Introduction to
Python for Kids

Learn Python the Fun Way by
Completing Activities and
Solving Puzzles

Aarthi Elumalai

ApPress’

Introduction to
Python for Kids

Learn Python the Fun Way by
Completing Activities
and Solving Puzzles

Aarthi Elumalai

Apress’

Introduction to Python for Kids

Aarthi Elumalai
Chennai, Tamil Nadu, India

ISBN-13 (pbk): 978-1-4842-6811-7 ISBN-13 (electronic): 978-1-4842-6812-4
https://doi.org/10.1007/978-1-4842-6812-4

Copyright © 2021 by Aarthi Elumalai

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6811-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6812-4

Dedicated to My Daughter and to the rest of my family
who believed me when no one would and stood by me
through everything.

Table of Contents

About the AUthOrccccmiimmiemmssmsessssss s Xix
About the Technical REVIEWETcusessssessssnsssassssassssnsssassssnsssansssanssns Xxi
INtroductioncccuvemnemmnmmmsnmmsnmssnmssnssas s nnnnnas Xxiii
Chapter 1: Did You KNOW?ccounmmmmmmmmmmmmmmmmmmssssssssnsssssssssssssssssssssssssns 1
What iS programming?........ccccveeriererrerseresssemsessessssssesessssssessessesssssssessesssssssesseses 1
Why should your Kids learn t0 Code?covvrvrierierenrnrenienssessessessesessessenses 2

WRY PYENON?......ooece et sese s sa e s snesa e e s s sae s s saennes 7
PYENON IS TUN! ...t e e s 8
GAMES! ...t 9
Graphics and animation..........ccccveevvrrrrierienssersese s e e enens 9
WEDSITES ... 10

Y 0] 0 10
Getting the most out of this DOOK..........ccccvirinninin s, 11
SUMMANY....eieeereseee e se e r e e s e nee e 12
Chapter 2: Let’s Install Python!ccccccimmnnnemmnmnnnssnnnnssssnmmssnns 13
Speak the computer’s 1anguagecocccvvcvnennnse s 13
Get started — install Python ..o 14
Installing Python on a Windows COMPULENcccvrveernsenenenenesesessesessesessnnes 14
Download PYthoN..........coerercccre e 15

TABLE OF CONTENTS

11153 P2 | 2471370 S 16
Installing Python on @ Mac deviCe.........ccccvveririnienneniensensen e nensessee e senenns 18
Download Python.........ccoe i 18
1153 P2 | 2471370 S 20
1] 4= 7 25
Chapter 3: Your First Python Program..........ccuecemmmmsssnnnnnssssssnsssssssnnnes 27
Creating and running programs in PYythoncccoeernennenrencsssesesese e 27
Python interactive mode (Python Shell) ... 30
Your Shell can do Math ... 30
Print With PYIRON.....c..ooeircere e sa e snens 32
1] T 0 o 0 [S 33
Python activity: Print your name (and SOmMe More)cccuevreveinsensesessnsensennens 36
SUMMANY..c .ot e b e e e e p e e e e aenrs 37
Chapter 4: Python Loves NUMDErScccccmmmsssnmmmmssssssnnmsssssssssssssnnnnss 39
NUMDEIS iN PYENON.....c.ec e 39
STOre YOUr NUMDEKScovevirierce e e 40
0] 0111 46
Your numbers come in different forms ... 47
1Y (=T [SO 48
Floating-point NUMDEIS ..o s 49
COMPIEX NUMDETS. ... coceeecerercere st sa e ene e 50
Type conversion between NUMDELSccccvvrvenncrcer e 53
Mini project — Do you understand nUMDErs?.........ccccovninvnennsnsnsesesssessennens 57
SUMMANY.....eeieereeee s r e n e ne e e 58

TABLE OF CONTENTS

Chapter 5: Let’s Play with Our Numbers!ccccinnneemnnnnssnnnnnnsssnnnns 59
Get your numbers out t0 pPlay........cccovrecrnrnnie s 59
Basic Math operations ... ————— 60
Special Math operations in Python ... 62
AsSigNMeNt OPErationscccvveernieseniesnsse s 65
What COMES firSt? ... 67
Cool stuff with NUMDENS.........ccorirer s 70
Floor and ceiling of @ NUMDENccocerercrcre e e 71
Power and SQUAre ro0t.........ccovcnnininnsnsne s s sse s 72
Factorial of @ NUMDET ... s 73
Sin, COS, taN, ANA MOTEcocvieerrererier e s e e sa e s sae s s e snesaenaeens 73
More numerical OPErationsS.........c.cucveeernsesesesssse s 74
Working with random NUMDETS.........cccvvrreriennnnsenere e ssssessesseees 75
Mini project — multiples of @ NUMDET ..o 78
11T 1117 o O 81

Chapter 6: Drawing Cool Stuff with Turtle..........ccccmrrrrrrrrrisssnnennnnnnnnns 83
Let’'s get Started.......ccoecvecernenrree s 83
Make YOUr TUITIE MOVE......cccceeerereresesee s se s e sresessensesneas 86
Move forward and DaCKWard ... s 86
Make your turtle change direCtionsccevverrininnn s 89
Mini project — draw @ SQUATE........ccccvceereerierrersee s e see s e e s e s e s snesnesse s 91
Mini project — draw @ REXAagoNcccvvrvrininnnsn e 93
R3] 10 (S 95
Go to random points 0N the SCreeN..........cccviircrin s 96
Draw a square With got0......c.cuccvrerernsennesne e 98
Mini project — draw a mandala (with just straight lines)c.ceccvveriervrersernens 100
SUMMAIY.c.veitetrereresessere s ssesessessessessesessessessesessesaesaessssessesassasssssessesasssssensersens 105

vii

TABLE OF CONTENTS

Chapter 7: A Turtle Deep DiVe......ccocccemrrssssnnnnmsssssnnssssssssssssssssssssssssnns 107
CUSTOMIZE YOUF SCIEEINcrvrueireecrrecrir ettt se e e 107
Customize your graphiCscccuerennnnnniennnsnsne s ssessssessessens 109
Shapes Without liNES........c.coeiiviinrrr e 112
CIFCIES 1uurrrreerreseres e sr s e s e e R R nr e e 112
DOTS ..t ——————————————— 113
ATCS ettt s 114
MOrE OPLIONS! ..o e e 116
Draw teXt ON SCIEEN.......ccoveeereeereeere s 120
Mini project — circle within @ SQUArEc.cccvvvnvrirr s 124
Change directions of your drawing..........cocueeeerenernsesensessssesesessesessesesesesessesenns 126
Mini Project — SMIlRYccveeeererernrerires e s 131
SUMMAIY.c.veiteirerere e s e s s se s e e s e s s sae e e e s aesaesee e e e saesae s e e naennees 135

Chapter 8: Play with Letters and Wordsccusccemnmnsssnnnsssssssnsssssssnns 137
What are StrNQS?......covcereircrc st se s e 137
Let’s create SOME StriNQgS......ccccovvrirennnni s 138
I want lines and lines of SIrNgS! ... 139
My string has qUOLES! :0......cccvecerrrerrcr e 141
Let’s join tWO OF MOre SIFiNGScccveereviririere e 143
Concatenation in Print() ...c..coeeervrrerienrsrseriere s s s sesaeseesessessens 144
0] 010V (] oSS 145
Accessing characters in Strings.........coovvrnnnnnn e 145
NEegative INGICESccccrreererereree e 147
Slicing @ part 0f @ StrNG.....c.cccvvrerererrr s ———— 148
String methods — magic with Strings!..........ccccvvvrinvnncss 149
Capital and SMallccvcerierriririerie s s sae e s e saeenens 150

viii

TABLE OF CONTENTS

MiISC MELHOAS ... 152
TRUE? FAISE? ...t 155
String formatting.........cccucvirrincni e —————— 157
Getting input from the users (start automation)............cocuerrrerrresrinsesessesenennes 161
String to int or float CONVErSIONccovceeveerese e 162
Mini project — take Turtle text to the next level!covvcrvrivnrncninncensenen 164
Mini project — shout at the SCreeNcccvverrevrrrrerie s 166
Mini project — reverse YOUr NAME.ccccvverreerrererserseessesersesssessesessesssssseseses 169
Mini project — colorful and dynamic Mathccocovvvrvnininncncncnccncene 171
SUMMANY....eiveerercreree s s n e nrn e 174
Chapter 9: Follow My Command!ccccceuvrmmmssssssssssnssnssssssssssssssnnnnes 175
TrUB OF FaISE ..ot 175
Compare and AECIHEcuceverrererrerrere e s e s s sr e sae e s naennens 179
If this happens, do this (command!)..........cccccvvririninnnir s 180
L 183
More than one condition! :0..........cccorrrerrncrre s 184
Mini project — guess the number game............ccoveerecrncnneenn s 186
The conditions keep Stacking UP! ..o 189
SUMMAIY.c.veitiirere st s s s e b e e e s s b s e e e s e s aesae e e e e aenne s 193

Chapter 10: Automate a Little.......ccunveemmmmnnnnnnmmmmsssssssnnsnssssssssssssssnnes 199

MaGIC J00PS ... e s 195
0] (0 10] 4SS 197
If statements within for I00PS ... ———— 200
Nested fOr l0OPS.....ccovvicrrrer s 201
Iterating OVer StriNGS.......coucivvrernsrnesre e 204
LT T 0 RS 205

ix

TABLE OF CONTENTS

Abort mission! Break and CONtINUE...........cocooeirinrnennnne s 207
Mini project — guess the number game Version 2cceceeevvvnreniennsensensenns 209
Mini project — automate your SQUAre..........cccvvvnvrierinnnnnse s 211
Mini project — automate any basic shape.........c.ccovverrninnresriesrn e 212
Mini project — automatically draw a mandala design..........c.ccocvrvrernsesereserennes 216
Mini project — arc SPIralSccccvvviererinsnienie s 218
SUMMAIY . veitetrrerere e sere e sesse s e se e e s ssesaese s e saesaese e e saesaesaesessesaesaessesensessens 221
Chapter 11: Lots and Lots of Information!..........cccccusremmrrsssnnnnnnssnnns 223
Store more than one ValUe............ccceeeeerrrncscscsrer s 223
I £ S 225
Accessing values in @ liSt........ccovveerrenrnnnnesersse e 226
SHCE @ LIS ..ot e 227
List manipulation on fire!..........ccovvirennnnini s 228
(0])V 1T =T o011 o T R 229
Count and ClEAT ... 229
CoNCAteNAtION........ccccvererrrrirrr e —————— 230
Search inSide YOUr liSt.........ccucevvrrrnienie s 231
Add and remove eleMENTS..........ccccverrerernsesse s 232
REVEISe and SOItcccceerreiererereses s e nnens 234
More fun With lIStS! ... 235
Mini project — multi-colored automated star..........c.ccoeerirvnvnnininsnsenenenens 238
TUPIES et e 240
3T 244
DT (0] =L L= SRR 247
Mini project — never-ending COIOrScuuvrnsesnsesesese s e sessenes 252
Mini project — first and last name reversal...........cccvvvrvrveriennsensennenee s 255
SUMMAIY . veiteirerere s re e s s re s e e s s ss e e s e s aesaese e e saesaesae e e e saesaesseennessess 258

TABLE OF CONTENTS

Chapter 12: Fun Mini Projects Galore!........ccccusemmnmnssssnnsssssssnnssssssnns 259
Project 12-1: 0dd OF VNc.ccvircerrererercrir s 259
Part 1 — Is your number 0dd OF BVEN?.........cccccvrierrinrnsenensesese s sesessenens 260
Part 2 — print odd or even numbers within a range.........cccccoccverievininiennens 261
Project 12-2: Is your mom tipping enough?........ccccvievninnniennsnsenessesessessenns 262
Project 12-3: Draw @ Christmas tree.........cccovevnnermrenernsesene s 264
Project 12-4: SPIralS!ccccveernnernenerese s ssanes 268
SQUANE SPIFAl...ccceruereerersirerere e se s s sa s e sae e e nne e 269
L1100 (1 0 R 271
L E 010] T o | 272
SEaAr SPIFAL......ccvicerececr s ———————————— 273
CirCUIAr SPIFaL........coeviicirererie e e nen 274
Project 12-5: Complex mandala — completely automated...........c.ccecrviriennene 276
Project 12-6: Turtle race With l00PS........cccccvvvennenenese s 277
SUMMAIY . .eitiirerere e e s e e s e sae e e e e ae s aesae e e e e aesae e e e nannaees 281
Chapter 13: Automate with Functions...........ccucccmrrnssennninssssnnnnsssnnns 283
True QUEOMALION ..o e 283
OUr fIrSt FUNCHON ... e 285
Why do we need fUNCHIONS?..........ccoreerererrerre e 286
Do different things every time! ... 287
Create (define) your fUNCHONS ... 288
YOU CaN reuSe YOUr COUL! ..o 289

NO @rgUMENIS?ceveeerecr e 291
GIVE @N ANSWE ...v.eeireeerreesrse s s r s se e nns 292
No arguments? What t0 do!ccecevevrinieninnsnse s e 295
Too Many arguMENTS! ... e 295

TABLE OF CONTENTS

(6100 o7 IR 0 o | 297
Variables within functions...........cccooerivnnnns s 298
Return local variables...........ccocorierncnineenn s 299
Global VariabIEscovurrierrcrrrire s 299

LAMBAA ... s 301

Mini project — do your Math homework with Python...........ccovvnvninncncennnn 302

Mini project — automated shapes — next level..........coevvrvrinncncninscncenenn 306

SUMMANY....ceirierreeresese e e e e e s ne e e ne e e 309

Chapter 14: Let’s Create Real-World Objects.........cccuseenrrssssnnnnssssnnns 311

What is object-oriented programming?ccccveerrennnnreniennnessessessessesessessennes 312

LEet’s Prove itl ... 313

ClASSES....ecueueeererreneesese e e se e se s ee e nnns 314

Objects with their OWN VaIUES........c.cccvcririnnnnrre e 315

Manipulate your ODJECTS........cvveerrreerererere e 317

ODjJECtS A0 STUT....cvieeereserrresrre e 318

Turtle race With ODJECLSccceveverierererirsere e 319

SUMMAIY.c.veitetrerere st e s e se s e e e e s s s s s e se s e saesaese e e saesaesae e e e saesaessenennesaess 322

Chapter 15: Python and Files.......ccuseemmmmsssennmmmssssnnnmsssssnssesssssssssssssnns 323

WRY FIIBS? 1o 323

Opening and reading existing files..........ccovoerrrenrnrrnnenrese e 324

T4 Lo o) 1T SR 328

Create NEW filES.....couvuirirernse s 330

ManIpUIALE filES ...cecerrerrrirerer e e e 330

Mini project — introduce With fileS..........cccvvvviririninn e, 332

LT 13114 7R 333

xii

TABLE OF CONTENTS

Chapter 16: Create Cool Apps with TKinter............cccussenrisssnnnssssssnns 335
Tkinter — let’s set it right upl.......ccvcie e 335
Labels, buttons, and packing them.............cccvvvnvninicnnnnn s 337
Packing in detailcccvreererenernerrese s 342
LOtS OF INPUES ... s 348
ONE liNE OF TEXL...c.cvvrrrricicsi s ————— 349
Line after iNE.......cocvviuieccriresee s 352
TKINter variabIs ... s 355
LOtS OF OPLIONS! ... —————— 357
11T TS 361
The perfect 1ayout — grid.........ccccvverrennerrserr e 363
Mini project — tip calculator appPc.cueeeevevernresnesr e 365
SUMMAIY.c.veiteirrere s e s s e s s e e s s sae e e e s aeeaesee e s e s aesae s e e naennees 368

Chapter 17: Project: Tic-tac-toe Game with Tkinter............cccenrissnnns 369
Bind events — make your apps dynamic!.........ccccevrervnnsnseniesnsensessessssessessenns 369
Tic-tac-toe game — explanation...........c.cccvivvnvninininsncn e 372
SELUP TKINTEE ...ttt 373
Create global variabIes ... s 374
Create the BUHIONS ... ——— 376
When the button is clicked, draw on it...........cocoviievnnrnns s 378
Check if a player won during €ach tUINcccvevrevevenrrsenesesersere s sesensens 383
New game button..........cccncr e ——— 385
ENLire Programcccoeecrrnenmrenerssesesese s ses s s s sessssessnnes 387
SUMMANY ...ttt e s nr e 390

xiii

TABLE OF CONTENTS

Chapter 18: Project: Paint App with TKinter...........ccsseenrisssnnnsrsssnnns 391
Paint app — explanation ... —————— 391
(€T Y L (= o S 392
Set Up the SCIEEN ... 393
Create the CaNVAScceceevinneses s 394
Create your first menu (SNAPES).....cccuvvvrrrierinnnsnin e 395
Let’s make our draw options WOrK!cccevevvrnveriersnnsensese s sessessesessessessenes 396
Get the MOUSE POSITIONceuevvecerrerere s nnens 398
Let’'s draw OUF [INES........ccoreererenereecrerese e 399
Squares and rectangles! ... ———— 401
Circles and OVaIS!.........ccoecernsernnese s 402
SEIBCL SIZE.....vie et ——————— 403
Lots and 10tS 0f COIOIS!........ccviirnir s 404
I've finished drawing! ... 407
ENtire program ... e s 408
310111 T o 412

Chapter 19: Project: Snake Game with Turtle............ccevvsssnnnnnnnnnnnas 413
SNAKE JAMEerveeireirrce s 413
Import the required MOAUIESccocerererrriere s 415
Set up the tUrIE SCIEENcvvvcrcerere s enens 415
Create and initialize the required variablescccccovienriririninniennneserncene, 417
Draw the NEAd..........cccoeeeeeeeereere e s 417
Draw the first apple ... ———— 419
Is my screen registering My arroW PreSSES?......uverernsesesesessssesessesessesessanes 421
Make our snake head MOVE........c.cccvrinmremnsms s 423
Get the scoreboard goiNg.........ccvrererrrrierierssessessese s s ssessssessessens 426

Xiv

TABLE OF CONTENTS

Our SNAKE’S ALING!ccvvirerrrrerrere e e e 428
Make the entire SNaKE MOVE...........coeererererrrrererese e 431
0] TS 10 1T 434
ENLIFE COUR.....evvierreeree s 439
SUMMANY ...t s e e e e e 444
Chapter 20: Become a Game Developer with Pygame...............c.u.... 445
WRAL IS PYGAME?c.eeeereerecercere st sesse e sts s sss e e s saesse s e saesnes 445
Install and iMpPOort PYgame...........ccucvveervnsnneninsensis s sessessse e ssesseas 446
Set up your gaming SCrEEN!.........cccoecerrierrerere st 448
Make your SCreen Pretlyoocoveerrrerereneressese s 450
Create your characters on the SCreen.........cccvvervcnrerriesc s 452
MOVE YOUr ChAraCLEIScceerrererrererresee s 457
Keyboard press BVENTS........cccvciircinse s 459
Mini project — bouncing ballcccovvrvnirinnrrrererr s 462
SUMMAIY e veitetrereresesserere s sessersessessesessessesaesessesaesaessssessesassasssssessesasssssensessens 465
Chapter 21: Project: Space Shooters with Pygame.............ccceurrssnnns 467
Space SNOOLEr GAME ... 467
Import the required MOAUIESccocrevririrr e ———— 469
Initialize eVerything.........cucenicrncsns e 469
[Ty T= (0o OSSN 470
Create the SPACESNIP ...ccvceveveererrere s s s se e enens 471
Move the SPaCEShiP ..o —————— 473
Create and move the ENEMIEScccvveerrereresrn e 475
Firg the DUNEL........ooeeeeeeee s 479
Create and display the SCOreboardc.cuoevrenrnsesnesniesess s 482
Kill the 8nemIES ... 484

TABLE OF CONTENTS

Kill the SPACeSRIP!.......ccocvirrer s 487
Re-draw the enemies..........ccovereerrererererr e 488
6T T30 1 o 489
ENLIFE COUR.....covicereerec s 491
SUMMANY....ctirierrnesrsese e e e e ne e nr e 496
Chapter 22: Web Development with Pythonccccccvvvvininnnennnnnnnn 497
Python and web development...........cccvrinnncninsn s 497
Building DIOCKS — HTIMILc.cviirriniriniinire s ssssssssssssssenenes 499
Pretty things Up — CSS ...t 502
Front-end dynamic — JavaScripl........c.ccovoerrrnrnnenerese e 504
PYthON's FIASK........cceoereeereriereerieesese s 507
SUMMANY....ceiricerisesrrese e e e ne e nr e 510
Chapter 23: More Mini Projects........cccccunuemmmmmssssnnnmsssssnssssssssssnsssssnns 511
Project 23-1: Calculator With TKIintercccvvvvvrinesnsnsene s sessesessssessessens 511
Project 23-2: Random story generator..........ccccvccvvvnnneniensnsen s ssenses e sesensens 518
Project 23-3: Rock Paper SCiSSOrs game.........ccovveeerecerenrereresesenesensesessesessens 521
Project 23-4: Bouncing ball (off the four walls) with Pygame.............ccc.c........ 527
Project 23-5: Temperature CONVErsion appcccuvvervrnsnsesessnsessessessssessessenes 531
Project 23-6: Introduce with files and TKinter..........coucvvevnveseresesnsesesesennenes 534
SUMMAIY.c.veitiiriere s e sb e e s e s b b e e e e aesae e e e e aenne e 538

Mini project ideas You Can try.......c.ccverrvninne s sses e s sessens 539
CUITENCY CONVEISION APP ..veererserrerersersersersessssessessessssessessesssssssessesssssssessesses 539
RACE IN PYGAME......cccuoceeeeecircirciene sttt s s s sa e s 540
More Patterns in TUITIEccucevercervence s 540

TABLE OF CONTENTS

Capstone project ideas You Can try.......cccvverrevrrerserseresessessesessssessessessssessessenes 540
SNake game iN PYGAME.......c.ccvveveverirsesiesssssssessessessssessessesssssssessesssssssessesses 540
Dodge the DUIIET ..o 541
Memory game in PYGAmE..........ccocevcrverseneniensenssesessessessse e ssessessssssessessens 541

00T 10 = T Lo 542
OO0PS iN AELAILcuceerererrrreeere e 542
Regular eXPreSSiONSccccvverreererieriessee e sesses e s se s s sse s sesesssessessessens 542
Web development..........o e 543
Packages in detailcccocrvrienerirrrse e 543

SUMMANY.. et s s r e e R r e e e nne s 543

INA@X..ueeeiiienisssnnssssnnnssssns s sssssn s s ssn s s sssnnssssnnnsssnnanssnnnnssnnsnssnnnnssnnnnnnns 545

xvii

About the Author

Aarthi Elumalai is a programmer, educator, entrepreneur, and innovator.
She has a Bachelor of Engineering degree in Computer Science from Anna
University, Chennai.

Since then, she has managed a team of programmers and worked with
hundreds of clients. She has also launched a dozen web apps, plug-ins,
and software that are being used by thousands of customers online.

She has over 15 years of experience in programming. She started
coding in Basics at the age of 12, but her love for programming took root
when she came across C programming at the age of 15.

She is the founder of DigiFisk, an e-learning platform that has more
than 60,000 students all over the world. Her courses are well received by
the masses, and her unique, project-based approach is a refreshing change
to many. She teaches the complex world of programming by solving a ton
of practical exercises and puzzles along the way. Her courses and books
always come with hands-on training in creating real-world projects using
the knowledge learned, so her students get better equipped for the real
world.

When she is not working on her next course or book, you'll see her
researching her next product idea and refining her existing products. She is
currently committed to bringing the sheer power of artificial intelligence to
make life easier for small business owners.

Xix

About the Technical Reviewer

Ashwin Pajankar holds a Master of Technology from IIIT Hyderabad.

He started programming and tinkering with electronics at the tender

age of 7. BASIC was the first programming language he worked with.

He was gradually exposed to C programming, 8085, and x86 assembly

programming during his higher secondary schooling. He is proficient

in x86 assembly, C, Java, Python, and Shell programming. He is also

proficient with Raspberry Pi, Arduino, and other single-board computers

and microcontrollers. Ashwin is passionate about training and mentoring.

He has trained more than 60,000 students and professionals in live and

online training courses. He has published more than a dozen books with

many international and Indian publishers. He has also reviewed numerous

books and educational video courses. This is his fifth book with Apress,

and he is working on more books. He regularly conducts programming

bootcamps and hands-on training for software companies in Nashik, India.
He is also an avid YouTuber with more than 10,000 subscribers to his

channel. You can find him on LinkedIn.

Introduction

This book is the perfect blend of education and fun for kids 8 years and
above looking to learn one of the easiest languages they can use to develop
almost everything from websites to desktop apps to games to Al It will
include four big projects (or capstone projects): three games with Turtle,
Tkinter, and Pygame and a desktop app with Tkinter.

The book starts with an overview of basic programming concepts such
as variables, numbers, and strings while creating fun, personalized mini
projects like “Print your name” and “Is your mom tipping enough.” It then
dives right into Turtle, a Python library custom-made for kids, where they'll
learn how to draw, animate, automate, and eventually make colorful mini
projects based on the Python concepts learned. Once they have built a
foundation in programming and the Python language, they will learn all
about building desktop apps with Tkinter and games with Pygame.

There is also an entire chapter dedicated to more fun puzzles and
activities that come with a step-by-step solution, and another chapter
with cool ideas for more puzzles, and a section that gives them advice
on where they can go from there. By the end of this book, kids will learn
Python from the inside out while creating projects that they can showcase
to their friends, families and teachers. They will develop problem-solving
skills along with programming skills while doing the puzzles and activities
described in the book.

This book is really jam-packed with information, but do not worry,

I made sure that you will not be bored. You will not feel like sitting in
another one of your boring classes at school, I promise.

I have included a lot of fun activities, mini as well as big projects
throughout this book. There are also a lot of puzzles and even more
activities at the end of the book, so you will not have a boring minute.

xxiii

INTRODUCTION

In Chapter 1, I'll give you a brief introduction to Python, its uses,
and an overview of what'’s covered in this book and how to get the most
out of it.

In Chapters 2 and 3, I will start by guiding you through the steps
required to install Python in your system. It is quite easy to do, do not
WOTITY.

Then, you will create your very first program. Yes, you will start coding
from the get-go!

In Chapters 4 and 5, you will learn all about numbers, performing
mathematical calculations with Python, and the various cool tools Python
equips you with to perform your magic with numbers. You will start coding
real Python programs in this chapter.

Chapters 6 and 7 are where things get interesting. You will learn how
to create a lot of cool graphics with Python’s built-in module, Turtle.
Remember the add-ons I told you Python had to help you make awesome
stuff? Turtle is one of the best of them. With Turtle, you can literally draw
on the screen, and it will be automated!

Once I have taught you Turtle, I will use it in the next chapters to make
things more colorful.

In Chapter 8, you will learn how to play with alphabets, words, and
sentences in Python. You will learn how to print things, extract words from
sentences, find words in sentences, and a whole lot more.

XXiv

INTRODUCTION

Chapter 9 is where you will learn about conditions. There is always a
cause and effect in life. If something happens, something else will happen
because of it. “If T ace my test, my mom will praise me.” That is a cause and
effect. You will learn how to apply scenarios like that and use it to create
fun little mini games (you will see how) in this chapter.

What if you want to print every number from 1 to 100? What if you do
not want to write more than four lines of code to do that? You will learn
how to do that and use the power of automation to automatically draw
your graphics and animations in Chapter 10.

In Chapter 11, you will learn how to store a lot of information in one
place. You will start using the real power of Python from this chapter
onward.

In Chapter 12, we're going to take a break from all the learning and
create fun mini projects based on the concepts we’ve learned so far.

In Chapters 13 and 14, we will take a long look into real-world
programming. We will look at true automation with functions and real-
world problem-solving with objects.

In Chapter 15, you will learn how to automatically manipulate files
with Python.

From Chapter 16, we will go back to having fun with Python! In
Chapters 16, 17, and 18, you will learn all about a powerful package called
Tkinter. You can use it to create desktop-based apps and games. You will
learn how to use the package to create a paint app you can show off to your
friends and a tic-tac-toe game you can play with your friends.

In Chapter 19, we will revisit Turtle and create a fun project with it. Let
us create a snake game, shall we?

In Chapters 20 and 21, I will focus on making you a budding game
developer. Let us learn how to use Pygame to create awesome games and
make a space shooter game you can modify to your heart’s content!

In Chapter 22, we will learn the basics of web development with
Python. We will not delve too much into it, but I will give you an
introduction to get started.

INTRODUCTION

In Chapter 23, we will go back to solving puzzles and activities. We will
even make a couple more mini projects!

Chapter 24 is the final chapter. I'll give you ideas on new projects and
mini projects you can try with what we've learned in this book and also
advice on what you can do next. What is covered in this book is just the
starting point. There is a lot more to Python, and I will point you in the
right direction to continue your journey.

XxXVi

CHAPTER 1

Did You Know?

I have written the first part of this chapter for parents and the rest for
the kids. I hope to convince you of the importance of programming and
Python as your kid’s first programming language in this chapter. If your kid
is older (10+), they can read those topics themselves. In the latter half of
the chapter, I'll address the kids and give them a brief overview of all the
fun stuff they can do with Python, what they’ll learn from my book, and
how to use my book to its full capacity.

So, let us get started.

What is programming?

You have your gadget - your laptops, PCs, tablets, mobile phones, and
so on - and whenever you ask it to do something, within reason, it does
it. How? Well, that is because every time you task your gadget with
something, the pre-programmed set of instructions it has pertaining

to that task will fire up in the background. Those set of instructions are
called code.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_1

https://doi.org/10.1007/978-1-4842-6812-4_1#DOI

CHAPTER 1 DID YOU KNOW?

You will find that your gadgets need a complete set of instructions to
perform even the simplest tasks, like opening an application or performing
a calculation. They are just machines after all, just 1s and 0s at the base
of it all. They cannot think on their own, so with our code, we are making
them think.

In other words, programming is the language your computer speaks,
and the different programming languages are the different languages it
understands/speaks. You might know English, French, and Mandarin,
but you might not know Italian or Japanese. Similarly, out of the, literally,
hundreds of programming languages out there (Python, JavaScript, C,
C++, C#, Ruby, etc.), your computer might speak a few, or just one, and not
understand the rest.

Why should your kids learn to code?

Now that you know what programming is and how it literally runs the
digital world, I shouldn’t have to give you a lot of reasons to convince you
to teach your kids coding, am I right?

CHAPTER 1 DID YOU KNOW?

But still, you might be wondering why your kid needs to learn
programming, and why should they learn now. After all, in our time,
people learned programming in college and only if they decided to
become a programmer.

Well, I think I have a couple of reasons that will convince you why, in
this day and age, kids, regardless of their future career aspirations, should
learn programming, and why it is prudent that they start now.

Programming is like Math

Thirty years back, no one would have dared make such a statement, but
now, times have changed, and yes, programming is, indeed, like Math. It is
everywhere, just like Math is.

Math was a part of our educational requirement until we were at least
18, but not everyone of us is a mathematician today. Then why was Math
forced down our throats? Well, because Math runs everything. We need
basic mathematics in our daily life and certainly in most of our careers.
So, we learned everything from calculus to algebra to geometry, knowing
very well that we would probably not use 90% of our knowledge when we
grew up.

That is exactly the case with programming today. Everything is
digitized. There is an app for everything from food delivery to stock market

CHAPTER 1 DID YOU KNOW?

prediction. Computers have entered every field, including traditional fields
like construction and manufacturing. Most of the construction equipment
are digitized nowadays, and what powers them? Programs, and thousands
of lines of code.

Even art is digitized. So regardless of the field your kid is getting into,
their knowledge in programming is going to give them a leg up.

But apart from that, coding also improves a kid’s mathematical
capabilities by fostering logical thinking and problem-solving.

Coding improves logical thinking and creativity

A contradictory statement, but true in this case. Every code blocks your
child creates will be logically driven.

Logic dictates programming, and once they start coding on their own,
they will learn to dissect a problem into bite-sized components, apply logic
to solve each component, and then finally combine all the components
into a coherent solution.

That is how problem-solving works in the real world, regardless of
field, and they will learn this invaluable skill as a child.

CHAPTER 1 DID YOU KNOW?

But let us be honest, your kid would be bored with just logic. That is
where creativity comes in. The world runs on both creativity and logic, and
the same holds true for programming.

There is no right answer in programming. If they are solving the
problem, how they are solving it does not matter. There are best practices,
of course, but if you ask two programmers to solve the same problem,
chances are, their code blocks will look completely different.

So, while coming up with a solution, and multiple solutions for
multiple problems down their programming journey, they will foster
creativity as well.

The best of both worlds, don’t you think?

Coding is the future

Let us be very honest here. We are moving toward a completely digitized
society at an amazingly fast pace. Everything is digitized. Apps are
everywhere. Artificial intelligence is making new waves in the world every
single day. Before we know it, we will have artificial intelligence-driven
technologies cleaning our houses and driving our cars.

It is no wonder that programming has become an invaluable skill in
today’s world, and the demand for programmers is just going to increase
every year.

So, coding is indeed the future, and by learning to code at a young
age, your child will have a leg up over their competitor. Sounds good, but
why does your kid need coding if they were going to become a mechanical
engineer, for example? Or a financial analyst?

CHAPTER 1 DID YOU KNOW?

This brings me back to my original argument. Everything is digitized,
and coding is everywhere, in every single field. So, if your kid has a
programming base, then will they not stand out from the rest?

For example, a financial analyst with knowledge in programming
can code a stock prediction application themselves and hence save the
company tons of resources, or they would at least be fluent enough in
tech talk that they’d guide the programmers better and save their boss
hundreds of production hours and back and forth.

So, regardless of what your kid is going to study in the future, coding
is going to help them out, and in the immediate future, they have a
monetizable skill they can use to make extra cash.

In their teenage years, they do not have to flip burgers at minimum
wage as a side gig. They can freelance as a software developer and make at
least three to four times more money working half the time.

Or better yet, your kid could decide to become an entrepreneur. As you
know, almost every startup relates to programming and software in some
way, so as a programmet, your kid can code the app themselves and easily
save tens of thousands in programmer fees.

I believe those are very convincing arguments as to why your kid needs
to start learning to code right now.

CHAPTER 1 DID YOU KNOW?

Why Python?

Alright, now you are convinced about the benefits of your kids learning to
code, but why Python? Out of the tens of popular programming languages
out there, why should they start with Python?

I firmly believe that Python should be the first choice of real-world
programming for a kid and let me convince you why.

Python is easy

Well, that is pretty much it. Kids want to have fun, and if we want them to
learn programming, it needs to be fun and easy. Python is both.

Unlike the other older languages where you need to learn a lot of
syntaxes and theory before you can create your first program, Python is
very straightforward. The syntax is easy to understand and logically sound.
“Print” just prints something on the screen. Easy to remember, right?
There is not a lot of memorizing to do, and your kid can start coding and
creating from the get-go.

It is the perfect programming language for beginners with no prior
knowledge of programming, and it is even better for kids because it is also
fun.

CHAPTER 1 DID YOU KNOW?

Python has a lot of built-in kid-friendly modules and libraries that will
help them draw graphics and create games and fun apps with just a few
lines of code.

It can do a lot of things

Now, do not underestimate Python because it is easy to learn. It can
be used in literally everything from web development to desktop app
development to artificial intelligence.

The language is immensely powerful, and the libraries and modules
that come with it are even more powerful. You have add-ons for everything.

You can create graphics with Turtle, beautiful desktop apps with
Tkinter (like the calculator app you're so fond of using on your laptop),
create professional games with Pygame, develop full-blown websites and
web apps with Django or Flask, and apply machine learning (artificial
intelligence) algorithms with a host of easy to learn libraries. The
possibilities are endless with Python.

By starting their programming journey with Python, your kids are not
just stepping into the world of coding, they are also equipping themselves
with skills in one of the most highly sought-after (and paid) programming
languages of this time.

What more? With the rate at which Python’s popularity, and its adoption
into fast-moving fields like artificial intelligence, is growing, it is obvious that
Python is here to stay, so your kids’ skills are unlikely to go stale in the future.

From this point onward, I will be addressing the kids.

Python is fun!

Hi there! So, you are here to learn Python. Not only is it easy to get started
with, it also comes with a lot of bells and whistles that make programming
fun for you. Would you like to know all the cool things you can create with
Python?

CHAPTER 1 DID YOU KNOW?

Games!

Who does not love games, am I right? But what if you can create your own
games and then play them with your friends? You will be the most popular
kid in class if you can do that.

What more? You can change the features of the games as you like.
Want five lives instead of three? Great, add two more. Not enough levels
and you are bored already? Code more levels into your game! Make those
levels extra difficult to give yourself a challenge. You have the freedom to
do anything you want with the games you create, and you can even get
suggestions from your friends and apply them to your games.

With just a little bit of coding, you will be able to modify the games you
have always been dissatisfied with or create a brand-new game you can
play with your friends.

So, you will have fun while coding and after coding (while playing the
games).

Graphics and animation

For me, graphics and animations are the next best thing right after games.
What about you?

v

feg?

CHAPTER 1 DID YOU KNOW?

Imagine running a program that draws a design you created in real
time. What about an animation? What if you can create designs and
animations and use them in that game you have always wanted to create
and play?

Like I always say, the possibilities are endless, and they are only limited
by your creativity and imagination. Run wild with Python!

Websites

Do you use the Internet? Then you must have visited at least 100 websites
by now. They look great, don’t they? What if you can create a website just
like your most favorite website?

If you learn Python, you certainly can.

I am not talking about simple websites. I am talking about big, full-
blown websites and web apps with a lot of cool features. You could even
create websites and apps like Facebook and Instagram with enough
practice.

Apps

Python comes with a lot of tools, just like the tools you use in your games.
These tools are called libraries and packages in Python. With the help of

these libraries, you can create almost anything, including apps.

Do you use a laptop or tablet? It comes with a lot of cool apps, right?
There is a calculator app, a stopwatch/timer app, paint app, and so on.

10

CHAPTER 1 DID YOU KNOW?

What if you can create those exact apps? Well, with Python, you
certainly can. In fact, you will learn to create some of those apps right in
this book. Are you excited?

Not just that, with packages like Kivy and PyQft, you can even start
creating mobile apps with Python. We will not be talking about those
packages in this book, but as you can see, you have a lot of possibilities
with Python.

Whew! That was a big list indeed. The world is your oyster with Python,
so come and play!

Getting the most out of this book

This chapter (and the last) would be the only two chapters with a lot of
text. I have tried my best to keep things interesting and practical in the rest
of the chapters.

You will come across a lot of examples that illustrate every topic we
cover. There will be a lot of coding, so I recommend you code the examples
along with me. Try not to copy and paste. Type everything out so you get
familiarized with coding.

11

CHAPTER 1 DID YOU KNOW?

Every chapter comes with a lot of activities, puzzles, and mini projects
with detailed, step-by-step solutions too. I would recommend following
along with the solutions in the first few chapters, but once you are
confident enough, try solving the puzzles/activities on your own and then
cross-verify with the given solution.

Remember, there are no wrong solutions in programming! If you get
the desired result, you are good to go.

This book includes four capstone projects (big projects) as well to
solidify your knowledge of Python. I would recommend creating the
projects, but do not stop there. Try changing things in every project to
make it your own. Of course, do not forget to show your projects to your
family, friends, and teachers as well!

That is pretty much it. It is an easy-to-follow along book, so do not get
overwhelmed by the size of it. Just get started and start coding.

Summary

In this chapter, which was addressed to the parents (in the first half)
and the kids (in the second half), I gave a brief explanation of what
programming is and why your kids need to learn to code at such a young
age, regardless of their future aspirations. I also gave convincing arguments
on why Python should be the first real-world programming language of
choice for a kid and what a kid can do with Python. We ended the chapter
with a brief overview of everything you will learn from this book and the
best way to utilize this book to its full capacity.

In the next chapter, we will learn how to install Python and create and
execute our very first Python programs.

12

CHAPTER 2

Let’s Install Python!

In this chapter, we will take a deeper look into what programming is and
how it is used to control various gadgets. We will also look at installing
Python in our system. Let us get started!

Speak the computer’s language

Language is used for communication between two or more people, am I
right? But if someone talks to you in a language you do not know, would
you understand them? Of course not. I would not either!

Similarly, your computer cannot understand languages it does not
speak. So, if you just look at your computer and command it to open the
paint program in plain English, it will not understand you. If you talk to
itin alanguage it understands, on the other hand, you will certainly get a
response.

Programming languages are languages computers understand. Python
is one of them. If you want your computers or mobile phones or GPS or
tablets to do something, you need to give them instructions.

When you click the paint app’s icon, how does your device know that
you have actually clicked it? How does it open that exact app and not
something else? That is because a programmer probably wrote a bunch of
lines of code that says that when someone clicks the paint icon, the paint
app should open. If they changed the code and wrote that clicking that
icon should open the Google Chrome browser, then that is what would
happen.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_2

https://doi.org/10.1007/978-1-4842-6812-4_2#DOI

CHAPTER 2 LET’S INSTALL PYTHON!

Therefore, a programmer’s job is extremely important. They make the
devices work. They create the device’s brain that makes actions possible.
Without their code, the devices you use every day would just be a mass of
plastic, chips, and wires, and nothing else.

So, if you learn to speak the computer’s language, you can give your
computer, or any gadget really, instructions like these too. Once you get
good at programming, you can create apps like the paint app or games like
Minecraft.

Get started - install Python

Now you know what programming is. It is just a set of instructions you give
a gadget/device to make it do what you want it to do.

Shall we start programming then? Python is one of the easiest
programming languages out there, so that is exactly what we are going to
learn in this book.

Before you write Python programs though, you need to install it in your
laptop or computer. Remember how I said your computer needs to speak
the language to understand what you are saying?

Right now, your computer probably does not speak the Python
language. That is because Python is not installed in it. Once you install it,
your computer will learn the language in seconds (yes, it is that fast!), and
then when you give it instructions in Python, it'll understand you and react
accordingly. It is magic!

I will give you step-by-step instructions on installing and running
Python on your system, so just follow along with me, alright? I will give
separate instructions for Windows as well as Mac, so skip to the one you
have on your device.

Installing Python on a Windows computer

Let us look at how to download and install Python on a Windows device
first. These steps work for Windows versions 7 and higher.

14

CHAPTER2 LET’S INSTALL PYTHON!

Download Python

1. Open the following link on your browser: www.
python.org/downloads/.

About Downloads Documentation Community Success Stories N

Download the latest version for Windows {ﬁ

Download Python 3.8.5
o for Py h a differem D57

Figure 2-1. Python Windows download page

L=

2. Click the download button (look at the arrow
in Figure 2-1) to download the Python installer.
Remember how I told you that coding was magical?
You will see that in action now. When you opened
the page, it knew you were using a Windows
computer without you having to tell it.

I have downloaded Python 3.8.5 as of writing this book, but you might
be downloading a newer version. Do not worry about that. Go ahead and

download the latest version.

15

http://www.python.org/downloads/
http://www.python.org/downloads/

CHAPTER 2 LET’S INSTALL PYTHON!

Install Python

It knows you have a Windows computer, so you will now have to install the
Windows version of Python. Let us do that:

1. Open the .exe file you just downloaded. You will see
a popup like Figure 2-2.

Install Python 3.8.5 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

< Install Now
C:\Users\aarthi\AppData'Local\Programs\Python\Python38-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

< Customize installation
Choose location and features

python
for ¥ Install launcher for all users (recommended)

windows [Add Python 3.8 to PATH Cancel |

Figure 2-2. Python installation setup

2. Do not forget to click the checkbox that says “Add
Python 3.8 to PATH” (Figure 2-3).

[¥! Install launcher for all users (recommended)
Add Python 3.8 t0 PATH e

Figure 2-3. Add Python to PATH

16

CHAPTER2 LET’S INSTALL PYTHON!

3. Once you have ticked the box, click install now. The
installation will start, and it will look something like

Figure 2-4.

Setup Progress

Installing:

Python 3.8.5 Core Interpreter (32-bit)

pgthfon

windows | Cancel |

Figure 2-4. Python installation progress

4. Wait until the green bar reaches the end, and you
will see a message that says “Setup was successful”
(Figure 2-5).

17

CHAPTER 2 LET’S INSTALL PYTHON!

Setup was successful

Spedal thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the gnline tutorial and
documentation.

See what's new in this release.

python

for

WiﬂdOWS Close

Figure 2-5. Python setup successful message

5. Press the Close button, and you are done installing
Python on your computer. Hurray! ©

Installing Python on a Mac device

Let us look at how to download and install Python on a Mac device next.
If you have a Windows computer, and you have already installed Python
following the steps in the last section, you can skip this section.

Python usually comes preinstalled in any Mac device, but chances are
you have an older version of Python in your system. It never hurts to have
the latest version of any software, so let us update our Python, shall we?

Download Python

1. Open the following link in your browser: www.
python.org/downloads/ (Figure 2-6).

18

http://www.python.org/downloads/
http://www.python.org/downloads/

CHAPTER2 LET’S INSTALL PYTHON!

About Downloads Documentation Community Sug es News

- -
Download the latest version for Mac 0S X (1 \ |

Download Python 3.8.5

Figure 2-6. Python Mac OS download page

=10

2. Click that big yellow download button to download
the Python installer. Remember how I told you that
coding was magical? You will see that in action now.

Did you notice that when you visited the download page from your
Mac device, it automatically says “Download the latest version for Mac
OS X”? That is because the Python website’s code read which operating
system (Windows, Mac, etc.) you are using and gave you the correct
version to download automatically. Cool, right?

Your package will download as in Figure 2-7.

3.7

@ python-3.8.5-....pkg ~

Figure 2-7. Python 3.8.5 package downloaded

19

CHAPTER 2 LET’S INSTALL PYTHON!

I have downloaded Python 3.8.5 as of writing this book, but you might

be downloading a newer version. Do not worry about that. Go ahead and

download the latest version.

Install Python

1. Open the installer and you will see a screen like
Figure 2-8.

® s Install Python

Welcome to the Python Installer

This package will install Python 3.8.5 for macOS 10.9 or later.
@ Introduction

Python for macOS consists of the Python programming language
interpreter and its batteries-included standard library to allow easy access
to macOS features. It also includes the Python integrated development
environment, IDLE. You can also use the included pip to download and

install third-party packages from the Python Package Index.

At the end of this install, click on Install Certificates toinstalla
set of current SSL root certificates.

Read Mg

License

Continue

aj

Figure 2-8. Python Mac installation - Introduction

2. Click Continue, and you will get the following page
(Figure 2-9).

20

CHAPTER2 LET’S INSTALL PYTHON!

® ‘e Install Python -

Important Information

This package will install Python 3.8.5 for macOS 10.9 or later for the
following architecture(s): xB6_64.

Certificate verification and OpenSSL

This package includes its own private copy of OpenSSL 1.1.1. The trust
certificates in system and user keychains managed by the Keychain
Access application and the security command line utility are not used as
defaults by the Python ss1 module. A sample command script is
included in /Applications/Python 3.8 toinstall a curated bundle of
default root certificates from the third-party certiri package (hitps./
RyRLorg/project/cenifif). Double-click on Install Certificates to
run it.

= Introduction

+ Read M .

License

The bundled pip has its own default certificate store for verifying
download connections.

Using IDLE or other Tk applications

This package includes its own private version of Tel/Tk 8.6. It does nat
use any system-supplied or third-party supplied versions of Tel/Tk.

Mue tr new eacurite chacks an macfS 10 18 Catalina whean laonchine

Print... Save... Go Back Continue

Figure 2-9. Python Mac installation - Read Me

3. Click Continue again, and you will get the following
page (Figure 2-10).

(@] ‘& Install Python &

Software License Agreement
HISTORY AND LICENSE
HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http:/www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.

@ Introduction

In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http2//www.cnri.reston.va.us) in
Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the
same year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see hitp://www.zope.org). In 2001, the Python Software
Foundation (PSF, see http:/fwww.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual
Property. Zope Corporation is @ sponsoring member of the PSF.

All Python releases are Open Source (see http:/iwww.opensource.org for

bam Pimam Cmsivmm Piaflmiblant Lllstadanibs sennt bub mab sl Pl

Print... Save... Go Back Continue

Figure 2-10. Python Mac installation - License
21

CHAPTER 2 LET’S INSTALL PYTHON!

4. Click Continue again (Figure 2-11).

‘e Install Python -

To continue installing the software you must agree to the terms of
the software license agreement.

e Ing Click Agree to continue or click Disagree to cancel the installation and
= Rei quit the Installer.
e Lic ting

Is

Read License Disagree Agree

= In 1985, Gquo wrltlnuad his work on Python at the Corporation for
{CMNRI, sea httpyJfwww.cnri.reston.va.us) in

Reston, Vlrginia whera he released several versions of the software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the
same year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see hitp://www.zope.org). In 2001, the Python Software
Foundation {PSF see htlp.fa'www python, o:gfnsff) was formed, a non-
profit org to own Python-related Intellectual
Froperty. Zope CorDoratbon Isa snonsorlng member of the PSF.

All Python releases are Open Source (EBB http: ,‘M\m opansource.org for

PO S —— [N P S TP ————— PN LT I

Print... Save... Go Back Continue

Figure 2-11. Python Mac installation - License agreement

5. While you are at the license page, you might get a
popup like the preceding one. Click Agree, and you
will get the Installation Type page (Figure 2-12).

& ‘w Install Python = l
Standard Install on “Macintosh HD"

. This wi 116. f A
s Introduction is will take 116.4 MB of space on your computer.

Click Install to perform a standard installation of this software
on the disk "Macintosh HD".

Customize Go Back Install

Figure 2-12. Python Mac installation - Installation Type
22

CHAPTER2 LET’S INSTALL PYTHON!

6. We are almost there! Click the Install button, and
your installation should start immediately. In
certain cases, you might see a popup that asks for
your username and password like the following
one (Figure 2-13).

- Installer is trying to install new software.
o i —1 Enter your password to allow this.

I User Name:

Password: esesesee

Cancel

i
Figure 2-13. Python Mac installation - Authentication
7. Enter your Mac username and password and you'll

be good to go. If you're using your parents’ system,
call them to help you with this step.

Once you've finished this step, you should see the installation start
(Figure 2-14).

23

CHAPTER 2 LET’S INSTALL PYTHON!

‘& Install Python

Installing Python

Introduction

Running package scripts...

Install time remaining: Less than a minute

Figure 2-14. Python Mac installation - Installing

8. Wait till the blue bar runs till the end. It shouldn’t
take more than a few minutes. Once done, your
Python package should open up (Figure 2-15).

24

CHAPTER2 LET’S INSTALL PYTHON!

Python 3.8
Favorites Name ~ Date Modified
@) Airdrop 2y IDLE Today, 8:16 PM
i 20-Ju 20, 9:44
< iCloud Drive & Python Documentation.html Today, 8:16 PM
,A‘ Applications § Python Launcher Today, B:16 PM
o : ReadMe.rtf 20-Jul-2020, 9:44
&5 Desktop = Update Shell Profile.command 20-Jul-2020, 9:44
Devices

:;\ Remote Disc

Shared
8 archer_c5
W hp
@ An.
Tags
@ Red
» Orange
Yellow
@ Green
@ Blue

Figure 2-15. Python package

Congrats! You've downloaded Python! It wasn’t as hard as you thought,
was it? Let’s have fun with it in the next section. ©

Summary

In this chapter, we learned how to download and install Python in both
Mac and Windows. In the next chapter, let us look at creating our very first
program in Python.

25

CHAPTER 3

Your First Python
Program

In this chapter, let us look at creating and running programs in Python,
and create our very first Python program.

Creating and running programs in Python

Okay, now that we have installed Python, let us start creating our very
first programs. We cannot just write Python programs in MS word or
notepad. That is not how it works. We need a specific application that can
understand the Python code you write. This application will process your
code and give you the desired result.

One of the default Python applications is called IDLE. It is Integrated
Development and Learning Environment, and it was developed by the
Python Software Foundation. It automatically gets installed when you
install Python (Figure 3-1):

1. Go to your applications (in Windows or Mac) and
type IDLE (Figure 3-1).

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_3

https://doi.org/10.1007/978-1-4842-6812-4_3#DOI

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

Figure 3-1. Python IDLE on Windows

2. When you open the application, the Python Shell
will open. This is where we will type our Python
programs and get our outputs (results) (Figure 3-2).

L Pyinon 185 Shell - o IEN

Fhe (g S Ovbug Optom Wirdow beip
Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 32 bit (Intel
)] on win32

Type "help”, "copyright", "credits" or "license()" for more information.

2>

Figure 3-2. Python Shell

3. You can change the way the text looks in this
application. You can increase the font, make the text
bold, and change the font style. In order to do that, go
to Options and click Configure IDLE (Figure 3-3).

Debug | Options | Window Help

L 3.1 .8.5
win ey |
rhEll Zoom Height Alt+2 ht"’

Figure 3-3. Configure IDLE

4. When you click it, the following window will pop up
(Figure 3-4).

28

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

Fonts/Tabs .Highlightsl Keys I General iEx:ensions;
Shell/Editor Font Font Sample (Editable)

Font Face: i
e <ASCII/Lai
Courier New Baltic

Courier New CE
Courier New CYR AaBbCcDdEce
Courier New Greek

Comn T8 123456789(

DFKai-SB

¢ £ ¥ SO«

David
DilleniaUPC
DokChampa
Dotum
DotumChe

Dubsi . <IPA,Greel
el X essezTibuy

Indentation Width

Python Standard: 4 Spaces! AGB ﬁ IlYA 6 E ¢
D B6 ImkoxIInd:

2 4 6 8 10121416

<Hebrew, 2

masm g 3wy
< >

Ok Apply Cancel Help

Figure 3-4. Python IDLE configuration window

5. Let us change the font size to 29 (look at the
highlighted square) and select the checkbox across
“Bold” if it is not already checked.

That is all we are going to change now, but as you can see, you have a
lot more options. Play around with them to format your Python Shell’s text
in any way you want.

29

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

Python interactive mode (Python Shell)

There are two ways to run Python programs using IDLE. The default
method is by directly typing your code into the Python Shell (Figure 3-5).

Python 3.8.5 (tags/v3.8.5:580f}
[MSC v.1926 32 bit (Intel)] on
Type "help", "copyright", "crec
e information.

>>> |

A}

Figure 3-5. Python Shell prompt

Do you see the >>> the arrow is pointing to? That is called the Python
Shell prompt. It is asking you to type your Python code after the prompt so
it can run it and give you the result you are expecting.

Every time you type Python code in the Shell, press Enter; it will
run that line of code and execute it. It is quite handy because you get

immediate results.

Your Shell can do Math

That is right. You can do Math in your Python Shell. Let us try with some
basic operations, shall we?

I want to prove to you that Python is not an alien language you are
learning for the first time. You can do extremely complicated mathematical
calculations and get results for those in the Shell as well. Want to see how
that works?

Alright, let us start simple. Type the following in the prompt:

3+6

30

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

Press Enter and you should see the following result (Figure 3-6).

>>> 3 + 6
9
>>> |

Figure 3-6. A simple Math problem

Did your Python application just do Math? How cool is that? Let us try
something more complicated.

(235 * 542) / (564 + 123)

Run the preceding mathematical expression and you should see the
following result (Figure 3-7).

>>> (235 * 542) / (564 + 123)
185.40029112081513
>>>

Figure 3-7. How complicated can it get?

You could cross-verify the result with your calculator. It is correct. You
can make the equation as complicated as you want, and your Shell will spit
out the result in less than a second. Try a couple more and see!

But is that all you can do? Math problems? Not even close! You can
even print things on your screen, and that is what we are going to look
at next. But then again, it does not stop there either. You can do a host of
things with Python. I do not want to overwhelm you too much from the
get-go though, so we are going to take it slow, alright?

31

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

Print with Python

Python is a very easy-to-learn language. Proof? If you want to print
something to the screen, just use the “print” command. A pre-defined
code/command in Python or any programming language is called a
syntax.

So, the syntax to print a message to the screen is as follows:

print('Hello there!")

You need to start and close parenthesis right after “print” and type your
message within quotes. It could either be a single (‘message’) or a double
quoted (“message”).

When you run the preceding line of code, this is what you will get
(Figure 3-8).

>>> print ('Hello there!')
Hello there!
e I

Figure 3-8. Print a message

But be careful here. The “p” in “print” should be a lowercase p. If you
use an uppercase p, you will get an error message like in Figure 3-9.

>>> Print('Hello')
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
Print ('Hello')
NameError: name 'Print' is not defined

Figure 3-9. “Print” instead of “print”

32

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

The error message says ‘Print’ is not defined. That is because as far as
Python is concerned, “print” is different from “Print” and the command to
print something to the screen uses a lowercase p. In other words, Python is

case sensitive. So be sure to use the “commands” or “syntax” as it is.

IDLE script mode

Remember how I said that there are two ways to write programs with your
IDLE? We have looked at the first method so far. It looks easy at the first
glance, but did you notice a problem with it?

While using the Shell, you get outputs for every single line of code,
and that will work as long as you write very simple lines of code. But once
you start writing actual programs, you would want an application that
processes multiple lines of code together and gives you the final result. You
need the script mode to make that happen.

Let us look at how that works. Let us print the same ‘Hello there!’
statement, but now in script mode.

Go to File » New File (Figure 3-10).

File | Edit Shell Debug Options Window Help

New Eile CtrleN F o e I \=dd W J
Open... Ctrl+0 -
OpenModule.. At-M ﬁ\, Teopyrighte, !

Recent Files »

Module Browser Alt+C | t i on.

Path Browser

Save Ctrl+S
Save As... Ctrl+Shift+5
Save Copy As... Alt+Shift+S

Print Window Ctri+P

we mn |* 542) / (564 + 1:

Ext Ctrl+Q

185.40029112081513

Figure 3-10. Open a new file
33

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

An untitled document will open like the following one (Figure 3-11).

Fie Edn Foma Run Cpiiens Windew Help

Figure 3-11. Untitled document

Go to File » Save As (Figure 3-12) and save the document with the
.py extension. .py denotes that a particular file has Python code in it and
needs to be executed as such.

T . « Python » Python38-32 » v & Search Python38-32 P
Organize » New folder -
%
A Name Date modified Type 22
This PC
1 Th -) Ji DLLs 9/11/20206:19PM File folder

ﬁ’ aarthielumalai@®h ;

, 4. Doc 9/11/2020 6:19PM File folder
e Desktop
l] e i L ete 8/6/202011:49 AM File folder

3 s . include 9/11/2020 6:18 PM File folder
@ Downloads
B Musi L Lib 9/11/20206:19PM File folder
B P_::" B tibs 9/11/20206:19PM File folder
j u:d o |.j. Seripts 8/18/2020 11:38 AM File folder
- u\:r ::s © L. share 8/6/2020 11:48 AM File folder

ndows (L

- Raicovsav -4 Jotd 9/11/2020619PM File folder
- ; | Tools 9/11/2020 6:19PM File folder v
i NewVolume (F) , 5

File name} | print.py v |
Save as type: | Python files (*.py;".pyw) v !

'~ Hide Folders Save | Cancd |

Figure 3-12. Save your .py file

34

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

We named our file print.py. Click Save, and you should see the name
of your file change from untitled to print.py. Now, you can name your file
anything you want, but just make sure that the Save as type is “Python
files” or you give an extension .py or both, alright?

Now, let us type our line of code again (Figure 3-13):

print('Hello there!")

File Edit Format Run Options Window Help

print ('Hello there!')|

/

Figure 3-13. Write your line of code

There you go! You have written your very first Python program.
Whoohoo! ©

Let us run it, shall we?

Go to Run » Run Module (Figure 3-14).

Run... Customized Shift+F5
Check Module Alt+X
Python Shell

Figure 3-14. Run the program

It will ask you to save the code again. Click OK. Your IDLE should open
the Shell window again, and in the very last prompt, you should see the
result (“Hello there!”) printed, like in Figure 3-15.

35

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/P
ython38-32/print.py
Hello there!™—

Figure 3-15. Output (result)

Now you have run your first Python program and gotten your very first
result! Whoohoo again! ©

Python activity: Print your name
(and some more)

We have come to our very first Python activity now. You are going to print
your name. Actually, why don’t we make it a small introduction? You are
going to introduce yourself and print that introduction on the screen.

Do not worry. It is not hard to do. I will teach you how. Let us create an
imaginary character and name her Susan Smith. Let us assume that she is
9 years old and she loves puppies. Now let us introduce her to the world!

Open a new file and save it as introduction.py. You know how to do
that, don’t you?

Now, follow along with me. Type the following into the file:

print('Hello there!")

print('My name is Susan Smith.')
print('I am 9 years old.")
print('I love puppies! :)')

We need to print out multiple lines on our screen, so we have created
multiple print statements. Let us save the code we just created and run it.
Go to Run » Run Module.

36

CHAPTER 3 YOUR FIRST PYTHON PROGRAM

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/P
ython38-32/introduction.py

Hello there!

My name is Susan Smith.

I am 9 years old.

I love puppies! :)

Figure 3-16. Introduction printed to the screen

Our introduction is on the screen (Figure 3-16)!

Now, I want you to do the same with your introduction. What is your
name? How old are you? What do you like? Print everything on the screen.
Go ahead. It is quite easy to do.

Congrats, you are now a budding Python developer. ©

o~ -

=2

o

Summary

In this chapter, we looked at IDLE and its interactive programming
environment. We tried a few Math problems in the Python Shell and then
created our very first print statement. Then we learned about the script
mode and writing and running more than one line of code at a time. We
finished the chapter with an activity where we introduced ourselves and
printed the introduction to the screen over multiple lines of code.

In the next chapter, we will look at using numbers with your Python
code, manipulating them, and a lot more.

37

CHAPTER 4

Python Loves
Numbers

In the previous chapter, we learned how to get started with Python. We looked
at downloading the latest version of Python for Windows, Mac, and Linux and
then looked at working with IDLE to create our very first Python program.

Let us look at how to play with numbers in this chapter. We'll look
at how to store numbers in something called variables and about the
different types of numbers you can work with in Python.

Numbers in Python

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_4

https://doi.org/10.1007/978-1-4842-6812-4_4#DOI

CHAPTER 4 PYTHON LOVES NUMBERS

Numbers play a very important role in everything, so it’s no wonder that
they are important in programming as well. Would you like to become

a top game programmer in the future? Then you need to know your
numbers. Where do you want the ball to go? How many bullets should
your space gun shoot at your aliens? How fast should the bullets be? How
fast should your character run, or walk, or do anything at all? You need
numbers to determine all of that and a lot more.

Also, once you start programming and creating different kinds of
projects, you'll notice that numbers play a big role in pretty much every
kind of programming, and not just games.

So, without further ado, let’s look at how to create numbers in Python,
how to store them, how to use them, and so much more.

Store your numbers

We've already looked at numbers in Python, remember? Type the
following in your IDLE Shell:

3+5

Press Enter, and you'll get the following output:

It’s that simple to play with numbers in Python. But do you see a
problem here? You can’t really do much with the result or the numbers.
Programming is all about automation, am I right? But there isn’t much
automation going on right now.

What can we do? Well, what if we can store the numbers somewhere,
so we can use them multiple times? What if we store the result somewhere
else, so we can use that to do further calculations? Do you see what I'm
getting at here?

Unless you start storing your values, be it numbers or alphabets or
words, you can’t do much with programming.

40

CHAPTER 4 PYTHON LOVES NUMBERS

Okay, that’s all well and good, but how do you store them? Is there
a secret container in Python that stores all the values you want in it, so
you get them out to play when you need them? Not exactly, but you can
create such containers. Even better, isn’t it? You can create containers of
information called variables that store the values you want in them. You
can create unlimited number of containers like that! :O

So, how do you create these variables?

A A

SUGAR

Take a look at your kitchen cabinet. You must see a container for every
spice your parents use to cook and even for common cooking ingredients
like salt, pepper, and sugar. Your mom probably labeled them as such, am
I right?

The container labeled salt has salt, or she probably has a code word for
it that she understands.

Similarly, you’ll be labeling your variables as well. There are certain
rules to label them, but other than that, you have free reign to label your
variables in any way you want, so have fun with it. Just make sure that you
would understand your labels when you read them later. You would need
to know what’s inside your container, won’t you?

It’s as simple as that to create variables. Decide on a label/name and
just type it in your Shell or script, and you've created your variable.

41

CHAPTER 4 PYTHON LOVES NUMBERS

But a variable is useless without information stored inside it, and you
can do that with the “=" sign. We use the equal to sign to indicate answers
in Math, don’t we? Similarly, in Python, we use it to assign values to a
variable. The variable is on the left-hand side of the “=” and the value is on
the right-hand side.

Let me show you some examples so you understand better.

Why don’t we store the numbers in our last calculation in two separate
variables so we can reuse them as we want?

Let’s open a new script file (you know how) and save it as numbers.py.

We'll be using this file to try out the examples in this chapter.

numi

num2 = 5

I've named them num1 and num?2 as short forms of number1 and
number2, so I remember what they refer to when I look back at the code.

Let’s test if num1 and num2 really have the numbers stored in them.
Why don’t we print them out and see?

print(numi)
print(num2)

When we run the preceding four lines of code, this is what we’ll get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3

5

Asyou can see, the variables do store the numbers. So, your program
has now created two containers labeled num1 and num?2, just like your
mom labeled the salt and sugar containers. “num1” has the value 3 inside
of it, and “num2” has the value 5 inside of it.

42

CHAPTER 4 PYTHON LOVES NUMBERS

num1 num2

Let’s take this one step further. Why don’t we create another variable
called sum and store the sum of the two numbers in it?

sum = numl + num2
print(sum)

When we run numbers.py now, this is what we’'ll get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py
3

5
8

Perfect. “sum” holds the sum of “num1” and “num2” now. Do you see
how handy this is? We don’t have to stop here. We can actually change the
value of any of these variables! Let’s try changing num1. I'm going to clear
out the script file, and this is what I'm going to be left with:

numl = 3
print(numi)
numl = 6
print(numi)

43

CHAPTER 4 PYTHON LOVES NUMBERS

As you can see in the preceding code, we assigned 3 to numl1 first, and
then we changed the value stored in num1 to 6. Let’s see if that works:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers. py

3
6
(7 5
- .
num1 num2
Yes, it does! “num1” originally had 3, but now it has 6 stored inside it,
and if you print num2, you'll notice that value is unchanged at 5. So, we
can actually change the value stored inside our variables. We have the
makings of a real program in our hands now!
But don’t get too excited. There are some rules to follow while creating
your variables. Don’t worry though, the rules are pretty tame. Make sure
you follow these rules while creating your variables, or you'll end up with

an error.
I'll just list them so you can refer to them later:

1. Avariable should start with letters or underscore ()
and nothing else (no numbers or special characters
like !, #, $, %, etc.).

44

CHAPTER 4 PYTHON LOVES NUMBERS

2. Avariable can only contain letters, numbers, and an
underscore (_).

3. Variables are case sensitive. “numl” is different from
“Numl”

Pretty simple, don’t you think? But we’re both not fans of theory, so
let’s test these rules out to see if they’re true. Go back to your Shell prompt.
Let’s create a variable that follows the rules first, and then let’s break them
and see what happens.

_var5 =1

When I run the preceding code, nothing happens. It looks like the
preceding variable was accepted. It started with an underscore, and it only
has letters and numbers in it.

What if I break the first rule?

lvar_ =1
Oops, I get an error that says the following:
SyntaxError: invalid syntax
What if my variable starts right, but doesn’t follow the second rule?
var$s = 5
Error again:
SyntaxError: invalid syntax

Let’s check if Rule #3 is true as well. Let’s go back to our numbers.py for
this one. Let’s delete everything else in the file and type the following:

numl = 3
Numl = 7
print(numi)
print(Numi)

45

CHAPTER 4 PYTHON LOVES NUMBERS
When you run the preceding lines of code, you should get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3

7

Look at that! Num1 and num1 might have the same letters and
numbers in them, but the case (N and n) makes all the difference. So,
Python variables are indeed case sensitive.

We've successfully verified all the rules. Whew!

Comments

What do “comments” mean in English? You comment on something?
Describe something? Something along those lines, am I right?

Similarly, you can write comments on your Python code to describe
them. You can write them on, before or after your lines of code. These
comments are just for your reference, and Python will neither read nor
execute them.

Whenever you add a “#” (hash symbol) before you type anything, that
particular line becomes a client. The minute you start a new line though,
you're back to your regular coding. So, your “#” creates exactly one line of
comment.

#This is a comment

You can use comments to describe the lines of code, so when you
read your script later, you'll understand what’s happening. You could also
share your code with your friends, and your comments will help them
understand it.

When you use the “#” symbol, you create single-line comments. What
if you want your comments to span multiple lines?

46

CHAPTER 4 PYTHON LOVES NUMBERS

There’s a syntax for that too:

This

is

a
multi-line
comment

(or)

This

is

a
multi-line
comment

Write your comment within three single/double quotes (without
space) and you have yourself a multi-line comment.

Your numbers come in different forms

Now we know how variables work and how to use them to store our
numbers. Before we play with them even further, I want to show you
something. Did you know that there are different types of numbers in
Python?

Oh yes, just like in Math, where there are whole numbers and numbers
with decimal points, there are integers (whole numbers) and floating-point
numbers (numbers with decimal points) in Python as well. You can even
ask Python to check the type of number used in your code or convert one
number type to another. Let’s look at all of that now.

47

CHAPTER 4 PYTHON LOVES NUMBERS

Integers

Whole numbers are called integers, or int for short.
Let’s clear out numbers.py again and start over with the following line
of code:

numl = 3

“num1l” stores an integer 3. Any numbers without decimal points are
integers.

You can actually check if a number is of a particular type or not.
Python has these things called built-in functions that can be used to do a
lot of cool things. Since they're built-in, as in, they were already built into
Python, you don’t need to know how they actually work in the background.
You can just use them to get the result you want.

For example, there’s a built-in function called “type’, with a small “t’)
which can be used to find the type of a number. Let’s find what kind of
number is stored in “num1’; shall we?

print(type(numi))

In the preceding line of code, I asked Python to find the type of num1.
The variable or the number, as such, should be inside of the open and
close parenthesis, just like we do with the print() statement. Then, I placed
the entire thing inside a print statement because I wanted to print the
result. Otherwise, I wouldn’t get to see what the result of the type checking
was.

Let’s run the preceding lines of code and see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py
<class 'int'>

There you go! It says ‘int, which means integer.

48

CHAPTER 4 PYTHON LOVES NUMBERS
This works for negative numbers too.

numl = -3
print(type(numi))

The result would still be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py
<class 'int'>

So, both positive and negative whole numbers are called integers.
Let’s do the same for the rest of the types now, shall we?

Floating-point numbers

Floating-point numbers have decimal points. Even if it’s just one decimal
point, it'll be classified as floating point.

num2 = 5.5
print(type(num2))

If you run the preceding lines of code, you'll get the following output:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

<class 'int'>

<class 'float'>

Look at that. The last variable created has a floating-point number
stored in it.

Again, both positive and negative decimal point numbers are called
floating-point numbers in Python. Let’s check!

num2 = -5.5
print(type(num2))

49

CHAPTER 4 PYTHON LOVES NUMBERS
The result would be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py
<class 'float'>

Yes, it’s a floating-point number.

Complex numbers

Now, let’s look at complex numbers. Have you learned complex numbers
at school? These numbers have a real and imaginary part, am I right? If
you haven’t learned them at school yet, but you're curious, I'd recommend
reading up on them yourself. You could ask your parents to help you with
this research. A simple Google search should clear your doubts. It’s a very
interesting mathematical concept. On the other hand, you could skip the
next part. The decision is completely up to you. We wouldn’t be using
complex numbers much in any of our programs, so don’t worry about
them.

num3 = 2 + 3j
print(type(num3))

So, 2 + 3j is the complex number where 2 is the real number and 3
is the imaginary number. If we run the preceding lines of code, the final
output would be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers. py

<class 'int'>

<class 'float'>

<class 'complex'>

There you go! The last number was a complex number. We can actually
extract the real and imaginary parts separately. Do you want to see how?

50

CHAPTER 4 PYTHON LOVES NUMBERS

If you want to extract the real number from a complex number, type
the number (or the variable that contains the number), then follow that up
with a period (.), and then follow that with the keyword “real”. Keywords
are similar to the pre-defined tools/methods in Python. They do things in
the background that we don’t know about but give us the desired output
in the foreground. In our case, we'll be able to successfully extract the real
number.

print(num3.real)

Similarly, for extracting the imaginary number, type “imag” instead of
“real”.

print(num3.imag)

When you run the preceding lines of code, you'll get the following
output:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

Look at the last two lines in the preceding output. 2.0 is the real
number and 3.0 is the imaginary number. They’ll be extracted as floating-
point numbers.

As I said before, you can give the numbers directly. But you need to
take care of something before doing that.

print(3 + 4j.imag)

51

CHAPTER 4 PYTHON LOVES NUMBERS

If you try to run the preceding line of code, your code will go wonky,
like this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers. py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

7.0

Python thinks your imaginary number is 7.0 and not 4.0. Why? Well,
that’s because Python added 3 and 4, got the result 7, and added j to it. So
according to it, your complex number is now 7j and not 3 + 4j. I'll teach you
all about “order of execution” in the next sections of this chapter, but for
now, [want to let you know the importance of parenthesis when working
with expressions.

If we wrap the complex number in a (), let’s see what happens.
print((3 + 4j).imag)
Run the preceding lines of code, and get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

4.0

Great! We got the result we were looking for. So, parentheses preserve
the expression as it is.

52

CHAPTER 4 PYTHON LOVES NUMBERS

Type conversion between numbers

You can convert from one number type to another. We will be using more
pre-defined functions (methods) to do that.

To convert a floating-point or complex number to an integer, use
the int() method. Let’s clear out our numbers.py file and start afresh.
Alternatively, you could just create and name a new script file whenever
we are starting anew, especially if you'd like every example saved.

numl = 3.0
print(numi)
print(int(num1))

In the preceding example, I've stored a floating-point number 3.0 in
the variable “num1” I've printed the exact number first. Then, I've used the
int() function to convert “num1” to an integer and printed that too. Let’s
look at the result:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3.0

3

Look at that. The decimal point is gone now. But what if we had
numbers in the decimal place? What happens then?
Let’s edit the value of num1 to 3.45 and test again.

numl = 3.45

print(numi)

#convert the number to an integer
print(int(num1))

53

CHAPTER 4 PYTHON LOVES NUMBERS
Run the preceding lines of code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3.45

3

Interesting. We're still getting 3, even though the number is close to 3.5
with the decimals added in. Why is that? That’s because Python is doing
something called rounding off. Regardless of what the decimal point is,
when you do integer conversion, it is just going to remove the decimal
point and retain the whole number. Let’s try with 3.9 and see if that’s true:

numl = 3.9
print(numi)
print(int(num1))

Run the above lines of code, and get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3.9

3

We still didn’t get 4. ® When you do an integer conversion, it just
removes the decimal points, no matter how big they are. Don’t worry.
You'll learn how to do proper rounding off based on what the decimal
points have when we look at more built-in Math functions in Python.

Now, let’s convert a complex number to int.

numl = 3+4j
print(numi)
print(int(num1))

54

CHAPTER 4 PYTHON LOVES NUMBERS
When we run the preceding lines of code, we get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py
(3+43)
Traceback (most recent call last):
File "C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py”, line 3, in <module>
print(int(num1))
TypeError: can't convert complex to int

Oh my, we got an error! Why is that? Well, theoretically, it isn’t possible
to convert a complex number into an integer because, well, which part
would you extract?

But, if you were to extract the real or imaginary part, you can convert
that into an integer. Let’s try that.

I'm going to save the real number I extract in another variable called

“r” first.

numl = 3+4j

#Find the real part of the number
I = numl.real

print(r)

print(int(r))

In the preceding lines of code, I extracted the real number, assigned
it to a variable “r’; and then converted it to an integer. When we run the
preceding lines of code, we’ll get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3.0

3

55

CHAPTER 4 PYTHON LOVES NUMBERS

Let’s convert an integer to a floating-point number next. We need to
use the float() built-in method.

numl = 3
print(numi)
print(float(numi))

When you run the preceding lines of code, you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3

3.0

Successfully converted!

Would this work with complex numbers? What do you think? Nah, they
wouldn’t. We'll have to extract the real or imaginary numbers again, but
the extractions produce floating-point numbers already, so why would you
want to convert them?

Now let’s convert both integers and floating-point numbers to complex
numbers. You'll have to use the complex() function to do that.

numl = 3
print(numi)
print(complex(num1))

Run the preceding lines of code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3

(3+03)

Look at that! It took the whole number as the real part of the complex
number and the imaginary partis a 0.

56

CHAPTER 4 PYTHON LOVES NUMBERS
Now let’s try with floating-point numbers.

numl = 3.5
print(numi)
print(complex(num1))

Run the preceding lines of code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/numbers.py

3.5

(3.5+07)

It took the entire floating-point number as the real part of the complex
number and the imaginary part is still 0. Interesting!

Mini project — Do you understand numbers?

More than a mini project, this is going to be an activity that’s going to test
your understanding of the topic at hand. Do you understand numbers in
Python? Let’s see!

Let me describe the problem statement first. I want you to try it out
before you look at my explanation. We're still taking baby steps, so I've
made sure that this activity isn’t too tough.

Problem statement: Create three variables (num1l, num2, and numa3)
and store the numbers 3, 5.5, and 3 + 5j in them, respectively. Then,
convert numl into a floating-point number and num?2 into an integer.
Extract the imaginary number of num3 and replace that in num3 and
convert that into an integer too. Display the three converted numbers on
screen. Describe the important lines of code with comments.

Solution:

It’s a pretty simple problem, isn’t it? Don’t worry, you'll see more
complex, yet fun ones once we cover more topics to play with. ©

57

CHAPTER 4 PYTHON LOVES NUMBERS
Here is the entire program:

#Created numi, num2 and num3 and stored the respective values

numi = 3
num2 = 5.5
num3 = 3 + 5j

#convert numl into a floating point number

numl = float(numi)

#convert num2 into an integer

num2 = int(num2)

#Extract the imaginary part of num3 and place it back in num3
num3 = num3.imag

#Convert the imaginary number (floating) into an integer
num3 = int(num3)

#Print everything

print(numi)

print(num2)

print(num3)

I've described everything I did in comments, just like the problem
asks. The code and the comments are self-explanatory, so I'm sure
you understand them. Why don’t you try different combinations and
conversions to get a better understanding of the topic?

Summary

In this chapter, I gave you an introduction into numbers and how they are
used in Python. We looked at storing numbers using variables and the
different types of numbers Python lets you create and manipulate.

58

CHAPTER 5

Let’s Play with
Our Numbers!

In the previous chapter, I gave you a brief introduction to using numbers in
Python, creating, and storing them and the different types of numbers you
can play around with.

Let us look at how to play with those numbers in this chapter by
looking at how to use your numbers to do calculations and how to have
real fun with Python’s pre-defined number methods.

Get your numbers out to play

We've looked at creating numbers and storing them and the different types of
numbers in Python. But we haven’t done anything with them yet, have we?

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_5

https://doi.org/10.1007/978-1-4842-6812-4_5#DOI

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Would you like to finally play with your numbers? Yes!

You can do pretty much everything you do in Math in Python as
well. You can add two numbers or more, multiply numbers, divide them,
subtract them, and it doesn't stop there! You can do a little bit more than
the usual calculations. What fun is programming if you're stuck doing the
same old calculations?

You have operators that can find the remainder of a division. Yes, you
read that right. You won’t have to find remainders using a long-drawn-out
process anymore. I bet your calculator doesn’t do that!

You can do exponentiation as well. Want to find the result of 5 * 5 * 5?
That is 5 to the power of 3. Python has a single operator you can use to do
that. What more? Make the number and power as big as you want, and
you'll still get your result immediately.

Basic Math operations

Without further ado, let’s look at all the operations you can play around
with in Python. I'll be explaining how the operators work with examples for
each. Clear out your numbers.py file or create a new script file.

«w . n”n

Let’s look at addition first. You need to use the “+” symbol to add two

(e

numbers. If you want to add three numbers, use “+” twice. It’s just like how
you add at your Math class.

numil = 5

num2 = 7

add = numl + num2
print(add)

When you run the preceding lines of code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
12

60

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

The answer is correct! Let’s make things more complicated, shall we?

55.876

num2 = 100.54

#Add num1 and num2

add = numl + num2

num3 = 1235.583

#Add the value in num3 to the current value in add
add = add + num3

print(add)

numil

We created two numbers, “num1” and “num?2’, added them, and stored
the result in the variable “add” Then, we created another variable “num3”
and stored another number in it. We added the current value of “add” with
“num3” and stored it back in “add” and printed the final value of “add”.
Let’s see what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
1391.999

Cross-verify with your calculator. I'm sure that’s the correct answer. As
you can see, you can add more than one number. You can also change the
value of your variable by doing calculations with its current value and re-
storing (it’s called re-assigning in programming) it back to that variable.

We've learned addition in Python. The same rules apply for
subtraction, multiplication, and division. Let’s quickly look at them.

«w - n

You need to use the symbol for subtraction, “/” for division, and “*”

w_»n

for multiplication. Unlike Math, using “x” or “X” for multiplication won'’t
work with programming languages.

numl = 20
num2 = 10
#Addition

add = numl + num2

61

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

print(add)
#Subtraction

sub = numl - num2
print(sub)
#Multiplication
mul = numl * num2
print(mul)
#Division

div = numl / num2
print(div)

When your run the preceding lines of code, you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py

30

10

200

2.0

Did you notice something? Every other operation (addition,
subtraction, and multiplication) produced an integer as the output, but the
result of division was a floating-point number. Take a note of this. Division
always produces decimal numbers in Python. If there are no decimal
points, it'll just end the result with a “.0’, but it'll still be a decimal (floating)
number.

Special Math operations in Python

We've looked at the common operators. Let’s look at the special ones now.
You need to use the multiplication operator twice to do
exponentiation. “**” is the operator you're looking for.

62

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

So, instead of typing 2 *2 * 2 * 2, which means 2 to the power of 4 (2
multiplied by itself four times), you can just type 2 ** 4 and you'd get the
same result. If you had to multiply 2 by itself 20 times, just type 2 ** 20.
You'd have saved a lot of time and space with this operator.

Let’s look at some examples.

exp = 2 ** 4
print(exp)

exp = 2 ** 20
print(exp)

exp = 5.5 ** 3
print(exp)

exp = 5.5 ** 3.5
print(exp)

As you can see in the preceding code, exponentiation works with
floating-point numbers too. You can have floating-point numbers for both
the number and the exponent (the power). Let’s look at the result to see if
it works, shall we?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

16

1048576

16.5

19.25

Yes, it works!

Now, let’s find our remainders. Use the modulus operator “%” instead
of the division operator “/’, and you'll get the remainder of the operation.
Remember what happens when you divide a number by another number?
You get a quotient and a remainder, am I right? Your modulus operator will
do the same, but it'll just return the remainder and not the quotient. If you
want to find the quotient of the same operation, use the division operator
with the same numbers.

63

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

#Division
div =5/ 2
print(div)
#Remainder
rT=5%2
print(r)

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

2.5

1

Did you see what happened? You got the floating-point value of the
division as your first result and the remainder of 5 / 2 as your second result.

But what if you just need the quotient and not the complete result with
the decimal point? You have an option for that as well!

It’s called the floor division operator. Write it with two forward slashes,
like this: “//"

It'll divide your numbers and return just the whole number, leaving out
the decimal point. Let’s try the same with simple and complex examples.

floor =5 // 2
print(floor)

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py
2

Look at that. We just got 2 and not 2.5. 2 is the quotient of the operation
5/ 2. So, if you want the quotient and remainder separately, use the floor
division to get the quotient of the operation and the modulus to get the
remainder.

64

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!
Let’s look at a more complex example to test if this really works:
#Division
div = 100 / 15
print(div)
#Quotient
q = 100 // 15
print(q)
#Remainder
r = 100 % 15
print(r)

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

6.666666666666667

6

10

When you multiply 15 by 6, you'll get 90. So, the quotient of 100 / 15 is
6 and the remainder is 10. We got the correct answer. It works! ©

Assignment operations

Python has something called assignment operations to make things easy
for us. We've looked at one of them already. Remember the equal to, “=’,
operator? You can use that operator to assign values to a variable.

Let’s quickly look at the rest. They are quite easy to understand.

There is the += operator.

a += 5 basically means a = a + 5. So, if you'd like to add a value to a
variable and re-assign it back to the same variable, use this operator.

Similarly, you have -=, *=, /=, **=, %=, and //=.

65

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Let’s look at examples of all of that now. Read the comments in the
following lines of code to understand what each line of code does:

num = 5

#Add and re-assign 5

num += 5

#Ans -> 10

print(num)

#Subtract 5 from num

num -= 5

#Ans -> 5

print(num)

#Multiply the current value of num with 2
num *= 2

#Ans -> 10

print(num)

#Divide the value of num by 2
num /= 2

#Ans -> 5.0

print(num)

#Calculate num to the power 2 and re-assign it
num **= 2

#Ans -> 25.0

print(num)

#Find the quotient of num / 3
num //= 3

#Ans -> 8.0

print(num)

#Find the remainder of num / 3
num %= 3

#Ans -> 2.0

print(num)

66

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!
When you run the preceding lines of code, you'll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

10

5

10

5.0

25.0

8.0

2.0

Did you see something weird in the preceding operations? We started
with integers, but the minute we performed a division operation, the rest
of the results continued to be in floating point, regardless of the operation.
We know why we got a floating point in the division operation. Division
always results in a floating-point number. But why did it continue to be the
case for the rest of the operations?

That’s because performing operations on a floating-point number will
always result in a floating-point number, even if the other number is an

integer.

What comes first?

Python, and any programming really, has something called precedence
when it comes to order of executing mathematical operations. You must
have learned about this in your math class too.

67

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Remember the BODMAS rule? It basically says that anything within the
brackets executes first and then comes the division, then multiplication,
then addition, and finally subtraction.

Python does not have the exact rule, but it has something similar.

The rules of precedence in Python are as follows:

e Order of execution happens from left to right.
e Brackets hold the highest precedence.
e Then comes the exponentiation operator **.

e Then your multiplication (*), division (/), floor division
(//), and modulus (%) operators. They hold the same
level of precedence.

 Finally, you have your addition (+) and subtraction (-)
operators, which hold the same level of precedence as

well.

Why don’t we put the rules to test?
Let’s take the following expression: 2 + 3 * 5.

68

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Let’s run the preceding expression in our Python Shell and see what we
get:

>»> 2 +3 %5
17

Why is it 17? Since order of execution happens from left to right,
shouldn’t 2 + 3 be executed first to result in 5, and shouldn’t the result (5)
have been multiplied with 5 to result in 25 and not 17?

That’s where the precedence comes in. Even though order of execution
is left to right, the operation with the higher precedence (in this case,
multiplication) will be executed first, and then the result will be added to
the first number (in our example).

But what happens if there’s a bracket?

>>> (2 +3) *5
25

Now we get a 25 because even though addition has lower precedence
to multiplication, brackets hold the highest precedence, so they get
executed first.

What if there are two brackets?

> (2 +3) ¥5% (1 +2)
75

The preceding expression was done like this: (5) *5* (1 + 2) =
5*%5*3="175.

When two operations hold the same precedence, the left to right
rule is followed. Now that you know how precedence works in numbers,
why don’t you write down different expressions and guess how they’d be
executed in Python? Then you can execute them to verify your results.

69

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Cool stuff with numbers

Python is a well that keeps on giving. You can do pretty much anything
you want with numbers and manipulate them in any way you want.
How? There’s a cool little tool called the Math module. Do you
remember me telling you about Python add-ons that let you do cool
stuff? This is one of them.

With this module, you can do pretty much everything you want with
Python. You can find the power of a number, its square root, floor, ceiling,
and so much more. Let’s look at some of the most important ones in this
section. If you'd like to know more, a quick Google search will give you
alist of all the operations you can do with the Math module. You have a
bunch of pre-defined methods/functions that’ll help you achieve these
things.

Let’s get started!

You can find the floor and ceiling numbers of decimal numbers. What
is that? You can round off decimal numbers to their integer counterparts.
But if you use the floor function, it'll round the number to the lowest
integer.

Open a new script file or clear out the one you've been using.

Before you use any of the pre-defined methods in the Math module,
you need to import it into your script file first. You need to use the “import”
keyword to do that.

import math

The preceding line of code basically tells our program that we're
importing the Math module to our file. Did you notice how we’ve written
“math” with a small “m”? Make sure you do that. If you wrote it as “Math’)
you'd get an error since Python is case sensitive. This applies for any pre-
defined function or keyword you use in Python. You need to use them with
no change to their spelling or case.

70

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Floor and ceiling of a number

Okay, now that we’ve imported our Math module, let’s do our operations.
The syntax to find the floor of a number is math.floor (num) where “num”
is either the variable that holds the floating-point number or the number
itself. The same goes for ceil.

import math
print(math.floor(5.6))
print(math.floor(5.3))
print(math.floor(5))
print(math.ceil(5.6))
print(math.ceil(5.3))
print(math.ceil(5))

When you run the preceding lines of code, you'll get the following:

RESTART: C:\Users\aarthi\AppData\lLocal\Programs\Python\
Python38-32\numbers.py

Ui O O U1 U1 U

Look at that! Regardless of what the decimal point is, a floor operation
will always result in the lowest integer, which is 5 in this case, and a ceil
operation will always result in the highest integer, which is 6. Floor or ceil
operations on integers have no effect on the number, and you'll get the

same number as the result.

71

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Power and square root

Next, let’s look at powers. Remember how we used the “**” operator to find
the power of a number? We have a Math operation that does something
like that too.

Its syntax is math. pow(num, power).

So, if you'd like to find the value of 5 to the power of 3 (5 * 5 * 5), then
you’d do it like this:

import math
print(math.pow(5,3))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
125.0

The result is a floating-point number. Try working with decimal points
and see what you get.

On the same vein, you can find the square root of numbers with the
sqrt method. If 5 * 5 is 25, then the square root of 25 is 5. Let’s test!

import math
print(math.sqrt(25))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
5.0

The result is a floating-point number again.

72

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Factorial of a number

Do you know how to find the factorial of a number?

The factorial of 3is3 * 2 * 1, whichis 6.

The factorial of 5is5 * 4 * 3 * 2 * 1 which is 120.

Are you seeing the pattern here? You wouldn’t have to laboriously
calculate factorials anymore though. Python does that for you with the
factorial method!

import math
print(math.factorial(5s))

Run the preceding code and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
120

Yes, it works!

Sin, cos, tan, and more

If you know how sin, cos, tan, and log work, then you'll find the next part
interesting. If you don’t know these concepts, don’t worry. You can come
back to this section once you've learned these concepts in your Math class.

You can find the sin, cos, tan, and log of numbers with the relevant pre-
defined methods. Before we start, I want to clarify something. The values/
variables we give inside of the brackets () in any pre-defined method are
called as arguments, and I'd be referring to them as such.

import math
print(math.sin(2))
print(math.cos(5))

73

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

print(math.tan(2))
print(math.log(10,2)) #The first argument is the number and the
second is the base

Run the preceding code and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

0.9092974268256817

0.28366218546322625

-2.185039863261519

3.3219280948873626

You can verify the results with your scientific calculator, and you'll find
that the results are the same.

These are just some of the operations you can do with the Math
module. There is at least a dozen more.

Check them out in the official Python documentation and play around
with them, if you'd like: https://docs.python.org/3/1library/math.
html.

More numerical operations

Your fun with Math isn’t just isolated to the Math module. There are a
bunch of stand-alone functions that do cool stuff as well. You won’t have
to import the Math module to do these operations, but they're just as
powerful.

Would you like to find the minimum number among a list of numbers?
Then use the “min” method, and give every number you want compared
as the argument for that method, separated by commas. The same goes for

74

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

import math
print(min(-100,100,40,25.64,200.3452,-253))
print(max(-100,100,40,25.64,200.3452,-253))

I've given the same list of numbers for both min and max. Let’s look at
the result:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py

-253

200.3452

It works! -253 is the minimum number and 200.3452 is the maximum.
If you want to convert a negative number to a positive number in an
operation, then use the “abs” method.

print(abs(-100))
The preceding code will result in this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
100

Working with random numbers

What if you didn’t want to come up with a number to use in your
calculations? What if you wanted your computer to choose your number
for you? Well, Python has got you covered.

Python has yet another module called the “random” module which
comes with a bunch of cool functions that’ll help your computer choose a
random number every time it’s run.

Let’s look at that now. You need to import the random module first. It’s
“random” with a small “r”.

75

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

If you'd like a random number returned between the range you gave,
use the randrange() function.

import random
print(random.randrange(1,11))

“random” is the name of the module, and “randrange” is the name of
the function. I've given 11 in the second argument because the random
module ignores the last number in the range. So, if I gave 10, then I'll only
get random numbers from 1 to 9. Since I wanted to include 10, I gave 11 as
my second argument.

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py
10

When I ran it again, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
2

The next time:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
7

When you run the same lines of code multiple times, you'll get
different results than mine. Why don’t you try out and see for yourself? ©

We've just scratched the surface of the random module. There’s more
where that came from. For example, you can ask your program to choose a
letter from a word or phrase you specify, with the “choice” method.

76

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

import random
print(random.choice("Hello there!"))

Print the preceding code, and you'll notice that you get one of the
letters (including the exclamation point and space), every time you run the
program.

You can choose among a list of numbers as well. We’ll look at lists in
detail in one of the later chapters, but for now, just understand that a list
holds alist of a data, and in our examples, a list of numbers, and you should
write the numbers within square brackets, separated by commas, like this:

import random
1= [1)3)5J7J9]

Let’s make our program randomly choose from this list now:
print(random.choice(1))
Run the preceding code; for the first run, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
3

Subsequent runs will give me random selections. Try and see! ©
There is the “random” method of the “random” module which returns
arandom floating-point number between 0 and 1.

import random
print(random.random())

When I ran the preceding code, I got this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py
0.6386828169729072

77

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Since randrange only returns integers within a range, I can use uniform
to return floating-point numbers within a range. The only difference here
is that this function considers both numbers of the range in its results.

import random
print(random.uniform(1,10))

When I ran the preceding code, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
3.7563014275306283

Mini project — multiples of a number

In this mini project, I'll teach you how to find the multiples of a number
with a number method. So, if I want all the multiples of 3 until 100
displayed, for example, then this is what I'd do:

There’s yet another pre-defined method in Python called the “range”
method. We'd usually only learn about this method when we learn
about loops (in a later chapter), but I wanted to introduce it here, since
technically, it is a number method.

The range function, as the name implies, produces a range. You need
to write it as range(num), where everything is written in small letters:

1. Let’s print the following line of code in the Python
Shell:

>>> print(range(5))
Run the preceding code, and you'll get this:

range(0, 5)

78

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

Alternatively, you can give the starting and ending
numbers in a range as well, like this:

>>> print(range(1,10))

Run the preceding code, and you’ll get this:
range(1, 10)

Also, you can print the entire range using the “*”
operator. No, don’t confuse it with the multiplication
operator. This operator is used to print when

something (in our case, the range) has more than
one object (in our case, more than one number).

Let’s open our script and do the following:
r = range(1,10)

Now, the variable “r” contains the range. To print

u_n

everything inside “r’, which is the list of numbers
from 1 to 10, use “*’ like this:

print(*r)

Specify “*” before the variable so Python knows that
you're trying to print everything inside whatever is
coming next. Alternatively, you can also write the
same print statement like this:

print(*range(1,10))
Run either of those statements, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\
Python\Python38-32\numbers.py
123456789

Yup, it works!

79

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!
5. IfIran this:
print(*range(10))
I'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\
Python\Python38-32\numbers.py
0123456789

Asyou can see, if you don'’t give a starting range, then
it prints from 0 to the number before the ending range.

6. You can also skip numbers between ranges by
using a third argument. If you give 2 as the third
parameter, your program will print every 2nd
number in the range. 3 as your 3rd parameter
will print every 3rd number, 4 will print every 4th
number, and so on.

print(*range(0,10,2))
When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\
Python\Python38-32\numbers.py
024638

You've printed out only the even numbers between
0 and 10. How great is that? You can skip any
numbers you want with the third parameter.

Now that we know all of this, can you guess how we
can apply this to solve our problem? So, we need to
find the multiples of the given number within the
given range, and we know that we're going to use
the range() function to do that.

80

CHAPTER 5 LET’S PLAY WITH OUR NUMBERS!

7. Let’s say we want to find the multiples of 3 from 1 to
100 and print them all out. So, that’s 3, 6, 9 until 99, am
I'right? You can do that in a single line of code. Would
you like to try it yourself before you check the solution?

Tried? Okay, let’s look at the solution now!
print(*range(3,101,3))
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

369 1215 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66
69 72 75 78 81 84 87 90 93 96 99

Whoa! Quite simple, wasn't it?

We just gave the multiple as the first argument since it’s anyway
going to be the first result - 3 * 1 = 3. Then we specified 101 as the second
argument, so 100 would be included if it were a multiple. Finally, we gave 3
as the third argument again because we need to skip three numbers every
time. And it worked! ©

Now, why don’t you try with different multiples and ranges and see
how it works out for you?

Summary

In this chapter, we continued to look at numbers. We looked at how to
use different operators available in Python to manipulate our numbers.
We also looked at using the “Math” module and pre-defined functions to
further play with our numbers. We finally looked at the “random” module,
and we finished the chapter with a mini project as usual.

In the next chapter, let’s look at a very interesting concept in Python.
We'll be looking at using the Turtle module to draw graphics.

81

CHAPTER 6

Drawing Cool Stuff
with Turtle

In the previous chapters, we learned how to play with numbers in Python.
We looked at the different types of numbers in Python, the various
operations you can do, and using various modules and pre-defined
methods to have fun with Python!

In this chapter, we're going to look at yet another module in Python,
the Turtle module. We're going to learn all about Turtle, using it to draw
graphics, shapes, deigns, text, and so much more. We're going to end the
chapter with a bunch of cool mini projects as well.

Let’s get started

Are you starting to get bored? Let’s take a break from theory, shall we? I
promised you fun, and now it’s time I delivered on that promise. Let’s draw
with Python! Are you wondering how?

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_6

https://doi.org/10.1007/978-1-4842-6812-4_6#DOI

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Well, let me introduce you to the magical world that is “Turtle” Turtle is
a Python module, and it comes with a ton of tools (pre-defined methods)
you can use to draw on your screen. The sky is the limit to what you can do
with Turtle.

In this chapter, let’s start with the basics of Turtle, and as we move
further into the book, I'll show you more advanced tricks you can do with
Turtle and Python.

No more boring projects! Our mini projects are going to be colorful
from this chapter onward. Are you excited? I know I am!

Alright, let’s get started.

Why don’t you create a new file and name it whatever you want?

You can use it for this chapter. Be careful with the naming though! Don’t
name your file turtle.py because there’s already a turtle.py in your Python
installation, and naming your file with the same name will cause errors
when you run it. Other than that, you can name it pretty much anything
you want. I've named my file drawTurtle.py.

Before we get started though, we need to import Turtle into our Python
script file. Turtle is just an add-on, remember? So, it won’t be available in
your file unless you import it. The process is pretty simple actually. Just
type “import” and then “turtle” with a small “t"

import turtle

Okay great! We've imported Turtle into our script file. Let’s create our
screen next. Turtle creates graphics, and if you noticed, your Python Shell
doesn’t exactly have the right display for images or drawings. So, we're
going to create our own screen where our drawings will appear.

Let’s create a variable “s” (you can name it anything you want). We're
going to get our screen from turtle by using turtle’s getscreen() pre-defined
function and assign it to s, like this:

s = turtle.getscreen()

84

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Now, the variable “s” contains our turtle screen (Figure 6-1). Let’s run
the preceding line of code and see what we get.

Figure 6-1. Python Turtle screen

Did you see a popup like the preceding image with a black mark in the
middle? That’s our turtle.

Now that we have our screen, let’s create our Turtle! Confused? Don’t be.
In turtle, a turtle will draw whatever you command on the screen. Literally. It'll
look cool, you'll see. There’s another pre-defined function Turtle() of the turtle
package (too many turtles, I know :D). It has all the tools you need to draw on
the screen, like drawing lines, circle, coloring them, and so on. Let’s get that
function and assign it to a variable t so we can use it later when we draw.

t = turtle.Turtle()

Remember that the “T” in the Turtle() function is capitalized.

When you run the code now, you won'’t see any change. It’ll still be the
same blank screen, but we've set everything up now. The first three lines of
code (import, getscreen, and Turtle()) are a constant in every program that
involves turtle graphics, so always start with those, and I'll assume you've
included those lines in my future examples.

Let’s draw next!

85

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Make your Turtle move

Now that we have everything ready, let’s make our turtle move in the
direction we want and draw while it moves. Our turtle is going to draw
straight lines, and we’re going to give it the distance and direction of those
lines. Sounds good? Let’s see how that works.

Move forward and backward

Let’s test with the basic ones first, forward and backward.

To move forward, you need to use the forward() pre-defined method
of the Turtle() function, and inside of the parenthesis, you need to give the
distance. So, if you want your turtle to move (and draw) 100 points in the
forward direction, you'll give 100 inside the brackets, like this:

t.forward(100)

We gave t.forward() in the preceding example because the forward()
function is also inside of the variable t since we assigned everything inside
Turtle() to it.

Let’s save and run our script, and we’ll get this (Figure 6-2).

Figure 6-2. Forward 100 points

86

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Great! We got a straight line drawn in the forward direction, and it
stopped at 100 points, just like we wanted.

How do you make it move backward? Yes, you guessed it right! By using
the backward() function. But there’s a catch! If you ask your turtle to move
backward right now, it'll just draw over the current line and you wouldn’t
see anything. Let’s test that.

t.backward(100)

Run the preceding code, and you'll get this (Figure 6-3).

Figure 6-3. Backward 100 points

Yep, no change at all. Look at the arrow I drew pointing toward the
starting point of the Turtle. Our turtle just came back to that starting point,
but it didn’t draw anything new.

There’s a way to get around this issue. There’s yet another function
called home() which will make your turtle come back home (the starting
position). So, before we give the backward command, why don’t we use
home() to get turtle back into position?

87

CHAPTER 6 DRAWING COOL STUFF WITH TURTLE
The entire code snippet will be like this:

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
t.forward(100)
t.home()
t.backward(100)

When we run the preceding code, we’ll get this (Figure 6-4).

Figure 6-4. Forward, home, and backward

Yay! Our Turtle started from the starting position, drew a straight line
100 points to the right (forward), then went back to the starting position
(it did draw while going back, but you didn’t see that since it drew over the
original line), and drew another straight line 100 more points to the left
(backward). It works perfectly.

Alternatively, you could just give t.backward(200) to get the same
result.

Did you notice something when you ran the code? Turtle literally drew
those lines for you in real time. Isn’t that awesome? ©

88

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Make your turtle change directions

You can’t keep drawing in the forward and backward direction. You need
to change directions to draw proper shapes. This is where the angles come
in. Have you learned angles at school yet? If not, don’t worry. Let me
explain the concept quickly. It’s quite easy.

Look at Figure 6-5.

it(120) 9% it(60)

1t(135)

It(150) 1t(30)

backward(100) forward(100)
rt(150) I't(30)
rt(135) rt(45)

rt(120) r(90) rt(60)
Figure 6-5. Using angles to change directions in Turtle

In Python’s turtle module, angles are basically directions. So, if
you want your turtle to keep moving forward from the current position
(home), then just say forward(100). If you want it to direct straight upward,
then first change direction by giving left(45), or 1t(45). Now, if you give
forward(100) or something similar, you'll get a line upward, just like I've
drawn in the preceding image. Similarly, to direct downward, using 90
degrees again, but right(90) this time. For the rest of it, you can refer to the
preceding image and decide which line of code you need to use to change
directions.

89

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

As you can see, if we want our Turtle to take complete turns, that
is, draw downward instead of toward the right, then we need to give 90
degrees as our angle. Let’s test that out now. I'm assuming you've already
typed the three mandatory turtle lines of code already. Then, type the
following:

t.forward(100)
t.right(90)
t.forward(100)

We’'re making our turtle move 100 points in the forward direction first.
Then we’re making it turn right at 90 degrees, which is a sharp turn (useful
for drawing squares and rectangles). Now, our turtle is facing downward,
and we're making it move forward 100 points again.

When we run the preceding lines of code, we’ll get this (Figure 6-6).

Figure 6-6. Right(90)

Let us move 90 degrees to the left now and see what we get.

t.left(90)
t.forward(100)

When you run the script, you'll get this (Figure 6-7).

90

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Figure 6-7. Left(90)

See, it made a sharp turn to the left.

Congrats! You now have four of the most powerful tools of Turtle at
your disposal, and you can use them to draw a lot of things. Would you like
to start with a couple of cool shapes?

Let’s start simple, shall we? What about a square?

Mini project — draw a square

Don’tlook at the solution immediately. There are plenty of solutions for
the same problem in programming, so try to find your own, and then look
at mine. ©
Okay, I'm going to make my solution very simple. I'm going to use just
forward and right. My square is going to be 100 points in length and height.
These are the steps I'm going to use to draw my square:

1. T'll make the turtle move forward 100 points first and
then take a 90-degree right turn.

2. Then move forward 100 points again to draw the
second side of the square and another right turn.

91

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

3. Forward again to draw the third side and right turn
again.

4. Forward again to draw the fourth and final side.

Let’s convert the preceding directions to code:

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
t.forward(100)
t.right(90)
t.forward(100)
t.right(90)
t.forward(100)
t.right(90)
t.forward(100)

Let’s run the preceding lines of code. You'll see turtle draw with our
commands in real time (Figure 6-8).

Figure 6-8. Draw a square

92

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Yipee! We got our square!
Instead of the last t.forward(100), you could just type t.home() and
you'll get the same result. Why don’t you try and see?

Mini project — draw a hexagon

I'm going to follow the same rules as my square for my hexagon. The only
difference is I'm going to make my turtle turn 60 degrees every time, because
that’s the angle at which the side of a hexagon is placed (Figure 6-9).

N
60 degrees

Figure 6-9. Angle in a hexagon

Also, I'm going to use the forward function six times instead of four,
because I need it to draw six sides.
Look at the following code. It’s easy to understand.

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
t.forward(100)
t.right(60)
t.forward(100)

93

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

.right(60)
.forward(100)
.right(60)
.forward(100)
.right(60)
.forward(100)
.right(60)
.forward(100)

+ &+ &+ &+ &+ + + +

It is a bit tedious to type all those lines of code for just one shape, don’t
you think? Don’t worry. When we look at automation, I'll teach you how to
draw any shape you want, any number of times you want, with just a few
lines of code. It'll be worth the wait, I promise.

When you run the preceding code, you'll get this (Figure 6-10).

Figure 6-10. Draw a hexagon

Yippee again!

94

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Shortcuts

Typing out forward, backward, right, and left every single time is a bit

tedious, don’t you think? Why don’t we shorten everything to make things

easy for us? You can write fd, bk, rt, and It instead.

Let’s try our shortcuts with our square.

import turtle

= turtle.getscreen()
= turtle.Turtle()

S
t
t.fd(100)
t.rt(90)
t.
t
t
t
t

fd(100)

.rt(90)
.fd(100)
.1t (90)
.fd(100)

Run the preceding code, and you'll get this (Figure 6-11).

Figure 6-11. Shortcuts fd, bk, Ilt, and rt

95

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

We got it, yay!

Now I want you to let your imagination run free. Draw anything you
want. Just type your code, run it, see the results, and modify things. Create
as many shapes as you can. Just have fun with it! ©

Go to random points on the screen

By now, you're probably an expert at making turtle draw straight lines on
the screen and manipulating them to get different shapes. Butisn’tita
tedious process? You're essentially writing two lines of code to draw every
single straight line - a forward or backward to draw and then a right or left
to change directions.

What if you can just command your Turtle to go to a particular
position, drawing a straight line while it did, and it did just that? No angles,
no forward, nothing. Something like that would save you both time and
space, won't it?

You certainly can do something like that with the pre-defined function
goto. But, instead of just specifying the number of points you want your
turtle to move, like you do with forward and backward, you need to specify
the exact coordinate to which you want Turtle to move to.

What are coordinates? Have you learned about them at school, maybe
when you learned about graphs? If not, don’t worry. I'll explain now.

96

.x-

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

(-100,300)

Y

L (0,300)

(0,200) e
(200,200)

(0,100)

X

(-300,0)

L J
(-300,-300)

0,0)
{-20; 0) (-1 0-0,0) (100,0) (200,0) (300,0)

L (0,-100) °
(200,-100)

b (0,-200)

» (0,-300)

Y

Figure 6-12. Coordinates in Turtle

Look at the preceding image (Figure 6-12). The point Turtle starts from
usually (home) is the big red dot marked (0,0). The first 0 is the x value,
and the second 0 is the y value. Did you notice that the lines are marked

X, -X, Y, and -Y? Those are called axis. Don’t worry too much about axis

and coordinates. If you don’t know them already, you just need to know

enough to know where to send your turtle to.

The x value positively increases in the right direction and negatively

increases in the left direction. The Y value positively increases in the

upward direction and negatively increases in the downward direction.

Now that you know that, and you also know that (x,y) is how the

coordinates are written, take a look at the image again. Do you see how the

coordinates are written now?

97

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

(200,200) is where it is because x is at positive 200 and y is also at
positive 200. So, if you gave goto(200,200), then you'd draw a straight line
from (0,0) which is the default starting point for turtle to (200,200), which
would be a diagonal line (Figure 6-13).

Y

° @ (0,300)

(-100,300)
(200,200)
¢ (0,200)

(0,100)

X (0,0)

(-300,0) (-200,0) (-100,0)

X

(100,0) (200,0) (300,0)
» (0,-100) ™
(200,-100)
b (0,-200)
. p (0,-300)
(-300,-300)

-Y

Figure 6-13. (0,0) to (200,200)

Draw a square with goto

Alright, now that you know how coordinates work, let’s use it to draw
something. What about a square?

98

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

I'm going to start from the default (0,0). I won’t have to mention that
because Turtle does that by default. Then, I'm going to move upward to
(0,100), then right to (100,100), down to (100,0), and finally back home to
(0,0). Why don’t you refer to the coordinates image to see where each of
these points is?

Let’s write the code now:

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
t.goto(0,100)
t.goto(100,100)
t.goto(100,0)

t.home()

t.home() will make the turtle go back to the (0,0) position.
When you run the preceding code, you'll get this (Figure 6-14).

r

Figure 6-14. Square with goto

Look at that, you drew the same thing with just four lines of code
instead of seven. Why don’t you play around with the coordinates and
draw more squares or any other shape?

99

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Mini project — draw a mandala (with just
straight lines)

In this mini project, we’re going to take your drawing to the next level.
We're going to draw a mandala, but with just straight lines. Okay, I admit
it. A mandala with only lines is not a proper mandala, but hey, it’s still a
mandala, so let’s go with it. We’ll look at drawing more complex mandalas
in future lessons, so wait for it! ©

Let’s get started, shall we? To start with, we're going to draw a square at
the base and four tilted squares from each side of the square:

1. Let’s first get done with the basics.

#Mandala with lines
import turtle

s = turtle.getscreen()
t = turtle.Turtle()

2. Now, we're going to create our base, our square.
It’s going to be a square of 100 points on each side,
starting from the point (0,0), moving upward to
(0,100) for the first side, then right toward (100,100)
for the second side, then down to (100,0) for the
third side, and going back to home (0,0) for the last
side.

#Create the square base first
t.goto(0,100)

t.goto(100,100)

t.goto(100,0)

t.home()

When we run what we have so far, this is what we'll
get (Figure 6-15).

100

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Figure 6-15. Step 1 - draw the square base

3. Let's draw the first tilted square next.

Right now, our pen is at (0,0). We're going to ask it to
draw a diagonal line to the point (50,50) (middle of
the square) and then meet back at the point (0,100),
which would give us a conical shape inside the
square.

#First tilted square
t.goto(50,50)
t.goto(0,100)

When we run the preceding code, we'll get this
(Figure 6-16).

101

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

]
L]

Figure 6-16. Step 2 - first tilted square, part 1

4. Now let’s draw the same shape outside of the square
to complete our first tilted square. Let us have our
Turtle go to the exact opposite of the point 50,50
which is -50,50 and then again back home.

t.goto(-50,50)
t.home()

When we're done, we'll get something like this
(Figure 6-17).

Figure 6-17. Step 3 - complete the first tilted square
102

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

5. We have our first tilted square! Yay! Now for the next
one.

The second one is quite simple, really. We are just
going to the point 50,-50 (below the square) from
0,0 and meet back at 100,0. Then we’re going to go
to the opposite side of the square to 0,100 to get
ready to draw the next square.

#2nd tilted square

t.goto(50,-50)

t.goto(100,0)

t.goto(0,100) #Getting ready to draw the next tilted
square

When we run the preceding code, we’ll get this
(Figure 6-18).

Figure 6-18. Step 4 - second tilted square

103

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

6. From the point 0,100, let’s draw the next tilted side
to 50,150. Then let’s go back to 100,100 from there,
we’ll get a conical shape again. Then, when we go to
the center of the square to 50,50, we’ll have our third
tilted square (Figure 6-19).

#3rd tilted square
t.goto(50,150)
t.goto(100,100)
t.goto(50,50)

Figure 6-19. Step 5 - third tilted square

7. From the center 50,50, go to 100,0 so we can prepare
to finish the fourth tilted square. Go to 150,50 to
start the conical shape and 100,100 to end the same.

#4th tilted square
t.goto(100,0)
t.goto(150,50)
t.goto(100,100)

When we run the entire script, we'll get this (Figure 6-20).

104

CHAPTER6 DRAWING COOL STUFF WITH TURTLE

Figure 6-20. Step 6 - fourth tilted square

Whoa! We have a basic mandala shape, yes, but when we finish
learning the rest of the goodies Turtle comes with, you can customize this
shape to literally anything you want!

Summary

In this chapter, we looked at Python’s graphics module Turtle, how to use
it to draw lines by using forward, backward, right and left, but also making
our turtles go to their respective coordinate points. We also looked at
drawing shapes like squares, rectangles, hexagons, and so on in Python,
and we ended the chapter with two mini projects.

In the next chapter, let’s look further into Turtle; learn how to draw
circles, dots, semi-circles, and arcs; make things colorful; and code more
fun mini projects!

105

CHAPTER 7

A Turtle Deep Dive

In the previous chapter, you were introduced to the Turtle library in
Python. We looked at drawing lines and shapes with Turtle, and we even
learned how to draw a mandala design entirely composed of lines.

In this chapter, we're going to take a deeper look into Turtle. You'll
learn how to draw colors to your designs and draw circles and arcs of all
shapes, sizes, and angles. You'll also learn how to draw text on screen.
At the end of the chapter, you'll learn how to change the angles of your
drawings and finally draw smileys or drawings of any kind.

Customize your screen

What use are graphics and images without colors? Right now, your screen
looks boring. It has a white background, and your screen title is always
“Python Turtle Graphics” You can change all of that though.

To start with, you can change your screen title using the title method
but remember something. This function isn’t a part of t (turtle.Turtle). You
need to preface it with turtle, the actual package, like this:

turtle.title('Hello Turtle!')

© Aarthi Elumalai 2021 107
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_7

https://doi.org/10.1007/978-1-4842-6812-4_7#DOI

CHAPTER 7 ATURTLE DEEP DIVE

The same goes for your background color. You need to use the bgcolor
method to change your background color and specify your color, in words,
within either single (‘) or double (“) quotes.

I'm going to change my screen’s background color to red.

turtle.bgcolor('red")

Would you like to look at the changes we made? Look at the yellow
arrow (I drew that in Figure 7-1). Our title now says “Hello Turtle!” and our
screen is red. Perfect!

Figure 7-1. Background color set to red

Try changing your screen to a different color or title.

You're not limited to the basic colors either. Follow this link: https://
en.wikipedia.org/wiki/Web_colors.

You'll find the names of hundreds of colors on there. Let your
imagination run free!

108

https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors

CHAPTER 7 ATURTLE DEEP DIVE

Customize your graphics

You know how to change the background color of the screen. Great! But
what about the image color? Colored pens and images filled in color are a
staple of any good drawing, aren’t they?

So, you can change the color of your pen (outline of your graphics) and
your graphic (fill color). You can also set a size for your lines and change
the speed of your turtle (pen) if you feel it’s too slow.

To change the color of your pen, use the pencolor function (write the
function as it is, in all small letters) and give the name of the color as the
parameter (what you give within the brackets). I'm going to use one of the
colors from the color chart I gave you a link to in the last section.

Similarly, to change your fill color, use the fillcolor function. You can
increase the size of your pen (the thickness of your lines) with the pensize
function and give a number as its parameter. Specify a number greater
than 2 to really see a difference, since 1 is the default pen size. Also, you can
increase the speed of your pen by using the speed function. The default
speed value is 1, so give anything more than that and you'll see a change.

Let’s apply all of this and look at the result.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()
turtle.title('Hello Turtle!")
turtle.bgcolor('DarkOrchid")
.pencolor('Salmon")
.fillcolor('Chartreuse')
.pensize(5)

.speed(7)

.goto(0,100)

.goto(100,100)

.goto(100,0)

.home()

+ &+ &+ &+ &+ &+ + +

109

CHAPTER 7 ATURTLE DEEP DIVE

Alright. I've specified the background color as “Dark Orchid’, the pen
color as “Salmon’; the fill color as “Chartreuse’; the pen size as 5, and the
speed as 7. I've also drawn a square with goto. Let’s see if it works (Figure 7-2).

Figure 7-2. Set speed, size, pen color, and background color

It has worked to an extent. My pen drew so fast that I didn’t see it draw
this time (bummer). The lines are thick, the pen color is indeed salmon,
but where is the fill color?

That’s because Turtle wants you to indicate when you want the filling
to start and end, so it doesn’t accidentally fill something it shouldn’t (like
just two lines joined at a point).

You need to use the begin_fill() method when you want the fill to start
and the end_fill() method when you want it to end.

So, after I've typed out the lines of code required to change the colors,
size, and speed, this is what I'd do when I draw the shape:

t.begin fill()
t.goto(0,100)
t.goto(100,100)
t.goto(100,0)
t.home()

t.end fill()

110

CHAPTER 7 ATURTLE DEEP DIVE

Now, when I run my program, I'll get this (Figure 7-3).

Figure 7-3. Set fill color of the rectangle

Yes, it works!
Also, you can use shortcuts for your formatting. Instead of using two
lines of code to specify pen and fill color, you can use one, like this:

t.color('Salmon','Chartreuse")

The first value is for pencolor and the second is for fillcolor.
Or, better yet, you can use a single line for all the four formatting
options, like this:

t.pen(pencolor="Salmon', fillcolor='Chartreuse', pensize=5,
speed=7)

Notice how you didn’t have to place the numbers within quote. When
you use the preceding line of code in your script, you'll notice that the
result has not changed at all.

You can omit any of those arguments (pencolor='Salmon' is an
argument) as per your requirement.

111

CHAPTER 7 ATURTLE DEEP DIVE

Before we end this section, I want you to try something. I want you to
specify the value of speed as 0. What do you think will happen? Will turtle
start drawing our square at the speed of an actual turtle? Or would you be
pleasantly surprised? Try and see! ©

Shapes without lines

We've been looking at drawing lines so far, but what if you want to draw
circles? There’s a pre-defined function for that as well. It’s called “circle’,
and you have to give just the radius as the argument within the brackets.
Radius is basically the size of the circle.

Let’s try one, shall we?

Circles

s = turtle.getscreen()
t = turtle.Turtle()
t.circle(100)

I've kept it simple. Run the preceding code, and you’ll get this
(Figure 7-4).

——

Figure 7-4. Draw a circle - anti-clockwise direction
112

CHAPTER 7 ATURTLE DEEP DIVE

As you can see, turtle started drawing the circle from the default 0,0
position in the anti-clockwise direction (toward the left) so the circle was
drawn above the 0,0 position.

If I gave a negative value for radius, it'll draw in the clockwise direction,
that is, below the 0,0 position. Let’s try.

t.circle(-100)

Run the above lines of code, and you'll get this (Figure 7-5).

Figure 7-5. Draw a circle - clockwise direction

You can use the same coloring and size options you used on your
straight lines for your circle.

As a small activity, I want you to draw different colored circles with
different colors and see what you get.

Dots

You can draw a dot with the “dot” function. It’s just a filled in circle that
uses the pen color to fill itself, or you can give a preferred color in the
second parameter.

t.dot(100, 'Salmon')

113

CHAPTER 7 ATURTLE DEEP DIVE

Run the preceding code, and you'll get this (Figure 7-6).

Figure 7-6. Draw colored dot

Did you notice something? The size of our circle is considerably bigger
than our dot. That is because the value we give inside our dot function is
actually the diameter, not the radius. So, your circle, with the same value, is
going to be twice as big as your dot.

Arcs

Now, let’s draw an arc! Arcs are part of a circle, aren’t they? So, we are still
going to use the circle function, but we're going to add more parameters to
let turtle know that it should only draw a part of the circle (arc).

You know how angles work, don’t you? (Figure 7-7)

114

CHAPTER 7 ATURTLE DEEP DIVE

‘)'“u 180 deg 360 deg

Figure 7-7. Angles in a circle

360 degrees makes a circle, so if you want a semi-circle, you need just
180 degrees. To make a quarter circle (arc), you need 90 degrees. We're
going to make a semi-circle now.

t.circle(100,180)

Run the preceding code, and you'll get this (Figure 7-8).

Figure 7-8. Draw a semi-color

When you give the values as -100,180, you'll get the same arc, but
below. Give 100,-180 and you'll see a mirror image of the first arc, and
for -100,-180, you'll see the same mirror image, but below the 0,0 position.
Try out and see for yourself!

115

CHAPTER 7 ATURTLE DEEP DIVE

If you gave the angle as 90 degrees, you'd draw quarter of a circle. Why
don’t you play around with the angles to get different sized arcs? Don't just
stop at 90 or 180. You have angles from 0 to 360 to play around with. Have

fun! ©

More options!

We have a lot more options with Turtle, but since we are just covering the
basics in this chapter, I'll just talk about a couple more before we move
on to the projects. Sometimes, you might want to draw more than one
shape or figure on your screen, and they might be in different places. So,
you need a way to move your pen to the new location without drawing
anything on the move. Once moved, your pen should start drawing again.
The penup and pendown methods (all small letters) help you do exactly
that.

When you give the “penup” command to your turtle, you're asking
it to take the pen off the screen. It won’t draw anymore, but it will move
positions based on your forward, backward, or goto commands. The
command “pendown” does the exact opposite. If you want your pen to
draw again, give it the pendown command. This command will only work
if the penup command is in effect.

Also, you can use the hideturtle function after your program finishes
drawing your graphics to hide the turtle from the screen. I'm sure you'd
be relieved to learn of this method. I know I was. Those turtles didn’t look
good on my images!

I know I just dumped a bunch of random methods on you, and you
might be confused. So, why don’t we put what we just learned to test? Let’s
draw a square and then a circle, on different sides of the screen, and hide
the turtle at the end, shall we?

116

1.

CHAPTER 7 ATURTLE DEEP DIVE

I'm going to use “penup” when I start the program
(after I set up turtle as usual) and then send the pen
to the position (-200,200). Once my pen has moved,
I'm going to specify pendown because I'm going to
draw my square next.

import turtle
s = turtle.getscreen()
turtle.Turtle()
-penup()
.goto(-200,200)

.pendown()

~+ + + +

Then, I'm going to set the fillcolor to blue for my

square.
t.fillcolor('blue")

I'm going to use the usual lines of code to draw my
square next.

#Draw the square
t.begin fill()
t.goto(-100,200)
t.goto(-100,100)
t.goto(-200,100)
t.goto(-200,200)
t.end fill()

117

CHAPTER 7 ATURTLE DEEP DIVE

118

4.

Once drawn, I need to change positions again to
draw my circle. So, penup again, go to (200,-200),
which is on the opposite side of the screen, and then

pendown.

#Change positions again

t.penup()
t.goto(200,-200)
t.pendown()

I'm going to set the fill color as red for my circle.
t.fillcolor('red")
Then, I'm going to draw a 50-point radius circle.

#Draw the circle
t.begin fill()
t.circle(50)
t.end fill()

That's it! We have two shapes on opposite sides of
the screen! ©

Finally, I'm going to use the hideturtle() function to
hide the turtle (which would still be shown on the
circle otherwise).

t.hideturtle()

When you run the program, you'd get this (Figure 7-9).

CHAPTER 7 ATURTLE DEEP DIVE

Figure 7-9. Hide the “t” turtle

8. Now this is where you'll find things a bit different.
If Tjust use t.hideturtle(), then I'll only hide one of
the turtles (why don’t you draw and see?). But you
must have noticed that there are two turtles. There’s
one at the home position (0,0), which pertains to
the turtle package itself, and there’s another (t of
the pre-defined function Turtle()) that does the
drawing.

So, we need hideturtle() repeated twice. We already wrote hideturtle()
for “t” Let’s write another one for the “turtle” package in its entirety.

turtle.hideturtle()

Once I've added the preceding line of code, let’s run the script again
(Figure 7-10).

119

CHAPTER 7 ATURTLE DEEP DIVE

Figure 7-10. Hide the “turtle” turtle

Look at that! The turtle in the center of the screen has disappeared as
well. Yes!

Draw text on screen

We've drawn all kinds of graphics so far, but no image is complete without
a little bit of text, is it? And it’s quite simple too. Would you like to see?

120

CHAPTER 7 ATURTLE DEEP DIVE

To write a simple text, just use the write method of Turtle, and specify
the text you want displayed, like this:

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
t.write('Hello there!")

Run it, and you'll get this (Figure 7-11).

Figure 7-11. Draw text on screen

That looks like chicken scrawl. Aww! Could we manipulate this text in
any way? You bet!
Let’s position our text somewhere first.

t.penup()
t.goto(200,200)
t.pendown()

Now, let’s draw again, but with a slight change:

t.write('Hello there!', move=True)

121

CHAPTER 7 ATURTLE DEEP DIVE

The move argument is False by default. If you make it true, you'll see
the arrow below the text being drawn, like this (Figure 7-12).

s g

Figure 7-12. Draw text in a different position

You might not see much difference now since the text is too small and
too short.

Still too small! Let’s add some styles, shall we? You know the different
font styles you can use on your text, don’t you? There’s Arial, Calibri, Times
New Roman, and a ton of styles like that. A simple Google search will give
you a list of them.

I'm going to make mine Georgia. But that’s not where it ends. I can also
increase or decrease the font size and change the font type. Let’s play with
them all!

Let’s change position again to make room for the “big” text we’ll be
creating:

t.penup()
t.goto(-200,200)
t.pendown()

The x position is now -200, instead of 200.

122

CHAPTER 7 ATURTLE DEEP DIVE
Now, let’s draw our text.

t.write('Hello there!', move=True,
font=("Georgia',40, 'normal"))

Did you notice something in the above code? I've mentioned all the
styles under “font’, and they’re within a combined parenthesis. Also, the
font style (‘Georgia’) and type (‘normal’) are within quotes (can be single or
double quotes). Let’s run the above code, and we'll get this (Figure 7-13).

I v) - |
Hello there!

Figure 7-13. Format the text

You can change the color of your text by using the pencolor tool.
t.pencolor('Red")

You can also make your text bold, italics, and underlined (or any of
those three) by including them as values alongside the rest of the font
values, like this:

t.write('Hello there!', move=True, font=('Georgia',40, 'normal’,
'bold', 'italic', 'underline'))

123

CHAPTER 7 ATURTLE DEEP DIVE

Run the preceding code, and you'll get this (Figure 7-14).

e eewe -cowEm
Hello there!

Figure 7-14. Change the color of the text

Looking good! ©

Mini project — circle within a square

This is going to be a simple project. We're going to draw a circle inside a
square in this project:

1. Let’s set up turtle first. I've not set up the speed in

this program, but you can do so.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

2. Next, I've set the fill color of the square to ‘Red’ and
pen size to 5. I'm going to draw the square first and
then the circle within it.

124

CHAPTER 7 ATURTLE DEEP DIVE

#Set the color and pen size for the square
t.fillcolor('Red")
t.pensize(5)

Let’s draw the square now. I'm going to go to the
position -100,-100 first so I can draw the circle
around the center of the screen (0,0). This way, I can
draw the circle around the same center point.

#Draw the square
-penup()
.goto(-100,-100)
.pendown()
.begin fill()
.goto(-100,100)
.goto(100,100)
.goto(100,-100)
.goto(-100,-100)
.end fill()

+ &+ &+ &+ &+ &+ &+ + +

Now, to set the circle’s center as 0,0, I've asked my
pen to go to the position 0,-100, so when I draw

a 100-point radius from this point, in the anti-
clockwise direction (default), the center would be
0,0. I've set the fillcolor for the circle as ‘Blue’

#Set position so the circle's center is 0,0
t.penup()

t.goto(0,-100)

t.pendown()

#Draw the circle

#Color and size

t.fillcolor('Blue")

125

CHAPTER 7 ATURTLE DEEP DIVE

#Circle
t.begin fill()
t.circle(100)
t.end fill()

5. Finally, let’s hide the turtles.

t.hideturtle()
turtle.hideturtle()

Now, let’s run the entire code, and see if we get what we want
(Figure 7-15).

Figure 7-15. Circle within a square

Whohoo! :D

Change directions of your drawing

So far, the only way to change directions is by using the right() and left()
methods. But, while creating arcs, you might want something else that
changes the angle of your pen so you can place the arc wherever you want.
What if you want to draw an eyebrow? Or a sideways smile?

126

CHAPTER 7 ATURTLE DEEP DIVE

Turtle offers you the setheading() method to do just that. Let’s look at
what a heading is first. The heading() method gives you the angle of the
pen at that particular time.

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
print(t.heading())

When I run the preceding code, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\drawTurtle.py
0.0

Right now, the pen is at an angle of 0, which means it'll draw in the
horizontal direction. But with setheading(), I can change the angle.

Let’s make it 90 degrees, perhaps. Just mention the angle within the
brackets, and you're good to go.

t.setheading(90)

Now let’s check the heading.
print(t.heading())

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\drawTurtle.py
90.0

Okay great, the heading is 90 degrees. What does that mean for us?
Shall we draw a line and check?

t.pensize(5)
t.forward(100)

127

CHAPTER 7 ATURTLE DEEP DIVE

When we run the preceding lines of code, we’ll get this (Figure 7-16).

Figure 7-16. Set heading to 90 degrees

Look at that! It drew a line upward, so when the heading is 90 degrees,
the pen is pointing upward. You already know where each angle is, so
you can guess where your pen will point for each angle change you make
with setheading(), but let’s demonstrate the same with a small program,
shall we? We're starting fresh, so please open a new script or clear the one
you're currently using.

1. Letme start off with setting up the turtle. I'm going
to print the current heading (0 degrees when the
program starts running, which points toward the
right). I've also increased the pen size to 5 and speed
to 5.

import turtle

s = turtle.getscreen()
t = turtle.Turtle()
print(t.heading())
t.pensize(5)
t.speed(5)

128

CHAPTER 7 ATURTLE DEEP DIVE

2. Now, I'm going to make the pen draw forward 100
points at the current degree. Once drawn, I'll make
the pen write the current degree using the heading()
method. Then let’s lift the pen and go back to (0,0)
to start anew.

#0 degrees
t.forward(100)
t.write(t.heading())
t.penup()

t.home()

t.pendown()

3. Now, let’s change the heading to 90 degrees (point
upward) and draw forward and repeat the same as
earlier.

#90 degrees
t.setheading(90)
t.forward(100)
t.write(t.heading())
t.penup()

t.home()

t.pendown()

4. Now, 180 degrees (point toward the left).

#180 degrees
t.setheading(180)
t.forward(100)
t.write(t.heading())
t.penup()

t.home()

t.pendown()

129

CHAPTER 7 ATURTLE DEEP DIVE
5. Finally, 270 degrees (pointed downward).

#270 degrees

t.setheading(270)

t.forward(100)

t.write(t.heading())

Finally, let’s hide all the turtles.
t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 7-17).

Figure 7-17. An angle diagram for setheading

Do you see the significance of using the setheading()? You can set
your angle to any point you want. Right now, we've just set it to draw
vertical or horizontal lines. Why don’t you change to angles and see
what you get?

130

CHAPTER 7 ATURTLE DEEP DIVE

Mini project — smiley

In this project, let’s take things to the next level, shall we? Let’s draw a

smiley face!

1.

I've set up the Turtle package. You can change the
speed if you like.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

Next, I've asked the pen to go to the position 0,-100
so I can draw a circle, which is our face, with the
center of the circle as 0,0. This'll just let me do the
calculations for the eyes, nose, and mouth better.

#let's draw a smiley
#Go to the position
t.penup()
t.goto(0,-100)
t.pendown()

Now, let’s draw the face. The fillcolor is going to
be yellow, and the pen size is going to be 5 and the
circle is going to be of a radius of 100 points.

#Draw the face
#Color and size
t.fillcolor('yellow")
t.pensize(5)

#Circle

t.begin fill()
t.circle(100)

t.end fill()

131

CHAPTER 7 ATURTLE DEEP DIVE

132

4. Next, I'm going to draw the eyes. I set the positions

based on trial and errors. You can use the same in
your program or change the positions to see what
you get and create your own (I recommend doing
this).

I'm going to ask my pen to go to the position -40,30
to draw the left eye and draw a black dot with
diameter 30.

#Draw the eyes
#First eye
t.penup()
t.goto(-40,30)
t.pendown()
t.dot(30)

Then, go to the position 40,30 (same horizontal line,
opposite X value) and draw the right eye, which is
again a dot with diameter 30.

#Second eye
t.penup()
t.goto(40,30)
t.pendown()
t.dot(30)

Next, let’s draw the nose. This is where centering the
circle at 0,0 comes in handy because our smiley’s
nose is going to start from 0,0. Let’s draw a straight
line from 0,0 down to 0,-30.

CHAPTER 7 ATURTLE DEEP DIVE

#Draw the nose
t.penup()
t.goto(0,0)
t.pendown()
t.goto(0,-30)

Finally, the tricky part. Let’s draw the smile. We're
going to make the turtle go to the x position of the
first eye, which is -40, but the y position is also going
to be -40. Again, I found this value after a lot of trial
and error, and I ended up with a value that gave me
the result I want. Try your own! ©

#Draw the smile

#Go to the x position of the first eye but a different
y position

t.penup()

t.goto(-40,-40)

t.pendown()

A smile is a semi-circle, isn’t it? But, if you try to
draw a semi-circle as it is right now (try), you'll get a
slanted smile, not the only we see on smileys. This is
where setheading comes in. We need to change the
angle of the pen so we can draw the semi-circle in
the exact angle we want. Let’s change the angle

to -60. Don’t be confused! It’s the same as setting
the angle to 120 (you can use either).

Next, let’s draw a semi-circle with the angle 120, so
it'’s not exactly a semi-circle, but not a quarter circle
either - something in between.

133

CHAPTER 7 ATURTLE DEEP DIVE

#Change the direction of the pen (turtle)
t.setheading(-60)
t.circle(40,120)

9. Finally, let’s hide our turtles!

#Finally, hide the turtle
t.hideturtle()
turtle.hideturtle()

Whew! That was long. Now shall we run the code and check to see if
our efforts bore fruit? (Figure 7-18)

Figure 7-18. Smiley face

Yay! That’s a cute little smiley! Why don’t you try creating different
smileys? Maybe a sad smiley? Frowny face, or laugh? You have the tools
you need (goto, setheading, etc.) to creating any image now, not just faces!

134

CHAPTER 7 ATURTLE DEEP DIVE

Summary

In this chapter, we went deeper into the Python Turtle module. We learned
how to use colors, draw arcs, circles and dots, and manipulate their
direction and size, and finally, how to draw text into our screen.

In the next chapter, let’s go deep into strings, how to create them and
use them, and the various pre-defined string methods Python equips you
with, and finally, let’s make some magic with them!

135

CHAPTER 8

Play with Letters
and Words

In the previous chapters, we took a break from learning Python basics and
we learned all about Turtle and using it to draw straight lines, shapes that
are formed with straight lines, circles, curves, and even text. We finished
the chapter with a bunch of cool and colorful mini projects.

In this chapter, we’ll go back to the basics of Python and learn about
strings, what they are, how to create them, how to manipulate them
using various pre-defined functions available in Python, and getting
direct inputs from the users of your programs to make your projects more
dynamic. As usual, we'll finish the chapter with some mini projects, but
we'll use Turtle to make our projects colorful now.

What are strings?

Strings...strings...strings. Such a grown-up word for something so simple.
Strings are just letters and number, strung together. Sentences, phrases,
and words - they are all strings. Single letters can also be strings.

© Aarthi Elumalai 2021 137
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_8

https://doi.org/10.1007/978-1-4842-6812-4_8#DOI

CHAPTER 8 PLAY WITH LETTERS AND WORDS

\nele |

"oy

Do you remember the print statement? When we first started using the

print() function, we wrote something within quotes inside the bracket. Was
it ‘Hello there!'? Yes indeed.

That was a string. Print statements usually have strings inside of them.
But that’s not where it ends. You can store strings in variables as well, just
like you do with your numbers.

Now that you know what strings are, let’s learn how to create them
next! This is going to be a longer than average chapter, so buckle up! I
promise all the exercises and fun projects will make up for the length.

Let’s create some strings

I'm going to create a new script file called strings.py and use it for this

chapter.
a = 'This is a string'

The variable “a” now has the string ‘This is a string’ You can place the

string within double quotes as well.

a = "This is a string"

138

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Let’s try printing this string now, shall we? It’s quite simple. You use the
print statement again, but instead of typing the string within quotes inside
the brackets, you just type the name of the variable that contains the string,
without quotes, like this:

print(a)
Now, if you run the preceding code, you'll get this:

RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
This is a string

We successfully printed our string. Yay!

Your strings can have numbers as well, and they’d still be considered
a string. Anything within quotes is a string. Let me place a number within
quotes and check its type by using the type() method.

a = u1234n
print(type(a))
When you run the preceding code, you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
<class 'str'>

Look at that! Even though “a” has a number, 1234, since it was placed
inside quotes, Python automatically considered it a string.

| want lines and lines of strings!

All's well and good with strings as long as you stick to creating single-line
strings. What if we need multiple lines? We can’t keep creating a separate
print statement for each new string line. That’s what we did in our very first
mini project, where we printed out Susan Smith’s introduction, remember?
That was very inconvenient!

139

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Why don’t we try creating multiple lines inside of string format and see
what happens?

a = "This is the first line.
This is the second line.
This is the last line."

In the preceding example, “a” has three string lines, wrapped inside
double quotes. Let’s run it and see what happens (Figure 8-1).

@:I EOL while scanning string literal
b4

Figure 8-1. Multi-line string with double quotes - error

Uh oh. I can’t even run the code. I immediately get a popup with the
preceding error. What we wrote previously is not acceptable code at all. So,
how can we create multiple lines of string? Do you remember multi-line
comments in Chapter 3? We used three single quotes, without space before
the comment, and the same, after the comment, and that created a multi-
line comment.

I have a confession to make. That syntax is actually the syntax of a
multi-line string. We just borrowed it to create a multi-line comment
because a multi-line string that hasn’t been stored in a variable and just
stands as it is would be ignored by Python, so it technically acts a comment
(though it is not).

140

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Alright, enough chit chat. Let’s create a multi-line string now. I'm going
to replicate Susan Smith’s introduction, but I'm going to use multi-line
strings to create and print it.

intro ="""Hello there!
My name is Susan Smith.
I am 9 years old.

I love puppies
print(intro)

When I run the preceding code, I get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py

Hello there!

My name is Susan Smith.

I am 9 years old.

I love puppies!

Simple and neat, don’t you think? © Yes!

My string has quotes! :0
Oh my, our string has quotes, and we're getting an error!

intro =""Hello!", said Susan"

I got this (Figure 8-2).

141

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Figure 8-2. Single and double quotes in the same string - error

Bummer. @
Well, I could change the quote that wraps around the string.

intro =""Hello!", said Susan'
print(intro)

Does it work?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
"Hello!", said Susan

Yes! ©

But what if my string has both single and double quotes? Maybe a
string like the following one:

“That’s my Teddy’, said Susan.

I can’t just interchange double quotes for single quotes in the
preceding string. I need a way to tell Python that the single quote in
“That’s” is actually a part of the string and not a part of the code. We have
something called an escape character in Python, which is just a backslash,
“\” You can use that before the quote that’s part of a string (either a single
or double quote), and Python will ignore it while running your code.

142

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Let’s try.

intro = ""That\'s my Teddy", said Susan.'
print(intro)

Run the preceding code, and we'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
"That's my Teddy", said Susan.

Yes, it works!

Let’s join two or more strings

When we used the “+” symbol with two or more numbers, they were added
together. Would you like to see what would happen if you do the same with
strings? Okay!

I've created two variables strl and str2 which hold the strings ‘Hello’
and ‘there!’ I've created a third variable “string” and assigned the addition
of strl and str2 to it.

'"Hello'
"there!"'

stri
str2
string = str1l + str2

print(string)
Let’s print string and see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
Hellothere!

143

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Oh, look at that. It just put the string inside str1 after the string inside
str2. That’s interesting. Addition didn’t take place, even though we used
the addition operator.

In fact, there is a name for this string operation. It’s called string

o on

concatenation. When you use “+” on two or more strings, you add
them together, yes, but not in the traditional sense. You just merge them
together, in the order they are added in.

Something’s bothering me about my result though. “Hellothere!” isn’t
what I wanted. I wanted a space between those words. That’s proper usage

of that phrase. So, why don’t I just add that?

str1 = 'Hello'

str2 = "there!’

string = str1 + " " + str2
print(string)

That was simple! We just created another string that had just one space
in it and added it before str2. Let’s run the preceding code, and we’ll get
this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
Hello there!

Now, that looks right. So, as you can see, you can concatenate more
than two strings, and they can either be inside variables or as is (within
quotes). Even a space is a string, if placed inside quotes.

Concatenation in print()

You can apply string concatenation in print() as well.

a = 'Hil'"

print('Susan says, +a+""")

144

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Does it look a bit complicated? Not to worry. I've wrapped the first part
of the string, “Susan says’, with a comma, a space, and a double quote at
the end in single quotes. The next part of the string is whatever is inside the
variable “a’, so I concatenated the two strings. The final part of the string
is the closing double quote which is also wrapped inside a single quote.
Alternatively, I could have just used double quotes throughout and used
the escape character to distinguish the string’s double quotes.

If I run the preceding code, I'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
Susan says, "Hi!"

Nicely done!

Empty string

All these string operations reminded me of something! There’s something
called an empty string, where you just don’t type anything between the
quotes, not even an empty space.

a =

In the preceding example, the variable “a” is storing an empty string. If
you print that out, you'd get nothing in the output (not even a space). Try
and see! ©

Accessing characters in strings

I'want to introduce you to a mind-blowing topic in strings! You can actually
access, retrieve, and even modify specific characters (letters) in strings.
How cool is that? You can make changes to the string on a character level
with this feature.

145

CHAPTER 8 PLAY WITH LETTERS AND WORDS
a = 'Hello there!'

Look at the following string index chart. Every character in a string has
an index. In fact, they have two indices, a positive index and an equivalent
negative index. You can access those characters by using those indices.

-12 -11-10-9 -8-7-6 -5 -4 -3 -2 -1

HeIIo there!

1723 4 56 7 8 9 1011
Figure 8-3. Stringindex chart

As you can see in Figure 8-3, the positive indices start from 0 and
increase in value toward the left. The negative indices start from the last
position at -1. The space has an index, and so does the exclamation point.
It isn’t just for the letters/numbers.

Okay, that’s all well and good, but how do we access these indices?
Simple! Type the name of the string and open and close square brackets,
and type in the relevant index within the brackets, and you're good to go.

As you can see, the indices start from 0, and the last one is the length of
the string subtracted by 1. Spaces in a string also take up indices.

So, if want to retrieve the first character of the string, “H’, this is what
I'd do:

print(a[o])
When you run the preceding code, you'd see this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
H

Perfect!

146

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Now, if I were to retrieve the last character of the string, I'd first
calculate the length of the string. The length is 12 in this case, including the
space. Now let’s subtract it by 1, as follows:

print(a[12-1])

When you run the program, your interpreter (IDLE) will automatically
do the calculation to arrive at 11 for the index. The result is this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py
!

Yup, that’s right.

Negative indices

As you saw in the preceding image, you have both positive and negative
indices for the same characters in a string. Let’s try to access “0’, which is
in the positive index 4 (fifth position on the string) and -8 in the negative

index position.
print(a[-8])
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
0

It works perfectly!
So, the first character would be at a[-12], and the last character would
be at a[-1].

147

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Slicing a part of a string

You can extract a part of a string and not just a single character with your
indices. That’s called slicing.

Slicing follows the same pattern as character extraction, but the only
difference is you'll have to give a range within the square brackets. If I
want to extract the first four characters in a string, I'll give the range as 0:4
because the first character’s index is 0 and the fourth character’s index is 3.
In slicing, the end of the range (4 in our case) would be omitted. Hence, 0:4
and not 0:3. Let’s try and see what we get!

a = 'Hello there!"’
print(a[0:4])

Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
Hell

Yup, we got it!

What if we want the last four characters instead? You can do it in two
ways. The positive index of the last character is 11, and that of the fourth
last character is 8, so we can do the following:

print(a[8:12])
Run the preceding code, and we'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
ere!

148

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Great! So far so good. But what about negative indices? The negative
index of the last character is -1 and that of the fourth last character is -4, so
we can do the following instead:

print(a[-4:-1])

Notice how we've given -4 (fourth last character) first, which will be
included. But -1 would not be included, am I right? That’s how the syntax
works, and that’s the last index.

Okay, let’s run the preceding code and see if it works:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
Ere

Ah well, it doesn’t work. We're missing a “!". ()

What can we do? Well, in situations like this, where you start from a
point and need the rest of the string (fourth last position to the end of the
string), you can just leave the last number in the range blank, like this:

print(a[-4:])
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/strings.py
ere!

Perfect!

String methods — magic with strings!

Just like with numbers (Chapter 5), you have plenty of pre-defined
methods that'll help you play with numbers. Some of them look magical!
You'll see.

149

CHAPTER 8 PLAY WITH LETTERS AND WORDS

There’s a complete list of Python string methods and explanation of
what they do in the Python official docs. Here’s the link: https://docs.
python.org/2.5/1ib/string-methods.html.

You can refer to the preceding doc in the future. I'll try to cover most of
the important methods, though I can’t cover every single one as that would
just make the chapter too long. Don’t worry though. Once you learn a few,
you'll be able to decipher how the rest work.

Alright, let’s get started!

Why don’t we start with something simple? The len() method is used
to find the length of the string.

The syntax of the method is as follows: len(string)

a = 'Hello there!'
print(len(a))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
12

Count the number of characters in the string (including the space) and
you'll notice that its length is indeed 12.

Capital and small

Alright, now let’s look at the other methods. The “capitalize()” method
capitalizes the first word in the string. It doesn’t change the original string.
It just creates a copy that you can either assign to a new variable or print.
The syntax is like this: string.capitalize().
The “string” could either be the exact string inside quotes or the
variable that’s storing the string.

150

https://docs.python.org/2.5/lib/string-methods.html
https://docs.python.org/2.5/lib/string-methods.html

CHAPTER 8 PLAY WITH LETTERS AND WORDS

a = 'i am here'
print(a.capitalize())
print(a)

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py

I am here

i am here

See, the capitalization did not affect the original string.

In the same vein, you can capitalize all the characters (alphabets) of
a string using the upper() method. This creates a copy too. All the string
methods create copies. They rarely make changes to the original string.

a = 'i am here'
print(a.upper())

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
I AM HERE

Similarly, you can change all the capitalized letters to small letters in a
string using the lower() method.

a ="I AM here'
print(a.lower())

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\strings.py
i am here

151

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Did you notice how some of the letters were already small? Those just
go unchanged with this method.

Instead of just capitalizing the first letter of the entire string, like in
capitalize, you can actually capitalize every first letter of every word in the
string using the title() method.

a = 'i love chimpanzies!'
print(a.title())

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
I Love Chimpanzies!

Misc methods

Using the count method, you can return the number of times a word or
letter or phrase appears in a string.

The syntax is string.count('word").

This method is case sensitive, just like the rest of the methods in
Python, so if you want “word’, don’t type it as “Word”.

To test this method, I'm creating a multi-line string like how I taught
you:

a-= Susan is a lovely girl.
Barky is Susan's best friend.
Barky plays with Susan'''

Let’s count how many times ‘Susan’ and ‘Barky’ are mentioned in the
preceding string, shall we?

print(a.count('Susan'))
print(a.count('Barky"))

152

CHAPTER 8 PLAY WITH LETTERS AND WORDS
The result is this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py

3
2
Whoo! ©
You can trim extra spaces in a string with the strip() method.
a=" Hello there! '
print(a.strip())

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
Hello there!

No spaces at all!

There are left and ride side versions of the same method. The rstrip()
method only strips the whitespaces in the right side of the string. The
Istrip() method does the same for the left side of the string. Why don’t you
try them out and see if they work right?

Remember that big string we just worked with? What if we made a
mistake? What if we were going to talk about Ronny and not Susan? We
need to swap their names, am I right? You can use the replace method to
do that. The syntax is string.replace('original’, 'replaced").

a = Susan is a lovely girl.
Barky is Susan's best friend.

Barky plays with Susan
print(a.replace('Susan','Ronny"))

153

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\strings.py

Ronny is a lovely girl.

Barky is Ronny's best friend.

Barky plays with Ronny

See, it’s Ronny now!

We can also find the positions from which a particular word or letter or
phrase starts in a string. Remember, string positions start from 0, so you'll
always be one count behind.

a = "I love coding. I have fun with coding"
print(a.find('coding"))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
7

Count the characters, including the spaces, and you'll notice that
the first occurrence of “coding” starts at the position 8 (and hence 7 with
respect to Python strings).

What if the phrase isn’t found?

print(a.find('Coding"))

You know that “coding” is different from “Coding” in Python, so it
wouldn’t be found in the string.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
-1

Oops, the result was a -1.

154

CHAPTER 8 PLAY WITH LETTERS AND WORDS

The index() method does exactly what the find() method does. The
only difference is that it returns an error if the phrase is not found, and
not -1. Why don’t you try to do the same with index()?

With the split method, you can literally split a string into a list. We’ll
be looking at what lists are in a future lesson. For now, just know that lists
hold multiple values within them, separated by commas.

In order to use the split method, you need to give a separator. Let’s say
I want the string to be taken apart by word. Then I'd give a single space as
the separator.

a = "I love coding."
print(a.split(' "))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
['T', '"love', 'coding.']

That’s a list and it holds our string, separated by word.

True? False?

Before I move further with the methods, I want to teach you the concept
of true and false in Python, or any programming language, really. It’s quite
simple. If something is true, then your program will return “True” If a
condition is false, then you'll get “False” That’s it.

For example, let’s say I want to see if my string has the words “best
friend” in it. I really want to know if Barky is Ronny’s best friend or not.

I'll have to use the “in” keyword. Keywords are special words that do
something in Python. The “in” keyword checks whether what the word or
phrase we want looked up is inside our string or not.

155

CHAPTER 8 PLAY WITH LETTERS AND WORDS

string = "Barky is Ronny's best friend."
print('best friend' in string)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
True

But as you know, Python is case sensitive. So, “best friend” is not the
same as “Best friend” or any other versions. So use the words as is, okay?
Let’s look at another example, shall we?

print('Python' in 'Python is fun')

When you run the preceding code, you'll get True.
But if you ask for this:
print('Coding" in 'Python is fun')

you'll get False because ‘Coding’ isn’t in the string ‘Python is fun’
Similarly, you can test for a lot of other strings in your string.
Would you like to see if your string has both letters and numbers? Use
the isalnum() method. It returns true only if every word in the string has
both letters and numbers, like this:

a = 'number123 number253'
print(a.isalnum())

The preceding code will return True, while the below code:

a = 'This is a number: 123'
print(a.isalnum())

will return False, because most of the words have just letters and not letters
and numbers.

156

CHAPTER 8 PLAY WITH LETTERS AND WORDS

The isalpha() method returns true if every single character in the string
is an alphabet (no number or special characters at all). The isnumeric()
method returns true if every single character in the string is a number (no
alphabet or special characters).

Islower() returns true if all the characters are small. Isupper() returns
true if every character is capitalized.

I want you to use these methods while giving different possibilities and
explore how they truly work. Deal?

You can refer to the link I gave in the “String methods - magic with
strings!” section to get the rest of the methods and use them in your
experiments too. Have fun! :P

Hey, I know what you're thinking.

“Oh man, that’s a lot of methods. How would I ever remember them
all?”

Well, why should you? I'll let you in on a biggg secret...Shhhhhh

Programmers don’t try to memorize syntaxes when they start out.
That’s what Google’s for. They just create a lot. They solve a lot of puzzles,
create fun projects, and Google for syntaxes when they get stuck. Over
time, the syntaxes just get stuck in their head because they’ve used them so
much.

So, forget about memorizing. Use this book as a reference. Solve the
puzzles, create the mini projects with your twist, and take the big projects
to the next level, and by the time you're done with them all, you'll be a
master of Python. Just have fun. ©

String formatting

The print statement is boring and limiting. ¢2) You can’t format it the way
you want, and if you try, you’ll drown in a mess of quotes. But more than
that, you can’t print numbers (even if they’re in variables) with strings! :O

157

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Let me prove that to you.

a=4
5

sum =a + b

So now, I want to print the following statement: 4 + 5 =9, and I want
to print it using the variable names and not the actual values, to keep
things dynamic. I can maybe change the value of a variable, and my print
statement will automatically change too.

We should be able to do that with the concatenation we learned about
before, right? Let’s try.

print('The answer is: " +a+ "+ "+ b+ ' =" + sum)

The preceding code should ideally result in this:
The answeris:4 + 5 = 9
But this is what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
Traceback (most recent call last):
File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py", line 4, in <module>

print('The answer is: "+ a+ "+ "+ b+ "' =" + sum)
TypeError: can only concatenate str (not "int") to str

Essentially, what the error says is you can only concatenate a string
(anything within quotes) with a string, and the variables that contain
numbers (without quotes) within them are not strings.

Not only was that statement very hard and confusing for me to create,
it simply didn’t work.

That’s where formatting comes in. You can format the way your print
statements are written. Just place {} (without space) where your variables
come in, and you can fill them later using the format method.

158

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Let’s start with something simple.
a = 'apple’

Let’s say I want to print ‘This is an apple, where the value ‘apple’ comes
from the variable a.
I'd type the entire string out, but place {} in the place of ‘apple, like this:

'This is an {}'

Next, I'll tag the format method and place the variable “a” inside the
parenthesis. Python will automatically replace the {} with the value inside
your variable.

a = 'apple’
print('This is an {}'.format(a))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
This is an apple

Very simple, wasn’t it? You don’t have to mess around with spaces and
quotes anymore, whoohoo!
Let’s go for a more complex example now, shall we?

"Apples’
'Bananas’

If I wanted to print “Apples and Bananas are good for your health’, this
ishowI'd doit:

print('{} and {} are good for your health'.format(a,b))

159

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\strings.py
Apples and Bananas are good for your health

Did you notice how I have the variables inside the format, separated by
commas?

You can place the first part of the string inside a variable and use that
as well, like this:

a = 'Apples’

b = 'Bananas’

s = '"{} and {} are good for your health’
print(s.format(a,b))

Or, if I want Bananas to be printed first and then Apples, but I don’t
want to change the order in which they are listed, I can just label them in
the string to be printed, like this:

s = '"{1} and {0} are good for your health’
print(s.format(a,b))

Indices start with 0 in Python, remember?
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
Bananas and Apples are good for your health

Alright. Now that we're experts at using format() to design our print,
why don’t we go back to our original problem?

a=4
b=5
sum =a + b

160

CHAPTER 8 PLAY WITH LETTERS AND WORDS
Let’s format our string!
print('The answer is: {} + {} = {}'.format(a,b,sum))
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\strings.py
The answer is: 4 + 5 =9

YES! Easy and neat, just the way it should be. ©

Getting input from the users (start
automation)

So far, we've just been fixing the values of our variables. That’s so boring! I
want automation. That’s what programming is all about, isn’t it?

I want to give a different number every time I run my addition
program, a different string every time I want to print a message. That’s
what an input is. A user or the person who runs the program gives values
that can be used in the program to get a result. Those values are called
inputs.

In Python, you can use the input() method to get inputs. Pretty
straightforward, isn’t it?

When you run a program, it'll ask you for the value, and wait until you
give the same. That is called prompting.

I'm going to start simple. I'm going to get a message I can immediately
print. It’s always good practice to include a message while asking for
inputs, so the user know what value they’re expected to give. You can
include the message within quotes inside input’s parenthesis.

message = input('Enter your message: ')
print('Here is your message: ' + message)

161

CHAPTER 8 PLAY WITH LETTERS AND WORDS

I've prompted the user to enter a message, and I've received the same
inside the variable “message” Then I've printed it out. Simple.
When I run the preceding code, this is what I'd get first:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
Enter your message:

The program has stopped at this stage because it’s waiting for my
message.
Let me enter it now:

Enter your message: I love Python!
When I press Enter, I'll get this:
Here is your message: I love Python!

It works perfectly! My message was printed out in the format I wanted.

String to int or float conversion

We looked at inputs and how we can dynamically get values and use them
in our program. Isn’t calculation one of the best ways to use dynamic
values? I want a different number every time I perform an addition
operation.

Let me use input for the same and see if it works.

a
b
sum =a + b

print('{} + {} = {}'.format(a,b,sum))

input('First number: ")

input('Second number: ")

Everything looks good in the preceding code snippet. It should work,
right? Wrong.

162

CHAPTER 8 PLAY WITH LETTERS AND WORDS
When I run it, this is what I get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py

First number: 5

Second number: 2

5+ 2= 52

My program prompted me for the two numbers, and I entered them.
All good till now. But then, things went wonky with the addition.

Why?

You haven’t entered numbers at all. When you give values to an input,
your program considers it as a string, not a number. So, what happened
here is string concatenation, and not addition.

How do we make Python look at our inputs as numbers? You need to
convert them, of course! Remember how we converted different types of
numbers? Similarly, you can convert a string to either an integer using the
int() method or a floating-point number using the float() method.

Let’s modify our code:

a = input('First number: ')

#Convert 'a' into an integer and store it back in 'a
a = int(a)

b = input('Second number: ')

#Convert 'b' into an integer and store it back in 'b'
b = int(b)

sum =a + b

print('{} + {} = {}'.format(a,b,sum))

The only thing I changed in the code is the integer conversions after
getting each input. I've stored the converted values back in the same
variable as well. Let’s run this code and see if it works:

163

CHAPTER 8 PLAY WITH LETTERS AND WORDS

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\strings.py

First number: 5

Second number: 2

5+2=17

Phew! It works now.

Mini project — take Turtle text to the next
level!

This is going to be a simple project. We're going to take your user’s name as
input in real time and print it out, in big, colored font in our Turtle screen:

1. Let's set up our Turtle first:

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

2. Next, let’s get create a variable name that gets the
user’s name as input:

name = input("What's your name? ")

3. We won'’t have to convert this string in any way,
since we're just going to concatenate it with another
string. Let’s create our customized greeting on Turtle
now. Before we do that, let’s create the exact string
we want to print and assign it to a variable “greeting”.

greeting = 'Hi {}!'.format(name)

164

CHAPTER 8 PLAY WITH LETTERS AND WORDS

4. Now, let’s set a pen color of, maybe, Dark Violet?
And let’s also move the pen to the position -250,0 so
it draws in the center of the screen.

t.pencolor('DarkViolet")
t.penup()

t.goto(-250,0)
t.pendown()

5. Finally, let’s create our text.

t.write(greeting,font=("'Georgia',45, 'normal’, 'bold","i
talic'))

I've placed the variable “greeting” with the text we
need in place of the actual text, and I've also set
the font style as ‘Georgia’ and size as 45, and I've
made the text bold and italic. I've omitted the move
property, so it’s going to be “false” by default (no
arrow below the text).

6. Finally, let’s hide our turtles:

t.hideturtle()
turtle.hideturtle()

Let’s run this program now:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
What's your name? Susan Smith

It asked for the name. I gave the name as “Susan Smith’, pressed enter,
and voila! (Figure 8-4).

165

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Hi Susan Smith!

Figure 8-4. Colorful greeting

We have our greeting, and it looks pretty too! ©

Mini project — shout at the screen

We're going to do what the title says. Let’s shout at the screen, shall we?
Oh wait...or is the screen going to shout at us? Either way, let’s do some
shouting! Whoo!

The concept is simple. We're going to get a string input from the user.
The message is going to be “Enter what’s on your mind in less than 3
words” Less than three words so our text can be displayed in a big enough

166

CHAPTER 8 PLAY WITH LETTERS AND WORDS

font in one line. In the later chapters, you'll learn the tools needed to get

as many words of input as you want, and make sure you print them all by

making space, so don’t worry about that right now.

Then, we're going to capitalize the result, add two or more exclamation

points at the end, and print everything in Turtle. Simple, right? Let’s do it!

1.

To start, let’s set up the Turtle package:

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

Then, let’s get the input:

message = input("Enter what's on your mind in 3 words
or less: ")

Finally, let’s format the message we want to shout!
Our “message” is probably in small letters. How

do we convert every single letter in our message to
uppercase? Yes! The upper() method. Let’s use that,
and tag on three exclamation points at the end, to

make our message more dramatic!
shout = "{}!!!".format(message.upper())

Now, I'm going to move the pen to -250,0 and
change the color of the pen to Red, because nothing
says shouting more than Red. ©

t.pencolor('Red")

t.penup()
t.goto(-250,0)
t.pendown()

167

CHAPTER 8 PLAY WITH LETTERS AND WORDS

5. Now, on to the main part of the program. Let’s create
our Turtle text. I'm going to use the ‘Arial Black’ font
for this. The size of the font is going to be 45, but I'm
going to stop at making the text bold. No italics this
time.

t.write(shout,font=("'Arial Black',45, "'normal’, 'bold"))
6. Finally, let’s hide the turtles.

t.hideturtle()
turtle.hideturtle()

Let’s run everything. My message is going to be “what is this?”. Let’s see
what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py

Enter what’s on your mind in three words or less: What is this?
When I press Enter and look at my Turtle screen, I get this (Figure 8-5).

WHAT IS THIS?!!!

Figure 8-5. Shout at the screen

Yes! Success!

168

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Mini project — reverse your name

I'm going to teach you something fun while solving this project. So far,

we've seen all kinds of ways in which we can manipulate our strings. Why

don’t we look at one more before we end this chapter?

Did you know that you can reverse your string? Yes, that’s right!

Complete reversal, with just one teeny tiny line of code. Would you like

to try?

Let’s create a program that gets the name of the user as input, reverses

their name, and displays it in the Turtle screen:

1.

Let’s set up Turtle, as usual.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

And get the user’s name and place it in the variable
“name”.

name = input("What's your name?")

Now comes the interesting part! We're going to
format the string we want displayed as usual. We've
created a variable “reverse” to store the string. But
how do we reverse? Remember how we used to

use square brackets to access separate characters,
extract parts of the string, and so on? Also, do you
remember negative indices? There you go!

If you use the following syntax, you can reverse
your string: string[::-1]. So, that’s a double colon,
followed by a -1. Simple as that! ©

reverse = '{}'.format(name[::-1])

169

CHAPTER 8 PLAY WITH LETTERS AND WORDS

4. Finally, let’s change the color of the pen to ‘Gold,
shift position to -250,0, and draw the reversed string

on screen.

t.pencolor('Gold")

t.penup()

t.goto(-250,0)

t.pendown()
t.write(reverse,font=("'Georgia',45, 'normal’, 'bold"))
t.hideturtle()

turtle.hideturtle()

Let’s run the program:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\strings.py
What's your name? Susan Smith

Now, click Enter, and you'll get this (Figure 8-6).

Figure 8-6. Reverse your name

Hehe, her name was reversed, alright. :P

170

CHAPTER 8 PLAY WITH LETTERS AND WORDS

Mini project — colorful and dynamic Math

In the numbers chapter, we had to resort to doing boring calculations with
pre-defined numbers and no colors!)

So, I thought we could have some real fun with numbers before we
move on to the next chapter. Shall we?

In this project, we're going to perform addition, multiplication,
subtraction, and division on two given numbers. Boring, I know! But this
time around, we're going to get the two numbers as dynamic input from
the user and display the results, in color, in Turtle. Interesting? I know!

1. Let's setup Turtle first.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

2. Then, let’s get the inputs for the first and second
numbers we’re going to use in our operations. But
there’s an issue! We can’t use them as it is. They are in
string formats, remember? So, let’s convert them to

integers and assign them back to the same variables.

numl = input("Enter the first number: ")
numl = int(num1)

num2 = input("Enter the second number: ")
num2 = int(num2)

3. Now, let’s do the addition. We're going to create a
variable called display which is going to hold all the
formatted strings of the four operations.

#Addition
add = numl + num2
display = "{} + {} = {}".format(num1,num2,add)

171

CHAPTER 8 PLAY WITH LETTERS AND WORDS

172

4. Once formatted, let’s position our pen at -150,150 so

our drawing is aligned to the middle of the screen.
Then, let’s change the color of the pen to “Red” and
draw the text.

t.penup()

t.goto(-150,150)

t.pendown()

t.pencolor("Red")
t.write(display,font=("Georgia",40,"normal", "bold"))

Do the same for subtraction now, except that the
position is going to be -150,50 now and the color is
going to be “Blue”.

#Subtraction

sub = numl - num2

display = "{} - {} = {}".format(num1,num2,add)
t.penup()

t.goto(-150,50)

t.pendown()

t.pencolor("Blue")
t.write(display,font=("Georgia",40,"normal", "bold"))

For multiplication, the position is going to
be -150,-50 and the color is going to be “Green”.

#Multiplication

mul = numl * num2

display = "{} * {} = {}".format(num1,num2,add)
t.penup()

t.goto(-150,-50)

t.pendown()

t.pencolor("Green")
t.write(display,font=("Georgia",40, "normal", "bold"))

CHAPTER 8 PLAY WITH LETTERS AND WORDS

7. For division, the position is going to be -150,-150
and the color is going to be “Violet”.
#Division
div = num1 / num2
display = "{} / {} = {}".format(num1,num2,add)
t.penup()
t.goto(-150,-150)
t.pendown()
t.pencolor("Violet")
t.write(display,font=("Georgia",40,"normal", "bold"))

8. Finally, let’s hide the turtles.

t.hideturtle()
turtle.hideturtle()

9. Now, let’s run the program. It asks for inputs first.
Our inputs are going to be 10 and 5.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\
Python\Python38-32\strings.py

Enter the first number: 10

Enter the second number: 5

When we click Enter, this is what we get (Figure 8-7).

173

CHAPTER 8 PLAY WITH LETTERS AND WORDS

10 + 5 =15
10-5 =15
10 * 5 =15

10/ 5 =15
T | J

Figure 8-7. Colorful and dynamic Math

Beautiful! ©

Summary

In this chapter, we looked at strings, what they are, creating single-line,
multi-line, and empty strings, creating strings with quotes, concatenating
two or more strings, accessing characters in strings, extracting parts of

a string, string slicing, how to manipulate strings in different ways, and
getting inputs from users and using them in our program.

In the next chapter, let’s look at how we can command our program
to do whatever we want. We're going to look at “if” statements, creating
multiple options with “if else” and “if elif else” statements, and a lot more.
It’s going to be fun! ©

174

CHAPTER 9

Follow My Command!

In the previous chapter, we learned all about strings and how to use them
to create strings of letters and numbers, how to manipulate the strings
in any way we want, how to get input from the users and convert it into
the data type we want, and how to format outputs (especially in print
statements) to our preference.

In this chapter, let’s look at how to command our computers with “if

and else” statements.

True or False

In programming, true or false determines the direction your program goes.
If “something” is true, do “something”. If it’s false, do “something else”. You
can create a lot of programs with just the preceding “condition”.

So, to give commands to your system, you need three things (Figure 9-1).

© Aarthi Elumalai 2021 175
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_9

https://doi.org/10.1007/978-1-4842-6812-4_9#DOI

CHAPTER9 FOLLOW MY COMMAND!

True False

OUTCOME #1 OUTCOME #2

Figure 9-1. Conditions and their results

1. A condition that will be evaluated by Python
2. Atrue or false result

3. A syntax that decides what happens next based on
the result, that is, a syntax that directs to either of the
two outcomes based on the result

Let’s look at the true or false results first. “True” and “False” are also
values in Python. They are called Boolean values. Just like we have our
strings and numbers, we can assign Boolean values to variables, convert
them to another value type, find its type (Boolean), and so on. Would you
like to see how to do those?

Let’s create a new script file for this chapter. I've created one called
condition.py. I'm going to be using and reusing this file throughout this
chapter. True and False need to be written with a capital T and F, or you'll
get an error, so please remember that.

Let’s create variables “a” and “b” and assign them values “True” and

“False”.
a = True
b = False

print('a is {} & b is {}'.format(a,b))

176

CHAPTER9 FOLLOW MY COMMAND!
When you run the preceding code, you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/condition.py
a is True & b is False

Okay, so now we know how to use our Boolean values. But what are
they really? Did you know that Booleans are actually just 1s and 0s? :O

Oh yes, your True is read by your computer as 1 and False is read by
your computer as 0. Your computer is a very simple creature. It converts
all of the complicated, weird codes and scripts you send it into very simple
1- and 0-based values. True and False values get converted to the base of
themall-alandao.

Why don’t we verify if that’s true? If I convert my Boolean values to an
integer, I should geta 1 or 0.

a = True

a = int(a)
b = False
b= int(b)

print('a is {} & b is {}'.format(a,b))

I've modified the preceding code, and I've inserted integer
conversions. Let’s see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/condition.py
ais1&biso

Look at that! True converted to 1 and False converted to 0!

Similarly, you can convert numbers and strings to Boolean values
by using the bool() method. Anything that’s not an empty string, or the
number 0 will return a True. Yes, even negative numbers will return True!
Why don’t we test that?

177

CHAPTER9 FOLLOW MY COMMAND!

I'm going to test the same directly in my Shell.
1 converts to True.

>>> bool(1)
True

0 converts to False.

>>> bool(0)
False

A string with something inside it converts to True. That'll be the case
for strings with just a space inside it as well.

>>> bool('hi there!")
True

An empty string converts to False.

>>> bool("")
False

There is a value “None” in Python. It basically means that there is
nothing inside of it. If “None” is assigned to a variable, the value inside that
variable will be replaced with nothing. Naturally, “None” converts to False.

>>> bool(None)
False

We'll be looking at more values called lists, tuples, and sets in a later
chapter. When we do, you'll notice that lists, tuples, and sets that hold
something inside of them convert to True and empty lists, tuples, and sets
convert to false.

178

CHAPTER9 FOLLOW MY COMMAND!

Compare and decide

Alright, we've looked at the results. But how do we get them? We need
conditions that return those results, don’t we? Python has a lot of
conditions you can use! Would you like to see? I'm going to remind you
again of your Math class here.

Remember the greater than (>) and lesser than (<) symbols? What do
they do? They compare two things, usually numbers, and decide if that
expression is true or false. Are you seeing what I'm going with this?

Yes, you can use those symbols as your conditions! Why don’t we test
them in our Shell?

Is 3 greater than 5?

>»> 3> 5
False

Nope.

>»> 3 <5
True

Is 3 lesser than 5 though? Oh yes!
Look at that, it works! You can even test for equality. Are two numbers
equal? Just use two equal to symbols instead of one, and you're good to go!

>>> 3 ==
True

Sweet!
You can also see if two values are not equal using the not equal to
operator, !=, like this:

>>> 2 =2
False

Is 2 not equal to 2? Nope, they’re both equal, so you got a False.

179

CHAPTER 9 FOLLOW MY COMMAND!
You can do this with strings too, you know, not just numbers.

>>> 'hello' == 'Hello'
False

We got a false. Can you guess why? Yes! Python is case sensitive, so “h”
isnot equal to “H”.

You can shorten things up by checking if something is lesser than OR
equal to something else using the <= symbol.

> 2 <=2
True

The preceding code is true because even though 2 is not lesser than 2,
itis certainly equal to 2, and since one of the conditions is true, the result is
true.

Similarly, you can check if something is greater than or equal to
something else using the >= symbol.

>> 3 >=5
False

3 is neither greater than nor equal to 5 so the result is False.

If this happens, do this (command!)

We know all about “True’, “False’, and conditions now. What's next?
Commands, of course!

You have a nifty little tool in Python to give commands with. It’s called
the “if” statement. Can you guess what it does? Let me give you a hint: it
has something to do with “if”. :P

So far, you know how to create conditions and how to interpret their
results (true or false), and now let’s put it all together to give a command.

180

CHAPTER9 FOLLOW MY COMMAND!

It's pretty simple actually. In plain English, this is what an “if”
statement does: It checks for a condition, and if that condition is true, then
it executes a statement or multiple statements. If it’s not true, then those
statements won't be executed, and your program will move on to the next
line of code.

Let me show a quick illustration of how an “if” statement works so you
understand it better (Figure 9-2).

True False

IF STATMENT
LINES OF CODE

a CODE OUTSID
IF STATEMENT

Figure 9-2. “if” statement

The syntax of an “if” statement is this:

if comparison:
lines of code

usn

“if” has a small “i’, and the statements within the if statement should
be written with an indentation, which is basically a space/tab. The colon
“:” after the comparison is mandatory as well. If you don’t indent the
“inner” lines of code, then Python wouldn’t know that those lines of code
belong to the “if” statement and should only be executed if the condition is
true. So, remember to indent, okay? ©

Alright, so now that we know how if statements work, let’s put that to test.

I'want to print “You're a little kid” if someone’s age is less than 5. Just that.

181

CHAPTER9 FOLLOW MY COMMAND!

How can we do that? Well...the condition could be age < 5 or
something like that. If I want to include 5 years old in this list, then I could
make itage <= 5.1 could include a print statement inside of my statement,
which basically says “You're a little kid” That should do it, right? Let’s test!

age = input("What's your age? ")
age = int(age)
if age <= 5:

print("You're a little kid :)")

I've created a variable age, gotten the input from the user, and
converted the default string into an integer so it can be compared with the
number.

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

What's your age? 5

You're a little kid :)

Yay, it works! © You've executed your very first conditional command
in Python. Time for a celebration.

182

CHAPTER9 FOLLOW MY COMMAND!

Now, I want you to give any number greater than 5 and see what you
get.
Did you try? You get nothing, am I right? Well, that’s not ideal. Let’s fix

this issue in the next section!

Else?

We saw that if a condition is true, we can execute the inner statements
of the “if” statement. But if it’s not true, nothing happens. But what if I
want something to happen? If the kid is older than 5 years old, then I want
“You're a big kid” to be printed out. How do I do that?

“if” statements have something called “else” statements that
accompany them. They basically get executed if the “if” statement is false.
Let me illustrate how that works (Figure 9-3).

True False
IF STATMENT ELSE STATMENT
LINES OF CODE LINES OF CODE

a CODE OUTSID ‘
IF STATEMENT

Figure 9-3. “if else” statement

The syntax of an else statement is very simple:

else:
inner lines of code

183

CHAPTER9 FOLLOW MY COMMAND!

You should place a colon right after “else” since we don’t need to check
for conditions this time around. Also, just like with your “if” statement,
place your inner lines of code after an indentation or tab or space.

Let’s test how this works now!

age = input("What's your age? ")
age = int(age)
if age <= 5:
print("You're a little kid! :)")
else:

print("You're a big kid! :)")
Now let’s give the age as maybe 8 and see what our program does:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

What's your age? 8

You're a big kid! :)

Whoa!

More than one condition! :0

You know, sometimes, things aren’t just black and white, right? If someone
is older than 5 years old, they're not necessarily still a kid. If they’re older
than 12, they’d be a teenager. If they’re older than 18, they’d be an adult.
But our program isn’t considering all of that. Hmm... It’s incomplete, don’t
you think? Let’s fix that.

There’s something called the “elif” statement that can be inserted
between the “if” and the “else” statements. Can you guess what an elif
does? It’s in the name, isn’t it? If something is false, then we’re going to
check for a second condition to see if that is true. You can stack up any
number of elif statements like this, one after the other, before ending
things with an else statement. Let me illustrate how that works.

184

CHAPTER9 FOLLOW MY COMMAND!

The syntax of an elif statement (after an if and before an else) is as
follows (Figure 9-4):

elif condition:
Inner lines of code

p ELIF 2 False
COND]TIO ---""eees
True
IF STATMENT ELIF 1 STATMENT) ELIF 2 STATMENT]| ELSE STATMENT
LINES OF CODE LINES OF CODE LINES OF CODE LINES OF CODE

) CODE OUTSIDE
IF ELIF STATEMENT

Figure 9-4. “if elif else” statement

Let’s put our elifs to test now, shall we? I'm going to create a main “if”
condition that tests ifage <= 5 (little kid). If that’s not true, we'll include
another condition that tests if age <= 12 (big kid). We're going to include
a third condition that tests if age <= 19 (teenager) and finally a fourth
condition that tests ifage >= 20 (adult).

Okay, sounds good, but what is the else statement for? Well, the else
statement is going to catch everything else. For instance, if your user gave
a string or any other non-numerical value as your input by mistake, then
your else statement will “catch” that and ask them to re-run the program. Is
that clear enough? Shall we write this in code and see if it works? Alright!

age = input("What's your age? ")
age = int(age)
if age <= 5:
print("You're a little kid! :)")
elif age <= 12:
print("You're a big kid! :)")

185

CHAPTER9 FOLLOW MY COMMAND!

elif age <= 19:
print("You're a teenager! :)")
elif age >= 20:
print("Wow, you're an adult already!")
else:
print("Looks like you've not entered a number. Please re-
run the program")

I'm going to run the preceding lines of code with age as 13.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

What's your age? 13

You're a teenager! :)

Now, I want you to run the program with different values for age every
time (numbers and otherwise) and see what you get. Why don’t you try
giving a string once too? Have fun! ©

Mini project — guess the number game

This is going to be a simple little game. We aren’t going to use “Turtle” for
this, but feel free to use it in any part of the game as you'd like.

21 9?

©

.??)

©

186

CHAPTER9 FOLLOW MY COMMAND!

So, the game works like this: When the game starts, the program will

generate a number between 1 and 10 (including both 1 and 10). Then,

the user gets three guesses to guess the number right. If they guessed the

number right in any of the guesses, they win. If not, they lose. Simple,

right? Let’s try!

1.

Let’s import the “random” module first. We need
this module because we're going to generate a
number between 1 and 10 when the game starts, the
number the user needs to guess.

import random

Let’s start by printing a message that introduces
the game. Then, let’s generate our random number.
We're going to use the randrange() method of the
“random” module. Do you remember this method?
It generates a random number from within the
range, excluding the last number in the range. We
need a number between 1 and 10, so the range is
going to be 1,11.

print('Guess a number and win!")
number = random.randrange(1,11)

Then, let’s get the first guess from the user. Inputs
are usually strings, so let’s convert them to integers
first.

guessl = input('Guess a number between 1 and 10 - Your
first try: ')
guessl = int(guess1)

187

CHAPTER 9

4.

188

FOLLOW MY COMMAND!

Now, we're going to start our comparisons. If the
first guess is equal to the number, then print a
success message. If not, start an “else” statement.
In the else statement, start over again. Get the
second guess, and inside the “else’, start an inner
“if” statement that checks if the second guess is the
same as the number to be guessed.

if(guess1l == number):
print('You guessed it right! :)")

else:
guess2 = input('Guess again - Your second try:
guess2 = int(guess2)
if(guess2 == number):

print('You guessed it right! :)")
We're going to do the same thing with the third try.

else:
guess3
guess3 = int(guess3)
if(guess3 == number):
print('You guessed it right! :)')

Finally, the last “else” statement. If they've still not
guessed after three tries, then the program will run
the final “else” statement and print a sad message.
® Why don’t we also tell them what the number
was? They'd probably want to know that, right?

And, that’s it! A simple little program.

else:
print('Sorry! You used up all your tries! :(")
print('The number was {}'.format(number))

input('Guess again - Your final try: ')

")

CHAPTER9 FOLLOW MY COMMAND!

Why don’t we see if this game works? Let’s run the above code, and
we'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\condition.py

Guess a number and win!

Guess a number between 1 and 10 - Your first try: 5

Guess again - Your second try: 7

You guessed it right! :)

I guessed on the second try! Whohoo! ©
Let’s try again:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\condition.py

Guess a number and win!

Guess a number between 1 and 10 - Your first try: 10
Guess again - Your second try: 6

Guess again - Your final try: 3

Sorry! You used up all your tries! :(

The number was 2

Oops, I missed it this time around. The number was 2. ®

The conditions keep stacking up!

Sometimes, you might want to check for more than one condition at the
same time. Or you might want your condition to be the opposite of what it
is.

Python gives you two options to make that happen. These are called
logical operators, and you can use them to combine conditional statements
(comparisons) and arrive at a final True or False result. Confused? Don’t
be. I'll explain. ©

189

CHAPTER9 FOLLOW MY COMMAND!

The first one is the and operator. If you use the “and” operator on two
or more comparisons, then the condition will return true only if all the
comparisons hold true.

The syntax is as follows:

(comparison1) and (comparison2)

You can write the comparisons without brackets as well and the
execution will still happen properly (comparisons have higher precedence
to logical operators), but it’s always good practice to include them to make
the order of execution clearer.

Let me explain how the “and” operator works. What’s the meaning of
“and” in English? Inclusion of everything, surrounding the “and’, right?

So, when you use this statement around two or more conditions, the final
result is True only if all the conditions around it are True. If even one of
those conditions is False, then you'll end up with a False, even if the other
condition is True. Why don’t I explain this with an illustration? (Figure 9-5)

AND Statement

Condition 1 | Condition 1 | Result
True True True
True False False
False True False
False False False

Figure 9-5. “and” statement and its results

Do you understand how “and” works now?

Next, you have the or operator. How does that work? Simple, really. In
English, “or” means “either or’; am I right? So, if either of the conditions
around the “or” operator is true, then the entire statement is true.

190

CHAPTER9 FOLLOW MY COMMAND!

If you use the “or” operator on two or more comparisons, then the
condition will return true if any of those comparisons hold true.
The syntax is as follows:

(comparisonl) or (comparison2)

Let me illustrate how the “or” statement works as well (Figure 9-6).

OR Statement
Condition 1 Condition 1 Result
True True True
True False True
False True True
False False False

Figure 9-6. “or” statement and its results

Finally, there is the not operator. There’s nothing to guess here. It’s
pretty simple, isn’t it? The “not” operator just reverses the result. If the
result of a comparison is True, then using the “not” operator on that
comparison statement returns a False and vice versa.

The syntax is as follows:

not (comparison)
You can use the “not” operator on other logical statements as well:
not((comparison1) and (comparison2))

In programming, you need to make sure you always close the brackets.
In the preceding syntax, we have two sets of brackets around each of the
comparisons with the “and” operator in the middle and another bracket
that closes around everything.

191

CHAPTER9 FOLLOW MY COMMAND!
Let’s finish this chapter by testing these statements in our Python Shell:

>>> (5 > 3) and (4 < 3)
False

5 is greater than 3, but 4 is not less than 3. If we used the “or” operator
instead,

>>> (5 > 3) or (4 < 3)
True

we get a true because one of the comparisons is true.
Let’s combine logical statements now! Why don’t we do comparisons
with mathematical operations to make things a little bit complicated?

>>> ((5 > 3) or (4 < 3)) and ((3 + 2) == 5)
True

Take a minute to read the preceding statement carefully. Look at the
placement of the brackets first. I have brackets around each operation
(greater than, lesser than, and addition) and a bracket that encompasses
the “or” statement and one that encompasses the equal to operation. If I'd
missed even one of those brackets out, I'd have either gotten an error, or
the order of operation would have been messed up and my answer would
have been wrong.

Let’s test the “not” operator now.

>>> not(5 > 3)
False

5> 3 is true, but since I used the “not” operator on the comparison, I
got a false.

>>> not((5 > 3) or (4 < 3))
False

192

CHAPTER9 FOLLOW MY COMMAND!

The result of the “or” operation is true because one of the statements is
true, but since I used “not” on them all, the final result is false.

>>> (5 > 3) and (not(4 < 3))
True

Originally, the preceding operation returned false because 4 < 3 is
not true. But I used “not” on 4 < 3, which made the final result of the
comparison True. So True and True is True.

I'm going to stop the tests at this, but I want you to go all out!

Why don’t you combine all of the mathematical operators you know

of with the comparison operators and the logical operators? Try
different combinations and see what you get. Programming is all about
experimenting. Experiment away! ©

Summary

In this chapter, we learned all about commanding our computer to do the
things we want. We learned about Boolean values and conditions and their
results. Then, we moved on to “if’} “else’, and “elif” statements and how to
use them to command our computers. Finally, we looked at “and’; “or’, and
“not” and their uses. As usual, we did a bunch of mini projects as well.

In the next chapter, let’s look at automating our programs with loops.
You'll find it a welcome relief while creating graphics with Turtle.

193

CHAPTER 10

Automate a Little

In the previous chapter, we learned all about conditions, if, else, and
elif statements, and combining multiple conditions to create complex
commands.

In this chapter, let’s look at automations with loops, how to use for and
while loops to automate the creation of graphics, how to pre-maturely end
loops with break statements, and so much more. We’ll be looking at a lot of
colorful and interesting mini projects in this chapter.

Magic loops!

There’s no end to Python’s magic and wonder, and loops are the best of
them! Remember the sheer number of lines of code we wrote to draw a

simple little graphic in turtle? Would you like an easier way of doing the
same? What if you can draw hundreds of squares, one after the other, in

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_10

https://doi.org/10.1007/978-1-4842-6812-4_10#DOI

CHAPTER 10 AUTOMATE A LITTLE

just four to five lines of code? That’s just an example. What if you want to
print the numbers 1 to 100 in your turtle, again with just four to five lines of
code? That’s 100 print statements, but we're making it happen in four lines
of code. How? That'’s the power of loops.

With loops, you can make your program repeat the same actions any
number of times. Do you want to print from 1 to 100? You can create an
automation code that starts from 1, prints 1, and then increments 1 by 1,
which is 2; prints that, and increments again; and so on.

Look at Figure 10-1. We have a bunch of lines of code. There is a range,
and as long as that range is true, we run the same lines of code. This range
starts from a number and increments by 1 every time the loop is repeated.
Once that set number is reached, we stop running the “loop”. Every time
those same lines of code run, it’s called an iteration. In our example, we’ll
have 100 such iterations to print 1 through 100.

SETA
RANGE

False LOOP

True

RUN LINES OF
CODE

CODE OUTSIDE
THE LOOP

Figure 10-1. Loops - an illustration

196

CHAPTER 10 AUTOMATE A LITTLE

There are two types of loops in Python, and we’ll be looking at both.
I'm also going to demonstrate the power of these loops with a lot of mini
projects. Are you excited to get started? I know I am! Loops are the real
deal. You're halfway there!

For loops

For loops are the most commonly used loops. They don’t just iterate a
given number of times. They do that, yes, but you can use the ‘for loops’ to
iterate over strings, lists, and a lot of complex data like that.

In this chapter, we'll just be looking at using for loops within a given
number range or a string as the range. Once we look at complex data types
like lists and dictionaries in the future, let’s revisit for loops and how to use
them with those data types, alright?

Okay then, let’s get started!

Let’s work with our preceding example. I want to print from 1 to 100.
You've looked at the illustration. You know what’s needed. Let’s look at
how to write a for loop over a range first, and then let’s try to solve our
problem, alright?

The syntax is very simple. You have to start the syntax with the “for”
keyword, with small letters throughout. Then, you need to create a temporary

u_n

variable. It could be an “x” (random, unknown number) or an

“usn
1

(denoting
iteration), or it could be literally any variable name you want it to be. This
variable will store your current number in the range for every iteration.

So, if your range was from 1 to 5, and let’s say we've named our

u_.n”n

temporary variable “x”.

Iteration 1 : x is 1
Iteration 2 : x is 2
Iteration 3 : x is 3
Iteration 4 : x is 4
Iteration 5 : x is §

197

CHAPTER 10 AUTOMATE A LITTLE

And when x reaches 5, our loop stops executing. Do you understand
how that works?

Also, your numerical range can be anything, really, as long as it has
continuity. If you give your range as range(1,6), then that means you want
your x value to go from 1 through 5 for every iteration. The last number in
the range is ignored.

Don’t forget your colon! Just like in your “if” statements, your “for”
statement ends with a colon, and the lines of code that come inside of it
should be placed after an indentation.

So, the syntax would be something like this:

for x in range(1,6):
lines of code

I know, I know. It’s all a bit confusing and too theoretical. Let’s look at a
bunch of examples, shall we?

What was my problem statement again? I wanted to print from 1 to
100, am I right? The range would be range(1,101) since I want 100 to be
included, and I just need a print statement inside the loop.

The code would be something like this:

for x in range(1,101):
print(x)

Run the preceding code, and you'd get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py

1

2

3

198

CHAPTER 10 AUTOMATE A LITTLE

97
98
99
100

My code printed the entire thing, but I don’t think we have space in
this chapter to print everything, so here’s the “cut” version of it. Did you
run the code and see? Amazing, right? You did all that in exactly two lines
of code. Nothing more. That is the power of loops.

This works only if I want everything in the range to be printed. What if
I want only the even numbers to be printed? I can give a condition within
my range to make that happen.

Let’s say my range is something like this: range(2,101,2)

I'm basically asking my code to print from 2 through 100, but for every
iteration, I want the current value of “x” incremented by 2 and not 1.

So, x would be 2 in the first iteration, 4 in the second iteration, and so
on. Shall we test this?

for x in range(2,101,2):
print(x)

When I run the preceding code, I'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

2

4

6

8

10

199

CHAPTER 10 AUTOMATE A LITTLE

94
96
98
100

If you want the increment to happen by 3 every time, then give 3 as the
third argument and so on.

If statements within for loops

Alternatively, I could just use the modulus operator we learned about in
Chapter 5 to just filter out the numbers I don’t want. So, if I only want the
off numbers printed, then I can do an x % 2 operation, and whenever I
get 1 as the result, then I can confirm that the current number is an odd
number and print it.

1% 2is1

2 % 2is0

3%2is 1 again

Do you see the pattern? Let’s try this out!

for x in range(1,101):
if (x % 2) == 1:
print(x)

So now you know how to use if statements within for loops. Similarly,
you can use for statements within if loops as well.

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\numbers.py

1

3

5

200

CHAPTER 10 AUTOMATE A LITTLE

93
95
97
99

Nested for loops

You can also create for loops within for loops. These are called nested for
loops. To demonstrate how nested loops work, I'm going create a pattern
that prints stars for every iteration at the end of this section as a mini
project.

But before we start that, I want to introduce a concept in print. Did
you notice how every new print statement is written in a new line? That'’s
the default. But what if we don’t want that? What if we want the next print
statement to be in the same line as the previous one? You can use the
“end =" syntax to achieve that.

print('Hello', end = " ")
print('there!")

If you run the preceding lines of code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
Hello there!

The end = “ ” told your print statement to end the print statement with
a space and instructed IDLE to print the next print statement right after the
space and not in a new line.

201

CHAPTER 10 AUTOMATE A LITTLE

Now that you know how to manipulate the print statement, let’s go
back to nested loops.

The syntax is very simple, actually. Let’s say I want to print the
numbers 123, one after the other, in a row, and repeat that ten times. So,
the outer loop will have a range of range(1,11) and the inner for loop will
have a range of range(1,4), and the print statement will come only in the
inner for loop because we only need 1, 2, and 3 printed out. Let’s test this,
shall we?

for x in range(1,11):
for i in range(1,4):
print(i, end = "")

In the preceding lines of code, I didn’t give a space after end = because
I'want 1, 2, and 3 printed one after the other. On the other hand, if I gave
something like this: end = “” then I'd get something like 1,2,3 in every line.
You can design this as you want. Try giving other special characters to
manipulate the result.

When I run the preceding code, I get this:

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\Python\
Python38-32\numbers.py
123123123123123123123123123123

Oops, something went wrong! What was it? Well, we never broke the
line, did we? We need to do that after every line is completely written, so
we can repeat the same thing in the next line, am I right? Let me do that.

There is a piece of code in Python that lets you create a new line. It’s
called \n and it’s similar to the backslash we used when we wanted to
exempt single and double quotes from being considered as part of the
code, remember? So I just need to add another line of code right after my
inner for loop gets over.

202

CHAPTER 10 AUTOMATE A LITTLE

for x in range(1,6):
for i in range(1,4):
print(i, end = "")
print("\n")

Do you see the indentation? The first print is inside of the inner
for loop, and the second print statement is inside of the outer for loop.
Indentations can make or break your code in Python, so be very careful
with them, okay? If I wrote the second print statement in the same line as
the first, then Python would have thought I wanted a new line after every
number is printed and not after every line was printed. That makes all the
difference, doesn’t it?

When I run the preceding code, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
123

123
123
123

123

Alternatively, you could just end the outer for loop with an empty
print(), and you'll just get one new line since print statements produce
new lines by default.

203

CHAPTER 10 AUTOMATE A LITTLE

Iterating over strings

The beauty of for loops over “while” loops is that they iterate over things
and not just range of numbers. You can iterate over every single letter in a
string, for example. Would you like to try?

Let me create a variable “a” and place a string ‘Hello there’ inside of
it. Then I'll use the same syntax, but this time, I'll just mention “a’; which
contains the string, in place of a range.

a = 'Hello there!'
for x in a:
print(x)

Let’s see what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py
H

o H = o

- MO H OO = +

Look at that! Every single character was printed in every line. Pretty
neat, huh? Think of all the possibilities with something as powerful as this!

204

CHAPTER 10 AUTOMATE A LITTLE

While loops

Now that you've explored “for” loops thoroughly, “while” loops are a piece
of cake, trust me. Unlike the for loops, while loops keep executing the
statements within the loop, as long as a condition is true. Remember your
“if” statement? It’s similar to that, but there’s an added element of iteration
in here.
The syntax is very simple:

initialize
while condition:

lines of code

increment

The syntax is a bit confusing, isn’t it? Let me explain with an example.
It’s similar to a for loop, really, but just a bit longer. In a for loop, we give a
range. Let’s say our range starts from 1, so in our “while” loop, we need to

initialize our temporary variable with the start of the range, like this:
X =1

Then, we need the condition. Let’s say we want the range to end at 11,
which means it needs to iterate from 1 to 10, so we can give our condition
like this:

while x < 11:

Alternatively, you could make your condition x <= 10 as well. You have
the freedom to do that with your “while” loops.

Finally, you need your lines of code. It could be anything, really, and
it could be any number of lines of statements. But just like with your “for”
loops, the inner lines of code need to come after indentation.

205

CHAPTER 10 AUTOMATE A LITTLE

This is what we have so far:

X =1
while x < 11:
print(x)

u_n

But if we end the loop here, we’d create a never-ending loop. “x” would
always be 1, and it would always be less than 11, so the condition would
always be true, and the loop will never stop executing. That’s dangerous.
So we need the loop to stop at a point, right? That’s where the increment
comes in. Increment x by any number you want so at one point, the loop
does end.

This is our final code:

X =1

while x < 11:
print(x)
X += 1

Let’s run the preceding code:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

OW 60N O LT B W N -

=
o

Perfect!

206

CHAPTER 10 AUTOMATE A LITTLE

Abort mission! Break and continue

Break, and continue. It isn’t hard to guess what these do, is it? The “break”
statement breaks the loop, regardless of your range or condition being
true.

for x in range(1,11):
if(x == 5):
break
print(x)
print('Loop broke :(")

In the preceding lines of code, I'm literally hijacking my for loop in the
middle. When x is 5, I'm asking the loop to break and the line of execution
would immediately jump to the line right after the loop, which is the print
statement that prints “Loop broke ® " Let’s test if this works.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

1

2

3

4

Loop broke :(

Look at that. I didn’t even get a 5, because my break statement was
above my print statement. @ This is how “break” works.

But, the “continue” statement, on the other hand, just skips that
particular iteration and still executes the rest. Why don’t we use the while
loop to test things this time? Let’s use the same example, but this time, I

want a continue when x is 5.

207

CHAPTER 10 AUTOMATE A LITTLE

X =1
while x < 11:
if x ==
X += 1
continue
print(x)
X +=1

print('5 was skipped!")

Read the preceding lines of code carefully. Did you notice something?
Iincluded another increment statement right before the continue
statement. Why? Remember how I told you that we need to be careful of
infinite loops in while loops? Now if I just continued the loop, then x would
always be stuck at 5, because at every iteration, my program would check if
xwas 5, and it would always be true, because increment didn’t happen. So,
while loops can be tricky like that. Be careful.

Let’s run our code:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\numbers.py

O O ~N O W N R

10
5 was skipped!

Yes, indeed. 5 was skipped!
You're an expert at loops now. Congratulate yourself!

208

CHAPTER 10 AUTOMATE A LITTLE

Mini project — guess the number game
version 2

We're going to try the “guess the number” game from the last chapter

again, but this time, we’re going to bring in the magic of automation into it.

The user gets three tries, as usual, but every time they miss, they’ll get

a hint on whether their guess is higher or lower than the number to be

guessed:

1.

Let’s import the random module first, because we
are going to generate the number to be guessed
from that.

import random

Let’s print out a message and then generate a
random integer (whole number) within the range
1 to 10. The last number in the range is 11 because
randrange() doesn’t consider that.

print('Welcome to Guess a Number Game!')
number = random.randrange(1,11)

Next, let’s create a for loop that runs for three
iterations (range of 1,4, which runs from 1 to 3).

For every iteration, ask the user to enter a number
between 1 and 10. Get the input, and convert it to an
integer.

for i in range(1,4):

guess = input('Enter a number between 1 and 10:

guess = int(guess)

")

209

CHAPTER 10 AUTOMATE A LITTLE

4. Once entered, we're going to start our comparisons.
To start with, I need to check for the final iteration
because if we've reached the final try and they’'ve
still not guessed right, we need to stop the game. So,

“us=n
1

let’s check if the value of “i” is 3 and the guess is still
not right. Print a “sorry” message and tell them what

the number was.

if(i == 3 and number != guess):
print('Sorry! You used up all your tries! :(")
print('The number was {}'.format(number))

5. But, if they're at the last try but guessed right, then
print the success message.

elif(i == 3 and number == guess):
print('You guessed it right! :)")

6. Now that we're done with the check, let’s create an
“else” statement that’ll contain the code for the first
two tries.

For the first two tries, check if the current guess is wrong. If it is, then
print a message after checking if the “guess” is lesser or greater than the
number to be guessed. If they've guessed right on any of the tries, then
print a success message and break the for loop because we don’t need any
more iterations.

You didn’t need a “break” statement if in third iteration because that
was going to be the last iteration of the loop anyway.

else:
if(number != guess):
if(guess < number):
print('You guessed a lesser number. Try higher.")

210

CHAPTER 10 AUTOMATE A LITTLE

else:
print('You guessed a higher number. Try lower.")
else:
print('You guessed it right! :)')
break

That’s it! Pretty simple, isn’t it? Let’s see if it works now.
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

Welcome to Guess a Number Game!

Enter a number between 1 and 10: 10

You guessed a higher number. Try lower.

Enter a number between 1 and 10: 5

You guessed a higher number. Try lower.

Enter a number between 1 and 10: 3

You guessed it right! :)

I guessed it right on the last try. Whew!
Fun little game, don’t you think? Try it with your friends! Increase or
decrease the number of tries or the range as you like. Just go crazy on this!

Mini project — automate your square

This is going to be a simple project. We're going to automate our square in
Turtle.

I'm going to create a for loop. I'm going to give the range as 1:5 so
it iterates four times to draw the four sides of a square. I'm just going to
repeat forward 100 points and right 90 degrees throughout the loop.

211

CHAPTER 10 AUTOMATE A LITTLE

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.color('Red"', 'Green")

t.begin fill()

for x in range(1,5):
t.forward(100)
t.right(90)

t.end fill()

t.hideturtle()

turtle.hideturtle()

Let’s run the preceding code. Look at that! We have our square
(Figure 10-2), and we just wrote a fraction of the lines we wrote before.

Figure 10-2. Automated square

Mini project — automate any basic shape

In this project, we're going to automate any shape we give our program.
So, you just input the number of sides and the angle of the sides, and your
program will draw the relevant shape for you. Cool, right? Let’s get started!

212

CHAPTER 10 AUTOMATE A LITTLE
Let’s set up turtle first.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

I'm going to make the pen size 5 so our shapes look
better. The color of our pen is going to be Blue, and
the fill color of the shape is going to be Orange.

t.pensize(5)
t.color('Blue’,'Orange")

Next, let me get the number of sides and angle as
input and convert them to integer.

sides = input("How many sides does your shape have?")
sides = int(sides)
angle = input("What's the angle between the sides?")
angle = int(angle)

Now, let’s begin drawing. Start with the begin_fill,
and then open a for loop that goes from 0 to sides-1
(give 0,sides as the range). This means, if the value
of sides is 5, the loop will run five times and will
draw one side for every iteration of the loop.

t.begin fill()
for x in range(0,sides):

Inside the for loop, let’s create an “if” statement that
checks if we've reached the last side. If we have, then
we're going to take the pen home (0,0) and break the
loop.

213

CHAPTER 10 AUTOMATE A LITTLE

if(x == sides-1):
t.home()
break

6. In the rest of the iterations, we're going to push the
pen forward by 100 points and change the direction
of the pen in the right direction with the given angle.

t.forward(100)
t.right(angle)

7. That’s it for the “for” loop. Let’s finish the program
by ending the fill and hiding the turtles.

t.end fill()
t.hideturtle()
turtle.hideturtle()

8. Let’s give our inputs as 4 and 90:

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\
Python\Python38-32\drawTurtle.py

How many sides does your shape have? 4

What's the angle between the sides? 90

Click Enter after entering the outputs. Check the
Turtle screen, and you'll see the image shown in
Figure 10-3.

214

CHAPTER 10 AUTOMATE A LITTLE

Figure 10-3. Sides 4 and angle 90 - square
That’s a square!

9. Now, 3 and 60 (Figure 10-4):

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\
Python\Python38-32\drawTurtle.py

How many sides does your shape have? 3

What's the angle between the sides? 60

-

Figure 10-4. Sides 3 and angle 60 - triangle

An equilateral triangle!

215

CHAPTER 10 AUTOMATE A LITTLE
10. Now, 6 and 60 (Figure 10-5):

= RESTART: C:\Users\aarthilAppData\Local\Programs\
Python\Python38-32\drawTurtle.py

How many sides does your shape have? 6

What'’s the angle between the sides? 60

Figure 10-5. Sides 6 and angle 60 - hexagon

A hexagon, nice!
Try 5 and 60 to get a pentagon, 8 and 45 to get an octagon, and just
experiment with different values to see what you get. Have fun!

Mini project — automatically draw
a mandala design

In this project, we're going to automate drawing a proper mandala design.
It’s quite simple, you'll see!

216

CHAPTER 10 AUTOMATE A LITTLE
Let’s set up turtle first.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

I'm going to make the speed of the pen 0 so it draws
fast. The pen size is going to be 5 and the pen color
Red.

t.speed(0)
t.pensize(5)
t.pencolor('Red")

Next, let us open a for loop, and I'm going to make it
loop seven times (0,7 in the range). Now, I've arrived
at all the values in this for loop by trial and error. You
can change them as you want and see what you get,

okay?
for i in range(0,7):

In every iteration of the for loop, I'm going to draw a
circle of 100 points and turn left at 50 degrees.

t.circle(100)
t.1left(50)

That'’s it! If you run the program now, you'll see

your mandala design. But why don’t we take it a bit
further and draw a circle inside the design? Change
the pen size to 7, go to the position -10,-50 (found it
by trial and error), change the pen color to Blue, and
draw a circle of radius 50. Finally, hide the turtles.

217

CHAPTER 10 AUTOMATE A LITTLE

.pensize(7)
-penup()
.goto(-10,-50)
.pendown ()
.pencolor('Blue")
.circle(50)
.hideturtle()
turtle.hideturtle()

~+ &+ &+ &+ &+ + ~+

Run the preceding code, and you'll get this (Figure 10-6).

Figure 10-6. Simple mandala design with loops

That looks pretty! Try changing the values and the colors and see what
you get.

Mini project — arc spirals

In this project, we're going to do a demonstration of the setheading()
method in Python. We're going to draw arc spirals! You'll see.

218

CHAPTER 10 AUTOMATE A LITTLE

Let’s set up the Turtle first.

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

I'm going to print the current heading (direction)
to the Shell to start with. You'll see that it’s 0 when
we start. Let’s also change the pen size to 5 and the
speed to 5 so it draws a bit fast.

print(t.heading())
t.pensize(5)
t.speed(5)

I'm going to set the starting angle to 0.
angle = 0

Then, I'm going to open a for loop that runs 12
times, because I want to showcase 12 angles of a
circle in the arcs.

for i in range(12):

Every time the loop runs, I'll draw a semi-circle of
radius 100. And at the end of the semi-circle, I'll
write the current heading. Then I'll move my pen
back to the starting point so it'll be ready for the next

arc.

t.circle(100,180)
t.write(t.heading())
t.penup()

t.home()

t.pendown()

219

CHAPTER 10 AUTOMATE A LITTLE

6. Finally, I'm going to increase the angle by 30 in
every iteration of the loop and set the heading to
that particular angle.

angle += 30
t.setheading(angle)

7. Run the preceding code, and you'll get this
(Figure 10-7).

Figure 10-7. Semi-circle spirals

8. Change the angle of the circle to 90 degrees to draw
quarter circles (arcs), and you'll get this (Figure 10-8).

220

CHAPTER 10 AUTOMATE A LITTLE

Figure 10-8. Quarter circle spirals

You can remove the text if you'd like, draw a circle over everything, and
make it a new mandala design too!

Summary

In this chapter, we learned how to do entry-level automation in your
programs by using loops. We learned all about for loops, while loops, and
ranges and how to manipulate loops with break and continue statements.
We also create a lot of mini projects using the concepts we learned in this
chapter.

In the next chapter, let’s look at how to store more than one value and
different kinds of values in a single variable with Python’s built-in data
structures.

221

CHAPTER 11

Lots and Lots
of Information!

In the previous chapter, we learned all about automating your code with
for and while loops. We also looked at the break and continue statements
and created a lot of colorful, mini projects.

In this theory-intensive chapter, let’s look at the various built-in data
structures offered by Python. Let’s look at how to use these data structures
to store more than one value at a time in a single variable, and let’s look at
practical examples of using these data structures in real-world programs.

Store more than one value

So far, we've just been storing one value at a time. Of course, we can
change the values, but we can’t store two values in the same place. Isn’t
that a little inconvenient? Let’s say I want to store six different color values
so I can use them in my code, one after the other.

How would I do that? I'd probably do something like this:

colorl = 'Red’
color2 = 'Orange'
color3 = 'Blue’
color4 = 'Yellow'
color5 = 'Green'
color6 = 'Violet'
© Aarthi Elumalai 2021

A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_11

https://doi.org/10.1007/978-1-4842-6812-4_11#DOI

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Then I'd have to remember and refer each of those values every time I
want them used in my code. Whoa...that’s a long-drawn-out process.

What if I can store all six colors in the same place, in the same variable?
It'll look something like Figure 11-1.

Figure 11-1. Multiple values in the same variable

This is called a data structure in Python. Look at how the data is
structured (organized) and stored? Hence the name. There are four such
pre-made data structures that can be used to store multiple values in the
same location. You save a lot of lines of code, time, and your code is a lot
more efficient too. You can store different types of data as well. The same
data structure could have strings, numbers, and Booleans stored in them.

Accessing this data is easy too. You'd just have to follow a similar
format to the one we use while accessing individual characters in a string.
I'll get to that in a bit.

Let me show you the four data structures first:

224

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

List: Python is indeed an easy-to-learn language,
isn’t it? The keywords used in this language are
very easy to remember. A list is just that. It’s a list of
information, but it is ordered. The individual values
in a list can be changed, and lists allow duplicate
values inside of them.

Tuple: A tuple is similar to a list. The only difference
is that the values cannot be changed once fixed.
That means you can’t add or delete values either.

Set: A set, unlike a list of a tuple, is unordered, and
there are no indices to access specific values from. It
doesn’t allow for duplicate values as well, since the
values are unordered.

Dictionary: As the name implies, a dictionary has
the values stored in a word : description format.
Dictionaries are unordered as well, but they can
be changed and the “word’, which is called a “key”
in Python, acts as an index through which you can
access the values (descriptions).

You're probably squinting at the pages of this book right now. Don’t
worry at all. At a glance, these data structures look intimidating. They're
definitely not. I'll explain them with fun and easy-to-understand examples
from the next section, and you'll understand everything in no time.

Lists

Let’s look at lists first. It's quite easy to create them. Separate the multiple
values you want stored in your list by commas and enclose everything
inside of square brackets ([]) and you have yourself a list. Would you like to

try?

225

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Let’s convert the six lines of code we wrote in the previous example

into a list, shall we?
colors = ['Red', 'Orange', 'Blue', 'Yellow', 'Green', 'Violet']

The preceding example just has strings in them (hence the quotes), but
you can create a list of just numbers, or just Booleans, or a combination of
two or more of them. Just create what you want based on your need.

You're probably squinting at the pages of this book right now. Don’t
worry at all. At a glance, these data structures look intimidating. They’re
definitely not. I'll explain them with fun and easy:

a = [1, 'Hello', True, False, 34.5, '*']

The preceding code is a list of heterogenous values (different data

types).

Accessing values in a list

Okay, so we have a list of values. How do we access them? Would you like
to take a guess? You know how already.

Yep, with indices, just like we did for our strings. The first value in the
list has an index of 0, the second an index of 1, and so on.

Let’s say I want the third value accessed and printed in list “a” It’s at the
index 2.

print(a[2])
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/dataStructures.py
True

Successtully accessed!

226

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

You can do negative indexing just like you did with your strings. So, to
access the last element (value) in the list, I'd just have to give -1.

print(a[-1])
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/dataStructures.py

*

It works! Yippee!

Slice a list!

If negative indexing and accessing work, just like with your strings, then
extracting a part of a list using ranges should work as well, right? Let’s test.

Let’s say I want to extract the second through fifth values, with indices
1 through 4. My range should be 1:5 since the last number in the range is
not included.

print(a[1:5])
['Hello', True, False, 34.5]

Oh yes, it works! Then extracting through negative indices should work
as well, right? Let’s say I want everything from the negative third index
extracted.

print(a[-6:-3])

You already know how negative indices work right? If I run the
preceding code, I'll get this:

[1, 'Hello', True]

227

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

You can change values as well. Let’s say I want the second value
(string) to be changed to a number. Then, I'd have to access the second
value (first index) and assign something else to it.

a[1] = 100
print(a)

Let’s print the entire list to see how it’s changed now:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/dataStructures.py
[1, 100, True, False, 34.5, '*']

List manipulation on fire!

You have a lot of pre-defined methods that can be used to manipulate your
list in multiple ways. Remember the methods we saw with your strings?
You'll find some of them repeated here as well. Are you ready to play with
your list? Yes!

As usual, you can find the length of your string with the len() method:

a = [1, 'Hello', True, False, 34.5, '*']
print(len(a))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
6

Yes! Our list’s length is 6. It works.

You have a complete list of methods for each of the data structures
we'll be looking at in this chapter. So, I'm just going to link you to the page
in the Python docs where all those methods and their explanations are
listed.

228

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Here itis: https://docs.python.org/3/tutorial/datastructures.
html.

That said, let’s just look at some of the most important methods in this
chapter, alright?

Copy and append

The append() method appends or adds an element at the end of the list :

a.append('new")
print(a)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
[1, "Hello', True, False, 34.5, '*', 'new']

The copy method creates a copy of the list, and this copy can be
assigned to any variable to create a copied list:

b = a.copy()
print("List b contains: {}".format(b))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
List b contains: [1, 'Hello', True, False, 34.5, '*', 'new']

Count and clear

Lists can have duplicate values, am I right? Let’s say we have a list of
numbers where the numbers are duplicated, and I want to check how
many times a particular number appears in the list. I can use the “count”
method to achieve that.

229

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

1= [1)2:1:1:415)3)5)3:2]
print(1l.count(1))

I've started the syntax with the name of the list, “l’, then the name of
the method, “count’, and then I've mentioned the value I wanted to count
(1). If it were a string, I'd have mentioned the same within quotes. Let’s run
the preceding code, and we'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
3

We got the right answer! The number 1 appeared thrice in the list.
You can clear the entire list using the “clear” method.

1.clear()
print(1)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

[]

We have ourselves an empty list now!

Concatenation

You can use the “extend” method to concatenate or join two lists.

list1 = [1,2,3,4,5]
list2 = [6,7,8,9]
listi.extend(list2)
print(list1)

230

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

As you can see in the preceding code, the elements of the list you want
listed first come first, then a period (“’), and then the “extend” method,
and then inside the brackets, you can mention the name of the list you
want joined to the first list.

Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
[1) 2) 3’ 4) 5) 6) 7’ 8) 9]

Look at that! Perfectly joined, and in the order we wanted as well.

Search inside your list

The “index” method returns the index of the very first instance of the value
you are searching for. For example, if you want to find the number 3 in a
list, but its duplicated twice, then only the index of the first occurrence of 3
would be returned. Let me show an example:

list1 = [1,2,3,2,3,1,3]
print(list1.index(3))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
2

Look at that! 3 exists thrice in the list, but we only got the index of the
first 3. Sweet!

But you can narrow that search down, if you'd like. What if I want to
find 3 in the last half of the list, maybe starting from the third index? You
can specify the start and end of your search as arguments as well. Let me
show you how:

print(listi.index(3,3,6))
231

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

I'm asking my program to search for 3 from indices 3 to 5. You know
how these things work right? The last value in the range won'’t be included.
So, if the last value is 5, then your program will only search until the fifth
index.

When I run the preceding code, I'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
4

Look at that! We got the index of the second instance of 3 in the list.
Nice!

Add and remove elements

You know how to add elements to a list using your square brackets, and
you can change elements using the same method as well. But what if I
want to insert elements in the middle of the list so that the other values still
exist, but just move one step further?

You can use the insert method to achieve that. The first argument in
the method is the position in which you want the value, and the second
argument is the value you want added.

colors = ['Red’, 'Orange', 'Blue']
colors.insert(1, 'Green')
print(colors)

I've added the value ‘Green’ to the first index. Now ‘Orange’ should be
pushed one step further. Let’s check, shall we?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
['Red', 'Green', 'Orange', 'Blue']

Yep, it worked!

232

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

The pop() method removes the last element in the list by default. If you
give a position (index) though, it'll remove the element at that position.

Let’s try removing the second element in the preceding list, which is
the element we just inserted, okay?

colors.pop(1)
print(colors)

When we run the entire code, we’ll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py

['Red', 'Green', 'Orange', 'Blue']

['Red', 'Orange', 'Blue']

Look at that! The list originally had four elements, and we successfully
removed the second element using the pop() method.

Alternatively, you can use the remove() method as well. The only
difference is you can specify the exact element you want removed.

Our list currently has ['Red’, 'Orange’, 'Blue']. I don’t want blue
anymore. Why don’t we try removing it?

colors.remove('Blue")
print(colors)

Let’s see if it worked:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
['Red', 'Orange']

Yay! It worked!

It's getting a bit too long, isn’t it? Don’t worry! We're almost done. Then
let’s distract us with a fun little project, deal?

233

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Reverse and sort

There’s another method called the reverse() method. Can you guess what
it does? Exactly! It reverses the elements in a list. Let’s try!

li = [1)2’3J4J5]
li.reverse()
print(1i)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
[5, 4, 3, 2, 1]

Success!

Finally (yes, finally), there’s another method called the sort() method
that sorts the elements by alphabetical order.

By default, the sorting happens in the ascending order.

colors = ['Red', 'Orange', 'Blue', 'Yellow', 'Green', 'Violet']
colors.sort()
print(colors)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
['Blue', 'Green', 'Orange', 'Red', 'Violet', 'Yellow']

It’s like magic! :O

Does this work with numbers?
li = [1)4J3J6)2)8J7)9J5]
li.sort()
print(1i)

234

CHAPTER 11 LOTS AND LOTS OF INFORMATION!
When you run the above code, you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
[1J 2) 3) 4) 5) 6) 7) 8) 9]

Hehe, it works.
But what if I want the sorting done in the descending order? In that
case, I'll modify the sort() function call like this:

li.sort(reverse=True)
print(1i)

When you give the argument as reverse=True, your program will sort
your list in the descending order. The default is reverse=False, which sorts
the list in the ascending order. When something happens by default, you
don’t need to mention it as an argument.

Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
[9) 8) 7} 6) 5) 4) 3} 2) 1]

Nice...my list is in the descending order now. Python lets us do pretty
much anything, doesn’t it?

More fun with lists!

You can check if something exists in a list using the “in” keyword:

print('Hello' in a)

235

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

In the preceding line of code, we've asked if the string ‘Hello’ is a part
of the list.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
False

The result is false. We changed the second value from ‘Hello’ to 100,
remember? So, ‘Hello’ is no longer a part of the list. As with everything in
Python, these searches are case sensitive as well. So, ‘Hello’ is different
from ‘hello; and if the string was ‘Hello there!, then you need to search for
the entire thing. Partial searches don’t work. Let me show you:

a[1] = 'Hello there!’
print('Hello' in a)

I've changed the second value to ‘Hello there!, and when I search for
‘Hello’ in the list “a’) let me see what I get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
False

Look at that. It’s still a false because you haven’t searched with the
correct term.

Now that you know how lists work, I want to get back to a previous
topic. Remember “for” loops? And do remember my promise to revisit for
loops when I teach you about lists? We're here now!

You can iterate through a list using your for loop. It’s quite simple. Just
create your list, and then replace that in place of a range, like this:

1= [1)2:3:4:5]
for i in 1:
print(i)

236

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

The result is this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

vi B W N R

Alternatively, you can also directly specify the list, like this:
for i in [1,2,3,4,5]:

Modify and run your code with the preceding line of code and you'll
notice that you get the same result.

Apart from the “extend” method, you can also use the “+” operator to
concatenate two lists, just like you do with strings, like this:

list1 = [1,2,3,4,5]
list2 = [6,7,8,9]
list1 += list2
print(list1)

Alternatively, you can create a new variable and assign the value of
list1 + list2 to it. Either works.

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
[1J 2) 3) 4) 5) 6) 7) 8) 9]

The “clear” method just clears the list. But if you use the “del” keyword,
you can delete the list in its entirety. Would you like to check?
Let’s delete the preceding list, shall we?

del list1
print(list1)

237

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

When I try to print list1 after I deleted it, I'll get an error, like the
following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
Traceback (most recent call last):
File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py”, line 10, in <module>
print(list1)
NameError: name 'list1' is not defined

Look at that! ‘list]’ was completely erased from our program.
You can do the same for elements in a list as well.

a = [1, 'Hello', True, False, 34.5, '*']
del a[2]
print(a)

I've asked my program to delete the third element in the list. Let’s
print, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
[1, 'Hello', False, 34.5, '*']

The third value “True” no longer exists in list “a”

Mini project — multi-colored automated star

In this project, I'm going to draw a star with Python, but each side is going

to have a different color. That’s where my list comes in. I'm going to create

alist of five colors and run a for loop through it. For every iteration of the

for loop, Turtle will draw a side of the star with a new color from the list.
Let’s see how it’s done, shall we?

238

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

I'm going to start with the usual lines of code to set
up Turtle:

import turtle
s = turtle.getscreen()
t = turtle.Turtle()

I'm going to set the pen size as 5 so my image looks
good.

t.pensize(5)

Next, I'm going to create a variable called “colors”
and assign a list of five colors, ‘Red, ‘Brown, ‘Green,
‘Blue, and ‘Orange’ to it. I've already given you a
link to a list of colors, so choose your preferred set of

colors.
colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange']

Next, I'm going to create a temporary variable x that
iterates, via the for loop, through the entire list:

for x in colors:

For every iteration of the loop, my pen color will
change to the current color in the temporary
variable “x” I'll ask my Turtle to move forward by 200
points and turn right by 144 points because a star’s
outer angle is 144 degrees and I need to turn that
much to get a proper star as my result.

t.pencolor(x)
t.forward(200)
t.right(144)

239

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

6. That ends my for loop and the indentation. Finally,
I'm going to hide my turtle.

t.hideturtle()
turtle.hideturtle()

When you run the preceding code, you'll get this
(Figure 11-2).

Figure 11-2. Multi-colored star

Yes! We got it Why don’t you try the same with different colors or
different shapes? Or maybe, you could try to randomly choose colors for
every iteration? You know how to do that already (I've taught you how), so
go ahead and try.

Tuples

Now that we've taken a detailed look at lists, you'll find the remaining
three data structures easy to understand, so I'll quickly go through them,
alright?

240

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

As I've mentioned before, a tuple is similar to a list. The only difference
is that it’s ordered (just like a list, with index and all), but unchangeable
(unlike a list). What does that mean for us? Well, it just means that you
can’t add, delete, or change the elements in the list.

Now that’s a bummer! Does that mean a tuple is not as cool as a list?
Well, I wouldn’t say that, exactly. You know, you might need to create a list
that you don’t want anyone to manipulate later, am I right? Something like
a “read-only” list? In those instances, a tuple is your best friend. Otherwise,
go for a list, 100%.

You can create a tuple with parenthesis, with the tuple items separated
by commas, like this:

t1 = ('Red', True, 2, 5.0)
print(t1)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
(‘Red', True, 2, 5.0)

Most of the things in a tuple follow the same format as that of a list, so
I'm just going to list them, and I want you to try them out in your computer.
It'll be our little activity, okay?

Just like you do with your lists, you can access the elements in a tuple
with square brackets.

t1[{1] will return the second element, True. Tuples are indexed just like
lists, where the first index is 0.

Just like lists, you can use negative indexing to access values in a tuple.
So, t1[-1] will return the last element in the list.

You can slice a tuple using indices as well.

If you wanted to extract the second through the fourth value (last),
then you can specify t1[1:4]) or just t1[1:], since we want everything from
the first index anyway.

241

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

If you wanted to write the same with negative indices, you'll do it like
this: t1[-3:] because you want everything from -3 to the end of the tuple.

You can use the len(t1) method to get the length of the tuple and use
the “in” keyword to check if something is inside a tuple, just like you do
with your lists. Why don’t you try them out and see?

And then there’s your “for” loop. You can loop through tuples as well.
The process is the same.

for x in t1:
print(x)

Why don’t you run the preceding code and check if looping works with
tuples?

Ah well, so far, tuples look like lists written within parenthesis. What'’s
their use, anyway? Remember how I told that tuples are unchangeable?
And we haven't tried changing elements or adding elements to our tuple
yet, have we? Let’s try.

I'm going to try changing the value of the second element to False to
True.

t1[1] = False
Let’s run our code, and we'll get this:

= RESTART: C:\Users\aarthilAppData\lLocal\Programs\Python\
Python38-32\dataStructures.py
Traceback (most recent call last):
File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py", line 4, in <module>
t1[1] = False
TypeError: 'tuple' object does not support item assignment

Oops, we got an error! Tuples don’t support item assignment, meaning
their elements cannot be changed.

242

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Try adding a new element to the tuple. Access the fourth index (fifth
element) and add something. When you do that, you'll notice that you
encounter the same error.

This is most important use of a tuple. You can create unchangeable
lists that can be used to store sensitive information that shouldn’t be
changed. What if you create a program to store the id numbers of your
classmates? You wouldn’t want those changed, would you? Then store
them in a tuple. Simple as that!

But, just like in your lists, you can delete the entire tuple using the “del”
keyword, like this:

del t1

If you try to access t1 now, you'll get an error.

Tuples have methods as well, but they only have few methods that can
be used to access elements and none that can manipulate the elements or
the tuple itself.

The “count” method returns the number of times a value repeated in a
tuple. Remember, tuples can have duplicate values, just like lists.

The “index” method returns the position (index) of the value in a tuple.

t1 = ('Red', True, 2, 5.0)
print(t1.index(5.0))

When you run the preceding code, you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
3

Yes! 5.0 is in the third index (fourth position).
That’s it for tuple. It was quite simple, wasn’t it? Let’s look at the next
data structure in the list next.

243

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Sets

Do you remember what I told you about sets? They are unordered and they
cannot have duplicate values. It’s a double whammy. But sets have their
uses too. Would you like to take a look at it?

Great! Well, you write sets within flower brackets, like this:

colors = {'Red', 'Orange', 'Blue'}

The preceding code is a set of the colors ‘Red, ‘Orange, and ‘Blue’
But! Sets are unordered. So, would those values really appear as we
created them? Would you like to check?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
{'Blue', 'Orange', 'Red'}

Whoa, look at that! The order is changed. Can you run the program
again and tell me what you get?

The order changed again, didn’t it? How cool is that?

But we do have a problem now. Sets are unordered. So how do
we access the elements if we don’t know the indices? How do we add
elements to the set? How do we insert elements in a particular position?
Well, unfortunately, there are certain things you can’t do with a set, and
anything that pertains to order comes under that.

So, you can’t use the square brackets to find an element in a particular
position. But, you can use the “in” keyword to check if an element exists in
aset:

print('Red' in colors)

Run the preceding code, and you'll get True.
You can also loop through a set, just like you do with your list and tuple.

for i in colors:
print(i)

244

CHAPTER 11 LOTS AND LOTS OF INFORMATION!
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

Orange

Blue

Red

But how would you add elements to the set when you don’t know
the index? There is the add() method that can be used to add individual
elements, though you won’t know where they’ll end up.

colors.add('Green")
print(colors)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
{'Blue', 'Green', 'Orange', 'Red'}

How interesting it that? We added ‘Green’ to the set, and it ended up in the
second position. Run the program again, and you'll find it somewhere else.

What if I want to add more than one color to my set? I can save space
by using the “update()” method.

Create a list of values within square brackets and place that within the
parenthesis. Let me try to add both ‘Green’ and ‘Yellow’ to my set:

colors.update(['Green','Yellow'])
print(colors)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
{'Red', 'Yellow', 'Blue', 'Orange', 'Green'}

245

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Look at where Green and Yellow ended up. :D

Just like with your lists, you can use the len() method to find the length
of a list as well.

Now, let’s look at the rest of the methods for manipulating a set, shall
we? I'll just list the ones that are similar to the ones we saw with our lists.

In a list, the pop() method removes a random value and not the last
one. You can use the remove() method to remove a particular value by
mentioning it as an argument.

Alternatively, you can use the “discard()” method to remove a
particular element as well. The only difference between discard and
remove is that discard doesn’t raise an error if the mentioned element
doesn’t exist. This is important in real-world programming. When running
a program, you don’t want errors that stop the program execution because
one line of code was wonky.

The clear() method clears the set, and the copy() method copies the
list.

You can use the “del” keyword to delete the entire set, but you can’t use
it to delete a particular element since you they don’t have fixed indices that
you can access.

Finally, let’s look at joining sets. You can join two sets using the
“union()” or “update()” methods.

colors = {'Red', 'Orange', 'Blue'}
colorsi = {'Green', 'Yellow'}

Let’s say we have two sets, colors and colors1 with their own values,
and we want them merged into the colors set.

You can use the union() method. It creates a new set with the values in
both the sets.

colors2 = colors.union(colors1)
print(colors2)

246

CHAPTER 11 LOTS AND LOTS OF INFORMATION!
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
{'Yellow', 'Green', 'Red', 'Blue', 'Orange'}

But update just updates the first set in the syntax with values from both

the sets. If you print out the second set in the syntax, you'll notice that it’s
unchanged. Update just changes the first set.

colors.update(colorsi)
print(colors)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
{'Orange', 'Yellow', 'Red', 'Blue', 'Green'}

We're done with sets as well. Yay! You're becoming quite the pro
Python programmer now.

Dictionaries

The last data structure in this list is the dictionaries. Let’s quickly finish it
and go back to some more fun mini projects, so are you with me? Yes!

So, dictionaries are unordered, but they are indexed and can be
changed. The thing I love about dictionaries is that they can be used to
model real-world stuff. Do you want to see?

247

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Dictionaries are created within flower brackets as well, but inside, you
need to mention the values in key:value pairs. The “key” is the index here.

Since I want my dictionaries to model real-world objects, I'm going to
create a dictionary that represents a person’s characteristics: their name,
age, eye color, hair color, and so on.

This is how I'd do that:

personl = {"name":"Susan",
"eyes":"blue"}

age":9,"pet":"Barky","hair":"black",

I've created a dictionary, “personl” Her name is Susan, she’s 9 years
old, her pet’s name is Barky, and she has black hair and blue eyes. Looks
great, doesn’t it?

Now, let’s manipulate this dictionary. You can access values with the
“keys” like this:

print(personi["name"])
Or
print(personi.get("name"))

Remember that you have to mention the keys within quotes
everywhere.

248

CHAPTER 11 LOTS AND LOTS OF INFORMATION!
Run either of these lines of code, and you'll get the same result:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
Susan

Her name!
You can also change values. Susan is actually 8, not 9! Quick, let’s
correct her age before she gets sad!

personi["age"] = 8
print(personi)

Run this, and you'll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

{'name': 'Susan', 'age': 8, 'pet': 'Barky', 'hair': 'black',
‘eyes': 'blue'}

Nice!
You can also add a new key:value pair the same way. Let’s add a key,
gender, and make it female.

personi["gender"] = 'female'
print(personi)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\lLocal\Programs\Python\
Python38-32\dataStructures.py

{'name': 'Susan', 'age': 9, 'pet': 'Barky', 'hair': 'black',
‘eyes': 'blue', 'gender': 'female'}

It was added, yay!

249

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

You can check if a key exists using the “in” keyword.
print('pet' in personi)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py
True

Yes, “pet” is one of the keys of the dictionary.

Just like usual, you can find the length of the dictionary using the “len”
method.

The following will delete the dictionary:

del personi

personil.clear() will empty the dictionary

You can use the copy() method to copy the dictionary.

As usual, you can loop through a dictionary, but since our dictionary
has a key and a value each, we can do the looping in different ways.

Let’s create a smaller dictionary first:

personl = {"name":"Susan","age":8}
Let’s loop through all the keys first and print them:

for i in personi:
print(i)

This should print all the keys:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py

name

age

Yes!

250

CHAPTER 11 LOTS AND LOTS OF INFORMATION!
If you want the values, just change the position of “i’, like this:

for i in personi:
print(personi[i])

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py

Susan

8

We got just the values now. Whoo!
Alternatively, you can loop through both keys and values, like this,
using the items() method:

for i,j in personil.items():
print("{} = {}".format(i,j))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py

name = Susan

age = 8

Dﬁce!ﬁa
Let’s just look at one last thing before we end this. pop() removes the
given key:value pair, while popitem() removes the last item in the dictionary.

personi.pop("name")
print(personi)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

{'age': 8}
251

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Age is the only key left! (3
Let’s rewrite the dictionary again, and this time, try popitem().

personi.popitem()
print(personi)

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py
{"name': 'Susan'}

Now, ‘name’ is the only key left!
That's it for dictionary!

Mini project — never-ending colors

Another simple project with a twist! (&3) We are going to randomly change
the background colors after an interval of 1 second while printing the
current color on the turtle screen.

The twist? We're going to use a new package called “time” to make the
turtle screen pause between each color change. Ready? Let’s get going!

1. So, asIsaid, we need both the “time” and the
“turtle” modules. Let’s import both.

import time
import turtle

2. Next, let’s set up turtle as usual.

s = turtle.getscreen()

turtle.Turtle()

252

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Once set up, let’s move the pen we just created to
the position from where we want it to write the
colors. That’s going to be the point -80,0.

t.penup()
t.goto(-80,0)
t.pendown()

Now, let’s create a dictionary of colors. I'm creating
a dictionary and not a list this time, because I'm
going to make the keys capitalized versions of their
values (colors) so I can write them on the screen.

colors = {'RED':'Red', 'BROWN':'Brown',
"GREEN':'Green', 'BLUE':'Blue', 'ORANGE':'Orange'}

Before we start drawing, let’s hide the turtles. You'll
see why when you run the program.

t.hideturtle()
turtle.hideturtle()

Now, here comes the fun part. We want this program
to be never ending, remember? So, it’s obvious that we
need a loop, but what kind of loop? How do we create
anever-ending loop? Remember how I said “while”
loops can literally run forever if we're not careful? That
is, if the condition doesn’t become false at one point.

What if we do exactly that? What if we make the
while loop’s condition “True” and just that? Then,
if there’s no break statement anywhere within the
while loop, it really will run forever.

#never ending loop
while True:

253

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

7. Simple! Next, let’s create for loop that’ll loop through
the “colors” dictionary.

for x in colors:

8. For every iteration, let’s change the background
color of the turtle screen to the next color in the for
loop (the value). Also, let’s write the key value (x) in
Arial, 50 pt, bold text.

turtle.bgcolor(colors[x])
t.write(x,font=("Arial",50, 'bold"))

9. Now, after every color change, we need a 0.5-second
delay, or gap, before the next color change (for loop
iteration) happens. This is where the “time” package
comes in. It has a built-in function called sleep()
which will literally pause the loop for the number of
seconds mentioned. In our case, it’s going to be 0.5.

time.sleep(0.5)

10. Okay, this should technically be it, but if we leave
it at this, then you'll notice that your turtle writes
the next text on top of the old text, and things will
continue to get messy. Why don’t you try and see?

Your turtle package comes with a clear() function that clears the
screen. So, why don’t we clear the screen before we change the next color
and draw the next text?

t.clear()

That’s it! Let’s run this now, and we'll get this (Figure 11-3).

254

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

’ Pythan Tustie Graphics - olEN

Figure 11-3. Never-ending colors

You'll notice that the program loops through the “colors” dictionary,
infinitely. Sweet, huh?

Mini project - first and last name reversal

In this project, this is what I want happened: When I enter a name, for
example, Susan Smith, I want my program to return the reversal of it, that
is, Smith, Susan.

It's more of a puzzle than a mini project. The logic is very simple:

1. Let’s start the program by getting the name as the
input. The condition is their first and last name
needs to be separated by a single space. This is
important. You'll see why.

name = input('Please Enter your first and last name,
separated by a space: ')

255

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

2. AslIsaid, the format of the string input is important
to make this program work. So, I'm going to count
the number of single spaces in the string. If it’s none,
or more than one, then the program stops with an
error message.

Let’s create a variable count and assign it to 0 to start
with.

count = 0

3. Next, let’s create a for loop that loops through the
string we just got. Whenever there’s a single space,
let’s add 1 to count.

for i in name:

count += 1

4. Ifcountis just 1, then we're good to go. Let’s convert
the string to a list by using the split method, where
the first and last names are separated into separate
list items with the single space as the delimiter used.

if count == 1:
#Convert string to list, where the condition is
the space
1 = name.split(' ")

5. Next, let’s reverse the list.

#Reverse list
1.reverse()

256

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

6. Finally, let’s insert a comma with a space to the first
position of the list, so when we join everything, we
get the exact format we want.

#Add a comma, with a space, in the first position of
the list
l.insert(a,', ")

7. Now let’s join the list into a string with an empty
string as the join condition. This way, everything
gets stuck together, and the only thing separating

un

the last and first names is "

#Join a list into a string
name = ''.join(1)

8. Finally, print everything.
print('Your reversed name is: {}'.format(name))
9. Ifthe countisn’t 1, print an error message.

else:
print('Please Enter your name in the correct format')

Now, let’s run the program!

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\dataStructures.py

Please Enter your first and last name, separated by a space:
Susan Smith

Your reversed name is: Smith, Susan

Perfect!

257

CHAPTER 11 LOTS AND LOTS OF INFORMATION!

Summary

In this chapter, we took a deep dive into the four pre-defined data
structures offered by Python, namely, list, set, tuple, and dictionary. We
looked at how to create them, delete them, manipulate them, and so much
more. Finally, we looked at how to use them in programs and why they're
useful in real-world programming scenarios.

In the next chapter, let’s take a small break from all the learning and
start creating! We'll be creating a lot of mini projects.

258

CHAPTER 12

Fun Mini Projects
Galore!

In the previous chapter, we took a deep dive into the four pre-defined data
structures offered by Python, namely, list, set, tuple, and dictionary. We
looked at how to create them, delete them, manipulate them, and so much
more. Finally, we looked at how to use them in programs and why they're
useful in real-world programming scenarios.

In this chapter, let’s take a small break from all the learning and start
creating! We'll be creating a lot of mini projects. You can brush up the
topics you learned so far by creating these mini projects. So, code along
with me. Have fun!

Project 12-1: Odd or even

Let’s start this chapter with something simple. This is a classic puzzle in
any programming language.

We're going to complete this project in two parts. In part 1, we're going
to check if a given number is even or odd. In part 2, we're going to get a
number range from the user and print either the even or odd numbers
within that range.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_12

https://doi.org/10.1007/978-1-4842-6812-4_12#DOI

CHAPTER 12 FUN MINI PROJECTS GALORE!

But before we get to the programs, let me ask you a question. How
are we going to decide if a number is odd or even? Well, any number that
gets divided by 2 without any remainder is an even number, am I right?
Numbers that return a 1 when divided by 2 are odd numbers.

The concept is quite simple. Do you remember the modulus operator,
the one that returns the remainder of a division operation?

When you divide an even number by 2, what do you get? 0

When you divide an odd number by 2, what do you get? 1

That’s it! So, if the modulus of the number and 2 returns 0, we have
ourselves an even number. If not, we got an odd number.

Now, shall we create our program?

Part 1 - Is your number odd or even?

1. Getthe input and convert it to an integer.

num

input('Enter a number: ")
int(num)

num

2. Then, check the modulus. Ifit’s 0, it’s an even
number; otherwise, it’s an odd number.

if((num % 2) == 0):

print('{} is an Even number'.format(num))
else:

print('{} is an Odd number'.format(num))

3. Let’s run the program. My input is going to be 45.

= RESTART: C:\Users\aarthilAppData\Local\Programs\
Python\Python38-32\dataStructures.py

Enter a number: 45

45 is an 0dd number

260

CHAPTER 12 FUN MINI PROJECTS GALORE!

Part 2 — print odd or even numbers within
a range

Now, for the second program, let’s get a range from the user, and whether
they want even or odd numbers printed in the range, and print the same.

1. Gettherange and convert them to integers. Get the
“choice” too.

start = input('Enter the start of the range: ")
end = input('Enter the end of the range: ')
start = int(start)

end = int(end)

choice = input('Even or 0dd? Enter e or o: ')

2. Before we loop through the range, let’s check if it’s
correct. The “start” value should be lesser than the
“end” value.

if(start < end):

3. [Ifitis, let’s create a for loop that loops through the
range. If the choice is odd, print only when the result
of the modulus is 1. If the choice is even, print only
when the result of the modulus is 0. If it’s neither,
they’ve given an invalid choice and print an error

message.

for i in range(start,end+1):

if(choice == 'o' or choice == '0'):
if((i % 2) == 1):
print(i)
elif(choice == 'e' or choice == "E'):

261

CHAPTER 12 FUN MINI PROJECTS GALORE!

if((i % 2) == 0):
print(i)
else:
print('Enter a valid choice and try again')

4. Finally, print an error message for the range too.

else:
print('Enter a valid range')

5. Let’s run this program. My range is going to be 1 to
10, and I'm going to want to print the odd numbers
within this range.

= RESTART: C:\Users\aarthilAppData\Local\Programs\
Python\Python38-32\dataStructures.py

Enter the start of the range: 1

Enter the end of the range: 10

Even or 0dd? Enter e or o: 0

1

3

5

7

9
Sweet!

Project 12-2: Is your mom tipping enough?

In this project, we're going to create a tipping calculator that inputs

the total bill and the tip their mom gave the waiting staff. Calculate the

percentage of tip their mom gave and say Okay if 10-15%, good if 15-20%,

and great if 20+%. If less than 10%, say their mom is not tipping enough.
Let’s create it, shall we?

262

CHAPTER 12 FUN MINI PROJECTS GALORE!

Get the bill amount and tip and convert them to
integers.

bill = input('What was your bill? ")
tip = input('How much did you tip? ')
bill = int(bill)

tip = int(tip)

Let’s calculate the percentage of the tip. To do

this, multiply the tip by 100, and divide by the bill
amount. This is just a reverse of how you calculate
percentages. Let’s convert the percent (which would
be a floating number because of the division) to an

integer.
percent = (tip * 100) / bill
percent = int(percent)

Now, let’s use if elif else to print out the right
message. Simple!

if((percent >= 10) and (percent <= 15)):

print('{}%. You tipped Okay'.format(percent))
elif((percent »= 15) and (percent <= 20)):

print('{}%. That was a good tip!'.format(percent))
elif(percent >= 20):

print('{}%. Wow, great tip! :)'.format(percent))
else:

print("{}%. You didn't tip enough :

(".format(percent))

263

CHAPTER 12 FUN MINI PROJECTS GALORE!
Run the program, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\dataStructures.py

What was your bill? 400

How much did you tip? 45

11%. You tipped Okay

Works!

Project 12-3: Draw a Christmas tree

Did you know that you can draw a Christmas tree with just your basic
Python syntax? No packages or modules, just Python. Shall we try?

So basically, given the height of the tree, I want my program to draw a
tree of that height. Simple enough, right?

As you probably guessed, we need loops to do this, and the tree will
look something like Figure 12-1.

*
* % %
* %k k k%
* %k %k kkk*k
kkkkkkkkk
*

Figure 12-1. Christmas tree of height 5

264

CHAPTER 12 FUN MINI PROJECTS GALORE!

How does this program work?

So, we need one loop that loops through each row of the tree and one

that loops through its height. This is called nested looping. In this nested

loop, the loop that goes through the tree’s height is the outer loop, and for

each iteration of the outer loop, we’ll use an inner loop to draw the relevant

Tow.

Let’s do this!
Whenever we try to draw puzzles, or problems of any sort, it’s always

best to write an algorithm that’ll help us write our program better. In this

case, I'm going to use the preceding tree to reverse engineer my algorithm.

Would you like to see how?

Algorithm:

1.

In Figure 12-1, the height of the tree is 5. So, we need
five rows of leaves and one stump at the end (in the
middle of the tree).

The first row has 1 star, the second row has 1 + 2 (3)
stars, the third row has 3 + 2 (5) stars, and so on until
the end.

If you count the number of spaces before the first
star is drawn (first row), it’s four, which is the height
of the tree minus one. For the second row, the
number of spaces is three, and it reduces by one for
every subsequent row.

The stump is drawn after four spaces again, so it’s
the same as our first row. We'd need a separate for
loop to draw the stump because it’s not a part of the
tree’s given height.

Okay, now that we've arrived at an algorithm, let’s get cranking!

Let’s create our program!

265

CHAPTER 12

266

1.

FUN MINI PROJECTS GALORE!

Let’s get the height of our tree first and convert the
string to an integer.

input("What's the height of your tree? ")
int(n)

n

n

Next, let’s assign our variables. I'm going to create
avariable sp, which is going to denote the number
of spaces. It’s going to start at n-1. I can reduce the
value inside the loop.

Similarly, I'll be creating another variable star, which
is going to start at 1.

sp = n-1
star = 1

Now, let’s draw our tree! The main for loop is going
to loop through the entire height of the tree (0 to n-1
so the range is 0,n)

#draw the tree
for i in range(0,n):

We need two inner for loops inside the main outer
for loop, one to draw the spaces and one to draw the
stars.

We need to loop from 0 to sp, and for every iteration
of the loop, print a single space. But here’s the catch.
Print statements end at new lines, so if you want to
be on the same line, you need to use an attribute
called end and give it an empty string as its value.
This will make sure that the next space is drawn
right next to the first space.

CHAPTER 12 FUN MINI PROJECTS GALORE!

#draw spaces

for j in range(0,sp):
#By default, a print function ends with a newline.
Use the end=""' to make it end with an empty string
instead, so we can draw the star next
print(' ',end="")

Now, let’s draw our stars. We need to loop through
the range 0,star-1 for that. Use end="again to make
sure they are drawn on the same line.

for k in range(0,star):
print('*',end="")

We're done with the inner for loops now. Before we
start the next iteration of the outer for loop (our tree’s
next row), let’s change our variable’s values. Let’s
increment star by 2 and decrement sp by 1. Let’s
place an empty print() at the end because we're done
with the row, and we need a new line for the next row.

star += 2
sp -= 1
print() #so there's a new line

That's it for the tree! Now, for the stump. Do what you
did in the first row. Make a single for loop run from 0 to
n-2 (range 0,n-1), and print a space with end=". Once
the loop is done, print a single star, and we're done!

#draw the stump

for i in range(0,n-1):
print(' ',end="")

print('*")

267

CHAPTER 12 FUN MINI PROJECTS GALORE!

Whoo! That took some time. Shall we run the program?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/mini_projects.py
What's the height of your tree? 10

Press Enter, and you'll get this (Figure 12-2).

*
* k%

*kkk*k
kkkkkk*k
*kkkhkkkkk
*khkhkkkhkkhkhkkk
khkkkkkkkkkhkkk
khkkhkhkkhkhkhkhkkhkkkihk
kkhkkkkhkkkhkhkkkhkkkkkx
hkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhd
*

Figure 12-2. Christmas tree of height 10

Yay! It works!

Project 12-4: Spirals!

In this project, we're going to make different kinds of randomly colored
spirals. It’s going to be real fun!

268

CHAPTER 12 FUN MINI PROJECTS GALORE!

Square spiral

1.

To start off, let’s create a square spiral. Since we
need to randomly select colors, we need to import
both the turtle and random modules.

#Square spiral
import turtle, random

Let’s set up the turtle screen first and set the pen size
to 5 and speed to 0.

turtle.getscreen()
turtle.Turtle()
.pensize(5)

.speed(0)

~+ + &+ »n

Since this is going to be a square spiral, I'm going to
make the length 4. You'll see why.

length = 4

Let’s also create a list of colors from which we’ll be
randomly choosing in our loop.

colors = ['Red’, 'Brown', 'Green', 'Blue', 'Orange’,
'Yellow', 'Magenta', 'Violet', 'Pink']

Now, let’s create our loop and make it go from 1 to
149 (so 1-150 in the range). I've chosen this number
after a lot of trial and error. Then, I'm going to

use the random.choice method which randomly
chooses items from a list and assign the chosen item
to the variable “color”.

for x in range(1,150):
color = random.choice(colors)

269

CHAPTER 12

6.

FUN MINI PROJECTS GALORE!

Change the pen color to that color and make your
pen move forward by “length” and move right at 90
degrees. Then, add 4 to the current value of length,
so in the next iteration, the pen moves forward by
four more points. This keeps repeating, and so,
we've created a spiral that keeps increasing in size
(because of the increase in the value of length and
because we're turning 90 degrees right after every
line is drawn).

t.pencolor(color)
t.forward(length)
t.right(90)
length += 4

Finally, hide the turtles.

t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-3).

Figure 12-3. Square spiral

270

CHAPTER 12 FUN MINI PROJECTS GALORE!

Change the range and the initial value (and increment) of length, and
you'll get differently sized square spirals. Try and see!

Random spiral

Since we realize that our spiral’s shape depends on the length and the
angles, what would happen if we change the angle to something else,
maybe 80? We'll create a randomly shaped spiral, of course!

This would be almost like a pentagon, but not quite, since the exterior
angle of a pentagon is 72, and we’ve given 80 here. Just to show that you
can let your imagination run wild and get awesome results!

#Spiral pentagon
import turtle, random
s = turtle.getscreen()
t = turtle.Turtle()
t.pensize(5)
t.speed(0)
length = 4
colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',
‘Magenta', 'Violet', 'Pink']
for x in range(1,200):
color = random.choice(colors)
t.pencolor(color)
t.forward(length)
t.right(80)
length += 2
t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-4).

271

CHAPTER 12 FUN MINI PROJECTS GALORE!

N
‘r
i
://r‘l;lf%:f S
; t‘::,/ ~ =

Figure 12-4. Random spiral

Triangular spiral

Since the exterior angle of a triangle is 120 degrees, change the angle to 120
and you've gotten yourself a triangular spiral!

#Triangular spiral
import turtle, random
s = turtle.getscreen()
t = turtle.Turtle()
t.pensize(5)
t.speed(0)
length = 4
colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',
'Magenta', 'Violet', 'Pink']
for x in range(1,120):
color = random.choice(colors)
t.pencolor(color)
t.forward(length)
t.right(-120) #-120 so we get a triangle facing upward

272

CHAPTER 12 FUN MINI PROJECTS GALORE!

length += 4
t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-5).

Figure 12-5. Triangular spiral

Star spiral

Since the exterior angle of a star is 144 degrees, give your angle as 144 and
you've gotten yourself a star spiral!

#Star spiral

import turtle, random

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

length = 4

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',
‘Magenta', 'Violet', 'Pink']

273

CHAPTER 12 FUN MINI PROJECTS GALORE!

for x in range(1,130):
color = random.choice(colors)
t.pencolor(color)
t.forward(length)
t.right(144)
length += 4
t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-6).

Figure 12-6. Star spiral

Circular spiral

A circular spiral is going to be a little different to the rest. Our length is still
going to be 4, but we're only going to move forward by one point at a time
to get a circular shape, and I've made the angle 20 in this case. You can
change the angle to make your spiral closely knit and further apart.

#Circular spiral
import turtle, random
s = turtle.getscreen()

274

CHAPTER 12 FUN MINI PROJECTS GALORE!

t = turtle.Turtle()
t.pensize(5)
t.speed(0)
length = 4
colors = ['Red', 'Brown', 'Green', 'Blue']
for x in range(1,100):
color = random.choice(colors)
t.pencolor(color)
t.forward(length)
t.right(20)
length += 1
t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-7).

Figure 12-7. Circular spiral

275

CHAPTER 12 FUN MINI PROJECTS GALORE!

Project 12-5: Complex mandala -
completely automated

In this project, let’s draw a complex mandala with a for loop. This is going
to be randomly colored too. It’s going to look epic!

1. Let’simport the random and turtle modules and set
up the turtle screen and pen first. Next, let’s change
the pen size to 5 and speed to 0.

#Mandala

import turtle, random
s = turtle.getscreen()
t = turtle.Turtle()
t.pensize(5)
t.speed(0)

2. Let’s create a list of colors next.
colors = ['Red', 'Blue', 'Green']

3. Then, we're going to make our loop loop through
the 1 to 24 (1,25 as the range).

for x in range(1,25):

4. Let’s choose our random color and change the pen
to that color.

color = random.choice(colors)
t.pencolor(color)

5. Now comes the fun part. Mandalas are usually
complexly drawn circles, am I right? So, let’s draw
100-point circle for every iteration, but shift the
angle by a slight 15 degrees every time, so we get a
closely knit mandala design (you'll see).

276

CHAPTER 12 FUN MINI PROJECTS GALORE!

t.circle(100)
t.right(15) #closely formed mandala

6. Finally, hide the turtles.

t.hideturtle()
turtle.hideturtle()

Run the preceding code, and you'll get this (Figure 12-8).

Figure 12-8. Complex mandala

Try changing the loop’s range, the radius of the circle, and the angle
to get different types of mandalas. You can literally create hundreds of
designs like this!

Project 12-6: Turtle race with loops

This is going to be a fun little game that demonstrates the sheer power of
for loops and Python’s random package. We're also going to learn a bunch
of Turtle methods we skipped in the Turtle chapters. Excited? Me too!

277

CHAPTER 12 FUN MINI PROJECTS GALORE!

So, the concept is simple. We're having three turtles, and we're going to
conduct a race between them. That’s about it. When we’re done, it'll look
like an actual, live race happening on our screen. How do we do that?

To start off, we need our players, and lucky for us, Turtle makes it easy
to create “turtles”.

1. Let’simport the turtle and random packages and set
up our screen first.

#Turtles
import turtle, random
s = turtle.getscreen()

2. Now, for our turtle, we aren’t going to go about this
the usual way. We're going to create three separate
turtles with the turtle Turtle() command, named
red, blue, and green. Turtlelets us do that. We can
create as many turtles as we want and place them
anywhere we want and make them draw different
things at the same time. Pretty cool, don’t you think?

3. Once we create a player (turtle), we're going to
change its pen size to 5, the color of the ‘turtle’ using
the color() method, and the shape of the turtle to
‘turtle’ using the shape() method. You'll see how
these works in just a second.

red = turtle.Turtle()
red.pensize(5)
red.color('Red")
red.shape('turtle')

blue = turtle.Turtle()
blue.pensize(5)
blue.color('Blue")
blue.shape('turtle")

278

CHAPTER 12 FUN MINI PROJECTS GALORE!

green = turtle.Turtle()
green.pensize(5)
green.color('Green")
green.shape('turtle")

Finally, let’s hide the main turtle that’s at the center
of the screen.

turtle.hideturtle() #hide the main turtle at the center

Right now, if you run the program, you won’t see
much. You'd only see the green turtle because that
was drawn last. To see the turtles separately, let’s
move them to their race positions. I chose arbitrary
values after trying out a lot of them. You can choose
any starting point you want.

#Make turtles move to position
red.penup()

red.goto(-250,150)
red.pendown()

blue.penup()
blue.goto(-250,0)
blue.pendown()

green.penup()
green.goto(-250,-150)
green.pendown()

Now, let’s run the program, and we’ll get this
(Figure 12-9).

279

CHAPTER 12 FUN MINI PROJECTS GALORE!

Figure 12-9. Turtles in position

We have three turtle players, and they are in
position. Perfect!

7. Finally, let’s make them race! Create a for loop
that runs for 100 iterations. For every iteration,
make each of the turtle move forward by a random
number from 1 to 10. This way, we don’t know how
further any of the turtle will move, and there’s a real-
world racing feel to it.

#Make the turtles move

for i in range(100):
red.forward(random.randint(1,10))
blue.forward(random.randint(1,10))
green.forward(random.randint(1,10))

That'’s pretty much it. If you run the programs now, you'll see three
differently colored lines moving at different paces on the screen and stop
in different points. There you have it. Your race (Figure 12-10)!

280

CHAPTER 12 FUN MINI PROJECTS GALORE!

¥ Python Turtle Graphics = TR

:

Figure 12-10. Turtles racing

That'’s it for our mini projects! Hope you had fun creating them.

Summary

In this chapter, we looked at six different, interesting and fun, mini
projects. We brushed up the concepts we learned in the previous chapters
while creating colorful mini projects. We also learned about creating
algorithms to solve problems and puzzles in programming.

In the next chapter, let’s learn how to do True automation with
functions, how to get arguments to our user-defined functions, how to save
time and a lot of lines of code with functions, and a lot more.

281

CHAPTER 13

Automate with
Functions

In the previous chapter, we took a break from all the learning and creating
more fun mini projects. Now that we’re energized, let’s go back to learning
for a couple more chapters, shall we?

In this chapter, we'll be looking at a very interesting concept. We had
an introduction to automation in Python using loops, but in this chapter,
let’s look at True automation with functions. It works like magic. You'll see.

True automation

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_13

https://doi.org/10.1007/978-1-4842-6812-4_13#DOI

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Why do I call it that? We already looked at loops, and they did plenty of
automation on their own. We created full-blown shapes with just a few
lines of code, am I right? So, why do we need functions?

Well, what if you need to repeat the code? For example, let’s bring
back the code we wrote in our loops chapter. Remember how we
created a program that creates a shape based on the inputs we give it?
We had to run the program multiple times to draw different shapes.
What if I want to draw different shapes from the same run of the
program? What if [want to give multiple inputs, so my program draws
each shape, one after the other, while erasing the previous shape? How
would you do that?

You'd probably have to write the same code multiple times, with
different inputs for angle and sides, am I right? So, if you wanted to draw
five shapes, you need five for loops, one after the other, with a clear()
method between each loop. That’s too long! What if we can shorten this as
well?

With functions, you certainly can! You can create your “for loop” with
something called a “function”. We’ve been using a lot of functions so far.
It’s just that, we call them pre-defined methods because they were already
created in Python. But now, you can create your own functions. How
exciting is that? You've become such an experienced programmer that you
can now create your own functions, call them, send arguments, automate,
and so on.

Now that your “for loop” is within your function, you can do something
called “calling the function” and give different values every time to make
sure that your for loop draws a different shape every time. I'll teach you
how to do exactly that in just a moment.

But for now, let’s learn how to write a basic function.

284

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Our first function

Every function has two parts. There’s the function definition, which has
the code that you want executed multiple times. Then, there’s the function
call, which is the line of code that literally “calls” the function definition. It
might send arguments/values that serve as input to your function.

But to start with, let’s create a function without arguments so you
understand how they work at their base.

So, functions have a definition, don’t they? So far, we've noticed that
Python is very intuitive. Its syntax makes sense. “if” means the English
word If; and “while” means something is going to go on for a while,
hence a loop; and so on. Similarly, “def” means you're creating a function
definition.

Just mention “def’, the name of the function you are creating, followed
by parenthesis and a colon, as usual. Then, in the next line, add your lines
of code after an indent. It’s as simple as that!

Let’s create a function that prints ‘Hello there!” when we call it. We
name our functions so we can call them later on. We've called many pre-
defined functions like len() and join(), right? The concept is the same for
the functions you create: the user-defined functions. I'm going to name my
function greet() because that’s what it’s going to do, greet the person who

calls it.

def greet():
print('Hello there!")

Great! We have our function. Let’s run it.

Crickets...nothing happens. ® Why?!

Ah right, we haven’t called it yet! How do we do that? Well, how did
we call our pre-defined functions? The format is the same. The function’s
name, followed by parenthesis. That’s it!

285

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Let’s do things properly now. A function definition, followed by a
function call, just like it should be.

def greet():
print('Hello there!")
greet()

Run the program now, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/functions.py
Hello there!

Ahah! We got it.

Why do we need functions?

But what'’s the use of a function? I'm confused. Are you? It does what we’ve
been doing all the while without adding extra lines of code to create and
call the function.

Well...what if T want to greet my user five times and not one time.
Maybe there are five people in the group? Before now, I would have added
five print statements. But now, I can just add five function calls, like this,
and the function will be called, and “Hello there!” would be printed every
single time. Cool!

greet()
greet()
greet()
greet()
greet()

286

CHAPTER 13 AUTOMATE WITH FUNCTIONS
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/functions.py

Hello there!

Hello there!

Hello there!

Hello there!

Hello there!

We got it! Or did we? What's the use of this either? We still created five
lines of code. We would have done that anyway. We saved neither time nor
space. Bummer!

Do different things every time!

You'll understand the true use of function when you send different values
to it every time you call it. Let’s change our greet() program in such a way
that it greets a person every time it calls.

Now that I want the function to greet the person with their name every
time, I need to let my function know what their name is, am I right? How
do I do that? Maybe my function can receive it while it’s being called? Yes!
You can include the name of the parameter or parameters (you can send
as many as you want) you send inside of the parenthesis while you create
your function.

Okay, pause! Parameter? Argument? Which is which? Not to worry. It’s
all the same, really, but if you want to be specific, the values you send from
your function call are called parameters, and the values you receive in your
function definition are arguments. Simple, right? You'll understand better
once we look at our example.

287

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Create (define) your functions

Let’s see how that works:

def greet(name):
print('Hello {}!'.format(name))

Look at that! I received the parameter “name” within my parenthesis,
and then I used it in my print statement. This is not a variable, per se, but
it acts like it. You can name your parameter anything you want. Once we're
done with this example, why don’t you change the name of your parameter
from “name” to “n” and see if it still works the same?

Now that we've created our definition, let’s create the rest of the
program. Let’s create a variable name and get the input. Then, let’s call
the greet() function, but this time with the name of the argument “name”

inside the parenthesis.

name = input("What's your name?")
greet(name)

Nice! Don’t be confused by the same “name”. I just made the name of
the variable and the name of the parameter the function receives the same,
so you don'’t get confused. But the parameter name can be anything you
want, and your program would still work the same.

Run the preceding code and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\functions.py

What's your name? Susan

Hello Susan!

Look at that! It works!

288

CHAPTER 13 AUTOMATE WITH FUNCTIONS

You can reuse your code!

Now, I'm going to show you the real use of functions. The real use of
functions lies in the fact that you don’t need to repeat the same lines of
code over and over again.

So, let’s create a function called “calculation” that calculates the
addition, subtraction, division, and multiplication of any two numbers it
receives. Alright?

So, it’s going to receive two numbers, n1 and n2, as parameters. I'm
going to do the calculations and print the results in four separate lines:

def calculate(ni,n2):

nl = int(n1)

n2 = int(n2)

add = n1 + n2

sub = n1 - n2

div = n1 / n2

mul = n1 * n2

print('''Addition: {}
Subtraction: {}
Multiplication: {}
Division: {}

""", format(add,sub,mul,div))

In the preceding lines of code, I received the two numbers as the
parameters nl and n2. Then I converted them to integers because I'm
going to receive the numbers using the “input()” method, and those values
are strings by default. Then, I've done the calculations and finally printed
everything out using the multi-line string quote.

Now comes the part I was talking about. Now that we've created the
calculate function, we can call it any time we want. What if we want the
calculations done three times? Before we discovered functions, we would

289

CHAPTER 13 AUTOMATE WITH FUNCTIONS

have written the same lines of code multiple times because there is no
other way to receive different inputs and do the same calculations with
different values.

But now, we have a way!

calculate(input("Enter the first number"),input("Enter the
second number"))
calculate(input("Enter the first number"),input("Enter the
second number"))
calculate(input("Enter the first number"),input("Enter the
second number"))

I've created three function calls where each of the function calls has
two arguments which are nothing more than input statements.
Let’s run those:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\functions.py

Enter the first number 10

Enter the second number 5

Addition: 15

Subtraction: 5

Multiplication: 50

Division: 2.0

Enter the first number 5
Enter the second number 10
Addition: 15

Subtraction: -5
Multiplication: 50
Division: 0.5

Enter the first number 100
Enter the second number 20

290

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Addition: 120
Subtraction: 80
Multiplication: 2000
Division: 5.0

Look at that! With the same few lines of code, I was able to do three
different set of calculations without resorting to running the program three
times like we usually do.

Now this is the frue use of a function. True automation!

No arguments?

But be careful while sending arguments in your function calls. If you don’t
send the number of arguments your function definition is expecting, you'll
end up with an error while running the function. This holds true if you
send lesser number of arguments or more arguments.

def greet(name):
print('Hello {}!'.format(name))

For the above function:
greet()
a call with no argument will give this error:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\functions.py
Traceback (most recent call last):

File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\functions.py", line 3, in <module>

greet()

TypeError: greet() missing 1 required positional argument:
"name’

291

CHAPTER 13 AUTOMATE WITH FUNCTIONS

The function call is missing one required argument.

A call two arguments on the other hand:
greet(namel,name2)
You'll receive the following error:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\functions.py
Traceback (most recent call last):
File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\functions.py", line 3, in <module>
greet(namel,name2)
NameError: name 'namel' is not defined

The argument is not defined! So, always make sure that the number of
arguments matches the number of parameters in the function definition.

Give an answer

So far, we've just printed things out. But what if we need an answer?
Let’s say I have an expression, and I'm using the add() and mul()
functions to get the result of addition and multiplication on my
numbers. But then, I want to, let’s say, divide them all. How can I do
that when I don’t know the result of the operation? Printing the result
isn’t always enough, is it?

Python has a simple solution for this as well! Just return the result.
Simple as that. Use the “return” statement, and return your result, and it'll
be received in your function call. Then, you can either assign the function
call to a variable and use the result or use the function call as a value in
itself.

292

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Confused? Don’t be, my dear. Yet another fun activity is on its way to
make you understand the concept.

Let me first create two functions, addition() and multiply(). They
receive parameters nl and n2, respectively, and perform addition and
multiplication of the two numbers.

def addition(ni,n2):
add = n1 + n2

def multiply(ni,n2):
mul = n1 * n2

ButI can’t use these values, can I? So, let me return them.

def addition(ni,n2):
add = n1 + n2
return add

def multiply(ni,n2):
mul = n1 * n2
return mul

Now, I've returned the results of the addition and multiplication of the
numbers. Alternatively, you can just perform the operation in the return
statement, like this:

def addition(ni,n2):
return nl + n2

def multiply(ni,n2):
return n1 * n2

You'll save lines of code if you do it like this. This will only work if your
entire function just has one line of code.

293

CHAPTER 13 AUTOMATE WITH FUNCTIONS
Alright, now that we have our functions ready, let’s use them!

numl = input("Enter your first number: ")
numl = int(numl)

num2 = input("Enter your second number: ")
num2 = int(num2)

mul = multiply(numi,num2)

add = addition(numi,num2)
calc = mul /add
print("{} / {} = {}".format(mul,add,calc))

In the preceding lines of code, I received two numbers as inputs and
converted the strings to integers. And then, I created a variable called
“calc” which divides the results of the multiplication of those numbers by
the addition of those numbers.

Instead of performing the operation on there, I just received the
values in the variables mul and add. Technically, this is all we need
because the return statements in those functions will return the result
of the operations to the function calls, and then they can be used in the
“calc” operation.

Shall we check if this works?

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\functions.py

Enter your first number: 10

Enter your second number: 5

50 / 15 = 3.3333333333333335

Yes! It works! Why don’t you try the same with different operations?
Make it as complicated as you want to and have Math fun!

294

CHAPTER 13 AUTOMATE WITH FUNCTIONS

No arguments? What to do!

Sometimes, you might not know what arguments to send. Maybe you just
want to test the function? But sending no arguments when the function
expects arguments will give us an error! What can we do?

Default arguments to the rescue!

You can assign “default” values to your arguments when you define
your function, so they work even if you forget to send any arguments when
you call your function. Would you like to test it?

In the following example, I've created a printName function that just
prints out the given name. I've called the function twice, once with an
argument and once without. Let’s see what happens.

def printName(name="Susan'):
print('My name is {}'.format(name))

printName('John")

printName()

Run, and:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

My name is John

My name is Susan

It works exactly as we expected. The default argument gets ignored
when we actually send an argument from our function call. If we forget, it’s
used. Perfect!

Too many arguments!

Function hasn’t stopped making your programming life easy just yet. What
ifyou don’t know how many arguments you're going to send? But you
want to receive all of them, without any error.

295

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Arbitrary arguments will help you do that. Instead of the name of the
argument, receive them with *listName and you can access each argument
as you'd access a list item. Let me show you how.

Let’s say I want to print the sum of the numbers sent by my function
call, but I don’t know how many I'd need added, so I'll just receive them as
an arbitrary argument.

Since *listName is essentially a list, we can loop through it like we
would in a list.

def addNums (*nums):
sum = 0
for num in nums:
sum += num
return sum

Let me call my function with my arbitrary arguments now.

print(addNums(1,5,3,7,5,8,3))
print(addNums(1,3,5,7,9))
print(addNums(1,2,3,4,5,6,7,8,9))

When I run the program, I get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\condition.py

32

25

45

Wow, this single feature gives so much freedom to do whatever I want
in my programs!

On the other hand, you can just send a list as an argument. That’ll
work too. Why don’t you try modifying the preceding program to send and
receive a list of numbers?

296

CHAPTER 13 AUTOMATE WITH FUNCTIONS
Did you try? Did it look something like this?

def addNums(nums):

sum = 0

for num in nums:

sum += num

return sum
print(addNums([1,5,3,7,5,8,3]))
print(addNums([1,3,5,7,9]))
print(addNums([1,2,3,4,5,6,7,8,9]))

Great!

Global vs. local

So far, we've seen that once you create a variable, you can’t re-define it.
You can re-assign values to it, yes, for example:

for i in range(1,10):
print(i,end="")

print()

print(i)

usn
1

Look at the preceding program. I've created a variable “i” that prints

numbers from 1 to 9 in the same line. After the for loop is done, we print a
“i’t

new line and the current value of
Let’s run the program, and we'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

123456789

9

297

CHAPTER 13 AUTOMATE WITH FUNCTIONS

wsn

Look at that! It’s 9 and not an error because once the “i” was created,
even though it was created inside for loop, it becomes accessible to the
entire program.

Variables within functions

But that’s not the case with functions. Let’s create the same inside a
function now:

def printNum():
for i in range(1,10):
print(i,end="")

printNum()
print()
print(i)
Run the above, and:
>>>
= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py
123456789
Traceback (most recent call last):
File "C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py", line 7, in <module>
print(i)
NameError: name 'i' is not defined

Look at the preceding output. Things were fine while the function was
still being executed. It printed out our numbers in the order we wanted.

wsn
1

But then, when we tried to print the current value of “i” outside the

“usn
1

function, we get a “not defined” error. How’s that possible? The variable
was defined inside the for loop in the function, was it not?

298

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Yes, it was, but it was local to that function and cannot be used outside.
So, any variable created inside of a function is called a local variable.

Return local variables

If you want to use it outside of a function, you need to return it, like this:

def printNum():
for i in range(1,10):
print(i,end="")
return i

i = printNum()
print()
print(i)

Now, run the program, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\condition.py

123456789

9

It works!

Global variables

Similarly, any variable created outside of a function is called a global
variable, and if you want to use it inside a function, you need to use the
global keyword, like this:

Let’s say I want to create a global variable “sum” Every time I send a list
of numbers, they get added to the “current” value of sum, so we essentially
get a sum of multiple lists. How do we do that?

299

CHAPTER 13 AUTOMATE WITH FUNCTIONS

I've created a variable “sum” and assigned it a 0 at the start of the
program. Next, let me define the function. If I want to use the same
“sum” from outside the function, then I need to mention it as “global
sum” (without quotes) at the start of the function. It’s always good
practice to mention the global variables at the very top of a function
definition.

That’s it. The rest of the program is similar to the one we wrote before.

sum = 0

def addNums(nums):
global sum
for num in nums:
sum += num
return sum

print(addNums([1,5,3,7,5,8,3]))
print(addNums([1,3,5,7,9]))
print(addNums([1,2,3,4,5,6,7,8,9]))

Run this code, and you'll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

32

57

102

The old value of sum was preserved, and it gets added to the new
values sent in the subsequent function calls. Sweet!

300

CHAPTER 13 AUTOMATE WITH FUNCTIONS

Note Order of creation and usage is very important in Python.
Before you call a function, define it. So, the function definition should
always be above the function call or you’ll get an error. Similarly,
before you use a variable, create it. So, your global variables should
be created before the function definitions inside which you want
them used.

Lambda

A lambda is an anonymous function. It has no name, it can take any
number of arguments, but can only have one line of code. Sounds very
simple, doesn’t it? Why would we ever need it when we have our glorious
functions to work with?

P92

3

In the future chapters, we'll be working with events. These events

will let you call functions when you click a button on an app, press your
mouse button, click a keyboard button, and so on. Lambdas are very much
needed in those cases, so let’s look at them now (even if right now they're
not of much use to us).

301

CHAPTER 13 AUTOMATE WITH FUNCTIONS
A lambda’s syntax is quite simple:
variable = lambda arguments: line of code

Why do we assign our lambda to a variable? So we can call it, of course!
Let’s look at an example now:

sum = lambda numi,num2: numl + num2
Now, we can call the lambda by calling sum(), like this:

print(sum(3,5))
print(sum(100,240))

Run the preceding lines of code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\condition.py

8

340

Mini project — do your Math homework
with Python

We're going to make this project simple. If we used a package like Tkinter,
we could make this a proper app. But we haven’t covered Tkinter yet, so
let’s just do it in the Shell.

Our calculator is going to be designed like this:

1. Different functions for each of the operations -
addition, multiplication, division, subtraction, and
modulus.

302

CHAPTER 13 AUTOMATE WITH FUNCTIONS

We're going to get input from the user. We'll be
getting two numbers to start with and their choice
on which operation they want to perform.

Then, we’re going to print the result and ask them if
they want to continue using the calculator.

If the answer is “y” or “Y’, then we'll ask them if
they want the previous result as one of the numbers
in the calculation. If “y” or “Y” for that as well,

then we’ll just ask one more input and ask for the

operation they want again.

The calculator can go on like this forever. When the
user answers “n” for continuation, we'll break out of
the loop and end the program.

Interesting? Excited to get started? Me too!

1.

Let’s create the functions that do the operations
again. Since the function definitions need to be
created before they are called, let’s finish that first.

#Addition

def add(n1,n2):
return nl + n2

#Subtraction

def sub(ni,n2):
return nl - n2

#Multiplication

def mul(ni,n2):
return n1 * n2

303

CHAPTER 13 AUTOMATE WITH FUNCTIONS

#Division

def div(ni,n2):
return n1 / n2

#Modulus

def mod(n1,n2):
return n1 % n2

2. Now, let’s create a never-ending while loop, which
means the condition is always true until we break
out of the loop with a “break” statement.

3. Inside the while loop, we’ll ask the user to enter the
two numbers as inputs and convert the strings to
integers as always.

4. Then, we'll ask for the operation. We'll use an
if...elif...else statement to call the relevant function
and get the result.

f#ficreate a result globally

result = 0 #default value

repeat = 0 #if the user decided to reuse the result of
previous operation, this becomes 1

while(True):
#if this is the first/new operation
if(repeat == 0):
#number1
numl = input('Your first number: ')
numl = int(numi1)
#number2
num2 = input('Your second number: ')

int(num2)

num2

304

CHAPTER 13 AUTOMATE WITH FUNCTIONS

#If the user asked to use the result of the last
operation in this one
else:

#number2

num2 = input('Your second number: ")

num2 = int(num2)
#get the operator
op = input('''Enter any of the following numbers,
that correspond to the given operation:

Just the number, not the period.

1. Addition

2. Subtraction
3.
4
5

Multiplication

. Division
. Modulus
||)

op = int(op)
#Call the relevant function
if(op == 1):

result = add(num1,num2)
elif(op == 2):

result = sub(numi,num2)
elif(op == 3):

result = mul(numi,num2)
elif(op == 4):

result = div(numi,num2)
elif(op == 5):

result = mod(numi,num2)

305

CHAPTER 13 AUTOMATE WITH FUNCTIONS

else:
print('You entered an invalid operation. Please
run the program again')
break

#print the result

print('Answer: {}'.format(result))

again = input('Do you want to do another operation?

Enter Y or N: ')

if((again == 'y') or (again == 'Y'")):
reuse = input('Do you want the result of the
current operation to be the first number of the
next? Y or N: ')

if((reuse == 'y') or (reuse == 'Y')):
numl = result
repeat = 1

else:
repeat = 0

else:
print('Ok bye!")
break

Mini project — automated shapes — next
level

Loops were automation, but functions are supposed to be True
automation, aren’t they? Why don’t we see what they can do to our
automated shapes mini project?

I'm going to create a function called draw_shape() and place my code
inside. I'm going to accept two arguments inside my function: sides and
angle.

306

CHAPTER 13 AUTOMATE WITH FUNCTIONS

If the sides are equal to 1, I'm going to draw a circle. Otherwise, I'm
going to draw a polygon. Simple as that.

For this project, I'm going to use another package called the time
package. With this, I can give a small delay of around 300 milliseconds
before the next shape is drawn so the user can see what’s going on:

1. Let’simport the turtle and time packages first.
import turtle

import time

2. Then let us set up turtle. I'm going to set the pen
color to red and fill color to yellow.

turtle.getscreen()
turtle.Turtle()
.pensize(5)
.color('Red', 'Yellow")

~+ + &+ un

3. Then, I'm going to define the draw_shape()
function. At the start of the function, I'm going
to use the sleep() method of the time package to
basically stop the program for 0.3 seconds (300
milliseconds). Then, I'm going to clear the turtle so
any previous shape is erased before I draw the next

one.

def draw_shape(sides,angle):
time.sleep(0.3)
t.clear()
t.begin fill()
#If sides are greater than 1, then it’s a polygon
if sides > 1:
for x in range(0,sides):

307

CHAPTER 13 AUTOMATE WITH FUNCTIONS

if(x == sides-1):
t.home()
break
t.forward(100)
t.right(angle)
elif sides ==
#circle
t.circle(100,angle)
t.end fill()
t.hideturtle()
turtle.hideturtle()

4. I'm going to give multiple values in various function
calls. When you run this program, you'll see these
shapes drawn in succession, with a 0.3 delay in
between.

draw_shape(4,90)
draw_shape(3,60)
draw_shape(5,50)
draw_shape(6,60)
draw_shape(8,45)
draw_shape(1,180)
draw_shape(1,360)

308

CHAPTER 13 AUTOMATE WITH FUNCTIONS

The images you'll get are shown in Figure 13-1.

N

Figure 13-1. Automated shapes

Neat!

Summary

In this chapter, we looked at True automation with functions. We learned
all about defining functions, calling them, sending arguments to make our
functions dynamic, returning values back to the function calls, accepting
arbitrary arguments, and so much more. We also automated some of the
projects we did in the previous chapters.

In the next chapter, let’s do real-world programming like the pros do
it We're going to look at objects and imitating real-world scenarios in
programming.

309

CHAPTER 14

Let’s Create
Real-World Objects

In the previous chapter, we looked at True automation with functions. We
looked at saving time, space, and lines of code with functions, defining
functions, calling them, sending arguments to our functions, using default
arguments, returning values back to our calling statement, and accepting
arbitrary arguments and lists as arguments. b

In this chapter, let us look at how to do real-world programming
with object-oriented programming (OOPs). We'll be looking at
classes, the initialization function, self, user-defined properties and
methods, and creating objects on our classes. We will also look at
accessing our properties and functions and changing the values of our
properties.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_14

https://doi.org/10.1007/978-1-4842-6812-4_14#DOI

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

What is object-oriented programming?

Everything in Python is an object. It has its properties and methods
remember? This is how things are in the real world. Let’s take us, humans,
for example. We have properties, or attributes, like our height, weight, eye
color, hair color, and so on. Similarly, we have “methods’, as in we run,
walk, talk, do stuff, am I right?

Everything in Python mirrors our real-world objects. For example,
strings have properties like length, but methods like splitting, capitalizing,
and so on. Humans are a “group” under which there are individual human
beings with their own values (different hair color, weight, height, etc.).
Similarly, “strings” as such are a group under which you can create your
own individual strings with their own properties and methods.

That’s object-oriented programming in its core: real-world
programming. Instead of using the pre-defined objects and their methods
and properties, you can create your own objects for your projects. Do you
see the possibilities here? The world is your oyster now!

But this is a vast topic, and it’s impossible to cover everything in a
single chapter. I don’t want to confuse you too much either. You're here
to learn Python and create fun projects, and we can create the projects in

312

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

this book without OOPs (object-oriented programming). But I'll give you
an introduction to OOPs so you understand the basics of it. Sounds good?
Alright then, let’s do it!

Let’s prove it!

I just said that everything is an object in Python, didn’t I? Why don’t we
prove it?

Let’s start with an integer (a number) and check its type.

num = 10
print(type(num))

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\oops.py
<class 'int'>

Interesting. In the next section, you'll see that classes are how you
create objects in Python, so essentially, an integer is a class and the
variables that hold integers are objects. Alright, but what about the
remaining data types?

s = 'Hello'
print(type(s))
b = True
print(type(b))
f=1.0
print(type(f))
def fName():

pass
print(type(fName))

313

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS
Run the entire program, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\oops.py

<class 'int'>

<class 'str'>

<class 'bool'>

<class 'float'>

<class 'function'>

Whoa! They're all classes! So everything is indeed an object in

Python.

Classes

Remember the groups I talked about earlier? If you want to create your
own objects, you need to create a group under which you can create those
objects. “Humans” are a group, and each human being is an individual
objects. Every human has a set of properties and methods that are
common to us, right?

Similarly, every group of objects will have a set of properties and
methods that are common to it, so let’s create a blueprint of that group and
create every object separately with its own set of values.

Confused? Don’t be. It'll all be clear in a minute.

You need classes to create these blueprints.

To model the real world, let’s create a “Human” class with properties
and methods that mirror us, humans.

class Human:
sample = 'Sample property value'

314

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

That’s it! You have your first class. It’s not compulsory, but when
naming your classes, capitalize the first letter, so when you create your
objects, you can distinguish them better.

Alright. We have a class, but what next? Where are our objects? Well,
you need to create them. Why don’t we create a “humanl” object?

human1l = Human()

It’s as simple as that. Now, you can access the property values inside
the class, like this:

print(humani.sample)
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/00ps.py
Sample property value

It works!

Objects with their own values

So far, we've not created dynamic classes that change their property values
based on the objects we're creating on them.

To do that, you need to use a pre-defined method of “class” called the
__init__() function. That’s two underscores before and two underscores
after init, followed by ().

With this method, you can send individual values for your objects as
you create them, so they get assigned to your class’s properties. Let’s see
how:

class Human:
def init (self,name,age,hair,eye,pet):
self.name = name

315

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

self.age = age
self.hair = hair
self.eye = eye

So, define the init function and accept the attributes you need when
creating the objects. Our attributes are going to be name, age, hair (hair
color), eye (eye color), and pet (name of their pet).

But that’s not all. There’s this special attribute at the start, “self” What's
that? Would you like to guess? What's self? Yourself? Then it should be the
object that’s being created, shouldn’t it? Absolutely!

“Self” is the object being created, and we're creating properties
for that object and assigning the accepted values to it. You can name it
anything you want, as long as you follow the variable naming convention.
Programmers use “self” so they know what it is.

Alright, now that we've created a “proper” class, let’s create our object.

humani = Human('Susan',8, 'brunette’, 'blue', 'Barky")

Our first object is “human1” and it’s going to be an object of the
“Human” class, and we’ve sent a bunch of properties for the same. Make
sure to send the properties in the order your init() function expects them,
or you might end up with an error.

You can create any number of objects like that. Let’s create another
one.

human2 = Human('Johny',10, 'blond’, 'green’, 'Boxer")

This looks similar to a regular function call so far. Why use classes
then?

Well, for one, you don’t need to return anything to access the
properties.

print(humani.name)
print(human2.eye)

316

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

Your object’s name, followed by a period and the property, and you're
good to go.
Let’s run this, and we'll get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/00ps.py

Susan

green

Yes! We got what we wanted.

Manipulate your objects

Unlike functions, we can change the property values of your objects as

well.

human2.eye = 'brown'
print('Eye color: {}'.format(human2.eye))

Run everything, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/00ps.py

Susan

green

Eye color: brown

Look at that. The value changed.

So, objects are a mix between dictionaries and functions. They're the
best of both worlds, and more!

317

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

Just like you do in dictionaries, you can use the “del” keyword to delete
properties of objects, or just the entire object, like this:

del human2.eye
del humani

But unlike your data structures (lists, dictionaries, etc.), you can’t loop
through an object. ()

Objects do stuff

When I started this chapter, remember what I said? Objects have
properties (just like we do), and they do stuff or stuff is done to them (just
like it is with us). So, why don’t we add a bunch of “methods” that make
our objects do stuff?

You'll be creating your regular old functions, but just inside your class
this time.

Let’s make our objects talk, walk, and run, okay? Or just simulate the
same.

class Human:
def _init_ (self,name,age,hair,eye,pet):
self.name = name
self.age = age
self.hair = hair
self.eye = eye

def talk(self):
print('{} talking'.format(self.name))

def green(self):
print('Hello there!')

318

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

def walk(self):
print("{} is walking".format(self.name))

Human('Susan',8, 'brunette’, 'blue’, 'Barky")
Human('Johny',10, 'blond’, 'green’, 'Boxer")

humani1

human2

Did you notice how we used “self.name” to access the object’s name
from within the class? “self” is the object that’s calling the function. Every
function needs to accept “self” to indicate the object calling it, regardless
of whether you use its property values inside the function or not, or you'll
get an error when you run the program.

Let’s call our functions now and see what we get:

humani.talk()
human1.greet()
human2.walk()

Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/00ps.py

Susan talking

Hello there!

Johny is walking

Whoa, nice!

Turtle race with objects

Now that we know how classes work and how to create objects with them,
why don’t we try to replicate our turtle race with them? I'm sure we can
make our code simpler now.

319

http://self.name

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

We're going to create a Turtle class that creates our turtles, with a
user-defined move() method that moves the turtle randomly (within the
range 1-10).

1. Let’s start by importing the turtle and random
modules and setting up the turtle screen. Let’s also
hide the main turtle while we're at it.

import turtle, random
s = turtle.getscreen()
turtle.hideturtle()

2. Let’s create a Turtle class. The initialization function
will accept color, %, and y to change the turtle color
and move the turtles to the starting positions.

class Turtle:
def _init (self,color,x,y):

3. Then, let’s define self.turtle. Why self.turtle and not
self? Well, “self” refers to the object we're creating,
so if we want a turtle created on that object, we need
to create a wrapper object, which in my case is self.
turtle. You can name it anything you want.

This way, the original object won'’t be re-assigned
and we still get to create a turtle.

self.turtle = turtle.Turtle()
4. Let’s change the pen size, color, and shape next.

self.turtle.pensize(5)
self.turtle.color(color)
self.turtle.shape('turtle')

320

CHAPTER 14 LET’S CREATE REAL-WORLD OBJECTS
Finally, let’'s move the turtle to the given position.

self.turtle.penup()
self.turtle.goto(x,y)
self.turtle.pendown()

Now that we're done with the init() function, let’s
create a move() function. It’s just going to move
the turtle forward randomly, just like we did in the
original program.

def move(self):
self.turtle.forward(random.randint(1,10))

That’s it for our class!

Now, let’s create our objects. I'm going to create
three objects, red, blue, and green, with their
relevant values.

red = Turtle('Red',-250,150)
blue = Turtle('Blue',-250,0)
green = Turtle('Green',-250,-150)

Now, within a range of 0-99 (100 iterations), let’s call
our move() function on all three of our turtles for

every iteration.

for i in range(100):
red.move()
blue.move()
green.move()

321

CHAPTER 14 LET'S CREATE REAL-WORLD OBJECTS

That’s it! Does our program work (Figure 14-1)?

Figure 14-1. Turtle race with classes

Of course, it did, and red won!

Summary

In this chapter, we looked at how to do real-world programming
with object-oriented programming (OOPs). We looked at classes, the
initialization function, self, user-defined properties and methods, and
creating objects on our classes. We also looked at accessing our properties
and functions and changing the values of our properties.

In the next chapter, let’s look at files, how to create them, open them,
and modify them.

322

CHAPTER 15

Python and Files

In the previous chapter, we learned how to create real-world objects in
Python using classes. We learned how everything was an object in Python.
Then, we learned how to create classes in Python and use those classes to
create similar objects without writing too many lines of code.

In this chapter, let’s look at file handling in Python. We'll look at
creating, reading, writing, and manipulating the files in your system right
from inside your Python code.

Why files?

I can hear you groaning. Yet another boring theoretical topic, you're
probably saying. Well, don’t dismiss files so quickly. It’s a very easy topic,
and it can open up too many possibilities to count.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_15

https://doi.org/10.1007/978-1-4842-6812-4_15#DOI

CHAPTER 15 PYTHON AND FILES

Once you learn this, real-world programming is yours for the taking.
You can start including the files in your system in your programs, and you
can create them from within your program, read them, manipulate them,
erase them completely, and so much more. If you want to create full-on
apps that work on your laptops and computers, then you'd do well to learn
files.

This is a quick chapter, so don’t worry much, and as usual, we'll end
it with a fun and, this time, easy mini project. Also, from the next chapter,
you'll be creating all the big projects, mini projects, apps, and games you
could ever want to create, so all the more reason to finish this chapter fast,
don’t you think?

Opening and reading existing files

Let’s start simple. Before you do something with a file, you need to retrieve
it and save it in a variable, so you can later read it, write to it, and so on and
so forth.

Use the “open” method and specify the file name inside of either
double or single quotes. You need to specify the entire file name, including
the relevant extensions like .py, .txt, and so on.

But, if the file exists in the same folder as your script, then you can get
away with just mentioning the name of the file with its extension, like I'll
be doing in our example.

I'm going to ask my program to retrieve the introduction.py file, and
since that’s in the same folder as the files.py file I created for this chapter,
don’t need to specify the entire path.

But what if my path is in a different folder? How can I get it? :O

It's a very simple process. Go to your File explorer in Windows, or its
equivalent in Mac, as shown in Figure 15-1.

324

CHAPTER 15 PYTHON AND FILES

" =l L T pirws tem = % lgopen- Esecam
! Fingscces~ 8 Do
L Preperties 9,
talder o wrmtony gt selection

T Seleat none

garnire N
(® -f..-m-ac-u.-vm:m-w\ PIARE T
m Date moddied

. LI
dr Favoie Hame

L mtreductonst WK R0PM Test Document 1KE|

) Homegrows

W Thes PO

B sathinburmalaig |
I Desicop.

1l Desumenty

& Downicads

B M

E Picnares

Figure 15-1. Locate your file

Click where I've placed the arrow, that is, right after the last folder
name. You'll get the path, like this (Figure 15-2).

8 Paste shortat | {o= o~ | w0 T toider U g History | g Invert selection
ipboard Organize New Open Select

+ [&

-
. * Name Date modified Type Size
| introdudjon. e 10/16/2020 %50 PM Text Document 1KB

.
nents
attachmen
[
-squeezer-,
roup
lumalai@t
P
nents

Figure 15-2. Get your file path

325

CHAPTER 15 PYTHON AND FILES

Now, you can copy the path. But you can’t use it as it is. You need to format
the path, along with the file name, in the following format. In the preceding
example, we're trying to get the path of the file “introduction.txt” which is in
the path G:\Python. To use it in my program, I'll format it like this:

G:\\Python\introduction.txt

And then, I'll place the entire thing within quotes and use it. It’s as
simple as that!

Once you have the open() method ready, assign the same to a variable.
Why? You'll see in just a minute!

file = open(' introduction.py')

Now that we have our file stored in the variable “file”, we can start
manipulating it.

What do you want to do first? Shall we read it? Print what'’s inside?
Okay, let’s do that!

Can you guess how reading a file will go? Maybe Python has a read()
function we can use? Yes, you're right! That’s exactly what we have.

But, before you can use the read function, you need to specify to your
program that that’s exactly what you'll be doing. So, while you're retrieving
your file, you need to add a second argument that specifies that you're
retrieving it in a read-only format and that you'll be reading and possibly
printing what'’s inside later.

326

CHAPTER 15 PYTHON AND FILES
Let’s change our line of code:
file = open(' introduction.py','r")

As you can see in the preceding code, I've included a second argument
‘r’ within quotes. That'll let my program know that I'm just retrieving the
file to read it, and nothing else.

Now, we can actually read our file and print it. Do you want to try?

file.read()

Let’s run the above code, and...

Crickets....

Nothing happened. :0 Why?! Well, you asked your program to read it,
and it did just that. You didn’t ask it to print the results, did you? You need
to be very clear with computers. They need exact instructions.

So, let’s print our read operation:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/file.py

print('Hello there!")

print('My name is Susan Smith.')

print('I am 9 years old.")

print('I love puppies! :)')

Look at that! The entire content (code) inside the introduction.py file
was printed out. Did you notice something? Even though the file contains
code, and it was printed in the Shell, those print() lines weren’t executed.
They were printed as such.

Why is that? Well, in this instant, your file is considered a normal text
file, and the lines of code are content inside your file. That’s all. If you want
the preceding code executed, you need to go about it the usual way and
not open or read it via the file operations.

327

CHAPTER 15 PYTHON AND FILES

You can ask your program to print just a specified number of
characters, rather than the whole thing too. Let’s say I want only the first
50 characters (individual letters, numbers, special characters, and spaces)
printed out, and nothing else. Then all I have to do is specify 50 within the
parenthesis, like this:

print(file.read(50))
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/file.py

print('Hello there!")

print('My name is Susan Smith.")

Count the characters in the preceding result, and you'll come up with
50, including the spaces and the new line as separate characters.
Why don’t you try with different numbers and see what you get?

Line by line

What if you don’t want the entire file printed and you don’t want to count
characters either? What if you just want the first line? Then, you can use
the readline() method to read through lines. Let’s replace read() with
readline().

print(file.readline())
Run the preceding code, and you'll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/file.py
print('Hello there!")

Yay! Just the first line.

328

CHAPTER 15 PYTHON AND FILES

What if I want more lines printed? Can I specify 2 within the
parenthesis like I did with read()?

print(file.readline(2))
Run the preceding code, and you'll get this:
= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/file.py
pr
Ah, bummer. It thought I was asking for two characters again. I guess

the only way to go about it is to specify another readline(). Shall we try?

print(file.readline())
print(file.readline())

We have two readline() methods now. Does it work?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/
Python38-32/file.py
print('Hello there!")

print('My name is Susan Smith.")

Yes! We have two lines now, with a huge space between them because
they were printed in two different prints.

If you'd like to read and print out the entire file, then just loop through
it, like you would loop through a list. For every iteration of the loop, your
program will print one line from your file.

file = open('introduction.py','r")
for i in file:
print(i)

329

CHAPTER 15 PYTHON AND FILES
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\file.py
print('Hello there!")

print('My name is Susan Smith.")
print('I am 9 years old.")
print('I love puppies! :)')

That’s the entire file!

Create new files

u_n €« ”

You can use either “x” or “w” attributes in the open() method to create new

“ ”

files. “w” just creates a file if it does not exist but opens an existing file, but
“x” is exclusively for creating new files. “x” returns an error if you try to
“create” an existing file.

Let’s create a file newFile.txt now.
file = open('newFile.txt','x")

Our file was just created! Run the program again, and you'll get an
error, since the file now exists.

Manipulate files

You can add to files using the write method. In order to do that, you need
to open the file you want to add text to in either the write, “w’, or append,

“u_n

a’, mode.

330

CHAPTER 15 PYTHON AND FILES

The “write” mode will overwrite any text currently on the file. The

append mode will append the given text at the end of the file.
Let’s try both, shall we?

I've opened the file we created in the last section in the “write” mode.

file = open('newFile.txt', 'w")

Now, let’s use the “write” method to add a few lines of text to our file,

separated by new lines “\n”.

f.write('Hi there!\nThis is a new file.\nWe just added text

to it!")
Now, let’s read our file to see if we get the same.

file = open('newFile.txt', 'r')
print(file.read())

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\file.py

Hi there!

This is a new file.

We just added text to it!

Whoo!

Let’s try appending now.

file = open('newFile.txt','a")
file.write('\nThis is the last line')

file = open('newFile.txt','r")
print(file.read())

331

CHAPTER 15 PYTHON AND FILES
Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\file.py

Hi there!

This is a new file.

We just added text to it!

This is the last line

This is a very powerful feature that can make programming desktop
apps, or any apps at all, very easy for you!

Mini project — introduce with files

This is going to be a very simple project. We are going to create a text file
called introduction.txt in a folder of your choice. We are going to write our
introduction to that file via our Python code, and finally, we're going to
print that introduction in our Shell. Simple!

Shall we get started?

1. I'm going to create my file in the following path:
G:\\Python\introduction.txt

«u. ”

I can also use “x’; but I'm using “w” so I wouldn’t
have to open the file in write mode again.

f = open('G:\\Python\introduction.txt", 'w")
2. Then, I'm going to write Susan’s introduction to it:

f.write('''Hi, I'm Susan.

I'm 9 years old.

My puppy's name is Barky.

He loves me very very much! :)''")

332

CHAPTER 15 PYTHON AND FILES

3. Now, let’s print it. Let’s open our file again, but
this time in read mode, read it while printing its
contents, and finally close it.

f = open('G:\\Python\introduction.txt"', 'r")
print(f.read())
f.close()

Now, when we run the program, we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\file.py

Hi, I'm Susan.

I'm 9 years old.

My puppy's name is Barky.

He loves me very very much! :)

Perfect!

Summary

In this chapter, we learned all about files, creating them from your Python
code, reading them, storing them in variables, manipulating files from
inside your programs, and so much more.

In the next chapter, let’s learn about Tkinter, a Python package that lets
you create desktop apps.

333

CHAPTER 16

Create Cool Apps
with Tkinter

In the previous chapter, we learned all about creating, opening, and
manipulating your computer’s files in Python. In this chapter, we're
officially back to having fun with Python. You're going to learn about
Tkinter, which is a package that can be used to create desktop apps (GUI -
graphical user interface) with Python. You'll learn how to create buttons,
labels, boxes, and so much more.

Tkinter — let’s set it right up!

Remember what we did when we worked with Turtle? Some of the
processes of working with Tkinter are the same. You're a pro programmer
now. You know the basics of Python already. You've finished an entire
chapter of mini projects.

So, in this chapter, I want you to wear your big boy/girl pants. I'm not
going to give a lot of hands-on explanations because you know a lot of
this stuff already. We'll be covering a lot in this chapter, and at the end of
it, you’ll have beautiful apps just like the ones you see in your system, and
you’ll be armed with the tools to create more of them. Excited? Me too!
Let’s get started.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_16

https://doi.org/10.1007/978-1-4842-6812-4_16#DOI

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Just like with turtle, we need to import Tkinter first. Let’s open a new
script file. Don't save it as “tkinter.py”. There’s already a file like that in
your Python installation, and it contains the code for all the pre-defined
methods you'll be using to create your apps. I'm going to save my file as
tkPrograms.py.

Let’s first import Tkinter.

from tkinter import *

WU

I've asked everything to be imported from the Tkinter package.
means everything. Now, we need to create a window that would contain
our app. I'm going to call mine w, and the function I need to call is Tk():

w = Tk()

Let’s run this and see what we get (Figure 16-1).

Figure 16-1. Tkinter screen

Look at that! A nice little window. It also has buttons you can use to
minimize, maximize, and close the window. Why don’t you try them out?

336

CHAPTER 16 CREATE COOL APPS WITH TKINTER

The title is a bit strange, isn’t it? It just says tk. I don’t like it! I want
mine to say “My first Tkinter app” How do I change that? Well, by calling
the title() method on the window we just created, of course!

w.title('My first Tkinter app')

Run this again, and see what you get (Figure 16-2):

Figure 16-2. Title change

Look at that! It says what I wanted now. I resized the window a bit so
I could see the entire title. This is beautiful. I just wrote three small lines
of code, and I have a nifty little window now. Can you see how powerful
Tkinter is? :O

Alright then, that’s it for the setup. Next, let’s see how to create widgets
and place them on this window. This is where things get interesting!

Labels, buttons, and packing them

Tkinter has a lot of “widgets” you can create to make the app come alive.
These widgets range from buttons to text boxes to radio buttons. Once you
create a widget, you need to place it on the window. So, there are usually
two steps to the process. Let’s look at how to create labels and buttons

now, shall we?

337

CHAPTER 16 CREATE COOL APPS WITH TKINTER

To create labels, you need to use the “Label()” method and mention
the window you want the label placed it in the first attribute and the text
you want in the label within the “text” attribute. I'm going to create a
variable labell, and I'm going to place my label inside of it.

label1 = Label(w,text="My Label")

If I run this, I'll end up with a blank window again. Why? Remember
what I told you earlier? Widgets need to be placed inside the windows to
be visible. How do we do that?

One of the simplest ways to do that is by using the pack() method. It
just packs or shoves the widget you create into the window, and it resizes
the window to the size of that widget.

This is why I placed my label inside a variable, so I can call the pack()
method on the variable. It just looks neat that way.

label1.pack()

Now run everything, and see what you get (Figure 16-3).

X

Figure 16-3. Label

There you go! A tiny little window with just my label in it.
If you don’t want two lines of code, you can write the same like this,
and it'll work:

Label(w, text="My Label").pack()

I'm going to stick to the first method because it'll look neat once we
start designing the label and adding a lot of attributes to it. I can also
reference the same label later on to change its attribute values. It’s just
more dynamic in a real-world sense.

338

CHAPTER 16 CREATE COOL APPS WITH TKINTER

But did you notice something? Whenever I run the program, my shell
does open my window, but then it goes back to its next prompt (<<<),
which means it considers the output shown. That’s not good! When the
window’s open, I want my program still running. Otherwise, I might not be
able to run real-world apps later. So, there’s something you can do to make
sure your prompt is open until you actually close the window. You can call
the mainloop() function on your window to do this. Add this piece of code
to the very end of your script.

Now, run again, and you'll notice that our Shell hasn’t moved on to its
next prompt. Good!

Alright. Can we spruce things up a bit now? Why don’t we play with my
label’s size and colors?

Before we get started though, let’s look at our options as far as colors
are concerned. Tkinter recognizes a ton of color names, and you can find
a list of them here, in their official site: www.tcl.tk/man/tc18.5/TkCmd/
colors.htm.

If you want to visualize the colors though, you can use this site: www.
science.smith.edu/dftwiki/index.php/Color_Charts for TKinter.

The second link is to a third-party site, but still useful.

So, now that we’'ve armed ourselves with the colors, let’s get started!

You can change the size of the label by using the width and height
attributes. They change the width and height of your label, respectively.
But, you'll notice something different when you use these attributes. Let’s
say the values of both these attributes are 10, but you'll notice that the
height of the label is bigger than the width of the label. That’s because the
values aren’t considered in pixels, but by the size of the character “0” Its
width is twice as small as its height, isn’t it? That’s what you're seeing. So,

consider this while giving your values.

Also, you can change the color of the label with the bg attribute and
the color of your label text with the fg attribute. Let’s combine them all
together and design our label now!

339

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter
http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

CHAPTER 16 CREATE COOL APPS WITH TKINTER

label1 = Label(w, text='My Label', bg='Salmon4', fg='gold2',
width=10, height=5)
label1.pack()

I've changed the background color to ‘Salmon4, the text color to ‘gold2,
the width to 10 character units, and the height to 5 character units. Now
let’s run the program (Figure 16-4)!

Figure 16-4. Change the label’s size and colors

Whoo! Look at how the window expanded to encompass my new label.
It’s perfect.

There are other attributes you can use, but let’s look at that in the
later section of this chapter. Now, what about buttons? It follows the same
procedure. Use the Button() method, and the attributes are the same.

button1 = Button(w, text='My Button', bg='steel blue',
fg="snow', width=10, height=5)
buttoni.pack()

Run everything, and see what you get (Figure 16-5).

340

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Figure 16-5. Button

You'll find that you can actually click the button. It’s animated, unlike
the label.

But that’s not where it ends. You can make your system do something
when you click the button. Using the command attribute, I can call a
function whenever my button is clicked.

def buttonClick():
print('You just clicked the button! :)")

button1 = Button(w, text='Click Me!', bg="steel blue',
fg="snow', width=10, height=5, command=buttonClick)
buttoni.pack()

As you know, in Python, the function definition should always come
before the function call, in our case, the button. Let’s create a function
buttonClick() that prints a message. That's it.

341

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Now, in our button, we’ve added a new attribute, “command’, and the
value is the name of our function. Just the name, you don’t have to add the
brackets. Now, pack the button and run the program, and you'll get the
button, as usual. Click it, go back to the Shell, and you'll see this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\tkPrograms.py
You just clicked the button! :)

Whoa! It works!

Packing in detail

So far, things look ugly. Let’s be honest here. This is not how we create an
app. Don’t panic though. The pack() method has a few more tricks up its
sleeves.

Before we look at those though, let’s look at something called the
“Frame”. The frame isn’t exactly a window. We already created one of
those. But with frames, you can group your widget and then organize them
in the way you want.

Let’s create a frame around our label and button. We can give a
background color (bg), width, and height for the same as well, but the
width and height are in pixels in this case, so make the numbers bigger.

frame1l = Frame(w)
framel.pack()

label1 = Label(frame1, text='First button')
label1.pack()

button1 = Button(frame1, text='Buttoni')
buttoni.pack()

342

CHAPTER 16 CREATE COOL APPS WITH TKINTER

label2 = Label(frame1, text='Second button')
label2.pack()

button2 = Button(frame1, text='Button2")
button2.pack()

Asyou can see in the preceding code, I created a frame and then two
labels and two buttons within that frame. So, the root window of framel is
“w’, the original window, but the root window of the remaining widgets is
our framel. This way, we can create as many frames as we want within the
same window. For now, let’s just run this, and see what we get (Figure 16-6).

First button

Buttonl |

Second button
Button2

Figure 16-6. Pack geometry method

Nothing seems to have changed. ® The pack() method to the rescue!

The pack() method is a geometry manager, and it packs your widgets
within its parent window (framel in our case) in rows and columns.

To start, let’s look at the fill option. You can make your widget fill the
parent widget with this option.

Right now, the window that pops up looks like its encompassing the
entire frame (Figure 16-7), but it’s not. If I resize it, it'll add padding around
the frame.

343

CHAPTER 16 CREATE COOL APPS WITH TKINTER

First button

Button1 I

Second button

Button2 I

Figure 16-7. Pack() resize issue

But if I want the frame to fill the main window, then I can use the fill
and expand options. Let’s start with “fill” I can give three values here, X, Y,
or BOTH.

X fills up main window the horizontally and Y vertically, and BOTH
just fills the entire widget. Let’s see all three.

frame1l = Frame(w, bg='black")
framel.pack(fill=X)

I've given the frame a background color so we can see the frame
separately.
Next, I'll fill to Y:

framel.pack(fill=Y)
Finally, I'll change it to BOTH (Figure 16-8):

framel.pack(fil1=BOTH)

344

CHAPTER 16 CREATE COOL APPS WITH TKINTER

¢ My first Tkinter app - olEN

First button
Buttonl

Second button

Figure 16-8. Frame with fill

Fill works to an extent, but it still does not expand when the window
resizes. That’s because fill just lets Python know that it wants to fill
the entire area given to it. If we give BOTH, it'll fill the entire area both
horizontally and vertically.

But, if we want it to fill the entire parent, that is, expand when the
parent expands, then we need the “expand” option. Make it True, and see
the magic.

frame1l = Frame(w, bg='black")
framel.pack(fill=BOTH, expand=True)

Let’s try the same for X and Y:
framel.pack(fill=X, expand=True)
and finally,
framel.pack(fill=Y, expand=True)

Now, run the program with the different fill values and resize the
window to get this (Figure 16-9).

345

CHAPTER 16 CREATE COOL APPS WITH TKINTER

¢ MyfistTiinterapp - O BEIN

V My first Thinterapp. ~ = Bl

Second button

Figure 16-9. Fill options in Tkinter

Fascinating, isn’t it?

Okay, now we know how to fill the parent window, but how does that
help our little widgets? We have four of them, and I want the first label and
button in the first row and the second label and button in the second row.
How do I do that? That’s where the “side” option comes in.

Let me first explain how the side option works. Let’s create two widgets
and try to pack them with the different options of “side”.

label = Label(w, text='My Label")
label.pack(side=TOP)

button = Button(w, text='My Button')
button.pack(side=TOP)

I've given the side as TOP to start with, which is the default. You'll
notice that the widgets get packed one after the other.

Now, change the values of both to LEFT. It'll pack everything side by
side. When you give BOTTOM, it'll pack everything from the bottom to the
top, and RIGHT does the exact opposite of LEFT.

When we run the four variations of the preceding code, we get the
following four outputs (Figure 16-10).

346

CHAPTER 16 CREATE COOL APPS WITH TKINTER

My Label

My Button My Label My Button |

My Button

X

Figure 16-10. Side options in Tkinter

Look at how in the third image the button comes first and then the
label. That's what BOTTOM does. It reverses TOP. Similarly, RIGHT is a
reverse of LEFT.

Looks great, yes, but this still doesn’t seem complete. That’s because
you need all three options to properly align your widgets the way you want.

So now, let’s combine all the options and create something that looks
aligned. I'm going to create two frames, and each of these frames is going
to be packed at the TOP (one after the other), where they fill the parent
window from both sides and expand is True.

Similarly, I'm going to create a label and a button under the first frame
and pack both LEFT (side by side), but make them encompass the entire
parent frame (fill is BOTH and expand is True). Let’s repeat the same for
the second frame.

Now, let’s see what we get:

frame1l = Frame(w, bg='black")
framel.pack(side=TOP, fill=BOTH, expand=True)

label1 = Label(frame1, text='First button')
label1.pack(side=LEFT, fill=BOTH, expand=True)

button1 = Button(frame1, text='Buttoni')
buttoni.pack(side=LEFT, fill=BOTH, expand=True)

347

CHAPTER 16 CREATE COOL APPS WITH TKINTER

frame2 = Frame(w, bg='white")
frame2.pack(side=TOP, fill=BOTH, expand=True)

label2 = Label(frame2, text='Second button')
label2.pack(side=LEFT, fill=BOTH, expand=True)

button2 = Button(frame2, text='Button2")
button2.pack(side=LEFT, fill=BOTH, expand=True)

Run the preceding code, and you'll get this (Figure 16-11).

First button Buttonl

Second button Button2

Figure 16-11. Pack organized label and button

Whoa! That’s exactly how I wanted to place things when I first created
these widgets together. Done!

Now expand this window, and you’ll notice that the widgets expand
with them. Since the child widgets completely encompass the frames, you
don’t see their background colors, which means we’'ve done our job right!

Lots of inputs

Now that you know how to use the pack() method to align your widgets
properly, let’s go back to quickly looking at more widgets. Tkinter offers a
ton of widgets that get input from the user.

348

CHAPTER 16 CREATE COOL APPS WITH TKINTER

One line of text

You can get a single line of text input from your user by using the Entry()
method.

entry = Entry().pack()

Run the preceding code, and you'll get this (Figure 16-12).

X

This is my entny

Figure 16-12. Entry widget

Look at that! I can give a single-line entry now.

Also, apart from the usual attributes like fg, bg, and width, your entry
widgets also have methods that can be used to manipulate the entry.

Why don’t we see how to do that? We can use the get() method to
retrieve what we type in the entry, and we can use it however we want.

So now, let’s create a label “name” and an entry box and finally a
button that says “Enter” When the user clicks the button, it calls the greet()
function, which “gets” the input from the entry box and prints out a “Hello”
message. Simple enough? Let’s try!

def greet():
name = entry.get()
print('Hello {}'.format(name))

label = Label(w,text="Your name?")
label.pack(side=LEFT)

entry = tkinter.Entry(w)
entry.pack(side=LEFT)

button = Button(w,text="Enter',command=greet)
button.pack(side=LEFT)

349

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Let’s run everything, and we’ll get this (Figure 16-13).

4

Your name? Susan Enter

Figure 16-13. Name box with entry

Now, when I press Enter and look at the Shell, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\tkPrograms.py
Hello Susan

Yay!

Also, you have the delete() method that deletes text and the insert()
method that inserts text in any position you want.

Let’s look at insert first. The syntax is pretty simple.

entry.insert(pos, ‘text’)

So, just give the position at which you want to insert the text. The first
position is 0, and it increases from there, just like with your strings. The
second argument is either the direct text you want inserted or the variable
that contains your text.

Would you like to see how this works? Let’s modify our program. Now,
when the user enters their name, they have to click the “Insert Hello” button,
that, when clicked, literally inserts Hello and a space before their name.

def insert():
entry.insert(o, 'Hello ')

label = Label(w,text="Your name?")
label.pack(side=LEFT)

entry = tkinter.Entry(w)
entry.pack(side=LEFT)

350

CHAPTER 16 CREATE COOL APPS WITH TKINTER

button = Button(w,text="Insert Hello',command=insert)
button.pack(side=LEFT)

Let’s run the program (Figure 16-14).

x

Your name? iSusari Insert Hello

Figure 16-14. Insert into an entry box

And when we click the button, we get this (Figure 16-15).

x

Your name?IHelln Susarl Insert Hello

Figure 16-15. Inserted

Whohoo!

Similarly, you can delete. If you just give one argument, it'll just delete
that character. 0 deletes the first character, 1 the second character, and so on.

But, if you give a range, it'll delete a range of characters.

As usual, the last number in the range is not considered. For example,
the range 0,4 deletes the characters in indices 0 to 3 (not including 4).

But if you want to delete everything, then just give END as your last
argument, and you're done. Shall we try?

def insert():
entry.delete(0,END)

label = Label(w,text="Your name?")
label.pack(side=LEFT)

entry = tkinter.Entry(w)
entry.pack(side=LEFT)

351

CHAPTER 16 CREATE COOL APPS WITH TKINTER

button = Button(w,text="Clear',command=insert)
button.pack(side=LEFT)

When I run the program, I get this (Figure 16-16).

X

Your name? [Susan Clear

Figure 16-16. Delete from an entry box

I've entered Susan, and when I press the Clear button, I get this
(Figure 16-17).

x

Your name?| Clear

Figure 16-17. Entry box cleared

A clean slate!

Line after line

Now, let’s see how we can enter and manipulate multiple lines of text! You
can use the Text() method to do that.

text box = Text()
text _box.pack()

Run this, and you'll get a big text box, and when you type some lines of
code in the same, it'll look like this (Figure 16-18).

352

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Hello there! First line of text.
This is the second line of text
This is the thirzd line of text.
Bye Bye!

Figure 16-18. Text box - multiple lines of text

You can retrieve the text from this text box with the get() method, but
you need to specify the line number and the character number in a range.

“1.0” will retrieve just the first character in the first line.

“1.07, “1.9” will retrieve the first character through the ninth character
in the first line.

“2.0", “2.5” will retrieve the first character through the fifth character in
the second line and so on.

“1.0” “2.10” will retrieve until the tenth character in the second line, so
you can span multiple lines like this.

To get the entire text, just give “1.0”, END.

Do you understand how this works now? Let’s try to retrieve the entire
piece of text.

text box = Text(w)
text_box.pack()

def get text():
t = text_box.get(1.0,END)
print(t)

button = Button(w,text="Get data",command=get text)
button.pack()

Let’s run the program again and type the same text and see what we get
(Figure 16-19).

353

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Getdotn [

Figure 16-19. Get data from text box

Now we have a big text box, with a little button at the end, since that’s
how we packed it. Let’s click the button, and we get this:

>>>

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\tkPrograms.py

Hello there! This is the first line of text.

This is the second line of text.

This is the third line of text.

Bye bye!

It works!

Similarly, you can insert text into the text box.
text box.insert(1.0,"Welcome! ")

The preceding code will insert “Welcome!” and a space to the
beginning of the first line. Text, checkbox, entry, radio button, menu
button, check button, list box.

To insert something at the end of the text, use END as the first
parameter, but if you want the text to be in a new line, add the \n (newline
character) at the beginning of the second parameter, like this:

text_box.insert(END,"\nYou're great!")

354

CHAPTER 16 ~ CREATE COOL APPS WITH TKINTER
To delete the entire piece of text, do this:
text box.delete("1.0",END)

You can use the same format you used with get() to delete pieces of text.
So, that’s a quick look at text boxes. Now, on to the next widget!

Tkinter variables

But before we do that, I want to talk about Tkinter variables. Remember
how we had to directly enter the text and not use variables for the same?
That’s not very dynamic. What if I wanted to change a label text, or a
button text, based on something that happened in my app/game? I need
avariable. That’s where Tkinter variable classes come in. They work pretty
much similar to our normal variables.

There are five kinds of variables you can create: Integer, String,
Boolean, and Double (floating point).

num = IntVar()
string = StringVar()
b = BooleanVar()

dbl = DoubleVar()

Assign them to an actual variable to make that variable a Tkinter
variable. Also, make sure that you maintain the upper- and lowercase of
the syntaxes as it is.

Now that you have the variables, you can assign values to them using
the “set” method. If you assign a wrong value to a variable, you'll get an

error. So, only an integer to an integer variable and so on.

355

CHAPTER 16 CREATE COOL APPS WITH TKINTER

To get the variable’s value back, use the get() method. So, let’s combine
both and see what we get.

num. set(100)
string.set("Hello there!")
b.set(True)
dbl.set(150.14)

print(num.get())
print(string.get())
print(b.get())
print(dbl.get())

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\tkPrograms.py

100

Hello there!

True

150.14

But this is still not dynamic right? Can we set dynamic variables to our
Tkinter variables? The answer is yes!

Just get an input, place it in a variable, and set that as your string (or
any type). That's it.

i = input('Enter a string: ')
string.set(i)
print(string.get())

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\tkPrograms.py

Enter a string: Hello there!

Hello there!

356

CHAPTER 16 CREATE COOL APPS WITH TKINTER
So now, we can dynamically set our label text.

i = input('Label text: ")

string = StringVar()

string.set(i)

label = Label(w, text=string.get())
label.pack()

Run the preceding code, and you'll get this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\tkPrograms.py
Label text: Hello there!

Press Enter after giving the input, and you'll get (Figure 16-20):

X

Hello there!

Figure 16-20. String variable

Yippee! Our first dynamic label!

Lots of options!

If you want to give your user choices, then checkboxes and radio buttons
are the way to go, don’t you think? Tkinter has those widgets too!
You can create a checkbox using the Checkbutton (small “b”) widget.
It works similar to the other widgets, except for the fact that you can
give onvalue and offvalue that specify that “value” when the check button
is clicked or not.

357

CHAPTER 16 CREATE COOL APPS WITH TKINTER

But a simpler way to get a check button state is by assigning a Tkinter
integer variable to its “variable” attribute, and whenever the box is
checked, the variable’s value changes to 1, and 0 when it’s unchecked.

We're going to create two checkboxes, so let’s create two integer
variables to store their “state” (whether they were checked or not).

cl
c2

IntVar()
IntVar()

Let’s create a label ‘Grocery list’ and pack it.
Label(w,text="Grocery list"').pack()

Now comes our checkboxes. The only difference is we have our
“variable” attribute with the integer variable assigned to them.

Label(w,text="Grocery list"').pack()

check1 = Checkbutton(w,text="Milk",variable = c1)
check1.pack(side=LEFT)

check2 = Checkbutton(w,text="Flour",variable = c2)
check2.pack(side=LEFT)

Now, how do we retrieve the values? We need a button, which, when
clicked, will call the check() function that checks which boxes were clicked.

def check():
if(ci.get() == 1):
print('We bought Milk.")
if(c2.get() == 1):
print('We bought flour.")

button = Button(w,text="Check',command=check)
button.pack()

Simple! Let’s run the program, and we get this (Figure 16-21).

358

CHAPTER 16 CREATE COOL APPS WITH TKINTER

x

Grocery list
¥ Milk ¥ Flour Check

Figure 16-21. Checkbox

Press the “Check” button, and you'll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\tkPrograms.py

We bought Milk.

We bought flour.

For radio buttons, we just need one variable because we'd just be
selecting one of the choices. It has a “value” attribute, which, when set with
an integer value, will assign the same to the variable you assigned to the
“variable” attribute.

You can add a “command” within the radio button as well.

Let’s create a program that asks if the user likes dogs or not and prints a
message based on what they chose!

For this example, I'm going to command directly from the radio
button, so let’s create the “check” function first.

We're going to create a string that’ll hold the message we need to
display after a person clicked a checkbox. Now, we're going to set two
values in our radio button, 1 if the person likes dogs and 2 if the person
does not like dogs.

Once we've set the string, create the label.

def check():
string = StringVar()
if var.get() == 1:
string.set('You love dogs! :)')

359

CHAPTER 16 CREATE COOL APPS WITH TKINTER

else:
string.set("You don't love dogs :(")

label = Label(w,text=string.get())
label.pack()

Now, let’s create an integer variable that’ll hold our radio buttons’
value. Next comes a label that asks if they love dogs.

var = IntVar()
Label(w,text="Do you love dogs?").pack()

Finally, the radio buttons with the relevant text, the variable “var”
assigned to them, a value for each and a command that calls the “check”
function if the button is selected.

radiol = Radiobutton(w,text="Yes!",variable
command=check)

radiol.pack()

radio2 = Radiobutton(w,text="Nope",variable
command=check)

radio2.pack()

var, value=1,

var, value=2,

That’s it!
Run the program, and you'll get this (Figure 16-22).

Do you love dogs?

" Yes!
" Nope

Figure 16-22. Radio button

360

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Select an option (Figure 16-23):

Do you love dogs?

* Yes!

" Nope

You love dogs!)

Figure 16-23. Radio button selected

Perfect!

Menus

With Tkinter, you can create menus like you see in your applications! You
can use the Menu() method to create them.

You can create a main menu and configure it to the top of your
window, and you can add as many submenus as you want to them.

Let me create a main menu “main’”,

from tkinter import *
w = Tk()

main = Menu(w)
Let’s add a submenu in that main menu. I'll call that fileMenu.
fileMenu = Menu(main)

Now, I'm going to use the add_cascade() method and add a label to my
first submenu and place it in main.

main.add cascade(label="File',menu = fileMenu)

361

CHAPTER 16 CREATE COOL APPS WITH TKINTER
Now, let’s add items to our main menu.

fileMenu.add_command(label="'New File', command=lambda:
print('New File clicked'))

fileMenu.add command(label="0Open', command=lambda: print('Open
clicked"))

As you can see, we can attach a command to these items like we do
with our buttons.

If you run this program now, you won’t see anything. That’s because
once you create all your menus, submenus, and items, you need to
configure that main menu to the window (like you pack your widgets) so
it's displayed.

Use the config() method to do that.

w.config(menu=main)

Now, run your program and you’ll be able to see your menu
(Figure 16-24).

Figure 16-24. Menu

362

CHAPTER 16 ~ CREATE COOL APPS WITH TKINTER
Click the New File menu item, and you'll get this:
>>> New File clicked

I get the message I expected. Perfect!

The perfect layout - grid

I think the pack geometry manager is a teeny bit limiting in its
functionalities. Don’t you think so as well?

That’s why Tkinter has the grid geometry manager that’s leagues apart
from the pack manager. You can perfectly align your widgets based on
rows and columns.

The rows and columns are arranged like they are shown in the
following image (Figure 16-25). The widgets will be placed inside cells, and
each cell has a row and column number that starts from 0. You can extend
the cells to any number you want.

Row0 Row0 Row0
ColumnO0]Column1|Column2

Row1 Row1 Row1
Column0|Column1|Column2

Row2 Row2 Row2
Column0|Column1|Column2

Figure 16-25. Rows and columns in a grid

You can mention the exact row and column of the widget and also
where you want it to be sticky.

There are multiple values of sticky: E for East, W for West, N for North,
S for South, NE for North East, NW for North West, SE for South East, and
SW for South West.

363

CHAPTER 16 CREATE COOL APPS WITH TKINTER

If you give “E” for a widget, it'll (usually the text) stick to the right most
part of its column and so on.

The rows and columns start from 0 as shown in the illustration. You
can use padx and pady to give padding around the widgets, so they don’t
stick together.

So, let’s put it all together to arrange a bunch of labels, shall we?

from tkinter import *
w = Tk()
w.title('My first Tkinter app"')

#first row, first column, east sticky
label1 = Label(w,text="Label1")
label1.grid(row=0,column=0,sticky="E",padx=5,pady=5)

#first row, 2nd column, east sticky
label2 = Label(w,text="Label2")
label2.grid(row=0,column=1,sticky="E",padx=5,pady=5)

#first row, 4th column, west sticky
buttoni = Button(w,text="Button1")
buttoni.grid(row=0,column=2,sticky="W",padx=5,pady=5)

#second row, first column, east sticky
label3 = Label(w,text="Label3")
label3.grid(row=1,column=0,sticky="E",padx=5,pady=5)

#first row, 2nd column, east sticky
labels = Label(w,text="Labels")
label4.grid(row=1,column=1,sticky="E",padx=5,pady=5)

#second row, 4th column, west sticky

button2 = Button(w,text="Button2")
button2.grid(row=1,column=2,sticky="W",padx=5,pady=5)
w.mainloop()

364

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Run the program, and you'll get this (Figure 16-26).

Labell Label2 Buttonl

Label3 Labeld Button2

Figure 16-26. Widgets arranged in a grid

Beautiful!

Mini project - tip calculator app

Let’s put together everything we learned so far and create a tip calculator
in Tkinter, shall we?
This is what we need:

1. Two entry boxes to enter the bill amount (floating
point) and the tip amount.

2. Next, we need a button that gets those values and
calls the tip_calculator() function.

3. This function is going to calculate our tip and
display the result in a label at the bottom of the
screen.

Simple enough? Let’s do this!

1. Let’s set up Tkinter first.

from tkinter import *
w = Tk()
w.title('My first Tkinter app"')

365

CHAPTER 16 CREATE COOL APPS WITH TKINTER

366

2. Then, let’s get the bill (a label, and an entry,

arranged properly on the screen).

#Get the bill amount

bill label = Label(w,text="What was your bill? ")
bill label.grid(row=0,column=0,sticky="W",padx=5,pa
dy=5)

bill = Entry(w)
bill.grid(row=0,column=1,sticky="E",padx=5,pady=5)
Next, let’s create the label and entry widgets to get
the tip.

#Get the tip

tip label = Label(w,text="What did you tip? ')

tip label.grid(row=1,column=0,sticky="W",padx=5,pady=5)
tip = Entry(w)
tip.grid(row=1,column=1,sticky="E",padx=5,pady=5)

Before we create the button, we need to define the
tip_calculator function. It’s going to get the entry
values from tip and bill and convert those to integers
(entries are usually strings). Next, we're going to
calculate the percentage of the tip.

#Tip calculator function
def tip calculator():

t = tip.get()
t = int(t)

b = bill.get()
b = int(b)

percent = (t * 100) / b
percent = int(percent)

CHAPTER 16 CREATE COOL APPS WITH TKINTER

4. Let’s format an appropriate string based on the
value of “percent”.

if((percent >= 10) and (percent <= 15)):
string = '{}%. You tipped Okay!'.format(percent)
elif((percent >= 15) and (percent <= 20)):
string = '{}%. That was a good tip!'.
format(percent)
elif(percent >= 20):
string = "{}%. Wow, great tip! :)'.format(percent)
else:

string = "{}%. You didn't tip enough :(".

format(percent)

5. Finally, let’s create a Tkinter string variable and set
the formatted string in it and create a label with this
text and place it on the screen.

str var = StringVar()
str_var.set(string)

label = Label(w, text=str var.get())
label.grid(row=3,column=0,padx=5,pady=5)

6. Finally, let’s create a button and make it call the
function when it’s clicked.

#Enter button

button = Button(w,text="Enter',command=tip calculator)
button.grid(row=2,column=0,sticky="E",padx=5,pady=5)
w.mainloop()

367

CHAPTER 16 CREATE COOL APPS WITH TKINTER

Let’s run the program, and we’ll get this (Figure 16-27).

What was your bill? 50
What did you tip? d
20%. That was a good tip!

Figure 16-27. Tip calculator app

Our app works perfectly! You can further beautify it by adding colors

and font.

Summary

In this chapter, we looked at how to use the Tkinter package to create
desktop apps in Python. We learned how to create different widgets,
including buttons, labels, checkboxes, radio buttons, and menus. We
learned about frames as well. Then we learned how to style our widgets
and execute commands when our widgets are clicked. Finally, we learned
how to organize our widgets on our screen using the pack() and grid()
geometry methods.

In the next chapter, let’s learn about executing functions when events
like click, mouse click, and keyboard press happen on our widgets.

368

CHAPTER 17

Project: Tic-tac-toe
Game with Tkinter

In the previous chapter, we learned the basics of Tkinter. We learned how
to create buttons, labels, frames, menus, checkboxes, radio buttons, and so
on with Tkinter. We also learned how to design our widgets and make our
widgets do stuff based on events (click, mouse move, keyboard press, etc.).
Finally, we learned how to draw using canvas.

In this chapter, let’s apply what we learned in the last chapter and
create our very first big project: a tic-tac-toe game! We'll also learn about
events and binding them to our widgets.

Bind events — make your apps dynamic!

In the last chapter, we learned a lot about Tkinter. I'm sure you're bored of
learning all the concepts, and you’d rather create a project now. Bear with
me for a few minutes, okay? Let’s quickly learn how to bind events to our
widgets and get started with our tic-tac-toe game.

So, what'’s binding? Well, let’s say you click your button (with your left
mouse button), and you want to execute a function when that happens.
What would you do? You'd use “command’, yes, but what if you want to
distinguish between the left and right mouse button clicks? Open different
functions according to which mouse button was clicked or which keyboard
key was pressed?

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_17

https://doi.org/10.1007/978-1-4842-6812-4_17#DOI

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Events help you do all of that and more.

Let’s look at the button click events first. Let’s create binds that execute
separate functions when the left and right mouse buttons are clicked on a
button widget.

from tkinter import *
w = Tk()

def left clicked(event):
print('Left mouse button clicked")
return

def right clicked(event):
print('Right mouse button clicked")
return

button = Button(w,text="Click here!")
button.pack()
button.bind('<Button-1>",left clicked)
button.bind('<Button-3>",right clicked)

w.mainloop()

Look at the preceding code snippet. We created the button, packed it,
and then used the bind() method to create two binds. The first argument
denotes the event we want to bind to our button, and the second argument
is the function that needs to be called when the event happens.

The events need to be specified within quotes, and <Button-1> denotes
the left mouse button click and <Button-3> is the right mouse button click
because <Button-2> is the middle mouse button click.

Now, in the function definition, we've accepted an argument, event,
even though we didn’t send any arguments from the function call. How is
that possible? Well, whenever an event is bound to a widget, your program
automatically sends an event object to the function. This “event” will have
a lot of information on the event that just happened.

370

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

For example, we can find the x and y coordinate positions of the left
mouse button click by using event.x and event.y. Let’s try that on a frame.

from tkinter import *
w = Tk()

def click(event):
print("X:{},Y:{}".format(event.x,event.y))

frame = Frame(w,width=200,height=200)
frame.pack()
frame.bind('<Button-1>",click)

w.mainloop()

Now, let me click a random position on the frame (Figure 17-1).

Figure 17-1. Left mouse button click event

371

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER
I clicked somewhere in the middle, and the result was this:

= RESTART: C:\Users\aarthilAppData\Local\Programs\Python\
Python38-32\tkPrograms.py
X:93,Y:91

That’s an x of 93 and y of 91. Sweet!

Similarly, you can look for keyboard key presses too. You need to
use the <Key> bind for that, and you can use the event.char property to
print out the exact key that was pressed. This only works for keys that are
printable and not for keys like space, F1, and so on. There are separate
event binds for that.

You can use the <Motion> event to run functions when you move the
mouse cursor over your widget. The <Return> event fires when the user
presses the Enter key and so on.

Okay, now that you've learned how events work, let’s start working on
our tic-tac-toe game!

Tic-tac-toe game — explanation

We've just been creating mini projects so far. But in the real world, you
need to do a lot more than draw a few shapes or run a bunch of loops.
In the real world, you'll create games and apps that are used in people’s
everyday life.

So in this chapter, we’re going to create our very first such game. Let’s
create the classic tic-tac-toe game. Our app will look something like this
(Figure 17-2).

372

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

f TicTacToe o
X (@) o
X
o X wen!
x OK
New Game

Figure 17-2. Tic-tac-toe game in Tkinter

We have our game board with nine boxes on which you can draw.
There are two players: X and O, who get alternate turns to draw on
the board. If a player draws on three consecutive boards (vertically,
horizontally, or diagonally), then that player wins. If no one achieved that
and all nine boards are filled, the game is a draw.

It’s a simple game. I'm going to be introducing “messagebox” which
will help you create the message popups you see in your laptop’s programs.

Set up Tkinter

Let’s start by importing everything from Tkinter, as usual. But we also need
to import messagebox because when you use *, you're just importing the
outside classes and functions, not exactly “everything”.

from tkinter import *
from tkinter import messagebox

Let’s set up our window next. I'm going to change my window’s title to
‘tic-tac-toe!

w = Tk()
w.title('Tic Tac Toe')

373

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Create global variables

We looked at global variables in the function chapter, remember? Global
variables can be used to keep track of changes happening across multiple
functions. We need multiple global variables in this case.

For instance, we need to keep track of the overall changes happening
to the “turn” variable that counts the number of turns used up by the
players (tic-tac-toe offers nine turns in total).

turn = 0

Next, we need a list that'll keep track of who's played on which box.
This list will have nine pre-defined items that currently hold empty strings.
We'll replace them with either “X” or “O” depending on who plays on
which box.

State:["’II’II)","’II’II)","]
Next, we need a two-dimensional list (lists within a bigger list) that'll

hold all the win states (Figure 17-3). We’ll compare these win states after
every player plays to check if someone won the game.

374

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Figure 17-3. Tic-tac-toe boxes (numbered)

Look at the preceding image. In tic-tac-toe, a player wins if they draw
their symbol on three consecutive boxes, either vertically, horizontally, or
diagonally. 1,4,7 is the first vertical win state. 1,2,3 is the first horizontal
win state. 1,5,9 is the first diagonal win state and so on.

There are three vertical win states, three horizontal win states, and two
diagonal win states. A total of eight win states.

Let’s store them in our list. But since we're working with lists here, and
their index start from 0, let’s convert 1,2,3 to 0,1,2. Do the same for the rest
of the win states, and you'll get something like this:

Winner = [[0)1)2]) [3)4)5]) [6)7)8]) [0)3)6]) [1)4)7]) [2)5)8])
[0,4,8], [2,4,6]]

Finally, let’s create a variable “game” that'll store the state of the game.
It'll be True when we start the game, and if someone won, or if the game
ends in a draw (all nine boxes were used up but no one won), we will
change the value of “game” to False so no one can draw on the boxes.

game = True

375

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Create the buttons

We need nine boxes on which the players can “draw’, am I right? Why not
make things simple and create buttons? We can make their text a single-
spaced string to start with, and every time a player plays, we can change
the text to either “X” or “O” That'll work!

Before we create the buttons, let’s define a variable “font” that’ll store
the fonts we need for the button text (what our players “draw” on the
buttons). “Helvetica’, 20 for the text size, and “bold” font.

font = ('Helvetica',20, 'bold")

Next, let’s create nine buttons, one for each box. We're going to make
the text a single space, height 2, and width 4. Let’s assign the “font”
variable we created to the font.

Finally, we're going to see some real use of the “lambda” functions
we learned about in the functions chapter. So far, whenever we used the
command property on a button, we didn’t have to send arguments to the
function being called.

But now, we need to send two arguments: one being the actual button
that was clicked and the other being the number of the button that was
clicked (starting from 1).

If you want to send arguments an event like that, you need to wrap the
function call around a lambda, like you'll see in the following. You don’t
need any arguments for the lambda in itself because it’s serving as an
anonymous function now. And your one line of code will be the function
call to the buttonClick() function with the arguments b1 and 1 sent inside it.

Let’s repeat this process for the rest of the buttons. Let’s also place the
buttons in the grid parallelly. It’s a normal grid arrangement.

#9 buttons
bl = Button(w, text=' "', width=4, height=2, font = font,
command = lambda: buttonClick(b1,1))

376

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

b1.grid(row=0,column=0)

b2 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b2,2))
b2.grid(row=0,column=1)

b3 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b3,3))
b3.grid(row=0,column=2)

b4 = Button(w, text=' "', width=4, height=2,

command = lambda: buttonClick(b4,4))
b4.grid(row=1,column=0)

b5 = Button(w, text=' "', width=4, height=2,

command = lambda: buttonClick(bs,5))
b5.grid(row=1,column=1)

b6 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b6,6))
b6.grid(row=1,column=2)

b7 = Button(w, text=" ', width=4, height=2,

command = lambda: buttonClick(b7,7))
b7.grid(row=2,column=0)

b8 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b8,8))
b8.grid(row=2,column=1)

b9 = Button(w, text=" "', width=4, height=2,

command = lambda: buttonClick(b9,9))
b9.grid(row=2,column=2)

font

font

font

font

font

font

font

font

font,

font,

font,

font,

font,

font,

font,

font,

Create a buttonClick() function definition on top of the buttons and

just place a pass on it (so you don’t get an error saying that the function

is empty). We'll fill the function definition with the relevant code in the

next part.

377

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Let’s run the program, and we get this (Figure 17-4).

Figure 17-4. Nine boxes - created

This is what we have so far. Nice!

When the button is clicked, draw on it

Now let’s define our buttonClick() function. This should come above the
block of text where we created our buttons (function definition before
function call rule).

We'll be accessing the global variables turn, state, and game in this
function, so let’s load them first.

#When a button is clicked
def buttonClick(b,n):
global turn,state,game

Next, before drawing on the particular box, let’s check if the box is
currently empty. If it is occupied (a player already drew on it), we shouldn’t
draw on it again, and instead, your game has to pop up an error message.

378

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Also, check if the game is still True (no one won, and the nine tries
aren’t used up yet).

if b['text'] == " ' and game == True:

If the conditions hold true, then check who'’s currently playing. Player
“X” starts the game, and since we started our “turn” at 0, whenever it’s X’s
turn, the value of “turn” will be an even number. You know how to check
for an even number, right? Do that.

#thasn't been clicked on yet
if turn % 2 ==

So, if it’s X’s turn, then change the button’s text to “X’, increase the
value of turn by 1, and change the value of state[n-1] to “X” Why n-1? Well,
a list’s index starts from 0, and our buttons’ number started from 1, so we
need to decrease the value by one before using it in “state”.

#player X's turn
b["text'] = 'X'
turn += 1
state[n-1] = 'X'

The minute you draw on a box, call the winner_check() function
and send “X” as the parameter. We'll define the winner_check() function
shortly. If you're coding along with me, for now, just type pass inside the
function so you don'’t get an error for not defining it, but calling it. Also,
create the winner_check() function above the buttonClick() function
because we're calling from buttonClick.

#winner check
winner check('X")

379

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Okay, now that’s done, let’s check if turn is even, that is, if it’s O’s turn.
If it is, do the same as earlier, but just for “O”.

elif turn % 2 == 1:
#player 0's turn
b['text'] = '0'
turn += 1
state[n-1] = '0'
winner check('0")

Let’s run what we have so far and see if we can “draw” on our boxes
(Figure 17-5).

Figure 17-5. “Draw” on the boxes

Yes, we can!

Finally, check for the “else” condition. Either the game is already over,
or someone already drew on the box, and you don’t want a repeat.

In messagebox, you have a showinfo method that can be used to, yup,
you guessed it, print a message. Let’s use that.

380

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

If the “game” variable is False (game over), print ‘Game over! Start a
new game. If the box was already drawn on, print ‘This box is occupied!.

else:

if game == False:
messagebox. showinfo('showinfo', 'Game over! Start a new
game.")

#because even when the game is over, the buttons will be

occupied, so check for that first

elif b['text'] != " ":
messagebox. showinfo('showinfo', 'This box is occupied!")

Let’s check if the error boxes work now (Figure 17-6).

o This box is occupied!
oK |

Figure 17-6. Box is occupied

I tried drawing on an occupied box, and this message popped up.
Great! The other condition isn’t relevant right now because we haven’t
checked for winners yet, so the game won’t get “over” yet.

It looks like the program is almost over, right? We've drawn on it. We've
even created the winner_check() function to work on next. But are we
really done with buttonClick()? Nope.

381

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

We still need to check for the draw condition! What if the value of turn
is greater than 8 (players have played nine times) and the value of “game”
is still true? If “game” is still True, that means no one has won yet because
when we call the winner_check() function, if we find someone has won, we
immediately change “game” to False.

So, the only reason we’re out of turns and the game is still True is
because we're at a draw. Let’s print that message and end the game
(change “game” to False).

#igame ended on draw

if turn > 8 and game == True:
messagebox. showinfo('showinfo', 'The match was a Draw')
game = False

That's it for buttonClick()! Whew. That was big.
Let’s run the program, and check if the “draw” condition works
(Figure 17-7).

§ TicTacToe - O
X o X
X X o
0 The match was a Draw
(0 X o
oK

Figure 17-7. Match was a draw

382

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Yup, it works! But we need the winner_check() to make everything
work properly.
Let’s look at winner_check() next.

Check if a player won during each turn

Every time a player plays, we need to check if that player just won the game
at that turn. This function accepts the player (“X” or “O”) as its argument.

#Every time a button is clicked, check for win state
def winner check(p):

Let’s also import the global variables state, winner, and game, because
we'll need them.

global state,winner,game

Now, we need to loop through the winner. So for every iteration of the

(- ”

loop, “i” will have one of the “win” state lists.

For every iteration, let’s check if state[i[0]], state[i[0]], and state[i[0]]
hold the same value of player (“X” or “O”).

For example, the first inner list is [0,1,2], so we're checking for state[0],
state[1], and state[2], and if they all hold the string “X’, then plalyer “X”

won. If they all hold “O’, “O” won. That’s it!

for i in winner:
if((state[i[0]] == p) and (state[i[1]] == p) and
(state[i[2]] == p)):

If the condition holds true, then create a string that basically says “X
won!” or “O won!” and create a message with it. Finally, change the value
of “game” to False.

string = '{} won!'.format(p)
messagebox . showinfo('showinfo',string)
game = False

383

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Let’s run our program now, and we get this (Figure 17-8).

f TicTacToe - B B
X (o} (@)
X

X

Figure 17-8. X won!

Whoa! It works!

Does the “Game over” condition work? Let me close the current
message box and try to draw on one of the empty boxes by clicking it
(Figure 17-9).

o Game over! Start a new game.

Figure 17-9. Game over!

Look at that! Our “Game over!” message just popped up. Our game
works perfectly!

384

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

New game button

Why don’t we add a “New game” button to our game? Right now, our game

just hangs after it’s over. We have to run the program again to start a new

game. If we had a button that just reset everything, that'd be great, won’t it?
Let’s do that. Let’s create a button first.

new = Button(w,text="New Game',command=new_game)
new.grid(row=3,column=1)

This button will execute the new_game() function when clicked.

Now, let’s create the new_game() function above the “new” button.

Before we define the function, let’s create a list of all our buttons. We'll
need this to loop through the buttons and clear them (so we can draw on
them again).

#create a list of the buttons so we can change their text
boxes = [b1,b2,b3,b4,b5,b6,b7,b8,b9]

Our new_game() function needs the global variables state, game, turn,
and boxes. We need to import state, game, and turn so we can reset them
back to their original values.

#New game
def new_game():
global state,game,turn,boxes

Let’s reset turn, state, and game.
turn = 0
State:["’II,II)","’II,II)","]

game = True

385

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Finally, let’s loop through “boxes” and change the text value of each
box to a single space.

for b in boxes:
b["text'] = ' '

That'’s it for our program! I'm sure you’d have done that already, but if
you forgot, add a mainloop() at the end of your program.

w.mainloop()

Let’s run the program now, and we get this (Figure 17-10).

New Game

Figure 17-10. New Game button

We have our “New Game” button now. Try testing it. It works perfectly!

Did you have fun creating the game? I know I had fun creating it and
teaching you how to create it. Tinker with the game. Change fonts, colors,
and so on. All the best!

386

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

Entire program

Now that you've learned how to create a tic-tac-toe game in Tkinter, here’s
the entire program in the order in which it should be written. Use it for
your reference.

from tkinter import *
from tkinter import messagebox

w = Tk()
w.title('Tic Tac Toe')

turn = 0

State = [”JII)Il)”)”JII)Il)”)”]

Winner = [[OJl)Z]) [3)4)5]) [6)7)8]J [OJ3)6]) [1J4)7]) [2)5)8])
[0,4,8], [2,4,6]];

game = True

#Every time a button is clicked, check for win state
def winner check(p):
global state,winner,game
for i in winner:
if((state[i[0]] == p) and (state[i[1]] == p) and
(state[i[2]] == p)):
string = '{} won!"'.format(p)
messagebox.showinfo('showinfo',string)
game = False

#When a button is clicked
def buttonClick(b,n):
global turn,state,game

if b['text'] == " ' and game == True:
#hasn't been clicked on yet
if turn % 2 ==

387

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

#player X's turn
b['text'] = 'X'
turn += 1
state[n-1] = 'X'
#winner check
winner check('X")
elif turn % 2 ==
#player 0's turn
b["text'] = '0'
turn += 1
state[n-1] = 'O’
player = 'X'
winner check('0")
else:
if game == False:
messagebox.showinfo('showinfo', 'Game over! Start a
new game.")
#because even when the game is over, the buttons will
be occupied, so check for that first
elif b['text'] !'= "' ":
messagebox. showinfo('showinfo', 'This box is
occupied!")

#igame ended on draw

if turn > 8 and game == True:
messagebox. showinfo('showinfo', 'The match was a Draw')
game = False

font = ('Helvetica',20, 'bold")

#9 buttons
bl = Button(w, text=' "', width=4, height=2, font = font,
command = lambda: buttonClick(b1,1))

388

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

b1.grid(row=0,column=0)

b2 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b2,2))
b2.grid(row=0,column=1)

b3 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b3,3))
b3.grid(row=0,column=2)

b4 = Button(w, text=' "', width=4, height=2,

command = lambda: buttonClick(b4,4))
b4.grid(row=1,column=0)

b5 = Button(w, text=' "', width=4, height=2,

command = lambda: buttonClick(bs,5))
b5.grid(row=1,column=1)

b6 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b6,6))
b6.grid(row=1,column=2)

b7 = Button(w, text=" ', width=4, height=2,

command = lambda: buttonClick(b7,7))
b7.grid(row=2,column=0)

b8 = Button(w, text=' ', width=4, height=2,

command = lambda: buttonClick(b8,8))
b8.grid(row=2,column=1)

b9 = Button(w, text=" "', width=4, height=2,

command = lambda: buttonClick(b9,9))
b9.grid(row=2,column=2)

font

font

font

font

font

font

font

font

font,

font,

font,

font,

font,

font,

font,

font,

#icreate a list of the buttons so we can change their text

boxes = [b1,b2,b3,b4,b5,b6,b7,b8,b9]

389

CHAPTER 17 PROJECT: TIC-TAC-TOE GAME WITH TKINTER

#New game
def new_game():
global state,game,turn,boxes

turn = 0
state = ["', """,]
game = True
for b in boxes:
b["text'] = "'

new = Button(w,text="New Game',command=new_game)
new.grid(row=3,column=1)

w.mainloop()

Summary

In this chapter, we started with comments in Python and how to create
single and multi-line comments. Then we moved on to variables, how to
create them, their naming conventions, and what you can store in them.
Then we looked at the vast number of data types available in the Python
programming language and how to use them. Then we looked at type
checking in Python, and finally we looked at getting inputs in Python and
displaying them in your output.

In the next chapter, let’s go deep into strings, how to create them and
use them, and the various pre-defined string methods Python equips you
with.

390

CHAPTER 18

Project: Paint App
with Tkinter

In the previous chapter, we learned how to create a tic-tac-toe app with
Tkinter. We also learned all about events and how to use them to make our
app respond to external events (mouse click, keyboard key press, etc.).

In this chapter, we’ll learn all about “drawing” on your Tkinter screen
using “canvas” and use that to make a paint app. You'll be able to draw
with a pen and draw circles/ovals, straight lines, and squares/rectangles.
You'll also be able to change the size of your pen and your shapes’ outline
colors and fill colors. It’s a simple, but complete app!

Paint app - explanation

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_18

https://doi.org/10.1007/978-1-4842-6812-4_18#DOI

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Our paint app is going to be awesome! You're going to be able to do
free-hand drawing and draw straight lines, squares, rectangles, ovals,
and circles. You can also choose from hundreds of different color shades.
Cool right?

Once we're done, it'll look something like Figure 18-1.

rww Cpbons Salectioe Chosss Coler Claw

Figure 18-1. Final app

I'm no artist, so please forgive my basic drawings, but you can see how
powerful this app is, right? And the best part is that this is just the starting
point. You can expand this app, add more features, and make it into
anything you want.

Share it with your friends, have paint competitions, or just have fun!

Get started

Let’s start by importing Tkinter. Let’'s import everything, as usual, but
doing so will only import the “outer” classes. It won’t import the inner
ones, like the colorchooser, for example. We need the color chooser to
create color palettes for our app. So, let’s import that as well.

392

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

from tkinter import *
from tkinter import colorchooser

Now, let’s create and initialize our variables. To draw on the screen,
you need coordinates, the x and y points of where your mouse pointer is
clicking on the screen. Let’s create x and y variables and assign them 0
each to start with.

I've used a new way of assignment now. Makes things easy, doesn’t it?

X, y = 0,0

Next, let’s create a variable “color” and make it None (no value) to start
with. You can make it an empty string as well. This variable will hold our
shapes’ fill colors in the future. We also need a color for our “pen” or our
shapes’ outline, so let’s create a variable “outline” and make it black as
default. We also need a pen size. It's going to be 1 by default.

color = None
"black'
1

outline

sizeVal

Set up the screen

Now, let’s set up our screen. We're going to make the state of our screen
“zoomed” by default, so it expands to the full screen. Also, we're going to
configure our rows and columns in such a way that the first cell (row 0 and
column 0) is going to expand to the full width and height of the screen. We
can place our canvas inside this cell, so it expands to the full screen as well.

w = Tk()

w.title('Paint Application')
w.state('zoomed")
w.rowconfigure(0,weight=1)
w.columnconfigure(0,weight=1)

393

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

We've given the weight as 1 to let our program know that this particular
row and column should expand to its maximum capacity.
Let’s run our program, and we get this (Figure 18-2).

Figure 18-2. Our Tkinter screen

Great!

Create the canvas

Now, let’s create our canvas. We need to use the Canvas method to do that
and place it in the window “w”. Let’s also make our canvas’ background
“white” by default.

#create a canvas
canvas = Canvas(w, background='white")

Next, I'm going to place my canvas in the first row and column (0) and
make it sticky in all directions (north, south, east, and west) so it expands
in all directions and takes up the entire space (which is our entire screen as

of now).

canvas.grid(row=0,column=0,sticky="NSEW")

394

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Let’s run the program now, and we get this (Figure 18-3).

Figure 18-3. Canvas

Perfect! We have our white canvas now.

Create your first menu (shapes)

If you looked at the completed app, you'd have noticed that we had
multiple menus to choose from. The first one is the shape menu. You'll be
able to choose between drawing with a pen and drawing a line, square, or
circle. Let’s create that menu now.

You already know how to create menus. Let’s create a main menu
that'll hold all our menus. Our “Draw Options” menu is going to be the first
submenu in our “main” menu. Let’s add a cascade to it and label it.

main = Menu(w)
menul = Menu(main)
main.add cascade(label="Draw Options',menu = menul)

Finally, let’s add four commands, ‘Pen, ‘Line,; ‘Square’ and ‘Circle’ But
we need to send the selection values to the “select” function, which will in
turn call the relevant function that’ll do the respective drawing. Let’s use
a lambda to do that. We’re going to number our options, pen is 1, line is 2,
square is 3, and circle is 4.

395

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

menul.add command(label="Pen', command=lambda: select(1))
menul.add command(label='Line', command=lambda: select(2))
menul.add_command(label="'Square', command=lambda: select(3))
menul.add command(label='Circle', command=lambda: select(4))

Finally, let’s configure our “main” menu to our window. In the future,
this line should come after we've created all four of our menus.

w.config(menu=main)

If you run your program now, and try clicking the menu items, you’ll
get an error because your “select” function isn’t defined yet, but still, you'll
see your menu, like this (Figure 18-4).

Draw Options

quare
Ciecle:

Figure 18-4. First menu (draw options)

Whoal! First step is a success!

Let’s make our draw options work!

Now that we have our draw options menu, let’s make it work. Let’s first
create the “select” function that binds the canvas with the relevant mouse
clicks. Create this function above the menus (function calls). We need two
kinds of binds.

396

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

For the free-hand drawing, we need a <B1-Motion> bind that draws a
line every time our left mouse button clicks and drags on the screen. So,
we'll essentially get tiny lines between every 2 minute points, so essentially
hundreds of tiny lines that join are joined together to make our free-hand
drawing.

Then, we need a <ButtonRelease-1> bind that draws either a line,
square, or circle whenever our left mouse button releases after it clicks and
drags on the screen. So, the result would be a line, square, or circle from
the point where it clicked to the point where it released.

Let’s do that now. Let’s receive our number as “options”. If options is 1,
then unbind <ButtonRelease-1>, so if we'd previously selected the other
options, it'll be unselected now, and we won't get a shape or line after we
release the pen. Then, let’s bind <B1-Motion> and call the draw_line function.

def select(options):
if options ==
#selected Pen, create bind
canvas.unbind("<ButtonRelease-1>")
canvas.bind('<B1-Motion>',draw line)

Similarly, for 2, unbind <B1-Motion> so the pen is no longer active and
bind the <ButtonRelease-1> and call the draw_line function.

if options ==
#selected line, create bind
canvas.unbind("<B1-Motion>") #so pen is no longer active
canvas.bind('<ButtonRelease-1>",draw_line)

For 3, call the draw_square function.

elif options ==
#iselected square, create bind
canvas.unbind("<B1-Motion>")
canvas.bind('<ButtonRelease-1>",draw_square)

397

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER
For 4, call the draw_circle function.

elif options ==
#selected circle, create bind
canvas.unbind("<B1-Motion>")
canvas.bind('<ButtonRelease-1>",draw_circle)

Get the mouse position

Before we create the draw_line functions, we need to get our mouse
position. We can do that using our “event’, as you know. So, let’s create
another bind outside of our functions (right above our menus and below
the function definitions) that binds any left mouse button click to the
canvas.

So, every time your user clicks the canvas, we’re going to make note of
the x and y positions of the same in the background.

We won’t draw anything until the user selects a draw option, but let’s
still make note in anticipation of that, alright?

canvas.bind('<Button-1>",position)

Now, define the function above the bind. Receive “event” in the
function definition. Let’s also load the global x and y values and assign
the event.x and event.y values (x and y coordinate positions of the mouse
click) to the x and y global variables.

Get the current position of the mouse on each left mouse button click

on the canvas.

def position(event):
global x,y
X,y = event.x,event.y

That'’s it! You could print out x and y and see this function in action.
Let’s make that our little activity, shall we?

398

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Let’s draw our lines

Now, let’s create the function that’ll draw both our mini lines for our free-
hand drawing and our straight lines. What do we need here?

There’s a create_line function in canvas which can be used to, yup,
you guessed it, draw straight lines! You just need to give the start and end
coordinate points. You can also specify the “fill’; which is essentially the
line’s color.

We'll be using the “outline” color for this because we want line colors
and shape outline colors to be uniform. You can also specify the width of
the line. Let’s give sizeVal as the value for this property.

You need to be careful how you mention the coordinate values though.
Mention the x and y coordinates of the starting point first and then the x
and y coordinates of the ending point. More importantly, mention all four
values inside of a tuple, or you'll get an error.

def draw_line(event):

Let’s load our x and y values, which is the point where the mouse first
clicked, which we calculate constantly using the position() function. Let’s
also load sizeVal, which is currently at 1. It'll automatically get updated
once we write the lines of code that’ll let the user manually change the
width of the lines.

global x,y,sizeVal

Now, the starting x and y positions are the x and y positions that
contain the point where the mouse clicked (the position() function). The
ending x and y positions are the event’s x and y positions.

In case of a free-hand drawing, every time the mouse is dragged (while
the left mouse button is still pressed down), we get a new event, and new x
and y positions, for every minute change.

399

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

For drawing a straight line, the end point is when the mouse button is
released.

canvas.create_line((x,y,event.x,event.y),fill=outline, width =
sizeval)

Finally, let’s update the x and y values with the event’s x and y values.
We especially need this for the free-hand drawing, so we can start over.

X,y = event.x,event.y

Let’s run our program now.

When we try to draw on the screen as such, nothing happens. Why?
Well, we haven'’t activated any of the options yet. But, if I select either pen
or line (from the menu), I can draw on the canvas (Figure 18-5).

Eviw Options

Hell®

/L

Figure 18-5. Free hand and straight lines

400

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Squares and rectangles!

Let’s draw our squares and rectangles now. The process is similar.
You have a create_rectangle method in canvas. Give the start and end
coordinates within a tuple again. In this case, you can mention two kinds
of colors, outline and fill colors, and finally the width of the shape.

Then, let’s assign the current event’s x and y values (mouse release) to
the first x and y values (left mouse click).

def draw_square(event):
global x,y,sizeVal
canvas.create rectangle((x,y,event.x,event.y),
outline=outline, fill=color, width = sizeval)
X,y = event.x,event.y

That’s it! Let’s run our program now. Select “Square’; hold your mouse
button down, drag it to the point you want, and release the button. You'll
get yourself a square or a rectangle. Try and see!

This is what I did (Figure 18-6). :P

EFEMD

N

=

Figure 18-6. Squares and rectangles

Beautiful squares and rectangles!
401

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Circles and ovals!

Finally, let’s draw circles and ovals. There’s another method called create_
oval. A perfectly formed oval is a circle, am I right? You need to give the
start and end points for this method as well.

Your start point is when you pressed the mouse button, and the end
point is the x and y value of the point where you finally released the mouse

button (mouse release event).

def draw _circle(event):
global x,y,sizeVal
canvas.create_oval((x,y,event.x,event.y), outline=outline,
fill=color, width= sizeVal)
X,y = event.x,event.y

Let’s run the program, and we get this (Figure 18-7).

T T e f/ \ I f'/f RN — //”F "“*x\\
(2 L ixk_,/) (A ¢)
—] U
N _ P e lll | - ﬂ“\l f’r‘\\ .r"v,' a ,::: :'"‘) - In
() O <Y C N | =/ \\J
il (:) lif/ ?) g) (\ / \\ \
i ~ o~ . -
G 2 | \ ;
~ \\' \ /l U \\;L\k\ ‘l \;&é f!
() U a N ol L S /
o x___/ (a’) e _'““'-%H;\J! B
N o A e (\/ /]

Figure 18-7. Circles

Nice! We've finished all our draw functions. We're almost there!

402

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Select size!

Now, let’s move on to the second menu in our program. So far, our lines
and the outlines of our shapes are too narrow in width. What if we want
them to be thicker? We need options for that as well. Let’s create them! I'm
going to create sizes from 1, 5, 10, to 30. 1 is the default we've set.

Let’s create a new submenu, menu2, for the sizes. Place this after
the menul’s code, but before the menu configuration line of code. Every
option is going to be a size, and I'm going to call the changeSize function
for every option click. We'll be sending the size as the parameter to this
function.

menu2 = Menu(main)

main.add cascade(label="Select Size', menu = menu2)
menu2.add_command(label="1", command=lambda: changeSize(1))
menu2.add_command(label="5", command=lambda: changeSize(5))
menu2.add_command(label="10", command=lambda: changeSize(10))
menu2.add_command(label="15", command=lambda: changeSize(15))
menu2.add_command(label="20", command=lambda: changeSize(20))
menu2.add_command(label="25", command=lambda: changeSize(25))
menu2.add_command(label="30", command=lambda: changeSize(30))

Now, define the function to change the size. You can place this
function after the select() function, or anywhere you want, as long as it’s
above menu2'’s lines of code (function calls).

This is a very simple process. Let’s receive our size, load the global
sizeVal, and assign our size to sizeVal. That’s it! Since sizeVal is global and
loaded into all our draw functions, once we change the size, the next time
we draw something, the new size will reflect in that drawing.

def changeSize(size):
global sizeVal
sizeVal = size

403

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Let’s check if this works! I'm going to draw a bunch of lines after
changing the size to 15 (Figure 18-8).

i Paint App - olEN
D O ect Sae

Figure 18-8. Change the width of your outlines

Those are some thick lines. :D

Lots and lots of colors!

Now, let’s create the third menu that’ll let us change the outline and fill
colors of our drawings.

Let’s create a menu3 that holds just two options, one to change the line
color and the other to change the fill color, each calling their respective
functions.

menu3 = Menu(main)

main.add cascade(label = 'Choose Color', menu = menu3)
menu3.add command(label="Line Color', command = set line color)
menu3.add command(label="Fill Color', command = set fill color)

404

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Now, let’s define those functions. We’'re going to use our colorchooser
to create our color palettes. There’s an askcolor method in colorchooser
that opens a palette when we need it (in this case, when the “Line color”
option is clicked). This opens in a new window. Let’s also set a title for that
window: Choose color.

def set line color():
global outline
getColor = colorchooser.askcolor(title="Choose color")

Now, you can’t just use getColor as it is. When we choose a color, let’s
say red, this is the format in which it gets registered in getColor:

((255.99609375, 0.0, 0.0), '#ff0000")

The first value in the tuple contains another tuple that holds the rgb
color value (red, green, and blue shades of our color). The second value
in the tuple contains the hexadecimal value of the color we just chose.
They're both the same, and you can just write it as “red” These are just
different formats in which you can mention a color. You don’t really need to
know about them or memorize them. Just know that every shade there are
hexadecimal and rgb values you can use and your computer recognizes.

Now, we can’t use the entire tuple. We just need one of its values. Let’s
just retrieve the second value and use it, shall we?

outline = getColor[1]

Now, every time we change the “Line color’, the value of “outline”
changes and it'll be reflected in our next drawing.
Now, let’s do the same for fill color.

def set fill color():
global color
getColor = colorchooser.askcolor(title="Choose color")
color = getColor[1]

405

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

That’s it for our colors! Let’s check if it works, shall we? Let’s click “Line

color” to see if the color palette opens up (Figure 18-9).

Paint App

-

-
o
5

=

o

3

A

A
»

Basic colors:

ErEFETCEEN

ErrErFEEN

ENEEEEE N

EfFEEEEEN 4

EEEEEEEN

EEEENTE

Custom colors:

EEEEEEEN T e

EEEEEEEN - B e R -
efine Custom Col Lum: | 120 Biue: 0

[ok || cance Add to Custom Colars

Figure 18-9. Colors!

It works!

Now, let’s choose our colors (Figure 18-10).

Derw Dptioas SalectSae Chosse Color

Figure 18-10. Final app, done!

All our colors work perfectly!

406

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

I’'ve finished drawing!

Okay, we have our little paint app. We've drawn to our heart’s content! But
what if we want to start over? We need an option to clear the canvas. Let’s
create that!

First, the menu.

menu4 = Menu(main)
main.add cascade(label = 'Clear', menu = menu4)
menu4.add_command(label = 'Clear', command = clear screen)

Now, the clear_screen() function. We just need a single line of code:
canvas.delete(‘all’). This will delete everything on the canvas.

def clear screen():
canvas.delete('all")

This is how the option will come up (Figure 18-11).

Draw Options Select Size Choose Color | Clear
Clear |\

Figure 18-11. Clear

Draw something and select the clear option to see everything
disappear! Take a screenshot before you do though!

We've finished our paint app! :O Finally, if you haven’t written it
already, write the mainloop line of code, and we're done.

w.mainloop()

407

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Entire program

Now, the entire program in the order it should be created:

from tkinter import *
from tkinter import colorchooser

X, y =0,0

color = None
outline = 'black'
sizevVal = 1

w = Tk()

w.title('Paint App')
w.state('zoomed")
w.rowconfigure(0,weight=1)
w.columnconfigure(0,weight=1)

#create a canvas
canvas = Canvas(w, background='white")
canvas.grid(row=0,column=0,sticky="NSEW")

def draw_line(event):
global x,y,sizeVal

canvas.create line((x,y,event.x,event.y),fill=outline,

width = sizeVal)
X,y = event.x,event.y

def draw_square(event):

global x,y,sizeVal

canvas.create rectangle((x,y,event.x,event.y),
outline=outline, fill=color, width = sizeval)

X,y = event.x,event.y

408

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

def draw _circle(event):
global x,y,sizeVal
canvas.create oval((x,y,event.x,event.y), outline=outline,
fill=color, width= sizeVal)
X,y = event.x,event.y

def select(options):

if options ==
#selected Pen, create bind
canvas.unbind("<ButtonRelease-1>")
canvas.bind('<B1-Motion>',draw line)

if options ==
#selected line, create bind
canvas.unbind("<B1-Motion>") #so pen is no longer
active
canvas.bind('<ButtonRelease-1>",draw line)

elif options ==
#selected square, create bind
canvas.unbind("<B1-Motion>")
canvas.bind('<ButtonRelease-1>",draw_square)

elif options ==
#selected circle, create bind
canvas.unbind("<B1-Motion>")
canvas.bind('<ButtonRelease-1>",draw _circle)

def position(event):
global x,y
X,y = event.x,event.y

def changeSize(size):
global sizeVal
sizeVal = size

409

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

def set line color():
global outline
getColor = colorchooser.askcolor(title="Choose color")
outline = getColor[1]

def set fill color():
global color
getColor = colorchooser.askcolor(title="Choose color")
color = getColor[1]

def clear screen():
canvas.delete('all")

canvas.bind('<Button-1>",position)

#options

main = Menu(w)

menul = Menu(main)

main.add cascade(label='Draw Options',menu = menul)
menul.add command(label="Pen', command=lambda: select(1))
menul.add command(label="'Line', command=lambda: select(2))
menul.add command(label='Square', command=lambda: select(3))
menul.add command(label="Circle', command=lambda: select(4))

menu2 = Menu(main)

main.add cascade(label="Select Size', menu = menu2)
menu2.add_command(label="1", command=lambda: changeSize(1))
menu2.add_command(label='5"', command=lambda: changeSize(5))
menu2.add_command(label="10", command=lambda: changeSize(10))
menu2.add_command(label="15", command=lambda: changeSize(15))

410

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

menu2.add_command(label="20", command=lambda: changeSize(20))
menu2.add_command(label="25", command=lambda: changeSize(25))
menu2.add_command(label="30", command=lambda: changeSize(30))

menu3 = Menu(main)

menu3)

set_line color)
set fill color)

main.add cascade(label = 'Choose Color', menu

menu3.add command(label="Line Color', command
menu3.add_command(label="Fill Color', command

menu4d = Menu(main)
main.add cascade(label = 'Clear', menu = menu4)
menu4.add command(label = 'Clear', command = clear screen)

w.config(menu=main)
w.mainloop()

411

CHAPTER 18 PROJECT: PAINT APP WITH TKINTER

Summary

In this chapter, we learned about “drawing” on our Tkinter screen using
“canvas” and used that to make a paint app. We drew with a pen and drew
circles/ovals, straight lines, and squares/rectangles. We also changed the
size of your pen and our shapes’ outline colors and fill colors.

In the next chapter, let’s go back to our original package, the Turtle
package. Let’s create a full-blown snake app with Turtle, scoreboards, and
all. It’s going to be a fun and interesting ride. Buckle up!

412

CHAPTER 19

Project: Snake Game
with Turtle

In the previous chapters, we took a deep dive into Tkinter. We learned all
about creating widgets in Tkinter, styling them, making them do things
when events are performed on them, and also drawing on canvases. We
also looked at creating two big projects - a tic-tac-toe game and a paint
application.

In this chapter, let’s go back to Turtle. We've worked on Turtle all these
chapters, but we never created a real-world application. So, let’s create a
snake game in this chapter.

Snake game

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_19

https://doi.org/10.1007/978-1-4842-6812-4_19#DOI

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

It's a very simple game. You have your snake, which is drawn as a
square in our game. We start with just its head, and when you press any of
the arrow keys, the head moves in the direction the arrows are pointing to.

Then, you have a red, ripe apple that’s the exact size of your snake
head. It appears in random positions, enticing your snake head to eat it.

Whenever your snake comes in contact with the apple (we're assuming
it ate the apple then), your apple disappears into the snake’s stomach.

The snake grows by one part (it just ate, so it should grow, right?). Another
apple appears in yet another random position on the screen.

The scoreboard increases by 1 every time the snake eats an apple.

But if the snake head collides with any of the four walls of the screen or
with its own body (it grew so big!), game over! ®

Simple enough game, isn’t it? Have you ever played it? Our final game
will look something like this (Figure 19-1).

7 Snake Game - olEH|

Figure 19-1. Snake game

Our snake had eaten six apples at that point and grown by six body
parts (seven including the head).

414

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Alright then. Now that you know how the snake game works, you must
have a brief idea of what we need to code to make all of this happen. Don’t
worry. I'll explain everything in detail.

Also, don’t get confused about the order in which you need to write
every piece of code. While I explain things, it might look jumbled, but I've
included the entire code in the correct order at the end of the chapter. You
can refer to it while coding your own game.

Let’s get started! This is going to be a slightly long, but very rewarding

journey!

Import the required modules

You need three modules for this game. You need the turtle package to draw
the snake, score, and apple. You need the random package to make the apple
appear in random positions, which is one of the main aspects of the game.
Finally, you need the “time” package. We've seen this package before,
and it makes a loop or function pause for a specified amount of time. We
need that now to make our snake move in a controlled pace. If we don’t
pace things, our snake will just move off the screen in a blink of an eye.

import turtle
import time
import random

Set up the turtle screen

We're going to set up a turtle screen with the same steps as we usually use.
Make the title ‘Snake Game’ and the background color ‘Black!

s = turtle.Screen()
s.title('Snake Game")
s.bgcolor('Black")

415

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

But in this case, we're going to use the setup() function to set up a
width and height (in pixels) for our screen. We need a specified width and
height so we know where everything is on the screen, so we can specify the

exact coordinates to move our snake around.
s.setup(width = 500, height = 500)

Finally, let’s get rid of the animation that happens whenever we draw
something on the screen. Animations are pretty, yes, but we're going to be
drawing so many things so fast that animating every piece of drawing is not
going to work out well for our game.

You can use the tracer() method (of our screen) and give an input of 0
to make this happen. Look at that! You've already learned a bunch of new
things in Turtle.

s.tracer(0) #gets rid of animation

Now, run the program and you'll get a black screen like this
(Figure 19-2).

[Snake Game - olEl

Figure 19-2. Game screen

416

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Create and initialize the required variables

We've seen this in our Tkinter programs already. Whenever you create a
program, you need some “global” variables that'll be used throughout the
program. We have some too.

There’s the “snake” list that’s going to contain the “turtle” of each of our
snake’s part. Every time we draw a snake part (including the head), we're
going to create a new turtle so all of those turtles can work together to draw
the entire snake at the same time. By storing these turtles in a list, we can
access them whenever we want and get their positions (you'll see how).

snake = []

We're going to make the size 20. This is the width and height of your
squares (snake head, snake parts, apple). I'm going to make this value a
constant.

size = 20

Let’s also create a variable “key” that stores which key is pressed: “u”
for up arrow key, “d” for down arrow key, “” for left arrow key, and “r” for
right arrow key. When we start the game, this value is going to be an empty
string.

key= [

Finally, let’'s make a “score” variable and initialize its value to 0 when
we start the game.

score = 0

Draw the head

Now that we've initialized the variable, let’s draw our head and make it
appear on our screen.

417

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

We're going to create a new turtle (head) for this. Make its speed 0,
shape square, and color green. Finally, move it to the position 0,0 (center
of the screen).

#Draw head

head = turtle.Turtle()
head.speed(0)
head.shape('square')
head.color('Green")
head.penup()
head.goto(0, 0)

Let’s also append this head to the “snake” list. Since the list is empty,
it'll occupy the first position in the list.

snake.append(head) #get the first head

Run the program and tell me what you see. Is it still a blank screen? :0
Where’s our turtle?!

Ah well, I guess we can’t see anything because of the tracer. We got rid
of the animation, remember? We need a game loop to make things right
this time.

You'll learn more about game loops in Pygame, but for now, just know
that every game needs a never-ending loop (usually a while loop) that runs
while the game is still “on”.

Let’s create such a loop now and use the update() method (of our
screen) to update the screen every time the loop is executed.

while True:
s.update()

That'’s it! Now run the program again, and you'll see a cute little snake
head on the middle of your screen (Figure 19-3).

418

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

i Snake Game - olEN

Figure 19-3. Snake head

Draw the first apple

Now that we've drawn our snake, let’s draw our first apple at its first
random position. We need another turtle for this, and we’re going to name
it “apple”

#Draw first apple
apple = turtle.Turtle()
apple.speed(0)
apple.shape('square")

Make its color red, and let’s move it to a random position.

apple.color('Red")
apple.penup()

419

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Read the following line of code. We're generating a random
number between -11 and 11 and multiplying that by 20. If you multiply
something by 20, you're creating multiples of 20, which is exactly what
we want because our snake head is going to move 20 points forward
every time it moves.

If our snake has to win, it should be able to superimpose the apple
completely, so the apple should appear in the same line of movement as
the snake. We need a multiple of 20 to make that happen.

Why arange of -11,11? Well, you can make it a little bigger, maybe -11,12
so the actual range is -11 to 11, but the entire premise is that the apple
should appear within the screen.

-11 *20 is -220. That’s the x,y position of the top-left corner of our
square, and then comes the square, which is of size 20. So, the top-right
corner of our square will be at -240, right?

That’s where it should end. If we move even further to the left, our
apple might disappear.

aX
aY

random.randint(-11,11)*20
random.randint(-11,11)*20

Finally, let’s go to the random x and y coordinates we just created.
apple.goto(aX,ay)

Did you notice that our pens (head and apple) are always “up”? Well,
that’s because we aren’t going to draw with them. The turtles(pens) are
going to be the game characters this time, not their drawings.

Let’s run the program, and we get this (Figure 19-4).

420

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

[} Snake Game - olEl

Figure 19-4. Head and first apple

Great! We have a snake head, fixed at the middle of the screen, and an
apple that appears at a random position within the screen.

Run the program multiple times and you’ll notice that the apple gets
drawn in a different position every time. Cool right?

Now, at the very end of the program (add the next lines of code before
this line), add the following:

s.mainloop()

This is to make sure that the screen is open until we close it, so the
prompt doesn’t come up in the Shell while we’re playing the game.

Is my screen registering my arrow presses?

Most games have movement controls. We either use a joystick or keyboard
keys. Ours is a simple game, so we're going to stick to keyboard keys.

Shall we make our snake move when we press the arrow keys? Up,
Down, Left, or Right arrow keys.

421

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

To make your screen “listen” to keyboard key presses, that is, to know
that keys are being pressed, use your screen’s listen() method. Now, your
screen is listening. Place these lines of code after you draw your first apple
and snake head, but before the while loop (game loop).

#lListen to the events and act
s.listen()

Now, you can use the onkeypress() methods to call user-defined
functions when key presses happen. This works similar to how we did
things in Tkinter, with the only difference that our function call comes
before the “event” we're looking for.

Our events are ‘Up, ‘Down, ‘Left, and ‘Right! These are values your
onkeypress() function is expecting, so place them within quotes and write
them without changing case. Your functions can be anything. I've made
mine set_up, set_down, set_left, and set_right.

s.onkeypress(set_up,'Up")
s.onkeypress(set_down, 'Down")
s.onkeypress(set left,'Left")
s.onkeypress(set_right, 'Right")

Now that we've called our function, we need to create them (or we’'d
get an error). Let’s define our functions above the onkeypresses. Each
function will load the global “key” variable, and change the value to ‘up,
‘down, ‘right, or ‘left’

But we need to keep track of something here. In the snake game,
snakes can’t move backward, or they’ll just hit their own body (which ends
the game), so we need to check if the user is trying to move back.

For example, if the current value of key is ‘down, then we shouldn’t
change the value to ‘up’ next. Ignore that particular key press and so on.

422

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

def set up():
global key #so the global variable key can be used in a
local context here
if(key != "down'):
key = 'up'
def set _down():
global key
if(key != "up'):
key = 'down'
def set left():
global key
if(key != 'right'):
key = 'left'
def set_right():
global key
if(key != 'left'):
key = 'right’

Alright, we've officially changed direction. But if we run the program
now, we wouldn't see a difference. Press keys. Does anything happen?
Nope. We haven'’t written the code to make our snake move yet! Let’'s do
that next.

Make our snake head move

So, in a snake game, once we set a direction, the snake will move in that
direction automatically, until we change the direction again. So basically,
once the snake starts moving, it'll continue to move until it collides with
something.

To create this automatic movement, we're going to call a moveHead()
function from within our game loop.

423

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

while True:
s.update()
moveHead()

But, we aren’t going to stop there. We're going to run the while loop
at a delay of 0.2 seconds for every iteration, so that the human eye can
actually see the snake move.

Every iteration of a loop gets executed in microseconds. That’s how
powerful and fast Python and your computer are. But, this is a game. We
need something the human eye can see, so let’s slow down our program,
shall we? Make it sleep for 0.2 seconds after every iteration.

time.sleep(0.2)

Okay, now that we're done with the “while” loop, let’s create the
moveHead() method to set the x and y coordinates of the head.

We're going to continuously change the x and y coordinates of the head
by 20 points for every function call (which happens at a 0.2-second delay),
so the head moves forward by 20 points every 0.2 second (Figure 19-5).

Figure 19-5. Game screen coordinates

424

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Look at the preceding illustration. If you want to move your snake to
the left, decrease the value of X while keeping the value of Y the same. To
move to the right, increase the value of X. To move up, increase the value of
Y (X remains the same). To move down, decrease the value of Y.

Simple enough? Let’s apply this to our code now!

#Make it move based on the set direction

We don’t need to load “key” in this function because we aren’t
changing/re-assigning its value. We're just retrieving its value. Retrieve the
current x or y coordinates of the “head” turtle (snake’s head in our game)
using the xcor() and ycor() methods. Now you know why we stored the
entire turtle in our list. This is so we can use it to get a lot of information
about it (like its position).

Increase or decrease the x or y coordinate by “size” (20 pixels) because
that’s our measurement. Our apple is going to appear along one of these
points as well.

def moveHead():

if key == 'up':
head.sety(head.ycor() + size)
if key == 'down':
head.sety(head.ycor() - size)
if key == 'left':

head.setx(head.xcor() - size)
if key == 'right':
head.setx(head.xcor() + size)

Now, run the program and try to make the snake move (Figure 19-6).
It will!

425

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Figure 19-6. Move the snake head

If you try to move it backward, it wouldn’t. Why don’t you try and see
for yourself?

Get the scoreboard going

Now that our snake’s head is moving around, we need to start scoring.
Before we grow our snake every time it “ate” an apple, let’s draw the
scorecard at the top-right corner of the screen, so we can keep track of the
code. Place this piece of code right below the code where you drew the first
apple. Don’t worry about the order. I'll paste the entire code in the right
order at the end of the chapter.

I'll be creating another turtle for the scoreboard because I want it to
“draw” the score while the other turtles are working. I'm positioning it at
the point 120,120 (toward the top-right corner).

426

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

#Draw the score

sc = turtle.Turtle()
sc.speed(0)
sc.pencolor('White")

sc.penup()
sc.goto(120,220)

To start with, let’s write ‘Score:0’ in Arial, 20 points, bold format. We’ll
be updating the value as the game progresses.

sc.write('Score:0',font=("'Arial’',20, 'bold"))

Let’s finally hide this turtle because we only need what it draws (unlike
the “apple” and “snake” turtles).

sc.hideturtle()

Run the program, and you get this (Figure 19-7).

iV Snake Game - olEN

Figure 19-7. Create the scoreboard

Yep, we have our scoreboard! (&) We're almost there, people!

427

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Our snake’s eating!

Now that we have our scoreboard done, let’s make our snake eat. Right
now, if our snake touches the apple, nothing happens. It'll just pass right
by it. It won’t grow and our apple won’t disappear either.

Place the next few lines of code (before the function definitions) inside
the “while loop’, right after the s.update() method.

So, we're going to check the distance between our snake’s “head” and
apple. If that distance is less than or equal to 0, that is, if the snake head
completely merges with the apple, then we want two things done:

1. Anew apple drawn in another random position. We’ll be
creating a drawApple() function that does this.

2. One more body part added to the end of the snake. We'll
be creating a new “turtle” as our head’s body part(s).
Let’s create a drawSnake() function that does this.

Turtle has a distance() method that checks if an object is in a particular
distance from another object. In our case, we're going to check if our
object has no distance from the other object (completely superimposed).

#icheck for eating

if head.distance(apple) <= 0: #completely superimposed
drawApple()
#Create a new body part
drawSnake() #keep the tail - old head

Let’s also increase the value of score by exactly 1 and call the
changeScore() method and send it the current value of score. This method
will update the scorecard.

score += 1
changeScore(score)

428

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Alright, that's it for our while loop (for now). We need to define three
functions now (above the calling “while” loop): one to draw a new apple,
one to change the score, and the next to draw the new snake body part
since it has to grow (it just ate, didn’t it?).

#Draw apple function

Follow the same procedure as before, when we drew our first apple, to
get the next x and y coordinates, and move the “apple” turtle to that point.
That's it!

def drawApple():
aX = random.randint(-11,11)*20
aY = random.randint(-11,11)*20
apple.goto(aX,ayY)

Now, let’s draw our snake body part. We're going to create a new turtle
every time our snake head eats an apple. So, every time our drawSnake()
function gets called, a new turtle “sBody” is going to be created. It’s going
to be square in shape and green in color just like our snake “head” Let’s
also append the new part to the “snake” list.

#draw snake
def drawSnake():
sBody = turtle.Turtle()
sBody.speed(0)
sBody.shape('square")
sBody.color('Green")
sBody.penup()
snake.append(sBody) #insert at the end

Now, let’s work on the changeScore method. Let’s make the score
“turtle” sc go back to its 120,220 position (starting position). Let’s clear
what'’s currently there using the clear() method, create a new string with

429

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

the current score, and rewrite the text. Since the speed is 0, you won'’t see
any of this happening in real time, so for our human eyes, it'll look like the
scoreboard is updating itself seamlessly.

def changeScore(score):

sc.goto(120,220)

sc.clear()

string = 'Score: {}'.format(score)
sc.write(string,font=("Arial’,20,"'bold"))
sc.hideturtle()

Let’s run the program and try eating some apples (Figure 19-8).

v Snake Game - olEN

Score: 2

Figure 19-8. Create new snake parts (snake eats)

Well, the scoreboard seems to be updating properly. The apples do
disappear and appear in a new position. And we do seem to get new “body
parts” every time our snake eats, but they’re not joined together, and they
don’t move together. And, it looks like the new body parts are appearing on
top of each other (in the middle of the screen), so to our eye, we only see
one body part, while there should be two by now (since the score is 2).

430

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Why? Well, we haven’t asked them to do that yet. As you know, in
programming, you need to give detailed instructions for every little thing.
So, let’s do just that, shall we?

Make the entire snake move

Let’s update the while loop with a call to the moveBody(). This function
will attach the snake body parts to the head and make the body parts move
along with it.

Our while loop will look something like this once we’re done:

while True:

s.update()

#check for eating

if head.distance(apple) <= 0: #completely superimposed
drawApple()
#Create a new body part
drawSnake() #keep the tail - old head
score += 1
changeScore(score)

moveBody() #RIGHT HERE!

moveHead ()

time.sleep(0.2)

Make sure the call to the moveBody() function is BEFORE the
moveHead() function so they moves before the new head is drawn so it
looks like actual movement.

Now, let’s define the moveBody() function. We're basically going to
switch coordinates.

431

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Since we appended “head” at the start of the program, the Oth index
of the “snake” list is going to have our “head” turtle, am I right? Then,
we've appended other body parts, also turtles after the snake head. So, to
simulate movement, we need these body parts to shift their coordinates.

Right now, only “Head” moves because that’s the only code we've
written (moveHead() function). So, every time “head” moves to a new
coordinate, the body part right next to it (in the “snake” list) should move
to the head’s old coordinate. Now, the body part next to the first body part
should move to the first body part’s old position and so on until all the
parts of the snake have shifted 20 pixels forward.

How can we make that happen? In programming, whenever you want
to exchange values, you need a temporary variable that’ll hold the old
values.

So, we're going to create a temporary list temp that’s going to store all
the current x and y coordinates of the snake’s body parts.

We're going to create a “for” loop that loops through the “snake” list to
do this.

def moveBody():
temp = []
#icreate a list of the current positions

)

Let’s store just the x and y coordinates of each snake part in one “item’
of the list. We're going to create dictionaries within a list.

for i in snake:
x = i.xcor()
y = i.ycor()
temp.append({'x': x, 'y': y})

Now that we have our temporary list, let’s do our exchanges. We don’t
need to change the position of the item in the zeroth index (which is our
head, which moves on its own), so let’s create a for loop that loops from 1
through the length of the snake (1 - (len-1)), which is just the body parts.

432

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

#Move entire body
for i in range(1,len(snake)):

Since “temp” already has the “old” x and y coordinates of the entire
snake (including the head), we're just going to use that. So, let’s make
the turtle in the ith position (starting at the first index) go to the xand y
coordinates of the turtle in the i-1th position (which is our head, to start
with).

That's it! Since we used a dictionary to store our values in temp, we
need to access them as such. So, the x value of the first item in “temp”
would be temp|[0]['x'] and so on.

snake[i].goto(temp[i-1]["'x"],temp[i-21]["y"])

Let’s check if our snake moves now (Figure 19-9).

7 Snake Game - olEl

Score: 6

Figure 19-9. Make the entire snake move

It moves and grows perfectly. Whohoo!
Now, for the final part of the game. Collision check!

433

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Collision check

Before moving the head for the next time sleep, we need to do the collision
check, so the next movement does not happen. We're going to call the
checkCollision function, which is going to return a True if there’s a
collision, and if the result of the function call is indeed a True, we're going
to break the game loop (while loop). The updated while loop is this:

while True:
s.update()
#icheck for eating
if head.distance(apple) <= 0: #completely superimposed
drawApple()
#Create a new body part
drawSnake() #keep the tail - old head

score += 1
changeScore(score)
moveBody ()
moveHead ()

#Before moving the head for the next round, check for collision
if checkCollision():

break
time.sleep(0.2)

If we place the collision check anywhere else, before the body moves,
for instance, we might see inconsistencies in our game. For instance, try
placing the collision check between moveBody() and moveHead(). This
might seem logical at a first glance, but by doing this, you're creating a
body, moving it, but then immediately checking for collision before you
move the head. This will cause a body collision because right now your
first body part and your head are in the same position.

434

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

So, let’s move our snake completely, before checking for collision.

Now, let’s define the collision check function. This function is going to
load the global “key” variable because we are going to change it back to an
empty string, so the movement stops temporarily.

We're also going to create a variable “collision” and make its default
value False.

def checkCollision():
global key
collision = False

Let’s check for wall collision first. It’s quite simple, really. If the head’s
x ory coordinates are either greater than 240 or lesser than -240, then
collision is True.

#wall collision
if head.xcor() < -240 or head.xcor() > 240 or head.ycor() < -240
or head.ycor() > 240:

collision = True

Now, for body collision, let’s loop through 1 to length of the snake list
again (only the body parts, not the head). If the head’s x and y coordinates
are the same as the x and y coordinates of any of the snake’s body parts,
then a body collision has occurred, and collision is True again.

#body collision
for i in range(1,len(snake)):
if head.xcor() == snake[i].xcor() and head.ycor() ==
snake[i].ycor():
collision = True

435

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Finally, if collision is True, then make key an empty string again
(pause movement). The game is essentially over. If collision wasn’t True,
then nothing will happen, and the next iteration of the “while” loop will
continue.

if collision == True:
key =

#pause the movement

We need to do three things next:

1. Pause the program for 1 second so the user realizes
that the game is over.

2. Move the snake (all its parts) and apple off the
screen so it essentially “disappears”.

3. Draw a “Game Over” message. We need a new turtle
to do this. We're going to keep the scorecard so the
user knows what they scored last.

time.sleep(1) #pause for a bit so user registers what happened

Let’s loop through “snake” and move all its parts to 2000,2000
(essentially off the screen). Let’s move apple to a farther position as well.

for s in snake:
s.goto(2000,2000) #make it go off the screen
apple.goto(2500,2500)

We're going to create an ordinary Turtle, move it to the point -170,0
and draw ‘GAME OVER’ in white.

#game over message
game = turtle.Turtle()
game.penup()
game.goto(-170,0)
game.pencolor('white")

436

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

game.write('GAME OVER!',font=('Arial',40, 'bold"))
game.hideturtle()
return collision

Finally, let’s return collision back to the calling function. That’s it!
We've finished our game!

Let’s check if the collision works, shall we?

Let’s check for wall collision first (Figure 19-10).

é Snake Game - olEl

Figure 19-10. Wall collision

Yup, it works.
Now for body collision (Figure 19-11).

437

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

| @ Snake Game - oEl

Figure 19-11. Body collision

That right there is a coiled-up snake!

And after the mentioned 1-second delay, everything disappears,
and we're left with just the scoreboard and the “GAME OVER” message.
If the user wants to play again, they’ll have to run the program again
(Figure 19-12).

GAME OVER!

Figure 19-12. Game Over message

438

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

Whew! That was long, but certainly worth it! I hope you had a lot of fun

creating this game with me. I know I did!

Entire code

Now, the entire code, as promised:

#import the required modules
import turtle

import time

import random

#setup the screen

s = turtle.Screen()

.title('Snake Game")
.bgcolor('Black")

.setup(width = 500, height = 500)
.tracer(0) #gets rid of animation

n un unu wn

#icreate and assign the required variables
snake = []

size = 20
key - T
score = 0

#Draw the head

head = turtle.Turtle()

head.speed(0)

head.shape('square')
head.color('Green")

head.penup()

head.goto(0, 0)

snake.append(head) #get the first head

439

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

#Draw the first apple

apple = turtle.Turtle()

apple.speed(0)

apple.shape('square")

apple.color('Red")

apple.penup()

#figenerate a random integer that's a multiple of 20
#multiples of 20 that doesn't go beyond the screen (250,-250)
aX = random.randint(-11,11)*20

aY = random.randint(-11,11)*20

apple.goto(aX,ay)

#Draw the scoreboard at the beginning

sc = turtle.Turtle()

sc.speed(0)

sc.pencolor('White")

sc.penup()

sc.goto(120,220)
sc.write('Score:0',font=("Arial",20, 'bold"))
sc.hideturtle()

#Change the direction of the snake

def set up():
#so the global variable key can be used in a local
context here

global key
if(key != "down'):
key = 'up'
def set _down():
global key
if(key != "up'):
key = 'down'

440

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

def set left():

global key
if(key != 'right'):
key = 'left’
def set_right():
global key
if(key != "left'):
key = 'right'

#Make the snake move based on the set direction
def moveHead():

if key == 'up':
head.sety(head.ycor() + size)
if key == 'down':
head.sety(head.ycor() - size)
if key == 'left':

head.setx(head.xcor() - size)
if key == 'right':
head.setx(head.xcor() + size)

#tmake the new snake body move (if the snake has grown)
def moveBody():
temp = []
#create a list of the current positions
for i in snake:
x = i.xcor()
y = i.ycor()
temp.append({'x': x, 'y': y})
#Move entire body
for i in range(1,len(snake)):
snake[i].goto(temp[i-1]["'x"],temp[i-1]["y"])

441

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

#Draw apple function

def drawApple():
#igenerate a random integer that's a multiple of 20
#multiples of 20 that doesn't go beyond the screen (250,-250)
aX = random.randint(-11,11)*20
aY = random.randint(-11,11)*20
apple.goto(aX,ayY)

#Create a new snake part
def drawSnake():
sBody = turtle.Turtle()
sBody. speed(0)
sBody. shape('square")
sBody.color('Green")
sBody . penup()
snake.append(sBody) #insert at the end

#Update the score

def changeScore(score):
sc.goto(120,220)
sc.clear()
string = 'Score: {}'.format(score)
sc.write(string,font=("Arial’,20,"'bold"))
sc.hideturtle()

#Check for collision - wall & body
def checkCollision():
global key
collision = False
#wall collision
if head.xcor() < -240 or head.xcor() > 240 or head.ycor()
< -240 or head.ycor() > 240:
collision = True

442

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

#body collision
for i in range(1,len(snake)):
if head.xcor() == snake[i].xcor() and head.ycor() ==
snake[i].ycor():
collision = True
if collision == True:
key = '' #pause the movement
time.sleep(1) #pause for a bit so user registers
what happened
for s in snake:
s.goto(2000,2000) #make it go off the screen
apple.goto(2500,2500)
#game over message
game = turtle.Turtle()
game.penup()
game.goto(-170,0)
game.pencolor('white")
game.write('GAME OVER!',font=("'Arial’,40, 'bold"))
game.hideturtle()
return collision

#lListen to the events and act on the required key presses
s.listen()

s.onkeypress(set_up,'Up")

s.onkeypress(set_down, 'Down")

s.onkeypress(set left,'Left')
s.onkeypress(set right, 'Right")

#The main game loop that keeps the game running
while True:

s.update()

#icheck for eating

443

CHAPTER 19 PROJECT: SNAKE GAME WITH TURTLE

if head.distance(apple) <= 0: #completely superimposed
drawApple()
#Create a new body part
drawSnake() #keep the tail - old head
score += 1
changeScore(score)
#Move the body first, and then the head to the new position
moveBody ()
moveHead ()
#Before moving the head for the next round, check for collision
#If there's a collision, stop the game loop - no more movement
if checkCollision():
break
#A delay of 0.2 seconds before each movement
time.sleep(0.2)

#Keep the screen open until the user closes it
s.mainloop()

Summary

In this chapter, we created a snake game with our Turtle package. We
learned a bunch of new things, like using the time module to pause your
program for a while, creating game loops, getting the positions of your
turtles, moving your game characters, collision check, score keeping in a
2D game, and so much more.

In the next chapter, let’s learn all about Pygame. We'll learn how to
create simple 2D games in Pygame, which was created especially to make
games.

444

CHAPTER 20

Become a Game
Developer
with Pygame

In the previous chapter, we created a snake game with Turtle.

In this chapter, let’s learn get an introduction Pygame, a platform that’s
been extensively used for 2D game development. Let’s learn all about
creating our characters, using images as characters, setting up your screen
and modifying it, making your characters move, collision detections,
shooting bullets out of guns, scores, text, and so much more!

What is Pygame?

P

-

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_20

https://doi.org/10.1007/978-1-4842-6812-4_20#DOI

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Pygame s a cross-platform platform that consists of multiple Python
modules. It was designed for writing video games. It might seem simple
when you get started, but once you go deep into it, it’s quite powerful, and
you can create anything from simple text-based games to complicated,
sophisticated, multi-player world games with it.

In this chapter, let’s learn the basics of Pygame because exploring the
entire extent of its features and capabilities is beyond the scope of this
small chapter.

Install and import Pygame

Anything that’s beyond the standard Python code needs to be installed, am
I right? That holds true for Pygame as well.

But the problem is unlike Tkinter and Turtle, Pygame doesn’t come
installed in your standard Python installation. So, you need to install it
separately.

To install Pygame in your Python installation, go to your command
prompt and to the folder in which you've done your Python installation
(Figure 20-1).

446

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Programs and Features
Mobility Center

Power Options

Event Viewer

System

Device Manager
Network Connections
Disk Management
Computer Management
Command Prompt

Command Prompt (Admin)

Task Manager
Control Panel

File Explorer

Search

Run

Shut down or sign out

Figure 20-1. Open command prompt

In your command prompt, type the following:

pip install pygame

Press Enter and wait for a few seconds. You should get a message like

this (Figure 20-2).

447

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

icrosoft Windows [Uersion 6.3.96881
(c> 2013 Microsoft Corporation. All rights reserved.

:sUserssaarthilpip install pygame

ollecting pygame

Downloadin ame—2.0.0-cplI8—cpl8-win32.whl (4.8 MB>
H ! 4.8 MB 3.3 MB/s

[nstalling collected sackages: pagans

juccessfully installed pygame-2.8.8

Figure 20-2. Install Python

That’s it! Pygame is installed in your system now. Let’s use it in our
program next. Open your Python Shell and create a new script. Name it
whatever you want, just not pygame.

Unlike Tkinter and Turtle, you can’t just import pygame and be done
with it. You need to initialize the library as well. Use the init() method to do
that. Your program wouldn’t work until you initialize.

import pygame
pygame.init()

That'’s it We've imported Pygame, and we're ready to go!

Set up your gaming screen!

What's the next step in creating a game? You've created many so far, so
why don’t you guess? Yes! A screen. We need a screen where everything
happens.

Let’s do that now. I'm going to define a variable “screen” (you can
name yours anything you want) and use the display.set_mode method to
create my screen with the dimensions I want.

You need to give the width and height of your screen inside a tuple or a
list though. You'll get an error otherwise.

screen = pygame.display.set mode((500,500))

Now, let’s run our program and see what we get (Figure 20-3).

448

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

- CEEW

pygame window

Figure 20-3. Python window

We have our screen. Whoo!

But try closing your screen, and you'll find that you can’t. That’s
because unlike the other packages, Pygame needs special instructions
to close your screen. So, we're going to comb through all the events
happening on the screen, choose the event that corresponds to a left
mouse button click on the “x” (close) button, and ask Pygame to “QUIT”
when that click happens.

Simple enough? Let’s do that!

As you know, every game needs a game loop. A never-ending loop that
only ends when the game ends. Pygame is no exception. We're going to
create a “while” loop that becomes false when the close button is clicked.

game = True

Now, we're going to use a “for” loop to comb through all the events
happening on the screen. You can use the pygame.event.get() method to
get a list of the events, and you can iterate through them. For every iteration,
check if your event.type is pygame.QUIT (the close button click we're
looking for). If it is, make “game” False so the while loop stops executing.

449

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

while game:
for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

Once we're out of the game loop, we're going to use the pygame.quit()
method to close the screen.
Now try closing the screen. Does it close? Yup!

Make your screen pretty

Now, let’s make our screen pretty! Why don’t we start with changing the
caption (title) of the screen?

You need to use the display.set_caption method to do that. Place these
lines of code below the line where you created the screen (above the game

loop).
pygame.display.set caption('My first game')

Run the program, and see what you get (Figure 20-4).

- o IEH

My first game

Figure 20-4. Customize your screen

450

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Our title has changed!

Our screen is black in color right now. Why don’t we change colors? To
set our colors, we're going to be using RGB values.

R stands for Red, G stands for Green, and B stands for Blue. These three
colors are called primary colors, and different shades and combinations of
these three colors form the rest of the colors you see everywhere.

So, with these three values, we can come up with pretty much any
color. The values go from 0 to 255 for each of the three colors, where 0 is an
absence of any color and 255 is the presence of color.

Naturally, (0,0,0) is a complete absence of colors, which will give us
black, and (255,255,255) is a complete presence of colors, which will give
us white.

You can use the following website to find the RGB color codes of any
shade you want to use in your program:

https://htmlcolorcodes.com/

There are plenty of other websites out there that give you the same
information. Search for “color picker” or “rgb color codes” online to look
them up.

Now that we’ve learned how colors work, let’s fill our screen with red
color. That'd be 255,0,0 (complete presence of just Red).

Inside the “while” loop, below the for loop where we look at the events,
add the following lines of code:

screen.fil1((255,0,0))

But if you run the program now, you won'’t see the change. Why is that?
Well, the screen isn’t being updated for every iteration. You need to use the
display.update() method to update your screen.

pygame.display.update()

Now, run your program again, and you'll get this (Figure 20-5).

451

https://htmlcolorcodes.com/

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-5. Change screen background

Our color has changed! Whoo!

Create your characters on the screen

You can use the draw methods to draw lines, rectangles (or squares),
circles, or polygons. These can be your game characters.
It’s quite easy to draw a line. The syntax is as follows:

pygame.draw.line(screen,color, (x1,y1),(x2,y2),width)

You need to specify where you want the line drawn (the screen), the
color (in RGB), the x and y coordinates of the starting and ending points of
the line (each pair within a tuple), and, finally, the thickness of the line.

Let’s try this in our program. Place this line of code above the display.
update() method so the line gets updated to the screen:

pygame.draw.line(screen, (255,255,0),(50,50),(100,150),10)

Run the program, and you'll get this (Figure 20-6).

452

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-6. Draw line

We have our line in the exact position we wanted!
Next, let’s look at a rectangle. The syntax is this:

pygame.draw.rect(screen,color, (x,y,width,height),outline)

We need to specify the x and y position of the top-left corner point
of the rectangle and its width and height. If you mention the same width
and height values, you'll get yourself a square. The final value mentions
whether you want a fill or an outline. If you mention the outline as 0, you'll
get a completely filled rectangle. Any other value will get an outline. Let me
show you examples of both:

pygame.draw.rect(screen, (153,255,102), (100,200,100,100),0)

Run the program, and you'll get this (Figure 20-7).

453

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-7. Draw rectangle

Now, let’s give the outline as 50 (50% fill) (Figure 20-8).

Figure 20-8. 50% fill

Now, let’s draw a circle. The syntax is this:

pygame.draw.circle(screen,color, (x,y),radius,outline)

454

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

The x and y points are the x and y coordinates of the circle’s center.
Then, mention the radius and the outline (if you don’t need a complete fill).

pygame.draw.circle(screen, (0,102,255),(300,200),50,0)

Run the program, and you’ll get this (Figure 20-9).

Figure 20-9. Draw circle

Nice!

Finally, you can draw polygons (any number of lines).
pygame.draw.polygon(screen,color, ((x1,y1),(x2,y2)...(xn,yn)))

Let’s draw a triangle first.

pygame.draw.polygon(screen, (128,0,0),((150,350),(50,450),
(250,450)))

Maybe a five-sided polygon, next?

pygame.draw.polygon(screen, (253,0,204), ((400,300), (300,300),
(350,450), (450,450), (450,350)))

Run the program, and you'll get this (Figure 20-10).

455

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-10. Draw polygons

That's it for the shapes! Now, let’s look at images.

Let’s start from scratch for our images. It’s a very simple process. You
need to load your image (once, outside your game loop) and “blit” it inside
the game loop in the exact coordinate you want it to appear in, so it gets
updated on the screen.

Specify the exact path you have your image in. If you don’t want to
complicate things, place your image in the same folder as your Python file,
and you'll just have to mention the name of the file, and be done with it.

image = pygame.image.load('ball.png")
Then, use “blit” to display it on the screen.

while game:
for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False
screen.fill((255,0,0))
screen.blit(image, (200,150))
pygame.display.update()

456

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Run the program, and you'll get this (Figure 20-11).

Figure 20-11. Draw images

There you go! Our image is here.

Move your characters

It’s quite easy to move our characters. You just need to change the x and/or
y coordinates of your character, and you're done. If you want continuous
movement, keep changing it for every iteration of the game loop.

Let’s try moving our ball, shall we?

I want it to move down, until it reaches the y value of 400 (since our
image is of height 100, when its y reaches 400, its bottom will touch the
screen), and then stop, okay? Let’s do that.

Let’s import pygame and time. We need the time module here because
we're going to slow down our iterations so the human eye can see the

movement of the ball.

457

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

import pygame
import time

pygame.init()
screen = pygame.display.set mode((500,500))
image = pygame.image.load('ball.png")

game = True
We're going to create a “y” variable that holds the first value of 150.

y = 150
while game:
for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False
screen.fill((255,0,0))

Let’s blit the image.
screen.blit(image, (200,y))

Aslong asyis not 400, let’s increment the y value by 1 for every
iteration of the loop.

if y != 400:
y += 1

Let’s update the screen and make the program sleep for 0.005 seconds
between every iteration of the loop.

pygame.display.update()
time.sleep(0.005)

pygame.quit()

That’s it! Run the program (Figure 20-12), and you'll see a smooth
downward movement until the ball touches the bottom end of the screen.

458

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-12. Move your characters

Keyboard press events

Alright, we can move our ball now. But what if we want to move it based on
user input, maybe a keyboard press event?

Let’s say I want to move my ball in all four directions based on which
arrow key my user presses on their keyboard. How would I do that?

Remember the events we were looping through while looking for the
QUIT event? We can use the same loop for our key press events too.

Look for the KEYDOWN event, which registers only when a key is
pressed down while the user is on our game screen. You'll get a dictionary
of events when you look for KEYDOWN. Get them in a variable. Let’s name
ours “keys”.

To register the left arrow key, search for keys[K_LEFT]. If the value of
this is true, move left (decrease x by 1).

To register the right arrow key, search for keys[K_RIGHT] and increase
x by 1 if that’s true.

To register the up arrow key, search for keys[K_UP] and decrease the y
value by 1 if that’s true.

459

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

To register the down arrow key, search for keys[K_DOWN] and
increase the y value by 1 if that’s true.

To get continuous movement, introduce directional variables, that’ll
continuously increment or decrement your x or y value based on the
direction you've set.

Let’s set a starting value for x and y and the directional variables at 0
because at the moment, our ball isn’t moving.

X = 200
y = 150
xd = 0
yd = 0
while game:

for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

Now, let’s look for our events. If the user wants to set the direction to
left, then xd should become -1, while yd stays the same. Follow the same
logic for the rest of the directions.

if event.type == pygame.KEYDOWN:
if event.key == pygame.K LEFT:

xd = -1
yd = 0
if event.key == pygame.K RIGHT:
xd =1
yd = 0
if event.key == pygame.K_UP:
yd = -1
xd = 0

460

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

if event.key == pygame.K_DOWN:
yd = 1
xd =0
screen.fil1((255,0,0))

Now, before you blit the image and update the screen, add the xd and
yd values to the current x and y values.

X += xd

y += yd
screen.blit(image, (x,y))
pygame.display.update()
time.sleep(0.005)

pygame.quit()

Now, when you set a direction, the ball will continue to move in that
direction until you change it (just like in our snake game).

But what if we only want the screen to move along with the keyboard
presses. When we stop pressing on the arrow keys, we want the ball to stop
moving.

There’s a KEYUP event that'll help you with that. Inside the for loop,
check if the KEYUP event has happened, and in an inner “if” statement,
check whether the current events are either the LEFT, RIGHT, DOWN, or
UP events.

If so, stop changing both the xd and yd values (make them 0), and
you'll stop the movement.

if event.type == pygame.KEYUP:
if event.key == pygame.K _LEFT or event.key == pygame.K RIGHT
or event.key == pygame.K UP or event.key == pygame.K DOWN:

xd =0
yd = 0
That'’s it!

461

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Mini project — bouncing ball

In this project, we're going to create a bouncing ball that bounces up and
down the screen. When it hits either the top or the bottom of the screen, it
should reverse direction and continue like that. Simple enough? Let’s do
this with pygame.

1. Let’simport pygame and time to start with.

import pygame
import time

2. Then, let’s initialize pygame and create our screen.
It’s going to be of width and height 500 each.

pygame.init()
screen = pygame.display.set mode((500,500))

3. Now, let’s create a variable y and make it 0 to start
with. This is because with and up and down bounce,
the only value that'll change is the y value.

y =20

4. We also need a “game” variable that’s currently True
but will turn False when the user closes the screen.

game = True

5. Let’s also create a directional variable “d” that’ll be
1 by default. We're going to increment the y value
of the ball by 1 (to move upward) and -1 (to move
downward). This variable is going to change our
ball’s direction.

d=1

462

10.

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME
Now, let’s create our game loop.
while game:

To start with, let’s create the quit condition. If the
event type is pygame.QUIT, make game false.

for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

Then, let’s fill our screen with white color.
screen.fill((255,255,255))

Then, let’s use the draw.circle method to draw a red
ball in the position 250,y (to start with, 250,0). Its
radius is going to be 25 and is going to be a circle
that’s entirely filled, so 0 for the last attribute.

#draw a ball
#circle draw function
#where you want to draw it, color of the
circle, position, width
pygame.draw.circle(screen, (0,0,255),
(250,y),25,0)

Let’s use the display.update method to ensure that
the screen gets updated every time the loop runs.

pygame.display.update() #update the screen
in the output window

463

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

11. Ifwe leave the game as it is, our ball would move too
fast to be seen by the human eye. So, let’s slow the
iterations of the loop down. There'll be a delay of
0.005 seconds after every iteration.

time.sleep(0.005)

12. Now, let’s set the wall collision conditions. When y
is 488 (since our ball has a diameter of 25, and we
need the other half of the ball to be visible, we're
setting it at 488 and not 500), let’s reduce the value
of y, because we need the ball to move up. So, d is
going to be -1.

if y == 488:
d=-1

13. Ifyis 12, then increase the value of y. “d” is going to
be +1.

elif y == 12:
d=1

14. Finally, once we're out of the if elif statement, let’s

add “d” with the current value of “y

y +=d
pygame.quit()

That’s it! Run the program, and you’ll have yourself a bouncing ball
(Figure 20-13).

464

CHAPTER 20 BECOME A GAME DEVELOPER WITH PYGAME

Figure 20-13. Bouncing ball

Summary

In this chapter, we learned the basics of pygame. We learned how to set
our gaming screen, set up a game loop, create our characters (shapes and
images), make them move, detect wall collision, and detect keyboard
events.

In the next chapter, let’s apply what we learned in this chapter, and a
little more, to create a space invaders game!

465

CHAPTER 21

Project: Space
Shooters with Pygame

In the previous chapters, we learned the basics of Pygame. We learned
all about creating your game screen, closing the screen, beautifying it,
creating your characters, moving your characters, and more.

In this chapter, let’s apply what we've learned so far, and more, to
create a space shooter game. You'll also learn how to create text and
scorecards for your game.

Space shooter game

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_21

https://doi.org/10.1007/978-1-4842-6812-4_21#DOI

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

It's a very simple game. You have a spaceship that’s more like a gun. It
can move left or right when you press on your left and right arrow keys.

Then, you have your enemies. Three rows of enemies, totaling 21, and
they’ll move down towards that spaceship. If they hit the spaceship, game
over!

To prevent that, the spaceship can shoot at the enemies. It has one
bullet to shoot at a time. The bullet reloads after every shot (when it hits the
enemy or the upper wall of the screen), so the spaceship can shoot again.

Every time the bullet hits the enemy, you gain a point and the enemy it
hits disappears. If you finish killing all the 21 enemies, they’ll reload, and
you'll get a new set of 21 enemies in three rows. Start shooting again until
you lose!

Look at that (Figure 21-1). The enemy is almost near, so we need to clear
that row to stay alive. We've hit two enemies already, and our score is 2.

iy Space Invaders - o IEN

Figure 21-1. Final game

It’s a simple enough game with a lot of potential for improvement (more
levels, increased speed, more bullets, more enemies), so let’s get started!

468

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Import the required modules

We need the pygame module to create the game as such and the time
module to slow down the characters enough that it’s visible to the
human eye.

import pygame
import time

Initialize everything

Let’s initialize Pygame and its font package (to write the scoreboard).

pygame.init()
pygame.font.init() #To use text

Next, let’s create our game screen and set the caption to ‘Space
Shooters:.

screen = pygame.display.set mode((500,500))
pygame.display.set caption('Space Shooters')

Let’s also create a “font” variable that’ll store the font we need used,
which is font type “Arial” and size 40.

font = pygame.font.SysFont('Arial’,40)

We need two game conditions: an “over” that turns True when the
game is over (enemy hit the spaceship) and a “game” that turns False when
the user closes the window.

False #Game over
True #Closed the game window

over
game

That'’s it! Let’s run the program, and we get this (Figure 21-2).

469

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

by Space Invaders - o IER

Figure 21-2. Game screen

We have our screen!

Game loop

Next, let’s create our game loop.
while game:

Let’s create the window “close” condition first. You already know how
to create that.

#Close window condition - Quit
for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

470

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Let’s also fill the screen with black while we’re at it. Of course, this
wouldn’t make much of a difference because the default color of a pygame
screen is black.

screen.fill((0,0,0))
After the program is out of the game loop, close the window:

pygame.quit()

Don’t worry about the code sequence. I'll paste the entire code in the
order it should be written at the end of the chapter.
Now, run the program again and try to close the window. It'll work!

Create the spaceship

Now, let’s create our spaceship and make it appear on the screen.
Place these lines of code above the game loop.

#Create the spaceship

I'm going to load the spaceship.png image I've gotten for this project.
It’s a nice little spaceship, pointing upward.

spaceship = pygame.image.load('spaceship.png")

Now, let’s set preliminary positions for the spaceship. Mid-way
horizontally, at an x position 250 and a y position of 390 (toward the
bottom of the screen). Let’s also set the direction at 0 as default. We can
increase or decrease it later when we make the spaceship move.

sp_x = 250
sp_y = 390
spd=0

471

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

To make the spaceship appear on the screen, in the game loop, below
the for loop, include the following lines of code:

if over == False:
screen.blit(spaceship, (sp_x,sp_y))

If the game is still true, then blit the image to the x and y coordinate
positions we set.

Finally, update the display:
pygame.display.update()

Let’s run the program, and we get this (Figure 21-3).

Ly Space Invaders - o ER

Figure 21-3. Position your spaceship

We have our spaceship. Yay!

472

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Move the spaceship

You already know how to make characters move, am I right? We need the
following done:

1. Move the spaceship right or left depending on which
arrow key is pressed.

2. When the user stops pressing on the arrow key, stop
moving the spaceship.

We need to look for two events in this case: KEYUP and KEYDOWN.

Within KEYUP, we need to look for two keys: K_LEFT and K_RIGHT.

Let’s go back to our game loop and the for loop where we iterated
through all the events happening on the screen and include the next two
conditions.

Look for the KEYDOWN condition, and if the key pressed in the
“down” event is the left key (left arrow key), then decrease the space
direction by 1, which means the spaceship will move toward the left
(horizontally).

If the key pressed is the right arrow key, then increase the space
direction by 1, which means the spaceship will move toward the right
(horizontally).

if event.type == pygame.KEYDOWN:
#Make spaceship move
if event.key == pygame.K LEFT:

sp.d=-1
if event.key == pygame.K RIGHT:
spd=1

473

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Now, let’s make the spaceship stop moving if the arrow keys are let up.
Let’s look for a KEYUP event and check if the keys released are the left and
the right arrow keys.

#Make spaceship stop if not moving
if event.type == pygame.KEYUP:
if event.key == pygame.K LEFT or event.key == pygame.K RIGHT:

If they are, bring the spaceship direction back to 0, so there’s no change
in position, and it just stops where the user leaves it.

spd=0

But we can’t stop there. We need to add the sp_d value to the
sp_x value, out of the for loop, if we want it to move for every iteration
of the game loop.

#Spaceship move condition
sp_x += sp_ d

Place the preceding lines of code above the spaceship blit and
“update” lines of code.

Now, run the code and try moving the spaceship. Whoa! That was fast.
I can’t really control my spaceship. Why is that?

Well, we aren’t spacing the game loop iterations, are we? Let’s pause
the program (game) 0.005 seconds after every iteration. Place this line of
code above the “display” line of code.

time.sleep(0.005)

Now, run the entire program, try to move your spaceship left and right,
and you'll get this (Figure 21-4).

474

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

e Space Invaders - o I

Figure 21-4. Make spaceship move on arrow presses

It works. Yes!

Create and move the enemies

Now let’s move the enemies! We need three rows of seven enemies,
totaling 21. They're going to have the same properties (image), but the only
difference is their positions.

Let’s create lists that hold all of our values. One that holds the images so

it can be blit in the game loop, one that holds all the “x” positions, one for
all the “y” positions, and, finally, one for the enemy movement (direction).

#Create enemy
enemy = []
enemy x = []

1
—
[a—

enemy_y

1
—
[S—1

enemy d

475

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Let’s also keep track of the number of enemies alive. The counter will
start at 0 and increase by one for every enemy being shot down. When the
number reaches 21, we're going to reset everything, draw three rows of

new enemies again, and make them fall down to continue the game.
enemy _count = 0

Now, let’s set the x and y positions for our enemies. We're going to
create a for loop that runs from 0 to 20 (range of 21) for this.

For the first row (from iterations 0 through 6), the x positions are going
to start at 0 and increase in multiples of 70 - 0, 70, 140, 210, 280, and so on.
The y positions are going to be at -60 (away from the screen, at the

top), but still near the visible portion since this is the first row.
The distance value is going to be 0.5 throughout, for every enemy,
because that’s the speed at which they’re all going to fall.

for i in range(21):
#Row 1
if 1 <= 6:
enemy.append(pygame. image.load('enemy.png'))
enemy_x.append(70 * i)
enemy_y.append(-60)
enemy d.append(0.5)

“us=n

Look at that! To create multiples of 70, I just multiplied 70 by “i” since

“i” is going to take values from 0 through 6 anyway.
Now, the second row is a little tricky. We still need multiples of 70 for

“sn

the x values, but we can’t use “i” as it is again, because, for the second

row, “i” is going to go from 7 through 13. So, let’s subtract “i” by 7 while
multiplying it by 70.
The y value for this set of enemies is going to be -120, a little behind

the first row.

476

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

#Row 2

elif i <= 13:
enemy.append(pygame. image.load('enemy.png'))
enemy_x.append(70 * (i-7))
enemy_y.append(-120)
enemy d.append(0.5)

Similarly, let’s multiply 70 by i - 14 for the x value of the third, and last
row, and place the y value at -180.

#Row 3

else:
enemy.append(pygame. image.load('enemy.png'))
enemy_x.append(70 * (i-14))
enemy_y.append(-180)
enemy d.append(0.5)

That'’s it! We've positioned our enemies now. Let’s make them appear
and fall next.

Inside the game loop (while loop), and after you've “blit” the
spaceship, let’s create yet another “for” loop that runs 21 times (0 to 20).

Just like we did with our spaceship, we’re only going to draw the
enemies if the game is still not over.

We need to check for two conditions here:

),

1. Ifthe enemy’s “y” position is more than 500 (it has
reached the end of the screen), then make it go
backto a “y” of -60. That’s enough. Why? Well, the
first row will disappear first, then the second, and
finally the third. Everything is continually moving
too, so if we just move each row back to -60, the
movement of the previous row will compensate for
the appearance of the next row in the same point.

477

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

2. Iftheyposition is not yet 500, then we need to move the
enemy down. Add the enemy_d value to the enemy_y
value and blit that particular enemy to the screen.

#Draw enemies and make them move
for i in range(21):
if over == False:
#enemy wall collision
if enemy y[i] »>= 500:
enemy y[i] = -60
else:
#Draw enemies
enemy y[i] += enemy d[i]
screen.blit(enemy[i], (enemy x[i],
enemy_y[i]))

That’s it! Our enemy should move now. Let’s check (Figure 21-5).

by Space Invaders - o IER

Figure 21-5. Create the enemies

478

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Yes! We have three rows of moving enemies!

Fire the hullet

Next, let’s fire the bullet. We need to do three things here:

1.

Create the bullet outside the game loop, but not blit
it until the user fires (presses the spacebar).

Check for the “space” press event inside the game
loop (in the for loop that iterates through all the
events, and inside the “if” statement where we did
the KEYDOWN event check), and if it happened,
set the bullet’s x and y positions and change its
direction.

Finally, outside the events “for” loop, but inside
the game loop, blit the bullet to the screen (if it was
fired). Let’s also check for the wall collision while
we're at it and bring the bullet back to its original
position if it hits the wall.

Alright. Now that we know what we need to do, let’s write the code for

the same.

We're going to load the “bullet.png” image, and that’s going to be
our bullet. To start with, we’re going to set the x and y position of the

bullet at -100 so it’s off the screen, unseen by the gamer. Let’s also set the

movement value, bullet_d, to 0 so there’s no movement.

#create the bullet

bullet =

pygame.image.load(" 'bullet.png")

#place it off the screen to start with

bullet x
bullet_y
bullet d

-100
-100
0

479

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Finally, we’re going to create a variable “fire” that’s going to hold the
state of the bullet. If the user has fired the bullet, this variable’s value is
going to change to True from False (its default value).

fire = False

Now, let’s register the “space” key press. Go to the game loop, and
inside the for loop where we iterate through all the events, look for the
“if” statement where we registered the KEYDOWN event. Inside that
statement, type the following:

Register the K_SPACE press event. As long as the “fire” value is False
(bullet hasn’t been fired previously), if the user clicks the space button,
let’'s make the bullet move.

Make “fire” True now (because the bullet has been fired). Position the
x and y values of the bullet to the current x and y values of the spaceship.
Finally, make the bullet_d value -2, so it moves upward.

#Make bullet fire
if event.key == pygame.K SPACE:
if fire == False:
fire = True
bullet x = sp x
bullet y = sp y
bullet d = -2

Now, let’s blit the bullet.

Outside the for loop and above the code where we blit the spaceship,
but after we've changed the spaceship’s x value (so the new x value is
assigned to the bullet), blit the bullet if “fire” is True and “over” is False
(game is still live).

#Fire bullet
if fire == True and over == False:

480

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

We've set the x value to bullet_x+12 so it disappears behind the
spaceship to start with.

screen.blit(bullet, (bullet x+12, bullet y))

Next, let’s increase y value of the bullet by the bullet_d’s value
(decrease, in this case, since the bullet_d value would be -2).

bullet y += bullet d

Finally, let’s check for wall collision. Once the bullet reaches the top
of the screen (y is 0 or less), if the “fire” value is still True (still fired), let’s
change the x and y values of the bullet back to the x and y values of the
spaceship and make the bullet_d value 0, so it starts moving. Let’s also
make the value of “fire” False so the bullet is no longer “blit” into the
screen until it is fired again.

#bullet wall collision
if bullet y <= 0 and fire == True:
bullet x = sp x
bullet y = sp_y
bullet d = 0
fire = False

Run the code, and you'll get this (Figure 21-6).

481

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

T Space Invaders - o IEl

Figure 21-6. Shoot the arrow

Our bullet works now!

Create and display the scoreboard

Now that we have all our characters, and they’re moving as we want them
to, let’s create our scoreboard so we can display scores as we shoot at our
enemies.

Let’s create our scoreboard first.
#Create scoreboard
The value of “score” is going to be 0 to start with.

score = 0

482

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Next, let’s create another variable score_text that stores the string we
want displayed when the game starts, which is Score: 0.

score_text = 'Score: {}'.format(score)

Finally, let’s render this score_text using the “font” option in Pygame.
The text color is going to be (255,255,255), which is white. This is
RGB. We've already talked about that.

score_board = font.render(score text,False,(255,255,255))

If we run the program now, we can’t see anything because we haven’t
rendered the scoreboard inside the game loop yet. Let’s do that now.

screen.blit(score board, (350,0))

Place the preceding code above the time.sleep line of code.
Let’s run our code, and we'll get this (Figure 21-7).

e Space Invaders - olES

Figure 21-7. Scoreboard

We have our scoreboard, yay!

483

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Kill the enemies

Now, let’s create the lines of code that kill the enemies when the bullet
hits it. For every iteration of the loop, we’re going to continuously look for
collision between our bullet and all 21 of our enemies.

So, let’s open a “for” loop to do that. Place this in the game loop, below
where you “blit” all the enemies.

for i in range(21):

Now, we need the collision condition. It’s going to be pretty simple. If
the distance between the bullet and the enemy (the top-left-most corner
position) is less than or equal to 55, we have a collision. This'll cover the
bullet hitting any point from the top-left-most corner to the rest of the
parts of the enemy.

To do this, let’s subtract the coordinates of the bullet (which are higher
since they are at the bottom of the screen) from the coordinates of the
enemy. Let’s get the absolute value of this subtraction so that no matter
where the two characters are, we just get the “difference” value we need,
without the sign.

if abs(bullet x+12 - enemy x[i]) <= 55 and abs(bullet y -
enemy y[i])

Why bullet_x+12? That’s because we “blit” the bullet at that “x” point.
If there’s a collision, we need to bring the bullet back to position and
make the bullet movement value, bullet_d, 0.

#bring bullet back to position
bullet x = sp x

bullet y = sp y

bullet d = 0

484

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Let’s also make “fire” False because we're done firing the bullet. It did
what we sent it to do.

fire = False

Now, within the same “if” statement, let’s open more if and else
statements to bring that enemy back to position (and not move). It'll just
wait in that position until all the enemies in the current set are killed so the
three rows of enemies are formed again.

Remember the conditions we used while positioning the enemies?
Let’s use the same to position them now so they’ll be ready to go once all
21 enemies have been killed.

#bring enemy back to position

ifi<7:
enemy x[i] = 70 * i
enemy y[i] = -60

elif i < 14:
enemy x[i] = 70 * (i-7)
enemy y[i] = -120

else:
enemy x[i] = 70 * (i-14)
enemy y[i] = -180

Finally, let’'s make the enemy movement value 0, to stop its movement

(waiting for the rest to join it), and increase the enemy_count by 1.

enemy d[i] = 0
enemy _count += 1

What happens when the bullet hits an enemy? The enemy dies and
goes back to its original position. The bullet also goes back to its original
position, but the score increases as well!

485

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Let’s do that next. Let’s increase the score and render it again.

#increase score

score += 1

score_text = 'Score: {}'.format(score)

score_board = font.render(score text,False,(255,255,255))

That’s it! We can kill enemies now. Let’s see if it works, shall we?
(Figure 21-8)

i Space Invaders - o IESE

Figure 21-8. Kill the enemies

Whohoo! We can kill our enemies now, and our score increases
accordingly!

486

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Kill the spaceship!

Finally, let’s create a collision condition for the spaceship and the enemies,
so we can end the game. Place these lines of code below the code where
you wrote the enemy-bullet collision lines of code.

The process is the same. For every iteration of our game loop, we're
going to loop through all the enemies and check if one of them hit our
spaceship.

#Enemy-spaceship collision
for i in range(21):

The collision condition is going to be a difference between the x and y
values of the spaceship and the enemies, and if they are less than or equal
to 50, game over.

if abs(sp_x - enemy x[i]) <= 50 and abs(sp_y - enemy y[i]) <= 50:
#game over

Make “over” True. If over is True, then we won’t blit the spaceship and
the enemies (not to mention the bullet) to the screen, remember? That
means they’ll disappear from the screen and we’ll be left with just the
scoreboard.

#fmake everything disappear
over = True

Let’s try that now (Figure 21-9).

487

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

iy Space Invaders = 8 “—

Score: 3

Figure 21-9. Kill the spaceship

Yup, it works!

Re-draw the enemies

After the collision checks, we need to check if the user is done killing all the
enemies. If all 21 are gone from the screen, we need to reset the enemy_count
value back to 0 and make them fall from the top of the screen again.

#Set enemy move condition
if enemy count == 21:
for i in range(21):
enemy d[i] = 0.5
enemy _count = 0

Let’s run the program, and check if this works (Figure 21-10).

488

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

iy Space Invaders - olEl

Figure 21-10. Re-draw the enemies

Look at that! We got our second row of enemies, and our score is 23

now! :0

Game over!

Finally, let’s write “GAME OVER” when the enemy hits the spaceship.
Write “GAME OVER” when “over” is True, which means there’s been a

collision.

#Game over
if over == True:
#Draw game over text

489

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Let’s create a new game_over_font and make it font type Arial and font

size 80. Let’s render that font over our desired text. Make the color white.

Finally, “blit” it into the screen in the position 50,200 (around the center of

the screen).

game_over font = pygame.font.SysFont('Arial’,80)
game_over = game_over font.render('GAME
OVER',False, (255,255,255))
screen.blit(game over, (50,200))

Let’s run our code, and we get this (Figure 21-11).

by Space Invaders - oIEN

Score: 5

GAME OVER

Figure 21-11. Game over screen

Whohoo! Our game’s over!

It was quite simple, wasn’t it? Try it out, and maybe try improving it

(more levels, more difficulty, etc.).

490

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

Entire code

Now, here’s the entire code, as promised:
import pygame

import time

pygame.init()
pygame.font.init() #To use text

screen = pygame.display.set mode((500,500))
pygame.display.set caption('Space Invaders')
font = pygame.font.SysFont('Arial’,40)

over = False #Game over
game = True #Closed the game window

#Create the spaceship

spaceship = pygame.image.load('spaceship.png')
sp_x = 250

sp_y = 390

spd=0

#Create enemy
enemy = []
enemy x = []

enemy y = []
enemy d = []

enemy_count = 0

491

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

#Position enemies - 3 rows of enemies
for i in range(21):
#Row 1
if i <= 6:
enemy.append(pygame.image.load(" enemy.png'))
enemy x.append(70 * i)
enemy_y.append(-60)
enemy d.append(0.5)

#Row 2

elif i <= 13:
enemy.append(pygame.image.load('enemy.png'))
enemy x.append(70 * (i-7))
enemy_y.append(-120)
enemy d.append(0.5)

#Row 3

else:
enemy.append(pygame. image.load('enemy.png'))
enemy x.append(70 * (i-14))
enemy_y.append(-180)
enemy d.append(0.5)

#icreate the bullet
bullet = pygame.image.load('bullet.png")
#place it off the screen to start with

bullet x = -100
bullet y = -100
bullet d = 0

fire = False

492

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

#Create scoreboard

score = 0

score_text = 'Score: {}'.format(score)

score_board = font.render(score text,False,(255,255,255))

while game:
#Close window condition - Quit
for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

if event.type == pygame.KEYDOWN:
#Make spaceship move
if event.key == pygame.K_LEFT:

spd=-1
if event.key == pygame.K RIGHT:
spd=1

#Make bullet fire
if event.key == pygame.K SPACE:
if fire == False:
fire = True
bullet x = sp x
bullet y = sp y
bullet d = -2
#Make spaceship stop if not moving
if event.type == pygame.KEYUP:
if event.key == pygame.K LEFT or event.key ==
pygame.K _RIGHT:
spd=0

screen.fill((0,0,0))

493

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

#Spaceship move condition
sp x += sp_ d

#Fire bullet

if fire == True and over == False:
screen.blit(bullet, (bullet x+12, bullet y))
bullet y += bullet d

#bullet wall collision
if bullet_y <= 0 and fire == True:
bullet x = sp x
bullet y = sp y
bullet d = 0
fire = False

if over == False:
screen.blit(spaceship, (sp _x,sp_y))

#Draw enemies and make them move
for i in range(21):
if over == False:
#enemy wall collision
if enemy y[i] >= 500:
enemy y[i] = -60
else:
#Draw enemies
enemy y[i] += enemy d[i]
screen.blit(enemy[i], (enemy x[i],enemy y[i]))

#Bullet-enemy collision
for i in range(21):
if abs(bullet x+12 - enemy x[i]) <= 55 and
abs(bullet y - enemy y[i]) <= 55:
#bring bullet back to position

494

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

bullet x = sp x
bullet y = sp y
bullet d = 0

fire = False

#bring enemy back to position

ific<7:
enemy x[i] = 70 * i
enemy y[i] = -60
elif i < 14:

enemy x[i] = 70 * (i-7)
enemy y[i] = -120

else:
enemy x[i] = 70 * (i-14)
enemy y[i] = -180

enemy d[i] = 0
enemy_count += 1

#increase score

score += 1

score_text = 'Score: {}'.format(score)
score_board = font.render(score text,False,
(255,255,255))

#Enemy-spaceship collision
for i in range(21):
if abs(sp_x - enemy x[i]) <= 50 and abs(sp_y -
enemy y[i]) <= 50:
#game over
#make everything disappear
over = True

495

CHAPTER 21 PROJECT: SPACE SHOOTERS WITH PYGAME

#Set enemy move condition
if enemy count == 21:
for i in range(21):
enemy d[i] = 0.5
enemy count = 0

screen.blit(score board, (350,0))

#Game over

if over == True:
#Draw game over text
game_over font = pygame.font.SysFont('Arial’,80)
game_over = game over font.render('GAME OVER',
False, (255,255,255))
screen.blit(game over, (50,200))

time.sleep(0.005)

pygame.display.update()

pygame.quit()

Summary

In this chapter, we created a space shooter game with Pygame. We applied
what we learned in the previous chapter in our game, and we also learned
all about collision detection and rendering text on our game screen.

In the next chapter, let’s look at an overview of web development with
Python. We'll get a brief look at creating web pages with HTML, designing
them with CSS, making them dynamic with JavaScript, and creating your
very first program in Python’s very own Flask.

496

CHAPTER 22

Web Development
with Python

In the previous chapter, we learned how to create a space shooter with
Pygame. We learned all about shooting at characters, collision detection,
rendering text on a Pygame screen, and so much more.

In this chapter, let’s look at web development with Python. Let’s have
a brief look at creating websites with HTML, CSS, and JavaScript and
creating your very first program with Python'’s Flask.

Python and web development

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_22

https://doi.org/10.1007/978-1-4842-6812-4_22#DOI

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

What is web development? Do you visit websites? Facebook, Netflix,
Amazon, and so on? Anything that you use online comes under web
development.

They are created and maintained with their own unique set of
technologies that fall under web development. How does that work, and
where does Python come in here?

Well, before we get into that, let’s talk a little bit about the staple
technologies of web development. There’s HTML, CSS, and JavaScript.

HTML is the building block of a website. What does that mean? Well,
everything you see online was created by HTML. The images, the text, the
buttons, everything came from HTML.

Now CSS styled all of it. It’s called “Cascading Style Sheet’, and the
elements (building blocks) that you create with HTML can be designed
(colored, aligned, etc.) using CSS. JavaScript makes everything dynamic.
When you click a button on a site, something happens right? Maybe
another site opens up, or maybe you just get a popup that gives you some
information. JavaScript lets you do things like that on your site.

But what about Python? Where does it come in web development? To
understand Python’s role in web development, you need to understand the
difference between front-end and back-end web development.

Front-end web development is what we talked about just now: HTML,
CSS, JavaScript, and all together we get the user-facing end of your website;
that is, what the user sees.

Back-end web development is just the opposite. It's what the user
does not see: server-side development. Most applications need a lot of
information transfer and retrieval, am I right? You have an account on
a site, and when you log in to that site, your account detail should be
retrieved. You search for something on Google, and they give you a list of
related websites that pertain to your search.

All of this information retrieval and transfer (you send a chat message
or email to someone) comes under back-end web development, and you
need to use a back-end technology like Python to make that possible.

498

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

Python has a “file” feature, remember? That’s just the start. You can create
databases and connect them to your web applications and so much more
with the help of Python.

Let’s quickly look at what each of these technologies has to offer us.
This is not a comprehensive chapter. Web development, especially full-
stack web development, is a huge topic that requires a book of its own to
cover completely. I'm just going to give you some examples of how each
of these technologies works to give you an idea. If you're interested in the
subject, you can choose to read up on it in the future.

Building blocks — HTML

As1told you earlier, HTML, which stands for Hyper Text Markup
Language, is used to create the building blocks of your web applications.
You can write your HTML code in notepad (or notepad++), but when you
save the file, save it as filename.html or filename.htm, and not filename.txt.

A HTML code has two parts, a head and a body. The “head” contains
the code that’s not visible to the user, like the title, while the “body” contains
all the visible parts of the page, like the paragraphs, images, and buttons.

Let’s create a simple HTML file now. Open a notepad, and maybe
name your file website.html, or anything you want to name it as. While you
save your file as a html file, you'll notice the icon changing from a notepad
icon to your default browser’s icon.

<IDOCTYPE html>
<html>

</html>

The preceding code is the skeleton of a html file. A HTML code
contains tags, some of them empty and some of them with starting and
ending tags (the ones that are written like this: </tag>). <!DOCTYPE html>
specifies that we're using HTML5, the latest version of HTML, in our code.

499

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

<html>...</html> is the root tag. It encompasses the entire code.

<IDOCTYPE html>
<html>
<head>

</head>
<body>

</body>
</html>

So, that’s your head and body tag. Now, let’s add a title inside our
<head> tag.

<!DOCTYPE html>
<html>
<head>
<title>My first website</title>
</head>

<body>

</body>
</html>

Open the file in your browser, and you'll see the screen shown in
Figure 22-1.

C Y\ O File | C/Users/aarthi/Desktop/website.tml v 0 @ o@0EDN»D:

Figure 22-1. Basic HTML website

500

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

We have our title. Perfect!

If you want to add text or elements, you need to use the <body> tag.
Let me quickly list some of the important tags so we can use them in our
website.

<h1> </h1> is used to create primary headings.

<h2> </h2> is used to create sub-headings.

You can create more headings that decrease in size (h3, h4, h5, h6), but
the commonly used ones are h1 and h2.

<p> </p> is used to create paragraphs.

<button> </button> is used to create buttons.

<a> isused to create the hyperlinks (linking to other websites and
pages) you see online.

 is used to create images. It's an empty tag, but it'll take attributes
to specify the image location.

So, that’s enough for now, I guess. Let’s use them in our program. Let’s
create an introduction page for Susan.

<body>
<h1>My introduction</h1>
<p>Hello there! I'm Susan. I'm 8 years old. I have a
puppy named Barky. I love him so much! :) </p>
<button>Click Me!</button>
Look me up!

</body>

We've created a heading, a paragraph (you can create more if you
want), a button (doesn’t work yet, but it’s been created), and a link to
Google (you can link anywhere you want), and finally, we’ve displayed
Susan’s pic.

Let’s open our website now, and we see this (Figure 22-2).

501

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

C Y @ File | C/Users/aarthi/Desktop/website.html

My introduction

Hello there! I'm Susan. I'm § years old. I have a puppy named Barky. I love him so much! :)

[Click Mel | Look me up!

Figure 22-2. Various elements added to our website

We have the makings of our web page! Of course, the button doesn’t
work (wait for JavaScript), and things aren’t pretty yet (CSS!), but we have
our building blocks!

Pretty things up — CSS

If you want to pretty things up: add colors, align things, and so on, you
need CSS. But CSS is a vast topic, so [won’t be covering everything here.
Let me just show you a bunch of examples.

To write your CSS stylings, you need to open and close a <style> tag
inside the <head> tag.

Call the element you want styled, and mention the style attributes and
values within it, like background color: blue, like that. You need to end
every attribute-value pair with a semicolon, unlike Python’s lines of code
where the indent (or the next line) marks the end of a line of code.

Let’s change the background color of our entire page light gray. We're
going to call the html element (the entire page) for that (Figure 22-3).

502

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

» C Y} @ File | CUsers/aarthi/Desktop/website.html

My introduction

Hello there! I'm Susan. I'm 8 vears old. [have a puppy named Barky. I love him so much! :)

Click Me! | Look me up!

Figure 22-3. Add background color

Next, let’s change the heading color to dark green and the paragraph
color to dark red. You need to use the “color” attribute to do that.

<head>
<title>My first website</title>
<style>
html {
background-color: lightgray;
}
h1 {
color: darkgreen;
}
p{
color: darkred;
}
</style>
</head>

503

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

Refresh your web page, and you'll see this (Figure 22-4).

l e s x _

C Y @ File | C/Users/aarthi/Desktop/website.html

My introduction

Hello there! I'm Susan. I'm 8 years old. I have a puppy named Barky. I love him so much! :)

Click Me! | Look me up!

Figure 22-4. Customize (design) your website with CSS

So that’s basic CSS. As I said, it’s a vast topic, so I can’t cover it
completely in here.

Front-end dynamic — JavaScript

Let’s try to make our button dynamic in this section. JavaScript is a
scripting language, just like Python. The only difference is that JavaScript is
used in the front end and Python is used in the back end.

You can use the <script></script> tagto write your JavaScript code,
usually within the <body> tag, so the entire website loads before the
dynamic features are loaded.

504

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

<body>
<h1>My introduction</h1>
<p>Hello there! I'm Susan. I'm 8 years old. I have a
puppy named Barky. I love him so much! :) </p>
<button>Click Me!</button>
Look me up!

<script>

</script>
</body>

JavaScript has variables, numbers, strings, Booleans, if else statements,
for and while loops, objects, and lot of other concepts that we’ve just
covered in Python. But there are differences between the two languages,
especially in the syntax and how these are written or used. We won’t be
looking at all of them here, but let’s just look at a couple.

You can create variables using the keyword “let”.

let variableName;

Just like with CSS, every line of code in JavaScript needs to end with a
semicolon.

You can assign values to these variables as well. But let’s not look at
the mundane stuff. Let’s look at the true power of JavaScript, which is
manipulating your HTML elements (changing their styles, making them do
things, etc.) right from within your JavaScript code.

To do that, let me first assign a unique “id” to my element, like this:

<button id='btn'>Click Me!</button>

505

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

This is a unique id and can’t be assigned to any other element. I can use
this id to style this specific element or to retrieve it using JavaScript, like this:

<script>
let button = document.getElementById('btn');
</script>

I've created a variable “button’, and I've retrieved the element with
the id “btn” from my document (HTML document) and placed it inside
the variable. JavaScript is case sensitive, so the capital letters should be
retained as such.

Now, I can listen for events in this element. Shall we listen for a “click”
event? Shall we make an alert box (just like the message box in Tkinter)
pop up whenever you click the button?

You need to add an event listener on the element that you just
retrieved. This listener will listen for the “click” event and call the
buttonClick() function when the event happens.

<script>
let button = document.getElementById('btn');
button.addEventListener('click',buttonClick);
</script>

Now, define the function above the call. In JavaScript, we don'’t
use “def’, we use “function” to define a function. To create an alert, use
something like this: alert(‘Your message’);

<script>
let button = document.getElementById('btn');
function buttonClick() {
alert("Hello there! I'm Susan!");
}
button.addEventListener('click',buttonClick);
</script>

506

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

Now, let’s refresh our page and see if our button works (Figure 22-5).

C {0 @ File| CfUsers/aarthi/Desktop/website.html

This page says

My introduction

Hello there! I'm Susant!

Hello there! I'm Susan. I'm 8 years old. I have a puppy named Barky. “

| Click Me! | Look me up!

Figure 22-5. Make websites work with JavaScript

Look at that! I clicked my button, and an alert box popped up, with the
message “Hello there! I'm Susan!” Perfect, isn’t it? (&) That’s the power of
JavaScript.

Python’s Flask

To create the back end with Python, you're better off using a framework.
We've already looked at Python’s packages and libraries like Turtle, Tkinter,
and Pygame. We know how useful they are and how much they enhance
the original Python code. The same goes for the web frameworks.

The most famous ones are Django and Flask. Let’s look at a brief
example of Flask before ending this chapter. You can’t use Flask as such.
You need to install it.

To install it, open your command prompt, and type the following:

pip install Flask

507

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

Press enter and wait for some time. You should get a success message
like this (Figure 22-6).

icrosoft Windows [Uersion 6.3.96881
(c> 2813 Microsoft Corporation. All rights reserved.

:sUserssaarthi>pip install Flask

ollecting Flask

Downloading Flask-1.1.2- 3—nune—any whl <94 kB>
H 94 kB 358 kB/s

3-none—any.whl <82 kB>
i B2 kB 156 kBss

1lectin ck>=5.1
Duunloagin click-?.1.2—

ollectlng Werkzeug>=0.15
p i

Downloading Werkzeug—-1.0.1-py2.py3-none—any.whl (298 kB>
W' 298 kb 6.8 MB/s
ollecting itsdangerous>=0.24

Downloading itsdangerous-1.1.8-py2.py3-none-any.whl <16 kB>
equirement already satisfied: Jinja2>=2.10.1 in c:\usars\aarthl\appdata\local\p
ogramsspythons\python38-32\1lib\site-packages {(from Flask> <(2.11.2)>

equirement already satisfied: MarkupSafe>=0.23 in c: \users\aarthi\aggdata\lncal
fgograns\pythun\python33-32\lih\site—packaqes (from Jinja2>=2.18.1->Flask> (1.1

lnstalling collected packages: click, Werkzeug, itsdangerous. Flask
uccessfully installed Flask-1.1.2 Werkzeug-1.8.1 click-7.1.2 itsdangerous-i.l.ﬂ

Figure 22-6. Install Flask

Now, let’s create a simple program that displays our introductory
message on screen. Open a script and name it. Let’s name ours hello.py.
Start by importing the Flask class from our “flask” framework.

from flask import Flask
Then, let’s create an instance of that class in the variable “app”.
app = Flask(__name_)

Now, we need to create a route. We want our page to appear on the
“root” of the website, you know when you type http://websitename.com
or something like that, so my route is going to be ‘/’ You can make yours
‘/introduction’ or something.

@app.route('/")

508

http://websitename.com

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

Now, create a function, introduction, and return what you want

displayed on the screen. You don’t need to call this function.

def introduction():
return "Hello, there! I'm Susan! I'm 8 years old. I have a
puppy named Barky. I love him so much! :)"

Finally, let’s set a host and port for our website. This is how web
developers test their websites locally (without Internet) before deploying
them online (Internet with actual website names). The commonly used
host is 0.0.0.0 and port is 5000.

app.run(host="0.0.0.0", port=5000)

We're done! Let’s run our program.

The file should be saved in the same folder as the folder your
command prompt opens in. Mine is C:\Users\aarthi so I'm going to save
hello.py there.

Now, go to your command prompt and type python hello.py in the
Shell prompt and press Enter, and you'll get this (Figure 22-7).

\Users\aarthl)python hello p{
* Serving Flask aps ' C(lazy loading?
* Environment: uct;on

Use a production WSGI server instead.
Debug mode: off
Running on http:/-/8.0.0.8:5808/ {(Press CTRL+C to g
27.8.8.1 - - [26/Novr/2020@ 15:36:57]1 "«[37nGET ~ HTTP/1. 1+[Bm" 288 -
27.8.8.1 - - [26/Novr/202@ 15:36:581 "«[37nGET x HTITP/1.1+«[Bn" 200 -

Figure 22-7. Run your Flask code

Now, you can see your website by clicking this link:
http://127.0.0.1:5000/ (Figure 22-8).

509

CHAPTER 22 WEB DEVELOPMENT WITH PYTHON

€ - C O @ 127.0.0.1:5000

Hello. there! I'm Susan! I'm 8 years old. I have a puppy named Barky. I love him so much! :)

Figure 22-8. Your Flask website

Yay! Our very first Flask program.

Summary

In this chapter, we looked at web development with Python. We had a brief
look at creating websites with HTML, CSS, and JavaScript and creating
your very first program with Python’s Flask. In the next chapter, let’s create
some more mini projects with the Python concepts you've learned in this
book.

510

CHAPTER 23

More Mini Projects

In the previous chapter, we learned about web development with Python.
We took a brief look into HTML, CSS, and JavaScript, and we created
your first program with Flask. In this chapter, let’s create some more mini
projects with the Python concepts you've learned in this book.

Project 23-1: Calculator with Tkinter

In this project, we're going to create a calculator app like the one you see
on your computers and mobiles with Tkinter. Let’s get started!

1. Let’simport Tkinter first and create our window. I'm
going to set the resizable option to 0 and 0, so the
window can’t be resized. I'm also going to set the
title as ‘Calculator’

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_23

https://doi.org/10.1007/978-1-4842-6812-4_23#DOI

CHAPTER 23 MORE MINI PROJECTS

from tkinter import *

w = Tk()

w.resizable(0,0) #cant resize
w.title('Calculator")

2. Now, I'm going to create a string variable (Tkinter
variable) that will hold our expression (that needs
to be calculated). I'm also creating an empty string
that’ll initially hold the expression. We'll later set the
Tkinter variable with the value in the “string” Now,
we’'re making this a string and not an integer or float
because we can use the eval() method in Python
to evaluate mathematical expressions, and the
expressions can be in the form of a string.

e = StringVar()
calc = "'

3. Now, let’s create our buttons.

I'm going to create an “entry” button to start with.
It’s going to hold “e’, our Tkinter variable, and let’s
justify the text to “right” and pack it at the top with
enough outer padding (padx, pady) and inner
padding height-wise (ipady).

entry = Entry(w,font=('Arial’,14, 'bold"),
textvariable = e, justify= RIGHT)
entry.pack(side=TOP, ipady = 7, padx = 5,
pady = 5)

512

CHAPTER 23 MORE MINI PROJECTS

Next, let’s create a frame, “buttons’, that’ll hold all of

our buttons. Let’s pack that as well.

buttons = Frame(w)
buttons.pack()

Now, let’s start creating all of our buttons. They're
going to be of width 13 and height 2, and we're going
to call the clear_entry() method for the clear button,
get_answer() method when the “answer” or equal

to button is clicked, or the button_click() method
that’ll add either a number or an operator to our

expression.

clear = Button(buttons,text="c',width=13,
height=2,font=("Arial',10, 'bold"),
command=1lambda:clear entry())
clear.grid(row=0,column=0,padx=5,pady=5,
columnspan=2)

answer = Button(buttons,text="=",
width=13,height=2,font=("'Arial’,10, 'bold"),
command=1ambda:get _answer())
answer.grid(row=0,column=2,padx=5,pady=5,
columnspan=2)

num7 = Button(buttons,text='7", width=5,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('7"))
num7.grid(row=1,column=0,padx=5,pady=5)

num8 = Button(buttons,text='8", width=5,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('8"))
num8.grid(row=1,column=1,padx=5,pady=5)

513

CHAPTER 23 MORE MINI PROJECTS

num9 = Button(buttons,text='9", width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1ambda:button click('9"))
num9.grid(row=1,column=2,padx=5,pady=5)

num_div = Button(buttons,text="/", width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1lambda:button click('/"))
num_div.grid(row=1,column=3,padx=5,pady=5)

num4 = Button(buttons,text="4", width=5,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('4"))

num4.grid(row=2,column=0,padx=5,pady=5)
num5 = Button(buttons,text='5", width=5,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('5"))
num5.grid(row=2,column=1,padx=5,pady=5)

numé = Button(buttons,text="6", width=5,
height = 2, font=('Arial',10,'bold"),
command=1ambda:button click('6"))
num6.grid(row=2,column=2,padx=5,pady=5)

num mul = Button(buttons,text="*", width=5,
height = 2, font=('Arial',10,'bold"),
command=1lambda:button_click('*"))
num_mul.grid(row=2,column=3,padx=5,pady=5)

numl = Button(buttons,text="1", width=5,
height = 2, font=('Arial',10,'bold"),
command=1lambda:button click('1"))
numl.grid(row=3,column=0,padx=5,pady=5)

514

CHAPTER 23 MORE MINI PROJECTS

num2 = Button(buttons,text="2", width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1lambda:button click('2"))
num2.grid(row=3,column=1,padx=5,pady=5)

num3 = Button(buttons,text="3", width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1ambda:button click('3"))
num3.grid(row=3,column=2,padx=5,pady=5)

num_sub = Button(buttons,text="-", width=5,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('-"))
num_sub.grid(row=3,column=3,padx=5,pady=5)

num0 = Button(buttons,text='0", width = 13,
height = 2, font=('Arial',10, 'bold"),
command=1ambda:button click('0"))
numo.grid(row=4,column=0,padx=5,pady=5,
columnspan=2)

num_dot = Button(buttons,text=".", width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1ambda:button _click('."))
num_dot.grid(row=4,column=2,padx=5,pady=5)

num_add = Button(buttons,text="+"', width=5,
height = 2, font=('Arial’',10, 'bold"),
command=1ambda:button _click('+"))
num_add.grid(row=4,column=3,padx=5,pady=5)

Now that we've created our buttons, we should have
something like Figure 23-1.

515

CHAPTER 23 MORE MINI PROJECTS

c =
7 8 9 !
4 5 6 *
1 2 3

0 +

Figure 23-1. Calculator app - the layout

7. Now, let’s create our buttons above the function
calls (widgets). First, the button_click method. Let’s
load our global “calc” variable and just concatenate
the number or operator clicked (we sent them in the
form of a string, remember) with the current value
of “calc” That's it!

def button click(n):
global calc
calc = calc + n

8. Finally, set the Tkinter variable with the current
value of calc. This'll make the expression appear on
the entry box of your app.

e.set(calc)

516

10.

11.

CHAPTER 23 MORE MINI PROJECTS

Next, for the clear_entry method, we're just going to
make “calc” an empty string again and set “e” to that
string.

def clear entry():
global calc

calc =
e.set(calc)

For the get_answer method, let’s import “calc’,
create a variable “ans” that’ll use the eval() method
to calculate the expression inside “calc’, and set that

answer to “e’; so the expression is replaced with the

answer.

def get answer():
global calc
ans = eval(calc)
e.set(ans)

Finally, let’s convert “ans” to a string (it'll be an
integer or floating-point value after evaluation) and
replace the expression in “calc” with the answer so
we can continue calculating.

calc = str(ans)

Run the program, and you'll get this (Figure 23-2).

517

CHAPTER 23 MORE MINI PROJECTS

1425
: -

7 8 9 !

4 5 6

1 2 3
0 +

Figure 23-2. Final calculator app

That’s it! A very simple calculator. You can actually do a lot to make
this better. Maybe add some colors, iron out a couple of kinks, or add more
features. For example, as of now, you can click two operators, one after the
other, and that’ll get you an error. Why don’t you create an “if” condition
that prevents that from happening?

Have fun!

Project 23-2: Random story generator

In this project, let’s create a simple random story generator. We're

going to have a bunch of options for “when” our story happened, who
our “character” is, who our “enemies” are, what's the “attribute” of our
character, and pronoun (he or she or it). Finally, we're going to write a
story that chooses from these options, and every time we create a new
story, we get completely new characters, events, and timeline. Interesting
enough? Let’s get to it!

518

CHAPTER 23 MORE MINI PROJECTS
Let’s import our random module first.
import random
Then, I'm going to create my options.

when_ch = ['Once upon a time,','A long time
ago, ', 'Thousands of years ago, ', 'Long long
ago, ']

character ch = ['dragon','unicorn’','fairy’,
‘elf']

pronouns ch = ["he',"'she',"it"]
attributes ch = ['brave', 'courageous’,
‘strong', 'smart','intelligent']

enemy ch = ['witches', 'warlocks','dark
elves']
saved_ch

['the world', 'the Kingdom',
"everyone', 'the village']

Finally, let’s define a generate_story() function
that loads all of our options in. Then, let’s use the
choice() method in the random module to choose
our option for that particular story.

def generate story():
global when_ch,character ch,pronouns ch,
attributes_ch,enem_chy,saved ch
when = random.choice(when_ch)
character = random.choice(character ch)
pronouns = random.choice(pronouns ch)
attributes = random.choice(attributes_ch)
enemy = random.choice(enemy ch)
saved = random.choice(saved ch)

519

CHAPTER 23 MORE MINI PROJECTS

4. Also, if our character is an elf, we need to address it
with “an” and “a” for the rest of the characters.

if character == 'elf':
a="an'

else:
a="a'

5. Finally, let’s create our story with a multi-string.

story = ""'{} there lived {} {}. {} was
very {}. {} fought against the {} and
saved {}'. '''.format(when,a,character,

pronouns.capitalize(),attributes,pronouns.
capitalize(),enemy,saved)

6. Now, let’s print it.
print(story)

7. Now, for the function call, I'm going to create an
infinite while loop that asks the user if they want to
create a new story or not. If they typed ‘Y’ or ‘y, then
let’s call our generate_story function. Otherwise,
let’s stop the program.

while True:
create = input('Shall we create a new
story? Y or N: ')

if create == 'Y' or create == 'y':
generate story()

else:
break

Simple enough, right? Why don’t we generate a bunch of stories now?

520

CHAPTER 23 MORE MINI PROJECTS

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\
Python38-32\story generator.py

Shall we create a new story? Y or N: Y

Thousands of years ago, there lived a unicorn. She was very
strong. She fought against the dark elves and saved the world'.

Shall we create a new story? Y or N: Y
Thousands of years ago, there lived a dragon. She was very
intelligent. She fought against the witches and saved the world'.

Shall we create a new story? Y or N: Y
Once upon a time, there lived an elf. It was very smart. It
fought against the dark elves and saved the Kingdom'.

Shall we create a new story? Y or N: N

Nice! Very simple though. I'm sure you can add a lot more options and
make these stories bigger or more random. Have fun!

Project 23-3: Rock Paper Scissors game

Let’s create a Rock Paper Scissors game for this project!

1. Let’simport the Tkinter and random packages first.

#Rock, paper, scissors
from tkinter import *
import random

2. Now, let’s create our window, configure its background
color to white, and make it non-resizable.

w = Tk()
w.configure(bg="white")
w.resizable(0,0)

521

CHAPTER 23 MORE MINI PROJECTS
3. To start with, we need a label that holds the title.

title = Label(w,text="Rock Paper Scissors',
fg="red', bg="white',font=('Arial',45,"'bold"))
title.pack()

4. Let’s also create a u_option variable that’s empty
right now, but will hold the user’s option later.

u_option =
5. Let’s also create a list with our three options.
options = ['rock', 'paper’, 'scissors’]

6. Now, let’s create the rest of our widgets. We need
another label that says ‘Choose one’

label = Label(w,text="Choose one', fg='green',
bg="white',font=("Arial’,25, 'bold"))
label.pack()

7. Below that, we need a canvas that’ll hold our rock,
paper, and scissors. Let’s make it so that the cursor
turns to a “hand” when the user hovers over the

canvas.

canvas = Canvas(w,width=500,height=150,backg
round="white")

canvas.pack()

canvas.config(cursor="hand2")

8. Next, let’s load our image using the Photolmage
method. You can use any image you want. I've used
illustrations of a rock, paper, and scissors.

imgl = PhotoImage(file="rock.png")

522

10.

11.

CHAPTER 23 MORE MINI PROJECTS

Next, let’s draw our image into the canvas, in the X)Y
coordinate position we want.

rock = canvas.create_image(50,20,anchor=NW,
image=img1)

Then, let’s create a tag_bind on that image. We need
tag_bind, instead of bind, for canvas items. Ours is
going to be a <Button-1> bind, for left mouse button
click, and let’s call the chose() method with the
argument being the item that was just clicked.

We're going to use lambda here, and since binds
need events in their function definition, and lambda
is essentially a function definition, include “event”
as the lambda’s attribute here.

canvas.tag _bind(rock, '<Button-1>",lambda
event:chose('rock"))

That'’s it! Let’s repeat the process for the next two
images.

img2 = PhotoImage(file="paper.png")

paper = canvas.create image(200,20,anchor=NW,
image=img2,)

canvas.tag_bind(paper, '<Button-1>",lambda
event:chose('paper'))

img3 = PhotoImage(file="scissors.png")
scissors = canvas.create_image(350,20,
anchor=NW, image=img3)

canvas.tag bind(scissors, '<Button-1>",lambda
event:chose('scissors'))

523

CHAPTER 23

524

12.

13.

14.

15.

16.

MORE MINI PROJECTS

Now, let’s create labels that'll initially be empty, but
will later hold the messages we want, about the user’s
choice, the computer’s choice, and the winner.

you chose = Label(w,text=""', fg="blue',
bg="white',font=("'Arial',25, 'bold"))
you_chose.pack()

c_chose = Label(w,text="", fg="blue' ,
bg="white',font=("'Arial',25, " 'bold"))
c_chose.pack()

winner = Label(w,text="", fg="brown',
bg="white',font=("Arial’',45, 'bold"))
winner.pack()

Now, let’s create our chose() function above the
widgets. Let’s import the u_option variable.

def chose(option):
global u_option

If u_option is empty, that means the user is selecting
an option for the first time, and we're ready to play.
Let’s assign the option to u_option.
if u_option == '':

u_option = option
Let’s also choose a random option for our computer
and place that in c_option.

c_option = random.choice(options)

Now, let’s configure you_chose and c_chose with
our choices.

you_chose.config(text="You chose {}'.
format(u_option))

17.

18.

CHAPTER 23 MORE MINI PROJECTS

c_chose.config(text="Computer chose {}'.
format(c_option))

Next, let’s check who won. If both u_option and
c_option have the same value, it’s a draw. If u_option
is rock, then the user wins if c_option is scissors and
loses if c_option is paper. Similarly, let’s create our
other conditions and also configure “winner” for
every outcome.

if u_option == c_option:
winner.config(text="Draw!")
elif u_option == 'rock':
if c_option == 'paper':
winner.config(text="You lose :(")
elif c_option == 'scissors':
winner.config(text="You win!")

elif u_option == 'paper':
if c_option == 'rock':
winner.config(text="You win!")
elif c_option == 'scissors':
winner.config(text="You lose :(")
elif u_option == 'scissors':
if c_option == 'paper':

winner.config(text="You win!")
elif c_option == 'rock':
winner.config(text="You lose :(")

Finally, let’s create our ‘New Game’ button.

new = Button(w,text="New Game',font=("'Arial’,

20, 'bold"),command=new_game)
new.pack()

525

CHAPTER 23 MORE MINI PROJECTS

19. Above the button, define the new_game() function.
Let’s load u_option first. Now, let’s configure our
labels so they become empty again, and let’s empty
u_option so the user can play again.

def new_game():
global u_option
you_chose.config(text="")
c_chose.config(text="")
winner.config(text="")

u_option =
20. That’s it! Let’s end the program with a main loop.
w.mainloop()

Now, let’s run the program (Figure 23-3).

Rock Paper Scissors

Choose one

S o

New Game ‘

Figure 23-3. Rock Paper Scissors game

When the user clicks an option, they’ll see this (Figure 23-4).

526

CHAPTER 23 MORE MINI PROJECTS

Rock Paper Scissors
Choose one
/

oo
You chose paper
Computer chose paper

Draw!

New Game ‘

Figure 23-4. User chose an option

Works perfectly!

Project 23-4: Bouncing ball (off the four
walls) with Pygame

In this project, we're going to create a bouncing ball that bounces

randomly off the four walls of the screen. When it hits any of the four walls

of the screen, it should reverse direction and continue like that. Simple

enough? Let’s do this with pygame.

1.

Let’s import pygame, random and time to start with.

import pygame
import random
import time

Then, let’s initialize pygame and create our screen.
It's going to be of width and height 500 each.

pygame.init()
screen = pygame.display.set mode((500,500))

527

CHAPTER 23 MORE MINI PROJECTS

3. Now, let’s create a variable x and make it 250 and a
variable y and make it 0 to start with. This is because
we want to start the bounce from the point 250,0.

X = 250
y=0

4. We also need a “game” variable that’s currently True
but will turn False when the user closes the screen.

game = True

5. Let’s also create x and y directional variables “xd”
and “yd” that’ll be 1 by default. We're going to
increment the x or y value of the ball within the
range (1 to 2) (to move upward) and (-1 to -2)

(to move downward). This variable is going to
change our ball’s direction.

xd =1
yd = 1

6. Now, let’s create our game loop.
while game:

7. To start with, let’s create the quit condition. If the
event type is pygame.QUIT, make game false.

for event in pygame.event.get():
if event.type == pygame.QUIT:
game = False

8. Then, let’s fill our screen with white color.

screen.fill((255,255,255))

528

CHAPTER 23 MORE MINI PROJECTS

9. Then, let’s use the draw.circle method to draw a red

10.

11.

12.

ball in the position 250,y (to start with, 250,0). Its
radius is going to be 25 and is going to be a circle
that’s entirely filled, so 0 for the last attribute.

#draw a ball
#circle draw function
#where you want to draw it, color of the
circle, position, width
pygame.draw.circle(screen, (0,0,255),
(250,y),25,0)

Let’s use the display.update method to ensure that
the screen gets updated every time the loop runs.

pygame.display.update()
#update the screen in the output window

If we leave the game as it is, our ball would move too
fast to be seen by the human eye. So, let’s slow the
iterations of the loop down. There'll be a delay of
0.005 seconds after every iteration.

time.sleep(0.005)

Now, let’s set the wall collision conditions. When x
is greater than or equal to 488 (since our ball has a
diameter of 25, and we need the other half of the ball
to be visible, we’'re setting it at 488 and not 500), let’s
reduce the value of x by a random value between 1
and 2, because we need the ball to move toward the
left (back inside the screen). So, xd is going to be -1.

if x >= 488:
xd = -(random.randint(1,2))

529

CHAPTER 23 MORE MINI PROJECTS

13. Ifyis >=488, similarly, reduce the value of yd.

elif y >= 488:
yd = -(random.randint(1,2))

14. Ifxis <=12, increase xd, and increase yd if y is lesser
than or equal to 12.

elif x <= 12:

xd = (random.randint(1,2))
elif y <= 12:

yd = (random.randint(1,2))

15. Finally, once we're out of the if elif statement, let’s

”

add “d” with the current value of “y

X += xd
y += yd
pygame.quit()

That’s it! Run the program (Figure 23-5), and you'll have yourself a
bouncing ball that’s bouncing off all the four walls of the screen. Yippee!

Figure 23-5. Bouncing ball (off the four walls)

530

CHAPTER 23 MORE MINI PROJECTS

Project 23-5: Temperature conversion app

For this project, let’s create a temperature conversion app. Our app will

have two features, a “Celsius to Fahrenheit” converter and a “Fahrenheit to

Celsius” converter.

1.

Let’s import tkinter and set up our screen.

from tkinter import *
w = Tk()

Now, let’s design our app. It’s going to be a very
simple design. We're going to create two frames, one
for each converter.

frame1l = Frame(w)
framel1.grid(row=0,column=0,padx=10,pady=10)

Let’s create a label, an entry box for the Celsius value,
and a button that does the conversion on click and
another entry box to get the result (Fahrenheit value).

#Celsius to Fahrenheit conversion

label1 = Label(frame1,text="Celsius to
Fahrenheit conversion',font=('Arial',15,"'bold"))
label1.grid(row=0,column=0,columnspan=3)
entryl = Entry(framel)
entryl.grid(row=1,column=0)

button1 = Button(frame1, text='Convert to
Fahrenheit',command=find fahrenheit)
buttoni.grid(row=1,column=1)

entry2 = Entry(framel)
entry2.grid(row=1,column=2)

531

CHAPTER 23 MORE MINI PROJECTS

4. Let’s repeat the same for the next converter.

frame2 = Frame(w)
frame2.grid(row=1,column=0,padx=10,pady=10)

#Fahrenheit to Celsius conversion

label2 = Label(frame2,text="'Fahrenheit to
Celsius conversion',font=('Arial',15, 'bold"))
label2.grid(row=0,column=0,columnspan=3)
entry3 = Entry(frame2)
entry3.grid(row=1,column=0)

button2 = Button(frame2, text='Convert to
Celsius',command=find celsius)
button2.grid(row=1,column=1)

entry4 = Entry(frame2)
entry4.grid(row=1,column=2)

5. Run the program, and you'll get this (Figure 23-6).

Celsius to Fahrenheit conversion

Convert to Fahrenheit '

Fahrenheit to Celsius conversion

| Convert to Celsius |

Figure 23-6. Temperature converter

532

6. Now, let’s create our functions above the widgets.

The find_fahrenheit() function to convert Celsius to
Fahrenheit.

def find fahrenheit():

CHAPTER 23 MORE MINI PROJECTS

7. There’s a formula to do the same, and that’s given as
follows:

#Formula is F = ((9/5)*C)+32

8. Let’s delete the second entry box (the result box) in
case the user already made a conversion and this is

a new conversion.
entry2.delete(0,END)

9. Now, let’s get the first entry box’s value in “C” and
convert that into an integer.

C
C

entry1.get()
int(C)

10. Now, let’s calculate “F” and insert that into the
second entry box. That’s it!

F = ((9/5)*C)+32
entry2.insert(o,F)

11. Let’s repeat the same for our find_celsius function.

def find celsius():
#Formula is C = (5/9)*(F-32)
entry4.delete(0,END)
F = entry3.get()
F = int(F)
C = (5/9)*(F-32)
entry4.insert(0,C)

Let’s run our program, and we’'ll get this (Figure 23-7).

533

CHAPTER 23 MORE MINI PROJECTS

Celsius to Fahrenheit conversion

la0 Convert to Fahrenheit I!M‘O

Fahrenheit to Celsius conversion

11od Convert to Celsius |3?,mn'm7m7s

Figure 23-7. Conversion

It works!

Project 23-6: Introduce with files
and Tkinter

This is going to be a simple project. We are going to create a text file called
introduction.txt in a folder of your choice. We are going to write our
introduction to that file via our Python code, and finally, we're going to
create a simple text application that accepts the file name (complete file
path) and prints out the contents of that file in a text box.

Shall we get started?

1. Before we get started, let’s import Tkinter and create

our screen.

from tkinter import *
w = Tk()

2. I'm going to create my file in the following path:
G:\\Python\introduction.txt

3. Icanalso use “x’, but I'm using ‘w’ so I wouldn’t
have to open the file in write mode again.

f = open('G:\\Python\introduction.txt"', 'w")

534

CHAPTER 23 MORE MINI PROJECTS

4. Then, I'm going to write Susan’s introduction to it:

f.write('''Hi, I'm Susan.

I'm9 years old.

My puppy's name is Barky.

He loves me very very much! :)''")

Now, I'm going to create a global variable that’ll store
the content of my file whenever I press Enter on my
entry box. Let’s store an empty string in it for now.

f content =

Now, let’s create our widgets. I want a label that is on
the left of my entry box. I've hence placed it in row 0
and column 0.

label = Label(w,text="File name',font=("'Arial’,
12, 'bold"))
label.grid(row=0,column=0,padx = 5, pady=5)

I'm going to place my entry box in row 0 and
column 1, make it sticky in all four directions, and
give everything padding. All the values I've chosen
(width, padding, etc.) are arbitrary. You can test
different values and choose the ones you like.

entry = Entry(w,width=65)
entry.grid(row=0,column=1,sticky="nsew",
padx =5, pady=5)

Finally, let’s create a bind for my entry. Whenever

I press the Enter button on my keyboard (command

in Mac), I want to call my get_file function. You need
to use the ‘<Return>" condition to make that happen.

entry.bind('<Return>',get file)

535

CHAPTER 23

9.

10.

11.

12.

MORE MINI PROJECTS

Finally, let’s create our text widget. I'm going to give
my text some default stylings and place it in row 1,
column 0 and make it span two columns (so it takes
up the entire width of the first two widgets).

text = Text(w,font=("'Arial',14, 'bold"))
text.grid(row=1,column=0,columnspan=2)

Alright, now that we’re done with the widgets, let’s
define our get_file function. Define it above the
calling function, okay?

Since we created a bind, our function needs to
receive the “event” Load f _content into the function.

def get file(event):
global f content

To start with, get the file name from the entry box.
Then, open that file in read mode, and store its
contents in f_content (f.read()).

file = entry.get()
f = open(file,'r")
f content = f.read()

Finally, insert whatever’s in f_content into the text
box. We're using ‘end’ so the entire content gets
inserted.

text.insert('end',f content)

That’s it!
Let’s run our program now (Figure 23-8).

536

CHAPTER 23 MORE MINI PROJECTS

File name

Figure 23-8. Tkinter app layout

We have our widgets right where we want them! Let’s see if our
program works now (Figure 23-9).

File name (G:\\Pythontintroduction.ta '
Hi, I'm Susan.
I'm 9 years old.
My puppy's name is Barky.
He loves me very very much! :)

Figure 23-9. Import the file contents

537

CHAPTER 23 MORE MINI PROJECTS

Yes, it did. I entered my file path (the exact path) and pressed Enter,
and my file’s content’s being displayed on my text box. Perfect!

Summary

In this chapter, we created six apps using either Tkinter or Pygame. We
created a calculator, a random story generator, a Rock Paper Scissors game,
a file uploader app, a temperature conversion app, and a bouncing ball.

In the next chapter, let’s talk about what’s next in your Python journey.
I'll give you some ideas on what you need to learn about next, and I'll also
give you some ideas on more mini and capstone projects you can work on
your own.

538

CHAPTER 24

What's next?

In the previous chapter, we created more fun little mini projects with
Python. In this chapter, let’s look at what’s next. I'll give you more mini and
capstone project ideas to try, and let’s briefly discuss how you can continue
your Python journey from here.

Mini project ideas you can try

Python is a very interesting programming language where you can do
pretty much anything you set your mind to.

Mini projects and puzzles are a great way to build your expertise in
Python. You've already created plenty of mini projects in this book. Why
don’t I give you some ideas to create your own mini projects?

Currency conversion app

You could use Tkinter for this project. Try creating conversion options for
as many currencies as you can.

You can make this a single-line app with drop-downs against text
boxes (like you see in the currency conversion app on Google). The drop-
downs will list all the currency options. Based on what’s selected on both
sides, make the conversion.

Simple, right? Automate as much as possible, that is, reduce as many
lines of code as possible.

© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_24

https://doi.org/10.1007/978-1-4842-6812-4_24#DOI

CHAPTER 24 WHAT’S NEXT?

Race in Pygame

We created a Turtle race in one of our mini projects, remember? Why don’t
you try the same with Pygame, but make it better this time? Create proper
racetracks with lines and place your colored players (could be rectangles)
at the start of the tracks.

Maybe you could create a start button too, and on clicking that, make
your players race (make them move randomly), and finally, based on who
wins, create a “Game over” screen in the player’s color.

Simple, isn’t it? Try it out!

More patterns in Turtle

Do you remember the mandala patterns we created in our earlier project? Why
don’tyou try creating more patterns like those? Make them more complicated.
You already know that you can use for loops to automate patterns.

You can create different patterns (circular and square) and combine
them together randomly (using function calls).

Capstone project ideas you can try

We've already seen how to create the snake game in Turtle, but as you can
see by now, Pygame is more suited for, well, any game really, so why don’t
you try creating the same in Pygame?

Snake game in Pygame

It should be pretty simple to create. Draw rectangles for the snake heads and
body parts, including the apple, make them move (you already know how),
create a scoreboard when the snake head superimposes the apple while
growing the snake by one body part, and finally end the game if there was a
collision (wall or body collision).

540

CHAPTER 24 WHAT’S NEXT?

Dodge the bullet

Why don’t we create a reverse of the space game we created with
Pygame? Instead of shooting the aliens, you have a bunch of aliens
shooting at you. You're out of ammunition, and the only thing you can
do now is dodge the raining bullets (randomly fired from each alien ship
so you don’t know which one is going to shoot at you), and that’s exactly
what you're going to do.

You have, let’s say, ten lives, and every time a bullet hits you, you
lose a life. The more time you hold out, the higher your score. Quite
interesting, but simple, don’t you think? Make the game as easy or tough
as you want it to be.

Memory game in Pygame

This is a fun little game you probably played at arcades. Create even
numbered boxes. Each of these boxes is hiding an image behind them, but
there’s a catch. There are two of each image, and you need to match them.

When the user starts the game, reveal all the images hidden behind the
boxes for a specified time limit (maybe 5-10 seconds), so the user can see
where they are. Then, hide them again, and the game starts. Now, the user
needs to match the images.

The first time the user clicks one of the boxes, the image behind it will
be revealed to them. They have to click the box with the same image the
next time. If they don’t, and if the next image being revealed is a different
image, both images will be hidden again, and they can start over.

If they click the same boxes hiding the same image, one after the other,
then the boxes will not be hidden again, and they gain a point.

They need to match all the boxes like this within the given time limit
(usually 30 seconds for a set of ten images).

Interesting? Try it!

541

CHAPTER 24 WHAT’S NEXT?

Looking ahead

Alright, we're at the end of our book. So far, you've learned the basics of
Python, all about Turtle, Tkinter, and Pygame, and you've also created
projects to familiarize yourself with the topics. What's next? How should
you continue your journey? Let me give you some ideas.

00Ps in detail

We did learn about objects and classes, but we didn’t delve deeper into the
topic, not by a long shot. If you want to do proper real-world programming,
OOPs is going to help you a lot. It’s also a valuable skill to have in your
arsenal for any programming language, let alone Python.

So, why don’t you start by using classes in more of your projects and
see how they transform your code? Next, pick up a good object-oriented
programming with Python book and continue your journey.

Regular expressions

Regular expressions is a very interesting, albeit advanced, topic in any
programming language, especially Python. It’s basically pattern matching
with a twist.

Have you wondered how programs knew how your password didn’t
have the specified number of letters, numbers, and special characters
and how they were able to point out whether one of the characters were a
capital letter or not? Magic? Nope, that’s your regular expression pattern
matching at play.

Research on the topic. I'm sure you'll find it interesting.

542

CHAPTER 24 WHAT’S NEXT?

Web development

I've given you a basic introduction to web development already, but as you
probably guessed already, we’ve barely scratched the surface. There’s a lot
more to learn and a lot more to do.

The world is your oyster, as far as web development is concerned.
Delve deeper into HTML, CSS, and JavaScript and learn more about
website design and development. Then, look into Django or Flask for
back end and MongoDB for creating and maintaining databases for your
program. Once you've learned the subject, try creating projects (maybe a
social media site or a shopping cart). It’s a vast topic that’ll take months to
learn. Take it one step at a time.

Packages in detail

Yes, we have looked at Turtle, Tkinter, and Pygame to an extent. But there’s
still a lot more to learn. So, I'd recommend creating more projects (not just
the ones mentioned in this book), and as you encounter more problems,
you'll look for more solutions (or syntaxes) to solve them, and you'll delve
deeper into each package you're working with.

Have fun!

Summary

In this chapter, I gave you more ideas on mini and capstone projects you
can try creating yourself. Then, I gave you directions on what you can learn
next.

That'’s it We’ve come to the end of the book. I hope you had fun
learning Python with me. Don’t stop learning and creating, but more
important than that, never stop having fun!

543

Index
A

append() method, 229
Arbitrary arguments, 296-298
Arguments, 291, 292

B

Binding events, 369-372
Break and continue, 207, 208

C

Calculator app, 516-523
Capstone project

dodge raining bullets, 541

memory game, 541

snake game, 540
Cascading Style

Sheet (CSS), 498, 502-504

Christmas tree, 268-272
Command
and operator, 190
and statement, 190
compare/decide, 179, 180

conditional statements, 189-193

conditions, 176

elif statement, 184-186

else statements, 183, 184
guess number game, 187-190

© Aarthi Elumalai 2021

if/else statement, 175

if statement, 180-183

lists/tuples/sets, 178

not operator, 191

or statement, 191

true/false determines, 175-178
Complex mandala, 100, 277, 278
Computer’s language, 13, 14
Cool mini projects, see Turtle

module

D

Data structure, 223-226, 228, 240
Deep dive method
arcs, 114-116
background color set, 108
bgcolor method, 108
change directions, 126-130
circle, 124-126
circles, 112,113
dot function, 113,114
fillcolor function, 109
graphics, 109-112
heading() method, 129
hideturtle() function, 116, 118
options, 116-120
pensize function, 109
penup/pendown methods, 116

545

A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4

https://doi.org/10.1007/978-1-4842-6812-4#DOI

INDEX

Deep dive method (cont.)

screen customization, 107, 108

setheading() method, 127

shapes, 112

smileys, 134, 135

text screen, 120-124
Dictionaries, 247-252

E

Even/odd number project
error message, 262
input numbers, 260
overview, 259
print, 261, 262

F

File handling, 323
boring theoretical, 323
existing file, 330
introduction.txt, 332, 333
line by line, 328-330
manipulation, 330-332
open method, 324-328, 330
read() function, 326
Flask installation, 508-510
For loops
if statements, 200, 201
iterate over strings, 204
iteration, 197-200
nested loops, 202-204
syntax, 198
temporary variable, 197

546

Function

G

add()/mul() functions, 292

addition()/multiply() method,
293-295

arbitrary arguments, 296-298

calculation, 289-291

default arguments, 295

definition, 285

different values, 287

global vs. local (see Global vs.
Local variables)

glorious functions, 301

input() method, 289

lambda, 301, 302

math homework project,
302-306

parameter, 288

shape automation, 306-309

use of, 286, 287

Global vs. Local variables

global keyword, 299-301
re-assign values, 297, 298
return local variables, 299
variables, 298, 299

Graphical user interface

H

(GUI), 335

Hyper Text Markup Language

(HTML), 499-502

Integrated Development and
Learning Environment
(IDLE)
configuration, 28, 29
installation, 27
mathematical calculations,
30,31
script mode
file creation, 33
output, 36
.py file, 34
running program, 35
source code, 35
untitled document, 34
Windows, 28
Interactive mode
(Python shell), 30

J,K

JavaScript, 504-507

L

Lambda, 301, 302

Lists
accessing values, 226
add/remove elements,

232,233

clear() method, 237, 246
concatenation/join, 230, 231
copy method, 229
count/clear method, 230, 231

INDEX

dictionaries, 247-252
extend method, 230, 237
first/last name

reversal, 255-257
heterogeneous values, 226
index method, 231, 232
in keyword, 235-238
manipulation, 228, 229
multi-colored star, 240-242
never-ending colors, 255-258
pop() method, 233
reverse() method, 234, 235
search option, 231
sets, 244-247
slice method, 227, 228
sort() method, 234, 235
square brackets ([]), 225
tuples, 241-244
union() method, 246

Loops

arc spirals, 218-221
break/continue, 207, 208
equilateral triangle, 215
guess number game
version 2, 209-211
hexagon, 216
iteration, 196-198
for loops (see For loops)
mandala design, 216-218
quarter circle spirals, 221
semi-circle spirals, 220
shape automation, 212-216
square automation, 212, 213
while, 205, 206

547

INDEX

Mac installation

authentication, 23
installation type, 22, 24
license agreement, 21, 22
package, 24, 25

welcome screen, 20, 21

Mini projects

bouncing ball, 465,
527-530
calculator app, 511-518
introduction.txt, 534-538
random story
generator, 518-521
rock paper scissors
game, 521-527
temperature conversion
app, 531-534
puzzles
currency conversion
options, 539
overview, 539

Pygame, 540
turtle, 540
N
Numbers

argument, 74

assignment operations, 65-67
BODMAS rule, 68-70
comments, 46, 47

complex numbers, 50-52

548

cool stuff, 70

creation, 59, 60

factorial method, 73

floating-point, 49, 50

floor/ceiling methods, 71

integers (int), 48, 49

math operations
addition/subtraction/

multiplication, 60-62

Python, 62-65

mini project, 57, 58, 78-81

numerical operations, 74, 75

overview, 39, 40

power/square root, 72

random numbers, 75-78

randrange() function, 76

script file, 42

storage option, 40-46

type conversion, 53-57

variables, 41

Object-oriented programming

(OOPs), 311, 542
classes, 314, 315
do stuff/stuff, 318, 319
init() function, 316
integer, 313, 314
manipulation, 317, 318
objects, 315-317
properties and methods,
312,313
turtle race, 320-322

P, Q
Package details, 543
Paint app
canvas creation, 394, 395
changeSize function, 403, 404
clear_screen() function, 407
colorchooser, 392, 393
draw circles and ovals, 402
draw options menu, 396-398
entire program, 408
explanation, 392, 393
hand/straight lines, 400, 401
menus options, 395, 396
mouse position, 398
outline and fill colors, 404-406
screen setup, 394, 395
squares and rectangles, 401
Programming language
artificial intelligence, 5, 6
code, 2
financial analyst, 6
gadgets, 1, 2
logic and creativity, 5, 6
mathematical capabilities, 4, 5
program creation/running
configuration
window, 28, 29
IDLE process, 27, 28
shell output, 28
puzzles/activities, 12, 13
Python, 7-11
Pygame, 445
bouncing ball, 465, 527-530

INDEX

command prompt, 447

definition, 446

installation, 446-448

keyboard press event, 459-461

lines, rectangles, circles/

polygons, 452-457

move characters, 457-459

screen customization, 450-452

setup gaming screen, 448-450

space shooters (see Space

shooters game)
Python

activity, 36, 37

download page, 15

installation, 14

installation setup, 16-18

Mac (see Mac installation)

package downloading, 19-21

PATH, 16

print command, 32, 33

programming language, 7
apps, 10, 11
games, 9
graphics/animations, 9
libraries and modules, 8
straightforward, 7, 8
websites, 10

Windows device, 14

R

Random story generator, 518-521
Regular expressions, 542
Rock Paper Scissors game, 521-527

549

INDEX

S

sin, cos, tan, and log, 73, 74
Snake game
apple, 419-421
changeScore() method, 428
checkCollision function,
434-439
distance() method, 428
drawApple() function, 428

drawSnake() function, 429-432

explanation, 414-416
global variables, 417
head, 417-419

joystick/keyboard keys, 421-423

modules, 415
moveBody() function, 431-433
moveHead() method, 424-427
onkeypress() methods, 422
scoreboard creation, 426, 427
screen coordinates, 424
setup() function, 416, 417
source code, 439-444
tracer() method, 416
Space shooters game
bullet fire, 479-482
enemies
creation, 478-482
kill process, 486-488
re-draw process, 488, 489
entire code, 491-496
explanation, 468, 469
game loop, 470, 471
game over screen, 490, 491

550

initialization, 469, 470
modules, 469
scoreboard creation, 482, 483
spaceship
creation, 472, 473
kill process, 487, 488
move, 473-475
Spirals
circular, 275, 276
racing process, 281
random, 272, 273
square, 268-270
star, 273, 274
triangular, 273, 274
Storing one value, 223-225
Strings
accessing characters, 145-147
capitalize() method, 150-152
colorful/dynamic math, 174
concatenation, 144, 145
empty string, 145
escape character, 142
format method, 159-163
index chart, 146
index()/find() method, 155
input automation, 161, 162
int/float conversion, 162-164
isalnum() method, 156
in keyword, 155-157
len() method, 150, 151
lower() method, 151
misc method, 152-155
positive/negative indices, 147

print() function, 138, 139
reverses, 169, 170

shouting screen, 166-168
single/double quotes, 142-144
single/multiple lines, 139-141
slicing, 148, 149

string concatenation, 144, 145
strings.py, 138, 139

title() method, 152

turtle text, 164-166

type() method, 139

T, U,V
Temperature conversion app,
531-534
Tic Tac Toe game
bind events, 369-372
buttons
buttonClick() function, 376
creation, 376-378
draw information, 380
global variables, 378-383
new_game() function,
385, 386
winner_check() function,
379,382
entire program, 387-390
explanation, 372
game over process, 384
global variables, 374, 375
setup, 373
Tipping calculator, 262-264
Tkinter, 335

INDEX

Button() method, 340, 341
calculator app (see

Calculator app)
check() function, 358
delete() method, 350
entry() method, 349, 352
fill options, 346
get() method, 349
greet() function, 349
grid method, 363-365
inputs, 348
insert() method, 350, 351
introduction.txt, 534-538
label() method, 338-343
mainloop() function, 339
menu() method, 361-363
pack geometry

method, 343-349
pack() method, 338
paint (see Paint app)
radio button, 360
screen display, 336-338
side options, 347
string variable, 357-359
text() method, 352-355
tic tac toe game (see

Tic Tac Toe game)
tip calculator app, 365-368
title change, 337

Turtle module, 83

backward() function, 87

change directions, 89-91

deep dive (see Deep dive
method)

551

INDEX

Turtle module (cont.) shortcuts, 95, 96
forward/backward, 86-88 snake (see Snake game)
getscreen() method, 84 square, 91-93
goto, 99, 100 Turtle() function, 85

hexagon, 94, 95
home() function, 87

mandalas W, X! Y; y4

code tilted, 102-105 Web development, 543

conical shape, 101 buttonClick() function, 506

source code, 100-105 CSS, 502-504

square base, 100, 101 Django and Flask, 507-510
pre-defined methods, 84 front-end dynamic, 504-507
random numbers, 97-99 HTML building blocks, 499-502
random packages, 278-281 meaning, 498-500
screen, 85 While loops, 205, 206

552

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Did You Know?
	What is programming?
	Why should your kids learn to code?
	Programming is like Math
	Coding improves logical thinking and creativity
	Coding is the future

	Why Python?
	Python is easy
	It can do a lot of things

	Python is fun!
	Games!
	Graphics and animation
	Websites
	Apps

	Getting the most out of this book
	Summary

	Chapter 2: Let’s Install Python!
	Speak the computer’s language
	Get started – install Python
	Installing Python on a Windows computer
	Download Python
	Install Python
	Installing Python on a Mac device
	Download Python
	Install Python

	Summary

	Chapter 3: Your First Python Program
	Creating and running programs in Python
	Python interactive mode (Python Shell)
	Your Shell can do Math
	Print with Python
	IDLE script mode
	Python activity: Print your name (and some more)
	Summary

	Chapter 4: Python Loves Numbers
	Numbers in Python
	Store your numbers
	Comments
	Your numbers come in different forms
	Integers
	Floating-point numbers
	Complex numbers

	Type conversion between numbers
	Mini project – Do you understand numbers?
	Summary

	Chapter 5: Let’s Play with Our Numbers!
	Get your numbers out to play
	Basic Math operations
	Special Math operations in Python
	Assignment operations
	What comes first?
	Cool stuff with numbers
	Floor and ceiling of a number
	Power and square root
	Factorial of a number
	Sin, cos, tan, and more
	More numerical operations
	Working with random numbers
	Mini project – multiples of a number
	Summary

	Chapter 6: Drawing Cool Stuff with Turtle
	Let’s get started
	Make your Turtle move
	Move forward and backward
	Make your turtle change directions
	Mini project – draw a square
	Mini project – draw a hexagon
	Shortcuts
	Go to random points on the screen
	Draw a square with goto
	Mini project – draw a mandala (with just straight lines)
	Summary

	Chapter 7: A Turtle Deep Dive
	Customize your screen
	Customize your graphics
	Shapes without lines
	Circles
	Dots
	Arcs
	More options!
	Draw text on screen
	Mini project – circle within a square
	Change directions of your drawing
	Mini project – smiley
	Summary

	Chapter 8: Play with Letters and Words
	What are strings?
	Let’s create some strings
	I want lines and lines of strings!
	My string has quotes!:O
	Let’s join two or more strings
	Concatenation in print()
	Empty string
	Accessing characters in strings
	Negative indices
	Slicing a part of a string
	String methods – magic with strings!
	Capital and small
	Misc methods
	True? False?
	String formatting
	Getting input from the users (start automation)
	String to int or float conversion
	Mini project – take Turtle text to the next level!
	Mini project – shout at the screen
	Mini project – reverse your name
	Mini project – colorful and dynamic Math
	Summary

	Chapter 9: Follow My Command!
	True or False
	Compare and decide
	If this happens, do this (command!)
	Else?
	More than one condition!:O
	Mini project – guess the number game
	The conditions keep stacking up!
	Summary

	Chapter 10: Automate a Little
	Magic loops!
	For loops
	If statements within for loops
	Nested for loops
	Iterating over strings
	While loops
	Abort mission! Break and continue
	Mini project – guess the number game version 2
	Mini project – automate your square
	Mini project – automate any basic shape
	Mini project – automatically draw a mandala design
	Mini project – arc spirals
	Summary

	Chapter 11: Lots and Lots of Information!
	Store more than one value
	Lists
	Accessing values in a list
	Slice a list!
	List manipulation on fire!
	Copy and append
	Count and clear
	Concatenation
	Search inside your list
	Add and remove elements
	Reverse and sort

	More fun with lists!
	Mini project – multi-colored automated star
	Tuples
	Sets
	Dictionaries
	Mini project – never-ending colors
	Mini project – first and last name reversal
	Summary

	Chapter 12: Fun Mini Projects Galore!
	Project 12-1: Odd or even
	Part 1 – Is your number odd or even?
	Part 2 – print odd or even numbers within a range

	Project 12-2: Is your mom tipping enough?
	Project 12-3: Draw a Christmas tree
	Project 12-4: Spirals!
	Square spiral
	Random spiral
	Triangular spiral
	Star spiral
	Circular spiral
	Project 12-5: Complex mandala – completely automated
	Project 12-6: Turtle race with loops
	Summary

	Chapter 13: Automate with Functions
	True automation
	Our first function
	Why do we need functions?
	Do different things every time!
	Create (define) your functions
	You can reuse your code!
	No arguments?

	Give an answer
	No arguments? What to do!
	Too many arguments!
	Global vs. local
	Variables within functions
	Return local variables
	Global variables

	Lambda
	Mini project – do your Math homework with Python
	Mini project – automated shapes – next level
	Summary

	Chapter 14: Let’s Create Real-World Objects
	What is object-oriented programming?
	Let’s prove it!
	Classes
	Objects with their own values
	Manipulate your objects
	Objects do stuff
	Turtle race with objects
	Summary

	Chapter 15: Python and Files
	Why files?
	Opening and reading existing files
	Line by line
	Create new files
	Manipulate files
	Mini project – introduce with files
	Summary

	Chapter 16: Create Cool Apps with Tkinter
	Tkinter – let’s set it right up!
	Labels, buttons, and packing them
	Packing in detail
	Lots of inputs
	One line of text
	Line after line
	Tkinter variables
	Lots of options!
	Menus
	The perfect layout – grid
	Mini project – tip calculator app
	Summary

	Chapter 17: Project: Tic-tac-toe Game with Tkinter
	Bind events – make your apps dynamic!
	Tic-tac-toe game – explanation
	Set up Tkinter
	Create global variables
	Create the buttons
	When the button is clicked, draw on it
	Check if a player won during each turn
	New game button
	Entire program
	Summary

	Chapter 18: Project: Paint App with Tkinter
	Paint app – explanation
	Get started
	Set up the screen
	Create the canvas
	Create your first menu (shapes)
	Let’s make our draw options work!
	Get the mouse position
	Let’s draw our lines
	Squares and rectangles!
	Circles and ovals!
	Select size!
	Lots and lots of colors!
	I’ve finished drawing!
	Entire program
	Summary

	Chapter 19: Project: Snake Game with Turtle
	Snake game
	Import the required modules
	Set up the turtle screen
	Create and initialize the required variables
	Draw the head
	Draw the first apple
	Is my screen registering my arrow presses?
	Make our snake head move
	Get the scoreboard going
	Our snake’s eating!
	Make the entire snake move
	Collision check
	Entire code
	Summary

	Chapter 20: Become a Game Developer with Pygame
	What is Pygame?
	Install and import Pygame
	Set up your gaming screen!
	Make your screen pretty
	Create your characters on the screen
	Move your characters
	Keyboard press events
	Mini project – bouncing ball
	Summary

	Chapter 21: Project: Space Shooters with Pygame
	Space shooter game
	Import the required modules
	Initialize everything
	Game loop
	Create the spaceship
	Move the spaceship
	Create and move the enemies
	Fire the bullet
	Create and display the scoreboard
	Kill the enemies
	Kill the spaceship!
	Re-draw the enemies
	Game over!
	Entire code
	Summary

	Chapter 22: Web Development with Python
	Python and web development
	Building blocks – HTML
	Pretty things up – CSS
	Front-end dynamic – JavaScript
	Python’s Flask
	Summary

	Chapter 23: More Mini Projects
	Project 23-1: Calculator with Tkinter
	Project 23-2: Random story generator
	Project 23-3: Rock Paper Scissors game
	Project 23-4: Bouncing ball (off the four walls) with Pygame
	Project 23-5: Temperature conversion app
	Project 23-6: Introduce with files and Tkinter
	Summary

	Chapter 24: What’s next?
	Mini project ideas you can try
	Currency conversion app
	Race in Pygame
	More patterns in Turtle

	Capstone project ideas you can try
	Snake game in Pygame
	Dodge the bullet
	Memory game in Pygame

	Looking ahead
	OOPs in detail
	Regular expressions
	Web development
	Packages in detail

	Summary

	Index

