 0.39165386283471759

In[12]: np.log(5.5/1.2)
Out[12]: 1.5224265354444708

https://docs.scipy.org/doc/numpy/reference

Launching Python � 23

Here, we have demonstrated functions with one input and one output. In
general, Python functions have multiple inputs and multiple outputs. We will
discuss these and other features of functions later when we take up functions
in the context of user-defined functions.

2.6.3 Scripting Example 2

Let’s try another problem. Suppose you want to find the distance between two
Cartesian coordinates (x1, y1, z1) and (x2, y2, z2). The distance is given by the
formula

∆r =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Let’s write a script to do this calculation and save it in the subdirectory
~/Documents/PyScripts/ a file called two_point_distance.py.

Code: two_point_distance.py

1 """Calculates the distance between two 3d Cartesian coordinates"""
2 import numpy as np
3
4 x1, y1, z1 = 23.7, -9.2, -7.8
5 x2, y2, z2 = -3.5, 4.8, 8.1
6
7 dr = np.sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)

We have introduced extra spaces into some of the expressions to improve
readability. They are not necessary; where and whether you include them is
largely a matter of taste.

Because we need the square root function of NumPy, the script imports
NumPy before doing anything else. If you leave out the “import numpy as np”
line or remove the np dot in front of the sqrt function, you will get the follow-
ing error message:

Traceback (most recent call last):
...
File ".../two_point_distance.py", line 8, in <module>
dr = sqrt((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2)

NameError: name "sqrt" is not defined

Now, with the import numpy as np statement, we can run the script.
In[13]: %run ~/Documents/PyScripts/two_point_distance.py

In[14]: dr
Out[14]: 34.476803796175766

24 � Introduction to Python for Science and Engineering

The script works as expected. Or does it? It might be a good idea to check
it out by running it for inputs for which you know the answer. For example,
suppose the first point is at (0, 0, 0) and the second point is at (1, 1, 1). Then
we know the distance between these two points is

√
3. Go ahead and modify

the program and verify that it gives the expected output for these two inputs.
This is an excellent way to check whether the program behaves as expected.

2.6.4 Different Ways of Importing Modules

There are different ways that you can import modules in Python.

2.6.4.1 Importing an Entire Module

Usually we import entire modules using the import statement or the
import ...as ... statement that we introduced for the Math and NumPy li-
braries:

import math
import numpy as np

2.6.4.2 Importing Part of a Module

You can also import a single function or subset of functions from a module
without importing the entire module. For example, suppose you wanted to
import just the log function from NumPy. You could write
from numpy import log

To use the log function in a script, you would write
a = log(5)

which would assign the value 1.6094379124341003 to the variable a. If you
wanted to import the three functions, log, sin, and cos, you would write
from numpy import log, sin, cos

Imported in this way, you would use them without a prefix, as the func-
tions are imported into the general namespace of the program. In general,
we do not recommend using from module import functions way of importing
functions. When reading code, it makes it harder to determine from which
modules functions are imported, and can lead to clashes between similarly
named functions from different modules. Nevertheless, we do use this form
sometimes, and, more importantly, you will see the form used in programs
you encounter on the web and elsewhere, so it is essential to understand the
syntax.

Launching Python � 25

2.6.4.3 Blanket Importing of a Module

There is yet another way of importing an entire module by writing
from numpy import *

This imports the entire module, in this case NumPy, into the general name-
space and allows you to use all the functions in the module without a prefix.
If you import two different libraries this way in the same script, then it’s im-
possible to tell which functions come fromwhich library by just looking at the
script. You also have the aforementioned problem of clashes between libraries,
so you are strongly advised not to import this way in a script or program.

There is one possible exception to this advice, however. When working
in the IPython shell, you often just want to try out a function or a very small
snippet of code. You usually are not saving this code in a script; it’s dispos-
able code, never to be seen or used again. In this case, it can be convenient
not to write out the prefixes. If you like to operate this way, type pylab at the
IPython prompt. This imports NumPy and Matplotlib (a plotting library that
we introduce in Chapter 8) as follows:
from numpy import *
from matplotlib.pyplot import *

While you are learning Python, it’s important that you learn which func-
tions belong to whichmodules. After you becomemore expert in Python, you
can decide if you want to work in an IPython shell in pylab mode.1

In this text, we do not operate our IPython shell in “pylab” mode. That
way, it is always clear to you where the functions we use come from.

Whether you choose to operate your IPython shell in pylab mode or not,
theNumPy andMatplotlib libraries (as well as other libraries) are not available
in the scripts and programs you write with a text editor and store in a .py file
unless you explicitly import these modules, which you would do by writing
import numpy as np
import matplotlib.pyplot as plt

2.7 GETTING HELP: DOCUMENTATION IN IPython

Help is never far away when running the IPython shell. To obtain informa-
tion on any valid Python or NumPy function, andmanyMatplotlib functions,
simply type help(function), as illustrated here

1Some programmers consider such advice sacrilege. Others find pylab mode to be conve-
nient for their workflow. You can decide if it suits you.

26 � Introduction to Python for Science and Engineering

In[1]: help(abs)

Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

Often, the information provided can be pretty extensive, and you might find
it helpful to clear the IPython window with the %clear command so you can
quickly scroll back to see the beginning of the documentation. You may have
also noticed that when you type the name of a function plus the opening
parenthesis, IPython displays a small window describing the basic operation
of that function. To exit help mode and return to the IPython prompt, type q
(for quit).

2.8 PERFORMING SYSTEM TASKS WITH IPython

By typing commands at the prompt, IPython can be used to perform various
system tasks, such as running programs, which we have already seen in Sec-
tion 2.5.2 and Section 2.6.3, and for creating and moving files around on your
computer. This is a different kind of computer interface than the icon-based
interface (or graphical user interface, GUI) that you normally use to commu-
nicate with your computer. While it may seem more cumbersome for some
tasks, it can be more powerful for other tasks, particularly those associated
with programming.

Before getting started, we remind you that Python, likemostmodern com-
puter languages, Python is case sensitive.That is, Pythondistinguishes between
upper- and lower-case letters.Thus, twowords spelled the same but having dif-
ferent letters capitalized are treated as different names in Python. Please keep
that in mind in all that follows.

2.8.1 Magic Commands

IPython features a number of commands called “magic” commands that let
you perform various useful tasks. There are two types of magic commands:
line magic commands that begin with %—these are executed on a single line—
and cell magic commands that begin with %%—these are executed on several
lines. Here, we concern ourselves only with line magic commands.

Thefirst thing to know aboutmagic commands is that you can toggle (turn
on and off) the need to use the % prefix for line magic commands by typing
%automagic. By default, the Automagic switch is usually set to ON when you run

Launching Python � 27

the IPython shell, so you don’t need the % prefix. To set Automagic to OFF, simply
type %automagic at the IPython prompt. Cellmagic commands always need the
%% prefix.

In what follows, we assume that Automagic is OFF and thus use the % sign
for magic commands.

2.8.1.1 The %run Magic Command

A very important magic command is %run filename, where filename is the
name of a Python program you have created. we already introduced this com-
mand in Section 2.5.2. We will use it frequently.

2.8.1.2 Navigation Commands

IPython recognizes several common navigation commands that are used un-
der the Unix/Linux operating systems. In the IPython shell, these few com-
mands also work on PCs, as well as on Macs and Linux machines.

At the IPython prompt, type %cd ∼ (i.e., “%cd” – “space” – “tilde,” where
tilde is found near the upper left corner of most keyboards).2 This will set
your computer to its home (default) directory (here “Users/dp” but yours will
be different).
In[1]: %cd ~
/Users/dp

Next type %pwd (print working directory) and press <return>. The console
should return the path of your computer’s current directory. It might look
like this on a Mac:
In[2]: %pwd
Out[2]: '/Users/dp'

or this on a PC:
In[3]: %pwd
Out[3]: C:\\Users\\dp

Typing %cd .. (“%cd” – “space” – two periods) moves the IPython shell up one
directory in the directory tree, as illustrated by the set of commands below.
In[4]: %cd ..
/Users

2The default mode for most installations is to have Automagic set to ON. This is likely to be
the setting for your installation. If so, you do not need to type the % prefix, so feel free to drop
it as you follow along the text.

28 � Introduction to Python for Science and Engineering

In[5]: %pwd
Out[5]: '/Users'

The directory moved up one from /Users/dp to /Users. Now type ls (list) and
press <return>. The console should list the names of the files and subdirecto-
ries in the current directory.
In[6]: %ls
Shared/ pine/

In this case, there are only two directories (indicated by the slash) and no files
(although the names of the files may be different for you). Type %cd ~ again
to return to your home directory and then type pwd to verify where you are in
your directory tree.

2.8.1.3 Making a Directory

Let’s create a directory within your documents directory that you can use to
store your Python programs. Let’s call it programs.3 First, return to your home
directory by typing %cd ~. Then type %ls to list the files and directories in your
home directory.
In[7]: %cd ~
/Users/dp

In[8]: %ls
Applications/ Library/ Pictures/
Desktop/ Movies/ Public/
Documents/ Music/
Downloads/ News/

To create a directory called programs, type %mkdir programs (make
directory). Then type %ls to confirm that you have created programs.
In[9]: %mkdir programs

In[10]: %ls
Applications/ Library/ Pictures/
Desktop/ Movies/ Public/
Documents/ Music/ programs/
Downloads/ News/

You should see that a new directory named programs has been added to the list
of directories. Next, type %cd programs to navigate to that new directory.

3You should have already made a folder to store your programs called PyScripts in your
Documents folder, so this is just for practice to learn how to do it from the Qt Console. If you
wish, you can delete it when you are done.

Launching Python � 29

In[11]: %cd programs
/Users/dp/programs

In Section 2.5.2, we created a script my_trip.py in the directory ~/Docu-
ments/PyScripts/. We can navigate IPython to that directory by typing
In[12]: %cd ~/Documents/PyScripts/
/Users/dp/Documents/PyScripts

Let’s check that this is indeed the current directory and that my_trip.py is in it
In[13]: %pwd
Out[13]: '/Users/dp/Documents/PyScripts'

In[14]: %ls
my_trip.py

Now we can run MyTrip.py without specifying the full path
In[15]: %run my_trip.py

Sometimes, the IPython shell becomes cluttered. You can clean up the shell
by typing %clear, which will give you a fresh shell window.

There are a lot of other magic commands, most of which we don’t need,
and others that we will introduce as needed. If you are curious, you can get a
list of them by typing %lsmagic.

2.8.2 Tab Completion

IPython also incorporates several shortcuts that make using the shell more
efficient. One of the most useful is tab completion. Let’s assume you have
followed along and are in the directory Documents. To switch to the direc-
tory PyScripts, you could type cd PyScripts. Instead, type cd PyS and press the
<tab> key. This will complete the command, provided there is no ambiguity
about how to finish the command. In the present case, that would mean that
there is no other subdirectory beginning with PyS. Tab completion works with
any command you type into the IPython terminal.

A related shortcut involves the ↑ key. If you type a command, say cd, and
then press the ↑ key, IPython will complete the cd command with the last in-
stance of that command. Thus, when you launch IPython, you can use this
shortcut to take you to the directory you used when you last ran IPython.

You can also press the ↑ key, which will recall the most recent command.
Repeated application of the ↑ key scrolls through the most recent commands
in reverse order. You can use the ↓ key to scroll in the other direction.

30 � Introduction to Python for Science and Engineering

2.8.3 Recap of Commands

Let’s recap the most useful commands introduced above:

%pwd : (print working directory) Prints the path of the current directory.

%ls : (list) Lists the names of the files and directories located in the current
directory.

%mkdir filename : (make directory) Makes a new directory filename.

%cd directoryname : (change directory) Changes the current directory to di-
rectoryname. Note: to work, directoryname must be a subdirectory in
the current directory. Typing %cd changes to your computer’s home
directory. Typing %cd .. moves the console one directory up in the di-
rectory tree.

%precision n : Sets the number of digits displayed (n = 1 or 2 or 3, ...) when
floating point numbers are displayed. Reset to display all digits by typing
%precision (with no value of n.)

%clear : Clears the IPython screen of previous commands.

%run filename : Runs (executes) a Python script.

Tab completion: Provides convenient shortcuts, with or without the arrow
keys, for executing commands in the IPython shell.

2.9 PROGRAMMING ERRORS

Now that you have a little experience with Python and computer program-
ming, it’s time for an important reminder: Programming is a detail-oriented
activity. To be good at computer programming and to avoid frustration when
programming, you must pay attention to details. A misplaced or forgotten
commaor colon can keep your code fromworking.Worse still, little errors can
make your code give erroneous answers, where your code appears towork, but
in fact, does not do what you intended it to do! So pay attention to the details!

2.9.1 Error Checking

This raises a second point: sometimes your code will run but give the wrong
answer because of a programming error or because of a more subtle error in
your algorithm, even though there may be nothing wrong with your Python
syntax. The program runs; it just gives the wrong answer. For example, maybe

Launching Python � 31

you typed sin where you meant to use cos. For this reason, it is essential to
test your code to ensure it behaves properly. Test it to ensure it gives the cor-
rect answers for cases where you already know the right answer or have some
independent means of checking it. Test it in limiting cases, that is, at the ex-
tremes of the sets of parameters you will employ. Always test your code; this
is a cardinal rule of programming.

2.10 EXERCISES

1. A ball is thrown vertically up in the air from a height h0 above the
ground at an initial velocity v0. Its subsequent height h and velocity v
are given by the equations

h = h0 + v0t−
1
2
gt2

v = v0 − gt

where g = 9.8 is the acceleration due to gravity in m/s2. Write a script
that finds the height h and velocity v at a time t after the ball is thrown.
Start the script by setting h0 = 1.6 (meters) and v0 = 14.2 (m/s). Then
have your script print out the values of height and velocity after 0.5 sec-
onds and after 2.0 seconds.

2. Write a script that defines the variables V0 = 10, a = 2.5, and z = 41
3 ,

and then evaluates the expression

V = V0

(
1 − z√

a2 + z2

)
.

Then findV for z = 82
3 and print it out (seeNote about printing on page

18). Then, find V for z = 13 by changing the value of z in your script.
Use either the numpy or math function sqrt to calculate the square root
in this expression.

3. Write a single Python script that calculates the following expressions:

(a) a =
2 + e2.8√
13 − 2

(b) b =
1 − (1 + ln2)−3.5

1 +
√

5

(c) c = sin

(
2 −

√
2

2 +
√

2

)

32 � Introduction to Python for Science and Engineering

After running your script in the IPython shell, typing a, b, or c at the
IPython prompt should yield the value of the expressions in (a), (b), or
(c), respectively. Use the either the numpy or math packages as needed.

4. A quadratic equation with the general form

ax2 + bx+ c = 0

has two solutions given by the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

(a) Given a, b, and c as inputs, write a script that gives the numeri-
cal values of the two solutions. Use NumPy to calculate the square
root in this exercise. Write the constants a, b, and c as floats, and
show that your script gives the correct solutions for a few test cases
when the solutions are real numbers, that is, when the discrimi-
nant b2−4ac ≥ 0. Use the print function in your script, discussed
at the end of Section 2.5.2, to print out your two solutions.

(b) Written this way, however, your script gives an error message
when the solutions are complex. For example, see what happens
when a = 1, b = 2, and c = 3. You can fix this using statements in
your script like a = a+0j after setting a to some float value. Thus,
you canmake the script work for any set of real inputs for a, b, and
c. Again, use the print function to print out your two solutions.

5. Write a program to calculate the perimeter p of an n-gon inscribed in-
side a sphere of diameter 1. Find p for n = 3, 4, 5, 100, 10,000, and
1,000,000. Your answers should be

n p n p
3 2.59807621135 100 3.14107590781
4 2.82842712475 10,000 3.14159260191
5 2.93892626146 1,000,000 3.14159265358

CH A P T E R 3

Integrated Development
Environments

In this chapter, you learn about Integrated Development Environments,
also known as IDEs. Two IDEs designed for scientific and engineering
work using Python are introduced: Spyder and JupyterLab. These IDEs
include many useful features, including an IPython shell, a Python pro-
gram editor that provides syntax checking and formatting, Jupyter note-
books, and debugging tools.

3.1 PROGRAMMING AND INTERACTING WITH PYTHON

In the previous chapter, you learned how to launch an IPython shell. You also
learned how to execute Python commands and how to write and execute short
Python scripts. While this method of interacting with Python is adequate for
simple tasks, it becomes tedious and error-prone for more sophisticated pro-
gramming tasks. Integrated Development Environments, commonly known as
IDEs, address these limitations by providing tools that make computer pro-
gramming more efficient and less error-prone.

In this chapter, we introduce two IDEs that have been specifically designed
for scientific programming: Spyder and JupyterLab. Both use the IPython shell
introduced inChapter 2. Both support Jupyter notebooks, whichwe introduce
in Section 3.5. Both are free and included in theAnacondaPythondistribution
you were advised to download in Section 1.2. Both are highly configurable,
powerful, and relatively simple to use.

Spyder is the more mature of the two IDEs. Spyder comes equipped
with all the tools you’ll need, at least as a beginning to intermediate

DOI: 10.1201/9781032673950-3 33

https://doi.org/10.1201/9781032673950-3

34 � Introduction to Python for Science and Engineering

programmer. Configuring the IDE to suit your preferences is easier with Spy-
der. With JupyterLab, you need to download several extensions to get the
functionality you need (we show you how to do this for the ones we think
are most helpful). The upside of this approach is that you include in Jupyter-
Lab only the features you want. On the other hand, Spyder is a relatively
lightweight IDE, and the parts you don’t use don’t get in the way. Nevertheless,
JupyterLab is very popular and has a large and enthusiastic user base. Which
IDE you prefer is largely a matter of taste.

3.2 PROGRAMMING STYLE AND CODING ERRORS: PEP 8 AND
LINTERS

The two IDEs we introduce in this chapter include tools to help you write
clear, consistent code. Guido van Rossum, the creator of Python, noted that
code is read more often than it is written. To improve the readability of code
and make it consistent among the multitude of Python programmers, he and
several others developed a programming style guide called PEP 8 (PEP stands
for Python Enhancement Proposal). These guidelines are not meant to be ap-
plied rigidly, but following them generally improves readability, especially for
beginning programmers. Following them can also make it easier for you to
spot coding errors.

To help you format your code to be consistent with PEP 8 style guidelines,
people have written programs called linters. A linter passes over your Python
code and flags style violations. More importantly, linters also flag a large num-
ber of coding syntax errors. It’s like a lint brush that you pass over your cloth-
ing to eliminate the messy little fibers and other detritus that accumulate; a
linting program flags messy code in a program.

You can use a linting program in two ways. First, you can write your code
and then run a linting program to analyze it. Two widely used Python linters
are pylint and pyflakes. Running a linter on your Python code will produce a
list of style violations and coding errors, which you can then go back and fix.
A good IDE will include a linter to analyze the code you write.

The second way to use a linting program is more automatic and has two
parts. First, you can use an autoformatter, which should be included in any
good IDE. It detects style violations and automatically corrects them, saving
you time and work. Three of the most widely used Python autoformatters are
Autopep8, Yapf, and Black. Each makes slightly different default formatting
choices, with some flexibility for you to make adjustments.

Second, a good IDE will run a linter in the background and flag the syn-
tax errors it finds in the code editor more-or-less where the error occurs.

Integrated Development Environments � 35

This alerts you to coding errors as they occur and allows you to correct them
on the spot. Errors like unmatched parentheses or brackets, which are easy
for humans to miss, are reliably flagged. They can even spot inconsistently
spelled variable names. They should catch all syntax errors. Usually, the error
is flagged right on the line where it occurs. Sometimes, however, the error has
occurred a line or two before the flagged line of code. So, look around.

On the other hand, linters cannot catch logical errors, typos, or errors that
are logically wrong but syntactically correct. We will return to the question of
finding and expunging logical errors later. In the meantime, use a linter; just
avoiding syntax errors will save you time—hours!

Fortunately, both IDEs introduced in this chapter feature a linter and aut-
oformatters, including thosementioned above: Autopep8, Yapf, and Black.We
provide details in the sections that follow.

3.3 THE SPYDER IDE

Spyder is an IDE designed for scientific programming. It runs as a standalone
application on macOS, Windows, and Linux. It is open-source (free) software
first developed in 2009. Since then, a team of volunteer developers has main-
tained and enhanced it.

To get started, launch the Spyder IDE application on your computer. One
way is to launch the Terminal application (PowerShell on Windows), type
spyder, and then press<return>. You can also launch theAnaconda-Navigator
app, which presents a menu from which you can launch Spyder.

The default Spyder IDE window has three panes, which are shown in Fig-
ure 3.1: The IPython pane, the Editor pane, and the Help pane.

• The IPython pane runs the Qt Console IPython shell that you learned
about in Chapter 2. You can use it to perform very simple calculations,
run Python computer programs, test snippets of Python code, navigate
through your computer file directories, and perform system tasks like
creating, moving, and deleting files and directories.

• The Editor Pane is where you write and edit Python programs (or
scripts). It is like the text editor applications introduced in Chapter 2.
Like them, it features syntax highlighting. In addition, it can run a lin-
ter or configure an autoformatter to check the formatting of your code
and improve its readability. More importantly, it can check your code
for syntax errors. As noted above, this powerful feature will save you
hours.

36 � Introduction to Python for Science and Engineering

Editor Pane

Help Pane

IPython Pane

Figure 3.1 Spyder IDE window.

• TheHelpPane in Spyder gives help onPython commands. It’s formatted
very nicely, similar to the formatting used on the web pages for Python
and its various packages.
The individual panes in the Spyder window are reconfigurable and de-
tachable, but we will leave them pretty much as they are. However, you
may want to adjust the window’s overall size to suit your computer
screen. Below, we suggest a few other customizations you are highly
encouraged to make.

3.3.1 Autoformatting and Linting in Spyder

By default, basic linting is turned on in Spyder. However, we highly recom-
mend turning on some additional linting features, including autoformatting.
To do so, go to the Spyder Preferences menu (or select the wrench tool at
the top of the Spyder window), select the Completion and linting submenu, and
then select the Linting tab. Check the Enable basic linting and Underline errors
and warning boxes if they are not already checked, and then press the Apply
button (do not forget to press the Apply button). Next, go to the Code style
and formatting tab, check the Enable code style linting box, and press the Ap-
ply button. You should also see a spinbox that you can use to select either the

Integrated Development Environments � 37

Autopep8, Yapf, or Black linters. Start with Autopep8, and after you gain some
experience, try the others to see which you like best.

With these selections made, the Python linter will flag formatting viola-
tions and syntax errors. A red circle appears to the left of the line where
the linter thinks the error occurs. Sometimes, the error actually occurs in a
preceding line, so look around. A yellow triangle appears to the left of the
line where the linter thinks that the coding style doesn’t conform to the PEP
8 standard; it’s not an error, just a coding style violation, which you can heed
or ignore. Passing your mouse pointer over the red or yellow icon brings up a
Code Analysis box with a brief message describing the error or style violation.
You can get a complete list of all the errors, warnings, and style violations by
bringing up the Code Analysis pane (see below).

You can fix formatting violations manually or do it globally for the entire
file or just for a highlighted selection by selecting the Format file or selection
with Autopep8 in the Source menu.

3.3.2 Running Python Code in Spyder

There are different ways you can run Python code using Spyder. To illustrate,
use the File:openmenu in Spyder to open up themy_trip.py script you wrote in
Chapter 2 (see p. 16). This will bring up the my_trip.py code in the Editor pane
of Spyder. To run this code, press the right-pointing green arrow icon near
the top-left of the Spyder window. This runs the Python code in themy_trip.py
file. You should see a runfile command in the IPython pane, together with
the complete path to that file. Typing the output variables, time, gallons, and
cost, will display the values of these variables calculated in the script, just as it
did in the IPython shell in Chapter 2. It should look something like this:
In[1]: runfile('/Users/dp/Documents/PyScripts/my_trip.py',
wdir='/Users/dp/Documents/PyScripts')

In[2]: time, gallons, cost
Out[2]: (6.666666667, 13.333333333, 48.666666667)

You can also run the file by selecting Run from the Run menu at the top
of the Spyder window. Of course, you can run the file by navigating to the
file containing the my_trip.py file and issue a run command from the IPython
pane, as shown here:
In[3]: %cd ~/Documents/PyScripts

In[4]: %run my_trip.py

38 � Introduction to Python for Science and Engineering

In[5]: time, gallons, cost
Out[5]: (6.666666666666667, 13.333333333333334, 38.0)

3.3.2.1 Other Spyder Panes

The Spyder window has many more features, including a number of panes in
addition to the three discussed so far. All are available by selecting Panes under
theViewmenu. If a particular pane has been selected in theView→Panesmenu,
it is available by pressing the corresponding tab at the bottom of one of the
panes. Here is a brief list of the different panes and what they do:

Variable Explorer displays a table showing the names, types, sizes, and values
of all the currently defined variables. This information can be helpful
for debugging code.

Plots displays any currently active plots. When plotting is introduced in
Chapter 8, we will say more about this.

Files displays your computer’s directory tree and allows you to quickly navi-
gate between directories to access, edit, and run different files. Clicking
on a file name in the directory tree brings it up in the Editor pane.

Code Analysis displays the results of running Spyder’s linter on the code
shown in the Editor pane or selected in the spinbox at the top of the
window. You run the linter by pressing the right-pointing green arrow
icon near the top right of the Code Analysis pane.

History shows you the commands you have entered in the IPython console.

Profiler shows how fast the various parts of a program run, which you can
use to optimize your code and reduce the overall time it takes to run.

Spyder has several additional panes that you may find useful as you be-
come a more experienced Python programmer. As you proceed with learning
Python using Spyder, we encourage you to explore its many features. A series
of tutorial videos are available on YouTube and can be accessed through Spy-
der’sHelp: Tutorial videosmenu. These videos will teach you how to get started
with Spyder’s debugger, its profiler, and many other powerful and helpful fea-
tures. You can also explore these features through the Help menu and the on-
line documentation.

There is also a plugin that allows Spyder to run Jupyter Notebooks, which
are described in Section 3.5. However, Jupyter Notebooks are easier to use
within the JupyterLab IDE, which we describe next.

Integrated Development Environments � 39

3.4 THE JUPYTERLAB IDE

JupyterLab is an IDE designed for scientific and technical computing. Instead
of working as a standalone application, JupyterLab runs in a web browser.
However, your computer does not need to be connected to the internet for
JupyterLab to work; JupyterLab runs locally on your personal computer with-
out an internet link. JupyterLab can be run using the Firefox, Chrome, or
Safari browsers, so make sure you have one of these installed as the default
browser on your computer if you are going to use JupyterLab.

JupyterLab is open-source software. First announced in 2018, JupyterLab
grew from Jupyter Notebook, a project that started around 2014, which, in
turn, developed from the IPython command shell, which dates back to about
2001. Like Spyder, JupyterLab is maintained by a community of volunteers.

To get started, launch JupyterLab on your computer. One way to do this
is to launch the Terminal application (PowerShell on Windows), type jupyter
lab (twowords, lowercase), and then press <return>. Or, if you prefer, you can
launch the Anaconda-Navigator app, which presents a menu from which you
can launch JupyterLab. Take care that you launch JupyterLab and not Jupyter
Notebook; they are different.

Upon launching JupyterLab, a window like the one shown in Figure 3.2
should appear in your default web browser. It has aMenu Bar at the topwindow
(separate from the menu bar for the browser). It also has a Left Sidebar, a Right
Sidebar, and a Main Work Area, which in Figure 3.2 has a Launcher tab open.

The left and right sidebars are divided into different tabs that can be se-
lected by clicking on a tab’s icon, which opens up a side pane for that tab. In
Figure 3.2, the File Browser tab has been selected in the Left Sidebar, which
has opened up the side pane showing the contents of the open directory. You
can navigate up and down the directory tree by clicking on the appropriate
icons. Section 2.5.2. The menus opened by the sidebar tabs can be set to col-
lapse or remain open using the View tab in the Menu Bar.

The JupyterLab Main Work Area pane is highly configurable, providing
more freedom than you may want as a beginner. We will show you how to
configure the JupyterLab like the default Spyder window. Over time, as you
gain experience, you will want to configure the panes to suit your workflow.

With the File Browser pane open in the Left Sidebar, navigate to the PyScripts
directory on your computer and click on the my_trip.py item in the File
Browser pane. This will create a new tab labeled my_trip.py in the Main Work
Area pane. Right-click anywhere in the my_trip.py pane and select Create Con-
sole for Editor. This should bring up a Qt Console of the IPython shell in the

40 � Introduction to Python for Science and Engineering

Main Work Area

Menu Bar

Left Sidebar

Right Sidebar

Figure 3.2 JupyterLab IDE window organization.

Main Work Area pane. Your JupyterLab window should look something like
the one displayed in Figure 3.3.

Type %pwd at the IPython prompt in the IPython console, and then press
<shift-return>. In JupyterLab, you need to press <shift-return> to execute a
command written at the IPython prompt. Simply pressing <return>will open
another line where you can write another command. You can change this to
simply be <return> by selecting Console Run Keystroke from the Settingsmenu.

Next, run the run my_trip.py script by writing run run my_trip.py at the
IPython prompt and press <shift-return>. Finally, type time, energy, cost at
the IPython prompt to print out the output variables, time, energy, and cost,
and verify that you get the expected answers (3.0, 46.15..., 10.15...).

This is just one way of setting up the panes in JupyterLab. Select the
Launcher tab next to the my_trip.py tab to see another way. If there is no
Launcher tab, press the icon at the upper left of the JupyterLab window,
which will create a new Launcher tab. Scroll up the window and press the
Python File button. This opens up a new blank Python file ready for you to

Integrated Development Environments � 41

Figure 3.3 JupyterLab IDE window.

start coding. It’s provisionally named untitled.py, but you can change that by
selecting Rename Python File... from the File menu.

To shut down JupyterLab, go to the file menu and select Shut Down. Go
ahead and do that now.

3.4.1 Jupyter Extensions

People have written several extensions for JupyterLab that add features that
you might find helpful. Of the available extensions, we recommend installing
three: autoformatting, linting, and variable inspection. Instructions on how to
install and activate each one of the extensions are provided in the sections that
follow.

3.4.1.1 Autoformatting in JupyterLab

Autoformatting is not included in the default installation of JupyterLab. How-
ever, an effective autoformatter is available through the conda package man-
ager you used to install Python on your computer. To download the Jupyter-
Lab formatter, make sure JupyterLab is shut down and then launch the Termi-
nal application (Anaconda Prompt on Windows). At the terminal prompt, type

conda install -c conda-forge jupyterlab_code_formatter

42 � Introduction to Python for Science and Engineering

This installs the autoformatter. After completing the installation, launch
JupyterLab. In the JupyterLab Edit menu, you should see four new entries: Ap-
ply X Formatter, where X is Black, Autopep8, YAPF, and Isort. If you do not see
these menu items, then the autoformatter may not be enabled. To see which
extensions have been enabled, type

jupyter lab extension list

If jupyterlab-code-formatter is not included in the list of enabled extensions,
type

jupyter lab extension enable codeformatter

Test the autoformatter to see how it works. As an example, open in Jupyter-
Lab the my_trip.py program you created in Section 2.5.2. Remove the spaces
around the = sign in the first code line; that is change “distance = 400.” to
“distance=400.”. With the my_trip.py tab of the JupyterLab editor open, select
Apply Autopep8 Formatter. You should see the spaces around the equal sign
reappear, when the autoformatter applies the PEP 8 standard.

3.4.1.2 Linting in JupyterLab

A linter is not included in the default installation of JupyterLab. However, you
can download one using the conda package manager. To do so, make sure
JupyterLab is shut down and then launch the Terminal application (PowerShell
on Windows). At the Terminal prompt, type

conda install -c conda-forge jupyterlab-lsp

This installs the linter. After completing the installation, launch Jupyter-
Lab. The linter identifies two types of errors: (1) critical errors, which are un-
derlined in red and (2) warnings, which are underlined in orange. You can
hover the cursor over the underlined code to see detailed description of the
error. Right-clicking on an error or warning brings up a panel, and selecting
Show diagnostics panel brings up another tab with a list of all the warnings and
errors found in the file. You can suppress a particular kind of error message
by right-clicking on the error message in the diagnostics panel and selecting
Ignore diagnostics like this.

3.4.1.3 Variable Inspection in JupyterLab

The default installation of JupyterLab does not include a variable inspector. A
variable inspector displays a table showing the names, types, sizes, and values

Integrated Development Environments � 43

of all the currently defined variables in any program you have just run. This
information can be helpful for debugging code. A variable inspector extension
is available through the conda package manager you used to install Python
on your computer. To download the JupyterLab variable inspector, make sure
JupyterLab is shut down and then launch the Terminal application (PowerShell
on Windows). At the terminal prompt, type

conda install -c conda-forge jupyterlab-variableinspector

This installs the variable inspector.

3.5 JUPYTER NOTEBOOKS

A Jupyter Notebook is an environment for interactive computing. It can run
under both Spyder and JupyterLab. It can also run as a stand-alone program in
a web environment, similar to how JupyterLab runs, but we don’t recommend
it, as the stand-alone Jupyter Notebook is being phased out (deprecated) in
favor of JupyterLab.

To run it under Spyder, execute the following installation command from
the terminal (Anaconda Prompt in Windows):
conda install -c conda-forge spyder-notebook

Once you have installed the Spyder Notebook plugin, you can open a Jupyter
Notebook by pressing the Notebook tab at the bottom of the Spyder Editor
Pane (see Figure 3.1). No extra installation step is required to run it under
JupyterLab.

You can work in a Jupyter Notebook interactively, just as you would using
the IPython shell. In addition, you can store and run programs in a Jupyter
Notebook just like you would within the Spyder IDE. Thus, it would seem that
a Jupyter Notebook and the Spyder IDE do essentially the same thing. Up to
a point, that is true. Spyder is generally more useful for developing, storing,
reusing, and running code. A JupyterNotebook on the other hand, is excellent
for logging your work in Python. For example, Jupyter Notebooks are very
useful for logging, reading, and analyzing data in a laboratory setting.They are
also useful for logging and turning in homework assignments. You may find
them useful in other contexts for documenting and demonstrating software.

3.6 LAUNCHING A JUPYTER NOTEBOOK

To launch a Jupyter Notebook in Spyder select Notebook from the View:Panes
menu. This will launch a Jupyter Notebook in the same Spyder pane as the

44 � Introduction to Python for Science and Engineering

Figure 3.4 Untitled Jupyter notebook with an open cell.

Editor. A tab at the bottom of the pane allows you to toggle (switch back and
forth) between the Editor and Notebook.

To launch a Jupyter Notebook in JupyterLab, open a launcher pane from
the File menu or by pressing the icon. It should look like the web page
shown in Figure 3.2. In the Launcher pane, press the Python 3 (ipykernel) button
beneath the red Notebook icon. This will bring up a Jupyter Notebook pane
with the provisional name of Untitled.ipynb like the one shown in Figure 3.4.
To rename the file, click on the File menu (in the Jupyter window, not for the
web browser) and select Rename Notebook....

The Jupyter Notebook pane in Spyder should look like the one in Jupyter-
Lab shown in Figure 3.4. You may need to close other tabs to get a full page
view like the one shown in Figure 3.4.

When you open a new Jupyter Notebook, an IPython interactive cell ap-
pears with the prompt In[]: to the left. You can type code into this cell just as
youwould in the IPython shell of the Spyder IDE. For example, typing 2+3 into
the cell and pressing <shift-return> executes the cell and yields the expected
result. Try it out.

Integrated Development Environments � 45

Figure 3.5 Running a program in a Jupyter Notebook.

If you want to delete a cell, you can do so by clicking on the cell and then
selecting Delete Cells from the Edit menu. Go ahead and delete the cell you
just entered. You can also restart a notebook by selecting Restart & Clear All
Outputs... from the Kernel menu. Go ahead and do this too.

3.7 RUNNING PROGRAMS IN A JUPYTER NOTEBOOK

You can run programs in a Jupyter Notebook. As an example, we run the pro-
gram namedmy_trip.py introduced in Section 2.5.2. The program is input into
a single notebook cell, as shown in Figure 3.5, and then executed by press-
ing Shift-Enter. Next, we type time, gallons, distance in the next cell, press
Shift-Enter, and verify that the program has indeed run and produces the
expected output.

3.8 ANNOTATING A JUPYTER NOTEBOOK

In addition to logging the inputs and outputs of computations, Jupyter Note-
books allow the user to embed headings, explanatory notes, mathematics, and

46 � Introduction to Python for Science and Engineering

Figure 3.6 Annotating a Jupyter Notebook with title and author.

images. A Jupyter Notebook is easier to understand if it includes annotations
that explain what is going on in the notebook.

3.8.1 Adding Headings and Text

Suppose, for example, that we want to have a title at the top of the Jupyter
Notebook we have been working with, and we want to include the name of
the author of the session. To do this, enter the following text in the next open
cell:

Demo Jupyter Notebook
Author: David Pine

Before pressing Shift-Enter, go up to the top of the Main Work Area win-
dow and change the spinbox from Code to Markdown, as shown in Figure 3.6.
Upon selectingMarkdown, the In []: prompt disappears, indicating that this
box is no longer meant for inputting and executing Python code. Instead, the
text is interpreted asMarkdown, a markup language that allows various kinds

Integrated Development Environments � 47

Figure 3.7 An annotated Jupyter Notebook with multiple headings and for-
matted math.

of formatting. In this case, the single hash symbol # indicates that what fol-
lows is a main heading. The double hash symbols ## on the next line indicate
that what follows is a subheading. Now press Shift-Enter to get the formatted
Markdown headings.

The only problem is that you probably want these headings to be at the
top of the notebook before the first code cell. To move the textbox with the
headings, use your mouse to place the cursor just to the left of the text. Then,
left-click your mouse and move the headings to the top of the page. Alterna-
tively, you can click on the up arrow in the text box to move it up one cell at a
time. Figure 3.7 shows the heading placed at the top of the JupyterLab along
with additional annotations discussed below.

Following the same procedure as outlined above, we have added two other
subheadings and moved them to the desired locations in the Jupyter Note-
book. The text for the two entries are:

Script my_trip.py

48 � Introduction to Python for Science and Engineering

and

Output

The additional hash symbols # designate other subheadings with progressively
smaller typefaces. Up to six are allowed.

The final text box contains text as well as a mathematical equation. The
Markdown code that produced the final text box is:

The total distance x traveled during a trip can be
obtained by integrating the velocity $v(t)$ over the duration
T of the trip:
\begin{equation}
x = \int_0^T v(t)\,dt
\end{equation}

Notice that the text is now preceded by five hash symbols, producing
normal-sized text. The equation is written using LATEX, a mathematical
typesetting language. The symbols x, v(t), and T are also written us-
ing LATEX, which Markdown recognizes. More details about LATEX are pro-
vided in Section 8.7 in the context of using Python for plotting. If you
do not already know LATEX, you can get a brief introduction at this site:
http://en.wikibooks.org/wiki/LaTeX/Mathematics.

The Markdown markup language used in JupyterLab has many more fea-
tures for formatting text, which you can read about online.

3.8.2 Saving a Jupyter Notebook

By default, JupyterLab saves your Jupyter Notebook every two minutes. If
you haven’t already changed the name of your Jupyter Notebook from Unti-
tled.ipynb, you can do so by clicking on the JupyterLab Filemenu and selecting
Rename Notebook.... We renamed my notebook demo_jupyter_notebook.ipynb,
which you can see (partially) in the File Browser pane in Figure 3.7.

3.8.3 Editing and Rerunning a Notebook

Inworkingwith a JupyterNotebook, youmaywant tomove some cells around,
delete some cells, or simply change some cells. All of these tasks are possible.
As in a standard document editor, you can cut and paste cells using the Edit
menu. You can also edit and re-execute cells by pressing <shift-return>.

Sometimes, you may want to re-execute the entire notebook afresh. There
are two ways to do this. The first way is to go to the Kernel menu and select
Restart and Run All Cells.... A warning message will appear asking you if you
really want to restart. Answering in the affirmative will cause the IPython shell

http://en.wikibooks.org/wiki/LaTeX/Mathematics

Integrated Development Environments � 49

to forget all the variables and rerun all the cells, calculating anew all the vari-
ables defined in the cells. The second way to re-execute the entire notebook is
to go to the Runmenu and select Run All Cells. This does not cause the IPython
shell to forget all variables before rerunning the notebook and, in general, is
not the best option. It’s generally better to restart afresh.

3.8.4 Quitting a Jupyter Notebook

It goes almost without saying that before quitting a Jupyter Notebook, you
should make sure you have saved the notebook by pressing the Save Notebook
item in the File menu or its icon in the Toolbar.

When you are ready to quit working with a notebook, click on the Shut
Down item in the File menu. Then, close your browser’s JupyterLab tab to end
the session.

Finally, return to the Terminal or Anaconda Command Prompt application.
You should see the usual system prompt.

3.8.5 Working with an Existing Jupyter Notebook

To work with an existing Jupyter Notebook, open JupyterLab and use the
File Browser pane to navigate to the directory, where the Jupyter Notebook
is stored. Double-click on the file you want to open, and the Jupyter Notebook
will appear in the main work area.

Note that while all the inputs and outputs from the previously saved ses-
sion are visible in the notebook, the notebook has not been run. That means
that none of the variables or other objects has been defined in this new ses-
sion. To initialize all the objects in the file, you must rerun the file. To rerun
the file, press the Run menu and select Run All Cells, which will re-execute all
the cells.

CH A P T E R 4

Strings, Lists, Arrays, and
Dictionaries

The variables introduced in the previous chapter represent a very simple
kind of data structure. This chapter introduces more sophisticated data
structures, including strings, lists, tuples, and dictionaries, which are
all part of core Python. This chapter introduces the NumPy array, the
principal structure you will use for storing and manipulating scientific
data. This chapter introduces a powerful technique called slicing, which
allows you to extract and manipulate sections of data contained in lists,
tuples, and NumPy arrays. Finally, this chapter introduces some basic
ideas about objects, which are central to Python’s underlying structure
and functioning.

The most important data structure for scientific computing in Python is
the NumPy array. NumPy arrays store lists of numerical data and are used
to represent vectors, matrices, and even tensors. NumPy arrays are designed
to manipulate large data sets quickly and efficiently. The NumPy library has
many routines for creating, manipulating, and transforming NumPy arrays.
NumPy functions, like sqrt and sin, are designed specifically to work with
NumPy arrays. Core Python has an array data structure, but it’s not nearly as
versatile, efficient, or useful as the NumPy array. We will not be using Python
arrays at all. Therefore, whenever we refer to an “array,” we mean a “NumPy
array.” We discuss NumPy arrays in Section 4.4.

Lists are another data structure, similar to NumPy arrays, but unlike
NumPy arrays, lists are a part of core Python. Lists have a variety of uses.They
are used, for example, in various bookkeeping tasks that arise in computer

50 DOI: 10.1201/9781032673950-4

https://doi.org/10.1201/9781032673950-4

Strings, Lists, Arrays, and Dictionaries � 51

programming. Like arrays, they are sometimes used to store data. However,
lists do not have the specialized properties and tools that make arrays so pow-
erful for scientific computing. Therefore, we usually prefer arrays to lists for
working with scientific data, but there are some circumstances for which us-
ing lists is preferable, even for scientific computing. And for other tasks, lists
work just fine. We will use them frequently. We discuss them in Section 4.2.

Strings are lists of keyboard characters and other characters not on your
keyboard. They are not particularly interesting in scientific computing but are
necessary and useful. Texts on programming with Python often devote a good
deal of time and space to learning about strings and how to manipulate them.
However, our uses are relativelymodest, so we take aminimalist approach and
only introduce a few of their features. We discuss strings in Section 4.1.

Dictionaries are like lists but differ from lists in how their elements are
accessed. The elements of lists and arrays are ordered sequentially, and to ac-
cess an element of a list or an array, you refer to the number corresponding
to its position in the sequence. The elements of dictionaries are accessed by
“keys,” which can be program strings or (arbitrary) integers (in no particular
order). Dictionaries are an essential part of core Python. We introduce them
in Section 4.3.

4.1 STRINGS

Strings are lists of characters. Any character you can type from a computer
keyboard, plus various other characters, can be elements in a string. Strings
are created by enclosing a sequence of characters within a pair of single or
double quotes. Examples of strings include "Marylyn", 'omg', "good_bad_#5f>",
"{0:0.8g}", and 'We hold these truths ...'. Caution: When defining a given
string, the defining quotes must both be single or both be double. But you can
use single quotes to define one string and double quotes to define the next
string; it’s up to you and has no consequence.

Strings can be assigned variable names
In[1]: a = "My dog's name is"
In[2]: b = "Bingo"

Note that we used double quotes to define the string a, so that we could use
the apostrophe (single quote) in dog's. Strings can be concatenated using the
“+” operator:
In[3]: c = a + " " + b
In[4]: c
Out[4]: "My dog's name is Bingo"

52 � Introduction to Python for Science and Engineering

In forming the string c, we concatenated three strings, a, b, and a string literal,
in this case, a space " ", which is needed to provide a space to separate string
a from b.

“Wait a second?”, you might say, “How can ‘+’ be used both for adding
numbers and for concatenating strings?” The short answer is “it just is.” And
it happens frequently enough that it’s given a name: operator overloading. How
an operator, in this case “+”, gets used can depend on what data types it is op-
erating on. For example, you can also multiply strings using the “*” operator.
In[5]: f = "Susie"
In[6]: 3 * f = 'SusieSusieSusie'

Given the definition of string addition, this definition makes sense
In[7]: f + f + f
Out[7]: 'SusieSusieSusie'

That is, f + f + f = 3 * f. Not all operators are overloaded in this way. For
example, the division and power operators have no meaning with strings and
will raise an error if you try to use them.

Finally, we note that because numbers—digits—are also alphanumeric
characters, strings can include numbers:
In[8]: d = "927"
In[9]: e = 927

The variable d is a string, while the variable e is an integer. You get an error
if you try to add them by writing d + e. However, if you type d + str(e) or
int(d) + e, you get sensible results. Try them out!

You will use strings for different purposes: labeling data in data files, la-
beling axes in plots, formatting numerical output, requesting input for your
programs, as arguments in functions, etc.

4.1.1 Unicode Characters

Originally, the set of characters available to computers was rather limited;
there were 128. They were numbered from 0 to 127: 65–90 were used for
capital letters from A to Z; 97–122 were used for lower case letters a–z. This
coding is called ASCII (for American Standard Code for Information Inter-
change) These 128 characters represented the letters typically found on an
American keyboard. To accommodate the much larger number of symbols
needed to encode the world’s languages, the International Standards Orga-
nization (ISO) developed the Unicode standard, which Python uses, specifi-
callyUTF-8, which youmay see referenced from time to time.Numbers 0–127
are the same as the ASCII encoding. Numbers 945–970 encode the lowercase

Strings, Lists, Arrays, and Dictionaries � 53

Greek alphabet, for example. You can find the numerical value of a character
using Python’s ord (ordinal number) function. For example, ord("a") is 97.
Conversely, the chr function returns the character corresponding to a partic-
ular number. For example, chr(945) returns the Greek letter alpha (α).

It is also common to specify the UTF-8 numerical code for Unicode char-
acters in hexadecimal, or base 16, which uses 0–9 for the first 9 digits and
then A–F for the hexadecimal (“hex” for short) digits 10–15. For example, the
Unicode specification for the question mark symbol ? is chr(63) in decimal
format. The hexadecimal equivalent is 3F= 3× 16+ 15 = 63. In Python, you
can express this character as a 2-digit hex \x3F or as a 4-digit hex \u003F or as
an 8-digit hex \U0000003F. Python uses \x, \u, and \U to express 2, 4, or 8-digit
Unicode characters in hex. The hexadecimal digits A–F can be expressed as
lowercase or uppercase letters. Here we demonstrate the use of unicode char-
acters in the print function.
In[10]: print(chr(63))

?

In[11]: print("\x3f")
?

In[12]: print("\x3f\u003f\U0000003f")
???

In[13]: print(chr(945))
α

In[14]: print("\u03b1")
α

Note that you must include the leading zeros necessary so that \x, \u, and \U
have precisely 2, 4, or 8 digits, respectively. Unicode can produce all kinds of
characters: accented characters, subscripts, superscripts, and a host of others.
You can find the Unicode encodings you want by searching on the web.

4.2 LISTS

Python has two data structures, lists and tuples, that consist of a list of one
or more elements. The elements of lists or tuples can be numbers, strings, or
both. Lists (we discuss tuples later in Section 4.2.4) are defined by a pair of
square brackets on either end with individual elements separated by commas.
Here are two examples of lists:
In[1]: a = [0, 1, 1, 2, 3, 5, 8, 13]
In[2]: b = [5., "girl", 2+0j, "horse", 21]

54 � Introduction to Python for Science and Engineering

You can access individual elements of a list using the variable name for the list
with an integer in square brackets:
In[3]: b[0]
Out[3]: 5.0

In[4]: b[1]
Out[4]: 'girl'

In[5]: b[2]
Out[5]: (2+0j)

The first element of b is b[0], the second is b[1], the third is b[2], and so on.
Some computer languages index lists beginning with 0, like Python and C,
while others index lists (or things more-or-less equivalent) beginning with 1
(like Fortran and MATLAB®). It’s essential to remember that Python uses the
former convention: lists are zero-indexed.

The last element of this array is b[4], because b has 5 elements. The last
element can also be accessed as b[-1], no matter how many elements b has,
and the next-to-last element of the list is b[-2], etc. Try it out:
In[6]: b[4]
Out[6]: 21

In[7]: b[-1]
Out[7]: 21

In[8]: b[-2]
Out[8]: 'horse'

Individual elements of lists can be changed. For example:
In[9]: b
Out[9]: [5.0, 'girl', (2+0j), 'horse', 21]

In[10]: b[0] = b[0]+2

In[11]: b[3] = 3.14159

In[12]: b
Out[12]: [7.0, 'girl', (2+0j), 3.14159, 21]

Here, you see that 2 was added to the previous value of b[0] and the string
'horse' was replaced by the floating point number 3.14159. You can also ma-
nipulate individual elements that are strings:
In[13]: b[1] = b[1] + "s & boys"

Strings, Lists, Arrays, and Dictionaries � 55

In[14]: b
Out[14]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

You can also add lists, but the result might surprise you:
In[15]: a
Out[15]: [0, 1, 1, 2, 3, 5, 8, 13]

In[16]: a+a
Out[16]: [0, 1, 1, 2, 3, 5, 8, 13, 0, 1, 1, 2, 3, 5, 8, 13]

In[17]: a+b
Out[17]: [0, 1, 1, 2, 3, 5, 8, 13, 10.0, 'girls & boys',

(2+0j), 3.14159, 21]

Adding lists concatenates them, just as the “+” operator concatenates strings.

4.2.1 Slicing Lists

You can access pieces of lists using the slicing feature of Python:
In[18]: b
Out[18]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

In[19]: b[1:4]
Out[19]: ['girls & boys', (2+0j), 3.14159]

In[20]: b[3:5]
Out[20]: [3.14159, 21]

You access a subset of a list by specifying two indices separated by a colon “:”.
This is a powerful feature of lists that is used often. Here are a few other useful
slicing shortcuts:
In[21]: b[2:]
Out[21]: [(2+0j), 3.14159, 21]

In[22]: b[:3]
Out[22]: [10.0, 'girls & boys', (2+0j)]

In[23]: b[:]
Out[23]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

Thus, if the left slice index is 0, you can leave it out; similarly, if the right slice
index is the length of the list, you can leave it out also.

What does the following slice of an array give you?
In[24]: b[1:-1]

56 � Introduction to Python for Science and Engineering

You can get the length of a list using Python’s len function:
In[25]: len(b)
Out[25]: 5

Using a double colon, you can also extract every second, third, or nth ele-
ment of a list. Here we extract every second and third element of a list starting
at different points:
In[26]: b
Out[26]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

In[27]: b[0::2]
Out[27]: [10.0, (2+0j), 21]

In[28]: b[1::2]
Out[28]: ['girls & boys', 3.14159]

In[29]: b[0::3]
Out[29]: [10.0, 3.14159]

In[30]: b[1::3]
Out[30]: ['girls & boys', 21]

In[31]: b[2::3]
Out[31]: [(2+0j)]

4.2.2 Multidimensional Lists

You can also make multidimensional lists or lists of lists. Consider, for exam-
ple, a list of three elements, where each element in the list is itself a list:
In[32]: a = [[3, 9], [8, 5], [11, 1]]

Here, we have introduced a three-element list, where each element consists of
a two-element list. Such constructs can be useful in making tables and other
structures. They also become relevant later when we introduce NumPy arrays
and matrices in Section 4.4.

You can access the various elements of a list with a straightforward exten-
sion of the indexing scheme we have been using. The first element of the list
a above is a[0], which is [3, 9]; the second is a[1], which is [8, 5]. The first
element of a[1] is accessed as a[1][0], which is 8, as illustrated below:
In[33]: a[0]
Out[33]: [3, 9]

In[34]: a[1]
Out[34]: [8, 5]

Strings, Lists, Arrays, and Dictionaries � 57

In[35]: a[1][0]
Out[35]: 8

In[36]: a[2][1]
Out[36]: 1

4.2.3 Appending to Lists

When you concatenate two lists, you create a new list. For example
In[37]: g = [9, 7, 5]

In[38]: id(g)
Out[38]:: 140316326106560

In[39]: g = g + [1, 2, 3]

In[40]: g
Out[40]: [9, 7, 5, 1, 2, 3]

In[41]: id(g)
Out[41]: 140316591106432

When the list [1, 2, 3] was added to g, id(g) changed, meaning that a new
list object was created. However, if we use the += operator, the id(g) doesn’t
change, as demonstrated here
In[42]: g += [4, 5, 6]

In[43]: g
Out[43]: [9, 7, 5, 1, 2, 3, 4, 5, 6]

In[44]: id(g)
Out[44]: 140316591106432

The list g has the same id before and after we use the += operator to add [4, 5,
6]. We say that g has been changed in place, that is, without changing its id or
memory location. By the way, the *= operator also makes changes in place.

The list method append also adds to a list in place.
In[45]: g.append(11)

In[46]: g
Out[46]: [9, 7, 5, 1, 2, 3, 4, 5, 6, 11]

In[47]: id(g)
Out[47]: 140316591106432

58 � Introduction to Python for Science and Engineering

Interestingly, append behaves a bit differently from the operator +=, as illus-
trated here.
In[48]: g.append([13, 14, 15])

In[49]: g
Out[49]: [9, 7, 5, 1, 2, 3, 4, 5, 6, 11, [13, 14, 15]]

In[50]: id(g)
Out[50]: 140316591106432

The append method added the list [13, 14, 15] to g, not the individual ele-
ments, 1, 2, 3, which is how the += operator works.

4.2.4 Tuples

Next, a word about tuples: tuples are lists that are immutable. That is, once
defined, the individual elements of a tuple cannot be changed. Whereas a list
is written as a sequence of numbers (or characters or other objects) enclosed
in square brackets, a tuple is written as a sequence of numbers (or characters
or other objects) enclosed in round parentheses. Individual elements of a tuple
are addressed in the sameway as individual elements of lists are addressed, but
those individual elements cannot be changed. All of this is illustrated by this
simple example:
In[51]: c = (1, 1, 2, 3, 5, 8, 13)
In[52]: c[4]
Out[52]: 5

In[53]: c[4] = 7

Traceback (most recent call last):

File "<ipython-input-2-7cb42185162c >", line 1,
in <module>
c[4] = 7

TypeError: 'tuple' object does not support item
assignment

Whenwe tried to change c[4], the system returned an error because individual
elements of a tuple cannot be changed—they are immutable.

In other ways, tuples behave like lists. You can concatenate them is the ad-
dition operator and create repetitive sequences using the multiplication oper-
ator.
In[54]: (3, 4, 5) + (2, 4, 6)

Strings, Lists, Arrays, and Dictionaries � 59

Out[54]: (3, 4, 5, 2, 4, 6)
In[55]: (7, 8, 9) * 3
Out[55]: (7, 8, 9, 7, 8, 9, 7, 8, 9)

Note: While lists of length 1 are written as [a], tuples are written as (a,). The
comma is needed to tell Python that this is a tuple of length 1 and not a simple
variable.

Multidimensional tuples work exactly like multidimensional lists, except
they are immutable.

Tuples offer some degree of safety when you want to define lists of im-
mutable constants. As we shall see in Section 7.2.3, this becomes particularly
relevant when passing tuples and lists in functions

4.3 DICTIONARIES

APython list is a collection of Python objects indexed by an ordered sequence
of integers starting from zero. A dictionary is also a collection of Python ob-
jects, just like a list, but one indexed by strings or numbers (not necessarily
integers and not in any particular order) or even tuples! Dictionaries are a
part of core Python, just like lists.

Suppose you want to make a dictionary of room numbers indexed by the
name of the person who occupies each room. You create a dictionary using
curly brackets {...}.
In[1]: room = {"Yujin":309, "Jake":582, "Ja'Marr":764}

The dictionary above has three entries separated by commas, each consisting
of a key, which in this case is a string, and a value, which is a room number.
A colon separates each key and its value. The syntax for accessing the various
entries is similar to that of a list, with the key replacing the index number. For
example, to find out the room number of Ja’Marr, you type
In[2]: room["Ja'Marr"]
Out[2]: 764

The key does not need to be a string; it can be any immutable Python object.
So, a key can be a string, an integer, or even a tuple, but it can’t be a list. The
elements accessed by their keys need not be strings but can be almost any
legitimate Python object, just as for lists. Here is a weird example.
In[3]: weird = {"tank":52, 846:"horse", 'bones':
...: [23, 'fox', 'grass'], 'phrase': 'I am here'}

In[4]: weird["tank"]
Out[4]: 52

60 � Introduction to Python for Science and Engineering

In[5]: weird[846]
Out[5]: 'horse'

In[6]: weird["bones"]
Out[6]: [23, 'fox', 'grass']

In[7]: weird["phrase"]
Out[7]: 'I am here'

You can build up and add to dictionaries in a straightforward manner
In[8]: d = {}

In[9]: d["last name"] = "Alberts"

In[10]: d["first name"] = "Marie"

In[11]: d["birthday"] = "January 27"

In[12]: d
Out[12]: {'birthday': 'January 27',

...: 'first name': 'Marie', 'last name': 'Alberts'}

You can get a list of all the keys or values of a dictionary by typing the dictio-
nary name followed by .keys() or .values()
In[13]: d.keys()
Out[13]: ['last name', 'first name', 'birthday']

In[14]: d.values()
Out[14]: ['Alberts', 'Marie', 'January 27']

In other languages, data types similar to Python dictionaries may be called
“hashmaps” or “associative arrays,” so youmay see such terms used if you read
about dictionaries on the web.

You can also create a dictionary from a list of tuple pairs.
In[15]: g = [("Melissa", "Canada"), ("Jeana", "China"),

("Etienne", "France")]

In[16]: gd = dict(g)

In[17]: gd
Out[17]: {'Melissa': 'Canada', 'Jeana': 'China',

'Etienne': 'France'}

In[18]: gd['Jeana']
Out[18]: 'China'

Strings, Lists, Arrays, and Dictionaries � 61

4.4 NUMPY ARRAYS

TheNumPy array is the real workhorse of data structures for scientific and en-
gineering applications. The NumPy array is similar to a list but where all the
elements are the same type. The NumPy array constitutes a new type, namely
ndarray. The elements of a NumPy array, or simply an array, are usually num-
bers but can also be Booleans (i.e., True or False), strings, or other objects.
When the elements are numbers, they must all be the same type. For example,
they might be all integers or all floating point numbers.

4.4.1 Creating Arrays (1-d)

NumPyhasmany functions for creating arrays.We focus on four (or five or six,
depending on how you count!).The first of these, the array function, converts
a list to an array:
In[1]: a = [0, 0, 1, 4, 7, 16, 31, 64, 127]

In[2]: import numpy as np

In[3]: b = np.array(a)

In[4]: b
Out[4]: array([0, 0, 1, 4, 7, 16, 31, 64, 127])

In[5]: c = np.array([1, 4., -2, 7])

In[6]: c
Out[6]: array([1., 4., -2., 7.])

Notice that b is an integer array since it was made from a list of integers.
On the other hand, c is a floating point array even though only one of the
elements of the list from which it was made was a floating point number. The
array function automatically promotes all numbers to the type of the most
general entry in the list, which in this case is a floating point number. When a
list consists of numbers and strings, all the elements become strings when an
array is formed from the list.

The second way arrays can be created is with the NumPy linspace or
logspace functions. The linspace function creates an array ofN evenly spaced
points between a starting point and an ending point. The form of the function
is linspace(start, stop, N). If the third argument N is omitted, then N=50.
In[7]: np.linspace(0, 10, 5)
Out[7]: array([0. , 2.5, 5. , 7.5, 10.])

62 � Introduction to Python for Science and Engineering

The linspace function produced five evenly spaced points between 0 and 10
inclusive. NumPy also has a closely related function logspace that produces
evenly spaced points on a logarithmic scale. The arguments are the same as
those for linspace except that start and stop are a power of 10. That is, the
array starts at 10start and ends at 10stop.
In[8]: %precision 1 # display 1 digit after decimal
Out[8]: '%.1f'

In[9]: np.logspace(1, 3, 5)
Out[9]: array([10. , 31.6, 100. , 316.2, 1000.])

The logspace function created an array with 5 points evenly spaced on a loga-
rithmic axis starting at 101 and ending at 103. The logspace function is handy
when you want to create a logarithmic plot.

A third way arrays can be created is using the NumPy arange function.
The form of the function is arange(start, stop, step). If the third argument
is omitted step=1. If the first and third arguments are omitted, then start=0
and step=1.
In[10]: np.arange(0, 10, 2)
Out[10]: array([0, 2, 4, 6, 8])

In[11]: np.arange(0., 10, 2)
Out[11]: array([0., 2., 4., 6., 8.])

In[12]: np.arange(0, 10, 1.5)
Out[12]: array([0. , 1.5, 3. , 4.5, 6. , 7.5, 9.])

The arange function produces points evenly spaced between 0 and 10, exclu-
sive of the final point. Notice that arange produces an integer array in the first
case but a floating point array in the other two cases. In general arange pro-
duces an integer array if the arguments are all integers; making any of the
arguments a float causes the array created to be a float.

A fourth way to create an array is with the zeros and ones functions. As
their names imply, they create arrays where all the elements are either zeros
or ones. They each take one mandatory argument, the number of elements in
the array, and one optional argument that specifies the data type of the array.
Left unspecified, the data type is a float. Here are three examples
In[13]: np.zeros(6)
Out[13]: array([0., 0., 0., 0., 0., 0.])

In[14]: np.ones(8)
Out[14]: array([1., 1., 1., 1., 1., 1., 1., 1.])

In[15]: ones(8, dtype=int)
Out[15]: np.array([1, 1, 1, 1, 1, 1, 1, 1])

Strings, Lists, Arrays, and Dictionaries � 63

4.4.1.1 Recap of Ways to Create a 1-d NumPy Array

array(a): Creates an array from the list a.

linspace(start, stop[, num]): Returns num evenly spaced numbers over an
interval from start to stop inclusive. (num=50 if omitted.)

logspace(start, stop[, num]): Returns num logarithmically spaced numbers
over an interval from 10start to 10stop inclusive. (num=50 if omitted.)

arange([start,] stop[, step,], dtype=None): Returns data points from start
to end, exclusive, evenly spaced by step. (step=1 if omitted. start=0 and
step=1 if both are omitted.)

zeros(num[, dtype=float]): Returns an an array of 0s with num elements. An
optional dtype argument can be used to set the data type; left unspeci-
fied, a float array is created.

ones(num[, dtype=float]): Returns an an array of 1s with num elements. Op-
tional dtype argument can be used to set the data type; left unspecified,
a float array is created.

4.4.2 Mathematical Operations with Arrays

The utility and power of arrays in Python come from the fact that you can
process and transform all the elements of an array in one fell swoop. The best
way to see how this works is to look at an example.
In[16]: a = np.linspace(-1., 5, 7)

In[17]: a
Out[17]: array([-1., 0., 1., 2., 3., 4., 5.])

In[18]: a*6
Out[18]: array([-6., 0., 6., 12., 18., 24., 30.])

Each element of the array has been multiplied by 6. This works not only for
multiplication but for any other mathematical operation you can imagine: di-
vision, exponentiation, etc.
In[19]: a/5
Out[19]: array([-0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1.])

In[20]: a**3
Out[20]: array([-1., 0., 1., 8., 27., 64., 125.])

In[21]: a+4

64 � Introduction to Python for Science and Engineering

Out[21]: array([3., 4., 5., 6., 7., 8., 9.])

In[22]: a-10
Out[22]: array([-11., -10., -9., -8., -7., -6., -5.])

In[23]: (a+3)*2
Out[23]: array([4., 6., 8., 10., 12., 14., 16.])

In[24]: np.sin(a)
Out[24]: array([-0.8415, 0. , 0.8415, 0.9093, 0.1411,

-0.7568, -0.9589])

Here, we set precision 4 so that only 4 digits are displayed to the right of the
decimal point.1 We will typically do this without explicitly mentioning it to
have neater formatting.
In[25]: np.exp(-a)
Out[25]: array([2.7183, 1. , 0.3679, 0.1353, 0.0498,

0.0183, 0.0067])

In[26]: 1. + np.exp(-a)
Out[26]: array([3.7183, 2. , 1.3679, 1.1353, 1.0498,

1.0183, 1.0067])

In[27]: b = 5*np.ones(8)

In[28]: b
Out[28]: array([5., 5., 5., 5., 5., 5., 5., 5.])

In[29]: b += 4

In[30]: b
Out[30]: array([9., 9., 9., 9., 9., 9., 9., 9.])

In each case, you can see that the same mathematical operations are per-
formed individually on each array element. Even fairly complex algebraic
computations can be carried out this way.

Let’s say you want to create an x − y data set of y = cos x vs. x over the
interval from −3.14 to 3.14. Here is how you might do it.
In[31]: x = np.linspace(-3.14, 3.14, 21)

In[32]: y = np.cos(x)

In[33]: x
Out[33]: array([-3.14 , -2.826, -2.512, -2.198, -1.884,

1This works when printing from an IPython shell. To achieve the same effect within a pro-
gram, use np.set_printoptions(precision=4).

Strings, Lists, Arrays, and Dictionaries � 65

-1.57 , -1.256, -0.942, -0.628, -0.314,
0. , 0.314, 0.628, 0.942, 1.256,
1.57 , 1.884, 2.198, 2.512, 2.826,
3.14])

In[34]: y
Out[34]: array([-1.0000e+00, -9.5061e-01, -8.0827e-01,

-5.8688e-01, -3.0811e-01, 7.9633e-04,
3.0962e-01, 5.8817e-01, 8.0920e-01,
9.5111e-01, 1.0000e+00, 9.5111e-01,
8.0920e-01, 5.8817e-01, 3.0962e-01,
7.9633e-04, -3.0811e-01, -5.8688e-01,

-8.0827e-01, -9.5061e-01, -1.0000e+00])

You can use arrays as inputs for any of the functions introduced in Section
2.6.1.

You might well wonder what happens if Python encounters an illegal op-
eration. Here is one example.
In[35]: a
Out[35]: array([-1., 0., 1., 2., 3., 4., 5.])

In[36]: np.log(a)
Out[36]: array([nan, -inf, 0. , 0.6931, 1.0986,

1.3863, 1.6094])

NumPy calculates the logarithm where it can, and returns nan (not a number)
for an illegal operation, taking the logarithm of a negative number, and -inf,
or −∞ for the logarithm of zero. The other values in the array are correctly
reported. Depending on the settings of your version of Python, NumPy may
also print a warning message to let you know that something untoward has
occurred.

Arrays can also be added, subtracted, multiplied, and divided by each
other on an element-by-element basis, provided the two arrays have the same
size. Consider adding the two arrays a and b defined below:
In[37]: a = np.array([34., -12, 5.])

In[38]: b = np.array([68., 5.0, 20.])

In[39]: a+b
Out[39]: array([102., -7., 25.])

The result is that each element of the two arrays are added. Similar results are
obtained for subtraction, multiplication, and division:
In[40]: a - b

66 � Introduction to Python for Science and Engineering

Out[40]: array([-34., -17., -15.])

In[41]: a * b
Out[41]: array([2312., -60., 100.])

In[42]: a / b
Out[42]: array([0.5 , -2.4 , 0.25])

These operations with arrays are called vectorized operations because the en-
tire array, or “vector,” is processed as a unit. Vectorized operations are much
faster than processing each element of an array one by one. Writing code that
takes advantage of these kinds of vectorized operations is almost always pre-
ferred to other means of accomplishing the same task because it is faster and
syntactically simpler. You will see examples later when we discuss loops in
Chapter 6.

4.4.3 Slicing and Addressing Arrays

Arrays can be sliced in the same ways that strings and lists can be sliced. Ditto
for accessing individual array elements: 1-d arrays are addressed like strings
and lists. Slicing and vectorized operations can lead to some pretty compact
and powerful code.

Suppose, for example, that you have two arrays y, and t for position vs.
time of a falling object, say a ball, and you want to use these data to calculate
the velocity as a function of time:
In[43]: y = np.array([0., 1.3, 5. , 10.9, 18.9, 28.7, 40.])

In[44]: t = np.array([0., 0.49, 1. , 1.5 , 2.08, 2.55, 3.2])

You can find the average velocity for time interval i using the formula

vi =
yi − yi−1

ti − ti−1
.

You can easily calculate the entire array of velocities using the slicing and vec-
torized subtraction properties of NumPy arrays by noting that you can create
two y arrays displaced by one index.
In[45]: y[:-1]
Out[45]: array([0. , 1.3, 5. , 10.9, 18.9, 28.7])

In[46]: y[1:]
Out[46]: array([1.3, 5. , 10.9, 18.9, 28.7, 40.])

Strings, Lists, Arrays, and Dictionaries � 67

The element-by-element difference of these two arrays is
In[47]: y[1:]-y[:-1]
Out[47]: array([1.3, 3.7, 5.9, 8. , 9.8, 11.3])

The element-by-element difference of the two arrays y[1:]-y[:-1] divided by
t[1:]-t[:-1] gives the entire array of velocities.
In[48]: v = (y[1:]-y[:-1])/(t[1:]-t[:-1])

In[49]: v
Out[49]: array([2.6531, 7.2549, 11.8 ,

13.7931, 20.8511, 17.3846])

Of course, these are the average velocities over each interval so the times best
associated with each interval are the times halfway in between the original
time array, which you can calculate using a similar trick of slicing:
In[50]: tv = (t[1:]+t[:-1])/2.

In[51]: tv
Out[51]: array([0.245, 0.745, 1.25 , 1.79 , 2.315, 2.875])

4.4.4 Fancy Indexing: Boolean Indexing

There is another way of accessing various elements of an array that is both
powerful and useful. We illustrate with a simple example. Consider the fol-
lowing array:
In[52]: b = 1.0 / np.arange(0.2, 3, 0.2)

In[53]: b
Out[53]:
array([5. , 2.5 , 1.66666667, 1.25 ,

1. , 0.83333333, 0.71428571, 0.625 ,
0.55555556, 0.5 , 0.45454545, 0.41666667,
0.38461538, 0.35714286])

Suppose you want just those elements of the array that are greater than one.
You can get an array of those values using Boolean indexing. Here’s how it
works:
In[54]: b[b > 1]
Out[54]: array([5. , 2.5 , 1.66666667, 1.25])

Only those elements whose values meet the Boolean criterion of b > 1 are
returned.

Boolean indexing can be useful for reassigning values of an array thatmeet
some criterion. For example, you can reassign all the elements of b that are
greater than 1 to have a value of 1 with the following assignment:

68 � Introduction to Python for Science and Engineering

In[55]: b[b > 1] = 1

In[56]: b
Out[56]:
array([1. , 1. , 1. , 1. ,

1. , 0.83333333, 0.71428571, 0.625 ,
0.55555556, 0.5 , 0.45454545, 0.41666667,
0.38461538, 0.35714286])

Suppose we create another array the same size as b.
In[57]: b.size
Out[57]: 14

In[58]: c = np.linspace(0, 10, b.size)

In[59]: c
Out[59]:
array([0. , 0.76923077, 1.53846154, 2.30769231,

3.07692308, 3.84615385, 4.61538462, 5.38461538,
6.15384615, 6.92307692, 7.69230769, 8.46153846,
9.23076923, 10.])

Now we would like for this new array c to be equal to 3 everywhere that b is
equal to 1. We do that like this:
In[60]: c[b == 1] = 3

In[61]: c
Out[61]:
array([3. , 3. , 3. , 3. ,

3. , 3.84615385, 4.61538462, 5.38461538,
6.15384615, 6.92307692, 7.69230769, 8.46153846,
9.23076923, 10.])

Here, we used the Boolean operator ==, which returns a value of True if the
two things it’s comparing have the same value and False if they do not. So, a
Boolean condition on one array can be used to index a different array if the
two arrays have the same size, as in the above example.

As illustrated in the next example, the array elements selected using
Boolean indexing need not be consecutive.
In[62]: y = np.sin(np.linspace(0, 4*np.pi, 9))

In[63]: y
Out[63]:
array([0.00000000e+00, 1.00000000e+00, 1.22464680e-16,

-1.00000000e+00, -2.44929360e-16, 1.00000000e+00,
3.67394040e-16, -1.00000000e+00, -4.89858720e-16])

Strings, Lists, Arrays, and Dictionaries � 69

In[64]: y[np.abs(y) < 1.e-15] = 0.

In[65]: y
Out[65]: array([0., 1., 0., -1., 0., 1., 0., -1., 0.])

Boolean indexing provides a nifty way to eliminate those tiny numbers that
should be but aren’t quite zero due to round-off error, even if the benefit is
primarily aesthetic.

4.4.5 Multidimensional Arrays and Matrices

So far, we have examined only one-dimensional NumPy arrays, that is, arrays
that consist of a simple sequence of numbers. However, NumPy arrays can be
used to represent multidimensional arrays. For example, you may be familiar
with the concept of amatrix, which consists of a series of rows and columns of
numbers. Matrices can be represented using two-dimensional NumPy arrays.
Higher dimension arrays can also be created as the application demands.

4.4.5.1 Creating Multidimensional NumPy Arrays

There are several ways of creating multidimensional NumPy arrays. The most
straightforward way is using NumPy’s array function, which we demonstrate
here:
In[66]: b = np.array([[1., 4, 5], [9, 7, 4]])

In[67]: b
Out[67]: array([[1., 4., 5.],

[9., 7., 4.]])

Notice the syntax used above in which two one-dimensional lists [1., 4, 5] and
[9, 7, 4] are enclosed in square brackets to make a two-dimensional list. The
array function converts the two-dimensional list, a structure we introduced
earlier, to a two-dimensional array. When converting from a list to an array,
the array function makes all the elements have the same data type as the most
complex entry, in this case, a float. This reminds us of an essential difference
betweenNumPy arrays and lists: all elements of a NumPy arraymust be of the
same data type: floats, integers, or complex numbers, etc.

There are several other functions for creatingmultidimensional arrays. For
example, a 3-row by 4-column array or 3× 4 array with all the elements filled
with 1 can be created using the ones function introduced earlier.
In[68]: a = np.ones((3, 4), dtype=float)

In[69]: a

70 � Introduction to Python for Science and Engineering

Out[69]: array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

The first argument of the ones function is a tuple specifying the size and shape
of the array, in this case, a two-dimensional array with 3 rows and 4 columns.
The zeros function can be used similarly to create a multidimensional array
of zeros.

The eye(N) function creates an N × N two-dimensional identity matrix
with ones along the diagonal:
In[70]: np.eye(4)
Out[70]: array([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

4.4.5.2 Reshaping Arrays

Multidimensional arrays can also be created fromone-dimensional arrays. For
example, a 2 × 3 array can be created as follows:
In[71]: c = np.arange(6)

In[72]: c
Out[72]: array([0, 1, 2, 3, 4, 5])

In[73]: c = c.reshape(2, 3)

In[74]: c
Out[74]: array([[0, 1, 2],

[3, 4, 5]])

In this example, we specified both the number of rows (2) and the number of
columns (3), but we didn’t have to. As the following syntax illustrates, we can
simply specify the number of rows or the number of columns:
In[75]: c = np.arange(6)

In[76]: c
Out[76]: array([0, 1, 2, 3, 4, 5])

In[77]: c.reshape(2, -1)
Out[77]: array([[0, 1, 2],

[3, 4, 5]])

In[78]: c.reshape(-1, 3)
Out[78]: array([[0, 1, 2],

[3, 4, 5]])

Strings, Lists, Arrays, and Dictionaries � 71

This brings us to another point. Reshaping arrays can be used to perform
useful operations on arrays efficiently. Suppose you have a 1-D array, perhaps
very long, that you want to shorten by creating a new array that is the average,
or perhaps the sum, of every three elements. You can do this by reshaping the
array into a 3× n array and then averaging or summing the rows to create the
new array you want. Let’s give it a go!
In[79]: d = np.array([5, 2, 8, -4, 1, -6, 8, 6, 4, 5, -9, 2])

In[80]: d.reshape(-1, 3)
Out[80]: array([[5, 2, 8],

[-4, 1, -6],
[8, 6, 4],
[5, -9, 2]])

In[81]: np.mean(d.reshape(-1, 3), axis=1)
Out[81]: array([5. , -3. , 6. , -0.66666667])

In[82]: np.sum(d.reshape(-1, 3), axis=1)
Out[82]: array([15, -9, 18, -2])

Writing axis=1 specifies that the rows of the array are averaged or summed;
writing axis=0 averages or sums the columns.

4.4.5.3 Indexing Multidimensional Arrays

The individual elements of arrays can be accessed in the same way as for lists:
In[83]: b[0][2]
Out[83]: 5.0

You can also use the syntax
In[84]: b[0, 2]
Out[84]: 5.0

which gives the same result. Caution: both the b[0][2] and the b[0, 2] syntax
work for NumPy arrays and give the same result; for lists, only the b[0][2]
syntax works.

Note, however, that for very large multidimensional NumPy arrays, the
b[i,j] syntax is strongly preferred to the b[i][j] syntax. This is because using
the b[i][j] syntax first creates the b[i] 1D array and then looks for the jth
element in that array. By contrast, b[i,j] directly accesses element (i, j) of the
2D b[i,j] array.

72 � Introduction to Python for Science and Engineering

4.4.5.4 Array (matrix) Operations

Addition, subtraction, multiplication, division, and exponentiation all work
with multidimensional arrays the same way they work with one-dimensional
arrays on an element-by-element basis, as illustrated below:
In[85]: b
Out[85]: array([[1., 4., 5.],

[9., 7., 4.]])

In[86]: 2*b
Out[86]: array([[2., 8., 10.],

[18., 14., 8.]])
In[87]: b/4.
Out[87]: array([[0.25, 1. , 1.25],

[2.25, 1.75, 1.]])

In[88]: b**2
Out[88]: array([[1., 16., 25.],

[81., 49., 16.]])

In[89]: b-2
Out[89]: array([[-1., 2., 3.],

[7., 5., 2.]])

Functions also act on an element-by-element basis.
In[90]: np.sin(b)
Out[90]: array([[0.8415, -0.7568, -0.9589],

[0.4121, 0.657 , -0.7568]])

Binary operations like adding, subtracting, multiplying, and dividing two ar-
rays are performed element-by-element. For example using thematrices b and
c defined above, multiplying them together gives
In[91]: b
Out[91]: array([[1., 4., 5.],

[9., 7., 4.]])

In[92]: c
Out[92]: array([[0, 1, 2],

[3, 4, 5]])

In[93]: b*c
Out[93]: array([[0., 4., 10.],

[27., 28., 20.]])

Of course, this requires that both arrays have the same shape. Beware: ar-
ray multiplication, done on an element-by-element basis, is not the same as

Strings, Lists, Arrays, and Dictionaries � 73

matrix multiplication as defined in linear algebra. Therefore, in Python, we
distinguish between array multiplication and matrix multiplication.

4.4.5.5 Matrix Multiplication: Dot, Cross, and Outer Products

Normal matrix multiplication is perfomred with NumPy’s dot function. Here
we demonstrate this capability by multiplying c, which is a 2× 3 array by d, a
3 × 2 array:
In[94]: d = np.array([[4, 2], [9, 8], [-3, 6]])

In[95]: d
Out[95]: array([[4, 2],

[9, 8],
[-3, 6]])

In[96]: np.dot(b, d)
Out[96]: array([[25., 64.],

[87., 98.]])

The cross product of two vectors g × h can be applied to 2 and 3-element
one-dimensional arrays using NumPy’s cross function:
In[97]: g = np.array([3, 5, 6])

In[98]: h = np.array([-4, 3, 7])

In[99]: np.cross(g, h)
Out[99]: array([17, -45, 29])

The outer product of two vectors h ⊗ k is calculated using NumPy’s outer
function:
In[100]: k = np.array([-7, 4])

In[101]: np.outer(h, k)
Out[101]: array([[28, -16],

[-21, 12],
[-49, 28]])

4.4.6 Broadcasting

In the previous section, we introduced NumPy array operations. You learned
how to apply different numerical operations to every element in an array.
You also learned that you can apply binary operations, like addition, subtrac-
tion, multiplication, and division, to arrays of the same size and shape on an
element-by-element basis.

74 � Introduction to Python for Science and Engineering

However, binary operations between NumPy arrays are much more ver-
satile than these simple examples illustrate. For example, suppose you have a
4×3 array, and you want tomultiply the first column by 2, the second column
by -3, and the third column by 5.5.This is easy to do with NumPy arrays. First,
create a 4 × 3 array:
In[102]: p = np.linspace(1, 12, 12).reshape(4, 3)

In[103]: p
Out[103]: array([[1., 2., 3.],

[4., 5., 6.],
[7., 8., 9.],
[10., 11., 12.]])

Next, create an array of the column multipliers:
In[104]: mc = np.array([2, -3, 5.5])

Now multiply the two NumPy arrays:
In[105]: p * mc
Out[105]: array([[2. , -6. , 16.5],

[8. , -15. , 33.],
[14. , -24. , 49.5],
[20. , -33. , 66.]])

Each column of p is multiplied by the corresponding column of mc. This kind
of array multiplication is commutative, so p * mc = mc * p.

The term broadcasting is used to describe this kind of behavior, where the
smaller array is broadcast over the larger array so that their shapes are compat-
ible. Here, the one 3-element row of mc was broadcast over the four 3-element
rows of p. Of course, this only works if both mc and p have the same number
of columns.

You can also perform operations on rows. For example, suppose you want
to add 2 to the first row, -2 to the second row, -3.5 to the third row, and 6 to
the fourth row. In this case, you need to create a 4 × 1 column array:
In[106]: ar = np.array([2, -2, -3, 5.5])

In[107]: ar.shape = (4, 1)

In[108]: ar
Out[108]: array([[2.],

[-2.],
[-3.],
[5.5]])

Note that to make a NumPy column vector, we make a 2-dimensional array
where the second dimension is 1. Now we add the two NumPy arrays:

Strings, Lists, Arrays, and Dictionaries � 75

In[109]: p + ar
Out[109]: array([[3. , 4. , 5.],

[2. , 3. , 4.],
[4. , 5. , 6.],
[15.5, 16.5, 17.5]])

Once again, we note that this kind of array addition is commutative: p + ar
= ar + p. Note that p - ar and ar - p both give 3 × 4 arrays, but they are
different, as subtraction is not commutative.

More complex broadcasting is possible but seldom necessary. If you are
curious, you can investigate further in the online NumPy documentation.

4.4.7 Differences Between Lists and Arrays

While lists and arrays are superficially similar—they are both multi-element
data structures—they behave quite differently in a number of circumstances.
Here, we list some of the differences between Python lists and NumPy arrays,
and why you might prefer to use one or the other depending on the circum-
stance.

• Lists are part of the core Python programming language; arrays are a
part of NumPy. Therefore, before using NumPy arrays, you must issue
the command import numpy as np.

• The elements of a NumPy arraymust all be of the same type, whereas
the elements of a Python list can consist of different types.

• Arrays allow Boolean indexing; lists do not. See Section 4.4.4.

• NumPy arrays support “vectorized” operations like element-by-
element addition and multiplication. This is made possible, in part, by
the fact that all array elements have the same type, which allows ar-
ray operations like element-by-element addition and multiplication to
be carried out very efficiently. Such “vectorized” operations on arrays,
which includes operations by NumPy functions such as numpy.sin and
numpy.exp, are much faster than operations performed by loops using
the core Python math package functions, such as math.sin and math.exp,
that act only on individual elements and not on whole lists or arrays.

• Adding one or more additional elements to a NumPy array creates a
new array and destroys the old one.Therefore, building up large arrays
by appending elements one by one can be inefficient, especially if the
array is large because you repeatedly create and destroy large arrays.

76 � Introduction to Python for Science and Engineering

By contrast, elements can be added to a list without creating a whole
new list. If you need to build an array element by element, it is usually
better to build it as a list and then convert it to an array when the list is
complete. At this point, it may not be easy to appreciate how and under
what circumstances you might want to build up an array element by
element. Examples are provided later on (e.g., see Section 7.1.1).

4.5 OBJECTS

We have already mentioned that Python is an object-oriented programming
language starting on page 2! What it means for a programming language to
be object-oriented is multi-faceted and involves software and programming
design principles that go beyond what you need right now. So, rather than
attempt some definition that encompasses all of what an object-oriented (OO)
approach means, we introduce various aspects of the OO approach as needed.
In this section, we want to introduce you to some simple (perhaps deceptively
so) ideas of the OO approach.

The first is the idea of an object. One way to think of an object is as a collec-
tion of data bundled with functions that can operate on that data. Everything
you encounter in Python is an object, including the data structures discussed
in this chapter: strings, lists, arrays, and dictionaries. In this case, the data are
the contents of these various objects. Associated with each of these kinds of
objects aremethods that act on the data of these objects. For example, consider
the string
In[1]: c = "My dog's name is Bingo"

One method associated with a string object is split(), which we invoke using
the dot notation we’ve encountered before:
In[2]: c.split()
Out[2]: ['My', "dog's", 'name', 'is', 'Bingo']

Themethod split() acts on the object it’s attached to by the dot. It has amatch-
ing set of parentheses to indicate that it’s a function (that acts on the object c).
Without an argument, split() splits the string c at the spaces into separate
strings, five in this case, and returns the set of split strings as a list. By speci-
fying an argument to split(), we can split the string elsewhere, say at the “g”:
In[3]: c.split('g')
Out[3]: ['My do', "'s name is Bin", 'o']

Notice that the split() method dispensed with the g just like it got rid of all
the spaces when we used it without an argument.

Strings, Lists, Arrays, and Dictionaries � 77

There are many more string methods, which we do not explore here, as
our point isn’t to give an exhaustive introduction to string methods and their
uses. Instead, it’s simply to introduce the idea of object methods.

Lists, arrays, and dictionaries are also objects with associatedmethods.We
already introduced the reshapemethod for NumPy arrays on 70. But there are
many more array methods. Consider the following 2-row array:
In[4]: b = np.array([[1., 4., 5.], [9., 7., 4.]])

In[5]: b
Out[5]: array([[1., 4., 5.],

[9., 7., 4.]])
In[6]: b.mean()
Out[6]: 5.0

In[7]: b.shape
Out[7]: (2, 3)

Themethod mean() is a function that calculates themean value of the elements
(the data) of the array.

Writing b.shape returns the number of rows and columns in the array;
b.shape is a attribute or the array object. Note that there are no parentheses as-
sociated with b.shape. That’s because b.shape is an attribute of the array and,
as such, is stored within the object. Writing b.shape simply looks up the at-
tribute’s value and reports it to you. An attribute of a given instance or real-
ization of an object is also sometimes called an instance variable.

We stated above that methods are functions associated with objects that
act on the object’s data. Methods can also act on any attribute of an object. Re-
call the reshape()method forNumPy arrays introduced earlier in this chapter;
it changes the shape attribute of an array. See, for example, page 70, where we
used the reshape() method to change c.shape from 6 to (2, 3).

To summarize, objects have associated with them data, attributes that in
one way or another characterize the data, and methods, which are functions
that act on the data or attributes. Each kind of object, such as strings, lists,
dictionaries, and arrays, has its own set of attributes and methods uniquely
associated with that object type. So, while split() is a method associated with
strings, it is not a method of arrays. Thus, typing b.split() returns an error
message, since b is an array.
In[8]: b.split()

Traceback (most recent call last):

File "<ipython-input-11-0c30fe27ab6f >", line 1, in <module>
b.split()

78 � Introduction to Python for Science and Engineering

TABLE 4.1 Some NumPy array attributes and methods.
attribute Output
.size number of elements in array
.shape number of rows, columns, etc.
.ndim number of array dimensions
.real real part of array
.imag imaginary part of array
method Output
.mean() average value of array elements
.std() standard deviation of array elements
.min() return minimum value of array
.max() return maximum value of array
.sum() return sum of elements of array
.prod() return produce of elements of array
.abs() absolute value of each element
.conj() complex-conjugate each element
.sort() low-to-high sorted array (in place)
.reshape(n, m) Returns an n×m 2-dimensional array with same el-

ements
.flatten() Returns a copy of the (multidimensional) array

collapsed into one dimension

AttributeError: 'numpy.ndarray' object has no attribute
'split'

You will often use and interact with object attributes and methods in your
Python journey. Table 4.1 summarizes a few of the attributes and methods of
NumPy arrays.

4.6 EXERCISES

1. This is an exercise on looking up things on the web. In the text, wemen-
tioned that there are string methods like split that perform various op-
erations on strings (see page 76). Recall that the syntax formethods is to
put a dot after the object, a string in this case, followed by the method
name and parentheses, which may or may not need an argument. So,
consider the string a = "chemical". By looking around on the web, find
Python string methods that can perform the following tasks:

(a) Capitalize the first letter.

Strings, Lists, Arrays, and Dictionaries � 79

(b) Print out the string in all uppercase.
(c) Replace instances of the substring "cal" with "stry".

2. Make a list of integers from 0 to 12 using the following syntax:
nums = list(range(13))

With the list nums, perform the following operations:

(a) Use slicing to print the numbers 5 to 9 exclusive (not including 9).
(b) Use slicing to print every third number beginning with 2.
(c) Use slicing tomake a new list numshort consisting of all the interior

elements, that is, excluding the first and last elements. Then print
out numshort.

3. Make a dictionary named greek that outputs the first five letters of the
Greek alphabet on your computer screen: α, β, γ, δ, ϵ. The keys to the
dictionary should be the names of the letters written out in the Latin
alphabet:
gkeys = ["alpha", "beta", "gamma", "delta", "epsilon"]

Recall from page 53 that theUTF-8 encoding for the Greek alphabet be-
gins at 945 (or in HEX: 0x3B1). It then proceeds consecutively through
the Greek alphabet according to the list gkeys above. Demonstrate your
code by showing that the following print statement outputs the five
Greek letters:
print(greek["alpha"], greek["beta"], greek["gamma"],
greek["delta"], greek["epsilon"])

4. Create an array of 9 evenly spaced numbers going from 1 to 29 (inclu-
sive) and give it the variable name r. Print out the answers to parts (a)–
(d) showing no more than two digits to the right of the decimal point.

(a) The array r.
(b) The cube of each array element (as simply as possible).
(c) Twice the value of each element of the array in two different ways:

(i) using addition and (ii) using multiplication.
(d) The natural logarithm of each element of the array.
(e) The sums and means (averages) of each of the four arrays calcu-

lated in parts (a)–(d). Use the appropriate NumPy methods with
the dot syntax. You may express your answers with an arbitrary
number of digits.

80 � Introduction to Python for Science and Engineering

5. Create the following arrays and print them showing no more than three
digits to the right of the decimal point:

(a) An array of 24 elements all equal to e, the base of the natural log-
arithm.

(b) An array b1 in 10-degree increments of all the angles in degrees
from 0 to 360 degrees inclusive using the NumPy arange function.
Then make the same array using the NumPy linspace function
and name it b2. Print b1 and b2.

(c) An array c in 10-degree increments of all the angles in radians
from 0 to 360 degrees inclusive. Verify your answers by showing
that c - b * np.pi / 180 gives an array of zeros (or nearly zeros),
where b and c are the arrays you created in parts (b) and (c).

(d) An array from 12 to 17, not including 17, in 0.2 increments; an
array from 12 to 17, including 17, in 0.2 increments.

6. The position of a ball at time t dropped with zero initial velocity from a
height h0 is given by

y = h0 −
1
2
gt2

where g = 9.8 m/s2. Suppose h0 = 10 m. Find the sequence of times
when the ball passes each half meter assuming the ball is dropped at t =
0. Hint: Create a NumPy array for y that goes from 10 to 0 in increments
of−0.5 using the arange function. Solving the above equation for t, show
that

t =

√
2(h0 − y)

g
.

Using this equation and the array you created, find the sequence of times
when the ball passes each half meter. Save your code as a Python script
and have it print the position y and time t arrays. It should yield the
following results:
y
[10. 9.5 9. 8.5 8. 7.5 7. 6.5 6. 5.5 5.

4.5 4. 3.5 3. 2.5 2. 1.5 1. 0.5]
t
[0. 0.319 0.452 0.553 0.639 0.714 0.782 0.845 0.904
0.958 1.01 1.059 1.107 1.152 1.195 1.237 1.278 1.317
1.355 1.392]

Strings, Lists, Arrays, and Dictionaries � 81

7. Recalling that the average velocity over an interval ∆t is defined as
v̄ = ∆y/∆t, print the average velocity for each time interval in the pre-
vious problem usingNumPy arrays. Also, print the array times, midway
between the times for the ball positions, that go with each velocity. Keep
in mind that the number of time intervals is one less than the num-
ber of times. Hint: What are the arrays y[1:20] and y[0:19]? What does
the array y[1:20]-y[0:19] represent? (Try printing out the two arrays
from the IPython shell to check that you get what you think you should
get.) Find the average velocities using this last array and a similar one
involving time. Can you think of a more elegant way of representing
y[1:20]-y[0:19] that does not make explicit reference to the number of
elements in the y array—one that would work for any length array?
You should get the following answer for the arrays of velocities and
times:
v =
[-1.565 -3.779 -4.925 -5.842 -6.63 -7.334 -7.975

-8.568 -9.123 -9.645 -10.141 -10.614 -11.066 -11.5
-11.919 -12.323 -12.715 -13.094 -13.464]

t =
[0.16 0.386 0.503 0.596 0.677 0.748 0.814 0.874 0.931
0.984 1.035 1.083 1.129 1.173 1.216 1.257 1.297 1.336
1.374]

8. Perform the following taskswithNumPy arrays. All of themcanbe done
(elegantly) in 1 to 3 lines.

(a) Create a NumPy 8× 8 array of integers with ones on all the edges
and zeros everywhere else. Hint: use NumPy’s ones function and
then use slicing to set the interior elements of the array to zero.
Print the result. It should look like this:
[[1 1 1 1 1 1 1 1]
[1 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]
[1 1 1 1 1 1 1 1]]

(b) Create aNumPy8×8 array of integerswith a checkerboard pattern
of ones and zeros. It should look like this:
[[0 1 0 1 0 1 0 1]

82 � Introduction to Python for Science and Engineering

[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]]

(c) Given the array c = np.arange(2, 50, 5), use a Boolean mask to
make all the numbers not divisible by 3 negative. Print the result.
It should look like this:
[-2 -7 12 -17 -22 27 -32 -37 42 -47]

(d) Use NumPy methods to find the size, shape, mean, and standard
deviation of the arrays you created in parts (a)–(c).

9. Perform the cross and dot products of the following vectors:

(a) Verify that the NumPy function np.cross works as expected and
gives ex × ey = ez, where ex = (1, 0, 0), ey = (0, 1, 0), and ey =
(0, 0, 1). Then, use the NumPy dot function to verify that ex ·ey =
0.

(b) Themagnitude of the cross produce of two vectors is given by |a×
b| = |a||b| sin θ, where θ is the angle between the two vectors a
and b. Use this relation to find the angle θ in degrees between
a and b and print the result. Do not use the np.abs function to
determine |a| and |b| as it takes the absolute value of each element
of a NumPy array, which is not what you want. Hint: what does (a
* a).sum() calculate?

(c) The magnitude of the dot product of two vectors is given by |a ·
b| = |a||b| cos θ. Use this relation to find the angle θ in degrees
between a and b and print the result. If you have done everything
correctly, you should get the same angle that you calculated in part
(b)

CH A P T E R 5

Input and Output

In this chapter, you learn how to input (read) data into a Python pro-
gram, either from the keyboard or a computer file. You also learn how
to output (write) data to a computer screen or a computer file.

Agood relationship depends on good communication. In this chapter, you
learn how to communicate with Python. Of course, communicating is a two-
way street: input and output. Generally, when you have Python perform some
task, you need to feed it information—input. When finished with that task, it
reports to you the results of its calculations—output.

There are two venues for input that concern us: the computer keyboard
and the input data file. Similarly, there are two venues for output: the computer
screen and the data file. The chapter starts with input from the keyboard and
output to the computer screen. Then, data file input and output—or “io”—is
discussed.

5.1 KEYBOARD INPUT

Many computer programs need input from the user. In Section 2.5.2, the
program my_trip.py required the distance traveled as an input to determine
the trip’s duration and the cost of charging the battery. As you might like to
reuse this same script several times to determine the cost of different trips, it
would be helpful if the program requested that input when it was run from
the IPython shell.

Python has a function called input for getting input from the user and
assigning to it a variable name. It has the form
strname = input("prompt to user")

DOI: 10.1201/9781032673950-5 83

https://doi.org/10.1201/9781032673950-5

84 � Introduction to Python for Science and Engineering

When executed, the input function prints the text in the quotes to the com-
puter screen and waits for input from the user. The user types a string of
characters and presses the <return> key. The input function then assigns that
string to the variable name, strname in this case. Let’s try it outwith this snippet
of code in the IPython shell.
In[1]: distance = input("Input trip distance (miles): ")
Input trip distance (miles):

Python prints out the string argument of the input function and waits for a
response from you. Go ahead and type 250 for “250miles” and press <return>.
Now, type the variable name distance to see its value.
In[2]: distance
Out[2]: '250'

The value of the distance is 250 as expected, but it is a string, as you can see,
because 250 is enclosed in quotes. Because you want to use 250 as a number
and not as a string, you need to convert it from a string to a number. You can
do that with the eval function by writing
In[3]: distance = eval(distance)

In[4]: distance
Out[4]: 250

The eval function converts distance to an integer. This is fine, but you
might prefer that distance to be a float instead of an integer, as you will use it
to perform floating point arithmetic. There are two ways to do this. You could
assume the user is very smart and will type “250.” instead of “250”, which will
cause distance to be a float when eval does the conversion. The number 250
is dynamically typed to be a float or an integer, depending on whether or not
the user uses a decimal point. A better solution is to use the function float
instead of eval, which ensures that distance is a floating point variable. Thus,
the code might look like this (including the user response):
In[5]: distance = input("Input distance of trip (miles): ")
Input distance of trip (miles): 250

In[6]: distance
Out[6]: '250'

In[7]: distance = float(distance)

In[8]: distance
Out[8]: 250.0

Let’s incorporate these ideas into the code introduced as our first scripting
example in Section 2.5.2

Input and Output � 85

Code:my_trip_io.py
1 """Calculates time, electrical energy used, and cost of electricity
2 for a trip in an electric vehicle"""
3
4 distance = input("Input trip distance (miles): ")
5 distance = float(distance)
6
7 mpk = 3.9 # [miles/kilowatt -h] car mileage
8 speed = 60. # [miles/h] average speed
9 cost_per_kWh = 0.22 # [$/kW-h] price of electricity

10
11 time = distance / speed # [hours]
12 energy = distance / mpk # [kW-h]
13 cost = energy * cost_per_kWh # [$]

We can combine lines 4 and 5 into a single line, which is a little more
efficient:
distance = float(input("Input trip distance (miles): "))

Whether you use float or int or eval depends on whether you want a float,
an integer, or a dynamically typed variable. In this program, it doesn’t matter
very much, but in general, it’s good practice to explicitly cast the variable in
the type you would like it to have. Here, distance is used as a float, so it’s best
to cast it as such, as done in the example above.

Now, you run the program and then type time, energy, and cost to view
the results of the calculations done by the program.

5.2 SCREEN OUTPUT

It would be much more convenient if the program in the previous section
wrote its output to the computer screen instead of requiring the user to
type time, energy, and cost to view the results. This can be accomplished
using Python’s print function. For example, simply including the statement
print(time, energy, cost) after line 13, running the program would give the
following result:
In[1]: run my_trip_io.py
What is the distance of your trip (miles)? 250
4.166666666666667 64.1025641025641 14.102564102564102

The program prints out the results as a tuple of time (in hours), energy used
(in kilowatt-hours), and cost (in dollars). Of course, the program doesn’t give
the user a clue as to which quantity is which. The user has to know.

5.2.1 Formatting Output with str.format()

We can make the output of the above example considerably more informative
and user-friendly. This program demonstrates how to do this.

86 � Introduction to Python for Science and Engineering

Code:my_trip_nice_io.py

1 """Calculates time, electrical energy used, and cost of electricity
2 for a trip in an electric vehicle"""
3
4 distance = float(input("Input trip distance (miles): "))
5
6 mpk = 3.9 # [miles/kilowatt -h] car mileage
7 speed = 60. # [miles/h] average speed
8 cost_per_kWh = 0.22 # [$/kW-h] price of electricity
9

10 time = distance / speed # [hours]
11 energy = distance / mpk # [kW-h]
12 cost = energy * cost_per_kWh # [$]
13
14 print("\nDuration of trip = {0:0.1f} hours".format(time))
15 print("Electricity used = {0:0.1f} kW-h (@ {1:0.2f} miles/kW-h)"
16 .format(energy, mpk))
17 print("Cost of electricity = ${0:0.2f} (@ ${1:0.2f}/kW-h)"
18 .format(cost, cost_per_kWh))

Running this program, with the distance provided by the user, gives
In[2]: run my_trip_nice_io.py

Input trip distance (miles): 250

Duration of trip = 4.2 hours
Electricity used = 64.1 kW-h (@ 3.90 miles/kW-h)
Cost of electricity = $14.10 (@ $0.22/kW-h)

Now, the output is presented in a way that is immediately understandable
to the user. Moreover, the numerical output is formatted with an appropriate
number of digits to the right of the decimal point. For good measure, we also
included the assumed mileage ($0.22/kW-h) and the cost of the electricity. All
of this is controlled by the str.format() method of the print function.

The argument of the print function is a string containing the text to be dis-
played on the screen, as well as the code contained within curly braces { } that
serves as format specifiers. The format specifiers are interpreted by the format
method appended to the string using the usual dot syntax. The arguments of
the format method are the variables that are to be printed:

• The \n at the start of the string in the print function on line 14 is the
newline character. It creates a blank line before the output is printed.

• The positions of the curly braces specify where the variables in the
format method at the end of the statement are printed.

• The format string inside the curly braces specifies how each variable in
the format method is printed.

Input and Output � 87

• The number before the colon in the format string specifies which vari-
able in the list in the format function is printed. Remember, Python is
zero-indexed, so 0 means the first variable is printed, 1 means the sec-
ond variable, etc.

• The zero after the colon specifies the minimum number of spaces re-
served for printing out the variable in the format function. A zeromeans
that only as many spaces as needed will be used.

• The letter f specifies that a number is to be printed with a fixed number
of digits. If the f format specifier is replaced with e, then the number is
printed out in exponential format (scientific notation).

• The number after the period specifies the number of digits to the right
of the decimal point that will be printed: 1 for time and electricity and
2 for cost.

In addition to f and e format types, two more are commonly used: d for
integers (digits) and s for strings. There are, in fact, many more formatting
possibilities. Python has a whole Format SpecificationMini-Language that you
can look up in the online Python documentation. It’s very flexible but arcane.
You might find looking at the “Format examples” in the online Python docu-
mentation helpful.

Finally, note that the code starting on lines 15 and 17 is each split into
two lines. We do this so the lines fit on the page without running off the edge.
Python allows you to break up code inside parentheses to improve readability.
More information about line continuation in Python and other formatting
guidelines can be found here: http://www.python.org/dev/peps/pep-0008/.

The program below illustrates most of the formatting you will need for
writing a few variables, be they strings, integers, or floats, to screen or to data
files (discussed in the next section).

Code: print_format_examples.py

1 string1 = 'How'
2 string2 = 'are you my friend?'
3 int1 = 34
4 int2 = 942885
5 float1 = -3.0
6 float2 = 3.141592653589793e-14
7 print(string1)
8 print(string1 + ' ' + string2)
9 print('A. {} {}'.format(string1, string2))

10 print('B. {0:s} {1:s}'.format(string1, string2))
11 print('C. {0:s} {0:s} {1:s} - {0:s} {1:s}'.format(string1, string2))
12 # Next line reserves 10 & 5 spaces, respectively , for 2 strings

http://www.python.org/dev/peps/pep-0008

88 � Introduction to Python for Science and Engineering

13 print('D. {0:10s}{1:5s}'.format(string1, string2))
14 print(' **')
15 print(int1, int2)
16 print('E. {0:d} {1:d}'.format(int1, int2))
17 print('F. {0:8d} {1:10d}'.format(int1, int2))
18 print(' ***')
19 print('G. {0:0.3f}'.format(float1)) # 3 decimal places
20 print('H. {0:6.3f}'.format(float1)) # 6 spaces, 3 decimals
21 print('I. {0:8.3f}'.format(float1)) # 8 spaces, 3 decimals
22 print(2 * 'J. {0:8.3f} '.format(float1))
23 print(' ****')
24 print('K. {0:0.3e}'.format(float2))
25 print('L. {0:12.3e}'.format(float2)) # 12 spaces, 3 decimals
26 print('M. {0:12.3f}'.format(float2)) # 12 spaces, 3 decimals
27 print(' *****')
28 print('N. 12345678901234567890')
29 print('O. {0:s}--{1:8d},{2:10.3e}'.format(string2, int1, float2))

Here is the output:
How
How are you my friend?
A. How are you my friend?
B. How are you my friend?
C. How How are you my friend? - How are you my friend?
D. How are you my friend?
**
34 942885
E. 34 942885
F. 34 942885

G. -3.000
H. -3.000
I. -3.000
J. -3.000 J. -3.000

K. 3.142e-14
L. 3.142e-14
M. 0.000

N. 12345678901234567890
O. are you my friend?-- 34, 3.142e-14

Successive empty brackets {}, like those in line 9, will print in the order
the variables appear inside the format() method using their default format.
Starting with line 9, the number to the left of the colon inside the curly brack-
ets specifies which of the variables, numbered starting with 0, in the format
method is printed. The characters that appear to the right of the colon are the
format specifiers with the following correspondences: s–string, d–integer, f–
fixed floating point number, e–exponential floating point number. The format
specifiers 6.3f and 8.3f in lines 20 and 21 tell the print statement to reserve at

Input and Output � 89

least 6 and 8 total spaces, respectively, with three decimal places for the output
of a floating point number. Studying the output of the other lines will help you
understand how formatting works.

5.2.2 Formatting with f-strings

The print function in Python is quite versatile. For example, you can print
multiple strings and variables simply by separating themby commas in a print
function.
In[3]: a, b, c = "Leon", 47, "March 25"

In[4]: print(a, "turns", b, "on", c + "th", "this year.")
Leon turns 47 on March 25th this year

The print function automatically adds a trailing space when printing literals
and variables separated by commas. This is why we had to use the addition
operator to add “th” to “March 25” without introducing a space.

You can also use Python’s formatted string literals feature—f-strings—to
produce the same results a bit more efficiently.
In[5]: print(f"{a} turns {b} on {c}th this year.")
Leon turns 47 on March 25th this year.

The variables to be printed are once again enclosed in curly braces. You can
also include format strings to control the output.
In[6]: d, t = 149.32, 2.77

In[7]: print(f"They drove {d:0.1f} miles in {t:0.1f} hours")
They drove 149.3 miles in 2.8 hours

In[8]: print(f"Their average speed was {d/t:0.1f} mph")
Their average speed was 53.9 mph

Formatting with f-string literals is done the same way as it’s done using the
explicit format method. But instead of using numbers 0, 1, ..., within the curly
braces { } to index the variables that are the arguments of the format method,
the variables themselves are used.

5.2.3 Printing Arrays

Formatting NumPy arrays for printing requires another approach. As an ex-
ample, let’s create an array and then format it in various ways. From the
IPython terminal:
In[9]: a = np.linspace(3, 19, 7)
In[10]: print(a)

90 � Introduction to Python for Science and Engineering

[3. 5.6667 8.3333 11. 13.6667 16.3333 19.]

Simply using the print function does print out the array, but perhaps not
in the format you desire. To control the output format, you use the NumPy
function set_printoptions. For example, suppose you want to see no more
than two digits to the right of the decimal point. Then, you simply write.
In[11]: np.set_printoptions(precision=2)
In[12]: print(a)
[3. 5.67 8.33 11. 13.67 16.33 19.]

Thedefault setting is to print only asmany digits as are needed to represent
a number uniquely, so trailing zeros are omitted. If you wish to have all the
numbers displayed with the same number of digits, then you set the floatmode
optional argument to "fixed", as illustrated here:
In[13]: np.set_printoptions(precision=2, floatmode="fixed")

In[14]: a
Out[14]: array([3.00, 5.67, 8.33, 11.00, 13.67, 16.33,
19.00])

Suppose you want to use scientific notation. The method for doing it is
somewhat arcane, using something called a lambda function. For now, you
don’t need to understand how it works to use it. Just follow the examples
shown below, which illustrate several different output formats using the print
function with NumPy arrays.
In[15]: np.set_printoptions(

...: formatter={'float': lambda x: format(x, '5.1e')})

In[16]: print(a)
[3.0e+00 5.7e+00 8.3e+00 1.1e+01 1.4e+01 1.6e+01 1.9e+01]

Youuse the formatter keyword argument to specify the output format.The
first entry to the right of the curly bracket is a string that can be 'float', as it
is above, or 'int', or 'str', or several other data types that you can look up in
the online NumPy documentation. The only other thing you should change is
the format specifier string. In the above example, it is '5.1e', specifying that
Python should allocate at least five spaces, with one digit to the right of the
decimal point in scientific (exponential) notation. For fixed-width floats with
three digits to the right of the decimal point, use the f in place of the e format
specifier, as follows:
In[17]: np.set_printoptions(

...: formatter={'float': lambda x: format(x, '6.3f')})
In[18]: print(a)
[3.000 5.667 8.333 11.000 13.667 16.333 19.000]

Input and Output � 91

To return to the default format, type the following:
In[19]: np.set_printoptions(precision=8)
In[20]: print(a)
[3. 5.66666667 8.33333333 11. 13.66666667 16.33333333 19.]

5.3 FILE INPUT

5.3.1 Reading Data from a Text File

Often, you would like to analyze data stored in a text file. Consider, for exam-
ple, the data file below for an experiment measuring the free fall of a mass.

Data:mydata.txt

Data for falling mass experiment
Date: 16-Aug-2021
Data taken by Isabella and Martin

data point time (sec) height (mm) uncertainty (mm)
0 0.0 180 3.5
1 0.5 182 4.5
2 1.0 178 4.0
3 1.5 165 5.5
4 2.0 160 2.5
5 2.5 148 3.0
6 3.0 136 2.5
7 3.5 120 3.0
8 4.0 99 4.0
9 4.5 83 2.5

10 5.0 55 3.6
11 5.5 35 1.75
12 6.0 5 0.75

You can read these data into a Python program, associating the data in
each columnwith an appropriately named array.While there aremanyways to
do this in Python, the simplest is to use the NumPy loadtxt function. Suppose
that the name of the text file is mydata.txt. Then, you can read the data into
four different arrays with the following statement:
In[1]: dataPt, time, height, error = np.loadtxt(
...: "mydata.txt", skiprows=5 , unpack=True)

In this case, the loadtxt function takes three arguments: the first is a string that
is the name of the file to be read, the second tells loadtxt to skip the first five
lines at the top of file, sometimes called the header, and the third tells loadtxt
to output the data (unpack the data) so that it can be directly read into arrays.
loadtxt reads however many columns of data are present in the text file to the
array names listed to the left of the “=” sign. The names labeling the columns

92 � Introduction to Python for Science and Engineering

in the text file are not used, but you are free to choose the same or similar
names, of course, as long as they are legal array names.

For the above loadtxt call to work, the file mydata.txt should be in the
same directory as the calling program, which should be the current working
directory of the IPython shell. Otherwise, youneed to specify the full directory
path with the file name mydata.txt.

It is critically important that the data file be a text file. It cannot be an MS
Word file, for example, an Excel file, or anything other than a plain text file.
Such files can be created by text editor programs like Notepad++ (for PCs),
or BBEdit (for Macs), or Gedit (for Linux). They can also be created by MS
Word and Excel provided you explicitly save the files as text files. Beware: You
should exit any text file you make and save it with a program that allows you
to save the text file using UNIX-type formatting, which uses a line feed (LF)
to end a line. Some programs, like MS Word under Windows, may include a
carriage return (CR) character, which can confuse loadtxt. Note that we give
the file name a .txt extension, which indicates to most operating systems that
this is a text file, as opposed to an Excel file, for example, which might have a
.xlsx or .xls extension.

If you don’t want to read in all the columns of data, you can specify which
columns to read using the usecols keyword. For example, the call
In[2]: time, height = np.loadtxt("mydata.txt", skiprows=5,
usecols=(1, 2), unpack=True)

reads in only columns 1 and 2; columns 0 and 3 are skipped. Thus, only two
array names are included to the left of the “=” sign, corresponding to the two
columns that are read. Writing usecols = (0,2,3) would skip column 1 and
read only the data in columns 0, 2, and 3. In this case, three array names must
be provided on the left-hand side of the “=” sign.

One convenient feature of the loadtxt function is that it recognizes any
white space as a column separator: spaces, tabs, etc.

Finally, remember that loadtxt is a NumPy function. So, if you are using
it in a Python module, you must include an “import numpy as np” statement
before calling “np.loadtxt”.

5.3.2 Reading Data from an Excel File: CSV Files

Sometimes, you have data stored in a spreadsheet program like Excel that you
would like to read into a Pythonprogram.TheExcel data sheet shown in Figure
5.1 contains the same data set encountered above in a text file. While there are
several different approaches one can use to read such files, the simplest and
most robust is to save the spreadsheet as a CSV (“comma-separated value”)

Input and Output � 93

Figure 5.1 Excel data sheet.

file, a format that all standard spreadsheet programs can create and read. For
example, if your Excel spreadsheet was called mydata.xlsx, the CSV file saved
using Excel’s Save As command would be mydata.csv by default. It would look
like this:

Data:mydata.csv

Data for falling mass experiment,,,
Date: 16-Aug-2021,,,
Data taken by Isabella and Martin,,,
,,,
data point,time (sec),height (mm),uncertainty (mm)
0,0,180,3.5
1,0.5,182,4.5
2,1,178,4
3,1.5,165,5.5
4,2,160,2.5
5,2.5,148,3
6,3,136,2.5
7,3.5,120,3
8,4,99,4
9,4.5,83,2.5
10,5,55,3.6
11,5.5,35,1.75
12,6,5,0.75

94 � Introduction to Python for Science and Engineering

As its name suggests, theCSVfile is simply a text filewith the data formerly
in spreadsheet columns now separated by commas. You can read the data in
this file into a Python program using the loadtxtNumPy function once again.
Here is the code
In[3]: dataPt, time, height, error = np.loadtxt("mydata.csv",
skiprows=5 , unpack=True, delimiter=',')

The form of the function is the same as before, except we added the argu-
ment delimiter=',' that tells loadtxt that the columns are separated by com-
mas instead of white space (spaces or tabs), which is the default. Once again,
the skiprows argument is set to skip the header at the beginning of the file and
to start reading at the first row of data. The data are output to the arrays to the
right of the assignment operator = exactly as in the previous example.

5.4 FILE OUTPUT

5.4.1 Writing Data to a Text File

There are many ways to write data to a data file in Python. We will stick to
one very simple one suitable for writing data files in text format. It uses the
NumPy savetxt routine, the counterpart of the loadtxt routine introduced in
the previous section. The general form of the routine is
savetxt(filename , array, fmt="%0.18e", delimiter=" ",
newline=" \n", header="", footer="", comments="#")

We illustrate savetext below with a script that first creates four arrays by
reading in the data file mydata.txt, as discussed in the previous section, and
then writes that same data set to another file mydataout.txt.

Code: read_write_mydata.py

1 import numpy as np
2 dataPt, time, height, error = np.loadtxt("mydata.txt", skiprows=5,
3 unpack=True)
4 np.savetxt("mydataout.txt",
5 list(zip(dataPt, time, height, error)),
6 fmt="%12d %10.2f %12.0f %12.1f")

The first argument of savetxt is a string, the name of the data file to be
created. Here, we have chosen the name mydataout.txt, inserted with quotes,
which designates it as a literal string. Beware, if there is already a file of that
name on your computer, it will be overwritten—the old file will be destroyed
and a new one will be created.

The second argument is the data array to bewritten to the data file. Because
we want to write not one but four data arrays to the file, we have to package

Input and Output � 95

the four data arrays as one, which we do using the zip function. This Python
function combines the four arrays and returns a list of tuples, where the ith
tuple contains the ith element from each of the arrays (or lists, or tuples) listed
as its arguments. Since there are four arrays, each row will be a tuple with four
entries, producing a table with four columns. In fact, the zip function is just a
set of instructions to produce each tuple one after another; the list function is
needed to construct the entire list of tuples.1 Note that the first two arguments,
the filename and data array, are regular arguments and thus must appear as
the first and second arguments in the correct order. The remaining arguments
are all keyword arguments, meaning they are optional and can appear in any
order, provided you use the keyword.

The next argument is a format string that determines how the elements of
the array are displayed in the data file. The argument is optional and, if left
out, is the format 0.18e, which displays numbers as 18-digit floats in expo-
nential (scientific) notation. Here, we choose a different format, 12.1f, a float
displayed with one digit to the right of the decimal point and a minimum
width of 12. By choosing 12, which is more digits than any of the numbers in
the various arrays, we ensure that all the columns will have the same width. It
also ensures that the decimal points in a column of numbers are aligned. This
is evident in the data file below, mydataout.txt, produced by the above script.

Data:mydataout.txt
0 0.00 180 3.5
1 0.50 182 4.5
2 1.00 178 4.0
3 1.50 165 5.5
4 2.00 160 2.5
5 2.50 148 3.0
6 3.00 136 2.5
7 3.50 120 3.0
8 4.00 99 4.0
9 4.50 83 2.5

10 5.00 55 3.6
11 5.50 35 1.8
12 6.00 5 0.8

If you want the different columns to be formatted differently, include a
separate format statement for each column separated by spaces, for example,
fmt="%12d %10.2f %12.0f %12.1f".

We omitted the optional delimiter keyword argument, which leaves the
delimiter as the default space. We also omitted the optional header keyword
argument, a string variable allowing you to write header text above the data.
For example, you might want to label the data columns and also include the

1Technically, the zip function is an iterator. Iterators are discussed in Section 6.2.

96 � Introduction to Python for Science and Engineering

information that was in the header of the original data file. To do so, you need
to create a string with the information you want to include and then use the
header keyword argument. The code below illustrates how to do this.

Code: read_write_mydata_header.py

1 import numpy as np
2
3 dataPt, time, height, error = np.loadtxt("MyData.txt", skiprows=5,
4 unpack=True)
5
6 info = 'Data for falling mass experiment'
7 info += '\nDate: 16-Aug-2021'
8 info += '\nData taken by Lauren and John'
9 info += '\n\n data point time (sec) height (mm) '

10 info += 'uncertainty (mm)'
11
12 np.savetxt('read_write_mydata_header.txt',
13 list(zip(dataPt, time, height, error)),
14 header=info, fmt="%12.1f")

Now, the data file produced has a header preceding the data. Notice that
the header rows all start with a # comment character, the default setting for the
savetxt function. This can be changed using the keyword argument comments.
You can findmore information about savetxt using the IPython help function
or from the online NumPy documentation.

Data: read_write_mydata_header.txt

Data for falling mass experiment
Date: 16-Aug-2021
Data taken by Lauren and John
#
data point time (sec) height (mm) uncertainty (mm)

0.0 0.0 180.0 3.5
1.0 0.5 182.0 4.5
2.0 1.0 178.0 4.0
3.0 1.5 165.0 5.5
4.0 2.0 160.0 2.5
5.0 2.5 148.0 3.0
6.0 3.0 136.0 2.5
7.0 3.5 120.0 3.0
8.0 4.0 99.0 4.0
9.0 4.5 83.0 2.5

10.0 5.0 55.0 3.6
11.0 5.5 35.0 1.8
12.0 6.0 5.0 0.8

5.4.2 Writing Data to a CSV File

To produce a CSV file, specify a comma as the delimiter. You might use the
0.1f format specifier, which leaves no extra spaces between the comma data

Input and Output � 97

separators, as the file is to be read by a spreadsheet program, which will de-
termine how the numbers are displayed. The code, which could be substituted
for the savetxt line in the above code, reads
np.savetxt('mydataout.csv',
list(zip(dataPt, time, height, error)),
fmt="%0.1f", delimiter=",")

and produces the following data file:

Data:mydataout.csv

0.0,0.0,180.0,3.5
1.0,0.5,182.0,4.5
2.0,1.0,178.0,4.0
3.0,1.5,165.0,5.5
4.0,2.0,160.0,2.5
5.0,2.5,148.0,3.0
6.0,3.0,136.0,2.5
7.0,3.5,120.0,3.0
8.0,4.0,99.0,4.0
9.0,4.5,83.0,2.5
10.0,5.0,55.0,3.6
11.0,5.5,35.0,1.8
12.0,6.0,5.0,0.8

With a csv extension, a spreadsheet program like Excel can directly read this
data file.

5.5 EXERCISES

1. Write a Python program that calculates how much money you can
spend each day for lunch for the rest of the month based on today’s
date and how much money you currently have in your lunch account.
The program should ask you: (1) howmuchmoney you have in your ac-
count, (2) what today’s date is, and (3) how many days there are in the
month. The program should return your daily allowance. The results of
running your program should look like this:

How much money (in dollars) in your lunch account? 319
What day of the month is today? 21
How many days in this month? 30
You can spend $31.90 each day for the rest of the month.

Extra: Create a dictionary (see Section 4.3) that stores the number of
days in each month (forget about leap years) and have your program
ask what month it is rather than the number of days in the month.

98 � Introduction to Python for Science and Engineering

2. Write a script that creates the following three NumPy arrays:
a = array([1, 3, 5, 7])
b = array([8, 7, 5, 4])
c = array([0, 9,-6,-8])

Then use the zip function to create a list d defined as
d = list(zip(a, b, c))

(a) Print out d. What type of object is d? What type of object is d[0]?
(b) One of the elements of d is -8. Show how to address and print out

just that element of d.
(c) From d, create a NumPy array and call that array g. Print g.
(d) One of the elements of g is -8. Show how to address and print out

just that element of g.
(e) Have your program print out g[1]. What type of object is g[1]?

3. Create the following data file and then write a Python script to read
it into three NumPy arrays with the variable names f, a, da for the
frequency, amplitude, and amplitude error.

Date: 2013-09-21
Data taken by Liam and Selena
frequency (Hz) amplitude (mm) amp error (mm)
0.7500 13.52 0.32
1.7885 12.11 0.92
2.8269 14.27 0.73
3.8654 16.60 2.06
4.9038 22.91 1.75
5.9423 35.28 0.91
6.9808 60.99 0.99
8.0192 33.38 0.36
9.0577 17.78 2.32
10.0962 10.99 0.21
11.1346 7.47 0.48
12.1731 6.72 0.51
13.2115 4.40 0.58
14.2500 4.07 0.63

Show that you have correctly read in the data by having your script print
out to your computer screen the three arrays. Format the printing so that
it produces output like this:

Input and Output � 99

f =
[0.75 1.7885 2.8269 3.8654 4.9038 5.9423 6.9808

8.0192 9.0577 10.0962 11.1346 12.1731 13.2115 14.25]
a =
[13.52 12.11 14.27 16.6 22.91 35.28 60.99 33.38 17.78
10.99 7.47 6.72 4.4 4.07]

da =
[0.32 0.92 0.73 2.06 1.75 0.91 0.99 0.36 2.32 0.21 0.48
0.51 0.58 0.63]

Note that the array f is displayed with four digits to the right of the
decimal point while the arrays a and da are displayed with only two.
The columns of the displayed arrays need not line up as they do above.

4. Write a script to read the data from the previous problem into three
NumPy arrays with the variable names f, a, da for the frequency, ampli-
tude, and amplitude error and then, in the same script,

(a) Write the data to a data file, including the header, with the data
displayed in three columns, just as it’s displayed in the problem
above. It’s ok if the header lines begin with the # comment char-
acter. Give your data file the name my_data_out.txt.

(b) Write the data to a csv data file, without the header, with the data
displayed in three columns. Use a single format specifier and set it
to “%0.16e”. If you can access a spreadsheet program (like MS Ex-
cel), try opening the file you created with your Python script and
verify that the arrays are displayed in three columns. Give your
data file the name my_data_out.csv, making sure that your file has
the extension .csv!

CH A P T E R 6

Conditionals and Loops

In this chapter, you learn how to control the flow of a program. In par-
ticular, you learn how to program a computer to make decisions based
on information on different conditions it encounters as it processes data
or information. You learn exception handling, a method to catch errors
and gracefully process them during the execution of a program.
You also learn how to make a computer do repetitive tasks using loops.

All the programs we have written so far have run sequentially through a
series of statements. Programs become much more powerful when they can
make decisions and branch based on different inputs or results they encounter.
They gain even more power when they can iterate to perform repetitive tasks.
That power is compounded when a program puts these two capabilities to-
gether.

We can illustrate how these ideas work by considering a problem that my
sixth-grade teacher, Mr. Marcus, posed to our class many years ago. He said,
“Suppose a farmer has some chickens and pigs. He counts a total of 34 animals
and 86 legs. How many pigs and chickens does the farmer have?”

Now, I didn’t knowhow to solve this problem, so I thought I’dmake a guess
and see how it worked out. So I guessed 12 pigs and 22 chickens. This gives
(12 × 4) + (22 × 2) = 92 legs. Oops, too many legs, so there must be fewer
pigs. Let’s try 10 pigs and 24 chickens. This gives (10×4)+ (24×2) = 88 legs.
Closer!Much closer. I was getting excited now. Let’s try 9 pigs and 25 chickens.
This gives (9 × 4) + (25 × 2) = 86 legs. Eureka, I found the answer! I raised
my hand and told Mr. Marcus and the class my answer.

“Correct,” said Mr. Marcus. “How did you get the answer?”
So I told him I made a guess, and when I found that it was wrong, I ad-

justed my guess until I got the answer. “That’s not how you solve the problem,”

100 DOI: 10.1201/9781032673950-6

https://doi.org/10.1201/9781032673950-6

Conditionals and Loops � 101

guess num_pigs
num_chickens = num_animals - num_pigs

Calculalate number of legs
num_legs_prov = num_pigs * 4 + num_chickens * 2

input
num_animals & num_legs

Does num_legs_prov
equal num_legs?

Yes

No

start

finish

Figure 6.1 Flowchart for chicken and pigs problem.

Mr. Marcus said, and he went on to show us how to pose the problem using
two equations with two unknowns, …

Ok, so I didn’t know algebra and couldn’t solve the problem analytically.
But my method wasn’t so bad. It illustrates an algorithmic approach, an ap-
proach we often employ when using computers to solve problems. More-
over, the method I employed involves both decision-making and iteration.
A flowchart of the algorithm is shown in Figure 6.1. The rectangular boxes
represent a processing step, and the diamond box represents a decision. A de-
cision to stop or continue looking for a solution is made based on the success
of the guess: does the calculated provisional number of legs equal the specified
number of legs? An iteration occurs when the current guess fails to produce
the correct number of legs. Otherwise, the answer has been found, and the
process terminates.

In the problem of the chickens and pigs, it took only three iterations to
find the correct answer, so a human could easily accomplish it in a short pe-
riod of time. The math, engineering, and science problems we need to solve
are generally more complex and typically require more iterations, many more
than any human would like to attempt. That’s where computers are helpful.
Without complaining, getting bored, or growing tired, they can repetitively
perform the same calculations with minor but important variations over and
over again. Of course, we need efficient ways of telling the computer to do
these repetitive tasks. This is what loops were made for. Python has two types

102 � Introduction to Python for Science and Engineering

of loop structures: for loops and while loops, which we introduce in this chap-
ter.

Computer programs often need to make decisions as well. In the chicken
and pigs problem, the decision was whether to stop or keep going based on a
test of whether or not the current guess produced the correct number of legs.
This is what conditionals are made for: to determine the flow of a program
based on a test. Python conditional statements use the commands if, elif,
and else, which we also introduce in this chapter.

Conditionals and loops control the flow of a program. They are essential
to performing virtually any significant computational task.

6.1 CONDITIONALS

Conditional statements allow a computer program to take different actions
based on whether some condition or set of conditions is true or false. In this
way, the programmer can control the flow of a program.

6.1.1 if, elif, and else Statements

The if, elif, and else statements are used to define conditional statements in
Python. They are used in the following format:
if <condition 1>:

indented block of code that is executed if <condition 1>
is True; the elif and else blocks that follow are
skipped if <condition 1> is True

elif <condition 2>:
("else if") indented block of code that is executed if
<condition 1> was False and <condition 2> is True; the
else block that follows is skipped if <condition 2> is
True

else:
indented block of code that is executed only if both
<condition 1> and <condition 2> were False

<condition 1> and <condition 2> are Boolean expressions that can be either
True of False. We illustrate their use with a few examples.

6.1.1.1 if-elif-else Example

Suppose you want to know if the solutions to the quadratic equation

ax2 + bx+ c = 0

Conditionals and Loops � 103

are real, imaginary, or complex for a given set of coefficients a, b, and c. The
solution to this quadratic equation is given by the famous formula

x =
−b±

√
b2 − 4ac

2a

The answer to whether the solutions are real, imaginary, or complex depends
on the value of the discriminant d = b2 − 4ac. The solutions are real if d ≥ 0,
imaginary if d < 0 and b = 0, and complex if d < 0 and b ̸= 0. The program
below implements the above logic in a Python program.

After getting the inputs from the user, the program calculates the value of
the discriminant d.

Code: if_elif_else_example.py

1 a = float(input("What is the coefficient a? "))
2 b = float(input("What is the coefficient b? "))
3 c = float(input("What is the coefficient c? "))
4 d = b * b - 4. * a * c
5 if d >= 0.0:
6 print("Solutions are real") # block 1
7 elif b == 0.0:
8 print("Solutions are imaginary") # block 2
9 else:

10 print("Solutions are complex") # block 3
11 print("Finished")

After d is evaluated, there are three conditional statements in the program,
in lines 5, 7, and 9. Each conditional statement evaluates the truth value of a
Boolean logical expression, ends with a colon, and is followed by an indented
block of code. In this example, the indented blocks of code are just one line
long, but they could be many lines—as many as you need.

We encounter the first conditional statement in line 5, an if statement.The
if statement tests whether the Boolean expression d >= 0.0 is True or False.
If the expression is True, Python executes the indented block of statements
following the if statement. Here, there is only one line in the indented block:
print("Solutions are real"). Once it executes this statement, Python skips
the elif and else blocks and executes the print("Finished!") statement.

If the expression d >= 0.0 in line 5 is False, Python skips the indented
block directly below the if statement and executes the elif (“else if ”) state-
ment. If the expression b == 0.0 is True, it executes the indented block imme-
diately below the elif statement, print("Solutions are imaginary") and then
skips the else statement and the indented block below it. It then executes the
print("Finished!") statement.

104 � Introduction to Python for Science and Engineering

False

False

True

True
d ≥ 0?

b = 0?

block 1

block 2

block 3

if

elif

else

start

finish

Figure 6.2 Flowchart for if-elif-else code.

Finally, if the expression b == 0.0 is False, Python skips to the else
statement and executes the block immediately below the else statement,
print("Solutions are complex"). Once finished with that indented block, it
then executes the statement print("Finished!").

Each time a False result is obtained in an if or elif statement, Python
skips the indented code block associated with that statement and drops down
to the next conditional statement, that is, the next elif or else. A flowchart of
the if-elif-else code is shown in Figure 6.2.

At the outset of this problem, we noted that the solutions to the quadratic
equation are imaginary only if b = 0 and d < 0. The elif b == 0.0 statement
on line 7, however, only checks to see if b = 0. The reason that the statement
doesn’t have to check if d < 0 is that the elif statement is executed only if
the condition d >= 0.0 on line 5 is False. Similarly, the final else statement on
line 9 is executed only if the preceding if and elif statements are False, so it
doesn’t have to check that d < 0 and b ̸= 0. This illustrates a key feature of the
if, elif, and else statements: these statements are executed sequentially until
one of the if or elif statements is found to be True. Python reaches an elif or
else statement only if all the preceding if and elif statements are False.

The if-elif-else logical structure can accommodate as many elif blocks
as desired. This allows you to set up logic with more than the three possi-
ble outcomes in the example above. When designing the logical structure,
you should keep in mind that once Python finds a true condition, it skips all

Conditionals and Loops � 105

subsequent elif and else statements in a given if, elif, and else block, irre-
spective of their truth values.

Important Note about Indentation in Python

The blocks of code that go with each of the if, elif, and else statements
are defined by indenting the code. Indenting blocks of code is a generic feature
Python and is used in various contexts to define code functionality. Python is
different frommany other computer languages, where indentation is optional.
Indenting has the benefit, required or not, of making the functionality and
structure of the code visually apparent to anyone reading the code. In Python,
indenting is an essential part of the syntax and, as such, is strictly enforced.
We will encounter similar uses of indentation in Python in several different
contexts.

For any of these blocks, the indentation of each line has to be the same for
all lines; here we use four spaces, which is the conventional choice. You should
use four spaces, too; almost everybody does, and using a different number,
while legal, only sews confusion when others read your code. More impor-
tantly, when indenting a block of code in Python, every line must be indented
by the same amount using the same characters. So even if a <tab> character
indents a line by four spaces, it is not equivalent to four <space> characters.
Therefore, indenting some lines by four spaces and other lines by a<tab> char-
acter will produce an error, even when all the lines appear to have the same
indentation. For this reason, virtually all Python editors translate pressing the
<tab> key into four spaces; both Spyder and JupyterLab do. Following this
convention of using four spaces and no <tab> characters will help ensure that
your code functions correctly and is readable by others.

6.1.1.2 if-else Example

You will often run into situations where you want the program to execute one
of only two possible blocks based on the outcome of an if statement. In this
case, you omit the elif block and simply use an if-else structure. The fol-
lowing program testing whether an integer is even or odd provides a simple
example.

Code: if_else_example.py

1 a = int(input("Please input an integer: "))
2 if a % 2 == 0:
3 print(f"{a:0d} is an even number.")
4 else:
5 print(f"{a:0d} is an odd number.")

106 � Introduction to Python for Science and Engineering

False

True
a % 2 == 0?

block 1
(even)

block 2
(odd)

if

else

start

finish

Figure 6.3 Flowchart for if-else code.

The flowchart in Figure 6.3 shows the logical structure of an if-else struc-
ture.

6.1.1.3 if Example

The simplest logical structure you can make is a simple if statement, which
executes a block of code if some condition is met but otherwise does nothing.
The program below, which takes the absolute value of a number, provides a
simple example of such a case.

Code: if_example.py

1 a = eval(input("Please input a number: "))
2 if a < 0:
3 a = -a
4 print(f"The absolute value is {a}")

When the block of code in an if or elif statement is only one line long,
you can write it on the same line as the if or elif statement. For example, the
above code can be written as follows:

Code: if_example_alt.py

1 a = eval(input("Please input a number: "))
2 if a < 0: a = -a
3 print(f"The absolute value is {a}")

This works exactly as the preceding code. Note, however, that if the block
of code associated with an if or elif statement is more than one line long,
the entire block of code must be written as indented text below the if or elif
statement.

Conditionals and Loops � 107

False

True
a < 0? block 1if

start

finish

Figure 6.4 Flowchart for if code.

The flowchart in Figure 6.4 shows the logical structure of a simple if struc-
ture.

6.1.2 More about Boolean Variables, Operators, and Expressions

Thepreceding sections introduced Boolean operators and expressions. Before
continuing our discussion of conditionals, we pause for a brief synopsis of
Boolean arithmetic.

In addition to the object types we have encountered thus far (int, float,
complex), Python has a logical (or Boolean) object type called bool. Boolean
objects can take on only two values: True or False.
In[1]: a = True

In[2]: type(a)
Out[2]: bool

In[3]: b = False

In[4]: type(b)
Out[4]: bool

As such, Boolean variables aren’t terribly interesting. But Boolean expressions
are! As we have seen above, they are at the heart of conditional statements.

Most Boolean expressions involve comparisons between two objects using
a Boolean operator. The values of Boolean expressions are either True or False
depending on what is being tested, as these examples show.
In[5]: 3 < 5
Out[5]: True

In[6]: 3 >= 5
Out[6]: False

108 � Introduction to Python for Science and Engineering

TABLE 6.1 Logical operators in Python.
Operator Function
compare values of two objects
a < b a is less than b
a <= b a is less than or equal to b
a > b a is greater than b
a >= b a is greater than or equal to b
a == b a is equal to b
a != b a is not equal to b
compare identities of two objects
a is b a and b point to the same object
a is not b a and b point to different objects
act on Booleans
a and b both a and b are true
a or b one or both of a and b are true
not a reverses the truth value of a

In[7]: 3 == 5
Out[7]: False

In[8]: 3 != 5
Out[8]: True

In[9]: type(3 != 5)
Out[9]: bool

Bynow, it should be clear that the Boolean operator ==, which tests if the values
of two objects are equal, is completely different from the assignment operator
=. Don’t confuse them!

Table 6.1 summarizes some of the more common and useful Boolean op-
erators. Compound Boolean expressions can be constructed using the and and
or operators listed in Table 6.1. For example, consider the following code that
tests to see if a number is divisible by 3 but not by 9:

Code: div_by_3not9.py
1 x = int(input("Input an integer divisible by 3 but not by 9: "))
2 if x % 3 == 0 and x % 9 != 0:
3 print(x, "is divisible by 3 but not by 9")
4 else:
5 print("Not ok")

Conditionals and Loops � 109

6.1.2.1 Finding the Maximum from a List of Numbers

As an application of conditionals, let’s consider the problem of finding the
maximum from a list of numbers. Let’s start with a simple example: finding
the maximum in a list of three integers. Consider the following code:

Code:max0.py

1 a, b, c = input("Input 3 comma-separated integers: ").split(",")
2 a, b, c = int(a), int(b), int(c)
3 if a > b and a > c:
4 max = a
5 elif b > a and b > c:
6 max = b
7 else:
8 max = c
9 print(max)

The program logic is simple (after making sure you understand how the
input statement works!). But does it work? Before jumping to conclusions, let’s
be sure we’ve tried different situations. What happens if all three numbers are
equal? No problem, the last else statement will set max = c, which is fine. But
if a and b are equal and c is smaller, this routine selects c as the maximum.
This problem is easily remedied by changing > to >= in all the comparison
statements.

This little vignette highlights the importance of checking your code for
different cases, particularly limiting cases where unusual things sometimes
occur. ”Limiting cases” can mean very large or very small values or equal val-
ues; it’s often a good idea to check inputs of zero and one, but testing is a bit
of an art that requires continual vigilance and skepticism about your logic.

A problem with the code in max0.py, even after changing > to >=, is that it
contains redundant comparisons; it compares a to b twice, in line 3 and again
in line 5. Interestingly, look at what happens if we remove the redundant piece:

Code:max1.py

1 a, b, c = input("Input 3 comma-separated integers: ").split(",")
2 a, b, c = int(a), int(b), int(c)
3 if a > b and a > c:
4 max = a
5 elif b > c:
6 max = b
7 else:
8 max = c
9 print(max)

Now it works again for all cases, as you can check. This code works even
better if, once again, we change > to >= because the loop will terminate sooner
in some cases (you should figure out which!).

110 � Introduction to Python for Science and Engineering

None of the proposed solutions scales verywell if there aremore than three
numbers. For example, when there are four numbers to be checked, then com-
pound conditional statements are needed for the first two comparisons. The
number of compound comparisons grows as the number of numbers grows,
which makes the code increasingly complex. Instead of using compound if
statements, a better strategy is to process the numbers sequentially. Consider
the following code:

Code:max2.py

1 a, b, c = input("Input 3 comma-separated integers: ").split(",")
2 a, b, c = int(a), int(b), int(c)
3 max = a
4 if b > max:
5 max = b
6 if c > max:
7 max = c
8 print(max)

The logic used here is exceedingly simple and obviously correct. This pro-
gram employs a pattern frequently used in computer programming. It begins
by setting a provisional answer and then updates the answer if a better one is
found. In this algorithem, every number is checked only once, the minimum
that’s required. Moreover, it is easily scaled to handle cases with many more
numbers, which can be coded elegantly and simply using a for loop, as we will
see in the next section.

6.2 LOOPS

In computer programming, a loop is a statement or block of statements that
is executed repeatedly. Python has two kinds of loops, a while loop and a for
loop. We first introduce the while loop and then the for loop.

6.2.1 while Loops

The general form of a while loop in Python is
while <condition >:
<body>

where <condition> is a Boolean expression that can be either True or False.
The <body> is a block of indented code that is repeatedly executed as long as
the <condition> is True. The while loop terminates when <condition> becomes
False or when a break statement is issued fromwithin the block. Inmost cases,
thismeans that somewhere in <body>, the truth value of <condition> is changed

Conditionals and Loops � 111

True

False
<condition>

<body>
(change condition)

start

finish

Figure 6.5 Flowchart for while loop.

so that it becomes False after a finite number of iterations. Figure 6.5 shows
the flowchart for a while loop.

6.2.1.1 Chickens and Pigs Problem

Since this is the logic used in the chickens andpigs problemposed at the begin-
ning of this chapter, let’s see if we can codify it in a Python program. Consider
the following code:

Code: chickens_pigs.py
1 legs = int(input("Enter the total number of legs: "))
2 animals = int(input("Enter the total number of animals: "))
3
4 pigs = legs // 4 # maximum possible number of pigs
5 chickens = animals - pigs
6
7 while legs != 4 * pigs + 2 * chickens:
8 pigs -= 1
9 chickens += 1

10 if pigs < 0:
11 raise ValueError("There is no solution for these inputs.")
12
13 print("\nNumber of chickens =", chickens)
14 print("Number of pigs =", pigs)
15 print("Number of legs =", 4 * pigs + 2 * chickens)
16 print("Number of animals =", pigs + chickens)

The strategy employed in this program is to search for the correct answer
by trying solutions with different numbers of pigs. It starts with the maxi-
mum number of pigs consistent with the prescribed number of legs. Then, it

112 � Introduction to Python for Science and Engineering

calculates the corresponding number of chickens (whichwill be theminimum
number: 0 or 1) needed to give the prescribed number of animals. The while
loop tests to see if the initial guess is wrong; if it is wrong, then its Boolean
expression is True, and the code in the indented block is executed. Within the
indented block, the number of pigs is decremented by 1, the number of chick-
ens incremented by 1, after which the while statement at the beginning of the
loop is reexecuted. This process repeats until the Boolean expression in the
while statement becomes False, which means that the algorithm has found
the correct number of pigs and chickens. Then, the indented block is skipped,
the while loop terminates, and the program prints out the results.

Prior to running the while loop,we set our initial guesses for the number of
pigs and chickens. You will find that this is a pattern frequently used in setting
up loops; variables often need to be initialized prior to starting the loop.

One hazard of using while loops is that it’s possible for the loop to go on
forever without terminating: an infinite loop! Indeed, the algorithm used in
this routine is subject to this problem, for example, if we start with an odd
number of legs. Therefore it’s wise to make sure that any while loop you use
will always terminate. Here we do just that by including an if statement within
the while loop that terminates the loop if the number of pigs is less than zero.
This can only happen if all the possible values for the number of pigs have been
tried and have failed. If this happens, the program raises an exception, which
stops the program and issues an error message. For example, if we input 85
legs, the program fails to find a solution (because none exists) and returns the
following message:
File "/Users/dp/Documents/PyScripts/chickens_pigs.py",
line 11, in <module>
raise ValueError("There is no solution for these inputs.")

ValueError: There is no solution for these inputs.

Whenever you use a while loop, consider the possibility of encountering an
infinite loop and mitigate against it. Here, we handled the problem by using
Python’s raise ValueError statement, which stops the execution of the pro-
gram. You can (and should!) include an explanatory string as an argument of
ValueError, as done here. This statement is printed just before Python stops
execution of the program. Python provides a means to stop the execution of
a program if the program encounters an error through the raise Exception
statement, where “Exception” can be any one of a number of exceptions, such
as ValueError used here. We will return to the subject of exceptions in Section
6.4 and how to handle them more adroitly than by stopping the execution of
the program, as we have done here.

Conditionals and Loops � 113

By the way, if you inadvertently execute code that has an infinite loop,
you can often terminate the program from the keyboard by typing <ctrl-C>
a couple of times. If that doesn’t work, you may have to terminate and restart
Python.

6.2.1.2 Fibonacci Numbers

Suppose you want to calculate all the Fibonacci numbers smaller than 1000.
The Fibonacci numbers are determined by starting with the integers 0 and 1.
The next number in the sequence is the sum of the previous two. So, start-
ing with 0 and 1, the next Fibonacci number is 0 + 1 = 1, giving the sequence
0, 1, 1. Continuing this process gives 0, 1, 1, 2, 3, 5, 8, ... where each element in
the list is the sum of the previous two. Using a for loop to calculate the Fi-
bonacci numbers is impractical because one does not know in advance how
many Fibonacci numbers there are smaller than 1000. By contrast, a while
loop is perfect for calculating all the Fibonacci numbers because it keeps cal-
culating Fibonacci numbers until it reaches the desired goal, in this case, 1000.
Here is the code using a while loop.

Code: fibonacci.py
1 x, y = 0, 1
2 while x < 1000:
3 print(x)
4 x, y = y, x + y

We have used the multiple assignment feature of Python in this code. Re-
call, especially for the assignment inside the while loop, that all the values on
the right are set first (using the current values of x and y) and then assigned
to the variables x and y on the left.

Note that the while loop is controlled by a conditional that involves a com-
parison rather than an equality. It is generally a safer way to set up the con-
ditional compared to using an equality. Keep that in mind when using while
loops.

For work done in science and engineering, the for loop is generally more
useful than the while loop. Nevertheless, there are times when a while loop is
better suited to a task at hand.

6.2.2 for Loops

The general form of a for loop in Python is
for <itervar> in <sequence >:
<body>

114 � Introduction to Python for Science and Engineering

where <intervar> is a dummy variable, <sequence> is a sequence such as a list
or string or array, and <body> is a series of Python commands to be executed
repeatedly for each element in the <sequence>.The <body> is indented from the
rest of the text, defining the loop’s extent. Let’s look at a few examples.

First, let’s extend the program max2.py thatwe considered in Section 6.1.1.1
on page 110 so that it can find the maximum value from a list of integers of
arbitrary length. Here is the code:

Code:max3.py

1 import random
2 # Make a list of k integers randomly chosen from range
3 nums = random.choices(range(-1000, 1000), k=10)
4 print(nums)
5
6 max = nums[0]
7 for n in nums:
8 if n > max:
9 max = n

10 print("The maximum value is", max)

In line 3, the program makes a list nums that consists of 10 integers ran-
domly selected between -1000 and 1000 using Python’s randommodule (which
is distinct from NumPy’s random module described in Section 9.4). The pro-
gram uses the first integer in the list to set a provisional value max = nums[0]
for the maximum (line 6).

The for loop begins on line 7. In the for statement, the variable n is the
interation variable. The first time through the for loop, n is set equal to the
first element in the list nums.

The body of the for loop, defined by the indented block (here, just two
lines), is then executed using this value of n.

Once the two lines of the indented block have been executed, the program
returns to the for loop, which then sets n equal to the second element in the
list nums, and the indented block is executed again.

Every time the indented block runs, the if statement checks to see if the
current value of n is larger than the value of max. If it is larger, the value of max
is updated to the current value of n. If not, it does nothing, and the value of
max remains unchanged.

This process is repeated until n reaches the last element in the list and ex-
ecutes the indented block for the last time.

Then, the loop terminates and goes on to the next (unindented) statement,
which is to print out the value of max, which should be the maximum value in
nums. Figure 6.6 show the generic flowchart for a for loop.

Conditionals and Loops � 115

Yes

No
more items
in seq?

<intervar> =
next item in seq

<body>

start

finish

Figure 6.6 Flowchart for a for-loop.

Let’s run the program:
In[1]: %run max3.py
[89, -773, -467, 136, -19, 61, 53, -752, -239, -81]
The maximum value is 136

An important feature of this program is that it is scalable. In this example,
it finds the maximum value in a sequence of 10 numbers, but it could equally
well be 1000 numbers or even 106 numbers (provided we supplied it with a
sufficiently large pool of numbers to choose from).

The sequence over which the a for loop loops can be any kind of list (or
list-like object, such as a tuple or an array). Here is a fairly ridiculous loop:

Code: doggy_loop.py
1 for dogname in ["Molly", "Max", "Buster", "Lucy"]:
2 print(dogname)
3 print(" Arf, arf!")
4 print("All done.")

Running this program, stored in file doggy_loop.py, produces the following
output:
In[2]: run doggy_loop.py
Molly
Arf, arf!
Max
Arf, arf!
Buster

116 � Introduction to Python for Science and Engineering

Arf, arf!
Lucy
Arf, arf!
All done.

Let’s review the flowchart for a for loop (see Figure 6.6). It starts with an
implicit conditional asking if there are any more elements in the sequence.
If there are, it sets the iteration variable equal to the next element in the se-
quence and then executes the body—the indented text—using that value of
the iteration variable (one of the dog names in the list). It then returns to the
beginning to see if there are more elements in the sequence and continues the
loop until none remains.

6.2.2.1 Using an Accumulator to Calculate a Sum

Let’s look at another application of Python’s for loop. Suppose you want to
calculate the sum of all the odd numbers between 1 and 100. Before writing a
program to do this, let’s think about how you would do it by hand. You might
start by adding 1+3=4. Then, take the result 4 and add the next odd integer,
5, to get 4+5=9; then 9+7=16, then 16+9=25, and so forth. You are doing re-
peated additions, starting with 1+3, while keeping track of the running sum,
until you reach the last number 99.

In developing an algorithm for having the computer sum the series of
numbers, we are going to do the same thing: add the numbers one at a time
while keeping track of the running sum until we reach the last number. We
will keep track of the running sum with the variable s, which is called the ac-
cumulator. Initially, s = 0, since we haven’t added any numbers yet. Then we
add the first number, 1, to s, and s becomes 1. Then we add the next number,
3, in our sequence of odd numbers to s, and s becomes 4. We continue doing
this repeatedly using a for loop while the variable s accumulates the running
sum until we reach the final number. The code below illustrates how to do
this.

Code: odd_sum100.py
1 s = 0
2 for i in range(1, 100, 2):
3 print(i, end=' ')
4 s += i
5 print(f"\n{s}")

The range function defines a sequence of odd numbers 1, 3, 5, …, 97, 99.
The for loop successively adds each number in the list to the running sum
until it reaches the last element in the list and the sum is complete. Once the
for loop finishes, the program exits the loop and prints the final value of s,

Conditionals and Loops � 117

which is the sum of the odd numbers from 1 to 99, is printed out. Line 3 is
not needed, of course, and is included only to verify that the odd numbers
between 1 and 100 are being summed. The end=' ' argument causes a space to
be printed out between each value of i instead of the default new line character
\n. Copy the above program and run it. You should get an answer of 2500.

The range function produces an iterable sequence, a set of instructions that
yields the next value in a sequence of integers each time it is accessed.

The example above provides a simple example of how a for loopworks, but
it’s not the recommended way to perform the task. A faster and more efficient
way to sum the odd integers between 1 and 100 is to use a NumPy array:
In[3]: np.arange(1, 100, 2).sum()
Out[3]: 2500

We will have more to say about loops and array operations in Section 6.2.4.

6.2.2.2 Iterating Over Sequences

You have seen that for loops can iterate over elements in a list, such as random
numbers, the names of dogs, or over a sequence of numbers produced by the
range function. In fact, Python for loops are extremely versatile and can be
used with any object that consists of a sequence of elements. Some of the ways
it works might surprise you. For example, suppose we have the string
In[4]: lyrics = "There are places I'll remember all my life"

The string lyrics is a sequence of characters and thus can be looped over, as
illustrated here:
In[5]: for letter in lyrics:
...: print(letter)
...:

T
h
e
r
e

a
r
.
.
.

Suppose we wanted to print out every third letter of this string. One way
to do it would be to set up a counter, as follows:
In[6]: i = 0

118 � Introduction to Python for Science and Engineering

...: for letter in lyrics:

...: if i % 3 == 0:

...: print(letter, end=' ')

...: i += 1

...:
T r a a s ' m b l y i

While this approach works fine, Python has a function called enumerate that
does it for you. It works like this:
In[7]: for i, letter in enumerate(lyrics):

...: if i % 3 == 0:

...: print(letter, end=' ')

...:
T r a a s ' m b l y i

The enumerate function takes two inputs, a counter (i in this case) and a se-
quence (the string lyrics). In general, any kind of sequence can be used in
place of lyrics, a list or a NumPy array, for example. The counter i starts with
a value of zero and letter, the iteration variable, is set equal to the first ele-
ment in the list lyrics. The loop is then run with these values. Then, the loop
is rerun with i incremented by one and letter set equal to the next element
in the list. This process continues until all the elements of the list have been
processed by the loop. Pretty slick. We will find plenty of opportunities to use
the enumerate function.

6.2.3 Loop Control Statements

There are times when you might need to end a loop before it is finished. Or
perhaps you may want to skip one or more of the iterations of a loop. Loop
control statements let you do this.

6.2.3.1 The break Statement

The break statement terminates a loop and moves execution of the program
to the first statement after the loop. The program below illustrates its use. It
prints out the first ten powers of the variable a but stops if the numbers in the
sequence become greater than 1,000,000.

Code: breakdemo.py
1 a = 3
2 for i in range(10):
3 x = a ** i
4 if x > 1000000:
5 break
6 print(x, end=' ')
7 print('finished')

Conditionals and Loops � 119

If you run the program as written, with a = 3, the if statement on line 4 is
always false, and the following sequence of 10 numbers is printed out: 1 3
9 27 81 243 729 2187 6561 19683 finished. However, changing line 1 to a =
9 produces a sequence consisting of only 7 numbers: 1 9 81 729 6561 59049
531441 finished. When the loop reaches the 8th element of the sequence, the
result is 4,782,969, which is greater than 1,000,000, so the break statement in
line 5 is executed. This causes the program to end the loop and proceed to the
first statement after the loop, which prints finished.

6.2.3.2 The continue Statement

The continue statement skips the rest of the current iteration of a loop and
returns to the beginning of the loop for the next iteration. The program below
illustrates its use.

Code: continuedemo.py
1 for x in range(4, -4, -1):
2 if x==0:
3 continue
4 print('{0:6.3f}'.format(1/x), end=' ')

The if-continue block skips the case of x=0 in order to avoid division by
zero in the print function and produces the following output: 0.250 0.333
0.500 1.000 -1.000 -0.500 -0.333.

6.2.4 Loops and Array Operations

Loops are often used to modify the elements of an array sequentially.
For example, suppose you want to square each element of the array a =
np.linspace(0, 32, 1e7). This is a hefty array with 10 million elements. Nev-
ertheless, the following loop does the trick:

Code: slow_loops.py
1 import numpy as np
2 import time
3
4 a = np.linspace(0.0, 32.0, 10000000) # 10 million
5 print(a)
6 startTime = time.process_time()
7 for i in range(len(a)):
8 a[i] = a[i] * a[i]
9 endTime = time.process_time()

10 print(a)
11 print(f"Run time = {endTime - startTime} seconds")

Running this on a 2018MacBook Pro returns the result in about 3.0 seconds—
not bad for having performed 10 million multiplications. Notice that we have

120 � Introduction to Python for Science and Engineering

introduced the time module, which we use to measure how long (in seconds)
it takes the computer to perform the 10 million multiplications.

Of course, we can perform the same calculation using the array multipli-
cation introduced in Chapter 4. To do so, replace the for loop in lines 7–8
above with the simple array multiplication code in line 7 below. Here it is:

Code: fast_array.py
1 import numpy as np
2 import time
3
4 a = np.linspace(0.0, 32.0, 10000000) # 10 million
5 print(a)
6 startTime = time.process_time()
7 a = a * a
8 endTime = time.process_time()
9 print(a)

10 print(f"Run time = {endTime - startTime} seconds")

Running this on the same computer returns the results in about 1/50 of a sec-
ond, more than 100 times faster than obtained using a loop. This illustrates
an important point: for loops are slow. Array operations run much faster and
are preferred in any case where you have a choice. Sometimes, finding an array
operation equivalent to a loop can be difficult, especially for a novice. Never-
theless, doing so pays rich rewards in execution time. Moreover, the array no-
tation is usually simpler and clearer, providing further reasons to prefer array
operations over loops.

On the other hand, there are times when no array-based operation is pos-
sible, and a loop must be used, even if it’s slow. This can occur when one op-
eration in a loop depends on the outcome of a previous operation in a loop.1
We will not delve into this topic here but you will see examples of it later on.

6.3 LIST COMPREHENSIONS

List comprehensions are a unique feature of core Python for processing and
constructing lists.We introduce themhere because they use a looping process.
They are commonly used in Python coding and often provide elegant com-
pact solutions to common computing tasks. Rather than write down a general
form, we provide a few examples illustrating their form and use. Consider, for
example, the 3 ×3 matrix
In[1]: A = [[1, 2, 3],
...: [4, 5, 6],
...: [7, 8, 9]]

1The Numba package can help in such cases, but we defer discussion of Numba to Chapter
13.

Conditionals and Loops � 121

Suppose you want to construct a vector from the diagonal elements of this
matrix. You could do so with a for loop with an accumulator as follows:
In[2]: diag = []
In[3]: for i in [0, 1, 2]:
...: diag.append(A[i][i])
...:

In[4]: diag
Out[4]: [1, 5, 9]

Here, we used the append() list method to add elements to the list diag one at
a time.

List comprehensions provide a simpler, cleaner, and faster way to build a
list of the diagonal elements of A:
In[5]: diagLC = [A[i][i] for i in [0, 1, 2]]

In[6]: diagLC
Out[6]: [1, 5, 9]

A one-line list comprehension replaces a three-line accumulator plus loop
code. Suppose you now want the square of this list:
In[7]: [y*y for y in diagLC]
Out[7]: [1, 25, 81]

Notice here how y serves as a dummy variable accessing the various elements
of the list diagLC.

Extracting a row from a 2-dimensional array such as A is quite easy. For
example, the second row is obtained quite simply in the following fashion:
In[8]: A[1]
Out[8]: [4, 5, 6]

Obtaining a column is not as simple, but a list comprehension makes it quite
straightforward:
In[9]: c1 = [a[1] for a in A]
In[10]: c1
Out[10]: [2, 5, 8]

Another slightly less elegant way to accomplish the same thing is
In[11]: [A[i][1] for i in range(3)]
Out[11]: [2, 5, 8]

Suppose you have a list of numbers and you want to extract all the elements
of the list that are divisible by three. A slightly fancier list comprehension ac-
complishes the task quite simply and demonstrates a new feature:

122 � Introduction to Python for Science and Engineering

In[12]: y = [-5, -3, 1, 7, 4, 23, 27, -9, 11, 41]
In[13]: [x for x in y if x%3==0]
Out[13]: [-3, 27, -9]

As you see in this example, a conditional statement can be added to a list com-
prehension. Here, it serves as a filter to select only those elements that are di-
visible by three.

6.4 HANDLING EXCEPTIONS

When a program crashes, it usually issues an error message when it termi-
nates; that is, it raises an exception that lets you know what is wrong in the
program and at what point. Usually, this exception is caused by a program-
ming error, and you proceed to fix the problem. But in other cases, one can
anticipate that an exception might arise under certain circumstances. In those
cases, Python provides a way to smoothly handle an anticipated exception us-
ing its try-except syntax, a kind of conditional structure specifically designed
to handle exceptions. The try-except syntax has the following form:
try:
indented block of code that is supposed
to run if there is no exception
except:
code that runs when an exception occurs

A common error is dividing by zero, as we illustrate here with a routine
that calculates the ratio of girls to boys on a team. Here, we use the try-except
feature to capture this possibility and print an appropriate response.

Code: ratio_girls_to_boys0.py
1 girls = int(input("Enter number of girls on team: "))
2 boys = int(input("Enter number of boys on the team: "))
3 try:
4 print(f"Ratio of girls to boys: {girls / boys:0.2f}")
5 except ZeroDivisionError:
6 print("There are no boys on the team so the ratio is undefined")

Let’s run this program for a couple of different inputs
In[1]: %run ratio_girls_to_boys0.py
Enter number of girls on the team: 5
Enter number of boys on the team: 9
Ratio of girls to boys: 0.56

In[2]: %run ratio_girls_to_boys0.py
Enter number of girls on the team: 11
Enter number of boys on the team: 0
There are no boys on the team, so the ratio is undefined

Conditionals and Loops � 123

In the first running of the code, the code in the try block runs properlywithout
raising an exception, so the except block is skipped. In the second run, the
program raises an exception, which makes the flow move to the except block,
where amessage is printed. After the error is thus handled, the programmoves
on.

The except statement can be written with or without a keyword specify-
ing the anticipated error. In this case, the except statement is written with the
keyword ZeroDivisionError. This is the preferred mode as it catches only the
anticipated type of error. If a different error is encountered, we want the code
to crash—raise an unanticipated exception and halt execution—so that we can
learn about and deal with the problem. You can include two ormore keywords
in the exception statement so that two or more exceptions are caught by the
same except statement. For example, the statement
except (ZeroDivisionError , ValueError)

catches both types of errors listed andprocesses them in the same except block.
Alternatively, the program could have two separate except blocks that process
the different exceptions in different blocks.

The program ratio_girls_to_boys0.pywill raise a ValueError exception if
the user enters a non-numeric string, such as 9p or xy. These kinds of errors
can be caught using an except-try block together with a while statement that
asks the user to reenter the numbers of boys and girls:

Code: ratio_girls_to_boys1.py
1 while True:
2 try:
3 girls = int(input("Enter number of girls on team: "))
4 boys = int(input("Enter number of boys on the team: "))
5 break
6 except ValueError:
7 print("Your entry is not an integer, try again\n")
8 try:
9 print(f"Ratio of girls to boys: {girls / boys:0.2f}")

10 except ZeroDivisionError:
11 print("There are no boys on the team so the ratio is undefined")

Let’s see how this works:
In[3]: %run ratio_girls_to_boys1.py
Enter number of girls on team: 9p
Your entry is not an integer, try again

Enter number of girls on team: 9
Enter number of boys on the team: 4
Ratio of girls to boys: 2.25

124 � Introduction to Python for Science and Engineering

The code uses a break statement to exit the while loop if proper numbers are
input inside the try block.

The chickens_pigs.py programwe discussed at the beginning of this chap-
ter raised a ValueError if the user input numbers for which there was no so-
lution. Instead of raising an error and terminating the program, we can use
try-except statements to alert the user to input numbers for which an answer
exists.The following code uses assert statements to ensure that the total num-
ber of legs input is an even number, thus avoid one potential problem, and an-
other to ensure that the number of animals entered is neither too big nor too
small for an answer to exist. An assert statement merely checks that a logical
expression is True. If it is True, the assert statement does nothing; if it’s False,
it raises an AssertionError, which in the code below alerts the user and asks
for new inputs.

Code: chickens_pigs_screen.py
1 while True:
2 try:
3 legs = int(input("Enter the total number of legs: "))
4 assert legs % 2 == 0
5 break
6 except AssertionError:
7 print("Total number of legs must be an even number")
8 while True:
9 try:

10 animals = int(input("Enter the total number of animals: "))
11 assert 4 * animals >= legs and 2 * animals <= legs
12 break
13 except AssertionError:
14 print("Number of animals must be >= {} and <= {}"
15 .format((legs + 2) // 4, legs // 2))
16
17 pigs = legs // 4 # maximum possible number of pigs
18 chickens = animals - pigs
19
20 while legs != 4 * pigs + 2 * chickens:
21 pigs -= 1
22 chickens += 1
23 if pigs < 0:
24 raise ValueError("There is no solution for these inputs.")
25
26 print("\nNumber of chickens =", chickens)
27 print("Number of pigs =", pigs)
28 print("Number of legs =", 4 * pigs + 2 * chickens)
29 print("Number of animals =", pigs + chickens)

The assert statement is also frequently used for debugging code. You can
enter it at various points in your code to check if the anticipated result at a
certain point is indeed found. If not, it raises an AssertionError and stops the
program, which can help locate coding or logic errors.

Conditionals and Loops � 125

6.5 EXERCISES

1. Redo Exercise 3 (page 79) from Chapter 4 but this time make a dic-
tionary named greek that does the entire Greek alphabet. Use a for-
enumerate loop to populate your greek dictionary. Demonstrate that
your code works by using your dictionary to print out the entire Greek
alphabet on a single line on your computer screen. The keys to the dic-
tionary should be the names of the letters written out in the Latin al-
phabet:
gkeys = ["alpha", "beta", "gamma", "delta", "epsilon",

"zeta", "eta", "theta", "iota", "kappa", "lamda",
"mu", "nu", "xi", "omicron", "pi", "rho",
"sigma_alt", "sigma", "tau", "upsilon", "phi",
"chi", "psi", "omega"]

Recall from page 53 that the UTF-8 encoding for the Greek alphabet
begins at 945. It proceeds consecutively through the Greek alphabet ac-
cording to the list gkeys above. Note that the key for the Greek letter λ
is spelled lamda instead of lambda because lambda is a reserved word in
Python (see Table 2.2).

2. Write a program to calculate the factorial of a positive integer input by
the user. Recall that the factorial function is given by x! = x(x− 1)(x−
2) ... (2)(1) so that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, …

(a) Write the factorial function using a Python while loop.
(b) Write the factorial function using a Python for loop.

Check your programs to ensure they work for 1, 2, 3, 5, and beyond, but
especially for the first five integers.

3. The following Python program finds the smallest non-trivial (not 1)
prime factor of a positive integer.
n = int(input("Input an integer > 1: "))
i = 2
while (n % i) != 0:

i += 1
print(f"The smallest prime factor of {n} is {i}")

(a) Type this program into your computer and verify that it works as
advertised. Then, briefly explain how it works and why the while
loop always terminates.

126 � Introduction to Python for Science and Engineering

(b) Modify the program to tell whether the integer input is a prime
number. If it is not a prime number, write your program so that
it prints out the smallest prime factor. Using your program, verify
that the following integers are prime numbers: 2, 31, 101, 8191,
94811, 947431.

4. Consider the matrix list x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. Write
a list comprehension to extract the last column of the matrix [3, 6, 9].
Write another list comprehension to create a vector of twice the square
of the middle column [8, 50, 128].

5. Write a program that uses loops to calculate the value of an investment
after some number of years specified by the user if:

(a) The principal is compounded annually
(b) The principle is compounded monthly
(c) The principle is compounded daily

Your program should ask the user for the initial investment (principal),
the interest rate in percent, and the number of years the money will be
invested (whole years only). For an initial investment of $1000 at an in-
terest rate of 6%, after ten years we get $1790.85 when compounded
annually, $1819.40 when compounded monthly, and $1822.03 when
compounded daily, assuming 12 months in a year and 365.24 days in
a year, where the monthly interest rate is the annual rate divided by 12.
The daily rate is the annual rate divided by 365 (don’t worry about leap
years).

6. Given a dictionary of people’s names and ages like this:
ps={"Adele": 35, "Elton": 76, "Taylor": 34, "Billie": 22}

write a program that prints out the names of the youngest and oldest
members in the dictionary. Test your program using the above dictio-
nary. Write your program to be scalable to dictionaries with more than
four entries.

CH A P T E R 7

Functions

In this chapter, you learn how to write your own functions, similar to
the functions provided by Python and NumPy. You learn how to write
functions that process NumPy arrays efficiently. You learn how to write
functions with variable numbers of arguments and how to pass function
names (and the arguments of those functions) as an argument of a func-
tion youwrite. You learn about the concept of namespace, which isolates
the names of variables and functions created inside a function from those
created outside the function, with particular attention given to the sub-
tle subject of passing mutable and immutable objects. You learn about
anonymous functions (lambda functions in Python) and their uses. Ob-
jects and their associated methods and instance variables are discussed
in the context of NumPy arrays. Finally, various features of Python func-
tions are illustrated with least squares fitting routines.

As you develop more complex computer code, organizing your code into
modular blocks becomes increasingly important. One important means for
doing so is user-defined Python functions. User-defined functions are a lot
like built-in functions thatwe have encountered in core Python and inNumPy.
Themain difference is that user-defined functions are written by you.The idea
is to define functions to simplify your code, improve its readability, and allow
you to reuse the same code in different contexts.

The number of ways that functions are used in programming is so varied
that we cannot enumerate all the possibilities. As our use of Python functions
in scientific programming is somewhat specialized, we introduce only a few
of the possible uses of Python functions, ones that are the most common in
scientific programming.

DOI: 10.1201/9781032673950-7 127

https://doi.org/10.1201/9781032673950-7

128 � Introduction to Python for Science and Engineering

7.1 USER-DEFINED FUNCTIONS

The NumPy package contains a vast number of mathematical functions.
You can find a listing of them at http://docs.scipy.org/doc/numpy/reference/
routines.math.html. While the list may seem pretty exhaustive, you will in-
evitably find that you need a function not available in the NumPy Python li-
brary. In those cases, you will want to write your own function.

In studies of optics and signal processing, one often runs into the sinc
function, which is defined as

sinc x ≡ sin x
x

.

Let’s write a Python function for the sinc function. Here is our first attempt:

Code: sinc0.py
1 import numpy as np
2
3 def sinc(x):
4 y = np.sin(x) / x
5 return y

Every function definition begins with the word def followed by the name you
want to give to the function, sinc in this case, then a list of arguments enclosed
in parentheses, and finally terminated with a colon. In this case, there is only
one argument, x, but generally, there can be as many arguments as you want,
including no arguments. For the moment, we will consider the case of just a
single argument.

The indented block of code following def sinc(x): defines what the func-
tion does. In this case, the first line calculates sinc x = sin x/x and sets it equal
to y. The return statement of the last line tells Python to return the value of y
to the user.

We can try it out in the IPython shell. You can either run the program
above that you wrote into a python file or you can type it in—it’s only three
lines long—into the IPython shell:
In[1]: def sinc(x):
...: y = np.sin(x)/x
...: return y

We assume you have already imported NumPy. Now, the function sinc x can
be used from the IPython shell.
In[2]: sinc(4)
Out[2]: -0.18920062382698205

http://docs.scipy.org/doc/numpy/reference

Functions � 129

In[3]: a = sinc(1.2)

In[4]: a
Out[4]: 0.77669923830602194

In[5]: np.sin(1.2)/1.2
Out[5]: 0.77669923830602194

Inputs and outputs 4 and 5 verify that the function does indeed give the
same result as an explicit calculation of sin x/x.

Youmay have noticed a problemwith our definition of sinc xwhen x = 0.
Let’s try it out and see what happens
In[6]: sinc(0.0)
Out[6]: nan

IPython returns nan or “not a number,” which occurs when Python attempts to
divide zero by zero. This is not the desired result as sinc x is, in fact, perfectly
well defined for x = 0. You can verify this using L’Hopital’s rule, which you
may have learned in your study of calculus, or you can ascertain the correct
answer by calculating the Taylor series for sinc x. Here is what we get:

sinc x =
sin x
x

=
x− x3

3! +
x5

5! + ...

x
= 1 − x2

3!
+

x4

5!
+

From the Taylor series, it is clear that sinc x is well-defined at and near x = 0
and that, in fact, sinc(0) = 1. Let’s modify our function so that it gives the
correct value for x = 0.
In[7]: def sinc(x):
...: if x == 0.0:
...: y = 1.0
...: else:
...: y = np.sin(x) / x
...: return y

In[8]: sinc(0)
Out[8]: 1.0

In[9]: sinc(1.2)
Out[9]: 0.7766992383060219

Now, our function gives the correct value for x = 0 as well as for values
different from zero.

By the way, we can also write the program a bit more efficiently as
In[10]: def sinc(x):

...: if x == 0.0:

130 � Introduction to Python for Science and Engineering

...: return 1.0

...: else:

...: return np.sin(x) / x

7.1.1 Looping Over Arrays in User-Defined Functions

Thecode for sinc xworks just fine when the argument is a scalar (single) num-
ber. However, if the argument is a NumPy array, we run into a problem, as
illustrated below.
In[11]: x = np.linspace(0., 5., 11)

In[12]: x
Out[12]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ,

4.5, 5.])
In[13]: sinc(x)
Out[13]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ,

4.5, 5.])
In[14]: sinc(x)
ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

The if statement in Python evaluates the truth value of a single scalar vari-
able, not a multi-element array. When Python tries to evaluate the truth value
of a multi-element array, it doesn’t know what to do and, therefore, returns an
error.

An obvious way to handle this problem is to write the code so that it pro-
cesses the array one element at a time, which you could do using a for loop,
as illustrated below.

Code: sinc2.py
1 import numpy as np
2
3 def sinc(x):
4 y = [] # empty list to store results
5 for xx in x: # loops over in x array
6 if xx == 0.0: # appends result of 1.0 to
7 y += [1.0] # y list if xx is zero
8 else: # appends result of sin(xx)/xx to y
9 y += [np.sin(xx) / xx] # list if xx is not zero

10 # converts y to array and returns array
11 return np.array(y)

The for loop evaluates the elements of the x array one by one and appends
the results to the list y one by one. When the loop finishes, the function con-
verts the list to an array and returns the array. Figure 7.1 shows the plot of the
sinc(x) function generated by the above code.

Functions � 131

Figure 7.1 Plot of user-defined sinc(x) function.

7.1.2 Fast Array Processing for User-Defined Functions

While using loops to process arrays works, there are better ways to accomplish
a task in Python.The reason is that loops in Python are executed rather slowly,
as we saw in Section 6.2.4. To deal with this problem, the developers ofNumPy
introduced functions designed to process arrays quickly and efficiently. For
the present case, we need a conditional statement or function that can process
arrays directly. The function we want is called where and is part of the NumPy
library. The where function has the form

where(condition, output if True, output if False)

The first argument of the where function is a conditional statement involv-
ing an array. The where function applies the condition to the array element by
element, returns the second argument for those array elements for which the
condition is True, and returns the third argument for those array elements that
are False. We can apply it to the sinc(x) function as follows:

Code: sinc_test0.py
1 import numpy as np
2
3 def sinc(x):
4 z = np.where(x == 0.0, 1.0, np.sin(x) / x)
5 return z

The where function creates the array y and sets the elements of y equal to
1.0, where the corresponding elements of x are zero, and otherwise sets the
corresponding elements to sin(x)/x. Let’s try it out.
In[15]: x = np.linspace(0.0, 5.0, 6)

In[16]: x

132 � Introduction to Python for Science and Engineering

Out[16]: array([0., 1., 2., 3., 4., 5.])

In[17]: sinc(x)
/Users/dp/python/functions/sinc_test0.py:4:
RuntimeWarning: invalid value encountered in true_divide
z = np.where(x == 0.0, 1.0, np.sin(x) / x)
Out[17]:
array([1. , 0.84147098, 0.45464871, 0.04704 ,
-0.18920062, -0.19178485])

This program produces the correct answer but issues a RuntimeWarning. The
reason for the warning is that the np.where function evaluates the function, in
this case sinc(x), for all values in the x array, which includes a division by zero
for the first element of x. However, it returns only the values specified by the
condition in the where function, and thus discards the erroneous result. Thus,
the RuntimeWarning can be safely ignored because it does not figure in the final
output of the function.

The following code suppresses the annoying RuntimeWarning

Code: sinc_test1.py
1 import numpy as np
2 import warnings
3
4
5 def sinc(x):
6 warnings.filterwarnings("ignore", category=RuntimeWarning)
7 z = np.where(x == 0.0, 1.0, np.sin(x) / x)
8 warnings.filterwarnings("always", category=RuntimeWarning)
9 return z

Line 6 suppresses the RuntimeWarning. Line 8 restores the RuntimeWarning
after the where function is run.Otherwise, the RuntimeWarningwould be turned
off for all other code that runs subsequently.

This code executesmuch faster than the code using a for loop by 100 times
ormore, depending on the array size.Moreover, the new code ismuch simpler
to write and read. An additional benefit of the where function is that it can
handle single variables and arrays equally well.The code we wrote for the sinc
function with the for loop cannot handle single variables. Of course we could
rewrite the code so that it did, but the code becomes even more clunky. It’s
better just to use NumPy’s where function.

7.1.2.1 The Moral of the Story

The moral of the story is that you should avoid using for and while loops to
process arrays in Python programs whenever an array-processing method is
available. As a beginning Python programmer, you may not always see how to

Functions � 133

avoid loops, and indeed, avoiding them is not always possible. But you should
look for ways to avoid them, especially loops that iterate many times. As you
become more experienced, you will find that using array-processing methods
in Python becomes more natural. Using them can significantly speed up the
execution of your code, especially when working with large arrays.

7.1.2.2 Vectorized Code and Ufuncs

Finally, a word about jargon. Programmers sometimes refer to using array-
processing methods as vectorizing code. The jargon comes from the idea that
an array of N elements can be regarded as an N-dimensional vector. Com-
puter code that processes vectors as the basic unit rather than individual data
elements is said to be vectorized.

Within the NumPy world, functions that operate on NumPy arrays on
an element-by-element basis are called universal functions or ufuncs for short.
NumPyufuncs are vectorized.They also support array broadcasting, type cast-
ing, and other features associated with NumPy arrays.

Don’t worry too much about the jargon or even its origin. But it’s useful to
understand when reading from different sources, online or otherwise, about
Python code.

7.1.3 Functions with More than One Input or Output

Python functions can have any number of input arguments and can return
any number of outputs (variables). For example, suppose you want a function
that outputs (x, y)-coordinates of n points evenly distributed around a circle
of radius r centered at the point (x0, y0). The inputs to the function would be r,
x0, y0, and n. The outputs would be the (x, y)-coordinates. The following code
implements this function.

Code: circleN.py

1 import numpy as np
2
3
4 def circle(r, x0, y0, n):
5 theta = np.linspace(0.0, 2.0 * np.pi, n, endpoint=False)
6 x, y = r * np.cos(theta), r * np.sin(theta)
7 return x0 + x, y0 + y

This function has four inputs and two outputs. In this case, the four inputs
are simple numeric variables, and the two outputs are NumPy arrays. The in-
puts and outputs can be any combination of data types: arrays, lists, strings,

134 � Introduction to Python for Science and Engineering

etc. Of course, the body of the function must be written to be consistent with
the prescribed data types.

Note that we have set endpoint=False in the call to linspace in order to
avoid generating a value of theta=2*np.pi, which would duplicate the x-y data
point generated by theta=0.

7.1.4 Type Hints

As of Python 3.5 and NumPy 1.20, you can indicate which types are preferred
for Python function arguments (often called parameters) and returned objects.
For example, the previous program can be written with type hints:

Code: circleNtypes.py

1 import numpy as np
2
3
4 def circle(r: float, x0: float, y0: float, n: int
5) -> (np.ndarray, np.ndarray):
6 theta = np.linspace(0.0, 2.0 * np.pi, n, endpoint=False)
7 x, y = r * np.cos(theta), r * np.sin(theta)
8 return x0 + x, y0 + y

The input types are specified by adding a colon followed by the argument
type for each argument, as indicated. The returned types are specified by an
arrow (->) followed by the data types, as indicated above. The code typing in
this function has no effect on how Python runs the code. You should think of
it merely as a way of documenting your code, that is, as a way of indicating
to a user what the function expects as inputs and what it returns as outputs.
More information on this feature can be found here https://docs.python.org/
3/library/typing.html and here https://numpy.org/devdocs/reference/typing.
html#numpy.typing.ArrayLike.

7.1.5 Positional and Keyword Arguments

It is often useful to have function arguments that have some default setting.
This happens when you want an input to a function to have some standard
value or setting most of the time, but you would like to reserve the possibility
of giving it some value other than the default value.

For example, in the program circle from the previous section, you might
decide that undermost circumstances, you want n=12 points around the circle,
like the points on a clock face, and you want the circle to be centered at the
origin. In this case, you would rewrite the code to read

https://docs.python.org/3/library/typing.html
https://numpy.org/devdocs/reference/typing.html#numpy.typing.ArrayLike
https://docs.python.org/3/library/typing.html
https://numpy.org/devdocs/reference/typing.html#numpy.typing.ArrayLike

Functions � 135

Code: circleKW.py

1 import numpy as np
2
3
4 def circle(r, x0=0.0, y0=0.0, n=12):
5 theta = np.linspace(0., 2. * np.pi, n, endpoint=False)
6 x, y = r * np.cos(theta), r * np.sin(theta)
7 return x0 + x, y0 + y

The default values of the arguments x0, y0, and n are specified in the ar-
gument of the function definition in the def line. Arguments whose default
values are specified in this manner are called keyword arguments, and they
can be omitted from the function call if the user is content using those values.
For example, writing circle(4) is now a perfectly legal way to call the circle
function, and it would produce 12 (x, y) coordinates centered about the origin
(x, y) = (0, 0). On the other hand, if you want the values of x0, y0, and n to
be something different from the default values, you can specify their values as
you would have before.

If you want to change only some of the keyword arguments, you can do
so by using the keywords in the function call. For example, suppose you are
content with having the circle centered on (x, y) = (0, 0), but you want only 6
points around the circle rather than 12. Then you would call the circle func-
tion as follows:

circle(2, n=6)

The unspecified keyword arguments keep their default values of zero, but the
number of points n around the circle is now six instead of the default value of
12.

The normal arguments without keywords are called positional arguments;
they have to appear before any keyword arguments and, when the function is
called, must appear in the same order as specified in the function definition.
The keyword arguments, if supplied, can appear in any order provided they
appear with their keywords. If supplied without their keywords, they must
also appear in the order they appear in the function definition. The following
two function calls to circle give the same output.
In[18]: circle(3, n=3, y0=4, x0=-2)
Out[18]:
(array([1. , -3.5, -3.5]),
array([4. , 6.59807621, 1.40192379]))

In[19]: circle(3, -2, 4, 3) # w/o keywords, arguments
supplied in order
Out[19]:
(array([1. , -3.5, -3.5]),
array([4. , 6.59807621, 1.40192379]))

136 � Introduction to Python for Science and Engineering

We pointed out previously that we set endpoint=False in the call to
linspace in our definition of the circle function.The default value of endpoint
is True.Thus, we see that endpoint is a keyword argument of NumPy’s linspace
function.

7.1.6 Variable Number of Arguments

While itmay seem odd, leaving the number of arguments unspecified is some-
times useful. A simple example is a function that computes the product of an
arbitrary number of numbers:
In[20]: def product(*args):

...: print("args = {}".format(args))

...: p = 1

...: for num in args:

...: p *= num

...: return p

Placing the “*” before the args argument tells Python that args can have any
number of entries. For example, here we give it three entries:
In[21]: product(11., -2, 3)
args = (11.0, -2, 3)
Out[21]: -66.0

Here, we give only two arguments:
In[22]: product(2.31, 7)
args = (2.31, 7)
Out[22]: 16.17

The print("args...) statement in the function definition is not necessary, of
course, but is put in to show that the argument args is a tuple inside the func-
tion. Here, the *args tuple argument is used because one does not know ahead
of time how many numbers are to be multiplied together.

By the way, there is nothing special about the name args. We could have
equally well have used *nums or *items or *params; it’s the * before the argument
name that is important here!

7.1.6.1 Use of Star Syntax with zip Function

One useful application of this syntax involves printing the output from zipped
lists or arrays. Consider the following program:

Code: zipstar.py
1 import numpy as np
2
3 x = [23.1, 45.9, 38.4, 29.7]

Functions � 137

4 y = np.sin(np.array(x))
5 z = y ** 4
6
7 print("\nUsing explicit referencing")
8 for data in zip(x, y, z):
9 print(f"{data[0]:6.1f}, {data[1]:8.3f}, {data[2]:7.2f}")

10
11 print("\nUsing implicit referencing")
12 for data in zip(x, y, z):
13 print("{0:6.1f}, {1:8.3f}, {2:7.2f}".format(*data))

The program prints the elements of the zipped list and two arrays in two
different ways: first by explicitly referencing the three variables of the tuples
formed by the zip function, and second by implicitly referencing the three
variables using the star (asterisk) syntax introduced above. The results are
identical, but the star syntax is a bit slicker.
In[23]: run zipstar.py

Using explicit referencing
23.1, -0.895, 0.64
45.9, 0.940, 0.78
38.4, 0.645, 0.17
29.7, -0.989, 0.96

Using implicit referencing
23.1, -0.895, 0.64
45.9, 0.940, 0.78
38.4, 0.645, 0.17
29.7, -0.989, 0.96

7.1.7 Passing a Function Name and Its Parameters as Arguments

The *args tuple argument is also quite useful in another context: when passing
the name of a function as an argument in another function. In many cases,
the function name that is passed may have several parameters that must also
be passed but aren’t known ahead of time. If this all sounds a bit confusing—
functions calling other functions with arbitrary parameters—a concrete ex-
ample will help you understand.

Suppose we have the following function that numerically computes the
value of the derivative of an arbitrary function f(x):

Code: derivA.py
1 def deriv(f, x, h=1.e-9, *params):
2 return (f(x + h, *params) - f(x - h, *params)) / (2. * h)

138 � Introduction to Python for Science and Engineering

Theargument *params is an optional positional argument.Webegin by demon-
strating the use of the function derivwithout using the optional *params argu-
ment. Suppose we want to compute the derivative of the function f0(x) = 4x5.
First, we define the function:
In[24]: def f0(x):

...: return 4 * x**5

Now let’s find the derivative of f0(x) = 4x5 at x = 3 using the function deriv:
In[25]: deriv(f0, 3)
Out[25]: 1620.0001482502557

Theexact result is 1620, so our function to numerically calculate the derivative
works pretty well (it’s accurate to about 1 part in 107).

Suppose we had defined a more general function f1(x) = axp as follows:
In[26]: def f1(x, a, p):

...: return a * x**p

Suppose we want to calculate the derivative of this function for a set of nu-
merical values x for a particular set of the parameters a and p. Now, we face a
problembecause itmight seem that there is noway to pass the values of the pa-
rameters a and p to the deriv function. Moreover, this is a generic problem for
functions such as deriv that use a function as an input because different func-
tions you might want to use as inputs generally come with a different number
of parameters. Therefore, we would like to write our program deriv so that it
works, irrespective of howmany parameters are needed to specify a particular
function.

This is what the optional positional argument *params defined in deriv is
for: to pass parameters of f1, like a and p, through deriv. To see how this
works, let’s set a and p to be 4 and 5, respectively, the same values we used in
the definition of f0, so that we can compare the results:
In[27]: deriv(f1, 3, 1.e-9, *(4, 5))
Out[27]: 1620.0001482502557

We get the same answer as before, but this time we have used deriv with a
more general form of the function f1(x) = axp.

The order of the parameters a and p is important. The function deriv uses
x, the first argument of f1, as its principal argument and then uses a and p, in
the same order that they are defined in the function f1, to fill in the additional
arguments—the parameters—of the function f1.

Beware, the params argument must be a tuple. If there is only one param-
eter, as there is for the function g(x) = (x + a)/(x − a), then the call to the
derivative function would work like this:

Functions � 139

In[28]: def g(x, a):
...: return (x + a) / (x - a)

In[29]: a = 1.0

In[30]: x = np.linspace(0, 2, 6)

In[31]: deriv(g, x, 1.e-9, *(a,))
Out[31]:
array([-2.00000011, -5.55555557, -49.99999792, -50.00000414,
-5.55555602, -2.00000017])

The comma following a in the argument *(a,) is needed so that (a,) is un-
derstood by Python to be a tuple.

Optional arguments must appear after the regular positional and keyword
arguments in a function call. The order of the arguments must adhere to the
following convention:
def func(pos1, pos2, ..., keywd1, keywd2,
..., *args, **kwargs):

That is, the order of arguments is: positional arguments first, then key-
word arguments, then optional positional arguments (*args), then optional
keyword arguments (**kwargs). Note that to use the *params argument, we had
to explicitly include the keyword argument h even though we didn’t need to
change it from its default value.

Python also allows for a variable number of keyword arguments—
**kwargs—in a function call, that is, an argument preceded by **. While args
is a tuple, kwargs is a dictionary, so the value of an optional keyword argument
is accessed through its dictionary key. To use the **kwargs format, we rewrite
our deriv function using two stars (**params):

Code: derivK.py
1 def deriv(f, x, h=1.e-9, **params):
2 return (f(x + h, **params) - f(x - h, **params)) / (2. * h)

Next, we define a dictionary:
In[32]: d = {'a': 4, 'p': 5}

And finally, we input our optional keyword arguments using **d:
In[33]: deriv(f1, 3, **d)
Out[33]:1620.0001482502557

We can also include our optional keyword arguments as a dictionary literal:
In[34]: deriv(f1, 3, **{'a': 4, 'p': 5})
Out[34]:1620.0001482502557

140 � Introduction to Python for Science and Engineering

Note that when using **kwargs, you can omit keyword arguments, in this case
h, if you want to use the default value(s).

7.2 NAMESPACE AND SCOPE IN PYTHON

Functions are like mini-programs within the programs that call them. Each
function has a set of variables with specific names that are, to some degree
or other, isolated from the calling program. We will get more specific about
just how isolated those variables are below, but before we do, we introduce the
concept of a namespace.

Each function has its own namespace, which is a mapping of variable
names to objects, like numerics, strings, lists, and arrays. It’s a kind of dic-
tionary that maps variable names to objects.

The calling programhas its own namespace that is distinct from the name-
space of any functions it calls. The distinctiveness of these namespaces plays a
vital role in how functions work.

7.2.1 Scope: Four Levels of Namespaces in Python

One generally distinguishes four different levels of namespaces in Python:
built-in, global, enclosing, and local. Each of these namespaces has its own
scope.

1. The built-in namespace consists of all of Python’s built-in objects. These
are always available whenever a Python program is running. Among
other things, they include Python functions we have encountered like
len, list, range, zip, etc., as well as exception names like ValueError and
ZeroDivistionError.

2. The global namespace consists of all the objects defined by themain pro-
gram (that you write). All the names in this namespace remain in exis-
tence for as long as the program runs.

3. The local namespace, when the main program calls a function, a new
local namespace is created for that function; it remains in existence until
the function terminates.

4. The enclosing namespace, it’s also possible to call a function from within
a function. A new local namespace is created for the new function; in
that case, the namespace of the first function is called the enclosing
namespace.

Functions � 141

This hierarchy of namespaces, local, enclosing, global, and built-in, often
referred to as LEGB, defines how Python looks for names of objects (i.e., vari-
ables, functions, etc.).

The scope of a namespace defines where Python looks for names. If the
program is executing a local function, the interpreter first looks in the local
namespace for any name, let’s say x, that it references. Thus, the scope of the
local namespace is limited to only within the function. If x isn’t defined in the
local namespace, the interpreter looks for x in the enclosing namespace. If it’s
there, it uses it. Thus, the scope of this namespace is the defining function and
any functions defined within that function. If the interpreter doesn’t find the
name in the enclosing namespace, it looks in the global namespace. Finally, if
x isn’t in any of these namespaces, it looks for it in the built-in namespace. So,
the scopes of the names in the global and built-in namespaces are the entire
program.

The program below illustrates how the scopes of the different namespaces
work.

Code: scope.py
1 def f():
2 y = "enclosing"
3 z = "enclosing"
4 print(f"(2) inside f: x={x}, y={y}, z={z}")
5
6 def g():
7 z = "local"
8 print(f"(3) inside g: x={x}, y={y}, z={z}")
9

10 g()
11 print(f"(4) inside f: x={x}, y={y}, z={z}")
12
13
14 x = "global"
15 y = "global"
16 z = "global"
17 print(f"(1) in main: x={x}, y={y}, z={z}")
18 f()
19 print(f"(5) in main: x={x}, y={y}, z={z}")

The program begins on line 14 where it defines three strings x, y, and z,
setting each to "global". In line 18, the main program calls the function f()
with no arguments. The first two lines in f(), lines 2 and 3 in the program
listing, redefine the variables y and z to be "enclosing". Then when x, y, and
z are printed in line 4, we see from the program output below that y and z
have the values assigned to them within the function f(), but x, which isn’t
redefined in f() takes its value from the main program that called f(). When
the function g() is called from within f(), z is set equal to "local". Because

142 � Introduction to Python for Science and Engineering

only z is modified, when x, y, and z are printed out from within g(), the value
of z is the value assigned in g(), but the value y is the value it was assigned in
f(), and x is the value it was assigned in the main program, because neither
f() nor g() reassigned x to another object. After returning to f(), printing x,
y, and z gives the same answers it gave before g() was called. And finally, after
returning to the main program, printing x, y, and z gives the same answers it
gave before f() was called.
In[1]: run scope.py
(1) in main: x=global, y=global, z=global
(2) inside f: x=global, y=enclosing , z=enclosing
(3) inside g: x=global, y=enclosing , z=local
(4) inside f: x=global, y=enclosing , z=enclosing
(5) in main: x=global, y=global, z=global

7.2.2 Variables and Arrays Created Entirely Within a Function

One thing the LEGB hierarchy means is that names created entirely within a
function cannot be seen by the program that calls the function. This is impor-
tant because it means you can create andmanipulate variables and arrays, giv-
ing them any name you please, without affecting any variables or arrays out-
side the function, even if the variables and arrays inside and outside a function
share the same name. It also means that any objects created within a function
are not available to the calling function unless the object is explicitly passed
to the calling program in the return statement.

To see how this works, let’s rewrite our program to plot the sinc function
using the sinc function definition that uses the where function.

Code: sinc_test0.py
1 import numpy as np
2
3 def sinc(x):
4 z = np.where(x == 0.0, 1.0, np.sin(x) / x)
5 return z

We save this program in a file named sinc_test.py. Running this program
by typing run sinc_test0.py in the IPython terminal creates the x and y arrays.
Notice that the array variable z is only defined within the function definition
of sinc. If we ask IPython to print out the arrays, x, y, and z, we get some
interesting and informative results, as shown below.
In[2]: run sinc_test.py

In[3]: x
Out[3]: array([-10. , -9.99969482, -9.99938964,

Functions � 143

...: 9.9993864, 9.99969482, 10.])

In[4]: y
Out[4]: array([-0.05440211, -0.05437816, -0.0543542 ,

...: -0.0543542 , -0.05437816, -0.05440211])

In[5]: z

NameError Traceback (most recent call last)
NameError: name 'z' is not defined

When we type in x at the In [3]: prompt, IPython prints out the array x
(some of the output is suppressed because the array x has many elements);
similarly for y. But when we type z at the In [5]: prompt, IPython raises a
NameError because z is not defined. The IPython terminal is working in the
same namespace as the main program, the global namespace. But the name-
space of the sinc function is isolated from the namespace of the program that
calls it and therefore isolated from IPython.

This also means that when the sinc function ends with return z, it doesn’t
return the name z, but instead returns only the array object to the main pro-
gram in line 11, where the name y is bound to the object created within the
function. The name z along with the local namespace for sinc is discarded
when the sinc function terminates.

7.2.3 Passing Lists and Arrays to Functions: Mutable and Immutable Objects

What happens to a variable or an array passed to a function when the variable
or array is changed within the function? It turns out that the answers depend
on whether the object is mutable, like lists, dictionaries, and NumPy arrays,
or immutable, like integers, floats, strings, Booleans, and tuples.

If an object is immutable, any attempt to change the object will create a
new object so that the original object is left unchanged.

If an object is mutable, such as a list, dictionary, or NumPy array, then
changes to the elements of the object will be reflected in the object in the call-
ing program. However, if the whole object is redefined within the function, a
new object will be created, even if the name of the new object is the same, and
the original object will be left unchanged in the calling program.

Theprogrambelow illustrates howPythonhandles single variables vs.how
it handles lists and arrays.

144 � Introduction to Python for Science and Engineering

Code: passing_vars.py
1 import numpy as np
2
3
4 def f(stg, flt, tup, dct, lis, arr):
5 stg = "I am doing fine"
6 flt = np.pi ** 2
7 tup = (1.1, 2.9)
8 dct["Dave"] = 70.1
9 lis[-1] = 'end'

10 arr[0] = 963.2
11 return stg, flt, tup, dct, lis, arr
12
13
14 stg = "How do you do?"
15 flt = 5.0
16 tup = (97.5, 82.9, 66.7)
17 dct = {"Lucy": 3.2e6, "Ardi": 4.4e6}
18 lis = [3.9, 5.7, 7.5, 9.3]
19 arr = np.array(lis)
20
21 print('******************* Before function call ******************')
22 print(f"stg = {stg}")
23 print(f"flt = {flt:4.2f}")
24 print(f"tup = {tup}")
25 print(f"dct = {dct}")
26 print(f"lis = {lis}")
27 print(f"arr = {arr}")
28 print('***')
29 print('********************** function call **********************')
30
31 stg1, flt1, tup1, dct1, lis1, arr1 = f(stg, flt, tup, dct, lis, arr)
32
33 print('************** Variables returned by function *************')
34 print(f"stg1 = {stg1}")
35 print(f"flt1 = {flt1:4.2f}")
36 print(f"tup1 = {tup1}")
37 print(f"dct1 = {dct1}")
38 print(f"lis1 = {lis1}")
39 print(f"arr1 = {arr1}")
40 print('********** Original variables after function call ********')
41 print(f"stg = {stg}")
42 print(f"flt = {flt:4.2f}")
43 print(f"tup = {tup}")
44 print(f"dct = {dct}")
45 print(f"lis = {lis}")
46 print(f"arr = {arr}")
47 print('***')

The function f has six arguments: a string stg, a dictionary dct, a float flt,
a tuple tup, a list lis, and a NumPy array arr. The function f modifies each
of these arguments and then returns the modified stg, dct, flt, tup, lis,
arr to the calling program as stg1, dct1, flt1, tup1, lis1, arr1. Running
the program produces the following output:

Functions � 145

In[6]: run passingVars.py
******************* Before function call ******************
stg = How do you do?
flt = 5.00
tup = (97.5, 82.9, 66.7)
dct = {'Lucy': 3200000.0, 'Ardi': 4400000.0}
lis = [3.9, 5.7, 7.5, 9.3]
arr = [3.9 5.7 7.5 9.3]

********************** function call **********************
************** Variables returned by function *************
stg1 = I am doing fine
flt1 = 9.87
tup1 = (1.1, 2.9)
dct1 = {'Lucy': 3200000.0, 'Ardi': 4400000.0, 'Dave': 70.1}
lis1 = [3.9, 5.7, 7.5, 'end']
arr1 = [963.2 5.7 7.5 9.3]
********** Original variables after function call ********
stg = How do you do?
flt = 5.00
tup = (97.5, 82.9, 66.7)
dct = {'Lucy': 3200000.0, 'Ardi': 4400000.0, 'Dave': 70.1}
lis = [3.9, 5.7, 7.5, 'end']
arr = [963.2 5.7 7.5 9.3]

The program prints out three blocks of variables separated by asterisks. The
first block merely verifies that the contents of stg, flt, tup, dct, lis, and
arr are those assigned in lines 14–19. Then the function f is called. The next
block prints the output of the call to the function f, namely the variables stg1,
flt1, tup1, dct1, lis1, and arr1. The results verify that the function modified
the inputs as directed by the f function.

The third block prints out the variables stg, flt, tup, dct, lis, and
arr from the calling program after the function f was called. These variables
served as the inputs to the function f. Examining the output from the third
printing block, we see that the string stg, the float flt, and the tuple tup are
unchanged after the function call. This is probably what you would expect.
On the other hand, we see that the dictionary dct, the list lis, and the array
arr are changed after the function call. This might surprise you! But these are
important points to remember, so we summarize them in two bullet points
here:

• Changes to immutable arguments of a function, such as strings, floats,
and tuples, within the function do not affect their values in the calling
program.

146 � Introduction to Python for Science and Engineering

• Changes to the elements of mutable arguments of a function, such as
the elements of lists and arrays, are reflected in the values of the same
list and array elements in the calling function.

The point is that simple numerics, strings, and tuples are immutable, while
dictionaries, lists, and arrays are mutable. Because immutable objects can’t be
changed, changing them within a function creates new objects with the same
name inside of the function, but the old immutable objects used as arguments
in the function call remain unchanged in the calling program. On the other
hand, if elements of mutable objects like those in lists or arrays are changed,
then those elements that are changed inside the function are also changed in
the calling program.

7.3 ANONYMOUS FUNCTIONS: LAMBDA EXPRESSIONS

Python provides anotherway to generate functions called lambda expressions.
A lambda expression is an in-line function that can be generated on the fly to
accomplish some small task, often where a function name is needed as input
to another function and thus is used only once.

You can assign a lambda expression a name, but you don’t need to; hence,
they are sometimes called anonymous functions.

A lambda expression uses the keyword lambda and has the general form
lambda arg1, arg2, ... : output

The arguments arg1, arg2, ... are inputs to a lambda, just as for a function,
and the output is an expression using the arguments.

While lambda expressions need not be named, we illustrate their use by
comparing a conventional Python function definition to a lambda expression
to which we give a name. First, we define a conventional Python function:
In[1]: def f(a, b):
...: return 3 * a + b**2

In[2]: f(2, 3)
Out[2]: 15

Next, we define a lambda expression that does the same thing:
In[3]: g = lambda a, b: 3 * a + b**2

In[4]: g(2, 3)
Out[4]: 15

Functions � 147

The lambda expressiondefined by gdoes the same thing as the function f. Such
lambda expressions are useful when you need a very short function definition,
usually used locally only once or perhaps a few times.

Lambda expressions can be useful as function arguments, particularly
when extra parameters need to be passed with the function. In Section 7.1.7,
we saw howPython functions can do this using optional arguments, *args and
**kwargs. Lambda expressions provide another means for accomplishing the
same task. To see how this works, recall our definition of the function to take
the derivative of another function:

Code: derivA.py
1 def deriv(f, x, h=1.e-9, *params):
2 return (f(x + h, *params) - f(x - h, *params)) / (2. * h)

and our definition of the function
In[5]: def f1(x, a, p):
...: return a*x**p

Instead of using the *params optional argument to pass the values of the pa-
rameters a and p, we can define a lambda expression that is a function of x
alone, with a and p set in the lambda expression.
In[6]: g = lambda x: f1(x, 4, 5)

The function g defined by the lambda expression is the same as f1(x, a, p)
but with a and p set to 4 and 5, respectively. Now we can use deriv to calculate
the derivative at x = 3 using the lambda function g

In[7]: deriv(g, 3)
Out[7]: 1620.0001482502557

Of course, we get the same answer as we did using the other methods.
You might wonder why we can’t just insert f1(x, 4, 5) as the argument

to deriv. The reason is that you need to pass the name of the function, not the
function itself. We assign the name g to our lambda expression and then pass
that name through the argument of deriv.

Alternatively, we can insert the whole lambda expression in the argument
of deriv where the function name goes:
In[8]: deriv(lambda x: f1(x, 4, 5), 3)
Out[8]: 1620.0001482502557

Thisworks too. In this case, however, we never defined a function name for our
lambda expression. Our lambda expression is indeed an anonymous function.

You may recall that we already used lambda expressions in Section 5.2.3,
where we discussed how to print formatted arrays. Several nifty programming

148 � Introduction to Python for Science and Engineering

tricks can be realized using lambda expressions, but we will not go into them
here. Look up lambdas on the web if you are curious about their more exotic
uses.

7.4 NUMPY OBJECT ATTRIBUTES: METHODS AND INSTANCE
VARIABLES

You have already encountered quite a number of functions that are part of ei-
ther NumPy or Python. But there is another way in which Python implements
things that act like functions: these are the methods associated with an object
that we introduced in Section 4.5. Recall from Section 4.5 that strings, arrays,
lists, and other such data structures in Python are not merely the numbers or
strings we have defined them to be. They are objects. In general, an object in
Python has associated with it a number of attributes, which are either instance
variables associated with the object or specialized functions called methods
that act on the object.

Let’s start with the NumPy array. A NumPy array is a Python object
and has associated with it many attributes: instance variables and meth-
ods. Suppose, for example, we create a NumPy array a = np.sin(np.exp(np.
arange(10))), which creates an array of 10 numbers between -1. and 1. An ex-
ample of an instance variable associated with an array is the size or number of
elements in the array. An instance variable of an object in Python is accessed
by typing the object name followed by a period followed by the variable name.
The code below illustrates how to access two different instance variables of an
array: its size and data type.
In[1]: a = np.sin(np.exp(np.arange(10)))

In[2]: a.size
Out[2]: 10

In[3]: a.dtype
Out[3]: dtype('float64')

Any object in Python can, and in general does, have a number of instance
variables that are accessed in just the way demonstrated above, with a period
and the instance variable name following the name of the particular object. In
general, instance variables involve properties of the object that are stored by
Python with the object and require no computation. Python just looks up the
attribute and returns its value.

Objects in Python also have associated with them a number of special-
ized functions called methods that act on the object or its attributes. Methods
generally involve Python performing a computation. Methods are accessed

Functions � 149

in a fashion similar to instance variables, by appending a period followed the
method’s name, which is followed by a pair of open-close parentheses, consis-
tent with a method being a function. Often, methods are used with no argu-
ments, as methods, by default, act on the object whose name they follow. In
some cases. however, methods can take arguments. Examples of methods for
NumPy arrays are sorting, calculating the mean, or standard deviation of the
array. The code below illustrates a few array methods.
In[4]: a
Out[4]:
array([0.84147098, 0.41078129, 0.89385495, 0.94447101,
-0.92876794, -0.68769141, 0.96486625, -0.21561571,
0.40176297, -0.79346054])
In[5]: a.sum() # sum
Out[5]: 1.8316718643908008

In[6]: a.mean() # mean or average
Out[6]: 0.1831671864390801

In[7]: a.var() # variance
Out[7]: 0.5336294146306282

In[8]: a.std() # standard deviation
Out[8]: 0.7304994282206032

In[9]: a.sort() # sort small to large

In[10]: a
Out[10]:
array([-0.92876794, -0.79346054, -0.68769141, -0.21561571,
0.40176297, 0.41078129, 0.84147098, 0.89385495,
0.94447101, 0.96486625])

Notice that the sort() method has permanently changed the order of the ele-
ments of the array.
In[11]: a.clip(-0.3, 0.8)
Out[11]:
array([-0.3, -0.3, -0.3, -0.21561571, 0.40176297, 0.41078129,
0.8, 0.8, 0.8, 0.8])

The clip() method provides an example of a method that takes an argument;
in this case, the arguments are the lower and upper values to which array ele-
ments are clipped if their values are outside the range set by these values.

150 � Introduction to Python for Science and Engineering

Figure 7.2 Velocity vs. time for falling mass.

7.5 EXAMPLE: LINEAR LEAST SQUARES FITTING

In this section, we illustrate how to use functions and methods to model ex-
perimental data.

In science and engineering, we often have some theoretical curve or fitting
function that we would like to fit to experimental data. In general, the fitting
function is of the form f(x; a, b, c, ...), where x is the independent variable and
a, b, c, ... are parameters to be adjusted so that the function f(x; a, b, c, ...) best
fits the experimental data. For example, suppose we had some data of the ve-
locity vs. time for a falling mass. If the mass falls only a short distance, such
that its velocity remains well below its terminal velocity, we can ignore air re-
sistance. In this case, we expect the acceleration to be constant and the velocity
to change linearly in time according to the equation

v(t) = v0 − gt, (7.1)

where g is the local gravitational acceleration. We can fit the data graphically
by plotting it as shown in Figure 7.2, and then drawing a line through the data.
Whenwedraw a straight line through the data, we try tominimize the distance
between the points and the line, globally averaged over the whole data set.

While this can give a reasonable estimate of the best fit to the data, the
procedure is rather ad hoc. We would prefer a more well-defined analytical
method for determining what constitutes a “best fit.” One way to do that is to
consider the sum

S =
n∑
i
[yi − f(xi; a, b, c, ...)]2, (7.2)

Functions � 151

where yi and f(xi; a, b, c, ...) are the values of the experimental data and the fit-
ting function, respectively, at xi, and S is the square of their difference summed
over all n data points. The quantity S is a sort of global measure of how much
the fit f(xi; a, b, c, ...) differs from the experimental data yi.

Notice that for a given set of data points {xi, yi}, S is a function only of
the fitting parameters a, b, ..., that is, S = S(a, b, c, ...). One way of defining a
best fit, then, is to find the set of values of the fitting parameters a, b, … that
minimize the value of S.

In principle, finding the values of the fitting parameters a, b, ... that min-
imize S is a simple matter. Just set the partial derivatives of S with respect to
the fitting parameter equal to zero and solve the resulting system of equations:

∂S
∂a

= 0 , ∂S
∂b

= 0 , ... (7.3)

Because there are as many equations as there are fitting parameters, we should
be able to solve the systemof equations andfind the values of the fitting param-
eters that minimize S. Solving those systems of equations is straightforward if
the fitting function f(x; a, b, ...) is linear in the fitting parameters. Some exam-
ples of fitting functions linear in the fitting parameters are:

f(x; a, b) = a+ bx
f(x; a, b, c) = a+ bx+ cx2

f(x; a, b, c) = a sin x+ bex + ce−x2 . (7.4)

For fitting functions such as these, taking the partial derivatives with respect
to the fitting parameters, as proposed in Eq. (7.3), results in a set of algebraic
equations that are linear in the fitting parameters a, b, ... Because they are
linear, these equations can be solved in a straightforward manner.

For cases where the fitting function is not linear in the fitting parameters,
one can generally still find the values of the fitting parameters that minimize
S, but finding them requires more work, which goes beyond our immediate
interests here. See Section 9.3.3 for more on nonlinear fitting.

7.5.1 Linear Regression

We start by considering the simplest case, fitting a straight line to a set of
{xi, yi} data, such as the data set shown in Figure 7.2. Here, the fitting function
is f(x) = a+bx, which is linear in the fitting parameters a and b. For a straight
line, the sum in Eq. (7.2) becomes

S(a, b) =
∑
i

(yi − a− bxi)2 , (7.5)

152 � Introduction to Python for Science and Engineering

where the sum is over all the points in the {xi, yi} data set. Finding the best fit
in this case corresponds to finding the values of the fitting parameters a and b
for which S(a, b) is a minimum. To find the minimum, we set the derivatives
of S(a, b) equal to zero:

∂S
∂a

=
∑
i
−2(yi − a− bxi) = 2

(
na+ b

∑
i xi −

∑
i yi

)
= 0

∂S
∂b

=
∑
i
−2(yi − a− bxi)xi = 2

(
a
∑

i xi + b
∑

i x2
i −

∑
i x1yi

)
= 0

(7.6)
Dividing both equations by 2n leads to the equations

a+ bx̄ = ȳ

ax̄+ b1
n
∑
i
x2
i =

1
n
∑
i
xiyi (7.7)

where

x̄ =
1
n
∑
i
xi , ȳ = 1

n
∑
i
yi . (7.8)

Solving Eq. (7.7) for the fitting parameters gives

b =

∑
i xiyi − nx̄ȳ∑
i x2

i − nx̄2 , a = ȳ− bx̄ . (7.9)

Noting that nȳ =
∑

i y and nx̄ =
∑

i x, the results can be written as

b =

∑
i(xi − x̄)yi∑
i(xi − x̄)xi

, a = ȳ− bx̄ . (7.10)

While Eqs. (7.9) and (7.10) are equivalent analytically, Eq. (7.10) is preferred
for numerical calculations because Eq. (7.10) is less sensitive to roundoff er-
rors. Here is a Python function implementing this algorithm:

Code: linefit.py
1 def linefit(x, y):
2 """Returns slope and y-intercept of linear fit to (x,y)
3 data set"""
4 xavg = x.mean()
5 slope = (y * (x - xavg)).sum() / (x * (x - xavg)).sum()
6 yint = y.mean() - slope * xavg
7 return yint, slope

It’s hard to imagine a simpler implementation of the linear regression al-
gorithm.

Functions � 153

Figure 7.3 Fit using χ2 least squares fitting routine with data weighted by error
bars.

7.5.2 Linear Regression with Weighting: χ2

The linear regression routine of the previous section weights all data points
equally. That is fine if the absolute uncertainty is the same for all data points.
In many cases, however, the uncertainty is different for different points in a
data set. In such cases, we would like to weight the data with smaller uncer-
tainty more heavily than those with greater uncertainty. For this case, there is
a standard method of weighting and fitting data that is known as χ2 (or chi-
squared) fitting. In this method, we suppose that associated with each (xi, yi)
data point is an uncertainty in the value of yi of±σi. In this case, the “best fit”
is defined as the one with the set of fitting parameters that minimizes the sum

χ2 =
∑
i

(
yi − f(xi)

σi

)2
. (7.11)

Setting the uncertainties σi = 1 for all data points yields the same sum S we
introduced in the previous section. In this case, all data points are weighted
equally. However, if σi varies from point to point, it is clear that those points
with large σi contribute less to the sum than those with small σi. Thus, data
points with large σi are weighted less than those with small σi.

To fit data to a straight line, we set f(x) = a+ bx and write

χ2(a, b) =
∑
i

(
yi − a− bxi

σi

)2
. (7.12)

154 � Introduction to Python for Science and Engineering

Finding theminimum forχ2(a, b) follows the same procedure used for finding
the minimum of S(a, b) in the previous section. The result is

b =

∑
i(xi − x̂)yi/σ2

i∑
i(xi − x̂)xi/σ2

i
, a = ŷ− bx̂ . (7.13)

where

x̂ =

∑
i xi/σ2

i∑
i 1/σ2

i
, ŷ =

∑
i yi/σ2

i∑
i 1/σ2

i
. (7.14)

Figure 7.3 shows the fit to a straight line using this algorithm.
For a fit to a straight line, the overall quality of the fit can be measured by

the reduced chi-squared parameter

χ2
r =

χ2

n− 2
, (7.15)

whereχ2 is given by Eq. (7.11) evaluated at the optimal values of a and b given
byEq. (7.13). A goodfit is characterized byχ2

r ≈ 1.Thismakes sense because if
the uncertainties σi have been properly estimated, then [yi− f(xi)]2 should, on
average, be roughly equal to σ2

i , so that the sum in Eq. (7.11) should consist
of n terms (one for each of the n data point) approximately equal to 1. Of
course, if there were only 2 data points (n = 2), then χ2 would be zero as
the best straight line fit to two points is a perfect fit. That is essentially why
χ2
r is normalized using n− 2 instead of n. If χ2

r is significantly greater than 1,
this indicates a poor fit to the fitting function (or an underestimation of the
uncertainties σi). If χ2 is significantly less than 1, then the uncertainties were
probably overestimated (the fit and fitting function may or may not be good).

We can also get estimates of the uncertainties in our determination of the
fitting parameters a and b, although deriving the formulas is a bit more in-
volved than we want to get into here. Therefore, we just give the results:

σ2
b =

1∑
i(xi − x̂)xi/σ2

i
, σ2

a = σ2
b

∑
i x2

i /σ
2
i∑

i 1/σ2
i
. (7.16)

The estimates of uncertainties in the fitting parameters depend explicitly on
{σi} and will only be meaningful if (i) χ2

r ≈ 1 and (ii) the estimates of the
uncertainties σi are accurate.

You can find more information, including a derivation of Eq. (7.16), in
Data Reduction and Error Analysis for the Physical Sciences, 3rd ed by P. R.
Bevington & D. K. Robinson, McGraw-Hill, New York, 2003.

Functions � 155

7.6 EXERCISES

1. Write Python functions for the following:

(a) A function named sphere_area that returns the area of a sphere
given the sphere’s diameter.

(b) A function named sphere_volume that returns the volume of a
sphere given the sphere’s diameter.

The output of both functions should be floats. Incorporate these two
functions into a program that makes three arrays, one of sphere diame-
ters ranging from one to ten with increments of one, and twomore with
the corresponding areas and volumes. Using these arrays, have your
program print a table like the one below. Hint: Use the zip function
and loop over its rows to print out your table.
diameter area volume
1 3.14 0.52
2 12.57 4.19
3 28.27 14.14
4 50.27 33.51
5 78.54 65.45
6 113.10 113.10
7 153.94 179.59
8 201.06 268.08
9 254.47 381.70
10 314.16 523.60

2. Write a function to estimate the price of a Manhattan apartment. The
positional inputs should be the total area of the apartment in square feet
and the floor (story) of the apartment. Assume that the cost per square
foot of an apartment is $1000 with an additional cost of $12,000 to the
total price for each floor above the second floor. The price per square
foot and the additional cost per floor should be keyword arguments (set
equal to 1000 and 12,000, respectively).
Using your function, write a program to print out the total cost of an
apartment on the 46th floor with a total area of 1200 sq. ft. and the total
cost of an apartment on the 5th floor with a total area of 728 sq. ft.
Extra challenge: Look up online how to print out the answers with com-
mas as thousands separators. For good measure, put a dollar sign in
front of the numbers.

156 � Introduction to Python for Science and Engineering

3. Write a function that returns the first n spherical Bessel functions jn(x)
up to n = 2:

j0(x) =
sin x
x

j1(x) =
sin x
x2 − cos x

x

j2(x) =
(

3
x2 − 1

)
sin x
x

− 3 cos x
x2

Your function should take as arguments a NumPy array x and the order
n, and should return j0(x), or j0(x) and j1(x), or j0(x), j1(x), and j2(x),
depending on whether n is 0, 1, or 2. Take care to make sure that your
functions behave properly at x = 0.
Using your function, write a program to reproduce the following results:
x j0 j1 j2
0.0 1.000 0.000 0.000
1.0 0.841 0.301 0.062
2.0 0.455 0.435 0.198
3.0 0.047 0.346 0.299
4.0 -0.189 0.116 0.276
5.0 -0.192 -0.095 0.135
6.0 -0.047 -0.168 -0.037
7.0 0.094 -0.094 -0.134
8.0 0.124 0.034 -0.111
9.0 0.046 0.106 -0.010

10.0 -0.054 0.078 0.078

Something to think about: You might note that j0(x) can be used in the
calculation of j1(x), and that j1(x) can be used in the calculation of j2(x).
Can you use this to write a more efficient function for the calculations
of j1(x) and j2(x)?

4. Write a function that simulates the rolling of n dice. You can generate
a random integer between 1 and 6 with equal probability with the fol-
lowing code:
In[1] In[2]: import random

In[3] In[4]: random.randint(1, 6)
Out[4] Out[4]: 4

The function random.randint(1, 6) returns a random integer between
1 and 6 inclusive. For more about Python’s module random, see https:
//docs.python.org/3/library/random.html.

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Functions � 157

The input of your function should be the number of dice thrown for
each roll, and the output should be the sum of the n dice. Your function
should print the result of each rolled die and return the sum of all the
dice.
Write a pair of nested for loops to run your function three times for
each value of n from 2 to 5. The output should look something like this:
number of dice = 2
[3, 6]
9
[1, 6]
7
[6, 5]
11
number of dice = 3
[3, 1, 2]
6
.
.
.

5. In Section 7.5, we showed that the best fit of a line y = a + bx to a
set of data {xi, yi} is obtained for the values of a and b given by Eq.
(7.10). Those formulas were obtained by finding the values of a and b
that minimized the sum in Eq. (7.5). This approach and these formulas
are valid when the uncertainties in the data are the same for all data
points. The Python function linefit(x, y) in Section 7.5.1 implements
Eq. (7.10).

(a) Write a new fitting function linefitWt(x, y, dy) that implements
the formulas given in Eqs. (7.13) and (7.14)) that minimize the χ2

function give by Eq. (7.12). This more general approach is valid
when the individual data points have different weightings orwhen
they all have the same weighting; these are input to linefitWt(x,
y, dy) with the new argument dy. In addition to returning the fit-
ting parameters a and b, linefitWt(x, y, dy) should also return
the uncertainties in the fitting parameters σa and σb using Eq.
(7.16).
You should also write a separate function to calculate the reduced
chi-squared χ2

r defined by Eq. (7.15).

158 � Introduction to Python for Science and Engineering

(b) Write a Python program that reads in the data below and fits it
using the two fitting functions linefit(x, y) and linefitWt(x, y,
dy). Your program should report the results for both fits.
Velocity \vs\ time data for a falling mass
time (s) velocity (m/s) uncertainty (m/s)
2.23 139 16
4.78 123 16
7.21 115 4
9.37 96 9

11.64 62 17
14.23 54 17
16.55 10 12
18.70 -3 15
21.05 -13 18
23.21 -55 10

6. Consider the two functions

p(x) = a+ bx+ cx2

V(t) = V0

(
1 − e−t/RC

)

(a) Write a Python function for p(x) and then use the functions derivA
on page 137 and derivK on page 139 to numerically determine the
derivatives of p(x) at x = −3,−2,−1, 0, 1, 2, 3. derivA and derivK
should give identical results. Use a = 2.1, b = −3.2, and c = 5.8
for the constants.

(b) Do the same for V(t) for t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. For the con-
stants, use V0 = 5.0, R = 100, 000, and C = 1 × 10−6.

7. Write a function that numerically estimates the integral

A =

∫ b

a
f(x) dx

using the trapezoid rule. The simplest version of the trapezoid rule,
which generally gives a very crude estimate, is

A0 =
1
2h0[f(a) + f(b)] , h0 = b− a .

This estimate for the integral can be refined bydividing the interval from
a to b in two and performing the trapezoid rule on each interval. The

Functions � 159

refined estimate A1 is given by

A1 =
1
2h1[f(a) + f(a+ h1)] + 1

2h1[f(a+ h1) + f(b)] , h1 =
1
2h0

= 1
2h1[f(a) + 2f(a+ h1) + f(b)]

= 1
2A0 + h1f(a+ h1)

Notice that the first estimate of the integral A0 can be reused in the cal-
culation of the refined estimate A1, thereby saving some computational
effort.
This process of dividing the intervals in two can be continued to obtain
a sequence of ever more refined estimates A0, A1, A2, …of the integral.
With each iteration, the result of the previous estimate can be reused
in the calculation of the next more refined estimate. Repeatedly appli-
cation of the trapezoid rule gives the following sequence of ever more
refined estimates:

A2 =
1
2A1 + h2[f(a+ h2) + f(a+ 3h2)] , h2 =

1
2h1

A3 =
1
2A2 + h3[f(a+ h3) + f(a+ 3h3) + f(a+ 5h3) + f(a+ 7h3)] ,

h3 =
1
2h2

...

An =
1
2An−1 + hn

2n−1∑
i=1,3,...

f(a+ ihn) , hn = 1
2hn−1 , for n ≥ 1

This process can be repeated as many times as needed until the desired
precision is obtained, which can be estimated by requiring that the frac-
tional difference between successive estimates |(Ai − Ai−1)/Ai| < ε,
where ε might be some small number like 10−8.

160 � Introduction to Python for Science and Engineering

Write a function that implements the trapezoid rule by first evaluating
A0, then A1, …until ϵ is less than some preset tolerance. By using the
previous result Ai−1 to calculate Ai, you only need to evaluate the func-
tion to be integrated f(x) at the open circles in the preceding diagram,
saving a great deal of computation.
Your function implementing the trapezoid rule should be of the form

trapz(f, a, b, tol=1.0e-8, **fparams)

where f is the function to be integrated from a to b to within a tolerance
tol (= ϵ). The function definition should include **fparams to pass any
additional parameters of the function f.
Your function trapz() should return the following values:

• An: the sum that represents the numerical approximation of the
integral.

• ϵn = |(An − An−1)/An|: the estimated error,which should be less
than tol.

• n: the number of iterations required to achieve the desired accu-
racy for An.

A reasonably efficient function implementing the adaptive trapezoid
method shouldn’t be very long: on the order of 16 or fewer lines should
suffice.
Try your trapezoid integration function on the following integrals and
show that you get an answer within the specified tolerance of the exact
value. Define one function for each of the three parts below and test
each function for the two specific cases provided in each part. Use the
**{} syntax to pass extra parameters of the integrand function.

(a)
∫ b
a cxp dx

(i)
∫ 5
2 x2 dx = 39

(ii)
∫ 5
1 2x3 dx = 312

(b)
∫ b
a A sin kx dx

(i)
∫ π
0 sin x dx = 2

(ii)
∫ 2π
π/2 7 sin x

3 dx = 21
2 (1 +

√
3) ≃ 28.686533479473

(c)
∫ t
s Be

−(x/w)2 dx
(i)

∫ 3.5
0 e−x2 dx =

√
π
2 erf(3.5) ≃ 0.8862262668989

(ii)
∫ 5
1 4e−(x/2)2 dx=4

√
π
[
erf

(5
2
)
−erf

(1
2
)]
≃3.3966821376379

Functions � 161

8. If an integer is divisible by 9, then the sum of its digits produces a num-
ber that is also divisible by 9. The same is true for integers divisible by
3.

(a) Write a function called add that sums the digits of an integer.
For example, summing the digits of the integer 3820488 gives 33.
Hint: One way to do this is to use the str function.

(b) Using a while loop, write another function that recursively calls
add until you get a number that is 9 or smaller. Use this result to
print out one of three outputs depending on which is true:
• number is divisible by 3 and 9
• number is divisible by 3 but not by 9
• number is not divisible by 3 or 9

(c) Typically, how many calls to add are needed for the routine you
wrote in part (b)? for a number with 5 digits? 10 digits? 30 digits?
(Recall that Avogadro’s number is 6.022 × 1023 particles/mole so
you are unlikely to run into meaningful integers too much longer
than 30 digits.)

9. Write a function to determine if a year is a leap year. Leap years occur
every year divisible by 4, except for years divisible by 100 but not by 400.
For example, 1900 was not a leap year, but 2000 was a leap year. Write
a program incorporating your function that correctly tells whether the
following year years are leap years or not: 1900, 2000, 1964, 2046, 3000.

10. (a) Write a Python function day_of_week(y, m, d) that returns the
day of the week for any given calendar date after January 1, 1700,
which was a Friday. In the function day_of_week(y, m, d), y is the
year (≥ 1700), m is the month (1–12), and d is the day (1–31…).
Your function will need to consider leap years, which occur in ev-
ery year divisible by 4, except for years divisible by 100 but not
divisible by 400. For example, 1900 was not a leap year, but 2000
was a leap year. Therefore, your function should include another
function that creates a list of all leap years between 1700 and the
year of the date in question. Test that your program returns the
answers tabulated below.

(b) Write a function inside day_of_week(y, m, d) that returns a
ValueError if the date input to the function is not valid. The text of
the ValueError should indicate the nature of the error (year before
1700, too many days in month, etc.).

162 � Introduction to Python for Science and Engineering

Date Weekday
January 1, 1700 Friday
January 12, 1701 Wednesday
July 4, 1776 Thursday
April 30, 1777 Wednesday
January 28, 1813 Thursday
March 4, 1861 Monday
March 14, 1879 Friday
May 11, 1918 Saturday
July 20, 1969 Sunday
February 29, 1980 Friday
November 9, 1989 Thursday
January 20, 2009 Tuesday

CH A P T E R 8

Plotting

This chapter introduces plotting using the Matplotlib package. You
learn how to make simple 2D x-y plots and fancy plots suitable for pub-
lication, complete with legends, annotations, logarithmic axes, subplots,
and insets. You learn how to produce Greek letters and mathematical
symbols using a powerful markup language called LATEX. You also learn
how to make various kinds of contour plots and vector field plots. 3D
plotting with Matplotlib is introduced, although its 3D capabilities are
somewhat limited. You learn about two interfaces for Matplotlib, a sim-
ple one known as PyPlot and amore powerful object-oriented interface.
An overview of the object-oriented structure of Matplotlib is presented,
including the important but sometimes confusing topic of backends.

The graphical representation of data—plotting—is one of themost impor-
tant tools for evaluating and understanding scientific data and theoretical pre-
dictions. Plotting is not a part of core Python but is provided through one of
several different library modules. The most highly developed and widely used
plotting package for Python isMatplotlib (http://matplotlib.sourceforge.net/).
It is a powerful and flexible program that has become the de facto standard for
2D plotting with Python.

Because Matplotlib is an external library—in fact, a collection of
libraries—it must be imported into any routine that uses it. Matplotlib makes
extensive use of NumPy, so the two should be imported together. Therefore,
for any program that is to produce 2D plots, you should include the lines
import numpy as np
import matplotlib.pyplot as plt

DOI: 10.1201/9781032673950-8 163

https://doi.org/10.1201/9781032673950-8
http://matplotlib.sourceforge.net

164 � Introduction to Python for Science and Engineering

There are otherMatplotlib sub-libraries, but the pyplot library provides nearly
everything you need for 2D plotting.The standard prefix for it is plt. On some
installations, pyplot is automatically loaded in the IPython shell, so you do not
need to use import matplotlib.pyplot nor do you need to use the plt prefix
when working in the IPython shell.1 By contrast, you always need to explicitly
import pyplot when writing a program or script.

One final word before getting started:This introduction only scratches the
surface of what is possible using Matplotlib. As you become familiar with it,
you will surely want to do more than this book describes. In that case, you
need to consult the web for more information. An excellent place to start is
http://matplotlib.org/index.html.

8.1 AN INTERACTIVE SESSION WITH PyPlot

Let’s begin with an interactive plotting session that illustrates the basic fea-
tures of Matplotlib. Working in the IPython console of Spyder, JupyterLab,
Jupyter Notebook, or QtConsole, import NumPy and Matplotlib. Then enter
theMatplotlib function call plt.plot([1, 3, 2, 4, 3, 5]). Take care to follow
the exact syntax. Typing the magic command %matplotlib qt at the IPython
console ensures that plots are generated in a separate interactive plot window
and may be unnecessary depending on the settings of your IPython console.
In[1]: import numpy as np

In[2]: import matplotlib.pyplot as plt

In[3]: %matplotlib qt

In[4]: plt.plot([1, 3, 2, 4, 3, 5])
Out[4]: [<matplotlib.lines.Line2D at 0x1280eadd8 >]

In[5]: plt.show()

A window should appear with a plot that looks like the interactive plot
window shown in Figure 8.1.2 By default, the plot function draws a line be-
tween the data points that were entered. You can save this figure to an image
file by clicking on the floppy disk (Save the figure) icon in the border of

1This depends on the settings in your particular installation. You may want to set the Pref-
erences for the IPython console to automatically load PyLab, which loads the NumPy and Mat-
plotlib modules.

2Here, we have assumed that Matplotlib’s interactive mode is turned off. If it’s turned on, you
don’t need the plt.show() function when plotting from the command line of the IPython
shell. Type plt.ion() at the IPython prompt to turn on interactive mode. Type plt.ioff()
to turn it off. Whether or not you work with interactive mode turned on in IPython is a matter
of taste.

http://matplotlib.org/index.html

Plotting � 165

Figure 8.1 Interactive plot window.

the plot window. You can also zoom , pan , scroll through the plot, and
return to the original view using other icons in the plot window. Experi-
mentingwith them reveals their functions. See page 183 for information about
the configure subplots icon .When you finish, close the plot window, which
will return control to the IPython console.

By the way, executing the magic command %matplotlib inline instead of
%matplotlib qt above causes the plot to be generated in the IPython console
you are using.This can be convenient if youwant to keep a record of yourwork
in the IPython console. This is the default mode when working with Jupyter
Notebooks. However, you sacrifice that ability to work interactively with your
plot. On the other hand, you can toggle (switch back and forth) between the
two modes using the above magic commands depending on how you want to
display and interact with a plot.

Let’s take a closer look at the plot function. It is used to plot x-y data sets
and is written like this
plot(x, y)

where x and y are arrays (or lists) that have the same size. If the x array is
omitted, that is, if there is only a single array, as in our example above, the
plot function uses 0, 1, ..., N-1 for the x array, where N is the size of the y

166 � Introduction to Python for Science and Engineering

array. Thus, the plot function provides a quick graphical way of examining a
data set.

More typically, you supply two arrays, x and a y, as a data set to plot. Taking
things further, you may also want to plot several data sets on the same graph,
use symbols as well as lines, label the axes, create a title and a legend, and
control the color of symbols and lines. All of this is possible but requires calling
several plotting functions. For this reason, plotting is best done using a Python
script or program.

8.2 BASIC PLOTTING

The quickest way to learn how to plot using the Matplotlib library is by exam-
ple. Let’s start by plotting the sine function from 0 to 4π. The main plotting
function plot in Matplotlib does not plot functions per se; it plots (x, y) data
sets. As you will see, you can instruct the function plot either to just draw
points—or dots—at each data point, or you can instruct it to draw straight
lines between the data points. To create the illusion of the smooth function
that the sine function is, you need to create enough (x, y) data points so that
when plot draws straight lines between the data points, the function appears
smooth.The sine function undergoes two complete oscillationswith twomax-
ima and two minima between 0 and 4π. So, let’s start by creating an array with
33 data points between 0 and 4π, and then let Matplotlib draw a straight line
between them. Our code consists of four parts:

• Import the NumPy and Matplotlib modules (lines 1-2 below).

• Create the (x, y) data arrays (lines 3-4 below).

• Have plot draw straight lines between the (x, y) data points (line 5 be-
low).

• Display the plot in a figure window using the show function (line 6 be-
low).

Here is our code, which consists of only six lines:

Code: sine_plot33.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 x = np.linspace(0, 4.0 * np.pi, 33)
4 y = np.sin(x)
5 plt.plot(x, y)
6 plt.show()

Plotting � 167

Figure 8.2 Sine function: Left, 33 data points; Right, 129 data points.

Only six lines suffice to create the plot, which is shown on the left side
of Figure 8.2. It consists of the sine function plotted over the interval from 0
to 4π, as advertised, and axes annotated with nice whole numbers over the
appropriate interval. Matplotlib automatically scales the axes to include the
plotted points. It’s a pretty nice plot made with very little code.

One problem, however, is that while the plot oscillates like a sine wave, it
is not smooth (look at the peaks). This is because we did not create the (x, y)
arrays with enough data points. To correct this, we need more data points.
The plot on the right side of Figure 8.2 was created using the same program
shown above but with 129 (x, y) data points instead of 33. Try it out yourself by
copying the above program and replacing 33 in line 3 with 129 (a few more or
less is ok) so that the function linspace creates an array with 129 data points
instead of 33.

The above script illustrates how plots can be made with very little code
using theMatplotlibmodule. Inmaking this plot, Matplotlib hasmade several
choices, such as the size of the figure, the color of the line, and even the fact that
by default a line is drawn between successive data points in the (x, y) arrays.
All of these choices can be changed by explicitly instructing Matplotlib to do
so. This involves including more arguments in our function calls and using
new functions that control other plot properties. The next example illustrates
a few of the simpler embellishments that are possible.

In Figure 8.3, we plot two (x, y) data sets: a data set of discrete data points
read in from a data file, which are plotted as red circles, and a theoretical
model, which is a smooth blue line. In this plot, we label the x and y axes,
create a legend, and draw lines to indicate where x and y are zero. The code
that creates Figure 8.3 is listed here:

168 � Introduction to Python for Science and Engineering

Figure 8.3 Wavy pulse.

Code: wavy_pulse.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 # read data from file
5 xdata, ydata = np.loadtxt("wavy_pulse_data.txt", unpack=True)
6
7 # create x and y arrays for smooth curve
8 x = np.linspace(-10.0, 10.0, 200)
9 y = np.sin(x) * np.exp(-((x / 5.0) ** 2))

10
11 # create plot
12 plt.figure(1, figsize=(6, 4))
13
14 plt.plot(x, y, "-C0", label="model") # blue line
15 plt.plot(xdata, ydata, "oC3", label="data") # red circle
16 # label x & y axes
17 plt.xlabel("x")
18 plt.ylabel("transverse displacement")
19 # display legend using labels set in plot function calls
20 plt.legend(loc="upper right", title="legend")
21 # draw gray lines behind plotted data for y=0 and x=0
22 plt.axhline(color="gray", zorder=-1)
23 plt.axvline(color="gray", zorder=-1)
24
25 # save plot to file
26 plt.savefig("figures/wavy_pulse.pdf")
27
28 # display plot on screen
29 plt.show()

If you have read the first seven chapters, the code in lines 1–9 in the above
script should be familiar. First, the script loads the NumPy and Matplotlib
modules, then reads data from a data file into two arrays, xdata and ydata, and
then creates two more arrays, x and y. The first pair or arrays, xdata and ydata,

Plotting � 169

contain the x-y data that are plotted as blue circles in Figure 8.3; the arrays
created in lines 8 and 9 contain the x-y data that are plotted as a blue line.

The functions that create the plot begin on line 12. Let’s go through them
one by one and seewhat they do. To follow and better understandwhat the var-
ious plotting calls do, we strongly recommend that you open up a Qt Console
and enter the wavy_pulse.py program line by line, more-or-less, in particular
lines 12–23. To do so, you will need the wavy_pulse_data.txt, which you can
download from the GitHub site for this textbook. You will notice that keyword
arguments (kwargs) are used in several cases.

figure() creates a blank figure window. If it has no arguments, it creates a
window that is 6.4 × 4.8 inches (about 16.2 × 12.2 cm) by default, al-
though the size that appears on your computer depends on your screen’s
resolution. For most computers, it will be somewhat smaller. You can
create a window whose size differs from the default using the optional
keyword argument figsize, as we have done here. If you use figsize, set
it equal to a 2-element tuple where the elements, expressed in inches,3
are the width and height, respectively, of the plot. Multiple calls to
figure() opens multiple windows: figure(1) opens up one window for
plotting, figure(2) another, and figure(3) yet another.

plot(x, y, optional arguments) graphs the x-y data in the arrays x and y.The
third argument is a format string that specifies the color and the type of
line or symbol used to plot the data. The string 'oC3' specifies a red
(C3) circle (o). The string '-C0' specifies a blue (C0) solid line (-). The
keyword argument label is set equal to a string that labels the data for
the legend function if it is called subsequently.

xlabel(string) takes a string argument that specifies the label for the graph’s
x-axis.

ylabel(string) takes a string argument that specifies the label for the graph’s
y-axis.

legend() makes a legend for the data plotted. Each x-y data set is labeled us-
ing the string supplied by the label keyword in the plot function that
graphed the data set. The loc keyword argument specifies the location
of the legend. The title keyword is used to give the legend a title.

31 inch = 2.54 cm

170 � Introduction to Python for Science and Engineering

axhline() draws a horizontal line across the width of the plot at y=0. Writing
axhline(y=a) draws a horizontal line at y=a, where a can be any numer-
ical value. The optional keyword argument color is a string that spec-
ifies the line’s color. The default color is black. The optional keyword
argument zorder is an integer that specifies which plotting elements are
in front of or behind others. By default, new plotting elements appear
on top of previously plotted elements and have a value of zorder=0. By
specifying zorder=-1, the horizontal line is plotted behind all existing
plot elements that have not been assigned an explicit zorder less than
−1. The keyword zorder can also be used as an argument for the plot
function to specify the order of lines and symbols. Normally, symbols
are placed on top of lines that pass through them.

axvline() draws a vertical line from the top to the bottom of the plot at x=0.
See axhline() for an explanation of the arguments.

savefig(string) saves the figure to a file with a name specified by the string
argument. The string argument can also contain path information to
save the file somewhere other than the default directory. Here, we save
the figure to a subdirectory named figures of the default directory. The
extension of the filename determines the format of the figure file. The
following formats are supported: png, pdf, ps, eps, and svg.

show() displays the plot on the computer screen.No screen output is produced
before this function is called.

To plot the solid blue line, the code uses the "-C0" format specifier in the
plot function call. It is important to understand that Matplotlib draws straight
lines between data points. Therefore, the curve will appear smooth only if the
data in the NumPy arrays are sufficiently dense. If the space between data
points is too large, the straight lines the plot function draws between data
points will be visible. For plotting a typical function, something on the order
of 100–200 data points usually produces a smooth curve, depending on how
curvy the function is. On the other hand, only two points are required to draw
a smooth, straight line.

Detailed information about the Matplotlib plotting functions is available
online. The main Matplotlib site is http://matplotlib.org/.

http://matplotlib.org

Plotting � 171

TABLE 8.1 Line and symbol type designations for plotting.
character description character description
- solid line style 3 tri_left marker
-- dashed line style 4 tri_right marker
-. dash-dot line style s square marker
: dotted line style p pentagon marker
. point marker * star marker
, pixel marker h hexagon1 marker
o circle marker H hexagon2 marker
v triangle_down marker + plus marker
^ triangle_up marker x x marker
< triangle_left marker D diamond marker
> triangle_right marker d thin_diamond

marker
1 tri_down marker | vline marker
2 tri_up marker _ hline marker

8.2.1 Specifying Line and Symbol Types and Colors

In the above example, we illustrated how to draw one line type (solid), one
symbol type (circle), and two colors (blue and red). There are manymore pos-
sibilities.

Table 8.1 shows the characters used to specify the line or symbol type that
is used. If a line type is chosen, the lines are drawn between the data points. If
a marker type is chosen, the marker is plotted at each data point.

Color is specified using the codes in Figure 8.4: single letters for primary
colors and codes C0, C2, …, C9 for a standard Matplotlib color palette of ten
colors designed to be pleasing to the eye.

These format specifiers give rudimentary control of the plotting symbols
and lines. Matplotlib provides much more precise control of the plotting sym-
bol size, line types, and colors using optional keyword arguments instead of
the plotting format strings introduced above. For example, the following com-
mand creates a plot of large yellow diamond symbols with orange edges con-
nected by a green dashed line:
plt.plot(x, y, color='green', linestyle='dashed', marker='D',

markerfacecolor='yellow', markersize=7,
markeredgecolor='C1')

Try it out! Another useful keyword is fillstyle, with self-explanatory key-
words full (the default), left, right, bottom, top, none. The online Matplotlib

172 � Introduction to Python for Science and Engineering

Figure 8.4 Some Matplotlib colors. The one- or two-letter strings to the left of
each curve, or the longer strings to the right of each curve, can be used to
specify a designated color. However, the shades of cyan, magenta, and yellow
for the one-letter codes are different from the full-word codes (shown).

documentation provides all the plotting format keyword arguments and their
possible values.

Specifying Line and Symbol Colors Using Seaborn

Seaborn is a Python data visualization library that augmentsMatplotlib in sev-
eral ways, too many to detail here. One of its many convenient features is its
function color_palette(), which, as its name implies, allows you to specify
one of a large variety of color palettes.

The Seaborn library is imported with the statement
import seaborn as sns

with sns being the standard prefix abbreviation for Seaborn. The default Mat-
plotlib palette is selected as follows:
c0 = sns.color_palette() # no arguments gives default palette

where color_palette() returns a list of 3-element tuples that specify the se-
quence of colors: c0[0] is the C0 (blue) color, c0[1] is the C1 (orange) color,
c0[2] is the C2 (green) color, etc. The concave up parabolas above the x-axis
in Figure 8.5 show the sequence of colors specified using the color=c0[i] key-
word argument in plot() calls for i=1,2,3,4. Line 6 in the program listing
snscolors.py below creates the c0 list, which is subsequently used in plot()
calls in lines 13 and 16.

Plotting � 173

Figure 8.5 Seaborn color palettes.

Seaborn has a rich set of color palettes, at least 85 (depending on how you
count, as there are several variations on each palette). You select a particular
palette by specifying its name, for example, "Set2", as shown here:
c = sns.color_palette("Set2") # Seaborn "Set2" palette

where c is a list of 3-element tuples that specify the sequence of colors in the
Seaborn "Set2" palette. The "Set2" is a discrete palette with eight colors, so
c is an 8-element list. Other discrete palettes may have a different number of
elements.

There are also continuous palettes, such as "rocket". For plotting, you can
select a discrete number of colors from a continuous palette as follows:
c1 = sns.color_palette("rocket", 4)

This selects four colors that more-or-less span Seaborn’s "rocket" palette,
avoiding the most extreme ends of palette. The concave down parabolas be-
low the x-axis in Figure 8.5 show the sequence of colors from the rocket
palette specified using the color=c1[i] keyword argument in plot() calls for
i=1,2,3,4. Line 6 in the program listing snscolors.py below creates the c1 list,
which is subsequently used in plot() calls in lines 14 and 17.

The Seaborn library has a host of other useful enhancements toMatplotlib,
which you are encouraged to explore after you become more familiar with
Matplotlib.

Code: snscolors.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 c0 = sns.color_palette() # default color palette (matplotlib)

174 � Introduction to Python for Science and Engineering

6 c1 = sns.color_palette("rocket", 4) # a Seaborn palette
7
8 xl = np.linspace(-8.0, 8.0, 200)
9 plt.figure(figsize=(7, 4))

10 for i, curvature in enumerate([0.1, 0.3, 0.9, 2.7]):
11 xp = np.linspace(-8.0, 8.0, 20 * (i + 1))
12 yy = 0.25 + curvature * xl**2
13 plt.plot(xl, yy + 0.5 * i, color=c0[i])
14 plt.plot(xl, -yy - 0.5 * i, color=c1[i])
15 yy = 0.25 + curvature * xp**2
16 plt.plot(xp, yy + i / 2, "o", color=c0[i], mec="black", mew=0.5)
17 plt.plot(xp, -yy - i / 2, "o", color=c1[i], mec="black", mew=0.5)
18
19 plt.axhline(color="gray", lw=0.5, zorder=-2) # draw x-axis
20 plt.axvline(color="gray", lw=0.5, zorder=-2) # draw y-axis
21 plt.xlim(-8.0, 8.0)
22 plt.ylim(-8.0, 8.0)
23 plt.text(-6.0, 7.8, "Default\n palette", va="top", ha="right")
24 plt.text(-6.0, -7.8, "Rocket\npalette", va="bottom", ha="right")
25
26 plt.tight_layout()
27 plt.savefig("figures/snscolors.pdf")
28 plt.show()

8.2.2 Error Bars

When plotting experimental data it is customary to include error bars that
indicate graphically the degree of uncertainty in themeasurement of each data
point. The Matplotlib function errorbar plots data with error bars attached.
You can use it to either replace or augment the plot function. Both vertical
and horizontal error bars can be displayed. Figure 8.6 illustrates the use of
error bars.

When error bars are desired, you typically replace the plot function with
the errorbar function.The first two arguments of the errorbar function are the
x and y arrays to be plotted, just as for the plot function.The keyword fmtmust
be used to specify the format of the points to be plotted; the format specifiers
are the same as for plot. The keywords xerr and yerr are used to specify the x
and y error bars. Setting one or both to a constant specifies one size for all the
error bars. Alternatively, setting one or both of them equal to an array with the
same length as the x and y arrays allows you to give each data point an error
bar with a different value. If you only want y error bars, you should specify
only the yerr keyword and omit the xerr keyword. The color of the error bars
is set with the keyword ecolor.

The code below illustrates how to make error bars and was used to make
the plot in Figure 8.6. Lines 14 and 15 contain the call to the errorbar function.
The x error bars are all set to a constant value of 1.25, meaning that the error

Plotting � 175

Figure 8.6 Data with error bars.

bars extend 1.25 to the left and 1.25 to the right of each data point. The y error
bars are set equal to an array, which was read in from the data file containing
the data, so each data point has a different y error bar. By the way, leaving out
the xerr keyword argument in the errorbar function call below would mean
that only the y error bars would be plotted.

Code: error_bar_plot.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 # read data from file
5 xdata, ydata, yerror = np.loadtxt('expDecayData.txt', unpack=True)
6
7 # create theoretical fitting curve
8 x = np.linspace(0, 45, 128)
9 y = 1.1 + 3.0 * x * np.exp(-(x / 10.0) ** 2)

10
11 # create plot
12 plt.figure(1, figsize=(7, 4))
13 plt.plot(x, y, '-k', label="theory")
14 plt.errorbar(xdata, ydata, fmt='oC0', label="data",
15 xerr=1.25, yerr=yerror, ecolor='gray')
16 plt.axhline(color="gray", linewidth=0.5) # draws line at y=0
17 plt.xlabel('x')
18 plt.ylabel('transverse displacement')
19 plt.legend(loc='upper right')
20
21 # save plot to file
22 plt.savefig('figures/ExpDecay.pdf')
23
24 # display plot on screen
25 plt.show()

We have more to say about the errorbar function in the sections on logarith-
mic plots.

176 � Introduction to Python for Science and Engineering

Figure 8.7 Trial tangent plot.

8.2.3 Setting Plotting Limits and Excluding Data

You often want to restrict the range of numerical values over which you plot
data or functions. In these cases, youmayneed tomanually specify the plotting
window; alternatively, you may wish to exclude data points outside some set
of limits. Here, we demonstrate methods for doing this.

8.2.3.1 Setting Plotting Limits

Suppose you want to plot the tangent function over the interval from 0 to 10.
The following script offers a straightforward first attempt.

Code: tan_plot0.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 theta = np.arange(0.01, 10., 0.04)
5 ytan = np.tan(theta)
6
7 plt.figure(figsize=(8.5, 4.2))
8 plt.plot(theta, ytan)
9 plt.savefig("figures/tanPlot0.pdf")

10 plt.show()

The resulting plot, shown in Figure 8.7, doesn’t quite look like what you
might have expected for tan θ vs. θ. The problem is that tan θ diverges at θ =
π/2, 3π/2, 5π/2, ..., which leads to large spikes in the plots as values in the
theta array come near those values. Of course, we don’t want the plot to extend
out to ±∞ in the y direction, nor can it. Instead, we would like the plot to
extend far enough that we get the idea of what is going on as y → ±∞, but
we would still like to see the behavior of the graph near y = 0. We can restrict

Plotting � 177

Figure 8.8 Tangent function (with spurious vertical lines).

the range of ytan values that are plotted using the Matplotlib function ylim, as
we demonstrate in the script below.

Code: tan_plot1.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 theta = np.arange(0.01, 10., 0.04)
5 ytan = np.tan(theta)
6
7 plt.figure(figsize=(8.5, 4.2))
8 plt.plot(theta, ytan)
9 plt.ylim(-8, 8) # restricts range of y axis from -8 to +8

10 plt.axhline(color="gray", zorder=-1)
11 plt.savefig("figures/tanPlot1.pdf")
12 plt.show()

Figure 8.8 shows the plot produced by this script, which now looks much
more like the familiar tan θ function we all know.We have also included a call
to the axline function to create an x axis.

Recall that for θ = π/2, tan θ− → +∞ and tan θ+ → −∞; in fact, tan θ
diverges to ±∞ at every odd half integral value of θ. Therefore, the vertical
blue lines at θ = π/2, 3π/2, 5π/2 should not appear in a proper plot of tan θ
vs. θ. However, they do appear because the plot function simply draws lines
between the data points in the x-y arrays provided the plot function’s argu-
ments. Thus, plot draws a line between the very large positive and negative
ytan values corresponding to the theta values on either side of π/2, where tan
θ diverges to ±∞. It would be nice to exclude that line.

178 � Introduction to Python for Science and Engineering

Figure 8.9 Tangent function (without spurious vertical lines).

8.2.3.2 Masked Arrays

You can exclude the data points near θ = π/2, 3π/2, and 5π/2 in the above
plot, and thus avoid drawing the nearly vertical lines at those points, using
NumPy’smasked array feature. The code below shows how to do this and pro-
duces Figure 8.10. The masked array feature is implemented in line 6 with a
call to NumPy’s masked_where function in the sub-module ma (masked array).
It is called by writing np.ma.masked_where. The masked_where function works as
follows: The first argument sets the condition for masking elements of the ar-
ray; the second argument specifies the array. In this case, the function says to
mask all elements of the array ytan (the second argument), where the absolute
value of ytan is greater than 20. The result is set equal to ytanM. When ytanM is
plotted, Matplotlib’s plot function omits all masked points from the plot. You
can think of it as the plot function lifting the pen that draws the line in the
plot when it comes to the masked points in the array ytanM.

Code: tan_plot_masked.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 theta = np.arange(0.01, 10., 0.04)
5 ytan = np.tan(theta)
6 ytanM = np.ma.masked_where(np.abs(ytan) > 20., ytan)
7
8 plt.figure(figsize=(8.5, 4.2))
9 plt.plot(theta, ytanM)

10 plt.ylim(-8, 8) # restricts y-axis range from -8 to +8
11 plt.axhline(color="gray", zorder=-1)
12 plt.savefig("figures/tanPlotMasked.pdf")
13 plt.show()

Plotting � 179

Figure 8.10 Plotting window with two subplots.

8.2.4 Subplots

Often, you want to create two or more graphs and place them next to one an-
other, generally because they are related in some way. Figure 8.10 shows an
example of such a plot. In the top graph, tan θ and

√
(8/θ)2 − 1 vs. θ are plot-

ted. The two curves cross each other at the points where tan θ =
√

(8/θ)2 − 1.
In the bottom cot θ and −

√
(8/θ)2 − 1 vs. θ are plotted. These two curves

cross each other at the points where cot θ = −
√

(8/θ)2 − 1.
The code that produces this plot is provided below.

Code: subplot_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 theta = np.arange(0.01, 8.0, 0.04)
5 y = np.sqrt((8.0 / theta) ** 2 - 1.0)
6 ytan = np.tan(theta)
7 ytan = np.ma.masked_where(np.abs(ytan) > 20.0, ytan)
8 ycot = 1.0 / np.tan(theta)
9 ycot = np.ma.masked_where(np.abs(ycot) > 20.0, ycot)

10
11 plt.figure(figsize=(8.5, 6))
12
13 plt.subplot(2, 1, 1)
14 plt.plot(theta, y, linestyle=":")
15 plt.plot(theta, ytan)
16 plt.xlim(0, 8)
17 plt.ylim(-8, 8)

180 � Introduction to Python for Science and Engineering

18 plt.axhline(color="gray", zorder=-1)
19 plt.axvline(x=0.5 * np.pi, color="gray", linestyle="--", zorder=-1)
20 plt.axvline(x=1.5 * np.pi, color="gray", linestyle="--", zorder=-1)
21 plt.axvline(x=2.5 * np.pi, color="gray", linestyle="--", zorder=-1)
22 plt.xlabel("theta")
23 plt.ylabel("tan(theta)")
24
25 plt.subplot(2, 1, 2)
26 plt.plot(theta, -y, linestyle=":")
27 plt.plot(theta, ycot)
28 plt.xlim(0, 8)
29 plt.ylim(-8, 8)
30 plt.axhline(color="gray", zorder=-1)
31 plt.axvline(x=np.pi, color="gray", linestyle="--", zorder=-1)
32 plt.axvline(x=2.0 * np.pi, color="gray", linestyle="--", zorder=-1)
33 plt.xlabel("theta")
34 plt.ylabel("cot(theta)")
35
36 plt.savefig("figures/subplot_demo.pdf")
37 plt.show()

The function subplot, called on lines 13 and 25, creates the two subplots
in the above figure. subplot has three arguments. The first specifies the num-
ber of rows into which the figure window will be divided: in line 13, it’s 2. The
second specifies the number of columns into which the figure window will
be divided; in line 13, it’s 1. The third argument specifies which rectangle will
contain the plot specified by the following function calls. Line 13 specifies that
the plotting commands that follow will act on the first box. Line 25 specifies
that the plotting commands that followwill act on the second box. As a conve-
nience, the commas separating the three arguments in the subplot routine can
be omitted, provided they are all single-digit arguments (less than or equal to
9). For example, lines 13 and 25 can be written as
plt.subplot(211)
.
.
plt.subplot(212)

Finally, we labeled the axes and included dashed vertical lines at the values
of θ where tan θ and cot θ diverge.

8.3 LOGARITHMIC PLOTS

Data sets can spanmany orders ofmagnitude, from fractional quantitiesmuch
smaller than unity to values much larger than unity. In such cases, plotting the
data on logarithmic axes is often useful.

Plotting � 181

Figure 8.11 Semi-log plotting.

8.3.1 Semi-Log Plots

For data sets that vary exponentially in the independent variable, using one
or more logarithmic axes is often useful. Radioactive decay of unstable nu-
clei, for example, exhibits an exponential decrease in the number of particles
emitted from the nuclei as a function of time. Figure 8.11, for example, shows
the decay of the radioactive isotope Phosphorus-32 over six months, where
the radioactivity is measured once each week. The decay rate starts at nearly
104 electrons (counts) per second and diminishes to only about one count per
second after about six months or 180 days. If we plot counts per second as a
function of time on a standard plot, as we have done in the left panel of Figure
8.11, then the count rate is indistinguishable from zero after about 100 days.
On the other hand, if we use a logarithmic axis for the count rate, as we have
done in the right panel of Figure 8.11, then we can follow the count rate well
past 100 days and can readily distinguish it from zero. Moreover, if the data
vary exponentially in time, they will fall along a straight line, as they do in the
case of radioactive decay.

Matplotlib provides two functions for making semi-logarithmic plots,
semilogx and semilogy, for creating plots with logarithmic x and y axes, with
linear y and x axes, respectively. We illustrate their use in the program below,
which made the above plots.

Code: semilog_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 # read data from file
5 time, counts, unc = np.loadtxt("semilog_demo.txt", unpack=True)

182 � Introduction to Python for Science and Engineering

6
7 # create theoretical fitting curve
8 t_half = 14.0 # P-32 half life = 14 days
9 tau = t_half / np.log(2) # exponential tau

10 N0 = 8200.0 # Initial count rate (per sec)
11 t = np.linspace(0, 180, 128)
12 N = N0 * np.exp(-t / tau)
13
14 # create plot
15 plt.figure(1, figsize=(9.5, 4))
16
17 plt.subplot(1, 2, 1)
18 plt.plot(t, N, color="C0", label="theory")
19 plt.plot(time, counts, "oC1", label="data")
20 plt.xlabel("time (days)")
21 plt.ylabel("counts per second")
22 plt.legend(loc="upper right")
23
24 plt.subplot(1, 2, 2)
25 plt.semilogy(t, N, color="C0", label="theory")
26 plt.semilogy(time, counts, "oC1", label="data")
27 plt.xlabel("time (days)")
28 plt.ylabel("counts per second")
29 plt.legend(loc="upper right")
30
31 plt.tight_layout()
32
33 plt.savefig("figures/semilog_demo.pdf")
34 plt.show()

The semilogx and semilogy functions work like the plot function. You use
one or the other depending on which axis you want to be logarithmic.

8.3.1.1 Adjusting Spacing Around Subplots

You may have noticed the tight_layout() function, called without arguments
on line 31 of the program.This convenience function adjusts the space around
the subplots to make room for the axes labels. If it is not called, the y-axis
label of the right plot runs into the left plot. In Figure 8.10, you can see the
consequence of not using the tight_layout() function, where the lower plot
runs into the x-axis label of the upper plot. The tight_layout() function can
also be useful in graphics windows with only one plot sometimes.

If you want direct control over how much space is allocated around sub-
plots, use the function
plt.subplots_adjust(left=None, bottom=None, right=None,

top=None, wspace=None, hspace=None)

The keyword arguments wspace and hspace control the width and height of
the space between plots, while the other arguments control the space to the
left, bottom, right, and top. You can see and adjust the parameters of the

Plotting � 183

subplots_adjust() routine by clicking on the configure subplots icon in the
figure window. Once you have adjusted the parameters to obtain the desired
effect, you can use them in your script.

8.3.2 Log-Log Plots

Matplotlib can also make log-log or double-logarithmic plots using the func-
tion loglog. It is useful when both the x and y data span many orders of mag-
nitude. Data described by a power law y = Axb, where A and b are constants,
appear as straight lines when plotted on a log-log plot. Again, the loglog func-
tion works just like the plot function but with logarithmic axes.

In the next section, we describe a more advanced syntax for creating plots
and, with it, an alternative syntax for making logarithmic axes. For a descrip-
tion, see page 186.

8.4 MORE ADVANCED GRAPHICAL OUTPUT

The plotting methods introduced in the previous sections are adequate for
basic plotting but are recommended only for the simplest graphical output.
Here, we introduce a more advanced syntax that harnesses the full power of
Matplotlib. It gives you more options and greater control.

An efficient way to learn this new syntax is simply to look at an exam-
ple. Figure 8.12, which shows multiple plots laid out in the same window, is
produced by the following code:

Code:multiple_plots1window.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 # Define the sinc function , with output for x=0
6 # defined as a special case to avoid division by zero
7 def sinc(x):
8 a = np.where(x == 0.0, 1.0, np.sin(x) / x)
9 return a

10
11
12 x = np.arange(0.0, 10.0, 0.1)
13 y = np.exp(x)
14
15 t = np.linspace(-15.0, 15.0, 150)
16 z = sinc(t)
17
18 # create a figure window
19 fig = plt.figure(figsize=(9, 7))
20
21 # subplot: linear plot of exponential

184 � Introduction to Python for Science and Engineering

Figure 8.12 Mulitple plots in the same window.

22 ax1 = fig.add_subplot(2, 2, 1)
23 ax1.plot(x, y, "C0")
24 ax1.set_ylabel("distance (mm)")
25 ax1.set_title("exponential")
26
27 # subplot: semi-log plot of exponential
28 ax2 = fig.add_subplot(2, 2, 2)
29 ax2.plot(x, y, "C2")
30 ax2.set_yscale("log")
31 # ax2.semilogy(x, y, 'C2') # same as 2 previous lines
32 ax2.set_ylabel("distance (mm)")
33 ax2.set_title("exponential")
34
35 # subplot: wide subplot of sinc function
36 ax3 = fig.add_subplot(2, 1, 2)
37 ax3.plot(t, z, "C3")
38 ax3.axhline(color="gray")
39 ax3.axvline(color="gray")
40 ax3.set_ylabel("electric field")
41 ax3.set_title("sinc function")
42
43 for xl in [ax1, ax2, ax3]:
44 xl.set_xlabel("time")
45
46 # fig.tight_layout() adjusts white space to

Plotting � 185

47 # avoid collisions between subplots
48 fig.tight_layout()
49 fig.savefig("figures/multiple_plots1window.pdf")
50 plt.show()

After defining several arrays for plotting, the above programopens a figure
window in line 19 with the statement
fig = plt.figure(figsize=(9, 7))

The Matplotlib statement above creates a Figure object, assigns it the name
fig, and opens a blank figure window. We can use the figure function to open
up multiple figure objects, each opening up a different blank figure window.
The statements
fig1 = plt.figure()
fig2 = plt.figure()

open up two separate windows, one named fig1 and the other fig2. We can
then use the names fig1 and fig2 to create plot in either window. The figure
function need not take any arguments if you are satisfied with the default set-
tings, such as the figure size and the background color. On the other hand,
by supplying one or more keyword arguments, you can customize the figure
size, the background color, and several other properties. For example, in the
program listing (line 19), the keyword argument figsize sets the width and
height of the figure window. The default size is (8, 6); in our program we set
it to (9, 7), which is a bit wider and higher. In the example above, we open
only a single window, hence the single figure call.

The fig.add_subplot(2, 2, 1) in line 22 is a Matplotlib function that di-
vides the figure window into 2 rows (the first argument) and 2 columns
(the second argument). The third argument creates a subplot in the first
of the 4 subregions (i.e., of the 2 rows × 2 columns) created by the
fig.add_subplot(2, 2, 1) call. To see how this works, type the following code
into a Python module and run it:
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(9, 8))
ax1 = fig.add_subplot(2,2,1)

fig.show()

These commands open a figure window with axes drawn in the upper left
quadrant. The fig prefix used with the add_subplot(2, 2, 1) function di-
rects Python to draw these axes in the figure window named fig. If we had
opened two figure windows, changing the prefix to correspond to the name

186 � Introduction to Python for Science and Engineering

of the other figure window would direct the axes to be drawn there. Writing
ax1 = fig.add_subplot(2, 2, 1) assigns the name ax1 to the axes in the upper
left quadrant of the figure window.

The ax1.plot(x, y, 'C0') in line 23 directs Python to plot the pre-
viously defined x and y arrays onto the axes named ax1. The statement
ax2 = fig.add_subplot(2, 2, 2) draws axes in the second, or upper right,
quadrant of the figurewindow.The statement ax3 = fig.add_subplot(2, 1, 2)
divides the figure window into two rows (first argument) and 1 column (sec-
ond argument), creates axes in the second or these two sections, and assigns
those axes (i.e., that subplot) the name ax3. It divides the figure window into
two halves, top and bottom, and then draws axes in the half number 2 (the
third argument), the lower half of the figure window.

You may have noticed in the above code that some of the function calls
are a bit different from those used before, so:

xlabel('time (ms)')→ set_xlabel('time (ms)')
title('exponential')→ set_title('exponential')

etc.
The call ax2.set_yscale('log') sets the y-axes in the second plot to be

logarithmic, thus creating a semi-log plot. Alternatively, you can also do this
with a ax2.semilogy(x, y, 'C2') call.

Using the prefixes ax1, ax2, or ax3, directs graphical instructions to their
respective subplots. By creating and specifying names for the different figure
windows and subplots within them, you access the different plot windows
more efficiently. For example, the following code makes four identical sub-
plots in a single figure window using a for loop (see Section 6.2.2):
In[1]: fig = figure()

In[2]: ax1 = fig.add_subplot(221)

In[3]: ax2 = fig.add_subplot(222)

In[4]: ax3 = fig.add_subplot(223)

In[5]: ax4 = fig.add_subplot(224)

In[6]: for ax in [ax1, ax2, ax3, ax4]:
...: ax.plot([3,5,8],[6,3,1])

In[7]: fig.show()

Plotting � 187

8.4.1 An Alternative Syntax for a Grid of Plots

The syntax introduced above for defining a Figurewindow and opening a grid
of several subplots can be a bit cumbersome, so an alternative, more compact
syntax was developed. We illustrate its use with the program below:

Code:multiple_plots_grid.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-2 * np.pi, 2 * np.pi, 200)
5 sin, cos, tan = np.sin(x), np.cos(x), np.tan(x)
6 csc, sec, cot = 1.0 / sin, 1.0 / cos, 1.0 / tan
7
8 fig, ax = plt.subplots(2, 3, figsize=(9.5, 6), sharex=True,
9 sharey=True)

10 ax[0, 0].plot(x, sin, color="red")
11 ax[0, 1].plot(x, cos, color="orange")
12 ax[0, 2].plot(x, np.ma.masked_where(np.abs(tan) > 20.0, tan),
13 color="yellow")
14 ax[1, 0].plot(x, np.ma.masked_where(np.abs(csc) > 20.0, csc),
15 color="green")
16 ax[1, 1].plot(x, np.ma.masked_where(np.abs(sec) > 20.0, sec),
17 color="blue")
18 ax[1, 2].plot(x, np.ma.masked_where(np.abs(cot) > 20.0, cot),
19 color="violet")
20 ax[0, 0].set_xlim(-2 * np.pi, 2 * np.pi)
21 ax[0, 0].set_ylim(-5, 5)
22 ax[0, 0].set_xticks(np.pi * np.array([-2, -1, 0, 1, 2]))
23 ax[0, 0].set_xticklabels([r"-2π", r"-π", "0", r"π",
24 r"2π"])
25 ax[0, 2].patch.set_facecolor("lightgray")
26
27 ylab = [["sin", "cos", "tan"], ["csc", "sec", "cot"]]
28 for i in range(2):
29 for j in range(3):
30 ax[i, j].axhline(color="gray", zorder=-1)
31 ax[i, j].set_ylabel(ylab[i][j])
32
33 fig.savefig("figures/multiple_plots_grid.pdf")
34 plt.show()

This program generates a 2-row × 3-column grid of plots, as shown in
Figure 8.13, using the function subplots. The first two arguments of subplots
specify, respectively, the number of rows and columns in the plot grid. The
other arguments are optional; we will return to them after discussing the out-
put of the function subplots.

The output of subplots is a two-element list, which we name fig and ax.
The first element fig is the name given to the figure object that contains all of
the subplots. The second element ax is the name given to a 2 × 3 list of axes

188 � Introduction to Python for Science and Engineering

Figure 8.13 Grid of plots.

objects, one entry for each subplot. These subplots are indexed as you might
expect: ax[0, 0], ax[0, 1], ax[0, 2], …

Returning to the arguments of subplots, the first keyword argument
figsize sets the overall size of the figure window.The next keyword argument,
sharex=True, instructs Matplotlib to create identical x axes for all six subplots;
sharey=True does the same for the y axes.Thus, in lines 20 and 21, when we set
the limits for the x and y axes for only the first subplot, [0, 0], these instruc-
tions are applied to all six subplots because the keyword arguments instruct
Matplotlib to make all the x axes the same and all the y axes the same. This
also applies even to the tick placement and labels set in lines 23 and 24.

You may have noticed in lines 23 and 24 that Matplotlib can print Greek
letters, in this case the letter π. Indeed, Matplotlib can output the Greek al-
phabet and virtually any mathematical equations you can imagine using the
LATEX typesetting system. The LATEX string is enclosed by $ symbols, which are
inside of quotes (double or single) because it’s a string. The LATEX capabilities
of Matplotlib are discussed in Section 8.7.

By contrast, the subplot background is set to 'lightgray' only in plot [0,
2] in line 25.

The nested for loops in lines 28–31 place a gray line at y = 0 and labels
the y-axis in each subplot.

Finally, we note that writing
fig, ax = plt.subplots()

Plotting � 189

Figure 8.14 Figure with two y axes.

without any arguments in the subplots function opens a figure window with
a single subplot. It is equivalent to
fig = plt.figure()
ax = fig.add_subplot(111)

It’s a handy way to save a line of code.

8.5 PLOTS WITH MULTIPLE AXES

8.5.1 Plotting Quantities that Share One Axis but not the Other

Plotting two different quantities that share a common independent variable on
the same graph can be a compelling way to compare and visualize data. Figure
8.14 shows an example of such a plot, where the blue curve is linked to the left
blue y-axis and the red data points are linked to the right red y-axis. The code
below shows how this is done with Matplotlib using the function twinx().

Code: two_axes.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 fig, ax1 = plt.subplots(figsize=(8.5, 4.5))
5 xa = np.linspace(0.01, 6.0, 150)
6 ya = np.sin(np.pi * xa) / xa
7 ax1.plot(xa, ya, "-C0")
8 ax1.set_xlabel("x (micrometers)")
9 # Make y-axis label, ticks and numbers match line color.

10 ax1.set_ylabel("oscillate", color="C0")
11 ax1.tick_params("y", colors="C0")

190 � Introduction to Python for Science and Engineering

12
13 ax2 = ax1.twinx() # use same x-axis for a 2nd (right) y-axis
14 xb = np.arange(0.3, 6.0, 0.3)
15 yb = np.exp(-xb * xb / 9.0)
16 ax2.plot(xb, yb, "oC3")
17 ax2.set_ylabel("decay", color="C3") # axis label
18 ax2.tick_params("y", colors="C3") # ticks & numbers
19
20 fig.tight_layout()
21 fig.savefig("figures/two_axes.pdf")
22 plt.show()

After plotting the first set of data using the axes ax1, calling twinx() in-
structs Matplotlib to use the same x-axis for a second x-y set of data, which we
set up with a new set of axes ax2. The set_ylabel and tick_parameters func-
tions are used to harmonize the colors of the y-axes with the different data
sets.

There is an equivalent function twiny(), illustrated in the next section, that
allows two sets of data to share a common y-axis and then have separate (top
and bottom) x-axes.

8.5.2 Two Separate Scales for a Data Set

Sometimes plotting the same data set (or sets) on two different but related
scales can be helpful. For example, infrared spectroscopic data are often plot-
ted as a function of wavenumber ν̃, which is defined as the inverse wavelength
ν̃ = 1/λ, usually expressed in inverse centimeters. But you might also like to
see the wavelength at a given wavenumber without having to calculate the re-
ciprocal wavenumber mentally. In this case, we can provide a second x-axis
at the top of the plot that displays the wavelength λ, say in micrometers, cor-
responding to each wavenumber ν̃, as shown in Figure 8.15. The code below
shows how to do this.

Code: two_scales.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 dataFile = ["ref_wavnum_1.txt", "ref_wavnum_2.txt",
6 "ref_wavnum_3.txt", "ref_wavnum_4.txt",]
7
8 fig, ax = plt.subplots(figsize=(8.5, 4.5))
9 c = sns.color_palette("flare_r", 6) # a Seaborn palette

10 for i, fname in enumerate(dataFile):
11 nu, sig = np.loadtxt(
12 "twoScalesData/" + fname, unpack=True, delimiter="\t")
13 ax.plot(nu, sig, color=c[i])
14 ax.set_xlabel("wavenumber [cm$^{-1}$]")

Plotting � 191

Figure 8.15 Figure with two x scales.

15 ax.set_ylabel("reflection")
16 ax.set_ylim(0.0, 1.0)
17 axtop = ax.twiny()
18 axtop.set_xlim(ax.get_xlim())
19 wavelen = np.array([1.0, 1.2, 1.5, 2.0, 2.5]) # microns
20 axtop.set_xticks(1e4 / wavelen) # place ticks on top axis
21 axtop.set_xticklabels(wavelen)
22 axtop.set_xlabel(r"wavelength [μm]")
23
24 fig.savefig("figures/two_scales.pdf")
25 plt.show()

Four data sets are loaded and plotted vs. wavenumber ν̃ using semi-log
axes ax in a for loop (lines 10–13). A second scale for all four data sets is set
up by calling twiny(), which instructs Matplotlib to use the same y-axis for
the new x axis axtop at the top of the plot. In contrast to the second set of axes
we set up in Section 8.5.1, where we set up the two axes for two different data
sets, here the second (top) axis is for the same data set: we simply want to label
the (second) axis differently. Therefore, the second (axtop) axis needs to have
the same x range and data limits as the first (ax) axis. This is done with the
set_xlim command in line 18. Lines 19–21 set up the scale for the top axis.
Because wavenumber is specified in cm−1 and wavelength is specified in µm,
the conversion from µm to cm−1 is 1e4/wavelen. Line 20–22 specifies the ticks
and label in micrometers on the top axis.

8.6 PLOTS WITH INSETS

Sometimes, you would like to include a plot or an image as an inset within an-
other plot. Figure 8.16 shows an example of two inset plots and an image being

192 � Introduction to Python for Science and Engineering

Figure 8.16 Figure with two inset plots and an inset image.

included within a larger plot. There are several ways to do this in Matplotlib.
You might be tempted to use the inset_axes method from the mpl_toolkits
package. Don’t do it. While it’s been written precisely for this purpose, it has
too many parameters that interact with each other in complex ways, and you
are likely to spend excessive time tweaking them to get the desired result. In-
stead, use add_axes, a method attached to Matplotlib’s figure class, the class
you use to create a figure. Using add_axes will also require some tweaking to
get the desired result. Still, there are fewer parameters to adjust, and they in-
teract minimally with each other, meaning that you will arrive at a satisfactory
result more quickly and with less frustration.

The plot in Figure 8.16 was created using the program inset.py shown
below. The insets are sized and positioned in lines 20, 26, and 37 using
add_axes(left, bottom, width, height), where left and bottom set the posi-
tion of the left and bottom positions of the rectangle that contains each inset
and width and height set the width and height of each rectangle. These four
distances are fractions of the overall figure size. Once an inset is set and sized
according to your purposes, you can adjust the sizes of the axes and tick labels
to fit the inset size or, in the case of an image, remove them altogether. The
image is displayed in line 39 using imshow from the Python Imaging Library
(PIL), which is imported at the top of the program. In order not to distort the
displayed image, the ratio of width and height used in line 37 should corre-
spond to the actual ratio of the image displayed; in this case, cs6c60 is a square
image so width and height are equal. On the other hand, the absolute sizes of
width and height can be set to get the overall image size you want for the plot.

Plotting � 193

Code: inset.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from PIL import Image
4
5 yup = np.array([0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5])
6 ydn = np.array([5, 6, 4, 5, 3, 4, 2, 3, 1, 2, 0])
7 ypk = np.array([0, 2, 1, 3, 2, 4, 2, 3, 1, 2, 0])
8 x = np.linspace(0, 20, len(yup))
9

10 fig, ax = plt.subplots(figsize=(8.5, 4.5))
11
12 # Main plot
13 ax.plot(x, yup, color="C0")
14 ax.set_xlabel("time", fontsize=12)
15 ax.set_ylabel("distance", fontsize=12)
16
17 # Upper left inset plot
18 # Inset boundaries are fractions of figure size. (0,0 is bottom left)
19 left, bottom, width, height = [0.18, 0.61, 0.25, 0.25]
20 axUL = fig.add_axes([left, bottom, width, height])
21 axUL.plot(x, ydn, color="C1")
22
23 # Lower right inset plot
24 # Inset boundaries are fractions of figure size. (0,0 is bottom left)
25 left, bottom, width, height = [0.64, 0.21, 0.25, 0.25]
26 axLR = fig.add_axes([left, bottom, width, height])
27 axLR.plot(x, ypk, color="C2")
28
29 for axx in [axUL, axLR]:
30 axx.set_xlabel("time", fontsize=10)
31 axx.set_ylabel("distance", fontsize=10)
32 axx.tick_params(labelsize=8)
33
34 # Upper middle inset image (large green & small red spheres)
35 # Inset boundaries are fractions of figure size. (0,0 is bottom left)
36 left, bottom, width, height = [0.42, 0.66, 0.2, 0.2]
37 axPIC = fig.add_axes([left, bottom, width, height])
38 axPIC.axis("off")
39 axPIC.imshow(Image.open("figures/cs6c60.jpg"))
40
41 fig.savefig("figures/inset.pdf")
42 plt.show()

8.7 MATHEMATICS AND GREEK SYMBOLS

Matplotlib can display mathematical formulas, Greek letters, and symbols us-
ing amath renderingmodule known asmathtext.Themathtextmodule parses
a subset of Donald Knuth’s TEX mathematical typesetting language and pro-
vides basic mathematical typesetting without any software other than Mat-
plotlib.

194 � Introduction to Python for Science and Engineering

If, in addition, you have TEX (and/or LATEX) as a separate stand-alone pro-
gram (such as MacTex [TexShop] or MiKTeX), then you can do even more. In
what follows, we will assume that you are using the nativeMatplotlibmathtext
but will make a few comments applicable to those with a separate installation
of LATEX.

Matplotlib’s mathtext can display Greek letters and mathematical symbols
using the syntax of TEX. If you are familiar with TEX or LATEX, you have little
to learn. Even if you are unfamiliar with them, the syntax is simple enough to
employ with little effort in most cases.

You designate text as mathtext by placing dollar signs ($) in a text string at
the beginning and end of any part of the string that you want to be rendered as
math text. You should also use raw strings in most cases, meaning you should
precede a string’s quotes with the letter r. For example, the following com-
mands produce a plot titled “π > 3.”
In[1]: plot([1, 2, 3, 2, 3, 4, 3, 4, 5])
Out[1]: [<matplotlib.lines.Line2D at 0x11d5c4780 >]

In[2]: title(r'$\pi > 3$')
Out[2]: <matplotlib.text.Text at 0x11d59f390 >

Where the Matplotlib function normally takes a string as input, you simply
input the mathtext string. Note the r before the string in the title argument
and the dollar signs ($) inside the quotes of the title string.

Subscripts and superscripts are designated using the underline “_” and
caret “^” characters, respectively. Multiple characters to be grouped together
in a subscript or superscript should be enclosed in a pair of curly braces {...}.
All of this and more is illustrated in the plot shown in Figure 8.17, produced
by the Python code below.

Code:mpl_latex_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 def f0(t, omega, gamma, tau):
6 wt = omega * t
7 f1 = np.sin(wt) + (np.cos(wt) - 1.0) / wt
8 f2 = 1.0 + (gamma / omega) * f1
9 return np.exp(-t * f2 / tau)

10
11
12 omega = 12.0
13 gamma = 8.0
14 tau = 1.0
15 t = np.linspace(0.01, 10.0, 500)
16 f = f0(t, omega, gamma, tau)

Plotting � 195

17
18 plt.rc("mathtext", fontset="stix") # Use with mathtext
19 # plt.rc("text", usetex=True) # Use with Latex
20 # plt.rc("font", family="serif") # Use with Latex
21
22 fig, ax = plt.subplots(figsize=(7.5, 4.5), tight_layout=True)
23 ax.plot(t, f, color="C0")
24 ax.set_ylabel(r"$f_0(t)$", fontsize=14)
25 ax.set_xlabel(r'$t/\tau\quad\rm{(ms)}$', fontsize=14)
26 ax.text(0.45, 0.95,
27 r"$\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}dx$",
28 fontsize=16, ha="right", va="top",
29 transform=ax.transAxes)
30 ax.text(0.45, 0.75,
31 r"$e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$",
32 fontsize=16, ha="right", va="top",
33 transform=ax.transAxes)
34 ax.text(0.45, 0.55,
35 r"$\zeta(z)=\prod_{k=0}^\infty \frac{1}{1-p_k^{-z}}$",
36 fontsize=16, ha="left", va="top",
37 transform=ax.transAxes)
38 ax.text(0.95, 0.80,
39 r"$\omega={0:0.1f},\;\gamma={1:0.1f},\;\tau={2:0.1f}$"
40 .format(omega, gamma, tau),
41 fontsize=14, ha="right", va="top",
42 transform=ax.transAxes)
43 ax.text(0.85, 0.35,
44 r"$e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$",
45 fontsize=14, ha="right", va="top",
46 transform=ax.transAxes)
47
48 fig.savefig("./figures/mplLatexDemo.pdf")
49 plt.show()

Line 18 sets the font to be used by mathtext, in this case stix. If you omit
such a statement, mathtext uses its default font dejavusans. Other options in-
clude dejavuserif, cm (Computer Modern), stix, and stixsans. Try them out!

Let’s see what LATEX can do. First, the y-axis label in Figure 8.17 is f0(t),
which has a subscript formatted using mathtext in line 24. The x-axis label is
also typeset using mathtext, but the effects are more subtle. The variable t is
italicized, as is proper for a mathematical variable, but the units (ms) are not,
which is also standard practice. The math mode italics are turned off with the
\rm (Roman) switch, which acts on text until the next closing curly brace (}).

Lines 26–29 provide the code to produce the expression for the Gamma
function Γ(z), lines 30–33 produce the expression for the Taylor series for the
exponential function, and lines 34–37 produce the product that gives the zeta
function. Lines 38–42 provide the code that produces the expressions for ω,
γ, and τ . Lines 43–46 provide the code that produces the limit expression for
the natural logarithm base e. The mathtext (TEX) code that produces the four
typeset equations is contained in strings in lines 27, 31, 35, 39, and 44. The

196 � Introduction to Python for Science and Engineering

Figure 8.17 Plot usingMatplotlib’smathtext forGreek letters andmathematical
symbols.

TABLE 8.2 LATEX (mathtext) codes for Greek letters.
α \alpha β \beta γ \gamma δ \delta
ε \epsilon ε \varepsilon ζ \zeta η \eta
θ \theta ι \iota κ \kappa λ \lambda
µ \mu ν \nu ξ \xi π \pi
ρ \rho � \varrho σ \sigma τ \tau
υ \upsilon φ \phi ϕ \varphi χ \chi
ψ \psi ω \omega Γ \Gamma ∆ \Delta
Θ \Theta Λ \Lambda Ξ \Xi Π \Pi
Σ \Sigma Υ \Upsilon Φ \Phi Ψ \Psi
Ω \Omega

strings begin and endwith $ symbols, which activate and deactivatemathtext’s
math mode.

Special commands and symbols begin with a backslash inmathtext, which
follows the convention of TEX. However, Python strings also use backslashes
for certain formatting commands, such as \t for tab or \n for a new line. The
r preceding the strings in lines 27, 31, 35, 39, and 44 makes those strings raw
strings, which turns off Python’s special backslash formatting commands so
that backslash commands are interpreted as mathtext.

Table 8.2 provides the LATEX (mathtext) codes for Greek letters; Table 8.3
gives the code for miscellaneous mathematical expressions.

Plotting � 197

TABLE 8.3 Mathtext (LATEX) codes for miscellaneous mathematical expres-
sions. Search “latex math symbols” on the internet for more extensive lists.∑

\sum
∑∞

i=0 \sum_{i=0}^{\infty}∏
\prod

∏∞
i=0 \prod_{i=0}^{\infty}∫

\int
∫ b
a f(x) dx \int_{a}^{b}f(x)\,dx√q \sqrt{q} lim
x→∞

f(x) \lim_{x\to\infty}\ f(x)

∇ \nabla eiπ + 1 = 0 e^{i\pi}+1=0
sinϕ \sin\,\phi sinh z \sinh\,z
cos θ \cos\,\theta cosh y \cosh\,y
tan x \tan\,x tanh x \tanh\,x

B \mathbf{B} W⃗ = F⃗ · x⃗ \vec{W} = \vec{F}\cdot\vec{x}
23◦C 23°C L⃗ = r⃗× p⃗ \vec{L} = \vec{r}\times\vec{p}
a ≤ b a \leq b a1/3b

x+y \frac{a^{1/3}b}{x+y}

a ≥ b a \geq b ⟨x⟩ \langle x \rangle
a ≡ b a \equiv b a†|n⟩ a^\dagger|n\rangle

The mathtext codes are the same as LATEX codes but are sometimes ren-
dered slightly differently from what you might use in standard LATEX. For ex-
ample, the code $\cos\theta$ produces cos θ in LATEX, but produces cosθ using
Matplotlib’s mathtext: there is too little space between cos and θ in the math-
text expression. For this reason, you may need to insert some extra space in
your mathtext code where you wouldn’t need to do so using LATEX. Spaces of
varying length can be inserted using \, \: \; and \␣ for shorter spaces (of in-
creasing length); \quad and \qquad provide longer spaces equal to one and two
character widths, respectively.

While extra spacing in rendered mathtext equations matters, extra spaces
in mathtext code makes no difference in the output. In fact, spaces in
the code are not needed if the meaning of the code is unambiguous.
Thus, $\cos \, \theta$ and $\cos\,\theta$ produce exactly the same output,
namely cos θ.

Matplotlib can produce even more beautiful mathematical expressions if
you have a separate stand-alone version of TEX (and/or LATEX) on your com-
puter. In this case, you can access a broader selection of fonts—all the fonts
you already installed with your TEX installation. You also can write LATEX code
using the \displaystyle switch, which producesmore nicely proportioned ex-
pressions. To do this, each expression in lines 27, 31, 35, and 44 should have

198 � Introduction to Python for Science and Engineering

0 2 4 6 8 10

t/τ (ms)

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(t
)

Γ(z) =

∫ ∞

0

xz−1e−xdx

ex =
∞∑
n=0

xn

n!

ζ(z) =
∞∏
k=0

1

1− p−z
k

ω = 12.0, γ = 8.0, τ = 1.0

e = lim
n→∞

(
1 +

1

n

)n

Figure 8.18 Plot using LATEX for Greek letters and mathematical symbols.

Figure 8.19 Manual ticks.

\displaystyle prepended to eachmathtext string. Youwould also uncomment
lines 19–20 and comment out line 18. The result is shown in Figure 8.18.4

8.7.1 Manual Axis Labeling

For some plots it can be useful to manually set where the ticks and tick labels
occur on the axes. For example, if you plot trigonometric functions, youmight
want to place the tick in units of π as shown in Figure 8.19.

Matplotlib has a sophisticated set of tools for creating all kinds of ticks,

4For LATEX experts, Matplotlib’s mathtext does not recognize TEX’s $$...$$ syntax for dis-
played equations, but you can get the same result with the \displaystyle switch.

Plotting � 199

both major and minor. Here, we focus on the most straightforward of those
tools as they are sufficient for the task at hand. The code to produce Figure
8.19 is given here

Code:manual_ticks.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 phi = np.linspace(0.0, 6.0*np.pi, 200)
5 wave = np.sin(phi)
6
7 fig, ax = plt.subplots(figsize=(8.5, 4.5))
8 ax.plot(phi, wave)
9 ax.axhline(color="gray", lw=0.5, zorder=-1)

10 ax.set_xlim(0.0, 6.0)
11 ax.set_xticks(np.linspace(0.0, 6.0*np.pi, 7))
12 labels = ["0", r"π", r"2π", r"3π", r"4π", r"5π",
13 r"6π"]
14 ax.set_xticklabels(labels)
15 ax.set_xlabel(r"ϕ")
16 ax.set_ylabel(r"$\sin\phi$")
17
18 plt.savefig("./figures/manual_ticks.pdf")
19 plt.show()

The location of the ticks on the x-axis is specified by Matplotlib’s set_ticks
function on line 11 in the program above. Lines 12–14 specify the labels; make
sure that there are as many labels specified as ticks.

8.8 THE STRUCTURE OF Matplotlib: OOP AND ALL THAT

This section provides an overview of the logical structure of Matplotlib. On a
first pass, you can skip this section, but you may find it useful for various rea-
sons. First, it will help you better understand theMatplotlib syntax introduced
in Section 8.4. Second, it should improve your ability to read and understand
the online documentation and other online resources such as our favorite,
stackoverflow.5 The writing in these and other web resources is replete with
jargon and ideas that can be frustratingly obscure to a novice. Much of it is the
jargon of object-oriented programming. Other parts pertain to the jargon of
graphical user interfaces or GUIs. This section introduces the basic structure
of Matplotlib and explains its lexicon.

Matplotlib is a Python module for generating graphical output to your
computer screen or a computer file. Fundamentally, its job is to translate
Python scripts into graphical instructions your computer can understand. It
does this using two different layers of software, the backend layer and the artist

5https://stackoverflow.com/tags/matplotlib/info

https://stackoverflow.com/tags/matplotlib/info

200 � Introduction to Python for Science and Engineering

BACKEND

ARTIST

PYPLOT

FigureCanvas Renderer Event

Figure Axes
Line2D
Patch
Text

matplotlib.pyplot

Figure 8.20 Matplotlib software layers, from the low-level backend to the high
level PyPlot.

layer. To these two layers, it adds a scripting layer, PyPlot, which we have met
already (import matplotlib.pyplot as plt). PyPlot is a convenience layer and
not really necessary, but it facilitates rapid scripting and aids portability. As
you shall see, we advocate using a hybrid of the scripting and artist layers for
most programming. Figure 8.20 portrays the Matplotlib software hierarchy.

8.8.1 The Backend Layer

To be concrete, we’ll start by considering the task of creating a figure on your
computer screen. Matplotlib must be able to generate graphics using different
computer platforms: Linux, Microsoft Windows, and macOS. Of course, we
want Matplotlib to do this in a way that is transportable from one platform to
another and transparent to you, the user. Ideally, the Python Matplotlib code
you write on your PC should work without modification on your friend’s Mac
or Linux computer.

To accomplish this, Matplotlib uses open-source cross-platform software
toolkits written by third parties. There are several different toolkits available.
Most of these toolkits canwrite graphics to computer screens on different plat-
forms, including Windows, macOS, and Linux. They are written mainly in
C++ and are very efficient and powerful. To harness their power and versatil-
ity, Matplotlib provides several Python “wrappers”—Python functions—that
call the C++ functions of these toolkits to send graphics instructions to your
computer.6 Matplotlib calls these wrappers backends.

Several backends have been written for Matplotlib. They fall into two cat-
egories: those written for output to files—hardcopy backends—and those for

6APython “wrapper” provides a Python interface to softwarewritten in a different computer
language, such as C++ or Fortran. You call a Python function, and it calls a C++ or Fortran
program.

Plotting � 201

output to a computer screen—user interface backends, also known as inter-
active backends.

For output to a computer screen, the qt5Agg backend is among the most
versatile and widely used, so we will use it as an example of what an interac-
tive backend does. The qt5Agg backend is made from two C++ toolkits: Qt7
and Agg.8 Qt can define windows on your computer screen, create buttons,
scrollbars, and otherwidgets, that is to say, elements of a GUI. It can also pro-
cess events, actions like clicking a mouse, pressing a keyboard key, moving a
scroll bar, or pressing a button. This includes processing events generated by
the computer, rather than the user, like an alarm clock going off or a process
finishing.TheAgg toolkit is a rendering program that produces pixel images in
memory from vectorial data. For example, you provide Agg with the equation
for a circle, and it determines which pixels to activate on the computer screen.
To produce faithful high-resolution graphics, it employs advanced rendering
techniques like anti-aliasing9.

The job of a Matplotlib backend is to provide a Python interface to the
functionality of the underlying C++ (or other language) toolkits, which for
qt5Agg are qt5 and Agg. The Python-facing parts of all Matplotlib backends
have three basic classes:

FigureCanvas defines the canvas—a figure window or a graphics file—and
transfers the output from the Renderer onto this canvas. It also trans-
lates Qt events into the Matplotlib Event framework (see below).

Renderer does the drawing. It connects Matplotlib to the Agg library de-
scribed above.

Event handles user inputs such as keyboard and mouse events for Matplotlib.

Besides the qt5Agg backend, there are several other commonly used in-
teractive backends: TkAgg, GTK3Agg, GTK3Cairo, WXAgg, and macOSX,
to name a few. Why all the different backends? Part of the reason is histor-
ical. Early in the development of Matplotlib, many toolkits worked on only
one platform, meaning that a separate backend had to be developed for each.
As time has passed, most toolkits became cross-platform. As better cross-
platform graphical tools, generally written in C++, were developed, program-
mers in the Python world wanted access to their functionality. Hence, the dif-
ferent backends.

7https://en.wikipedia.org/wiki/Qt_(software)
8https://en.wikipedia.org/wiki/Anti-Grain_Geometry
9See https://en.wikipedia.org/wiki/Spatial_anti-aliasing.

https://en.wikipedia.org/wiki/Anti-Grain_Geometry
https://en.wikipedia.org/wiki/Spatial_anti-aliasing
https://en.wikipedia.org/wiki/Qt_(software)

202 � Introduction to Python for Science and Engineering

Figure 8.21 Plotting without PyPlot using the pure OO-interface.

As mentioned earlier, there are also hardcopy backends that only produce
graphical output to files. These include Agg (which we already met as part of
qt5Agg), PDF (to produce the Adobe portable document format), SVG (scal-
able vector graphics), and Cairo (png, ps, pdf, and svg).

In the end, the idea of a Matplotlib backend is to provide the software ma-
chinery for setting up a canvas to draw on and the low-level tools for creating
graphical output: plots and images. The drawing tools of the backend layer,
while sufficient for producing any output you might want, work at too low of
a level to be useful for everyday programming. For this, Matplotlib provides
another layer, the artist layer, which provides the software tools you will use
for creating and managing graphical output.

8.8.2 The Artist Layer

The artist layer consists of a hierarchy of Python classes that facilitate creating
a figure and embellishing it with any of the features we might desire: axes,
data points, curves, axes labels, legends, titles, annotations, and everything
else. The first step is to create a figure and place it on a canvas (figure window,
whether on a computer screen or a computer file). To the figure, we add axes,
data, labels, etc. When we have everything the way we want, we send it to the
screen to display and/or save it to a file.

To make this concrete, consider the program below that creates the plot
shown in Figure 8.21.

Code: oop_test.py
1 from matplotlib.backends.backend_qt5agg \
2 import FigureCanvasQTAgg as FigureCanvas

Plotting � 203

3 from matplotlib.figure import Figure
4
5 fig = Figure(figsize=(8, 4))
6 canvas = FigureCanvas(fig)
7 ax = fig.add_subplot(111)
8 ax.plot([1, 3, 2, 4, 3, 5])
9 ax.set_title("A simple plot")

10 ax.grid(True)
11 ax.set_xlabel("time")
12 ax.set_ylabel("volts")
13 fig.savefig("figures/oop_test.pdf")
14 canvas.show()

First, we import the FigureCanvas from the qt5Agg backend.10 Then, we
import Figure from matplotlib.figure. After finishing our imports, the first
step is to define and name (fig) the Figure object that will serve as a container
for our plot.The next step is to attach the figure to an instance of FigureCanvas,
which we name canvas, from the qt5Agg backend. This places the canvas on
the screen and connects all the Matplotlib routines to the Qt and Agg C++
routines that write to the screen. Next, in line 7, we create a set of axes on our
figure, making a single subplot that takes up the entire frame of the figure.
Lines 7–12 should be familiar to you, as they use the syntax introduced in
Section 8.4. Finally, we write the plot to a file (line 13) and the screen (line
14) from the canvas, which makes sense because that connects the Matplotlib
routines to the hardware.

The code in this example is native Matplotlib object-oriented (OO) code.
In its purest form, it’s how Matplotlib code should be written. The code is en-
tirely transportable from one computer to another irrespective of the operat-
ing system, so long as the qt5Agg backend is included in the local machine’s
Python installation. In this case, the output should look the same, whether on
the screen or in a file, on Microsoft Windows, macOS, or any of the differ-
ent flavors of Linux. By the way, if another machine does not have the qt5Agg
backend installed, you can change lines 1 and 2 to a different backend that
is installed, and the program should work as expected, with no discernible
differences.

Before moving on to the next layer of Matplotlib, it’s useful to introduce
some Matplotlib terminology—jargon—for describing the artist layer. The
routines in lines 5 and 7–12 are part of the Artist module and the eponymous
Artist class of Matplotlib. Collectively and individually, all the routines that
get attached to fig and its descendant ax are known as Artists: add_subplot,
plot, title, grid, xlabel, etc. Artists are those Matplotlib objects that draw on

10Lines 1–2 can be shortened to read:
from matplotlib.backends.backend_qt5Agg import FigureCanvas

204 � Introduction to Python for Science and Engineering

the canvas, including figure. You will see the termArtist employed liberally in
online documentation and commentary onMatplotlib. It’s simply a part of the
Matplotlib lexicon, along with backend, PyPlot, and the yet-to-be-mentioned,
PyLab.

8.8.3 The PyPlot (scripting) Layer

For newcomers to Python, learning about backends and the OOP syntax can
create a barrier to code development, particularly engineers and scientists who
come to Python after first being exposed to MATLAB®. This is why the PyPlot
module was developed, to provide a more familiar interface to those coming
from software packages like MATLAB®, or simply for those new to Python
programming.

Consider, for example, our first plotting script of a sine function, which
we reproduce here from page 167:

Code: sine_plot33.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 x = np.linspace(0, 4.0 * np.pi, 33)
4 y = np.sin(x)
5 plt.plot(x, y)
6 plt.show()

After importing NumPy and PyPlot, we define the x-y arrays in two lines,
make a plot in the next line, and then display it in the last line: the epitome of
simplicity.

8.8.3.1 PyPlot and Backends

There is no mention of a backend in this syntax. Nevertheless, one must be
used so that Matplotlib can communicate with the computer. So, how does
a backend get loaded using PyPlot? And which backend? First, a backend
is loaded when PyPlot is imported. Second, which backend is loaded is de-
termined by how you launch IPython. If you launch it from a terminal or
Jupyter Lab, the default backend is set by aMatplotlib configuration file named
matplotlibrc on your computer. It is but one of many files installed on your
computer when Matplotlib was installed, for example, using the Anaconda
installation of Python. You can find out where this file is from an IPython
prompt by typing
In[1]: import matplotlib

In[2]: matplotlib.matplotlib_fname()
Out[2]: '/Users/dp/.matplotlib/matplotlibrc'

Plotting � 205

Alternatively, if you use a Python IDE like Spyder, the backend is set in a Pref-
erences menu and loaded when the IDE is launched. In any case, you can find
out which backend was installed in your IPython shell using a IPython magic
command
In[3]: %matplotlib
Out[3]: Using matplotlib backend: Qt5Agg

Thus, using PyPlot frees you up from thinking about the backend—how
Matplotlib is connected to your computer’s hardware—when writing Mat-
plotlib routines. It also makes your code more portable. That’s a good thing.

8.8.3.2 PyPlot’s “State-Machine” Environment

For simple plots, you can proceed using the syntax introduced in Section 8.2
and Section 8.3. The only Matplotlib prefix used in this syntax is plt. You can
do most of the things you want to do with Matplotlib working in this way.
You can make single plots or plots with multiple subplots, as demonstrated in
Section 8.2.4.

When working in this mode with PyPlot, we are working in a “state-
machine” environment, meaning that where on a canvas PyPlot adds fea-
tures (i.e., Artists) depends on the program’s state. For example, in the pro-
gram starting on page 179 that produces the plot in Figure 8.10, you make the
first subplot by including plt.subplot(2, 1, 1) in the program. Everything
after that statement affects that subplot until the program comes to the line
plt.subplot(2, 1, 2), which opens up a second subplot. After that statement,
everything affects the second subplot. You’ve changed the “state” of the “ma-
chine” (i.e., the FigureCanvas object).Which subplot is affected by commands
in the program depends on which state the machine is in.

8.8.3.3 PyPlot’s Hybrid OOP Environment

Contrast operating in this state-machine mode with the syntax introduced in
Section 8.4. In those programs, we load PyPlot, but then employ the OOP
syntax for creating figures and making subplots. Each subplot object is refer-
enced by a different object name, e.g., ax1, ax2, or ax[i, j], where i and j cycle
through different values. These object names identify the target of a function,
not themachine’s state. It’s amore powerful way of programming and provides
more versatility in writing code. For example, in making the plots shown in
Figure 8.13, we could conveniently combine the labeling of the y-axes by cy-
cling through object names of each subplot toward the end of the program
(see page 187). This would be hard to do with the state-machine approach.

206 � Introduction to Python for Science and Engineering

Most programming withMatplotlib should be done using this hybrid (but
basically OOP) approach introduced in Section 8.4. The state-machine ap-
proach we employed in earlier sections should be reserved for short snippets
of code.

8.9 CONTOUR AND VECTOR FIELD PLOTS

Matplotlib has extensive tools for creating and annotating two-dimensional
contour and vector field plots. A contour plot is used to visualize two-
dimensional scalar functions, such as the electric potential V(x, y) or eleva-
tions h(x, y) over some physical terrain. Vector field plots come in different
varieties. Field line plots, which in some contexts are called streamline plots,
show the direction of a vector field over some 2D (x, y) range. There are also
quiver plots, which consist of a 2D grid of arrows that give the direction and
magnitude of a vector field over some 2D (x, y) range.

8.9.1 Making a 2D Grid of Points

When plotting a function f(x) of a single variable, the first step is usually to
create a one-dimensional x array of points and then to evaluate and plot the
function f(x) at those points, often drawing lines between the points to cre-
ate a continuous curve. Similarly, when making a two-dimensional plot, we
usually need to make a two-dimensional x-y array of points and then evaluate
and plot the function f(x, y), be it a scaler or vector function, at those points,
perhaps with continuous curves to indicate the value of the function over the
2D surface.

Thus, instead of having a line of evenly spaced x points, we need a grid
of evenly spaced x-y points. Fortunately, NumPy has a function np.meshgrid
for doing just that. The procedure is first to make an x-array at even intervals
over the range of x to be covered and then to do the same for y. These two
one-dimensional arrays are input to the np.meshgrid function, which makes a
two-dimensional mesh. Here is how it works:
In[1]: x = linspace(-1, 1, 5)

In[2]: x
Out[2]: array([-1. , -0.5, 0. , 0.5, 1.])

In[3]: y = linspace(2, 6, 5)

In[4]: y
Out[4]: array([2., 3., 4., 5., 6.])

Plotting � 207

Figure 8.22 Point pattern produced by np.gridmesh(X, Y).

In[5]: X, Y = np.meshgrid(x, y)

In[6]: X
Out[6]:
array([[-1. , -0.5, 0. , 0.5, 1.],

[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.]])

In[7]: Y
Out[7]:
array([[2., 2., 2., 2., 2.],

[3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4.],
[5., 5., 5., 5., 5.],
[6., 6., 6., 6., 6.]])

In[8]: plot(X, Y, 'o')

The output of plot(X, Y, 'o') is a 2D grid of points, as shown in Figure 8.22.
Matplotlib’s functions for making contour plots and vector field plots use the
output of gridmesh as the 2D input for the functions to be plotted.

8.9.2 Contour Plots

The principal Matplotlib routines for creating contour plots are contour and
contourf. Sometimes, you would like to make a contour plot of a function of
two variables; other times, you may wish to make a contour plot of some data

208 � Introduction to Python for Science and Engineering

Figure 8.23 Contour plots.

you have. Of the two, making a contour plot of a function is simpler, which is
all we cover here.

8.9.2.1 Contour Plots of Functions

Figure 8.23 shows four different contour plots. All were produced using
contour except the upper left plot, which was produced using contourf. All
plot the same function, which is the sum of a pair of Gaussians, one positive
and the other negative:

f(x, y) = 2e−
1
2 [(x−2)2+(y−1)2] − 3e−2[(x−1)2+(y−2)2] (8.1)

The code that produces Figure 8.23 is given below.

Code: contour4.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.cm as cm # color maps
4 import matplotlib
5
6
7 def pmgauss(x, y):

Plotting � 209

8 r1 = (x - 1) ** 2 + (y - 2) ** 2
9 r2 = (x - 3) ** 2 + (y - 1) ** 2

10 return 2 * np.exp(-0.5 * r1) - 3 * np.exp(-2 * r2)
11
12
13 a, b = 4, 3
14
15 x = np.linspace(0, a, 60)
16 y = np.linspace(0, b, 45)
17
18 X, Y = np.meshgrid(x, y)
19 Z = pmgauss(X, Y)
20
21 fig, ax = plt.subplots(2, 2, figsize=(9.4, 6.5),
22 sharex=True, sharey=True,
23 gridspec_kw={"width_ratios": [4, 5]})
24
25 CS0 = ax[0, 0].contour(X, Y, Z, 8, colors="k")
26 ax[0, 0].clabel(CS0, fontsize=9, fmt="%0.1f")
27 matplotlib.rcParams["contour.negative_linestyle"] = "dashed"
28 ax[0, 0].plot(X, Y, "o", ms=1, color="lightgray", zorder=-1)
29
30 CS1 = ax[0, 1].contourf(X, Y, Z, 12, cmap=cm.gray, zorder=0)
31 cbar1 = fig.colorbar(CS1, shrink=0.8, ax=ax[0, 1])
32 cbar1.set_label(label="height", fontsize=10)
33 plt.setp(cbar1.ax.yaxis.get_ticklabels(), fontsize=8)
34
35 lev2 = np.arange(-3, 2, 0.3)
36 CS2 = ax[1, 0].contour(X, Y, Z, levels=lev2, colors="k",
37 linewidths=0.5)
38 ax[1, 0].clabel(CS2, lev2[1::2], fontsize=9, fmt="%0.1f")
39
40 CS3 = ax[1, 1].contour(X, Y, Z, 10, colors="gray")
41 ax[1, 1].clabel(CS3, fontsize=9, fmt="%0.1f")
42 im = ax[1, 1].imshow(Z, interpolation="bilinear",
43 origin="lower", cmap=cm.gray,
44 extent=(0, a, 0, b))
45 cbar2 = fig.colorbar(im, shrink=0.8, ax=ax[1, 1])
46 cbar2.set_label(label="height", fontsize=10)
47 plt.setp(cbar2.ax.yaxis.get_ticklabels(), fontsize=8)
48
49 for i in range(2):
50 ax[1, i].set_xlabel(r"x", fontsize=14)
51 ax[i, 0].set_ylabel(r"y", fontsize=14)
52 for j in range(2):
53 ax[i, j].set_aspect("equal")
54 ax[i, j].set_xlim(0, a)
55 ax[i, j].set_ylim(0, b)
56 plt.subplots_adjust(left=0.06, bottom=0.07, right=0.99,
57 top=0.99, wspace=0.06, hspace=0.09)
58 fig.savefig("./figures/contour4.pdf")
59 plt.show()

After defining the function to be plotted in lines 7–10, the next step is to
create the x-y array of points at which the function will be evaluated using
np.meshgrid. We use np.linspace rather than np.arange to define the extent

210 � Introduction to Python for Science and Engineering

of the x-y mesh because we want the x range to go precisely from 0 to a=4
and the y range to go precisely from 0 to b=3. We use np.linspace for two
reasons. First, if we use np.arange, the array of data points does not include
the upper bound, while np.linspace does. This is important for producing
the grayscale (or color) background that extends to the upper limits of the
x-y ranges in the upper-right plot, produced by contourf, of Figure 8.23. Sec-
ond, to produce smooth-looking contours, one generally needs about 40–200
points in each direction across the plot, irrespective of the absolute magni-
tude of the numbers being plotted. The number of points is directly specified
by np.linspace but must be calculated for np.arange. We follow the conven-
tion that the meshgrid variables are capitalized, which seems to be a standard
followed by many programmers. It’s certainly not necessary.

The upper-left contour plot takes the X-Y 2D arrays made using gridspec
as its first two arguments and Z as its third argument. The third argument tells
contour to make approximately 5 different levels in Z. We give the contour ob-
ject a name, as it is needed by the clabel call in the next line, which sets the
font size and the format of the numbers that label the contours. The line style
of the negative contours is set globally to be “dashed” by a call to Matplotlib’s
rcparams. We also plot the location of the X-Y grid created by gridspec just for
the sake of illustrating its function; normally, these would not be plotted.

The upper-right contour plot is made using contourf with 12 different Z
layers indicated by the different gray levels.The gray color scheme is set by the
keyword argument cmap, which here is set to the matplotlib.cm color scheme
cm.gray. Other color schemes can be found in the Matplotlib documentation
by an internet search on “matplotlib choosing colormaps.” The color bar leg-
end on the right is created by the colorbarmethod, which is attached to fig. It
is associated with the upper right plot by the name CS1 of the contourfmethod
and by the keyword argument ax=ax[0, 1]. Its size relative to the plot is deter-
mined by the shrink keyword. The font size of the color bar label is set using
the generic set property method setp using a somewhat arcane but compact
syntax.

For the lower-left contour plot CS2, we manually specify the levels of the
contours with the keyword argument levels=lev2. We specify that only every
other contour will be labeled numerically with lev2[1::2] as the second ar-
gument of the clabel call in line 38; lev2[0::2] would also label every other
contour, but the even ones instead of the odd ones.

The lower-right contour plot CS3 has ten contour levels and a continuously
varying grayscale background created using imshow. The imshow method uses
only the Z array to determine the gray levels. The x-y extent of the grayscale
background is determined by the keyword argument extent. By default, imshow

Plotting � 211

Figure 8.24 Streamlines of flow around a sphere falling in a viscous fluid.

uses the upper-left corner as its origin.Weoverride the default using the imshow
keyword argument origin='lower' so that the grayscale is consistent with the
data. The keyword argument iterpolation tells imshow how to interpolate the
grayscale between different Z levels.

8.9.3 Streamline Plots

Matplotlib can also make streamline plots, sometimes called field line plots.
The Matplotlib function call to make such plots is streamplot, and its use is
illustrated in Figure 8.24 to plot the streamlines of the velocity field of a vis-
cous liquid around a sphere falling through it at constant velocity u. The left
plot is in the reference frame of the falling sphere, and the right plot is in the
laboratory frame, where the liquid is very far from the sphere and is at rest.
The program that produces Figure 8.24 is given below.

Code: stokes_flow_stream.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib.patches import Circle
4
5
6 def v(u, a, x, z):
7 """Return the velocity vector field v = (vx, vy)
8 around sphere at r=0."""
9 r = np.sqrt(x * x + z * z)

10 R = a / r
11 RR = R * R
12 cs, sn = z / r, x / r
13 vr = u * cs * (1.0 - 0.5 * R * (3.0 - RR))

212 � Introduction to Python for Science and Engineering

14 vtheta = -u * sn * (1.0 - 0.25 * R * (3.0 + RR))
15 vx = vr * sn + vtheta * cs
16 vz = vr * cs - vtheta * sn
17 return vx, vz
18
19
20 # Grid of x, y points
21 xlim, zlim = 12, 12
22 nx, nz = 100, 100
23 x = np.linspace(-xlim, xlim, nx)
24 z = np.linspace(-zlim, zlim, nz)
25 X, Z = np.meshgrid(x, z)
26
27 # Set particle radius and velocity
28 a, u = 1.0, 1.0
29
30 # Velocity field vector, V=(Vx, Vz) as separate components
31 Vx, Vz = v(u, a, X, Z)
32
33 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5))
34
35 # Plot the streamlines using colormap and arrow style
36 color = np.log(np.sqrt(Vx * Vx + Vz * Vz))
37 seedx = np.linspace(-xlim, xlim, 18) # Seed streamlines
38 seedz = -zlim * np.ones(len(seedx)) # evenly in far field
39 seed = np.array([seedx, seedz])
40 ax1.streamplot(x, z, Vx, Vz, color=color, linewidth=1,
41 cmap="afmhot", density=5, arrowstyle="-|>",
42 arrowsize=1.0, minlength=0.4,
43 start_points=seed.T)
44 ax2.streamplot(x, z, Vx, Vz - u, color=color, linewidth=1,
45 cmap="afmhot", density=5, arrowstyle="-|>",
46 arrowsize=1.0, minlength=0.4,
47 start_points=seed.T)
48 for ax in (ax1, ax2):
49 # Add filled circle for sphere
50 ax.add_patch(Circle((0, 0), a, color="C0", zorder=2))
51 ax.set_xlabel("x")
52 ax.set_ylabel("z")
53 ax.set_aspect("equal")
54 ax.set_xlim(-0.7 * xlim, 0.7 * xlim)
55 ax.set_ylim(-0.7 * zlim, 0.7 * zlim)
56 plt.subplots_adjust(left=0.06, right=0.98, top=0.98, bottom=0.05)
57 plt.savefig("./figures/stokes_flow_stream.pdf")
58 plt.show()

The program starts by defining a function that calculates the velocity field
as a function of the lateral distance x and the vertical distance z. The function
is a solution to the Stokes equation, which describes flow in viscous liquids at
very low (zero) Reynolds number. The velocity field is the primary input into
the Matplotlib streamplot function.

The next step is to use NumPy’s meshgrid program to define the 2D grid
of points at which the velocity field will be calculated, just as we did for the

Plotting � 213

Figure 8.25 Streamlines of flow around a sphere falling in a fluid.

contour plots. After setting up the meshgrid arrays X and Z, we call the function
we defined v(u, a, X, Z) to calculate the velocity field (line 31).

The streamplot functions are set up in lines 36–39 and called in lines 40–
47.Note that for the streamplot function the input x-z coordinate arrays are 1D
arrays but the velocity arrays Vx-Vz are 2D arrays. The arrays seedx and seedx
set up the starting points (seeds) for the streamlines. You can leave them out
and streamplot will make its own choices based on the values you set for the
density and minlength keywords. Here, we have chosen them, along with the
seed settings, so that all the streamlines are continuous across the plot. The
other keywords set the properties for the arrow size and style, the streamlines’
width, and the streamlines’ coloring, in this case, according to the speed at a
given point.

Let’s look at another streamline plot, which illustrates some other pos-
sibilities for customizing streamline plots. The plot in Figure 8.25 shows
the streamlines for a faster-moving sphere and makes different choices than
the plot above. The code to make this plot, stokes_oseen_flow.py, is pro-
vided on the next page. The most noticeable difference is the use of the
Matplotlib function pcolor in line 55 that adds background coloring to the

214 � Introduction to Python for Science and Engineering

plot keyed to the local speed of the liquid. A logarithmic color scale is used
with a logarithmic color bar, which is set up by setting the pcolor keyword
norm=LogNorm(vmin=speed.min(), vmax=1) in line 55.

Code: stokes_oseen_flow.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib.patches import Circle
4 from matplotlib.colors import LogNorm
5 import seaborn as sns
6
7 def v(u, a, x, z, Re):
8 """Return the velocity vector field v = (vx, vy)
9 around sphere at r=0."""

10 theta = np.arctan2(-x, -z)
11 cs, sn = np.cos(theta), np.sin(theta)
12 R = a / np.sqrt(x * x + z * z)
13 if Re > 0: # Oseen solution
14 ex = np.exp(-0.5 * Re * (1.0 + cs) / R)
15 vr = 0.5 * u * R * (1.5 * (1.0 - cs) *
16 ex - R * (3.0 * (1 - ex) / Re - R * cs))
17 vtheta = 0.25 * u * R * sn * (3.0 * ex - R * R)
18 else: # Stokes solution
19 RR = R * R
20 vr = 0.5 * u * cs * R * (RR - 3.0)
21 vtheta = 0.25 * u * sn * R * (RR + 3.0)
22 vx = vr * sn + vtheta * cs
23 vz = vr * cs - vtheta * sn
24 return vx, vz
25
26
27 def stokesWake(x, Re):
28 """Return parabola r[1+cos(theta)]=xi of Stokes wake"""
29 z = -0.5 * (1.0 / Re - x * x * Re)
30 return np.ma.masked_where(x * x + z * z < 1.0 / Re ** 2, z)
31
32
33 # Set particle radius and velocity
34 a, u = 1.0, 1.0 # normalizes radius & velocity
35 Re = 0.3 # Reynolds number (depends on viscosity)
36
37 # Grid of x, z points
38 xlim, zlim = 60, 60
39 nx, nz = 200, 200
40 x = np.linspace(-xlim, xlim, nx)
41 z = np.linspace(-zlim, zlim, nz)
42 X, Z = np.meshgrid(x, z)
43
44 # Velocity field vector, v=(Vx, Vz) as separate components
45 Vx, Vz = v(u, a, X, Z, Re)
46 R = np.sqrt(X * X + Z * Z)
47 speed = np.sqrt(Vx * Vx + Vz * Vz)
48 speed[R < a] = u # set particle speed to u
49
50 fig, ax = plt.subplots(figsize=(8, 8))

Plotting � 215

51
52 # Plot the streamlines with an bwr colormap and arrow style
53 ax.streamplot(x, z, Vx, Vz, linewidth=1, density=[1, 2],
54 arrowstyle="-|>", arrowsize=0.7, color="C0")
55 cntr = ax.pcolor(X, Z, speed, norm=LogNorm(vmin=speed.min(), vmax=1),
56 cmap=sns.color_palette("vlag", as_cmap=True))
57 if Re > 0:
58 ax.add_patch(
59 Circle((0, 0), 1 / Re, color="black", fill=False,
60 ls="dashed", zorder=2))
61 ax.plot(x, stokesWake(x, Re), color="black", lw=1, ls="dashed",
62 zorder=2)
63 cbar = fig.colorbar(cntr, ax=ax, aspect=50, fraction=0.02,
64 shrink=0.9, pad=0.01)
65 cbar.set_label(label="fluid speed", fontsize=10)
66 plt.setp(cbar.ax.yaxis.get_ticklabels(), fontsize=10)
67 cbar.mappable.set_clim(vmin=speed.min(), vmax=1.0)
68
69 # Add filled circle for sphere
70 ax.add_patch(Circle((0, 0), a, color="black", zorder=2))
71 ax.set_xlabel("x/a")
72 ax.set_ylabel("z/a")
73 ax.set_aspect(1)
74 ax.set_xlim(-xlim, xlim)
75 ax.set_ylim(-zlim, zlim)
76 ax.text(0.5, 0.99, r"$Re = {0:g}$".format(Re), ha="center", va="top",
77 transform=ax.transAxes)
78 fig.savefig("./figures/stokes_oseen_flow.pdf")
79 plt.show()

8.9.4 Vector Field (quiver) Plots

As an alternative to streamline plots, Matplotlib can also make vector-field
plots, which are created by the function quiver. Figure 8.26 shows a vector-
field plot and a streamline plot for an electric dipole. In a vector-field plot,
arrows are drawnon a grid showing the direction of the field at each grid point.
The length of each arrow is proportional to the magnitude of the local field.
This presents a problem when the field strength varies by more than about an
order of magnitude over the field of view. In the case of the electric dipole,
the field diverges as r−2 so the arrows indicated the vectors get too long near
r = 0. To cope with this problem, the data within a certain radius, indicated
by the gray circle in Figure 8.26, are excluded from the vector field plot. This
done by creating a mask in line 21 that excludes all grid points with a radius
less than that specified by rmask in line 20 (recall that ~ means logical not).
The mask is deployed in lines 24 and 28. An alternative is to make each arrow
proportional to the logarithm of the field magnitude at each point.

Code: elec_dipole_vec_field.py
1 import matplotlib.pyplot as plt
2 from matplotlib.patches import Circle

216 � Introduction to Python for Science and Engineering

(a) (b)

Figure 8.26 Electric dipole field. (a) Vector-field quiver plot. (b) Streamline
plot.

3 import numpy as np
4
5
6 def e_field(x, z, d):
7 # Return electric dipole vector field E = (ex, ez) at (x, z)
8 zp, zn = z - 0.5 * d, z + 0.5 * d # z-coords of pos & neg charges
9 rp2 = x * x + zp * zp # distance squared from positive charge

10 rn2 = x * x + zn * zn # distance squared from negative charge
11 emagpl = 1.0 / rp2 # E-field magnitude from positive charge
12 emagmi = 1.0 / rn2 # E-field magnitude from positive charge
13 ex = (emagpl / np.sqrt(rp2) - emagmi / np.sqrt(rn2)) * x
14 ez = emagpl * zp / np.sqrt(rp2) - emagmi * zn / np.sqrt(rn2)
15 return ex, ez
16
17
18 X, Z = np.meshgrid(np.arange(-4.0, 4.01, 0.5),
19 np.arange(-4.0, 4.01, 0.5))
20 rmask = 1.8 # radius of meshgrid mask
21 mask = ~(X**2 + Z**2 < rmask**2) # meshgrid mask
22
23 d = 1.0
24 Ex, Ez = e_field(X[mask], Z[mask], d)
25
26 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5))
27 ax1.add_patch(Circle((0, 0), radius=rmask, fc="lightgray", zorder=1))
28 ax1.quiver(X[mask], Z[mask], Ex, Ez, scale=4.0, pivot="mid", zorder=2)
29
30 Ex, Ez = e_field(X, Z, d)
31 ax2.streamplot(X, Z, Ex, Ez, linewidth=0.75)
32
33 for ax in [ax1, ax2]:
34 ax.set_aspect("equal")
35 ax.plot([0.0, 0.0], [0.5 * d, -0.5 * d], "oC3", zorder=1)

Plotting � 217

36 ax.plot([0.0], [0.5 * d], "+w", zorder=2)
37 ax.plot([0.0], [-0.5 * d], "_w", zorder=2)
38 ax.set_xlabel("x")
39 ax.set_ylabel("z")
40
41 plt.subplots_adjust(left=0.06, right=0.98, top=0.98, bottom=0.05)
42 plt.savefig("./figures/elec_dipole_vec_field.pdf")
43 plt.show()

8.10 THREE-DIMENSIONAL PLOTS

While Matplotlib is primarily a 2D plotting package, it does have basic 3D
plotting capabilities. To create a 3D plot, we need to import Axes3D from
mpl_toolkits.mplot3d and then set the keyword projection to '3d' in a subplot
call as follows:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

Different 2D and 3D subplots can be mixed within the same figure window by
setting projection='3d' only in those subplots where 3D plotting is desired.
Alternatively, all the subplots in a figure can be set to be 3D plots using the
subplots function:
fig, ax = plt.subplots(subplot_kw={'projection': '3d'})

As you might expect, the third axis in a 3D plot is called the z-axis, and the
same commands for labeling and setting the limits that work for the x and y
axes also work for the z-axis.

8.10.1 Cartesian Coordinates

As a demonstration of Matplotlib’s 3D plotting capabilities, Figure 8.27 shows
a wireframe and a surface plot of Eq. (8.1), the same equation plotted with
contour plots in Figure 8.23.The code used tomake Figure 8.27 is given below.

Code: wireframe_surface_plots.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4
5 def pmgauss(x, y):
6 r1 = (x-1)**2 + (y-2)**2
7 r2 = (x-3)**2 + (y-1)**2
8 return 2*np.exp(-0.5*r1) - 3*np.exp(-2*r2)
9

218 � Introduction to Python for Science and Engineering

Figure 8.27 Wireframe and surface plots.

10
11 a, b = 4, 3
12
13 # Create an x,y mesh
14 x = np.linspace(0, a, 60)
15 y = np.linspace(0, b, 45)
16
17 X, Y = np.meshgrid(x, y)
18 Z = pmgauss(X, Y)
19
20 fig, ax = plt.subplots(1, 2, figsize=(9.2, 4),
21 subplot_kw={"projection": "3d"})
22 for i in range(2):
23 ax[i].set_zlim(-3, 2)
24 ax[i].xaxis.set_ticks(range(a+1)) # manually set ticks
25 ax[i].yaxis.set_ticks(range(b+1))
26 ax[i].set_xlabel(r"x")
27 ax[i].set_ylabel(r"y")
28 ax[i].set_zlabel(r"$f(x,y)$")
29 ax[i].view_init(40, -30)
30
31 # Plot wireframe and surface plots.
32 plt.subplots_adjust(left=0.0, bottom=0.08, right=0.96,
33 top=0.96, wspace=0.05)
34 p0 = ax[0].plot_wireframe(X, Y, Z, rcount=80, ccount=80,
35 color="C1")
36 p1 = ax[1].plot_surface(X, Y, Z, rcount=50, ccount=50,
37 color="C1")
38 fig.savefig("./figures/wireframe_surface_plots.pdf")
39 fig.show()

The 3D wireframe and surface plots use the same meshgrid function to
set up the x-y 2D arrays. The rcount and ccount keywords set the maximum
number of rows and columns used to sample the input data to generate the
graph.

Plotting � 219

The viewing angles elevation and azimuth for 3D plots are set with the
view_init function. If the default values do not give the desired view, you can
use your mouse to adjust the view in the plot window manually and then read
off the values of the elevation and azimuth, which are displayed in the plot
window.

8.10.2 Polar Coordinates

Wireframe and surface plots can also be made using polar coordinates. The
first step is to create a polar coordinate mesh, as shown in lines 11–13 in
surface_polar.py below. This polar mesh is then used to define the height Z of
the surface plot.Then, the Cartesian coordinates are calculated from the polar
coordinate and used for plotting in line 17.

Code: surface_polar.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5
6 def f(r, theta):
7 return r**2 * np.exp(-4.0 * ((r * (r - 1.0))**2)) * np.cos(theta)
8
9

10 # Make polar mesh
11 r = np.linspace(0.0, 2.0, 50)
12 th = np.linspace(0.0, 2.0 * np.pi, 50)
13 R, TH = np.meshgrid(r, th)
14
15 Z = f(R, TH)
16 # Translate polar grid to Cartesian grid for plotting
17 X, Y = R * np.cos(TH), R * np.sin(TH)
18
19 fig, ax = plt.subplots(1, 2, figsize=(9.2, 4),
20 subplot_kw={"projection": "3d"})
21 for i in range(2):
22 ax[i].set_xlabel(r"x")
23 ax[i].set_ylabel(r"y")
24 ax[i].set_zlabel(r"$f(x,y)$")
25 ax[i].view_init(20, -120)
26
27 # Plot wireframe and surface plots.
28 plt.subplots_adjust(left=0.04, bottom=0.04, right=0.96, top=0.96,
29 wspace=0.05)
30 p0 = ax[0].plot_wireframe(X, Y, Z, rcount=45, ccount=45, color="C0")
31 # cc = sns.color_palette("YlOrBr_r", as_cmap=True)
32 cc = sns.color_palette("dark:salmon", as_cmap=True)
33 p1 = ax[1].plot_surface(X, Y, Z, rcount=45, ccount=45, cmap=cc)
34 plt.savefig("./figures/surface_polar.pdf")
35 plt.show()

220 � Introduction to Python for Science and Engineering

Figure 8.28 Polar surface plots.

These plotting examples are just a sample of many kinds of plots that can
be made using Matplotlib. Our purpose is not to exhaustively list all the pos-
sibilities here but to introduce you to the Matplotlib package. Online docu-
mentation and examples allow you to explore the full range of possibilities.

8.11 EXERCISES

1. Plot the function y = 3x2 for −1 ≤ x ≤ 3 as a continuous line. Include
enough points so that the curve you plot appears smooth. Label the axes
x and y.

2. Plot the following function for −15 ≤ x ≤ 15:

y = cos x
1 + 1

5x2

Include enough points so that the curve you plot appears smooth. Draw
thin gray lines, one horizontal at y = 0 and the other vertical at x = 0.
Both lines should appear behind the function. Label the axes x and y.

3. Plot the functions sin x and cos x vs. x on the same plot with x going
from −π to π. Make sure the limits of the x-axis do not extend beyond
the limits of the data. Plot sin x in orange and cos x in green, and include
a legend to label the two curves. Place the legend within the plot, but
such that it does not cover either of the sine or cosine traces. Draw thin
gray lines behind the curves, one horizontal at y = 0 and the other
vertical at x = 0.

Plotting � 221

4. For the data from the data file shown below.

(a) Read the data into the Python program and plot y vs. time using
circles for data points with error bars. Use the data in the dy col-
umn as the error estimates for the y data. Label the horizontal and
vertical axes “time (s)” and “position (cm).” Create your plot using
the fig, ax = plt.subplots() syntax.

(b) The following function is used to model the data that you were
asked to plot in part (a):

f(t) =
(
3 + 1

2
sin

πt
5

)
te−t/10

To ascertain how well f(t) models the y vs. time data, plot f(t) as a
smooth line on the same plot. To plot f(t) as a smooth line, create
a new NumPy t array separate from the time data. Make the line
for f(t) pass behind the data points.

Data: lauren_john_data.txt
Data for Exercise 4
Date: 16-Aug-2022
Data taken by Lauren and John

time y dy
1.0 2.94 0.3
4.5 8.49 0.8
8.0 9.36 0.4

11.5 11.60 1.0
15.0 9.32 0.9
18.5 7.75 0.5
22.0 8.06 0.4
25.5 5.60 0.3
29.0 4.50 0.3
32.5 4.01 0.4
36.0 2.62 0.4
39.5 1.70 0.6
43.0 2.03 0.4

5. UseMatplotlib’s function hist alongwithNumPy’s functions random.rand
and random.randn to create the histogram graphs shown in Figure 9.7.
See Section 9.4 for a description of NumPy’s randomnumber functions.

6. The data file below shows data obtained for the displacement (position)
vs. time of a falling object, together with the estimated uncertainty in
the displacement.

222 � Introduction to Python for Science and Engineering

Data: falling_ball_data.txt
Measurements of fall velocity vs time
Taken by A.P. Crawford and S.M. Torres
19-Sep-22
time (s) position (m) uncertainty (m)
0.0 0.0 0.04
0.5 1.3 0.12
1.0 5.1 0.2
1.5 10.9 0.3
2.0 18.9 0.4
2.5 28.7 0.4
3.0 40.3 0.5
3.5 53.1 0.6
4.0 67.5 0.6
4.5 82.3 0.6
5.0 97.6 0.7
5.5 113.8 0.7
6.0 131.2 0.7
6.5 148.5 0.7
7.0 166.2 0.7
7.5 184.2 0.7
8.0 201.6 0.7
8.5 220.1 0.7
9.0 238.3 0.7
9.5 256.5 0.7

10.0 275.6 0.8

(a) Use these data to calculate the velocity and acceleration (in a
Python program .py file), together with their uncertainties prop-
agated from the displacement vs. time uncertainties. Be sure to
calculate time arrays corresponding to the midpoint in time be-
tween the two displacements or velocities for the velocity and ac-
celeration arrays, respectively, as described in Section 4.4.3.When
adding or subtracting two quantities a and b with uncertainties
∆a and ∆b, respectively, the uncertainty in either a + b or a − b
is
√

(∆a)2 + (∆b)2.
(b) In a single window frame, make three vertically stacked plots of

the displacement, velocity, and acceleration vs. time. Show the er-
ror bars on the different plots. Ensure that all three plots’ time axes
cover the same range of times (use sharex). Why do the relative
sizes of the error bars grow progressively greater as one progresses
from displacement to velocity to acceleration?

7. Starting from the code that produced Figure 8.10, write a program to
produce the plot in Figure 8.29. You will need to use the sharex feature
introduced in Section 8.2.4, the subplots_adjust function to adjust the

Plotting � 223

Figure 8.29 Figure for Exercise 7.

space between the two subplots, and the LATEX syntax introduced in Sec-
tion 8.7 to produce the math and Greek symbols. Draw the ticks for the
x-axes at intervals of π/2 and label them as shown below. Use for loops
where possible to avoid repetitive code.

8. Write a program to make a contour plot of the following function over
the area defined by −2.5 < x < 2.5 and −2.5 < y < 2.5.

f(x) = 10 cos(1
3xy+ 5) sin x− 2 cos x

Make the contours at the intervals and label them as shown below. You
should also ensure that the x and y axes have the same scaling.

9. Write a program to create the 3D surface plots below of the function
f(x) from the previous exercise.

224 � Introduction to Python for Science and Engineering

10. Make quiver and streamline plots of the following vector field for a flow-
ing fluid:

vx = by , vy = bx .

Set b = 1. The output should look like Figure 8.30.

Figure 8.30 Sample output for Exercise 10.

CH A P T E R 9

Numerical Routines:
SciPy and NumPy

This chapter describes some of the more useful numerical routines avail-
able in the SciPy and NumPy packages, most of which are wrappers
to well-established numerical routines written in Fortran, C, and C++.
Special functions like Bessel, Gamma, Error, and many others are cov-
ered. Routines for curve fitting to linear, polynomial, and nonlinear
functions are introduced.Randomnumber generators are covered. Lin-
ear algebra routines are covered, including ones that solve systems of lin-
ear equations and eigenvalue problems. Routines for obtaining solu-
tions to nonlinear equations are introduced, as are routines to perform
numerical integration of single and multiple integrals. Routines for ob-
taining solutions to ODEs (and systems of ODEs) are introduced. Fi-
nally, you learn about routines to perform discrete Fourier transforms
(FFT algorithm).

SciPy is a Python library ofmathematical routines.Many of the SciPy rou-
tines are Python “wrappers,” that is, Python routines that provide a Python
interface for numerical libraries and routines written in Fortran, C, or C++.
Thus, SciPy lets you take advantage of the decades of work that has gone into
creating and optimizing numerical routines for science and engineering. Be-
cause the Fortran, C, or C++ code that Python accesses is compiled, these rou-
tines typically run very fast. Therefore, there is no real downside—no speed
penalty—for using Python in these cases.

This chapter introduces many but not all of the SciPy packages. Those
covered include special functions, spline fitting, least-squares fitting, random

DOI: 10.1201/9781032673950-9 225

https://doi.org/10.1201/9781032673950-9

226 � Introduction to Python for Science and Engineering

numbers, linear algebra, finding roots of scalar functions, numerical integra-
tion, routines for numerically solving ordinary differential equations (ODEs),
and discrete Fourier transforms. This introduction does not include extensive
background on the numerical methods employed; that is a topic for another
text. You may want to explore more of SciPy’s capabilities after having read
this introduction.

One final note: SciPy makes extensive use of NumPy arrays, so NumPy
should be imported with SciPy.

9.1 SPECIAL FUNCTIONS

SciPy provides many special functions, including Bessel functions (and rou-
tines for finding their zeros, derivatives, and integrals), error functions, the
gamma function, Mathieu functions, many statistical functions, and many
others. Most are contained in the scipy.special library, and each has its own
special arguments and syntax, depending on the vagaries of the particular
function. Polynomial functions, such as Legendre, Laguerre, Hermite, etc.,
exist in both the SciPy and NumPy libraries. The NumPy versions, found in
numpy.polynomial, are more numerically efficient and stable than their SciPy
equivalents. They also offer more comprehensive capabilities, so we introduce
only the NumPy versions. We demonstrate several of them in the code be-
low that produces a plot of the different functions. For more information, you
should consult the SciPy website on the scipy.special and numpy.polynomial
libraries.

Code: special_functions.py
1 import numpy as np
2 import scipy.special
3 import matplotlib.pyplot as plt
4
5 # create a figure window with subplots
6 fig, ax = plt.subplots(3, 2, figsize=(9.4, 8.1))
7
8 # create arrays for a few Bessel functions and plot them
9 x = np.linspace(0, 20, 256)

10 j0 = scipy.special.jv(0, x) # J_0(x)
11 j1 = scipy.special.jv(1, x) # J_1(x)
12 y0 = scipy.special.yv(0, x) # Y_0(x)
13 y1 = scipy.special.yv(1, x) # Y_1(x)
14 j0_zeros = scipy.special.jn_zeros(0, 6)
15 ax[0, 0].plot(x, j0, color="C0", label=r"$J_0(x)$")
16 ax[0, 0].plot(x, j1, color="C1", dashes=(5, 2), label=r"$J_1(x)$")
17 ax[0, 0].plot(j0_zeros, np.zeros(j0_zeros.size), "oC3", ms=3)
18 ax[0, 0].plot(x, y0, color="C2", dashes=(3, 2), label=r"$Y_0(x)$")
19 ax[0, 0].plot(x, y1, color="C3", dashes=(1, 2), label=r"$Y_1(x)$")
20 ax[0, 0].axhline(color="grey", lw=0.5, zorder=-1)

Numerical Routines: SciPy and NumPy � 227

21 ax[0, 0].set_xlim(0, 20)
22 ax[0, 0].set_ylim(-1, 1)
23 ax[0, 0].text(0.5, 0.95, "Bessel", ha="center", va="top",
24 transform=ax[0, 0].transAxes)
25 ax[0, 0].legend(loc="lower right", ncol=2)
26
27 # gamma function
28 x = np.linspace(-3.5, 6., 3601)
29 g = scipy.special.gamma(x)
30 g = np.ma.masked_outside(g, -100, 400)
31 ax[0, 1].plot(x, g, color="C0")
32 ax[0, 1].set_xlim(-3.5, 6)
33 ax[0, 1].axhline(color="grey", lw=0.5, zorder=-1)
34 ax[0, 1].axvline(color="grey", lw=0.5, zorder=-1)
35 ax[0, 1].set_ylim(-20, 100)
36 ax[0, 1].text(0.5, 0.95, "Gamma", ha="center",
37 va="top", transform=ax[0, 1].transAxes)
38
39 # error function
40 x = np.linspace(0, 2.5, 256)
41 ef = scipy.special.erf(x)
42 ax[1, 0].plot(x, ef, color="C0")
43 ax[1, 0].set_xlim(0, 2.0)
44 ax[1, 0].set_ylim(0, 1.1)
45 ax[1, 0].axhline(y=1., color="grey", lw=0.5, dashes=(5, 2), zorder=-1)
46 ax[1, 0].text(0.5, 0.97, "Error", ha="center",
47 va="top", transform=ax[1, 0].transAxes)
48
49 # Airy function
50 x = np.linspace(-15, 4, 256)
51 ai, aip, bi, bip = scipy.special.airy(x)
52 ax[1, 1].plot(x, ai, color="C0", label=r"$Ai(x)$")
53 ax[1, 1].plot(x, bi, color="C1", dashes=(5, 2), label=r"$Bi(x)$")
54 ax[1, 1].axhline(color="grey", lw=0.5, zorder=-1)
55 ax[1, 1].axvline(color="grey", lw=0.5, zorder=-1)
56 ax[1, 1].set_xlim(-15, 4)
57 ax[1, 1].set_ylim(-0.5, 0.8)
58 ax[1, 1].text(0.5, 0.95, "Airy", ha="center",
59 va="top", transform=ax[1, 1].transAxes)
60 ax[1, 1].legend(loc="upper left")
61
62 # Legendre polynomials
63 x = np.linspace(-1, 1, 256)
64 lp0 = np.polynomial.Legendre.basis(0)(x) # P_0(x)
65 lp1 = np.polynomial.Legendre.basis(1)(x) # P_1(x)
66 lp2 = np.polynomial.Legendre.basis(2)(x) # P_2(x)
67 lp3 = np.polynomial.Legendre.basis(3)(x) # P_3(x)
68 ax[2, 0].plot(x, lp0, color="C0", label=r"$P_0(x)$")
69 ax[2, 0].plot(x, lp1, color="C1", dashes=(5, 2), label=r"$P_1(x)$")
70 ax[2, 0].plot(x, lp2, color="C2", dashes=(3, 2), label=r"$P_2(x)$")
71 ax[2, 0].plot(x, lp3, color="C3", dashes=(1, 2), label=r"$P_3(x)$")
72 ax[2, 0].axhline(color="grey", lw=0.5, zorder=-1)
73 ax[2, 0].axvline(color="grey", lw=0.5, zorder=-1)
74 ax[2, 0].set_xlim(-1, 1.)
75 ax[2, 0].set_ylim(-1, 1.1)
76 ax[2, 0].text(0.5, 0.9, "Legendre", ha="center",

228 � Introduction to Python for Science and Engineering

77 va="top", transform=ax[2, 0].transAxes)
78 ax[2, 0].legend(loc="lower right", ncol=2)
79
80 # Laguerre polynomials
81 x = np.linspace(-5, 8, 256)
82 lg0 = np.polynomial.Laguerre.basis(0)(x) # L_0(x)
83 lg1 = np.polynomial.Laguerre.basis(1)(x) # L_1(x)
84 lg2 = np.polynomial.Laguerre.basis(2)(x) # L_2(x)
85 lg3 = np.polynomial.Laguerre.basis(3)(x) # L_3(x)
86 ax[2, 1].plot(x, lg0, color="C0", label=r"$L_0(x)$")
87 ax[2, 1].plot(x, lg1, color="C1", dashes=(5, 2), label=r"$L_1(x)$")
88 ax[2, 1].plot(x, lg2, color="C2", dashes=(3, 2), label=r"$L_2(x)$")
89 ax[2, 1].plot(x, lg3, color="C3", dashes=(1, 2), label=r"$L_3(x)$")
90 ax[2, 1].axhline(color="grey", lw=0.5, zorder=-1)
91 ax[2, 1].axvline(color="grey", lw=0.5, zorder=-1)
92 ax[2, 1].set_xlim(-5, 7.2)
93 ax[2, 1].set_ylim(-5, 10)
94 ax[2, 1].text(0.5, 0.9, "Laguerre", ha="center",
95 va="top", transform=ax[2, 1].transAxes)
96 ax[2, 1].legend(loc="lower left", ncol=2)
97 plt.tight_layout()
98 plt.savefig("./figures/special_functions.pdf")
99 plt.show()

The arguments of the different functions depend, of course, on the nature
of the particular function. For example, the first argument of the two types of
Bessel functions called in lines 10–13 is the order of the Bessel function, and
the second argument is the independent variable. For many problems, it is
important to know the zeros of different Bessel functions. The SciPy function
scipy.special.jn_zeros(n, m) returns the firstm zeros of the nth-order Bessel
function. For example, the first three zeros are obtained as follows:
In[1]: from scipy.special import jn, jn_zeros

In[2]: jn_zeros(0, 3)
Out[2]: array([2.40482556, 5.52007811, 8.65372791])

Line 14 of special_functions.py gets the first six zeros of J0(x) and line 17
plots them as solid red circles in the Bessel functions plot.

In contrast to the Bessel functions, the Gamma and Error functions take
one argument each and produce one output. The Airy function takes only one
input argument but returns four outputs, which correspond to the two Airy
functions, commonly designated Ai(x) and Bi(x), and their derivatives Ai′(x)
and Bi′(x). The plot in Figure 9.1 shows only Ai(x) and Bi(x).

The Legendre and Laguerre polynomials are calculated using the basis
method of the Legendre and Laguerre classes, respectively, which are part of
the numpy.polynomial module. The argument of the basis method specifies
the order n of the polynomial, where n = 0, 1, 2, The method returns the

Numerical Routines: SciPy and NumPy � 229

Figure 9.1 Plots of special functions.

values of the polynomial by adding another argument enclosed in its own set
of parentheses.

9.1.1 Important Note on Importing SciPy Subpackages

Writing import scipy does not import any SciPy subpackage. Youmust import
each subpackage separately, for example, by writing import scipy.special or
import scipy.optimize (see Section 9.3 below). Alternatively, you can write
from scipy import special or from scipy import optimize, etc.

9.2 SPLINE FITTING, SMOOTHING, AND INTERPOLATION

In the presentation and analysis of data, spline fitting is used primarily for
smoothing data, either to make a visually pleasing guide to the eye or as a
prelude to calculating the numerical derivative of a noisy data set. It is also

230 � Introduction to Python for Science and Engineering

useful for interpolating between data points and for numerically estimating
roots (zero crossings) of data.

9.2.1 Interpolating Splines

Interpolating splines connect neighboring data points with a piecewise con-
tinuous polynomial of a given order. A linear spline draws a straight line
between neighboring data points. A quadratic spline draws a second-order
polynomial (quadratic) line between data neighboring points. An nth-order
spline curve connects the interval between neighboring data points with an
nth-order polynomial. Done properly, an nth-order spline and its first n − 1
derivatives are piecewise continuous across the entire range of the input data.
Be warned, however, that if the data are noisy, the derivatives will be even
noisier, so a simple spline may not be what you want if your purpose is to take
derivatives of numerical data; you may prefer a smoothing spline, which we
discuss in Section 9.2.2. Nevertheless, even if a smoothing spline is what you
want to use, it’s instructive to understand first how simple splines work.

To see how spline fittingworksmathematically, consider the case of a cubic
(third order) spline for a set ofm+1 data points {xi, yi} between a and b such
that a = x0 < x1 · · · < xm = b. In a cubic spline fit, the ith subinterval’s
endpoints xi and xi+1 are connected by a third-order polynomial of the form

Si(ti) = ai + biti + cit2i + dit3i , for 0 ≤ ti ≤ 1 , i = 0, 1, ...,m− 1 ,

where ti = (x− xi)/(xi+1 − xi) and xi ≤ x ≤ xi+1. Each of them subintervals,
with indices i = 0, ... ,m − 1, is described by a different cubic polynomial
Si(ti). As each of the m polynomials has 4 unknown constants, ai, bi, ci, and
di, there are 4m unknowns to be determined to fully determine all the splines.
By demanding that Si(0) = yi and Si(1) = yi+1 for each subinterval, that is, by
demanding that the starting and ending points of each interval give the correct
y values, one obtains 2m equations for the 4m coefficients {ai, bi, ci, di}. By
demanding that the first and second derivatives match at the m − 1 interior
points, i.e., S′i−1(1) = S′i(0) and S′′i−1(1) = S′′i (0) for i = 1, ... ,m − 1, one
obtains another 2(m − 1) equations, giving a total of 4m − 2 equations for
the 4m unknown coefficients.1 The final two conditions needed to obtain a
closed set of 4m equations are provided by imposing boundary conditions, i.e.
conditions at the beginning and end of the interval. A common choice is to set
the second derivative at the two endpoints to zero, S′′0 (0) = S′′m−1(1) = 0. This

1Please note that the derivatives S′, S′′…are derivatives with respect to x, not t. For example,
S′i (0) and S′i (1) are (dSi/dx)ti=0 and (dSi/dx)ti=1 evaluated, respectively, at the beginning and
end of the ith interval.

Numerical Routines: SciPy and NumPy � 231

Figure 9.2 Polynomial (cubic) least squares fit to data.

is often called the natural boundary condition. But there are other choices as
well, such as setting the third derivatives equal to each other at the first and last
internal boundaries, i.e. S′′′0 (1) = S′′′1 (0) and S′′′m−2(1) = S′′′m−1(0). This is often
called the not-a-knot boundary condition. Periodic boundary conditions and
clamping the first or second derivatives at the boundaries are sometimes used,
depending on the problem.

To summarize, a cubic spline draws a piecewise continuous curve with
continuous first and second derivatives everywhere through an ordered set of
m + 1 data points (i.e., x0 ≤ x1, ... ,≤ xm+1). An nth-order spline draws a
piecewise continuous curve with continuous derivatives up to the (n − 1)th
order through an ordered set of data points.

9.2.1.1 Interpolation

If your purpose in spline fitting is to interpolate between data points, you can
use the interp1d from the scipy.interpolate module. It can perform linear,
quadratic, cubic,…polynomial interpolation between data points in your data
set. Please note that using higher than cubic order splines for interpolation is
seldom of any value, as we discuss in the next section on cubic splines.

Figure 9.2(a) shows a data set fit with both a cubic (solid blue line) and lin-
ear (dashed orange line) spline using the interp1d function. The spline fit and

232 � Introduction to Python for Science and Engineering

plot are made using the program fit_spline_demo.py listed below. A spline fit
is initialized (instantiated, in OOP jargon) for a linear spline on line 9 with
the statement od1 = interp1d(xdata, ydata). The first two (positional) argu-
ments of interp1d are the arrays xdata and ydata, which contain the data to be
fit. If no other arguments are specified, as in line 9, interp1d performs a linear
interpolation between data points. To find the interpolated value at any point
within the lower and upper limits of the x-data, here from1.2 to 17.8, youwrite
od1(x), where x can be a single number or an array. If you ask it to extrapo-
late to points outside the data limits, it returns a ValueError. As described in
the online documentation, you can specify that it returns numerical results for
points outside the data limits using the keyword argument fill_value. Extrap-
olating outside the range of the data set is fraught with problems, so beware if
you choose to use this feature.

A cubic spline fit is instantiated on line 10 for the same data set but with
an additional keyword argument kind, which is used to specify the polynomial
order of the spline fit. Setting it to a numerical value of 3 (or a string argument
of "cubic") tells it to perform a cubic spline.

9.2.1.2 Cubic Splines

Cubic splines are the workhorse of spline fitting. Higher-order spline fits are
generally too sensitive to small fluctuations in the data, which can lead to wild
fluctuations in the interpolations. The lower-order quadratic splines can have
difficulties capturing points of inflection. Linear splines, of course, are not
smooth but have the advantage of confining all interpolated values of y to be
within the measured values of y.

The scipy.interpolate module has a dedicated CubicSpline function that
is more versatile than the interp1d function. It allows the user to specify the
spline boundary conditions and can provide the first three derivatives of the
spline fit (although only the first and second derivatives are continuous). The
CubicSpline function is instantiated and used similarly to scipy.interpolate.
The first two positional arguments of CubicSpline are the arrays xdata and
ydata, which contain the data to be fit. The keyword argument bc_type
sets the boundary conditions. Setting it equal to "natural", "not-a-knot", or
"periodic" gives the boundary conditions of the same names as described on
page 231. Clamped and other boundary conditions can also be specified, as
detailed in the online documentation. The CubicSpline function is instanti-
ated on line 11 of fit_spline_demo.py, which is listed below.

CubicSpline has a method derivative(n) to find the nth derivative of the
spline fit, where n can be 1, 2, or 3 (1 is the default). Figure 9.2(b) shows a plot of

Numerical Routines: SciPy and NumPy � 233

the cubic spline (solid green curve) and its first derivative (dashed blue curve).
The calculated first derivative (slope) fluctuates quite significantly, showing
how sensitive it is to any noise in the original data. Because of this sensitivity,
people usually use smoothing splines, discussed in the next section, to numer-
ically determine derivatives from noisy data.

Code: fit_spline_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.interpolate import interp1d, CubicSpline, UnivariateSpline
4
5 # load data from file
6 xdata, ydata, yunc = np.loadtxt("fit_spline_demo.txt", skiprows=5,
7 unpack=True)
8 # calculate splines
9 od1 = interp1d(xdata, ydata)

10 od3 = interp1d(xdata, ydata, kind=3)
11 cs = CubicSpline(xdata, ydata, bc_type="natural")
12 us = UnivariateSpline(xdata, ydata)
13 usw0 = UnivariateSpline(xdata, ydata, w=1.0 / yunc)
14 usw3 = UnivariateSpline(xdata, ydata, w=1.0 / yunc, s=3)
15 # array for plotting splines (many points for smooth plot)
16 xs = np.linspace(xdata.min(), xdata.max(), 100)
17
18 fig, ax = plt.subplots(2, 2, figsize=(9, 6), sharex=True, sharey=True)
19 ax[0, 0].plot(xs, od3(xs), "-C0", lw=1, zorder=-2,
20 label="interp1d (kind=3)")
21 ax[0, 0].plot(xs, od1(xs), "-C1", lw=1, zorder=-2, dashes=(5, 2),
22 label="interp1d")
23 ax[0, 1].plot(xs, cs(xs), "-C2", lw=1, zorder=-2,
24 label="CubicSpline")
25 ax[1, 0].plot(xs, us(xs), "-C3", lw=1, zorder=-2,
26 label="UnivariateSpline")
27 ax[1, 1].plot(xs, usw0(xs), "-C4", lw=1, zorder=-2,
28 label="UnivariateSpline (weighted)")
29 ax[1, 1].plot(xs, usw3(xs), "-C4", lw=1, zorder=-2, dashes=(5, 2),
30 label="UnivariateSpline (weighted, s=3)")
31 # Calculate and plot derivatives of Cubic and Univariate splines
32 ax[0, 1].plot(xs, cs.derivative(1)(xs), lw=0.8, zorder=-2,
33 dashes=(10, 4), label=r"dy/dx")
34 ax[1, 0].plot(xs, us.derivative(1)(xs), lw=0.8, zorder=-2,
35 dashes=(10, 4), label=r"dy/dx")
36 ax[1, 0].plot(xs, us.derivative(2)(xs), lw=0.8, zorder=-2,
37 dashes=(4, 4), label=r"d^2y/dx^2")
38 # plot data & annotations on top of spline fits plotted above
39 abcd = [["(a)", "(b)"], ["(c)", "(d)"]]
40 for i in range(2):
41 for j in range(2):
42 ax[i, j].plot(xdata, ydata, "oC0", ms=3, lw=1)
43 ax[i, j].legend()
44 ax[i, j].text(0.01, 0.98, abcd[i][j], ha="left", va="top",
45 transform=ax[i, j].transAxes)
46 ax[i, j].axhline(color="gray", lw=0.5, zorder=-3)
47 ax[i, j].set_ylim(-21., 21.)

234 � Introduction to Python for Science and Engineering

48 if i == 1: ax[i, j].set_xlabel(r"x")
49 if j == 0: ax[i, j].set_ylabel(r"y")
50 # include error bars for lower right plot (d)
51 ax[1, 1].errorbar(xdata, ydata, fmt="oC0", ms=3, yerr=yunc,
52 ecolor="gray", elinewidth=1, zorder=-1)
53
54 fig.tight_layout()
55 fig.savefig("figures/fit_spline_demo.pdf")
56 plt.show()

9.2.2 Smoothing Splines

Smoothing splines are often used to process data, sometimes just to draw a
smooth curve through noisy data as a guide to the eye. Smoothing splines can
also be used to provide estimates of numerical derivatives of data, as taking
derivatives with standard interrpolating splines can be very sensitive to even
a small amount of noise.

The solid red curve in Figure 9.2(c) shows a cubic smoothing spline
for the same data set used for the linear and cubic interpolating splines
in panels (a) and (b) of Figure 9.2. The smoothing spline is created in
line 12 of fit_spline_demo.py with a call to the scipy.interpolate routine
UnivariateSpline. The only arguments are xdata and ydata. The smoothing
spline passes quite close to all the data points but no longer goes through them,
yielding a satisfactory smoothing of the data. You need go no further in many
cases, and your smoothing task is done. It is possible to exertmore control over
the smoothing, but you need to understandmore about how spline smoothing
works, which we discuss next.

Smoothing splines work in part by reducing the number of splines over
the data interval, usually quite dramatically. In standard interpolating spline
fits, there are m + 1 data points and m splines, one spline (polynomial) for
each interval between neighboring data points. The place where two splines
meet is called a knot. In an interpolating spline, there is a knot at every data
point. By contrast, the smooth spline fit to 15 data points in Figure 9.2(c) has
six knots. The positions (and number) of knots can be determined using the
get_knots() method of UnivariateSpline after running fit_spline_demo.py:
In[1]: us.get_knots()
Out[1]: array([1.2, 2.6, 3.8, 4.6, 10. , 17.8])

The derivative() method of UnivariateSpline can be used to find the
first three derivatives of the spline fit. The first and second derivatives, shown
by a long dashed blue line and a short dashed orange line, respectively,
in Figure 9.2(c), are determined and plotted in lines 34–35 and 36–37 of
fit_spline_demo.py. As the second derivative of a cubic polynomial is a

Numerical Routines: SciPy and NumPy � 235

straight line, the second spline derivative is a piecewise continuous set of
straight lines (short dashed orange trace). The knots at x = 2.6, 3.8, and 10.0
are evident by the breaks in the slope of the second derivative, which means
that the third derivative (not shown) is discontinuous at those knots.

UnivariateSpline uses de Boor’s algorithm2 for smoothing splines, which
seeks to minimize the objective function

χ2
s = p

m−1∑
i=0

(
yi − f̂(xi)

σi

)2

+ (1 − p)
∫ b

a

(̂
f′′(x)

)2
dx , (9.1)

where f̂(x) is the piecewise continuous set of splines that is sought, {xi, yi} are
the data, and σi the uncertainty in the y-data. The sum is just the familiar χ2

objective function Eq. (7.11) used in least squares fitting, which is minimized
when f̂(x)most closely approximates {yi}, while the second term isminimized
when f̂(x) is smoothest, that is, when it has the smallest squared second deriva-
tive integrated over the data interval [a, b], which would be straight line. Thus,
p sets the trade-off between the closeness and smoothness of the fit. The task
is to find the optimal spline coefficients {ai, bi, ci, di} and value of p that min-
imize χ2

s for a given number and placement of knots.
The de Boor method splits the task of minimizing χ2

s into two parts: first,
you decide on the number and placement of the knots, and then you adjust
p and the spline coefficients to minimize χ2

s . To determine the number of
knots, you specify the approximate value of χ2 you want. To get χ2 = 0,
you would need m knots, which you can achieve with a normal interpolat-
ing (unsmoothed) spline fit with f̂(xi) = yi for all the data points. You can
get a smoother spline by decreasing the number of knots, increasing the value
of χ2 > 0. So, the procedure is for you to specify χ2, and the algorithm will
choose the number and placement of knots needed to achieve it; this sets the
desired degree of smoothness. Once this is known, the routine adjusts the
value of p to minimize χ2

s . Then it recalculates the spline coefficients to min-
imize χ2 and χ2

s further. This is repeated with p and the spline coefficients
being recalculated until the minimum of χ2

s is found. If the resulting spline
doesn’t have the level of smoothness you desire, you can increase or decrease
the value ofχ2 that you specify and then rerun the routine.The value of theχ2

sum that you want to achieve is set by the keyword argument s (for smoothing
factor). If you do not specify s, UnivariateSpline sets it tom+1, the number of

2de Boor, Carl. A practical guide to splines, New York, Springer, 2001.

236 � Introduction to Python for Science and Engineering

data points. The weights are specified by the w keyword argument and should
be set to the inverse of the uncertainty for each data point: w = 1.0 / unc.

For the smoothing fit shown in Figure 9.2(c), only xdata and ydata are
specified in the function call (line 12). Since the weights (w = 1./unc) are not
specified, UnivariateSpline sets them all equal. Figure 9.2(d) shows the re-
sults of specifying the weighting (see lines 13 and 14). In this case, when the
smoothing factor is not specified, the smoothing factor s is set to its default
value of len(w), here 15, and a fairly satisfactory smoothing spline is obtained
(solid purple line). Reducing the smoothing factor to s=3 gives a spline (dashed
purple curve) that follows the data more closely.

9.2.3 Finding Roots (zero crossings) of Numerical Data

Spline fits can also be used to find roots (zero crossings) of numerical data.The
two functions CubicSpline and UnivariateSpline both have a root() method,
which can be run after the fit_spline_demo.py is run
In[2]: cs.roots()
Out[2]: array([2.17780146, 8.41469048, 15.84466433,
26.48818529])
In[3]: us.roots()
Out[3]: array([2.17942427, 8.81132025, 15.4409352])

Interestingly, the CubicSpline routine finds four roots, one outside the domain
over which the data are defined. By contrast, the UnivariateSpline routine
is more disciplined and returns only the three roots within the domain over
which the data are defined.

9.3 CURVE FITTING

One of themost important tasks in any experimental science is modeling data
and determining how well some theoretical function describes experimental
data. In Section 7.5, you saw how this can be done when the theoretical model
is a simple straight line. In this section, we explore what NumPy and SciPy
have to offer in the way of linear, polynomial, and nonlinear fitting functions.

SciPy has excellent routines for fitting to nonlinear fitting functions, as
discussed in Section 9.3.

NumPy and SciPy also have routines for fitting to linear and polynomial
functions, which we discuss below. Unfortunately, the organization of these
routines can be confusing. Nevertheless, the tools are there, so you can gener-
ally get the job done.

Numerical Routines: SciPy and NumPy � 237

9.3.1 Linear Fitting Functions

Suppose you want to fit some data set {xi, yi} to a linear function

f(x) = a+ bx . (9.2)

Your task is to find the values of the y-intercept a and slope b that give the best
fit to the data. In general thismeans finding the values of a and b thatminimize
χ2(a, b), as given by Eq. (7.12), which is reproduced here for reference

χ2(a, b) =
∑
i

(
yi − a− bxi

σi

)2
.

The values of a and b thatminimizeχ2(a, b) are given by Eqs. (7.10) and (7.14).
In addition, you generally would like to know the uncertainty in the values of
a and b. These are given by Eq. (7.16). All that is needed is a program that
evaluates these equations for a given data set {xi, yi}. Finally, you might like
the program to return the value ofχ2(a, b) orχ2

r , given by Eq. (7.15);χ2
r should

be close to 1 if the set of {σi} are known well.
You have many choices for fitting to a straight line using Python. If your

background is in the physical sciences and you know the uncertainties {σi} for
your data set, you can use the routine numpy.polynomial.polynomial.polyfit,
which can fit data to a polynomial of any order, including a linear function, a
polynomial of order 1. We discuss this routine in the next section on fitting to
polynomials. As numpy.polynomial.polynomial.polyfit is a bit of overkill for
simply fitting a linear function, youmight want to write your own routine.We
show how this can be done in the program fit_linear_demo.py below.

On the other hand, if you come from a background in the social sciences,
where you typically do not know the uncertainties {σi} for your data, you can
use the routine scipy.stats.linregress.

All three of these approaches are illustrated below in the program
fit_linear_demo.py. A plot showing the fits to data using these approaches
is shown in Figure 9.3.

Code: fit_linear_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from numpy.polynomial import polynomial as P
4 import scipy.stats as ss
5
6
7 def linfit(x, y, w=None, full=False):
8 """
9 Fit to straight line: f(x) = a + b x

238 � Introduction to Python for Science and Engineering

Figure 9.3 Linear least squares fit to data.

10 Inputs: x, y, and w (1/uncertainty) data arrays with length > 2.
11 Ouputs: y-intercept a and slope b of best fit to data.
12 """
13 if w is None:
14 w = w2 = 1.0
15 s = x.size
16 else:
17 w2 = w * w
18 s = w2.sum()
19 sx = (x * w2).sum()
20 sy = (y * w2).sum()
21 sxx = (x * x * w2).sum()
22 sxy = (x * y * w2).sum()
23 d = s * sxx - sx * sx
24 a = (sxx * sy - sx * sxy) / d # y-intercept
25 b = (s * sxy - sx * sy) / d # slope
26 if full:
27 sig2_slope = s / d
28 sig2_yint = sxx / d
29 sig2_cross = -sx / d
30 cov = np.array([[sig2_yint, sig2_cross],
31 [sig2_cross, sig2_slope]])
32 residuals = (((y - a - b * x) * w) ** 2).sum()
33 return (a, b), cov, residuals
34 else:
35 return (a, b)
36
37
38 # loads data from text file
39 x, y, unc = np.loadtxt("fit_linear_demo.txt", skiprows=5, unpack=True)
40
41 # define weighting function from uncertainties
42 w = 1.0 / unc
43 # fit data to straight line using linfit fitting routine above

Numerical Routines: SciPy and NumPy � 239

44 coefs, cov, residuals = linfit(x, y, w=w, full=True)
45 # make y data from fit for plotting
46 lfit = coefs[0] + coefs[1] * x
47 # fit data to using numpy.polynomial.polynomial.polyfit routine
48 coefsP, statsP = P.polyfit(x, y, deg=1, w=w, full=True)
49 # get covariance matrix from deprecated np.polyfit routine
50 cO, covO = np.polyfit(x, y, deg=1, w=w, cov="unscaled")
51 # fit data with scipy.stats.linregress routine (no weighting possible)
52 lrout = ss.linregress(x, y)
53 regfit = lrout.intercept + lrout.slope * x
54
55 # linfit output for display in plot legend
56 a, da = coefs[0], np.sqrt(cov[0, 0])
57 b, db = coefs[1], np.sqrt(cov[1, 1])
58 ltxt = "\n'linfit' & 'polyfit' with weights"
59 ltxt += "\n" + r"$a = {0:0.2f} \pm {1:0.2f}$".format(a, da)
60 ltxt += "\n" + r"$b = {0:0.3f} \pm {1:0.3f}$".format(b, db)
61 ltxt += "\n" + r"$\chi^2 = {0:0.3f}$".format(residuals / (y.size-2))
62
63 # linregress output for display in plot legend
64 a, da = lrout.intercept, lrout.intercept_stderr
65 b, db = lrout.slope, lrout.stderr
66 rtxt = "\n'linregress' without weights"
67 rtxt += "\n" + r"$a = {0:0.2f} \pm {1:0.2f}$".format(a, da)
68 rtxt += "\n" + r"$b = {0:0.3f} \pm {1:0.3f}$".format(b, db)
69 rtxt += "\n" + r"$r^2 = {0:0.3f}$".format(lrout.rvalue)
70
71 fig, ax = plt.subplots(figsize=(9, 5))
72 ax.errorbar(x, y, yerr=unc, fmt="o")
73 ax.plot(x, lfit, "-", lw=0.5, zorder=-1, label=ltxt)
74 ax.plot(x, regfit, "-", lw=0.5, zorder=-1, dashes=(10, 4), label=rtxt)
75 ax.axhline(color="gray", lw=0.5, zorder=-2)
76 ax.legend(title=r"$f(x) = a + bx$")
77 ax.set_xlabel(r"x")
78 ax.set_ylabel(r"y")
79
80 plt.savefig("figures/fit_linear_demo.pdf")
81 plt.show()

Wedefine a function linfit(x, y, w=None, full=False) in lines 7–35.The
first three inputs are the x-y data arrays and the inverse of the y-uncertainties
w. By default, w=None, which means that no weighting is used. If you want to
use weighting, you must provide the w array. When the fourth argument of
the function is full=False, the program returns only the optimal fitting pa-
rameters a and b. Setting full=True causes the program to return additional
parameters described below.

After loading data from a data file in line 39, the weighting array w is de-
fined by the reciprocal of unc, the y-value uncertainties of the data specified
in the data file. The linfit routine returns three objects: a tuple coefs, a 2× 2
NumPy array cov, and a float residuals. coefs contains to fitting parame-
ters a and b. cov is the covariance matrix. The square roots of the diagonal

240 � Introduction to Python for Science and Engineering

elements of the matrix are the uncertainties in the fitting parameters a and b.
residuals is χ2 (not χ2

r !!) given by Eq. (7.12). The name residuals is chosen
for consistency with numpy.polynomial.polynomial.polyfit.

The same data are fitwith numpy.polynomial.polynomial.polyfit in line 48.
The arguments are the same as for linfit but with one additional argument
deg that gives the degree of the polynomial to be fit, here 1 for a first-order
polynomial or linear fit. There are two outputs, coefsP and statsP. The first,
coefsP, gives the fitting parameters a and b, just like linfit; the same values
are obtained, as expected.

The same data are fit with scipy.stats.linregress in line 52. linregress
returns a dictionary, here given the variable name lrout. The intercept a and
slope b of the fit are given by lrout.intercept and lrout.slope; their un-
certainties by lrout.intercept_stderr and lrout.stderr. The fit returned by
linregress uses unweighted data so the values of a and b and their uncertain-
ties are not the same as for the other routines.

Figure 9.3 shows the data and the fits. For this data set, the main effect of
the weighting of data is to pull down the fit, which reflects the relatively small
error bars of the data points at x = 2.7, 4.0, 5.3, and 9.3.

9.3.2 Polynomial Fitting Functions

As noted above, numpy.polynomial.polynomial.polyfit3 is available for fitting
to polynomials of the form

p(x) = c0 + c1x+ c2x2 + ...+ cnxn . (9.3)

Because the fitting function p(x) is linear in the fitting parameters {cj}, the
values of the coefficients can be directly calculated as long as the problem isn’t
singular.Thus, the routine returns the coefficients {cj} thatminimizeχ2({cj}),
where

χ2({cj}) =
∑
i

(
yi − p(xi; {cj})

σi

)2
. (9.4)

You supply the routinewith a data set {xi, yi} and optionally theweight of each
data point wi = 1/σi, where σi are the uncertainties in the data. It returns the
optimal coefficients {cj} that minimize χ2({cj}).

3Please be aware that numpy.polynomial.polynomial.polyfit is different from the
older numpy.polyfit routine, which should no longer be used.

Numerical Routines: SciPy and NumPy � 241

Figure 9.4 Polynomial (cubic) least squares fit to data.

Code: fit_poly_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import numpy.polynomial.polynomial as poly
4
5 # loads data from text file
6 xdata, ydata, yunc = np.loadtxt("fit_poly_demo.txt", skiprows=5,
7 unpack=True)
8 # performs cubic (deg=3) polynomial fit to data
9 coefs, stats = poly.polyfit(xdata, ydata, deg=3, w=1./yunc, full=True)

10 # use old polyfit to get covariance matrix that poly.polyfit lacks
11 c, cov = np.polyfit(xdata, ydata, deg=3, w=1./yunc, cov=True)
12 # array for plotting fit
13 xfit = np.linspace(xdata.min(), xdata.max(), 100)
14
15 fig, ax = plt.subplots(figsize=(9, 5))
16 ax.errorbar(xdata, ydata, fmt="oC0", yerr=yunc, ecolor="gray")
17 ax.plot(xfit, poly.polyval(xfit, coefs), "-C1", zorder=-1)
18 ax.axhline(lw=0.5, color="k", zorder=-2)
19 ax.set_xlabel(r"x")
20 ax.set_ylabel(r"y")
21 # get uncertainties from covariance matrix
22 coef_unc = [np.sqrt(cov[j, j]) for j in range(cov.shape[0])]
23 # invert order of coefficients for consistency with new polynomials
24 coef_unc = coef_unc[::-1]
25 # Print fit results on plot
26 alphabet = "abcd"
27 fitxt = r"$f(x)=a+b\,x+c\,x^2+d\,x^3$"
28 for i in range(stats[1]):
29 st = "\n" + r"${0} = {1:0.3g} \pm {2:0.3g}$"
30 fitxt += st.format(alphabet[i], coefs[i], coef_unc[i])
31 chisq_red = stats[0][0]/(ydata.size-stats[1])

242 � Introduction to Python for Science and Engineering

The routine fit_poly_demo.py illustrates the use of polyfit to fit {xi, yi}
data, which include uncertainties {σi}, to a cubic third order polynomial of
the form p(x) = c0 + c1x+ c2x2 + c3x3. The result of the fit is shown in Figure
9.4. The routine, called on line 9, returns the fitting parameters, here c0, c1,
c2, and c3 in the array coefs. Setting the argument full=True causes another
argument, stats, to be returned. stats contains, in order, residuals, which is
the value of χ2, the rank of the scaled Vandermonde matrix, here 4, as there
are four coefficients for a third order polynomial, and two more diagnostic
parameters. The reduced value of chi-squared is given by χ2 divided by the
number of degrees of freedom in the fit, corresponding to the number of data
points minus the number of fitting parameters. This is calculated in line 31
from stats and displayed on the plot.

Note that the numpy.polynomial.polynomial.polyval() function is used to
evaluate the fitted polynomial on line 17. The first argument is the array of x
values, and the second is the coefficients of the fitted polynomial.

9.3.3 Nonlinear Fitting Functions

When χ2 depends linearly on the fitting parameters, as it does for the linear
and polynomial functions considered in Section 9.3.1 and Section 9.3.2, there
is a solution that can calculated using straightforward linear algebra, provided
the problem isn’t singular. This is what the routines that were introduced in
these previous sections do. However, when χ2 depends nonlinearly on the fit-
ting parameters, no algorithm is guaranteed to find the optimal set of fitting
parameters. Instead of calculating the solution, one must search for the solu-
tion.

Consider, for example, the problem of fitting a function f(xi; a, b) that is
nonlinear in the fitting parameters a and b to a data set {xi, yi}, with uncer-
tainties in {yi} of {σi}. To do so, we look for the minimum in

χ2(a, b) =
∑
i

(
yi − f(xi)

σi

)2
. (9.5)

Once the data set, uncertainties, and fitting function are specified, χ2(a, b) is
simply a function of a and b. You can picture the function χ2(a, b) as a land-
scape with peaks and valleys: as a and b vary, χ2(a, b) rises and falls. The basic
idea of all nonlinear fitting routines is to start with some initial guesses for
the fitting parameters, here a and b, and by scanning the local landscape of
χ2(a, b), move toward and find values of a and b that minimize χ2(a, b).

There are several different methods for finding the minimum in χ2

for nonlinear fitting problems. The most widely used method is the

Numerical Routines: SciPy and NumPy � 243

Levenberg-Marquardt method. In fact, the Levenberg-Marquardt method is a
combination of two other methods, the steepest descent (or gradient) method
and parabolic extrapolation. Roughly speaking, when the values of a and b are
not too near their optimal values, the gradient descent method determines in
which direction in (a, b)-space the function χ2(a, b) decreases most quickly—
the direction of steepest descent—and then changes a and b to move in that
direction. This method is very efficient unless a and b are very near their op-
timal values. Parabolic extrapolation is more efficient near the optimal values
of a and b.Therefore, as a and b approach their optimal values, the Levenberg-
Marquardt method gradually changes to the parabolic extrapolation method,
which approximates χ2(a, b) by a Taylor series second-order in a and b and
then computes directly the analytical minimum of the Taylor series approxi-
mation of χ2(a, b). This method is only good if the second-order Taylor series
provides a good approximation of the local minimum of χ2(a, b). That is why
parabolic extrapolation only works well very near the minimum in χ2(a, b).

Before illustrating the Levenberg-Marquardt method, we need to make
one cautionary remark: the Levenberg-Marquardt method can fail if the ini-
tial guesses of the fitting parameters are too far from the desired solution.This
problem becomes more serious the greater the number of fitting parameters.
Thus, providing reasonable initial guesses for the fitting parameters is essen-
tial. Usually, this is not a problem, as it is clear from the physical situation of
a particular experiment what reasonable values of the fitting parameters are.
But beware!

The scipy.optimize module provides routines that implement the
Levenberg-Marquardt nonlinear fitting method. The most useful of these is
called scipy.optimize.curve_fit, which we demonstrate here. The function
call is
import scipy.optimize
[...insert code here defining the data & fitting function...]
scipy.optimize.curve_fit(f, xdata, ydata, p0=None,
sigma=None, **kwargs)

The arguments of curve_fit are as follows:

f(xdata, a, b, ...): is the fitting function, where xdata is the data for the
independent variable and a, b, ... are the fitting parameters, however
many there are, listed as separate arguments. Obviously, f(xdata, a, b,
...) should return the y value of the fitting function.

xdata: is the array containing the x data.

ydata: is the array containing the y data.

244 � Introduction to Python for Science and Engineering

Figure 9.5 Data to be fit with nonlinear fitting function.

p0: is a tuple containing the initial guesses for the fitting parameters. The
guesses for the fitting parameters are set equal to 1 if they are left un-
specified. It is almost never a good idea not to specify the initial guesses
for the fitting parameters. Failing to specify good guesses for the fitting
parameters can cause the routine to converge to a local minimum of χ2

with incorrect values of the fitting parameters.

sigma: is the array containing the uncertainties in the y data.

**kwargs: are keyword arguments that can be passed to the fitting routine
scipy.optimize.leastsq that curve_fit calls. These are usually left un-
specified.

We demonstrate the use of curve_fit to fit the data plotted in Figure 9.5.
We model the data with the fitting function that consists of a quadratic poly-
nomial background with a Gaussian peak:

s(f) = a+ bf+ cf2 + Pe−
1
2 [(f−fp)/fw]

2
(9.6)

Lines 7–9 define the fitting function. Note that the independent variable f is
the first argument, which is followed by the six fitting parameters a, b, c, P, fp,
and fw.

To fit the data with s(f), we need good estimates of the fitting parameters.
Setting f = 0, the data suggests that a ≈ 0.3. Examining the data in Figure
9.5 suggests that the slope b and curvature c of the baseline are small, so we’ll
set them both to zero as an initial guess. The amplitude of the peak above the

Numerical Routines: SciPy and NumPy � 245

Figure 9.6 Fit to Gaussian with quadratic polynomial background.

baseline is P ≈ 0.5. The peak is centered at fp ≈ 44 THz, while the width of
the peak is about fw ≈ 1 THz. We use these estimates to set the initial guesses
of the fitting parameters in lines 17 and 18 in the following code.

The function that performs the Levenberg-Marquardt algorithm, scipy.
optimize.curve_fit, is called in lines 21–22 with the output set equal to the
one- and two-dimensional arrays nlfit and nlpcov, respectively. The array
nlfit, which gives the optimal values of the fitting parameters, is unpacked in
line 24. The square root of the diagonal of the two-dimensional array nlpcov,
which estimates the uncertainties in the fitting parameters, is unpacked in
lines 27–28 using a list comprehension.

The rest of the code plots the data, the fitting function using the optimal
values of the fitting parameters found by scipy.optimize.curve_fit, and the
values of the fitting parameters and their uncertainties. See Figure 9.6.

Code: fit_nonlin_demo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.optimize
4
5
6 # define fitting function
7 def gauss_poly_base(f, a, b, c, P, fp, fw):
8 baseline = a + f * (b + f * c) # quadratic polynomial

246 � Introduction to Python for Science and Engineering

9 return baseline + P * np.exp(-0.5 * ((f - fp) / fw) ** 2)
10
11
12 # read in spectrum from data file
13 # f=frequency , s=signal, ds=s uncertainty
14 f, s, ds = np.loadtxt("fit_nonlin_demo.txt", skiprows=5, unpack=True)
15
16 # initial guesses for fitting parameters
17 a0, b0, c0 = 0.3, 0.0, 0.0
18 P0, fp0, fw0 = 0.5, 44.0, 1.0
19
20 # fit data using SciPy"s Levenberg Marquart method
21 nlfit, nlpcov = scipy.optimize.curve_fit(
22 gauss_poly_base, f, s, p0=[a0, b0, c0, P0, fp0, fw0], sigma=ds)
23 # unpack fitting parameters
24 a, b, c, P, fp, fw = nlfit
25 # unpack uncertainties in fitting parameters from
26 # the diagonal of the covariance matrix
27 da, db, dc, dP, dfp, dfw = [np.sqrt(nlpcov[j, j])
28 for j in range(nlfit.size)]
29
30 # create fitting function from fitted parameters
31 f_fit = np.linspace(36.0, 52.0, 128)
32 s_fit = gauss_poly_base(f_fit, a, b, c, P, fp, fw)
33
34 # Calculate residuals and reduced chi squared
35 resids = s - gauss_poly_base(f, a, b, c, P, fp, fw)
36 redchisqr = ((resids / ds) ** 2).sum() / float(f.size - 6)
37
38 # Create figure window to plot data
39 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9.5, 6.5), sharex=True,
40 gridspec_kw={"height_ratios": [6, 2], "hspace": 0.07})
41 # Top plot: data and fit
42 ax1.plot(f_fit, s_fit, "-C0")
43 ax1.errorbar(f, s, yerr=ds, fmt="oC3", ecolor="gray")
44 ax1.set_ylabel("absorbance)")
45 # Write values of fitting parameters on plot
46 tx = r"$a = {0:0.2f} \pm {1:0.2f}$".format(a, da)
47 tx += "\n" + r"$b = {0:0.3f} \pm {1:0.3f}$".format(b, db)
48 tx += "\n" + r"$c = {0:0.5f} \pm {1:0.5f}$".format(c, dc)
49 tx += "\n" + r"$P = {0:0.3f} \pm {1:0.3f}$".format(P, dP)
50 tx += "\n" + r"$f_p = {0:0.3f} \pm {1:0.3f}$".format(fp, dfp)
51 tx += "\n" + r"$f_w = {0:0.3f} \pm {1:0.3f}$".format(fw, dfw)
52 tx += "\n\n" + r"$\chi_r^2 = {0:0.2g}$".format(redchisqr)
53 ax1.text(0.01, 0.98, tx, va="top", ha="left", transform=ax1.transAxes)
54 ax1.set_title(r"$s(f)=a+bf+cf^2+P\,e^{-(f-f_p)^2/2f_w^2}$")
55 # Bottom plot: residuals
56 ax2.errorbar(f, resids, yerr=ds, ecolor="gray", fmt="oC3")
57 ax2.axhline(color="gray", lw=0.5, zorder=-1)
58 ax2.set_xlabel("frequency (THz)")
59 ax2.set_ylabel("residuals")
60 ax2.set_ylim(-0.1, 0.1)
61 fig.savefig("figures/fit_nonlin_demo.pdf")
62 plt.show()

The above code also plots the difference between the data and fit, known
as the residuals, in the subplot below the plot of the data and fit. Plotting the

Numerical Routines: SciPy and NumPy � 247

residuals in this way gives a graphical representation of the goodness of the
fit. The fit would seem to be a good fit to the extent that the residuals vary ran-
domly about zero and do not show any overall upward or downward curvature
or any long wavelength oscillations.

Finally, note that we invoked the Matplotlib gridspec function using the
gridspec_kw keyword argument in line 40 to create the two subplots with dif-
ferent heights; we also use it to specify the space between the two plots. More
details about the gridspec package can be found at the Matplotlib website.

9.4 RANDOM NUMBERS

Random numbers are widely used in science and engineering computations.
They can be used to simulate noisy data, tomodel physical phenomena like the
distribution of velocities of molecules in a gas, or to act like the roll of dice in a
game. There are even methods for numerically evaluating multi-dimensional
integrals using random numbers.

The basic idea of a random number generator is that it should be able
to produce a sequence of numbers that are distributed according to some
predetermined distribution function. NumPy provides many such random
number generators in its library. Here, we introduce four functions from the
numpy.random library: random, standard_normal, poisson, and integers.

Python also has a module on random numbers, called random, that is dis-
tinct fromNumPy’s module. Indeed, we have used it a few times earlier in this
text. However, for most scientific numerical work, you should use the NumPy
module as it interfaces better with the rest of NumPy and SciPy.

9.4.1 Initializing NumPy’s Random Number Generator

Before NumPy can generate any random numbers, you need to initialize its
random number generator, which you can do like this:
In[1]: import numpy as np
In[2]: rng = np.random.default_rng()

Once this is done, you can generate sequences of random numbers with well-
defined distributions using various functions in the numpy.random library.

9.4.2 Uniformly Distributed Random Numbers

The random(n) function creates an array of n floats uniformly distributed on
the interval from 0 to 1.
In[3]: rng.random()

248 � Introduction to Python for Science and Engineering

Out[3]: 0.5742573549114448

In[4]: rng.random(5)
Out[4]: array([0.39217609, 0.49224774, 0.63899968,

0.85669782, 0.18048322])

A single random number is generated if random has no argument. Otherwise,
the argument specifies the number of random numbers created and the size
of the array that holds them.

If you want random numbers uniformly distributed over some other in-
terval, say from a to b, you can do that simply by stretching the interval to
have a width of b − a and displacing the lower limit from 0 to a. The follow-
ing statements produce an array of 12 random numbers uniformly distributed
from 20 to 30:
In[5]: a, b = 20, 30

In[6]: (b-a) * rng.random(12) + a
Out[6]: array([21.24773546, 26.95406295, 24.92558953,

20.70140004, 27.65198469, 29.86126406,
29.73395443, 27.45396695, 22.49217888,
23.50130919, 24.8918542 , 29.64653862])

9.4.3 Normally Distributed Random Numbers

The function standard_normal(n) produces a normal or Gaussian distribution
of n random numbers with a mean of 0 and a standard deviation of 1. That is,
they are distributed according to

P(x) = 1√
2π

e−
1
2 x

2 .

The top two panels of Figure 9.7 show histograms for the distri-
butions of 10,000 random numbers generated by the rng.random() and
rng.standard_normal() functions. As advertised, the rng.random() function
produces an array of randomnumbers uniformly distributed between 0 and 1,
while the rng.standard_normal() function produces an array of random num-
bers that follows a distribution of mean 0 and standard deviation 1.

If you want randomnumbers with a Gaussian distribution of width σ cen-
tered about x0, you can stretch the interval by a factor of σ and displace it by
x0. The following code produces 12 random numbers normally distributed
around 15 with a width of 10:
In[7]: x0, sigma = 15, 10

Numerical Routines: SciPy and NumPy � 249

Figure 9.7 Random number distributions (unnormalized).

In[8]: sigma * rng.standard_normal(12) + x0
Out[8]: array([12.06094094, 17.74044565, 9.88128787,

22.01051136, 6.69699366, 13.46305006,
26.54998687, 35.63815862, 3.26284585,
26.05653199, 24.54614562, 7.37724636])

9.4.4 Random Distribution of Integers

The function rng.integers(low, high, n) produces a uniform random distri-
bution of n integers between low (inclusive) and high (exclusive). For example,
we can simulate a dozen rolls of a single die with the following statement:
In[9]: rng.integers(1, 7, 12)
Out[9]: array([6, 2, 1, 5, 4, 6, 3, 6, 5, 4, 6, 2])

9.4.5 Poisson Distribution of Random Integers

The function poisson(lam, n) produces a Poisson distribution of n random
integers with a mean of lam. That is, they are distributed according to

P(n) = λne−λ

n!
,

where λ is the mean and variance of the distribution. For example, you can
generate a Poisson distribution of 24 integers with a mean of 5.5 as follows:

250 � Introduction to Python for Science and Engineering

TABLE 9.1 Selected random number functions from numpy.random.
Function call Output
random(n) n random numbers uniformly distributed

from 0 to 1
standard_normal(n) n randomnumbers normally distributedwith

0 mean and width 1
poisson(lam, n) n random integers Poisson distributed with

lam mean and variance
integers(low, high, n) n random integers from low (inclusive) to

high (exclusive)
exponential(beta, n) n random numbers exponentially distributed

with beta mean
lognormal(avg, sig, n) n random numbers lognormally distributed

with an underlying normal distribution of
mean avg and standard deviation sig

shuffle(a) shuffles (randomly reorders) the elements of
an array in place

In[10]: rng.poisson(5.5, 24)
Out[10]: array([9, 3, 5, 3, 6, 4, 4, 7, 4, 7, 8, 5,

9, 2, 2, 4, 8, 5, 4, 5, 4, 7, 8, 5])

The bottom two panels of Figure 9.7 show histograms for distributions of
10,000 random numbers generated by the rng.integers() and rng.poisson()
functions.

The numpy.random library has a plethora of other routines for dealing with
random numbers and you are encouraged to check them out. A few of them,
including those introduced above, are listed in Table 9.1.

9.5 LINEAR ALGEBRA

Python’s mathematical libraries, NumPy and SciPy, have extensive tools for
numerically solving problems in linear algebra. Here, we focus on two com-
mon problems in scientific and engineering settings: (1) solving a system of
linear equations and (2) eigenvalue problems. In addition, we show how to
perform several other basic computations, such as finding the determinant
of a matrix, matrix inversion, and LU decomposition. The SciPy package for
linear algebra is called scipy.linalg.

Numerical Routines: SciPy and NumPy � 251

9.5.1 Basic Computations in Linear Algebra

SciPy has several routines for performing basic operations with matrices. The
determinant of a matrix is computed using the scipy.linalg.det function:
In[1]: import numpy as np
In[2]: import scipy.linalg
In[3]: a = np.array([[-2, 3], [4, 5]])
In[4]: a
Out[4]: array([[-2, 3],

[4, 5]])

In[5]: scipy.linalg.det(a)
Out[5]: -22.0

The inverse of a matrix is computed using the scipy.linalg.inv function,
while the product of two matrices is calculated using the NumPy dot func-
tion:
In[6]: b = scipy.linalg.inv(a)

In[7]: b
Out[7]: array([[-0.22727273, 0.13636364],

[0.18181818, 0.09090909]])

In[8]: np.dot(a, b)
Out[8]: array([[1.000000000e+00, 2.775557562e-17],

[-5.551115123e-17, 1.000000000e+00]])

9.5.2 Solving Systems of Linear Equations

Solving systems of equations is nearly as simple as constructing a coefficient
matrix and a column vector. Suppose you have the following system of linear
equations to solve:

2x1 + 4x2 + 6x3 = 4
x1 − 3x2 − 9x3 = −11

8x1 + 5x2 − 7x3 = 1
(9.7)

The first task is to recast this set of equations as a matrix equation of the form
Ax = b. In this case, we have:

A =




2 4 6
1 −3 −9
8 5 −7


 , x =




x1
x2
x3


 , b =




4
−11
1


 . (9.8)

Next we construct the NumPy arrays reprenting the matrix A and the vector
b:

252 � Introduction to Python for Science and Engineering

In[9]: A = array([[2, 4, 6], [1, -3, -9], [8, 5, -7]])
In[10]: b = array([4, -11, 2])

Finally we use the SciPy function scipy.linalg.solve to find x1, x2, and x3:
In[11]: scipy.linalg.solve(A, b)
Out[11]: array([-8.91304348, 10.2173913 , -3.17391304])

which gives the results: x1 = −8.91304348, x2 = 10.2173913, and x3 =
−3.17391304. Of course, you can get the same answer by noting that x =
A−1b. Following this approach, we can use scipy.linalg.inv introduced in the
previous section:
In[12]: Ainv = scipy.linalg.inv(A)

In[13]: dot(Ainv, b)
Out[13]: array([-8.91304348, 10.2173913 , -3.17391304])

which is the same answer we obtained using scipy.linalg.solve. Using
scipy.linalg.solve is faster and numerically more stable than using x= A−1b,
so it is the preferred method for solving systems of equations.

What happens if the equations are not all linearly independent? For ex-
ample, if the matrix A is given by

A =




2 4 6
1 −3 −9
1 2 3


 (9.9)

where the third row is a multiple of the first row. Let’s try it out and see what
happens. First, we change the bottom row of thematrix A and then try to solve
the system as before.
In[14]: A[2] = array([1, 2, 3])

In[15]: A
Out[15]: array([[2, 4, 6],

[1, -3, -9],
[1, 2, 3]])

In[16]: scipy.linalg.solve(A,b)
LinAlgError: Singular matrix

In[17]: Ainv = scipy.linalg.inv(A)
LinAlgError: Singular matrix

Whetherwe use scipy.linalg.solve or scipy.linalg.inv, SciPy raises an error
because the matrix is singular.

Numerical Routines: SciPy and NumPy � 253

9.5.3 Eigenvalue Problems

One of the most common problems in science and engineering is the eigen-
value problem, which, in matrix form, is written as

Ax = λx (9.10)

where A is a square matrix, x is a column vector, and λ is a scalar (number).
Given the matrix A, the problem is to find the set of eigenvectors x and their
corresponding eigenvalues λ that solve this equation.

We can solve eigenvalue equations like this using the SciPy routine
scipy.linalg.eig. The output of this function is an array whose entries are
the eigenvalues and a matrix whose rows are the eigenvectors. Let’s return to
thematrix we were using previously and find its eigenvalues and eigenvectors.
In[18]: A
Out[18]: array([[2, 4, 6],

[1, -3, -9],
[8, 5, -7]])

In[19]: lam, evec = scipy.linalg.eig(A)

In[20]: lam
Out[20]: array([2.40995356+0.j, -8.03416016+0.j,

-2.37579340+0.j])

In[21]: evec
Out[21]: array([[-0.77167559, -0.52633654, 0.57513303],

[0.50360249, 0.76565448, -0.80920669],
[-0.38846018, 0.36978786, 0.12002724]])

The first eigenvalue and its corresponding eigenvector are given by
In[22]: lam[0]
Out[22]: (2.4099535647625494+0j)

In[23]: evec[:,0]
Out[23]: array([-0.77167559, 0.50360249, -0.38846018])

We can check that they satisfy the Ax = λx:
In[24]: dot(A, evec[:,0])
Out[24]: array([-1.85970234, 1.21365861, -0.93617101])

In[25]: lam[0] * evec[:,0]
Out[25]: array([-1.85970234+0.j, 1.21365861+0.j,

-0.93617101+0.j])

254 � Introduction to Python for Science and Engineering

Thus we see by direct substitution that the left and right sides of Ax = λx: are
equal. In general, the eigenvalues can be complex, so their values are reported
as complex numbers.

9.5.3.1 Generalized Eigenvalue Problem

The scipy.linalg.eig function can also solve the generalized eigenvalue prob-
lem

Ax = λBx (9.11)

where B is a square matrix with the same size as A. Suppose, for example, that
we have
In[26]: A = array([[2, 4, 6], [1, -3, -9], [8, 5, -7]])
Out[26]: B = array([[5, 9, 1], [-3, 1, 6], [4, 2, 8]])

Then, we can solve the generalized eigenvalue problem by entering B as the
optional second argument to scipy.linalg.eig

In[27]: lam, evec = scipy.linalg.eig(A, B)

The solutions are returned in the same fashion as before, as an array lamwhose
entries are the eigenvalues and a matrix evac whose rows are the eigenvectors.
In[28]: lam
Out[28]: array([-1.36087907+0.j, 0.83252442+0.j,

-0.10099858+0.j])

In[29]: evec
Out[29]: array([[-0.0419907 , -1. , 0.93037493],

[-0.43028153, 0.17751302, -1.],
[1. , -0.29852465, 0.4226201]])

9.5.3.2 Hermitian and Banded Matrices

SciPy has a specialized routine for solving eigenvalue problems for Hermi-
tian (or real symmetric) matrices. The routine for Hermitian matrices is
scipy.linalg.eigh. It is more efficient (faster and uses less memory) than
scipy.linalg.eig. The basic syntax of the two routines is the same, although
some of the optional arguments are different. Both routines can solve gener-
alized as well as standard eigenvalue problems.

SciPy has a specialized routine scipy.linalg.eig_banded for solving eigen-
value problems for real symmetric or complex Hermitian banded matrices.
When there is a specialized routine for handling a particular kind of matrix,
you should use it; it is almost certain to run faster, use less memory, and give
more accurate results.

Numerical Routines: SciPy and NumPy � 255

9.6 SOLVING NONLINEAR EQUATIONS

SciPy hasmany different routines for numerically solving nonlinear equations
or systems of nonlinear equations. Here, we will introduce only a few of the
simpler routines suitable for the most common types of nonlinear equations.

9.6.1 Single Equations of a Single Variable

Solving a single nonlinear equation is enormously simpler than solving a sys-
tem of nonlinear equations, so that is where we start. Solving nonlinear equa-
tions can be tricky, so you need to have a good sense of the behavior of the
function you are trying to solve. A good way to do this is to plot the function
over the domain of interest before trying to find the solutions. This will assist
you in finding the solutions you seek and avoiding spurious solutions.

We begin with a concrete example. Suppose we want to find the solutions
to the equation

tan x =
√

(8/x)2 − 1 . (9.12)

Plots of tan x and
√

(8/x)2 − 1 vs. x are shown in the top plot of Figure 8.10,
albeit with x replaced by θ. The solutions to this equation are those x values
where the two curves tan x and

√
(8/x)2 − 1 cross each other. The first step

toward obtaining a numerical solution is to rewrite the equation to be solved
in the form f(x) = 0. Doing so, the above equation becomes

f(x) = tan x−
√

(8/x)2 − 1 = 0 . (9.13)

Clearly, the two equations above have the same solutions for x. Parenthetically,
we mention that the problem of finding the solutions to equations of the form
f(x) = 0 is often referred to as finding the roots of f(x).

In Figure 9.8, we plot f(x) over the domain of interest, in this case from
x = 0 to 8. For x > 8, the equation has no real solutions as the argument
of the square root becomes negative. The solutions, points where f(x) = 0,
are indicated by open green circles; there are three of them. Another notable
feature of the function is that it diverges to±∞ at x = 0, π/2, 3π/2, and 5π/2.

9.6.1.1 Brent Method

One of the workhorses for finding solutions to a single variable non-
linear equation is Brent’s method, discussed in many texts on numerical
methods. SciPy’s implementation of the Brent algorithm is the function
scipy.optimize.brentq(f, a, b), which has three required arguments. The

256 � Introduction to Python for Science and Engineering

Figure 9.8 Roots of a nonlinear function.

first argument f is the name of the user-defined function to be solved. The
next two, a and b, are the x values that bracket the solution you are looking
for. You should choose a and b so that there is only one solution in the interval
between a and b. Brent’s method also requires that f(a) and f(b) have opposite
signs; an error message is returned if they do not. To find the three solutions
to tan x−

√
(8/x)2 − 1 = 0, we need to run scipy.optimize.brentq(f, a, b)

three times using three different values of a and b that bracket each of the three
solutions. The program below illustrates how to use scipy.optimize.brentq.

Code: root_brentq.py
1 import numpy as np
2 import scipy.optimize
3 import matplotlib.pyplot as plt
4
5 def tdl(x):
6 y = 8.0 / x
7 return np.tan(x) - np.sqrt(y * y - 1.0)
8
9 # Find true roots

10 rx1 = scipy.optimize.brentq(tdl, 0.5, 0.49 * np.pi)
11 rx2 = scipy.optimize.brentq(tdl, 0.51 * np.pi, 1.49 * np.pi)
12 rx3 = scipy.optimize.brentq(tdl, 1.51 * np.pi, 2.49 * np.pi)
13 rx = np.array([rx1, rx2, rx3])
14 ry = np.zeros(3)
15 # print true roots using a list comprehension
16 print("\nTrue roots:")
17 print("\n".join("f({0:0.5f}) = {1:0.2e}"
18 .format(x, tdl(x)) for x in rx))
19
20 # Find false roots
21 rx1f = scipy.optimize.brentq(tdl, 0.49 * np.pi, 0.51 * np.pi)
22 rx2f = scipy.optimize.brentq(tdl, 1.49 * np.pi, 1.51 * np.pi)
23 rx3f = scipy.optimize.brentq(tdl, 2.49 * np.pi, 2.51 * np.pi)

Numerical Routines: SciPy and NumPy � 257

24 rxf = np.array([rx1f, rx2f, rx3f])
25 # print false roots using a list comprehension
26 print("\nFalse roots:")
27 print("\n".join("f({0:0.5f}) = {1:0.2e}"
28 .format(x, tdl(x)) for x in rxf))
29
30 # Plot function and various roots
31 x = np.linspace(0.7, 8, 128)
32 y = tdl(x)
33 # Create masked array for plotting
34 ymask = np.ma.masked_where(np.abs(y) > 20.0, y)
35
36 fig, ax = plt.subplots(figsize=(8, 4))
37 ax.plot(x, ymask)
38 ax.axhline(color="black")
39 ax.axvline(x=np.pi / 2.0, color="gray", linestyle="--", zorder=-1)
40 ax.axvline(x=1.5 * np.pi, color="gray", linestyle="--", zorder=-1)
41 ax.axvline(x=2.5 * np.pi, color="gray", linestyle="--", zorder=-1)
42 ax.set_xlabel(r"x")
43 ax.set_ylabel(r"$\tan\,x - \sqrt{(8/x)^2-1}$")
44 ax.set_ylim(-8, 8)
45
46 ax.plot(rx, ry, "og", ms=5, mfc="white", label="true roots")
47
48 ax.plot(rxf, ry, "xr", ms=5, label="false roots")
49 ax.legend(numpoints=1, fontsize="small", loc="upper right",
50 bbox_to_anchor=(0.9, 0.97))
51 fig.tight_layout()
52 fig.savefig("./figures/root_brentq.pdf")
53 plt.show()

Running this code generates the following output:
In[1]: run root_brentq.py

True roots:
f(1.39547) = -6.39e-14
f(4.16483) = -7.95e-14
f(6.83067) = -1.11e-15

False roots:
f(1.57080) = -1.61e+12
f(4.71239) = -1.56e+12
f(7.85398) = 1.17e+12

TheBrentmethodfinds the three true roots of the equation quickly and ac-
curately when you provide values for the brackets a and b that are valid. How-
ever, like many numerical methods for finding roots, the Brent method can
produce spurious roots as it does in the above example when a and b bracket
singularities like those at x = π/2, 3π/2, and 5π/2. Here we evaluated the
function at the purported roots found by brentq to verify that the values of x
found were indeed roots. For the true roots, the values of the function were
very near zero, to within an acceptable roundoff error of less than 10−13. For

258 � Introduction to Python for Science and Engineering

the false roots, very large numbers on the order of 1012 were obtained, indi-
cating a possible problem. These results and the plots allow you to identify the
true solutions to this nonlinear function unambiguously.

The brentq function has several optional keyword arguments that youmay
find useful. One keyword argument causes brentq to return the solution and
the value of the function evaluated at the solution. Other arguments allow you
to specify a tolerance to which the solution is found and a few other param-
eters of interest. Most of the time, you can leave the keyword arguments at
their default values. See the brentq entry online on the SciPy website for more
information.

9.6.1.2 Other Methods for Solving Equations of a Single Variable

SciPy provides several othermethods for solving nonlinear equations of a sin-
gle variable. It has an implementation of the Newton-Raphson method called
scipy.optimize.newton. It’s the race car of such methods; it’s super fast but less
stable than the Brentmethod. To fully realize its speed, you need to specify the
function to be solved and its first derivative, which is often more trouble than
it’s worth. You can also specify its second derivative, which may further speed
up finding the solution. If you do not specify the first or second derivatives,
the method uses the secant method, which is usually slower than the Brent
method.

Other methods are also available, including the Ridder and bisection
methods, but the Brent method is generally superior. SciPy lets you choose
your favorite.

9.6.2 Solving Systems of Nonlinear Equations

Solving systems of nonlinear equations is not for the faint of heart. These are
difficult problems that lack any general-purpose solutions.Nevertheless, SciPy
provides quite an assortment of numerical solvers for nonlinear systems of
equations. However, because of the complexity and subtleties of this class of
problems, we do not discuss their use here.

9.7 NUMERICAL INTEGRATION

When a function cannot be integrated analytically or is very difficult to inte-
grate analytically, one generally turns to numerical integrationmethods. SciPy
has several routines for performing numerical integration. Most of them are
found in the same scipy.integrate library where the ODE solvers are found.
We list them in Table 9.2 for reference.

Numerical Routines: SciPy and NumPy � 259

TABLE 9.2 Some integrating routines from scipy.integrate unless otherwise
noted.
Function Description
Integration of functions (scipy.integrate)
quad single integration
dblquad double integration
tplquad triple integration
nquad n-fold multiple integration
fixed_quad Gaussian quadrature, order n
quadrature Gaussian quadrature to tolerance
romberg Romberg integration
Analytical integration of polynomial functions

(numpy.polynomial.polynomial)
polyint Polynomial integration
poly1d Helper function for polyint
Integration of data sampled at fixed intervals
trapz trapezoidal rule
cumtrapz trapezoidal rule to cumulatively compute integral
simps Simpson’s rule
romb Romberg integration

9.7.1 Single Integrals of Functions

The function quad is theworkhorse of SciPy’s integration functions. Numerical
integration is sometimes called quadrature, hence the name.The function quad
is the default choice for performing single integrals of a function f(x) over a
given fixed range from a to b

∫ b

a
f(x) dx . (9.14)

The general form of quad is scipy.integrate.quad(f, a, b), where f is the
name of the function to be integrated and a and b are the lower and upper
limits, respectively. The routine uses adaptive quadraturemethods to numeri-
cally evaluate integrals,meaning it successively refines the subintervals (makes
them smaller) until a specified level of numerical precision is achieved. For the
quad routine, this is about 10−8, although it often does even better.

260 � Introduction to Python for Science and Engineering

As an example, let’s integrate a Gaussian function over the range from 0
to 1:

∫ 1

0
e−x2dx (9.15)

We first need to define the function f(x) = e−x2 , which we do using a lambda
expression, and then we call the function quad to perform the integration.
In[1]: import numpy as np

In[2]: f = lambda x : np.exp(-x**2)

In[3]: from scipy.integrate import quad

In[4]: quad(f, 0, 1)
Out[4]: (0.7468241328124271, 8.291413475940725e-15)

The function call scipy.integrate.quad(f, 0, 1) returns two numbers. The
first is 0.7468..., which is the value of the integral, and the second is
8.29...e-15, which is an estimate of the absolute error in the value of the in-
tegral, which we see is quite small compared to 0.7468.

For its first argument, quad requires a function name. We used a lambda
expression to define the function name, f. Alternatively, we could have defined
the function using the usual def construction:
def f(x):
return np.exp(-x**2)

But here, it is simpler to use a lambda expression. Even simpler, we can just put
the lambda expression directly into the first argument of quad, as illustrated
here:
In[5]: quad(lambda x : np.exp(-x**2), 0, 1)
Out[5]: (0.7468241328124271, 8.291413475940725e-15)

That works too! Thus, we see a lambda expression used as an anonymous func-
tion, a function with no name, as promised in Section 7.3.

Interestingly, the quad function accepts positive and negative infinity as
limits.
In[6]: quad(lambda x : np.exp(-x**2), 0, inf)
Out[6]: (0.8862269254527579, 7.101318390472462e-09)

In[7]: scipy.integrate.quad(lambda x : np.exp(-x**2), -inf, 1)
Out[7]: (1.6330510582651852, 3.669607414547701e-11)

Numerical Routines: SciPy and NumPy � 261

The quad function handles infinite limits just fine.The absolute errors are larger
but still well within acceptable bounds for practical work. Note that inf is a
NumPy object and should be written as np.inf within a Python program.

The quad function can integrate standard predefined NumPy functions of
a single variable, like exp, sin, and cos.
In[8]: quad(np.exp, 0, 1)
Out[8]: (1.7182818284590453, 1.9076760487502457e-14)

In[9]: quad(np.sin, -0.5, 0.5)
Out[9]: (0.0, 2.707864644566304e-15)

In[10]: quad(np.cos, -0.5, 0.5)
Out[10]: (0.9588510772084061, 1.0645385431034061e-14)

Supposewewant to integrate a function such asAe−cx2 defined as a normal
Python function:
In[11]: def gauss(x, A, c):
....: return A * np.exp(-c*x**2)

Of course, we will need to pass the values of A and c to gauss via quad to per-
form the integral numerically.This can be done using args, one of the optional
keyword arguments of quad. The code below shows how to do this
In[12]: A, c = 2.0, 0.5

In[13]: intgrl1 = quad(gauss, 0.0, 5.0, args=(A, c))

In[14]: intgrl1
Out[14]: (2.5066268375731307, 2.1728257867977207e-09)

Note that the order of the additional parameters in args=(A, c)must be in the
same order as they appear in the function definition of gauss.

We can also do this using a lambda expression:
In[15]: intgrl2 = quad(lambda x: gauss(x, A, c), 0.0, 5.0)

In[16]: intgrl2
Out[16]: (2.5066268375731307, 2.1728257867977207e-09)

Either way, we get the same answer.
Let’s do one last example. Let’s integrate the first-order Bessel function of

the first kind, usually denoted J1(x), over the interval from 0 to 5. J1(x) is avail-
able in the special functions library of SciPy as scipy.special.jn(v, x), where
v is the (real) order of the Bessel function (see Section 9.1). Note that x is the
second argument of scipy.special.jn(v, x), which means that we cannot use
the args keyword function because the integration routine quad assumes that

262 � Introduction to Python for Science and Engineering

the independent variable is the first argument of the function to be integrated.
Here, the first argument is v, which we wish to fix to be 1. Therefore, we use
a lambda expression to fix the parameters A and c, assign 1 to the value of v,
and define the function to be integrated. Here is now it works:
In[17]: import scipy.special

In[18]: quad(lambda x: scipy.special.jn(1,x), 0, 5)
Out[18]: (1.177596771314338, 1.8083362065765924e-14)

Because the SciPy function scipy.special.jn(v, x) is a function of two vari-
ables, v and x, and we want to use the second variable x as the independent
variable, we cannot use the function name scipy.special.jn together with the
args argument of quad. So we use a lambda expression, which is a function of
only one variable, x, and set the v argument equal to 1.

9.7.1.1 Integrating Polynomial Functions

The numpy.polynomial.polynomial library has a function polyint that can be
used to integrate polynomial functions. The function polyint analytically
takes the nth antiderivative of a polynomial, which can then be used to eval-
uate definite integrals. First, let’s import the modules we will need.
In[19]: import numpy as np
In[20]: import numpy.polynomial.polynomial as poly

As an example of how the numpy.polynomial.polynomial functions work, let’s
consider the polynomial function p(x) = 1− 5x+ 2x2 − 4x3. The polynomial
can be evaluated using the polyval function; its syntax is poly.polyval(x, c),
where x is the array of x values at which the polynomial is evaluated and c is a
Python list or array of the polynomial coefficients from the lowest power of x
to the highest. For the polynomial p(x) = 1 − 5x+ 2x2 − 4x3,
In[21]: c = [1, -5, 2, -4]

Below, we evaluate the polynomial p(x) at three different values of x.
In[22]: x = np.array([1.2, 5.6, 9.0])

In[23]: poly.polyval(x, c)
Out[23]: array([-9.032, -666.744, -2798.])

Next, we use the polyint function, which returns the coefficients of the
antiderivative of p(x).
In[24]: c_ad = poly.polyint(c)

In[25]: c_ad
Out[25]: array([0. , 1. , -2.5 , 0.66666667, -1.])

Numerical Routines: SciPy and NumPy � 263

Indeed, this gives the coefficients of the antiderivative of p(x)

P(x) =
∫

p(x) dx = C+ x− 5
2
x+ 2

3
x3 − x4

where C is the integration constant. By default, the polyint function sets the
integration constantC to 0, as seen in the first coefficient of c_ad shown above.
An optional keyword argument of polyint can set C to a nonzero value, but
we will not need to use it here.

With the coefficients of the antiderivative polynomial in hand, it is then
easy to determine the definite integral of the polynomial p(x) = 1−5x+2x2−
4x3 between any two limits.

q ≡
∫ b

a
p(x) dx = P(b) − P(a) . (9.16)

For example, if a = 1 and b = 4,
In[26]: q = poly.polyval(4, c_ad) - poly.polyval(1, c_ad)

In[27]: q
Out[27]: -247.5

or
∫ 5

1

(
1 − 5x+ 2x2 − 4x3) dx = −2471

2 . (9.17)

9.7.2 Double Integrals

The scipy.integrate function dblquad can be used to numerically evaluate
double integrals of the form

∫ y=b

y=a
dy

∫ x=h(y)

x=g(y)
dx f(x, y) . (9.18)

The general form of dblquad is
scipy.integrate.dblquad(func, a, b, gfun, hfun)

where func is the name of the function to be integrated, a and b are the lower
and upper limits of the y variable, respectively, and gfun and hfun are the names
of the functions that define the lower and upper limits of the x variable. As an
example, let’s perform the double integral

∫ 1/2

0
dy

∫ √
1−4y2

0
16xy dx . (9.19)

264 � Introduction to Python for Science and Engineering

We define the functions f, g, and h, using lambda expressions. Note that even
if g and h are constants, as they may be in many cases, they must be defined as
functions, as we have done here for the lower limit.
In[28]: f = lambda x, y : 16.0 * x * y

In[29]: h = lambda y : np.sqrt(1-4*y**2)

In[30]: from scipy.integrate import dblquad

In[31]: dblquad(f, 0.0, 0.5, 0.0, h)
Out[31]: (0.5, 1.7092350012594845e-14)

Once again, there are two outputs: the first is the value of the integral, and the
second is its absolute uncertainty.

Of course, the lower limit can also be a function of y, as we demonstrate
here by performing the integral

∫ 1/2

0
dy

∫ √
1−4y2

1−2y
16xy dx . (9.20)

The code for this is given by
In[32]: g = lambda y : 1.0 - 2.0 * y

In[33]: dblquad(f, 0.0, 0.5, g, h)
Out[33]: (0.33333333333333326, 1.3125184411111567e-14)

9.7.2.1 Other Function Integration Routines

In addition to the routines described above, scipy.integrate has several other
integration routines, including nquad, which performs n-foldmultiple integra-
tion, as well as other routines that implement other integration algorithms.
You will find, however, that quad and dblquad meet most of your needs for
numerical integration.

9.7.3 Integrating Numerical Data

Sometimes, you have data, perhaps from a set of measurements rather than
a function that you would like to integrate numerically. scipy.integrate has
several routines for accomplishing this task, provided your data is sampled at
regular intervals. Suppose, for example, that you have a set of y data points
{y0, y1, ... , yN−1} with corresponding x values of {x0, x1, ... , xN−1}. If the data
points are evenly spaced so that xi − xi−1 = ∆x is constant, then the routines
listed at the bottom of Table 9.2 can be used to find the numerical integral of
the data.

Numerical Routines: SciPy and NumPy � 265

9.8 SOLVING ODES

Initial value problems of linear ODEs can be solved using analytical tech-
niques. Nonlinear ODEs, however, cannot be solved using analytical tech-
niques except in exceptional cases. When analytical techniques do not work
or are inconvenient, one generally turns to numerical methods.

The scipy.integrate library has a powerful routine, solve_ivp, for nu-
merically solving initial-value problems of ordinary differential equations
(ODEs). While solve_ivp can solve nth-order ODEs, it doesn’t do so directly.
Instead, it solves a system of first-order ODEs. Fortunately, an nth-order ODE
can generally be rewritten as a system of n coupled first-order ODEs.We show
you how to do this in an example below. Once this is done, the problem takes
the following form:

dy1
dt

= f1(t, y1, ..., yn)

dy2
dt

= f2(t, y1, ..., yn)

... =
...

dyn
dt

= fn(t, y1, ..., yn).

(9.21)

The n equations require n initial conditions, one for each variable yi. Once
cast in this form, the routine can call any one of several different ODE solvers,
some for stiff and others for non-stiff problems.

9.8.1 A First-Order ODE

Before tackling nth-order ODEs, let’s look at a simple first-order ODE to get
familiar with the solve_ivp routine and some of its features. Consider the sim-
ple first-order ODE describing the change of concentration c(t) as a function
of time

dc
dt

= −1
τ
c , (9.22)

with the initial condition that the concentration is c(0) = c0. The analytical
solution to this initial value problem is

c(t) = c0e−t/τ . (9.23)

We can use this solution to check the accuracy of the numerical solution we
obtain using solve_ivp.

The function solve_ivp has three mandatory arguments and several op-
tional arguments. The mandatory arguments are:

266 � Introduction to Python for Science and Engineering

fun: a function that returns the derivative functions fn(t, y1, ... , yn)

t_span: a two-element list (or array) specifying the starting and ending times
of the integration

y0: a list of the initial values of the dependent variables y1, ... , yn.

The first items of business are importing the solve_ivp function and defin-
ing a function that returns the derivative functions for the problem of interest.
Because we are working with a first-order ODE, there is only one derivative
function, which is given by Eq. (9.22).
In[1]: from scipy.integrate import solve_ivp

In[2]: def c_deriv(t, c, tau):
...: return -c / tau

The first argument of the function is the time (a float) at which the deriva-
tive(s) dy1/dt, ... , dyn/dtwill be evaluated.The second argument is a list of the
dependent variables, generically y1, ... , yn, but here just the single dependent
variable c representing the concentration. The third (and fourth, fifth, …) ar-
gument(s) is/are any parameter(s) that are needed to evaluate the derivatives.
With these inputs, the function returns a list of the derivatives for each depen-
dent variable evaluated at the time t. In this case, it returns a single derivative,
given by the right-hand side of Eq. (9.22).

Next, we need to specify the starting and stopping times for the inte-
gration, the initial concentration, and the value of any parameters, here tau,
needed to evaluate the derivative function.
In[3]: t_start, t_stop = 0.0, 10.0
In[4]: c0 = 1.6 # initial concentration
In[5]: tau = 2.0 # time constant (a parameter of ODE)

The solution is obtained by calling solve_ivp

In[6]: csoln = solve_ivp(c_deriv, [t_start, t_stop], [c0],
...: args=[tau])

Note that the third argument, [c0], is a list, even if it has only one element, as
it does in this case. The last argument args, also a list, is an optional argument
and is used to specify the values of any parameters needed to evaluate the
derivative function. The order of the elements in the list must be the same as
in the definition of the derivative function. Here, there is only one parameter,
tau. The output of solve_ivp is a dictionary:
In[7]: csoln
Out[7]:

Numerical Routines: SciPy and NumPy � 267

Figure 9.9 Solution to first-order ODE.

message: 'The solver successfully reached the end of the
integration interval.'
nfev: 44
njev: 0
nlu: 0
sol: None
status: 0
success: True
t: array([0. , 0.11488419, 1.2637261 , 3.06082378,

4.8165295 , 6.57540382, 8.33550038, 10.])
t_events: None
y: array([[1.6 , 1.5106825 , 0.85058161, 0.34651891,

0.14410797, 0.05983617, 0.02482991, 0.01080626]])
y_events: None

For the moment, we are interested only in the solution, which is given by
csoln.t and csoln.y. The array of times where the solution is calculated
is given by csoln.t. The dependent variables are given by csoln.y[0,:],
csoln.y[1,:], …. In this case, there is only one dependent variable, the con-
centration, so only csoln.y[0,:] is specified.

By default, solve_ivp uses an adaptive-step-size Runge-Kutta RK4(5)
method and thus returns a solution at just enough points to achieve the de-
sired accuracy. The accuracy is determined by two optional parameters, rtol
and atol, the relative and absolute tolerances, which are by default set to 10−3

and 10−6, respectively. In this case, this produces an unevenly spaced solution
of only eight points on the specified interval [0, 10]. Figure 9.9 shows a plot of
the calculated points and the analytical solution as a continuous line.

The difference between the result obtained by solve_ivp and the analytical
result is given by:
In[8]: csoln.y[0,:] - c0 * np.exp(-csoln.t / tau)

268 � Introduction to Python for Science and Engineering

Out[8]:
array([0.00000000e+00, 1.66164860e-11, 2.08427320e-05,

2.04511241e-04, 1.53923236e-04, 9.28685010e-05,
5.06076616e-05, 2.55425445e-05])

If greater accuracy is desired, the optional parameters rtol and atol can be
decreased from their default values. In doing so, the adaptive-step-size Runge-
Kutta RK4(5) solver of solve_ivp will need a higher density of points, as
demonstrated here.
In[9]: csoln2 = solve_ivp(c_deriv, [t_start, t_stop], [c0],
...: args=[tau], rtol=1e-4, atol=1e-7)

In[10]: csoln2.y[0,:] - c0 * np.exp(-csoln2.t / tau)
Out[10]:
array([0.00000000e+00, 1.03339559e-12, 1.21209786e-06,

1.57616524e-05, 1.66117434e-05, 1.37928617e-05,
1.03031920e-05, 7.25170757e-06, 4.91258229e-06,
3.24053792e-06, 2.09602897e-06, 1.99706238e-06])

You can ask solve_ivp to generate a denser, evenly spaced solution data
set in one of two ways. The most versatile way is to set the optional parameter
dense_output=True.
In[11]: csoln2 = solve_ivp(c_deriv, [t_start, t_stop], [c0],

...: args=[tau], dense_output=True)

This produces the same solution obtained in csoln above, because it uses the
same parameters, notably the same values of rtol and atol. However, setting
the optional parameter dense_output=True allows you to generate a denser data
set from this solution. To do so, you specify a time array over the time domain
defined by [t_start, t_stop] at the desired (higher) temporal density.
In[12]: t = np.linspace(t_start, t_stop, 41)
In[13]: z = csoln2.sol(t)

Thestatement z = csoln2.sol(t) uses the solmethod of solve_ivp to generate
values of the solution in an array z for each time in the array t. It generates z
using an interpolating polynomial between the points in the original solution,
not by resolving the ODEwith a denser set of times.This procedure saves time
and should maintain the accuracy specified by rtol and atol.

Alternatively, you can specify a time array in the original call to solve_ivp.
In[14]: csoln3 = solve_ivp(c_deriv, [t_start, t_stop], [c0],

...: args=[tau], t_eval=t)

The time array is available as csoln3.t and the solution as csoln3.y. The solu-
tions are identical to those obtained using dense_output=True. However, you

Numerical Routines: SciPy and NumPy � 269

lose the ability to generate another solution using a time array with a differ-
ent density of times. To obtain a different density of times, you need to rerun
solve_ivp and specify a different time array.

9.8.2 A Second-Order ODE

Here, we show how to use solve_ivp to solve the equation for a driven damped
pendulum. The equation of motion for the angle θ the pendulum makes with
the equilibrium position is given by

d2θ

dt2
= − 1

Q
dθ
dt

− sin θ + d cosΩt (9.24)

where t is time, Q is the quality factor that defines the damping, d is the forc-
ing amplitude, and Ω is the frequency of the forcing. Reduced variables are
used here so that the natural (angular) oscillation frequency is 1. The ODE is
nonlinear owing to the sin θ term.

Equation (9.24) is a second-orderODE.Thefirst step is to transform it into
two coupled first-order ODEs. The transformation is readily accomplished by
defining a new variable ω ≡ dθ/dt. With this definition, there are two depen-
dent variables, y1 = θ and y2 = ω, and we can rewrite this second-order ODE
as two coupled first-order ODEs:

dθ
dt

= ω (9.25)

dω
dt

= − 1
Q
ω − sin θ + d cosΩt. (9.26)

In this case, the functions on the right-hand side of Eq. (9.21) of the equations
are

f1(t, θ,ω) = ω (9.27)

f2(t, θ,ω) = − 1
Q
ω − sin θ + d cosΩt. (9.28)

Note that there are no explicit derivatives on the right-hand side of the func-
tions fi; they are all functions of t and the various yi, in this case, θ and ω.
Specifying the initial conditions of the dependent variables θ and ω at t = 0
completes the statement of the problem.

Having written the nth-order ODE as a system of n first-order ODEs, we
can now use solve_ivp to solve the problem numerically.

The first task is to write the function fun, which in this example we call f.

270 � Introduction to Python for Science and Engineering

This is done in lines 7–11 of the program odePend.py given below. As in the
previous example, the first argument of the function f is the current time t.
The second argument is the list (or array) of current y values. The third and
following arguments pass the parameters needed to evaluate f. In this case,
there are three parameters: Q, d, and Ω, or Q, d, and Omega.

The function f returns the values of the derivatives dyi/dt = fi(t, y1, ..., yn)
as a list. Here, there are two dependent variables, θ and ω, and two derivatives,
dθ/dt and dω/dt. Lines 9–10 calculate the derivatives that are returned by f
as a tuple in the same order as they appear in y.

In the main program, the parameters Q, d, and Omega are defined in lines
15–17. The initial conditions are defined in lines 20–21, and the start and stop
times are defined in line 24.

The only remaining task before running solve_ivp is to decide which
solver to use. In the previous example, no solver was specified in the solve_ivp
call so the default solver Runge-Kutta RK4(5) was used. The RK4(5) is an ex-
plicit solver and an excellent choice formost problems. Here, an implicit solver
gives better results, so the Radau solver is used. The optional argument method
is used to specify the solver. The solve_ivp routine also offers several other
solvers, which you can learn about by reading the SciPy documentation.

The solve_ivp routine is called in line 28 and assigned to the variable psoln,
which stores the output. Notice that for the keyword argument args, the pa-
rameters are specified in the same order as they appear in the derivative func-
tion f, as they must!

The arguments rtol and atol specify the relative and absolute tolerances,
and thus the accuracy of the numerical solution. Setting them appropriately
can be delicate. rtol should be larger than atol, typically by a factor of 10 to
103. For the nonlinear ODE considered here, solutions can be very sensitive
to the initial conditions so high accuracy is required for reproducable results:
setting rtol to 10−8 and atol to 10−10 seems to work well for most initial con-
ditions. Smaller values can be used at the expense of greater computational
time.

The argument dense_output is set to True so that the solution can be plotted
with an arbitrary density of points. The array of times where the solution is
calculated by solve_ivp is given by psoln.t. The two dependent variables, θ
and ω are given at these times by psoln.y[0,:] and psoln.y[1,:], respectively.

In this case, it turns out that the average spacing between points returned
in psoln.t by solve_ivp is about 0.25, but for purposes of plotting, it’s more
visually appealing to have a temporal spacing of about 0.1. Setting the op-
tional argument dense_output set to True, we obtain a denser data set using
sol method of solve_ivp. The denser array of times is created in lines 33–34,

Numerical Routines: SciPy and NumPy � 271

and the denser set of solutions is generated in line 35 using the sol method.
The two dependent variables, θ and ω for the denser set of times are given by
psoln.z[0,:] and psoln.z[1,:], respectively. These data are used in the plot
generated by odePend.py and shown in Figure 9.10

Code: ode_pend.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import solve_ivp
4 import seaborn as sns
5
6 def f(t, y, Q, d, Omega):
7 theta, omega = y # unpack current values of dep variables
8 d_theta_dt = omega # calculate derivatives
9 d_omega_dt = -omega / Q - np.sin(theta) + d * np.cos(Omega * t)

10 return d_theta_dt, d_omega_dt
11
12 # Parameters
13 Q = 2.0 # quality factor (inverse damping)
14 d = 1.091 # forcing amplitude
15 Omega = 0.67 # drive frequency
16
17 # Initial values
18 theta0 = 0.0 # initial angular displacement
19 omega0 = 0.0 # initial angular velocity
20
21 # Make time array for solution
22 t_start, t_stop = 0.0, 300.0
23
24 # Call the ODE solver
25 mthd = "Radau"
26 psoln = solve_ivp(f, [t_start, t_stop], [theta0, omega0],
27 args=(Q, d, Omega), method=mthd,
28 rtol=1e-8, atol=1e-10, dense_output=True)
29
30 # Calculate dense solution for plotting
31 t_increment = 0.1
32 t = np.arange(t_start, t_stop, t_increment)
33 z = psoln.sol(t)
34
35 # Plot results
36 fig = plt.figure(figsize=(9.5, 4.5))
37 c = sns.color_palette("icefire_r", 3) # a Seaborn palette
38
39 # Plot theta as a function of time
40 ax1 = fig.add_subplot(221)
41 ax1.plot(t, z[0, :], color=c[0])
42 ax1.set_xlabel("time", fontsize=14)
43 ax1.set_ylabel(r"θ", fontsize=14)
44 ax1.text(0.98, 0.98, "{0:s}".format(mthd), ha="right", va="top",
45 transform=ax1.transAxes)
46
47 # Plot omega as a function of time
48 ax2 = fig.add_subplot(223)
49 ax2.plot(t, z[1, :], color=c[1])

272 � Introduction to Python for Science and Engineering

Figure 9.10 Pendulum trajectory.

50 ax2.set_xlabel("time", fontsize=14)
51 ax2.set_ylabel(r"ω", fontsize=14)
52
53 # Plot omega vs theta
54 ax3 = fig.add_subplot(122)
55 pi, twopi = np.pi, 2.0 * np.pi
56 ax3.plot((z[0, :]), z[1, :], "-", ms=1, color=c[2])
57 ax3.set_xlabel(r"θ", fontsize=14)
58 ax3.set_ylabel(r"ω", fontsize=14)
59 ax3.axhline(lw=0.5, color="gray", zorder=-1)
60 ax3.axvline(lw=0.5, color="gray", zorder=-1)
61 fig.tight_layout()
62 fig.savefig("./figures/ode_pend.pdf")
63 plt.show()

The plots in Figure 9.10 reveal that for the particular set of input parame-
ters chosen, Q = 2.0, d = 1.091, and Omega = 0.67, the pendulum trajectories
are chaotic. Weaker forcing (smaller d) leads to the more familiar behavior of
sinusoidal oscillations with a fixed frequency, which, at long times, is equal to
the driving frequency.

In this example, the Jacobian matrix, defined as ∂fi/∂yj, is determined
numerically by solve_ivp. Alternatively, the Jacobian can be specified by an
auxiliary function and implemented by providing the additional keyword ar-
gument jac=jacobian in the solve_ivp call. Here, the Jacobian function is
def jacobian(t, y, Q, f0, Omega): # Calculates Jacobian

phi, vphi = y
j11, j12 = 0.0, 1.0
j21, j22 = -np.cos(phi), -1.0 / Q
return np.array([[j11, j12], [j21, j22]])

Numerical Routines: SciPy and NumPy � 273

9.9 DISCRETE (FAST) FOURIER TRANSFORMS

The SciPy library has several routines for performing discrete Fourier trans-
forms. Before delving into them, we briefly review Fourier transforms and dis-
crete Fourier transforms.

9.9.1 Continuous and Discrete Fourier Transforms

The Fourier transform of a function g(t) is given by

G(f) =
∫ ∞

−∞
g(t)e−i2πftdt , (9.29)

where f is the Fourier transform variable; if t is time, then f is frequency. The
inverse transform is given by

g(t) =
∫ ∞

−∞
G(f)ei2πftdt . (9.30)

Here we define the Fourier transform in terms of the frequency f rather than
the angular frequency ω = 2πf.

The conventional Fourier transform is defined for continuous functions
and thus has an infinite number of data points. When doing numerical anal-
ysis, however, you work with discrete data sets, that is, data sets defined for a
finite number of points. The discrete Fourier transform (DFT) is defined for
a function gn consisting of a set of N discrete data points. Those N data points
must be defined at equally spaced times tn = n∆t where ∆t is the time be-
tween successive data points and n runs from 0 toN− 1. The discrete Fourier
transform (DFT) of gn is defined as

Gl =

N−1∑
n=0

gne−i(2π/N)ln (9.31)

where l runs from 0 to N − 1. The inverse discrete Fourier transform (iDFT)
is defined as

gn =
1
N

N−1∑
l=0

Glei(2π/N)ln. (9.32)

The DFT is usually implemented on computers using the well-known fast
Fourier transform (FFT) algorithm, generally credited to Cooley and Tukey
who developed it at AT&T Bell Laboratories during the 1960s. However, their
algorithm is one of many independent rediscoveries of the basic algorithm
dating back to Gauss, who described it as early as 1805.

274 � Introduction to Python for Science and Engineering

9.9.2 The SciPy FFT Library

TheSciPy library scipy.fftpack has routines that implement a souped-up ver-
sion of the FFT algorithm along with many ancillary routines that support
working with DFTs. The basic FFT routine in scipy.fftpack is appropriately
named fft. The program below illustrates its use, along with the plots that
follow.

Code: fft_example.py

1 import numpy as np
2 from scipy import fftpack
3 import matplotlib.pyplot as plt
4
5 width = 2.0
6 freq = 0.5
7
8 t = np.linspace(-10, 10, 128)
9 g = np.exp(-np.abs(t) / width) * np.sin(2.0 * np.pi * freq * t)

10 dt = t[1] - t[0] # increment between times in time array
11
12 G = fftpack.fft(g) # FFT of g
13 f = fftpack.fftfreq(g.size, d=dt) # FFT frequenies
14 f = fftpack.fftshift(f) # shift freqs from min to max
15 G = fftpack.fftshift(G) # shift G order to match f
16
17 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 6))
18 ax1.plot(t, g)
19 ax1.set_xlabel(r"t")
20 ax1.set_ylabel(r"$g(t)$")
21 ax1.set_ylim(-1, 1)
22 ax2.plot(f, np.real(G), color="C0", label="real part")
23 ax2.plot(f, np.imag(G), color="C1", label="imaginary part")
24 ax2.legend()
25 ax2.set_xlabel(r"f")
26 ax2.set_ylabel(r"$G(f)$")
27 for ax in (ax1, ax2):
28 ax.axhline(color="gray", lw=0.5, zorder=-1)
29 ax.axvline(color="gray", lw=0.5, zorder=-1)
30 plt.tight_layout()
31 plt.savefig("figures/fft_example.pdf")

The DFT has real and imaginary parts, which are plotted in Figure 9.11.
The fft function returns the N Fourier components of Gn starting with

the zero-frequency component G0 and progressing to the maximum positive
frequency component G(N/2)−1 (or G(N−1)/2 if N is odd). From there, fft re-
turns the maximum negative component GN/2 (or G(N−1)/2 if N is odd) and
continues upward in frequency until it reaches the minimum negative fre-
quency component GN−1. This is the standard way that most numerical DFT
packages order DFTs. The scipy.fftpack function fftfreq creates the array
of frequencies in this non-intuitive order such that f[n] in the above routine

Numerical Routines: SciPy and NumPy � 275

Figure 9.11 Function g(t) and its DFT G(f).

is the correct frequency for the Fourier component G[n]. The arguments of
fftfreq are the size of the original array g and the keyword argument d that is
the spacing between the (equally spaced) elements of the time array (d=1 if left
unspecified). The package scipy.fftpack provides the convenience function
fftshift that reorders the frequency array so that the zero-frequency occurs
at the middle of the array, that is, so the frequencies proceed monotonically
from smallest (most negative) to largest (most positive). Applying fftshift to
both f and G puts the frequencies f in ascending order and shifts G so that the
frequency of G[n] is given by the shifted f[n].

The scipy.fftpack module also contains routines for performing 2-
dimensional and n-dimensional DFTs, named fft2 and fftn, respectively, us-
ing the FFT algorithm.

As for most FFT routines, the scipy.fftpack FFT routines are most effi-
cient if N is a power of 2. Nevertheless, the FFT routines can handle data sets
where N is not a power of 2.

scipy.fftpack also supplies an inverse DFT function ifft. It is written to
act on the unshifted FFT so take care! Note also that ifft returns a complex
array. Because of machine roundoff error, the imaginary part of the function
returned by ifft will generally be very near zero but not exactly zero, even
when the original function is a purely real function.

276 � Introduction to Python for Science and Engineering

9.10 EXERCISES

1. Plot the following functions using the following NumPy methods:
polynomial.Chebyshev.basis and polynomial.Hermite.basis.

(a) The first four Chebyshev polynomials of the first kind over
the interval from −1 to +1. Consult the documentation about
numpy.polynomial.Chebyshev on the NumPy web site.

(b) The first four four wave functions ψn(x) of the quantum mechan-
ical simple harmonic oscillator are given by

e−x2/2

(
2nn!

√
π
)1/2Hn(x) (9.33)

where Hn(x) is the nth (physicist’s) Hermite polynomial and n =
0, 1, 2, 3, Plot these on the interval from−5 to+5. Consult the
documentation about numpy.polynomial.Hermite on the NumPy
website.

Figure 9.12 Low-ordermodes of a vibrating drumhead using the Seaborn color
palette YlOrBr_r.

2. The possible shapes (eigenmodes) of a vibrating drumhead (i.e., a cir-
cular vibrating membrane whose perimeter is fixed so that it does not

Numerical Routines: SciPy and NumPy � 277

move) are given by

znm(r) = Jn(αnmr/R) [a cos(nθ) + b sin(nθ)]

where znm(r, θ) is the vertical height of the membrane with radial coor-
dinates (r, θ), a and b are constants determined by the initial conditions,
R is the radius of the drumhead, Jn is the nth order Bessel function, and
αnm is the mth positive root of Jn. For each value of m = 1, 2, 3, ... , the
index n can take on the values n = 0, 1, ... ,m. Each unique pair of inte-
gers (n,m) corresponds to a single vibrational mode of the drumhead.
Make a 3D surface plot of each of the low-order vibrational modes:
(n,m) = (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3). For the plots, set R = 2,
a = 1, and b = 0. The resulting plot should look something like that
shown in Figure 9.12.

3. The data below show the purity of oxygen produced in a chemical dis-
tillation process against the percentage of hydrocarbons present in the
main condenser of the distillation unit.

Data: distillation.txt
hydrocarbon oxygen
level (%) level (%)

1.44 96.70
1.35 94.44
0.87 88.33
1.24 91.82
1.19 91.94
1.54 98.35
1.39 93.61
1.29 93.58
1.17 93.55
1.00 90.04
1.14 92.51
1.03 90.55
1.07 89.53
1.09 91.75
1.15 90.44
1.24 93.26
1.32 93.65
0.98 89.03
1.47 95.30
0.94 88.22

Plot the oxygen fraction vs. the hydrocarbon fraction and fit the data to
a straight line using no weighting. Use the linfit routine from the file
fit_linear_demo.py to fit the data and then draw a straight line repre-
senting the fit through the data. Report the results of the fit on the plot

278 � Introduction to Python for Science and Engineering

as shown below In addition, fit the data using scipy.stats.linregress
routine and show that you get the same results.

4. The text file res.txt contains data obtained from a small mechanical
resonator. Data for both the in-phase χ′(ω) and out-of-phase χ′′(ω) re-
sponse of the resonator are listed, along with their uncertainties, as a
function of the angular frequency ω, and are plotted below.

These data can be modeled by the equations:

χ′(ω) = A1
ω2

0 − ω2

(ω2
0 − ω2)2 + (γ ω)2

, χ′′(ω) = A2
γ ω

(ω2
0 − ω2)2 + (γ ω)2

Numerical Routines: SciPy and NumPy � 279

Fit each of the two data sets in res.txt using the SciPy routine
scipy.optimize.curve_fit using the appropriate fitting function above.
Note that in each case, there are three fitting parameters, A1 or A2, ω0,
and γ (determining good starting values forA1 andA2 will require some
thought!). You will need to provide estimates of each value, which you
should determine by examining the above plots and equations as inputs
to the fitting routine. Use the uncertainties for the data in res.txt to
determine the weighting. Make a plot like the one above, together with
continuous lines representing the fits to the data. Report the values of
the two fits on the plot like Figure 9.6.

5. Numerically solve the following system of equations using the solve()
routine from SciPy’s linalg module. That is, find the numerical values
of x1, x2, x3, x4 that simultaneously satisfy these four equations:

x1 − 2x2 + 9x3 + 13x4 = 1
−5x1 + x2 + 6x3 − 7x4 = −3

4x1 + 8x2 − 4x3 − 2x4 = −2
8x1 + 5x2 − 7x3 + x4 = 5

Verify that you get the same results by matrix inversion using SciPy’s
linalg module.

6. Numerically integrate the following integrals and compare the results
to the exact value of each one.

(a)
∫ 1

−1

dx
1 + x2 =

π

2
(b)

∫ ∞

−∞

dx
(ex + x+ 1)2 + π2 =

2
3

You may encounter difficulties evaluating the integral in part (b). If you
do, try evaluating the integral in two parts, from−∞ to 0 and from 0 to
∞, to see if you can locate the source of the problem. Once you locate
the source of the problem, find a practical strategy to get an answer and
demonstrate that it is accurate.

7. Numerically integrate the following double integrals using the scipy.
integrate.dblquad routine.

(a)
∫ 3

0
dy

∫ 9

y2
dx x3e−y3 ≈ 1400 (b)

∫ 2

0
dy

∫ 9y

√y
dx

√
x4 + 2 ≈ 970 .

Specify answers to at least 6 digits (the first two are provided above).

280 � Introduction to Python for Science and Engineering

8. Fit the following data set with different kinds of splines:

(a) Fit with a linear interpolating spline.
(b) Fit with a cubic spline.
(c) Fit with a cubic smoothing spline using the UnivariateSpline rou-

tine from the scipy.interpolate module. Choose a value of the
smoothing parameter s that results in 6 knots (this will require
some trial and error). Your code should print out the value of the
smoothing parameter s you endupusing and the number of knots.

Plot the data and fits on a single graph. Include a legend to indicate
which curves correspond to which kind of spline fit.

Data: sdata.txt
xdata ydata
0.1 1.1
0.8 3.4
1.5 5.9
2.2 15.0
2.9 24.6
3.6 23.3
4.3 21.7
5.0 18.7
5.6 13.2
6.3 7.4
7.0 3.6
7.7 0.5
8.4 1.5
9.1 0.7
9.8 0.1

9. Use scipy.integrate.solve_ivp to solve the following set of nonlinear
ODEs:

dx
dt

= a(y− x) , dy
dt

= (c− a)x− xz+ cy , dz
dt

= xy− bz

Use x0 = −10, y0 = 0, z0 = 37 for the initial conditions.

(a) Set the initial parameters to a = 35, b = 3, c = 28 and plot
the 3D trajectory. Use the Radau implicit integration method in
solve_ivp. Integrate from time t = 0 out to t = 50. You should get
a solution that looks like the trajectory shown below, which is an
attractor. Take care to choose a small enough time step (but not
too small!).

Numerical Routines: SciPy and NumPy � 281

(b) Set b = 10 while keeping a = 40 and c = 35 and plot the result.
You should see the trajectory approach a periodic solution after a
short time.

Hints: Use ax.plot3D(x, y, z, lw=0.5) to plot the 3D trajectory shown
above. Use ax.text2D() to write the text on the plot.

10. UseNumPy’s randomnumber generator to simulate the rolling of a pair
of dice 10,000 times and then make a histogram of the number of times
each of the results from 2 to 12 are obtained. The result should look
something like the figure below.

11. In this exercise, you explore using discrete Fourier transforms to filter
noisy signals. As a first step, use the following function to create a noisy
Gaussian waveform:

def gaussNoisy(x, noiseAmp):
noise = noiseAmp * (np.random.randn(len(x)))
return np.exp(-0.5 * x * x) * (1.0 + noise)
N = 256
x = np.linspace(-4.0, 4.0, N)
y = gaussNoisy(x, 0.1)

282 � Introduction to Python for Science and Engineering

(a) Calculate the discrete Fourier transform using NumPy’s fft and
fftshift routines so that you have a properly ordered Fourier
transform.

(b) Plot the noisy Gaussian and its DFT on two separate panes in the
same figure window. Set the limits of the y-axis of the DFT plot
so that you can see the noise at the high frequencies (limits of ±2
should suffice).

(c) Next, set all the frequencies higher than a certain cutoff equal
to zero (real and imaginary parts) to obtain a filtered DFT (take
care to do this right!). Inverse Fourier transform the filtered DFT.
Then, add a third frame to your figure and plot the inverse trans-
form of the filtered DFT and the original. If it works well, you
should observe a smooth Gaussian that goes through the original
noisy one. Experiment with different cutoffs, say all the frequen-
cies above 2, 4, 8, 16, 32. The figure below shows an example of
what the third frame of your plot might look like.

Numerical Routines: SciPy and NumPy � 283

CH A P T E R 10

Python Classes:
Encapsulation

In this chapter, you learn how to create and use Python classes, which
are central to what is known as object-oriented programming (OOP).
You learn about encapsulation, one of themost useful features of classes,
especially for scientific and engineering work. You will learn how to de-
sign a Python class with methods (functions) that act on data read by
the class.

This chapter provides an introduction to object-oriented programming—
OOP.As its name implies, OOP involves programmingwith objects, a concept
introduced in Section 4.5. While using Python objects is relatively straight-
forward, object-oriented programming is a big subject, and covering it thor-
oughly requires muchmore space than we can give it here. On the other hand,
the basic machinery of OOP is relatively simple, especially in Python. This
chapter introduces this machinery and provides a few examples of how it
might be used, particularly for working with scientific data. We start by re-
viewing the essential properties of a Python object.

An object, we learned (see Section 4.5), is a collection of data, together
with attributes that characterize the data, and functions, called methods, that
can operate on the data or attributes.

This idea of bundling data with its attributes and methods in a single
package—as an object—is called encapsulation. Encapsulation allows you to
provide the functionality you need to process datawhile isolating the code that

284 DOI: 10.1201/9781032673950-10

https://doi.org/10.1201/9781032673950-10

Python Classes: Encapsulation � 285

provides that functionality from other parts of your code.This helps avoid un-
intended clashes between different parts of a software package. It can also help
you organize your code conceptually. These features become particularly use-
ful whenmany programmers are developing large software packages. But they
can also provide useful functionality even for relatively small programs.

A NumPy array provides an illustrative example of an object. It contains
data in the form of the elements of the array, and it has several attributes, such
as the array size and shape, which can be accessed using the dot syntax. The
size and shape of a NumPy array are determined for a particular array when
it is created or, in the jargon of OOP, instantiated:
In[1]: w = np.array([[2, -5, 6], [-10, 9, 7]])

In[2]: w.size # size is an array instance variable
Out[2]: 6

In[3]: w.shape # shape is another array instance variable
Out[3]: (2, 3)

NumPy arrays also have methods associated with them, functions that act
on a NumPy array, such as the methods that calculate the mean and standard
deviation of the array:
In[4]: w.mean() # mean() is an array method
Out[4]: 1.5

In[5]: w.std() # std() is another array method
Out[5]: 6.8495741960115053

Object methods always have parentheses, whichmay ormay not take an argu-
ment. By contrast, instance variables do not have parentheses or arguments.

In the language of OOP, we created an instance of the NumPy ar-
ray class and named it w when we wrote w = np.array(...) above. Writing
x = np.numpy([8, -4, -6, 3]) creates another instance of the NumPy array
class, with different attributes, but with the same set of methods (although us-
ing them on x would give different results than using them on w). w and x are
two objects that belong to the same NumPy array class. Once we have instan-
tiated an array, it is available for further queries or processing, which might
involve interacting with other objects.

In Python, we can define new kinds of objects by writing classes to aug-
ment Python’s classes, much like we can define our own functions to augment
Python’s functions. This chapter guides you through designing and coding
several different Python classes.

286 � Introduction to Python for Science and Engineering

10.1 A VERY SIMPLE CLASS

As a first step in learning how to program a Python class, let’s go through the
process of making a very simple (but not very useful) class. The name of the
class is Point. In Python, class names usually start with a capital letter, a prac-
tice we follow here. As input, Point takes the (x, y) coordinates of a point in the
x-y plane. It has three methods: one named radius() that returns the distance
of the (x, y) point from the origin, a second named rect_area() that returns
the area of the rectangle centered about the origin with one of its vertices at
(x, y), and a third named circ_area() that returns the area of a circle centered
about the origin that goes through the point (x, y).

Before looking at the code that defines the class is Point, let’s first see how it
works. The definition of the Point class is stored in a file called pmod.py. From
the IPython console we first navigate to the directory in which the pmod.py
file is located. Recall that you can determine the current working directory by
typing pwd at the IPython command prompt. Once we have done this, we type
In[1]: %run pmod.py

This loads pmod into Python andmakes any classes or functions defined within
pmod available from the IPython console.

Next, we create an instance of the class for the (x, y) coordinates of (6, 8)
and then use the three methods of Point to calculate the radius (distance to
the origin), the area of the rectangle, and the area of the circle.
In[2]: p1 = Point(6, 8)

In[3]: p1.radius()
Out[3]: 10.0

In[4]: p1.rect_area()
Out[4]: 192.0

In[5]: p1.circ_area()
Out[5]: 314.1592653589793

We can create a second instance of the class for different (x, y) coordinates and
repeat the same calculations
In[6]: p2 = Point(3, 4)

In[7]: p2.radius()
Out[7]: 5.0

In[8]: p2.rect_area()
Out[8]: 48.0

Python Classes: Encapsulation � 287

In[9]: p2.circ_area()
Out[9]: 78.53981633974483

Here is the code for the Point class. We examine it below to see how it
works.

Code: pmod.py
1 from math import pi
2
3
4 class Point:
5 """A simple class about (x, y) data points"""
6
7 def __init__(self, x, y):
8 """Input an (x, y) data point"""
9 self.x = x

10 self.y = y
11
12 def radius(self):
13 """returns distance from (x, y) to origin"""
14 return (self.x**2 + self.y**2) ** 0.5
15
16 def rect_area(self):
17 """returns area of rectangle with a vertex at (x, y) centered
18 around origin"""
19 return 4.0 * abs(self.x * self.y)
20
21 def circ_area(self):
22 """returns area of circle through (x, y) centered around
23 origin"""
24 return pi * self.radius() ** 2

Before defining the Point class, we import pi from the math module be-
cause it will be needed to determine the area of a circle.

The class definition starts on line 4 with the keyword class followed by
the name of the class, Point, and a colon. Parentheses are not needed after the
class name Point nor are they recommended for this simple class, although
the class will still work if you include them.1

The Point class has four methods (functions): a method called __init__(),
and the three class methods whose functionalities were introduced above.

Let’s look at each of these methods starting with __init__(). The
__init__() method starts and ends with two underscores and is sometimes
called the constructor. It is part of every class and is called when the class is
instantiated. The arguments of the __init__() method are self plus the two
arguments specified when the class is instantiated. So when we wrote

1When looking at Python code on the internet, youmay encounter class definitions not only
with parenthesis but also with the argument object.This is a leftover fromPython 2. Including
it in Python 3 code does no harm, but it’s completely superfluous unless you want your code to
run under Python 2 (which you don’t).

288 � Introduction to Python for Science and Engineering

p1 = Point(6, 8)

the (x, y) values of (6, 8) are the x and y arguments of __init__().
But what about the self argument? What does it do, and why is it there?

The self argument represents a particular instance of the class. In the ex-
amples above, the two Point objects, p1 and p2 each have their own x and y
attributes. The self argument is how Python keeps track of the different in-
stances of the same class.

Within the class definition, the self argument serves another important
purpose. It makes all variables defined with a self prefix available to any
method within that class that has self as an argument. Thus, each method
defined in the class has self as their first argument. Note that the first thing
we do in the __init__() method is to define the self.x = x and the self.y =
y variables. This makes their values available anywhere within the class. Once
this is done, self.x and self.y become instance attributes or instance vari-
ables. As instance attributes, they can be accessed outside the class using the
dot syntax.
In[10]: p1.x, p1.y
Out[10]: (6, 8)
In[11]: p2.x, p2.y
Out[11]: (3, 4)

With this in mind, let’s look at the definition of the radius() method. It
calculates the radius, or distance to the origin, in the usual way using the in-
stance variables self.x and self.y.The only argument radius needs is the self
argument so that it knowswhich instance of the class to act on.The same holds
for the rect_area() method.

The last method, circ_area(), needs the radius to determine the area of
the circle centered about the origin that goes through the points (x, y). Note
that when calling the class’s radius() method, it uses the self prefix. This is a
general rule: the self prefix must be used when calling a class method from
within the class.

The docstrings provide a brief description of different parts of the class
and provide help to the user. For example, after importing pmod, a user can get
help on the radius method by typing
In[12]: help(Point.radius)
Help on function radius in module __main__:

radius(self)
returns distance from (x, y) to origin

Python Classes: Encapsulation � 289

In the example above, the code for the class Point was loaded into the
IPython console by running the file pmod.py. There is another, perhaps more
familiar, way of loading the code into the IPython console. From the console,
you can type
In[13]: import pmod

This treats the file pmod.py as a Python module. Once this is done, you can
access the class definition in file pmod.py using the familiar dot syntax:
In[14]: p1 = pmod.Point(6, 8)

Alternatively, you could have loaded the code by typing
In[15]: import pmod as pm

Then you would access the class definition in file pmod.py using the familiar
dot syntax with the prefix pm:
In[16]: p1 = pm.Point(6, 8)

After instantiating p1 in either of these ways, you proceed as before.
Note that for any of these import statements above to work, the file pmod.py

must be in Python’s path, which is just the set of directories where Python
looks for files. By default, Python always looks in the current directory first.
Thus, for simplicity, we have put pmod.py in the same directory from which we
run my IPython console. In Section 10.2, we discuss Python paths and how to
store modules so they are accessible from any directory on your computer.

One final note on annotating a module: Sometimes, it is desirable to in-
clude some code at the end of a module to illustrate how it works. If you want
to do this, you can include the following statement at the end of the module:
if __name__ == "__main__":

Then, you include the code you would like to run. What does the state-
ment if __name__ =="__main__":mean?This statement allows you to run code
within the if block when the file runs as a script but not when it is imported
as a module. For example, suppose we include the following block at the end
of pmod.py:
if __name__ == "__main__":

p1 = Point(6, 8)
print("p1.radius() =", p1.radius())
print("p1.rect_area() =", p1.rect_area())
print("p1.circ_area() =", p1.circ_area())
p2 = Point(3, 4)
print("p2.radius() =", p2.radius())
print("p2.rect_area() =", p2.rect_area())
print("p2.circ_area() =", p2.circ_area())

290 � Introduction to Python for Science and Engineering

print("p1.x = {0}, p1.y = {1}".format(p1.x, p1.y))
print("p2.x = {0}, p2.y = {1}".format(p2.x, p2.y))
help(Point.radius)

If we load pmod.py as amodule, the if __name__ == "__main__": statement will
return false, and the code below it will not be executed.On the other hand if we
type %run pmod.py from the IPython console, the code after the ifwill execute
as shown here:
%run pmod.py
p1.radius() = 10.0
p1.rect_area() = 192.0
p1.circ_area() = 314.1592653589793
p2.radius() = 5.0
p2.rect_area() = 48.0
p2.circ_area() = 78.53981633974483
p1.x = 6, p1.y = 8
p2.x = 3, p2.y = 4
Help on function radius in module __main__:

radius(self)
returns distance from (x, y) to origin

This serves to show how the module works.
Before moving on, now might be a good time to go back to page 286 and

review how the Point class and its methods are used.

10.2 A BRIEF INTRODUCTION TO MODULES AND PACKAGES

In the previous section, we created a class called Point and stored in the file
pmod.py. As demonstrated above, one way to access the Point class is to import
pmod.py, which is a Python file, as a Python module.

For a module to be imported into a Python program, it must be in a lo-
cation where Python knows to look. By default, Python always looks in the
same directory as the Python program that called it. That’s why the program
we wrote could find the pmod module, because the pmod.py file was in the same
directory that we ran the IPython QtConsole from (this means that writing
ls from the IPython prompt should list pmod.py). If you are content to use
modules in this way, by keeping them in the same directory from which they
are called, you can skip the rest of this section. However, keep reading if you
want to learn more about storing Python modules and organizing them into
packages.

Python Classes: Encapsulation � 291

10.2.1 Pythonpath

If Python doesn’t find a module in the calling directory, it looks in a list of
directory names stored in a system environmental variable called PYTHONPATH
(all capital letters). You can get a list of these directories for your computer by
importing the sys module and then typing sys.path.
In[1]: import sys

In[2]: sys.path
Out[2]:
['/Users/dp',
'/Users/dp/anaconda3/lib/python311.zip',
'/Users/dp/anaconda3/lib/python3.11',
'/Users/dp/anaconda3/lib/python3.11/lib-dynload',
'',
'/Users/dp/anaconda3/lib/python3.11/site-packages',
'/Users/dp/anaconda3/lib/python3.11/site-packages/aeosa']

The command sys.path produces a list of all the directory names (with the
full path) contained in PYTHONPATH. You can add directory names to this list
and then use those directories to store modules that you write. However, you
need to be organized about how you do this.

To illustrate, we will add a single directory that we call mypy, which we will
use to store any custom modules we write. While the directory mypy can go
almost anywhere in my computer’s directory tree, we choose to make it a sub-
directory of /Users/dp, the home directory, which also contains the /anaconda3
directory.

Table 10.1 shows an example of a directory tree for custom modules:

TABLE 10.1 Directory structure for storing custom Python modules.

/Users/dp/mypy/....................................directory containing packages
pythonbook/..first package

__init__.py...empty file
pmod.py..pmod module
shapes.py ... shapes module
measurement.py....................................measurement module
simulations.py....................................simulations module

apak/..another package
__init__.py...empty file
fill.py..fill module
randomize.py..randomize module

292 � Introduction to Python for Science and Engineering

The topmost directories in /Users/dp/mypy/, pythonbook and apak, are
Python packages. Each package contains several modules, which are Python
files. In addition, each package directory contains an __init__.py (with two
underline characters before and after init), which lets Python know to treat
these directories as packages. In this case, the __init__.py files are empty, al-
though they can contain commands that initialize the package, something we
will not concern ourselveswith here.The top-level directory mypy is not a pack-
age and thus does not have an __init__.py file.

Each Python file comprising a module contains one or more classes or
function definitions. Once the directory mypy is added to PYTHONPATH,2 these
modules are available to be used in programs you write using the usual syn-
tax for imported modules. For example, the Point class contained in pmod.py
could be accessed in any one of the usual ways:
In[3]: from pythonbook import pmod as pm

In[4]: p1 = pm.Point(6, 8)

In[5]: p1.radius()
Out[5]: 10.0

Alternatively, you can use the familiar dot syntax:
In[6]: import pythonbook.pmod as pm

In[7]: p1 = pm.Point(6, 8)

In[8]: p1.radius()
Out[8]: 10.0

or:
In[9]: import pythonbook as pb

In[10]: p1 = pb.pmod.Point(6, 8)

In[11]: p1.radius()
Out[11]: 10.0

You can make as many packages as you want, each with its own set of
modules. You can even make subpackages using subdirectories, although we
will leave this to you to explore on your own by reading the appropriate online
Python documentation.

2See Appendix A.4 for instructions about how to add the directory mypy to PYTHONPATH.
How to do this depends on which operating system you are using.

Python Classes: Encapsulation � 293

photodiode

electromagnet

laser

18.00 cm

18.00 cm

8.00 cm
ball

Figure 10.1 Apparatus for measuring free fall with air resistance.

10.3 A CLASS FOR READING AND PROCESSING DATA

Now that you’ve seen how a very simple class works, let’s make a more useful
class. The purpose of the class is to read numerical data from text files and
process the data in various ways. This might involve performing calculations
to characterize, query, transform, plot, or model the data. A Python class is
well suited to such a task and can be very useful, particularly if you need to
process many similar data sets.

For this example, we consider an experiment designed to measure the
effect of air resistance on a freely falling spherical ball. In the experiment, a
spherical ball is released by an electromagnet so that it falls freely nearly two
meters until it falls onto a piece of foam rubber, as illustrated in Figure 10.1.
As it falls, the ball periodically breaks a laser beam that crisscrosses the ball’s
path using a series of mirrors. The mirrors are precisely placed a fixed dis-
tance apart, 18.00 cm in this case. A computer-based timing circuit records
the times when the laser path is broken and when it is restored as the front
and back sides of the falling ball pass through the laser beam. These crossing
times are recorded with an estimated uncertainty of ±0.5 ms.

294 � Introduction to Python for Science and Engineering

The equation governing the (positive) distance y a spherical ball falls in a
time t is given by

y = v2t
g
ln

(
cosh

gt
vt

+
v0
vt

sinh
gt
vt

)
, (10.1)

where g is the acceleration due to gravity, v0 is the velocity at t = 0, and vt is the
terminal velocity. In the ideal limit where air resistance is negligible, vt → ∞,
and this formula reduces to the familiar equation

y = v0t+ 1
2gt

2 . (10.2)

The terminal velocity is given by

vt =
2mg

CdπR2ρa
, (10.3)

where m is the mass of the sphere, R is its radius, ρa is the density of air, and
Cd is an empirical drag coefficient, which for spheres is 0.47.

10.3.1 The Data

First, let’s consider how the data will be stored. We use two files. The first is a
text data file containing a column of numbers corresponding to the measured
crossing times in seconds.

Data: plastic1.txt
0.000000
0.044784
0.126177
0.147594
0.200606
0.217874
0.260726
0.273778
0.311248
0.322659
0.354883
0.366229
0.396670
0.405874
0.434361
0.443185
0.469306
0.477919
0.502953
0.511296

Python Classes: Encapsulation � 295

The second file stores metadata about this experiment. It contains infor-
mation about things like who acquired the data, the date and time it was ac-
quired, and information about the measured sample, for example, the ball’s
mass and radius.Themetadata file is also a text file, here named plastic1.yaml;
its .yaml extension designates it as a YAML file, a type of text file whose prop-
erties we describe below.

Data: plastic1.yaml

data_aquired_by: Jeana Cui
date: 2022-07-21
time: "16:07"
material: plastic
mass_gm: 14.40
radius_cm: 2.29
magnet_to_laser_cm: 8.00
gravity_acceleration_si: 9.795
density_air_si: 1.1839
drag_coefficient: 0.47
laser_spacing_cm: 18.0
time_uncertainty_s: 0.0005
...

Both the text data file (plastic1.txt) and the metadata text YAML file
(plastic1.yaml) have the same root name. Thus, we know that both files refer
to the same experimental measurement.

AYAMLfile startswith three dashes and endswith three periods.The lines
in between are used to build a Python dictionary. In this case, each line is a
new entry in the dictionary. The string to the left of the colon defines the keys
of the dictionary; the text to the right defines the values. YAML files can have
other features as well, but the above description will suffice for our purposes.
The appeal of such a YAML file is its simplicity. The virtue of using a Python
dictionary to store information is its versatility and adaptability. You can add
entries to your YAML file without ruining (breaking) how your code works.

10.3.2 The Class

Before learning how to write the code for our new class, let’s see how the fin-
ished class works.The name of our class is FallingBall; it is stored in amodule
called measurement. The FallingBall class takes one argument, a string corre-
sponding to the base name of the text and YAML files containing the data and
metadata.
In[1]: import measurement as m

In[2]: p1 = m.FallingBall("plastic1")

296 � Introduction to Python for Science and Engineering

The first statement above imports the module measurement and gives it the
abbreviation of m. Again we note that for the import statement to work, the file
measurement.py must be in Python’s path (see Section 10.2.1).

The second statement instantiates the class and gives this instance the tag
p1. The class takes one argument, "plastic1", the base name of both the text
data file and the YAML metadata file discussed above. The plastic1.txt and
plastic1.yaml data files are read, and their contents are stored in memory
when the class is instantiated.

The FallingBall class has a few attributes, such as the initial and terminal
velocities, that are determined from the data andmetadata when they are read
in:
In[3]: p1.v0 # initial velocity
Out[3]: 0.8185218384380468

In[4]: p1.vt #terminal velocity
Out[4]: 17.542100957438386

The base filename is also an attribute
In[5]: p1.filename
Out[5]: 'plastic1'

The data read in from the data (TXT) file, the laser crossing times, are
contained in the attribute crossing_times and can be accessed like any other
attribute:
In[6]: p1.crossing_times
Out[6]:
array([0. , 0.044784, 0.126177, 0.147594, 0.200606,

0.217874, 0.260726, 0.273778, 0.311248, 0.322659,
0.354883, 0.366229, 0.39667 , 0.405874, 0.434361,
0.443185, 0.469306, 0.477919, 0.502953, 0.511296])

You can get a list of the attributes of a user-defined class using the (so-called)
“magic” class method __dict__. To get a listing of all the attribute keys of a
class, type the following:
In[7]: print(p1.__dict__.keys())
dict_keys(['filename', 'meta', 'crossing_times', 'v0', 'vt',
'y_laser', 'yp', 'y_nofric', 'dy', 'dy_err'])

You can list all the attribute values by typing print(p1.__dict__.values()).
The FallingBall class has two other methods. The mdata() method prints

out the metadata read in from the YAML file:
In[8]: p1.mdata()
Out[8]:
data_aquired_by: Jeana Cui

Python Classes: Encapsulation � 297

Figure 10.2 Plot produced by the plot() method of the FallingBall class.

date: 2022-07-21
time: 16:07
material: plastic
mass_gm: 14.4
radius_cm: 2.29
magnet_to_laser_cm: 8.0
gravity_acceleration_si: 9.795
density_air_si: 1.1839
drag_coefficient: 0.47
laser_spacing_cm: 18.0
time_error_s: 0.0005

The plot method plots y(t) − y0(t), the distance the ball has fallen minus
the distance it would be expected to fall if there were no air resistance as a
function of time.
In[9]: p1.plot()

The result is shown in Figure 10.2. By default, the plot is displayed on the
screen but not saved to disk. To save the file, the plot()method takes an argu-
ment, either plot(True) or plot(save=True), which causes the method to save
the plot to disk with the name plastic1.pdf.

10.3.3 The Code

The FallingBall class described above has one input, the base filename of the
text and YAML files on which the class acts. It has three methods: the con-
structor __init__(), which is called when the class is instantiated, and the two

298 � Introduction to Python for Science and Engineering

methods associated with the class, mdata and plot(). Thus, the basic structure
of the class looks like this:

Code:measurement_shell.py
1 class FallingBall:
2
3 def __init__(self, filename):
4 pass
5
6 def mdata(self):
7 pass
8
9 def plot(self, save=False):

10 pass

Next, we need to fill in the code. The code is contained in a Python file
measurement.py (see below).At the top of the file,NumPy,Matplotlib, andYaml
are imported as they will be used in the FallingBall class code. Importing
them outside the class definition makes these packages available to any code
within the measurement.py file, including the FallingBall class.

Code:measurement.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import yaml
4
5
6 class FallingBall:
7 """
8 A class to analyze data from falling ball experiment with air
9 resistance

10 """
11
12 def __init__(self, filename):
13 """Read data from & metadata from txt and yaml files"""
14 self.filename = filename
15
16 # open YAML file and read in metadata dictionary
17 fmeta = open(filename + ".yaml", "r")
18 self.meta = yaml.safe_load(fmeta)
19 fmeta.close()
20
21 # open text file and read in crossing times data
22 self.crossing_times = np.loadtxt(filename + ".txt",
23 unpack=True, delimiter=",")
24
25 # determine initial velocity v0
26 radius = self.meta["radius_cm"] / 100.0 # [m] ball radius
27 y00 = self.meta["magnet_to_laser_cm"] / 100.0 # [m]
28 g = self.meta["gravity_acceleration_si"] # [m/s^2]
29 mass = self.meta["mass_gm"] / 1000.0 # [kg]
30 y0 = y00 - 2.0 * radius # [m] fall to first laser
31 self.v0 = np.sqrt(2.0 * g * y0) # [m/s] initial velocity

Python Classes: Encapsulation � 299

32
33 # determine terminal velocity vt
34 cdrag = self.meta["drag_coefficient"]
35 density_air = self.meta["density_air_si"] # [kg/m^3]
36 drag = 0.5 * cdrag * np.pi * radius**2 * density_air
37 self.vt = np.sqrt(mass * g / drag) # [m/s] terminal velocity
38
39 # determine laser y-coordinates
40 dy = self.meta["laser_spacing_cm"] / 100.0 # [m]
41 nlines = self.crossing_times.size // 2
42 self.y_laser = np.linspace(0.0, nlines-1, nlines) * dy
43
44 # determine particle y-positions
45 y2 = self.y_laser + 2.0 * radius
46 yp = np.concatenate((self.y_laser, y2))
47 self.yp = np.sort(yp)
48
49 # determine ideal particle y-positions with no friction
50 self.y_nofric = self.crossing_times * (self.v0 + 0.5 * g *
51 self.crossing_times)
52
53 # determine difference from ideal no-friction displacements
54 self.dy = self.yp - self.y_nofric
55
56 # determine uncertainties in difference displacements
57 v = self.v0 + g * self.crossing_times
58 self.dy_err = np.abs(v * self.meta["time_uncertainty_s"])
59
60 def mdata(self):
61 """Print out nicely-formatted metadata"""
62 for key, value in self.meta.items():
63 print(key + ": " + str(value))
64
65 def plot(self, save=False):
66 fig, ax = plt.subplots(figsize=(6.5, 4.0))
67 ax.errorbar(self.crossing_times, 1.0e3 * self.dy, fmt="oC0",
68 yerr=1.0e3 * self.dy_err, ecolor="gray", ms=3)
69 ax.axhline(color="gray", lw=0.5, zorder=-1)
70 ax.set_xlabel(r"t [s]")
71 ax.set_ylabel(r"$y(t) - y_0(t)$ [mm]")
72 txt = self.filename
73 txt += "\n" + f"mass = {self.meta['mass_gm ']:0.1f} gm"
74 txt += "\n" + f"radius = {self.meta['radius_cm ']:0.2f} cm"
75 ax.text(0.02, 0.02, txt, ha="left", va="bottom",
76 transform=ax.transAxes)
77 fig.tight_layout()
78 if save:
79 fig.savefig("figures/" + self.filename + ".pdf")
80 fig.show()

The FallingBall class is defined with the class statement on line 6, fol-
lowed by a brief docstring.

The __init__() method reads in the metadata and data, and it needs to
create the method’s attributes, which include the laser crossing times, the

300 � Introduction to Python for Science and Engineering

initial and terminal velocities, the root name of the data files, and several other
items.

The metadata is read from the YAML file with the base filename specified
when the FallingBall class is instantiated. Note that the YAML safe_load()
method is used rather than the alternative YAML load() method. It is unsafe
to call yaml.load()with data received fromanuntrusted source, as a YAMLfile
can call any Python function, including those that might damage your com-
puter. The YAML safe_load() method limits this feature and should always
be used unless you trust the source of the YAML file and you have a reason to
use YAML’s advanced features. Here, we need to load a dictionary containing
metadata, so we don’t need YAML’s advanced features. Be sure to close the
YAML file once you have finished reading in its metadata.

Next, the __init__() method reads the data file, which in this case con-
sists of a single column of data (the crossing times). We use NumPy’s loadtxt
function, which we introduced in Section 5.3.

The remainder of the __init__ method processes the data and metadata
to put all of it in a useful form for analysis and display. From the spacing of
the laser beam crossing the path of the falling mass and the crossing times, it
determines the coordinates of the mass at different times as it falls. It also uses
the metadata to determine where the particle would be at these times without
air resistance. From the uncertainty of the crossing-timemeasurements, it also
calculates the uncertainties in the measured particle positions.

The __init__() is run when the FallingBall class is instantiated.
Once the class is instantiated, two other methods are available that act on

the data. The mdata method displays the metadata nicely formatted for exam-
ination by the user. It takes no arguments.

The plot method plots y(t)− y0(t), the position of the falling mass minus
y(t) what its position would be y0(t) if there were no air resistance. The plot
method has one argument, the keyword argument save. By default, it is set to
be False and does not save the plot to your computer’s drive. However, setting
the keyword argument save=True, the plot is saved to a PDF file with the same
base name as the YAML and TXT data files that were read with the class was
instantiated.

10.4 A CLASS OF RELATED FUNCTIONS

Occasionally, you may want to code a number of related functions, perhaps
pertaining to some model or set of models you wish to examine and use. In
such a case, the functions may share at least some data and parameters. While

Python Classes: Encapsulation � 301

Figure 10.3 Velocity autocorrelation functions.

you can define sets of data and variables along with a set of appropriate func-
tions, it is often useful to bundle the data and functions within a class.

Doing so has several advantages. First, it organizes the related set of func-
tions and the data they use into a single easily recognizable unit, a class. Sec-
ond, it organizes the necessary data inputs into a convenient list contained in
the arguments of the class (i.e., the arguments of its __init__() method). This
makes recognizing and understanding the inputs easier for you and others.
Finally, it isolates the data and functions from other code and thus protects
the internal functioning of the data and functions (methods) that operate on
the data from the other software you may need.

These are the classic elements of encapsulation, which the class structure
nicely provides.

We illustrate this kind of functionality with a class that calculates the ve-
locity autocorrelation function, which is used in statistical mechanics to char-
acterize the Brownian motion of microscopic particles suspended in a liquid.
The exact nature of the function is not important here. The essential thing you
need to know is that it is a function of time and that various theoretical mod-
els result in different functional forms for the velocity autocorrelation func-
tion. In addition, the velocity autocorrelation function depends on a number
of physical parameters: the particle diameter (the particles are assumed to be
spheres), the mass densities of the particle and liquid, the viscosity of the liq-
uid, the velocity of sound in the liquid, and the temperature. The three mod-
els of the velocity autocorrelation function we wish to consider are plotted in
Figure 10.3.

302 � Introduction to Python for Science and Engineering

The code for the class, which we name VVautocorr, is provided below.
The class consists of the constructor __init__() and three methods, one for
each model. As noted above, the arguments of the class (i.e., of __init__())
consist of a list of all the parameters on which the models depend. All
of these inputs are made attributes of the class by __init__(). In addition,
__init__() creates a few other attributes, including three characteristic time
scales, self.tauVort, self.tauSound, and self.tauVisc, as well as the mass of
the particle self.mass_p and of the fluid it displaces self.mass_f.

The class has threemethods hinchVV(), langevinVV(), and zwanzigVV(). Be-
sides the self argument, eachmethod has only one argument, time, which can
be a NumPy array or a single value of time. The self argument ensures that
all the attributes are available to each method.

While the attributes are freely available within the VVautocorr class, they
are isolated from other software outside of the class and are available only
through the usual dot syntax for a particular instance of the class.

Code: vv.py
1 import numpy as np
2 import scipy.special
3 import matplotlib.pyplot as plt
4 from scipy.constants import Boltzmann as kB
5
6
7 class VVautocorr():
8 """
9 Calculates velocity autocorrelation function of colloidal particle

10 suspended in a liquid. All units are in SI.
11 """
12
13 def __init__(self, diameter=1.0e-6, dens_p=1050.0, dens_f=998.2,
14 viscosity=1.0016e-3, vel_sound=1484.0, tempC=20.0):
15 self.diameter = diameter # particle diameter
16 self.radius = 0.5 * self.diameter
17 self.dens_p = dens_p # particle mass density
18 self.dens_f = dens_f # fluid mass density
19 self.viscosity = viscosity # fluid viscostiy
20 self.vel_sound = vel_sound # sound velocity in fluid
21 self.tempC = tempC # temperature degrees C
22 self.tempK = tempC + 273.15
23 self.mass_p = 4.0 * np.pi * self.radius**3 / 3.0 * self.dens_p
24 self.mass_f = 4.0 * np.pi * self.radius**3 / 3.0 * self.dens_f
25 self.mstar = self.mass_p + 0.5 * self.mass_f
26 zeta = 6.0 * np.pi * self.viscosity * self.radius
27 self.tauVort = dens_f * self.radius**2 / self.viscosity
28 self.tauSound = self.radius / self.vel_sound
29 self.tauVisc = self.mass_p / zeta
30
31 def hinchVV(self, time): # [seconds] NumPy array or single value
32 # Velocity autocorrelation function from
33 # Hinch, J. Fluid Mech. 72, 499 (1975)

Python Classes: Encapsulation � 303

34 rhoRatio = self.dens_p / self. dens_f
35 alpha = 1.5 / (np.sqrt(self.tauVort) * (1.0 + 2.0 * rhoRatio))
36 dsc = np.sqrt((5.0 - 8.0 * rhoRatio) + 0j)
37 alphaPlus = alpha * (3.0 + dsc)
38 alphaMinus = alpha * (3.0 - dsc)
39 A = kB * self.tempK / (2.0 * np.pi * self.radius**3 *
40 self.dens_p * dsc) * np.sqrt(self.tauVort)
41 roott = np.sqrt(time)
42 RPlus = alphaPlus * np.exp(alphaPlus * alphaPlus * time) \
43 * scipy.special.erfc(alphaPlus * roott)
44 RMinus = alphaMinus * np.exp(alphaMinus * alphaMinus * time) \
45 * scipy.special.erfc(alphaMinus * roott)
46 # Imaginary part is zero
47 return np.real(A * (RPlus - RMinus))
48
49 def langevinVV(self, time):
50 # Velocity autocorrelation function from naive Langevin eqn
51 vsqrd = kB * self.tempK / self.mass_p
52 return vsqrd * np.exp(-time / self.tauVisc)
53
54 def zwanzigVV(self, time):
55 # Compressibility effect on velocity autocorrelation function
56 # Zwanzig & Bixon, J. Fluid Mech. 69, 21 (1975)
57 t = time / self.tauSound
58 mratio = self.mstar / self.mass_p
59 msqrt = np.sqrt(0j + 1.0 - (0.5 * self.mass_f/self.mass_p)**2)
60 mrati = 1j * mratio / msqrt
61 x1 = -1j * mratio + msqrt
62 x2 = -1j * mratio - msqrt
63 w1 = (1.0 - mrati) * np.exp(-1j * x1 * t)
64 w2 = (1.0 + mrati) * np.exp(-1j * x2 * t)
65 w = (0.25 * self.mass_f / self.mstar) * np.real(w1 + w2)
66 return (self.mass_p / self.mstar) + w
67
68
69 if __name__ == "__main__":
70 a = VVautocorr() # instantiate with default variable values
71
72 npts = 100
73 tmin = 0.02 * a.tauSound
74 tmax = 50.0 * a.tauVort
75 t = np.logspace(np.log10(tmin), np.log10(tmax), npts)
76 vvHinch = a.hinchVV(t)
77 vvZwanzig = a.zwanzigVV(t)
78 full = (a.mstar / a.mass_p) * vvHinch * vvZwanzig
79 vvLangevin = a.langevinVV(t)
80
81 fig, ax = plt.subplots(figsize=(6.5, 4.0))
82 ax.set_xscale("log")
83 ax.set_yscale("log")
84 ax.plot(t, full, lw=2, color="k", label="full model")
85 ax.plot(t, vvHinch, lw=1, color="gray",
86 dashes=(2, 2), label="incompressible model")
87 ax.plot(t, vvLangevin, lw=1, color="C0",
88 zorder=-2, label="naive model")
89 vSqrd = kB * a.tempK / a.mass_p

304 � Introduction to Python for Science and Engineering

90 ax.set_ylim(vvHinch[-1], 2.0 * vSqrd)
91 ax.set_xlabel(r"$t\ \mathrm{(seconds)}$")
92 ax.set_ylabel(r"$\langle v(0)v(t) \rangle\ \mathrm{(m^2/s^2)}$")
93 # Equipartition line
94 ax.axhline(vSqrd, color="gray", dashes=(5, 2))
95 ax.text(t[-10], vSqrd, "k_BT/m", va="center", ha="right",
96 bbox=dict(fc="white", ec="white"))
97 ax.legend()
98 plt.tight_layout()
99 plt.savefig("figures/vv.pdf")

100 plt.show()

The use of the class is illustrated by the code following the if __name__ ==
"__main__": statement. This code following this statement is executed only if
the file vv.py containing the code is run as a standard Python file. It is not
run, however, if vv.py is imported as a module. This allows you to write code
testing a module without affecting the module’s normal use.

The VVautocorr() class is instantiated on line 70 without any arguments,
that is, using the default values of the arguments specified in the class con-
structor __init__().

10.5 INHERITANCE

The previous sections in this chapter provide an introduction to classes, par-
ticularly to the essential idea of how classes can be used to bundle data with
methods (functions) that act on those data. This concept is called encapsula-
tion. The next most significant concept of classes is inheritance, which pro-
vides a mechanism for building up a hierarchy of related classes that are part
of a larger system.

In a laboratory, for example, you might have a set of instruments used
to characterize various materials. Each instrument has its own unique capa-
bilities, but the whole set of instruments is needed to characterize a physical,
chemical, or biological system. Software interacting with each of the various
instruments might look pretty similar and might interact with the data from
each in similar ways. Moreover, you might like to share information from the
different instruments and analyze them together. Inheritance provides a con-
venient set of software tools to create a hierarchy of classes for these related
instruments. The highest level of the hierarchy sets the basic structure of soft-
ware that interacts with each instrument. Software lower in the hierarchy in-
herits the basic structure from the higher levels and customizes it for each
instrument.

Describing how to build up such a system goes well beyond the scope of
this text. However, if you start developing a system of related classes, you will

Python Classes: Encapsulation � 305

want to investigate inheritance and the broader subject of software system de-
sign.

10.6 EXERCISES

1. Write a class called Sphere that determines the geometrical proper-
ties of a sphere. The single input should be the radius. Create meth-
ods get_radius, surface_area, and volume that return the radius, surface
area, and volume of a sphere. Then, demonstrate that your new class
works for spheres of radius 1, 3, and 10.

2. Add a method to the class FallingBall that returns the y coordinate of
a falling ball given by Eq. (10.1). Other than self, the method’s only
argument should be the time. Your new method should access All other
necessary parameters through the class attributes.
Then, add an argument to the FallingBall plot method that, if True,
plots the fit of the model to the data using the new method. The default
value should be False.
Demonstrate the use of your class by importing it and plotting the data
from the plastic1 data and metadata files. Your output should look like
this plot.

CH A P T E R 11

Data Manipulation and
Analysis: Pandas

This chapter introduces Pandas, a powerful Python package for manip-
ulating and analyzing large (and small) data sets. You first learn how to
read data from external files, e.g., Excel or text files, into Pandas. You
learn about different data structures for storing dates and times, time
series, and data organized into rows and columns in a spreadsheet-like
structure called a DataFrame. You then learn how to manipulate data,
extract subsets of data, and plot those data using Matplotlib, but with
some new syntax introduced by Pandas that facilitates working with
data the structures of Pandas.

This chapter introduces Pandas, a versatile Python package for handling
large data sets. It has a spreadsheet-like character and has become a standard
tool for data scientists, people working across a wide range of disciplines who
collect, analyze, and interpret data from a variety of inputs. While Pandas was
developed by people working in the financial industry, many of its features are
generally useful to scientists and engineers.We can’t cover all of its capabilities
in one short chapter, but we will show you a few of the things it can do. With
that introduction, we hope that you will have learned enough to adapt Pandas
to your own applications.

Pandas is installed with the standard Python distributions such as Ana-
conda. In an IPython shell or in a Python program, you access the many rou-
tines available in Pandas by writing:
import pandas as pd

The abbreviation universally used for Pandas is pd.

306 DOI: 10.1201/9781032673950-11

https://doi.org/10.1201/9781032673950-11

Data Manipulation and Analysis: Pandas � 307

11.1 DATA STRUCTURES: SERIES AND DataFrame

Pandas has two principal data structures: Series and DataFrame. They form
the basis for most activities using Pandas.

Both Series and DataFrames use NumPy arrays extensively, but introduce
more versatile ways of indexing and manipulating different data types. This
added functionality can come at a performance price, a topic we briefly ad-
dress below. You will find that NumPy is more adept at numerical work while
Pandas excels at managing large complex data sets.

11.1.1 Series

A Pandas Series is a one-dimensional array-like data structure comprising a
NumPy array, and an associated array of data labels called the index. We can
create a Series using the Pandas Series function, which turns a list, dictionary,
or NumPy array into a Pandas Series. Here, we use it to turn a list into a Series:
In[1]: lst = [160.0-4.9*t*t for t in range(6)]

In[2]: lst
Out[2]: [160.0, 155.1, 140.4, 115.9, 81.6, 37.5]

In[3]: ht = pd.Series(lst)

In[4]: ht
Out[4]:
0 160.0
1 155.1
2 140.4
3 115.9
4 81.6
5 37.5
dtype: float64

The IPython output displayed is in two columns: the index column on the left
and the values of the Series on the right. The argument of the Series function
can be a list, an iterator, or a NumPy array. In this case, the values of the Series
are floating point numbers. The index goes from 0 to N − 1, where N is the
number of data points. Individual elements and slices are accessed in the same
way as for lists and NumPy arrays.
In[5]: ht[2]
Out[5]: 140.4

In[6]: ht[1:4]
Out[6]:
1 155.1

308 � Introduction to Python for Science and Engineering

2 140.4
3 115.9
dtype: float64

The entire array of values and indices can be accessed using the values and
index attributes.
In[7]: ht.values
Out[7]: array([160. , 155.1, 140.4, 115.9, 81.6, 37.5])

In[8]: ht.index
Out[8]: RangeIndex(start=0, stop=6, step=1)

Here, as can be seen from the outputs, the ht.values is a NumPy array and
ht.index is an iterator.

11.1.1.1 Alternative Indexing Schemes

Unless otherwise specified, the index default is to go from 0 toN− 1 whereN
is the size of the Series. However, there are other ways of indexing. Consider
a Series that stores the heights of different individuals:
In[9]: height = pd.Series([188, 157, 173, 169, 155],
...: index=['Jake', 'Sarah', 'Maya',
...: 'Chris', 'Alex'])

In[10]: height
Out[10]:
Jake 188
Sarah 157
Maya 173
Chris 169
Alex 155
dtype: int64

Here the index keyword argument specifies that the heights are indexed by
people’s names.
In[11]: height['Maya']
Out[11]: 173

The old indexing scheme still works in this case:
In[12]: height[2]
Out[12]: 173

The Series height bears a striking resemblance to a Python dictionary.
Indeed, a Pandas Series can be converted to a dictionary using the to_dict
method:

Data Manipulation and Analysis: Pandas � 309

In[13]: htd = height.to_dict()

In[14]: htd
Out[14]: {'Jake': 188, 'Sarah': 157, 'Maya': 173,

'Chris': 169, 'Alex': 155}

Coming full circle, we see that a Python dictionary can be converted to a Pan-
das Series using the Series function:
In[15]: pd.Series(htd)
Out[15]:
Jake 188
Sarah 157
Maya 173
Chris 169
Alex 155
dtype: int64

11.1.1.2 Time Series

One of themost common uses of Pandas Series involves a time Series in which
the Series is indexed by timestamps. This is facilitated by another Python li-
brary called datetime, which is distinct from Pandas and defines, among other
things, a useful datetime object. A datetime object stores, as its name implies,
a precise moment in time. To see how this works, let’s import the datetime
library and then get the current value of datetime:
In[16]: import datetime as dt

In[17]: t0 = dt.datetime.now()

In[18]: t0
Out[18]: datetime.datetime(2017, 7, 21, 8, 17, 24, 241916)

The datetime object returns the year, month, day, hour, minute, second, and
microsecond. You can format a datetime object for printing using the strftime
method of the datetime library in various ways:
In[19]: t0.strftime('%Y-%m-%d')
Out[19]: '2017-07-21'

In[20]: t0.strftime('%d-%m-%Y')
Out[20]: '21-07-2017'

In[21]: t0.strftime('%d-%b-%Y')
Out[21]: '21-Jul-2017'

In[22]: t0.strftime('%H:%M:%S')

310 � Introduction to Python for Science and Engineering

Out[22]: '09:00:15'

In[23]: t0.strftime('%Y-%B-%d %H:%M:%S')
Out[23]: '2017-July-21 09:00:15'

You can construct almost any format you want.
Datetime objects can be used to index Pandas Series. For example, we can

change the index of the series ht to consecutive days. First, we create a time
sequence:
In[24]: dtr = pd.date_range('2017-07-22', periods=6)

Then we set the index of ht to the time sequence:
In[25]: ht.index = dtr

In[26]: ht
Out[26]:
2017-07-22 160.0
2017-07-23 155.1
2017-07-24 140.4
2017-07-25 115.9
2017-07-26 81.6
2017-07-27 37.5
Freq: D, dtype: float64

In[27]: ht['2017-07-25']
Out[27]: 115.90000000000001

In[28]: ht['2017-07-23':'2017-07-26']
Out[28]:
2017-07-23 155.1
2017-07-24 140.4
2017-07-25 115.9
2017-07-26 81.6
Freq: D, dtype: float64

Note that you can slice time Series indexed by dates, and that the slice range
includes both the starting and ending dates.

11.1.2 DataFrame

A Pandas DataFrame is a two-dimensional spreadsheet-like data structure. It
consists of an index column and two or more data columns; in effect, it’s a
Series with more than one data column.

One simple way to generate a DataFrame is from tabular data stored in a
text file. Consider, for example, the following data about the planets tabulated
in a simple text file. The quantities in the table are referenced to Earth.

Data Manipulation and Analysis: Pandas � 311

Data: planet_data.txt
planet distance mass gravity diameter year
Mercury 0.39 0.055 0.38 0.38 0.24
Venus 0.72 0.82 0.91 0.95 0.62
Earth 1.00 1.00 1.00 1.00 1.00
Mars 1.52 0.11 0.38 0.53 1.88
Jupiter 5.20 318 2.36 11.2 11.9
Saturn 9.58 95 0.92 9.45 29
Uranus 19.2 15 0.89 4.01 84
Neptune 30.0 17 1.12 3.88 164
Pluto 39.5 0.0024 0.071 0.19 248

We can read this table into a DataFrame using the Pandas function
read_table(). Notice below that we use the keyword argument sep, which
specifies the character or characters that Pandas uses to separate the columns
when the table is read. In this case, sep="\s+", which sets the column sepa-
rator to by one or more spaces. You would use sep="," for comma-separated
columns, although there also exists a dedicated Pandas function read_csv()
for that purpose.
In[1]: planets = pd.read_table('planet_data.txt', sep='\s+')

In[2]: planets
Out[2]:
planet distance mass gravity diameter year
0 Mercury 0.39 0.0550 0.380 0.38 0.24
1 Venus 0.72 0.8200 0.910 0.95 0.62
2 Earth 1.00 1.0000 1.000 1.00 1.00
3 Mars 1.52 0.1100 0.380 0.53 1.88
4 Jupiter 5.20 318.0000 2.360 11.20 11.90
5 Saturn 9.58 95.0000 0.920 9.45 29.00
6 Uranus 19.20 15.0000 0.890 4.01 84.00
7 Neptune 30.00 17.0000 1.120 3.88 164.00
8 Pluto 39.50 0.0024 0.071 0.19 248.00

The pd.read_table function created a PandasDataFrame towhichwe assigned
the name planets. Notice that Pandas added a numerical index (the first col-
umn) to designate the rows, just as it does for Series. These numbers are used
for indexing the rows of the DataFrame.

By default, the Pandas function pd.read_table uses the names in the top
row of the data file as names by which the respective columns are indexed. For
example, the mass column is indexed as follows:
In[3]: planets["mass"]
Out[3]:
0 0.0550
1 0.8200
2 1.0000
3 0.1100

312 � Introduction to Python for Science and Engineering

4 318.0000
5 95.0000
6 15.0000
7 17.0000
8 0.0024
Name: mass, dtype: float64

In[4]: type(planets["mass"])
Out[4]: pandas.core.series.Series

Notice that a single columnof theDataFrame, in this case planets["mass"], is a
Series. As such, its elements can be indexed in the same way as for stand-alone
Series.
In[5]: planets["mass"][4]
Out[5]: 318.0

Slicing also works.
planets["mass"][2:5]
Out[5]37:
2 1.00
3 0.11
4 318.00
Name: mass, dtype: float64

Slicing does not work on the columns. However, in Section 11.2, we will learn
more efficient ways of indexing that will get around this problem.

Using the following code, you can designate the planet column to be the
index instead of the numbers.
In[6]: planets = planets.set_index("planet")

In[7]: planets
Out[7]:
distance mass gravity diameter year
planet
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00

With this change, the planet names index the various rows. Here, we display
the diameter of the planets from Venus to Neptune:

Data Manipulation and Analysis: Pandas � 313

In[8]: planets["diameter"]["Venus":"Neptune"]
Out[8]:
planet
Venus 0.95
Earth 1.00
Mars 0.53
Jupiter 11.20
Saturn 9.45
Uranus 4.01
Neptune 3.88

Interestingly, we can use slicing on the row index names (but not on the col-
umn names, as noted above).

Alternatively, we could have specified that the planet column be used as
the index when we read the tabular data from the text data file:
In[9]: planets = pd.read_table('planet_data.txt', sep='\s+',
...: index_col='planet')

This yields the same result that we obtained whenwe read in the data file with-
out designating an index column but then later set the index column with the
Pandas set_index method (see In[6] above).

11.1.2.1 Creating DataFrames from Dictionaries

In the previous section, we created aDataFrame by reading tabular data from a
text file. Alternatively, you can create a DataFrame using the Pandas DataFrame
routine. As input, you can use nearly any list-like object, including a list, a
NumPy array, or a dictionary. Perhaps the simplest way is using a dictionary.
In[10]: optmat = {'mat': ['silica', 'titania', 'PMMA', 'PS'],

...: 'RI': [1.46, 2.40, 1.49, 1.59],

...: 'density': [2.03, 4.2, 1.19, 1.05]}

In[11]: omdf = pd.DataFrame(optmat)
Out[11]:
mat RI density
0 silica 1.46 2.03
1 titania 2.40 4.20
2 PMMA 1.49 1.19
3 PS 1.59 1.05

You can coerce the columns to appear in any desired order using the columns
keyword argument.
In[12]: omdf = pd.DataFrame(optmat,

...: columns=['mat', 'density', 'RI'])

In[13]: omdf

314 � Introduction to Python for Science and Engineering

Out[13]:
mat density RI
0 silica 2.03 1.46
1 titania 4.20 2.40
2 PMMA 1.19 1.49
3 PS 1.05 1.59

You can also create a DataFrame with empty columns and fill in the data
later.
In[14]: omdf1 = pd.DataFrame(index=['silica', 'titania',

...: 'PMMA', 'PS'], columns=('density', 'RI'))
In[15]: omdf1
Out[15]:
density RI
silica NaN NaN
titania NaN NaN
PMMA NaN NaN
PS NaN NaN

The index and column names are indicated, but there is no data. The empty
data columns are indicated by NaN (not-a-number). We can fill in the empty
entries as follows:
In[16]: omdf1.loc['PS', ('RI', 'density')] = (1.05, 1.59)

In[17]: omdf1
Out[17]:
density RI
silica NaN NaN
titania NaN NaN
PMMA NaN NaN
PS 1.59 1.05

Here, we used the loc method, which we discuss in greater detail in the next
section.

Let’s check the data types in our DataFrame.
In[18]: omdf1.dtypes
Out[18]:
density object
RI object
dtype: object

The data types for the index and density columns were set to be object when
the DataFrame was created because we gave these columns no data. Now that
we have entered the data, we would prefer that the index and density columns
be the float data type. To do so, we explicitly set the data type.
In[19]: omdf1[['RI', 'density']] = omdf1[

Data Manipulation and Analysis: Pandas � 315

...: ['RI', 'density']].apply(pd.to_numeric)

In[20]: omdf1.dtypes
Out[20]:
density float64
RI float64
dtype: object

The columns are correctly typed as floating point numbers while the overall
DataFrame is an object.

11.2 INDEXING DataFrames

In the previous section, we introduced a method for selecting an entire col-
umn of a data frame. We also described methods for selecting particular en-
tries inDataFrames and slices over DataFrame rows.This latter set of indexing
methods is limited (no slicing over columns) and inefficient.

In this section, we introduce two Pandas properties, iloc and loc, that
provide both powerful and efficient indexing over data. We will demonstrate
how these two properties work using the planets DataFrame we considered
in the previous section
planets
Out[20]:
distance mass gravity diameter year
planet
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00

11.2.1 Pandas iloc Indexing

The Pandas iloc property indexes DataFrames by row and column number
(note the order: [row, column]—it’s opposite to what we used before):
In[1]: planets.iloc[0, 1]
Out[1]: 0.055

The row and column numbers use the usual Python zero-based indexing
scheme. Note that Mercury is row 0 and mass in column 1; the index column
doesn’t figure in the iloc indexing scheme. The usual slicing syntax applies:

316 � Introduction to Python for Science and Engineering

In[2]: planets.iloc[3:5, 1:4]
Out[2]:
mass gravity diameter
planet
Mars 0.11 0.38 0.53
Jupiter 318.00 2.36 11.20

As with lists and NumPy arrays, an index of −1 signifies the last element, −2
is the next to the last element, and so on.

11.2.2 Pandas loc Indexing

The Pandas loc property is an extremely versatile and powerful tool for in-
dexing DataFrames. Amongst other things, it allows you to use the row and
column names as indices (row first, then column, as for iloc).
In[3]: planets.loc["Mars":"Jupiter", "mass":"diameter"]
Out[3]:
mass gravity diameter
planet
Mars 0.11 0.38 0.53
Jupiter 318.00 2.36 11.20

At first look, it seems simply like an alternative syntax for accomplishing the
same thing youmight have done with iloc indexing. But it can domuchmore.
Suppose, for example, we wanted a list of planets whose mass was larger than
the Earth’s. As a part of its functionality, loc indexing can select data based on
conditions.
In[4]: planets.loc[planets.mass > 1.0]
Out[4]:
distance mass gravity diameter year
planet
Jupiter 5.20 318.0 2.36 11.20 11.9
Saturn 9.58 95.0 0.92 9.45 29.0
Uranus 19.20 15.0 0.89 4.01 84.0
Neptune 30.00 17.0 1.12 3.88 164.0

Here, we set loc to select data based on a condition on the value of the planet’s
mass, whether it is greater than themass of the Earth, which is 1.This is essen-
tially the same Boolean indexing we encountered in Section 4.4.4 for NumPy
arrays.

You can specify quite complicated conditions if you wish. For example,
suppose wewanted a list of all the planets that aremoremassive than the Earth
but have a smaller gravitational force at their surface.We could list those plan-
ets as follows:

Data Manipulation and Analysis: Pandas � 317

In[5]: planets.loc[(planets["mass"] > 1.0) &
...: (planets["gravity"] < 1.0)]

Out[5]:
distance mass gravity diameter year
planet
Saturn 9.58 95.0 0.92 9.45 29.0
Uranus 19.20 15.0 0.89 4.01 84.0

The parentheses within loc are needed to define the order in which the logical
operations are applied.

If we don’t want to see all of the columns, we can specify the columns as
well as the rows:
In[6]: planets.loc[(planets.mass > 1.0) &
...: (planets.gravity < 1.0),
...: 'mass':'gravity']

Out[6]:
mass gravity
planet
Saturn 95.0 0.92
Uranus 15.0 0.89

Note that we can use either planets.mass and planets.gravity or planets
["mass"] and planets["gravity"]; either syntax works. Either works.

11.3 READING DATA FROM FILES USING Pandas

Pandas can read data from files written in many different formats, including
the following: text, csv, Excel, JSON (JavaScript Object Notation), fixed-width
text tables, HTML (web pages), and more that you can define. Our purpose
here, however, is not to exhaust all the possibilities. Instead, we show you some
of the more common methods and a few tricks. The idea is to illustrate, with
some well-chosen examples (we hope!), how you can use Pandas, so that you
get the idea of how Pandas works. After finishing this chapter, you should be
able to use Pandas to read in and manipulate data, and then also be able to
read the appropriate online Pandas documentation to extend your knowledge
and adapt Pandas for your own applications.

11.3.1 Reading from Excel Files Saved as CSV Files

Excel files are commonly used to store data. As you learned in Chapter 5, one
simple way to read in data from an Excel file is to save it as a CSV file, which is
a text file of tabular data with different columns of data separated by commas
(hence the name csv: comma-separated values, see Section 5.3.2).

318 � Introduction to Python for Science and Engineering

Figure 11.1 Excel spreadsheet.

Let’s start with the Excel file shown in Figure 11.1. The Excel application
can save the spreadsheet as a csv text file. It looks like this:

Data: scat_mie_data.csv
Wavelength [vacuum] (nm) = 532,,
Refractive index of solvent = 1.33,,
Refractive index of particles = 1.59,,
Diameter of particles (microns) = 0.5,,
cos_theta,f1,f2
9.60E-01,3.48E+01,3.36E+01
8.40E-01,1.95E+01,1.70E+01
7.20E-01,1.00E+01,8.27E+00
6.00E-01,4.60E+00,3.91E+00
4.80E-01,1.76E+00,1.86E+00
3.60E-01,5.03E-01,9.66E-01
2.40E-01,1.50E-01,5.86E-01
1.20E-01,2.38E-01,4.14E-01
0.00E+00,4.74E-01,3.13E-01
-1.20E-01,6.89E-01,2.37E-01
-2.40E-01,8.01E-01,1.73E-01
-3.60E-01,7.85E-01,1.24E-01
-4.80E-01,6.60E-01,9.04E-02
-6.00E-01,4.69E-01,7.25E-02

Data Manipulation and Analysis: Pandas � 319

-7.20E-01,2.73E-01,7.21E-02
-8.40E-01,1.43E-01,9.70E-02
-9.60E-01,1.55E-01,1.66E-01

This particular file has a header that provides information about the data, a
header row specifying the name of each column of data, cos_theta,1 f1, and
f2, followed by three columns of data.

Let’s use Pandas to read the data in this file. To start, we skip the header
information contained in the top 4 lines of the file using the skiprows keyword
argument:
In[1]: scat = pd.read_csv('scat_mie_data.csv', skiprows=4)

Note that we did not have pd.read_csv skip the row containing the column
labels, cos_theta, f1, and f2, as Pandas will use those as labels for the different
columns of data.

The Pandas function pd.read_csv() reads the data into a DataFrame,
to which we give the name scat in the code above. We can examine the
DataFrame by typing scat at the IPython prompt:
In[2]: scat
Out[2]:
cos_theta f1 f2
0 1.000 70.0000 70.0000
1 0.875 27.1000 23.5000
2 0.750 8.5800 6.8000
3 0.625 1.8700 1.7200
4 0.500 0.2250 0.5210
5 0.375 0.3040 0.3110
6 0.250 0.6540 0.2360
7 0.125 0.7980 0.1490
8 0.000 0.7040 0.0763
9 -0.125 0.4850 0.0406
10 -0.250 0.2650 0.0364
11 -0.375 0.1170 0.0459
12 -0.500 0.0623 0.0579
13 -0.625 0.0851 0.0763
14 -0.750 0.1560 0.1200
15 -0.875 0.2590 0.2180
16 -1.000 0.4100 0.4100

A DataFrame is a tabular data structure similar to a spreadsheet.
In[3]: type(scat)
Out[3]: pandas.core.frame.DataFrame

1Generally, it’s preferable to use column names with no spaces, which is why we have used
an underline here. Pandas can handle headers with spaces, although in some cases, it can be
limiting.

320 � Introduction to Python for Science and Engineering

DataFrames consist of an index column and two or more data columns;
the DataFrame scat has three data columns that were read in from the
scat_mie_data.csv data file. The index column is added by Pandas and runs
from 0 to N − 1, where N is the number of data points in the file. The three
data columns are labeled with the names given in the fifth line of the data
file, which was the first line read by pd.read_csv(), as the keyword argument
skiprows was set equal to 4. By default, Pandas assumes that the first line read
gives the names of the data columns that follow.

The data in the DataFrame can be accessed and sliced in different ways.
To access the data in the column, you use the column labels:
In[4]: scat.cos_theta
Out[4]:
0 1.000
1 0.875
2 0.750
3 0.625
4 0.500
5 0.375
6 0.250
7 0.125
8 0.000
9 -0.125
10 -0.250
11 -0.375
12 -0.500
13 -0.625
14 -0.750
15 -0.875
16 -1.000
Name: cos_theta , dtype: float64

A single row of a DataFrame is an example of the other central data structure
of Pandas: a Series. We discuss Series and DataFrames more systematically in
Section 11.1.
In[5]: type(scat.cos_theta)
Out[5]: pandas.core.series.Series

Typing scat['cos_theta'], a syntax similar to the one used for dictionaries,
yields the same result. Individual elements and slices can be accessed by in-
dexing as for NumPy arrays:
In[6]: scat.cos_theta[2]
Out[6]: 0.75

In[7]: scat.cos_theta[2:5]
Out[7]:

Data Manipulation and Analysis: Pandas � 321

2 0.750
3 0.625
4 0.500
Name: cos_theta , dtype: float64

In[8]: scat['cos_theta'][2:5]
Out[8]:
2 0.750
3 0.625
4 0.500
Name: cos_theta , dtype: float64

Similarly, scat.f1 and scat.f2 give the data in the columns labeled f1 and f2.

11.3.1.1 Munging: Cleaning up Messy Data

In the example above, we ignored the header data in the first four lines by
setting skiprows=4. But suppose we want to read in the information in those
four rows. How would we do it? Let’s try the routine read_csv() once again.
In[1]: head = pd.read_csv('scat_mie_data.csv', nrows=4,
...: header=None)

We use the keyword nrows and set it equal to 4 so that Pandas reads only the
first four lines of the file, which comprise the header information. We also set
head=None as there is no separate header information for these four rows. Let’s
examine the result by typing head, the name we assigned to these data.
In[2]: head
Out[2]:
0 1 2
0 Wavelength [vacuum] (nm) = 532 NaN NaN
1 Refractive index of solvent = 1.33 NaN NaN
2 Refractive index of particles = 1.59 NaN NaN
3 Diameter of particles (microns) = 0.5 NaN NaN

The four rows are indexed from 0 to 3, as expected. The three columns are
indexed from 0 to 2. Pandas introduced the column indices 0 to 2 because we
set header=None in the read_csv() calling function instead of inferring names
for these columns from the first row read from the CSV file as it did above.
Individual elements of the head DataFrame can be indexed by their column
and row, respectively:
In[3]: head[0][1]
Out[3]: 'Refractive index of solvent = 1.33'

The quotes tell us that the output of head[0][1] is a string. In general, Pandas
infers the data types for the different columns and assigns them correctly for

322 � Introduction to Python for Science and Engineering

numeric, string, or Boolean data types. But in this case, the information in
the first column of the spreadsheet contains both string and numeric data, so
read_csv() interprets the column as a string.

The data in the other two columns, which were empty in the original Ex-
cel spreadsheet and are commas with nothing between them in the CSV file,
become NaN (“not a number”) in the DataFrame. Accessing the datum in one
cell as before gives the expected result:
In[4]: head[1][1]
Out[4]: nan

Pandas fills in missing data with NaN, a feature we discuss in greater detail in
Section 11.1.2.

The appearance of quotes in the output Out[3]: above indicates that the
data read from the header information are stored as strings. But suppose we
want to separate out the numeric data from the strings that describe them.
While Python has routines for stripping off numeric information from strings,
performing this task is more efficient when reading the file. To do this, we
use the Pandas routine read_table(), which reads in data from a text file like
read_csv(). With read_table(), however, the user can specify the symbol that
will be used to separate the columns of data: a symbol other than a comma
can be used. The following call to read_table() does just that.
In[5]: head = pd.read_table('scat_mie_data.csv', sep='=',
...: nrows=4, header=None)

The keyword sep, which specifies the symbol that separates columns, is set
equal to the string '=', as the equals sign delimits the string from the numeric
data in this file. Printing out head reveals that there are now two columns.
In[6]: head
Out[6]:
0 1
0 Wavelength [vacuum] (nm) 532,,
1 Refractive index of solvent 1.33,,
2 Refractive index of particles 1.59,,
3 Diameter of particles (microns) 0.5,,

This still isn’t quite what we want, as the second column consists of numbers
followed by two commas, unwanted remnants of the CSV file. We eliminate
the commas by declaring the comma to be a “comment” character (the symbol
is the default comment character in Python). We do this by introducing the
keyword comment, as illustrated here:
In[7]: head = pd.read_table('scat_mie_data.csv', sep='=',
nrows=4, comment=',',
header=None)

Data Manipulation and Analysis: Pandas � 323

Now typing head gives numbers without the trailing commas:
In[8]: head
Out[8]:
0 1
0 Wavelength [vacuum] (nm) 532.00
1 Refractive index of solvent 1.33
2 Refractive index of particles 1.59
3 Diameter of particles (microns) 0.50

Printing out individual elements of the two columns shows that the elements
of column 0 are strings while the elements of column 1 are floating point num-
bers, which is the desired result.
In[9]: head[0][0]
Out[9]: 'Wavelength [vacuum] (nm) '

In[10]: head[1][:]
Out[10]:
0 532.00
1 1.33
2 1.59
3 0.50
Name: 1, dtype: float64

11.3.1.2 Naming Columns Manually

If you prefer for the columns to be labeled by descriptive names instead of
numbers, you can use the keyword names to provide names for the columns.
In[11]: head = pd.read_table('scat_mie_data.csv', sep='=',

...: nrows=4, comment=',',

...: names=['property', 'value'])

Out[11]: head
property value
0 Wavelength [vacuum] (nm) 532.00
1 Refractive index of solvent 1.33
2 Refractive index of particles 1.59
3 Diameter of particles (microns) 0.50

In[12]: head['property'][2]
Out[12]: 'Refractive index of particles '

In[13]: head['value'][2]
Out[13]: 1.5900000000000001

We can use what we have learned here to read data from the data file and
then plot it, as shown in Figure 11.2. Here is the code that produces the plot
shown in Figure 11.2.

324 � Introduction to Python for Science and Engineering

Figure 11.2 Plotting data from CSV file read by Pandas routines.

Code: scat_mie_plot.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4
5 # Read in data
6 head = pd.read_table("scat_mie_data.csv", sep="=", nrows=4,
7 comment=",", header=None)
8 scat = pd.read_csv("scat_mie_data.csv", skiprows=4)
9

10 theta = (180. / np.pi) * np.arccos(scat.cos_theta)
11
12 fig, ax = plt.subplots(figsize=(6, 4))
13
14 ax.semilogy(theta, scat.f1, "o", color="C0", label="F1")
15 ax.semilogy(theta, scat.f2, "s", mec="C1", mfc="white", zorder=-1,
16 label="F2")
17 ax.set_xlim(0., 180.)
18 ax.legend(loc="lower left")
19 ax.set_xlabel("theta (degrees)")
20 ax.set_ylabel("intensity")
21 for i in range(4):
22 ax.text(0.98, 0.94-i/18, f"{head[0][i]} = {head[1][i]}",
23 fontsize=10, ha="right", transform=ax.transAxes)
24 fig.tight_layout()
25 fig.savefig("figures/scat_mie_plot.pdf")
26 fig.show()

11.3.2 Reading from an Excel File

Pandas can also read directly fromExcel files (i.e., with .xls or .xlsx extensions).
Let’s consider an Excel file containing blood pressure and pulse data taken
twice per day, early in themorning and late in the evening, over several weeks.
The top of the Excel file is shown in Figure 11.3 (there are many more rows,

Data Manipulation and Analysis: Pandas � 325

Figure 11.3 Excel file containing blood pressure data.

which are not shown). The file contains five columns: the date, time, systolic
blood pressure, diastolic blood pressure, and pulse. The blood pressures are
reported in mm-Hg, and the pulse rate is in heartbeats/minute. The name of
the Excel file is BloodPressure.xlsx.

Reading data from an Excel file using Pandas is simple:
In[1]: bp = pd.read_excel('blood_pressure.xlsx',
...: usecols='A:E')

The keyword argument usecols='A:E' tells Pandas to read in only columns A
through E; data in any other columns are ignored. Had we wanted to read
in only the pulse and not the blood pressure data, we could have written
usecols='A:B, E' for the keyword argument. But as written, Pandas reads
columns A through E into a DataFrame object named bp, whose structure we
can see by typing bp:
In[2]: bp
Out[2]:
Date Time BP_sys BP_dia Pulse
0 2017-06-01 23:33:00 119 70 71
1 2017-06-02 05:57:00 129 83 59
2 2017-06-02 22:19:00 113 67 59
3 2017-06-03 05:24:00 131 77 55
4 2017-06-03 23:19:00 114 65 60
5 2017-06-04 06:54:00 119 75 55
6 2017-06-04 21:40:00 121 68 56

326 � Introduction to Python for Science and Engineering

TABLE 11.1 Summary of Pandas functions to read tabular data files.
Function Description
read_table workhorse: read tabular data from a text file
read_csv read tabular data from a comma separated file
read_excel read tabular data from an Excel file
read_clipboard read data copied from web page to clipboard
read_fwf read data in fixed-width columns w/o delimiters

7 2017-06-05 06:29:00 130 83 56
8 2017-06-05 22:16:00 113 61 67
9 2017-06-06 05:23:00 116 81 60
10 2017-06-09 23:07:00 125 78 64
.
.
.

Table 11.1 summarizes several Pandas functions for reading data files, in-
cluding the three discussed above.

11.3.3 Getting Data from the Web

Pandas has extensive tools for scraping data from the web. Here, we illus-
trate one of the simpler cases, reading a CSV file from a website. The Bank of
Canada publishes the daily exchange rates between the Canadian dollar and a
couple dozen international currencies. We want to download these data and
print the results as a simple table. Here we employ Pandas’s usual read_csv
function using its url keyword argument to specify the web address of the
CSV file we want to read. To follow the code, download the CSV file manually
using the URL defined in line 6 of the program url_read.py listed below and
then open it using a spreadsheet program like Excel.

To obtain all the data we want, we read the CSV file twice. In line 9 of
url_read.py, we call read_csv to read into a DataFrame rates the exchange
rates for the different currencies over a range of dates that extends from
any start date after 2017-01-03, the earliest date for which the site supplies
data, up to the most recent business day. The rates are indexed by date (e.g.,
'2018-04-23') with each column corresponding to a different currency.

The header for the exchange rates, which consists of codes for each ex-
change rate, begins on line 40 of the CSV file, so we skip the first 39 rows.
In line 13 of url_read.py, we extract from the shape of the DataFrame, the
number of days and the number of currencies downloaded.

Data Manipulation and Analysis: Pandas � 327

We reread the CSV file on lines 16–17 of url_read.py to get keys for the
codes for the various currencies used in the DataFrame. We use the number
of currencies determined in line 13 to determine the number of lines to read.
Lines 18–19 strip off some extraneous verbiage in the keys.

Code: url_read.py
1 import pandas as pd
2
3 url1 = "http://www.bankofcanada.ca/"
4 url2 = "valet/observations/group/FX_RATES_DAILY/csv?start_date="
5 start_date = "2017-01-03" # Earliest start date is 2017-01-03
6 url = url1 + url2 + start_date # Complete url to download csv file
7
8 # Read in rates for different currencies for a range of dates
9 rates = pd.read_csv(url, skiprows=39, index_col="date")

10 rates.index = pd.to_datetime(rates.index) # assures data type
11
12 # Get number of days & number of currences from shape of rates
13 days, currencies = rates.shape
14
15 # Read in the currency codes & strip off extraneous part
16 codes = pd.read_csv(url, skiprows=10, usecols=[0, 2],
17 nrows=currencies)
18 for i in range(currencies):
19 codes.iloc[i, 1] = codes.iloc[i, 1].split(" to Canadian")[0]
20
21 # Report exchange rates for the most most recent date available
22 date = rates.index[-1] # most recent date available
23 print("\nCurrency values on {0}".format(date))
24 for (code, rate) in zip(codes.iloc[:, 1], rates.loc[date]):
25 print(f"{code:20s} Can$ {rate:8.6g}")

Using the index attribute for Pandas DataFrames, line 18 sets the date for
which the currency exchange data will be displayed, in this case, the most re-
cent date in the file. Running the program produces the desired output:
In[3]: run urlRead.py
Currency values on 2024-01-12 00:00:00
Australian dollar Can$ 0.8965
Brazilian real Can$ 0.2758
Chinese renminbi Can$ 0.1868
European euro Can$ 1.4673
Hong Kong dollar Can$ 0.1712
Indian rupee Can$ 0.01616
Indonesian rupiah Can$ 8.6e-05
Japanese yen Can$ 0.00924
Malaysian ringgit Can$ nan
Mexican peso Can$ 0.07939
New Zealand dollar Can$ 0.8369
Norwegian krone Can$ 0.1302
Peruvian new sol Can$ 0.3622
Russian ruble Can$ 0.01514

328 � Introduction to Python for Science and Engineering

Saudi riyal Can$ 0.357
Singapore dollar Can$ 1.0056
South African rand Can$ 0.07186
South Korean won Can$ 0.001021
Swedish krona Can$ 0.1303
Swiss franc Can$ 1.571
Taiwanese dollar Can$ 0.04306
Thai baht Can$ nan
Turkish lira Can$ 0.0445
UK pound sterling Can$ 1.7071
US dollar Can$ 1.3387
Vietnamese dong Can$ nan

What we have done here illustrates only one simple feature of Pandas for
scraping data from the web. Many more web-scraping tools exist within Pan-
das. They are extensive and powerful and can be used with other packages,
such as urllib3, to extract almost any data on the web.

11.4 EXTRACTING INFORMATION FROM A DataFrame

Once we have our data organized in a DataFrame, we can employ the tools of
Pandas to examine and process the data it contains in various ways. Let’s start
with the planets DataFrame introduced in Section 11.1.2. We read it in again
for good measure:
In[1]: planets = pd.read_table('planet_data.txt', sep='\s+',
...: index_col='planet')

In[2]: planets
Out[2]:
distance mass gravity diameter year
planet
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00

Note that we have set the planet column as the index variable in the planets
DataFrame.

Pandas can readily sort data. For example, to list the planets in order of
increasing mass, we write:
In[3]: planets.sort_values(by='mass')

Data Manipulation and Analysis: Pandas � 329

Out[3]:
distance mass gravity diameter year
planet
Pluto 39.50 0.0024 0.071 0.19 248.00
Mercury 0.39 0.0550 0.380 0.38 0.24
Mars 1.52 0.1100 0.380 0.53 1.88
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Saturn 9.58 95.0000 0.920 9.45 29.00
Jupiter 5.20 318.0000 2.360 11.20 11.90

To produce the same table ordered from highest to lowest mass, use the key-
word argument ascending=False.

We can use Boolean indexing to get a list of all the planets with gravita-
tional acceleration larger than Earth’s.
In[4]: planets[planets['gravity']>1]
Out[4]:
distance mass gravity diameter year
planet
Jupiter 5.2 318.0 2.36 11.20 11.9
Neptune 30.0 17.0 1.12 3.88 164.0

It’s instructive to parse In [4] to understand better how the Boolean indexing
works. Suppose we had typed just what is inside the outermost brackets:
In[5]: planets['gravity']>1
Out[5]:
planet
Mercury False
Venus False
Earth False
Mars False
Jupiter True
Saturn False
Uranus False
Neptune True
Pluto False
Name: gravity, dtype: bool

We get the logical (Boolean) truth values for each entry. Thus, writing
planets[planets['gravity']>1] lists the DataFrame only for those entries
where the Boolean value is True.

Supposewewould like to find the volumeV of each of the planets (normal-
ized by the volume of the Earth) and add the result to our planetsDataFrame.
Using the formula V = 1

6πd
3/ 1

6πd
3
Earth = d3, where d is the diameter of the

planet and dEarth = 1, we simply write

330 � Introduction to Python for Science and Engineering

In[6]: planets['volume'] = planets['diameter']**3

In[7]: planets
Out[7]:
distance mass gravity diameter year volume
planet
Mercury 0.39 0.0550 0.380 0.38 0.24 0.0549
Venus 0.72 0.8200 0.910 0.95 0.62 0.8574
Earth 1.00 1.0000 1.000 1.00 1.00 1.0000
Mars 1.52 0.1100 0.380 0.53 1.88 0.1489
Jupiter 5.20 318.0000 2.360 11.20 11.90 1404.9280
Saturn 9.58 95.0000 0.920 9.45 29.00 843.9086
Uranus 19.20 15.0000 0.890 4.01 84.00 64.4812
Neptune 30.00 17.0000 1.120 3.88 164.00 58.4111
Pluto 39.50 0.0024 0.071 0.19 248.00 0.0069

Thismaneuver added an extra column to theDataFramewith the desired data.
Next, we revisit the blood pressure DataFrame introduced in Section

11.3.2 to explore some other features of DataFrames.
In[8]: bp = pd.read_excel('blood_pressure.xlsx',
...: usecols='A:E',
...: parse_dates=[['Date', 'Time']])

In[9]: bp = bp.set_index('Date_Time')

Here, we used the keyword argument parse_dates, which combines the Date
and Time columns into a single datetime column. We then set the Date_Time
column as the index variable in the bp DataFrame.
In[10]: bp.head()
Out[10]9:
BP_sys BP_dia Pulse
Date_Time
2017-06-01 23:33:00 119 70 71
2017-06-02 05:57:00 129 83 59
2017-06-02 22:19:00 113 67 59
2017-06-03 05:24:00 131 77 55
2017-06-03 23:19:00 114 65 60

Pandas can calculate standard statistical quantities for the data in a
DataFrame.
In[11]: bp['BP_sys'].mean() # average systolic pressure
Out[11]: 119.27083333333333

In[12]: bp['BP_sys'].max() # maximum systolic pressure
Out[12]: 131

In[13]: bp['BP_sys'].min() # minimum systolic pressure

Data Manipulation and Analysis: Pandas � 331

Out[13]: 105

In[14]: bp['BP_sys'].count() # num (non-null) of entries
Out[14]: 48

The statistical methods can even act on dates if doing so makes sense.
In[15]: bp.index.min() # starting datetime
Out[15]: Timestamp('2017-06-01 23:33:00')

In[16]: bp.index.max() # ending datetime
Out[16]: Timestamp('2017-07-17 06:22:00')

Note that we used bp.index and not bp.['Date_Time'], as we previously set
'Date_Time' to be the index of bp. Time differences can also be calculated:
In[17]: bp.index.max()-bp.index.min()
Out[17]: Timedelta('45 days 06:49:00')

We can combine thesemethods with conditional indexing to answer some
interesting questions. For example, are there systematic differences in the
blood pressure and pulse readings in the morning and the evening? Let’s use
what we’ve learned to find out. First, we separate the morning and evening
readings into two different Series using Boolean indexing.
In[18]: PulseAM = bp.loc[bp.index.hour<12, 'Pulse']

In[19]: PulsePM = bp.loc[bp.index.hour>=12, 'Pulse']

Now let’s look at some averages and fluctuations about the mean:
In[20]: precision 3
Out[20]: '%.3f'

In[21]: PulseAM.mean(), PulseAM.std(), PulseAM.sem()
Out[21]:: (57.586, 5.791, 1.075)

In[22]: PulsePM.mean(), PulsePM.std(), PulsePM.sem()
Out[22]:: (61.789, 4.939, 1.133)

The average morning pulse of 57.6 is lower than the average evening pulse of
61.8. The difference of 4.2 is greater than the standard error of the mean of
about 1.1, which means the difference is significant, even though the morning
and evening pulse distributions overlap each other to a significant extent, as
indicated by the standard deviations of around 5.

332 � Introduction to Python for Science and Engineering

Figure 11.4 Relative gravity of different planets.

11.5 PLOTTING WITH Pandas

In Chapter 8, we introduced the Matplotlib plotting package, which provides
an extensive framework for plotting within Python. Pandas builds on theMat-
plotlib package, adding some functionality peculiar to Pandas.

One notable change is that when plotting data from a Pandas Series or
DataFrame, Matplotlib’s plot function will use the index as the x data if the
x data is not otherwise specified. For example, we can get a graphical display,
shown in Figure 11.4, of the relative gravity of each planet from the planets
DataFrame with the following simple commands:
In[1]: planets['gravity'].plot.bar(color='C0')
Out[1]: <matplotlib.axes._subplots.AxesSubplot at 0x11de29400 >

In[2]: ylabel('relative gravity')
Out[2]: Text(42.5972,0.5,'relative gravity')

In[3]: tight_layout()

Pandas allows us to write plotting commands differently, where a Mat-
plotlib plotting function is now a DataFrame method. Here, we use plot as
a method of planets['gravity']. We further specify a bar (histogram) plot
with bar as a method plot. The y-axis is specified by choosing the desired col-
umn(s) of the DataFrame, in this case, gravity, and the x-axis is taken to be
theDataFrame index unless otherwise specified. Notice how each bar is neatly
labeled with its corresponding planet index. We could have made a plot with
horizontal instead of vertical bars using the barh method instead of bar. Try it
out!

Data Manipulation and Analysis: Pandas � 333

Figure 11.5 Crude plots of the bp DataFrame.

Let’s look at another example, this time using our bpDataFrame. First, let’s
plot it using the conventional Matplotlib syntax,
In[4]: plot(bp)
Out[4]:
[<matplotlib.lines.Line2D at 0x13667b278 >,
<matplotlib.lines.Line2D at 0x1366aecf8 >,
<matplotlib.lines.Line2D at 0x1366b7080 >]

which produces the graph on the left in Figure 11.5. The three traces corre-
spond to the systolic pressure, the diastolic pressure, and the pulse, and are
plotted as a function of the time (date), which is the index of the bpDataFrame.
Since the x-array is not specified, the index variable, the date, is used. How-
ever, the dates are not so nicely formatted and run into each other.

Alternatively, we can graph this using plot as a DataFrame method:
In[5]: bp.plot()
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x1527ddd240 >

The result, shown on the right in Figure 11.5, is a more nicely formatted plot,
where the dates labeling the x-axis are automatically tilted so that they don’t
run into each other, and a legend is produced, which identifies the different
traces.

Figure 11.6 shows these samedata in amore compelling and refined graph,
bringing together much of the analysis we have already developed using Pan-
das. Measurements made early in the morning and late in the evening are dis-
tinguished using open and closed symbols.Themorning and evening averages
are indicated by horizontal lines annotated with the numerical averages and
indicated using arrows. A more complete legend is supplied.

The code shows how Pandas and conventional Matplotlib syntax can be
used together. The blood pressure and pulse data are plotted on separate

334 � Introduction to Python for Science and Engineering

Figure 11.6 Blood pressure data from an Excel file.

graphs sharing a common time axis. The code that produces Figure 11.6 is
listed below. Note that which plot is chosen, ax1 or ax2, is indicated using the
keyword argument ax within the plot method belonging to the various data
sets, sysPM, …, PulsePM. Finally, Matplotlib’s dates package is used to format
the x-axis.

Much more information is available at the Pandas website, which gives
details about all of p’s plotting commands.

Code: blood_pressure.py
1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import matplotlib.dates as mdates
4 from datetime import datetime
5
6 # Read in data
7 bp = pd.read_excel('blood_pressure.xlsx', usecols='A:E',
8 parse_dates=[['Date', 'Time']])
9 bp = bp.set_index('Date_Time')

10 # Divide data into AM and PM sets
11 diaAM = bp.loc[bp.index.hour < 12, 'BP_dia']
12 diaPM = bp.loc[bp.index.hour >= 12, 'BP_dia']
13 sysAM = bp.loc[bp.index.hour < 12, 'BP_sys']
14 sysPM = bp.loc[bp.index.hour >= 12, 'BP_sys']
15 PulseAM = bp.loc[bp.index.hour < 12, 'Pulse']
16 PulsePM = bp.loc[bp.index.hour >= 12, 'Pulse']
17 # Set up figure with 2 subplots and plot BP data
18

Data Manipulation and Analysis: Pandas � 335

19 fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True,
20 gridspec_kw={'height_ratios': [2, 1]},
21 figsize=(10, 6))
22 fig.subplots_adjust(left=0.065, right=0.99, hspace=0.06)
23 sysPM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C1',
24 label='systolic PM')
25 sysAM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C1',
26 mfc='white', label='systolic AM')
27 diaPM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C0',
28 label='diastolic PM')
29 diaAM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C0',
30 mfc='white', label='diastolic AM')
31 # Average values of blood pressures with arrows labeling them
32 dtlab = datetime(2017, 6, 29)
33 bpavgs = (sysAM.mean(), sysPM.mean(), diaAM.mean(),
34 diaPM.mean())
35 ytext = ('bottom', 'top')
36 tavgs = ('AM average = {0:0.0f}'.format(bpavgs[0]),
37 'PM average = {0:0.0f}'.format(bpavgs[1]),
38 'AM average = {0:0.0f}'.format(bpavgs[2]),
39 'PM average = {0:0.0f}'.format(bpavgs[3]))
40 aprops = dict(facecolor='black', width=1, headlength=5,
41 headwidth=5)
42 for i, bpa in enumerate(bpavgs):
43 ax1.annotate(tavgs[i], xy=(dtlab, bpa),
44 xytext=((15, (-1)**(i % 2)*15)),
45 textcoords='offset points',
46 arrowprops=aprops, ha='left',
47 va=ytext[i % 2])
48 # Lines indicating average blood pressures
49 ax1.axhline(y=sysPM.mean(), color='C1', lw=0.75, zorder=-1)
50 ax1.axhline(y=sysAM.mean(), color='C1', dashes=(5, 2),
51 lw=0.75, zorder=-1)
52 ax1.axhline(y=diaPM.mean(), color='C0', lw=0.75, zorder=-1)
53 ax1.axhline(y=diaAM.mean(), color='C0', dashes=(5, 2),
54 lw=0.75, zorder=-1)
55 # Formatting top graph
56 ax1.set_title('Blood pressure & pulse log')
57 ax1.set_ylabel('blood pressure (mm-Hg)')
58 ax1.legend(loc=(0.37, 0.43))
59 ax1.grid(dashes=(1, 2))
60 # Plot pulse
61 PulsePM.plot(ax=ax2, marker='o', ms=3, lw=0, color='k',
62 label='PM')
63 PulseAM.plot(ax=ax2, marker='o', ms=3, lw=0, color='k',
64 mfc='white', label='AM')
65 # Average values of pulse with arrows labeling them
66 Pulseavgs = (PulseAM.mean(), PulsePM.mean())
67 tavgs = ('AM average = {0:0.0f}'.format(Pulseavgs[0]),
68 'PM average = {0:0.0f}'.format(Pulseavgs[1]))
69 for i, pulse in enumerate(Pulseavgs):
70 ax2.annotate(tavgs[i], xy=(dtlab, pulse),
71 xytext=((15, -(-1)**(i)*15)),
72 textcoords='offset points',
73 arrowprops=aprops, ha='left',
74 va=ytext[-i-1])

336 � Introduction to Python for Science and Engineering

75
76 ax2.axhline(y=PulsePM.mean(), color='k', lw=0.75, zorder=-1)
77 ax2.axhline(y=PulseAM.mean(), color='k', dashes=(5, 2),
78 lw=0.75, zorder=-1)
79 # Formatting bottom graph
80 week = mdates.WeekdayLocator(byweekday=mdates.SU)
81 day = mdates.DayLocator()
82 ax2.xaxis.set_major_locator(week)
83 ax2.xaxis.set_minor_locator(day)
84 ax2.set_xlabel('')
85 ax2.set_ylabel('pulse (heartbeats/min)')
86 ax2.legend(loc=(0.4, 0.7))
87 ax2.grid(dashes=(1, 2))
88
89 fig.tight_layout()
90 fig.show()
91 fig.savefig('./figures/blood_pressure.pdf')

11.6 GROUPING AND AGGREGATION

Pandas allows you to group data and analyze the subgroups in useful and pow-
erful ways. The best way to understand what you can do is to work with an
example. Here, we will work with a data set that lists all Newark Liberty In-
ternational Airport (EWR) departures on a particular (stormy) day. The data
is stored in a CSV file named ewrFlights20180516.csv, which we read into a
DataFrame that we call ewr.
In[1]: ewr = pd.read_csv('ewrFlights20180516.csv')

In[2]: ewr.head()
Out[2]:
Destination Airline Flight Departure \
0 Baltimore (BWI) Southwest Airlines WN 8512 12:09 AM
1 Baltimore (BWI) Mountain Air Cargo C2 7304 12:10 AM
2 Paris (ORY) Norwegian Air Shuttle DY 7192 12:30 AM
3 Paris (ORY) euroAtlantic Airways YU 7192 12:30 AM
4 Rockford (RFD) UPS 5X 108 12:48 AM

Terminal Status Arrival_time A_day Scheduled S_day
0 NaN Landed NaN NaN NaN NaN
1 NaN Unknown NaN NaN NaN NaN
2 B Landed 1:48 PM NaN 1:35 PM NaN
3 B Landed 1:48 PM NaN 1:35 PM NaN
4 NaN Unknown NaN NaN NaN NaN
In[3]: ewr.shape
Out[3]: (1555, 10)

Notice the line continuation symbol \, which is used because the DataFrame
is wider than the page width. There are 1555 flights listed and 10 column

Data Manipulation and Analysis: Pandas � 337

headings: Destination, Airline, Flight, Departure, Terminal, Status, Arrival_time,
A_day, Scheduled, and S_day. We will explain the headings as we go.

Let’s get familiar with the ewrDataFrame. Youmight wonderwhat the pos-
sibilities are for the status of a flight. You can find out and get some additional
information using the value_counts() method.
In[4]: ewr['Status'].value_counts()
Out[4]:
Landed - On-time 757
Landed - Delayed 720
Canceled 41
Landed 18
En Route - Delayed 10
Unknown 4
Scheduled - Delayed 2
En Route - On-time 1
En Route 1
Diverted 1
Name: Status, dtype: int64

In[5]: ewr['Status'].value_counts().sum()
Out[5]: 1555

The value_counts() method is quite useful. It finds all the unique entries in
a Series (or DataFrame column) and reports the number of times each entry
appears. We also checked to confirm that the categories’ counts summed to
the total number of entries.

Newark Airport has three terminals: A, B, and C. Let’s find out how many
departures there were from each terminal.
In[6]: ewr['Terminal'].value_counts()
Out[6]:
C 826
A 471
B 191

11.6.1 The groupby Method

Now, suppose we would like to know the status of each flight broken down by
terminal. For this, we need a more sophisticated tool: groupby. Here is how it
works:
In[7]: ewr['Status'].groupby(ewr['Terminal']).value_counts()
Out[7]:
Terminal Status
A Landed - On-time 229
Landed - Delayed 218

338 � Introduction to Python for Science and Engineering

Canceled 21
Landed 3
B Landed - On-time 104
Landed - Delayed 70
En Route - Delayed 6
Canceled 4
Landed 4
Scheduled - Delayed 2
En Route - On-time 1
C Landed - Delayed 413
Landed - On-time 395
Canceled 14
En Route - Delayed 4
Name: Status, dtype: int64

In this case, we want to know the status of each flight, so ewr['Status']
comes first in our command above. Next, we want the status broken down by
terminal, so we add the method groupby with the argument ewr['Terminal'].
Finally, we want to know how many flights fall into each category so we add
the method value_counts().

Alternatively, we could have written
In[8]: ewr_statterm = ewr['Status'].groupby(ewr['Terminal'])

which creates a groupby object that we can subsequently process. For example,
we can get the total number of flights from each terminal:
In[9]: ewr_statterm.count()
Out[9]:
Terminal
Terminal
A 471
B 191
C 826
Name: Status, dtype: int64

Or we can write ewr_statterm.value_counts(), which gives the same output as
above.

11.6.2 Iterating Over Groups

Sometimes, it is useful to iterate over groups to perform a calculation. For
example, suppose that for each airline, we want to determine what fraction of
the flights arriving at their destination arrived on time.

The information about on-time arrivals is contained in the Status column
of the ewr DataFrame. It has, amongst other things, entries Landed - On-time
and Landed - Delayed. We will want to use these entries to perform the calcu-
lation.

Data Manipulation and Analysis: Pandas � 339

To do this, we use a for loop with the following construction:
for name, group in grouped:

where grouped is a groupby object, and name and group are the individual names
and groups within the groupby object that are looped over.

To perform our calculation, we need to iterate over each airline, so our
groupby object should group by ewr['Airline']. Before actually doing the cal-
culations, however, we illustrate how the loop works for our groupby object
with a little demonstration program. In this program, the loop doesn’t do any
calculations; it simply prints out the name and group for each iteration with the
following code:

Code: ewr_groupby_elements.py

1 import pandas as pd
2
3 ewr = pd.read_csv("ewrFlights20180516.csv")
4
5 for airln, grp in ewr.groupby(ewr["Airline"]):
6 print("\nairln = {}: \ngrp:".format(airln))
7 print(grp)

The output of this program is:

airln = ANA:
grp:
Destination Airline Flight Departure Terminal
134 San Francisco (SFO) ANA NH 7007 7:00 AM C
189 Los Angeles (LAX) ANA NH 7229 7:59 AM C
303 Chicago (ORD) ANA NH 7469 8:59 AM C
438 Tokyo (NRT) ANA NH 6453 11:00 AM C
562 Chicago (ORD) ANA NH 7569 1:20 PM C
1140 Los Angeles (LAX) ANA NH 7235 6:43 PM C
1533 Sao Paulo (GRU) ANA NH 7214 10:05 PM C

Status Arrival_time A_day Scheduled S_day
134 Landed - Delayed 11:13 AM NaN 10:18 AM NaN
189 Landed - On-time 10:57 AM NaN 11:05 AM NaN
303 Landed - On-time 10:39 AM NaN 10:25 AM NaN
438 Landed - On-time 1:20 PM NaN 1:55 PM NaN
562 Landed - Delayed 3:16 PM NaN 2:44 PM NaN
1140 Landed - Delayed 9:54 PM NaN 9:41 PM NaN
1533 Landed - Delayed 10:06 AM 1.0 8:50 AM 1.0

airln = AVIANCA:
grp:
Destination Airline Flight Departure Terminal
81 Dulles (IAD) AVIANCA AV 2135 6:05 AM A
367 Dulles (IAD) AVIANCA AV 2233 10:00 AM A

340 � Introduction to Python for Science and Engineering

422 Miami (MIA) AVIANCA AV 2002 10:44 AM C
805 San Salvador (SAL) AVIANCA AV 399 3:55 PM B
890 Bogota (BOG) AVIANCA AV 2245 4:45 PM C

Status Arrival_time A_day Scheduled S_day
81 Landed - On-time 7:17 AM NaN 7:25 AM NaN
367 Landed - On-time 11:10 AM NaN 11:20 AM NaN
422 Landed - On-time 1:30 PM NaN 1:46 PM NaN
805 Scheduled - Delayed NaN NaN 7:05 PM NaN
890 Landed - Delayed 12:42 AM 1.0 9:35 PM NaN
.
.
.

By examining this output, the form of the data structures being looped over
should become clear to you.

Now, let’s do our calculation. To keep things manageable, let’s say we only
care about those airlines that landed 12 or more flights. Grouping the data by
airline, we perform the calculation using a for loop, accumulating the results
about on-time and late flights in a list of lists, whichwe convert to aDataFrame
at the end of the calculations.
In[10]: ot = [] # create an empty list to accumulate results

In[11]: for airln, grp in ewr.groupby(ewr['Airline']):
...: ontime = grp.Status[grp.Status ==

'Landed - On-time'].count()
...: delayd = grp.Status[grp.Status ==

'Landed - Delayed'].count()
...: totl = ontime+delayd
...: if totl >= 12:
...: ot.append([airln, totl, ontime/totl])

The code output is a list called ot. We convert it to a DataFrame using the
Pandas function DataFrame.from_records.
In[12]: t = pd.DataFrame.from_records(ot, columns=['Airline',

...: 'Flights Landed', 'On-time fraction'])

We choose to print out the results sorted by on-time fraction, from largest to
smallest.
In[13]: t.sort_values(by='On-time fraction', ascending=False)
Out[13]:
Airline Flights Landed On-time fraction
0 Air Canada 129 0.472868
1 Air China 24 0.750000
2 Air New Zealand 34 0.617647
3 Alaska Airlines 20 0.500000

Data Manipulation and Analysis: Pandas � 341

4 American Airlines 27 0.592593
5 Austrian 28 0.428571
6 Brussels Airlines 21 0.523810
7 CommutAir 47 0.531915
8 Copa Airlines 12 0.333333
9 Delta Air Lines 33 0.606061
10 ExpressJet 64 0.531250
11 FedEx 27 0.555556
12 JetBlue Airways 24 0.416667
13 Lufthansa 119 0.403361
14 Republic Airlines 66 0.606061
15 SAS 94 0.414894
16 SWISS 20 0.450000
17 Southwest Airlines 18 0.500000
18 TAP Portugal 38 0.315789
19 United Airlines 417 0.529976
20 Virgin Atlantic 26 0.615385

11.6.3 Reformatting DataFrames

We often create DataFrames that need to be reformatted for processing. The
range of reformatting issues one can run across is enormous, so we can’t even
hope to cover all the eventualities. But we can illustrate a few to give you a
sense of how this works.

In this example, we would like to analyze on-time arrivals. To do so, we
will need to work with the Departure, Arrival_time, and Scheduled columns.
Let’s take a look at them.
In[14]: ewr[['Departure', 'Arrival_time', 'Scheduled']].head()
Out[14]:
Departure Arrival_time Scheduled
0 12:09 AM NaN NaN
1 12:10 AM NaN NaN
2 12:30 AM 1:48 PM 1:35 PM
3 12:30 AM 1:48 PM 1:35 PM
4 12:48 AM NaN NaN

Some of the times are missing, represented by NaN in a DataFrame, but these
are generally not much of a concern as Pandas handles them in an orderly
manner. More worrisome are the times, which do not contain a date. This can
be a problem if a flight departs on one day but arrives the next day. The ewr
columns S_day and A_day for a particular row have entries of 1, respectively, if
the flight is scheduled to arrive or if it actually arrives on the next day.

Before addressing these problems, let’s examine the data types of the dif-
ferent columns of the ewr DataFrame.

342 � Introduction to Python for Science and Engineering

In[15]: ewr.dtypes
Out[15]:
Destination object
Airline object
Flight object
Departure object
Terminal object
Status object
Arrival_time object
A_day float64
Scheduled object
S_day float64
dtype: object

We note that Departure, Arrival_time, and Scheduled are not formatted as
datetime objects. To convert them to datetime objects, we use Pandas’ apply
method, which applies a function to a column (the default) or a row (by set-
ting the keyword axis=0) of a DataFrame. Here, we use the Pandas function
pd.to_datetime.
In[16]: ewr[['Departure', 'Arrival_time', 'Scheduled']] = \

...: ewr[['Departure','Arrival_time', 'Scheduled']] \

...: .apply(pd.to_datetime)

In[17]: ewr.dtypes
Out[17]: ewr.dtypes
Destination object
Airline object
Flight object
Departure datetime64[ns]
Terminal object
Status object
Arrival_time datetime64[ns]
A_day float64
Scheduled datetime64[ns]
S_day float64
dtype: object

Next, we set the dates. First, we use the datetime replace method to reset
the year, month, and day of all dates to the departure date for all the flights:
2018-05-16.
In[18]: for s in ['Departure', 'Arrival_time', 'Scheduled']:

...: ewr[s] = ewr[s].apply(lambda dt:

...: dt.replace(year=2018, month=5, day=16))

Finally, we add a day to those dates in the Scheduled and Arrival_time
columns that have a 1 in the corresponding S_day and A_day columns with
this code snippet.

Data Manipulation and Analysis: Pandas � 343

Code: add_day_snippet.py
1 from datetime import timedelta
2 i_A = ewr.columns.get_loc("Arrival_time") # i_A = 6
3 i_Ap = ewr.columns.get_loc("A_day") # i_Ap = 7
4 i_S = ewr.columns.get_loc("Scheduled") # i_S = 8
5 i_Sp = ewr.columns.get_loc("S_day") # i_Sp = 9
6 for i in range(ewr.shape[0]):
7 if ewr.iloc[i, i_Ap] >= 1:
8 ewr.iloc[i, i_A] += timedelta(days=ewr.iloc[i, i_Ap])
9 if ewr.iloc[i, i_Sp] >= 1:

10 ewr.iloc[i, i_S] += timedelta(days=ewr.iloc[i, i_Sp])

After running this, the datetime stamps are correct for all the datetime
entries, which we check by printing out some times for flights that departed
late in the day.
In[19]: ewr[['Departure', 'Arrival_time', 'Scheduled']][-45:-40]
Out[19]:
Departure Arrival_time Scheduled
1510 2018-05-16 21:55:00 2018-05-17 11:25:00 2018-05-17 11:40:00
1511 2018-05-16 21:57:00 2018-05-17 00:53:00 2018-05-16 23:05:00
1512 2018-05-16 21:57:00 2018-05-17 00:53:00 2018-05-16 23:05:00
1513 2018-05-16 21:59:00 2018-05-16 23:29:00 2018-05-16 23:42:00
1514 2018-05-16 21:59:00 2018-05-16 23:29:00 2018-05-16 23:42:00

Let’s calculate the difference between the actual Arrival_time and the
Scheduled arrival time in minutes.
In[20]: late = (ewr['Arrival_time']
- ewr['Scheduled']).dt.total_seconds()/60

In[21]: late.hist(bins=range(-50, 300, 10))
Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x1245b39b0 >

Note that instead of setting the number of bins, aswe have done previously,
we specify the widths of the bins and their precise placement using the range
function.

Let’s go ahead and add axis labels to our plot, which is displayed in Figure
11.7.
In[22]: xlabel('minutes late')
Out[22]: Text(0.5,23.5222,'minutes late')

In[23]: ylabel('number of flights')
Out[23]: Text(38.2222,0.5,'number of flights')

11.6.4 Custom Aggregation of DataFrames

Pandas has several built-in functions and methods for extracting useful infor-
mation from Pandas Series and DataFrames, some of which are listed in Table

344 � Introduction to Python for Science and Engineering

Figure 11.7 Histogram of late arrival times.

TABLE 11.2 Statistical methods for Pandas DataFrame and Series.
Function Description Function Description
min minimum cummin cumulative minimum
max maximum cummax cumulative maximum
mean mean skew skewness
median median kurt kurtosis
mode mode quantile quantile
var variance mad mean abs deviation
std standard deviation sem standard error of mean
abs absolute value count num non-null entries
sum sum cumsum cumulative sum
prod product cumprod cumulative product
describe count, mean, std, min, max, & percentiles

11.2. These can be thought of as aggregation functions because they aggregate
a set of data into some scalar quantity, like the minimum or maximum of a
data set.

In addition to these built-inmethods, Pandas has amethod agg that allows
you to implement your own aggregation functions. Suppose, for example, we
would like to characterize the distribution of late arrival times plotted in Fig-
ure 11.7. We could use the std method to characterize the width of distribu-
tion, but that would miss the fact that the distribution is obviously wider on
the late (positive) side than it is on the early (negative) side.

Data Manipulation and Analysis: Pandas � 345

To take this asymmetry into account, we devise our own function siglohi
that calculates two one-sided measures of the width of the distribution.

Code: siglohi.py
1 def siglohi(x, x0=0, n=2):
2 xplus = x[x > x0] - x0
3 xminus = x0 - x[x < x0]
4 sigplus = ((xplus**n).mean())**(1/n)
5 sigminus = ((xminus**n).mean())**(1/n)
6 return sigminus, sigplus

By default, the function calculates the square root of the negative and posi-
tive secondmoments about zero. Using its optional keyword arguments, it can
calculate the nth root of the nth moment and can center the calculation of the
moments around any value, not just zero.

We demonstrate how siglohi works on the Series late of the distribution
of flight arrival times that we developed in the previous section. We use the
Pandas agg method on the Series late with our function siglohi as the argu-
ment of agg.
In[24]: late.agg(siglohi)
Out[24]: (16.613569037283458, 78.8155571711229)

As expected, the width is much smaller on the early (nagative) side than it is
on the late (positive) side.

The optional keyword arguments of siglohi are passed in the usual way
(see Section 7.1.7). For example, to calculate the cube root of the third mo-
ment, we set the optional argument n equal to 3 as follows:
In[25]: late.agg(siglohi, *(0, 0, 3))
Out[25]: (18.936255193664774, 96.23261210488258)

Note that there are three, not two, optional arguments. The first is the axis,
which is an optional argument (the only one) for the aggmethod, and the sec-
ond and third are x0 and n, the optional arguments of siglohi. Alternatively,
we can call agg with the axis argument of agg set to zero as a positional argu-
ment as follows:
In[26]: late.agg(siglohi, 0, *(0, 3))
Out[26]: (18.936255193664774, 96.23261210488258)

Either way, the result is the same.
Finally, we note that siglohi can be used on late as a function in the usual

way with late as an explicit argument of siglohi.
In[27]: siglohi(late, n=3)
Out[27]: (18.936255193664774, 96.23261210488258)

346 � Introduction to Python for Science and Engineering

11.7 EXERCISES

1. Read the planetary data in the text file planetData.txt into a Pandas
DataFrame and perform the following tasks:

(a) Print out the DataFrame.
(b) Based on the data read from the file, find the average density of

each planet relative to that of the Earth and add the results as a
column in your DataFrame. Then, print out the new DataFrame
in order from the most dense to the least dense.

(c) Print out your DataFrame sorted from the largest-diameter to
smallest-diameter planet.

(d) Print out your DataFrame with only those planets with masses
greater than Earth’s, sorted from least to most massive planet.

2. Starting from the program urlRead.py on page 327 (i.e., start with same
code in lines 1–19), write a program that calculates how much differ-
ent currencies have fluctuated relative to the US dollar (or some other
currency of your choosing) since January 3, 2017.
Before writing your code, download the CSV file and load it into Excel
or a similar spreadsheet program to see the data’s structure. You can
download the CSV file by going to the url given by line 6 of urlRead.py
on page 327.
Once you examine the CSV file’s structure, make sure you understand
exactly what lines 1–19 of urlRead.py are doing.
The first thing the code you write should do is find the average a, maxi-
mumm, and standard deviation s of the value of each currency relative
to the US dollar over the period of time starting from the first business
day of 2017, January 3rd. Then create a new DataFrame with columns
that list av = a, mx = m/a, and sd = s/a along with the name of
each currency, as shown in the listing below. The DataFrame should be
sorted from the largest fluctuation (standard deviation) sd to the small-
est. Print out the DataFrame; it should start like this:

description av mx sd
id
FXTRYCAD Turkish lira 0.159 1.8488 0.46087
FXBRLCAD Brazilian real 0.234 1.3935 0.21171
FXRUBCAD Russian ruble 0.015 1.2505 0.11391
FXZARCAD South African rand 0.068 1.2748 0.10972

Data Manipulation and Analysis: Pandas � 347

3. Starting from the program urlRead.py on page 327, extend the code to
make a plot like the one above. The three traces in each of the two plots
give, respectively, the daily exchange rate and the daily exchange rate as
a centered running average over 10 (business) days and over 30 days.
Look up the Pandas rolling averages routine pd.Series.rolling, which
you should find useful in making this plot. Write your program so you
can switch the currency plotted by changing a single variable.

4. Go to the website https://www.ncdc.noaa.gov/cdo-web/search and
make a request to download weather data for some place that inter-
ests you. We requested weather data as a CSV file for Central Park in
New York City (zip code 10023), as it dates back from the 19th century,
although we chose to receive data dating from January 1, 1900.

(a) Read the weather data you download into a DataFrame, ensur-
ing the date is formatted as a datetime object and set to be the
DataFrame index. Print out a table with the date as the first
column and the daily precipitation, maximum temperature, and
minimum temperature for onemonth of your choosing.Thehead-
ings for those data are PRCP, TMIN, and TMAX, respectively.

https://www.ncdc.noaa.gov/cdo-web/search

348 � Introduction to Python for Science and Engineering

(b) Get a list of the dates when more than 5 inches of rain fell and the
rainfall on those dates. If this does not yield any results for your
data, reduce the number of inches until you get a few dates.

(c) Make a plot like the one on the previous page from the data set
you downloaded. The top graph plots the 1-year running aver-
ages (centered) of the daily high and low temperatures.Themiddle
graph plots the running 1-year high and low temperatures, which
are remarkably stable around 0◦F and 100◦F. The bottom graph
plots the 1-year running total rainfall. Write the program that
makes these graphs so that the 1-year running quantities can be
changed to 2, 3, or some other number of years. Look up the Pan-
das rolling averages routine pd.Series.rolling, which you should
find useful in making this plot.

Data Manipulation and Analysis: Pandas � 349

5. In this problem, you characterize chromosomes of the human genome,
working with a CSV file that was downloaded from the National Center
for Biotechnology Information (NCBI) of the US National Institutes of
Health: https://www.ncbi.nlm.nih.gov/datasets/gene/taxon/9606/. The
data file is called ncbi_dataset.csv. Read this data file into a Pandas
DataFrame and perform the following analyses:

(a) Compute and print out the number of genes listed for the human
genome (there is one per row).

(b) Compute and print out the minimum, maximum, average, and
median number of known isoforms per gene (consider the
transcript_count column as a Series).

(c) Plot a histogram of the number of known isoforms per gene. As
these numbers vary over a wide range, use a logarithmic y-axis, as
shown in the upper right plot in the figure below.

(d) Compute and print out the number of different gene types.
(e) Compute and print out the total number of genes and the num-

ber of genes for each gene_type. Make a horizontal bar graph that
shows the number of genes for each type associatedwith each gene
in decreasing order of gene type.

(f) Compute and print out the number of different chromosomes.
(g) Compute and print out the number of genes for each chromo-

some. Make a vertical bar plot of the number of genes for each
chromosome in decreasing order.

(h) Compute and print out the percentage of genes with the plus ori-
entation for each chromosome.

(i) Compute and print out the average number of transcripts associ-
ated with each gene type.

https://www.ncbi.nlm.nih.gov/datasets/gene/taxon/9606

350 � Introduction to Python for Science and Engineering

CH A P T E R 12

Animation

This chapter teaches you how to use Matplotlib’s Animation package.
You learn how to animate a sequence of images to make a video and
then how to add text and other features to your videos. You learn how
to animate functions. You also learn how to combine movies and an-
imated plots side-by-side. You learn how to animate a fixed number of
frames and how to animate an arbitrary number of frames until some
condition is met.

It’s often not enough to plot our data; we want to see it move! Simulations,
dynamical systems, wave propagation, explosions—they all involve time evo-
lution. Moreover, the human brain is well-adapted to extract and understand
spatial information in motion. Therefore, we want to animate our representa-
tions of information.

While not strictly necessary, we use the animation library of Matplotlib
to make animations. It is powerful, relatively easy to use, and well-suited for
animating functions, data, and images.

12.1 ANIMATING A SEQUENCE OF IMAGES

One of the most basic animation tasks is to make a movie from a sequence of
images stored in a set of image files. If the size and number of images are not
too large, you can read all the images into your program (i.e., into memory)
and then use the function ArtistAnimation of Matplotlib’s Animation class to
play a movie. You can also save the movie you make to an external file using
the save function from the Animation module.

DOI: 10.1201/9781032673950-12 351

https://doi.org/10.1201/9781032673950-12

352 � Introduction to Python for Science and Engineering

Figure 12.1 Partial sequence of images for animation.

12.1.1 Simple Image Sequence

First, wemake a video from a sequence of images. Later, we will show you how
to add text and other animated features to your movie.

We will make a movie from a sequence of images of micrometer-size par-
ticles suspended in water that are undergoing Brownian motion. Figure 12.1
shows a selection of the sequence of images.

Thenames of the sequence of image files to be animated should consist of a
base alphanumeric string—any legal filename—followed by an n-digit integer,
including leading zeros so that every file has a name with the same number
of characters. The images will be animated from the smallest to the largest
numbers. As an example, suppose wewant to animate a sequence of 100 image
files named s000.png, s001.png, s002.png, …, s099.png.

Here is our program. Below, we explain how it works.

Code:movie_from_images.py

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as anim
3 from PIL import Image
4 from glob import glob
5
6 fig, ax = plt.subplots(figsize=(3.6, 3.5))
7 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
8 ax.axis("off")
9

10 ims = []
11 for fname in sorted(glob("pacb/s0*.png")):
12 # print(fname) # uncomment to follow loading of images
13 im = ax.imshow(Image.open(fname), animated=True)
14 ims.append([im])
15
16 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,
17 repeat=False)
18 # Uncomment to save as mp4 movie file. Need ffmpeg.
19 # ani.save("movies/movie_from_images.mp4", writer="ffmpeg")
20
21 fig.show()

Animation � 353

We animate the file sequence using the ArtistAnimation function, which
is part of the matplotlib.animation library. It’s called in lines 16- 17, and, in
this example, it has four arguments.

The first argument is the name of the figure window, in this case, fig, where
the animation will be rendered.

The second argument, with the keyword artists, must be a list of lists (or
tuples) that contain the images to be animated. Below, we explain how
to put together such a list.

The third argument, interval, specifies the time in milliseconds between
successive animation frames. In this example, it’s 30 ms, correspond-
ing to 1000/30 = 33.3 frames per second.

The fourth argument, repeat, tells the animation to play through one time
when it’s set to False, rather than repeating in a loop over and over again.

The ArtistAnimation call (line 16)must be assigned a variable name, which
here is ani. Otherwise, the animation will be deleted before it can display the
sequence of images. Do not forget to give any ArtistAnimation call a name!

Aside from calling the function ArtistAnimation, the main tasks for the
program are to set up the figure window and then assemble the list ims that
contains the images to be rendered for the animation.

Lines 6–8 set up the figurewindow.The argument figsize is set to have the
same aspect ratio as the movie frames we want to animate. Then, the function
subplots_adjust is set so that frames take up the entire figure window. In line
8, we turn off all the axes labels, as we do not want them for our animation.

In line 10, we create an empty list, ims, that will contain the images to be
animated.

The for loop starting at line 11 reads in an image frame from a sequence
of image files, formats it for animation and then adds it to the list of images to
be animated.

To read the names of our data files, we use the function glob from the
module of the same name. The function glob returns a list of paths on your
computer matching a pathname pattern. The asterisk symbol * acts as a wild-
card for any symbol. Typing glob('pacb/s*.png') returns the list of all files on
my computer matching this pattern, which turns out to be a sequence of 100
image files named s000.png, s002.png, s003.png}, \ldots, \texttt{s099.png
that are located in the pacb subdirectory of the directory where our program
is stored. To ensure that the list of filenames is read in numerical order, we use
the Python function sorted in line 11 (which may not be necessary if the file

354 � Introduction to Python for Science and Engineering

timestamps are in the correct order).We can restrict the wildcard using square
brackets with entries that specify which charactersmust appear at least once in
the wildcard string. For example glob('pacb/s00*[0-2].png') returns the list
['pacb/s000.png', 'pacb/s001.png', 'pacb/s002.png']. You can experiment
independently to understand better how glob() works with wildcards. Un-
commenting line 12 prints out the names of the data files read and parsed by
glob(), which can serve as a check that glob() is working as expected.

Two functions are used in line 13: PIL.Image.open() from the Python Im-
age Library (PIL) reads an image fromafile into aNumPy array; imshow() from
the Matplotlib library displays an image stored as a NumPy array, on the fig-
ure axes. The image is not displayed immediately but is stored with the name
im. Note that in each iteration of the for loop, we read in one frame from the
sequence of frames that make up the animation clip we are putting together.

In the final line of the for loop, we append [im] to the list ims that we
defined in line 10 just before the for loop. Note that im is entered with square
brackets around it so that [im] is a one-item list. Thus, it is added as a list to
the list ims, so that ims is a list of lists. This is the format that the function
ArtistAnimation needs for the artists argument.

Finally, we save the movie1 as an mp4 movie so that it can be played in-
dependently of the program that produced it (and without running Python).
Alternatively, changing the file name to 'pacb.avi' saves the movie as an avi
file. The mp4 and avi movies and the Python code above that produced them
are available at https://github.com/djpine/python-scieng-public-2.

As an alternative to the program provided and discussed above, we of-
fer one that is self-contained so that you do not need to load a sequence of
images from files. Instead, this program makes the images on the fly purely
for demonstration purposes. The program is adapted from an example on the
Matplotlib website.2

Code:movie_from_images_alt.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4
5
6 def f(x, y):
7 return np.sin(x) + np.cos(y)

1 To save a movie to your computer, you must install a third-party MovieWriter that Mat-
plotlib recognizes, such as FFmpeg. See Section A.3 for instructions on downloading and in-
stalling FFmpeg. Alternatively, you can comment out the ani.save call (line 27) so that the
program runs without saving the movie.

2See https://matplotlib.org/examples/animation/dynamic_image2.html.

https://github.com/djpine/python-scieng-public-2
https://matplotlib.org/examples/animation/dynamic_image2.html

Animation � 355

8
9

10 x = np.linspace(0, 2 * np.pi, 120)
11 y = np.linspace(0, 2 * np.pi, 120).reshape(-1, 1)
12
13 fig, ax = plt.subplots(figsize=(3.5, 3.5))
14 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
15 ax.axis("off")
16 ims = []
17 for i in range(120):
18 x += np.pi / 20.
19 y += np.pi / 20.
20 im = ax.imshow(f(x, y), cmap=plt.get_cmap("plasma"),
21 animated=True)
22 ims.append([im])
23
24 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,
25 repeat_delay=0)
26 # Uncomment to save as mp4 movie file. Need ffmpeg.
27 # ani.save("movies/movie_from_images_alt.mp4", writer="ffmpeg")
28
29 fig.show()

The 2D NumPy array is created with f(x, y) in lines 20–21, in place of
reading in image files from disk.The only other notable difference is that here,
we let the animation repeat over and over. We set the delay between repeti-
tions to be 0 ms, so the animation appears as an endless repeating clip without
interruption.

12.1.2 Annotating and Embellishing Videos

Adding dynamic text or highlighting various features in a video is often useful.
In the sequence of images animated in the program movie_from_images.py (see
page 352), two outer particles rotate around a central particle, forming a kind
of ball-and-socket joint.Wewant to highlight the angle of the joint and display
its value in degrees as the system evolves over time.We do this by adding some
Matplotlib Artists to each frame. Figure 12.2 shows one frame of what our
program will eventually display.

To start, we need data that gives the positions of the three particles as a
function of time. These data are provided in an Excel spreadsheet called tra-
jectories.xlsx, which is read by the program in line 20.

Next, we construct a list, ims, that will contain a set of lists the animation
routine will display. In a previous example, each element of the list ims was a
one-item list [im] of PNG images (see line 14 in movie_from_images.py listed on
page 352). Adding dynamic text and other features, this one-item list becomes
a three-item list in the program below.

356 � Introduction to Python for Science and Engineering

Figure 12.2 Annotated frame highlighting particle positions and displaying an-
gle.

Code:movie_from_images_annotated.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4 import pandas as pd
5 from PIL import Image
6 from glob import glob
7
8
9 def angle(x, y):

10 a = np.array([x[0] - x[1], y[0] - y[1]])
11 b = np.array([x[2] - x[1], y[2] - y[1]])
12 cs = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
13 if cs > 1.0:
14 cs = 1.0
15 elif cs < -1.0:
16 cs = -1.0
17 return np.rad2deg(np.arccos(cs))
18
19
20 r = pd.read_excel("trajectories.xlsx", usecols="A:F")
21
22 fig, ax = plt.subplots(figsize=(3.6, 3.5))
23 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
24 ax.axis("off")
25
26 ims = []
27 angles = []
28 for i, fname in enumerate(sorted(glob("pacb/s[0-2]*.png"))):
29 # print(fname) # uncomment to follow loading of images
30 im = ax.imshow(Image.open(fname), animated=True)

Animation � 357

31 # Make 3 solid points connect by two bars
32 x = np.array([r["x1"][i], r["xc"][i], r["x2"][i]])
33 y = np.array([r["y1"][i], r["yc"][i], r["y2"][i]])
34 ima, = ax.plot(x, y, "o-", color=[1, 1, 0.7])
35 # Get angle between bars & write on movie frames
36 theta = angle(x, y)
37 angles.append(theta)
38 imb = ax.text(0.05, 0.95,
39 "frame = {0:d}\nangle = {1:0.0f}\u00B0"
40 .format(i, theta), va="top", ha="left",
41 color=[1, 1, 0.7], transform=ax.transAxes)
42 ims.append([im, ima, imb])
43
44 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,
45 repeat=False)
46 # Uncomment to save as mp4 movie file. Need ffmpeg.
47 # ani.save("movies/movie_from_images_annotated.mp4", writer="ffmpeg")

Thefirst item of the list is im, a list of the same PNG images we used before.
This element is created in line 30.

The second item in the list is ima, a line plot connecting the centers of the
three particles, where each center is indicated by a circular data point. This
Artist is created in line 34. Note that a comma is used in defining ima because
the plot function creates a one-element list, and we want the element itself,
not the list.

The third item in the list is imb, a text Artist that displays the frame number
and the angle of the ball-and-socket joint, calculated by the function angle.
This Artist is created in lines 38–41.

The three items become the elements of a list [im, ima, imb] that repre-
sents one frame of our video: a PNG file, a plot, and text. Each frame, [im,
ima, imb], becomes an element in the list ims, which represents all the frames
of the entire video.

The function ArtistAnimation is called with essentially the same inputs
that we used previously. This time, we choose not to have the video loop, but
instead, we have it stop after it plays through one time.

Finally, you may have noticed that in line 28, we changed the argument of
glob.The [0-2] is a wildcard that specifies that only 0, 1, and 2 will be accepted
as the first character in the file name. In this way, a movie from 000 to 299 is
made.

12.2 ANIMATING FUNCTIONS

Suppose you want to visualize the nonlinear single pendulum whose solu-
tion we calculated in Chapter 9. While it might not seem obvious, the sim-
plest way to do these animations is with the function animation routine, called

358 � Introduction to Python for Science and Engineering

Figure 12.3 One frame from the propagating wave packet movie.

FuncAnimation, of Matplotlib’s mpl’s Animation library. As its name implies,
FuncAnimation can animate functions, but it turns out that animating func-
tions encompasses a wide spectrum of animation tasks, more than you might
have imagined.

12.2.1 Animating for a Fixed Number of Frames

We start by writing a program to animate a propagating wave packet with an
initial width a0 that spreads with time. The equation for the wave packet is
given by the real part of

u(x, t) = 1√
α+ iβt

eik0(x−vpt)e−(x−vgt)2/4(α+iβt) ,

where i ≡
√
−1, α = a2

0, and β = vg/2k0. The phase and group velocities are
vp and vg, respectively, and k0 = 2π/λ0, where λ0 is the initial wavelength of
the wave packet. Figure 12.3 shows the wave packet at a particular moment.

Here is the program for animating the propagation of the wave packet. An
explanation of how it works follows the listing.

Code: wave_packet_spreads.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4
5
6 def ww(x, t, k0, a0, vp, vg):
7 tc = a0 * a0 + 1j * (0.5 * vg / k0) * t
8 u = np.exp(1.0j * k0 * (x - vp * t) - 0.25 * (x - vg * t)**2 / tc)
9 return np.real(u / np.sqrt(tc))

10
11
12 wavelength = 1.0
13 a0 = 1.0
14 k0 = 2 * np.pi / wavelength
15 vp, vg = 5.0, 10.0

Animation � 359

16 period = wavelength / vp
17 runtime = 40 * period # total time to follow wave
18 rundistance = 0.6 * vg * runtime # total distance to plot wave
19 dt = period / 12.0 # time between frames
20 tsteps = int(runtime / dt) # total number of times wave
21
22 fig, ax = plt.subplots(figsize=(12, 3))
23 fig.subplots_adjust(bottom=0.2) # allow room for axis label
24 x = np.arange(-5 * a0, rundistance, wavelength / 20.0)
25 ax.text(0.9, 0.91, r"$v_p = {0:0.1f}$".format(vp),
26 ha="left", va="top", transform=ax.transAxes)
27 ax.text(0.9, 0.84, r"$v_g = {0:0.1f}$".format(vg),
28 ha="left", va="top", transform=ax.transAxes)
29 ax.set_xlabel(r"x")
30 ax.set_ylabel(r"$y(x,t)$")
31 ax.set_xlim(-5 * a0, rundistance)
32 ax.set_ylim(-1.05, 1.05)
33 # Define containers for dynamic elements
34 line, = ax.plot(x, np.ma.array(x, mask=True), color="C0")
35 timeText = ax.text(0.9, 0.98, "", ha="left", va="top",
36 transform=ax.transAxes)
37 timeString = "time = {0:0.2f}"
38
39
40 def animate(i):
41 t = float(i) * dt
42 line.set_ydata(ww(x, t, k0, a0, vp, vg)) # update y-data
43 timeText.set_text(timeString.format(t))
44 return line, timeText
45
46
47 ani = anim.FuncAnimation(fig, func=animate,
48 frames=range(tsteps),
49 interval=30.0, blit=True)
50 # Uncomment to save as mp4 movie file. Need ffmpeg.
51 # ani.save("movies/wave_packet_spreads.mp4", writer="ffmpeg")
52 fig.show()

After importing the relevant libraries, lines 6–9 define the wave packet us-
ing complex algebra, with line 9 returning only the real part. The physical pa-
rameters defining various properties of the wave are initialized in lines 12–15.
The range of times and distances over which the waveform will be calculated
are determined in lines 16–18.

The frame time interval and the total number of frames are set in lines
19–20.

12.2.1.1 Setting up Static Elements of an Animation

Lines 22–32 set up the static elements of the figure—everything about the fig-
ure that does not change during the animation. The x-array is defined in line
24, which remains fixed throughout the animation—it does not change with

360 � Introduction to Python for Science and Engineering

time. The distance between points along the x-axis is set to be small enough,
1/20th of a wavelength, to make the waveform appear smooth.

Lines 25–28 set up two static text elements that give the values of the phase
and group velocities of the wave packet.3 These text elements appear at the up-
per right of the plot.The keyword argument transform=ax.transAxes is used to
specify the text in axis coordinates, where 0, 0 is lower-left and 1, 1 is upper-
right; without this argument, data coordinates are used.

Lines 31–32 fix the limits of the x and y axes. Setting the plot limits to fixed
values is generally recommended for an animation.

Lines 34–37 set up static containers for the dynamic elements of the rou-
tine: a container for the plot of the moving wavepacket function and a con-
tainer for the dynamic text that updates the time displayed at the upper right
of the plot.

Line 34 merits special attention. Here, the program sets up a container for
the animated plot of the waveform. Note that the x-data are loaded but not
the y-data. The reason is that the y-data will change as the wave propagates; at
this point in the program, only the fixed unchanging elements of the plot are
set up. A fully masked x-array is used as a placeholder for the y-array, which
is guaranteed to have the correct number of elements but will not plot. You
could also put an appropriately initialized version of the y-array here without
consequence since the plot command is not rendered until the show() com-
mand is called at the end of the routine. However, if you are running the pro-
gram from IPython and you have interactive plotting turned on (plt.ion()),
the plot command will be rendered immediately, which spoils the animation.
Using a masked array for the y-data in the plot command avoids this problem
so that the animation is rendered correctly irrespective of whether interactive
mode is on or off.

Lines 35–36 set up a text container timeString used to display the current
time in the animation.

12.2.1.2 Why is there a Comma after an Assigned Variable Name?

Notice that line 34 has a comma after the name line. This is important. To
understand why, consider the following command issued from the IPython
shell:
In[1]: plot([1, 2, 3, 2, 3, 4])
Out[1]: [<matplotlib.lines.Line2D at 0x181dca2e48 >]

3The phase velocity is the speed with which the crests in the wave packet moves; the group
velocity is the overall speed of the wave packet. Don’t worry if you’re not familiar with these
terms.

Animation � 361

Notice that the plot command returns a one-item list, which is indicated by the
square brackets around the Matplotlib line object <matplotlib.lines.Line2D
at 0x181dca2e48>. Writing [line,] = plot(…), or equivalently writing line, =
plot(…), sets line equal to the first (and only) element of the list, which is the
line object <matplotlib.lines.Line2D at 0x181dca2e48>, rather than the list.
It is the line object that the FuncAnimation needs, not a list, so writing line,
= plot(…) is the right thing to do. By the way, you could also write line =
plot(…)[0]. That works too!

Note that in contrast to the line object, timeString set up in lines 35–36 is
a simple object, not a list, so a trailing comma is not needed.

12.2.1.3 Animating a Function (and text)

The animation is done in lines 47–49 by FuncAnimation from Matplotlib’s An-
imation package. The first argument is the name of the figure window, fig in
this example, where the animation is to be rendered.

The second argument, func, specifies the function’s name, here animate,
that updates each animation frame. We defer explaining how the func-
tion animate works until after the discussion of the other arguments of
FuncAninmation().

The third argument is an iterator, in this case range(tsteps), that provides
the frame number of the animation. The iterator serves two functions: (1) it
provides data to func (here animate), in this case a single integer that is incre-
mented by 1 each time a new frame is rendered; (2) it signals FuncAnimation to
keep calling the routine animate until the iterator has run through all its val-
ues. Then, FuncAnimationwill restart the animation from the beginning unless
an additional keyword argument, repeat, not used here, is set equal to False.

The interval argument sets the time in milliseconds between successive
frames. Here, the value of dt is set to 30 ms, fast enough for a human brain to
perceive the animation as continuous in time.

The last argument, blit=True, turns on blitting. Blitting is the practice of
redrawing only those elements in an animation that have changed from the
previous frame, instead of redrawing the entire frame each time. This can save
a great deal of time and allow an animation to run significantly faster.

The function animate updates each frame of the animation. In this ex-
ample, updating means calculating the y-values of the wave packet for the
next time step and providing those values to the 2D line object—the wave
packet—that was named line in line 34. This is done using the set_ydata()
function, which is attached via the dot syntax to the name line. The argument
of set_ydata() is simply the array of updated y-values, which is calculated by

362 � Introduction to Python for Science and Engineering

the function ww(). The set_text command updates the text container that was
set up in lines 35–36.

FuncAnimation does the rest of the work, updating the animation frame by
frame at the specified rate until the animation finishes. Once finished, the ani-
mation starts again since we did not set the keyword argument repeat=False.4

The next statement ani.save('wavepacket.mp4') saves the animation (one
iteration only) in the current directory as an mp4 video that can be played
with third-party applications on any platform (in principle).

12.2.2 Animating until a Condition is Met

In the previous section, our animation of the propagating wave packet ran for
a preset number of steps (tsteps). This is a sensible way to make an animation
when you know or can calculate ahead of time how long you want the ani-
mation to run. In other cases, however, you may want the animation to run
until some condition is met, and exactly how long this takes is not known in
advance. This is generally the case when the animation involves some random
process. A simple but powerful way to do this is to write a generator function,
which is used as the frames keyword argument in FuncAnimation.

To illustrate this kind of animation, we introduce an algorithm known as
random organization, which first appeared in the context of a physics prob-
lem.5 In its simplest form, we consider a set of N spheres with a diameter of
1 randomly placed along the circumference of a circle of length L > N, as
shown in Figure 12.4. Nearby spheres overlap if the distance between their
centers is less than 1. To aid visibility, spheres that overlap are colored differ-
ently from spheres that do not. The time evolution of the system proceeds as
follows: Each time step, the subroutine move checks all N spheres to see which
spheres, if any, overlap each other. Any sphere that overlaps with one or more
spheres is then given a kick that moves it a random distance between −ϵ and
+ϵ, where ϵ is typically about 1/4 or less. Spheres that do not overlap with
any of their neighbors do not move. That ends one time step. The number of
overlapping spheres may increase, decrease, or remain the same for any given
time step. In the next time step, the process repeats. The algorithm continues
as long as there are still spheres that overlap. In practice, it is found that all
spheres eventually find a position at which they do not overlap with any other

4If you consult the online documentation on FuncAnimation, you will see that there is a
keyword argument init_func, which the documentation states is used to draw a clear frame
at the beginning of an animation. As far as we can tell, this function is redundant, so we don’t
use it, even though many web tutorials suggest it is necessary.

5Corté et al., Nature Physics 4, 420–424, (2008).

Animation � 363

Figure 12.4 Random organization.

sphere if the number of spheres is not too high. For the conditions L = 100
and ϵ = 0.25, the system eventually settles into a state where no spheres move
if N ≤ 86.

The random organization algorithm is implemented in the generator
function move below. In this implementation, we use periodic boundary con-
ditions, equivalent to bending the line on which the spheres move into a circle
so that spheres at the very end of the line interact with spheres at the beginning
of the line.

The generator function move returns two arrays: x, which gives the updated
positions of the N spheres as a floating point number between 0 and L, and
changes, an integer array of length N where the ith entry is 1 if the ith sphere
has moved in the most recent time step and 0 if it hasn’t.

Code: rand_org.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4
5

364 � Introduction to Python for Science and Engineering

6 def move(L, N, eps): # generator for updating
7 x = np.sort(L * np.random.rand(N)) # speeds up algorithm
8 changes = np.zeros(N, dtype="int")
9 moves = 1

10 while moves > 0:
11 changes.fill(0) # tally changes starting with zero
12 xc = np.copy(x)
13 for i in range(N - 1):
14 j = i + 1
15 while x[j] - x[i] < 1.0:
16 rr = 2.0 * (np.random.rand(2) - 0.5)
17 xc[i] += eps * rr[0]
18 xc[j] += eps * rr[1]
19 changes[i] = 1
20 changes[j] = 1
21 if j < N - 1:
22 j += 1
23 else:
24 break # terminates while loop when j=N-1
25 if x[i] < 1.0: # periodic boundary conditions
26 k = -1
27 while x[i] + L - x[k] < 1.0:
28 rr = 2.0 * (np.random.rand(2) - 0.5)
29 xc[i] += eps * rr[0]
30 xc[k] += eps * rr[1]
31 changes[i] = 1
32 changes[k] = 1
33 k -= 1
34 x = np.sort(xc % L) # sort data for algorithm to work
35 moves = np.sum(changes)
36 yield x, changes
37
38
39 N, L, eps = 70, 100, 0.25 # inputs for algorithm
40
41 circumference = float(L)
42 radius = circumference / (2.0 * np.pi)
43 R = radius * np.ones(N)
44
45 fig, ax = plt.subplots(figsize=(8, 8),
46 subplot_kw=dict(polar=True))
47 pStill, = ax.plot(np.ma.array(R, mask=True), R,
48 "o", ms=12, color="C0")
49 pActiv, = ax.plot(np.ma.array(R, mask=True), R,
50 "o", ms=12, color="C1")
51 ax.set_rmax(1.1 * radius)
52 ax.axis("off")
53
54
55 def updatePlot(mv):
56 x, changes = mv
57 angle = 2.0 * np.pi * x / L
58 active = np.ma.masked_where(changes != 1, angle)
59 inactive = np.ma.masked_where(changes == 1, angle)
60 pStill.set_xdata(inactive)
61 pActiv.set_xdata(active)

Animation � 365

62 return pStill, pActiv
63
64
65 ani = anim.FuncAnimation(fig=fig, func=updatePlot,
66 frames=move(L, N, eps),
67 interval=10, blit=True,
68 save_count=10000,
69 repeat=False)
70 # Uncomment to save as mp4 movie file. Need ffmpeg.
71 # ani.save("movies/rand_org.mp4", writer="ffmpeg", dpi=200)
72 plt.show()

The output of move(L, N, eps) provides the input to the function
update(mv), which updates the animation. First, it unpacks mv in line 56, then
converts the x array into angles for display purposes, and then creates two
masked arrays, one for active and the other for inactive particles using the
array changes that tracks which spheres moved in the most recent time step.
These updated masked arrays, created in lines 58 and 59, are fed into the plots
that were set up in lines 47–50, where the static data for the y-array—the un-
changing radius of the polar plot—was already entered. The still and active
data sets are updated and returned to FuncAnimation, which plots the next
frame, with the moving particles shown in orange (color='C1') and the sta-
tionary particles in blue (color='C0').

A key feature of this approach is using a generator function, here move.The
function returns two arrays, x and changes, using a yield statement, which is
what makes the function a generator. Note that move yields these two arrays
inside a while loop. A key feature of a generator function is that it remem-
bers its current state between calls. In particular, move remembers the value
of the positions x of all the spheres, it remembers that it is in a while loop,
and it remembers the variable move, which keeps track of how many spheres
were moved in the most recent time step. When move is zero, the while loop
terminates, which signals FuncAnimation that the animation is finished.

In line 51, we use set_rmax to set the maximum radius of the polar plot. It
is important to do this after the plot calls in lines 47 and 49, as they can reset
the plot limits in unanticipated ways.

You can save the plot as anmp4movie by uncommenting line 70.However,
you need to have installed FFmpeg, as discussed in a footnote on page 354.
Since, in this case, the length of the movie is unknown a priori, FuncAnimation
has a keyword argument save_count that you can set to limit the number of
frames that are recorded in the movie. Its default value is 100, so if you want
to record more frames than that, you need to include it in the FuncAnimation
call and set it to some other value. If the keyword frames is an iterable with

366 � Introduction to Python for Science and Engineering

a definite length (not the case here), it will override the save_count keyword
argument value.

When running the program, be aware that the animation will only begin
displaying once the movie is recorded for whatever number of frames you set,
so if the number is large you may have to wait awhile before the animation
appears.

12.2.2.1 Gilding the Lily

As nice as this animation is, plotting the number of active particles as a func-
tion of time to give a better sense of how the system evolves would be helpful.
Therefore, in the program below, we add a plot inside the circular animation
of the spheres. Aside from three additional lines discussed below, the pro-
gram below is the same as the program starting on page 363 up to the line
ax.axis('off').

Code: rand_org_lily.py
55 ax.axis("off")
56
57 gs = gridspec.GridSpec(3, 3, width_ratios=[1, 4, 1],
58 height_ratios=[1, 2, 1])
59 ax2 = fig.add_subplot(gs[4], xlim=(0, 250), ylim=(0, L))
60 ax2.set_xlabel("time")
61 ax2.set_ylabel("active particles")
62 activity, = ax2.plot([], [], "-", color="C1")
63 tm, number_active = [], []
64
65
66 def updatePlot(mv):
67 t, moves, x, changes = mv
68 tm.append(t)
69 number_active.append(moves)
70 tmin, tmax = ax2.get_xlim()
71 if t > tmax:
72 ax2.set_xlim(0, 2 * tmax)
73 angle = 2.0 * np.pi * x / L
74 active = np.ma.masked_where(changes != 1, angle)
75 inactive = np.ma.masked_where(changes == 1, angle)
76 pStill.set_xdata(inactive)
77 pActiv.set_xdata(active)
78 activity.set_data(tm, number_active)
79 return pStill, pActiv, activity
80
81
82 ani = anim.FuncAnimation(fig=fig, func=updatePlot,
83 frames=move(L, N, eps),
84 interval=10, blit=True,
85 save_count=10000,
86 repeat=False)
87 # Uncomment to save as mp4 movie file. Need ffmpeg.

Animation � 367

Figure 12.5 Random organization with a plot of the number of active particles
vs. time.

88 # ani.save("movies/rand_org_lily.mp4", writer="ffmpeg", dpi=200)
89 plt.show()

Lines 57–58 set up the area for the additional plot using the gridspecmod-
ule from the Matplotlib library. To add this library, we include this line with
the other import statements at the beginning of the program (the first of the
three additional lines before line 56):
import matplotlib.gridspec as gridspec

Returning to line 57, the first two arguments of GridSpec() set up a 3×3 grid in
the figure frame. You can set the relative widths of the columns and rows using
the width_ratios and height_ratios keyword arguments. Then in line 59, we
select grid rectangle number 4, which is at the center of a grid, by setting the
first argument of add_subplot to gs[4]. The rectangles are numbered starting
at zero from left to right and top to bottom. The other arguments fix the range
of the x and y axes. The next few lines set up the plot of the number of active
particles—the activity—as well as lists for the time t and a number of active
particles move.

368 � Introduction to Python for Science and Engineering

Figure 12.6 movie with animated histogram.

The only difference in the generator function move is that it returns two
more variables than previously. Now, the final line reads:
yield t, moves, x, changes

We’ve inserted the current time t and the number of particles moves thatmoved
in the most recent cycle. In the function update, the number t and the num-
ber moves are appended to the lists tm and number_active that keep a record
of the number of active particles as a function of time. These data are then
transmitted to the activity plot using the set_data function in line 78.

12.3 COMBINING VIDEOS WITH ANIMATED FUNCTIONS

When presenting or analyzing scientific data, it’s often useful to display a video
with an animated plot that highlights or analyzes the evolution of some fea-
tures of the video. Consider, for example, the sequence of images we animated
in Section 12.1.2.Wewant to show themovie and, next to it, display the evolv-
ing distribution of the angles swept out by the ball-and-socket joint. Figure
12.6 shows what we are aiming for.

12.3.1 Using a Single Animation Instance

Starting from the program on page 357, we modify line 22 by expanding the
figure size and creating two Axes objects, one for the video and another for the
plot of the distribution of angles. The distribution of angles is calculated using
the NumPy histogram function on lines 42–43. Lines 44–45 set up the plot of

Animation � 369

the distribution, which is then appended to the list of Artists in line 46 that
will be animated. The call to ArtistAnimation is the same as before.

Alternatively, we can make a histogram for the distribution of angles by
commenting out lines 45–46 and uncommenting lines 48–49. Matplotlib’s bar
function returns a special bar container that needs to be turned into a list for
incorporation in the list of lists for the animation, which is done in line 49.

Code:movie_from_images_histp.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4 import pandas as pd
5 from PIL import Image
6 from glob import glob
7
8
9 def angle(x, y):

10 a = np.array([x[0] - x[1], y[0] - y[1]])
11 b = np.array([x[2] - x[1], y[2] - y[1]])
12 cs = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
13 if cs > 1.0:
14 cs = 1.0
15 elif cs < -1.0:
16 cs = -1.0
17 return np.rad2deg(np.arccos(cs))
18
19
20 r = pd.read_excel("trajectories.xlsx", usecols="A:F")
21
22 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3.5))
23 ax1.axis("off")
24 ax2.set_xlim(90, 180)
25 ax2.set_ylim(0, 0.03)
26 ax2.set_xlabel("angle (degrees)")
27
28 ims = []
29 angles = []
30 for i, fname in enumerate(sorted(glob("pacb/s0*.png"))):
31 # print(fname) # uncomment to follow loading of image frames
32 im = ax1.imshow(Image.open(fname), animated=True) # image
33 x = np.array([r["x1"][i], r["xc"][i], r["x2"][i]]) # 3 balls
34 y = np.array([r["y1"][i], r["yc"][i], r["y2"][i]]) # joined by
35 ima, = ax1.plot(x, y, "o-", color=[1, 1, 0.7]) # 2 lines
36 theta = angle(x, y)
37 angles.append(theta)
38 imb = ax1.text(0.05, 0.95,
39 "frame = {0:d}\nangle = {1:0.0f}\u00B0"
40 .format(i, theta), va="top", ha="left",
41 color=[1, 1, 0.7], transform=ax1.transAxes)
42 a, b = np.histogram(angles, bins=15, range=(90, 180),
43 density=True)
44 xx = 0.5 * (b[:-1] + b[1:])
45 im2, = ax2.plot(xx, a, "-oC0")
46 ims.append([im, ima, imb, im2])

370 � Introduction to Python for Science and Engineering

Figure 12.7 movie with animated plot.

47 # plot histogram
48 # im2 = ax2.bar(xx, a, width=0.9*(b[1]-b[0]), color="C0")
49 # ims.append([im, ima, imb] + list(im2))
50 plt.tight_layout()
51
52 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,
53 repeat=False, blit=False)
54 # Uncomment to save as mp4 movie file. Need ffmpeg.
55 # ani.save("movies/movie_from_images_histp.mp4", writer="ffmpeg")

12.3.2 Combining Multiple Animation Instances

Let’s look at another example of a movie combined with a dynamic plot. Our
previous example showed how to rendermany plotting elements using a single
instance of ArtistAnimation. While ArtistAnimation is the natural choice for
animating sequences of images, FuncAnimation is the more natural choice for
animating a dynamic plot. So, in this section, we use two different animation
instances, one using ArtistAnimation to animate an image sequence and the
other using FuncAnimation to animate the plot. We then show how to combine
them into a single animation.

One frame of the result is shown in Figure 12.7. As the movie progresses,
the illumination switches from ultraviolet (UV) to blue, designated on the im-
age in the upper right corner and reflected in a change in color from violet to
blue in the trace on the left.

After reading the sequence of frames to make the movie, the program
reads data associated with each frame from a CSV file.

The static part of the plot, which is not animated, is rendered first. Lines
23–28 set up containers for the animated lines and circle, which change color

Animation � 371

according to whether UV or blue light is used to illuminate the image se-
quence.

Before plotting the data, the UV and blue data are masked in lines 31–32
so that only one of the two traces is displayed at any given time.

The for loop starting at line 36 puts together the list ims of the frames to be
animated. Each frame is itself a list of the separate elements to be rendered in
each frame: an image and the UV ON/UV OFF text. The if-else block increases
the brightness of the frames when UV light is off so that all the movie frames
have nearly the same brightness. The loop is completed when the list of plot
elements is appended to the ims.

Next, the routine animate is defined, which is called by the FuncAnimation
routine to animate the line plot.

ArtistAnimation is called to animate the movie frames, and FuncAnimation
is called to animate the line plot. The second animation ani2 is synchronized
to the event clock of ani1 using the keyword argument event_source=ani1.
event_source. This assures that a single clock updates both animations.

Finally, to save both animations to the same file, we set the keyword argu-
ment, which takes a list (or tuple), extra_anim=[ani1] in the ani2.save call.

Code:movie_sync_plot1.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4 from PIL import Image, ImageEnhance
5 from glob import glob
6
7 framesDir = "movie_from_frames" # movie frames directory
8 framesData = "movie_sync_data.csv" # data file with intensities
9 time, uv, blue = np.loadtxt(framesData, skiprows=1,

10 unpack=True, delimiter=",")
11
12 # Static parts of plot come first
13 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
14 fig.subplots_adjust(bottom=0.15, top=0.95, left=0, right=0.98)
15 ax1.axis("off")
16 ax2.set_xlim([0, time.max()])
17 ax2.set_ylim([0.85, 1.05])
18 ax2.plot(time, uv + blue, dashes=(5, 2), color="gray", lw=1)
19 ax2.set_xlabel("time (s)")
20 ax2.set_ylabel("normalized integrated intensity")
21 ax2.set_yticks([0.85, 0.9, 0.95, 1., 1.05])
22 # Set up plot containers for ax2
23 plotdotUV, = ax2.plot(np.nan, np.nan, "o", color="violet",
24 ms=6, alpha=0.7)
25 plotdotBlue, = ax2.plot(np.nan, np.nan, "o", color="blue",
26 ms=6, alpha=0.7)
27 plotlineB, = ax2.plot(np.nan, np.nan, "-", color="blue", lw=2)
28 plotlineU, = ax2.plot(np.nan, np.nan, "-", color="violet", lw=2)

372 � Introduction to Python for Science and Engineering

29
30 # Mask data you do not want to plot
31 uvM = np.where(uv > 0.9, uv, np.nan)
32 blueM = np.where(blue > 0.9, blue, np.nan)
33
34 # Dynamic parts of plot come next
35 ims = []
36 imagelist = sorted(glob(framesDir + "/sp00*.png"))
37 for i, fname in enumerate(imagelist):
38 # print(i, fname) # uncomment to follow loading of image frames
39 if uv[i] >= blue[i]:
40 im = ax1.imshow(Image.open(fname), animated=True)
41 textUV = ax1.text(320, 20, "UV ON", color="white",
42 weight="bold")
43 else:
44 img0 = Image.open(fname)
45 # Increase brightness of uv-illuminated images
46 img0 = ImageEnhance.Brightness(img0).enhance(2.5)
47 im = ax1.imshow(img0, animated=True)
48 textUV = ax1.text(320, 20, "UV OFF", color="yellow",
49 weight="bold")
50 ims.append([im, textUV])
51
52
53 def animate(i):
54 plotdotUV.set_data([time[i]], [uvM[i]])
55 plotdotBlue.set_data([time[i]], [blueM[i]])
56 plotlineB.set_data(time[0:i], blueM[0:i])
57 plotlineU.set_data(time[0:i], uvM[0:i])
58 return plotdotUV, plotdotBlue, plotlineB, plotlineU
59
60
61 ani1 = anim.ArtistAnimation(fig, artists=ims, interval=33,
62 repeat=False)
63 ani2 = anim.FuncAnimation(fig, func=animate,
64 frames=range(time.size), interval=33,
65 repeat=False, blit=False,
66 event_source=ani1.event_source)
67 # Uncomment to save as mp4 movie file. Need ffmpeg.
68 ani2.save("movies/movie_sync_plot1.mp4", extra_anim=[ani1],
69 writer="ffmpeg", dpi=200)
70 fig.show()

12.4 EXERCISES

1. Write a program to animate a 2-dimensional random walk for a fixed
number of steps. Midway through the animation, your animation
should look something like Figure 12.8(a).
Start the random walk at x = y = 0. Show the leading edge of the
randomwalk as a red circle and the rest as a line. Ensure the line extends
from the starting point (0, 0) to the red circle at the end.The x and y axes
should span the same distance in an equal-aspect-ratio square plot.

Animation � 373

(a) (b)

Figure 12.8 (a) Frame from Exercise 1. (b) Frame from Exercise 2.

The following code gets you started by creating a 2D random walk of
N = 200 steps.

Code: diffusion.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4
5 N = 200
6 # Create arrays of random jump lengths in random directions
7 rng = np.random.default_rng()
8 dr = rng.random(N-1) # random number 0-1
9 angle = 2.0 * np.pi * rng.random(N-1)

10 dx = dr * np.cos(angle)
11 dy = dr * np.sin(angle)
12 # Add up the random jumps to make a random walk
13 x = np.insert(np.cumsum(dx), 0, 0.) # insert 0 as
14 y = np.insert(np.cumsum(dy), 0, 0.) # first point

2. Embellish the animation of Exercise 1 by adding x vs. t and y vs. t panels
along with animated text that gives the number of steps so far. Take t to
be equal to the running number of steps. Midway through the anima-
tion, your animation should look something like Figure 12.8(b).

3. Rewrite the program that produces the animation associated with Fig-
ure 12.6 but use separate animation instances for the movie on the left
side and the line (not a bar) histogram on the right.

4. Rewrite the program that produces the animation associated with Fig-
ure 12.7 but use a single animation instance for the movie on the left
side and the animated plot on the right.

CH A P T E R 13

Speeding Up Numerical
Calculations

In this chapter, you learn how to speed up numerical calculations in
Python using the Numba library with its just-in-time compiler. For nu-
merical code involving long loops, Numba can speed up code execution
by one or two orders of magnitude.

One of the significant advantages of an interpreted language like Python
is that you can run code without going through the extra step of compiling,
as required for languages like C and Fortran. Moreover, since Python is a dy-
namically typed language, you don’t have to declare variables and set aside
memory before using them. While these features make it easy to write code
and quickly get it to run, they come with a price, most notably in execution
speed.

The speed penalty incurred using Python is often inconsequential, and
Python’s convenience greatly outweighs the associated costs. For routine data
analysis and plotting, for example, you usually get your results without notice-
able delay, especially if you write code that takes advantage of NumPy’s array
processing capabilities…but not always.

For example, numerically simulating the temporal evolution of a physical
system typically involves loops, because the solution at the current time step
depends on the result from the previous step. As noted previously, loops exe-
cute very slowly in Python (see Section 6.2.4), so these dynamical simulations
can be very slow. Indeed, any computation involving extensive use of loops
of significant length, especially if there are nested loops, is likely to incur a
substantial speed penalty.

374 DOI: 10.1201/9781032673950-13

https://doi.org/10.1201/9781032673950-13

Speeding Up Numerical Calculations � 375

An obvious way to deal with the problem of slow execution speed is to
program using a compiled language, like C or Fortran. This is the right choice
for demanding computational projects like molecular dynamics simulations,
computational fluid dynamics, general relativity, computational chemistry,
and many others. However, considerable overhead can be incurred, which
may not be justified for projects of intermediate complexity.

Recently, a great deal of activity has focused on developing tools that can,
for certain kinds of problems, significantly speed up numerical computations
in Python. Some popular ones include CuPy, PyCUDA, Cython, f2py, and
Numba. Of these, Numba is the easiest to use and the focus of this chap-
ter. However, you should be aware of these other tools, which we summarize
briefly here.

The first two tools, CuPy and PyCUDA, require the computer you are us-
ing to have one or more Nvidia® graphics processing units (GPUs) in addition
to the standard central processing unit (CPU) that does the regular computa-
tional work of a computer. GPUs can significantly speed up programs involv-
ing image processing and similar computational tasks that can be performed
in parallel. You should consider using them if you have the GPUhardware and
computational tasks that can take advantage of their powerful capabilities.

The next two tools, Cython and f2py, allow you to incorporate compiled
code, C or Fortran, respectively, into your Python programs. The idea is to
write those parts of your programs that are computationally demanding in
C or Fortran and then compile them into modules that Python can import.
That way, the computationally demanding part of the code is performed by a
compiled module that runs quickly, while the more routine tasks, like reading
and saving data from and to files, changing the parameters of a calculation or
simulation, and plotting data, are performed by standard Python code.

This brings us toNumba, which requires neither special hardware nor pro-
gramming in another language.Thus, Numba is generally easier to implement
and use than these other tools. Just as importantly, Numba can significantly
increase the speed of numerical computations. The remainder of this chapter
introduces the Python package Numba.

13.1 NUMBA’S BASIC FUNCTIONS

Numba is a Python package that uses a just-in-time (JIT) compiler to selec-
tively compile parts of your Python code at runtime, that is, when you run
your Python routines. The just-in-time compiler works automatically when
you run your Python program, so no separate compilation step is required.
Numba is part of the standard Anaconda distribution, so you don’t need to

376 � Introduction to Python for Science and Engineering

download any additional packages to use it. It can speed up the execution of
Python code, often by factors of 10 to 100 or more, if the code involves one or
more of the following:

• loops (especially nested and long loops)

• a lot of math

Numba generally works well with NumPy; most NumPy functions are imple-
mented in Numba.1

Numba is implemented using a standard Python tool called a decorator.
A decorator is a Python object that modifies the behavior of a user-defined
Python function. In this case, Numba uses a decorator to instruct Numba to
compile a function and to use its compiled form whenever it is encountered
in a Python program. This means that any numerical code you want to speed
up must be coded within a Python function or a class method. To see how it
works, let’s consider a few examples.

13.1.1 Faster Loops and NumPy Functions

Numba excels at speeding up code with loops. Consider the Python function
gaussian_blur(image, pxblur) below, which performs a Gaussian blur on an
array image over a radius of pxblur pixels. Performing theGaussian blur entails
four nested for loops, with two of them looping over all the pixels of the image
while the other two loop over the dimensions of the Gaussian blurring filter.
For an image with a size of 1024 × 1024 pixels and a Gaussian blur over a
radius of 8 pixels, nearly 300 million calculations are required, each entailing
another loop iteration. Running this function without Numba takes about 72
seconds on a MacBook Pro M1 laptop. Figure 13.1 shows how it works on an
image of random pixel values.

We invoke Numba for the function gaussian_blur() with a single state-
ment, a decorator, on line 7: @numba.jit(nopython=True) (plus the import
numba statement online 2). Decorators begin with the at sign @ and are placed
just before the function definition whose behavior theymodify.The decorator
used here is defined within the Numba package. It tells Python to use the just-
in-time compiler employed by Numba to compile the function starting on the
next line and then to use the compiled version of the function whenever it is
called within the Python program.

1A list of NumPy functions that have not yet been implemented in Numba is provided at
https://github.com/numba/numba/issues/4074.

https://github.com/numba/numba/issues/4074

Speeding Up Numerical Calculations � 377

(a) (b)

Figure 13.1 (a) Original image of random pixel values. (b) Blurred image of
image on the left.

The program below runs the gaussian_blur() twice in a loop that starts
on line 34. The first run takes 0.4322 seconds while the second takes 0.2561
seconds, representing speedups by factors of 166 and 273, respectively, over
the 72-second time logged without Numba! Both times represent substantial
improvements in performance.

Code: gaussian_blur.py
1 import numpy as np
2 import numba
3 import time
4 import matplotlib.pyplot as plt
5
6
7 @numba.jit(nopython=True)
8 def gaussian_blur(image, pxblur):
9 # make gaussian filter of radius pxblur

10 x = np.exp(-np.linspace(-2.0, 2.0, 2 * pxblur + 1) ** 2)
11 fltr = np.outer(x, x)
12 fltr /= fltr.mean() * fltr.size # normalize filter
13 # Apply filter (adapted from Numba Read the Docs)
14 m, n = image.shape
15 mf, nf = fltr.shape
16 mf2 = mf // 2
17 nf2 = nf // 2
18 result = np.zeros(image.shape)
19 for i in range(mf2, m - mf2):
20 for j in range(nf2, n - nf2):
21 num = 0.0
22 for ii in range(mf):
23 for jj in range(nf):

378 � Introduction to Python for Science and Engineering

24 num += (fltr[mf - 1 - ii, nf - 1 - jj] *
25 image[i - mf2 + ii, j - nf2 + jj])
26 result[i, j] = num
27 # Return blurred image
28 return result
29
30
31 # make image of random pixel values and set blur radius (pixels)
32 rng = np.random.default_rng()
33 image = rng.random((1024, 1024))
34 r_blur = 8
35
36 # Run calculation twice to determine jit compilation time
37 for i in range(2):
38 start_pd = time.perf_counter()
39 res = gaussian_blur(image, r_blur)
40 end_pd = time.perf_counter()
41 runtime = end_pd - start_pd
42 print("\nrun time = {0:0.4g} seconds".format(runtime))
43
44 # Plot original image and Gaussian blurred image
45 fig, ax = plt.subplots(1, 2, figsize=(9.25, 4.6))
46 ax[0].imshow(image, vmin=0, vmax=image.max(), cmap="viridis")
47 ax[1].imshow(res, vmin=0, vmax=image.max(), cmap="viridis")
48 fig.subplots_adjust(top=1.0, bottom=0.02, left=0.05, right=0.99,
49 hspace=0.2, wspace=0.12)
50
51 fig.savefig("figures/gaussian_blur.pdf")
52 fig.show()

The time of 0.4322 seconds includes the time it took the just-in-time
Numba compiler to compile the gaussian_blur() function when it was run
the first time. Numba caches (saves) the compiled version and reuses it the
second time it is called, so it runs faster. Evidently, it took the just-in-time
compiler 0.4322 − 0.2561 = 0.1761 seconds to compile the gaussian_blur()
function. In this case, even if we include the compilation time, better perfor-
mance is obtained using Numba. However, this is not always true, so it may
not always make sense to use Numba. We will return to this question shortly.

13.1.1.1 NumPy Functions and Numba

Numba is designed to work with NumPy arrays and most NumPy func-
tions. The function gaussian_blur(), introduced above and compiled with
the Numba decorator @numba.jit(), used four NumPy functions: np.exp(),
np.linspace(), outer(), and np.zeros(). It also used several NumPy attributes
and methods, including size, shape, and mean().

Most of the time, you can use NumPy functions with Numba just as
you would without Numba. However, subtle differences can sometimes
trip you up. For example, substituting np.zeros([1024, 1024]) for np.zeros

Speeding Up Numerical Calculations � 379

(image.shape) causes Numba to throw a TypingError, while np.zeros((1024,
1024)) does not. All three of these calls work with NumPy. The problem here
is that Numba requires that the shape of an array be strictly specified as a tuple
and not as a list; NumPy is more relaxed and accepts both tuples and lists.

You can avoid getting such an error when using Numba by changing the
decorator to @numba.jit(nopython=False). This will run the Numba JIT com-
piler in object mode instead of in nopythonmode. In objectmodeNumba iden-
tifies loops that it can compile and compiles them, but runs the rest of the code
using the Python interpreter. Therefore, the code runs a bit slower than in
nopython mode. When the JIT compiler falls back into object mode, Numba
issues a warning. In general, we recommend running in nopython mode, as it
runs faster. If Numba raises an error, correct the error and rerun in nopython
mode. This is the best practice.

TheNumba implementation of NumPy functions can differ in other ways.
Consider the circle() function introduced on page 135. Let’s see what hap-
pens when we try to compile it using Numba.
In[1]: import numpy as np
In[2]: import numba

In[3]: @numba.jit(nopython=True)
In[4]: def circle(r, x0=0.0, y0=0.0, n=12):
...: theta = np.linspace(0., 2. * np.pi, n,
...: endpoint=False)
...: x = r * np.cos(theta)
...: y = r * np.sin(theta)
...: return x0 + x, y0 + y

In[5]: circle(5.0)
Traceback (most recent call last):
...
TypingError: got an unexpected keyword argument 'endpoint'
...

The circle() routine runs perfectly well without Numba, but calling the
Numba version throws an error. The error message tells us that Numba does
not recognize the keyword argument endpoint. Apparently, it’s not imple-
mented in the Numba version of linspace(). We can create a workaround by
eliminating the endpoint keyword, adding an element to the theta array, and
then omitting the last point of the theta array so that the function returns the
same arrays as it does without Numba.
In[6]: @numba.jit(nopython=True)
In[7]: def circle(r, x0=0.0, y0=0.0, n=12):
...: theta = np.linspace(0., 2. * np.pi, n + 1)

380 � Introduction to Python for Science and Engineering

...: x = r * np.cos(theta[:-1])

...: y = r * np.sin(theta[:-1])

...: return x0 + x, y0 + y

In[8]: circle(5.0)
Out[8]:
(array([5.000, 4.330, 2.500, 0.000, -2.500, -4.330,

-5.000, -4.330, -2.500, 0.000, 2.500, 4.330]),
array([0.000, 2.500, 4.330, 5.000, 4.330, 2.500,

0.000, -2.500, -4.330, -5.000, -4.330, -2.500]))

Thus, the Numba implementation of a NumPy function can differ from the
NumPy implementation, which may require some changes in your code. Ad-
ditionally, some of the less commonly used NumPy functions are not (yet)
available in Numba (see Footnote 1 on p. 376.). When one of these is needed,
you can often find a workaround. Sometimes, you can manually code the de-
sired functionality without difficulty. In other cases, you can use the desired
NumPy function without Numba but still use Numba for the rest of the code.
This strategy is explored in Exercise 3.

The decorator @numba.jit(nopython=True) can also be written equivalently
as @numba.njit.

13.1.1.2 Are NumPy Functions Compiled with Numba Faster?

Suppose you want to calculate the sine of a NumPy array. Will the calculation
be faster using NumPy or Numba? Most NumPy functions are already vector-
ized and compiled so they run very fast. Nevertheless, NumPy functions com-
piled using Numba generally run somewhat faster than with NumPy alone, if
you don’t include the compilation time. If you include the compilation time,
Numba can be substantially slower or somewhat faster, depending on the size
of the NumPy array. The program below calculates the sine of an array of N
elements, once using NumPy alone and twice using Numba.

Code: sine_numba.py

1 import numpy as np
2 import numba
3 import time
4
5
6 @numba.jit(nopython=True)
7 def trig(x):
8 a = np.sin(x)
9 return a

10
11
12 # Make NumPy arrayd with N elements

Speeding Up Numerical Calculations � 381

13 N = int(100)
14 x = np.linspace(-1000.0, 1000.0, N)
15
16 # Compute sine of NumPy array using NumPy sine function
17 start_pd = time.perf_counter()
18 a = np.sin(x)
19 end_pd = time.perf_counter()
20 runtime = end_pd - start_pd
21 print("\nNumPy run time = {0:0.4g} secs".format(runtime))
22
23 # Compute sine of NumPy array using Numba
24 start_pd = time.perf_counter()
25 a = trig(x)
26 end_pd = time.perf_counter()
27 runtime = end_pd - start_pd
28 print("\nNumba 1st run time = {0:0.4g} secs (incl. compilation time)"
29 .format(runtime))
30 # Compute sine of NumPy array using Numba a 2nd time
31 start_pd = time.perf_counter()
32 a = trig(x)
33 end_pd = time.perf_counter()
34 runtime = end_pd - start_pd
35 print("\nNumba 2nd run time = {0:0.4g} secs (w/o compilation time)"
36 .format(runtime))

Here are the results obtained using N = 100:
NumPy run time = 1.097e-05 secs

Numba 1st run time = 0.07795 secs (incl. compilation time)

Numba 2nd run time = 4.806e-06 secs (w/o compilation time)

If the compilation time is included, the Numba calculation is 0.07795/1.097×
10−5 = 7106 times slower than the NumPy calculation for this case. If
the compilation time is not included, the Numba calculation is 1.097 ×
10−5/4.806× 10−6 × 10−6 = 2.3 times faster than the NumPy calculation, a
modest gain in speed.

What happens if we increase the size ofN? For the program sine_numba.py
above, Numba, including the compilation time, runs slower than simple
NumPy for N � 108. Moreover, even for N ∼ 108, the runtime is on the
order of seconds or less. Most other NumPy functions yield similar results.
Therefore, for routine computation with NumPy functions, using moderately
sized arrays, using Numba is ill-advised. On the other hand, when long loops
are used, as in gaussian_blur.py above, the compilation time is made up for by
the gain in execution time of the loops, and any compiled NumPy functions
will run at least as fast as they do in simple NumPy.

382 � Introduction to Python for Science and Engineering

13.1.2 Vectorizing Functions with Numba

Numba can vectorize user-defined functions written to act only on scalars and
thus make them work like NumPy ufuncs (see Section 7.1.2.2). Consider the
following user-defined sinc() function (introduced in Section 7.1 and plotted
in Figure 7.1):

Code: sinc0.py
1 import math
2
3
4 def sinc(x):
5 if x == 0.0:
6 return 1.0
7 else:
8 return math.sin(x) / x

This function works on scalar inputs but not on arrays. It is manifestly not
a ufunc as it uses the Python math library, which does not process arrays, to
calculate the sin() function. Even if we rewrite the function so that it uses
the NumPy library to calculate the sin() function, the rewritten sinc() func-
tion would still not work for NumPy arrays as the Python if statement cannot
process arrays (see Section 7.1.1).

Nevertheless, Numba can vectorize this function using the decorator
@numba.vectorize().

Code: sinc_mn.py

1 import math
2 import numba
3
4
5 @numba.vectorize(nopython=True)
6 def sinc(x):
7 if x == 0.0:
8 return 1.0
9 else:

10 return math.sin(x) / x

Running this program from the IPython console, we can then test it:
In[9]: x = np.linspace(0.0, 32.0, 5)
In[10]: x
Out[10]: array([0., 8., 16., 24., 32.])
In[11]: sinc(x)
Out[11]: array([1. , 0.1237, -0.018 , -0.0377, 0.0172])

The sinc() now acts like a NumPy ufunc.
We note that the sinc() function above cannot handle complex arguments

because Python’s math library does not handle complex arguments. However, if

Speeding Up Numerical Calculations � 383

we substitute NumPy’s np.sin() function, which accepts complex arguments,
for math.sin(), the sinc() function handles complex arguments.

13.1.3 Numba Signatures

A sinc() function written withNumPywill accept either real numbers (floats)
or complex numbers and will (try to) infer the output type. If you want more
control over the input and output types, you can include a list of the desired
types, called signatures, in the @numba.vectorize() decorator. Doing so can
also reduce the compilation time.

Code: sinc_nn.py
1 import numpy as np
2 import numba
3
4
5 @numba.vectorize([numba.float64(numba.float64),
6 numba.complex128(numba.complex128)],
7 nopython=True)
8 def sinc(x):
9 if x == 0.0:

10 return 1.0
11 else:
12 return np.sin(x) / x

This function will return an array of floats for an input array of floats and
an array of complex numbers for an input array of complex numbers. This
simpler data type, in this case, numba.float64, must appear in the list before
the more complicated data type numba.complex128.

The scalar function can have multiple inputs and outputs. Here, for ex-
ample, is a two-dimensional version of the sinc() function, which takes two
inputs and produces one output.

Code: sinc_2dnn.py
1 import math
2 import numba
3
4
5 @numba.vectorize([numba.float64(numba.float64, numba.float64)],
6 nopython=True)
7 def sinc(x, y):
8 r = (x ** 2 + y ** 2) ** 0.5
9 if r == 0.0:

10 return 1.0
11 else:
12 return math.sin(r) / r
13
14
15 if __name__ == "__main__":

384 � Introduction to Python for Science and Engineering

Figure 13.2 Plot of 2D sinc() function.

16 import numpy as np
17 import matplotlib.pyplot as plt
18 n = 100
19 x = np.linspace(0.0, 10.0, n)
20 y = np.linspace(-10.0, 10.0, n)
21 f = sinc(x, y)
22
23 X, Y = np.meshgrid(x, y)
24 Z = sinc(X, Y)
25
26 fig, ax = plt.subplots(figsize=(5, 4),
27 subplot_kw={"projection": "3d"})
28 # Make surface plot
29 fig.subplots_adjust(left=0.0, bottom=0.08, right=0.96,
30 top=0.96, wspace=0.05)
31 p1 = ax.plot_surface(X, Y, Z, rcount=50, ccount=50, color="C1")
32
33 fig.savefig("figures/sinc_2dnn.pdf")
34 fig.show()

The list specifying the data types in the @numba.vectorize() decorator stip-
ulates one output and two inputs. An important caveat is that the two in-
put arrays must have the same dimension. The program also plots the two-
dimensional function, which is shown in Figure 13.2.

13.1.3.1 Signatures for Arrays

The signatures specified in the example above are scalars because the orig-
inal unjitted function acts on scalars. How do you specify signatures when
the unjitted functions act on or return arrays? A 1D float array is specified
as numba.float64[:], a 2D float array as numba.float64[:, :], etc. The same
notation works for integer and other data types. For example, the following

Speeding Up Numerical Calculations � 385

decorator applies signatures to the gaussian_blur.py program introduced in
Section 13.1.1:
from numba import int64, float64

@numba.jit(float64[:, :](float64[:, :], int64), nopython=True)

In this case, introducing signatures reduces the compilation time so that it is
completely negligible compared to the run time.

13.2 SIMULATIONS

Dynamical simulations model the behavior of physical objects in space and
time according to an equation of motion or a set of equations of motion. They
work by assuming the initial positions of the physical objects are known and
then use the equations of motion to calculate where these objects will be a
short time ∆t later. Once the new positions are obtained, this process is re-
peated to obtain the particle positions at the next time, again a short time ∆t
later. This process is repeated to obtain the trajectories of the physical objects
over some desired duration of time.

Because calculating what occurs in the next time step depends on what
happened in the last time step, a dynamical simulation will necessarily involve
a loop and, thus, is likely to be quite slow using Python. This is where Numba
can help by speeding up the execution of all loops in the simulation.

To pique your interest, we report up front the acceleration in time obtained
by using Numba for the simulation we introduce below. Without Numba, the
simulation runs in 3 minutes and 15 seconds (195 seconds) using a MacBook
Pro M1 laptop. Using Numba, the simulation runs in 5.3 seconds!

13.2.1 A Brownian Dynamics Simulation

How this works can best be understood using an example. To make things
interesting, we consider the height z(t) as a function of time for a micrometer-
size particle—a colloidal sphere of radius R—suspended in water.Wemeasure
the height from the bottom of the water container.

The height z(t) fluctuates due to random collisions with the water
molecules.The impacts of these collisions are strong enough to keep the parti-
cle from settling to the bottom of the container under the influence of gravity.
Thus, the particle executes a vertical random walk as the water molecules bat-
ter it about. The particle also moves horizontally from side to side, but we will
not concern ourselves with its horizontal motion.

386 � Introduction to Python for Science and Engineering

The particle is also subject to other forces, which we describe below. The
simulation models the vertical movement of the particle as a function of time
with a finite difference equation. The idea is to numerically solve the finite
difference equation to determine the height of the particle z as a function of
time.

The finite difference equation is:2

z(t+∆t) = z(t) + dD(z)
dz

∆t+ D(z) F(z)
kBT

∆t+ Zr(∆t) , (13.1)

where z(t) is the height of the particle at time t and z(t + ∆t) is its height a
short time ∆t later. D(z) is a height-dependent diffusion coefficient,

D(z) = D0λ(x) , (13.2)

where to a good approximation λ(x) is given by

λ(x) = 2x+ 6x2

2 + 9x+ 6x2 , (13.3)

where x = z/R. Note that λ(x) → 1 for x ≫ 1. Thus, far from the wall
when z ≫ R, D → D0. The diffusion constant D0 = kBT/6πηR, where η is
the viscosity of the water, T is the absolute temperature in Kelvins, and kB =
1.380649 × 10−23 J/K is Boltzmann’s constant

The last two terms in Eq. (13.1) arise from different forces acting on the
colloidal particle. Zr(∆t) is the random displacement of the particle in the
z direction caused by collisions with the water molecules. It has a Gaussian
distribution with a zero mean and a variance of

⟨Z2
r ⟩ = 2D(z)∆t . (13.4)

Two forces contribute to F, one due to gravity and another from an interac-
tion between the particle and the flat horizontal bottom of the container. The
gravitational force is given by

Fg = −∆mg , (13.5)

where ∆m is the sphere’s mass less the mass of the liquid it displaces
(Archimedes principle). The Morse potential models the interaction energy
between the particle and the bottom of the container

UM(z) = ϵ
[
e−2(z−zmin)/zw − 2e−(z−zmin)/zw

]
, (13.6)

2For more information on this model, see D. S. Sholl, M. K. Fenwick, E. Atman, & D. C.
Prieve, J. Chem. Phys. 113, 9268–9278 (2000).

Speeding Up Numerical Calculations � 387

Figure 13.3 Plot of Morse potential.

which is plotted in Figure 13.3. The minimum of the potential well is located
at z = zmin and its depth is−ε. The width of the potential well is zw. The force
on the particle due to the Morse potential is

FM(z) = −dUM(z)
dz

=
2ε
zw

[
e−2(z−zmin)/zw − e−(z−zmin)/zw

]
(13.7)

This force is repulsive (it repels the particle from the bottom of the container)
for z < zmin and attractive for z > zmin.The force F is given by the sum Fg+FM.

13.2.2 Nondimensional Simulation Variables and Parameters

When simulating a physical system, it’s generally a good idea to transform the
equations of motion into dimensionless form. Using the dimensionless form
in a simulation keeps the numbers closer to unity and tends to avoid inter-
mediate results during the computation that underflow or overflow the range
covered by floating point numbers (recall fromSection 2.3.2 that floating point
numbers go between approximately ±2× 10−308 and ±2× 10308). An added
benefit is that nondimensionalizing an equation usually reduces the number
of parameters, as different parameters get consolidated.

Since our equation of motion Eq. (13.1) involves distance and time, the
first step is to determine the characteristic distance and time scales of the prob-
lem. For the system we are considering, the characteristic length scale is set by
the particle radius R, and the characteristic time scale is set by the time it takes
a particle to diffuse its radius, which is R2/D0 (the SI units of D0 are m2/s).
Thus, we define the dimensionless length as x = z/R and the dimensionless

388 � Introduction to Python for Science and Engineering

time as τ = D0t/R2. Setting z = Rx and t = R2τ/D, Eq. (13.1) becomes

Rx(τ +∆τ) = Rx(τ) + dD(x)
Rdx

R2∆τ

D0
+

D(x) F(x)
kBT

R2∆τ

D0
+ RXr(∆τ) .

Canceling common factors or R and D0 gives

x(τ +∆τ) = x(τ) + dλ(x)
dx

∆τ + λ(x)RF(x)
kBT

∆τ + Xr(∆τ) .

where λ(x) is given by Eq. (13.3). This suggests that we define a dimensionless
force f = FR/kBT, with kBT/R setting the characteristic force scale. Thus, we
finally arrive at a nondimensional form of the equation of motion

x(τ +∆τ) = x(τ) + dλ(x)
dx

∆τ + λ(x) f(x)∆τ + Xr(∆τ) . (13.8)

Note that the parameters kBT and D0, which appeared in the dimensional
equation of motion Eq. (13.1), do not appear in the dimensionless equation
Eq. (13.8).

The nondimensional random displacement is defined by Xr(∆τ) =
Zr(∆t)/R. The non-dimensional version of Eq. (13.4) is thus given by

⟨X2
r ⟩ = 2λ(x)∆τ . (13.9)

Finally, we need dimensionless forms of the forces given by Eqs. (13.5)
and (13.7). The dimensionless gravitational force, which we callG, is obtained
by dividing ∆mg by the characteristic force kBT/R introduced above, which
gives

G = ∆mgR/kBT . (13.10)

Similarly, the dimensionless force from the Morse potential is given by divid-
ing Eq. (13.7) by kBT/R, which gives

fM(x) = R
kBT

2ϵ
zw

[
e−2(x−xmin)/xw − e−(x−xmin)/xw

]
(13.11)

=
2ϵnd
xw

[
e−2(x−xmin)/xw − e−(x−xmin)/xw

]
, (13.12)

where the nondimensional Morse well depth is given by ϵnd = ϵ/kBT.

Speeding Up Numerical Calculations � 389

13.2.3 Simulation with the Numba Decorator

The program below implements the simulation.

Code: bdsimf.py
1 import numpy as np
2 import numba
3 from scipy.constants import Boltzmann as kB
4 import yaml
5
6
7 @numba.jit(nopython=True)
8 def run_simulation(sim_steps, x0):
9 x = np.zeros(sim_steps, dtype=np.float64)

10 x[0] = x0 # initial particle height
11 for i in range(1, sim_steps):
12 x[i] = x[i - 1] + dh(x[i - 1])
13 return x
14
15
16 @numba.jit(nopython=True)
17 def dh(xi):
18 """
19 x(t+dt) - x(t)
20 """
21 # Calculate dimensionless D
22 denom = 1.0 + xi * (4.5 + 3.0 * xi)
23 D = xi * (1.0 + 3.0 * xi) / denom
24 # Calculate dD/dx
25 dDdx = (1.0 + xi * (6.0 + 10.5 * xi)) / denom ** 2
26 # Calcuate random displacement
27 xrand = np.sqrt(2.0 * D * dt) * np.random.standard_normal()
28 # Return full displacement
29 return (dDdx + D * F(xi)) * dt + xrand
30
31
32 @numba.jit(nopython=True)
33 def F(xi):
34 """
35 Force from potentials on sphere = -dU/dx - G
36 """
37 ex = np.exp(-(xi - x_min) / x_width)
38 return (2.0 * pot_depth / x_width) * (ex * (ex - 1.0)) - G
39
40
41 def read_params(yaml_data_file_name):
42 """Reads simulation parameters from yaml file"""
43 # Open yaml file, read, and close
44 fmeta = open(yaml_data_file_name , "r")
45 meta = yaml.safe_load(fmeta)
46 fmeta.close()
47 # extract parameters read from yaml file
48 temp_C = float(meta["temp_C"])
49 temp_K = temp_C + 273.15
50 kT = kB * temp_K # energy scale
51 diameter = float(meta["diameter"])

390 � Introduction to Python for Science and Engineering

52 radius = 0.5 * diameter # length scale
53 viscosity = float(meta["viscosity"])
54 D0 = kT / (6.0 * np.pi * viscosity * radius)
55
56 dt = float(meta["dt"]) * (D0 / radius ** 2) # dimensionless time
57 x_min = float(meta['z_min_nm']) * 1.0e-9 / radius # ht of pot min
58 x_width = float(meta['z_width_nm']) * 1.0e-9 / radius # pot width
59 pot_depth = float(meta['pot_depth_kT']) # pot depth
60
61 density_sphere = float(meta["density_sphere"])
62 density_fluid = float(meta["density_fluid"])
63 volume = (4.0 / 3.0) * np.pi * radius ** 3
64 g = float(meta["g"])
65 G = (density_sphere - density_fluid) * volume * g * (radius / kT)
66 sim_steps = int(float(meta["sim_steps"]))
67 return sim_steps, dt, x_min, x_width, pot_depth, G
68
69
70 if __name__ == "__main__":
71 import time
72 # Read in simultaion parameters from yaml file
73 data_file_name = "sim_data01"
74 sim_steps, dt, x_min, x_width, pot_depth, G = read_params(
75 data_file_name + ".yaml")
76 # Initialixe particle height (x) array
77 x_start = x_min
78
79 # Do simulation: get height x as a function of time
80 for i in range(2):
81 start_pd = time.perf_counter()
82 x = run_simulation(sim_steps, x_start)
83 end_pd = time.perf_counter()
84 runtime = end_pd - start_pd
85 print("\nrun time = {0:0.4g} seconds".format(runtime))

13.2.3.1 The Input Parameters

As in previous cases, we specify the parameters the simulation needs using a
YAML file:

Data: sim_data01.yaml

z_min_nm: 10.0
z_width_nm: 5.0
pot_depth_kT: 5.0
sim_steps: 1e8
dt: 1e-3
diameter: 5e-6
density_sphere: 1055.0
density_fluid: 997.0
temp_C: 22.0
viscosity: 0.89e-3
g: 9.802
...

Speeding Up Numerical Calculations � 391

All the parameters in the YAML file are provided in SI units unless other-
wise specified in the variable name. The file provides the parameters needed
by the Morse potential, zmin, zw, and the depth of the well ϵ in units of kBT.
The number of simulation steps can be provided as an integer or a float. Next,
the YAML file provides the simulation step size ∆t (in seconds), the sphere
and fluid densities (in kg/m3), the temperature (in ◦C), the fluid viscosity (in
Pa-s=N-s/m2), and the acceleration due to gravity g (in m/s2).

Next, we describe what the four different functions defined in the program
bdsimf.py do.

read_params():This function reads the parameters from theYAMLfile and
returns the five dimensionless parameters needed as input to the simulation.
It has one argument, the base name of the YAML file, that is, the file name
without the .yaml extension.

run_simulation(): This function executes the loop that calculates the val-
ues of the dimensionless height x(t) at a sequence of times spaced by the di-
mensionless time interval ∆τ . Before starting the loop, it creates the NumPy
array x that will store the simulation results. It then sets the starting position
of the particle by setting the first element of the array x[0] = x0, where x0 is
the second argument of the function. While x0 can be almost anything, when
we call run_simulation(), we will set it to the minimum of the Morse potential
well xmin. The first argument of run_simulation() is the number of simulation
steps sim_steps, which is the number of time steps in the simulation and the
size of the x array.

The for loop calculates the next value of x at a time increment of ∆τ by
calling the function dh(), which we describe next.

dh(): This function calculates the last three terms of Eq. (13.8). It has one
scalar (not an array) argument, the current nondimensional particle position.

First, it calculates the nondimensional diffusion coefficient D(x)/D0 =
λ(x), to which the program assigns the variable name D rather than lambda, as
D is more expressive and all variables are understood to be nondimensional.

Next, it calculates the nondimensional derivative (dλ(x)/dx) to which it
assigns the variable name dDdx. Then it calculates the random force, the last
term of Eq. (13.8) using NumPy’s normalized random number generator for
a Gaussian distribution and setting the amplitude according to Eq. (13.9).

Finally, in the return statement, it calculates the force f(x) by calling an-
other function F(), described below, and then pulls all the terms together to
return the sum of the last three terms in Eq. (13.8).

F(): This function has one argument, the current particle position, and
returns the forces due to the Morse potential and gravity.

392 � Introduction to Python for Science and Engineering

Of the four functions, only the first three are compiled using the @numba.
jit(nopython=True) decorator. The first three use only NumPy functions and
thus can be compiled by Numba’s JIT compiler. The first function contains the
simulation loop, which is typically run 106 to 108 times. Therefore, it has the
most to gain by being compiled. The fourth function calls YAML functions,
which cannot be compiled, and will thus throw an error if run with the dec-
orator @numba.jit(nopython=True). Moreover, the fourth function is only run
once so there is little speed to gain by compiling it.

13.2.4 Performance and Saving/Reading Large Data Files

To obtain good statistics on a simulation like this, about 106–108 steps are
needed. As noted above, running the simulation without the decorators with
108 simulations steps takes about 190 seconds on aMacBookProM1. Running
with the decorators takes about 5.3 seconds, representing a speedup by a factor
of 40.

Note that we have used the np.save() and np.load() to save and load the
108 x values generated by this run. This produces an 800 MB npy binary data
file. The save and load times are 0.16 and 0.44 seconds, respectively.

If instead we use the np.savetxt() and np.loadtxt() to save and load the
108 z values, a 2.5 GB text file is produced with save and load times of 78 and
19 seconds, respectively.

For large files, there are significant time and storage space penalties asso-
ciated with writing and reading text files. The only disadvantage of using the
npy binary file format is that the data file is not readable by humans or pro-
grams like Excel. On the other hand, it’s hard to imagine wanting to visually
inspect 108 numbers or manipulate them in an Excel file.

13.2.5 Isolating Numerical Code for Numba

Numba speeds up numerical code, particularly code involving loops and
NumPy arrays and functions. It does not work with most functions from Pan-
das, SciPy, Matplotlib, or other packages. It does not speed up reading from or
writing to data files.Therefore, tomake optimal use ofNumba, you should iso-
late the code that does number crunching, which Numba can speed up, from
other parts of your program that read, write, plot, and otherwise manipulate
data.

This is why the read_params() function in dfsimf.py is not compiled: it
contains code that reads YAML files, code that Numba does not recognize.

Speeding Up Numerical Calculations � 393

Moreover, read_params() has no loops and is only run once, so there is little to
gain by compiling the code.

13.3 USING NUMBA WITH CLASSES

The need to isolate numerical code for processing by Numba from other code
suggests that it can make sense to encapsulate the numerical code by writ-
ing it into a Python class. Indeed, Numba provides the @numba.experimental.
jitclass() decorator for classes. The module is still under development but it
works fine for many purposes in its current form.

The program below runs the same simulation introduced in Section
13.2.3. The class decorator @numba.experimental.jitclass(spec) takes the
name of a list as an argument, spec in this case. Each entry in the list is 2-
element tuple that specifies is name and Numba data type of one of the fields
initialized in the __init__() methods. All of the fields must be included in the
list. Note that the one array in the list is specified using square brackets: [:].

All of the class methods are compiled as nopython functions. In this case,
the methods are reiterations of the same functions that were compiled in the
simulation bdsimf.py in Section 13.2.3.

To run the simulation, the class is first instantiated with the appropriate
dimensionless inputs. Then the run_simulation(x0) method is called with the
initial dimensionless starting position x0 of the particle as the argument. This
simulation fills into the array x the values the dimensionless particle positions,
which is not explicitly returned but instead is available as an instance variable
through the dot syntax.

Code: bdsimc.py

1 import numpy as np
2 from scipy.constants import Boltzmann as kB
3 import numba
4 import yaml
5
6
7 spec = [("sim_steps", numba.int32),
8 ("dt", numba.float64),
9 ("x_min", numba.float64),

10 ("x_width", numba.float64),
11 ("pot_depth", numba.float64),
12 ("G", numba.float64),
13 ("x", numba.float64[:])]
14
15
16 @numba.experimental.jitclass(spec)
17 class BDsim:
18 """Simulates vertical motion of Brownian particle."""
19

394 � Introduction to Python for Science and Engineering

20 def __init__(self, sim_steps, dt, x_min, x_width, pot_depth, G):
21 self.sim_steps = sim_steps
22 self.dt = dt
23 self.x_min = x_min
24 self.x_width = x_width
25 self.pot_depth = pot_depth
26 self.G = G
27 self.x = np.zeros(self.sim_steps)
28
29 def run_simulation(self, x0):
30 self.x[0] = x0 # initial particle height
31 for i in range(1, self.sim_steps):
32 self.x[i] = self.x[i - 1] + self.dh(self.x[i - 1])
33
34 def dh(self, xi):
35 """
36 x(t+dt) - x(t)
37 """
38 # Calculate dimensionless D
39 denom = 1.0 + xi * (4.5 + 3.0 * xi)
40 D = xi * (1.0 + 3.0 * xi) / denom
41 # Calculate dD/dx
42 dDdx = (1.0 + xi * (6.0 + 10.5 * xi)) / denom ** 2
43 # Calcuate random displacement
44 xrand = np.sqrt(2.0 * D * self.dt) * \
45 np.random.standard_normal()
46 # Return full displacement
47 return (dDdx + D * self.F(xi)) * self.dt + xrand
48
49 def F(self, xi):
50 """
51 Force from potentials on sphere = -dU/dx - G
52 """
53 ex = np.exp(-(xi - self.x_min) / self.x_width)
54 return (2.0 * self.pot_depth /
55 self.x_width) * (ex * (ex - 1.0)) - self.G
56
57
58 class read_params:
59 """Reads simulation parameters from yaml file"""
60
61 def __init__(self, yaml_data_file_name):
62 # Open yaml file, read, and close
63 fmeta = open(yaml_data_file_name + ".yaml", "r")
64 meta = yaml.safe_load(fmeta)
65 fmeta.close()
66 # extract parameters read from yaml file
67 self.temp_C = float(meta["temp_C"])
68 self.temp_K = self.temp_C + 273.15
69 self.kT = kB * self.temp_K # [J] energy scale
70 self.diameter = float(meta["diameter"])
71 self.radius = 0.5 * self.diameter # length scale
72 self.viscosity = float(meta["viscosity"])
73 self.D0 = self.kT / (6.0 * np.pi *
74 self.viscosity * self.radius)
75 self.dt = float(meta["dt"]) # [s] time increment

Speeding Up Numerical Calculations � 395

76 self.z_min_nm = float(meta['z_min_nm']) # height of pot min
77 self.z_width_nm = float(meta['z_width_nm']) # pot width
78 self.pot_depth_kT = float(meta['pot_depth_kT']) # pot depth
79 self.sim_steps = int(float(meta["sim_steps"]))
80 self.density_sphere = float(meta["density_sphere"])
81 self.density_fluid = float(meta["density_fluid"])
82 self.g = float(meta["g"])
83 volume = (4.0 / 3.0) * np.pi * self.radius ** 3
84 self.delta_mg = (self.density_sphere -
85 self.density_fluid) * volume * self.g
86 # Form dimensionless parameters needed for simulation
87 self.dt_nd = self.dt * self.D0 / self.radius ** 2
88 self.x_min = self.z_min_nm * 1.0e-9 / self.radius
89 self.x_width = self.z_width_nm * 1.0e-9 / self.radius
90 self.G = self.delta_mg * (self.radius / self.kT)
91
92
93 if __name__ == "__main__":
94 import matplotlib.pyplot as plt
95 import time
96 # Read in simultaion parameters from yaml file
97 data_file_name = "sim_data01"
98 param = read_params(data_file_name)
99 # Initialixe particle height (x) array

100 x_start = param.x_min
101
102 # Do simulation: get dimensionless height x as a function of time
103 sim01 = BDsim(param.sim_steps, param.dt_nd, param.x_min,
104 param.x_width, param.pot_depth_kT, param.G)
105 start_pd = time.perf_counter()
106 sim01.run_simulation(x_start)
107 end_pd = time.perf_counter()
108 runtime = end_pd - start_pd
109 print("\nrun time = {0:0.4g} seconds".format(runtime))
110
111 # Save data to NumPy npy file
112 start_pd = time.perf_counter()
113 np.save(data_file_name + ".npy", sim01.x)
114 end_pd = time.perf_counter()
115 runtime = end_pd - start_pd
116 print("\nsave npy time = {0:0.4g} seconds".format(runtime))

Once again, we specify the parameters the simulation needs using a YAML
file. This time we use a class to read the YAML file, which has the advantage of
making all the parameters available to the user through the dot syntax, includ-
ing both original dimensional parameters and the dimensionless parameters
needed for the simulation.

The bdsimc.py class-based simulation runs in 7.5 seconds on a MacBook
Pro MI processor, a bit slower than the 5.3 time for the function-based
bdsimf.py simulation. You can decide if the functionality provided by the class
structure is worth this modest speed penalty. Both programs run in about 190
seconds without Numba.

396 � Introduction to Python for Science and Engineering

13.4 OTHER FEATURES OF NUMBA

Numba has several other features that can speed up certain kinds of Python
code. Instead of just-in-time compilation, Numba can compile Python func-
tions ahead of time and cache (save) the result for later use. Numba can auto-
matically parallelize code, simultaneously running independent parts of your
code on multiple CPUs. Numba also supports CUDA GPU programming for
systems with Nvidia GPUs. Each of these comes with unique constraints so
you will need to read the documentation carefully and test your code to see if
any of these tools can improve the performance of your code.

13.5 EXERCISES

1. (a) Make a table of the execution speed of the function gaussian_blur()
for the following input image sizes both with and without Numba:
32×32, 64×64, 128×128, 256×256, 512×512, and 1024×1024.
When using Numba, run gaussian_blur() twice and record the
times for both the first and second runs (the second should be
faster, as discussed in Section 13.1.1).

TABLE 13.1 Fill in this table.

Execution time (seconds)

image size (h = w) 32 64 128 256 512 1024 2048

NumPy only

Numba (1st run)

Numba (2nd run)

(b) Plot the execution times tabulated in part (a) vs. the linear im-
age size. You should get a plot similar to the one below but with
faster times, most likely. These data were obtained using a 2018
MacBook Pro laptop. From the results you obtained from your
computer, what is the mean ratio of the execution time without
Numba to the execution time with Numba, the second pass?

Speeding Up Numerical Calculations � 397

2. Monte Carlo integration is a versatile way of computing the value of a
definite integral using random numbers. In this exercise, you will use it
to get an estimate of π.The algorithmworks like this. Choose n random
points in the unit square defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Count
the number m of those points with a radius r ≤ 1. In the limit that n is
very large, the ratio m/n should be equal to the area of one-quarter of
a unit circle Ac = 1

4π divided by the area of the unit square, which is
1. Therefore 4m/n → π as n → ∞. Write a program to determine pi
using Monte Carlo integration. Determine the time it takes to execute
for N random points for N = 104, 105, 106, 107, 108, and 109 with and
without Numba.

Figure 13.4 Estimates ofπ usingMonteCarlo integration for different numbers
of points. Gray line indicates the precise value of π.

398 � Introduction to Python for Science and Engineering

3. The program gaussian_blur.py listed on page 377 calculates the Gaus-
sian blur of an image over a radius of pxblur pixels. However, it leaves
an edge around the perimeter of the blurred image pxblur pixels wide,
which is visible as the dark strip around the perimeter of the blurred
image in Figure 13.1.

(a) With Numba off, modify gaussian_blur.py so that it blurs the
input image to the edge. Do this by using the NumPy function
np.pad() within the function gaussian_blur() to pad the image
array with an extra pxblur pixels around the perimeter. Set the
keyword argument np.pad() mode="mean" and calculate the Gaus-
sian blur over the pixels of the entire original image. The function
gaussian_blur() should return a blurred image the same size as
the original array. In developing and testing your code, reduce the
size of the random image generated by the program to 128 × 128
pixels so that the code runs quickly without using Numba. When
finished, the output plot should show the original image blurred
to the image edge.

(b) Rerun the program you wrote in part (a), but this time using
the decorator @numba.jit(nopython=True). UnlessNumbahas been
updated since the publication of this book to include the NumPy
function np.pad(), you should get an error message.

(c) Modify gaussian_blur.py so that it can take advantage of Numba’s
ability to speed up the execution of loopswhile still usingNumPy’s
np.pad() function. You can do this by padding the original im-
age before sending it to the gaussian_blur() function. For this to
work, you must also alter gaussian_blur() so that it expects the
padded image file. Nevertheless, the function should return the
unpadded blurred image. You should be able to obtain an execu-
tion speed comparable to that obtained for the original version of
gaussian_blur.py using Numba.

4. Starting from the program bdsimc.py, write code that plots a histogram
of the height z (in nanometers). Your plot should use the z coordinates
instead of the dimensionless x coordinates. The scaling of the z co-
ordinate should be done automatically using the parameters from the
read_params class.

• Your plotting code will need to call the BDsim class but should not
be included within the class as Numba does not complile Mat-
plotlib routines.

Speeding Up Numerical Calculations � 399

• To calculate the histogram, use theNumPy routine np.histogram()
rather than the Matplotlib routine plt.hist(), as you can write a
class method that includes the NumPy version in the class BDsim
and have it compiled byNumba. Numbawill not compile theMat-
plotlib version.

• How much time do you save by running the histogram with
Numba vs. running it outside the class without Numba? Is com-
piling histogram() justified?

5. Adapt the program gaussian_blur.py listed on page 377 to read in
the grayscale PNG image below and blur it. Show that your program
works on the following image using pixel blur radii of 4 and 8. Use
np.asarray(Image.open(image_filename).convert('L') to properly read
in the grayscale image (image_filename is the image filename, includ-
ing the path). After opening the image, you will need to convert it to a
NumPy array. Compare the run times with and without Numba for a
blur radius of 8. Bonus: See Exercise 3 if, for aesthetic reasons, you want
to eliminate the black boarder made using gaussian_blur.py routine.

Figure 13.5 Original grayscale image without blurring for Problem 5.

A P P E ND I X A

Maintaining Your Python
Installation

You need to install Python and four scientific Python libraries for scientific
programming with Python: NumPy, SciPy, Matplotlib, and Pandas. You can
install many other useful libraries, but these four are themost widely used and
are the only ones you will need for this text. We recommend using the Ana-
conda distribution for your work in this text. See Section 1.2 for instructions
about how to do this.

A.1 UPDATING PYTHON

Python and its many packages are regularly updated, includingNumPy, SciPy,
Matplotlib, and Pandas. Updating your installation periodically is generally a
good idea. With the Anaconda distribution, you can do this simply by open-
ing the terminal application on your computer (see Section 2.1), typing conda
update conda at the terminal prompt, and pressing Return. Answer [y]es to
the question about installing updates, and you’re all set. You should do this
every month or so.

A.2 TESTING YOUR PYTHON INSTALLATION

Running the program testInsatllation.py below tests your installation of
Python and records information about the installed versions of various pack-
ages used in this manual. If you are a student, you should input your first and
last names inside the single quotes on lines 10 and 11, respectively. Instruc-
tors should modify the course information inside the double quotes in lines
15–17.

400 DOI: 10.1201/9781032673950-A

https://doi.org/10.1201/9781032673950-A

Maintaining Your Python Installation � 401

Code: testInstallation.py
1 """ Checks Python installation and generates a pdf image file that
2 reports the versions of Python and selected installed packages.
3 Students can sent output file to instructor."""
4 import scipy, numpy, matplotlib, pandas, datetime, platform, sys
5 import matplotlib.pyplot as plt
6
7 # If you are a student, please fill in your first and last names
8 # inside the single quotes in the two lines below. You do not need to
9 # modify anything else in this file.

10 student_first_name = 'Gisele'
11 student_last_name = 'Sparks'
12 # If you are an instructor , modify the text between the double quotes
13 # on the next 3 lines. You do not need to modify anything else in
14 # this file.
15 classname = "Quantum Mechanics I"
16 term = "Fall_2024" # must contain no spaces
17 email = "instructor@abcu.edu"
18 timestamp = datetime.datetime.now()
19 tm = "{0:s}".format(timestamp.strftime("%Y-%m-%d %H:%M"))
20 plt.figure(figsize=(8, 6))
21 plt.plot([0, 1], "C0", [1, 0], 'C1')
22 plt.text(0.5, 1.0, "{0:s} {1:s}\n{2:s}\n{3:s}"
23 .format(student_first_name, student_last_name, classname,
24 term),
25 ha="center", va="top", size='x-large',
26 bbox=dict(facecolor="C2", alpha=0.4))

402 � Introduction to Python for Science and Engineering

27 plt.text(0.5, 0.7, "Python {0:s}".format(platform.python_version()),
28 ha="center", va="top", size="large")
29 pkgstr = "scipy: {0:s}\nnumpy {1:s}\nmatplotlib: {2:s}"
30 pkgstr += "\nmatplotlib backend: {3:s}\npandas: {4:s}"
31 pkgstr += "\nPlatform: {5:s}\nSystem: {6:s}"
32 pkgstr += "\n{7:s}"
33 plt.text(0.5, 0.4, pkgstr.format(scipy.__version__,
34 numpy.__version__, matplotlib.__version__,
35 matplotlib.get_backend(), pandas.__version__,
36 platform.platform(), sys.version, tm),
37 ha="center", va="top", color="C5")
38 filename = student_last_name + "_" + student_first_name
39 filename += "_" + term + ".pdf"
40 ttlstr = "This plot has been saved on your computer as"
41 ttlstr += "\n'{0:s}'\nE-mail this file to '{1:s}'"
42 plt.title(ttlstr.format(filename, email), fontsize=10)
43 plt.savefig(filename)
44 plt.show()

A.3 INSTALLING FFMPEG FOR SAVING ANIMATIONS

You must install additional software to record animations in an independent
movie file. We suggest using FFmpeg, which works nicely with Matplotlib.

Installing FFmpeg is a fairly simplematter. Go to your computer’s terminal
application (Terminal on a Macs and Linux or Anaconda Powershell Prompt
on a PC) and type:
conda install -c anaconda ffmpeg

Respond [y]es when asked to proceed. The Anaconda utility conda will install
several new packages and probably update others. When finished, FFmpeg
should work with the Matplotlib animation programs discussed in Chapter
12.

A.4 ADDING FOLDERS/DIRECTORIES TO YOUR PYTHON PATH

For a given Python session, you can add directories to PYTHONPATH from
the IPython command line. Suppose, for example, you want to add the
/Users/dp/mypy to your PYTHONPATH. From the Terminal, you can simply
type:
In[1]: import sys

In[2]: sys.path.append("/Users/dp/mypy")

That does the trick. The only problem is that it’s only good for the current
session. If you relaunch the IPython kernel, /Users/dp/mypy will not be in

Maintaining Your Python Installation � 403

your PYTHONPATH. If you want to add a directory permanently to your
PYTHONPATH, keep reading.

How you permanently add directories (folders) to your PYTHONPATH
depends on which operating system you are using and on which application
you use for running Python.

A.4.1 Spyder

If you use Spyder, the directories can be added to PYTHONPATH from the
“Tools>
PYTHONPATH manager” menu. This works for all operating systems but
only sets PYTHONPATH for the Spyder application.

For all other applications, how you permanently add directories to your
PYTHONPATH depends on which operating system you are using. The in-
structions below showyouhow to do it formacOS,Windows, andLinux.Once
this is done, the directories you add are, by default, a part of PYTHONPATH
for all applications except Spyder.

A.4.2 macOS

If you are using a Mac operating under macOS 10.15 (Catalina, introduced in
October 2019) or later, then you need to edit a file called .zshrc. If you are
using an earlier macOS, you need to edit a file called .bashrc. Installing the
Anaconda distribution should have created it if it didn’t already exist. You can
find it in your home directory (the one you go to in the Terminal app when
you type cd ~). For me, it’s in /Users/dp; for your Mac, it will be in /Users/XXX,
where XXX is the name of your home directory. Launch the text editor BBEdit.
Use the File:Open... menu to open the file and make sure the Show hidden
items box under the Options button is ticked. Then you should see .zshrc (or
.bashrc) in the list of files. Open it. Then, on a new line type

add directory to PYTHONPATH for my modules and repositories
export PYTHONPATH="${PYTHONPATH}:/Users/dp/mypy"

where you replace /Users/dp/mypy with /Users/XXX/mypy. Add a comment if
you wish (always a good idea). Notice that we added a comment before the
line adding the new directory to PYTHONPATH. Comment lines begin with
#, as in a Python file. Save your edits and exit.

You can check that your directory has been added to PYTHONPATH by
opening the Terminal application and, at the prompt, typing

echo $PYTHONPATH

404 � Introduction to Python for Science and Engineering

It should return something like /Users/dp/mypy.
You will need to relaunch Python (e.g., QtConsole or Jupyter Lab) for the

change in PYTHONPATH to take effect.

A.4.3 Windows

If you are using aWindows PC, youmust set a new environment variable.This
is how to do it.

1. Bring up the System menu by pressing WIN + I

2. Scroll to the bottom of the page and press About

3. Find “Device Specifications” and press the link “Advanced System Set-
tings.”

4. In the “System Properties” dialogue box, press the “Environmental
Variables” button.

5. Under “User Variables…”, press the New… button.

6. A New User Variable menu should come up.

7. Under Variable name, PYTHONPATH.

8. Be sure to use all capital letters.

9. Then press the button Browse Directory.

10. In the Browse For Folder menu that appears, navigate to mypy (or
whichever directory you want to add to PYTHONPATH) and select it.

11. The directory, together with its full path, should get copied into the Vari-
able value. In my case, it is C:\Users\dp\mypy. Then press OK.

12. In the Environment Variables, you should see a new Variable PYTHON-
PATH with a value of the path to the directory you added; in my case,
this is C:\Users\dp\mypy.

13. Press OK at the bottom of the Environment Variables menu and then OK
at the bottom of the System Properties menu.

You will need to relaunch Python for the change in PYTHONPATH to
take effect.

Maintaining Your Python Installation � 405

A.4.4 Linux

If you are using Linux, then the procedure is largely the same as it is for the
Mac. Most Linux installations use the Bash shell; some may have migrated to
the Z shell. Depending on whether your computer uses the Bash or Z shell,
open up the file .bashrc or .zshrc and add the lines

add directory to PYTHONPATH for my modules and repositories
export PYTHONPATH="${PYTHONPATH}:/home/dp/mypy"

where you replace /home/dp/mypy with /home/XXX/mypy, where XXX is the name
of your home directory.

You can check that your directory has been added to PYTHONPATH by
opening the Terminal application and, at the prompt, typing

echo $PYTHONPATH

It should return something like /home/dp/mypy.
Youwill need to relaunch Python (e.g., QtConsole, Jupyter Lab, or Spyder)

for the change in PYTHONPATH to take effect.

A P P E ND I X B

Glossary

Many terms introduced in the text are defined below for your convenience.
The page number where the term is first used or defined is provided in paren-
theses.

Artist (202) Artists in Matplotlib are the routines that define the objects that
are drawn in a plot: lines, circles, rectangles, axes, data points, legends,
etc. The artist layer consists of the hierarchy of Python objects (or
classes) that facilitate creating a figure and embellishing it with any of
the features listed above.

Attributes (77) The methods and instance variables of an object.

Backend (200) AMatplotlib backend translates plotting code into useful out-
put. There are two types: hardcopy backends and interactive (alterna-
tively called interface) backends. A hardcopy backend translates Mat-
plotlib code into image files such as PDF, PNG, PS, or SVG. An interac-
tive backend translatesMatplotlib code into instructions your computer
screen can understand. It does this using third-party cross-platform
software, usually written inC orC++, that can produce instructions that
are sent to your computer screen.Thenet result isMatplotlib code that is
platform-independent, working equally well under Windows, macOS,
and Linux.

Blitting (361) Blitting most generally refers to the transfer of a block of pixel
data from memory to your computer screen. However, in the context
of animations, it refers to updating only those regions of the screen that
change from one animation frame to the next. For example, in an ani-
mated plot, such as the one displayed in Fig. 12.3, blitting means only

406 DOI: 10.1201/9781032673950-B

https://doi.org/10.1201/9781032673950-B

Glossary � 407

updating the plot itself since it is the only thing changing. The axes’ la-
bels and tick marks are not redrawn since they are not changing. Not
redrawing static features like the axes, axes labels, and ticks can dra-
matically speed up an animation.

Dynamically typed language (1) In a statically typed language, variable
names are declared to be of a certain type—say a floating point num-
ber or an integer—before they are ever used. A variable’s type is fixed at
the beginning of a program and cannot be changed during the execu-
tion of the program. In a dynamically typed language, variable names are
not generally declared to be of a certain type. Instead, their type is de-
termined on the fly as the program runs. Moreover, the type can change
during the execution of the program.

Instance variables (77) Data stored with an object that can be accessed by
appending a period (.) followed by the name of the instance variable
(without parentheses).

Instantiate (285) Create a new instance (realization) of a class by calling the
class and providing the arguments required by the class constructor
(__init__ method).

Method (76) Function associated with an object that acts on the object or its
attributes. A method is invoked by appending a period (.) followed by
the method’s name and an open-close set of parentheses, which can but
need not take an argument.

Object (2) In object-oriented programming, an object is generally thought of
as a collection of data together with methods that act on the data and
instance variables that characterize various aspects of the data.

Object-oriented programming (OOP) (2) Object-oriented programming
refers to programming based on the concept of objects that interact with
each other in a modular manner. Scientific programming is typically
procedural. However, object-oriented design becomes increasingly use-
ful as the size and complexity of a scientific programming task increases.

Universal function or ufunc (133) A function that operates on NumPy ar-
rays (ndarrays) in an element-by-element fashion. Such a function is
said to be “vectorized.” A NumPy ufunc also respects specific rules
about handling arrays of different sizes and shapes.

408 � Introduction to Python for Science and Engineering

Vectorized code (201) Computer code that processes vectors (ndarrays in
NumPy) as the basic unit rather than individual data elements.

Wrapper (19) A Python program that provides a Python interface to a pro-
gram written in another language, usually C, C++, or Fortran.

A P P E ND I X C

Python Resources

This text introduces Python for science and engineering applications but is
hardly exhaustive. There are many other resources that you will want to tap.
Here we point out several that you may find useful.

C.1 PYTHON PROGRAMS AND DATA FILES INTRODUCED IN
THIS TEXT

Throughout the text, various Python programs and data files are introduced.
All are freely available at https://github.com/djpine/python-scieng-public.

C.2 WEB RESOURCES

The best web resource for Python is a good search engine like Google. Never-
theless, I list a few websites here that you might find useful.

Python home page: https://www.python.org/.
The official Python website. I almost never look here.

Python 3 language reference: https://docs.python.org/3/reference/.
I look here sometimes for detailed information about Python 3, which
is the version used in this text.

NumPy Reference: https://docs.scipy.org/doc/numpy/reference/.
I usually start here when I need information about NumPy. It has links
to just about all the NumPy documentation I need. By the way, I say
“num-pee,” which rhymes with “bumpy” —a lot of people say “num-
pie,” which doesn’t sound like English to me.

DOI: 10.1201/9781032673950-C 409

https://github.com/djpine/python-scieng-public
https://www.python.org
https://docs.python.org/3/reference
https://docs.scipy.org/doc/numpy/reference
https://doi.org/10.1201/9781032673950-C

410 � Introduction to Python for Science and Engineering

SciPy Reference: https://docs.scipy.org/doc/scipy/reference/.
I start here when I need information about SciPy, its various packages
and their functions. I say “psy-pi” for SciPy, like everyone else.Who says
I have to be consistent? (See Emerson.)

Pyplot: https://matplotlib.org/stable/api/pyplot_summary.html.
The Plotting Commands Summary page forMatplotlib. You can go to the
main Matplotlib page, http://matplotlib.org/, but frankly, it’s less useful.

Stack Overflow: https://stackoverflow.com/questions/.
stackoverflow is a set of websites that lets people pose and answer ques-
tions related to computer programming in every computer language
imaginable. Nearly every question or problem you can think of has al-
ready been asked and answered. If it isn’t and you need to ask a question,
pose it as precisely as possible and find the solution to your problem.
Take advantage of this valuable resource.

Pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html.
There is probably some useful information here, but frankly, I recom-
mend stackoverflow for nearly all your questions about Pandas: https:
//stackoverflow.com/tags/pandas/info.

Jupyter Lab: https://jupyterlab.readthedocs.io/en/stable/.
I go to this page to learn about Jupyter Lab.

Anaconda/Continuum: https://www.anaconda.com/.
Get virtually all the Python packages you want here from Continuum
Analytics. Anaconda is available on all platforms:Macs, PCs, and Linux
machines.

Mailing lists: Some software packages have mailing lists to which you can
subscribe or pose questions about a specific package. They give you ac-
cess to a community of developers and users that can often provide
expert help. Remember to be polite and respectful of those helping
you and those posting questions. The URL for the SciPy mailing list is
http://www.scipy.org/Mailing_Lists/. The URL for theMatplotlib mail-
ing list is https://lists.sourceforge.net/lists/listinfo/matplotlib-users/.

C.3 BOOKS

There are a lot of books on Python and there is no way I can provide re-
views for all of them. The book by Mark Lutz, Learning Python, published by

https://docs.scipy.org/doc/scipy/reference
https://matplotlib.org/stable/api/pyplot_summary.html
http://matplotlib.org
https://stackoverflow.com/questions
http://pandas.pydata.org/pandas-docs/stable/10min.html
https://jupyterlab.readthedocs.io/en/stable
https://www.anaconda.com
http://www.scipy.org/Mailing_Lists
https://lists.sourceforge.net/lists/listinfo/matplotlib-users
https://stackoverflow.com/tags/pandas/info
https://stackoverflow.com/tags/pandas/info

Python Resources � 411

O’Reilly Media, provides a fairly comprehensive, if verbose, introduction for
non-scientific Python.

For Pandas, the book by its originator, Wes McKinney, called Python for
Data Analysis provides a thorough but terse treatment and slanted toward ap-
plications in finance. Some well-written tutorials on the web cover many as-
pects of Pandas, but it takes some digging to find useful ones.

http://www.taylorandfrancis.com

Index

addition operator (+), 7
adjust space around plots, see

subplots_adjust
animation, 351

annotating animations, 355
blitting, 361
combining multiple animation

instances, 370
combining videos with

animated functions, 368
dynamic text, 355
fixed number of frames, 358
function animation, 357
function call, 361
histogram, 369
indeterminate number of

frames, 362
save to file, see FFmpeg
sequence of images, 351
static elements, 359
until a condition is met, 362

anonymous functions, see lambda
expressions

append, 121, 352, 355, 357
argument, see function
arithmetic, 7

order of operations, 6
array (NumPy), 61

multidimensional, 69
indexing, 71

array operations, 72
attributes, 77, 148
Boolean indexing, 67
broadcasting, 73

conditional (where), 131
creating, 61, 69
differences with lists, 75
indexing, 66, 71

b[i,j] vs b[i][j], 71
instance variables, 148
masked, 178, 187
mathematical operations, 63
matrices, 69

matrix operations, 72
methods, 77, 148
printing, 89
reshaping, 70
slicing, 66

assert statement, 124
assignment operator (=), 10
attribute, see object
axes

manual ticks
labels, 198
placement, 198

backend, 200
binary arithmetic operations, 7
blitting, see animation
Boolean operators, 107
break, see loop control statements
broadcasting, see array (NumPy)

case sensitive
commands, 6, 26
variable names, 14

class, 285, 297
attributes, 284

413

414 � Index

__dict__ method, 296
methods, 284

comma after assigned variable, 360
comma after variable name, 360
comma-separated value file, see CSV

file
comments, 17

comment character #, 17
comparisons, 107
complex, see numeric types
conditional statements, 102

where function, if-else for
NumPy arrays, 131

if, 106
if-elif-else, 102
if-else, 105

configure subplots icon, 183
continue, see loop control statements
CSV file, 92
curve fitting, 236

linear, 150
with weighting (χ2), 153

DataFrame, 320
creating, 313
index attribute, 327

dates and times, 309
datetime

replace, 342
decorator, 375
dictionaries, 59
differential equations, see ODEs
discrete (Fast) Fourier transforms,

see FFT
division operators

floor division (//), 7
normal division (/), 7

docstring, 17
documentation

books, 410

help, 25
online, 409

dynamical typing, 13

encapsulation, 284
enumerate, 118
exceptions, 112, 122

handling, 122
exponentiation operator (**), 7

FFmpeg, 354, 355
installing, 402

FFT, 273
figure

navigation toolbar, 164
figure size

figsize, 185
file names

spaces, 17
floating point, see numeric types
Floating point numbers, 8
function, 127

anonymous functions, see
lambda expressions

argument
passing function names, 137
variable number (*args,

**kwargs), 136
derivative (deriv), 138
keyword argument (kwarg), 95,

134
namespace, 140
passing (immutable) strings,

variables, and tuples, 143
passing (mutable) lists and

arrays, 143
passing function names and

parameters, 137
passing mutable & immutable

objects, 146

Index � 415

passing mutable and immutable
objects, 144

positional argument, 134
universal function (ufunc), 133
unnamed arguments

**kwargs, 139
*args, 137

user defined, 128

garbage collection, 11
generator function, 362, 365
glob, 353
graphical user interface, see GUI
Greek letters in plots, see LATEX in

plots
GUI, 284

id function, 10
IDEs

JupyterLab, 39
if __name__ == __main__:, 304
imageopenImage.open(), 354
importing modules, 24

Matplotlib, 24
NumPy, 20
Pandas, 306
SciPy, 243

imshow(), 354
indentation, 105
input function, 83, 85

type casting, 85
installing Python, 3
instance variable, see object
instantiate, 285
integers, see numeric types
integrals, see numerical integration
Integrated Development

Environments, see IDEs
interactive mode, plt.ion(),

plt.ioff(), 164, 360

IPython, 5, 6
JupyterLab, 39
launching shell from Terminal, 5
magic commands, 26, 27
navigation commands, 27
Qt Console, 5
Spyder, 35
tab completion, 29

IPython pane, 6
iterable sequence, 117

JupyterLab IDE, 39

keyboard input, 83, see also input
function

keyword argument, see function
kwarg, see function

lambda expressions, 146
set_printoptions, 90

LATEX in plots, 193
fonts, 195
Greek letters, 196
math symbols, 197
non-italicized text in math

mode, 195
least squares fitting

linear, 150
with weighting (χ2), 153

legend, 167, 169
linear algebra, 251

eigenvalue problems, 253
banded matrices, 254
Hermitian matrices, 254

matrix determinant, 251
matrix inverse, 251
matrix multiplication, 251
systems of equations, 251

linear equations, 25

list comprehensions, 120

1

416 � Index

lists, 53
adding in place, 57
appending, 57
differences with NumPy arrays,

75
multidimensional, 56
slicing, 55
zero-indexed, 54

literals, 13
logarithmic plots, 180

set_xscale, 183
set_yscale, 183, 186
log-log, 183
semi-log, 181, 186

logical operators, 107
loop control statements, 118

break, 118
continue, 119

loops
array operations, 119
for, 113

enumerate, 118
slow execution, 120

while, 110
infinite loop, 112, 113

masked arrays, 178, 187
masking data, 215
math text in plots, see LATEX in plots
Matplotlib, 20

artist layer, 202
backend, 200

Qt5Agg, 201
PyPlot scripting layer, 204

backends, 204
state machine, 205

software layers, 200
matrix operations, 72

dot, cross, and outer products,
73

method, see object
modules, 19

creating, 290
importing, 20

multiplication operator (*), 7

namespace, 21, 140
nonlinear equations, 255

bisection, 258
Brent method, 255
Newton-Raphson, 258
Ridder, 258
systems, 258

Numba
classes, 393
isolating numerical code, 392
@jit, 376
@njit, 380
@vectorize, 382
nopython mode vs. object mode,

379
signatures, 383

numeric types, 7
complex, 9
floating point, 8
integers, 7

numerical integration, 258
single, 259
double, 263
double integrals, 263
methods, 258
numerical data, 264
polynomials, 262
single integrals, 259

NumPy, 19, 22
array, see array (NumPy), see

array (NumPy)
functions, 22

object, 9, 148

Index � 417

attribute, 77
attributes, 77, 148
instance variable, 77
instance variables, 148
methods, 76, 148, 285

object-oriented programming, 2, 76,
284

objects, 76
ODEs, 265

solve_ivp, 265
OOP, see object-oriented

programming
operator overloading, see

overloading
order of arithmatic operations, 6
overloading

operator, 52

packages
creating, 290

Pandas, 20, 306
agg method, 344
apply method, 342
axis, 342
Boolean indexing, 316
conditional indexing, 316, 329
data from web, 326
DataFrame

indexing, 315
indexing with iloc, 315
indexing with loc, 316

dates and times, 309
dt.total_seconds, 343
dtypes, 314
groupby method, 337
groupby object, 338
iloc method, 315
loc method, 316
pd.to_datetime, 342
plotting, 332

reading data, 317
CSV files, 317
Excel files, 324

selecting data, 329
Series, 307
sorting data, 328
statistical methods, 330

table, 343
time Series, 309

PEP 8, 34
plotting, 163

tight_layout, 182
3D plots, 217, 280
adjusting space around subplots,

182
color codes, 171
contour plots, 208
error bars, 174, 246
excluding points, 178
insets, 191
layering (order) of plot

elements: zorder, 170
line and symbol types, 170
log-log, 183, 186
masked arrays, 178
meshgrid, 206
multiple axes, 189
OO interface, 183, 200
PyPlot, 166, 200
semi-log, 181, 186
set axis limits, 177, 187
streamline plots, 211
subplots, 179, 187

grid, 187
unequal grid, 247, 334

subplots, 187
two x axes, 190

polar plot, 365
polynomial functions

numpy.polynomial.polynomial

418 � Index

polyfit, 240
polyint, 262
polyval, 240, 262

Laguerre, 226
Legendre, 226

polynomials, 242
positional argument, see function
power operator (**), 7
PowerShell

launching under Windows, 5
print() function, 18, 85

f-strings, 89
formatted, 85
with arrays, 90

print function
suppress new line, 117

program, 15
Python

launching shell from Terminal, 5
Python Console, 5
PYTHONPATH, 291

updating, 402

Qt Console for IPython, 5
How to launch, 5
JupyterLab, 39
Spyder, 35

random numbers, 247
integers, 249
normally distributed, 248
Poisson, 249
uniformly distributed, 247

reading data from a file
binary file (fast), 392
CSV file, 92

Pandas, 317
Excel file (Pandas), 324
text file, 91

glob, 353

remainder operator (%), 7
reserved words, 14
routine, see program
RuntimeWarning

supress, 132

save animation to movie file, see
FFmpeg

saving data to a file
binary file (fast), 392
CSV file, 96
text file, 94

SciPy, 19, 225
eigenvalue problems, 253
FFT, 273
importing subpackages, 229
linear algebra, 250
nonlinear equations, 255
numerical integration, 258
random numbers, 247
solving ODEs, 265
special functions, 226
splines, 230
systems of equations, 251

script, see program
Seaborn, 172

line & symbol colors, 172
sort data

NumPy arrays, 77, 149
using Pandas, 328

special functions (SciPy), 226, 228
Airy, 226
Bessel, 226

zeros, 228
error, 226
gamma, 226
random numbers, 247

splines, 230
cubic, 232
finding roots, 236

Index � 419

linear, 231
smoothing, 234

Spyder IDE, 35
strings, 51

concatenation (+), 51
quotes, single & double, 51
split(), 76

subplots_adjust, 182, 209
subtraction operator (-), 7
syntax checkers, 34
syntax highlighting, 15

tab completion, see IPython
Terminal

launching under Linux, 5
launching under macOS, 4
launching under Windows, 5

terminating a program while it’s still
running, 112

TEX in plots, see LATEX in plots
text editors for programming, 15, 16
three-dimensional plots, 217
ticks

color (parameters), 190
manual labels, 188
manual placement, 188, 218, 246

time module, 119

timing code execution, see time
module, 120

tuples, 53, 58
type() function, 10
type hints, 134

ufuncs, 133
Unicode characters, 53
unicode characters, 52
universal function (ufunc), 133
universal functions, see ufuncs
updating Python, 400

variables, 10
legal names, 14

vectorized code, 133

wrapper, 1, 19, 200
writing data to a file

binary file (fast), 392
CSV file, 96
text file, 94

YAML files, 295
yield statement, 365, 368

zip() function, 95, 98

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface to First Edition
	Preface to Second Edition
	About the Author
	CHAPTER 1: Introduction
	1.1. INTRODUCTION TO PYTHON FOR SCIENCE AND ENGINEERING
	1.2. INSTALLING PYTHON

	CHAPTER 2: Launching Python
	2.1. INTERACTING WITH PYTHON: THE IPYTHON SHELL
	2.2. THE IPYTHON SHELL
	2.3. INTERACTIVE PYTHON AS A CALCULATOR
	2.3.1. Binary Arithmetic Operations in Python
	2.3.2. Types of Numbers
	2.3.3. Numbers as Objects

	2.4. VARIABLES AND ASSIGNMENT
	2.4.1. Names and the Assignment Operator
	2.4.2. Legal and Recommended Variable Names
	2.4.3. Reserved Words in Python

	2.5. SCRIPT FILES AND PROGRAMS
	2.5.1. Editors for Python Scripts
	2.5.2. First Scripting Example

	2.6. PYTHON MODULES
	2.6.1. Python Modules and Functions: A First Look
	2.6.2. Some NumPy Functions
	2.6.3. Scripting Example 2
	2.6.4. Different Ways of Importing Modules

	2.7. GETTING HELP: DOCUMENTATION IN IPYTHON
	2.8. PERFORMING SYSTEM TASKS WITH IPYTHON
	2.8.1. Magic Commands
	2.8.2. Tab Completion
	2.8.3. Recap of Commands

	2.9. PROGRAMMING ERRORS
	2.9.1. Error Checking

	2.10. EXERCISES

	CHAPTER 3: Integrated Development Environments
	3.1. PROGRAMMING AND INTERACTING WITH PYTHON
	3.2. PROGRAMMING STYLE AND CODING ERRORS: PEP 8 AND LINTERS
	3.3. THE SPYDER IDE
	3.3.1. Autoformatting and Linting in Spyder
	3.3.2. Running Python Code in Spyder

	3.4. THE JUPYTERLAB IDE
	3.4.1. Jupyter Extensions

	3.5. JUPYTER NOTEBOOKS
	3.6. LAUNCHING A JUPYTER NOTEBOOK
	3.7. RUNNING PROGRAMS IN A JUPYTER NOTEBOOK
	3.8. ANNOTATING A JUPYTER NOTEBOOK
	3.8.1. Adding Headings and Text

	3.8.2. Saving a Jupyter Notebook
	3.8.3. Editing and Rerunning a Notebook
	3.8.4. Quitting a Jupyter Notebook
	3.8.5. Working with an Existing Jupyter Notebook

	CHAPTER 4: Strings, Lists, Arrays, and Dictionaries
	4.1. STRINGS
	4.1.1. Unicode Characters

	4.2. LISTS
	4.2.1. Slicing Lists
	4.2.2. Multidimensional Lists
	4.2.3. Appending to Lists
	4.2.4. Tuples

	4.3. DICTIONARIES
	4.4. NUMPY ARRAYS
	4.4.1. Creating Arrays (1-d)
	4.4.2. Mathematical Operations with Arrays
	4.4.3. Slicing and Addressing Arrays
	4.4.4. Fancy Indexing: Boolean Indexing
	4.4.5. Multidimensional Arrays and Matrices
	4.4.6. Broadcasting
	4.4.7. Differences Between Lists and Arrays

	4.5. OBJECTS
	4.6. EXERCISES

	CHAPTER 5: Input and Output
	5.1. KEYBOARD INPUT
	5.2. SCREEN OUTPUT
	5.2.1. Formatting Output with str.format()
	5.2.2. Formatting with f-strings
	5.2.3. Printing Arrays

	5.3. FILE INPUT
	5.3.1. Reading Data from a Text File
	5.3.2. Reading Data from an Excel File: CSV Files

	5.4. FILE OUTPUT
	5.4.1. Writing Data to a Text File
	5.4.2. Writing Data to a CSV File

	5.5. EXERCISES

	CHAPTER 6: Conditionals and Loops
	6.1. CONDITIONALS
	6.1.1. if, elif, and else Statements
	6.1.2. More about Boolean Variables, Operators, and Expressions

	6.2. LOOPS
	6.2.1. while Loops
	6.2.2. for Loops
	6.2.3. Loop Control Statements
	6.2.4. Loops and Array Operations

	6.3. LIST COMPREHENSIONS
	6.4. HANDLING EXCEPTIONS
	6.5. EXERCISES

	CHAPTER 7: Functions
	7.1. USER-DEFINED FUNCTIONS
	7.1.1. Looping Over Arrays in User-Defined Functions
	7.1.2. Fast Array Processing for User-Defined Functions
	7.1.3. Functions with More than One Input or Output
	7.1.4. Type Hints
	7.1.5. Positional and Keyword Arguments
	7.1.6. Variable Number of Arguments
	7.1.7. Passing a Function Name and Its Parameters as Arguments

	7.2. NAMESPACE AND SCOPE IN PYTHON
	7.2.1. Scope: Four Levels of Namespaces in Python
	7.2.2. Variables and Arrays Created Entirely Within a Function
	7.2.3. Passing Lists and Arrays to Functions: Mutable and Immutable Objects

	7.3. ANONYMOUS FUNCTIONS: LAMBDA EXPRESSIONS
	7.4. NUMPY OBJECT ATTRIBUTES: METHODS AND INSTANCE VARIABLES
	7.5. EXAMPLE: LINEAR LEAST SQUARES FITTING
	7.5.1. Linear Regression
	7.5.2. Linear Regression with Weighting: ÷2

	7.6. EXERCISES

	CHAPTER 8: Plotting
	8.1. AN INTERACTIVE SESSION WITH PYPLOT
	8.2. BASIC PLOTTING
	8.2.1. Specifying Line and Symbol Types and Colors
	8.2.2. Error Bars
	8.2.3. Setting Plotting Limits and Excluding Data
	8.2.4. Subplots

	8.3. LOGARITHMIC PLOTS
	8.3.1. Semi-Log Plots
	8.3.2. Log-Log Plots

	8.4. MORE ADVANCED GRAPHICAL OUTPUT
	8.4.1. An Alternative Syntax for a Grid of Plots

	8.5. PLOTS WITH MULTIPLE AXES
	8.5.1. Plotting Quantities that Share One Axis but not the Other
	8.5.2. Two Separate Scales for a Data Set

	8.6. PLOTS WITH INSETS
	8.7. MATHEMATICS AND GREEK SYMBOLS
	8.7.1. Manual Axis Labeling

	8.8. THE STRUCTURE OF MATPLOTLIB: OOP AND ALL THAT
	8.8.1. The Backend Layer
	8.8.2. The Artist Layer
	8.8.3. The PyPlot (scripting) Layer

	8.9. CONTOUR AND VECTOR FIELD PLOTS
	8.9.1. Making a 2D Grid of Points
	8.9.2. Contour Plots
	8.9.3. Streamline Plots
	8.9.4. Vector Field (quiver) Plots

	8.10. THREE-DIMENSIONAL PLOTS
	8.10.1. Cartesian Coordinates
	8.10.2. Polar Coordinates

	8.11. EXERCISES

	CHAPTER 9: Numerical Routines: SciPy and NumPy
	9.1. SPECIAL FUNCTIONS
	9.1.1. Important Note on Importing SciPy Subpackages

	9.2. SPLINE FITTING, SMOOTHING, AND INTERPOLATION
	9.2.1. Interpolating Splines
	9.2.2. Smoothing Splines
	9.2.3. Finding Roots (zero crossings) of Numerical Data

	9.3. CURVE FITTING
	9.3.1. Linear Fitting Functions
	9.3.2. Polynomial Fitting Functions
	9.3.3. Nonlinear Fitting Functions

	9.4. RANDOM NUMBERS
	9.4.1. Initializing NumPy’s Random Number Generator
	9.4.2. Uniformly Distributed Random Numbers
	9.4.3. Normally Distributed Random Numbers
	9.4.4. Random Distribution of Integers
	9.4.5. Poisson Distribution of Random Integers

	9.5. LINEAR ALGEBRA
	9.5.1. Basic Computations in Linear Algebra
	9.5.2. Solving Systems of Linear Equations
	9.5.3. Eigenvalue Problems

	9.6. SOLVING NONLINEAR EQUATIONS
	9.6.1. Single Equations of a Single Variable
	9.6.2. Solving Systems of Nonlinear Equations

	9.7. NUMERICAL INTEGRATION
	9.7.1. Single Integrals of Functions
	9.7.2. Double Integrals
	9.7.3. Integrating Numerical Data

	9.8. SOLVING ODES
	9.8.1. A First-Order ODE
	9.8.2. A Second-Order ODE

	9.9. DISCRETE (FAST) FOURIER TRANSFORMS
	9.9.1. Continuous and Discrete Fourier Transforms
	9.9.2. The SciPy FFT Library

	9.10. EXERCISES

	CHAPTER 10: Python Classes: Encapsulation
	10.1. A VERY SIMPLE CLASS
	10.2. A BRIEF INTRODUCTION TO MODULES AND PACKAGES
	10.2.1. Pythonpath

	10.3. A CLASS FOR READING AND PROCESSING DATA
	10.3.1. The Data
	10.3.2. The Class
	10.3.3. The Code

	10.4. A CLASS OF RELATED FUNCTIONS
	10.5. INHERITANCE
	10.6. EXERCISES

	CHAPTER 11: Data Manipulation and Analysis: Pandas
	11.1. DATA STRUCTURES: SERIES AND DATAFRAME
	11.1.1. Series
	11.1.2. DataFrame

	11.2. INDEXING DATAFRAMES
	11.2.1. Pandas iloc Indexing
	11.2.2. Pandas loc Indexing

	11.3. READING DATA FROM FILES USING PANDAS
	11.3.1. Reading from Excel Files Saved as CSV Files
	11.3.2. Reading from an Excel File
	11.3.3. Getting Data from the Web

	11.4. EXTRACTING INFORMATION FROM A DATAFRAME
	11.5. PLOTTING WITH PANDAS
	11.6. GROUPING AND AGGREGATION
	11.6.1. The groupby Method
	11.6.2. Iterating Over Groups
	11.6.3. Reformatting DataFrames
	11.6.4. Custom Aggregation of DataFrames

	11.7. EXERCISES

	CHAPTER 12: Animation
	12.1. ANIMATING A SEQUENCE OF IMAGES
	12.1.1. Simple Image Sequence
	12.1.2. Annotating and Embellishing Videos

	12.2. ANIMATING FUNCTIONS
	12.2.1. Animating for a Fixed Number of Frames
	12.2.2. Animating until a Condition is Met

	12.3. COMBINING VIDEOS WITH ANIMATED FUNCTIONS
	12.3.1. Using a Single Animation Instance
	12.3.2. Combining Multiple Animation Instances

	12.4. EXERCISES

	CHAPTER 13: Speeding Up Numerical Calculations
	13.1. NUMBA’S BASIC FUNCTIONS
	13.1.1. Faster Loops and NumPy Functions
	13.1.2. Vectorizing Functions with Numba
	13.1.3. Numba Signatures

	13.2. SIMULATIONS
	13.2.1. A Brownian Dynamics Simulation
	13.2.2. Nondimensional Simulation Variables and Parameters
	13.2.3. Simulation with the Numba Decorator
	13.2.4. Performance and Saving/Reading Large Data Files
	13.2.5. Isolating Numerical Code for Numba

	13.3. USING NUMBA WITH CLASSES
	13.4. OTHER FEATURES OF NUMBA
	13.5. EXERCISES

	Appendix A: Maintaining Your Python Installation
	A.1. UPDATING PYTHON
	A.2. TESTING YOUR PYTHON INSTALLATION
	A.3. INSTALLING FFMPEG FOR SAVING ANIMATIONS
	A.4. ADDING FOLDERS/DIRECTORIES TO YOUR PYTHON PATH
	A.4.1. Spyder
	A.4.2. macOS
	A.4.3. Windows
	A.4.4. Linux

	Appendix B: Glossary
	Appendix C: Python Resources
	C.1. PYTHON PROGRAMS AND DATA FILES INTRODUCED IN THIS TEXT
	C.2. WEB RESOURCES
	C.3. BOOKS

	Index

