
Introduction to
Python for Kids

Learn Python the Fun Way by
Completing Activities and
Solving Puzzles
—
Aarthi Elumalai

Introduction to
Python for Kids

 Learn Python the Fun Way by
Completing Activities
and Solving Puzzles

Aarthi Elumalai

Introduction to Python for Kids

ISBN-13 (pbk): 978-1-4842-6811-7		 ISBN-13 (electronic): 978-1-4842-6812-4
https://doi.org/10.1007/978-1-4842-6812-4

Copyright © 2021 by Aarthi Elumalai

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6811-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Aarthi Elumalai
Chennai, Tamil Nadu, India

https://doi.org/10.1007/978-1-4842-6812-4

Dedicated to My Daughter and to the rest of my family
who believed me when no one would and stood by me

through everything.

v

Chapter 1: �Did You Know?���1

What is programming?���1

Why should your kids learn to code?���2

Why Python?���7

Python is fun!���8

Games!���9

Graphics and animation��9

Websites���10

Apps���10

Getting the most out of this book���11

Summary���12

Chapter 2: �Let’s Install Python!���13

Speak the computer’s language��13

Get started – install Python��14

Installing Python on a Windows computer���14

Download Python��15

Table of Contents
About the Author��xix

About the Technical Reviewer��xxi

Introduction��xxiii

vi

Install Python��16

Installing Python on a Mac device��18

Download Python��18

Install Python��20

Summary���25

Chapter 3: �Your First Python Program���27

Creating and running programs in Python���27

Python interactive mode (Python Shell)���30

Your Shell can do Math��30

Print with Python��32

IDLE script mode��33

Python activity: Print your name (and some more)��36

Summary���37

Chapter 4: �Python Loves Numbers��39

Numbers in Python���39

Store your numbers���40

Comments��46

Your numbers come in different forms��47

Integers��48

Floating-point numbers��49

Complex numbers���50

Type conversion between numbers���53

Mini project – Do you understand numbers?���57

Summary���58

Table of Contents

vii

Chapter 5: �Let’s Play with Our Numbers!��59

Get your numbers out to play���59

Basic Math operations���60

Special Math operations in Python��62

Assignment operations��65

What comes first?��67

Cool stuff with numbers���70

Floor and ceiling of a number��71

Power and square root���72

Factorial of a number���73

Sin, cos, tan, and more��73

More numerical operations��74

Working with random numbers���75

Mini project – multiples of a number���78

Summary���81

Chapter 6: �Drawing Cool Stuff with Turtle���83

Let’s get started���83

Make your Turtle move��86

Move forward and backward���86

Make your turtle change directions���89

Mini project – draw a square���91

Mini project – draw a hexagon��93

Shortcuts��95

Go to random points on the screen��96

Draw a square with goto��98

Mini project – draw a mandala (with just straight lines)�����������������������������������100

Summary���105

Table of Contents

viii

Chapter 7: �A Turtle Deep Dive��107

Customize your screen��107

Customize your graphics���109

Shapes without lines��112

Circles��112

Dots��113

Arcs��114

More options!���116

Draw text on screen���120

Mini project – circle within a square���124

Change directions of your drawing��126

Mini project – smiley���131

Summary���135

Chapter 8: �Play with Letters and Words��137

What are strings?���137

Let’s create some strings���138

I want lines and lines of strings!��139

My string has quotes! :O��141

Let’s join two or more strings��143

Concatenation in print()���144

Empty string���145

Accessing characters in strings���145

Negative indices��147

Slicing a part of a string���148

String methods – magic with strings!��149

Capital and small���150

Table of Contents

ix

Misc methods��152

True? False?���155

String formatting��157

Getting input from the users (start automation)��161

String to int or float conversion���162

Mini project – take Turtle text to the next level!��164

Mini project – shout at the screen���166

Mini project – reverse your name��169

Mini project – colorful and dynamic Math���171

Summary���174

Chapter 9: �Follow My Command!��175

True or False��175

Compare and decide��179

If this happens, do this (command!)��180

Else?��183

More than one condition! :O���184

Mini project – guess the number game���186

The conditions keep stacking up!��189

Summary���193

Chapter 10: �Automate a Little��195

Magic loops!��195

For loops��197

If statements within for loops��200

Nested for loops���201

Iterating over strings��204

While loops��205

Table of Contents

x

Abort mission! Break and continue��207

Mini project – guess the number game version 2���209

Mini project – automate your square���211

Mini project – automate any basic shape��212

Mini project – automatically draw a mandala design��216

Mini project – arc spirals���218

Summary���221

Chapter 11: �Lots and Lots of Information!���223

Store more than one value���223

Lists���225

Accessing values in a list���226

Slice a list!���227

List manipulation on fire!���228

Copy and append��229

Count and clear��229

Concatenation��230

Search inside your list��231

Add and remove elements��232

Reverse and sort��234

More fun with lists!��235

Mini project – multi-colored automated star���238

Tuples���240

Sets��244

Dictionaries��247

Mini project – never-ending colors��252

Mini project – first and last name reversal��255

Summary���258

Table of Contents

xi

Chapter 12: �Fun Mini Projects Galore!���259

Project 12-1: Odd or even��259

Part 1 – Is your number odd or even?��260

Part 2 – print odd or even numbers within a range��������������������������������������261

Project 12-2: Is your mom tipping enough?���262

Project 12-3: Draw a Christmas tree��264

Project 12-4: Spirals!���268

Square spiral��269

Random spiral��271

Triangular spiral���272

Star spiral��273

Circular spiral���274

Project 12-5: Complex mandala – completely automated���������������������������������276

Project 12-6: Turtle race with loops���277

Summary���281

Chapter 13: �Automate with Functions���283

True automation���283

Our first function��285

Why do we need functions?���286

Do different things every time!��287

Create (define) your functions��288

You can reuse your code!���289

No arguments?���291

Give an answer��292

No arguments? What to do!���295

Too many arguments!��295

Table of Contents

xii

Global vs. local���297

Variables within functions��298

Return local variables���299

Global variables��299

Lambda��301

Mini project – do your Math homework with Python���302

Mini project – automated shapes – next level���306

Summary���309

Chapter 14: �Let’s Create Real-World Objects�������������������������������������311

What is object-oriented programming?���312

Let’s prove it!���313

Classes���314

Objects with their own values��315

Manipulate your objects��317

Objects do stuff��318

Turtle race with objects���319

Summary���322

Chapter 15: �Python and Files���323

Why files?��323

Opening and reading existing files���324

Line by line���328

Create new files���330

Manipulate files���330

Mini project – introduce with files���332

Summary���333

Table of Contents

xiii

Chapter 16: �Create Cool Apps with Tkinter���������������������������������������335

Tkinter – let’s set it right up!���335

Labels, buttons, and packing them��337

Packing in detail��342

Lots of inputs���348

One line of text���349

Line after line���352

Tkinter variables��355

Lots of options!��357

Menus��361

The perfect layout – grid��363

Mini project – tip calculator app��365

Summary���368

Chapter 17: �Project: Tic-tac-toe Game with Tkinter��������������������������369

Bind events – make your apps dynamic!���369

Tic-tac-toe game – explanation���372

Set up Tkinter��373

Create global variables��374

Create the buttons���376

When the button is clicked, draw on it���378

Check if a player won during each turn���383

New game button���385

Entire program���387

Summary���390

Table of Contents

xiv

Chapter 18: �Project: Paint App with Tkinter��������������������������������������391

Paint app – explanation���391

Get started���392

Set up the screen���393

Create the canvas��394

Create your first menu (shapes)���395

Let’s make our draw options work!���396

Get the mouse position��398

Let’s draw our lines���399

Squares and rectangles!��401

Circles and ovals!���402

Select size!��403

Lots and lots of colors!��404

I’ve finished drawing!��407

Entire program���408

Summary���412

Chapter 19: �Project: Snake Game with Turtle������������������������������������413

Snake game���413

Import the required modules���415

Set up the turtle screen���415

Create and initialize the required variables���417

Draw the head��417

Draw the first apple���419

Is my screen registering my arrow presses?���421

Make our snake head move���423

Get the scoreboard going���426

Table of Contents

xv

Our snake’s eating!��428

Make the entire snake move��431

Collision check���434

Entire code���439

Summary���444

Chapter 20: �Become a Game Developer with Pygame�����������������������445

What is Pygame?���445

Install and import Pygame���446

Set up your gaming screen!���448

Make your screen pretty��450

Create your characters on the screen��452

Move your characters��457

Keyboard press events���459

Mini project – bouncing ball��462

Summary���465

Chapter 21: �Project: Space Shooters with Pygame���������������������������467

Space shooter game��467

Import the required modules���469

Initialize everything��469

Game loop��470

Create the spaceship���471

Move the spaceship���473

Create and move the enemies���475

Fire the bullet���479

Create and display the scoreboard��482

Kill the enemies���484

Table of Contents

xvi

Kill the spaceship!��487

Re-draw the enemies���488

Game over!���489

Entire code���491

Summary���496

Chapter 22: �Web Development with Python��������������������������������������497

Python and web development��497

Building blocks – HTML���499

Pretty things up – CSS���502

Front-end dynamic – JavaScript��504

Python’s Flask��507

Summary���510

Chapter 23: �More Mini Projects���511

Project 23-1: Calculator with Tkinter���511

Project 23-2: Random story generator���518

Project 23-3: Rock Paper Scissors game���521

Project 23-4: Bouncing ball (off the four walls) with Pygame����������������������������527

Project 23-5: Temperature conversion app��531

Project 23-6: Introduce with files and Tkinter��534

Summary���538

Chapter 24: �What’s next?���539

Mini project ideas you can try��539

Currency conversion app��539

Race in Pygame��540

More patterns in Turtle���540

Table of Contents

xvii

Capstone project ideas you can try��540

Snake game in Pygame��540

Dodge the bullet���541

Memory game in Pygame���541

Looking ahead��542

OOPs in detail���542

Regular expressions���542

Web development���543

Packages in detail��543

Summary���543

�Index��545

Table of Contents

xix

About the Author

Aarthi Elumalai is a programmer, educator, entrepreneur, and innovator.

She has a Bachelor of Engineering degree in Computer Science from Anna

University, Chennai. 

Since then, she has managed a team of programmers and worked with

hundreds of clients. She has also launched a dozen web apps, plug-ins,

and software that are being used by thousands of customers online.

She has over 15 years of experience in programming. She started

coding in Basics at the age of 12, but her love for programming took root

when she came across C programming at the age of 15.

She is the founder of DigiFisk, an e-learning platform that has more

than 60,000 students all over the world. Her courses are well received by

the masses, and her unique, project-based approach is a refreshing change

to many. She teaches the complex world of programming by solving a ton

of practical exercises and puzzles along the way. Her courses and books

always come with hands-on training in creating real-world projects using

the knowledge learned, so her students get better equipped for the real

world.

When she is not working on her next course or book, you’ll see her

researching her next product idea and refining her existing products. She is

currently committed to bringing the sheer power of artificial intelligence to

make life easier for small business owners.

xxi

About the Technical Reviewer

Ashwin Pajankar holds a Master of Technology from IIIT Hyderabad.

He started programming and tinkering with electronics at the tender

age of 7. BASIC was the first programming language he worked with.

He was gradually exposed to C programming, 8085, and x86 assembly

programming during his higher secondary schooling. He is proficient

in x86 assembly, C, Java, Python, and Shell programming. He is also

proficient with Raspberry Pi, Arduino, and other single-board computers

and microcontrollers. Ashwin is passionate about training and mentoring.

He has trained more than 60,000 students and professionals in live and

online training courses. He has published more than a dozen books with

many international and Indian publishers. He has also reviewed numerous

books and educational video courses. This is his fifth book with Apress,

and he is working on more books. He regularly conducts programming

bootcamps and hands-on training for software companies in Nashik, India.

He is also an avid YouTuber with more than 10,000 subscribers to his

channel. You can find him on LinkedIn.

xxiii

Introduction

This book is the perfect blend of education and fun for kids 8 years and

above looking to learn one of the easiest languages they can use to develop

almost everything from websites to desktop apps to games to AI. It will

include four big projects (or capstone projects): three games with Turtle,

Tkinter, and Pygame and a desktop app with Tkinter.

The book starts with an overview of basic programming concepts such

as variables, numbers, and strings while creating fun, personalized mini

projects like “Print your name” and “Is your mom tipping enough.” It then

dives right into Turtle, a Python library custom-made for kids, where they'll

learn how to draw, animate, automate, and eventually make colorful mini

projects based on the Python concepts learned. Once they have built a

foundation in programming and the Python language, they will learn all

about building desktop apps with Tkinter and games with Pygame.

There is also an entire chapter dedicated to more fun puzzles and

activities that come with a step-by-step solution, and another chapter

with cool ideas for more puzzles, and a section that gives them advice

on where they can go from there. By the end of this book, kids will learn

Python from the inside out while creating projects that they can showcase

to their friends, families and teachers. They will develop problem-solving

skills along with programming skills while doing the puzzles and activities

described in the book.

This book is really jam-packed with information, but do not worry,

I made sure that you will not be bored. You will not feel like sitting in

another one of your boring classes at school, I promise.

I have included a lot of fun activities, mini as well as big projects

throughout this book. There are also a lot of puzzles and even more

activities at the end of the book, so you will not have a boring minute.

xxiv

In Chapter 1, I’ll give you a brief introduction to Python, its uses,

and an overview of what’s covered in this book and how to get the most

out of it.

In Chapters 2 and 3, I will start by guiding you through the steps

required to install Python in your system. It is quite easy to do, do not

worry.

Then, you will create your very first program. Yes, you will start coding

from the get-go!

In Chapters 4 and 5, you will learn all about numbers, performing

mathematical calculations with Python, and the various cool tools Python

equips you with to perform your magic with numbers. You will start coding

real Python programs in this chapter.

Chapters 6 and 7 are where things get interesting. You will learn how

to create a lot of cool graphics with Python’s built-in module, Turtle.

Remember the add-ons I told you Python had to help you make awesome

stuff? Turtle is one of the best of them. With Turtle, you can literally draw

on the screen, and it will be automated!

Once I have taught you Turtle, I will use it in the next chapters to make

things more colorful.

In Chapter 8, you will learn how to play with alphabets, words, and

sentences in Python. You will learn how to print things, extract words from

sentences, find words in sentences, and a whole lot more.

Introduction

xxv

Chapter 9 is where you will learn about conditions. There is always a

cause and effect in life. If something happens, something else will happen

because of it. “If I ace my test, my mom will praise me.” That is a cause and

effect. You will learn how to apply scenarios like that and use it to create

fun little mini games (you will see how) in this chapter.

What if you want to print every number from 1 to 100? What if you do

not want to write more than four lines of code to do that? You will learn

how to do that and use the power of automation to automatically draw

your graphics and animations in Chapter 10.

In Chapter 11, you will learn how to store a lot of information in one

place. You will start using the real power of Python from this chapter

onward.

In Chapter 12, we’re going to take a break from all the learning and

create fun mini projects based on the concepts we’ve learned so far.

In Chapters 13 and 14, we will take a long look into real-world

programming. We will look at true automation with functions and real-

world problem-solving with objects.

In Chapter 15, you will learn how to automatically manipulate files

with Python.

From Chapter 16, we will go back to having fun with Python! In

Chapters 16, 17, and 18, you will learn all about a powerful package called

Tkinter. You can use it to create desktop-based apps and games. You will

learn how to use the package to create a paint app you can show off to your

friends and a tic-tac-toe game you can play with your friends.

In Chapter 19, we will revisit Turtle and create a fun project with it. Let

us create a snake game, shall we?

In Chapters 20 and 21, I will focus on making you a budding game

developer. Let us learn how to use Pygame to create awesome games and

make a space shooter game you can modify to your heart’s content!

In Chapter 22, we will learn the basics of web development with

Python. We will not delve too much into it, but I will give you an

introduction to get started.

Introduction

xxvi

In Chapter 23, we will go back to solving puzzles and activities. We will

even make a couple more mini projects!

Chapter 24 is the final chapter. I’ll give you ideas on new projects and

mini projects you can try with what we’ve learned in this book and also

advice on what you can do next. What is covered in this book is just the

starting point. There is a lot more to Python, and I will point you in the

right direction to continue your journey.

Introduction

1© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_1

CHAPTER 1

Did You Know?
I have written the first part of this chapter for parents and the rest for

the kids. I hope to convince you of the importance of programming and

Python as your kid’s first programming language in this chapter. If your kid

is older (10+), they can read those topics themselves. In the latter half of

the chapter, I’ll address the kids and give them a brief overview of all the

fun stuff they can do with Python, what they’ll learn from my book, and

how to use my book to its full capacity.

So, let us get started.

�What is programming?
You have your gadget – your laptops, PCs, tablets, mobile phones, and

so on – and whenever you ask it to do something, within reason, it does

it. How? Well, that is because every time you task your gadget with

something, the pre-programmed set of instructions it has pertaining

to that task will fire up in the background. Those set of instructions are

called code.

https://doi.org/10.1007/978-1-4842-6812-4_1#DOI

2

You will find that your gadgets need a complete set of instructions to

perform even the simplest tasks, like opening an application or performing

a calculation. They are just machines after all, just 1s and 0s at the base

of it all. They cannot think on their own, so with our code, we are making

them think.

In other words, programming is the language your computer speaks,

and the different programming languages are the different languages it

understands/speaks. You might know English, French, and Mandarin,

but you might not know Italian or Japanese. Similarly, out of the, literally,

hundreds of programming languages out there (Python, JavaScript, C,

C++, C#, Ruby, etc.), your computer might speak a few, or just one, and not

understand the rest.

�Why should your kids learn to code?
Now that you know what programming is and how it literally runs the

digital world, I shouldn’t have to give you a lot of reasons to convince you

to teach your kids coding, am I right?

Chapter 1 Did You Know?

3

But still, you might be wondering why your kid needs to learn

programming, and why should they learn now. After all, in our time,

people learned programming in college and only if they decided to

become a programmer.

Well, I think I have a couple of reasons that will convince you why, in

this day and age, kids, regardless of their future career aspirations, should

learn programming, and why it is prudent that they start now.

�Programming is like Math

Thirty years back, no one would have dared make such a statement, but

now, times have changed, and yes, programming is, indeed, like Math. It is

everywhere, just like Math is.

Math was a part of our educational requirement until we were at least

18, but not everyone of us is a mathematician today. Then why was Math

forced down our throats? Well, because Math runs everything. We need

basic mathematics in our daily life and certainly in most of our careers.

So, we learned everything from calculus to algebra to geometry, knowing

very well that we would probably not use 90% of our knowledge when we

grew up.

That is exactly the case with programming today. Everything is

digitized. There is an app for everything from food delivery to stock market

Chapter 1 Did You Know?

4

prediction. Computers have entered every field, including traditional fields

like construction and manufacturing. Most of the construction equipment

are digitized nowadays, and what powers them? Programs, and thousands

of lines of code.

Even art is digitized. So regardless of the field your kid is getting into,

their knowledge in programming is going to give them a leg up.

But apart from that, coding also improves a kid’s mathematical

capabilities by fostering logical thinking and problem-solving.

�Coding improves logical thinking and creativity

A contradictory statement, but true in this case. Every code blocks your

child creates will be logically driven.

Logic dictates programming, and once they start coding on their own,

they will learn to dissect a problem into bite-sized components, apply logic

to solve each component, and then finally combine all the components

into a coherent solution.

That is how problem-solving works in the real world, regardless of

field, and they will learn this invaluable skill as a child.

Chapter 1 Did You Know?

5

But let us be honest, your kid would be bored with just logic. That is

where creativity comes in. The world runs on both creativity and logic, and

the same holds true for programming.

There is no right answer in programming. If they are solving the

problem, how they are solving it does not matter. There are best practices,

of course, but if you ask two programmers to solve the same problem,

chances are, their code blocks will look completely different.

So, while coming up with a solution, and multiple solutions for

multiple problems down their programming journey, they will foster

creativity as well.

The best of both worlds, don’t you think?

�Coding is the future

Let us be very honest here. We are moving toward a completely digitized

society at an amazingly fast pace. Everything is digitized. Apps are

everywhere. Artificial intelligence is making new waves in the world every

single day. Before we know it, we will have artificial intelligence–driven

technologies cleaning our houses and driving our cars.

It is no wonder that programming has become an invaluable skill in

today’s world, and the demand for programmers is just going to increase

every year.

So, coding is indeed the future, and by learning to code at a young

age, your child will have a leg up over their competitor. Sounds good, but

why does your kid need coding if they were going to become a mechanical

engineer, for example? Or a financial analyst?

Chapter 1 Did You Know?

6

This brings me back to my original argument. Everything is digitized,

and coding is everywhere, in every single field. So, if your kid has a

programming base, then will they not stand out from the rest?

For example, a financial analyst with knowledge in programming

can code a stock prediction application themselves and hence save the

company tons of resources, or they would at least be fluent enough in

tech talk that they’d guide the programmers better and save their boss

hundreds of production hours and back and forth.

So, regardless of what your kid is going to study in the future, coding

is going to help them out, and in the immediate future, they have a

monetizable skill they can use to make extra cash.

In their teenage years, they do not have to flip burgers at minimum

wage as a side gig. They can freelance as a software developer and make at

least three to four times more money working half the time.

Or better yet, your kid could decide to become an entrepreneur. As you

know, almost every startup relates to programming and software in some

way, so as a programmer, your kid can code the app themselves and easily

save tens of thousands in programmer fees.

I believe those are very convincing arguments as to why your kid needs

to start learning to code right now.

Chapter 1 Did You Know?

7

�Why Python?

Alright, now you are convinced about the benefits of your kids learning to

code, but why Python? Out of the tens of popular programming languages

out there, why should they start with Python?

I firmly believe that Python should be the first choice of real-world

programming for a kid and let me convince you why.

�Python is easy

Well, that is pretty much it. Kids want to have fun, and if we want them to

learn programming, it needs to be fun and easy. Python is both.

Unlike the other older languages where you need to learn a lot of

syntaxes and theory before you can create your first program, Python is

very straightforward. The syntax is easy to understand and logically sound.

“Print” just prints something on the screen. Easy to remember, right?

There is not a lot of memorizing to do, and your kid can start coding and

creating from the get-go.

It is the perfect programming language for beginners with no prior

knowledge of programming, and it is even better for kids because it is also

fun.

Chapter 1 Did You Know?

8

Python has a lot of built-in kid-friendly modules and libraries that will

help them draw graphics and create games and fun apps with just a few

lines of code.

�It can do a lot of things

Now, do not underestimate Python because it is easy to learn. It can

be used in literally everything from web development to desktop app

development to artificial intelligence.

The language is immensely powerful, and the libraries and modules

that come with it are even more powerful. You have add-ons for everything.

You can create graphics with Turtle, beautiful desktop apps with

Tkinter (like the calculator app you’re so fond of using on your laptop),

create professional games with Pygame, develop full-blown websites and

web apps with Django or Flask, and apply machine learning (artificial

intelligence) algorithms with a host of easy to learn libraries. The

possibilities are endless with Python.

By starting their programming journey with Python, your kids are not

just stepping into the world of coding, they are also equipping themselves

with skills in one of the most highly sought-after (and paid) programming

languages of this time.

What more? With the rate at which Python’s popularity, and its adoption

into fast-moving fields like artificial intelligence, is growing, it is obvious that

Python is here to stay, so your kids’ skills are unlikely to go stale in the future.

From this point onward, I will be addressing the kids.

�Python is fun!
Hi there! So, you are here to learn Python. Not only is it easy to get started

with, it also comes with a lot of bells and whistles that make programming

fun for you. Would you like to know all the cool things you can create with

Python?

Chapter 1 Did You Know?

9

�Games!
Who does not love games, am I right? But what if you can create your own

games and then play them with your friends? You will be the most popular

kid in class if you can do that.

What more? You can change the features of the games as you like.

Want five lives instead of three? Great, add two more. Not enough levels

and you are bored already? Code more levels into your game! Make those

levels extra difficult to give yourself a challenge. You have the freedom to

do anything you want with the games you create, and you can even get

suggestions from your friends and apply them to your games.

With just a little bit of coding, you will be able to modify the games you

have always been dissatisfied with or create a brand-new game you can

play with your friends.

So, you will have fun while coding and after coding (while playing the

games).

�Graphics and animation
For me, graphics and animations are the next best thing right after games.

What about you?

Chapter 1 Did You Know?

10

Imagine running a program that draws a design you created in real

time. What about an animation? What if you can create designs and

animations and use them in that game you have always wanted to create

and play?

Like I always say, the possibilities are endless, and they are only limited

by your creativity and imagination. Run wild with Python!

�Websites
Do you use the Internet? Then you must have visited at least 100 websites

by now. They look great, don’t they? What if you can create a website just

like your most favorite website?

If you learn Python, you certainly can.

I am not talking about simple websites. I am talking about big, full-

blown websites and web apps with a lot of cool features. You could even

create websites and apps like Facebook and Instagram with enough

practice.

�Apps
Python comes with a lot of tools, just like the tools you use in your games.

These tools are called libraries and packages in Python. With the help of

these libraries, you can create almost anything, including apps.

Do you use a laptop or tablet? It comes with a lot of cool apps, right?

There is a calculator app, a stopwatch/timer app, paint app, and so on.

Chapter 1 Did You Know?

11

What if you can create those exact apps? Well, with Python, you

certainly can. In fact, you will learn to create some of those apps right in

this book. Are you excited?

Not just that, with packages like Kivy and PyQt, you can even start

creating mobile apps with Python. We will not be talking about those

packages in this book, but as you can see, you have a lot of possibilities

with Python.

Whew! That was a big list indeed. The world is your oyster with Python,

so come and play!

�Getting the most out of this book
This chapter (and the last) would be the only two chapters with a lot of

text. I have tried my best to keep things interesting and practical in the rest

of the chapters.

You will come across a lot of examples that illustrate every topic we

cover. There will be a lot of coding, so I recommend you code the examples

along with me. Try not to copy and paste. Type everything out so you get

familiarized with coding.

Chapter 1 Did You Know?

12

Every chapter comes with a lot of activities, puzzles, and mini projects

with detailed, step-by-step solutions too. I would recommend following

along with the solutions in the first few chapters, but once you are

confident enough, try solving the puzzles/activities on your own and then

cross-verify with the given solution.

Remember, there are no wrong solutions in programming! If you get

the desired result, you are good to go.

This book includes four capstone projects (big projects) as well to

solidify your knowledge of Python. I would recommend creating the

projects, but do not stop there. Try changing things in every project to

make it your own. Of course, do not forget to show your projects to your

family, friends, and teachers as well!

That is pretty much it. It is an easy-to-follow along book, so do not get

overwhelmed by the size of it. Just get started and start coding.

�Summary
In this chapter, which was addressed to the parents (in the first half)

and the kids (in the second half), I gave a brief explanation of what

programming is and why your kids need to learn to code at such a young

age, regardless of their future aspirations. I also gave convincing arguments

on why Python should be the first real-world programming language of

choice for a kid and what a kid can do with Python. We ended the chapter

with a brief overview of everything you will learn from this book and the

best way to utilize this book to its full capacity.

In the next chapter, we will learn how to install Python and create and

execute our very first Python programs.

Chapter 1 Did You Know?

13© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_2

CHAPTER 2

Let’s Install Python!
In this chapter, we will take a deeper look into what programming is and

how it is used to control various gadgets. We will also look at installing

Python in our system. Let us get started!

�Speak the computer’s language
Language is used for communication between two or more people, am I

right? But if someone talks to you in a language you do not know, would

you understand them? Of course not. I would not either!

Similarly, your computer cannot understand languages it does not

speak. So, if you just look at your computer and command it to open the

paint program in plain English, it will not understand you. If you talk to

it in a language it understands, on the other hand, you will certainly get a

response.

Programming languages are languages computers understand. Python

is one of them. If you want your computers or mobile phones or GPS or

tablets to do something, you need to give them instructions.

When you click the paint app’s icon, how does your device know that

you have actually clicked it? How does it open that exact app and not

something else? That is because a programmer probably wrote a bunch of

lines of code that says that when someone clicks the paint icon, the paint

app should open. If they changed the code and wrote that clicking that

icon should open the Google Chrome browser, then that is what would

happen.

https://doi.org/10.1007/978-1-4842-6812-4_2#DOI

14

Therefore, a programmer’s job is extremely important. They make the

devices work. They create the device’s brain that makes actions possible.

Without their code, the devices you use every day would just be a mass of

plastic, chips, and wires, and nothing else.

So, if you learn to speak the computer’s language, you can give your

computer, or any gadget really, instructions like these too. Once you get

good at programming, you can create apps like the paint app or games like

Minecraft.

�Get started – install Python
Now you know what programming is. It is just a set of instructions you give

a gadget/device to make it do what you want it to do.

Shall we start programming then? Python is one of the easiest

programming languages out there, so that is exactly what we are going to

learn in this book.

Before you write Python programs though, you need to install it in your

laptop or computer. Remember how I said your computer needs to speak

the language to understand what you are saying?

Right now, your computer probably does not speak the Python

language. That is because Python is not installed in it. Once you install it,

your computer will learn the language in seconds (yes, it is that fast!), and

then when you give it instructions in Python, it’ll understand you and react

accordingly. It is magic!

I will give you step-by-step instructions on installing and running

Python on your system, so just follow along with me, alright? I will give

separate instructions for Windows as well as Mac, so skip to the one you

have on your device.

�Installing Python on a Windows computer
Let us look at how to download and install Python on a Windows device

first. These steps work for Windows versions 7 and higher.

Chapter 2 Let’s Install Python!

15

�Download Python
	 1.	 Open the following link on your browser: www.

python.org/downloads/.

	 2.	 Click the download button (look at the arrow

in Figure 2-1) to download the Python installer.

Remember how I told you that coding was magical?

You will see that in action now. When you opened

the page, it knew you were using a Windows

computer without you having to tell it.

I have downloaded Python 3.8.5 as of writing this book, but you might

be downloading a newer version. Do not worry about that. Go ahead and

download the latest version.

Figure 2-1.  Python Windows download page

Chapter 2 Let’s Install Python!

http://www.python.org/downloads/
http://www.python.org/downloads/

16

�Install Python
It knows you have a Windows computer, so you will now have to install the

Windows version of Python. Let us do that:

	 1.	 Open the .exe file you just downloaded. You will see

a popup like Figure 2-2.

	 2.	 Do not forget to click the checkbox that says “Add
Python 3.8 to PATH” (Figure 2-3).

Figure 2-2.  Python installation setup

Figure 2-3.  Add Python to PATH

Chapter 2 Let’s Install Python!

17

	 3.	 Once you have ticked the box, click install now. The

installation will start, and it will look something like

Figure 2-4.

	 4.	 Wait until the green bar reaches the end, and you

will see a message that says “Setup was successful”

(Figure 2-5).

Figure 2-4.  Python installation progress

Chapter 2 Let’s Install Python!

18

	 5.	 Press the Close button, and you are done installing

Python on your computer. Hurray! 😊

�Installing Python on a Mac device
Let us look at how to download and install Python on a Mac device next.

If you have a Windows computer, and you have already installed Python

following the steps in the last section, you can skip this section.

Python usually comes preinstalled in any Mac device, but chances are

you have an older version of Python in your system. It never hurts to have

the latest version of any software, so let us update our Python, shall we?

�Download Python
	 1.	 Open the following link in your browser: www.

python.org/downloads/ (Figure 2-6).

Figure 2-5.  Python setup successful message

Chapter 2 Let’s Install Python!

http://www.python.org/downloads/
http://www.python.org/downloads/

19

	 2.	 Click that big yellow download button to download

the Python installer. Remember how I told you that

coding was magical? You will see that in action now.

Did you notice that when you visited the download page from your

Mac device, it automatically says “Download the latest version for Mac

OS X”? That is because the Python website’s code read which operating

system (Windows, Mac, etc.) you are using and gave you the correct

version to download automatically. Cool, right?

Your package will download as in Figure 2-7.

Figure 2-6.  Python Mac OS download page

Figure 2-7.  Python 3.8.5 package downloaded

Chapter 2 Let’s Install Python!

20

I have downloaded Python 3.8.5 as of writing this book, but you might

be downloading a newer version. Do not worry about that. Go ahead and

download the latest version.

�Install Python
	 1.	 Open the installer and you will see a screen like

Figure 2-8.

	 2.	 Click Continue, and you will get the following page

(Figure 2-9).

Figure 2-8.  Python Mac installation – Introduction

Chapter 2 Let’s Install Python!

21

	 3.	 Click Continue again, and you will get the following

page (Figure 2-10).

Figure 2-9.  Python Mac installation – Read Me

Figure 2-10.  Python Mac installation – License

Chapter 2 Let’s Install Python!

22

	 4.	 Click Continue again (Figure 2-11).

	 5.	 While you are at the license page, you might get a

popup like the preceding one. Click Agree, and you

will get the Installation Type page (Figure 2-12).

Figure 2-11.  Python Mac installation – License agreement

Figure 2-12.  Python Mac installation – Installation Type

Chapter 2 Let’s Install Python!

23

	 6.	 We are almost there! Click the Install button, and

your installation should start immediately. In

certain cases, you might see a popup that asks for

your username and password like the following

one (Figure 2-13).

	 7.	 Enter your Mac username and password and you’ll

be good to go. If you’re using your parents’ system,

call them to help you with this step.

Once you’ve finished this step, you should see the installation start

(Figure 2-14).

Figure 2-13.  Python Mac installation – Authentication

Chapter 2 Let’s Install Python!

24

	 8.	 Wait till the blue bar runs till the end. It shouldn’t

take more than a few minutes. Once done, your

Python package should open up (Figure 2-15).

Figure 2-14.  Python Mac installation – Installing

Chapter 2 Let’s Install Python!

25

Congrats! You’ve downloaded Python! It wasn’t as hard as you thought,

was it? Let’s have fun with it in the next section. 😊

�Summary
In this chapter, we learned how to download and install Python in both

Mac and Windows. In the next chapter, let us look at creating our very first

program in Python.

Figure 2-15.  Python package

Chapter 2 Let’s Install Python!

27© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_3

CHAPTER 3

Your First Python
Program
In this chapter, let us look at creating and running programs in Python,

and create our very first Python program.

�Creating and running programs in Python
Okay, now that we have installed Python, let us start creating our very

first programs. We cannot just write Python programs in MS word or

notepad. That is not how it works. We need a specific application that can

understand the Python code you write. This application will process your

code and give you the desired result.

One of the default Python applications is called IDLE. It is Integrated
Development and Learning Environment, and it was developed by the

Python Software Foundation. It automatically gets installed when you

install Python (Figure 3-1):

	 1.	 Go to your applications (in Windows or Mac) and

type IDLE (Figure 3-1).

https://doi.org/10.1007/978-1-4842-6812-4_3#DOI

28

	 2.	 When you open the application, the Python Shell

will open. This is where we will type our Python

programs and get our outputs (results) (Figure 3-2).

	 3.	 You can change the way the text looks in this

application. You can increase the font, make the text

bold, and change the font style. In order to do that, go
to Options and click Configure IDLE (Figure 3-3).

	 4.	 When you click it, the following window will pop up

(Figure 3-4).

Figure 3-1.  Python IDLE on Windows

Figure 3-2.  Python Shell

Figure 3-3.  Configure IDLE

Chapter 3 Your First Python Program

29

	 5.	 Let us change the font size to 29 (look at the

highlighted square) and select the checkbox across

“Bold” if it is not already checked.

That is all we are going to change now, but as you can see, you have a

lot more options. Play around with them to format your Python Shell’s text

in any way you want.

Figure 3-4.  Python IDLE configuration window

Chapter 3 Your First Python Program

30

�Python interactive mode (Python Shell)
There are two ways to run Python programs using IDLE. The default

method is by directly typing your code into the Python Shell (Figure 3-5).

Do you see the >>> the arrow is pointing to? That is called the Python

Shell prompt. It is asking you to type your Python code after the prompt so

it can run it and give you the result you are expecting.

Every time you type Python code in the Shell, press Enter; it will

run that line of code and execute it. It is quite handy because you get

immediate results.

�Your Shell can do Math
That is right. You can do Math in your Python Shell. Let us try with some

basic operations, shall we?

I want to prove to you that Python is not an alien language you are

learning for the first time. You can do extremely complicated mathematical

calculations and get results for those in the Shell as well. Want to see how

that works?

Alright, let us start simple. Type the following in the prompt:

3 + 6

Figure 3-5.  Python Shell prompt

Chapter 3 Your First Python Program

31

Press Enter and you should see the following result (Figure 3-6).

Did your Python application just do Math? How cool is that? Let us try

something more complicated.

(235 * 542) / (564 + 123)

Run the preceding mathematical expression and you should see the

following result (Figure 3-7).

You could cross-verify the result with your calculator. It is correct. You

can make the equation as complicated as you want, and your Shell will spit

out the result in less than a second. Try a couple more and see!

But is that all you can do? Math problems? Not even close! You can

even print things on your screen, and that is what we are going to look

at next. But then again, it does not stop there either. You can do a host of

things with Python. I do not want to overwhelm you too much from the

get-go though, so we are going to take it slow, alright?

Figure 3-6.  A simple Math problem

Figure 3-7.  How complicated can it get?

Chapter 3 Your First Python Program

32

�Print with Python
Python is a very easy-to-learn language. Proof? If you want to print

something to the screen, just use the “print” command. A pre-defined

code/command in Python or any programming language is called a

syntax.

So, the syntax to print a message to the screen is as follows:

print('Hello there!')

You need to start and close parenthesis right after “print” and type your

message within quotes. It could either be a single (‘message’) or a double

quoted (“message”).

When you run the preceding line of code, this is what you will get

(Figure 3-8).

But be careful here. The “p” in “print” should be a lowercase p. If you

use an uppercase p, you will get an error message like in Figure 3-9.

Figure 3-8.  Print a message

Figure 3-9.  “Print” instead of “print”

Chapter 3 Your First Python Program

33

The error message says ‘Print’ is not defined. That is because as far as

Python is concerned, “print” is different from “Print” and the command to

print something to the screen uses a lowercase p. In other words, Python is

case sensitive. So be sure to use the “commands” or “syntax” as it is.

�IDLE script mode
Remember how I said that there are two ways to write programs with your

IDLE? We have looked at the first method so far. It looks easy at the first

glance, but did you notice a problem with it?

While using the Shell, you get outputs for every single line of code,

and that will work as long as you write very simple lines of code. But once

you start writing actual programs, you would want an application that

processes multiple lines of code together and gives you the final result. You

need the script mode to make that happen.

Let us look at how that works. Let us print the same ‘Hello there!’

statement, but now in script mode.

Go to File ➤ New File (Figure 3-10).

Figure 3-10.  Open a new file

Chapter 3 Your First Python Program

34

An untitled document will open like the following one (Figure 3-11).

Go to File ➤ Save As (Figure 3-12) and save the document with the

.py extension. .py denotes that a particular file has Python code in it and

needs to be executed as such.

Figure 3-11.  Untitled document

Figure 3-12.  Save your .py file

Chapter 3 Your First Python Program

35

We named our file print.py. Click Save, and you should see the name

of your file change from untitled to print.py. Now, you can name your file

anything you want, but just make sure that the Save as type is “Python
files” or you give an extension .py or both, alright?

Now, let us type our line of code again (Figure 3-13):

print('Hello there!')

There you go! You have written your very first Python program.

Whoohoo! 😊
Let us run it, shall we?

Go to Run ➤ Run Module (Figure 3-14).

It will ask you to save the code again. Click OK. Your IDLE should open

the Shell window again, and in the very last prompt, you should see the

result (“Hello there!”) printed, like in Figure 3-15.

Figure 3-13.  Write your line of code

Figure 3-14.  Run the program

Chapter 3 Your First Python Program

36

Now you have run your first Python program and gotten your very first

result! Whoohoo again! 😊

�Python activity: Print your name
(and some more)
We have come to our very first Python activity now. You are going to print

your name. Actually, why don’t we make it a small introduction? You are

going to introduce yourself and print that introduction on the screen.

Do not worry. It is not hard to do. I will teach you how. Let us create an

imaginary character and name her Susan Smith. Let us assume that she is

9 years old and she loves puppies. Now let us introduce her to the world!

Open a new file and save it as introduction.py. You know how to do

that, don’t you?

Now, follow along with me. Type the following into the file:

print('Hello there!')

print('My name is Susan Smith.')

print('I am 9 years old.')

print('I love puppies! :)')

We need to print out multiple lines on our screen, so we have created

multiple print statements. Let us save the code we just created and run it.

Go to Run ➤ Run Module.

Figure 3-15.  Output (result)

Chapter 3 Your First Python Program

37

Our introduction is on the screen (Figure 3-16)!

Now, I want you to do the same with your introduction. What is your

name? How old are you? What do you like? Print everything on the screen.

Go ahead. It is quite easy to do.

Congrats, you are now a budding Python developer. 😊

�Summary
In this chapter, we looked at IDLE and its interactive programming

environment. We tried a few Math problems in the Python Shell and then

created our very first print statement. Then we learned about the script

mode and writing and running more than one line of code at a time. We

finished the chapter with an activity where we introduced ourselves and

printed the introduction to the screen over multiple lines of code.

In the next chapter, we will look at using numbers with your Python

code, manipulating them, and a lot more.

Figure 3-16.  Introduction printed to the screen

Chapter 3 Your First Python Program

39© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_4

CHAPTER 4

Python Loves
Numbers
In the previous chapter, we learned how to get started with Python. We looked

at downloading the latest version of Python for Windows, Mac, and Linux and

then looked at working with IDLE to create our very first Python program.

Let us look at how to play with numbers in this chapter. We’ll look

at how to store numbers in something called variables and about the

different types of numbers you can work with in Python.

�Numbers in Python

https://doi.org/10.1007/978-1-4842-6812-4_4#DOI

40

Numbers play a very important role in everything, so it’s no wonder that

they are important in programming as well. Would you like to become

a top game programmer in the future? Then you need to know your

numbers. Where do you want the ball to go? How many bullets should

your space gun shoot at your aliens? How fast should the bullets be? How

fast should your character run, or walk, or do anything at all? You need

numbers to determine all of that and a lot more.

Also, once you start programming and creating different kinds of

projects, you’ll notice that numbers play a big role in pretty much every

kind of programming, and not just games.

So, without further ado, let’s look at how to create numbers in Python,

how to store them, how to use them, and so much more.

�Store your numbers
We’ve already looked at numbers in Python, remember? Type the

following in your IDLE Shell:

3 + 5

Press Enter, and you’ll get the following output:

8

It’s that simple to play with numbers in Python. But do you see a

problem here? You can’t really do much with the result or the numbers.

Programming is all about automation, am I right? But there isn’t much

automation going on right now.

What can we do? Well, what if we can store the numbers somewhere,

so we can use them multiple times? What if we store the result somewhere

else, so we can use that to do further calculations? Do you see what I’m

getting at here?

Unless you start storing your values, be it numbers or alphabets or

words, you can’t do much with programming.

Chapter 4 Python Loves Numbers

41

Okay, that’s all well and good, but how do you store them? Is there

a secret container in Python that stores all the values you want in it, so

you get them out to play when you need them? Not exactly, but you can

create such containers. Even better, isn’t it? You can create containers of

information called variables that store the values you want in them. You

can create unlimited number of containers like that! :O

So, how do you create these variables?

Take a look at your kitchen cabinet. You must see a container for every

spice your parents use to cook and even for common cooking ingredients

like salt, pepper, and sugar. Your mom probably labeled them as such, am

I right?

The container labeled salt has salt, or she probably has a code word for

it that she understands.

Similarly, you’ll be labeling your variables as well. There are certain

rules to label them, but other than that, you have free reign to label your

variables in any way you want, so have fun with it. Just make sure that you

would understand your labels when you read them later. You would need

to know what’s inside your container, won’t you?

It’s as simple as that to create variables. Decide on a label/name and

just type it in your Shell or script, and you’ve created your variable.

Chapter 4 Python Loves Numbers

42

But a variable is useless without information stored inside it, and you

can do that with the “=” sign. We use the equal to sign to indicate answers

in Math, don’t we? Similarly, in Python, we use it to assign values to a

variable. The variable is on the left-hand side of the “=” and the value is on

the right-hand side.

Let me show you some examples so you understand better.

Why don’t we store the numbers in our last calculation in two separate

variables so we can reuse them as we want?

Let’s open a new script file (you know how) and save it as numbers.py.

We’ll be using this file to try out the examples in this chapter.

num1 = 3

num2 = 5

I’ve named them num1 and num2 as short forms of number1 and

number2, so I remember what they refer to when I look back at the code.

Let’s test if num1 and num2 really have the numbers stored in them.

Why don’t we print them out and see?

print(num1)

print(num2)

When we run the preceding four lines of code, this is what we’ll get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

5

As you can see, the variables do store the numbers. So, your program

has now created two containers labeled num1 and num2, just like your

mom labeled the salt and sugar containers. “num1” has the value 3 inside

of it, and “num2” has the value 5 inside of it.

Chapter 4 Python Loves Numbers

43

Let’s take this one step further. Why don’t we create another variable

called sum and store the sum of the two numbers in it?

sum = num1 + num2

print(sum)

When we run numbers.py now, this is what we’ll get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

5

8

Perfect. “sum” holds the sum of “num1” and “num2” now. Do you see

how handy this is? We don’t have to stop here. We can actually change the

value of any of these variables! Let’s try changing num1. I’m going to clear

out the script file, and this is what I’m going to be left with:

num1 = 3

print(num1)

num1 = 6

print(num1)

Chapter 4 Python Loves Numbers

44

As you can see in the preceding code, we assigned 3 to num1 first, and

then we changed the value stored in num1 to 6. Let’s see if that works:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

6

Yes, it does! “num1” originally had 3, but now it has 6 stored inside it,

and if you print num2, you’ll notice that value is unchanged at 5. So, we

can actually change the value stored inside our variables. We have the

makings of a real program in our hands now!

But don’t get too excited. There are some rules to follow while creating

your variables. Don’t worry though, the rules are pretty tame. Make sure

you follow these rules while creating your variables, or you’ll end up with

an error.

I’ll just list them so you can refer to them later:

	 1.	 A variable should start with letters or underscore (_)

and nothing else (no numbers or special characters

like !, #, $, %, etc.).

Chapter 4 Python Loves Numbers

45

	 2.	 A variable can only contain letters, numbers, and an

underscore (_).

	 3.	 Variables are case sensitive. “num1” is different from

“Num1”.

Pretty simple, don’t you think? But we’re both not fans of theory, so

let’s test these rules out to see if they’re true. Go back to your Shell prompt.

Let’s create a variable that follows the rules first, and then let’s break them

and see what happens.

_var5 = 1

When I run the preceding code, nothing happens. It looks like the

preceding variable was accepted. It started with an underscore, and it only

has letters and numbers in it.

What if I break the first rule?

1var_ = 1

Oops, I get an error that says the following:

SyntaxError: invalid syntax

What if my variable starts right, but doesn’t follow the second rule?

var$s = 5

Error again:

SyntaxError: invalid syntax

Let’s check if Rule #3 is true as well. Let’s go back to our numbers.py for

this one. Let’s delete everything else in the file and type the following:

num1 = 3

Num1 = 7

print(num1)

print(Num1)

Chapter 4 Python Loves Numbers

46

When you run the preceding lines of code, you should get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

7

Look at that! Num1 and num1 might have the same letters and

numbers in them, but the case (N and n) makes all the difference. So,

Python variables are indeed case sensitive.

We’ve successfully verified all the rules. Whew!

�Comments
What do “comments” mean in English? You comment on something?

Describe something? Something along those lines, am I right?

Similarly, you can write comments on your Python code to describe

them. You can write them on, before or after your lines of code. These

comments are just for your reference, and Python will neither read nor

execute them.

Whenever you add a “#” (hash symbol) before you type anything, that

particular line becomes a client. The minute you start a new line though,

you’re back to your regular coding. So, your “#” creates exactly one line of

comment.

#This is a comment

You can use comments to describe the lines of code, so when you

read your script later, you’ll understand what’s happening. You could also

share your code with your friends, and your comments will help them

understand it.

When you use the “#” symbol, you create single-line comments. What

if you want your comments to span multiple lines?

Chapter 4 Python Loves Numbers

47

There’s a syntax for that too:

'''

This

is

a

multi-line

comment

'''

(or)

"""

This

is

a

multi-line

comment

"""

Write your comment within three single/double quotes (without

space) and you have yourself a multi-line comment.

�Your numbers come in different forms
Now we know how variables work and how to use them to store our

numbers. Before we play with them even further, I want to show you

something. Did you know that there are different types of numbers in

Python?

Oh yes, just like in Math, where there are whole numbers and numbers

with decimal points, there are integers (whole numbers) and floating-point

numbers (numbers with decimal points) in Python as well. You can even

ask Python to check the type of number used in your code or convert one

number type to another. Let’s look at all of that now.

Chapter 4 Python Loves Numbers

48

�Integers
Whole numbers are called integers, or int for short.

Let’s clear out numbers.py again and start over with the following line

of code:

num1 = 3

“num1” stores an integer 3. Any numbers without decimal points are

integers.

You can actually check if a number is of a particular type or not.

Python has these things called built-in functions that can be used to do a

lot of cool things. Since they’re built-in, as in, they were already built into

Python, you don’t need to know how they actually work in the background.

You can just use them to get the result you want.

For example, there’s a built-in function called “type”, with a small “t”,

which can be used to find the type of a number. Let’s find what kind of

number is stored in “num1”, shall we?

print(type(num1))

In the preceding line of code, I asked Python to find the type of num1.

The variable or the number, as such, should be inside of the open and

close parenthesis, just like we do with the print() statement. Then, I placed

the entire thing inside a print statement because I wanted to print the

result. Otherwise, I wouldn’t get to see what the result of the type checking

was.

Let’s run the preceding lines of code and see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

There you go! It says ‘int’, which means integer.

Chapter 4 Python Loves Numbers

49

This works for negative numbers too.

num1 = -3

print(type(num1))

The result would still be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

So, both positive and negative whole numbers are called integers.

Let’s do the same for the rest of the types now, shall we?

�Floating-point numbers
Floating-point numbers have decimal points. Even if it’s just one decimal

point, it’ll be classified as floating point.

num2 = 5.5

print(type(num2))

If you run the preceding lines of code, you’ll get the following output:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

<class 'float'>

Look at that. The last variable created has a floating-point number

stored in it.

Again, both positive and negative decimal point numbers are called

floating-point numbers in Python. Let’s check!

num2 = -5.5

print(type(num2))

Chapter 4 Python Loves Numbers

50

The result would be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'float'>

Yes, it’s a floating-point number.

�Complex numbers
Now, let’s look at complex numbers. Have you learned complex numbers

at school? These numbers have a real and imaginary part, am I right? If

you haven’t learned them at school yet, but you’re curious, I’d recommend

reading up on them yourself. You could ask your parents to help you with

this research. A simple Google search should clear your doubts. It’s a very

interesting mathematical concept. On the other hand, you could skip the

next part. The decision is completely up to you. We wouldn’t be using

complex numbers much in any of our programs, so don’t worry about

them.

num3 = 2 + 3j

print(type(num3))

So, 2 + 3j is the complex number where 2 is the real number and 3

is the imaginary number. If we run the preceding lines of code, the final

output would be this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

There you go! The last number was a complex number. We can actually

extract the real and imaginary parts separately. Do you want to see how?

Chapter 4 Python Loves Numbers

51

If you want to extract the real number from a complex number, type

the number (or the variable that contains the number), then follow that up

with a period (.), and then follow that with the keyword “real”. Keywords

are similar to the pre-defined tools/methods in Python. They do things in

the background that we don’t know about but give us the desired output

in the foreground. In our case, we’ll be able to successfully extract the real

number.

print(num3.real)

Similarly, for extracting the imaginary number, type “imag” instead of

“real”.

print(num3.imag)

When you run the preceding lines of code, you’ll get the following

output:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

Look at the last two lines in the preceding output. 2.0 is the real

number and 3.0 is the imaginary number. They’ll be extracted as floating-

point numbers.

As I said before, you can give the numbers directly. But you need to

take care of something before doing that.

print(3 + 4j.imag)

Chapter 4 Python Loves Numbers

52

If you try to run the preceding line of code, your code will go wonky,

like this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

7.0

Python thinks your imaginary number is 7.0 and not 4.0. Why? Well,

that’s because Python added 3 and 4, got the result 7, and added j to it. So

according to it, your complex number is now 7j and not 3 + 4j. I’ll teach you

all about “order of execution” in the next sections of this chapter, but for

now, I want to let you know the importance of parenthesis when working

with expressions.

If we wrap the complex number in a (), let’s see what happens.

print((3 + 4j).imag)

Run the preceding lines of code, and get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

<class 'int'>

<class 'float'>

<class 'complex'>

2.0

3.0

4.0

Great! We got the result we were looking for. So, parentheses preserve

the expression as it is.

Chapter 4 Python Loves Numbers

53

�Type conversion between numbers
You can convert from one number type to another. We will be using more

pre-defined functions (methods) to do that.

To convert a floating-point or complex number to an integer, use

the int() method. Let’s clear out our numbers.py file and start afresh.

Alternatively, you could just create and name a new script file whenever

we are starting anew, especially if you’d like every example saved.

num1 = 3.0

print(num1)

print(int(num1))

In the preceding example, I’ve stored a floating-point number 3.0 in

the variable “num1”. I’ve printed the exact number first. Then, I’ve used the

int() function to convert “num1” to an integer and printed that too. Let’s

look at the result:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3.0

3

Look at that. The decimal point is gone now. But what if we had

numbers in the decimal place? What happens then?

Let’s edit the value of num1 to 3.45 and test again.

num1 = 3.45

print(num1)

#convert the number to an integer

print(int(num1))

Chapter 4 Python Loves Numbers

54

Run the preceding lines of code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3.45

3

Interesting. We’re still getting 3, even though the number is close to 3.5

with the decimals added in. Why is that? That’s because Python is doing

something called rounding off. Regardless of what the decimal point is,

when you do integer conversion, it is just going to remove the decimal

point and retain the whole number. Let’s try with 3.9 and see if that’s true:

num1 = 3.9

print(num1)

print(int(num1))

Run the above lines of code, and get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3.9

3

We still didn’t get 4. ☹ When you do an integer conversion, it just

removes the decimal points, no matter how big they are. Don’t worry.

You’ll learn how to do proper rounding off based on what the decimal

points have when we look at more built-in Math functions in Python.

Now, let’s convert a complex number to int.

num1 = 3+4j

print(num1)

print(int(num1))

Chapter 4 Python Loves Numbers

55

When we run the preceding lines of code, we get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

(3+4j)

Traceback (most recent call last):

 �File "C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py", line 3, in <module>

 print(int(num1))

TypeError: can't convert complex to int

Oh my, we got an error! Why is that? Well, theoretically, it isn’t possible

to convert a complex number into an integer because, well, which part

would you extract?

But, if you were to extract the real or imaginary part, you can convert

that into an integer. Let’s try that.

I’m going to save the real number I extract in another variable called

“r” first.

num1 = 3+4j

#Find the real part of the number

r = num1.real

print(r)

print(int(r))

In the preceding lines of code, I extracted the real number, assigned

it to a variable “r”, and then converted it to an integer. When we run the

preceding lines of code, we’ll get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3.0

3

Chapter 4 Python Loves Numbers

56

Let’s convert an integer to a floating-point number next. We need to

use the float() built-in method.

num1 = 3

print(num1)

print(float(num1))

When you run the preceding lines of code, you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

3.0

Successfully converted!

Would this work with complex numbers? What do you think? Nah, they

wouldn’t. We’ll have to extract the real or imaginary numbers again, but

the extractions produce floating-point numbers already, so why would you

want to convert them?

Now let’s convert both integers and floating-point numbers to complex

numbers. You’ll have to use the complex() function to do that.

num1 = 3

print(num1)

print(complex(num1))

Run the preceding lines of code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3

(3+0j)

Look at that! It took the whole number as the real part of the complex

number and the imaginary part is a 0.

Chapter 4 Python Loves Numbers

57

Now let’s try with floating-point numbers.

num1 = 3.5

print(num1)

print(complex(num1))

Run the preceding lines of code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/numbers.py

3.5

(3.5+0j)

It took the entire floating-point number as the real part of the complex

number and the imaginary part is still 0. Interesting!

�Mini project – Do you understand numbers?
More than a mini project, this is going to be an activity that’s going to test

your understanding of the topic at hand. Do you understand numbers in

Python? Let’s see!

Let me describe the problem statement first. I want you to try it out

before you look at my explanation. We’re still taking baby steps, so I’ve

made sure that this activity isn’t too tough.

Problem statement: Create three variables (num1, num2, and num3)

and store the numbers 3, 5.5, and 3 + 5j in them, respectively. Then,

convert num1 into a floating-point number and num2 into an integer.

Extract the imaginary number of num3 and replace that in num3 and

convert that into an integer too. Display the three converted numbers on

screen. Describe the important lines of code with comments.

Solution:

It’s a pretty simple problem, isn’t it? Don’t worry, you’ll see more

complex, yet fun ones once we cover more topics to play with. 😉

Chapter 4 Python Loves Numbers

58

Here is the entire program:

#Created num1, num2 and num3 and stored the respective values

num1 = 3

num2 = 5.5

num3 = 3 + 5j

#convert num1 into a floating point number

num1 = float(num1)

#convert num2 into an integer

num2 = int(num2)

#Extract the imaginary part of num3 and place it back in num3

num3 = num3.imag

#Convert the imaginary number (floating) into an integer

num3 = int(num3)

#Print everything

print(num1)

print(num2)

print(num3)

I’ve described everything I did in comments, just like the problem

asks. The code and the comments are self-explanatory, so I’m sure

you understand them. Why don’t you try different combinations and

conversions to get a better understanding of the topic?

�Summary
In this chapter, I gave you an introduction into numbers and how they are

used in Python. We looked at storing numbers using variables and the

different types of numbers Python lets you create and manipulate.

Chapter 4 Python Loves Numbers

59© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_5

CHAPTER 5

Let’s Play with
Our Numbers!
In the previous chapter, I gave you a brief introduction to using numbers in

Python, creating, and storing them and the different types of numbers you

can play around with.

Let us look at how to play with those numbers in this chapter by

looking at how to use your numbers to do calculations and how to have

real fun with Python’s pre-defined number methods.

�Get your numbers out to play
We’ve looked at creating numbers and storing them and the different types of

numbers in Python. But we haven’t done anything with them yet, have we?

https://doi.org/10.1007/978-1-4842-6812-4_5#DOI

60

Would you like to finally play with your numbers? Yes!

You can do pretty much everything you do in Math in Python as

well. You can add two numbers or more, multiply numbers, divide them,

subtract them, and it doesn't stop there! You can do a little bit more than

the usual calculations. What fun is programming if you’re stuck doing the

same old calculations?

You have operators that can find the remainder of a division. Yes, you

read that right. You won’t have to find remainders using a long-drawn-out

process anymore. I bet your calculator doesn’t do that!

You can do exponentiation as well. Want to find the result of 5 * 5 * 5?

That is 5 to the power of 3. Python has a single operator you can use to do

that. What more? Make the number and power as big as you want, and

you’ll still get your result immediately.

�Basic Math operations
Without further ado, let’s look at all the operations you can play around

with in Python. I’ll be explaining how the operators work with examples for

each. Clear out your numbers.py file or create a new script file.

Let’s look at addition first. You need to use the “+” symbol to add two

numbers. If you want to add three numbers, use “+” twice. It’s just like how

you add at your Math class.

num1 = 5

num2 = 7

add = num1 + num2

print(add)

When you run the preceding lines of code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

12

Chapter 5 Let’s Play with Our Numbers!

61

The answer is correct! Let’s make things more complicated, shall we?

num1 = 55.876

num2 = 100.54

#Add num1 and num2

add = num1 + num2

num3 = 1235.583

#Add the value in num3 to the current value in add

add = add + num3

print(add)

We created two numbers, “num1” and “num2”, added them, and stored

the result in the variable “add”. Then, we created another variable “num3”

and stored another number in it. We added the current value of “add” with

“num3” and stored it back in “add” and printed the final value of “add”.

Let’s see what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1391.999

Cross-verify with your calculator. I’m sure that’s the correct answer. As

you can see, you can add more than one number. You can also change the

value of your variable by doing calculations with its current value and re-

storing (it’s called re-assigning in programming) it back to that variable.

We’ve learned addition in Python. The same rules apply for

subtraction, multiplication, and division. Let’s quickly look at them.

You need to use the “–” symbol for subtraction, “/” for division, and “*”

for multiplication. Unlike Math, using “x” or “X” for multiplication won’t

work with programming languages.

num1 = 20

num2 = 10

#Addition

add = num1 + num2

Chapter 5 Let’s Play with Our Numbers!

62

print(add)

#Subtraction

sub = num1 - num2

print(sub)

#Multiplication

mul = num1 * num2

print(mul)

#Division

div = num1 / num2

print(div)

When your run the preceding lines of code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

30

10

200

2.0

Did you notice something? Every other operation (addition,

subtraction, and multiplication) produced an integer as the output, but the

result of division was a floating-point number. Take a note of this. Division

always produces decimal numbers in Python. If there are no decimal

points, it’ll just end the result with a “.0”, but it’ll still be a decimal (floating)

number.

�Special Math operations in Python
We’ve looked at the common operators. Let’s look at the special ones now.

You need to use the multiplication operator twice to do

exponentiation. “**” is the operator you’re looking for.

Chapter 5 Let’s Play with Our Numbers!

63

So, instead of typing 2 * 2 * 2 * 2, which means 2 to the power of 4 (2

multiplied by itself four times), you can just type 2 ** 4 and you’d get the

same result. If you had to multiply 2 by itself 20 times, just type 2 ** 20.

You’d have saved a lot of time and space with this operator.

Let’s look at some examples.

exp = 2 ** 4

print(exp)

exp = 2 ** 20

print(exp)

exp = 5.5 ** 3

print(exp)

exp = 5.5 ** 3.5

print(exp)

As you can see in the preceding code, exponentiation works with

floating-point numbers too. You can have floating-point numbers for both

the number and the exponent (the power). Let’s look at the result to see if

it works, shall we?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

16

1048576

16.5

19.25

Yes, it works!

Now, let’s find our remainders. Use the modulus operator “%” instead

of the division operator “/”, and you’ll get the remainder of the operation.

Remember what happens when you divide a number by another number?

You get a quotient and a remainder, am I right? Your modulus operator will

do the same, but it’ll just return the remainder and not the quotient. If you

want to find the quotient of the same operation, use the division operator

with the same numbers.

Chapter 5 Let’s Play with Our Numbers!

64

#Division

div = 5 / 2

print(div)

#Remainder

r = 5 % 2

print(r)

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

2.5

1

Did you see what happened? You got the floating-point value of the

division as your first result and the remainder of 5 / 2 as your second result.

But what if you just need the quotient and not the complete result with

the decimal point? You have an option for that as well!

It’s called the floor division operator. Write it with two forward slashes,

like this: “//”.

It’ll divide your numbers and return just the whole number, leaving out

the decimal point. Let’s try the same with simple and complex examples.

floor = 5 // 2

print(floor)

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

2

Look at that. We just got 2 and not 2.5. 2 is the quotient of the operation

5 / 2. So, if you want the quotient and remainder separately, use the floor

division to get the quotient of the operation and the modulus to get the

remainder.

Chapter 5 Let’s Play with Our Numbers!

65

Let’s look at a more complex example to test if this really works:

#Division

div = 100 / 15

print(div)

#Quotient

q = 100 // 15

print(q)

#Remainder

r = 100 % 15

print(r)

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

6.666666666666667

6

10

When you multiply 15 by 6, you’ll get 90. So, the quotient of 100 / 15 is

6 and the remainder is 10. We got the correct answer. It works! 😊

�Assignment operations
Python has something called assignment operations to make things easy

for us. We’ve looked at one of them already. Remember the equal to, “=”,

operator? You can use that operator to assign values to a variable.

Let’s quickly look at the rest. They are quite easy to understand.

There is the += operator.

a += 5 basically means a = a + 5. So, if you’d like to add a value to a

variable and re-assign it back to the same variable, use this operator.

Similarly, you have -=, *=, /=, **=, %=, and //=.

Chapter 5 Let’s Play with Our Numbers!

66

Let’s look at examples of all of that now. Read the comments in the

following lines of code to understand what each line of code does:

num = 5

#Add and re-assign 5

num += 5

#Ans -> 10

print(num)

#Subtract 5 from num

num -= 5

#Ans -> 5

print(num)

#Multiply the current value of num with 2

num *= 2

#Ans -> 10

print(num)

#Divide the value of num by 2

num /= 2

#Ans –> 5.0

print(num)

#Calculate num to the power 2 and re-assign it

num **= 2

#Ans –> 25.0

print(num)

#Find the quotient of num / 3

num //= 3

#Ans –> 8.0

print(num)

#Find the remainder of num / 3

num %= 3

#Ans –> 2.0

print(num)

Chapter 5 Let’s Play with Our Numbers!

67

When you run the preceding lines of code, you’ll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

10

5

10

5.0

25.0

8.0

2.0

Did you see something weird in the preceding operations? We started

with integers, but the minute we performed a division operation, the rest

of the results continued to be in floating point, regardless of the operation.

We know why we got a floating point in the division operation. Division

always results in a floating-point number. But why did it continue to be the

case for the rest of the operations?

That’s because performing operations on a floating-point number will

always result in a floating-point number, even if the other number is an

integer.

�What comes first?
Python, and any programming really, has something called precedence

when it comes to order of executing mathematical operations. You must

have learned about this in your math class too.

Chapter 5 Let’s Play with Our Numbers!

68

Remember the BODMAS rule? It basically says that anything within the

brackets executes first and then comes the division, then multiplication,

then addition, and finally subtraction.

Python does not have the exact rule, but it has something similar.

The rules of precedence in Python are as follows:

•	 Order of execution happens from left to right.

•	 Brackets hold the highest precedence.

•	 Then comes the exponentiation operator **.

•	 Then your multiplication (*), division (/), floor division

(//), and modulus (%) operators. They hold the same

level of precedence.

•	 Finally, you have your addition (+) and subtraction (-)

operators, which hold the same level of precedence as

well.

Why don’t we put the rules to test?

Let’s take the following expression: 2 + 3 * 5.

Chapter 5 Let’s Play with Our Numbers!

69

Let’s run the preceding expression in our Python Shell and see what we

get:

>>> 2 + 3 * 5

17

Why is it 17? Since order of execution happens from left to right,

shouldn’t 2 + 3 be executed first to result in 5, and shouldn’t the result (5)

have been multiplied with 5 to result in 25 and not 17?

That’s where the precedence comes in. Even though order of execution

is left to right, the operation with the higher precedence (in this case,

multiplication) will be executed first, and then the result will be added to

the first number (in our example).

But what happens if there’s a bracket?

>>> (2 + 3) * 5

25

Now we get a 25 because even though addition has lower precedence

to multiplication, brackets hold the highest precedence, so they get

executed first.

What if there are two brackets?

>>> (2 + 3) * 5 * (1 + 2)

75

The preceding expression was done like this: (5) * 5 * (1 + 2) =

5 * 5 * 3 = 75.

When two operations hold the same precedence, the left to right

rule is followed. Now that you know how precedence works in numbers,

why don’t you write down different expressions and guess how they’d be

executed in Python? Then you can execute them to verify your results.

Chapter 5 Let’s Play with Our Numbers!

70

�Cool stuff with numbers
Python is a well that keeps on giving. You can do pretty much anything

you want with numbers and manipulate them in any way you want.

How? There’s a cool little tool called the Math module. Do you

remember me telling you about Python add-ons that let you do cool

stuff? This is one of them.

With this module, you can do pretty much everything you want with

Python. You can find the power of a number, its square root, floor, ceiling,

and so much more. Let’s look at some of the most important ones in this

section. If you’d like to know more, a quick Google search will give you

a list of all the operations you can do with the Math module. You have a

bunch of pre-defined methods/functions that’ll help you achieve these

things.

Let’s get started!

You can find the floor and ceiling numbers of decimal numbers. What

is that? You can round off decimal numbers to their integer counterparts.

But if you use the floor function, it’ll round the number to the lowest

integer.

Open a new script file or clear out the one you’ve been using.

Before you use any of the pre-defined methods in the Math module,

you need to import it into your script file first. You need to use the “import”

keyword to do that.

import math

The preceding line of code basically tells our program that we’re

importing the Math module to our file. Did you notice how we’ve written

“math” with a small “m”? Make sure you do that. If you wrote it as “Math”,

you’d get an error since Python is case sensitive. This applies for any pre-

defined function or keyword you use in Python. You need to use them with

no change to their spelling or case.

Chapter 5 Let’s Play with Our Numbers!

71

�Floor and ceiling of a number
Okay, now that we’ve imported our Math module, let’s do our operations.

The syntax to find the floor of a number is math.floor(num) where “num”

is either the variable that holds the floating-point number or the number

itself. The same goes for ceil.

import math

print(math.floor(5.6))

print(math.floor(5.3))

print(math.floor(5))

print(math.ceil(5.6))

print(math.ceil(5.3))

print(math.ceil(5))

When you run the preceding lines of code, you’ll get the following:

RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

5

5

5

6

6

5

Look at that! Regardless of what the decimal point is, a floor operation

will always result in the lowest integer, which is 5 in this case, and a ceil

operation will always result in the highest integer, which is 6. Floor or ceil

operations on integers have no effect on the number, and you’ll get the

same number as the result.

Chapter 5 Let’s Play with Our Numbers!

72

�Power and square root
Next, let’s look at powers. Remember how we used the “**” operator to find

the power of a number? We have a Math operation that does something

like that too.

Its syntax is math.pow(num,power).

So, if you’d like to find the value of 5 to the power of 3 (5 * 5 * 5), then

you’d do it like this:

import math

print(math.pow(5,3))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

125.0

The result is a floating-point number. Try working with decimal points

and see what you get.

On the same vein, you can find the square root of numbers with the

sqrt method. If 5 * 5 is 25, then the square root of 25 is 5. Let’s test!

import math

print(math.sqrt(25))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

5.0

The result is a floating-point number again.

Chapter 5 Let’s Play with Our Numbers!

73

�Factorial of a number
Do you know how to find the factorial of a number?

The factorial of 3 is 3 * 2 * 1, which is 6.

The factorial of 5 is 5 * 4 * 3 * 2 * 1, which is 120.

Are you seeing the pattern here? You wouldn’t have to laboriously

calculate factorials anymore though. Python does that for you with the

factorial method!

import math

print(math.factorial(5))

Run the preceding code and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

120

Yes, it works!

�Sin, cos, tan, and more
If you know how sin, cos, tan, and log work, then you’ll find the next part

interesting. If you don’t know these concepts, don’t worry. You can come

back to this section once you’ve learned these concepts in your Math class.

You can find the sin, cos, tan, and log of numbers with the relevant pre-

defined methods. Before we start, I want to clarify something. The values/

variables we give inside of the brackets () in any pre-defined method are

called as arguments, and I’d be referring to them as such.

import math

print(math.sin(2))

print(math.cos(5))

Chapter 5 Let’s Play with Our Numbers!

74

print(math.tan(2))

print(math.log(10,2)) #The first argument is the number and the

second is the base

Run the preceding code and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

0.9092974268256817

0.28366218546322625

-2.185039863261519

3.3219280948873626

You can verify the results with your scientific calculator, and you’ll find

that the results are the same.

These are just some of the operations you can do with the Math

module. There is at least a dozen more.

Check them out in the official Python documentation and play around

with them, if you’d like: https://docs.python.org/3/library/math.

html.

�More numerical operations
Your fun with Math isn’t just isolated to the Math module. There are a

bunch of stand-alone functions that do cool stuff as well. You won’t have

to import the Math module to do these operations, but they’re just as

powerful.

Would you like to find the minimum number among a list of numbers?

Then use the “min” method, and give every number you want compared

as the argument for that method, separated by commas. The same goes for

“max”.

Chapter 5 Let’s Play with Our Numbers!

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

75

import math

print(min(-100,100,40,25.64,200.3452,-253))

print(max(-100,100,40,25.64,200.3452,-253))

I’ve given the same list of numbers for both min and max. Let’s look at

the result:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

-253

200.3452

It works! –253 is the minimum number and 200.3452 is the maximum.

If you want to convert a negative number to a positive number in an

operation, then use the “abs” method.

print(abs(-100))

The preceding code will result in this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

100

�Working with random numbers
What if you didn’t want to come up with a number to use in your

calculations? What if you wanted your computer to choose your number

for you? Well, Python has got you covered.

Python has yet another module called the “random” module which

comes with a bunch of cool functions that’ll help your computer choose a

random number every time it’s run.

Let’s look at that now. You need to import the random module first. It’s

“random” with a small “r”.

Chapter 5 Let’s Play with Our Numbers!

76

If you’d like a random number returned between the range you gave,

use the randrange() function.

import random

print(random.randrange(1,11))

“random” is the name of the module, and “randrange” is the name of

the function. I’ve given 11 in the second argument because the random

module ignores the last number in the range. So, if I gave 10, then I’ll only

get random numbers from 1 to 9. Since I wanted to include 10, I gave 11 as

my second argument.

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

10

When I ran it again, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

2

The next time:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

7

When you run the same lines of code multiple times, you’ll get

different results than mine. Why don’t you try out and see for yourself? 😊
We’ve just scratched the surface of the random module. There’s more

where that came from. For example, you can ask your program to choose a

letter from a word or phrase you specify, with the “choice” method.

Chapter 5 Let’s Play with Our Numbers!

77

import random

print(random.choice("Hello there!"))

Print the preceding code, and you’ll notice that you get one of the

letters (including the exclamation point and space), every time you run the

program.

You can choose among a list of numbers as well. We’ll look at lists in

detail in one of the later chapters, but for now, just understand that a list

holds a list of a data, and in our examples, a list of numbers, and you should

write the numbers within square brackets, separated by commas, like this:

import random

l = [1,3,5,7,9]

Let’s make our program randomly choose from this list now:

print(random.choice(l))

Run the preceding code; for the first run, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

3

Subsequent runs will give me random selections. Try and see! 😊
There is the “random” method of the “random” module which returns

a random floating-point number between 0 and 1.

import random

print(random.random())

When I ran the preceding code, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

0.6386828169729072

Chapter 5 Let’s Play with Our Numbers!

78

Since randrange only returns integers within a range, I can use uniform

to return floating-point numbers within a range. The only difference here

is that this function considers both numbers of the range in its results.

import random

print(random.uniform(1,10))

When I ran the preceding code, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

3.7563014275306283

�Mini project – multiples of a number
In this mini project, I’ll teach you how to find the multiples of a number

with a number method. So, if I want all the multiples of 3 until 100

displayed, for example, then this is what I’d do:

There’s yet another pre-defined method in Python called the “range”

method. We’d usually only learn about this method when we learn

about loops (in a later chapter), but I wanted to introduce it here, since

technically, it is a number method.

The range function, as the name implies, produces a range. You need

to write it as range(num), where everything is written in small letters:

	 1.	 Let’s print the following line of code in the Python

Shell:

>>> print(range(5))

Run the preceding code, and you’ll get this:

range(0, 5)

Chapter 5 Let’s Play with Our Numbers!

79

	 2.	 Alternatively, you can give the starting and ending

numbers in a range as well, like this:

>>> print(range(1,10))

Run the preceding code, and you’ll get this:

range(1, 10)

	 3.	 Also, you can print the entire range using the “*”

operator. No, don’t confuse it with the multiplication

operator. This operator is used to print when

something (in our case, the range) has more than

one object (in our case, more than one number).

Let’s open our script and do the following:

r = range(1,10)

Now, the variable “r” contains the range. To print

everything inside “r”, which is the list of numbers

from 1 to 10, use “*”, like this:

print(*r)

	 4.	 Specify “*” before the variable so Python knows that

you’re trying to print everything inside whatever is

coming next. Alternatively, you can also write the

same print statement like this:

print(*range(1,10))

Run either of those statements, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\numbers.py

1 2 3 4 5 6 7 8 9

Yup, it works!

Chapter 5 Let’s Play with Our Numbers!

80

	 5.	 If I ran this:

print(*range(10))

I’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\numbers.py

0 1 2 3 4 5 6 7 8 9

As you can see, if you don’t give a starting range, then

it prints from 0 to the number before the ending range.

	 6.	 You can also skip numbers between ranges by

using a third argument. If you give 2 as the third

parameter, your program will print every 2nd

number in the range. 3 as your 3rd parameter

will print every 3rd number, 4 will print every 4th

number, and so on.

print(*range(0,10,2))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\numbers.py

0 2 4 6 8

You’ve printed out only the even numbers between

0 and 10. How great is that? You can skip any

numbers you want with the third parameter.

Now that we know all of this, can you guess how we

can apply this to solve our problem? So, we need to

find the multiples of the given number within the

given range, and we know that we’re going to use

the range() function to do that.

Chapter 5 Let’s Play with Our Numbers!

81

	 7.	 Let’s say we want to find the multiples of 3 from 1 to

100 and print them all out. So, that’s 3, 6, 9 until 99, am

I right? You can do that in a single line of code. Would

you like to try it yourself before you check the solution?

Tried? Okay, let’s look at the solution now!

print(*range(3,101,3))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66

69 72 75 78 81 84 87 90 93 96 99

Whoa! Quite simple, wasn’t it?

We just gave the multiple as the first argument since it’s anyway

going to be the first result – 3 * 1 = 3. Then we specified 101 as the second

argument, so 100 would be included if it were a multiple. Finally, we gave 3

as the third argument again because we need to skip three numbers every

time. And it worked! 😊
Now, why don’t you try with different multiples and ranges and see

how it works out for you?

�Summary
In this chapter, we continued to look at numbers. We looked at how to

use different operators available in Python to manipulate our numbers.

We also looked at using the “Math” module and pre-defined functions to

further play with our numbers. We finally looked at the “random” module,

and we finished the chapter with a mini project as usual.

In the next chapter, let’s look at a very interesting concept in Python.

We’ll be looking at using the Turtle module to draw graphics.

Chapter 5 Let’s Play with Our Numbers!

83© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_6

CHAPTER 6

Drawing Cool Stuff
with Turtle
In the previous chapters, we learned how to play with numbers in Python.

We looked at the different types of numbers in Python, the various

operations you can do, and using various modules and pre-defined

methods to have fun with Python!

In this chapter, we’re going to look at yet another module in Python,

the Turtle module. We’re going to learn all about Turtle, using it to draw

graphics, shapes, deigns, text, and so much more. We’re going to end the

chapter with a bunch of cool mini projects as well.

�Let’s get started

Are you starting to get bored? Let’s take a break from theory, shall we? I

promised you fun, and now it’s time I delivered on that promise. Let’s draw

with Python! Are you wondering how?

https://doi.org/10.1007/978-1-4842-6812-4_6#DOI

84

Well, let me introduce you to the magical world that is “Turtle”. Turtle is

a Python module, and it comes with a ton of tools (pre-defined methods)

you can use to draw on your screen. The sky is the limit to what you can do

with Turtle.

In this chapter, let’s start with the basics of Turtle, and as we move

further into the book, I’ll show you more advanced tricks you can do with

Turtle and Python.

No more boring projects! Our mini projects are going to be colorful

from this chapter onward. Are you excited? I know I am!

Alright, let’s get started.

Why don’t you create a new file and name it whatever you want?

You can use it for this chapter. Be careful with the naming though! Don’t

name your file turtle.py because there’s already a turtle.py in your Python

installation, and naming your file with the same name will cause errors

when you run it. Other than that, you can name it pretty much anything

you want. I’ve named my file drawTurtle.py.

Before we get started though, we need to import Turtle into our Python

script file. Turtle is just an add-on, remember? So, it won’t be available in

your file unless you import it. The process is pretty simple actually. Just

type “import” and then “turtle” with a small “t”.

import turtle

Okay great! We’ve imported Turtle into our script file. Let’s create our

screen next. Turtle creates graphics, and if you noticed, your Python Shell

doesn’t exactly have the right display for images or drawings. So, we’re

going to create our own screen where our drawings will appear.

Let’s create a variable “s” (you can name it anything you want). We’re

going to get our screen from turtle by using turtle’s getscreen() pre-defined

function and assign it to s, like this:

s = turtle.getscreen()

Chapter 6 Drawing Cool Stuff with Turtle

85

Now, the variable “s” contains our turtle screen (Figure 6-1). Let’s run

the preceding line of code and see what we get.

Did you see a popup like the preceding image with a black mark in the

middle? That’s our turtle.

Now that we have our screen, let’s create our Turtle! Confused? Don’t be.

In turtle, a turtle will draw whatever you command on the screen. Literally. It’ll

look cool, you’ll see. There’s another pre-defined function Turtle() of the turtle

package (too many turtles, I know :D). It has all the tools you need to draw on

the screen, like drawing lines, circle, coloring them, and so on. Let’s get that

function and assign it to a variable t so we can use it later when we draw.

t = turtle.Turtle()

Remember that the “T” in the Turtle() function is capitalized.

When you run the code now, you won’t see any change. It’ll still be the

same blank screen, but we’ve set everything up now. The first three lines of

code (import, getscreen, and Turtle()) are a constant in every program that

involves turtle graphics, so always start with those, and I’ll assume you’ve

included those lines in my future examples.

Let’s draw next!

Figure 6-1.  Python Turtle screen

Chapter 6 Drawing Cool Stuff with Turtle

86

�Make your Turtle move
Now that we have everything ready, let’s make our turtle move in the

direction we want and draw while it moves. Our turtle is going to draw

straight lines, and we’re going to give it the distance and direction of those

lines. Sounds good? Let’s see how that works.

�Move forward and backward
Let’s test with the basic ones first, forward and backward.

To move forward, you need to use the forward() pre-defined method

of the Turtle() function, and inside of the parenthesis, you need to give the

distance. So, if you want your turtle to move (and draw) 100 points in the

forward direction, you’ll give 100 inside the brackets, like this:

t.forward(100)

We gave t.forward() in the preceding example because the forward()

function is also inside of the variable t since we assigned everything inside

Turtle() to it.

Let’s save and run our script, and we’ll get this (Figure 6-2).

Figure 6-2.  Forward 100 points

Chapter 6 Drawing Cool Stuff with Turtle

87

Great! We got a straight line drawn in the forward direction, and it

stopped at 100 points, just like we wanted.

How do you make it move backward? Yes, you guessed it right! By using

the backward() function. But there’s a catch! If you ask your turtle to move

backward right now, it’ll just draw over the current line and you wouldn’t

see anything. Let’s test that.

t.backward(100)

Run the preceding code, and you’ll get this (Figure 6-3).

Yep, no change at all. Look at the arrow I drew pointing toward the

starting point of the Turtle. Our turtle just came back to that starting point,

but it didn’t draw anything new.

There’s a way to get around this issue. There’s yet another function

called home() which will make your turtle come back home (the starting

position). So, before we give the backward command, why don’t we use

home() to get turtle back into position?

Figure 6-3.  Backward 100 points

Chapter 6 Drawing Cool Stuff with Turtle

88

The entire code snippet will be like this:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.forward(100)

t.home()

t.backward(100)

When we run the preceding code, we’ll get this (Figure 6-4).

Yay! Our Turtle started from the starting position, drew a straight line

100 points to the right (forward), then went back to the starting position

(it did draw while going back, but you didn’t see that since it drew over the

original line), and drew another straight line 100 more points to the left

(backward). It works perfectly.

Alternatively, you could just give t.backward(200) to get the same

result.

Did you notice something when you ran the code? Turtle literally drew

those lines for you in real time. Isn’t that awesome? 😊

Figure 6-4.  Forward, home, and backward

Chapter 6 Drawing Cool Stuff with Turtle

89

�Make your turtle change directions
You can’t keep drawing in the forward and backward direction. You need

to change directions to draw proper shapes. This is where the angles come

in. Have you learned angles at school yet? If not, don’t worry. Let me

explain the concept quickly. It’s quite easy.

Look at Figure 6-5.

In Python’s turtle module, angles are basically directions. So, if

you want your turtle to keep moving forward from the current position

(home), then just say forward(100). If you want it to direct straight upward,

then first change direction by giving left(45), or lt(45). Now, if you give

forward(100) or something similar, you’ll get a line upward, just like I’ve

drawn in the preceding image. Similarly, to direct downward, using 90

degrees again, but right(90) this time. For the rest of it, you can refer to the

preceding image and decide which line of code you need to use to change

directions.

Figure 6-5.  Using angles to change directions in Turtle

Chapter 6 Drawing Cool Stuff with Turtle

90

As you can see, if we want our Turtle to take complete turns, that

is, draw downward instead of toward the right, then we need to give 90

degrees as our angle. Let’s test that out now. I’m assuming you’ve already

typed the three mandatory turtle lines of code already. Then, type the

following:

t.forward(100)

t.right(90)

t.forward(100)

We’re making our turtle move 100 points in the forward direction first.

Then we’re making it turn right at 90 degrees, which is a sharp turn (useful

for drawing squares and rectangles). Now, our turtle is facing downward,

and we’re making it move forward 100 points again.

When we run the preceding lines of code, we’ll get this (Figure 6-6).

Let us move 90 degrees to the left now and see what we get.

t.left(90)

t.forward(100)

When you run the script, you’ll get this (Figure 6-7).

Figure 6-6.  Right(90)

Chapter 6 Drawing Cool Stuff with Turtle

91

See, it made a sharp turn to the left.

Congrats! You now have four of the most powerful tools of Turtle at

your disposal, and you can use them to draw a lot of things. Would you like

to start with a couple of cool shapes?

Let’s start simple, shall we? What about a square?

�Mini project – draw a square
Don’t look at the solution immediately. There are plenty of solutions for

the same problem in programming, so try to find your own, and then look

at mine. 😊
Okay, I’m going to make my solution very simple. I’m going to use just

forward and right. My square is going to be 100 points in length and height.

These are the steps I’m going to use to draw my square:

	 1.	 I’ll make the turtle move forward 100 points first and

then take a 90-degree right turn.

	 2.	 Then move forward 100 points again to draw the

second side of the square and another right turn.

Figure 6-7.  Left(90)

Chapter 6 Drawing Cool Stuff with Turtle

92

	 3.	 Forward again to draw the third side and right turn

again.

	 4.	 Forward again to draw the fourth and final side.

Let’s convert the preceding directions to code:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.forward(100)

t.right(90)

t.forward(100)

t.right(90)

t.forward(100)

t.right(90)

t.forward(100)

Let’s run the preceding lines of code. You’ll see turtle draw with our

commands in real time (Figure 6-8).

Figure 6-8.  Draw a square

Chapter 6 Drawing Cool Stuff with Turtle

93

Yipee! We got our square!

Instead of the last t.forward(100), you could just type t.home() and

you’ll get the same result. Why don’t you try and see?

�Mini project – draw a hexagon
I’m going to follow the same rules as my square for my hexagon. The only

difference is I’m going to make my turtle turn 60 degrees every time, because

that’s the angle at which the side of a hexagon is placed (Figure 6-9).

Also, I’m going to use the forward function six times instead of four,

because I need it to draw six sides.

Look at the following code. It’s easy to understand.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.forward(100)

t.right(60)

t.forward(100)

Figure 6-9.  Angle in a hexagon

Chapter 6 Drawing Cool Stuff with Turtle

94

t.right(60)

t.forward(100)

t.right(60)

t.forward(100)

t.right(60)

t.forward(100)

t.right(60)

t.forward(100)

It is a bit tedious to type all those lines of code for just one shape, don’t

you think? Don’t worry. When we look at automation, I’ll teach you how to

draw any shape you want, any number of times you want, with just a few

lines of code. It’ll be worth the wait, I promise.

When you run the preceding code, you’ll get this (Figure 6-10).

Yippee again!

Figure 6-10.  Draw a hexagon

Chapter 6 Drawing Cool Stuff with Turtle

95

�Shortcuts
Typing out forward, backward, right, and left every single time is a bit

tedious, don’t you think? Why don’t we shorten everything to make things

easy for us? You can write fd, bk, rt, and lt instead.

Let’s try our shortcuts with our square.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.fd(100)

t.rt(90)

t.fd(100)

t.rt(90)

t.fd(100)

t.rt(90)

t.fd(100)

Run the preceding code, and you’ll get this (Figure 6-11).

Figure 6-11.  Shortcuts fd, bk, lt, and rt

Chapter 6 Drawing Cool Stuff with Turtle

96

We got it, yay!

Now I want you to let your imagination run free. Draw anything you

want. Just type your code, run it, see the results, and modify things. Create

as many shapes as you can. Just have fun with it! 😊

�Go to random points on the screen
By now, you’re probably an expert at making turtle draw straight lines on

the screen and manipulating them to get different shapes. But isn’t it a

tedious process? You’re essentially writing two lines of code to draw every

single straight line – a forward or backward to draw and then a right or left

to change directions.

What if you can just command your Turtle to go to a particular

position, drawing a straight line while it did, and it did just that? No angles,

no forward, nothing. Something like that would save you both time and

space, won’t it?

You certainly can do something like that with the pre-defined function

goto. But, instead of just specifying the number of points you want your

turtle to move, like you do with forward and backward, you need to specify

the exact coordinate to which you want Turtle to move to.

What are coordinates? Have you learned about them at school, maybe

when you learned about graphs? If not, don’t worry. I’ll explain now.

Chapter 6 Drawing Cool Stuff with Turtle

97

Look at the preceding image (Figure 6-12). The point Turtle starts from

usually (home) is the big red dot marked (0,0). The first 0 is the x value,

and the second 0 is the y value. Did you notice that the lines are marked

X, –X, Y, and –Y? Those are called axis. Don’t worry too much about axis

and coordinates. If you don’t know them already, you just need to know

enough to know where to send your turtle to.

The x value positively increases in the right direction and negatively

increases in the left direction. The Y value positively increases in the

upward direction and negatively increases in the downward direction.

Now that you know that, and you also know that (x,y) is how the

coordinates are written, take a look at the image again. Do you see how the

coordinates are written now?

Figure 6-12.  Coordinates in Turtle

Chapter 6 Drawing Cool Stuff with Turtle

98

(200,200) is where it is because x is at positive 200 and y is also at

positive 200. So, if you gave goto(200,200), then you’d draw a straight line

from (0,0) which is the default starting point for turtle to (200,200), which

would be a diagonal line (Figure 6-13).

�Draw a square with goto
Alright, now that you know how coordinates work, let’s use it to draw

something. What about a square?

Figure 6-13.  (0,0) to (200,200)

Chapter 6 Drawing Cool Stuff with Turtle

99

I’m going to start from the default (0,0). I won’t have to mention that

because Turtle does that by default. Then, I’m going to move upward to

(0,100), then right to (100,100), down to (100,0), and finally back home to

(0,0). Why don’t you refer to the coordinates image to see where each of

these points is?

Let’s write the code now:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.goto(0,100)

t.goto(100,100)

t.goto(100,0)

t.home()

t.home() will make the turtle go back to the (0,0) position.

When you run the preceding code, you’ll get this (Figure 6-14).

Look at that, you drew the same thing with just four lines of code

instead of seven. Why don’t you play around with the coordinates and

draw more squares or any other shape?

Figure 6-14.  Square with goto

Chapter 6 Drawing Cool Stuff with Turtle

100

�Mini project – draw a mandala (with just
straight lines)
In this mini project, we’re going to take your drawing to the next level.

We’re going to draw a mandala, but with just straight lines. Okay, I admit

it. A mandala with only lines is not a proper mandala, but hey, it’s still a

mandala, so let’s go with it. We’ll look at drawing more complex mandalas

in future lessons, so wait for it! 😊
Let’s get started, shall we? To start with, we’re going to draw a square at

the base and four tilted squares from each side of the square:

	 1.	 Let’s first get done with the basics.

#Mandala with lines

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Now, we’re going to create our base, our square.

It’s going to be a square of 100 points on each side,

starting from the point (0,0), moving upward to

(0,100) for the first side, then right toward (100,100)

for the second side, then down to (100,0) for the

third side, and going back to home (0,0) for the last

side.

#Create the square base first

t.goto(0,100)

t.goto(100,100)

t.goto(100,0)

t.home()

When we run what we have so far, this is what we’ll

get (Figure 6-15).

Chapter 6 Drawing Cool Stuff with Turtle

101

	 3.	 Let’s draw the first tilted square next.

Right now, our pen is at (0,0). We’re going to ask it to

draw a diagonal line to the point (50,50) (middle of

the square) and then meet back at the point (0,100),

which would give us a conical shape inside the

square.

#First tilted square

t.goto(50,50)

t.goto(0,100)

When we run the preceding code, we’ll get this

(Figure 6-16).

Figure 6-15.  Step 1 – draw the square base

Chapter 6 Drawing Cool Stuff with Turtle

102

	 4.	 Now let’s draw the same shape outside of the square

to complete our first tilted square. Let us have our

Turtle go to the exact opposite of the point 50,50

which is –50,50 and then again back home.

t.goto(-50,50)

t.home()

When we’re done, we’ll get something like this

(Figure 6-17).

Figure 6-16.  Step 2 – first tilted square, part 1

Figure 6-17.  Step 3 – complete the first tilted square

Chapter 6 Drawing Cool Stuff with Turtle

103

	 5.	 We have our first tilted square! Yay! Now for the next

one.

The second one is quite simple, really. We are just

going to the point 50,–50 (below the square) from

0,0 and meet back at 100,0. Then we’re going to go

to the opposite side of the square to 0,100 to get

ready to draw the next square.

#2nd tilted square

t.goto(50,-50)

t.goto(100,0)

t.goto(0,100) #Getting ready to draw the next tilted

square

When we run the preceding code, we’ll get this

(Figure 6-18).

Figure 6-18.  Step 4 – second tilted square

Chapter 6 Drawing Cool Stuff with Turtle

104

	 6.	 From the point 0,100, let’s draw the next tilted side

to 50,150. Then let’s go back to 100,100 from there,

we’ll get a conical shape again. Then, when we go to

the center of the square to 50,50, we’ll have our third

tilted square (Figure 6-19).

#3rd tilted square

t.goto(50,150)

t.goto(100,100)

t.goto(50,50)

	 7.	 From the center 50,50, go to 100,0 so we can prepare

to finish the fourth tilted square. Go to 150,50 to

start the conical shape and 100,100 to end the same.

#4th tilted square

t.goto(100,0)

t.goto(150,50)

t.goto(100,100)

When we run the entire script, we’ll get this (Figure 6-20).

Figure 6-19.  Step 5 – third tilted square

Chapter 6 Drawing Cool Stuff with Turtle

105

Figure 6-20.  Step 6 – fourth tilted square

Whoa! We have a basic mandala shape, yes, but when we finish

learning the rest of the goodies Turtle comes with, you can customize this

shape to literally anything you want!

�Summary
In this chapter, we looked at Python’s graphics module Turtle, how to use

it to draw lines by using forward, backward, right and left, but also making

our turtles go to their respective coordinate points. We also looked at

drawing shapes like squares, rectangles, hexagons, and so on in Python,

and we ended the chapter with two mini projects.

In the next chapter, let’s look further into Turtle; learn how to draw

circles, dots, semi-circles, and arcs; make things colorful; and code more

fun mini projects!

Chapter 6 Drawing Cool Stuff with Turtle

107© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_7

CHAPTER 7

A Turtle Deep Dive
In the previous chapter, you were introduced to the Turtle library in

Python. We looked at drawing lines and shapes with Turtle, and we even

learned how to draw a mandala design entirely composed of lines.

In this chapter, we’re going to take a deeper look into Turtle. You’ll

learn how to draw colors to your designs and draw circles and arcs of all

shapes, sizes, and angles. You’ll also learn how to draw text on screen.

At the end of the chapter, you’ll learn how to change the angles of your

drawings and finally draw smileys or drawings of any kind.

�Customize your screen
What use are graphics and images without colors? Right now, your screen

looks boring. It has a white background, and your screen title is always

“Python Turtle Graphics”. You can change all of that though.

To start with, you can change your screen title using the title method

but remember something. This function isn’t a part of t (turtle.Turtle). You

need to preface it with turtle, the actual package, like this:

turtle.title('Hello Turtle!')

https://doi.org/10.1007/978-1-4842-6812-4_7#DOI

108

The same goes for your background color. You need to use the bgcolor

method to change your background color and specify your color, in words,

within either single (‘) or double (“) quotes.

I’m going to change my screen’s background color to red.

turtle.bgcolor('red')

Would you like to look at the changes we made? Look at the yellow

arrow (I drew that in Figure 7-1). Our title now says “Hello Turtle!” and our

screen is red. Perfect!

Try changing your screen to a different color or title.

You’re not limited to the basic colors either. Follow this link: https://

en.wikipedia.org/wiki/Web_colors.

You’ll find the names of hundreds of colors on there. Let your

imagination run free!

Figure 7-1.  Background color set to red

Chapter 7 A Turtle Deep Dive

https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors

109

�Customize your graphics
You know how to change the background color of the screen. Great! But

what about the image color? Colored pens and images filled in color are a

staple of any good drawing, aren’t they?

So, you can change the color of your pen (outline of your graphics) and

your graphic (fill color). You can also set a size for your lines and change

the speed of your turtle (pen) if you feel it’s too slow.

To change the color of your pen, use the pencolor function (write the

function as it is, in all small letters) and give the name of the color as the

parameter (what you give within the brackets). I’m going to use one of the

colors from the color chart I gave you a link to in the last section.

Similarly, to change your fill color, use the fillcolor function. You can

increase the size of your pen (the thickness of your lines) with the pensize

function and give a number as its parameter. Specify a number greater

than 2 to really see a difference, since 1 is the default pen size. Also, you can

increase the speed of your pen by using the speed function. The default

speed value is 1, so give anything more than that and you’ll see a change.

Let’s apply all of this and look at the result.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

turtle.title('Hello Turtle!')

turtle.bgcolor('DarkOrchid')

t.pencolor('Salmon')

t.fillcolor('Chartreuse')

t.pensize(5)

t.speed(7)

t.goto(0,100)

t.goto(100,100)

t.goto(100,0)

t.home()

Chapter 7 A Turtle Deep Dive

110

Alright. I’ve specified the background color as “Dark Orchid”, the pen

color as “Salmon”, the fill color as “Chartreuse”, the pen size as 5, and the

speed as 7. I’ve also drawn a square with goto. Let’s see if it works (Figure 7-2).

It has worked to an extent. My pen drew so fast that I didn’t see it draw

this time (bummer). The lines are thick, the pen color is indeed salmon,

but where is the fill color?

That’s because Turtle wants you to indicate when you want the filling

to start and end, so it doesn’t accidentally fill something it shouldn’t (like

just two lines joined at a point).

You need to use the begin_fill() method when you want the fill to start

and the end_fill() method when you want it to end.

So, after I’ve typed out the lines of code required to change the colors,

size, and speed, this is what I’d do when I draw the shape:

t.begin_fill()

t.goto(0,100)

t.goto(100,100)

t.goto(100,0)

t.home()

t.end_fill()

Figure 7-2.  Set speed, size, pen color, and background color

Chapter 7 A Turtle Deep Dive

111

Now, when I run my program, I’ll get this (Figure 7-3).

Yes, it works!

Also, you can use shortcuts for your formatting. Instead of using two

lines of code to specify pen and fill color, you can use one, like this:

t.color('Salmon','Chartreuse')

The first value is for pencolor and the second is for fillcolor.

Or, better yet, you can use a single line for all the four formatting

options, like this:

t.pen(pencolor='Salmon', fillcolor='Chartreuse', pensize=5,

speed=7)

Notice how you didn’t have to place the numbers within quote. When

you use the preceding line of code in your script, you’ll notice that the

result has not changed at all.

You can omit any of those arguments (pencolor='Salmon' is an

argument) as per your requirement.

Figure 7-3.  Set fill color of the rectangle

Chapter 7 A Turtle Deep Dive

112

Before we end this section, I want you to try something. I want you to

specify the value of speed as 0. What do you think will happen? Will turtle

start drawing our square at the speed of an actual turtle? Or would you be

pleasantly surprised? Try and see! 😊

�Shapes without lines
We’ve been looking at drawing lines so far, but what if you want to draw

circles? There’s a pre-defined function for that as well. It’s called “circle”,

and you have to give just the radius as the argument within the brackets.

Radius is basically the size of the circle.

Let’s try one, shall we?

�Circles
s = turtle.getscreen()

t = turtle.Turtle()

t.circle(100)

I’ve kept it simple. Run the preceding code, and you’ll get this

(Figure 7-4).

Figure 7-4.  Draw a circle – anti-clockwise direction

Chapter 7 A Turtle Deep Dive

113

As you can see, turtle started drawing the circle from the default 0,0

position in the anti-clockwise direction (toward the left) so the circle was

drawn above the 0,0 position.

If I gave a negative value for radius, it’ll draw in the clockwise direction,

that is, below the 0,0 position. Let’s try.

t.circle(-100)

Run the above lines of code, and you’ll get this (Figure 7-5).

You can use the same coloring and size options you used on your

straight lines for your circle.

As a small activity, I want you to draw different colored circles with

different colors and see what you get.

�Dots
You can draw a dot with the “dot” function. It’s just a filled in circle that

uses the pen color to fill itself, or you can give a preferred color in the

second parameter.

t.dot(100, 'Salmon')

Figure 7-5.  Draw a circle – clockwise direction

Chapter 7 A Turtle Deep Dive

114

Run the preceding code, and you’ll get this (Figure 7-6).

Did you notice something? The size of our circle is considerably bigger

than our dot. That is because the value we give inside our dot function is

actually the diameter, not the radius. So, your circle, with the same value, is

going to be twice as big as your dot.

�Arcs
Now, let’s draw an arc! Arcs are part of a circle, aren’t they? So, we are still

going to use the circle function, but we’re going to add more parameters to

let turtle know that it should only draw a part of the circle (arc).

You know how angles work, don’t you? (Figure 7-7)

Figure 7-6.  Draw colored dot

Chapter 7 A Turtle Deep Dive

115

360 degrees makes a circle, so if you want a semi-circle, you need just

180 degrees. To make a quarter circle (arc), you need 90 degrees. We’re

going to make a semi-circle now.

t.circle(100,180)

Run the preceding code, and you’ll get this (Figure 7-8).

When you give the values as –100,180, you’ll get the same arc, but

below. Give 100,–180 and you’ll see a mirror image of the first arc, and

for –100,–180, you’ll see the same mirror image, but below the 0,0 position.

Try out and see for yourself!

Figure 7-7.  Angles in a circle

Figure 7-8.  Draw a semi-color

Chapter 7 A Turtle Deep Dive

116

If you gave the angle as 90 degrees, you’d draw quarter of a circle. Why

don’t you play around with the angles to get different sized arcs? Don’t just

stop at 90 or 180. You have angles from 0 to 360 to play around with. Have

fun! 😊

�More options!
We have a lot more options with Turtle, but since we are just covering the

basics in this chapter, I’ll just talk about a couple more before we move

on to the projects. Sometimes, you might want to draw more than one

shape or figure on your screen, and they might be in different places. So,

you need a way to move your pen to the new location without drawing

anything on the move. Once moved, your pen should start drawing again.

The penup and pendown methods (all small letters) help you do exactly

that.

When you give the “penup” command to your turtle, you’re asking

it to take the pen off the screen. It won’t draw anymore, but it will move

positions based on your forward, backward, or goto commands. The

command “pendown” does the exact opposite. If you want your pen to

draw again, give it the pendown command. This command will only work

if the penup command is in effect.

Also, you can use the hideturtle function after your program finishes

drawing your graphics to hide the turtle from the screen. I’m sure you’d

be relieved to learn of this method. I know I was. Those turtles didn’t look

good on my images!

I know I just dumped a bunch of random methods on you, and you

might be confused. So, why don’t we put what we just learned to test? Let’s

draw a square and then a circle, on different sides of the screen, and hide

the turtle at the end, shall we?

Chapter 7 A Turtle Deep Dive

117

	 1.	 I’m going to use “penup” when I start the program

(after I set up turtle as usual) and then send the pen

to the position (–200,200). Once my pen has moved,

I’m going to specify pendown because I’m going to

draw my square next.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.penup()

t.goto(-200,200)

t.pendown()

	 2.	 Then, I’m going to set the fillcolor to blue for my

square.

t.fillcolor('blue')

	 3.	 I’m going to use the usual lines of code to draw my

square next.

#Draw the square

t.begin_fill()

t.goto(-100,200)

t.goto(-100,100)

t.goto(-200,100)

t.goto(-200,200)

t.end_fill()

Chapter 7 A Turtle Deep Dive

118

	 4.	 Once drawn, I need to change positions again to

draw my circle. So, penup again, go to (200,–200),

which is on the opposite side of the screen, and then

pendown.

#Change positions again

t.penup()

t.goto(200,-200)

t.pendown()

	 5.	 I’m going to set the fill color as red for my circle.

t.fillcolor('red')

	 6.	 Then, I’m going to draw a 50-point radius circle.

#Draw the circle

t.begin_fill()

t.circle(50)

t.end_fill()

That’s it! We have two shapes on opposite sides of

the screen! 😊

	 7.	 Finally, I’m going to use the hideturtle() function to

hide the turtle (which would still be shown on the

circle otherwise).

t.hideturtle()

When you run the program, you’d get this (Figure 7-9).

Chapter 7 A Turtle Deep Dive

119

	 8.	 Now this is where you’ll find things a bit different.

If I just use t.hideturtle(), then I’ll only hide one of

the turtles (why don’t you draw and see?). But you

must have noticed that there are two turtles. There’s

one at the home position (0,0), which pertains to

the turtle package itself, and there’s another (t of

the pre-defined function Turtle()) that does the

drawing.

So, we need hideturtle() repeated twice. We already wrote hideturtle()

for “t”. Let’s write another one for the “turtle” package in its entirety.

turtle.hideturtle()

Once I’ve added the preceding line of code, let’s run the script again

(Figure 7-10).

Figure 7-9.  Hide the “t” turtle

Chapter 7 A Turtle Deep Dive

120

Look at that! The turtle in the center of the screen has disappeared as

well. Yes!

�Draw text on screen
We’ve drawn all kinds of graphics so far, but no image is complete without

a little bit of text, is it? And it’s quite simple too. Would you like to see?

Figure 7-10.  Hide the “turtle” turtle

Chapter 7 A Turtle Deep Dive

121

To write a simple text, just use the write method of Turtle, and specify

the text you want displayed, like this:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.write('Hello there!')

Run it, and you’ll get this (Figure 7-11).

That looks like chicken scrawl. Aww! Could we manipulate this text in

any way? You bet!

Let’s position our text somewhere first.

t.penup()

t.goto(200,200)

t.pendown()

Now, let’s draw again, but with a slight change:

t.write('Hello there!', move=True)

Figure 7-11.  Draw text on screen

Chapter 7 A Turtle Deep Dive

122

The move argument is False by default. If you make it true, you’ll see

the arrow below the text being drawn, like this (Figure 7-12).

You might not see much difference now since the text is too small and

too short.

Still too small! Let’s add some styles, shall we? You know the different

font styles you can use on your text, don’t you? There’s Arial, Calibri, Times

New Roman, and a ton of styles like that. A simple Google search will give

you a list of them.

I’m going to make mine Georgia. But that’s not where it ends. I can also

increase or decrease the font size and change the font type. Let’s play with

them all!

Let’s change position again to make room for the “big” text we’ll be

creating:

t.penup()

t.goto(-200,200)

t.pendown()

The x position is now –200, instead of 200.

Figure 7-12.  Draw text in a different position

Chapter 7 A Turtle Deep Dive

123

Now, let’s draw our text.

t.write('Hello there!', move=True,

font=('Georgia',40,'normal'))

Did you notice something in the above code? I’ve mentioned all the

styles under “font”, and they’re within a combined parenthesis. Also, the

font style (‘Georgia’) and type (‘normal’) are within quotes (can be single or

double quotes). Let’s run the above code, and we’ll get this (Figure 7-13).

You can change the color of your text by using the pencolor tool.

t.pencolor('Red')

You can also make your text bold, italics, and underlined (or any of

those three) by including them as values alongside the rest of the font

values, like this:

t.write('Hello there!', move=True, font=('Georgia',40,'normal',

'bold','italic','underline'))

Figure 7-13.  Format the text

Chapter 7 A Turtle Deep Dive

124

Run the preceding code, and you’ll get this (Figure 7-14).

Looking good! 😉

�Mini project – circle within a square
This is going to be a simple project. We’re going to draw a circle inside a

square in this project:

	 1.	 Let’s set up turtle first. I’ve not set up the speed in

this program, but you can do so.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Next, I’ve set the fill color of the square to ‘Red’ and

pen size to 5. I’m going to draw the square first and

then the circle within it.

Figure 7-14.  Change the color of the text

Chapter 7 A Turtle Deep Dive

125

#Set the color and pen size for the square

t.fillcolor('Red')

t.pensize(5)

	 3.	 Let’s draw the square now. I’m going to go to the

position –100,–100 first so I can draw the circle

around the center of the screen (0,0). This way, I can

draw the circle around the same center point.

#Draw the square

t.penup()

t.goto(-100,-100)

t.pendown()

t.begin_fill()

t.goto(-100,100)

t.goto(100,100)

t.goto(100,-100)

t.goto(-100,-100)

t.end_fill()

	 4.	 Now, to set the circle’s center as 0,0, I’ve asked my

pen to go to the position 0,–100, so when I draw

a 100-point radius from this point, in the anti-

clockwise direction (default), the center would be

0,0. I’ve set the fillcolor for the circle as ‘Blue’.

#Set position so the circle's center is 0,0

t.penup()

t.goto(0,-100)

t.pendown()

#Draw the circle

#Color and size

t.fillcolor('Blue')

Chapter 7 A Turtle Deep Dive

126

#Circle

t.begin_fill()

t.circle(100)

t.end_fill()

	 5.	 Finally, let’s hide the turtles.

t.hideturtle()

turtle.hideturtle()

Now, let’s run the entire code, and see if we get what we want

(Figure 7-15).

Whohoo! :D

�Change directions of your drawing
So far, the only way to change directions is by using the right() and left()

methods. But, while creating arcs, you might want something else that

changes the angle of your pen so you can place the arc wherever you want.

What if you want to draw an eyebrow? Or a sideways smile?

Figure 7-15.  Circle within a square

Chapter 7 A Turtle Deep Dive

127

Turtle offers you the setheading() method to do just that. Let’s look at

what a heading is first. The heading() method gives you the angle of the

pen at that particular time.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

print(t.heading())

When I run the preceding code, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\drawTurtle.py

0.0

Right now, the pen is at an angle of 0, which means it’ll draw in the

horizontal direction. But with setheading(), I can change the angle.

Let’s make it 90 degrees, perhaps. Just mention the angle within the

brackets, and you’re good to go.

t.setheading(90)

Now let’s check the heading.

print(t.heading())

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\drawTurtle.py

90.0

Okay great, the heading is 90 degrees. What does that mean for us?

Shall we draw a line and check?

t.pensize(5)

t.forward(100)

Chapter 7 A Turtle Deep Dive

128

When we run the preceding lines of code, we’ll get this (Figure 7-16).

Look at that! It drew a line upward, so when the heading is 90 degrees,

the pen is pointing upward. You already know where each angle is, so

you can guess where your pen will point for each angle change you make

with setheading(), but let’s demonstrate the same with a small program,

shall we? We’re starting fresh, so please open a new script or clear the one

you’re currently using.

	 1.	 Let me start off with setting up the turtle. I’m going

to print the current heading (0 degrees when the

program starts running, which points toward the

right). I’ve also increased the pen size to 5 and speed

to 5.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

print(t.heading())

t.pensize(5)

t.speed(5)

Figure 7-16.  Set heading to 90 degrees

Chapter 7 A Turtle Deep Dive

129

	 2.	 Now, I’m going to make the pen draw forward 100

points at the current degree. Once drawn, I’ll make

the pen write the current degree using the heading()

method. Then let’s lift the pen and go back to (0,0)

to start anew.

#0 degrees

t.forward(100)

t.write(t.heading())

t.penup()

t.home()

t.pendown()

	 3.	 Now, let’s change the heading to 90 degrees (point

upward) and draw forward and repeat the same as

earlier.

#90 degrees

t.setheading(90)

t.forward(100)

t.write(t.heading())

t.penup()

t.home()

t.pendown()

	 4.	 Now, 180 degrees (point toward the left).

#180 degrees

t.setheading(180)

t.forward(100)

t.write(t.heading())

t.penup()

t.home()

t.pendown()

Chapter 7 A Turtle Deep Dive

130

	 5.	 Finally, 270 degrees (pointed downward).

#270 degrees

t.setheading(270)

t.forward(100)

t.write(t.heading())

Finally, let’s hide all the turtles.

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 7-17).

Do you see the significance of using the setheading()? You can set

your angle to any point you want. Right now, we’ve just set it to draw

vertical or horizontal lines. Why don’t you change to angles and see

what you get?

Figure 7-17.  An angle diagram for setheading

Chapter 7 A Turtle Deep Dive

131

�Mini project – smiley
In this project, let’s take things to the next level, shall we? Let’s draw a

smiley face!

	 1.	 I’ve set up the Turtle package. You can change the

speed if you like.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Next, I’ve asked the pen to go to the position 0,–100

so I can draw a circle, which is our face, with the

center of the circle as 0,0. This’ll just let me do the

calculations for the eyes, nose, and mouth better.

#Let's draw a smiley

#Go to the position

t.penup()

t.goto(0,-100)

t.pendown()

	 3.	 Now, let’s draw the face. The fillcolor is going to

be yellow, and the pen size is going to be 5 and the

circle is going to be of a radius of 100 points.

#Draw the face

#Color and size

t.fillcolor('yellow')

t.pensize(5)

#Circle

t.begin_fill()

t.circle(100)

t.end_fill()

Chapter 7 A Turtle Deep Dive

132

	 4.	 Next, I’m going to draw the eyes. I set the positions

based on trial and errors. You can use the same in

your program or change the positions to see what

you get and create your own (I recommend doing

this).

I’m going to ask my pen to go to the position –40,30

to draw the left eye and draw a black dot with

diameter 30.

#Draw the eyes

#First eye

t.penup()

t.goto(-40,30)

t.pendown()

t.dot(30)

	 5.	 Then, go to the position 40,30 (same horizontal line,

opposite X value) and draw the right eye, which is

again a dot with diameter 30.

#Second eye

t.penup()

t.goto(40,30)

t.pendown()

t.dot(30)

	 6.	 Next, let’s draw the nose. This is where centering the

circle at 0,0 comes in handy because our smiley’s

nose is going to start from 0,0. Let’s draw a straight

line from 0,0 down to 0,–30.

Chapter 7 A Turtle Deep Dive

133

#Draw the nose

t.penup()

t.goto(0,0)

t.pendown()

t.goto(0,-30)

	 7.	 Finally, the tricky part. Let’s draw the smile. We’re

going to make the turtle go to the x position of the

first eye, which is –40, but the y position is also going

to be –40. Again, I found this value after a lot of trial

and error, and I ended up with a value that gave me

the result I want. Try your own! 😊

#Draw the smile

#Go to the x position of the first eye but a different

y position

t.penup()

t.goto(-40,-40)

t.pendown()

	 8.	 A smile is a semi-circle, isn’t it? But, if you try to

draw a semi-circle as it is right now (try), you’ll get a

slanted smile, not the only we see on smileys. This is

where setheading comes in. We need to change the

angle of the pen so we can draw the semi-circle in

the exact angle we want. Let’s change the angle

to –60. Don’t be confused! It’s the same as setting

the angle to 120 (you can use either).

Next, let’s draw a semi-circle with the angle 120, so

it’s not exactly a semi-circle, but not a quarter circle

either – something in between.

Chapter 7 A Turtle Deep Dive

134

#Change the direction of the pen (turtle)

t.setheading(-60)

t.circle(40,120)

	 9.	 Finally, let’s hide our turtles!

#Finally, hide the turtle

t.hideturtle()

turtle.hideturtle()

Whew! That was long. Now shall we run the code and check to see if

our efforts bore fruit? (Figure 7-18)

Yay! That’s a cute little smiley! Why don’t you try creating different

smileys? Maybe a sad smiley? Frowny face, or laugh? You have the tools

you need (goto, setheading, etc.) to creating any image now, not just faces!

Figure 7-18.  Smiley face

Chapter 7 A Turtle Deep Dive

135

�Summary
In this chapter, we went deeper into the Python Turtle module. We learned

how to use colors, draw arcs, circles and dots, and manipulate their

direction and size, and finally, how to draw text into our screen.

In the next chapter, let’s go deep into strings, how to create them and

use them, and the various pre-defined string methods Python equips you

with, and finally, let’s make some magic with them!

Chapter 7 A Turtle Deep Dive

137© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_8

CHAPTER 8

Play with Letters
and Words
In the previous chapters, we took a break from learning Python basics and

we learned all about Turtle and using it to draw straight lines, shapes that

are formed with straight lines, circles, curves, and even text. We finished

the chapter with a bunch of cool and colorful mini projects.

In this chapter, we’ll go back to the basics of Python and learn about

strings, what they are, how to create them, how to manipulate them

using various pre-defined functions available in Python, and getting

direct inputs from the users of your programs to make your projects more

dynamic. As usual, we’ll finish the chapter with some mini projects, but

we’ll use Turtle to make our projects colorful now.

�What are strings?
Strings…strings…strings. Such a grown-up word for something so simple.

Strings are just letters and number, strung together. Sentences, phrases,

and words – they are all strings. Single letters can also be strings.

https://doi.org/10.1007/978-1-4842-6812-4_8#DOI

138

Do you remember the print statement? When we first started using the

print() function, we wrote something within quotes inside the bracket. Was

it ‘Hello there!’? Yes indeed.

That was a string. Print statements usually have strings inside of them.

But that’s not where it ends. You can store strings in variables as well, just

like you do with your numbers.

Now that you know what strings are, let’s learn how to create them

next! This is going to be a longer than average chapter, so buckle up! I

promise all the exercises and fun projects will make up for the length. 😊

�Let’s create some strings
I’m going to create a new script file called strings.py and use it for this

chapter.

a = 'This is a string'

The variable “a” now has the string ‘This is a string’. You can place the

string within double quotes as well.

a = "This is a string"

Chapter 8 Play with Letters and Words

139

Let’s try printing this string now, shall we? It’s quite simple. You use the

print statement again, but instead of typing the string within quotes inside

the brackets, you just type the name of the variable that contains the string,

without quotes, like this:

print(a)

Now, if you run the preceding code, you’ll get this:

RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

This is a string

We successfully printed our string. Yay!

Your strings can have numbers as well, and they’d still be considered

a string. Anything within quotes is a string. Let me place a number within

quotes and check its type by using the type() method.

a = "1234"

print(type(a))

When you run the preceding code, you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

<class 'str'>

Look at that! Even though “a” has a number, 1234, since it was placed

inside quotes, Python automatically considered it a string.

�I want lines and lines of strings!
All’s well and good with strings as long as you stick to creating single-line

strings. What if we need multiple lines? We can’t keep creating a separate

print statement for each new string line. That’s what we did in our very first

mini project, where we printed out Susan Smith’s introduction, remember?

That was very inconvenient!

Chapter 8 Play with Letters and Words

140

Why don’t we try creating multiple lines inside of string format and see

what happens?

a = "This is the first line.

This is the second line.

This is the last line."

In the preceding example, “a” has three string lines, wrapped inside

double quotes. Let’s run it and see what happens (Figure 8-1).

Uh oh. I can’t even run the code. I immediately get a popup with the

preceding error. What we wrote previously is not acceptable code at all. So,

how can we create multiple lines of string? Do you remember multi-line

comments in Chapter 3? We used three single quotes, without space before

the comment, and the same, after the comment, and that created a multi-

line comment.

I have a confession to make. That syntax is actually the syntax of a

multi-line string. We just borrowed it to create a multi-line comment

because a multi-line string that hasn’t been stored in a variable and just

stands as it is would be ignored by Python, so it technically acts a comment

(though it is not).

Figure 8-1.  Multi-line string with double quotes – error

Chapter 8 Play with Letters and Words

141

Alright, enough chit chat. Let’s create a multi-line string now. I’m going

to replicate Susan Smith’s introduction, but I’m going to use multi-line

strings to create and print it.

intro ='''Hello there!

My name is Susan Smith.

I am 9 years old.

I love puppies!'''

print(intro)

When I run the preceding code, I get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Hello there!

My name is Susan Smith.

I am 9 years old.

I love puppies!

Simple and neat, don’t you think? 😊 Yes!

�My string has quotes! :O
Oh my, our string has quotes, and we’re getting an error!

intro =""Hello!", said Susan"

I got this (Figure 8-2).

Chapter 8 Play with Letters and Words

142

Bummer. ☹
Well, I could change the quote that wraps around the string.

intro ='"Hello!", said Susan'

print(intro)

Does it work?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

"Hello!", said Susan

Yes! 😊
But what if my string has both single and double quotes? Maybe a

string like the following one:

“That’s my Teddy”, said Susan.

I can’t just interchange double quotes for single quotes in the

preceding string. I need a way to tell Python that the single quote in

“That’s” is actually a part of the string and not a part of the code. We have

something called an escape character in Python, which is just a backslash,

“\”. You can use that before the quote that’s part of a string (either a single

or double quote), and Python will ignore it while running your code.

Figure 8-2.  Single and double quotes in the same string – error

Chapter 8 Play with Letters and Words

143

Let’s try.

intro = '"That\'s my Teddy", said Susan.'

print(intro)

Run the preceding code, and we’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

"That's my Teddy", said Susan.

Yes, it works!

�Let’s join two or more strings
When we used the “+” symbol with two or more numbers, they were added

together. Would you like to see what would happen if you do the same with

strings? Okay!

I’ve created two variables str1 and str2 which hold the strings ‘Hello’

and ‘there!’. I’ve created a third variable “string” and assigned the addition

of str1 and str2 to it.

str1 = 'Hello'

str2 = 'there!'

string = str1 + str2

print(string)

Let’s print string and see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Hellothere!

Chapter 8 Play with Letters and Words

144

Oh, look at that. It just put the string inside str1 after the string inside

str2. That’s interesting. Addition didn’t take place, even though we used

the addition operator.

In fact, there is a name for this string operation. It’s called string
concatenation. When you use “+” on two or more strings, you add

them together, yes, but not in the traditional sense. You just merge them

together, in the order they are added in.

Something’s bothering me about my result though. “Hellothere!” isn’t

what I wanted. I wanted a space between those words. That’s proper usage

of that phrase. So, why don’t I just add that?

str1 = 'Hello'

str2 = 'there!'

string = str1 + " " + str2

print(string)

That was simple! We just created another string that had just one space

in it and added it before str2. Let’s run the preceding code, and we’ll get

this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Hello there!

Now, that looks right. So, as you can see, you can concatenate more

than two strings, and they can either be inside variables or as is (within

quotes). Even a space is a string, if placed inside quotes.

�Concatenation in print()
You can apply string concatenation in print() as well.

a = 'Hi!'

print('Susan says, "' + a + '"')

Chapter 8 Play with Letters and Words

145

Does it look a bit complicated? Not to worry. I’ve wrapped the first part

of the string, “Susan says”, with a comma, a space, and a double quote at

the end in single quotes. The next part of the string is whatever is inside the

variable “a”, so I concatenated the two strings. The final part of the string

is the closing double quote which is also wrapped inside a single quote.

Alternatively, I could have just used double quotes throughout and used

the escape character to distinguish the string’s double quotes.

If I run the preceding code, I’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Susan says, "Hi!"

Nicely done!

�Empty string
All these string operations reminded me of something! There’s something

called an empty string, where you just don’t type anything between the

quotes, not even an empty space.

a = ''

In the preceding example, the variable “a” is storing an empty string. If

you print that out, you’d get nothing in the output (not even a space). Try

and see! 😊

�Accessing characters in strings
I want to introduce you to a mind-blowing topic in strings! You can actually

access, retrieve, and even modify specific characters (letters) in strings.

How cool is that? You can make changes to the string on a character level

with this feature.

Chapter 8 Play with Letters and Words

146

a = 'Hello there!'

Look at the following string index chart. Every character in a string has

an index. In fact, they have two indices, a positive index and an equivalent

negative index. You can access those characters by using those indices.

As you can see in Figure 8-3, the positive indices start from 0 and

increase in value toward the left. The negative indices start from the last

position at –1. The space has an index, and so does the exclamation point.

It isn’t just for the letters/numbers.

Okay, that’s all well and good, but how do we access these indices?

Simple! Type the name of the string and open and close square brackets,

and type in the relevant index within the brackets, and you’re good to go.

As you can see, the indices start from 0, and the last one is the length of

the string subtracted by 1. Spaces in a string also take up indices.

So, if I want to retrieve the first character of the string, “H”, this is what

I’d do:

print(a[0])

When you run the preceding code, you’d see this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

H

Perfect!

Figure 8-3.  String index chart

Chapter 8 Play with Letters and Words

147

Now, if I were to retrieve the last character of the string, I’d first

calculate the length of the string. The length is 12 in this case, including the

space. Now let’s subtract it by 1, as follows:

print(a[12-1])

When you run the program, your interpreter (IDLE) will automatically

do the calculation to arrive at 11 for the index. The result is this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

!

Yup, that’s right.

�Negative indices
As you saw in the preceding image, you have both positive and negative

indices for the same characters in a string. Let’s try to access “o”, which is

in the positive index 4 (fifth position on the string) and –8 in the negative

index position.

print(a[-8])

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

O

It works perfectly!

So, the first character would be at a[–12], and the last character would

be at a[–1].

Chapter 8 Play with Letters and Words

148

�Slicing a part of a string
You can extract a part of a string and not just a single character with your

indices. That’s called slicing.

Slicing follows the same pattern as character extraction, but the only

difference is you’ll have to give a range within the square brackets. If I

want to extract the first four characters in a string, I’ll give the range as 0:4

because the first character’s index is 0 and the fourth character’s index is 3.

In slicing, the end of the range (4 in our case) would be omitted. Hence, 0:4

and not 0:3. Let’s try and see what we get!

a = 'Hello there!'

print(a[0:4])

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Hell

Yup, we got it!

What if we want the last four characters instead? You can do it in two

ways. The positive index of the last character is 11, and that of the fourth

last character is 8, so we can do the following:

print(a[8:12])

Run the preceding code, and we’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

ere!

Chapter 8 Play with Letters and Words

149

Great! So far so good. But what about negative indices? The negative

index of the last character is –1 and that of the fourth last character is –4, so

we can do the following instead:

print(a[-4:-1])

Notice how we’ve given –4 (fourth last character) first, which will be

included. But –1 would not be included, am I right? That’s how the syntax

works, and that’s the last index.

Okay, let’s run the preceding code and see if it works:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

Ere

Ah well, it doesn’t work. We’re missing a “!”. ☹
What can we do? Well, in situations like this, where you start from a

point and need the rest of the string (fourth last position to the end of the

string), you can just leave the last number in the range blank, like this:

print(a[-4:])

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/strings.py

ere!

Perfect!

�String methods – magic with strings!
Just like with numbers (Chapter 5), you have plenty of pre-defined

methods that’ll help you play with numbers. Some of them look magical!

You’ll see.

Chapter 8 Play with Letters and Words

150

There’s a complete list of Python string methods and explanation of

what they do in the Python official docs. Here’s the link: https://docs.

python.org/2.5/lib/string-methods.html.

You can refer to the preceding doc in the future. I’ll try to cover most of

the important methods, though I can’t cover every single one as that would

just make the chapter too long. Don’t worry though. Once you learn a few,

you’ll be able to decipher how the rest work.

Alright, let’s get started!

Why don’t we start with something simple? The len() method is used

to find the length of the string.

The syntax of the method is as follows: len(string)

a = 'Hello there!'

print(len(a))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

12

Count the number of characters in the string (including the space) and

you’ll notice that its length is indeed 12.

�Capital and small
Alright, now let’s look at the other methods. The “capitalize()” method

capitalizes the first word in the string. It doesn’t change the original string.

It just creates a copy that you can either assign to a new variable or print.

The syntax is like this: string.capitalize().

The “string” could either be the exact string inside quotes or the

variable that’s storing the string.

Chapter 8 Play with Letters and Words

https://docs.python.org/2.5/lib/string-methods.html
https://docs.python.org/2.5/lib/string-methods.html

151

a = 'i am here'

print(a.capitalize())

print(a)

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

I am here

i am here

See, the capitalization did not affect the original string.

In the same vein, you can capitalize all the characters (alphabets) of

a string using the upper() method. This creates a copy too. All the string

methods create copies. They rarely make changes to the original string.

a = 'i am here'

print(a.upper())

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

I AM HERE

Similarly, you can change all the capitalized letters to small letters in a

string using the lower() method.

a = 'I AM here'

print(a.lower())

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

i am here

Chapter 8 Play with Letters and Words

152

Did you notice how some of the letters were already small? Those just

go unchanged with this method.

Instead of just capitalizing the first letter of the entire string, like in

capitalize, you can actually capitalize every first letter of every word in the

string using the title() method.

 a = 'i love chimpanzies!'

print(a.title())

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

I Love Chimpanzies!

�Misc methods
Using the count method, you can return the number of times a word or

letter or phrase appears in a string.

The syntax is string.count('word').

This method is case sensitive, just like the rest of the methods in

Python, so if you want “word”, don’t type it as “Word”.

To test this method, I’m creating a multi-line string like how I taught

you:

a = '''Susan is a lovely girl.

Barky is Susan's best friend.

Barky plays with Susan'''

Let’s count how many times ‘Susan’ and ‘Barky’ are mentioned in the

preceding string, shall we?

print(a.count('Susan'))

print(a.count('Barky'))

Chapter 8 Play with Letters and Words

153

The result is this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

3

2

Whoo! 😊
You can trim extra spaces in a string with the strip() method.

a = ' Hello there! '

print(a.strip())

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Hello there!

No spaces at all!

There are left and ride side versions of the same method. The rstrip()

method only strips the whitespaces in the right side of the string. The

lstrip() method does the same for the left side of the string. Why don’t you

try them out and see if they work right?

Remember that big string we just worked with? What if we made a

mistake? What if we were going to talk about Ronny and not Susan? We

need to swap their names, am I right? You can use the replace method to

do that. The syntax is string.replace('original','replaced').

a = '''Susan is a lovely girl.

Barky is Susan's best friend.

Barky plays with Susan'''

print(a.replace('Susan','Ronny'))

Chapter 8 Play with Letters and Words

154

Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Ronny is a lovely girl.

Barky is Ronny's best friend.

Barky plays with Ronny

See, it’s Ronny now!

We can also find the positions from which a particular word or letter or

phrase starts in a string. Remember, string positions start from 0, so you’ll

always be one count behind.

a = "I love coding. I have fun with coding"

print(a.find('coding'))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

7

Count the characters, including the spaces, and you’ll notice that

the first occurrence of “coding” starts at the position 8 (and hence 7 with

respect to Python strings).

What if the phrase isn’t found?

print(a.find('Coding'))

You know that “coding” is different from “Coding” in Python, so it

wouldn’t be found in the string.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

-1

Oops, the result was a –1.

Chapter 8 Play with Letters and Words

155

The index() method does exactly what the find() method does. The

only difference is that it returns an error if the phrase is not found, and

not –1. Why don’t you try to do the same with index()?

With the split method, you can literally split a string into a list. We’ll

be looking at what lists are in a future lesson. For now, just know that lists

hold multiple values within them, separated by commas.

In order to use the split method, you need to give a separator. Let’s say

I want the string to be taken apart by word. Then I’d give a single space as

the separator.

a = "I love coding."

print(a.split(' '))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

['I', 'love', 'coding.']

That’s a list and it holds our string, separated by word.

�True? False?
Before I move further with the methods, I want to teach you the concept

of true and false in Python, or any programming language, really. It’s quite

simple. If something is true, then your program will return “True”. If a

condition is false, then you’ll get “False”. That’s it.

For example, let’s say I want to see if my string has the words “best

friend” in it. I really want to know if Barky is Ronny’s best friend or not.

I’ll have to use the “in” keyword. Keywords are special words that do

something in Python. The “in” keyword checks whether what the word or

phrase we want looked up is inside our string or not.

Chapter 8 Play with Letters and Words

156

string = "Barky is Ronny's best friend."

print('best friend' in string)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

True

But as you know, Python is case sensitive. So, “best friend” is not the

same as “Best friend” or any other versions. So use the words as is, okay?

Let’s look at another example, shall we?

print('Python' in 'Python is fun')

When you run the preceding code, you’ll get True.

But if you ask for this:

print('Coding' in 'Python is fun')

you’ll get False because ‘Coding’ isn’t in the string ‘Python is fun’.

Similarly, you can test for a lot of other strings in your string.

Would you like to see if your string has both letters and numbers? Use

the isalnum() method. It returns true only if every word in the string has

both letters and numbers, like this:

a = 'number123 number253'

print(a.isalnum())

The preceding code will return True, while the below code:

a = 'This is a number: 123'

print(a.isalnum())

will return False, because most of the words have just letters and not letters

and numbers.

Chapter 8 Play with Letters and Words

157

The isalpha() method returns true if every single character in the string

is an alphabet (no number or special characters at all). The isnumeric()

method returns true if every single character in the string is a number (no

alphabet or special characters).

Islower() returns true if all the characters are small. Isupper() returns

true if every character is capitalized.

I want you to use these methods while giving different possibilities and

explore how they truly work. Deal?

You can refer to the link I gave in the “String methods – magic with

strings!” section to get the rest of the methods and use them in your

experiments too. Have fun! :P

Hey, I know what you’re thinking.

“Oh man, that’s a lot of methods. How would I ever remember them

all?”

Well, why should you? I’ll let you in on a biggg secret…Shhhhhh

Programmers don’t try to memorize syntaxes when they start out.

That’s what Google’s for. They just create a lot. They solve a lot of puzzles,

create fun projects, and Google for syntaxes when they get stuck. Over

time, the syntaxes just get stuck in their head because they’ve used them so

much.

So, forget about memorizing. Use this book as a reference. Solve the

puzzles, create the mini projects with your twist, and take the big projects

to the next level, and by the time you’re done with them all, you’ll be a

master of Python. Just have fun. 😊

�String formatting
The print statement is boring and limiting. ☹ You can’t format it the way

you want, and if you try, you’ll drown in a mess of quotes. But more than

that, you can’t print numbers (even if they’re in variables) with strings! :O

Chapter 8 Play with Letters and Words

158

Let me prove that to you.

a = 4

b = 5

sum = a + b

So now, I want to print the following statement: 4 + 5 = 9, and I want

to print it using the variable names and not the actual values, to keep

things dynamic. I can maybe change the value of a variable, and my print

statement will automatically change too.

We should be able to do that with the concatenation we learned about

before, right? Let’s try.

print('The answer is: ' + a + ' + ' + b + ' = ' + sum)

The preceding code should ideally result in this:

The answer is: 4 + 5 = 9

But this is what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Traceback (most recent call last):

 �File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py", line 4, in <module>

 print('The answer is: ' + a + ' + ' + b + ' = ' + sum)

TypeError: can only concatenate str (not "int") to str

Essentially, what the error says is you can only concatenate a string

(anything within quotes) with a string, and the variables that contain

numbers (without quotes) within them are not strings.

Not only was that statement very hard and confusing for me to create,

it simply didn’t work.

That’s where formatting comes in. You can format the way your print

statements are written. Just place {} (without space) where your variables

come in, and you can fill them later using the format method.

Chapter 8 Play with Letters and Words

159

Let’s start with something simple.

a = 'apple'

Let’s say I want to print ‘This is an apple’, where the value ‘apple’ comes

from the variable a.

I’d type the entire string out, but place {} in the place of ‘apple’, like this:

'This is an {}'

Next, I’ll tag the format method and place the variable “a” inside the

parenthesis. Python will automatically replace the {} with the value inside

your variable.

a = 'apple'

print('This is an {}'.format(a))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

This is an apple

Very simple, wasn’t it? You don’t have to mess around with spaces and

quotes anymore, whoohoo!

Let’s go for a more complex example now, shall we?

a = 'Apples'

b = 'Bananas'

If I wanted to print “Apples and Bananas are good for your health”, this

is how I’d do it:

print('{} and {} are good for your health'.format(a,b))

Chapter 8 Play with Letters and Words

160

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Apples and Bananas are good for your health

Did you notice how I have the variables inside the format, separated by

commas?

You can place the first part of the string inside a variable and use that

as well, like this:

a = 'Apples'

b = 'Bananas'

s = '{} and {} are good for your health'

print(s.format(a,b))

Or, if I want Bananas to be printed first and then Apples, but I don’t

want to change the order in which they are listed, I can just label them in

the string to be printed, like this:

s = '{1} and {0} are good for your health'

print(s.format(a,b))

Indices start with 0 in Python, remember?

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Bananas and Apples are good for your health

Alright. Now that we’re experts at using format() to design our print,

why don’t we go back to our original problem?

a = 4

b = 5

sum = a + b

Chapter 8 Play with Letters and Words

161

Let’s format our string!

print('The answer is: {} + {} = {}'.format(a,b,sum))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

The answer is: 4 + 5 = 9

YES! Easy and neat, just the way it should be. 😊

�Getting input from the users (start
automation)
So far, we’ve just been fixing the values of our variables. That’s so boring! I

want automation. That’s what programming is all about, isn’t it?

I want to give a different number every time I run my addition

program, a different string every time I want to print a message. That’s

what an input is. A user or the person who runs the program gives values

that can be used in the program to get a result. Those values are called

inputs.

In Python, you can use the input() method to get inputs. Pretty

straightforward, isn’t it?

When you run a program, it’ll ask you for the value, and wait until you

give the same. That is called prompting.

I’m going to start simple. I’m going to get a message I can immediately

print. It’s always good practice to include a message while asking for

inputs, so the user know what value they’re expected to give. You can

include the message within quotes inside input’s parenthesis.

message = input('Enter your message: ')

print('Here is your message: ' + message)

Chapter 8 Play with Letters and Words

162

I’ve prompted the user to enter a message, and I’ve received the same

inside the variable “message”. Then I’ve printed it out. Simple.

When I run the preceding code, this is what I’d get first:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Enter your message:

The program has stopped at this stage because it’s waiting for my

message.

Let me enter it now:

Enter your message: I love Python!

When I press Enter, I’ll get this:

Here is your message: I love Python!

It works perfectly! My message was printed out in the format I wanted.

�String to int or float conversion
We looked at inputs and how we can dynamically get values and use them

in our program. Isn’t calculation one of the best ways to use dynamic

values? I want a different number every time I perform an addition

operation.

Let me use input for the same and see if it works.

a = input('First number: ')

b = input('Second number: ')

sum = a + b

print('{} + {} = {}'.format(a,b,sum))

Everything looks good in the preceding code snippet. It should work,

right? Wrong.

Chapter 8 Play with Letters and Words

163

When I run it, this is what I get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

First number: 5

Second number: 2

 5 + 2 = 5 2

My program prompted me for the two numbers, and I entered them.

All good till now. But then, things went wonky with the addition.

Why?

You haven’t entered numbers at all. When you give values to an input,

your program considers it as a string, not a number. So, what happened

here is string concatenation, and not addition.

How do we make Python look at our inputs as numbers? You need to

convert them, of course! Remember how we converted different types of

numbers? Similarly, you can convert a string to either an integer using the

int() method or a floating-point number using the float() method.

Let’s modify our code:

a = input('First number: ')

#Convert 'a' into an integer and store it back in 'a'

a = int(a)

b = input('Second number: ')

#Convert 'b' into an integer and store it back in 'b'

b = int(b)

sum = a + b

print('{} + {} = {}'.format(a,b,sum))

The only thing I changed in the code is the integer conversions after

getting each input. I’ve stored the converted values back in the same

variable as well. Let’s run this code and see if it works:

Chapter 8 Play with Letters and Words

164

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

First number: 5

Second number: 2

5 + 2 = 7

Phew! It works now.

�Mini project – take Turtle text to the next
level!
This is going to be a simple project. We’re going to take your user’s name as

input in real time and print it out, in big, colored font in our Turtle screen:

	 1.	 Let’s set up our Turtle first:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Next, let’s get create a variable name that gets the

user’s name as input:

name = input("What's your name? ")

	 3.	 We won’t have to convert this string in any way,

since we’re just going to concatenate it with another

string. Let’s create our customized greeting on Turtle

now. Before we do that, let’s create the exact string

we want to print and assign it to a variable “greeting”.

greeting = 'Hi {}!'.format(name)

Chapter 8 Play with Letters and Words

165

	 4.	 Now, let’s set a pen color of, maybe, Dark Violet?

And let’s also move the pen to the position –250,0 so

it draws in the center of the screen.

t.pencolor('DarkViolet')

t.penup()

t.goto(-250,0)

t.pendown()

	 5.	 Finally, let’s create our text.

t.write(greeting,font=('Georgia',45,'normal','bold','i

talic'))

I’ve placed the variable “greeting” with the text we

need in place of the actual text, and I’ve also set

the font style as ‘Georgia’ and size as 45, and I’ve

made the text bold and italic. I’ve omitted the move

property, so it’s going to be “false” by default (no

arrow below the text).

	 6.	 Finally, let’s hide our turtles:

t.hideturtle()

turtle.hideturtle()

Let’s run this program now:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

What's your name? Susan Smith

It asked for the name. I gave the name as “Susan Smith”, pressed enter,

and voila! (Figure 8-4).

Chapter 8 Play with Letters and Words

166

We have our greeting, and it looks pretty too! 😊

�Mini project – shout at the screen
We’re going to do what the title says. Let’s shout at the screen, shall we?

Oh wait…or is the screen going to shout at us? Either way, let’s do some

shouting! Whoo!

The concept is simple. We’re going to get a string input from the user.

The message is going to be “Enter what’s on your mind in less than 3

words”. Less than three words so our text can be displayed in a big enough

Figure 8-4.  Colorful greeting

Chapter 8 Play with Letters and Words

167

font in one line. In the later chapters, you’ll learn the tools needed to get

as many words of input as you want, and make sure you print them all by

making space, so don’t worry about that right now.

Then, we’re going to capitalize the result, add two or more exclamation

points at the end, and print everything in Turtle. Simple, right? Let’s do it!

	 1.	 To start, let’s set up the Turtle package:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Then, let’s get the input:

message = input("Enter what's on your mind in 3 words

or less: ")

	 3.	 Finally, let’s format the message we want to shout!

Our “message” is probably in small letters. How

do we convert every single letter in our message to

uppercase? Yes! The upper() method. Let’s use that,

and tag on three exclamation points at the end, to

make our message more dramatic!

shout = '{}!!!'.format(message.upper())

	 4.	 Now, I’m going to move the pen to –250,0 and

change the color of the pen to Red, because nothing

says shouting more than Red. 😊

t.pencolor('Red')

t.penup()

t.goto(-250,0)

t.pendown()

Chapter 8 Play with Letters and Words

168

	 5.	 Now, on to the main part of the program. Let’s create

our Turtle text. I’m going to use the ‘Arial Black’ font

for this. The size of the font is going to be 45, but I’m

going to stop at making the text bold. No italics this

time.

t.write(shout,font=('Arial Black',45,'normal','bold'))

	 6.	 Finally, let’s hide the turtles.

t.hideturtle()

turtle.hideturtle()

Let’s run everything. My message is going to be “what is this?”. Let’s see

what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

Enter what’s on your mind in three words or less: What is this?

When I press Enter and look at my Turtle screen, I get this (Figure 8-5).

Yes! Success!

Figure 8-5.  Shout at the screen

Chapter 8 Play with Letters and Words

169

�Mini project – reverse your name
I’m going to teach you something fun while solving this project. So far,

we’ve seen all kinds of ways in which we can manipulate our strings. Why

don’t we look at one more before we end this chapter?

Did you know that you can reverse your string? Yes, that’s right!

Complete reversal, with just one teeny tiny line of code. Would you like

to try?

Let’s create a program that gets the name of the user as input, reverses

their name, and displays it in the Turtle screen:

	 1.	 Let’s set up Turtle, as usual.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 And get the user’s name and place it in the variable

“name”.

name = input("What's your name?")

	 3.	 Now comes the interesting part! We’re going to

format the string we want displayed as usual. We’ve

created a variable “reverse” to store the string. But

how do we reverse? Remember how we used to

use square brackets to access separate characters,

extract parts of the string, and so on? Also, do you

remember negative indices? There you go!

If you use the following syntax, you can reverse

your string: string[::–1]. So, that’s a double colon,

followed by a –1. Simple as that! 😊

reverse = '{}'.format(name[::-1])

Chapter 8 Play with Letters and Words

170

	 4.	 Finally, let’s change the color of the pen to ‘Gold’,

shift position to –250,0, and draw the reversed string

on screen.

t.pencolor('Gold')

t.penup()

t.goto(-250,0)

t.pendown()

t.write(reverse,font=('Georgia',45,'normal','bold'))

t.hideturtle()

turtle.hideturtle()

Let’s run the program:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\strings.py

What's your name? Susan Smith

Now, click Enter, and you’ll get this (Figure 8-6).

Hehe, her name was reversed, alright. :P

Figure 8-6.  Reverse your name

Chapter 8 Play with Letters and Words

171

�Mini project – colorful and dynamic Math
In the numbers chapter, we had to resort to doing boring calculations with

pre-defined numbers and no colors! ☹
So, I thought we could have some real fun with numbers before we

move on to the next chapter. Shall we?

In this project, we’re going to perform addition, multiplication,

subtraction, and division on two given numbers. Boring, I know! But this

time around, we’re going to get the two numbers as dynamic input from

the user and display the results, in color, in Turtle. Interesting? I know!

	 1.	 Let’s set up Turtle first.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 Then, let’s get the inputs for the first and second

numbers we’re going to use in our operations. But

there’s an issue! We can’t use them as it is. They are in

string formats, remember? So, let’s convert them to

integers and assign them back to the same variables.

num1 = input("Enter the first number: ")

num1 = int(num1)

num2 = input("Enter the second number: ")

num2 = int(num2)

	 3.	 Now, let’s do the addition. We’re going to create a

variable called display which is going to hold all the

formatted strings of the four operations.

#Addition

add = num1 + num2

display = "{} + {} = {}".format(num1,num2,add)

Chapter 8 Play with Letters and Words

172

	 4.	 Once formatted, let’s position our pen at –150,150 so

our drawing is aligned to the middle of the screen.

Then, let’s change the color of the pen to “Red” and

draw the text.

t.penup()

t.goto(-150,150)

t.pendown()

t.pencolor("Red")

t.write(display,font=("Georgia",40,"normal","bold"))

	 5.	 Do the same for subtraction now, except that the

position is going to be –150,50 now and the color is

going to be “Blue”.

#Subtraction

sub = num1 - num2

display = "{} - {} = {}".format(num1,num2,add)

t.penup()

t.goto(-150,50)

t.pendown()

t.pencolor("Blue")

t.write(display,font=("Georgia",40,"normal","bold"))

	 6.	 For multiplication, the position is going to

be –150,–50 and the color is going to be “Green”.

#Multiplication

mul = num1 * num2

display = "{} * {} = {}".format(num1,num2,add)

t.penup()

t.goto(-150,-50)

t.pendown()

t.pencolor("Green")

t.write(display,font=("Georgia",40,"normal","bold"))

Chapter 8 Play with Letters and Words

173

	 7.	 For division, the position is going to be –150,–150

and the color is going to be “Violet”.

#Division

div = num1 / num2

display = "{} / {} = {}".format(num1,num2,add)

t.penup()

t.goto(-150,-150)

t.pendown()

t.pencolor("Violet")

t.write(display,font=("Georgia",40,"normal","bold"))

	 8.	 Finally, let’s hide the turtles.

t.hideturtle()

turtle.hideturtle()

	 9.	 Now, let’s run the program. It asks for inputs first.

Our inputs are going to be 10 and 5.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\strings.py

Enter the first number: 10

Enter the second number: 5

When we click Enter, this is what we get (Figure 8-7).

Chapter 8 Play with Letters and Words

174

Beautiful! 😊

�Summary
In this chapter, we looked at strings, what they are, creating single-line,

multi-line, and empty strings, creating strings with quotes, concatenating

two or more strings, accessing characters in strings, extracting parts of

a string, string slicing, how to manipulate strings in different ways, and

getting inputs from users and using them in our program.

In the next chapter, let’s look at how we can command our program

to do whatever we want. We’re going to look at “if” statements, creating

multiple options with “if else” and “if elif else” statements, and a lot more.

It’s going to be fun! 😊

Figure 8-7.  Colorful and dynamic Math

Chapter 8 Play with Letters and Words

175© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_9

CHAPTER 9

Follow My Command!
In the previous chapter, we learned all about strings and how to use them

to create strings of letters and numbers, how to manipulate the strings

in any way we want, how to get input from the users and convert it into

the data type we want, and how to format outputs (especially in print

statements) to our preference.

In this chapter, let’s look at how to command our computers with “if

and else” statements.

�True or False
In programming, true or false determines the direction your program goes.

If “something” is true, do “something”. If it’s false, do “something else”. You

can create a lot of programs with just the preceding “condition”.

So, to give commands to your system, you need three things (Figure 9-1).

https://doi.org/10.1007/978-1-4842-6812-4_9#DOI

176

	 1.	 A condition that will be evaluated by Python

	 2.	 A true or false result

	 3.	 A syntax that decides what happens next based on

the result, that is, a syntax that directs to either of the

two outcomes based on the result

Let’s look at the true or false results first. “True” and “False” are also

values in Python. They are called Boolean values. Just like we have our

strings and numbers, we can assign Boolean values to variables, convert

them to another value type, find its type (Boolean), and so on. Would you

like to see how to do those?

Let’s create a new script file for this chapter. I’ve created one called

condition.py. I’m going to be using and reusing this file throughout this

chapter. True and False need to be written with a capital T and F, or you’ll

get an error, so please remember that.

Let’s create variables “a” and “b” and assign them values “True” and

“False”.

a = True

b = False

print('a is {} & b is {}'.format(a,b))

Figure 9-1.  Conditions and their results

Chapter 9 Follow My Command!

177

When you run the preceding code, you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/condition.py

a is True & b is False

Okay, so now we know how to use our Boolean values. But what are

they really? Did you know that Booleans are actually just 1s and 0s? :O

Oh yes, your True is read by your computer as 1 and False is read by

your computer as 0. Your computer is a very simple creature. It converts

all of the complicated, weird codes and scripts you send it into very simple

1- and 0-based values. True and False values get converted to the base of

them all – a 1 and a 0.

Why don’t we verify if that’s true? If I convert my Boolean values to an

integer, I should get a 1 or 0.

a = True

a = int(a)

b = False

b= int(b)

print('a is {} & b is {}'.format(a,b))

I’ve modified the preceding code, and I’ve inserted integer

conversions. Let’s see what we get:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/condition.py

a is 1 & b is 0

Look at that! True converted to 1 and False converted to 0!

Similarly, you can convert numbers and strings to Boolean values

by using the bool() method. Anything that’s not an empty string, or the

number 0 will return a True. Yes, even negative numbers will return True!

Why don’t we test that?

Chapter 9 Follow My Command!

178

I’m going to test the same directly in my Shell.

1 converts to True.

>>> bool(1)

True

0 converts to False.

>>> bool(0)

False

A string with something inside it converts to True. That’ll be the case

for strings with just a space inside it as well.

>>> bool('hi there!')

True

An empty string converts to False.

>>> bool('')

False

There is a value “None” in Python. It basically means that there is

nothing inside of it. If “None” is assigned to a variable, the value inside that

variable will be replaced with nothing. Naturally, “None” converts to False.

>>> bool(None)

False

We’ll be looking at more values called lists, tuples, and sets in a later

chapter. When we do, you’ll notice that lists, tuples, and sets that hold

something inside of them convert to True and empty lists, tuples, and sets

convert to false.

Chapter 9 Follow My Command!

179

�Compare and decide
Alright, we’ve looked at the results. But how do we get them? We need

conditions that return those results, don’t we? Python has a lot of

conditions you can use! Would you like to see? I’m going to remind you

again of your Math class here.

Remember the greater than (>) and lesser than (<) symbols? What do

they do? They compare two things, usually numbers, and decide if that

expression is true or false. Are you seeing what I’m going with this?

Yes, you can use those symbols as your conditions! Why don’t we test

them in our Shell?

Is 3 greater than 5?

>>> 3 > 5

False

Nope.

>>> 3 < 5

True

Is 3 lesser than 5 though? Oh yes!

Look at that, it works! You can even test for equality. Are two numbers

equal? Just use two equal to symbols instead of one, and you’re good to go!

>>> 3 == 3

True

Sweet!

You can also see if two values are not equal using the not equal to

operator, !=, like this:

>>> 2 != 2

False

Is 2 not equal to 2? Nope, they’re both equal, so you got a False.

Chapter 9 Follow My Command!

180

You can do this with strings too, you know, not just numbers.

>>> 'hello' == 'Hello'

False

We got a false. Can you guess why? Yes! Python is case sensitive, so “h”

is not equal to “H”.

You can shorten things up by checking if something is lesser than OR

equal to something else using the <= symbol.

>>> 2 <= 2

True

The preceding code is true because even though 2 is not lesser than 2,

it is certainly equal to 2, and since one of the conditions is true, the result is

true.

Similarly, you can check if something is greater than or equal to

something else using the >= symbol.

>>> 3 >= 5

False

3 is neither greater than nor equal to 5 so the result is False.

�If this happens, do this (command!)
We know all about “True”, “False”, and conditions now. What’s next?

Commands, of course!

You have a nifty little tool in Python to give commands with. It’s called

the “if” statement. Can you guess what it does? Let me give you a hint: it

has something to do with “if”. :P

So far, you know how to create conditions and how to interpret their

results (true or false), and now let’s put it all together to give a command.

Chapter 9 Follow My Command!

181

It’s pretty simple actually. In plain English, this is what an “if”

statement does: It checks for a condition, and if that condition is true, then

it executes a statement or multiple statements. If it’s not true, then those

statements won’t be executed, and your program will move on to the next

line of code.

Let me show a quick illustration of how an “if” statement works so you

understand it better (Figure 9-2).

The syntax of an “if” statement is this:

if comparison:

 lines of code

“if” has a small “i”, and the statements within the if statement should

be written with an indentation, which is basically a space/tab. The colon

“:” after the comparison is mandatory as well. If you don’t indent the

“inner” lines of code, then Python wouldn’t know that those lines of code

belong to the “if” statement and should only be executed if the condition is

true. So, remember to indent, okay? 😊
Alright, so now that we know how if statements work, let’s put that to test.

I want to print “You’re a little kid” if someone’s age is less than 5. Just that.

Figure 9-2.  “if” statement

Chapter 9 Follow My Command!

182

How can we do that? Well…the condition could be age < 5 or

something like that. If I want to include 5 years old in this list, then I could

make it age <= 5. I could include a print statement inside of my statement,

which basically says “You’re a little kid”. That should do it, right? Let’s test!

age = input("What's your age? ")

age = int(age)

if age <= 5:

 print("You're a little kid :)")

I’ve created a variable age, gotten the input from the user, and

converted the default string into an integer so it can be compared with the

number.

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

What's your age? 5

You're a little kid :)

Yay, it works! 😊 You’ve executed your very first conditional command

in Python. Time for a celebration.

Chapter 9 Follow My Command!

183

Now, I want you to give any number greater than 5 and see what you

get.

Did you try? You get nothing, am I right? Well, that’s not ideal. Let’s fix

this issue in the next section!

�Else?
We saw that if a condition is true, we can execute the inner statements

of the “if” statement. But if it’s not true, nothing happens. But what if I

want something to happen? If the kid is older than 5 years old, then I want

“You’re a big kid” to be printed out. How do I do that?

“if” statements have something called “else” statements that

accompany them. They basically get executed if the “if” statement is false.

Let me illustrate how that works (Figure 9-3).

The syntax of an else statement is very simple:

else:

 inner lines of code

Figure 9-3.  “if else” statement

Chapter 9 Follow My Command!

184

You should place a colon right after “else” since we don’t need to check

for conditions this time around. Also, just like with your “if” statement,

place your inner lines of code after an indentation or tab or space.

Let’s test how this works now!

age = input("What's your age? ")

age = int(age)

if age <= 5:

 print("You're a little kid! :)")

else:

 print("You're a big kid! :)")

Now let’s give the age as maybe 8 and see what our program does:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

What's your age? 8

You're a big kid! :)

Whoa!

�More than one condition! :O
You know, sometimes, things aren’t just black and white, right? If someone

is older than 5 years old, they’re not necessarily still a kid. If they’re older

than 12, they’d be a teenager. If they’re older than 18, they’d be an adult.

But our program isn’t considering all of that. Hmm… It’s incomplete, don’t

you think? Let’s fix that.

There’s something called the “elif” statement that can be inserted

between the “if” and the “else” statements. Can you guess what an elif

does? It’s in the name, isn’t it? If something is false, then we’re going to

check for a second condition to see if that is true. You can stack up any

number of elif statements like this, one after the other, before ending

things with an else statement. Let me illustrate how that works.

Chapter 9 Follow My Command!

185

The syntax of an elif statement (after an if and before an else) is as

follows (Figure 9-4):

elif condition:

 Inner lines of code

Let’s put our elifs to test now, shall we? I’m going to create a main “if”

condition that tests if age <= 5 (little kid). If that’s not true, we’ll include

another condition that tests if age <= 12 (big kid). We’re going to include

a third condition that tests if age <= 19 (teenager) and finally a fourth

condition that tests if age >= 20 (adult).

Okay, sounds good, but what is the else statement for? Well, the else

statement is going to catch everything else. For instance, if your user gave

a string or any other non-numerical value as your input by mistake, then

your else statement will “catch” that and ask them to re-run the program. Is

that clear enough? Shall we write this in code and see if it works? Alright!

age = input("What's your age? ")

age = int(age)

if age <= 5:

 print("You're a little kid! :)")

elif age <= 12:

 print("You're a big kid! :)")

Figure 9-4.  “if elif else” statement

Chapter 9 Follow My Command!

186

elif age <= 19:

 print("You're a teenager! :)")

elif age >= 20:

 print("Wow, you're an adult already!")

else:

 �print("Looks like you've not entered a number. Please re-

run the program")

I’m going to run the preceding lines of code with age as 13.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

What's your age? 13

You're a teenager! :)

Now, I want you to run the program with different values for age every

time (numbers and otherwise) and see what you get. Why don’t you try

giving a string once too? Have fun! 😊

�Mini project – guess the number game
This is going to be a simple little game. We aren’t going to use “Turtle” for

this, but feel free to use it in any part of the game as you’d like.

Chapter 9 Follow My Command!

187

So, the game works like this: When the game starts, the program will

generate a number between 1 and 10 (including both 1 and 10). Then,

the user gets three guesses to guess the number right. If they guessed the

number right in any of the guesses, they win. If not, they lose. Simple,

right? Let’s try!

	 1.	 Let’s import the “random” module first. We need

this module because we’re going to generate a

number between 1 and 10 when the game starts, the

number the user needs to guess.

import random

	 2.	 Let’s start by printing a message that introduces

the game. Then, let’s generate our random number.

We’re going to use the randrange() method of the

“random” module. Do you remember this method?

It generates a random number from within the

range, excluding the last number in the range. We

need a number between 1 and 10, so the range is

going to be 1,11.

print('Guess a number and win!')

number = random.randrange(1,11)

	 3.	 Then, let’s get the first guess from the user. Inputs

are usually strings, so let’s convert them to integers

first.

guess1 = input('Guess a number between 1 and 10 - Your

first try: ')

guess1 = int(guess1)

Chapter 9 Follow My Command!

188

	 4.	 Now, we’re going to start our comparisons. If the

first guess is equal to the number, then print a

success message. If not, start an “else” statement.

In the else statement, start over again. Get the

second guess, and inside the “else”, start an inner

“if” statement that checks if the second guess is the

same as the number to be guessed.

if(guess1 == number):

 print('You guessed it right! :)')

else:

 guess2 = input('Guess again - Your second try: ')

 guess2 = int(guess2)

 if(guess2 == number):

 print('You guessed it right! :)')

	 5.	 We’re going to do the same thing with the third try.

else:

 guess3 = input('Guess again - Your final try: ')

 guess3 = int(guess3)

 if(guess3 == number):

 print('You guessed it right! :)')

	 6.	 Finally, the last “else” statement. If they’ve still not

guessed after three tries, then the program will run

the final “else” statement and print a sad message.

☹ Why don’t we also tell them what the number

was? They’d probably want to know that, right?

	 7.	 And, that’s it! A simple little program.

else:

 print('Sorry! You used up all your tries! :(')

 print('The number was {}'.format(number))

Chapter 9 Follow My Command!

189

Why don’t we see if this game works? Let’s run the above code, and

we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

Guess a number and win!

Guess a number between 1 and 10 - Your first try: 5

Guess again - Your second try: 7

You guessed it right! :)

I guessed on the second try! Whohoo! 😊
Let’s try again:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

Guess a number and win!

Guess a number between 1 and 10 - Your first try: 10

Guess again - Your second try: 6

Guess again - Your final try: 3

Sorry! You used up all your tries! :(

The number was 2

Oops, I missed it this time around. The number was 2. ☹

�The conditions keep stacking up!
Sometimes, you might want to check for more than one condition at the

same time. Or you might want your condition to be the opposite of what it

is.

Python gives you two options to make that happen. These are called

logical operators, and you can use them to combine conditional statements

(comparisons) and arrive at a final True or False result. Confused? Don’t

be. I’ll explain. 😊

Chapter 9 Follow My Command!

190

The first one is the and operator. If you use the “and” operator on two

or more comparisons, then the condition will return true only if all the

comparisons hold true.

The syntax is as follows:

(comparison1) and (comparison2)

You can write the comparisons without brackets as well and the

execution will still happen properly (comparisons have higher precedence

to logical operators), but it’s always good practice to include them to make

the order of execution clearer.

Let me explain how the “and” operator works. What’s the meaning of

“and” in English? Inclusion of everything, surrounding the “and”, right?

So, when you use this statement around two or more conditions, the final

result is True only if all the conditions around it are True. If even one of

those conditions is False, then you’ll end up with a False, even if the other

condition is True. Why don’t I explain this with an illustration? (Figure 9-5)

Do you understand how “and” works now?

Next, you have the or operator. How does that work? Simple, really. In

English, “or” means “either or”, am I right? So, if either of the conditions

around the “or” operator is true, then the entire statement is true.

Figure 9-5.  “and” statement and its results

Chapter 9 Follow My Command!

191

If you use the “or” operator on two or more comparisons, then the

condition will return true if any of those comparisons hold true.

The syntax is as follows:

(comparison1) or (comparison2)

Let me illustrate how the “or” statement works as well (Figure 9-6).

Finally, there is the not operator. There’s nothing to guess here. It’s

pretty simple, isn’t it? The “not” operator just reverses the result. If the

result of a comparison is True, then using the “not” operator on that

comparison statement returns a False and vice versa.

The syntax is as follows:

not(comparison)

You can use the “not” operator on other logical statements as well:

not((comparison1) and (comparison2))

In programming, you need to make sure you always close the brackets.

In the preceding syntax, we have two sets of brackets around each of the

comparisons with the “and” operator in the middle and another bracket

that closes around everything.

Figure 9-6.  “or” statement and its results

Chapter 9 Follow My Command!

192

Let’s finish this chapter by testing these statements in our Python Shell:

>>> (5 > 3) and (4 < 3)

False

5 is greater than 3, but 4 is not less than 3. If we used the “or” operator

instead,

>>> (5 > 3) or (4 < 3)

True

we get a true because one of the comparisons is true.

Let’s combine logical statements now! Why don’t we do comparisons

with mathematical operations to make things a little bit complicated?

>>> ((5 > 3) or (4 < 3)) and ((3 + 2) == 5)

True

Take a minute to read the preceding statement carefully. Look at the

placement of the brackets first. I have brackets around each operation

(greater than, lesser than, and addition) and a bracket that encompasses

the “or” statement and one that encompasses the equal to operation. If I’d

missed even one of those brackets out, I’d have either gotten an error, or

the order of operation would have been messed up and my answer would

have been wrong.

Let’s test the “not” operator now.

>>> not(5 > 3)

False

5 > 3 is true, but since I used the “not” operator on the comparison, I

got a false.

>>> not((5 > 3) or (4 < 3))

False

Chapter 9 Follow My Command!

193

The result of the “or” operation is true because one of the statements is

true, but since I used “not” on them all, the final result is false.

>>> (5 > 3) and (not(4 < 3))

True

Originally, the preceding operation returned false because 4 < 3 is

not true. But I used “not” on 4 < 3, which made the final result of the

comparison True. So True and True is True.

I’m going to stop the tests at this, but I want you to go all out!

Why don’t you combine all of the mathematical operators you know

of with the comparison operators and the logical operators? Try

different combinations and see what you get. Programming is all about

experimenting. Experiment away! 😊

�Summary
In this chapter, we learned all about commanding our computer to do the

things we want. We learned about Boolean values and conditions and their

results. Then, we moved on to “if”, “else”, and “elif” statements and how to

use them to command our computers. Finally, we looked at “and”, “or”, and

“not” and their uses. As usual, we did a bunch of mini projects as well.

In the next chapter, let’s look at automating our programs with loops.

You’ll find it a welcome relief while creating graphics with Turtle.

Chapter 9 Follow My Command!

195© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_10

CHAPTER 10

Automate a Little
In the previous chapter, we learned all about conditions, if, else, and

elif statements, and combining multiple conditions to create complex

commands.

In this chapter, let’s look at automations with loops, how to use for and

while loops to automate the creation of graphics, how to pre-maturely end

loops with break statements, and so much more. We’ll be looking at a lot of

colorful and interesting mini projects in this chapter.

�Magic loops!

There’s no end to Python’s magic and wonder, and loops are the best of

them! Remember the sheer number of lines of code we wrote to draw a

simple little graphic in turtle? Would you like an easier way of doing the

same? What if you can draw hundreds of squares, one after the other, in

https://doi.org/10.1007/978-1-4842-6812-4_10#DOI

196

just four to five lines of code? That’s just an example. What if you want to

print the numbers 1 to 100 in your turtle, again with just four to five lines of

code? That’s 100 print statements, but we’re making it happen in four lines

of code. How? That’s the power of loops.

With loops, you can make your program repeat the same actions any

number of times. Do you want to print from 1 to 100? You can create an

automation code that starts from 1, prints 1, and then increments 1 by 1,

which is 2; prints that, and increments again; and so on.

Look at Figure 10-1. We have a bunch of lines of code. There is a range,

and as long as that range is true, we run the same lines of code. This range

starts from a number and increments by 1 every time the loop is repeated.

Once that set number is reached, we stop running the “loop”. Every time

those same lines of code run, it’s called an iteration. In our example, we’ll

have 100 such iterations to print 1 through 100.

Figure 10-1.  Loops – an illustration

Chapter 10 Automate a Little

197

There are two types of loops in Python, and we’ll be looking at both.

I’m also going to demonstrate the power of these loops with a lot of mini

projects. Are you excited to get started? I know I am! 😊 Loops are the real

deal. You’re halfway there!

�For loops
For loops are the most commonly used loops. They don’t just iterate a

given number of times. They do that, yes, but you can use the ‘for loops’ to

iterate over strings, lists, and a lot of complex data like that.

In this chapter, we’ll just be looking at using for loops within a given

number range or a string as the range. Once we look at complex data types

like lists and dictionaries in the future, let’s revisit for loops and how to use

them with those data types, alright? 😊
Okay then, let’s get started!

Let’s work with our preceding example. I want to print from 1 to 100.

You’ve looked at the illustration. You know what’s needed. Let’s look at

how to write a for loop over a range first, and then let’s try to solve our

problem, alright?

The syntax is very simple. You have to start the syntax with the “for”

keyword, with small letters throughout. Then, you need to create a temporary

variable. It could be an “x” (random, unknown number) or an “i” (denoting

iteration), or it could be literally any variable name you want it to be. This

variable will store your current number in the range for every iteration.

So, if your range was from 1 to 5, and let’s say we’ve named our

temporary variable “x”.

Iteration 1 : x is 1

Iteration 2 : x is 2

Iteration 3 : x is 3

Iteration 4 : x is 4

Iteration 5 : x is 5

Chapter 10 Automate a Little

198

And when x reaches 5, our loop stops executing. Do you understand

how that works?

Also, your numerical range can be anything, really, as long as it has

continuity. If you give your range as range(1,6), then that means you want

your x value to go from 1 through 5 for every iteration. The last number in

the range is ignored.

Don’t forget your colon! Just like in your “if” statements, your “for”

statement ends with a colon, and the lines of code that come inside of it

should be placed after an indentation.

So, the syntax would be something like this:

for x in range(1,6):

 lines of code

I know, I know. It’s all a bit confusing and too theoretical. Let’s look at a

bunch of examples, shall we?

What was my problem statement again? I wanted to print from 1 to

100, am I right? The range would be range(1,101) since I want 100 to be

included, and I just need a print statement inside the loop.

The code would be something like this:

for x in range(1,101):

 print(x)

Run the preceding code, and you’d get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1

2

3

.

.

.

Chapter 10 Automate a Little

199

97

98

99

100

My code printed the entire thing, but I don’t think we have space in

this chapter to print everything, so here’s the “cut” version of it. Did you

run the code and see? Amazing, right? You did all that in exactly two lines

of code. Nothing more. That is the power of loops.

This works only if I want everything in the range to be printed. What if

I want only the even numbers to be printed? I can give a condition within

my range to make that happen.

Let’s say my range is something like this: range(2,101,2)

I’m basically asking my code to print from 2 through 100, but for every

iteration, I want the current value of “x” incremented by 2 and not 1.

So, x would be 2 in the first iteration, 4 in the second iteration, and so

on. Shall we test this?

for x in range(2,101,2):

 print(x)

When I run the preceding code, I’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

2

4

6

8

10

.

.

.

Chapter 10 Automate a Little

200

94

96

98

100

If you want the increment to happen by 3 every time, then give 3 as the

third argument and so on.

�If statements within for loops
Alternatively, I could just use the modulus operator we learned about in

Chapter 5 to just filter out the numbers I don’t want. So, if I only want the

off numbers printed, then I can do an x % 2 operation, and whenever I

get 1 as the result, then I can confirm that the current number is an odd

number and print it.

1 % 2 is 1

2 % 2 is 0

3 % 2 is 1 again

Do you see the pattern? Let’s try this out!

for x in range(1,101):

 if (x % 2) == 1:

 print(x)

So now you know how to use if statements within for loops. Similarly,

you can use for statements within if loops as well.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1

3

5

Chapter 10 Automate a Little

201

7

.

.

.

93

95

97

99

�Nested for loops
You can also create for loops within for loops. These are called nested for

loops. To demonstrate how nested loops work, I’m going create a pattern

that prints stars for every iteration at the end of this section as a mini

project.

But before we start that, I want to introduce a concept in print. Did

you notice how every new print statement is written in a new line? That’s

the default. But what if we don’t want that? What if we want the next print

statement to be in the same line as the previous one? You can use the

“end =” syntax to achieve that.

print('Hello', end = " ")

print('there!')

If you run the preceding lines of code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

Hello there!

The end = “ ” told your print statement to end the print statement with

a space and instructed IDLE to print the next print statement right after the

space and not in a new line.

Chapter 10 Automate a Little

202

Now that you know how to manipulate the print statement, let’s go

back to nested loops.

The syntax is very simple, actually. Let’s say I want to print the

numbers 123, one after the other, in a row, and repeat that ten times. So,

the outer loop will have a range of range(1,11) and the inner for loop will

have a range of range(1,4), and the print statement will come only in the

inner for loop because we only need 1, 2, and 3 printed out. Let’s test this,

shall we?

for x in range(1,11):

 for i in range(1,4):

 print(i, end = "")

In the preceding lines of code, I didn’t give a space after end = because

I want 1, 2, and 3 printed one after the other. On the other hand, if I gave

something like this: end = “,” then I’d get something like 1,2,3 in every line.

You can design this as you want. Try giving other special characters to

manipulate the result.

When I run the preceding code, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

123123123123123123123123123123

Oops, something went wrong! What was it? Well, we never broke the

line, did we? We need to do that after every line is completely written, so

we can repeat the same thing in the next line, am I right? Let me do that.

There is a piece of code in Python that lets you create a new line. It’s

called \n and it’s similar to the backslash we used when we wanted to

exempt single and double quotes from being considered as part of the

code, remember? So I just need to add another line of code right after my

inner for loop gets over.

Chapter 10 Automate a Little

203

for x in range(1,6):

 for i in range(1,4):

 print(i, end = "")

 print("\n")

Do you see the indentation? The first print is inside of the inner

for loop, and the second print statement is inside of the outer for loop.

Indentations can make or break your code in Python, so be very careful

with them, okay? If I wrote the second print statement in the same line as

the first, then Python would have thought I wanted a new line after every

number is printed and not after every line was printed. That makes all the

difference, doesn’t it?

When I run the preceding code, I got this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

123

123

123

123

123

Alternatively, you could just end the outer for loop with an empty

print(), and you’ll just get one new line since print statements produce

new lines by default.

Chapter 10 Automate a Little

204

�Iterating over strings
The beauty of for loops over “while” loops is that they iterate over things

and not just range of numbers. You can iterate over every single letter in a

string, for example. Would you like to try?

Let me create a variable “a” and place a string ‘Hello there’ inside of

it. Then I’ll use the same syntax, but this time, I’ll just mention “a”, which

contains the string, in place of a range.

a = 'Hello there!'

for x in a:

 print(x)

Let’s see what we get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

H

e

l

l

o

t

h

e

r

e

!

Look at that! Every single character was printed in every line. Pretty

neat, huh? Think of all the possibilities with something as powerful as this!

Chapter 10 Automate a Little

205

�While loops
Now that you’ve explored “for” loops thoroughly, “while” loops are a piece

of cake, trust me. Unlike the for loops, while loops keep executing the

statements within the loop, as long as a condition is true. Remember your

“if” statement? It’s similar to that, but there’s an added element of iteration

in here.

The syntax is very simple:

initialize

while condition:

 lines of code

 increment

The syntax is a bit confusing, isn’t it? Let me explain with an example.

It’s similar to a for loop, really, but just a bit longer. In a for loop, we give a

range. Let’s say our range starts from 1, so in our “while” loop, we need to

initialize our temporary variable with the start of the range, like this:

x = 1

Then, we need the condition. Let’s say we want the range to end at 11,

which means it needs to iterate from 1 to 10, so we can give our condition

like this:

while x < 11:

Alternatively, you could make your condition x <= 10 as well. You have

the freedom to do that with your “while” loops.

Finally, you need your lines of code. It could be anything, really, and

it could be any number of lines of statements. But just like with your “for”

loops, the inner lines of code need to come after indentation.

Chapter 10 Automate a Little

206

This is what we have so far:

x = 1

while x < 11:

 print(x)

But if we end the loop here, we’d create a never-ending loop. “x” would

always be 1, and it would always be less than 11, so the condition would

always be true, and the loop will never stop executing. That’s dangerous.

So we need the loop to stop at a point, right? That’s where the increment

comes in. Increment x by any number you want so at one point, the loop

does end.

This is our final code:

x = 1

while x < 11:

 print(x)

 x += 1

Let’s run the preceding code:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1

2

3

4

5

6

7

8

9

10

Perfect! 😊

Chapter 10 Automate a Little

207

�Abort mission! Break and continue
Break, and continue. It isn’t hard to guess what these do, is it? The “break”

statement breaks the loop, regardless of your range or condition being

true.

for x in range(1,11):

 if(x == 5):

 break

 print(x)

print('Loop broke :(')

In the preceding lines of code, I’m literally hijacking my for loop in the

middle. When x is 5, I’m asking the loop to break and the line of execution

would immediately jump to the line right after the loop, which is the print

statement that prints “Loop broke ☹”. Let’s test if this works.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1

2

3

4

Loop broke :(

Look at that. I didn’t even get a 5, because my break statement was

above my print statement. ☹ This is how “break” works.

But, the “continue” statement, on the other hand, just skips that

particular iteration and still executes the rest. Why don’t we use the while

loop to test things this time? Let’s use the same example, but this time, I

want a continue when x is 5.

Chapter 10 Automate a Little

208

x = 1

while x < 11:

 if x == 5:

 x += 1

 continue

 print(x)

 x += 1

print('5 was skipped!')

Read the preceding lines of code carefully. Did you notice something?

I included another increment statement right before the continue

statement. Why? Remember how I told you that we need to be careful of

infinite loops in while loops? Now if I just continued the loop, then x would

always be stuck at 5, because at every iteration, my program would check if

x was 5, and it would always be true, because increment didn’t happen. So,

while loops can be tricky like that. Be careful.

Let’s run our code:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\numbers.py

1

2

3

4

6

7

8

9

10

5 was skipped!

Yes, indeed. 5 was skipped!

You’re an expert at loops now. Congratulate yourself!

Chapter 10 Automate a Little

209

�Mini project – guess the number game
version 2
We’re going to try the “guess the number” game from the last chapter

again, but this time, we’re going to bring in the magic of automation into it.

The user gets three tries, as usual, but every time they miss, they’ll get

a hint on whether their guess is higher or lower than the number to be

guessed:

	 1.	 Let’s import the random module first, because we

are going to generate the number to be guessed

from that.

import random

	 2.	 Let’s print out a message and then generate a

random integer (whole number) within the range

1 to 10. The last number in the range is 11 because

randrange() doesn’t consider that.

print('Welcome to Guess a Number Game!')

number = random.randrange(1,11)

	 3.	 Next, let’s create a for loop that runs for three

iterations (range of 1,4, which runs from 1 to 3).

For every iteration, ask the user to enter a number

between 1 and 10. Get the input, and convert it to an

integer.

for i in range(1,4):

 guess = input('Enter a number between 1 and 10: ')

 guess = int(guess)

Chapter 10 Automate a Little

210

	 4.	 Once entered, we’re going to start our comparisons.

To start with, I need to check for the final iteration

because if we’ve reached the final try and they’ve

still not guessed right, we need to stop the game. So,

let’s check if the value of “i” is 3 and the guess is still

not right. Print a “sorry” message and tell them what

the number was.

if(i == 3 and number != guess):

 print('Sorry! You used up all your tries! :(')

 print('The number was {}'.format(number))

	 5.	 But, if they’re at the last try but guessed right, then

print the success message.

elif(i == 3 and number == guess):

 print('You guessed it right! :)')

	 6.	 Now that we’re done with the check, let’s create an

“else” statement that’ll contain the code for the first

two tries.

For the first two tries, check if the current guess is wrong. If it is, then

print a message after checking if the “guess” is lesser or greater than the

number to be guessed. If they’ve guessed right on any of the tries, then

print a success message and break the for loop because we don’t need any

more iterations.

You didn’t need a “break” statement if in third iteration because that

was going to be the last iteration of the loop anyway.

else:

 if(number != guess):

 if(guess < number):

 print('You guessed a lesser number. Try higher.')

Chapter 10 Automate a Little

211

 else:

 print('You guessed a higher number. Try lower.')

 else:

 print('You guessed it right! :)')

 break

That’s it! Pretty simple, isn’t it? Let’s see if it works now.

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

Welcome to Guess a Number Game!

Enter a number between 1 and 10: 10

You guessed a higher number. Try lower.

Enter a number between 1 and 10: 5

You guessed a higher number. Try lower.

Enter a number between 1 and 10: 3

You guessed it right! :)

I guessed it right on the last try. Whew!

Fun little game, don’t you think? Try it with your friends! Increase or

decrease the number of tries or the range as you like. Just go crazy on this! 😊

�Mini project – automate your square
This is going to be a simple project. We’re going to automate our square in

Turtle.

I’m going to create a for loop. I’m going to give the range as 1:5 so

it iterates four times to draw the four sides of a square. I’m just going to

repeat forward 100 points and right 90 degrees throughout the loop.

Chapter 10 Automate a Little

212

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.color('Red','Green')

t.begin_fill()

for x in range(1,5):

 t.forward(100)

 t.right(90)

t.end_fill()

t.hideturtle()

turtle.hideturtle()

Let’s run the preceding code. Look at that! We have our square

(Figure 10-2), and we just wrote a fraction of the lines we wrote before.

�Mini project – automate any basic shape
In this project, we’re going to automate any shape we give our program.

So, you just input the number of sides and the angle of the sides, and your

program will draw the relevant shape for you. Cool, right? Let’s get started! 😊

Figure 10-2.  Automated square

Chapter 10 Automate a Little

213

	 1.	 Let’s set up turtle first.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 I’m going to make the pen size 5 so our shapes look

better. The color of our pen is going to be Blue, and

the fill color of the shape is going to be Orange.

t.pensize(5)

t.color('Blue','Orange')

	 3.	 Next, let me get the number of sides and angle as

input and convert them to integer.

sides = input("How many sides does your shape have?")

sides = int(sides)

angle = input("What's the angle between the sides?")

angle = int(angle)

	 4.	 Now, let’s begin drawing. Start with the begin_fill,

and then open a for loop that goes from 0 to sides–1

(give 0,sides as the range). This means, if the value

of sides is 5, the loop will run five times and will

draw one side for every iteration of the loop.

t.begin_fill()

for x in range(0,sides):

	 5.	 Inside the for loop, let’s create an “if” statement that

checks if we’ve reached the last side. If we have, then

we’re going to take the pen home (0,0) and break the

loop.

Chapter 10 Automate a Little

214

if(x == sides-1):

 t.home()

 break

	 6.	 In the rest of the iterations, we’re going to push the

pen forward by 100 points and change the direction

of the pen in the right direction with the given angle.

t.forward(100)

t.right(angle)

	 7.	 That’s it for the “for” loop. Let’s finish the program

by ending the fill and hiding the turtles.

t.end_fill()

t.hideturtle()

turtle.hideturtle()

	 8.	 Let’s give our inputs as 4 and 90:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\drawTurtle.py

How many sides does your shape have? 4

What's the angle between the sides? 90

Click Enter after entering the outputs. Check the

Turtle screen, and you’ll see the image shown in

Figure 10-3.

Chapter 10 Automate a Little

215

That’s a square!

	 9.	 Now, 3 and 60 (Figure 10-4):

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\drawTurtle.py

How many sides does your shape have? 3

What’s the angle between the sides? 60

An equilateral triangle!

Figure 10-3.  Sides 4 and angle 90 – square

Figure 10-4.  Sides 3 and angle 60 – triangle

Chapter 10 Automate a Little

216

	 10.	 Now, 6 and 60 (Figure 10-5):

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\drawTurtle.py

How many sides does your shape have? 6

What’s the angle between the sides? 60

A hexagon, nice!

Try 5 and 60 to get a pentagon, 8 and 45 to get an octagon, and just

experiment with different values to see what you get. Have fun! 😊

�Mini project – automatically draw
a mandala design
In this project, we’re going to automate drawing a proper mandala design.

It’s quite simple, you’ll see!

Figure 10-5.  Sides 6 and angle 60 – hexagon

Chapter 10 Automate a Little

217

	 1.	 Let’s set up turtle first.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 I’m going to make the speed of the pen 0 so it draws

fast. The pen size is going to be 5 and the pen color

Red.

t.speed(0)

t.pensize(5)

t.pencolor('Red')

	 3.	 Next, let us open a for loop, and I’m going to make it

loop seven times (0,7 in the range). Now, I’ve arrived

at all the values in this for loop by trial and error. You

can change them as you want and see what you get,

okay? 😊

for i in range(0,7):

	 4.	 In every iteration of the for loop, I’m going to draw a

circle of 100 points and turn left at 50 degrees.

t.circle(100)

t.left(50)

	 5.	 That’s it! If you run the program now, you’ll see

your mandala design. But why don’t we take it a bit

further and draw a circle inside the design? Change

the pen size to 7, go to the position –10,–50 (found it

by trial and error), change the pen color to Blue, and

draw a circle of radius 50. Finally, hide the turtles.

Chapter 10 Automate a Little

218

t.pensize(7)

t.penup()

t.goto(-10,-50)

t.pendown()

t.pencolor('Blue')

t.circle(50)

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 10-6).

That looks pretty! Try changing the values and the colors and see what

you get.

�Mini project – arc spirals
In this project, we’re going to do a demonstration of the setheading()

method in Python. We’re going to draw arc spirals! You’ll see. 😊

Figure 10-6.  Simple mandala design with loops

Chapter 10 Automate a Little

219

	 1.	 Let’s set up the Turtle first.

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 I’m going to print the current heading (direction)

to the Shell to start with. You’ll see that it’s 0 when

we start. Let’s also change the pen size to 5 and the

speed to 5 so it draws a bit fast.

print(t.heading())

t.pensize(5)

t.speed(5)

	 3.	 I’m going to set the starting angle to 0.

angle = 0

	 4.	 Then, I’m going to open a for loop that runs 12

times, because I want to showcase 12 angles of a

circle in the arcs.

for i in range(12):

	 5.	 Every time the loop runs, I’ll draw a semi-circle of

radius 100. And at the end of the semi-circle, I’ll

write the current heading. Then I’ll move my pen

back to the starting point so it’ll be ready for the next

arc.

t.circle(100,180)

t.write(t.heading())

t.penup()

t.home()

t.pendown()

Chapter 10 Automate a Little

220

	 6.	 Finally, I’m going to increase the angle by 30 in

every iteration of the loop and set the heading to

that particular angle.

angle += 30

t.setheading(angle)

	 7.	 Run the preceding code, and you’ll get this

(Figure 10-7).

	 8.	 Change the angle of the circle to 90 degrees to draw

quarter circles (arcs), and you’ll get this (Figure 10-8).

Figure 10-7.  Semi-circle spirals

Chapter 10 Automate a Little

221

You can remove the text if you’d like, draw a circle over everything, and

make it a new mandala design too! 😊

�Summary
In this chapter, we learned how to do entry-level automation in your

programs by using loops. We learned all about for loops, while loops, and

ranges and how to manipulate loops with break and continue statements.

We also create a lot of mini projects using the concepts we learned in this

chapter.

In the next chapter, let’s look at how to store more than one value and

different kinds of values in a single variable with Python’s built-in data

structures.

Figure 10-8.  Quarter circle spirals

Chapter 10 Automate a Little

223© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_11

CHAPTER 11

Lots and Lots
of Information!
In the previous chapter, we learned all about automating your code with

for and while loops. We also looked at the break and continue statements

and created a lot of colorful, mini projects.

In this theory-intensive chapter, let’s look at the various built-in data

structures offered by Python. Let’s look at how to use these data structures

to store more than one value at a time in a single variable, and let’s look at

practical examples of using these data structures in real-world programs.

�Store more than one value
So far, we’ve just been storing one value at a time. Of course, we can

change the values, but we can’t store two values in the same place. Isn’t

that a little inconvenient? Let’s say I want to store six different color values

so I can use them in my code, one after the other.

How would I do that? I’d probably do something like this:

color1 = 'Red'

color2 = 'Orange'

color3 = 'Blue'

color4 = 'Yellow'

color5 = 'Green'

color6 = 'Violet'

https://doi.org/10.1007/978-1-4842-6812-4_11#DOI

224

Then I’d have to remember and refer each of those values every time I

want them used in my code. Whoa…that’s a long-drawn-out process.

What if I can store all six colors in the same place, in the same variable?

It’ll look something like Figure 11-1.

This is called a data structure in Python. Look at how the data is

structured (organized) and stored? Hence the name. There are four such

pre-made data structures that can be used to store multiple values in the

same location. You save a lot of lines of code, time, and your code is a lot

more efficient too. You can store different types of data as well. The same

data structure could have strings, numbers, and Booleans stored in them.

Accessing this data is easy too. You’d just have to follow a similar

format to the one we use while accessing individual characters in a string.

I’ll get to that in a bit.

Let me show you the four data structures first:

Figure 11-1.  Multiple values in the same variable

Chapter 11 Lots and Lots of Information!

225

List: Python is indeed an easy-to-learn language,

isn’t it? The keywords used in this language are

very easy to remember. A list is just that. It’s a list of

information, but it is ordered. The individual values

in a list can be changed, and lists allow duplicate
values inside of them.

Tuple: A tuple is similar to a list. The only difference

is that the values cannot be changed once fixed.

That means you can’t add or delete values either.

Set: A set, unlike a list of a tuple, is unordered, and

there are no indices to access specific values from. It

doesn’t allow for duplicate values as well, since the

values are unordered.

Dictionary: As the name implies, a dictionary has

the values stored in a word : description format.

Dictionaries are unordered as well, but they can

be changed and the “word”, which is called a “key”

in Python, acts as an index through which you can

access the values (descriptions).

You’re probably squinting at the pages of this book right now. Don’t

worry at all. At a glance, these data structures look intimidating. They’re

definitely not. I’ll explain them with fun and easy-to-understand examples

from the next section, and you’ll understand everything in no time. 😊

�Lists
Let’s look at lists first. It’s quite easy to create them. Separate the multiple

values you want stored in your list by commas and enclose everything

inside of square brackets ([]) and you have yourself a list. Would you like to

try?

Chapter 11 Lots and Lots of Information!

226

Let’s convert the six lines of code we wrote in the previous example

into a list, shall we?

colors = ['Red', 'Orange', 'Blue', 'Yellow', 'Green', 'Violet']

The preceding example just has strings in them (hence the quotes), but

you can create a list of just numbers, or just Booleans, or a combination of

two or more of them. Just create what you want based on your need.

You’re probably squinting at the pages of this book right now. Don’t

worry at all. At a glance, these data structures look intimidating. They’re

definitely not. I’ll explain them with fun and easy:

a = [1, 'Hello', True, False, 34.5, '*']

The preceding code is a list of heterogenous values (different data

types).

�Accessing values in a list
Okay, so we have a list of values. How do we access them? Would you like

to take a guess? You know how already.

Yep, with indices, just like we did for our strings. The first value in the

list has an index of 0, the second an index of 1, and so on.

Let’s say I want the third value accessed and printed in list “a”. It’s at the

index 2.

print(a[2])

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/dataStructures.py

True

Successfully accessed!

Chapter 11 Lots and Lots of Information!

227

You can do negative indexing just like you did with your strings. So, to

access the last element (value) in the list, I’d just have to give –1.

print(a[-1])

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/dataStructures.py

*

It works! Yippee! 😊

�Slice a list!
If negative indexing and accessing work, just like with your strings, then

extracting a part of a list using ranges should work as well, right? Let’s test.

Let’s say I want to extract the second through fifth values, with indices

1 through 4. My range should be 1:5 since the last number in the range is

not included.

print(a[1:5])

['Hello', True, False, 34.5]

Oh yes, it works! Then extracting through negative indices should work

as well, right? Let’s say I want everything from the negative third index

extracted.

print(a[-6:-3])

You already know how negative indices work right? If I run the

preceding code, I’ll get this:

[1, 'Hello', True]

Chapter 11 Lots and Lots of Information!

228

You can change values as well. Let’s say I want the second value

(string) to be changed to a number. Then, I’d have to access the second

value (first index) and assign something else to it.

a[1] = 100

print(a)

Let’s print the entire list to see how it’s changed now:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/dataStructures.py

[1, 100, True, False, 34.5, '*']

�List manipulation on fire!
You have a lot of pre-defined methods that can be used to manipulate your

list in multiple ways. Remember the methods we saw with your strings?

You’ll find some of them repeated here as well. Are you ready to play with

your list? Yes!

As usual, you can find the length of your string with the len() method:

a = [1, 'Hello', True, False, 34.5, '*']

print(len(a))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

6

Yes! Our list’s length is 6. It works.

You have a complete list of methods for each of the data structures

we’ll be looking at in this chapter. So, I’m just going to link you to the page

in the Python docs where all those methods and their explanations are

listed.

Chapter 11 Lots and Lots of Information!

229

Here it is: https://docs.python.org/3/tutorial/datastructures.

html.

That said, let’s just look at some of the most important methods in this

chapter, alright?

�Copy and append
The append() method appends or adds an element at the end of the list :

 a.append('new')

print(a)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[1, 'Hello', True, False, 34.5, '*', 'new']

The copy method creates a copy of the list, and this copy can be

assigned to any variable to create a copied list:

b = a.copy()

print("List b contains: {}".format(b))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

List b contains: [1, 'Hello', True, False, 34.5, '*', 'new']

�Count and clear
Lists can have duplicate values, am I right? Let’s say we have a list of

numbers where the numbers are duplicated, and I want to check how

many times a particular number appears in the list. I can use the “count”

method to achieve that.

Chapter 11 Lots and Lots of Information!

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

230

l = [1,2,1,1,4,5,3,5,3,2]

print(l.count(1))

I’ve started the syntax with the name of the list, “l”, then the name of

the method, “count”, and then I’ve mentioned the value I wanted to count

(1). If it were a string, I’d have mentioned the same within quotes. Let’s run

the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

3

We got the right answer! The number 1 appeared thrice in the list.

You can clear the entire list using the “clear” method.

l.clear()

print(l)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[]

We have ourselves an empty list now!

�Concatenation
You can use the “extend” method to concatenate or join two lists.

list1 = [1,2,3,4,5]

list2 = [6,7,8,9]

list1.extend(list2)

print(list1)

Chapter 11 Lots and Lots of Information!

231

As you can see in the preceding code, the elements of the list you want

listed first come first, then a period (“.”), and then the “extend” method,

and then inside the brackets, you can mention the name of the list you

want joined to the first list.

Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Look at that! Perfectly joined, and in the order we wanted as well. 😊

�Search inside your list
The “index” method returns the index of the very first instance of the value

you are searching for. For example, if you want to find the number 3 in a

list, but its duplicated twice, then only the index of the first occurrence of 3

would be returned. Let me show an example:

list1 = [1,2,3,2,3,1,3]

print(list1.index(3))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

2

Look at that! 3 exists thrice in the list, but we only got the index of the

first 3. Sweet!

But you can narrow that search down, if you’d like. What if I want to

find 3 in the last half of the list, maybe starting from the third index? You

can specify the start and end of your search as arguments as well. Let me

show you how:

print(list1.index(3,3,6))

Chapter 11 Lots and Lots of Information!

232

I’m asking my program to search for 3 from indices 3 to 5. You know

how these things work right? The last value in the range won’t be included.

So, if the last value is 5, then your program will only search until the fifth

index.

When I run the preceding code, I’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

4

Look at that! We got the index of the second instance of 3 in the list.

Nice!

�Add and remove elements
You know how to add elements to a list using your square brackets, and

you can change elements using the same method as well. But what if I

want to insert elements in the middle of the list so that the other values still

exist, but just move one step further?

You can use the insert method to achieve that. The first argument in

the method is the position in which you want the value, and the second

argument is the value you want added.

colors = ['Red', 'Orange', 'Blue']

colors.insert(1,'Green')

print(colors)

I’ve added the value ‘Green’ to the first index. Now ‘Orange’ should be

pushed one step further. Let’s check, shall we?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

['Red', 'Green', 'Orange', 'Blue']

Yep, it worked! 😊

Chapter 11 Lots and Lots of Information!

233

The pop() method removes the last element in the list by default. If you

give a position (index) though, it’ll remove the element at that position.

Let’s try removing the second element in the preceding list, which is

the element we just inserted, okay?

colors.pop(1)

print(colors)

When we run the entire code, we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

['Red', 'Green', 'Orange', 'Blue']

['Red', 'Orange', 'Blue']

Look at that! The list originally had four elements, and we successfully

removed the second element using the pop() method.

Alternatively, you can use the remove() method as well. The only

difference is you can specify the exact element you want removed.

Our list currently has ['Red', 'Orange', 'Blue']. I don’t want blue

anymore. Why don’t we try removing it?

colors.remove('Blue')

print(colors)

Let’s see if it worked:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

['Red', 'Orange']

Yay! It worked!

It’s getting a bit too long, isn’t it? Don’t worry! We’re almost done. Then

let’s distract us with a fun little project, deal? 😊

Chapter 11 Lots and Lots of Information!

234

�Reverse and sort
There’s another method called the reverse() method. Can you guess what

it does? Exactly! It reverses the elements in a list. Let’s try!

li = [1,2,3,4,5]

li.reverse()

print(li)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[5, 4, 3, 2, 1]

Success!

Finally (yes, finally), there’s another method called the sort() method

that sorts the elements by alphabetical order.

By default, the sorting happens in the ascending order.

colors = ['Red', 'Orange', 'Blue', 'Yellow', 'Green', 'Violet']

colors.sort()

print(colors)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

['Blue', 'Green', 'Orange', 'Red', 'Violet', 'Yellow']

It’s like magic! :O

Does this work with numbers?

li = [1,4,3,6,2,8,7,9,5]

li.sort()

print(li)

Chapter 11 Lots and Lots of Information!

235

When you run the above code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Hehe, it works.

But what if I want the sorting done in the descending order? In that

case, I’ll modify the sort() function call like this:

li.sort(reverse=True)

print(li)

When you give the argument as reverse=True, your program will sort

your list in the descending order. The default is reverse=False, which sorts

the list in the ascending order. When something happens by default, you

don’t need to mention it as an argument.

Let’s run the preceding code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[9, 8, 7, 6, 5, 4, 3, 2, 1]

Nice…my list is in the descending order now. Python lets us do pretty

much anything, doesn’t it?

�More fun with lists!
You can check if something exists in a list using the “in” keyword:

print('Hello' in a)

Chapter 11 Lots and Lots of Information!

236

In the preceding line of code, we’ve asked if the string ‘Hello’ is a part

of the list.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

False

The result is false. We changed the second value from ‘Hello’ to 100,

remember? So, ‘Hello’ is no longer a part of the list. As with everything in

Python, these searches are case sensitive as well. So, ‘Hello’ is different

from ‘hello’, and if the string was ‘Hello there!’, then you need to search for

the entire thing. Partial searches don’t work. Let me show you:

a[1] = 'Hello there!'

print('Hello' in a)

I’ve changed the second value to ‘Hello there!’, and when I search for

‘Hello’ in the list “a”, let me see what I get:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

False

Look at that. It’s still a false because you haven’t searched with the

correct term.

Now that you know how lists work, I want to get back to a previous

topic. Remember “for” loops? And do remember my promise to revisit for

loops when I teach you about lists? We’re here now!

You can iterate through a list using your for loop. It’s quite simple. Just

create your list, and then replace that in place of a range, like this:

l = [1,2,3,4,5]

for i in l:

 print(i)

Chapter 11 Lots and Lots of Information!

237

The result is this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

1

2

3

4

5

Alternatively, you can also directly specify the list, like this:

for i in [1,2,3,4,5]:

Modify and run your code with the preceding line of code and you’ll

notice that you get the same result.

Apart from the “extend” method, you can also use the “+” operator to

concatenate two lists, just like you do with strings, like this:

list1 = [1,2,3,4,5]

list2 = [6,7,8,9]

list1 += list2

print(list1)

Alternatively, you can create a new variable and assign the value of

list1 + list2 to it. Either works.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[1, 2, 3, 4, 5, 6, 7, 8, 9]

The “clear” method just clears the list. But if you use the “del” keyword,

you can delete the list in its entirety. Would you like to check?

Let’s delete the preceding list, shall we?

del list1

print(list1)

Chapter 11 Lots and Lots of Information!

238

When I try to print list1 after I deleted it, I’ll get an error, like the

following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Traceback (most recent call last):

 �File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py", line 10, in <module>

 print(list1)

NameError: name 'list1' is not defined

Look at that! ‘list1’ was completely erased from our program.

You can do the same for elements in a list as well.

a = [1, 'Hello', True, False, 34.5, '*']

del a[2]

print(a)

I’ve asked my program to delete the third element in the list. Let’s

print, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

[1, 'Hello', False, 34.5, '*']

The third value “True” no longer exists in list “a”.

�Mini project – multi-colored automated star
In this project, I’m going to draw a star with Python, but each side is going

to have a different color. That’s where my list comes in. I’m going to create

a list of five colors and run a for loop through it. For every iteration of the

for loop, Turtle will draw a side of the star with a new color from the list.

Let’s see how it’s done, shall we?

Chapter 11 Lots and Lots of Information!

239

	 1.	 I’m going to start with the usual lines of code to set

up Turtle:

import turtle

s = turtle.getscreen()

t = turtle.Turtle()

	 2.	 I’m going to set the pen size as 5 so my image looks

good.

t.pensize(5)

	 3.	 Next, I’m going to create a variable called “colors”

and assign a list of five colors, ‘Red, ‘Brown’, ‘Green’,

‘Blue’, and ‘Orange’ to it. I’ve already given you a

link to a list of colors, so choose your preferred set of

colors. 😊

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange']

	 4.	 Next, I’m going to create a temporary variable x that

iterates, via the for loop, through the entire list:

for x in colors:

	 5.	 For every iteration of the loop, my pen color will

change to the current color in the temporary

variable “x”. I’ll ask my Turtle to move forward by 200

points and turn right by 144 points because a star’s

outer angle is 144 degrees and I need to turn that

much to get a proper star as my result.

t.pencolor(x)

t.forward(200)

t.right(144)

Chapter 11 Lots and Lots of Information!

240

	 6.	 That ends my for loop and the indentation. Finally,

I’m going to hide my turtle.

t.hideturtle()

turtle.hideturtle()

When you run the preceding code, you’ll get this

(Figure 11-2).

Yes! We got it! Why don’t you try the same with different colors or

different shapes? Or maybe, you could try to randomly choose colors for

every iteration? You know how to do that already (I’ve taught you how), so

go ahead and try. 😊

�Tuples
Now that we’ve taken a detailed look at lists, you’ll find the remaining

three data structures easy to understand, so I’ll quickly go through them,

alright?

Figure 11-2.  Multi-colored star

Chapter 11 Lots and Lots of Information!

241

As I’ve mentioned before, a tuple is similar to a list. The only difference

is that it’s ordered (just like a list, with index and all), but unchangeable

(unlike a list). What does that mean for us? Well, it just means that you

can’t add, delete, or change the elements in the list.

Now that’s a bummer! Does that mean a tuple is not as cool as a list?

Well, I wouldn’t say that, exactly. You know, you might need to create a list

that you don’t want anyone to manipulate later, am I right? Something like

a “read-only” list? In those instances, a tuple is your best friend. Otherwise,

go for a list, 100%. 😉
You can create a tuple with parenthesis, with the tuple items separated

by commas, like this:

t1 = ('Red', True, 2, 5.0)

print(t1)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

('Red', True, 2, 5.0)

Most of the things in a tuple follow the same format as that of a list, so

I’m just going to list them, and I want you to try them out in your computer.

It’ll be our little activity, okay?

Just like you do with your lists, you can access the elements in a tuple

with square brackets.

t1[1] will return the second element, True. Tuples are indexed just like

lists, where the first index is 0.

Just like lists, you can use negative indexing to access values in a tuple.

So, t1[–1] will return the last element in the list.

You can slice a tuple using indices as well.

If you wanted to extract the second through the fourth value (last),

then you can specify t1[1:4]) or just t1[1:], since we want everything from

the first index anyway.

Chapter 11 Lots and Lots of Information!

242

If you wanted to write the same with negative indices, you’ll do it like

this: t1[–3:] because you want everything from –3 to the end of the tuple.

You can use the len(t1) method to get the length of the tuple and use

the “in” keyword to check if something is inside a tuple, just like you do

with your lists. Why don’t you try them out and see?

And then there’s your “for” loop. You can loop through tuples as well.

The process is the same.

for x in t1:

 print(x)

Why don’t you run the preceding code and check if looping works with

tuples?

Ah well, so far, tuples look like lists written within parenthesis. What’s

their use, anyway? Remember how I told that tuples are unchangeable?

And we haven’t tried changing elements or adding elements to our tuple

yet, have we? Let’s try.

I’m going to try changing the value of the second element to False to

True.

t1[1] = False

Let’s run our code, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Traceback (most recent call last):

 �File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py", line 4, in <module>

 t1[1] = False

TypeError: 'tuple' object does not support item assignment

Oops, we got an error! Tuples don’t support item assignment, meaning

their elements cannot be changed.

Chapter 11 Lots and Lots of Information!

243

Try adding a new element to the tuple. Access the fourth index (fifth

element) and add something. When you do that, you’ll notice that you

encounter the same error.

This is most important use of a tuple. You can create unchangeable

lists that can be used to store sensitive information that shouldn’t be

changed. What if you create a program to store the id numbers of your

classmates? You wouldn’t want those changed, would you? Then store

them in a tuple. Simple as that!

But, just like in your lists, you can delete the entire tuple using the “del”

keyword, like this:

del t1

If you try to access t1 now, you’ll get an error.

Tuples have methods as well, but they only have few methods that can

be used to access elements and none that can manipulate the elements or

the tuple itself.

The “count” method returns the number of times a value repeated in a

tuple. Remember, tuples can have duplicate values, just like lists.

The “index” method returns the position (index) of the value in a tuple.

t1 = ('Red', True, 2, 5.0)

print(t1.index(5.0))

When you run the preceding code, you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

3

Yes! 5.0 is in the third index (fourth position).

That’s it for tuple. It was quite simple, wasn’t it? Let’s look at the next

data structure in the list next.

Chapter 11 Lots and Lots of Information!

244

�Sets
Do you remember what I told you about sets? They are unordered and they

cannot have duplicate values. It’s a double whammy. But sets have their

uses too. Would you like to take a look at it?

Great! Well, you write sets within flower brackets, like this:

colors = {'Red', 'Orange', 'Blue'}

The preceding code is a set of the colors ‘Red’, ‘Orange’, and ‘Blue’.

But! Sets are unordered. So, would those values really appear as we

created them? Would you like to check?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'Blue', 'Orange', 'Red'}

Whoa, look at that! The order is changed. Can you run the program

again and tell me what you get?

The order changed again, didn’t it? How cool is that? 😊
But we do have a problem now. Sets are unordered. So how do

we access the elements if we don’t know the indices? How do we add

elements to the set? How do we insert elements in a particular position?

Well, unfortunately, there are certain things you can’t do with a set, and

anything that pertains to order comes under that.

So, you can’t use the square brackets to find an element in a particular

position. But, you can use the “in” keyword to check if an element exists in

a set:

print('Red' in colors)

Run the preceding code, and you’ll get True.

You can also loop through a set, just like you do with your list and tuple.

for i in colors:

 print(i)

Chapter 11 Lots and Lots of Information!

245

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Orange

Blue

Red

But how would you add elements to the set when you don’t know

the index? There is the add() method that can be used to add individual

elements, though you won’t know where they’ll end up.

colors.add('Green')

print(colors)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'Blue', 'Green', 'Orange', 'Red'}

How interesting it that? We added ‘Green’ to the set, and it ended up in the

second position. Run the program again, and you’ll find it somewhere else.

What if I want to add more than one color to my set? I can save space

by using the “update()” method.

Create a list of values within square brackets and place that within the

parenthesis. Let me try to add both ‘Green’ and ‘Yellow’ to my set:

colors.update(['Green','Yellow'])

print(colors)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'Red', 'Yellow', 'Blue', 'Orange', 'Green'}

Chapter 11 Lots and Lots of Information!

246

Look at where Green and Yellow ended up. :D

Just like with your lists, you can use the len() method to find the length

of a list as well.

Now, let’s look at the rest of the methods for manipulating a set, shall

we? I’ll just list the ones that are similar to the ones we saw with our lists.

In a list, the pop() method removes a random value and not the last

one. You can use the remove() method to remove a particular value by

mentioning it as an argument.

Alternatively, you can use the “discard()” method to remove a

particular element as well. The only difference between discard and

remove is that discard doesn’t raise an error if the mentioned element

doesn’t exist. This is important in real-world programming. When running

a program, you don’t want errors that stop the program execution because

one line of code was wonky.

The clear() method clears the set, and the copy() method copies the

list.

You can use the “del” keyword to delete the entire set, but you can’t use

it to delete a particular element since you they don’t have fixed indices that

you can access.

Finally, let’s look at joining sets. You can join two sets using the

“union()” or “update()” methods.

colors = {'Red', 'Orange', 'Blue'}

colors1 = {'Green', 'Yellow'}

Let’s say we have two sets, colors and colors1 with their own values,

and we want them merged into the colors set.

You can use the union() method. It creates a new set with the values in

both the sets.

colors2 = colors.union(colors1)

print(colors2)

Chapter 11 Lots and Lots of Information!

247

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'Yellow', 'Green', 'Red', 'Blue', 'Orange'}

But update just updates the first set in the syntax with values from both

the sets. If you print out the second set in the syntax, you’ll notice that it’s

unchanged. Update just changes the first set.

colors.update(colors1)

print(colors)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'Orange', 'Yellow', 'Red', 'Blue', 'Green'}

We’re done with sets as well. Yay! You’re becoming quite the pro

Python programmer now. 😊

�Dictionaries
The last data structure in this list is the dictionaries. Let’s quickly finish it

and go back to some more fun mini projects, so are you with me? Yes!

So, dictionaries are unordered, but they are indexed and can be

changed. The thing I love about dictionaries is that they can be used to

model real-world stuff. Do you want to see?

Chapter 11 Lots and Lots of Information!

248

Dictionaries are created within flower brackets as well, but inside, you

need to mention the values in key:value pairs. The “key” is the index here.

Since I want my dictionaries to model real-world objects, I’m going to

create a dictionary that represents a person’s characteristics: their name,

age, eye color, hair color, and so on.

This is how I’d do that:

person1 = {"name":"Susan","age":9,"pet":"Barky","hair":"black",

"eyes":"blue"}

I’ve created a dictionary, “person1”. Her name is Susan, she’s 9 years

old, her pet’s name is Barky, and she has black hair and blue eyes. Looks

great, doesn’t it?

Now, let’s manipulate this dictionary. You can access values with the

“keys” like this:

print(person1["name"])

Or

print(person1.get("name"))

Remember that you have to mention the keys within quotes

everywhere.

Chapter 11 Lots and Lots of Information!

249

Run either of these lines of code, and you’ll get the same result:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Susan

Her name!

You can also change values. Susan is actually 8, not 9! Quick, let’s

correct her age before she gets sad!

person1["age"] = 8

print(person1)

Run this, and you’ll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'name': 'Susan', 'age': 8, 'pet': 'Barky', 'hair': 'black',

'eyes': 'blue'}

Nice!

You can also add a new key:value pair the same way. Let’s add a key,

gender, and make it female.

person1["gender"] = 'female'

print(person1)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'name': 'Susan', 'age': 9, 'pet': 'Barky', 'hair': 'black',

'eyes': 'blue', 'gender': 'female'}

It was added, yay!

Chapter 11 Lots and Lots of Information!

250

You can check if a key exists using the “in” keyword.

print('pet' in person1)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

True

Yes, “pet” is one of the keys of the dictionary.

Just like usual, you can find the length of the dictionary using the “len”

method.

The following will delete the dictionary:

del person1

person1.clear() will empty the dictionary.

You can use the copy() method to copy the dictionary.

As usual, you can loop through a dictionary, but since our dictionary

has a key and a value each, we can do the looping in different ways.

Let’s create a smaller dictionary first:

person1 = {"name":"Susan","age":8}

Let’s loop through all the keys first and print them:

for i in person1:

 print(i)

This should print all the keys:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

name

age

Yes!

Chapter 11 Lots and Lots of Information!

251

If you want the values, just change the position of “i”, like this:

for i in person1:

 print(person1[i])

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Susan

8

We got just the values now. Whoo!

Alternatively, you can loop through both keys and values, like this,

using the items() method:

for i,j in person1.items():

 print("{} = {}".format(i,j))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

name = Susan

age = 8

Nice! 😊
Let’s just look at one last thing before we end this. pop() removes the

given key:value pair, while popitem() removes the last item in the dictionary.

person1.pop("name")

print(person1)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'age': 8}

Chapter 11 Lots and Lots of Information!

252

Age is the only key left! ☹
Let’s rewrite the dictionary again, and this time, try popitem().

person1.popitem()

print(person1)

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

{'name': 'Susan'}

Now, ‘name’ is the only key left!

That’s it for dictionary! 😊

�Mini project – never-ending colors
Another simple project with a twist! 😊 We are going to randomly change

the background colors after an interval of 1 second while printing the

current color on the turtle screen.

The twist? We’re going to use a new package called “time” to make the

turtle screen pause between each color change. Ready? Let’s get going!

	 1.	 So, as I said, we need both the “time” and the

“turtle” modules. Let’s import both.

import time

import turtle

	 2.	 Next, let’s set up turtle as usual.

s = turtle.getscreen()

t = turtle.Turtle()

Chapter 11 Lots and Lots of Information!

253

	 3.	 Once set up, let’s move the pen we just created to

the position from where we want it to write the

colors. That’s going to be the point –80,0.

t.penup()

t.goto(-80,0)

t.pendown()

	 4.	 Now, let’s create a dictionary of colors. I’m creating

a dictionary and not a list this time, because I’m

going to make the keys capitalized versions of their

values (colors) so I can write them on the screen.

colors = {'RED':'Red', 'BROWN':'Brown',

'GREEN':'Green', 'BLUE':'Blue', 'ORANGE':'Orange'}

	 5.	 Before we start drawing, let’s hide the turtles. You’ll

see why when you run the program. 😉

t.hideturtle()

turtle.hideturtle()

	 6.	 Now, here comes the fun part. We want this program

to be never ending, remember? So, it’s obvious that we

need a loop, but what kind of loop? How do we create

a never-ending loop? Remember how I said “while”

loops can literally run forever if we’re not careful? That

is, if the condition doesn’t become false at one point.

What if we do exactly that? What if we make the

while loop’s condition “True” and just that? Then,

if there’s no break statement anywhere within the

while loop, it really will run forever.

#never ending loop

while True:

Chapter 11 Lots and Lots of Information!

254

	 7.	 Simple! Next, let’s create for loop that’ll loop through

the “colors” dictionary.

for x in colors:

	 8.	 For every iteration, let’s change the background

color of the turtle screen to the next color in the for

loop (the value). Also, let’s write the key value (x) in

Arial, 50 pt, bold text.

turtle.bgcolor(colors[x])

t.write(x,font=('Arial',50,'bold'))

	 9.	 Now, after every color change, we need a 0.5-second

delay, or gap, before the next color change (for loop

iteration) happens. This is where the “time” package

comes in. It has a built-in function called sleep()

which will literally pause the loop for the number of

seconds mentioned. In our case, it’s going to be 0.5.

time.sleep(0.5)

	 10.	 Okay, this should technically be it, but if we leave

it at this, then you’ll notice that your turtle writes

the next text on top of the old text, and things will

continue to get messy. Why don’t you try and see?

Your turtle package comes with a clear() function that clears the

screen. So, why don’t we clear the screen before we change the next color

and draw the next text?

t.clear()

That’s it! Let’s run this now, and we’ll get this (Figure 11-3).

Chapter 11 Lots and Lots of Information!

255

You’ll notice that the program loops through the “colors” dictionary,

infinitely. Sweet, huh? 😊

�Mini project – first and last name reversal
In this project, this is what I want happened: When I enter a name, for

example, Susan Smith, I want my program to return the reversal of it, that

is, Smith, Susan.

It’s more of a puzzle than a mini project. The logic is very simple:

	 1.	 Let’s start the program by getting the name as the

input. The condition is their first and last name

needs to be separated by a single space. This is

important. You’ll see why.

name = input('Please Enter your first and last name,

separated by a space: ')

Figure 11-3.  Never-ending colors

Chapter 11 Lots and Lots of Information!

256

	 2.	 As I said, the format of the string input is important

to make this program work. So, I’m going to count

the number of single spaces in the string. If it’s none,

or more than one, then the program stops with an

error message.

Let’s create a variable count and assign it to 0 to start

with.

count = 0

	 3.	 Next, let’s create a for loop that loops through the

string we just got. Whenever there’s a single space,

let’s add 1 to count.

for i in name:

 if i == ' ':

 count += 1

	 4.	 If count is just 1, then we’re good to go. Let’s convert

the string to a list by using the split method, where

the first and last names are separated into separate

list items with the single space as the delimiter used.

if count == 1:

 �#Convert string to list, where the condition is

the space

 l = name.split(' ')

	 5.	 Next, let’s reverse the list.

#Reverse list

l.reverse()

Chapter 11 Lots and Lots of Information!

257

	 6.	 Finally, let’s insert a comma with a space to the first

position of the list, so when we join everything, we

get the exact format we want.

#Add a comma, with a space, in the first position of

the list

l.insert(1,', ')

	 7.	 Now let’s join the list into a string with an empty

string as the join condition. This way, everything

gets stuck together, and the only thing separating

the last and first names is “, ”.

#Join a list into a string

name = ''.join(l)

	 8.	 Finally, print everything.

print('Your reversed name is: {}'.format(name))

	 9.	 If the count isn’t 1, print an error message.

else:

 print('Please Enter your name in the correct format')

Now, let’s run the program!

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

Please Enter your first and last name, separated by a space:

Susan Smith

Your reversed name is: Smith, Susan

Perfect! 😊

Chapter 11 Lots and Lots of Information!

258

�Summary
In this chapter, we took a deep dive into the four pre-defined data

structures offered by Python, namely, list, set, tuple, and dictionary. We

looked at how to create them, delete them, manipulate them, and so much

more. Finally, we looked at how to use them in programs and why they’re

useful in real-world programming scenarios.

In the next chapter, let’s take a small break from all the learning and

start creating! We’ll be creating a lot of mini projects. 😊

Chapter 11 Lots and Lots of Information!

259© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_12

CHAPTER 12

Fun Mini Projects
Galore!
In the previous chapter, we took a deep dive into the four pre-defined data

structures offered by Python, namely, list, set, tuple, and dictionary. We

looked at how to create them, delete them, manipulate them, and so much

more. Finally, we looked at how to use them in programs and why they’re

useful in real-world programming scenarios.

In this chapter, let’s take a small break from all the learning and start

creating! We’ll be creating a lot of mini projects. You can brush up the

topics you learned so far by creating these mini projects. So, code along

with me. Have fun! 😊

�Project 12-1: Odd or even
Let’s start this chapter with something simple. This is a classic puzzle in

any programming language.

We’re going to complete this project in two parts. In part 1, we’re going

to check if a given number is even or odd. In part 2, we’re going to get a

number range from the user and print either the even or odd numbers

within that range.

https://doi.org/10.1007/978-1-4842-6812-4_12#DOI

260

But before we get to the programs, let me ask you a question. How

are we going to decide if a number is odd or even? Well, any number that

gets divided by 2 without any remainder is an even number, am I right?

Numbers that return a 1 when divided by 2 are odd numbers.

The concept is quite simple. Do you remember the modulus operator,

the one that returns the remainder of a division operation?

When you divide an even number by 2, what do you get? 0

When you divide an odd number by 2, what do you get? 1

That’s it! So, if the modulus of the number and 2 returns 0, we have

ourselves an even number. If not, we got an odd number.

Now, shall we create our program?

�Part 1 – Is your number odd or even?
	 1.	 Get the input and convert it to an integer.

num = input('Enter a number: ')

num = int(num)

	 2.	 Then, check the modulus. If it’s 0, it’s an even

number; otherwise, it’s an odd number.

if((num % 2) == 0):

 print('{} is an Even number'.format(num))

else:

 print('{} is an Odd number'.format(num))

	 3.	 Let’s run the program. My input is going to be 45.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\dataStructures.py

Enter a number: 45

45 is an Odd number

Chapter 12 Fun Mini Projects Galore!

261

�Part 2 – print odd or even numbers within
a range
Now, for the second program, let’s get a range from the user, and whether

they want even or odd numbers printed in the range, and print the same.

	 1.	 Get the range and convert them to integers. Get the

“choice” too.

start = input('Enter the start of the range: ')

end = input('Enter the end of the range: ')

start = int(start)

end = int(end)

choice = input('Even or Odd? Enter e or o: ')

	 2.	 Before we loop through the range, let’s check if it’s

correct. The “start” value should be lesser than the

“end” value.

if(start < end):

	 3.	 If it is, let’s create a for loop that loops through the

range. If the choice is odd, print only when the result

of the modulus is 1. If the choice is even, print only

when the result of the modulus is 0. If it’s neither,

they’ve given an invalid choice and print an error

message.

for i in range(start,end+1):

 if(choice == 'o' or choice == 'O'):

 if((i % 2) == 1):

 print(i)

 elif(choice == 'e' or choice == 'E'):

Chapter 12 Fun Mini Projects Galore!

262

 if((i % 2) == 0):

 print(i)

 else:

 print('Enter a valid choice and try again')

	 4.	 Finally, print an error message for the range too.

else:

 print('Enter a valid range')

	 5.	 Let’s run this program. My range is going to be 1 to

10, and I’m going to want to print the odd numbers

within this range.

= RESTART: C:\Users\aarthi\AppData\Local\Programs\

Python\Python38-32\dataStructures.py

Enter the start of the range: 1

Enter the end of the range: 10

Even or Odd? Enter e or o: O

1

3

5

7

9

Sweet! 😊

�Project 12-2: Is your mom tipping enough?
In this project, we’re going to create a tipping calculator that inputs

the total bill and the tip their mom gave the waiting staff. Calculate the

percentage of tip their mom gave and say Okay if 10–15%, good if 15–20%,

and great if 20+%. If less than 10%, say their mom is not tipping enough.

Let’s create it, shall we?

Chapter 12 Fun Mini Projects Galore!

263

	 1.	 Get the bill amount and tip and convert them to

integers.

bill = input('What was your bill? ')

tip = input('How much did you tip? ')

bill = int(bill)

tip = int(tip)

	 2.	 Let’s calculate the percentage of the tip. To do

this, multiply the tip by 100, and divide by the bill

amount. This is just a reverse of how you calculate

percentages. Let’s convert the percent (which would

be a floating number because of the division) to an

integer.

percent = (tip * 100) / bill

percent = int(percent)

	 3.	 Now, let’s use if elif else to print out the right

message. Simple! 😊

if((percent >= 10) and (percent <= 15)):

 print('{}%. You tipped Okay'.format(percent))

elif((percent >= 15) and (percent <= 20)):

 print('{}%. That was a good tip!'.format(percent))

elif(percent >= 20):

 print('{}%. Wow, great tip! :)'.format(percent))

else:

 �print("{}%. You didn't tip enough :

(".format(percent))

Chapter 12 Fun Mini Projects Galore!

264

Run the program, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\dataStructures.py

What was your bill? 400

How much did you tip? 45

11%. You tipped Okay

Works! 😊

�Project 12-3: Draw a Christmas tree
Did you know that you can draw a Christmas tree with just your basic

Python syntax? No packages or modules, just Python. Shall we try?

So basically, given the height of the tree, I want my program to draw a

tree of that height. Simple enough, right?

As you probably guessed, we need loops to do this, and the tree will

look something like Figure 12-1.

Figure 12-1.  Christmas tree of height 5

Chapter 12 Fun Mini Projects Galore!

265

How does this program work?
So, we need one loop that loops through each row of the tree and one

that loops through its height. This is called nested looping. In this nested

loop, the loop that goes through the tree’s height is the outer loop, and for

each iteration of the outer loop, we’ll use an inner loop to draw the relevant

row.

Let’s do this!

Whenever we try to draw puzzles, or problems of any sort, it’s always

best to write an algorithm that’ll help us write our program better. In this

case, I’m going to use the preceding tree to reverse engineer my algorithm.

Would you like to see how?

Algorithm:

	 1.	 In Figure 12-1, the height of the tree is 5. So, we need

five rows of leaves and one stump at the end (in the

middle of the tree).

	 2.	 The first row has 1 star, the second row has 1 + 2 (3)

stars, the third row has 3 + 2 (5) stars, and so on until

the end.

	 3.	 If you count the number of spaces before the first

star is drawn (first row), it’s four, which is the height

of the tree minus one. For the second row, the

number of spaces is three, and it reduces by one for

every subsequent row.

	 4.	 The stump is drawn after four spaces again, so it’s

the same as our first row. We’d need a separate for

loop to draw the stump because it’s not a part of the

tree’s given height.

Okay, now that we’ve arrived at an algorithm, let’s get cranking!

Let’s create our program!

Chapter 12 Fun Mini Projects Galore!

266

	 1.	 Let’s get the height of our tree first and convert the

string to an integer.

n = input("What's the height of your tree? ")

n = int(n)

	 2.	 Next, let’s assign our variables. I’m going to create

a variable sp, which is going to denote the number

of spaces. It’s going to start at n–1. I can reduce the

value inside the loop.

Similarly, I’ll be creating another variable star, which

is going to start at 1.

sp = n-1

star = 1

	 3.	 Now, let’s draw our tree! The main for loop is going

to loop through the entire height of the tree (0 to n–1

so the range is 0,n)

#draw the tree

for i in range(0,n):

	 4.	 We need two inner for loops inside the main outer

for loop, one to draw the spaces and one to draw the

stars.

We need to loop from 0 to sp, and for every iteration

of the loop, print a single space. But here’s the catch.

Print statements end at new lines, so if you want to

be on the same line, you need to use an attribute

called end and give it an empty string as its value.

This will make sure that the next space is drawn

right next to the first space.

Chapter 12 Fun Mini Projects Galore!

267

#draw spaces

for j in range(0,sp):

 �#By default, a print function ends with a newline.

Use the end='' to make it end with an empty string

instead, so we can draw the star next

 print(' ',end='')

	 5.	 Now, let’s draw our stars. We need to loop through

the range 0,star–1 for that. Use end='' again to make

sure they are drawn on the same line.

for k in range(0,star):

 print('*',end='')

	 6.	 We’re done with the inner for loops now. Before we

start the next iteration of the outer for loop (our tree’s

next row), let’s change our variable’s values. Let’s

increment star by 2 and decrement sp by 1. Let’s

place an empty print() at the end because we’re done

with the row, and we need a new line for the next row.

star += 2

sp -= 1

print() #so there's a new line

	 7.	 That’s it for the tree! Now, for the stump. Do what you

did in the first row. Make a single for loop run from 0 to

n–2 (range 0,n–1), and print a space with end=''. Once

the loop is done, print a single star, and we’re done! 😊

#draw the stump

for i in range(0,n-1):

 print(' ',end='')

print('*')

Chapter 12 Fun Mini Projects Galore!

268

Whoo! That took some time. Shall we run the program?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/mini_projects.py

What's the height of your tree? 10

Press Enter, and you’ll get this (Figure 12-2).

Yay! It works! 😊

�Project 12-4: Spirals!
In this project, we’re going to make different kinds of randomly colored

spirals. It’s going to be real fun! 😊

Figure 12-2.  Christmas tree of height 10

Chapter 12 Fun Mini Projects Galore!

269

�Square spiral
	 1.	 To start off, let’s create a square spiral. Since we

need to randomly select colors, we need to import

both the turtle and random modules.

#Square spiral

import turtle, random

	 2.	 Let’s set up the turtle screen first and set the pen size

to 5 and speed to 0.

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

	 3.	 Since this is going to be a square spiral, I’m going to

make the length 4. You’ll see why.

length = 4

	 4.	 Let’s also create a list of colors from which we’ll be

randomly choosing in our loop.

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange',

'Yellow', 'Magenta', 'Violet', 'Pink']

	 5.	 Now, let’s create our loop and make it go from 1 to

149 (so 1–150 in the range). I’ve chosen this number

after a lot of trial and error. Then, I’m going to

use the random.choice method which randomly

chooses items from a list and assign the chosen item

to the variable “color”.

for x in range(1,150):

 color = random.choice(colors)

Chapter 12 Fun Mini Projects Galore!

270

	 6.	 Change the pen color to that color and make your

pen move forward by “length” and move right at 90

degrees. Then, add 4 to the current value of length,

so in the next iteration, the pen moves forward by

four more points. This keeps repeating, and so,

we’ve created a spiral that keeps increasing in size

(because of the increase in the value of length and

because we’re turning 90 degrees right after every

line is drawn).

t.pencolor(color)

t.forward(length)

t.right(90)

length += 4

	 7.	 Finally, hide the turtles.

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-3).

Figure 12-3.  Square spiral

Chapter 12 Fun Mini Projects Galore!

271

Change the range and the initial value (and increment) of length, and

you’ll get differently sized square spirals. Try and see! 😊

�Random spiral
Since we realize that our spiral’s shape depends on the length and the

angles, what would happen if we change the angle to something else,

maybe 80? We’ll create a randomly shaped spiral, of course!

This would be almost like a pentagon, but not quite, since the exterior

angle of a pentagon is 72, and we’ve given 80 here. Just to show that you

can let your imagination run wild and get awesome results!

#Spiral pentagon

import turtle, random

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

length = 4

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',

'Magenta', 'Violet', 'Pink']

for x in range(1,200):

 color = random.choice(colors)

 t.pencolor(color)

 t.forward(length)

 t.right(80)

 length += 2

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-4).

Chapter 12 Fun Mini Projects Galore!

272

�Triangular spiral
Since the exterior angle of a triangle is 120 degrees, change the angle to 120

and you’ve gotten yourself a triangular spiral!

#Triangular spiral

import turtle, random

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

length = 4

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',

'Magenta', 'Violet', 'Pink']

for x in range(1,120):

 color = random.choice(colors)

 t.pencolor(color)

 t.forward(length)

 t.right(-120) #-120 so we get a triangle facing upward

Figure 12-4.  Random spiral

Chapter 12 Fun Mini Projects Galore!

273

 length += 4

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-5).

�Star spiral
Since the exterior angle of a star is 144 degrees, give your angle as 144 and

you’ve gotten yourself a star spiral!

#Star spiral

import turtle, random

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

length = 4

colors = ['Red', 'Brown', 'Green', 'Blue', 'Orange', 'Yellow',

'Magenta', 'Violet', 'Pink']

Figure 12-5.  Triangular spiral

Chapter 12 Fun Mini Projects Galore!

274

for x in range(1,130):

 color = random.choice(colors)

 t.pencolor(color)

 t.forward(length)

 t.right(144)

 length += 4

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-6).

�Circular spiral
A circular spiral is going to be a little different to the rest. Our length is still

going to be 4, but we’re only going to move forward by one point at a time

to get a circular shape, and I’ve made the angle 20 in this case. You can

change the angle to make your spiral closely knit and further apart.

#Circular spiral

import turtle, random

s = turtle.getscreen()

Figure 12-6.  Star spiral

Chapter 12 Fun Mini Projects Galore!

275

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

length = 4

colors = ['Red', 'Brown', 'Green', 'Blue']

for x in range(1,100):

 color = random.choice(colors)

 t.pencolor(color)

 t.forward(length)

 t.right(20)

 length += 1

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-7).

Figure 12-7.  Circular spiral

Chapter 12 Fun Mini Projects Galore!

276

�Project 12-5: Complex mandala –
completely automated
In this project, let’s draw a complex mandala with a for loop. This is going

to be randomly colored too. It’s going to look epic!

	 1.	 Let’s import the random and turtle modules and set

up the turtle screen and pen first. Next, let’s change

the pen size to 5 and speed to 0.

#Mandala

import turtle, random

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.speed(0)

	 2.	 Let’s create a list of colors next.

colors = ['Red', 'Blue', 'Green']

	 3.	 Then, we’re going to make our loop loop through

the 1 to 24 (1,25 as the range).

for x in range(1,25):

	 4.	 Let’s choose our random color and change the pen

to that color.

color = random.choice(colors)

t.pencolor(color)

	 5.	 Now comes the fun part. Mandalas are usually

complexly drawn circles, am I right? So, let’s draw

100-point circle for every iteration, but shift the

angle by a slight 15 degrees every time, so we get a

closely knit mandala design (you’ll see).

Chapter 12 Fun Mini Projects Galore!

277

t.circle(100)

t.right(15) #closely formed mandala

	 6.	 Finally, hide the turtles.

t.hideturtle()

turtle.hideturtle()

Run the preceding code, and you’ll get this (Figure 12-8).

Try changing the loop’s range, the radius of the circle, and the angle

to get different types of mandalas. You can literally create hundreds of

designs like this! 😊

�Project 12-6: Turtle race with loops
This is going to be a fun little game that demonstrates the sheer power of

for loops and Python’s random package. We’re also going to learn a bunch

of Turtle methods we skipped in the Turtle chapters. Excited? Me too!

Figure 12-8.  Complex mandala

Chapter 12 Fun Mini Projects Galore!

278

So, the concept is simple. We’re having three turtles, and we’re going to

conduct a race between them. That’s about it. When we’re done, it’ll look

like an actual, live race happening on our screen. How do we do that?

To start off, we need our players, and lucky for us, Turtle makes it easy

to create “turtles”.

	 1.	 Let’s import the turtle and random packages and set

up our screen first.

#Turtles

import turtle, random

s = turtle.getscreen()

	 2.	 Now, for our turtle, we aren’t going to go about this

the usual way. We’re going to create three separate

turtles with the turtle.Turtle() command, named

red, blue, and green. Turtle lets us do that. We can

create as many turtles as we want and place them

anywhere we want and make them draw different

things at the same time. Pretty cool, don’t you think?

	 3.	 Once we create a player (turtle), we’re going to

change its pen size to 5, the color of the ‘turtle’ using

the color() method, and the shape of the turtle to

‘turtle’ using the shape() method. You’ll see how

these works in just a second.

red = turtle.Turtle()

red.pensize(5)

red.color('Red')

red.shape('turtle')

blue = turtle.Turtle()

blue.pensize(5)

blue.color('Blue')

blue.shape('turtle')

Chapter 12 Fun Mini Projects Galore!

279

green = turtle.Turtle()

green.pensize(5)

green.color('Green')

green.shape('turtle')

	 4.	 Finally, let’s hide the main turtle that’s at the center

of the screen.

turtle.hideturtle() #hide the main turtle at the center

	 5.	 Right now, if you run the program, you won’t see

much. You’d only see the green turtle because that

was drawn last. To see the turtles separately, let’s

move them to their race positions. I chose arbitrary

values after trying out a lot of them. You can choose

any starting point you want.

#Make turtles move to position

red.penup()

red.goto(-250,150)

red.pendown()

blue.penup()

blue.goto(-250,0)

blue.pendown()

green.penup()

green.goto(-250,-150)

green.pendown()

	 6.	 Now, let’s run the program, and we’ll get this

(Figure 12-9).

Chapter 12 Fun Mini Projects Galore!

280

We have three turtle players, and they are in

position. Perfect!

	 7.	 Finally, let’s make them race! Create a for loop

that runs for 100 iterations. For every iteration,

make each of the turtle move forward by a random

number from 1 to 10. This way, we don’t know how

further any of the turtle will move, and there’s a real-

world racing feel to it.

#Make the turtles move

for i in range(100):

 red.forward(random.randint(1,10))

 blue.forward(random.randint(1,10))

 green.forward(random.randint(1,10))

That’s pretty much it. If you run the programs now, you’ll see three

differently colored lines moving at different paces on the screen and stop

in different points. There you have it. Your race (Figure 12-10)! 😊

Figure 12-9.  Turtles in position

Chapter 12 Fun Mini Projects Galore!

281

That’s it for our mini projects! Hope you had fun creating them.😊

�Summary
In this chapter, we looked at six different, interesting and fun, mini

projects. We brushed up the concepts we learned in the previous chapters

while creating colorful mini projects. We also learned about creating

algorithms to solve problems and puzzles in programming.

In the next chapter, let’s learn how to do True automation with

functions, how to get arguments to our user-defined functions, how to save

time and a lot of lines of code with functions, and a lot more.

Figure 12-10.  Turtles racing

Chapter 12 Fun Mini Projects Galore!

283© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_13

CHAPTER 13

Automate with
Functions
In the previous chapter, we took a break from all the learning and creating

more fun mini projects. Now that we’re energized, let’s go back to learning

for a couple more chapters, shall we? 😊
In this chapter, we’ll be looking at a very interesting concept. We had

an introduction to automation in Python using loops, but in this chapter,

let’s look at True automation with functions. It works like magic. You’ll see.

�True automation

https://doi.org/10.1007/978-1-4842-6812-4_13#DOI

284

Why do I call it that? We already looked at loops, and they did plenty of

automation on their own. We created full-blown shapes with just a few

lines of code, am I right? So, why do we need functions?

Well, what if you need to repeat the code? For example, let’s bring

back the code we wrote in our loops chapter. Remember how we

created a program that creates a shape based on the inputs we give it?

We had to run the program multiple times to draw different shapes.

What if I want to draw different shapes from the same run of the

program? What if I want to give multiple inputs, so my program draws

each shape, one after the other, while erasing the previous shape? How

would you do that?

You’d probably have to write the same code multiple times, with

different inputs for angle and sides, am I right? So, if you wanted to draw

five shapes, you need five for loops, one after the other, with a clear()

method between each loop. That’s too long! What if we can shorten this as

well?

With functions, you certainly can! You can create your “for loop” with

something called a “function”. We’ve been using a lot of functions so far.

It’s just that, we call them pre-defined methods because they were already

created in Python. But now, you can create your own functions. How

exciting is that? You’ve become such an experienced programmer that you

can now create your own functions, call them, send arguments, automate,

and so on.

Now that your “for loop” is within your function, you can do something

called “calling the function” and give different values every time to make

sure that your for loop draws a different shape every time. I’ll teach you

how to do exactly that in just a moment.

But for now, let’s learn how to write a basic function.

Chapter 13 Automate with Functions

285

�Our first function
Every function has two parts. There’s the function definition, which has

the code that you want executed multiple times. Then, there’s the function

call, which is the line of code that literally “calls” the function definition. It

might send arguments/values that serve as input to your function.

But to start with, let’s create a function without arguments so you

understand how they work at their base.

So, functions have a definition, don’t they? So far, we’ve noticed that

Python is very intuitive. Its syntax makes sense. “if” means the English

word If; and “while” means something is going to go on for a while,

hence a loop; and so on. Similarly, “def” means you’re creating a function

definition.

Just mention “def”, the name of the function you are creating, followed

by parenthesis and a colon, as usual. Then, in the next line, add your lines

of code after an indent. It’s as simple as that!

Let’s create a function that prints ‘Hello there!’ when we call it. We

name our functions so we can call them later on. We’ve called many pre-

defined functions like len() and join(), right? The concept is the same for

the functions you create: the user-defined functions. I’m going to name my

function greet() because that’s what it’s going to do, greet the person who

calls it. 😊

def greet():

 print('Hello there!')

Great! We have our function. Let’s run it.

Crickets…nothing happens. ☹ Why?!

Ah right, we haven’t called it yet! How do we do that? Well, how did

we call our pre-defined functions? The format is the same. The function’s

name, followed by parenthesis. That’s it!

Chapter 13 Automate with Functions

286

Let’s do things properly now. A function definition, followed by a

function call, just like it should be.

def greet():

 print('Hello there!')

greet()

Run the program now, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/functions.py

Hello there!

Ahah! We got it.

�Why do we need functions?
But what’s the use of a function? I’m confused. Are you? It does what we’ve

been doing all the while without adding extra lines of code to create and

call the function.

Well…what if I want to greet my user five times and not one time.

Maybe there are five people in the group? Before now, I would have added

five print statements. But now, I can just add five function calls, like this,

and the function will be called, and “Hello there!” would be printed every

single time. Cool!

greet()

greet()

greet()

greet()

greet()

Chapter 13 Automate with Functions

287

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/functions.py

Hello there!

Hello there!

Hello there!

Hello there!

Hello there!

We got it! Or did we? What’s the use of this either? We still created five

lines of code. We would have done that anyway. We saved neither time nor

space. Bummer!

�Do different things every time!
You’ll understand the true use of function when you send different values

to it every time you call it. Let’s change our greet() program in such a way

that it greets a person every time it calls.

Now that I want the function to greet the person with their name every

time, I need to let my function know what their name is, am I right? How

do I do that? Maybe my function can receive it while it’s being called? Yes!

You can include the name of the parameter or parameters (you can send

as many as you want) you send inside of the parenthesis while you create

your function.

Okay, pause! Parameter? Argument? Which is which? Not to worry. It’s

all the same, really, but if you want to be specific, the values you send from

your function call are called parameters, and the values you receive in your

function definition are arguments. Simple, right? You’ll understand better

once we look at our example.

Chapter 13 Automate with Functions

288

�Create (define) your functions
Let’s see how that works:

def greet(name):

 print('Hello {}!'.format(name))

Look at that! I received the parameter “name” within my parenthesis,

and then I used it in my print statement. This is not a variable, per se, but

it acts like it. You can name your parameter anything you want. Once we’re

done with this example, why don’t you change the name of your parameter

from “name” to “n” and see if it still works the same?

Now that we’ve created our definition, let’s create the rest of the

program. Let’s create a variable name and get the input. Then, let’s call

the greet() function, but this time with the name of the argument “name”

inside the parenthesis.

name = input("What's your name?")

greet(name)

Nice! Don’t be confused by the same “name”. I just made the name of

the variable and the name of the parameter the function receives the same,

so you don’t get confused. But the parameter name can be anything you

want, and your program would still work the same.

Run the preceding code and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py

What's your name? Susan

Hello Susan!

Look at that! It works!

Chapter 13 Automate with Functions

289

�You can reuse your code!
Now, I’m going to show you the real use of functions. The real use of

functions lies in the fact that you don’t need to repeat the same lines of

code over and over again.

So, let’s create a function called “calculation” that calculates the

addition, subtraction, division, and multiplication of any two numbers it

receives. Alright?

So, it’s going to receive two numbers, n1 and n2, as parameters. I’m

going to do the calculations and print the results in four separate lines:

def calculate(n1,n2):

 n1 = int(n1)

 n2 = int(n2)

 add = n1 + n2

 sub = n1 - n2

 div = n1 / n2

 mul = n1 * n2

 print('''Addition: {}

Subtraction: {}

Multiplication: {}

Division: {}

 '''. format(add,sub,mul,div))

In the preceding lines of code, I received the two numbers as the

parameters n1 and n2. Then I converted them to integers because I’m

going to receive the numbers using the “input()” method, and those values

are strings by default. Then, I’ve done the calculations and finally printed

everything out using the multi-line string quote.

Now comes the part I was talking about. Now that we’ve created the

calculate function, we can call it any time we want. What if we want the

calculations done three times? Before we discovered functions, we would

Chapter 13 Automate with Functions

290

have written the same lines of code multiple times because there is no

other way to receive different inputs and do the same calculations with

different values.

But now, we have a way!

calculate(input("Enter the first number"),input("Enter the

second number"))

calculate(input("Enter the first number"),input("Enter the

second number"))

calculate(input("Enter the first number"),input("Enter the

second number"))

I’ve created three function calls where each of the function calls has

two arguments which are nothing more than input statements.

Let’s run those:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py

Enter the first number 10

Enter the second number 5

Addition: 15

Subtraction: 5

Multiplication: 50

Division: 2.0

Enter the first number 5

Enter the second number 10

Addition: 15

Subtraction: -5

Multiplication: 50

Division: 0.5

Enter the first number 100

Enter the second number 20

Chapter 13 Automate with Functions

291

Addition: 120

Subtraction: 80

Multiplication: 2000

Division: 5.0

Look at that! With the same few lines of code, I was able to do three

different set of calculations without resorting to running the program three

times like we usually do.

Now this is the true use of a function. True automation!

�No arguments?
But be careful while sending arguments in your function calls. If you don’t

send the number of arguments your function definition is expecting, you’ll

end up with an error while running the function. This holds true if you

send lesser number of arguments or more arguments.

def greet(name):

 print('Hello {}!'.format(name))

For the above function:

greet()

a call with no argument will give this error:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py

Traceback (most recent call last):

 File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py", line 3, in <module>

 greet()

TypeError: greet() missing 1 required positional argument:

'name'

Chapter 13 Automate with Functions

292

The function call is missing one required argument.

A call two arguments on the other hand:

greet(name1,name2)

You’ll receive the following error:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py

Traceback (most recent call last):

 File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py", line 3, in <module>

 greet(name1,name2)

NameError: name 'name1' is not defined

The argument is not defined! So, always make sure that the number of

arguments matches the number of parameters in the function definition.

�Give an answer
So far, we’ve just printed things out. But what if we need an answer?

Let’s say I have an expression, and I’m using the add() and mul()

functions to get the result of addition and multiplication on my

numbers. But then, I want to, let’s say, divide them all. How can I do

that when I don’t know the result of the operation? Printing the result

isn’t always enough, is it?

Python has a simple solution for this as well! Just return the result.

Simple as that. Use the “return” statement, and return your result, and it’ll

be received in your function call. Then, you can either assign the function

call to a variable and use the result or use the function call as a value in

itself.

Chapter 13 Automate with Functions

293

Confused? Don’t be, my dear. Yet another fun activity is on its way to

make you understand the concept.

Let me first create two functions, addition() and multiply(). They

receive parameters n1 and n2, respectively, and perform addition and

multiplication of the two numbers.

def addition(n1,n2):

 add = n1 + n2

def multiply(n1,n2):

 mul = n1 * n2

But I can’t use these values, can I? So, let me return them.

def addition(n1,n2):

 add = n1 + n2

 return add

def multiply(n1,n2):

 mul = n1 * n2

 return mul

Now, I’ve returned the results of the addition and multiplication of the

numbers. Alternatively, you can just perform the operation in the return

statement, like this:

def addition(n1,n2):

 return n1 + n2

def multiply(n1,n2):

 return n1 * n2

You’ll save lines of code if you do it like this. This will only work if your

entire function just has one line of code.

Chapter 13 Automate with Functions

294

Alright, now that we have our functions ready, let’s use them!

num1 = input("Enter your first number: ")

num1 = int(num1)

num2 = input("Enter your second number: ")

num2 = int(num2)

mul = multiply(num1,num2)

add = addition(num1,num2)

calc = mul /add

print("{} / {} = {}".format(mul,add,calc))

In the preceding lines of code, I received two numbers as inputs and

converted the strings to integers. And then, I created a variable called

“calc” which divides the results of the multiplication of those numbers by

the addition of those numbers.

Instead of performing the operation on there, I just received the

values in the variables mul and add. Technically, this is all we need

because the return statements in those functions will return the result

of the operations to the function calls, and then they can be used in the

“calc” operation.

Shall we check if this works?

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\functions.py

Enter your first number: 10

Enter your second number: 5

50 / 15 = 3.3333333333333335

Yes! It works! Why don’t you try the same with different operations?

Make it as complicated as you want to and have Math fun! 😊

Chapter 13 Automate with Functions

295

�No arguments? What to do!
Sometimes, you might not know what arguments to send. Maybe you just

want to test the function? But sending no arguments when the function

expects arguments will give us an error! What can we do?

Default arguments to the rescue!

You can assign “default” values to your arguments when you define

your function, so they work even if you forget to send any arguments when

you call your function. Would you like to test it?

In the following example, I’ve created a printName function that just

prints out the given name. I’ve called the function twice, once with an

argument and once without. Let’s see what happens.

def printName(name='Susan'):

 print('My name is {}'.format(name))

printName('John')

printName()

Run, and:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

My name is John

My name is Susan

It works exactly as we expected. The default argument gets ignored

when we actually send an argument from our function call. If we forget, it’s

used. Perfect! 😊

�Too many arguments!
Function hasn’t stopped making your programming life easy just yet. What

if you don’t know how many arguments you’re going to send? But you

want to receive all of them, without any error.

Chapter 13 Automate with Functions

296

Arbitrary arguments will help you do that. Instead of the name of the

argument, receive them with *listName and you can access each argument

as you’d access a list item. Let me show you how.

Let’s say I want to print the sum of the numbers sent by my function

call, but I don’t know how many I’d need added, so I’ll just receive them as

an arbitrary argument.

Since *listName is essentially a list, we can loop through it like we

would in a list.

def addNums(*nums):

 sum = 0

 for num in nums:

 sum += num

 return sum

Let me call my function with my arbitrary arguments now.

print(addNums(1,5,3,7,5,8,3))

print(addNums(1,3,5,7,9))

print(addNums(1,2,3,4,5,6,7,8,9))

When I run the program, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

32

25

45

Wow, this single feature gives so much freedom to do whatever I want

in my programs!

On the other hand, you can just send a list as an argument. That’ll

work too. Why don’t you try modifying the preceding program to send and

receive a list of numbers?

Chapter 13 Automate with Functions

297

Did you try? Did it look something like this?

def addNums(nums):

 sum = 0

 for num in nums:

 sum += num

 return sum

print(addNums([1,5,3,7,5,8,3]))

print(addNums([1,3,5,7,9]))

print(addNums([1,2,3,4,5,6,7,8,9]))

Great! 😊

�Global vs. local
So far, we’ve seen that once you create a variable, you can’t re-define it.

You can re-assign values to it, yes, for example:

for i in range(1,10):

 print(i,end='')

print()

print(i)

Look at the preceding program. I’ve created a variable “i” that prints

numbers from 1 to 9 in the same line. After the for loop is done, we print a

new line and the current value of “i”.

Let’s run the program, and we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

123456789

9

Chapter 13 Automate with Functions

298

Look at that! It’s 9 and not an error because once the “i” was created,

even though it was created inside for loop, it becomes accessible to the

entire program.

�Variables within functions
But that’s not the case with functions. Let’s create the same inside a

function now:

def printNum():

 for i in range(1,10):

 print(i,end='')

printNum()

print()

print(i)

Run the above, and:

>>>

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

123456789

Traceback (most recent call last):

 File "C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py", line 7, in <module>

 print(i)

NameError: name 'i' is not defined

Look at the preceding output. Things were fine while the function was

still being executed. It printed out our numbers in the order we wanted.

But then, when we tried to print the current value of “i” outside the

function, we get a “not defined” error. How’s that possible? The variable “i”

was defined inside the for loop in the function, was it not?

Chapter 13 Automate with Functions

299

Yes, it was, but it was local to that function and cannot be used outside.

So, any variable created inside of a function is called a local variable.

�Return local variables
If you want to use it outside of a function, you need to return it, like this:

def printNum():

 for i in range(1,10):

 print(i,end='')

 return i

i = printNum()

print()

print(i)

Now, run the program, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

123456789

9

It works! 😊

�Global variables
Similarly, any variable created outside of a function is called a global

variable, and if you want to use it inside a function, you need to use the

global keyword, like this:

Let’s say I want to create a global variable “sum”. Every time I send a list

of numbers, they get added to the “current” value of sum, so we essentially

get a sum of multiple lists. How do we do that?

Chapter 13 Automate with Functions

300

I’ve created a variable “sum” and assigned it a 0 at the start of the

program. Next, let me define the function. If I want to use the same

“sum” from outside the function, then I need to mention it as “global

sum” (without quotes) at the start of the function. It’s always good

practice to mention the global variables at the very top of a function

definition.

That’s it. The rest of the program is similar to the one we wrote before.

sum = 0

def addNums(nums):

 global sum

 for num in nums:

 sum += num

 return sum

print(addNums([1,5,3,7,5,8,3]))

print(addNums([1,3,5,7,9]))

print(addNums([1,2,3,4,5,6,7,8,9]))

Run this code, and you’ll get the following:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

32

57

102

The old value of sum was preserved, and it gets added to the new

values sent in the subsequent function calls. Sweet!

Chapter 13 Automate with Functions

301

Note  Order of creation and usage is very important in Python.
Before you call a function, define it. So, the function definition should
always be above the function call or you’ll get an error. Similarly,
before you use a variable, create it. So, your global variables should
be created before the function definitions inside which you want
them used.

�Lambda
A lambda is an anonymous function. It has no name, it can take any

number of arguments, but can only have one line of code. Sounds very

simple, doesn’t it? Why would we ever need it when we have our glorious

functions to work with?

In the future chapters, we’ll be working with events. These events

will let you call functions when you click a button on an app, press your

mouse button, click a keyboard button, and so on. Lambdas are very much

needed in those cases, so let’s look at them now (even if right now they’re

not of much use to us).

Chapter 13 Automate with Functions

302

A lambda’s syntax is quite simple:

variable = lambda arguments: line of code

Why do we assign our lambda to a variable? So we can call it, of course!

Let’s look at an example now:

sum = lambda num1,num2: num1 + num2

Now, we can call the lambda by calling sum(), like this:

print(sum(3,5))

print(sum(100,240))

Run the preceding lines of code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\condition.py

8

340

�Mini project – do your Math homework
with Python
We’re going to make this project simple. If we used a package like Tkinter,

we could make this a proper app. But we haven’t covered Tkinter yet, so

let’s just do it in the Shell.

Our calculator is going to be designed like this:

	 1.	 Different functions for each of the operations –

addition, multiplication, division, subtraction, and

modulus.

Chapter 13 Automate with Functions

303

	 2.	 We’re going to get input from the user. We’ll be

getting two numbers to start with and their choice

on which operation they want to perform.

	 3.	 Then, we’re going to print the result and ask them if

they want to continue using the calculator.

	 4.	 If the answer is “y” or “Y”, then we’ll ask them if

they want the previous result as one of the numbers

in the calculation. If “y” or “Y” for that as well,

then we’ll just ask one more input and ask for the

operation they want again.

	 5.	 The calculator can go on like this forever. When the

user answers “n” for continuation, we’ll break out of

the loop and end the program.

Interesting? Excited to get started? Me too! 😊

	 1.	 Let’s create the functions that do the operations

again. Since the function definitions need to be

created before they are called, let’s finish that first.

#Addition

def add(n1,n2):

 return n1 + n2

#Subtraction

def sub(n1,n2):

 return n1 - n2

#Multiplication

def mul(n1,n2):

 return n1 * n2

Chapter 13 Automate with Functions

304

#Division

def div(n1,n2):

 return n1 / n2

#Modulus

def mod(n1,n2):

 return n1 % n2

	 2.	 Now, let’s create a never-ending while loop, which

means the condition is always true until we break

out of the loop with a “break” statement.

	 3.	 Inside the while loop, we’ll ask the user to enter the

two numbers as inputs and convert the strings to

integers as always.

	 4.	 Then, we’ll ask for the operation. We’ll use an

if…elif…else statement to call the relevant function

and get the result.

#create a result globally

result = 0 #default value

repeat = 0 #if the user decided to reuse the result of

previous operation, this becomes 1

while(True):

 #if this is the first/new operation

 if(repeat == 0):

 #number1

 num1 = input('Your first number: ')

 num1 = int(num1)

 #number2

 num2 = input('Your second number: ')

 num2 = int(num2)

Chapter 13 Automate with Functions

305

 �#If the user asked to use the result of the last

operation in this one

 else:

 #number2

 num2 = input('Your second number: ')

 num2 = int(num2)

 #get the operator

 �op = input('''Enter any of the following numbers,

that correspond to the given operation:

Just the number, not the period.

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Modulus

''')

 op = int(op)

 #Call the relevant function

 if(op == 1):

 result = add(num1,num2)

 elif(op == 2):

 result = sub(num1,num2)

 elif(op == 3):

 result = mul(num1,num2)

 elif(op == 4):

 result = div(num1,num2)

 elif(op == 5):

 result = mod(num1,num2)

Chapter 13 Automate with Functions

306

 else:

 �print('You entered an invalid operation. Please

run the program again')

 break

 #print the result

 print('Answer: {}'.format(result))

 �again = input('Do you want to do another operation?

Enter Y or N: ')

 if((again == 'y') or (again == 'Y')):

 �reuse = input('Do you want the result of the

current operation to be the first number of the

next? Y or N: ')

 if((reuse == 'y') or (reuse == 'Y')):

 num1 = result

 repeat = 1

 else:

 repeat = 0

 else:

 print('Ok bye!')

 break

�Mini project – automated shapes – next
level
Loops were automation, but functions are supposed to be True

automation, aren’t they? Why don’t we see what they can do to our

automated shapes mini project?

I’m going to create a function called draw_shape() and place my code

inside. I’m going to accept two arguments inside my function: sides and

angle.

Chapter 13 Automate with Functions

307

If the sides are equal to 1, I’m going to draw a circle. Otherwise, I’m

going to draw a polygon. Simple as that.

For this project, I’m going to use another package called the time

package. With this, I can give a small delay of around 300 milliseconds

before the next shape is drawn so the user can see what’s going on:

	 1.	 Let’s import the turtle and time packages first.

import turtle

import time

	 2.	 Then let us set up turtle. I’m going to set the pen

color to red and fill color to yellow.

s = turtle.getscreen()

t = turtle.Turtle()

t.pensize(5)

t.color('Red','Yellow')

	 3.	 Then, I’m going to define the draw_shape()

function. At the start of the function, I’m going

to use the sleep() method of the time package to

basically stop the program for 0.3 seconds (300

milliseconds). Then, I’m going to clear the turtle so

any previous shape is erased before I draw the next

one.

def draw_shape(sides,angle):

 time.sleep(0.3)

 t.clear()

 t.begin_fill()

 #If sides are greater than 1, then it’s a polygon

 if sides > 1:

 for x in range(0,sides):

Chapter 13 Automate with Functions

308

 if(x == sides-1):

 t.home()

 break

 t.forward(100)

 t.right(angle)

 elif sides == 1:

 #circle

 t.circle(100,angle)

 t.end_fill()

 t.hideturtle()

 turtle.hideturtle()

	 4.	 I’m going to give multiple values in various function

calls. When you run this program, you’ll see these

shapes drawn in succession, with a 0.3 delay in

between.

draw_shape(4,90)

draw_shape(3,60)

draw_shape(5,50)

draw_shape(6,60)

draw_shape(8,45)

draw_shape(1,180)

draw_shape(1,360)

Chapter 13 Automate with Functions

309

The images you’ll get are shown in Figure 13-1.

Neat! 😊

�Summary
In this chapter, we looked at True automation with functions. We learned

all about defining functions, calling them, sending arguments to make our

functions dynamic, returning values back to the function calls, accepting

arbitrary arguments, and so much more. We also automated some of the

projects we did in the previous chapters.

In the next chapter, let’s do real-world programming like the pros do

it! We’re going to look at objects and imitating real-world scenarios in

programming.

Figure 13-1.  Automated shapes

Chapter 13 Automate with Functions

311© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_14

CHAPTER 14

Let’s Create
Real-World Objects
In the previous chapter, we looked at True automation with functions. We

looked at saving time, space, and lines of code with functions, defining

functions, calling them, sending arguments to our functions, using default

arguments, returning values back to our calling statement, and accepting

arbitrary arguments and lists as arguments. b

In this chapter, let us look at how to do real-world programming

with object-oriented programming (OOPs). We’ll be looking at

classes, the initialization function, self, user-defined properties and

methods, and creating objects on our classes. We will also look at

accessing our properties and functions and changing the values of our

properties.

https://doi.org/10.1007/978-1-4842-6812-4_14#DOI

312

�What is object-oriented programming?

Everything in Python is an object. It has its properties and methods

remember? This is how things are in the real world. Let’s take us, humans,

for example. We have properties, or attributes, like our height, weight, eye

color, hair color, and so on. Similarly, we have “methods”, as in we run,

walk, talk, do stuff, am I right?

Everything in Python mirrors our real-world objects. For example,

strings have properties like length, but methods like splitting, capitalizing,

and so on. Humans are a “group” under which there are individual human

beings with their own values (different hair color, weight, height, etc.).

Similarly, “strings” as such are a group under which you can create your

own individual strings with their own properties and methods.

That’s object-oriented programming in its core: real-world

programming. Instead of using the pre-defined objects and their methods

and properties, you can create your own objects for your projects. Do you

see the possibilities here? The world is your oyster now!

But this is a vast topic, and it’s impossible to cover everything in a

single chapter. I don’t want to confuse you too much either. You’re here

to learn Python and create fun projects, and we can create the projects in

Chapter 14 Let’s Create Real-World Objects

313

this book without OOPs (object-oriented programming). But I’ll give you

an introduction to OOPs so you understand the basics of it. Sounds good?

Alright then, let’s do it! 😊

�Let’s prove it!
I just said that everything is an object in Python, didn’t I? Why don’t we

prove it?

Let’s start with an integer (a number) and check its type.

num = 10

print(type(num))

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\oops.py

<class 'int'>

Interesting. In the next section, you’ll see that classes are how you

create objects in Python, so essentially, an integer is a class and the

variables that hold integers are objects. Alright, but what about the

remaining data types?

s = 'Hello'

print(type(s))

b = True

print(type(b))

f = 1.0

print(type(f))

def fName():

 pass

print(type(fName))

Chapter 14 Let’s Create Real-World Objects

314

Run the entire program, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\oops.py

<class 'int'>

<class 'str'>

<class 'bool'>

<class 'float'>

<class 'function'>

Whoa! They’re all classes! So everything is indeed an object in

Python. 😊

�Classes
Remember the groups I talked about earlier? If you want to create your

own objects, you need to create a group under which you can create those

objects. “Humans” are a group, and each human being is an individual

objects. Every human has a set of properties and methods that are

common to us, right?

Similarly, every group of objects will have a set of properties and

methods that are common to it, so let’s create a blueprint of that group and

create every object separately with its own set of values.

Confused? Don’t be. It’ll all be clear in a minute.

You need classes to create these blueprints.

To model the real world, let’s create a “Human” class with properties

and methods that mirror us, humans.

class Human:

 sample = 'Sample property value'

Chapter 14 Let’s Create Real-World Objects

315

That’s it! You have your first class. It’s not compulsory, but when

naming your classes, capitalize the first letter, so when you create your

objects, you can distinguish them better.

Alright. We have a class, but what next? Where are our objects? Well,

you need to create them. Why don’t we create a “human1” object?

human1 = Human()

It’s as simple as that. Now, you can access the property values inside

the class, like this:

print(human1.sample)

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/oops.py

Sample property value

It works! 😊

�Objects with their own values
So far, we’ve not created dynamic classes that change their property values

based on the objects we’re creating on them.

To do that, you need to use a pre-defined method of “class” called the

__init__() function. That’s two underscores before and two underscores

after init, followed by ().

With this method, you can send individual values for your objects as

you create them, so they get assigned to your class’s properties. Let’s see

how:

class Human:

 def __init__(self,name,age,hair,eye,pet):

 self.name = name

Chapter 14 Let’s Create Real-World Objects

316

 self.age = age

 self.hair = hair

 self.eye = eye

So, define the init function and accept the attributes you need when

creating the objects. Our attributes are going to be name, age, hair (hair

color), eye (eye color), and pet (name of their pet).

But that’s not all. There’s this special attribute at the start, “self”. What’s

that? Would you like to guess? What’s self? Yourself? Then it should be the

object that’s being created, shouldn’t it? Absolutely!

“Self” is the object being created, and we’re creating properties

for that object and assigning the accepted values to it. You can name it

anything you want, as long as you follow the variable naming convention.

Programmers use “self” so they know what it is.

Alright, now that we’ve created a “proper” class, let’s create our object.

human1 = Human('Susan',8,'brunette','blue','Barky')

Our first object is “human1” and it’s going to be an object of the

“Human” class, and we’ve sent a bunch of properties for the same. Make

sure to send the properties in the order your init() function expects them,

or you might end up with an error.

You can create any number of objects like that. Let’s create another

one.

human2 = Human('Johny',10,'blond','green','Boxer')

This looks similar to a regular function call so far. Why use classes

then?

Well, for one, you don’t need to return anything to access the

properties.

print(human1.name)

print(human2.eye)

Chapter 14 Let’s Create Real-World Objects

317

Your object’s name, followed by a period and the property, and you’re

good to go.

Let’s run this, and we’ll get the following:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/oops.py

Susan

green

Yes! We got what we wanted.

�Manipulate your objects
Unlike functions, we can change the property values of your objects as

well.

human2.eye = 'brown'

print('Eye color: {}'.format(human2.eye))

Run everything, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/oops.py

Susan

green

Eye color: brown

Look at that. The value changed.

So, objects are a mix between dictionaries and functions. They’re the

best of both worlds, and more! 😉

Chapter 14 Let’s Create Real-World Objects

318

Just like you do in dictionaries, you can use the “del” keyword to delete

properties of objects, or just the entire object, like this:

del human2.eye

del human1

But unlike your data structures (lists, dictionaries, etc.), you can’t loop

through an object. ☹

�Objects do stuff
When I started this chapter, remember what I said? Objects have

properties (just like we do), and they do stuff or stuff is done to them (just

like it is with us). So, why don’t we add a bunch of “methods” that make

our objects do stuff?

You’ll be creating your regular old functions, but just inside your class

this time.

Let’s make our objects talk, walk, and run, okay? Or just simulate the

same.

class Human:

 def __init__(self,name,age,hair,eye,pet):

 self.name = name

 self.age = age

 self.hair = hair

 self.eye = eye

 def talk(self):

 print('{} talking'.format(self.name))

 def green(self):

 print('Hello there!')

Chapter 14 Let’s Create Real-World Objects

319

 def walk(self):

 print("{} is walking".format(self.name))

human1 = Human('Susan',8,'brunette','blue','Barky')

human2 = Human('Johny',10,'blond','green','Boxer')

Did you notice how we used “self.name” to access the object’s name

from within the class? “self” is the object that’s calling the function. Every

function needs to accept “self” to indicate the object calling it, regardless

of whether you use its property values inside the function or not, or you’ll

get an error when you run the program.

Let’s call our functions now and see what we get:

human1.talk()

human1.greet()

human2.walk()

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/oops.py

Susan talking

Hello there!

Johny is walking

Whoa, nice! 😊

�Turtle race with objects
Now that we know how classes work and how to create objects with them,

why don’t we try to replicate our turtle race with them? I’m sure we can

make our code simpler now.

Chapter 14 Let’s Create Real-World Objects

http://self.name

320

We’re going to create a Turtle class that creates our turtles, with a

user-defined move() method that moves the turtle randomly (within the

range 1–10).

	 1.	 Let’s start by importing the turtle and random

modules and setting up the turtle screen. Let’s also

hide the main turtle while we’re at it.

import turtle, random

s = turtle.getscreen()

turtle.hideturtle()

	 2.	 Let’s create a Turtle class. The initialization function

will accept color, x, and y to change the turtle color

and move the turtles to the starting positions.

class Turtle:

 def __init__(self,color,x,y):

	 3.	 Then, let’s define self.turtle. Why self.turtle and not

self? Well, “self” refers to the object we’re creating,

so if we want a turtle created on that object, we need

to create a wrapper object, which in my case is self.

turtle. You can name it anything you want.

This way, the original object won’t be re-assigned

and we still get to create a turtle.

self.turtle = turtle.Turtle()

	 4.	 Let’s change the pen size, color, and shape next.

self.turtle.pensize(5)

self.turtle.color(color)

self.turtle.shape('turtle')

Chapter 14 Let’s Create Real-World Objects

321

	 5.	 Finally, let’s move the turtle to the given position.

self.turtle.penup()

self.turtle.goto(x,y)

self.turtle.pendown()

	 6.	 Now that we’re done with the init() function, let’s

create a move() function. It’s just going to move

the turtle forward randomly, just like we did in the

original program.

 def move(self):

 self.turtle.forward(random.randint(1,10))

That’s it for our class!

	 7.	 Now, let’s create our objects. I’m going to create

three objects, red, blue, and green, with their

relevant values.

red = Turtle('Red',-250,150)

blue = Turtle('Blue',-250,0)

green = Turtle('Green',-250,-150)

	 8.	 Now, within a range of 0–99 (100 iterations), let’s call

our move() function on all three of our turtles for

every iteration.

for i in range(100):

 red.move()

 blue.move()

 green.move()

Chapter 14 Let’s Create Real-World Objects

322

That’s it! Does our program work (Figure 14-1)?

Of course, it did, and red won! 😊

�Summary
In this chapter, we looked at how to do real-world programming

with object-oriented programming (OOPs). We looked at classes, the

initialization function, self, user-defined properties and methods, and

creating objects on our classes. We also looked at accessing our properties

and functions and changing the values of our properties.

In the next chapter, let’s look at files, how to create them, open them,

and modify them.

Figure 14-1.  Turtle race with classes

Chapter 14 Let’s Create Real-World Objects

323© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_15

CHAPTER 15

Python and Files
In the previous chapter, we learned how to create real-world objects in

Python using classes. We learned how everything was an object in Python.

Then, we learned how to create classes in Python and use those classes to

create similar objects without writing too many lines of code.

In this chapter, let’s look at file handling in Python. We’ll look at

creating, reading, writing, and manipulating the files in your system right

from inside your Python code.

�Why files?

I can hear you groaning. Yet another boring theoretical topic, you’re

probably saying. Well, don’t dismiss files so quickly. It’s a very easy topic,

and it can open up too many possibilities to count.

https://doi.org/10.1007/978-1-4842-6812-4_15#DOI

324

Once you learn this, real-world programming is yours for the taking.

You can start including the files in your system in your programs, and you

can create them from within your program, read them, manipulate them,

erase them completely, and so much more. If you want to create full-on

apps that work on your laptops and computers, then you’d do well to learn

files.

This is a quick chapter, so don’t worry much, and as usual, we’ll end

it with a fun and, this time, easy mini project. Also, from the next chapter,

you’ll be creating all the big projects, mini projects, apps, and games you

could ever want to create, so all the more reason to finish this chapter fast,

don’t you think? 😉

�Opening and reading existing files
Let’s start simple. Before you do something with a file, you need to retrieve

it and save it in a variable, so you can later read it, write to it, and so on and

so forth.

Use the “open” method and specify the file name inside of either

double or single quotes. You need to specify the entire file name, including

the relevant extensions like .py, .txt, and so on.

But, if the file exists in the same folder as your script, then you can get

away with just mentioning the name of the file with its extension, like I’ll

be doing in our example.

I’m going to ask my program to retrieve the introduction.py file, and

since that’s in the same folder as the files.py file I created for this chapter, I

don’t need to specify the entire path.

But what if my path is in a different folder? How can I get it? :O

It’s a very simple process. Go to your File explorer in Windows, or its

equivalent in Mac, as shown in Figure 15-1.

Chapter 15 Python and Files

325

Click where I’ve placed the arrow, that is, right after the last folder

name. You’ll get the path, like this (Figure 15-2).

Figure 15-1.  Locate your file

Figure 15-2.  Get your file path

Chapter 15 Python and Files

326

Now, you can copy the path. But you can’t use it as it is. You need to format

the path, along with the file name, in the following format. In the preceding

example, we’re trying to get the path of the file “introduction.txt” which is in

the path G:\Python. To use it in my program, I’ll format it like this:

G:\\Python\introduction.txt

And then, I’ll place the entire thing within quotes and use it. It’s as

simple as that! 😊
Once you have the open() method ready, assign the same to a variable.

Why? You’ll see in just a minute!

file = open(' introduction.py')

Now that we have our file stored in the variable “file”, we can start

manipulating it.

What do you want to do first? Shall we read it? Print what’s inside?

Okay, let’s do that!

Can you guess how reading a file will go? Maybe Python has a read()

function we can use? Yes, you’re right! That’s exactly what we have.

But, before you can use the read function, you need to specify to your

program that that’s exactly what you’ll be doing. So, while you’re retrieving

your file, you need to add a second argument that specifies that you’re

retrieving it in a read-only format and that you’ll be reading and possibly

printing what’s inside later.

Chapter 15 Python and Files

327

Let’s change our line of code:

file = open(' introduction.py','r')

As you can see in the preceding code, I’ve included a second argument

‘r’ within quotes. That’ll let my program know that I’m just retrieving the

file to read it, and nothing else.

Now, we can actually read our file and print it. Do you want to try?

file.read()

Let’s run the above code, and…

Crickets….

Nothing happened. :O Why?! Well, you asked your program to read it,

and it did just that. You didn’t ask it to print the results, did you? You need

to be very clear with computers. They need exact instructions.

So, let’s print our read operation:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/file.py

print('Hello there!')

print('My name is Susan Smith.')

print('I am 9 years old.')

print('I love puppies! :)')

Look at that! The entire content (code) inside the introduction.py file

was printed out. Did you notice something? Even though the file contains

code, and it was printed in the Shell, those print() lines weren’t executed.

They were printed as such.

Why is that? Well, in this instant, your file is considered a normal text

file, and the lines of code are content inside your file. That’s all. If you want

the preceding code executed, you need to go about it the usual way and

not open or read it via the file operations.

Chapter 15 Python and Files

328

You can ask your program to print just a specified number of

characters, rather than the whole thing too. Let’s say I want only the first

50 characters (individual letters, numbers, special characters, and spaces)

printed out, and nothing else. Then all I have to do is specify 50 within the

parenthesis, like this:

print(file.read(50))

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/file.py

print('Hello there!')

print('My name is Susan Smith.')

Count the characters in the preceding result, and you’ll come up with

50, including the spaces and the new line as separate characters.

Why don’t you try with different numbers and see what you get?

�Line by line
What if you don’t want the entire file printed and you don’t want to count

characters either? What if you just want the first line? Then, you can use

the readline() method to read through lines. Let’s replace read() with

readline().

print(file.readline())

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/file.py

print('Hello there!')

Yay! Just the first line.

Chapter 15 Python and Files

329

What if I want more lines printed? Can I specify 2 within the

parenthesis like I did with read()?

print(file.readline(2))

Run the preceding code, and you’ll get this:

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/file.py

pr

Ah, bummer. It thought I was asking for two characters again. I guess

the only way to go about it is to specify another readline(). Shall we try?

print(file.readline())

print(file.readline())

We have two readline() methods now. Does it work?

= RESTART: C:/Users/aarthi/AppData/Local/Programs/Python/

Python38-32/file.py

print('Hello there!')

print('My name is Susan Smith.')

Yes! We have two lines now, with a huge space between them because

they were printed in two different prints.

If you’d like to read and print out the entire file, then just loop through

it, like you would loop through a list. For every iteration of the loop, your

program will print one line from your file.

file = open('introduction.py','r')

for i in file:

 print(i)

Chapter 15 Python and Files

330

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\file.py

print('Hello there!')

print('My name is Susan Smith.')

print('I am 9 years old.')

print('I love puppies! :)')

That’s the entire file!

�Create new files
You can use either “x” or “w” attributes in the open() method to create new

files. “w” just creates a file if it does not exist but opens an existing file, but

“x” is exclusively for creating new files. “x” returns an error if you try to

“create” an existing file.

Let’s create a file newFile.txt now.

file = open('newFile.txt','x')

Our file was just created! Run the program again, and you’ll get an

error, since the file now exists.

�Manipulate files
You can add to files using the write method. In order to do that, you need

to open the file you want to add text to in either the write, “w”, or append,

“a”, mode.

Chapter 15 Python and Files

331

The “write” mode will overwrite any text currently on the file. The

append mode will append the given text at the end of the file.

Let’s try both, shall we?

I’ve opened the file we created in the last section in the “write” mode.

file = open('newFile.txt','w')

Now, let’s use the “write” method to add a few lines of text to our file,

separated by new lines “\n”.

f.write('Hi there!\nThis is a new file.\nWe just added text

to it!')

Now, let’s read our file to see if we get the same.

file = open('newFile.txt', 'r')

print(file.read())

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\file.py

Hi there!

This is a new file.

We just added text to it!

Whoo! 😊
Let’s try appending now.

file = open('newFile.txt','a')

file.write('\nThis is the last line')

file = open('newFile.txt','r')

print(file.read())

Chapter 15 Python and Files

332

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\file.py

Hi there!

This is a new file.

We just added text to it!

This is the last line

This is a very powerful feature that can make programming desktop

apps, or any apps at all, very easy for you!

�Mini project – introduce with files
This is going to be a very simple project. We are going to create a text file

called introduction.txt in a folder of your choice. We are going to write our

introduction to that file via our Python code, and finally, we’re going to

print that introduction in our Shell. Simple! 😊
Shall we get started?

	 1.	 I’m going to create my file in the following path:

G:\\Python\introduction.txt

I can also use “x”, but I’m using “w” so I wouldn’t

have to open the file in write mode again.

f = open('G:\\Python\introduction.txt','w')

	 2.	 Then, I’m going to write Susan’s introduction to it:

f.write('''Hi, I'm Susan.

I'm 9 years old.

My puppy's name is Barky.

He loves me very very much! :)''')

Chapter 15 Python and Files

333

	 3.	 Now, let’s print it. Let’s open our file again, but

this time in read mode, read it while printing its

contents, and finally close it.

f = open('G:\\Python\introduction.txt','r')

print(f.read())

f.close()

Now, when we run the program, we’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\file.py

Hi, I'm Susan.

I'm 9 years old.

My puppy's name is Barky.

He loves me very very much! :)

Perfect! 😊

�Summary
In this chapter, we learned all about files, creating them from your Python

code, reading them, storing them in variables, manipulating files from

inside your programs, and so much more.

In the next chapter, let’s learn about Tkinter, a Python package that lets

you create desktop apps.

Chapter 15 Python and Files

335© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_16

CHAPTER 16

Create Cool Apps
with Tkinter
In the previous chapter, we learned all about creating, opening, and

manipulating your computer’s files in Python. In this chapter, we’re

officially back to having fun with Python. You’re going to learn about

Tkinter, which is a package that can be used to create desktop apps (GUI –

graphical user interface) with Python. You’ll learn how to create buttons,

labels, boxes, and so much more.

�Tkinter – let’s set it right up!
Remember what we did when we worked with Turtle? Some of the

processes of working with Tkinter are the same. You’re a pro programmer

now. You know the basics of Python already. You’ve finished an entire

chapter of mini projects.

So, in this chapter, I want you to wear your big boy/girl pants. I’m not

going to give a lot of hands-on explanations because you know a lot of

this stuff already. We’ll be covering a lot in this chapter, and at the end of

it, you’ll have beautiful apps just like the ones you see in your system, and

you’ll be armed with the tools to create more of them. Excited? Me too!

Let’s get started. 😊

https://doi.org/10.1007/978-1-4842-6812-4_16#DOI

336

Just like with turtle, we need to import Tkinter first. Let’s open a new

script file. Don’t save it as “tkinter.py”. There’s already a file like that in

your Python installation, and it contains the code for all the pre-defined

methods you’ll be using to create your apps. I’m going to save my file as

tkPrograms.py.

Let’s first import Tkinter.

from tkinter import *

I’ve asked everything to be imported from the Tkinter package. “*”

means everything. Now, we need to create a window that would contain

our app. I’m going to call mine w, and the function I need to call is Tk():

w = Tk()

Let’s run this and see what we get (Figure 16-1).

Look at that! A nice little window. It also has buttons you can use to

minimize, maximize, and close the window. Why don’t you try them out?

Figure 16-1.  Tkinter screen

Chapter 16 Create Cool Apps with Tkinter

337

The title is a bit strange, isn’t it? It just says tk. I don’t like it! I want

mine to say “My first Tkinter app”. How do I change that? Well, by calling

the title() method on the window we just created, of course!

w.title('My first Tkinter app')

Run this again, and see what you get (Figure 16-2):

Look at that! It says what I wanted now. I resized the window a bit so

I could see the entire title. This is beautiful. I just wrote three small lines

of code, and I have a nifty little window now. Can you see how powerful

Tkinter is? :O

Alright then, that’s it for the setup. Next, let’s see how to create widgets

and place them on this window. This is where things get interesting!

�Labels, buttons, and packing them
Tkinter has a lot of “widgets” you can create to make the app come alive.

These widgets range from buttons to text boxes to radio buttons. Once you

create a widget, you need to place it on the window. So, there are usually

two steps to the process. Let’s look at how to create labels and buttons

now, shall we?

Figure 16-2.  Title change

Chapter 16 Create Cool Apps with Tkinter

338

To create labels, you need to use the “Label()” method and mention

the window you want the label placed it in the first attribute and the text

you want in the label within the “text” attribute. I’m going to create a

variable label1, and I’m going to place my label inside of it.

label1 = Label(w,text='My Label')

If I run this, I’ll end up with a blank window again. Why? Remember

what I told you earlier? Widgets need to be placed inside the windows to

be visible. How do we do that?

One of the simplest ways to do that is by using the pack() method. It

just packs or shoves the widget you create into the window, and it resizes

the window to the size of that widget.

This is why I placed my label inside a variable, so I can call the pack()

method on the variable. It just looks neat that way.

label1.pack()

Now run everything, and see what you get (Figure 16-3).

There you go! A tiny little window with just my label in it.

If you don’t want two lines of code, you can write the same like this,

and it’ll work:

Label(w, text='My Label').pack()

I’m going to stick to the first method because it’ll look neat once we

start designing the label and adding a lot of attributes to it. I can also

reference the same label later on to change its attribute values. It’s just

more dynamic in a real-world sense.

Figure 16-3.  Label

Chapter 16 Create Cool Apps with Tkinter

339

But did you notice something? Whenever I run the program, my shell

does open my window, but then it goes back to its next prompt (<<<),

which means it considers the output shown. That’s not good! When the

window’s open, I want my program still running. Otherwise, I might not be

able to run real-world apps later. So, there’s something you can do to make

sure your prompt is open until you actually close the window. You can call

the mainloop() function on your window to do this. Add this piece of code

to the very end of your script.

Now, run again, and you’ll notice that our Shell hasn’t moved on to its

next prompt. Good!

Alright. Can we spruce things up a bit now? Why don’t we play with my

label’s size and colors?

Before we get started though, let’s look at our options as far as colors

are concerned. Tkinter recognizes a ton of color names, and you can find

a list of them here, in their official site: www.tcl.tk/man/tcl8.5/TkCmd/

colors.htm.

If you want to visualize the colors though, you can use this site: www.

science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter.

The second link is to a third-party site, but still useful.

So, now that we’ve armed ourselves with the colors, let’s get started!

You can change the size of the label by using the width and height

attributes. They change the width and height of your label, respectively.

But, you’ll notice something different when you use these attributes. Let’s

say the values of both these attributes are 10, but you’ll notice that the

height of the label is bigger than the width of the label. That’s because the

values aren’t considered in pixels, but by the size of the character “0”. Its

width is twice as small as its height, isn’t it? That’s what you’re seeing. So,

consider this while giving your values.

Also, you can change the color of the label with the bg attribute and

the color of your label text with the fg attribute. Let’s combine them all

together and design our label now!

Chapter 16 Create Cool Apps with Tkinter

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter
http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

340

label1 = Label(w, text='My Label', bg='Salmon4', fg='gold2',

width=10, height=5)

label1.pack()

I’ve changed the background color to ‘Salmon4’, the text color to ‘gold2’,

the width to 10 character units, and the height to 5 character units. Now

let’s run the program (Figure 16-4)!

Whoo! Look at how the window expanded to encompass my new label.

It’s perfect. 😊
There are other attributes you can use, but let’s look at that in the

later section of this chapter. Now, what about buttons? It follows the same

procedure. Use the Button() method, and the attributes are the same.

button1 = Button(w, text='My Button', bg='steel blue',

fg='snow', width=10, height=5)

button1.pack()

Run everything, and see what you get (Figure 16-5).

Figure 16-4.  Change the label’s size and colors

Chapter 16 Create Cool Apps with Tkinter

341

You’ll find that you can actually click the button. It’s animated, unlike

the label.

But that’s not where it ends. You can make your system do something

when you click the button. Using the command attribute, I can call a

function whenever my button is clicked.

def buttonClick():

 print('You just clicked the button! :)')

button1 = Button(w, text='Click Me!', bg='steel blue',

fg='snow', width=10, height=5, command=buttonClick)

button1.pack()

As you know, in Python, the function definition should always come

before the function call, in our case, the button. Let’s create a function

buttonClick() that prints a message. That’s it.

Figure 16-5.  Button

Chapter 16 Create Cool Apps with Tkinter

342

Now, in our button, we’ve added a new attribute, “command”, and the

value is the name of our function. Just the name, you don’t have to add the

brackets. Now, pack the button and run the program, and you’ll get the

button, as usual. Click it, go back to the Shell, and you’ll see this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

You just clicked the button! :)

Whoa! It works! 😊

�Packing in detail
So far, things look ugly. Let’s be honest here. This is not how we create an

app. Don’t panic though. The pack() method has a few more tricks up its

sleeves.

Before we look at those though, let’s look at something called the

“Frame”. The frame isn’t exactly a window. We already created one of

those. But with frames, you can group your widget and then organize them

in the way you want.

Let’s create a frame around our label and button. We can give a

background color (bg), width, and height for the same as well, but the

width and height are in pixels in this case, so make the numbers bigger.

frame1 = Frame(w)

frame1.pack()

label1 = Label(frame1, text='First button')

label1.pack()

button1 = Button(frame1, text='Button1')

button1.pack()

Chapter 16 Create Cool Apps with Tkinter

343

label2 = Label(frame1, text='Second button')

label2.pack()

button2 = Button(frame1, text='Button2')

button2.pack()

As you can see in the preceding code, I created a frame and then two

labels and two buttons within that frame. So, the root window of frame1 is

“w”, the original window, but the root window of the remaining widgets is

our frame1. This way, we can create as many frames as we want within the

same window. For now, let’s just run this, and see what we get (Figure 16-6).

Nothing seems to have changed. ☹ The pack() method to the rescue!

The pack() method is a geometry manager, and it packs your widgets

within its parent window (frame1 in our case) in rows and columns.

To start, let’s look at the fill option. You can make your widget fill the

parent widget with this option.

Right now, the window that pops up looks like its encompassing the

entire frame (Figure 16-7), but it’s not. If I resize it, it’ll add padding around

the frame.

Figure 16-6.  Pack geometry method

Chapter 16 Create Cool Apps with Tkinter

344

But if I want the frame to fill the main window, then I can use the fill

and expand options. Let’s start with “fill”. I can give three values here, X, Y,

or BOTH.

X fills up main window the horizontally and Y vertically, and BOTH

just fills the entire widget. Let’s see all three.

frame1 = Frame(w, bg='black')

frame1.pack(fill=X)

I’ve given the frame a background color so we can see the frame

separately.

Next, I’ll fill to Y:

frame1.pack(fill=Y)

Finally, I’ll change it to BOTH (Figure 16-8):

frame1.pack(fill=BOTH)

Figure 16-7.  Pack() resize issue

Chapter 16 Create Cool Apps with Tkinter

345

Fill works to an extent, but it still does not expand when the window

resizes. That’s because fill just lets Python know that it wants to fill

the entire area given to it. If we give BOTH, it’ll fill the entire area both

horizontally and vertically.

But, if we want it to fill the entire parent, that is, expand when the

parent expands, then we need the “expand” option. Make it True, and see

the magic.

frame1 = Frame(w, bg='black')

frame1.pack(fill=BOTH, expand=True)

Let’s try the same for X and Y:

frame1.pack(fill=X, expand=True)

and finally,

frame1.pack(fill=Y, expand=True)

Now, run the program with the different fill values and resize the

window to get this (Figure 16-9).

Figure 16-8.  Frame with fill

Chapter 16 Create Cool Apps with Tkinter

346

Fascinating, isn’t it?

Okay, now we know how to fill the parent window, but how does that

help our little widgets? We have four of them, and I want the first label and

button in the first row and the second label and button in the second row.

How do I do that? That’s where the “side” option comes in.

Let me first explain how the side option works. Let’s create two widgets

and try to pack them with the different options of “side”.

label = Label(w, text='My Label')

label.pack(side=TOP)

button = Button(w, text='My Button')

button.pack(side=TOP)

I’ve given the side as TOP to start with, which is the default. You’ll

notice that the widgets get packed one after the other.

Now, change the values of both to LEFT. It’ll pack everything side by

side. When you give BOTTOM, it’ll pack everything from the bottom to the

top, and RIGHT does the exact opposite of LEFT.

When we run the four variations of the preceding code, we get the

following four outputs (Figure 16-10).

Figure 16-9.  Fill options in Tkinter

Chapter 16 Create Cool Apps with Tkinter

347

Look at how in the third image the button comes first and then the

label. That’s what BOTTOM does. It reverses TOP. Similarly, RIGHT is a

reverse of LEFT.

Looks great, yes, but this still doesn’t seem complete. That’s because

you need all three options to properly align your widgets the way you want.

So now, let’s combine all the options and create something that looks

aligned. I’m going to create two frames, and each of these frames is going

to be packed at the TOP (one after the other), where they fill the parent

window from both sides and expand is True.

Similarly, I’m going to create a label and a button under the first frame

and pack both LEFT (side by side), but make them encompass the entire

parent frame (fill is BOTH and expand is True). Let’s repeat the same for

the second frame.

Now, let’s see what we get:

frame1 = Frame(w, bg='black')

frame1.pack(side=TOP, fill=BOTH, expand=True)

label1 = Label(frame1, text='First button')

label1.pack(side=LEFT, fill=BOTH, expand=True)

button1 = Button(frame1, text='Button1')

button1.pack(side=LEFT, fill=BOTH, expand=True)

Figure 16-10.  Side options in Tkinter

Chapter 16 Create Cool Apps with Tkinter

348

frame2 = Frame(w, bg='white')

frame2.pack(side=TOP, fill=BOTH, expand=True)

label2 = Label(frame2, text='Second button')

label2.pack(side=LEFT, fill=BOTH, expand=True)

button2 = Button(frame2, text='Button2')

button2.pack(side=LEFT, fill=BOTH, expand=True)

Run the preceding code, and you’ll get this (Figure 16-11).

Whoa! That’s exactly how I wanted to place things when I first created

these widgets together. Done! 😊
Now expand this window, and you’ll notice that the widgets expand

with them. Since the child widgets completely encompass the frames, you

don’t see their background colors, which means we’ve done our job right!

�Lots of inputs
Now that you know how to use the pack() method to align your widgets

properly, let’s go back to quickly looking at more widgets. Tkinter offers a

ton of widgets that get input from the user.

Figure 16-11.  Pack organized label and button

Chapter 16 Create Cool Apps with Tkinter

349

�One line of text
You can get a single line of text input from your user by using the Entry()

method.

entry = Entry().pack()

Run the preceding code, and you’ll get this (Figure 16-12).

Look at that! I can give a single-line entry now.

Also, apart from the usual attributes like fg, bg, and width, your entry

widgets also have methods that can be used to manipulate the entry.

Why don’t we see how to do that? We can use the get() method to

retrieve what we type in the entry, and we can use it however we want.

So now, let’s create a label “name” and an entry box and finally a

button that says “Enter”. When the user clicks the button, it calls the greet()

function, which “gets” the input from the entry box and prints out a “Hello”

message. Simple enough? Let’s try!

def greet():

 name = entry.get()

 print('Hello {}'.format(name))

label = Label(w,text='Your name?')

label.pack(side=LEFT)

entry = tkinter.Entry(w)

entry.pack(side=LEFT)

button = Button(w,text='Enter',command=greet)

button.pack(side=LEFT)

Figure 16-12.  Entry widget

Chapter 16 Create Cool Apps with Tkinter

350

Let’s run everything, and we’ll get this (Figure 16-13).

Now, when I press Enter and look at the Shell, I get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

Hello Susan

Yay!

Also, you have the delete() method that deletes text and the insert()

method that inserts text in any position you want.

Let’s look at insert first. The syntax is pretty simple.

entry.insert(pos, ‘text’)

So, just give the position at which you want to insert the text. The first

position is 0, and it increases from there, just like with your strings. The

second argument is either the direct text you want inserted or the variable

that contains your text.

Would you like to see how this works? Let’s modify our program. Now,

when the user enters their name, they have to click the “Insert Hello” button,

that, when clicked, literally inserts Hello and a space before their name.

def insert():

 entry.insert(0,'Hello ')

label = Label(w,text='Your name?')

label.pack(side=LEFT)

entry = tkinter.Entry(w)

entry.pack(side=LEFT)

Figure 16-13.  Name box with entry

Chapter 16 Create Cool Apps with Tkinter

351

button = Button(w,text='Insert Hello',command=insert)

button.pack(side=LEFT)

Let’s run the program (Figure 16-14).

And when we click the button, we get this (Figure 16-15).

Whohoo!

Similarly, you can delete. If you just give one argument, it’ll just delete

that character. 0 deletes the first character, 1 the second character, and so on.

But, if you give a range, it’ll delete a range of characters.

As usual, the last number in the range is not considered. For example,

the range 0,4 deletes the characters in indices 0 to 3 (not including 4).

But if you want to delete everything, then just give END as your last

argument, and you’re done. Shall we try?

def insert():

 entry.delete(0,END)

label = Label(w,text='Your name?')

label.pack(side=LEFT)

entry = tkinter.Entry(w)

entry.pack(side=LEFT)

Figure 16-14.  Insert into an entry box

Figure 16-15.  Inserted

Chapter 16 Create Cool Apps with Tkinter

352

button = Button(w,text='Clear',command=insert)

button.pack(side=LEFT)

When I run the program, I get this (Figure 16-16).

I’ve entered Susan, and when I press the Clear button, I get this

(Figure 16-17).

A clean slate! 😊

�Line after line
Now, let’s see how we can enter and manipulate multiple lines of text! You

can use the Text() method to do that.

text_box = Text()

text_box.pack()

Run this, and you’ll get a big text box, and when you type some lines of

code in the same, it’ll look like this (Figure 16-18).

Figure 16-16.  Delete from an entry box

Figure 16-17.  Entry box cleared

Chapter 16 Create Cool Apps with Tkinter

353

You can retrieve the text from this text box with the get() method, but

you need to specify the line number and the character number in a range.

“1.0” will retrieve just the first character in the first line.

“1.0”, “1.9” will retrieve the first character through the ninth character

in the first line.

“2.0”, “2.5” will retrieve the first character through the fifth character in

the second line and so on.

“1.0”, “2.10” will retrieve until the tenth character in the second line, so

you can span multiple lines like this.

To get the entire text, just give “1.0”, END.

Do you understand how this works now? Let’s try to retrieve the entire

piece of text.

text_box = Text(w)

text_box.pack()

def get_text():

 t = text_box.get(1.0,END)

 print(t)

button = Button(w,text="Get data",command=get_text)

button.pack()

Let’s run the program again and type the same text and see what we get

(Figure 16-19).

Figure 16-18.  Text box – multiple lines of text

Chapter 16 Create Cool Apps with Tkinter

354

Now we have a big text box, with a little button at the end, since that’s

how we packed it. Let’s click the button, and we get this:

>>>

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

Hello there! This is the first line of text.

This is the second line of text.

This is the third line of text.

Bye bye!

It works! 😊
Similarly, you can insert text into the text box.

text_box.insert(1.0,"Welcome! ")

The preceding code will insert “Welcome!” and a space to the

beginning of the first line. Text, checkbox, entry, radio button, menu

button, check button, list box.

To insert something at the end of the text, use END as the first

parameter, but if you want the text to be in a new line, add the \n (newline

character) at the beginning of the second parameter, like this:

text_box.insert(END,"\nYou're great!")

Figure 16-19.  Get data from text box

Chapter 16 Create Cool Apps with Tkinter

355

To delete the entire piece of text, do this:

text_box.delete("1.0",END)

You can use the same format you used with get() to delete pieces of text.

So, that’s a quick look at text boxes. Now, on to the next widget!

�Tkinter variables
But before we do that, I want to talk about Tkinter variables. Remember

how we had to directly enter the text and not use variables for the same?

That’s not very dynamic. What if I wanted to change a label text, or a

button text, based on something that happened in my app/game? I need

a variable. That’s where Tkinter variable classes come in. They work pretty

much similar to our normal variables.

There are five kinds of variables you can create: Integer, String,

Boolean, and Double (floating point).

num = IntVar()

string = StringVar()

b = BooleanVar()

dbl = DoubleVar()

Assign them to an actual variable to make that variable a Tkinter

variable. Also, make sure that you maintain the upper- and lowercase of

the syntaxes as it is.

Now that you have the variables, you can assign values to them using

the “set” method. If you assign a wrong value to a variable, you’ll get an

error. So, only an integer to an integer variable and so on.

Chapter 16 Create Cool Apps with Tkinter

356

To get the variable’s value back, use the get() method. So, let’s combine

both and see what we get.

num.set(100)

string.set("Hello there!")

b.set(True)

dbl.set(150.14)

print(num.get())

print(string.get())

print(b.get())

print(dbl.get())

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

100

Hello there!

True

150.14

But this is still not dynamic right? Can we set dynamic variables to our

Tkinter variables? The answer is yes!

Just get an input, place it in a variable, and set that as your string (or

any type). That’s it.

i = input('Enter a string: ')

string.set(i)

print(string.get())

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

Enter a string: Hello there!

Hello there!

Chapter 16 Create Cool Apps with Tkinter

357

So now, we can dynamically set our label text.

i = input('Label text: ')

string = StringVar()

string.set(i)

label = Label(w, text=string.get())

label.pack()

Run the preceding code, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

Label text: Hello there!

Press Enter after giving the input, and you’ll get (Figure 16-20):

Yippee! Our first dynamic label! 😊

�Lots of options!
If you want to give your user choices, then checkboxes and radio buttons

are the way to go, don’t you think? Tkinter has those widgets too!

You can create a checkbox using the Checkbutton (small “b”) widget.

It works similar to the other widgets, except for the fact that you can

give onvalue and offvalue that specify that “value” when the check button

is clicked or not.

Figure 16-20.  String variable

Chapter 16 Create Cool Apps with Tkinter

358

But a simpler way to get a check button state is by assigning a Tkinter

integer variable to its “variable” attribute, and whenever the box is

checked, the variable’s value changes to 1, and 0 when it’s unchecked.

We’re going to create two checkboxes, so let’s create two integer

variables to store their “state” (whether they were checked or not).

c1 = IntVar()

c2 = IntVar()

Let’s create a label ‘Grocery list’ and pack it.

Label(w,text='Grocery list').pack()

Now comes our checkboxes. The only difference is we have our

“variable” attribute with the integer variable assigned to them.

Label(w,text='Grocery list').pack()

check1 = Checkbutton(w,text="Milk",variable = c1)

check1.pack(side=LEFT)

check2 = Checkbutton(w,text="Flour",variable = c2)

check2.pack(side=LEFT)

Now, how do we retrieve the values? We need a button, which, when

clicked, will call the check() function that checks which boxes were clicked.

def check():

 if(c1.get() == 1):

 print('We bought Milk.')

 if(c2.get() == 1):

 print('We bought flour.')

button = Button(w,text='Check',command=check)

button.pack()

Simple! Let’s run the program, and we get this (Figure 16-21).

Chapter 16 Create Cool Apps with Tkinter

359

Press the “Check” button, and you’ll get this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

We bought Milk.

We bought flour.

For radio buttons, we just need one variable because we’d just be

selecting one of the choices. It has a “value” attribute, which, when set with

an integer value, will assign the same to the variable you assigned to the

“variable” attribute.

You can add a “command” within the radio button as well.

Let’s create a program that asks if the user likes dogs or not and prints a

message based on what they chose!

For this example, I’m going to command directly from the radio

button, so let’s create the “check” function first.

We’re going to create a string that’ll hold the message we need to

display after a person clicked a checkbox. Now, we’re going to set two

values in our radio button, 1 if the person likes dogs and 2 if the person

does not like dogs.

Once we’ve set the string, create the label.

def check():

 string = StringVar()

 if var.get() == 1:

 string.set('You love dogs! :)')

Figure 16-21.  Checkbox

Chapter 16 Create Cool Apps with Tkinter

360

 else:

 string.set("You don't love dogs :(")

 label = Label(w,text=string.get())

 label.pack()

Now, let’s create an integer variable that’ll hold our radio buttons’

value. Next comes a label that asks if they love dogs.

var = IntVar()

Label(w,text='Do you love dogs?').pack()

Finally, the radio buttons with the relevant text, the variable “var”

assigned to them, a value for each and a command that calls the “check”

function if the button is selected.

radio1 = Radiobutton(w,text="Yes!",variable = var, value=1,

command=check)

radio1.pack()

radio2 = Radiobutton(w,text="Nope",variable = var, value=2,

command=check)

radio2.pack()

That’s it!

Run the program, and you’ll get this (Figure 16-22).

Figure 16-22.  Radio button

Chapter 16 Create Cool Apps with Tkinter

361

Select an option (Figure 16-23):

Perfect!

�Menus
With Tkinter, you can create menus like you see in your applications! You

can use the Menu() method to create them.

You can create a main menu and configure it to the top of your

window, and you can add as many submenus as you want to them.

Let me create a main menu “main”.

from tkinter import *

w = Tk()

main = Menu(w)

Let’s add a submenu in that main menu. I’ll call that fileMenu.

fileMenu = Menu(main)

Now, I’m going to use the add_cascade() method and add a label to my

first submenu and place it in main.

main.add_cascade(label='File',menu = fileMenu)

Figure 16-23.  Radio button selected

Chapter 16 Create Cool Apps with Tkinter

362

Now, let’s add items to our main menu.

fileMenu.add_command(label='New File', command=lambda:

print('New File clicked'))

fileMenu.add_command(label='Open', command=lambda: print('Open

clicked'))

As you can see, we can attach a command to these items like we do

with our buttons.

If you run this program now, you won’t see anything. That’s because

once you create all your menus, submenus, and items, you need to

configure that main menu to the window (like you pack your widgets) so

it’s displayed.

Use the config() method to do that.

w.config(menu=main)

Now, run your program and you’ll be able to see your menu

(Figure 16-24).

Figure 16-24.  Menu

Chapter 16 Create Cool Apps with Tkinter

363

Click the New File menu item, and you’ll get this:

>>> New File clicked

I get the message I expected. Perfect! 😊

�The perfect layout – grid
I think the pack geometry manager is a teeny bit limiting in its

functionalities. Don’t you think so as well?

That’s why Tkinter has the grid geometry manager that’s leagues apart

from the pack manager. You can perfectly align your widgets based on

rows and columns.

The rows and columns are arranged like they are shown in the

following image (Figure 16-25). The widgets will be placed inside cells, and

each cell has a row and column number that starts from 0. You can extend

the cells to any number you want.

You can mention the exact row and column of the widget and also

where you want it to be sticky.

There are multiple values of sticky: E for East, W for West, N for North,

S for South, NE for North East, NW for North West, SE for South East, and

SW for South West.

Figure 16-25.  Rows and columns in a grid

Chapter 16 Create Cool Apps with Tkinter

364

If you give “E” for a widget, it’ll (usually the text) stick to the right most

part of its column and so on.

The rows and columns start from 0 as shown in the illustration. You

can use padx and pady to give padding around the widgets, so they don’t

stick together.

So, let’s put it all together to arrange a bunch of labels, shall we?

from tkinter import *

w = Tk()

w.title('My first Tkinter app')

#first row, first column, east sticky

label1 = Label(w,text='Label1')

label1.grid(row=0,column=0,sticky='E',padx=5,pady=5)

#first row, 2nd column, east sticky

label2 = Label(w,text='Label2')

label2.grid(row=0,column=1,sticky='E',padx=5,pady=5)

#first row, 4th column, west sticky

button1 = Button(w,text='Button1')

button1.grid(row=0,column=2,sticky='W',padx=5,pady=5)

#second row, first column, east sticky

label3 = Label(w,text='Label3')

label3.grid(row=1,column=0,sticky='E',padx=5,pady=5)

#first row, 2nd column, east sticky

label4 = Label(w,text='Label4')

label4.grid(row=1,column=1,sticky='E',padx=5,pady=5)

#second row, 4th column, west sticky

button2 = Button(w,text='Button2')

button2.grid(row=1,column=2,sticky='W',padx=5,pady=5)

w.mainloop()

Chapter 16 Create Cool Apps with Tkinter

365

Run the program, and you’ll get this (Figure 16-26).

Beautiful! 😊

�Mini project – tip calculator app
Let’s put together everything we learned so far and create a tip calculator

in Tkinter, shall we?

This is what we need:

	 1.	 Two entry boxes to enter the bill amount (floating

point) and the tip amount.

	 2.	 Next, we need a button that gets those values and

calls the tip_calculator() function.

	 3.	 This function is going to calculate our tip and

display the result in a label at the bottom of the

screen.

Simple enough? Let’s do this!

	 1.	 Let’s set up Tkinter first.

from tkinter import *

w = Tk()

w.title('My first Tkinter app')

Figure 16-26.  Widgets arranged in a grid

Chapter 16 Create Cool Apps with Tkinter

366

	 2.	 Then, let’s get the bill (a label, and an entry,

arranged properly on the screen).

#Get the bill amount

bill_label = Label(w,text='What was your bill? ')

bill_label.grid(row=0,column=0,sticky="W",padx=5,pa

dy=5)

bill = Entry(w)

bill.grid(row=0,column=1,sticky="E",padx=5,pady=5)

Next, let’s create the label and entry widgets to get

the tip.

#Get the tip

tip_label = Label(w,text='What did you tip? ')

tip_label.grid(row=1,column=0,sticky="W",padx=5,pady=5)

tip = Entry(w)

tip.grid(row=1,column=1,sticky="E",padx=5,pady=5)

	 3.	 Before we create the button, we need to define the

tip_calculator function. It’s going to get the entry

values from tip and bill and convert those to integers

(entries are usually strings). Next, we’re going to

calculate the percentage of the tip.

#Tip calculator function

def tip_calculator():

 t = tip.get()

 t = int(t)

 b = bill.get()

 b = int(b)

 percent = (t * 100) / b

 percent = int(percent)

Chapter 16 Create Cool Apps with Tkinter

367

	 4.	 Let’s format an appropriate string based on the

value of “percent”.

if((percent >= 10) and (percent <= 15)):

 string = '{}%. You tipped Okay!'.format(percent)

elif((percent >= 15) and (percent <= 20)):

 �string = '{}%. That was a good tip!'.

format(percent)

elif(percent >= 20):

 string = '{}%. Wow, great tip! :)'.format(percent)

else:

 �string = "{}%. You didn't tip enough :(".

format(percent)

	 5.	 Finally, let’s create a Tkinter string variable and set

the formatted string in it and create a label with this

text and place it on the screen.

str_var = StringVar()

str_var.set(string)

label = Label(w, text=str_var.get())

label.grid(row=3,column=0,padx=5,pady=5)

	 6.	 Finally, let’s create a button and make it call the

function when it’s clicked.

#Enter button

button = Button(w,text='Enter',command=tip_calculator)

button.grid(row=2,column=0,sticky="E",padx=5,pady=5)

w.mainloop()

Chapter 16 Create Cool Apps with Tkinter

368

Let’s run the program, and we’ll get this (Figure 16-27).

Our app works perfectly! You can further beautify it by adding colors

and font. 😊

�Summary
In this chapter, we looked at how to use the Tkinter package to create

desktop apps in Python. We learned how to create different widgets,

including buttons, labels, checkboxes, radio buttons, and menus. We

learned about frames as well. Then we learned how to style our widgets

and execute commands when our widgets are clicked. Finally, we learned

how to organize our widgets on our screen using the pack() and grid()

geometry methods.

In the next chapter, let’s learn about executing functions when events

like click, mouse click, and keyboard press happen on our widgets.

Figure 16-27.  Tip calculator app

Chapter 16 Create Cool Apps with Tkinter

369© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_17

CHAPTER 17

Project: Tic-tac-toe
Game with Tkinter
In the previous chapter, we learned the basics of Tkinter. We learned how

to create buttons, labels, frames, menus, checkboxes, radio buttons, and so

on with Tkinter. We also learned how to design our widgets and make our

widgets do stuff based on events (click, mouse move, keyboard press, etc.).

Finally, we learned how to draw using canvas.

In this chapter, let’s apply what we learned in the last chapter and

create our very first big project: a tic-tac-toe game! We’ll also learn about

events and binding them to our widgets.

�Bind events – make your apps dynamic!
In the last chapter, we learned a lot about Tkinter. I’m sure you’re bored of

learning all the concepts, and you’d rather create a project now. Bear with

me for a few minutes, okay? Let’s quickly learn how to bind events to our

widgets and get started with our tic-tac-toe game.

So, what’s binding? Well, let’s say you click your button (with your left

mouse button), and you want to execute a function when that happens.

What would you do? You’d use “command”, yes, but what if you want to

distinguish between the left and right mouse button clicks? Open different

functions according to which mouse button was clicked or which keyboard

key was pressed?

https://doi.org/10.1007/978-1-4842-6812-4_17#DOI

370

Events help you do all of that and more.

Let’s look at the button click events first. Let’s create binds that execute

separate functions when the left and right mouse buttons are clicked on a

button widget.

from tkinter import *

w = Tk()

def left_clicked(event):

 print('Left mouse button clicked')

 return

def right_clicked(event):

 print('Right mouse button clicked')

 return

button = Button(w,text='Click here!')

button.pack()

button.bind('<Button-1>',left_clicked)

button.bind('<Button-3>',right_clicked)

w.mainloop()

Look at the preceding code snippet. We created the button, packed it,

and then used the bind() method to create two binds. The first argument

denotes the event we want to bind to our button, and the second argument

is the function that needs to be called when the event happens.

The events need to be specified within quotes, and <Button-1> denotes

the left mouse button click and <Button-3> is the right mouse button click

because <Button-2> is the middle mouse button click.

Now, in the function definition, we’ve accepted an argument, event,

even though we didn’t send any arguments from the function call. How is

that possible? Well, whenever an event is bound to a widget, your program

automatically sends an event object to the function. This “event” will have

a lot of information on the event that just happened.

Chapter 17 Project: Tic-tac-toe Game with Tkinter

371

For example, we can find the x and y coordinate positions of the left

mouse button click by using event.x and event.y. Let’s try that on a frame.

from tkinter import *

w = Tk()

def click(event):

 print("X:{},Y:{}".format(event.x,event.y))

frame = Frame(w,width=200,height=200)

frame.pack()

frame.bind('<Button-1>',click)

w.mainloop()

Now, let me click a random position on the frame (Figure 17-1).

Figure 17-1.  Left mouse button click event

Chapter 17 Project: Tic-tac-toe Game with Tkinter

372

I clicked somewhere in the middle, and the result was this:

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\tkPrograms.py

X:93,Y:91

That’s an x of 93 and y of 91. Sweet!

Similarly, you can look for keyboard key presses too. You need to

use the <Key> bind for that, and you can use the event.char property to

print out the exact key that was pressed. This only works for keys that are

printable and not for keys like space, F1, and so on. There are separate

event binds for that.

You can use the <Motion> event to run functions when you move the

mouse cursor over your widget. The <Return> event fires when the user

presses the Enter key and so on.

Okay, now that you’ve learned how events work, let’s start working on

our tic-tac-toe game! 😊

�Tic-tac-toe game – explanation
We’ve just been creating mini projects so far. But in the real world, you

need to do a lot more than draw a few shapes or run a bunch of loops.

In the real world, you’ll create games and apps that are used in people’s

everyday life.

So in this chapter, we’re going to create our very first such game. Let’s

create the classic tic-tac-toe game. Our app will look something like this

(Figure 17-2).

Chapter 17 Project: Tic-tac-toe Game with Tkinter

373

We have our game board with nine boxes on which you can draw.

There are two players: X and O, who get alternate turns to draw on

the board. If a player draws on three consecutive boards (vertically,

horizontally, or diagonally), then that player wins. If no one achieved that

and all nine boards are filled, the game is a draw.

It’s a simple game. I’m going to be introducing “messagebox” which

will help you create the message popups you see in your laptop’s programs.

�Set up Tkinter
Let’s start by importing everything from Tkinter, as usual. But we also need

to import messagebox because when you use *, you’re just importing the

outside classes and functions, not exactly “everything”.

from tkinter import *

from tkinter import messagebox

Let’s set up our window next. I’m going to change my window’s title to

‘tic-tac-toe’.

w = Tk()

w.title('Tic Tac Toe')

Figure 17-2.  Tic-tac-toe game in Tkinter

Chapter 17 Project: Tic-tac-toe Game with Tkinter

374

�Create global variables
We looked at global variables in the function chapter, remember? Global

variables can be used to keep track of changes happening across multiple

functions. We need multiple global variables in this case.

For instance, we need to keep track of the overall changes happening

to the “turn” variable that counts the number of turns used up by the

players (tic-tac-toe offers nine turns in total).

turn = 0

Next, we need a list that’ll keep track of who’s played on which box.

This list will have nine pre-defined items that currently hold empty strings.

We’ll replace them with either “X” or “O” depending on who plays on

which box.

state = ['','','','','','','','','']

Next, we need a two-dimensional list (lists within a bigger list) that’ll

hold all the win states (Figure 17-3). We’ll compare these win states after

every player plays to check if someone won the game.

Chapter 17 Project: Tic-tac-toe Game with Tkinter

375

Look at the preceding image. In tic-tac-toe, a player wins if they draw

their symbol on three consecutive boxes, either vertically, horizontally, or

diagonally. 1,4,7 is the first vertical win state. 1,2,3 is the first horizontal

win state. 1,5,9 is the first diagonal win state and so on.

There are three vertical win states, three horizontal win states, and two

diagonal win states. A total of eight win states.

Let’s store them in our list. But since we’re working with lists here, and

their index start from 0, let’s convert 1,2,3 to 0,1,2. Do the same for the rest

of the win states, and you’ll get something like this:

winner = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], [2,5,8],

[0,4,8], [2,4,6]]

Finally, let’s create a variable “game” that’ll store the state of the game.

It’ll be True when we start the game, and if someone won, or if the game

ends in a draw (all nine boxes were used up but no one won), we will

change the value of “game” to False so no one can draw on the boxes.

game = True

Figure 17-3.  Tic-tac-toe boxes (numbered)

Chapter 17 Project: Tic-tac-toe Game with Tkinter

376

�Create the buttons
We need nine boxes on which the players can “draw”, am I right? Why not

make things simple and create buttons? We can make their text a single-

spaced string to start with, and every time a player plays, we can change

the text to either “X” or “O”. That’ll work!

Before we create the buttons, let’s define a variable “font” that’ll store

the fonts we need for the button text (what our players “draw” on the

buttons). “Helvetica”, 20 for the text size, and “bold” font.

font = ('Helvetica',20,'bold')

Next, let’s create nine buttons, one for each box. We’re going to make

the text a single space, height 2, and width 4. Let’s assign the “font”

variable we created to the font.

Finally, we’re going to see some real use of the “lambda” functions

we learned about in the functions chapter. So far, whenever we used the

command property on a button, we didn’t have to send arguments to the

function being called.

But now, we need to send two arguments: one being the actual button

that was clicked and the other being the number of the button that was

clicked (starting from 1).

If you want to send arguments an event like that, you need to wrap the

function call around a lambda, like you’ll see in the following. You don’t

need any arguments for the lambda in itself because it’s serving as an

anonymous function now. And your one line of code will be the function

call to the buttonClick() function with the arguments b1 and 1 sent inside it.

Let’s repeat this process for the rest of the buttons. Let’s also place the

buttons in the grid parallelly. It’s a normal grid arrangement.

#9 buttons

b1 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b1,1))

Chapter 17 Project: Tic-tac-toe Game with Tkinter

377

b1.grid(row=0,column=0)

b2 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b2,2))

b2.grid(row=0,column=1)

b3 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b3,3))

b3.grid(row=0,column=2)

b4 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b4,4))

b4.grid(row=1,column=0)

b5 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b5,5))

b5.grid(row=1,column=1)

b6 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b6,6))

b6.grid(row=1,column=2)

b7 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b7,7))

b7.grid(row=2,column=0)

b8 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b8,8))

b8.grid(row=2,column=1)

b9 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b9,9))

b9.grid(row=2,column=2)

Create a buttonClick() function definition on top of the buttons and

just place a pass on it (so you don’t get an error saying that the function

is empty). We’ll fill the function definition with the relevant code in the

next part.

Chapter 17 Project: Tic-tac-toe Game with Tkinter

378

Let’s run the program, and we get this (Figure 17-4).

This is what we have so far. Nice!

�When the button is clicked, draw on it
Now let’s define our buttonClick() function. This should come above the

block of text where we created our buttons (function definition before

function call rule).

We’ll be accessing the global variables turn, state, and game in this

function, so let’s load them first.

#When a button is clicked

def buttonClick(b,n):

 global turn,state,game

Next, before drawing on the particular box, let’s check if the box is

currently empty. If it is occupied (a player already drew on it), we shouldn’t

draw on it again, and instead, your game has to pop up an error message.

Figure 17-4.  Nine boxes – created

Chapter 17 Project: Tic-tac-toe Game with Tkinter

379

Also, check if the game is still True (no one won, and the nine tries

aren’t used up yet).

if b['text'] == ' ' and game == True:

If the conditions hold true, then check who’s currently playing. Player

“X” starts the game, and since we started our “turn” at 0, whenever it’s X’s

turn, the value of “turn” will be an even number. You know how to check

for an even number, right? Do that. 😊

#hasn't been clicked on yet

if turn % 2 == 0:

So, if it’s X’s turn, then change the button’s text to “X”, increase the

value of turn by 1, and change the value of state[n–1] to “X”. Why n–1? Well,

a list’s index starts from 0, and our buttons’ number started from 1, so we

need to decrease the value by one before using it in “state”.

#player X's turn

b['text'] = 'X'

turn += 1

state[n-1] = 'X'

The minute you draw on a box, call the winner_check() function

and send “X” as the parameter. We’ll define the winner_check() function

shortly. If you’re coding along with me, for now, just type pass inside the

function so you don’t get an error for not defining it, but calling it. Also,

create the winner_check() function above the buttonClick() function

because we’re calling from buttonClick.

#winner check

winner_check('X')

Chapter 17 Project: Tic-tac-toe Game with Tkinter

380

Okay, now that’s done, let’s check if turn is even, that is, if it’s O’s turn.

If it is, do the same as earlier, but just for “O”.

elif turn % 2 == 1:

 #player O's turn

 b['text'] = 'O'

 turn += 1

 state[n-1] = 'O'

 winner_check('O')

Let’s run what we have so far and see if we can “draw” on our boxes

(Figure 17-5).

Yes, we can!

Finally, check for the “else” condition. Either the game is already over,

or someone already drew on the box, and you don’t want a repeat.

In messagebox, you have a showinfo method that can be used to, yup,

you guessed it, print a message. Let’s use that.

Figure 17-5.  “Draw” on the boxes

Chapter 17 Project: Tic-tac-toe Game with Tkinter

381

If the “game” variable is False (game over), print ‘Game over! Start a

new game.’ If the box was already drawn on, print ‘This box is occupied!’.

else:

 if game == False:

 �messagebox.showinfo('showinfo','Game over! Start a new

game.')

 �#because even when the game is over, the buttons will be

occupied, so check for that first

 elif b['text'] != ' ':

 messagebox.showinfo('showinfo','This box is occupied!')

Let’s check if the error boxes work now (Figure 17-6).

I tried drawing on an occupied box, and this message popped up.

Great! The other condition isn’t relevant right now because we haven’t

checked for winners yet, so the game won’t get “over” yet.

It looks like the program is almost over, right? We’ve drawn on it. We’ve

even created the winner_check() function to work on next. But are we

really done with buttonClick()? Nope.

Figure 17-6.  Box is occupied

Chapter 17 Project: Tic-tac-toe Game with Tkinter

382

We still need to check for the draw condition! What if the value of turn

is greater than 8 (players have played nine times) and the value of “game”

is still true? If “game” is still True, that means no one has won yet because

when we call the winner_check() function, if we find someone has won, we

immediately change “game” to False.

So, the only reason we’re out of turns and the game is still True is

because we’re at a draw. Let’s print that message and end the game

(change “game” to False).

#game ended on draw

if turn > 8 and game == True:

 messagebox.showinfo('showinfo','The match was a Draw')

 game = False

That’s it for buttonClick()! Whew. That was big.

Let’s run the program, and check if the “draw” condition works

(Figure 17-7).

Figure 17-7.  Match was a draw

Chapter 17 Project: Tic-tac-toe Game with Tkinter

383

Yup, it works! But we need the winner_check() to make everything

work properly.

Let’s look at winner_check() next.

�Check if a player won during each turn
Every time a player plays, we need to check if that player just won the game

at that turn. This function accepts the player (“X” or “O”) as its argument.

#Every time a button is clicked, check for win state

def winner_check(p):

Let’s also import the global variables state, winner, and game, because

we’ll need them.

global state,winner,game

Now, we need to loop through the winner. So for every iteration of the

loop, “i” will have one of the “win” state lists.

For every iteration, let’s check if state[i[0]], state[i[0]], and state[i[0]]

hold the same value of player (“X” or “O”).

For example, the first inner list is [0,1,2], so we’re checking for state[0],

state[1], and state[2], and if they all hold the string “X”, then plalyer “X”

won. If they all hold “O”, “O” won. That’s it!

for i in winner:

 �if((state[i[0]] == p) and (state[i[1]] == p) and

(state[i[2]] == p)):

If the condition holds true, then create a string that basically says “X

won!” or “O won!” and create a message with it. Finally, change the value

of “game” to False.

string = '{} won!'.format(p)

messagebox.showinfo('showinfo',string)

game = False

Chapter 17 Project: Tic-tac-toe Game with Tkinter

384

Let’s run our program now, and we get this (Figure 17-8).

Whoa! It works!

Does the “Game over” condition work? Let me close the current

message box and try to draw on one of the empty boxes by clicking it

(Figure 17-9).

Look at that! Our “Game over!” message just popped up. Our game

works perfectly!

Figure 17-8.  X won!

Figure 17-9.  Game over!

Chapter 17 Project: Tic-tac-toe Game with Tkinter

385

�New game button
Why don’t we add a “New game” button to our game? Right now, our game

just hangs after it’s over. We have to run the program again to start a new

game. If we had a button that just reset everything, that’d be great, won’t it?

Let’s do that. Let’s create a button first.

new = Button(w,text='New Game',command=new_game)

new.grid(row=3,column=1)

This button will execute the new_game() function when clicked.

Now, let’s create the new_game() function above the “new” button.

Before we define the function, let’s create a list of all our buttons. We’ll

need this to loop through the buttons and clear them (so we can draw on

them again).

#create a list of the buttons so we can change their text

boxes = [b1,b2,b3,b4,b5,b6,b7,b8,b9]

Our new_game() function needs the global variables state, game, turn,

and boxes. We need to import state, game, and turn so we can reset them

back to their original values.

#New game

def new_game():

 global state,game,turn,boxes

Let’s reset turn, state, and game.

turn = 0

state = ['','','','','','','','','']

game = True

Chapter 17 Project: Tic-tac-toe Game with Tkinter

386

Finally, let’s loop through “boxes” and change the text value of each

box to a single space.

for b in boxes:

 b['text'] = ' '

That’s it for our program! I’m sure you’d have done that already, but if

you forgot, add a mainloop() at the end of your program.

w.mainloop()

Let’s run the program now, and we get this (Figure 17-10).

We have our “New Game” button now. Try testing it. It works perfectly!

Did you have fun creating the game? I know I had fun creating it and

teaching you how to create it. Tinker with the game. Change fonts, colors,

and so on. All the best! 😊

Figure 17-10.  New Game button

Chapter 17 Project: Tic-tac-toe Game with Tkinter

387

�Entire program
Now that you’ve learned how to create a tic-tac-toe game in Tkinter, here’s

the entire program in the order in which it should be written. Use it for

your reference.

from tkinter import *

from tkinter import messagebox

w = Tk()

w.title('Tic Tac Toe')

turn = 0

state = ['','','','','','','','','']

winner = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], [2,5,8],

[0,4,8], [2,4,6]];

game = True

#Every time a button is clicked, check for win state

def winner_check(p):

 global state,winner,game

 for i in winner:

 �if((state[i[0]] == p) and (state[i[1]] == p) and

(state[i[2]] == p)):

 string = '{} won!'.format(p)

 messagebox.showinfo('showinfo',string)

 game = False

#When a button is clicked

def buttonClick(b,n):

 global turn,state,game

 if b['text'] == ' ' and game == True:

 #hasn't been clicked on yet

 if turn % 2 == 0:

Chapter 17 Project: Tic-tac-toe Game with Tkinter

388

 #player X's turn

 b['text'] = 'X'

 turn += 1

 state[n-1] = 'X'

 #winner check

 winner_check('X')

 elif turn % 2 == 1:

 #player O's turn

 b['text'] = 'O'

 turn += 1

 state[n-1] = 'O'

 player = 'X'

 winner_check('O')

 else:

 if game == False:

 �messagebox.showinfo('showinfo','Game over! Start a

new game.')

 �#because even when the game is over, the buttons will

be occupied, so check for that first

 elif b['text'] != ' ':

 �messagebox.showinfo('showinfo','This box is

occupied!')

 #game ended on draw

 if turn > 8 and game == True:

 messagebox.showinfo('showinfo','The match was a Draw')

 game = False

font = ('Helvetica',20,'bold')

#9 buttons

b1 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b1,1))

Chapter 17 Project: Tic-tac-toe Game with Tkinter

389

b1.grid(row=0,column=0)

b2 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b2,2))

b2.grid(row=0,column=1)

b3 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b3,3))

b3.grid(row=0,column=2)

b4 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b4,4))

b4.grid(row=1,column=0)

b5 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b5,5))

b5.grid(row=1,column=1)

b6 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b6,6))

b6.grid(row=1,column=2)

b7 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b7,7))

b7.grid(row=2,column=0)

b8 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b8,8))

b8.grid(row=2,column=1)

b9 = Button(w, text=' ', width=4, height=2, font = font,

command = lambda: buttonClick(b9,9))

b9.grid(row=2,column=2)

#create a list of the buttons so we can change their text

boxes = [b1,b2,b3,b4,b5,b6,b7,b8,b9]

Chapter 17 Project: Tic-tac-toe Game with Tkinter

390

#New game

def new_game():

 global state,game,turn,boxes

 turn = 0

 state = ['','','','','','','','','']

 game = True

 for b in boxes:

 b['text'] = ' '

new = Button(w,text='New Game',command=new_game)

new.grid(row=3,column=1)

w.mainloop()

�Summary
In this chapter, we started with comments in Python and how to create

single and multi-line comments. Then we moved on to variables, how to

create them, their naming conventions, and what you can store in them.

Then we looked at the vast number of data types available in the Python

programming language and how to use them. Then we looked at type

checking in Python, and finally we looked at getting inputs in Python and

displaying them in your output.

In the next chapter, let’s go deep into strings, how to create them and

use them, and the various pre-defined string methods Python equips you

with.

Chapter 17 Project: Tic-tac-toe Game with Tkinter

391© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_18

CHAPTER 18

Project: Paint App
with Tkinter
In the previous chapter, we learned how to create a tic-tac-toe app with

Tkinter. We also learned all about events and how to use them to make our

app respond to external events (mouse click, keyboard key press, etc.).

In this chapter, we’ll learn all about “drawing” on your Tkinter screen

using “canvas” and use that to make a paint app. You’ll be able to draw

with a pen and draw circles/ovals, straight lines, and squares/rectangles.

You’ll also be able to change the size of your pen and your shapes’ outline

colors and fill colors. It’s a simple, but complete app!

�Paint app – explanation

https://doi.org/10.1007/978-1-4842-6812-4_18#DOI

392

Our paint app is going to be awesome! You’re going to be able to do

free-hand drawing and draw straight lines, squares, rectangles, ovals,

and circles. You can also choose from hundreds of different color shades.

Cool right?

Once we’re done, it’ll look something like Figure 18-1.

I’m no artist, so please forgive my basic drawings, but you can see how

powerful this app is, right? And the best part is that this is just the starting

point. You can expand this app, add more features, and make it into

anything you want.

Share it with your friends, have paint competitions, or just have fun! 😊

�Get started
Let’s start by importing Tkinter. Let’s import everything, as usual, but

doing so will only import the “outer” classes. It won’t import the inner

ones, like the colorchooser, for example. We need the color chooser to

create color palettes for our app. So, let’s import that as well.

Figure 18-1.  Final app

Chapter 18 Project: Paint App with Tkinter

393

from tkinter import *

from tkinter import colorchooser

Now, let’s create and initialize our variables. To draw on the screen,

you need coordinates, the x and y points of where your mouse pointer is

clicking on the screen. Let’s create x and y variables and assign them 0

each to start with.

I’ve used a new way of assignment now. Makes things easy, doesn’t it?

x, y = 0,0

Next, let’s create a variable “color” and make it None (no value) to start

with. You can make it an empty string as well. This variable will hold our

shapes’ fill colors in the future. We also need a color for our “pen” or our

shapes’ outline, so let’s create a variable “outline” and make it black as

default. We also need a pen size. It’s going to be 1 by default.

color = None

outline = 'black'

sizeVal = 1

�Set up the screen
Now, let’s set up our screen. We’re going to make the state of our screen

“zoomed” by default, so it expands to the full screen. Also, we’re going to

configure our rows and columns in such a way that the first cell (row 0 and

column 0) is going to expand to the full width and height of the screen. We

can place our canvas inside this cell, so it expands to the full screen as well.

w = Tk()

w.title('Paint Application')

w.state('zoomed')

w.rowconfigure(0,weight=1)

w.columnconfigure(0,weight=1)

Chapter 18 Project: Paint App with Tkinter

394

We’ve given the weight as 1 to let our program know that this particular

row and column should expand to its maximum capacity.

Let’s run our program, and we get this (Figure 18-2).

Great!

�Create the canvas
Now, let’s create our canvas. We need to use the Canvas method to do that

and place it in the window “w”. Let’s also make our canvas’ background

“white” by default.

#create a canvas

canvas = Canvas(w, background='white')

Next, I’m going to place my canvas in the first row and column (0) and

make it sticky in all directions (north, south, east, and west) so it expands

in all directions and takes up the entire space (which is our entire screen as

of now).

canvas.grid(row=0,column=0,sticky="NSEW")

Figure 18-2.  Our Tkinter screen

Chapter 18 Project: Paint App with Tkinter

395

Let’s run the program now, and we get this (Figure 18-3).

Perfect! We have our white canvas now.

�Create your first menu (shapes)
If you looked at the completed app, you’d have noticed that we had

multiple menus to choose from. The first one is the shape menu. You’ll be

able to choose between drawing with a pen and drawing a line, square, or

circle. Let’s create that menu now.

You already know how to create menus. Let’s create a main menu

that’ll hold all our menus. Our “Draw Options” menu is going to be the first

submenu in our “main” menu. Let’s add a cascade to it and label it.

main = Menu(w)

menu1 = Menu(main)

main.add_cascade(label='Draw Options',menu = menu1)

Finally, let’s add four commands, ‘Pen’, ‘Line’, ‘Square’ and ‘Circle’. But

we need to send the selection values to the “select” function, which will in

turn call the relevant function that’ll do the respective drawing. Let’s use

a lambda to do that. We’re going to number our options, pen is 1, line is 2,

square is 3, and circle is 4.

Figure 18-3.  Canvas

Chapter 18 Project: Paint App with Tkinter

396

menu1.add_command(label='Pen', command=lambda: select(1))

menu1.add_command(label='Line', command=lambda: select(2))

menu1.add_command(label='Square', command=lambda: select(3))

menu1.add_command(label='Circle', command=lambda: select(4))

Finally, let’s configure our “main” menu to our window. In the future,

this line should come after we’ve created all four of our menus.

w.config(menu=main)

If you run your program now, and try clicking the menu items, you’ll

get an error because your “select” function isn’t defined yet, but still, you’ll

see your menu, like this (Figure 18-4).

Whoa! First step is a success! 😊

�Let’s make our draw options work!
Now that we have our draw options menu, let’s make it work. Let’s first

create the “select” function that binds the canvas with the relevant mouse

clicks. Create this function above the menus (function calls). We need two

kinds of binds.

Figure 18-4.  First menu (draw options)

Chapter 18 Project: Paint App with Tkinter

397

For the free-hand drawing, we need a <B1-Motion> bind that draws a

line every time our left mouse button clicks and drags on the screen. So,

we’ll essentially get tiny lines between every 2 minute points, so essentially

hundreds of tiny lines that join are joined together to make our free-hand

drawing.

Then, we need a <ButtonRelease-1> bind that draws either a line,

square, or circle whenever our left mouse button releases after it clicks and

drags on the screen. So, the result would be a line, square, or circle from

the point where it clicked to the point where it released.

Let’s do that now. Let’s receive our number as “options”. If options is 1,

then unbind <ButtonRelease-1>, so if we’d previously selected the other

options, it’ll be unselected now, and we won’t get a shape or line after we

release the pen. Then, let’s bind <B1-Motion> and call the draw_line function.

def select(options):

 if options == 1:

 #selected Pen, create bind

 canvas.unbind("<ButtonRelease-1>")

 canvas.bind('<B1-Motion>',draw_line)

Similarly, for 2, unbind <B1-Motion> so the pen is no longer active and

bind the <ButtonRelease-1> and call the draw_line function.

if options == 2:

 #selected line, create bind

 canvas.unbind("<B1-Motion>") #so pen is no longer active

 canvas.bind('<ButtonRelease-1>',draw_line)

For 3, call the draw_square function.

elif options == 3:

 #selected square, create bind

 canvas.unbind("<B1-Motion>")

 canvas.bind('<ButtonRelease-1>',draw_square)

Chapter 18 Project: Paint App with Tkinter

398

For 4, call the draw_circle function.

elif options == 4:

 #selected circle, create bind

 canvas.unbind("<B1-Motion>")

 canvas.bind('<ButtonRelease-1>',draw_circle)

�Get the mouse position
Before we create the draw_line functions, we need to get our mouse

position. We can do that using our “event”, as you know. So, let’s create

another bind outside of our functions (right above our menus and below

the function definitions) that binds any left mouse button click to the

canvas.

So, every time your user clicks the canvas, we’re going to make note of

the x and y positions of the same in the background.

We won’t draw anything until the user selects a draw option, but let’s

still make note in anticipation of that, alright?

canvas.bind('<Button-1>',position)

Now, define the function above the bind. Receive “event” in the

function definition. Let’s also load the global x and y values and assign

the event.x and event.y values (x and y coordinate positions of the mouse

click) to the x and y global variables.

Get the current position of the mouse on each left mouse button click

on the canvas.

def position(event):

 global x,y

 x,y = event.x,event.y

That’s it! You could print out x and y and see this function in action.

Let’s make that our little activity, shall we? 😊

Chapter 18 Project: Paint App with Tkinter

399

�Let’s draw our lines
Now, let’s create the function that’ll draw both our mini lines for our free-

hand drawing and our straight lines. What do we need here?

There’s a create_line function in canvas which can be used to, yup,

you guessed it, draw straight lines! You just need to give the start and end

coordinate points. You can also specify the “fill”, which is essentially the

line’s color.

We’ll be using the “outline” color for this because we want line colors

and shape outline colors to be uniform. You can also specify the width of

the line. Let’s give sizeVal as the value for this property.

You need to be careful how you mention the coordinate values though.

Mention the x and y coordinates of the starting point first and then the x

and y coordinates of the ending point. More importantly, mention all four

values inside of a tuple, or you’ll get an error.

def draw_line(event):

Let’s load our x and y values, which is the point where the mouse first

clicked, which we calculate constantly using the position() function. Let’s

also load sizeVal, which is currently at 1. It’ll automatically get updated

once we write the lines of code that’ll let the user manually change the

width of the lines.

global x,y,sizeVal

Now, the starting x and y positions are the x and y positions that

contain the point where the mouse clicked (the position() function). The

ending x and y positions are the event’s x and y positions.

In case of a free-hand drawing, every time the mouse is dragged (while

the left mouse button is still pressed down), we get a new event, and new x

and y positions, for every minute change.

Chapter 18 Project: Paint App with Tkinter

400

For drawing a straight line, the end point is when the mouse button is

released.

canvas.create_line((x,y,event.x,event.y),fill=outline, width =

sizeVal)

Finally, let’s update the x and y values with the event’s x and y values.

We especially need this for the free-hand drawing, so we can start over.

x,y = event.x,event.y

Let’s run our program now.

When we try to draw on the screen as such, nothing happens. Why?

Well, we haven’t activated any of the options yet. But, if I select either pen

or line (from the menu), I can draw on the canvas (Figure 18-5).

Figure 18-5.  Free hand and straight lines

Chapter 18 Project: Paint App with Tkinter

401

�Squares and rectangles!
Let’s draw our squares and rectangles now. The process is similar.

You have a create_rectangle method in canvas. Give the start and end

coordinates within a tuple again. In this case, you can mention two kinds

of colors, outline and fill colors, and finally the width of the shape.

Then, let’s assign the current event’s x and y values (mouse release) to

the first x and y values (left mouse click).

def draw_square(event):

 global x,y,sizeVal

 �canvas.create_rectangle((x,y,event.x,event.y),

outline=outline, fill=color, width = sizeVal)

 x,y = event.x,event.y

That’s it! Let’s run our program now. Select “Square”, hold your mouse

button down, drag it to the point you want, and release the button. You’ll

get yourself a square or a rectangle. Try and see! 😊
This is what I did (Figure 18-6). :P

Beautiful squares and rectangles! 😊

Figure 18-6.  Squares and rectangles

Chapter 18 Project: Paint App with Tkinter

402

�Circles and ovals!
Finally, let’s draw circles and ovals. There’s another method called create_

oval. A perfectly formed oval is a circle, am I right? You need to give the

start and end points for this method as well.

Your start point is when you pressed the mouse button, and the end

point is the x and y value of the point where you finally released the mouse

button (mouse release event).

def draw_circle(event):

 global x,y,sizeVal

 �canvas.create_oval((x,y,event.x,event.y), outline=outline,

fill=color, width= sizeVal)

 x,y = event.x,event.y

Let’s run the program, and we get this (Figure 18-7).

Nice! We’ve finished all our draw functions. We’re almost there! 😊

Figure 18-7.  Circles

Chapter 18 Project: Paint App with Tkinter

403

Select size!
Now, let’s move on to the second menu in our program. So far, our lines

and the outlines of our shapes are too narrow in width. What if we want

them to be thicker? We need options for that as well. Let’s create them! I’m

going to create sizes from 1, 5, 10, to 30. 1 is the default we’ve set.

Let’s create a new submenu, menu2, for the sizes. Place this after

the menu1’s code, but before the menu configuration line of code. Every

option is going to be a size, and I’m going to call the changeSize function

for every option click. We’ll be sending the size as the parameter to this

function.

menu2 = Menu(main)

main.add_cascade(label='Select Size', menu = menu2)

menu2.add_command(label='1', command=lambda: changeSize(1))

menu2.add_command(label='5', command=lambda: changeSize(5))

menu2.add_command(label='10', command=lambda: changeSize(10))

menu2.add_command(label='15', command=lambda: changeSize(15))

menu2.add_command(label='20', command=lambda: changeSize(20))

menu2.add_command(label='25', command=lambda: changeSize(25))

menu2.add_command(label='30', command=lambda: changeSize(30))

Now, define the function to change the size. You can place this

function after the select() function, or anywhere you want, as long as it’s

above menu2’s lines of code (function calls).

This is a very simple process. Let’s receive our size, load the global

sizeVal, and assign our size to sizeVal. That’s it! Since sizeVal is global and

loaded into all our draw functions, once we change the size, the next time

we draw something, the new size will reflect in that drawing.

def changeSize(size):

 global sizeVal

 sizeVal = size

Chapter 18 Project: Paint App with Tkinter

404

Let’s check if this works! I’m going to draw a bunch of lines after

changing the size to 15 (Figure 18-8).

Those are some thick lines. :D

�Lots and lots of colors!
Now, let’s create the third menu that’ll let us change the outline and fill

colors of our drawings.

Let’s create a menu3 that holds just two options, one to change the line

color and the other to change the fill color, each calling their respective

functions.

menu3 = Menu(main)

main.add_cascade(label = 'Choose Color', menu = menu3)

menu3.add_command(label='Line Color', command = set_line_color)

menu3.add_command(label='Fill Color', command = set_fill_color)

Figure 18-8.  Change the width of your outlines

Chapter 18 Project: Paint App with Tkinter

405

Now, let’s define those functions. We’re going to use our colorchooser

to create our color palettes. There’s an askcolor method in colorchooser

that opens a palette when we need it (in this case, when the “Line color”

option is clicked). This opens in a new window. Let’s also set a title for that

window: Choose color.

def set_line_color():

 global outline

 getColor = colorchooser.askcolor(title="Choose color")

Now, you can’t just use getColor as it is. When we choose a color, let’s

say red, this is the format in which it gets registered in getColor:

((255.99609375, 0.0, 0.0), '#ff0000')

The first value in the tuple contains another tuple that holds the rgb

color value (red, green, and blue shades of our color). The second value

in the tuple contains the hexadecimal value of the color we just chose.

They’re both the same, and you can just write it as “red”. These are just

different formats in which you can mention a color. You don’t really need to

know about them or memorize them. Just know that every shade there are

hexadecimal and rgb values you can use and your computer recognizes.

Now, we can’t use the entire tuple. We just need one of its values. Let’s

just retrieve the second value and use it, shall we?

outline = getColor[1]

Now, every time we change the “Line color”, the value of “outline”

changes and it’ll be reflected in our next drawing.

Now, let’s do the same for fill color.

def set_fill_color():

 global color

 getColor = colorchooser.askcolor(title="Choose color")

 color = getColor[1]

Chapter 18 Project: Paint App with Tkinter

406

That’s it for our colors! Let’s check if it works, shall we? Let’s click “Line

color” to see if the color palette opens up (Figure 18-9).

It works! 😊
Now, let’s choose our colors (Figure 18-10).

All our colors work perfectly!

Figure 18-9.  Colors!

Figure 18-10.  Final app, done!

Chapter 18 Project: Paint App with Tkinter

407

�I’ve finished drawing!
Okay, we have our little paint app. We’ve drawn to our heart’s content! But

what if we want to start over? We need an option to clear the canvas. Let’s

create that!

First, the menu.

menu4 = Menu(main)

main.add_cascade(label = 'Clear', menu = menu4)

menu4.add_command(label = 'Clear', command = clear_screen)

Now, the clear_screen() function. We just need a single line of code:

canvas.delete(‘all’). This will delete everything on the canvas.

def clear_screen():

 canvas.delete('all')

This is how the option will come up (Figure 18-11).

Draw something and select the clear option to see everything

disappear! Take a screenshot before you do though!

We’ve finished our paint app! :O Finally, if you haven’t written it

already, write the mainloop line of code, and we’re done.

w.mainloop()

Figure 18-11.  Clear

Chapter 18 Project: Paint App with Tkinter

408

�Entire program
Now, the entire program in the order it should be created:

from tkinter import *

from tkinter import colorchooser

x, y = 0,0

color = None

outline = 'black'

sizeVal = 1

w = Tk()

w.title('Paint App')

w.state('zoomed')

w.rowconfigure(0,weight=1)

w.columnconfigure(0,weight=1)

#create a canvas

canvas = Canvas(w, background='white')

canvas.grid(row=0,column=0,sticky="NSEW")

def draw_line(event):

 global x,y,sizeVal

 �canvas.create_line((x,y,event.x,event.y),fill=outline,

width = sizeVal)

 x,y = event.x,event.y

def draw_square(event):

 global x,y,sizeVal

 canvas.create_rectangle((x,y,event.x,event.y),

outline=outline, fill=color, width = sizeVal)

 x,y = event.x,event.y

Chapter 18 Project: Paint App with Tkinter

409

def draw_circle(event):

 global x,y,sizeVal

 �canvas.create_oval((x,y,event.x,event.y), outline=outline,

fill=color, width= sizeVal)

 x,y = event.x,event.y

def select(options):

 if options == 1:

 #selected Pen, create bind

 canvas.unbind("<ButtonRelease-1>")

 canvas.bind('<B1-Motion>',draw_line)

 if options == 2:

 #selected line, create bind

 �canvas.unbind("<B1-Motion>") #so pen is no longer

active

 canvas.bind('<ButtonRelease-1>',draw_line)

 elif options == 3:

 #selected square, create bind

 canvas.unbind("<B1-Motion>")

 canvas.bind('<ButtonRelease-1>',draw_square)

 elif options == 4:

 #selected circle, create bind

 canvas.unbind("<B1-Motion>")

 canvas.bind('<ButtonRelease-1>',draw_circle)

def position(event):

 global x,y

 x,y = event.x,event.y

def changeSize(size):

 global sizeVal

 sizeVal = size

Chapter 18 Project: Paint App with Tkinter

410

def set_line_color():

 global outline

 getColor = colorchooser.askcolor(title="Choose color")

 outline = getColor[1]

def set_fill_color():

 global color

 getColor = colorchooser.askcolor(title="Choose color")

 color = getColor[1]

def clear_screen():

 canvas.delete('all')

canvas.bind('<Button-1>',position)

#options

main = Menu(w)

menu1 = Menu(main)

main.add_cascade(label='Draw Options',menu = menu1)

menu1.add_command(label='Pen', command=lambda: select(1))

menu1.add_command(label='Line', command=lambda: select(2))

menu1.add_command(label='Square', command=lambda: select(3))

menu1.add_command(label='Circle', command=lambda: select(4))

menu2 = Menu(main)

main.add_cascade(label='Select Size', menu = menu2)

menu2.add_command(label='1', command=lambda: changeSize(1))

menu2.add_command(label='5', command=lambda: changeSize(5))

menu2.add_command(label='10', command=lambda: changeSize(10))

menu2.add_command(label='15', command=lambda: changeSize(15))

Chapter 18 Project: Paint App with Tkinter

411

menu2.add_command(label='20', command=lambda: changeSize(20))

menu2.add_command(label='25', command=lambda: changeSize(25))

menu2.add_command(label='30', command=lambda: changeSize(30))

menu3 = Menu(main)

main.add_cascade(label = 'Choose Color', menu = menu3)

menu3.add_command(label='Line Color', command = set_line_color)

menu3.add_command(label='Fill Color', command = set_fill_color)

menu4 = Menu(main)

main.add_cascade(label = 'Clear', menu = menu4)

menu4.add_command(label = 'Clear', command = clear_screen)

w.config(menu=main)

w.mainloop()

Chapter 18 Project: Paint App with Tkinter

412

�Summary
In this chapter, we learned about “drawing” on our Tkinter screen using

“canvas” and used that to make a paint app. We drew with a pen and drew

circles/ovals, straight lines, and squares/rectangles. We also changed the

size of your pen and our shapes’ outline colors and fill colors.

In the next chapter, let’s go back to our original package, the Turtle

package. Let’s create a full-blown snake app with Turtle, scoreboards, and

all. It’s going to be a fun and interesting ride. Buckle up!

Chapter 18 Project: Paint App with Tkinter

413© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_19

CHAPTER 19

Project: Snake Game
with Turtle
In the previous chapters, we took a deep dive into Tkinter. We learned all

about creating widgets in Tkinter, styling them, making them do things

when events are performed on them, and also drawing on canvases. We

also looked at creating two big projects – a tic-tac-toe game and a paint

application.

In this chapter, let’s go back to Turtle. We’ve worked on Turtle all these

chapters, but we never created a real-world application. So, let’s create a

snake game in this chapter.

�Snake game

https://doi.org/10.1007/978-1-4842-6812-4_19#DOI

414

It’s a very simple game. You have your snake, which is drawn as a

square in our game. We start with just its head, and when you press any of

the arrow keys, the head moves in the direction the arrows are pointing to.

Then, you have a red, ripe apple that’s the exact size of your snake

head. It appears in random positions, enticing your snake head to eat it.

Whenever your snake comes in contact with the apple (we’re assuming

it ate the apple then), your apple disappears into the snake’s stomach.

The snake grows by one part (it just ate, so it should grow, right?). Another

apple appears in yet another random position on the screen.

The scoreboard increases by 1 every time the snake eats an apple.

But if the snake head collides with any of the four walls of the screen or

with its own body (it grew so big!), game over! ☹
Simple enough game, isn’t it? Have you ever played it? Our final game

will look something like this (Figure 19-1).

Our snake had eaten six apples at that point and grown by six body

parts (seven including the head).

Figure 19-1.  Snake game

Chapter 19 Project: Snake Game with Turtle

415

Alright then. Now that you know how the snake game works, you must

have a brief idea of what we need to code to make all of this happen. Don’t

worry. I’ll explain everything in detail.

Also, don’t get confused about the order in which you need to write

every piece of code. While I explain things, it might look jumbled, but I’ve

included the entire code in the correct order at the end of the chapter. You

can refer to it while coding your own game.

Let’s get started! This is going to be a slightly long, but very rewarding

journey! 😊

�Import the required modules
You need three modules for this game. You need the turtle package to draw

the snake, score, and apple. You need the random package to make the apple

appear in random positions, which is one of the main aspects of the game.

Finally, you need the “time” package. We’ve seen this package before,

and it makes a loop or function pause for a specified amount of time. We

need that now to make our snake move in a controlled pace. If we don’t

pace things, our snake will just move off the screen in a blink of an eye.

import turtle

import time

import random

�Set up the turtle screen
We’re going to set up a turtle screen with the same steps as we usually use.

Make the title ‘Snake Game’ and the background color ‘Black’.

s = turtle.Screen()

s.title('Snake Game')

s.bgcolor('Black')

Chapter 19 Project: Snake Game with Turtle

416

But in this case, we’re going to use the setup() function to set up a

width and height (in pixels) for our screen. We need a specified width and

height so we know where everything is on the screen, so we can specify the

exact coordinates to move our snake around.

s.setup(width = 500, height = 500)

Finally, let’s get rid of the animation that happens whenever we draw

something on the screen. Animations are pretty, yes, but we’re going to be

drawing so many things so fast that animating every piece of drawing is not

going to work out well for our game.

You can use the tracer() method (of our screen) and give an input of 0

to make this happen. Look at that! You’ve already learned a bunch of new

things in Turtle. 😊

s.tracer(0) #gets rid of animation

Now, run the program and you’ll get a black screen like this

(Figure 19-2).

Figure 19-2.  Game screen

Chapter 19 Project: Snake Game with Turtle

417

�Create and initialize the required variables
We’ve seen this in our Tkinter programs already. Whenever you create a

program, you need some “global” variables that’ll be used throughout the

program. We have some too.

There’s the “snake” list that’s going to contain the “turtle” of each of our

snake’s part. Every time we draw a snake part (including the head), we’re

going to create a new turtle so all of those turtles can work together to draw

the entire snake at the same time. By storing these turtles in a list, we can

access them whenever we want and get their positions (you’ll see how).

snake = []

We’re going to make the size 20. This is the width and height of your

squares (snake head, snake parts, apple). I’m going to make this value a

constant.

size = 20

Let’s also create a variable “key” that stores which key is pressed: “u”

for up arrow key, “d” for down arrow key, “l” for left arrow key, and “r” for

right arrow key. When we start the game, this value is going to be an empty

string.

key = ''

Finally, let’s make a “score” variable and initialize its value to 0 when

we start the game.

score = 0

�Draw the head
Now that we’ve initialized the variable, let’s draw our head and make it

appear on our screen.

Chapter 19 Project: Snake Game with Turtle

418

We’re going to create a new turtle (head) for this. Make its speed 0,

shape square, and color green. Finally, move it to the position 0,0 (center

of the screen).

#Draw head

head = turtle.Turtle()

head.speed(0)

head.shape('square')

head.color('Green')

head.penup()

head.goto(0, 0)

Let’s also append this head to the “snake” list. Since the list is empty,

it’ll occupy the first position in the list.

snake.append(head) #get the first head

Run the program and tell me what you see. Is it still a blank screen? :O

Where’s our turtle?!

Ah well, I guess we can’t see anything because of the tracer. We got rid

of the animation, remember? We need a game loop to make things right

this time.

You’ll learn more about game loops in Pygame, but for now, just know

that every game needs a never-ending loop (usually a while loop) that runs

while the game is still “on”.

Let’s create such a loop now and use the update() method (of our

screen) to update the screen every time the loop is executed.

while True:

 s.update()

That’s it! Now run the program again, and you’ll see a cute little snake

head on the middle of your screen (Figure 19-3).

Chapter 19 Project: Snake Game with Turtle

419

�Draw the first apple
Now that we’ve drawn our snake, let’s draw our first apple at its first

random position. We need another turtle for this, and we’re going to name

it “apple”.

#Draw first apple

apple = turtle.Turtle()

apple.speed(0)

apple.shape('square')

Make its color red, and let’s move it to a random position.

apple.color('Red')

apple.penup()

Figure 19-3.  Snake head

Chapter 19 Project: Snake Game with Turtle

420

Read the following line of code. We’re generating a random

number between –11 and 11 and multiplying that by 20. If you multiply

something by 20, you’re creating multiples of 20, which is exactly what

we want because our snake head is going to move 20 points forward

every time it moves.

If our snake has to win, it should be able to superimpose the apple

completely, so the apple should appear in the same line of movement as

the snake. We need a multiple of 20 to make that happen.

Why a range of –11,11? Well, you can make it a little bigger, maybe –11,12

so the actual range is –11 to 11, but the entire premise is that the apple

should appear within the screen.

–11 * 20 is –220. That’s the x,y position of the top-left corner of our

square, and then comes the square, which is of size 20. So, the top-right

corner of our square will be at –240, right?

That’s where it should end. If we move even further to the left, our

apple might disappear.

aX = random.randint(-11,11)*20

aY = random.randint(-11,11)*20

Finally, let’s go to the random x and y coordinates we just created.

apple.goto(aX,aY)

Did you notice that our pens (head and apple) are always “up”? Well,

that’s because we aren’t going to draw with them. The turtles(pens) are

going to be the game characters this time, not their drawings.

Let’s run the program, and we get this (Figure 19-4).

Chapter 19 Project: Snake Game with Turtle

421

Great! We have a snake head, fixed at the middle of the screen, and an

apple that appears at a random position within the screen.

Run the program multiple times and you’ll notice that the apple gets

drawn in a different position every time. Cool right? 😊
Now, at the very end of the program (add the next lines of code before

this line), add the following:

s.mainloop()

This is to make sure that the screen is open until we close it, so the

prompt doesn’t come up in the Shell while we’re playing the game.

�Is my screen registering my arrow presses?
Most games have movement controls. We either use a joystick or keyboard

keys. Ours is a simple game, so we’re going to stick to keyboard keys.

Shall we make our snake move when we press the arrow keys? Up,

Down, Left, or Right arrow keys.

Figure 19-4.  Head and first apple

Chapter 19 Project: Snake Game with Turtle

422

To make your screen “listen” to keyboard key presses, that is, to know

that keys are being pressed, use your screen’s listen() method. Now, your

screen is listening. Place these lines of code after you draw your first apple

and snake head, but before the while loop (game loop).

#Listen to the events and act

s.listen()

Now, you can use the onkeypress() methods to call user-defined

functions when key presses happen. This works similar to how we did

things in Tkinter, with the only difference that our function call comes

before the “event” we’re looking for.

Our events are ‘Up’, ‘Down’, ‘Left’, and ‘Right’. These are values your

onkeypress() function is expecting, so place them within quotes and write

them without changing case. Your functions can be anything. I’ve made

mine set_up, set_down, set_left, and set_right.

s.onkeypress(set_up,'Up')

s.onkeypress(set_down,'Down')

s.onkeypress(set_left,'Left')

s.onkeypress(set_right,'Right')

Now that we’ve called our function, we need to create them (or we’d

get an error). Let’s define our functions above the onkeypresses. Each

function will load the global “key” variable, and change the value to ‘up’,

‘down’, ‘right’, or ‘left’.

But we need to keep track of something here. In the snake game,

snakes can’t move backward, or they’ll just hit their own body (which ends

the game), so we need to check if the user is trying to move back.

For example, if the current value of key is ‘down’, then we shouldn’t

change the value to ‘up’ next. Ignore that particular key press and so on.

Chapter 19 Project: Snake Game with Turtle

423

def set_up():

 �global key �#so the global variable key can be used in a

local context here

 if(key != 'down'):

 key = 'up'

def set_down():

 global key

 if(key != 'up'):

 key = 'down'

def set_left():

 global key

 if(key != 'right'):

 key = 'left'

def set_right():

 global key

 if(key != 'left'):

 key = 'right'

Alright, we’ve officially changed direction. But if we run the program

now, we wouldn’t see a difference. Press keys. Does anything happen?

Nope. We haven’t written the code to make our snake move yet! Let’s do

that next.

�Make our snake head move
So, in a snake game, once we set a direction, the snake will move in that

direction automatically, until we change the direction again. So basically,

once the snake starts moving, it’ll continue to move until it collides with

something.

To create this automatic movement, we’re going to call a moveHead()

function from within our game loop.

Chapter 19 Project: Snake Game with Turtle

424

while True:

 s.update()

 moveHead()

But, we aren’t going to stop there. We’re going to run the while loop

at a delay of 0.2 seconds for every iteration, so that the human eye can

actually see the snake move.

Every iteration of a loop gets executed in microseconds. That’s how

powerful and fast Python and your computer are. But, this is a game. We

need something the human eye can see, so let’s slow down our program,

shall we? Make it sleep for 0.2 seconds after every iteration.

time.sleep(0.2)

Okay, now that we’re done with the “while” loop, let’s create the

moveHead() method to set the x and y coordinates of the head.

We’re going to continuously change the x and y coordinates of the head

by 20 points for every function call (which happens at a 0.2-second delay),

so the head moves forward by 20 points every 0.2 second (Figure 19-5).

Figure 19-5.  Game screen coordinates

Chapter 19 Project: Snake Game with Turtle

425

Look at the preceding illustration. If you want to move your snake to

the left, decrease the value of X while keeping the value of Y the same. To

move to the right, increase the value of X. To move up, increase the value of

Y (X remains the same). To move down, decrease the value of Y.

Simple enough? Let’s apply this to our code now!

#Make it move based on the set direction

We don’t need to load “key” in this function because we aren’t

changing/re-assigning its value. We’re just retrieving its value. Retrieve the

current x or y coordinates of the “head” turtle (snake’s head in our game)

using the xcor() and ycor() methods. Now you know why we stored the

entire turtle in our list. This is so we can use it to get a lot of information

about it (like its position).

Increase or decrease the x or y coordinate by “size” (20 pixels) because

that’s our measurement. Our apple is going to appear along one of these

points as well.

def moveHead():

 if key == 'up':

 head.sety(head.ycor() + size)

 if key == 'down':

 head.sety(head.ycor() - size)

 if key == 'left':

 head.setx(head.xcor() - size)

 if key == 'right':

 head.setx(head.xcor() + size)

Now, run the program and try to make the snake move (Figure 19-6).

It will!

Chapter 19 Project: Snake Game with Turtle

426

If you try to move it backward, it wouldn’t. Why don’t you try and see

for yourself?

�Get the scoreboard going
Now that our snake’s head is moving around, we need to start scoring.

Before we grow our snake every time it “ate” an apple, let’s draw the

scorecard at the top-right corner of the screen, so we can keep track of the

code. Place this piece of code right below the code where you drew the first

apple. Don’t worry about the order. I’ll paste the entire code in the right

order at the end of the chapter.

I’ll be creating another turtle for the scoreboard because I want it to

“draw” the score while the other turtles are working. I’m positioning it at

the point 120,120 (toward the top-right corner).

Figure 19-6.  Move the snake head

Chapter 19 Project: Snake Game with Turtle

427

#Draw the score

sc = turtle.Turtle()

sc.speed(0)

sc.pencolor('White')

sc.penup()

sc.goto(120,220)

To start with, let’s write ‘Score:0’ in Arial, 20 points, bold format. We’ll

be updating the value as the game progresses.

sc.write('Score:0',font=('Arial',20,'bold'))

Let’s finally hide this turtle because we only need what it draws (unlike

the “apple” and “snake” turtles).

sc.hideturtle()

Run the program, and you get this (Figure 19-7).

Yep, we have our scoreboard! 😊 We’re almost there, people!

Figure 19-7.  Create the scoreboard

Chapter 19 Project: Snake Game with Turtle

428

�Our snake’s eating!
Now that we have our scoreboard done, let’s make our snake eat. Right

now, if our snake touches the apple, nothing happens. It’ll just pass right

by it. It won’t grow and our apple won’t disappear either.

Place the next few lines of code (before the function definitions) inside

the “while loop”, right after the s.update() method.

So, we’re going to check the distance between our snake’s “head” and

apple. If that distance is less than or equal to 0, that is, if the snake head

completely merges with the apple, then we want two things done:

	 1.	 A new apple drawn in another random position. We’ll be

creating a drawApple() function that does this.

	 2.	 One more body part added to the end of the snake. We’ll

be creating a new “turtle” as our head’s body part(s).

Let’s create a drawSnake() function that does this.

Turtle has a distance() method that checks if an object is in a particular

distance from another object. In our case, we’re going to check if our

object has no distance from the other object (completely superimposed).

#check for eating

if head.distance(apple) <= 0: #completely superimposed

 drawApple()

 #Create a new body part

 drawSnake() #keep the tail - old head

Let’s also increase the value of score by exactly 1 and call the

changeScore() method and send it the current value of score. This method

will update the scorecard.

score += 1

changeScore(score)

Chapter 19 Project: Snake Game with Turtle

429

Alright, that’s it for our while loop (for now). We need to define three

functions now (above the calling “while” loop): one to draw a new apple,

one to change the score, and the next to draw the new snake body part

since it has to grow (it just ate, didn’t it?).

#Draw apple function

Follow the same procedure as before, when we drew our first apple, to

get the next x and y coordinates, and move the “apple” turtle to that point.

That’s it!

def drawApple():

 aX = random.randint(-11,11)*20

 aY = random.randint(-11,11)*20

 apple.goto(aX,aY)

Now, let’s draw our snake body part. We’re going to create a new turtle

every time our snake head eats an apple. So, every time our drawSnake()

function gets called, a new turtle “sBody” is going to be created. It’s going

to be square in shape and green in color just like our snake “head”. Let’s

also append the new part to the “snake” list.

#draw snake

def drawSnake():

 sBody = turtle.Turtle()

 sBody.speed(0)

 sBody.shape('square')

 sBody.color('Green')

 sBody.penup()

 snake.append(sBody) #insert at the end

Now, let’s work on the changeScore method. Let’s make the score

“turtle” sc go back to its 120,220 position (starting position). Let’s clear

what’s currently there using the clear() method, create a new string with

Chapter 19 Project: Snake Game with Turtle

430

the current score, and rewrite the text. Since the speed is 0, you won’t see

any of this happening in real time, so for our human eyes, it’ll look like the

scoreboard is updating itself seamlessly.

def changeScore(score):

 sc.goto(120,220)

 sc.clear()

 string = 'Score: {}'.format(score)

 sc.write(string,font=('Arial',20,'bold'))

 sc.hideturtle()

Let’s run the program and try eating some apples (Figure 19-8).

Well, the scoreboard seems to be updating properly. The apples do

disappear and appear in a new position. And we do seem to get new “body

parts” every time our snake eats, but they’re not joined together, and they

don’t move together. And, it looks like the new body parts are appearing on

top of each other (in the middle of the screen), so to our eye, we only see

one body part, while there should be two by now (since the score is 2).

Figure 19-8.  Create new snake parts (snake eats)

Chapter 19 Project: Snake Game with Turtle

431

Why? Well, we haven’t asked them to do that yet. As you know, in

programming, you need to give detailed instructions for every little thing.

So, let’s do just that, shall we? 😊

�Make the entire snake move
Let’s update the while loop with a call to the moveBody(). This function

will attach the snake body parts to the head and make the body parts move

along with it.

Our while loop will look something like this once we’re done:

while True:

 s.update()

 #check for eating

 if head.distance(apple) <= 0: #completely superimposed

 drawApple()

 #Create a new body part

 drawSnake() #keep the tail - old head

 score += 1

 changeScore(score)

 moveBody() #RIGHT HERE!

 moveHead()

 time.sleep(0.2)

Make sure the call to the moveBody() function is BEFORE the

moveHead() function so they moves before the new head is drawn so it

looks like actual movement.

Now, let’s define the moveBody() function. We’re basically going to

switch coordinates.

Chapter 19 Project: Snake Game with Turtle

432

Since we appended “head” at the start of the program, the 0th index

of the “snake” list is going to have our “head” turtle, am I right? Then,

we’ve appended other body parts, also turtles after the snake head. So, to

simulate movement, we need these body parts to shift their coordinates.

Right now, only “Head” moves because that’s the only code we’ve

written (moveHead() function). So, every time “head” moves to a new

coordinate, the body part right next to it (in the “snake” list) should move

to the head’s old coordinate. Now, the body part next to the first body part

should move to the first body part’s old position and so on until all the

parts of the snake have shifted 20 pixels forward.

How can we make that happen? In programming, whenever you want

to exchange values, you need a temporary variable that’ll hold the old

values.

So, we’re going to create a temporary list temp that’s going to store all

the current x and y coordinates of the snake’s body parts.

We’re going to create a “for” loop that loops through the “snake” list to

do this.

def moveBody():

 temp = []

 #create a list of the current positions

Let’s store just the x and y coordinates of each snake part in one “item”

of the list. We’re going to create dictionaries within a list.

for i in snake:

 x = i.xcor()

 y = i.ycor()

 temp.append({'x': x, 'y': y})

Now that we have our temporary list, let’s do our exchanges. We don’t

need to change the position of the item in the zeroth index (which is our

head, which moves on its own), so let’s create a for loop that loops from 1

through the length of the snake (1 – (len–1)), which is just the body parts.

Chapter 19 Project: Snake Game with Turtle

433

#Move entire body

for i in range(1,len(snake)):

Since “temp” already has the “old” x and y coordinates of the entire

snake (including the head), we’re just going to use that. So, let’s make

the turtle in the ith position (starting at the first index) go to the x and y

coordinates of the turtle in the i–1th position (which is our head, to start

with).

That’s it! Since we used a dictionary to store our values in temp, we

need to access them as such. So, the x value of the first item in “temp”

would be temp[0]['x'] and so on.

snake[i].goto(temp[i-1]['x'],temp[i-1]['y'])

Let’s check if our snake moves now (Figure 19-9).

It moves and grows perfectly. Whohoo! 😊
Now, for the final part of the game. Collision check!

Figure 19-9.  Make the entire snake move

Chapter 19 Project: Snake Game with Turtle

434

�Collision check
Before moving the head for the next time sleep, we need to do the collision

check, so the next movement does not happen. We’re going to call the

checkCollision function, which is going to return a True if there’s a

collision, and if the result of the function call is indeed a True, we’re going

to break the game loop (while loop). The updated while loop is this:

while True:

 s.update()

 #check for eating

 if head.distance(apple) <= 0: #completely superimposed

 drawApple()

 #Create a new body part

 drawSnake() #keep the tail - old head

 score += 1

 changeScore(score)

 moveBody()

 moveHead()

 �#Before moving the head for the next round, check for collision

 if checkCollision():

 break

 time.sleep(0.2)

If we place the collision check anywhere else, before the body moves,

for instance, we might see inconsistencies in our game. For instance, try

placing the collision check between moveBody() and moveHead(). This

might seem logical at a first glance, but by doing this, you’re creating a

body, moving it, but then immediately checking for collision before you

move the head. This will cause a body collision because right now your

first body part and your head are in the same position.

Chapter 19 Project: Snake Game with Turtle

435

So, let’s move our snake completely, before checking for collision.

Now, let’s define the collision check function. This function is going to

load the global “key” variable because we are going to change it back to an

empty string, so the movement stops temporarily.

We’re also going to create a variable “collision” and make its default

value False.

def checkCollision():

 global key

 collision = False

Let’s check for wall collision first. It’s quite simple, really. If the head’s

x or y coordinates are either greater than 240 or lesser than –240, then

collision is True.

#wall collision

if head.xcor() < -240 or head.xcor() > 240 or head.ycor() < -240

or head.ycor() > 240:

 collision = True

Now, for body collision, let’s loop through 1 to length of the snake list

again (only the body parts, not the head). If the head’s x and y coordinates

are the same as the x and y coordinates of any of the snake’s body parts,

then a body collision has occurred, and collision is True again.

#body collision

for i in range(1,len(snake)):

 �if head.xcor() == snake[i].xcor() and head.ycor() ==

snake[i].ycor():

 collision = True

Chapter 19 Project: Snake Game with Turtle

436

Finally, if collision is True, then make key an empty string again

(pause movement). The game is essentially over. If collision wasn’t True,

then nothing will happen, and the next iteration of the “while” loop will

continue.

if collision == True:

 key = '' #pause the movement

We need to do three things next:

	 1.	 Pause the program for 1 second so the user realizes

that the game is over.

	 2.	 Move the snake (all its parts) and apple off the

screen so it essentially “disappears”.

	 3.	 Draw a “Game Over” message. We need a new turtle

to do this. We’re going to keep the scorecard so the

user knows what they scored last.

time.sleep(1) #pause for a bit so user registers what happened

Let’s loop through “snake” and move all its parts to 2000,2000

(essentially off the screen). Let’s move apple to a farther position as well.

 for s in snake:

 s.goto(2000,2000) #make it go off the screen

 apple.goto(2500,2500)

We’re going to create an ordinary Turtle, move it to the point -170,0

and draw ‘GAME OVER’ in white.

 #game over message

 game = turtle.Turtle()

 game.penup()

 game.goto(-170,0)

 game.pencolor('white')

Chapter 19 Project: Snake Game with Turtle

437

 game.write('GAME OVER!',font=('Arial',40,'bold'))

 game.hideturtle()

return collision

Finally, let’s return collision back to the calling function. That’s it!

We’ve finished our game! 😊
Let’s check if the collision works, shall we?

Let’s check for wall collision first (Figure 19-10).

Yup, it works.

Now for body collision (Figure 19-11).

Figure 19-10.  Wall collision

Chapter 19 Project: Snake Game with Turtle

438

That right there is a coiled-up snake!

And after the mentioned 1-second delay, everything disappears,

and we’re left with just the scoreboard and the “GAME OVER” message.

If the user wants to play again, they’ll have to run the program again

(Figure 19-12).

Figure 19-12.  Game Over message

Figure 19-11.  Body collision

Chapter 19 Project: Snake Game with Turtle

439

Whew! That was long, but certainly worth it! I hope you had a lot of fun

creating this game with me. I know I did! 😊

�Entire code
Now, the entire code, as promised:

#import the required modules

import turtle

import time

import random

#setup the screen

s = turtle.Screen()

s.title('Snake Game')

s.bgcolor('Black')

s.setup(width = 500, height = 500)

s.tracer(0) #gets rid of animation

#create and assign the required variables

snake = []

size = 20

key = ''

score = 0

#Draw the head

head = turtle.Turtle()

head.speed(0)

head.shape('square')

head.color('Green')

head.penup()

head.goto(0, 0)

snake.append(head) #get the first head

Chapter 19 Project: Snake Game with Turtle

440

#Draw the first apple

apple = turtle.Turtle()

apple.speed(0)

apple.shape('square')

apple.color('Red')

apple.penup()

#generate a random integer that's a multiple of 20

#multiples of 20 that doesn't go beyond the screen (250,-250)

aX = random.randint(-11,11)*20

aY = random.randint(-11,11)*20

apple.goto(aX,aY)

#Draw the scoreboard at the beginning

sc = turtle.Turtle()

sc.speed(0)

sc.pencolor('White')

sc.penup()

sc.goto(120,220)

sc.write('Score:0',font=('Arial',20,'bold'))

sc.hideturtle()

#Change the direction of the snake

def set_up():

 �#so the global variable key can be used in a local

context here

 global key

 if(key != 'down'):

 key = 'up'

def set_down():

 global key

 if(key != 'up'):

 key = 'down'

Chapter 19 Project: Snake Game with Turtle

441

def set_left():

 global key

 if(key != 'right'):

 key = 'left'

def set_right():

 global key

 if(key != 'left'):

 key = 'right'

#Make the snake move based on the set direction

def moveHead():

 if key == 'up':

 head.sety(head.ycor() + size)

 if key == 'down':

 head.sety(head.ycor() - size)

 if key == 'left':

 head.setx(head.xcor() - size)

 if key == 'right':

 head.setx(head.xcor() + size)

#make the new snake body move (if the snake has grown)

def moveBody():

 temp = []

 #create a list of the current positions

 for i in snake:

 x = i.xcor()

 y = i.ycor()

 temp.append({'x': x, 'y': y})

 #Move entire body

 for i in range(1,len(snake)):

 snake[i].goto(temp[i-1]['x'],temp[i-1]['y'])

Chapter 19 Project: Snake Game with Turtle

442

#Draw apple function

def drawApple():

 #generate a random integer that's a multiple of 20

 #multiples of 20 that doesn't go beyond the screen (250,-250)

 aX = random.randint(-11,11)*20

 aY = random.randint(-11,11)*20

 apple.goto(aX,aY)

#Create a new snake part

def drawSnake():

 sBody = turtle.Turtle()

 sBody.speed(0)

 sBody.shape('square')

 sBody.color('Green')

 sBody.penup()

 snake.append(sBody) #insert at the end

#Update the score

def changeScore(score):

 sc.goto(120,220)

 sc.clear()

 string = 'Score: {}'.format(score)

 sc.write(string,font=('Arial',20,'bold'))

 sc.hideturtle()

#Check for collision – wall & body

def checkCollision():

 global key

 collision = False

 #wall collision

 �if head.xcor() < -240 or head.xcor() > 240 or head.ycor()

< -240 or head.ycor() > 240:

 collision = True

Chapter 19 Project: Snake Game with Turtle

443

 #body collision

 for i in range(1,len(snake)):

 �if head.xcor() == snake[i].xcor() and head.ycor() ==

snake[i].ycor():

 collision = True

 if collision == True:

 key = '' #pause the movement

 �time.sleep(1) #pause for a bit so user registers

what happened

 for s in snake:

 s.goto(2000,2000) #make it go off the screen

 apple.goto(2500,2500)

 #game over message

 game = turtle.Turtle()

 game.penup()

 game.goto(-170,0)

 game.pencolor('white')

 game.write('GAME OVER!',font=('Arial',40,'bold'))

 game.hideturtle()

 return collision

#Listen to the events and act on the required key presses

s.listen()

s.onkeypress(set_up,'Up')

s.onkeypress(set_down,'Down')

s.onkeypress(set_left,'Left')

s.onkeypress(set_right,'Right')

#The main game loop that keeps the game running

while True:

 s.update()

 #check for eating

Chapter 19 Project: Snake Game with Turtle

444

 if head.distance(apple) <= 0: #completely superimposed

 drawApple()

 #Create a new body part

 drawSnake() #keep the tail - old head

 score += 1

 changeScore(score)

 #Move the body first, and then the head to the new position

 moveBody()

 moveHead()

 �#Before moving the head for the next round, check for collision

#If there's a collision, stop the game loop – no more movement

 if checkCollision():

 break

 #A delay of 0.2 seconds before each movement

 time.sleep(0.2)

#Keep the screen open until the user closes it

s.mainloop()

�Summary
In this chapter, we created a snake game with our Turtle package. We

learned a bunch of new things, like using the time module to pause your

program for a while, creating game loops, getting the positions of your

turtles, moving your game characters, collision check, score keeping in a

2D game, and so much more.

In the next chapter, let’s learn all about Pygame. We’ll learn how to

create simple 2D games in Pygame, which was created especially to make

games.

Chapter 19 Project: Snake Game with Turtle

445© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_20

CHAPTER 20

Become a Game
Developer
with Pygame
In the previous chapter, we created a snake game with Turtle.

In this chapter, let’s learn get an introduction Pygame, a platform that’s

been extensively used for 2D game development. Let’s learn all about

creating our characters, using images as characters, setting up your screen

and modifying it, making your characters move, collision detections,

shooting bullets out of guns, scores, text, and so much more!

�What is Pygame?

https://doi.org/10.1007/978-1-4842-6812-4_20#DOI

446

Pygame is a cross-platform platform that consists of multiple Python

modules. It was designed for writing video games. It might seem simple

when you get started, but once you go deep into it, it’s quite powerful, and

you can create anything from simple text-based games to complicated,

sophisticated, multi-player world games with it.

In this chapter, let’s learn the basics of Pygame because exploring the

entire extent of its features and capabilities is beyond the scope of this

small chapter.

�Install and import Pygame
Anything that’s beyond the standard Python code needs to be installed, am

I right? That holds true for Pygame as well.

But the problem is unlike Tkinter and Turtle, Pygame doesn’t come

installed in your standard Python installation. So, you need to install it

separately.

To install Pygame in your Python installation, go to your command

prompt and to the folder in which you’ve done your Python installation

(Figure 20-1).

Chapter 20 Become a Game Developer with Pygame

447

In your command prompt, type the following:

pip install pygame

Press Enter and wait for a few seconds. You should get a message like

this (Figure 20-2).

Figure 20-1.  Open command prompt

Chapter 20 Become a Game Developer with Pygame

448

That’s it! Pygame is installed in your system now. Let’s use it in our

program next. Open your Python Shell and create a new script. Name it

whatever you want, just not pygame.

Unlike Tkinter and Turtle, you can’t just import pygame and be done

with it. You need to initialize the library as well. Use the init() method to do

that. Your program wouldn’t work until you initialize.

import pygame

pygame.init()

That’s it! We’ve imported Pygame, and we’re ready to go!

�Set up your gaming screen!
What’s the next step in creating a game? You’ve created many so far, so

why don’t you guess? Yes! A screen. We need a screen where everything

happens.

Let’s do that now. I’m going to define a variable “screen” (you can

name yours anything you want) and use the display.set_mode method to

create my screen with the dimensions I want.

You need to give the width and height of your screen inside a tuple or a

list though. You’ll get an error otherwise.

screen = pygame.display.set_mode((500,500))

Now, let’s run our program and see what we get (Figure 20-3).

Figure 20-2.  Install Python

Chapter 20 Become a Game Developer with Pygame

449

We have our screen. Whoo!

But try closing your screen, and you’ll find that you can’t. That’s

because unlike the other packages, Pygame needs special instructions

to close your screen. So, we’re going to comb through all the events

happening on the screen, choose the event that corresponds to a left

mouse button click on the “x” (close) button, and ask Pygame to “QUIT”

when that click happens.

Simple enough? Let’s do that!

As you know, every game needs a game loop. A never-ending loop that

only ends when the game ends. Pygame is no exception. We’re going to

create a “while” loop that becomes false when the close button is clicked.

game = True

Now, we’re going to use a “for” loop to comb through all the events

happening on the screen. You can use the pygame.event.get() method to

get a list of the events, and you can iterate through them. For every iteration,

check if your event.type is pygame.QUIT (the close button click we’re

looking for). If it is, make “game” False so the while loop stops executing.

Figure 20-3.  Python window

Chapter 20 Become a Game Developer with Pygame

450

while game:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

Once we’re out of the game loop, we’re going to use the pygame.quit()

method to close the screen.

Now try closing the screen. Does it close? Yup! 😊

�Make your screen pretty
Now, let’s make our screen pretty! Why don’t we start with changing the

caption (title) of the screen?

You need to use the display.set_caption method to do that. Place these

lines of code below the line where you created the screen (above the game

loop).

pygame.display.set_caption('My first game')

Run the program, and see what you get (Figure 20-4).

Figure 20-4.  Customize your screen

Chapter 20 Become a Game Developer with Pygame

451

Our title has changed!

Our screen is black in color right now. Why don’t we change colors? To

set our colors, we’re going to be using RGB values.

R stands for Red, G stands for Green, and B stands for Blue. These three

colors are called primary colors, and different shades and combinations of

these three colors form the rest of the colors you see everywhere.

So, with these three values, we can come up with pretty much any

color. The values go from 0 to 255 for each of the three colors, where 0 is an

absence of any color and 255 is the presence of color.

Naturally, (0,0,0) is a complete absence of colors, which will give us

black, and (255,255,255) is a complete presence of colors, which will give

us white.

You can use the following website to find the RGB color codes of any

shade you want to use in your program:

https://htmlcolorcodes.com/

There are plenty of other websites out there that give you the same

information. Search for “color picker” or “rgb color codes” online to look

them up.

Now that we’ve learned how colors work, let’s fill our screen with red

color. That’d be 255,0,0 (complete presence of just Red).

Inside the “while” loop, below the for loop where we look at the events,

add the following lines of code:

screen.fill((255,0,0))

But if you run the program now, you won’t see the change. Why is that?

Well, the screen isn’t being updated for every iteration. You need to use the

display.update() method to update your screen.

pygame.display.update()

Now, run your program again, and you’ll get this (Figure 20-5).

Chapter 20 Become a Game Developer with Pygame

https://htmlcolorcodes.com/

452

Our color has changed! Whoo! 😊

�Create your characters on the screen
You can use the draw methods to draw lines, rectangles (or squares),

circles, or polygons. These can be your game characters.

It’s quite easy to draw a line. The syntax is as follows:

pygame.draw.line(screen,color,(x1,y1),(x2,y2),width)

You need to specify where you want the line drawn (the screen), the

color (in RGB), the x and y coordinates of the starting and ending points of

the line (each pair within a tuple), and, finally, the thickness of the line.

Let’s try this in our program. Place this line of code above the display.

update() method so the line gets updated to the screen:

pygame.draw.line(screen,(255,255,0),(50,50),(100,150),10)

Run the program, and you’ll get this (Figure 20-6).

Figure 20-5.  Change screen background

Chapter 20 Become a Game Developer with Pygame

453

We have our line in the exact position we wanted!

Next, let’s look at a rectangle. The syntax is this:

pygame.draw.rect(screen,color,(x,y,width,height),outline)

We need to specify the x and y position of the top-left corner point

of the rectangle and its width and height. If you mention the same width

and height values, you’ll get yourself a square. The final value mentions

whether you want a fill or an outline. If you mention the outline as 0, you’ll

get a completely filled rectangle. Any other value will get an outline. Let me

show you examples of both:

pygame.draw.rect(screen,(153,255,102),(100,200,100,100),0)

Run the program, and you’ll get this (Figure 20-7).

Figure 20-6.  Draw line

Chapter 20 Become a Game Developer with Pygame

454

Now, let’s give the outline as 50 (50% fill) (Figure 20-8).

Now, let’s draw a circle. The syntax is this:

pygame.draw.circle(screen,color,(x,y),radius,outline)

Figure 20-7.  Draw rectangle

Figure 20-8.  50% fill

Chapter 20 Become a Game Developer with Pygame

455

The x and y points are the x and y coordinates of the circle’s center.

Then, mention the radius and the outline (if you don’t need a complete fill).

pygame.draw.circle(screen,(0,102,255),(300,200),50,0)

Run the program, and you’ll get this (Figure 20-9).

Nice! 😊
Finally, you can draw polygons (any number of lines).

pygame.draw.polygon(screen,color,((x1,y1),(x2,y2)...(xn,yn)))

Let’s draw a triangle first.

pygame.draw.polygon(screen,(128,0,0),((150,350),(50,450),

(250,450)))

Maybe a five-sided polygon, next?

pygame.draw.polygon(screen,(253,0,204),((400,300),(300,300),

(350,450),(450,450),(450,350)))

Run the program, and you’ll get this (Figure 20-10).

Figure 20-9.  Draw circle

Chapter 20 Become a Game Developer with Pygame

456

That’s it for the shapes! Now, let’s look at images.

Let’s start from scratch for our images. It’s a very simple process. You

need to load your image (once, outside your game loop) and “blit” it inside

the game loop in the exact coordinate you want it to appear in, so it gets

updated on the screen.

Specify the exact path you have your image in. If you don’t want to

complicate things, place your image in the same folder as your Python file,

and you’ll just have to mention the name of the file, and be done with it. 😊

image = pygame.image.load('ball.png')

Then, use “blit” to display it on the screen.

while game:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

 screen.fill((255,0,0))

 screen.blit(image,(200,150))

 pygame.display.update()

Figure 20-10.  Draw polygons

Chapter 20 Become a Game Developer with Pygame

457

Run the program, and you’ll get this (Figure 20-11).

There you go! Our image is here. 😊

�Move your characters
It’s quite easy to move our characters. You just need to change the x and/or

y coordinates of your character, and you’re done. If you want continuous

movement, keep changing it for every iteration of the game loop.

Let’s try moving our ball, shall we?

I want it to move down, until it reaches the y value of 400 (since our

image is of height 100, when its y reaches 400, its bottom will touch the

screen), and then stop, okay? Let’s do that.

Let’s import pygame and time. We need the time module here because

we’re going to slow down our iterations so the human eye can see the

movement of the ball.

Figure 20-11.  Draw images

Chapter 20 Become a Game Developer with Pygame

458

import pygame

import time

pygame.init()

screen = pygame.display.set_mode((500,500))

image = pygame.image.load('ball.png')

game = True

We’re going to create a “y” variable that holds the first value of 150.

y = 150

while game:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

 screen.fill((255,0,0))

Let’s blit the image.

screen.blit(image,(200,y))

As long as y is not 400, let’s increment the y value by 1 for every

iteration of the loop.

if y != 400:

 y += 1

Let’s update the screen and make the program sleep for 0.005 seconds

between every iteration of the loop.

 pygame.display.update()

 time.sleep(0.005)

pygame.quit()

That’s it! Run the program (Figure 20-12), and you’ll see a smooth

downward movement until the ball touches the bottom end of the screen.

Chapter 20 Become a Game Developer with Pygame

459

�Keyboard press events
Alright, we can move our ball now. But what if we want to move it based on

user input, maybe a keyboard press event?

Let’s say I want to move my ball in all four directions based on which

arrow key my user presses on their keyboard. How would I do that?

Remember the events we were looping through while looking for the

QUIT event? We can use the same loop for our key press events too.

Look for the KEYDOWN event, which registers only when a key is

pressed down while the user is on our game screen. You’ll get a dictionary

of events when you look for KEYDOWN. Get them in a variable. Let’s name

ours “keys”.

To register the left arrow key, search for keys[K_LEFT]. If the value of

this is true, move left (decrease x by 1).

To register the right arrow key, search for keys[K_RIGHT] and increase

x by 1 if that’s true.

To register the up arrow key, search for keys[K_UP] and decrease the y

value by 1 if that’s true.

Figure 20-12.  Move your characters

Chapter 20 Become a Game Developer with Pygame

460

To register the down arrow key, search for keys[K_DOWN] and

increase the y value by 1 if that’s true.

To get continuous movement, introduce directional variables, that’ll

continuously increment or decrement your x or y value based on the

direction you’ve set.

Let’s set a starting value for x and y and the directional variables at 0

because at the moment, our ball isn’t moving.

x = 200

y = 150

xd = 0

yd = 0

while game:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

Now, let’s look for our events. If the user wants to set the direction to

left, then xd should become –1, while yd stays the same. Follow the same

logic for the rest of the directions.

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 xd = -1

 yd = 0

 if event.key == pygame.K_RIGHT:

 xd = 1

 yd = 0

 if event.key == pygame.K_UP:

 yd = -1

 xd = 0

Chapter 20 Become a Game Developer with Pygame

461

 if event.key == pygame.K_DOWN:

 yd = 1

 xd = 0

screen.fill((255,0,0))

Now, before you blit the image and update the screen, add the xd and

yd values to the current x and y values.

 x += xd

 y += yd

 screen.blit(image,(x,y))

 pygame.display.update()

 time.sleep(0.005)

pygame.quit()

Now, when you set a direction, the ball will continue to move in that

direction until you change it (just like in our snake game).

But what if we only want the screen to move along with the keyboard

presses. When we stop pressing on the arrow keys, we want the ball to stop

moving.

There’s a KEYUP event that’ll help you with that. Inside the for loop,

check if the KEYUP event has happened, and in an inner “if” statement,

check whether the current events are either the LEFT, RIGHT, DOWN, or

UP events.

If so, stop changing both the xd and yd values (make them 0), and

you’ll stop the movement.

if event.type == pygame.KEYUP:

 �if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT

or event.key == pygame.K_UP or event.key == pygame.K_DOWN:

 xd = 0

 yd = 0

That’s it!

Chapter 20 Become a Game Developer with Pygame

462

�Mini project – bouncing ball
In this project, we’re going to create a bouncing ball that bounces up and

down the screen. When it hits either the top or the bottom of the screen, it

should reverse direction and continue like that. Simple enough? Let’s do

this with pygame.

	 1.	 Let’s import pygame and time to start with.

import pygame

import time

	 2.	 Then, let’s initialize pygame and create our screen.

It’s going to be of width and height 500 each.

pygame.init()

screen = pygame.display.set_mode((500,500))

	 3.	 Now, let’s create a variable y and make it 0 to start

with. This is because with and up and down bounce,

the only value that’ll change is the y value.

y = 0

	 4.	 We also need a “game” variable that’s currently True

but will turn False when the user closes the screen.

game = True

	 5.	 Let’s also create a directional variable “d” that’ll be

1 by default. We’re going to increment the y value

of the ball by 1 (to move upward) and –1 (to move

downward). This variable is going to change our

ball’s direction.

d = 1

Chapter 20 Become a Game Developer with Pygame

463

	 6.	 Now, let’s create our game loop.

while game:

	 7.	 To start with, let’s create the quit condition. If the

event type is pygame.QUIT, make game false.

for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

	 8.	 Then, let’s fill our screen with white color.

screen.fill((255,255,255))

	 9.	 Then, let’s use the draw.circle method to draw a red

ball in the position 250,y (to start with, 250,0). Its

radius is going to be 25 and is going to be a circle

that’s entirely filled, so 0 for the last attribute.

#draw a ball

 #circle draw function

 �#where you want to draw it, color of the

circle, position, width

 �pygame.draw.circle(screen,(0,0,255),

(250,y),25,0)

	 10.	 Let’s use the display.update method to ensure that

the screen gets updated every time the loop runs.

pygame.display.update() #update the screen

in the output window

Chapter 20 Become a Game Developer with Pygame

464

	 11.	 If we leave the game as it is, our ball would move too

fast to be seen by the human eye. So, let’s slow the

iterations of the loop down. There’ll be a delay of

0.005 seconds after every iteration.

time.sleep(0.005)

	 12.	 Now, let’s set the wall collision conditions. When y

is 488 (since our ball has a diameter of 25, and we

need the other half of the ball to be visible, we’re

setting it at 488 and not 500), let’s reduce the value

of y, because we need the ball to move up. So, d is

going to be –1.

if y == 488:

 d = -1

	 13.	 If y is 12, then increase the value of y. “d” is going to

be +1.

elif y == 12:

 d = 1

	 14.	 Finally, once we’re out of the if elif statement, let’s

add “d” with the current value of “y”.

 y += d

pygame.quit()

That’s it! Run the program, and you’ll have yourself a bouncing ball

(Figure 20-13).

Chapter 20 Become a Game Developer with Pygame

465

�Summary
In this chapter, we learned the basics of pygame. We learned how to set

our gaming screen, set up a game loop, create our characters (shapes and

images), make them move, detect wall collision, and detect keyboard

events.

In the next chapter, let’s apply what we learned in this chapter, and a

little more, to create a space invaders game!

Figure 20-13.  Bouncing ball

Chapter 20 Become a Game Developer with Pygame

467© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_21

CHAPTER 21

Project: Space
Shooters with Pygame
In the previous chapters, we learned the basics of Pygame. We learned

all about creating your game screen, closing the screen, beautifying it,

creating your characters, moving your characters, and more.

In this chapter, let’s apply what we’ve learned so far, and more, to

create a space shooter game. You’ll also learn how to create text and

scorecards for your game.

�Space shooter game

https://doi.org/10.1007/978-1-4842-6812-4_21#DOI

468

It’s a very simple game. You have a spaceship that’s more like a gun. It

can move left or right when you press on your left and right arrow keys.

Then, you have your enemies. Three rows of enemies, totaling 21, and

they’ll move down towards that spaceship. If they hit the spaceship, game

over!

To prevent that, the spaceship can shoot at the enemies. It has one

bullet to shoot at a time. The bullet reloads after every shot (when it hits the

enemy or the upper wall of the screen), so the spaceship can shoot again.

Every time the bullet hits the enemy, you gain a point and the enemy it

hits disappears. If you finish killing all the 21 enemies, they’ll reload, and

you’ll get a new set of 21 enemies in three rows. Start shooting again until

you lose!

Look at that (Figure 21-1). The enemy is almost near, so we need to clear

that row to stay alive. We’ve hit two enemies already, and our score is 2.

It’s a simple enough game with a lot of potential for improvement (more

levels, increased speed, more bullets, more enemies), so let’s get started!

Figure 21-1.  Final game

Chapter 21 Project: Space Shooters with Pygame

469

�Import the required modules
We need the pygame module to create the game as such and the time

module to slow down the characters enough that it’s visible to the

human eye.

import pygame

import time

�Initialize everything
Let’s initialize Pygame and its font package (to write the scoreboard).

pygame.init()

pygame.font.init() #To use text

Next, let’s create our game screen and set the caption to ‘Space

Shooters’.

screen = pygame.display.set_mode((500,500))

pygame.display.set_caption('Space Shooters')

Let’s also create a “font” variable that’ll store the font we need used,

which is font type “Arial” and size 40.

font = pygame.font.SysFont('Arial',40)

We need two game conditions: an “over” that turns True when the

game is over (enemy hit the spaceship) and a “game” that turns False when

the user closes the window.

over = False #Game over

game = True #Closed the game window

That’s it! Let’s run the program, and we get this (Figure 21-2).

Chapter 21 Project: Space Shooters with Pygame

470

We have our screen! 😊

�Game loop
Next, let’s create our game loop.

while game:

Let’s create the window “close” condition first. You already know how

to create that.

#Close window condition - Quit

for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

Figure 21-2.  Game screen

Chapter 21 Project: Space Shooters with Pygame

471

Let’s also fill the screen with black while we’re at it. Of course, this

wouldn’t make much of a difference because the default color of a pygame

screen is black.

screen.fill((0,0,0))

After the program is out of the game loop, close the window:

pygame.quit()

Don’t worry about the code sequence. I’ll paste the entire code in the

order it should be written at the end of the chapter.

Now, run the program again and try to close the window. It’ll work!

�Create the spaceship
Now, let’s create our spaceship and make it appear on the screen.

Place these lines of code above the game loop.

#Create the spaceship

I’m going to load the spaceship.png image I’ve gotten for this project.

It’s a nice little spaceship, pointing upward.

spaceship = pygame.image.load('spaceship.png')

Now, let’s set preliminary positions for the spaceship. Mid-way

horizontally, at an x position 250 and a y position of 390 (toward the

bottom of the screen). Let’s also set the direction at 0 as default. We can

increase or decrease it later when we make the spaceship move.

sp_x = 250

sp_y = 390

sp_d = 0

Chapter 21 Project: Space Shooters with Pygame

472

To make the spaceship appear on the screen, in the game loop, below

the for loop, include the following lines of code:

if over == False:

 screen.blit(spaceship,(sp_x,sp_y))

If the game is still true, then blit the image to the x and y coordinate

positions we set.

Finally, update the display:

pygame.display.update()

Let’s run the program, and we get this (Figure 21-3).

We have our spaceship. Yay! 😊

Figure 21-3.  Position your spaceship

Chapter 21 Project: Space Shooters with Pygame

473

�Move the spaceship
You already know how to make characters move, am I right? We need the

following done:

	 1.	 Move the spaceship right or left depending on which

arrow key is pressed.

	 2.	 When the user stops pressing on the arrow key, stop

moving the spaceship.

We need to look for two events in this case: KEYUP and KEYDOWN.

Within KEYUP, we need to look for two keys: K_LEFT and K_RIGHT.

Let’s go back to our game loop and the for loop where we iterated

through all the events happening on the screen and include the next two

conditions.

Look for the KEYDOWN condition, and if the key pressed in the

“down” event is the left key (left arrow key), then decrease the space

direction by 1, which means the spaceship will move toward the left

(horizontally).

If the key pressed is the right arrow key, then increase the space

direction by 1, which means the spaceship will move toward the right

(horizontally).

if event.type == pygame.KEYDOWN:

 #Make spaceship move

 if event.key == pygame.K_LEFT:

 sp_d = -1

 if event.key == pygame.K_RIGHT:

 sp_d = 1

Chapter 21 Project: Space Shooters with Pygame

474

Now, let’s make the spaceship stop moving if the arrow keys are let up.

Let’s look for a KEYUP event and check if the keys released are the left and

the right arrow keys.

#Make spaceship stop if not moving

if event.type == pygame.KEYUP:

 if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT:

If they are, bring the spaceship direction back to 0, so there’s no change

in position, and it just stops where the user leaves it.

sp_d = 0

But we can’t stop there. We need to add the sp_d value to the

sp_x value, out of the for loop, if we want it to move for every iteration

of the game loop.

#Spaceship move condition

sp_x += sp_d

Place the preceding lines of code above the spaceship blit and

“update” lines of code.

Now, run the code and try moving the spaceship. Whoa! That was fast.

I can’t really control my spaceship. Why is that?

Well, we aren’t spacing the game loop iterations, are we? Let’s pause

the program (game) 0.005 seconds after every iteration. Place this line of

code above the “display” line of code.

time.sleep(0.005)

Now, run the entire program, try to move your spaceship left and right,

and you’ll get this (Figure 21-4).

Chapter 21 Project: Space Shooters with Pygame

475

It works. Yes! 😊

�Create and move the enemies
Now let’s move the enemies! We need three rows of seven enemies,

totaling 21. They’re going to have the same properties (image), but the only

difference is their positions.

Let’s create lists that hold all of our values. One that holds the images so

it can be blit in the game loop, one that holds all the “x” positions, one for

all the “y” positions, and, finally, one for the enemy movement (direction).

#Create enemy

enemy = []

enemy_x = []

enemy_y = []

enemy_d = []

Figure 21-4.  Make spaceship move on arrow presses

Chapter 21 Project: Space Shooters with Pygame

476

Let’s also keep track of the number of enemies alive. The counter will

start at 0 and increase by one for every enemy being shot down. When the

number reaches 21, we’re going to reset everything, draw three rows of

new enemies again, and make them fall down to continue the game.

enemy_count = 0

Now, let’s set the x and y positions for our enemies. We’re going to

create a for loop that runs from 0 to 20 (range of 21) for this.

For the first row (from iterations 0 through 6), the x positions are going

to start at 0 and increase in multiples of 70 – 0, 70, 140, 210, 280, and so on.

The y positions are going to be at –60 (away from the screen, at the

top), but still near the visible portion since this is the first row.

The distance value is going to be 0.5 throughout, for every enemy,

because that’s the speed at which they’re all going to fall.

for i in range(21):

#Row 1

if i <= 6:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * i)

 enemy_y.append(-60)

 enemy_d.append(0.5)

Look at that! To create multiples of 70, I just multiplied 70 by “i” since

“i” is going to take values from 0 through 6 anyway.

Now, the second row is a little tricky. We still need multiples of 70 for

the x values, but we can’t use “i” as it is again, because, for the second

row, “i” is going to go from 7 through 13. So, let’s subtract “i” by 7 while

multiplying it by 70.

The y value for this set of enemies is going to be –120, a little behind

the first row.

Chapter 21 Project: Space Shooters with Pygame

477

#Row 2

elif i <= 13:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * (i-7))

 enemy_y.append(-120)

 enemy_d.append(0.5)

Similarly, let’s multiply 70 by i – 14 for the x value of the third, and last

row, and place the y value at –180.

#Row 3

else:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * (i-14))

 enemy_y.append(-180)

 enemy_d.append(0.5)

That’s it! We’ve positioned our enemies now. Let’s make them appear

and fall next.

Inside the game loop (while loop), and after you’ve “blit” the

spaceship, let’s create yet another “for” loop that runs 21 times (0 to 20).

Just like we did with our spaceship, we’re only going to draw the

enemies if the game is still not over.

We need to check for two conditions here:

	 1.	 If the enemy’s “y” position is more than 500 (it has

reached the end of the screen), then make it go

back to a “y” of –60. That’s enough. Why? Well, the

first row will disappear first, then the second, and

finally the third. Everything is continually moving

too, so if we just move each row back to –60, the

movement of the previous row will compensate for

the appearance of the next row in the same point.

Chapter 21 Project: Space Shooters with Pygame

478

	 2.	 If the y position is not yet 500, then we need to move the

enemy down. Add the enemy_d value to the enemy_y

value and blit that particular enemy to the screen.

#Draw enemies and make them move

for i in range(21):

 if over == False:

 #enemy wall collision

 if enemy_y[i] >= 500:

 enemy_y[i] = -60

 else:

 #Draw enemies

 enemy_y[i] += enemy_d[i]

 �screen.blit(enemy[i],(enemy_x[i],

enemy_y[i]))

That’s it! Our enemy should move now. Let’s check (Figure 21-5).

Figure 21-5.  Create the enemies

Chapter 21 Project: Space Shooters with Pygame

479

Yes! We have three rows of moving enemies!

�Fire the bullet
Next, let’s fire the bullet. We need to do three things here:

	 1.	 Create the bullet outside the game loop, but not blit

it until the user fires (presses the spacebar).

	 2.	 Check for the “space” press event inside the game

loop (in the for loop that iterates through all the

events, and inside the “if” statement where we did

the KEYDOWN event check), and if it happened,

set the bullet’s x and y positions and change its

direction.

	 3.	 Finally, outside the events “for” loop, but inside

the game loop, blit the bullet to the screen (if it was

fired). Let’s also check for the wall collision while

we’re at it and bring the bullet back to its original

position if it hits the wall.

Alright. Now that we know what we need to do, let’s write the code for

the same.

We’re going to load the “bullet.png” image, and that’s going to be

our bullet. To start with, we’re going to set the x and y position of the

bullet at –100 so it’s off the screen, unseen by the gamer. Let’s also set the

movement value, bullet_d, to 0 so there’s no movement.

#create the bullet

bullet = pygame.image.load('bullet.png')

#place it off the screen to start with

bullet_x = -100

bullet_y = -100

bullet_d = 0

Chapter 21 Project: Space Shooters with Pygame

480

Finally, we’re going to create a variable “fire” that’s going to hold the

state of the bullet. If the user has fired the bullet, this variable’s value is

going to change to True from False (its default value).

fire = False

Now, let’s register the “space” key press. Go to the game loop, and

inside the for loop where we iterate through all the events, look for the

“if” statement where we registered the KEYDOWN event. Inside that

statement, type the following:

Register the K_SPACE press event. As long as the “fire” value is False

(bullet hasn’t been fired previously), if the user clicks the space button,

let’s make the bullet move.

Make “fire” True now (because the bullet has been fired). Position the

x and y values of the bullet to the current x and y values of the spaceship.

Finally, make the bullet_d value –2, so it moves upward.

#Make bullet fire

if event.key == pygame.K_SPACE:

 if fire == False:

 fire = True

 bullet_x = sp_x

 bullet_y = sp_y

 bullet_d = -2

Now, let’s blit the bullet.

Outside the for loop and above the code where we blit the spaceship,

but after we’ve changed the spaceship’s x value (so the new x value is

assigned to the bullet), blit the bullet if “fire” is True and “over” is False

(game is still live).

#Fire bullet

if fire == True and over == False:

Chapter 21 Project: Space Shooters with Pygame

481

We’ve set the x value to bullet_x+12 so it disappears behind the

spaceship to start with.

screen.blit(bullet,(bullet_x+12, bullet_y))

Next, let’s increase y value of the bullet by the bullet_d’s value

(decrease, in this case, since the bullet_d value would be –2).

bullet_y += bullet_d

Finally, let’s check for wall collision. Once the bullet reaches the top

of the screen (y is 0 or less), if the “fire” value is still True (still fired), let’s

change the x and y values of the bullet back to the x and y values of the

spaceship and make the bullet_d value 0, so it starts moving. Let’s also

make the value of “fire” False so the bullet is no longer “blit” into the

screen until it is fired again.

#bullet wall collision

if bullet_y <= 0 and fire == True:

 bullet_x = sp_x

 bullet_y = sp_y

 bullet_d = 0

 fire = False

Run the code, and you’ll get this (Figure 21-6).

Chapter 21 Project: Space Shooters with Pygame

482

Our bullet works now! 😊

�Create and display the scoreboard
Now that we have all our characters, and they’re moving as we want them

to, let’s create our scoreboard so we can display scores as we shoot at our

enemies.

Let’s create our scoreboard first.

#Create scoreboard

The value of “score” is going to be 0 to start with.

score = 0

Figure 21-6.  Shoot the arrow

Chapter 21 Project: Space Shooters with Pygame

483

Next, let’s create another variable score_text that stores the string we

want displayed when the game starts, which is Score: 0.

score_text = 'Score: {}'.format(score)

Finally, let’s render this score_text using the “font” option in Pygame.

The text color is going to be (255,255,255), which is white. This is

RGB. We’ve already talked about that.

score_board = font.render(score_text,False,(255,255,255))

If we run the program now, we can’t see anything because we haven’t

rendered the scoreboard inside the game loop yet. Let’s do that now.

screen.blit(score_board,(350,0))

Place the preceding code above the time.sleep line of code.

Let’s run our code, and we’ll get this (Figure 21-7).

We have our scoreboard, yay! 😊

Figure 21-7.  Scoreboard

Chapter 21 Project: Space Shooters with Pygame

484

�Kill the enemies
Now, let’s create the lines of code that kill the enemies when the bullet

hits it. For every iteration of the loop, we’re going to continuously look for

collision between our bullet and all 21 of our enemies.

So, let’s open a “for” loop to do that. Place this in the game loop, below

where you “blit” all the enemies.

for i in range(21):

Now, we need the collision condition. It’s going to be pretty simple. If

the distance between the bullet and the enemy (the top-left-most corner

position) is less than or equal to 55, we have a collision. This’ll cover the

bullet hitting any point from the top-left-most corner to the rest of the

parts of the enemy.

To do this, let’s subtract the coordinates of the bullet (which are higher

since they are at the bottom of the screen) from the coordinates of the

enemy. Let’s get the absolute value of this subtraction so that no matter

where the two characters are, we just get the “difference” value we need,

without the sign.

if abs(bullet_x+12 - enemy_x[i]) <= 55 and abs(bullet_y -

enemy_y[i])

Why bullet_x+12? That’s because we “blit” the bullet at that “x” point.

If there’s a collision, we need to bring the bullet back to position and

make the bullet movement value, bullet_d, 0.

#bring bullet back to position

bullet_x = sp_x

bullet_y = sp_y

bullet_d = 0

Chapter 21 Project: Space Shooters with Pygame

485

Let’s also make “fire” False because we’re done firing the bullet. It did

what we sent it to do.

fire = False

Now, within the same “if” statement, let’s open more if and else

statements to bring that enemy back to position (and not move). It’ll just

wait in that position until all the enemies in the current set are killed so the

three rows of enemies are formed again.

Remember the conditions we used while positioning the enemies?

Let’s use the same to position them now so they’ll be ready to go once all

21 enemies have been killed.

#bring enemy back to position

if i < 7:

 enemy_x[i] = 70 * i

 enemy_y[i] = -60

elif i < 14:

 enemy_x[i] = 70 * (i-7)

 enemy_y[i] = -120

else:

 enemy_x[i] = 70 * (i-14)

 enemy_y[i] = -180

Finally, let’s make the enemy movement value 0, to stop its movement

(waiting for the rest to join it), and increase the enemy_count by 1.

enemy_d[i] = 0

enemy_count += 1

What happens when the bullet hits an enemy? The enemy dies and

goes back to its original position. The bullet also goes back to its original

position, but the score increases as well!

Chapter 21 Project: Space Shooters with Pygame

486

Let’s do that next. Let’s increase the score and render it again.

#increase score

score += 1

score_text = 'Score: {}'.format(score)

score_board = font.render(score_text,False,(255,255,255))

That’s it! We can kill enemies now. Let’s see if it works, shall we?

(Figure 21-8)

Whohoo! We can kill our enemies now, and our score increases

accordingly! 😊

Figure 21-8.  Kill the enemies

Chapter 21 Project: Space Shooters with Pygame

487

�Kill the spaceship!
Finally, let’s create a collision condition for the spaceship and the enemies,

so we can end the game. Place these lines of code below the code where

you wrote the enemy-bullet collision lines of code.

The process is the same. For every iteration of our game loop, we’re

going to loop through all the enemies and check if one of them hit our

spaceship.

#Enemy-spaceship collision

for i in range(21):

The collision condition is going to be a difference between the x and y

values of the spaceship and the enemies, and if they are less than or equal

to 50, game over.

if abs(sp_x - enemy_x[i]) <= 50 and abs(sp_y - enemy_y[i]) <= 50:

 #game over

Make “over” True. If over is True, then we won’t blit the spaceship and

the enemies (not to mention the bullet) to the screen, remember? That

means they’ll disappear from the screen and we’ll be left with just the

scoreboard.

#make everything disappear

over = True

Let’s try that now (Figure 21-9).

Chapter 21 Project: Space Shooters with Pygame

488

Yup, it works! 😊

�Re-draw the enemies
After the collision checks, we need to check if the user is done killing all the

enemies. If all 21 are gone from the screen, we need to reset the enemy_count

value back to 0 and make them fall from the top of the screen again.

#Set enemy move condition

if enemy_count == 21:

 for i in range(21):

 enemy_d[i] = 0.5

 enemy_count = 0

Let’s run the program, and check if this works (Figure 21-10).

Figure 21-9.  Kill the spaceship

Chapter 21 Project: Space Shooters with Pygame

489

Look at that! We got our second row of enemies, and our score is 23

now! :O

�Game over!
Finally, let’s write “GAME OVER” when the enemy hits the spaceship.

Write “GAME OVER” when “over” is True, which means there’s been a

collision.

#Game over

if over == True:

 #Draw game over text

Figure 21-10.  Re-draw the enemies

Chapter 21 Project: Space Shooters with Pygame

490

Let’s create a new game_over_font and make it font type Arial and font

size 80. Let’s render that font over our desired text. Make the color white.

Finally, “blit” it into the screen in the position 50,200 (around the center of

the screen).

game_over_font = pygame.font.SysFont('Arial',80)

game_over = game_over_font.render('GAME

OVER',False,(255,255,255))

screen.blit(game_over,(50,200))

Let’s run our code, and we get this (Figure 21-11).

Whohoo! Our game’s over! 😊
It was quite simple, wasn’t it? Try it out, and maybe try improving it

(more levels, more difficulty, etc.).

Figure 21-11.  Game over screen

Chapter 21 Project: Space Shooters with Pygame

491

�Entire code
Now, here’s the entire code, as promised:

import pygame

import time

pygame.init()

pygame.font.init() #To use text

screen = pygame.display.set_mode((500,500))

pygame.display.set_caption('Space Invaders')

font = pygame.font.SysFont('Arial',40)

over = False #Game over

game = True #Closed the game window

#Create the spaceship

spaceship = pygame.image.load('spaceship.png')

sp_x = 250

sp_y = 390

sp_d = 0

#Create enemy

enemy = []

enemy_x = []

enemy_y = []

enemy_d = []

enemy_count = 0

Chapter 21 Project: Space Shooters with Pygame

492

#Position enemies - 3 rows of enemies

for i in range(21):

 #Row 1

 if i <= 6:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * i)

 enemy_y.append(-60)

 enemy_d.append(0.5)

 #Row 2

 elif i <= 13:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * (i-7))

 enemy_y.append(-120)

 enemy_d.append(0.5)

 #Row 3

 else:

 enemy.append(pygame.image.load('enemy.png'))

 enemy_x.append(70 * (i-14))

 enemy_y.append(-180)

 enemy_d.append(0.5)

#create the bullet

bullet = pygame.image.load('bullet.png')

#place it off the screen to start with

bullet_x = -100

bullet_y = -100

bullet_d = 0

fire = False

Chapter 21 Project: Space Shooters with Pygame

493

#Create scoreboard

score = 0

score_text = 'Score: {}'.format(score)

score_board = font.render(score_text,False,(255,255,255))

while game:

 #Close window condition - Quit

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

 if event.type == pygame.KEYDOWN:

 #Make spaceship move

 if event.key == pygame.K_LEFT:

 sp_d = -1

 if event.key == pygame.K_RIGHT:

 sp_d = 1

 #Make bullet fire

 if event.key == pygame.K_SPACE:

 if fire == False:

 fire = True

 bullet_x = sp_x

 bullet_y = sp_y

 bullet_d = -2

 #Make spaceship stop if not moving

 if event.type == pygame.KEYUP:

 �if event.key == pygame.K_LEFT or event.key ==

pygame.K_RIGHT:

 sp_d = 0

 screen.fill((0,0,0))

Chapter 21 Project: Space Shooters with Pygame

494

 #Spaceship move condition

 sp_x += sp_d

 #Fire bullet

 if fire == True and over == False:

 screen.blit(bullet,(bullet_x+12, bullet_y))

 bullet_y += bullet_d

 #bullet wall collision

 if bullet_y <= 0 and fire == True:

 bullet_x = sp_x

 bullet_y = sp_y

 bullet_d = 0

 fire = False

 if over == False:

 screen.blit(spaceship,(sp_x,sp_y))

 #Draw enemies and make them move

 for i in range(21):

 if over == False:

 #enemy wall collision

 if enemy_y[i] >= 500:

 enemy_y[i] = -60

 else:

 #Draw enemies

 enemy_y[i] += enemy_d[i]

 screen.blit(enemy[i],(enemy_x[i],enemy_y[i]))

 #Bullet-enemy collision

 for i in range(21):

 �if abs(bullet_x+12 - enemy_x[i]) <= 55 and

abs(bullet_y - enemy_y[i]) <= 55:

 #bring bullet back to position

Chapter 21 Project: Space Shooters with Pygame

495

 bullet_x = sp_x

 bullet_y = sp_y

 bullet_d = 0

 fire = False

 #bring enemy back to position

 if i < 7:

 enemy_x[i] = 70 * i

 enemy_y[i] = -60

 elif i < 14:

 enemy_x[i] = 70 * (i-7)

 enemy_y[i] = -120

 else:

 enemy_x[i] = 70 * (i-14)

 enemy_y[i] = -180

 enemy_d[i] = 0

 enemy_count += 1

 #increase score

 score += 1

 score_text = 'Score: {}'.format(score)

 �score_board = font.render(score_text,False,

(255,255,255))

 #Enemy-spaceship collision

 for i in range(21):

 �if abs(sp_x - enemy_x[i]) <= 50 and abs(sp_y -

enemy_y[i]) <= 50:

 #game over

 #make everything disappear

 over = True

Chapter 21 Project: Space Shooters with Pygame

496

 #Set enemy move condition

 if enemy_count == 21:

 for i in range(21):

 enemy_d[i] = 0.5

 enemy_count = 0

 screen.blit(score_board,(350,0))

 #Game over

 if over == True:

 #Draw game over text

 game_over_font = pygame.font.SysFont('Arial',80)

 �game_over = game_over_font.render('GAME OVER',

False,(255,255,255))

 screen.blit(game_over,(50,200))

 time.sleep(0.005)

 pygame.display.update()

pygame.quit()

�Summary
In this chapter, we created a space shooter game with Pygame. We applied

what we learned in the previous chapter in our game, and we also learned

all about collision detection and rendering text on our game screen.

In the next chapter, let’s look at an overview of web development with

Python. We’ll get a brief look at creating web pages with HTML, designing

them with CSS, making them dynamic with JavaScript, and creating your

very first program in Python’s very own Flask.

Chapter 21 Project: Space Shooters with Pygame

497© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_22

CHAPTER 22

Web Development
with Python
In the previous chapter, we learned how to create a space shooter with

Pygame. We learned all about shooting at characters, collision detection,

rendering text on a Pygame screen, and so much more.

In this chapter, let’s look at web development with Python. Let’s have

a brief look at creating websites with HTML, CSS, and JavaScript and

creating your very first program with Python’s Flask.

�Python and web development

https://doi.org/10.1007/978-1-4842-6812-4_22#DOI

498

What is web development? Do you visit websites? Facebook, Netflix,

Amazon, and so on? Anything that you use online comes under web

development.

They are created and maintained with their own unique set of

technologies that fall under web development. How does that work, and

where does Python come in here?

Well, before we get into that, let’s talk a little bit about the staple

technologies of web development. There’s HTML, CSS, and JavaScript.

HTML is the building block of a website. What does that mean? Well,

everything you see online was created by HTML. The images, the text, the

buttons, everything came from HTML.

Now CSS styled all of it. It’s called “Cascading Style Sheet”, and the

elements (building blocks) that you create with HTML can be designed

(colored, aligned, etc.) using CSS. JavaScript makes everything dynamic.

When you click a button on a site, something happens right? Maybe

another site opens up, or maybe you just get a popup that gives you some

information. JavaScript lets you do things like that on your site.

But what about Python? Where does it come in web development? To

understand Python’s role in web development, you need to understand the

difference between front-end and back-end web development.

Front-end web development is what we talked about just now: HTML,

CSS, JavaScript, and all together we get the user-facing end of your website;

that is, what the user sees.

Back-end web development is just the opposite. It’s what the user

does not see: server-side development. Most applications need a lot of

information transfer and retrieval, am I right? You have an account on

a site, and when you log in to that site, your account detail should be

retrieved. You search for something on Google, and they give you a list of

related websites that pertain to your search.

All of this information retrieval and transfer (you send a chat message

or email to someone) comes under back-end web development, and you

need to use a back-end technology like Python to make that possible.

Chapter 22 Web Development with Python

499

Python has a “file” feature, remember? That’s just the start. You can create

databases and connect them to your web applications and so much more

with the help of Python.

Let’s quickly look at what each of these technologies has to offer us.

This is not a comprehensive chapter. Web development, especially full-

stack web development, is a huge topic that requires a book of its own to

cover completely. I’m just going to give you some examples of how each

of these technologies works to give you an idea. If you’re interested in the

subject, you can choose to read up on it in the future.

�Building blocks – HTML
As I told you earlier, HTML, which stands for Hyper Text Markup

Language, is used to create the building blocks of your web applications.

You can write your HTML code in notepad (or notepad++), but when you

save the file, save it as filename.html or filename.htm, and not filename.txt.

A HTML code has two parts, a head and a body. The “head” contains

the code that’s not visible to the user, like the title, while the “body” contains

all the visible parts of the page, like the paragraphs, images, and buttons.

Let’s create a simple HTML file now. Open a notepad, and maybe

name your file website.html, or anything you want to name it as. While you

save your file as a html file, you’ll notice the icon changing from a notepad

icon to your default browser’s icon.

<!DOCTYPE html>

<html>

</html>

The preceding code is the skeleton of a html file. A HTML code

contains tags, some of them empty and some of them with starting and

ending tags (the ones that are written like this: </tag>). <!DOCTYPE html>

specifies that we’re using HTML5, the latest version of HTML, in our code.

Chapter 22 Web Development with Python

500

<html>...</html> is the root tag. It encompasses the entire code.

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 </body>

</html>

So, that’s your head and body tag. Now, let’s add a title inside our

<head> tag.

<!DOCTYPE html>

<html>

 <head>

 <title>My first website</title>

 </head>

 <body>

 </body>

</html>

Open the file in your browser, and you’ll see the screen shown in

Figure 22-1.

Figure 22-1.  Basic HTML website

Chapter 22 Web Development with Python

501

We have our title. Perfect!

If you want to add text or elements, you need to use the <body> tag.

Let me quickly list some of the important tags so we can use them in our

website.

<h1> </h1> is used to create primary headings.

<h2> </h2> is used to create sub-headings.

You can create more headings that decrease in size (h3, h4, h5, h6), but

the commonly used ones are h1 and h2.

<p> </p> is used to create paragraphs.

<button> </button> is used to create buttons.

<a> is used to create the hyperlinks (linking to other websites and

pages) you see online.

 is used to create images. It’s an empty tag, but it’ll take attributes

to specify the image location.

So, that’s enough for now, I guess. Let’s use them in our program. Let’s

create an introduction page for Susan.

<body>

 <h1>My introduction</h1>

 �<p>Hello there! I'm Susan. I'm 8 years old. I have a

puppy named Barky. I love him so much! :) </p>

 <button>Click Me!</button>

 Look me up!

</body>

We’ve created a heading, a paragraph (you can create more if you

want), a button (doesn’t work yet, but it’s been created), and a link to

Google (you can link anywhere you want), and finally, we’ve displayed

Susan’s pic.

Let’s open our website now, and we see this (Figure 22-2).

Chapter 22 Web Development with Python

502

We have the makings of our web page! Of course, the button doesn’t

work (wait for JavaScript), and things aren’t pretty yet (CSS!), but we have

our building blocks! 😊

�Pretty things up – CSS
If you want to pretty things up: add colors, align things, and so on, you

need CSS. But CSS is a vast topic, so I won’t be covering everything here.

Let me just show you a bunch of examples.

To write your CSS stylings, you need to open and close a <style> tag

inside the <head> tag.

Call the element you want styled, and mention the style attributes and

values within it, like background color: blue, like that. You need to end

every attribute-value pair with a semicolon, unlike Python’s lines of code

where the indent (or the next line) marks the end of a line of code.

Let’s change the background color of our entire page light gray. We’re

going to call the html element (the entire page) for that (Figure 22-3).

Figure 22-2.  Various elements added to our website

Chapter 22 Web Development with Python

503

Next, let’s change the heading color to dark green and the paragraph

color to dark red. You need to use the “color” attribute to do that.

<head>

 <title>My first website</title>

 <style>

 html {

 background-color: lightgray;

 }

 h1 {

 color: darkgreen;

 }

 p {

 color: darkred;

 }

 </style>

</head>

Figure 22-3.  Add background color

Chapter 22 Web Development with Python

504

Refresh your web page, and you’ll see this (Figure 22-4).

So that’s basic CSS. As I said, it’s a vast topic, so I can’t cover it

completely in here.

�Front-end dynamic – JavaScript
Let’s try to make our button dynamic in this section. JavaScript is a

scripting language, just like Python. The only difference is that JavaScript is

used in the front end and Python is used in the back end.

You can use the <script></script> tag to write your JavaScript code,

usually within the <body> tag, so the entire website loads before the

dynamic features are loaded.

Figure 22-4.  Customize (design) your website with CSS

Chapter 22 Web Development with Python

505

<body>

 <h1>My introduction</h1>

 �<p>Hello there! I'm Susan. I'm 8 years old. I have a

puppy named Barky. I love him so much! :) </p>

 <button>Click Me!</button>

 Look me up!

 <script>

 </script>

</body>

JavaScript has variables, numbers, strings, Booleans, if else statements,

for and while loops, objects, and lot of other concepts that we’ve just

covered in Python. But there are differences between the two languages,

especially in the syntax and how these are written or used. We won’t be

looking at all of them here, but let’s just look at a couple.

You can create variables using the keyword “let”.

let variableName;

Just like with CSS, every line of code in JavaScript needs to end with a

semicolon.

You can assign values to these variables as well. But let’s not look at

the mundane stuff. Let’s look at the true power of JavaScript, which is

manipulating your HTML elements (changing their styles, making them do

things, etc.) right from within your JavaScript code.

To do that, let me first assign a unique “id” to my element, like this:

<button id='btn'>Click Me!</button>

Chapter 22 Web Development with Python

506

This is a unique id and can’t be assigned to any other element. I can use

this id to style this specific element or to retrieve it using JavaScript, like this:

<script>

 let button = document.getElementById('btn');

</script>

I’ve created a variable “button”, and I’ve retrieved the element with

the id “btn” from my document (HTML document) and placed it inside

the variable. JavaScript is case sensitive, so the capital letters should be

retained as such.

Now, I can listen for events in this element. Shall we listen for a “click”

event? Shall we make an alert box (just like the message box in Tkinter)

pop up whenever you click the button?

You need to add an event listener on the element that you just

retrieved. This listener will listen for the “click” event and call the

buttonClick() function when the event happens.

<script>

 let button = document.getElementById('btn');

 button.addEventListener('click',buttonClick);

</script>

Now, define the function above the call. In JavaScript, we don’t

use “def”, we use “function” to define a function. To create an alert, use

something like this: alert(‘Your message’);

<script>

 let button = document.getElementById('btn');

 function buttonClick() {

 alert("Hello there! I'm Susan!");

 }

 button.addEventListener('click',buttonClick);

</script>

Chapter 22 Web Development with Python

507

Now, let’s refresh our page and see if our button works (Figure 22-5).

Look at that! I clicked my button, and an alert box popped up, with the

message “Hello there! I’m Susan!”. Perfect, isn’t it? 😊 That’s the power of

JavaScript.

�Python’s Flask
To create the back end with Python, you’re better off using a framework.

We’ve already looked at Python’s packages and libraries like Turtle, Tkinter,

and Pygame. We know how useful they are and how much they enhance

the original Python code. The same goes for the web frameworks.

The most famous ones are Django and Flask. Let’s look at a brief

example of Flask before ending this chapter. You can’t use Flask as such.

You need to install it.

To install it, open your command prompt, and type the following:

pip install Flask

Figure 22-5.  Make websites work with JavaScript

Chapter 22 Web Development with Python

508

Press enter and wait for some time. You should get a success message

like this (Figure 22-6).

Now, let’s create a simple program that displays our introductory

message on screen. Open a script and name it. Let’s name ours hello.py.

Start by importing the Flask class from our “flask” framework.

from flask import Flask

Then, let’s create an instance of that class in the variable “app”.

app = Flask(__name__)

Now, we need to create a route. We want our page to appear on the

“root” of the website, you know when you type http://websitename.com

or something like that, so my route is going to be ‘/’. You can make yours

‘/introduction’ or something.

@app.route('/')

Figure 22-6.  Install Flask

Chapter 22 Web Development with Python

http://websitename.com

509

Now, create a function, introduction, and return what you want

displayed on the screen. You don’t need to call this function.

def introduction():

 �return "Hello, there! I'm Susan! I'm 8 years old. I have a

puppy named Barky. I love him so much! :)"

Finally, let’s set a host and port for our website. This is how web

developers test their websites locally (without Internet) before deploying

them online (Internet with actual website names). The commonly used

host is 0.0.0.0 and port is 5000.

app.run(host='0.0.0.0', port=5000)

We’re done! Let’s run our program.

The file should be saved in the same folder as the folder your

command prompt opens in. Mine is C:\Users\aarthi so I’m going to save

hello.py there.

Now, go to your command prompt and type python hello.py in the

Shell prompt and press Enter, and you’ll get this (Figure 22-7).

Now, you can see your website by clicking this link:

http://127.0.0.1:5000/ (Figure 22-8).

Figure 22-7.  Run your Flask code

Chapter 22 Web Development with Python

510

Yay! Our very first Flask program. 😊

�Summary
In this chapter, we looked at web development with Python. We had a brief

look at creating websites with HTML, CSS, and JavaScript and creating

your very first program with Python’s Flask. In the next chapter, let’s create

some more mini projects with the Python concepts you’ve learned in this

book.

Figure 22-8.  Your Flask website

Chapter 22 Web Development with Python

511© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_23

CHAPTER 23

More Mini Projects
In the previous chapter, we learned about web development with Python.

We took a brief look into HTML, CSS, and JavaScript, and we created

your first program with Flask. In this chapter, let’s create some more mini

projects with the Python concepts you’ve learned in this book.

�Project 23-1: Calculator with Tkinter

In this project, we’re going to create a calculator app like the one you see

on your computers and mobiles with Tkinter. Let’s get started!

	 1.	 Let’s import Tkinter first and create our window. I’m

going to set the resizable option to 0 and 0, so the

window can’t be resized. I’m also going to set the

title as ‘Calculator’.

https://doi.org/10.1007/978-1-4842-6812-4_23#DOI

512

from tkinter import *

w = Tk()

w.resizable(0,0) #cant resize

w.title('Calculator')

	 2.	 Now, I’m going to create a string variable (Tkinter

variable) that will hold our expression (that needs

to be calculated). I’m also creating an empty string

that’ll initially hold the expression. We’ll later set the

Tkinter variable with the value in the “string”. Now,

we’re making this a string and not an integer or float

because we can use the eval() method in Python

to evaluate mathematical expressions, and the

expressions can be in the form of a string.

e = StringVar()

calc = ''

	 3.	 Now, let’s create our buttons.

I’m going to create an “entry” button to start with.

It’s going to hold “e”, our Tkinter variable, and let’s

justify the text to “right” and pack it at the top with

enough outer padding (padx, pady) and inner

padding height-wise (ipady).

entry = Entry(w,font=('Arial',14,'bold'),

textvariable = e, justify= RIGHT)

entry.pack(side=TOP, ipady = 7, padx = 5,

pady = 5)

Chapter 23 More Mini Projects

513

	 4.	 Next, let’s create a frame, “buttons”, that’ll hold all of

our buttons. Let’s pack that as well.

buttons = Frame(w)

buttons.pack()

	 5.	 Now, let’s start creating all of our buttons. They’re

going to be of width 13 and height 2, and we’re going

to call the clear_entry() method for the clear button,

get_answer() method when the “answer” or equal

to button is clicked, or the button_click() method

that’ll add either a number or an operator to our

expression.

clear = Button(buttons,text='c',width=13,

height=2,font=('Arial',10,'bold'),

command=lambda:clear_entry())

clear.grid(row=0,column=0,padx=5,pady=5,

columnspan=2)

answer = Button(buttons,text='=',

width=13,height=2,font=('Arial',10,'bold'),

command=lambda:get_answer())

answer.grid(row=0,column=2,padx=5,pady=5,

columnspan=2)

num7 = Button(buttons,text='7', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('7'))

num7.grid(row=1,column=0,padx=5,pady=5)

num8 = Button(buttons,text='8', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('8'))

num8.grid(row=1,column=1,padx=5,pady=5)

Chapter 23 More Mini Projects

514

num9 = Button(buttons,text='9', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('9'))

num9.grid(row=1,column=2,padx=5,pady=5)

num_div = Button(buttons,text='/', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('/'))

num_div.grid(row=1,column=3,padx=5,pady=5)

num4 = Button(buttons,text='4', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('4'))

num4.grid(row=2,column=0,padx=5,pady=5)

num5 = Button(buttons,text='5', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('5'))

num5.grid(row=2,column=1,padx=5,pady=5)

num6 = Button(buttons,text='6', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('6'))

num6.grid(row=2,column=2,padx=5,pady=5)

num_mul = Button(buttons,text='*', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('*'))

num_mul.grid(row=2,column=3,padx=5,pady=5)

num1 = Button(buttons,text='1', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('1'))

num1.grid(row=3,column=0,padx=5,pady=5)

Chapter 23 More Mini Projects

515

num2 = Button(buttons,text='2', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('2'))

num2.grid(row=3,column=1,padx=5,pady=5)

num3 = Button(buttons,text='3', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('3'))

num3.grid(row=3,column=2,padx=5,pady=5)

num_sub = Button(buttons,text='-', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('-'))

num_sub.grid(row=3,column=3,padx=5,pady=5)

num0 = Button(buttons,text='0', width = 13,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('0'))

num0.grid(row=4,column=0,padx=5,pady=5,

columnspan=2)

num_dot = Button(buttons,text='.', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('.'))

num_dot.grid(row=4,column=2,padx=5,pady=5)

num_add = Button(buttons,text='+', width=5,

height = 2, font=('Arial',10,'bold'),

command=lambda:button_click('+'))

num_add.grid(row=4,column=3,padx=5,pady=5)

	 6.	 Now that we’ve created our buttons, we should have

something like Figure 23-1.

Chapter 23 More Mini Projects

516

	 7.	 Now, let’s create our buttons above the function

calls (widgets). First, the button_click method. Let’s

load our global “calc” variable and just concatenate

the number or operator clicked (we sent them in the

form of a string, remember) with the current value

of “calc”. That’s it!

def button_click(n):

 global calc

 calc = calc + n

	 8.	 Finally, set the Tkinter variable with the current

value of calc. This’ll make the expression appear on

the entry box of your app.

e.set(calc)

Figure 23-1.  Calculator app – the layout

Chapter 23 More Mini Projects

517

	 9.	 Next, for the clear_entry method, we’re just going to

make “calc” an empty string again and set “e” to that

string.

def clear_entry():

 global calc

 calc = ''

 e.set(calc)

	 10.	 For the get_answer method, let’s import “calc”,

create a variable “ans” that’ll use the eval() method

to calculate the expression inside “calc”, and set that

answer to “e”, so the expression is replaced with the

answer.

def get_answer():

 global calc

 ans = eval(calc)

 e.set(ans)

	 11.	 Finally, let’s convert “ans” to a string (it’ll be an

integer or floating-point value after evaluation) and

replace the expression in “calc” with the answer so

we can continue calculating.

calc = str(ans)

Run the program, and you’ll get this (Figure 23-2).

Chapter 23 More Mini Projects

518

That’s it! A very simple calculator. You can actually do a lot to make

this better. Maybe add some colors, iron out a couple of kinks, or add more

features. For example, as of now, you can click two operators, one after the

other, and that’ll get you an error. Why don’t you create an “if” condition

that prevents that from happening?

Have fun! 😊

�Project 23-2: Random story generator
In this project, let’s create a simple random story generator. We’re

going to have a bunch of options for “when” our story happened, who

our “character” is, who our “enemies” are, what’s the “attribute” of our

character, and pronoun (he or she or it). Finally, we’re going to write a

story that chooses from these options, and every time we create a new

story, we get completely new characters, events, and timeline. Interesting

enough? Let’s get to it!

Figure 23-2.  Final calculator app

Chapter 23 More Mini Projects

519

	 1.	 Let’s import our random module first.

import random

	 2.	 Then, I’m going to create my options.

when_ch = ['Once upon a time,','A long time

ago,','Thousands of years ago,','Long long

ago,']

character_ch = ['dragon','unicorn','fairy',

'elf']

pronouns_ch = ['he','she','it']

attributes_ch = ['brave','courageous',

'strong','smart','intelligent']

enemy_ch = ['witches','warlocks','dark

elves']

saved_ch = ['the world', 'the Kingdom',

'everyone', 'the village']

	 3.	 Finally, let’s define a generate_story() function

that loads all of our options in. Then, let’s use the

choice() method in the random module to choose

our option for that particular story.

def generate_story():

 �global when_ch,character_ch,pronouns_ch,

attributes_ch,enem_chy,saved_ch

 when = random.choice(when_ch)

 character = random.choice(character_ch)

 pronouns = random.choice(pronouns_ch)

 attributes = random.choice(attributes_ch)

 enemy = random.choice(enemy_ch)

 saved = random.choice(saved_ch)

Chapter 23 More Mini Projects

520

	 4.	 Also, if our character is an elf, we need to address it

with “an” and “a” for the rest of the characters.

if character == 'elf':

 a = 'an'

else:

 a = 'a'

	 5.	 Finally, let’s create our story with a multi-string.

story = '''{} there lived {} {}. {} was

very {}. {} fought against the {} and

saved {}'. '''.format(when,a,character,

pronouns.capitalize(),attributes,pronouns.

capitalize(),enemy,saved)

	 6.	 Now, let’s print it.

print(story)

	 7.	 Now, for the function call, I’m going to create an

infinite while loop that asks the user if they want to

create a new story or not. If they typed ‘Y’ or ‘y’, then

let’s call our generate_story function. Otherwise,

let’s stop the program.

while True:

 �create = input('Shall we create a new

story? Y or N: ')

 if create == 'Y' or create == 'y':

 generate_story()

 else:

 break

Simple enough, right? Why don’t we generate a bunch of stories now?

Chapter 23 More Mini Projects

521

= RESTART: C:\Users\aarthi\AppData\Local\Programs\Python\

Python38-32\story_generator.py

Shall we create a new story? Y or N: Y

Thousands of years ago, there lived a unicorn. She was very

strong. She fought against the dark elves and saved the world'.

Shall we create a new story? Y or N: Y

Thousands of years ago, there lived a dragon. She was very

intelligent. She fought against the witches and saved the world'.

Shall we create a new story? Y or N: Y

Once upon a time, there lived an elf. It was very smart. It

fought against the dark elves and saved the Kingdom'.

Shall we create a new story? Y or N: N

Nice! Very simple though. I’m sure you can add a lot more options and

make these stories bigger or more random. Have fun! 😊

�Project 23-3: Rock Paper Scissors game
Let’s create a Rock Paper Scissors game for this project!

	 1.	 Let’s import the Tkinter and random packages first.

#Rock, paper, scissors

from tkinter import *

import random

	 2.	 Now, let’s create our window, configure its background

color to white, and make it non-resizable.

w = Tk()

w.configure(bg='white')

w.resizable(0,0)

Chapter 23 More Mini Projects

522

	 3.	 To start with, we need a label that holds the title.

title = Label(w,text='Rock Paper Scissors',

fg='red', bg='white',font=('Arial',45,'bold'))

title.pack()

	 4.	 Let’s also create a u_option variable that’s empty

right now, but will hold the user’s option later.

u_option = ''

	 5.	 Let’s also create a list with our three options.

options = ['rock','paper','scissors']

	 6.	 Now, let’s create the rest of our widgets. We need

another label that says ‘Choose one’.

label = Label(w,text='Choose one', fg='green',

bg='white',font=('Arial',25,'bold'))

label.pack()

	 7.	 Below that, we need a canvas that’ll hold our rock,

paper, and scissors. Let’s make it so that the cursor

turns to a “hand” when the user hovers over the

canvas.

canvas = Canvas(w,width=500,height=150,backg

round='white')

canvas.pack()

canvas.config(cursor='hand2')

	 8.	 Next, let’s load our image using the PhotoImage

method. You can use any image you want. I’ve used

illustrations of a rock, paper, and scissors.

img1 = PhotoImage(file="rock.png")

Chapter 23 More Mini Projects

523

	 9.	 Next, let’s draw our image into the canvas, in the X,Y

coordinate position we want.

rock = canvas.create_image(50,20,anchor=NW,

image=img1)

	 10.	 Then, let’s create a tag_bind on that image. We need

tag_bind, instead of bind, for canvas items. Ours is

going to be a <Button-1> bind, for left mouse button

click, and let’s call the chose() method with the

argument being the item that was just clicked.

We’re going to use lambda here, and since binds

need events in their function definition, and lambda

is essentially a function definition, include “event”

as the lambda’s attribute here.

canvas.tag_bind(rock,'<Button-1>',lambda

event:chose('rock'))

	 11.	 That’s it! Let’s repeat the process for the next two

images.

img2 = PhotoImage(file='paper.png')

paper = canvas.create_image(200,20,anchor=NW,

image=img2,)

canvas.tag_bind(paper,'<Button-1>',lambda

event:chose('paper'))

img3 = PhotoImage(file='scissors.png')

scissors = canvas.create_image(350,20,

anchor=NW,image=img3)

canvas.tag_bind(scissors,'<Button-1>',lambda

event:chose('scissors'))

Chapter 23 More Mini Projects

524

	 12.	 Now, let’s create labels that’ll initially be empty, but

will later hold the messages we want, about the user’s

choice, the computer’s choice, and the winner.

you_chose = Label(w,text='', fg='blue',

bg='white',font=('Arial',25,'bold'))

you_chose.pack()

c_chose = Label(w,text='', fg='blue' ,

bg='white',font=('Arial',25,'bold'))

c_chose.pack()

winner = Label(w,text='', fg='brown',

bg='white',font=('Arial',45,'bold'))

winner.pack()

	 13.	 Now, let’s create our chose() function above the

widgets. Let’s import the u_option variable.

def chose(option):

 global u_option

	 14.	 If u_option is empty, that means the user is selecting

an option for the first time, and we’re ready to play.

Let’s assign the option to u_option.

if u_option == '':

 u_option = option

	 15.	 Let’s also choose a random option for our computer

and place that in c_option.

c_option = random.choice(options)

	 16.	 Now, let’s configure you_chose and c_chose with

our choices.

you_chose.config(text='You chose {}'.

format(u_option))

Chapter 23 More Mini Projects

525

c_chose.config(text='Computer chose {}'.

format(c_option))

	 17.	 Next, let’s check who won. If both u_option and

c_option have the same value, it’s a draw. If u_option

is rock, then the user wins if c_option is scissors and

loses if c_option is paper. Similarly, let’s create our

other conditions and also configure “winner” for

every outcome.

if u_option == c_option:

 winner.config(text='Draw!')

elif u_option == 'rock':

 if c_option == 'paper':

 winner.config(text='You lose :(')

 elif c_option == 'scissors':

 winner.config(text='You win!')

elif u_option == 'paper':

 if c_option == 'rock':

 winner.config(text='You win!')

 elif c_option == 'scissors':

 winner.config(text='You lose :(')

elif u_option == 'scissors':

 if c_option == 'paper':

 winner.config(text='You win!')

 elif c_option == 'rock':

 winner.config(text='You lose :(')

	 18.	 Finally, let’s create our ‘New Game’ button.

new = Button(w,text='New Game',font=('Arial',

20,'bold'),command=new_game)

new.pack()

Chapter 23 More Mini Projects

526

	 19.	 Above the button, define the new_game() function.

Let’s load u_option first. Now, let’s configure our

labels so they become empty again, and let’s empty

u_option so the user can play again.

def new_game():

 global u_option

 you_chose.config(text='')

 c_chose.config(text='')

 winner.config(text='')

 u_option = ''

	 20.	 That’s it! Let’s end the program with a main loop.

w.mainloop()

Now, let’s run the program (Figure 23-3).

When the user clicks an option, they’ll see this (Figure 23-4).

Figure 23-3.  Rock Paper Scissors game

Chapter 23 More Mini Projects

527

Works perfectly! 😊

�Project 23-4: Bouncing ball (off the four
walls) with Pygame
In this project, we’re going to create a bouncing ball that bounces

randomly off the four walls of the screen. When it hits any of the four walls

of the screen, it should reverse direction and continue like that. Simple

enough? Let’s do this with pygame.

	 1.	 Let’s import pygame, random and time to start with.

import pygame

import random

import time

	 2.	 Then, let’s initialize pygame and create our screen.

It’s going to be of width and height 500 each.

pygame.init()

screen = pygame.display.set_mode((500,500))

Figure 23-4.  User chose an option

Chapter 23 More Mini Projects

528

	 3.	 Now, let’s create a variable x and make it 250 and a

variable y and make it 0 to start with. This is because

we want to start the bounce from the point 250,0.

x = 250

y = 0

	 4.	 We also need a “game” variable that’s currently True

but will turn False when the user closes the screen.

game = True

	 5.	 Let’s also create x and y directional variables “xd”

and “yd” that’ll be 1 by default. We’re going to

increment the x or y value of the ball within the

range (1 to 2) (to move upward) and (–1 to –2)

(to move downward). This variable is going to

change our ball’s direction.

xd = 1

yd = 1

	 6.	 Now, let’s create our game loop.

while game:

	 7.	 To start with, let’s create the quit condition. If the

event type is pygame.QUIT, make game false.

for event in pygame.event.get():

 if event.type == pygame.QUIT:

 game = False

	 8.	 Then, let’s fill our screen with white color.

screen.fill((255,255,255))

Chapter 23 More Mini Projects

529

	 9.	 Then, let’s use the draw.circle method to draw a red

ball in the position 250,y (to start with, 250,0). Its

radius is going to be 25 and is going to be a circle

that’s entirely filled, so 0 for the last attribute.

#draw a ball

 #circle draw function

 �#where you want to draw it, color of the

circle, position, width

 �pygame.draw.circle(screen,(0,0,255),

(250,y),25,0)

	 10.	 Let’s use the display.update method to ensure that

the screen gets updated every time the loop runs.

pygame.display.update()

#update the screen in the output window

	 11.	 If we leave the game as it is, our ball would move too

fast to be seen by the human eye. So, let’s slow the

iterations of the loop down. There’ll be a delay of

0.005 seconds after every iteration.

time.sleep(0.005)

	 12.	 Now, let’s set the wall collision conditions. When x

is greater than or equal to 488 (since our ball has a

diameter of 25, and we need the other half of the ball

to be visible, we’re setting it at 488 and not 500), let’s

reduce the value of x by a random value between 1

and 2, because we need the ball to move toward the

left (back inside the screen). So, xd is going to be –1.

if x >= 488:

 xd = -(random.randint(1,2))

Chapter 23 More Mini Projects

530

	 13.	 If y is >= 488, similarly, reduce the value of yd.

elif y >= 488:

 yd = -(random.randint(1,2))

	 14.	 If x is <= 12, increase xd, and increase yd if y is lesser

than or equal to 12.

elif x <= 12:

 xd = (random.randint(1,2))

elif y <= 12:

 yd = (random.randint(1,2))

	 15.	 Finally, once we’re out of the if elif statement, let’s

add “d” with the current value of “y”.

 x += xd

 y += yd

pygame.quit()

That’s it! Run the program (Figure 23-5), and you’ll have yourself a

bouncing ball that’s bouncing off all the four walls of the screen. Yippee!

Figure 23-5.  Bouncing ball (off the four walls)

Chapter 23 More Mini Projects

531

�Project 23-5: Temperature conversion app
For this project, let’s create a temperature conversion app. Our app will

have two features, a “Celsius to Fahrenheit” converter and a “Fahrenheit to

Celsius” converter.

	 1.	 Let’s import tkinter and set up our screen.

from tkinter import *

w = Tk()

	 2.	 Now, let’s design our app. It’s going to be a very

simple design. We’re going to create two frames, one

for each converter.

frame1 = Frame(w)

frame1.grid(row=0,column=0,padx=10,pady=10)

	 3.	 Let’s create a label, an entry box for the Celsius value,

and a button that does the conversion on click and

another entry box to get the result (Fahrenheit value).

#Celsius to Fahrenheit conversion

label1 = Label(frame1,text='Celsius to

Fahrenheit conversion',font=('Arial',15,'bold'))

label1.grid(row=0,column=0,columnspan=3)

entry1 = Entry(frame1)

entry1.grid(row=1,column=0)

button1 = Button(frame1, text='Convert to

Fahrenheit',command=find_fahrenheit)

button1.grid(row=1,column=1)

entry2 = Entry(frame1)

entry2.grid(row=1,column=2)

Chapter 23 More Mini Projects

532

	 4.	 Let’s repeat the same for the next converter.

frame2 = Frame(w)

frame2.grid(row=1,column=0,padx=10,pady=10)

#Fahrenheit to Celsius conversion

label2 = Label(frame2,text='Fahrenheit to

Celsius conversion',font=('Arial',15,'bold'))

label2.grid(row=0,column=0,columnspan=3)

entry3 = Entry(frame2)

entry3.grid(row=1,column=0)

button2 = Button(frame2, text='Convert to

Celsius',command=find_celsius)

button2.grid(row=1,column=1)

entry4 = Entry(frame2)

entry4.grid(row=1,column=2)

	 5.	 Run the program, and you’ll get this (Figure 23-6).

	 6.	 Now, let’s create our functions above the widgets.

The find_fahrenheit() function to convert Celsius to

Fahrenheit.

def find_fahrenheit():

Figure 23-6.  Temperature converter

Chapter 23 More Mini Projects

533

	 7.	 There’s a formula to do the same, and that’s given as

follows:

#Formula is F = ((9/5)*C)+32

	 8.	 Let’s delete the second entry box (the result box) in

case the user already made a conversion and this is

a new conversion.

entry2.delete(0,END)

	 9.	 Now, let’s get the first entry box’s value in “C” and

convert that into an integer.

C = entry1.get()

C = int(C)

	 10.	 Now, let’s calculate “F” and insert that into the

second entry box. That’s it!

F = ((9/5)*C)+32

entry2.insert(0,F)

	 11.	 Let’s repeat the same for our find_celsius function.

def find_celsius():

 #Formula is C = (5/9)*(F-32)

 entry4.delete(0,END)

 F = entry3.get()

 F = int(F)

 C = (5/9)*(F-32)

 entry4.insert(0,C)

Let’s run our program, and we’ll get this (Figure 23-7).

Chapter 23 More Mini Projects

534

It works! 😊

�Project 23-6: Introduce with files
and Tkinter
This is going to be a simple project. We are going to create a text file called

introduction.txt in a folder of your choice. We are going to write our

introduction to that file via our Python code, and finally, we’re going to

create a simple text application that accepts the file name (complete file

path) and prints out the contents of that file in a text box.

Shall we get started?

	 1.	 Before we get started, let’s import Tkinter and create

our screen.

from tkinter import *

w = Tk()

	 2.	 I’m going to create my file in the following path:

G:\\Python\introduction.txt

	 3.	 I can also use “x”, but I’m using ‘w’ so I wouldn’t

have to open the file in write mode again.

f = open('G:\\Python\introduction.txt','w')

Figure 23-7.  Conversion

Chapter 23 More Mini Projects

535

	 4.	 4. Then, I’m going to write Susan’s introduction to it:

f.write('''Hi, I'm Susan.

I'm 9 years old.

My puppy's name is Barky.

He loves me very very much! :)''')

	 5.	 Now, I’m going to create a global variable that’ll store

the content of my file whenever I press Enter on my

entry box. Let’s store an empty string in it for now.

f_content = ''

	 6.	 Now, let’s create our widgets. I want a label that is on

the left of my entry box. I’ve hence placed it in row 0

and column 0.

label = Label(w,text='File name',font=('Arial',

12,'bold'))

label.grid(row=0,column=0,padx = 5, pady=5)

	 7.	 I’m going to place my entry box in row 0 and

column 1, make it sticky in all four directions, and

give everything padding. All the values I’ve chosen

(width, padding, etc.) are arbitrary. You can test

different values and choose the ones you like.

entry = Entry(w,width=65)

entry.grid(row=0,column=1,sticky='nsew',

padx = 5, pady=5)

	 8.	 Finally, let’s create a bind for my entry. Whenever

I press the Enter button on my keyboard (command

in Mac), I want to call my get_file function. You need

to use the ‘<Return>’ condition to make that happen.

entry.bind('<Return>',get_file)

Chapter 23 More Mini Projects

536

	 9.	 Finally, let’s create our text widget. I’m going to give

my text some default stylings and place it in row 1,

column 0 and make it span two columns (so it takes

up the entire width of the first two widgets).

text = Text(w,font=('Arial',14,'bold'))

text.grid(row=1,column=0,columnspan=2)

	 10.	 Alright, now that we’re done with the widgets, let’s

define our get_file function. Define it above the

calling function, okay?

Since we created a bind, our function needs to

receive the “event”. Load f_content into the function.

def get_file(event):

 global f_content

	 11.	 To start with, get the file name from the entry box.

Then, open that file in read mode, and store its

contents in f_content (f.read()).

file = entry.get()

f = open(file,'r')

f_content = f.read()

	 12.	 Finally, insert whatever’s in f_content into the text

box. We’re using ‘end’ so the entire content gets

inserted.

text.insert('end',f_content)

That’s it!

Let’s run our program now (Figure 23-8).

Chapter 23 More Mini Projects

537

We have our widgets right where we want them! Let’s see if our

program works now (Figure 23-9).

Figure 23-8.  Tkinter app layout

Figure 23-9.  Import the file contents

Chapter 23 More Mini Projects

538

Yes, it did. I entered my file path (the exact path) and pressed Enter,

and my file’s content’s being displayed on my text box. Perfect! 😊

�Summary
In this chapter, we created six apps using either Tkinter or Pygame. We

created a calculator, a random story generator, a Rock Paper Scissors game,

a file uploader app, a temperature conversion app, and a bouncing ball.

In the next chapter, let’s talk about what’s next in your Python journey.

I’ll give you some ideas on what you need to learn about next, and I’ll also

give you some ideas on more mini and capstone projects you can work on

your own.

Chapter 23 More Mini Projects

539© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4_24

CHAPTER 24

What’s next?
In the previous chapter, we created more fun little mini projects with

Python. In this chapter, let’s look at what’s next. I’ll give you more mini and

capstone project ideas to try, and let’s briefly discuss how you can continue

your Python journey from here.

�Mini project ideas you can try
Python is a very interesting programming language where you can do

pretty much anything you set your mind to.

Mini projects and puzzles are a great way to build your expertise in

Python. You’ve already created plenty of mini projects in this book. Why

don’t I give you some ideas to create your own mini projects?

�Currency conversion app
You could use Tkinter for this project. Try creating conversion options for

as many currencies as you can.

You can make this a single-line app with drop-downs against text

boxes (like you see in the currency conversion app on Google). The drop-

downs will list all the currency options. Based on what’s selected on both

sides, make the conversion.

Simple, right? Automate as much as possible, that is, reduce as many

lines of code as possible.

https://doi.org/10.1007/978-1-4842-6812-4_24#DOI

540

�Race in Pygame
We created a Turtle race in one of our mini projects, remember? Why don’t

you try the same with Pygame, but make it better this time? Create proper

racetracks with lines and place your colored players (could be rectangles)

at the start of the tracks.

Maybe you could create a start button too, and on clicking that, make

your players race (make them move randomly), and finally, based on who

wins, create a “Game over” screen in the player’s color.

Simple, isn’t it? Try it out!

�More patterns in Turtle
Do you remember the mandala patterns we created in our earlier project? Why

don’t you try creating more patterns like those? Make them more complicated.

You already know that you can use for loops to automate patterns.

You can create different patterns (circular and square) and combine

them together randomly (using function calls).

�Capstone project ideas you can try
We’ve already seen how to create the snake game in Turtle, but as you can

see by now, Pygame is more suited for, well, any game really, so why don’t

you try creating the same in Pygame?

�Snake game in Pygame
It should be pretty simple to create. Draw rectangles for the snake heads and

body parts, including the apple, make them move (you already know how),

create a scoreboard when the snake head superimposes the apple while

growing the snake by one body part, and finally end the game if there was a

collision (wall or body collision).

Chapter 24 What’s next?

541

�Dodge the bullet
Why don’t we create a reverse of the space game we created with

Pygame? Instead of shooting the aliens, you have a bunch of aliens

shooting at you. You’re out of ammunition, and the only thing you can

do now is dodge the raining bullets (randomly fired from each alien ship

so you don’t know which one is going to shoot at you), and that’s exactly

what you’re going to do.

You have, let’s say, ten lives, and every time a bullet hits you, you

lose a life. The more time you hold out, the higher your score. Quite

interesting, but simple, don’t you think? Make the game as easy or tough

as you want it to be.

�Memory game in Pygame
This is a fun little game you probably played at arcades. Create even

numbered boxes. Each of these boxes is hiding an image behind them, but

there’s a catch. There are two of each image, and you need to match them.

When the user starts the game, reveal all the images hidden behind the

boxes for a specified time limit (maybe 5–10 seconds), so the user can see

where they are. Then, hide them again, and the game starts. Now, the user

needs to match the images.

The first time the user clicks one of the boxes, the image behind it will

be revealed to them. They have to click the box with the same image the

next time. If they don’t, and if the next image being revealed is a different

image, both images will be hidden again, and they can start over.

If they click the same boxes hiding the same image, one after the other,

then the boxes will not be hidden again, and they gain a point.

They need to match all the boxes like this within the given time limit

(usually 30 seconds for a set of ten images).

Interesting? Try it! 😊

Chapter 24 What’s next?

542

�Looking ahead
Alright, we’re at the end of our book. So far, you’ve learned the basics of

Python, all about Turtle, Tkinter, and Pygame, and you’ve also created

projects to familiarize yourself with the topics. What’s next? How should

you continue your journey? Let me give you some ideas.

�OOPs in detail
We did learn about objects and classes, but we didn’t delve deeper into the

topic, not by a long shot. If you want to do proper real-world programming,

OOPs is going to help you a lot. It’s also a valuable skill to have in your

arsenal for any programming language, let alone Python.

So, why don’t you start by using classes in more of your projects and

see how they transform your code? Next, pick up a good object-oriented

programming with Python book and continue your journey.

�Regular expressions
Regular expressions is a very interesting, albeit advanced, topic in any

programming language, especially Python. It’s basically pattern matching

with a twist.

Have you wondered how programs knew how your password didn’t

have the specified number of letters, numbers, and special characters

and how they were able to point out whether one of the characters were a

capital letter or not? Magic? Nope, that’s your regular expression pattern

matching at play.

Research on the topic. I’m sure you’ll find it interesting.

Chapter 24 What’s next?

543

�Web development
I’ve given you a basic introduction to web development already, but as you

probably guessed already, we’ve barely scratched the surface. There’s a lot

more to learn and a lot more to do.

The world is your oyster, as far as web development is concerned.

Delve deeper into HTML, CSS, and JavaScript and learn more about

website design and development. Then, look into Django or Flask for

back end and MongoDB for creating and maintaining databases for your

program. Once you’ve learned the subject, try creating projects (maybe a

social media site or a shopping cart). It’s a vast topic that’ll take months to

learn. Take it one step at a time.

�Packages in detail
Yes, we have looked at Turtle, Tkinter, and Pygame to an extent. But there’s

still a lot more to learn. So, I’d recommend creating more projects (not just

the ones mentioned in this book), and as you encounter more problems,

you’ll look for more solutions (or syntaxes) to solve them, and you’ll delve

deeper into each package you’re working with.

Have fun! 😊

�Summary
In this chapter, I gave you more ideas on mini and capstone projects you

can try creating yourself. Then, I gave you directions on what you can learn

next.

That’s it! We’ve come to the end of the book. I hope you had fun

learning Python with me. Don’t stop learning and creating, but more

important than that, never stop having fun! 😊

Chapter 24 What’s next?

545© Aarthi Elumalai 2021
A. Elumalai, Introduction to Python for Kids, https://doi.org/10.1007/978-1-4842-6812-4

Index
A
append() method, 229
Arbitrary arguments, 296–298
Arguments, 291, 292

B
Binding events, 369–372
Break and continue, 207, 208

C
Calculator app, 516–523
Capstone project

dodge raining bullets, 541
memory game, 541
snake game, 540

Cascading Style
Sheet (CSS), 498, 502–504

Christmas tree, 268–272
Command

and operator, 190
and statement, 190
compare/decide, 179, 180
conditional statements, 189–193
conditions, 176
elif statement, 184–186
else statements, 183, 184
guess number game, 187–190

if/else statement, 175
if statement, 180–183
lists/tuples/sets, 178
not operator, 191
or statement, 191
true/false determines, 175–178

Complex mandala, 100, 277, 278
Computer’s language, 13, 14
Cool mini projects, see Turtle

module

D
Data structure, 223–226, 228, 240
Deep dive method

arcs, 114–116
background color set, 108
bgcolor method, 108
change directions, 126–130
circle, 124–126
circles, 112, 113
dot function, 113, 114
fillcolor function, 109
graphics, 109–112
heading() method, 129
hideturtle() function, 116, 118
options, 116–120
pensize function, 109
penup/pendown methods, 116

https://doi.org/10.1007/978-1-4842-6812-4#DOI

546

screen customization, 107, 108
setheading() method, 127
shapes, 112
smileys, 134, 135
text screen, 120–124

Dictionaries, 247–252

E
Even/odd number project

error message, 262
input numbers, 260
overview, 259
print, 261, 262

F
File handling, 323

boring theoretical, 323
existing file, 330
introduction.txt, 332, 333
line by line, 328–330
manipulation, 330–332
open method, 324–328, 330
read() function, 326

Flask installation, 508–510
For loops

if statements, 200, 201
iterate over strings, 204
iteration, 197–200
nested loops, 202–204
syntax, 198
temporary variable, 197

Function
add()/mul() functions, 292
addition()/multiply() method,

293–295
arbitrary arguments, 296–298
calculation, 289–291
default arguments, 295
definition, 285
different values, 287
global vs. local (see Global vs.

Local variables)
glorious functions, 301
input() method, 289
lambda, 301, 302
math homework project,

302–306
parameter, 288
shape automation, 306–309
use of, 286, 287

G
Global vs. Local variables

global keyword, 299–301
re-assign values, 297, 298
return local variables, 299
variables, 298, 299

Graphical user interface
(GUI), 335

H
Hyper Text Markup Language

(HTML), 499–502

Deep dive method (cont.)

INDEX

547

I
Integrated Development and

Learning Environment
(IDLE)

configuration, 28, 29
installation, 27
mathematical calculations,

30, 31
script mode

file creation, 33
output, 36
.py file, 34
running program, 35
source code, 35
untitled document, 34

Windows, 28
Interactive mode

(Python shell), 30

J, K
JavaScript, 504–507

L
Lambda, 301, 302
Lists

accessing values, 226
add/remove elements,

232, 233
clear() method, 237, 246
concatenation/join, 230, 231
copy method, 229
count/clear method, 230, 231

dictionaries, 247–252
extend method, 230, 237
first/last name

reversal, 255–257
heterogeneous values, 226
index method, 231, 232
in keyword, 235–238
manipulation, 228, 229
multi-colored star, 240–242
never-ending colors, 255–258
pop() method, 233
reverse() method, 234, 235
search option, 231
sets, 244–247
slice method, 227, 228
sort() method, 234, 235
square brackets ([]), 225
tuples, 241–244
union() method, 246

Loops
arc spirals, 218–221
break/continue, 207, 208
equilateral triangle, 215
guess number game

version 2, 209–211
hexagon, 216
iteration, 196–198
for loops (see For loops)
mandala design, 216–218
quarter circle spirals, 221
semi-circle spirals, 220
shape automation, 212–216
square automation, 212, 213
while, 205, 206

INDEX

548

M
Mac installation

authentication, 23
installation type, 22, 24
license agreement, 21, 22
package, 24, 25
welcome screen, 20, 21

Mini projects
bouncing ball, 465,

527–530
calculator app, 511–518
introduction.txt, 534–538
random story

generator, 518–521
rock paper scissors

game, 521–527
temperature conversion

app, 531–534
puzzles

currency conversion
options, 539

overview, 539
Pygame, 540
turtle, 540

N
Numbers

argument, 74
assignment operations, 65–67
BODMAS rule, 68–70
comments, 46, 47
complex numbers, 50–52

cool stuff, 70
creation, 59, 60
factorial method, 73
floating-point, 49, 50
floor/ceiling methods, 71
integers (int), 48, 49
math operations

addition/subtraction/
multiplication, 60–62

Python, 62–65
mini project, 57, 58, 78–81
numerical operations, 74, 75
overview, 39, 40
power/square root, 72
random numbers, 75–78
randrange() function, 76
script file, 42
storage option, 40–46
type conversion, 53–57
variables, 41

O
Object-oriented programming

(OOPs), 311, 542
classes, 314, 315
do stuff/stuff, 318, 319
init() function, 316
integer, 313, 314
manipulation, 317, 318
objects, 315–317
properties and methods,

312, 313
turtle race, 320–322

INDEX

549

P, Q
Package details, 543
Paint app

canvas creation, 394, 395
changeSize function, 403, 404
clear_screen() function, 407
colorchooser, 392, 393
draw circles and ovals, 402
draw options menu, 396–398
entire program, 408
explanation, 392, 393
hand/straight lines, 400, 401
menus options, 395, 396
mouse position, 398
outline and fill colors, 404–406
screen setup, 394, 395
squares and rectangles, 401

Programming language
artificial intelligence, 5, 6
code, 2
financial analyst, 6
gadgets, 1, 2
logic and creativity, 5, 6
mathematical capabilities, 4, 5
program creation/running

configuration
window, 28, 29

IDLE process, 27, 28
shell output, 28

puzzles/activities, 12, 13
Python, 7–11

Pygame, 445
bouncing ball, 465, 527–530

command prompt, 447
definition, 446
installation, 446–448
keyboard press event, 459–461
lines, rectangles, circles/

polygons, 452–457
move characters, 457–459
screen customization, 450–452
setup gaming screen, 448–450
space shooters (see Space

shooters game)
Python

activity, 36, 37
download page, 15
installation, 14
installation setup, 16–18
Mac (see Mac installation)
package downloading, 19–21
PATH, 16
print command, 32, 33
programming language, 7

apps, 10, 11
games, 9
graphics/animations, 9
libraries and modules, 8
straightforward, 7, 8
websites, 10

Windows device, 14

R
Random story generator, 518–521
Regular expressions, 542
Rock Paper Scissors game, 521–527

INDEX

550

S
sin, cos, tan, and log, 73, 74
Snake game

apple, 419–421
changeScore() method, 428
checkCollision function,

434–439
distance() method, 428
drawApple() function, 428
drawSnake() function, 429–432
explanation, 414–416
global variables, 417
head, 417–419
joystick/keyboard keys, 421–423
modules, 415
moveBody() function, 431–433
moveHead() method, 424–427
onkeypress() methods, 422
scoreboard creation, 426, 427
screen coordinates, 424
setup() function, 416, 417
source code, 439–444
tracer() method, 416

Space shooters game
bullet fire, 479–482
enemies

creation, 478–482
kill process, 486–488
re-draw process, 488, 489

entire code, 491–496
explanation, 468, 469
game loop, 470, 471
game over screen, 490, 491

initialization, 469, 470
modules, 469
scoreboard creation, 482, 483
spaceship

creation, 472, 473
kill process, 487, 488
move, 473–475

Spirals
circular, 275, 276
racing process, 281
random, 272, 273
square, 268–270
star, 273, 274
triangular, 273, 274

Storing one value, 223–225
Strings

accessing characters, 145–147
capitalize() method, 150–152
colorful/dynamic math, 174
concatenation, 144, 145
empty string, 145
escape character, 142
format method, 159–163
index chart, 146
index()/find() method, 155
input automation, 161, 162
int/float conversion, 162–164
isalnum() method, 156
in keyword, 155–157
len() method, 150, 151
lower() method, 151
misc method, 152–155
positive/negative indices, 147

INDEX

551

print() function, 138, 139
reverses, 169, 170
shouting screen, 166–168
single/double quotes, 142–144
single/multiple lines, 139–141
slicing, 148, 149
string concatenation, 144, 145
strings.py, 138, 139
title() method, 152
turtle text, 164–166
type() method, 139

T, U, V
Temperature conversion app,

531–534
Tic Tac Toe game

bind events, 369–372
buttons

buttonClick() function, 376
creation, 376–378
draw information, 380
global variables, 378–383
new_game() function,

385, 386
winner_check() function,

379, 382
entire program, 387–390
explanation, 372
game over process, 384
global variables, 374, 375
setup, 373

Tipping calculator, 262–264
Tkinter, 335

Button() method, 340, 341
calculator app (see

Calculator app)
check() function, 358
delete() method, 350
entry() method, 349, 352
fill options, 346
get() method, 349
greet() function, 349
grid method, 363–365
inputs, 348
insert() method, 350, 351
introduction.txt, 534–538
label() method, 338–343
mainloop() function, 339
menu() method, 361–363
pack geometry

method, 343–349
pack() method, 338
paint (see Paint app)
radio button, 360
screen display, 336–338
side options, 347
string variable, 357–359
text() method, 352–355
tic tac toe game (see

Tic Tac Toe game)
tip calculator app, 365–368
title change, 337

Turtle module, 83
backward() function, 87
change directions, 89–91
deep dive (see Deep dive

method)

INDEX

552

forward/backward, 86–88
getscreen() method, 84
goto, 99, 100
hexagon, 94, 95
home() function, 87
mandalas

code tilted, 102–105
conical shape, 101
source code, 100–105
square base, 100, 101

pre-defined methods, 84
random numbers, 97–99
random packages, 278–281
screen, 85

shortcuts, 95, 96
snake (see Snake game)
square, 91–93
Turtle() function, 85

W, X, Y, Z
Web development, 543

buttonClick() function, 506
CSS, 502–504
Django and Flask, 507–510
front-end dynamic, 504–507
HTML building blocks, 499–502
meaning, 498–500

While loops, 205, 206

Turtle module (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Did You Know?
	What is programming?
	Why should your kids learn to code?
	Programming is like Math
	Coding improves logical thinking and creativity
	Coding is the future

	Why Python?
	Python is easy
	It can do a lot of things

	Python is fun!
	Games!
	Graphics and animation
	Websites
	Apps

	Getting the most out of this book
	Summary

	Chapter 2: Let’s Install Python!
	Speak the computer’s language
	Get started – install Python
	Installing Python on a Windows computer
	Download Python
	Install Python
	Installing Python on a Mac device
	Download Python
	Install Python

	Summary

	Chapter 3: Your First Python Program
	Creating and running programs in Python
	Python interactive mode (Python Shell)
	Your Shell can do Math
	Print with Python
	IDLE script mode
	Python activity: Print your name (and some more)
	Summary

	Chapter 4: Python Loves Numbers
	Numbers in Python
	Store your numbers
	Comments
	Your numbers come in different forms
	Integers
	Floating-point numbers
	Complex numbers

	Type conversion between numbers
	Mini project – Do you understand numbers?
	Summary

	Chapter 5: Let’s Play with Our Numbers!
	Get your numbers out to play
	Basic Math operations
	Special Math operations in Python
	Assignment operations
	What comes first?
	Cool stuff with numbers
	Floor and ceiling of a number
	Power and square root
	Factorial of a number
	Sin, cos, tan, and more
	More numerical operations
	Working with random numbers
	Mini project – multiples of a number
	Summary

	Chapter 6: Drawing Cool Stuff with Turtle
	Let’s get started
	Make your Turtle move
	Move forward and backward
	Make your turtle change directions
	Mini project – draw a square
	Mini project – draw a hexagon
	Shortcuts
	Go to random points on the screen
	Draw a square with goto
	Mini project – draw a mandala (with just straight lines)
	Summary

	Chapter 7: A Turtle Deep Dive
	Customize your screen
	Customize your graphics
	Shapes without lines
	Circles
	Dots
	Arcs
	More options!
	Draw text on screen
	Mini project – circle within a square
	Change directions of your drawing
	Mini project – smiley
	Summary

	Chapter 8: Play with Letters and Words
	What are strings?
	Let’s create some strings
	I want lines and lines of strings!
	My string has quotes!:O
	Let’s join two or more strings
	Concatenation in print()
	Empty string
	Accessing characters in strings
	Negative indices
	Slicing a part of a string
	String methods – magic with strings!
	Capital and small
	Misc methods
	True? False?
	String formatting
	Getting input from the users (start automation)
	String to int or float conversion
	Mini project – take Turtle text to the next level!
	Mini project – shout at the screen
	Mini project – reverse your name
	Mini project – colorful and dynamic Math
	Summary

	Chapter 9: Follow My Command!
	True or False
	Compare and decide
	If this happens, do this (command!)
	Else?
	More than one condition!:O
	Mini project – guess the number game
	The conditions keep stacking up!
	Summary

	Chapter 10: Automate a Little
	Magic loops!
	For loops
	If statements within for loops
	Nested for loops
	Iterating over strings
	While loops
	Abort mission! Break and continue
	Mini project – guess the number game version 2
	Mini project – automate your square
	Mini project – automate any basic shape
	Mini project – automatically draw a mandala design
	Mini project – arc spirals
	Summary

	Chapter 11: Lots and Lots of Information!
	Store more than one value
	Lists
	Accessing values in a list
	Slice a list!
	List manipulation on fire!
	Copy and append
	Count and clear
	Concatenation
	Search inside your list
	Add and remove elements
	Reverse and sort

	More fun with lists!
	Mini project – multi-colored automated star
	Tuples
	Sets
	Dictionaries
	Mini project – never-ending colors
	Mini project – first and last name reversal
	Summary

	Chapter 12: Fun Mini Projects Galore!
	Project 12-1: Odd or even
	Part 1 – Is your number odd or even?
	Part 2 – print odd or even numbers within a range

	Project 12-2: Is your mom tipping enough?
	Project 12-3: Draw a Christmas tree
	Project 12-4: Spirals!
	Square spiral
	Random spiral
	Triangular spiral
	Star spiral
	Circular spiral
	Project 12-5: Complex mandala – completely automated
	Project 12-6: Turtle race with loops
	Summary

	Chapter 13: Automate with Functions
	True automation
	Our first function
	Why do we need functions?
	Do different things every time!
	Create (define) your functions
	You can reuse your code!
	No arguments?

	Give an answer
	No arguments? What to do!
	Too many arguments!
	Global vs. local
	Variables within functions
	Return local variables
	Global variables

	Lambda
	Mini project – do your Math homework with Python
	Mini project – automated shapes – next level
	Summary

	Chapter 14: Let’s Create Real-World Objects
	What is object-oriented programming?
	Let’s prove it!
	Classes
	Objects with their own values
	Manipulate your objects
	Objects do stuff
	Turtle race with objects
	Summary

	Chapter 15: Python and Files
	Why files?
	Opening and reading existing files
	Line by line
	Create new files
	Manipulate files
	Mini project – introduce with files
	Summary

	Chapter 16: Create Cool Apps with Tkinter
	Tkinter – let’s set it right up!
	Labels, buttons, and packing them
	Packing in detail
	Lots of inputs
	One line of text
	Line after line
	Tkinter variables
	Lots of options!
	Menus
	The perfect layout – grid
	Mini project – tip calculator app
	Summary

	Chapter 17: Project: Tic-tac-toe Game with Tkinter
	Bind events – make your apps dynamic!
	Tic-tac-toe game – explanation
	Set up Tkinter
	Create global variables
	Create the buttons
	When the button is clicked, draw on it
	Check if a player won during each turn
	New game button
	Entire program
	Summary

	Chapter 18: Project: Paint App with Tkinter
	Paint app – explanation
	Get started
	Set up the screen
	Create the canvas
	Create your first menu (shapes)
	Let’s make our draw options work!
	Get the mouse position
	Let’s draw our lines
	Squares and rectangles!
	Circles and ovals!
	Select size!
	Lots and lots of colors!
	I’ve finished drawing!
	Entire program
	Summary

	Chapter 19: Project: Snake Game with Turtle
	Snake game
	Import the required modules
	Set up the turtle screen
	Create and initialize the required variables
	Draw the head
	Draw the first apple
	Is my screen registering my arrow presses?
	Make our snake head move
	Get the scoreboard going
	Our snake’s eating!
	Make the entire snake move
	Collision check
	Entire code
	Summary

	Chapter 20: Become a Game Developer with Pygame
	What is Pygame?
	Install and import Pygame
	Set up your gaming screen!
	Make your screen pretty
	Create your characters on the screen
	Move your characters
	Keyboard press events
	Mini project – bouncing ball
	Summary

	Chapter 21: Project: Space Shooters with Pygame
	Space shooter game
	Import the required modules
	Initialize everything
	Game loop
	Create the spaceship
	Move the spaceship
	Create and move the enemies
	Fire the bullet
	Create and display the scoreboard
	Kill the enemies
	Kill the spaceship!
	Re-draw the enemies
	Game over!
	Entire code
	Summary

	Chapter 22: Web Development with Python
	Python and web development
	Building blocks – HTML
	Pretty things up – CSS
	Front-end dynamic – JavaScript
	Python’s Flask
	Summary

	Chapter 23: More Mini Projects
	Project 23-1: Calculator with Tkinter
	Project 23-2: Random story generator
	Project 23-3: Rock Paper Scissors game
	Project 23-4: Bouncing ball (off the four walls) with Pygame
	Project 23-5: Temperature conversion app
	Project 23-6: Introduce with files and Tkinter
	Summary

	Chapter 24: What’s next?
	Mini project ideas you can try
	Currency conversion app
	Race in Pygame
	More patterns in Turtle

	Capstone project ideas you can try
	Snake game in Pygame
	Dodge the bullet
	Memory game in Pygame

	Looking ahead
	OOPs in detail
	Regular expressions
	Web development
	Packages in detail

	Summary

	Index

