

Introduction to Computer

Science Using Python:

A Computational

Problem-Solving Focus

FMTOC.indd Page i 05/11/12 4:26 PM user-019AFMTOC.indd Page i 05/11/12 4:26 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FMTOC.indd Page ii 27/10/12 1:28 PM user-019AFMTOC.indd Page ii 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

Introduction to Computer

Science Using Python:

A Computational

Problem-Solving Focus

Charles Dierbach

FMTOC.indd Page iii 27/10/12 1:28 PM user-019AFMTOC.indd Page iii 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

VP & Executive Publisher: Don Fowley
Executive Editor: Beth Lang Golub
Assistant Editor: Samantha Mandel
Marketing Manager: Christopher Ruel
Marketing Assistant: Ashley Tomeck
Photo Editor: Hilary Newman
Cover Designer: Thomas Nery
Associate Production Manager: Joyce Poh
Production Editor: Jolene Ling
Cover Illustration: Norm Christiansen

This book was set in 10/12 Times LT Std by Aptara. Text and cover were printed and bound by Courier Kendallville.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years,
helping people around the world meet their needs and fulfi ll their aspirations. Our company is built on a foundation of
principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a
Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we
face in our business. Among the issues we are addressing are carbon impact, paper specifi cations and procurement, ethical
conduct within our business and among our vendors, and community and charitable support. For more information, please
visit our website: www.wiley.com/go/citizenship.

Copyright © 2013 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualifi ed academics and professionals for review purposes only, for use in their courses
during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon
completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return
mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your
course, please accept this book as your complimentary desk copy. Outside of the United States, please contact your local
sales representative.

Library of Congress Cataloging-in-Publication Data

Dierbach, Charles, 1953–
 Introduction to Computer Science Using Python: A Computational Problem-Solving Focus/Charles Dierbach.
 p. cm.
 Includes index.
 ISBN 978-0-470-55515-6 (pbk.)
1. Python (Computer program language) I. Title.
 QA76.73.P98D547 2012
 005.13'3—dc23
 2012027172

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

FMTOC.indd Page iv 27/10/12 1:28 PM user-019AFMTOC.indd Page iv 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

http://www.copyright.com
http://www.wiley.com/go/permissions

DEDICATION

To my wife Chen Jin, and our sons Jayden and Bryson.

FMTOC.indd Page v 27/10/12 1:28 PM user-019AFMTOC.indd Page v 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FMTOC.indd Page vi 27/10/12 1:28 PM user-019AFMTOC.indd Page vi 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

Brief Contents

Preface xxi

Acknowledgments xxv

About the Author xxvii

 1 Introduction 1

 2 Data and Expressions 38

 3 Control Structures 79

 4 Lists 125

 5 Functions 168

 6 Objects and Their Use 206

 7 Modular Design 247

 8 Text Files 289

 9 Dictionaries and Sets 337

10 Object-Oriented Programming 383

11 Recursion 460

12 Computing and Its Developments 491

Appendix 525

Index 569

vii

FMTOC.indd Page vii 05/11/12 4:26 PM user-019AFMTOC.indd Page vii 05/11/12 4:26 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FMTOC.indd Page viii 27/10/12 1:28 PM user-019AFMTOC.indd Page viii 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

Contents

Preface xxi

Acknowledgments xxv

About the Author xxvii

1 Introduction 1

ix

MOTIVATION 2
FUNDAMENTALS 2
1.1 What Is Computer Science? 2

1.1.1 The Essence of Computational Problem Solving 3
1.1.2 Limits of Computational Problem Solving 5
Self-Test Questions 6

1.2 Computer Algorithms 6
1.2.1 What Is an Algorithm? 6
1.2.2 Algorithms and Computers: A Perfect Match 7
Self-Test Questions 8

1.3 Computer Hardware 9
1.3.1 Digital Computing: It’s All about Switches 9
1.3.2 The Binary Number System 10
1.3.3 Fundamental Hardware Components 11
1.3.4 Operating Systems—Bridging Software and Hardware 11
1.3.5 Limits of Integrated Circuits Technology: Moore’s Law 12
Self-Test Questions 13

1.4 Computer Software 14
1.4.1 What Is Computer Software? 14
1.4.2 Syntax, Semantics, and Program Translation 14
1.4.3 Procedural vs. Object-Oriented Programming 17
Self-Test Questions 17

COMPUTATIONAL PROBLEM SOLVING 17
1.5 The Process of Computational Problem Solving 17

1.5.1 Problem Analysis 18
1.5.2 Program Design 19
1.5.3 Program Implementation 21
1.5.4 Program Testing 21

FMTOC.indd Page ix 05/11/12 4:26 PM user-019AFMTOC.indd Page ix 05/11/12 4:26 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.6 The Python Programming Language 22
1.6.1 About Python 22
1.6.2 The IDLE Python Development Environment 22
1.6.3 The Python Standard Library 23
1.6.4 A Bit of Python 24
1.6.5 Learning How to Use IDLE 26

1.7 A First Program—Calculating the Drake Equation 29
1.7.1 The Problem 30
1.7.2 Problem Analysis 30
1.7.3 Program Design 30
1.7.4 Program Implementation 30
1.7.5 Program Testing 32

Chapter Summary 33
Chapter Exercises 34
Python Programming Exercises 36
Program Modifi cation Problems 37
Program Development Problems 37

2 Data and Expressions 38

x Contents

MOTIVATION 39
FUNDAMENTAL CONCEPTS 40
2.1 Literals 40

2.1.1 What Is a Literal? 40
2.1.2 Numeric Literals 40
2.1.3 String Literals 44
2.1.4 Control Characters 46
2.1.5 String Formatting 47
2.1.6 Implicit and Explicit Line Joining 48
2.1.7 Let’s Apply It—“Hello World Unicode Encoding” 48
Self-Test Questions 49

2.2 Variables and Identifi ers 50
2.2.1 What Is a Variable? 50
2.2.2 Variable Assignment and Keyboard Input 52
2.2.3 What Is an Identifi er? 53
2.2.4 Keywords and Other Predefi ned Identifi ers in Python 54
2.2.5 Let’s Apply It—“Restaurant Tab Calculation” 55
Self-Test Questions 56

2.3 Operators 57
2.3.1 What Is an Operator? 57
2.3.2 Arithmetic Operators 57
2.3.3 Let’s Apply It—“Your Place in the Universe” 59
Self-Test Questions 60

2.4 Expressions and Data Types 61
2.4.1 What Is an Expression? 61
2.4.2 Operator Precedence 61
2.4.3 Operator Associativity 63

FMTOC.indd Page x 27/10/12 1:28 PM user-019AFMTOC.indd Page x 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

MOTIVATION 80
FUNDAMENTAL CONCEPTS 80
3.1 What Is a Control Structure? 80
3.2 Boolean Expressions (Conditions) 81

3.2.1 Relational Operators 81
3.2.2 Membership Operators 82
3.2.3 Boolean Operators 83
3.2.4 Operator Precedence and Boolean Expressions 85
3.2.5 Short-Circuit (Lazy) Evaluation 86
3.2.6 Logically Equivalent Boolean Expressions 87
Self-Test Questions 88

3.3 Selection Control 89
3.3.1 If Statement 89
3.3.2 Indentation in Python 90
3.3.3 Multi-Way Selection 91
3.3.4 Let’s Apply It—Number of Days in Month Program 94
Self-Test Questions 96

3.4 Iterative Control 96
3.4.1 While Statement 97
3.4.2 Input Error Checking 98
3.4.3 Infi nite loops 99
3.4.4 Defi nite vs. Indefi nite Loops 100
3.4.5 Boolean Flags and Indefi nite Loops 100
3.4.6 Let’s Apply It—Coin Change Exercise Program 101
Self-Test Questions 104

COMPUTATIONAL PROBLEM SOLVING 104
3.5 Calendar Month Program 104

3.5.1 The Problem 104

Contents xi

2.4.4 What Is a Data Type? 64
2.4.5 Mixed-Type Expressions 64
2.4.6 Let’s Apply It—“Temperature Conversion Program” 65
Self-Test Questions 66

COMPUTATIONAL PROBLEM SOLVING 67
2.5 Age in Seconds Program 67

2.5.1 The Problem 67
2.5.2 Problem Analysis 67
2.5.3 Program Design 67
2.5.4 Program Implementation and Testing 69

Chapter Summary 74
Chapter Exercises 74
Python Programming Exercises 76
Program Modifi cation Problems 76
Program Development Problems 77

3 Control Structures 79

FMTOC.indd Page xi 27/10/12 1:28 PM user-019AFMTOC.indd Page xi 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

MOTIVATION 126
FUNDAMENTAL CONCEPTS 127
4.1 List Structures 127

4.1.1 What Is a List? 127
4.1.2 Common List Operations 127
4.1.3 List Traversal 128
Self-Test Questions 129

4.2 Lists (Sequences) in Python 130
4.2.1 Python List Type 130
4.2.2 Tuples 131
4.2.3 Sequences 132
4.2.4 Nested Lists 134
4.2.5 Let’s Apply It—A Chinese Zodiac Program 135
Self-Test Questions 137

4.3 Iterating Over Lists (Sequences) in Python 137
4.3.1 For Loops 137
4.3.2 The Built-in range Function 138
4.3.3 Iterating Over List Elements vs. List Index Values 139
4.3.4 While Loops and Lists (Sequences) 140
4.3.5 Let’s Apply It—Password Encryption/Decryption Program 141
Self-Test Questions 144

4.4 More on Python Lists 144
4.4.1 Assigning and Copying Lists 144
4.4.2 List Comprehensions 146

COMPUTATIONAL PROBLEM SOLVING 147
4.5 Calendar Year Program 147

4.5.1 The Problem 147
4.5.2 Problem Analysis 147
4.5.3 Program Design 148
4.5.4 Program Implementation and Testing 149

Chapter Summary 161
Chapter Exercises 162
Python Programming Exercises 164
Program Modifi cation Problems 164
Program Development Problems 165

4 Lists 125

xii Contents

3.5.2 Problem Analysis 104
3.5.3 Program Design 105
3.5.4 Program Implementation and Testing 107

Chapter Summary 117
Chapter Exercises 118
Python Programming Exercises 120
Program Modifi cation Problems 121
Program Development Problems 123

FMTOC.indd Page xii 05/11/12 4:26 PM user-019AFMTOC.indd Page xii 05/11/12 4:26 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5 Functions 168

MOTIVATION 169
FUNDAMENTAL CONCEPTS 169
5.1 Program Routines 169

5.1.1 What Is a Function Routine? 169
5.1.2 Defi ning Functions 170
5.1.3 Let’s Apply It—Temperature Conversion Program (Function Version) 173
Self-Test Questions 175

5.2 More on Functions 176
5.2.1 Calling Value-Returning Functions 176
5.2.2 Calling Non-Value-Returning Functions 177
5.2.3 Parameter Passing 178
5.2.4 Keyword Arguments in Python 181
5.2.5 Default Arguments in Python 183
5.2.6 Variable Scope 183
5.2.7 Let’s Apply It—GPA Calculation Program 186
Self-Test Questions 189

COMPUTATIONAL PROBLEM SOLVING 189
5.3 Credit Card Calculation Program 189

5.3.1 The Problem 189
5.3.2 Problem Analysis 190
5.3.3 Program Design 190
5.3.4 Program Implementation and Testing 191

Chapter Summary 202
Chapter Exercises 202
Python Programming Exercises 203
Program Modifi cation Problems 204
Program Development Problems 204

MOTIVATION 207
FUNDAMENTAL CONCEPTS 207
6.1 Software Objects 207

6.1.1 What Is an Object? 208
6.1.2 Object References 209
Self-Test Questions 216

6.2 Turtle Graphics 216
6.2.1 Creating a Turtle Graphics Window 216
6.2.2 The “Default” Turtle 218
6.2.3 Fundamental Turtle Attributes and Behavior 219
6.2.4 Additional Turtle Attributes 222
6.2.5 Creating Multiple Turtles 225

6 Objects and Their Use 206

Contents xiii

FMTOC.indd Page xiii 27/10/12 1:28 PM user-019AFMTOC.indd Page xiii 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

MOTIVATION 248
FUNDAMENTAL CONCEPTS 248
7.1 Modules 248

7.1.1 What Is a Module? 248
7.1.2 Module Specifi cation 249
Self-Test Questions 251

7.2 Top-Down Design 251
7.2.1 Developing a Modular Design of the Calendar Year Program 251
7.2.2 Specifi cation of the Calendar Year Program Modules 252
Self-Test Questions 255

7.3 Python Modules 255
7.3.1 What Is a Python Module? 255
7.3.2 Modules and Namespaces 256
7.3.3 Importing Modules 257
7.3.4 Module Loading and Execution 260
7.3.5 Local, Global, and Built-in Namespaces in Python 262
7.3.6 A Programmer-Defi ned Stack Module 264
7.3.7 Let’s Apply It—A Palindrome Checker Program 267
Self-Test Questions 268

COMPUTATIONAL PROBLEM SOLVING 269
7.4 Calendar Year Program (function version) 269

7.4.1 The Problem 269
7.4.2 Problem Analysis 269
7.4.3 Program Design 269
7.4.4 Program Implementation and Testing 269

Chapter Summary 284
Chapter Exercises 284
Python Programming Exercises 286
Program Modifi cation Problems 287
Program Development Problems 287

7 Modular Design 247

xiv Contents

6.2.6 Let’s Apply It—Bouncing Balls Program 226
Self-Test Questions 229

COMPUTATIONAL PROBLEM SOLVING 229
6.3 Horse Race Simulation Program 229

6.3.1 The Problem 230
6.3.2 Problem Analysis 230
6.3.3 Program Design 231
6.3.4 Program Implementation and Testing 231

Chapter Summary 243
Chapter Exercises 243
Python Programming Exercises 244
Program Modifi cation Problems 245
Program Development Problems 246

FMTOC.indd Page xiv 27/10/12 1:28 PM user-019AFMTOC.indd Page xiv 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

MOTIVATION 338
FUNDAMENTAL CONCEPTS 338
9.1 Dictionary Type in Python 338

9.1.1 What Is a Dictionary? 339
9.1.2 Let’s Apply It—Phone Number Spelling Program 342
Self-Test Questions 346

8 Text Files 289

MOTIVATION 290
FUNDAMENTAL CONCEPTS 290
8.1 What Is a Text File? 290
8.2 Using Text Files 291

8.2.1 Opening Text Files 291
8.2.2 Reading Text Files 293
8.2.3 Writing Text Files 294
Self-Test Questions 295

8.3 String Processing 296
8.3.1 String Traversal 296
8.3.2 String-Applicable Sequence Operations 296
8.3.3 String Methods 297
8.3.4 Let’s Apply It—Sparse Text Program 300
Self-Test Questions 303

8.4 Exception Handling 303
8.4.1 What Is an Exception? 303
8.4.2 The Propagation of Raised Exceptions 304
8.4.3 Catching and Handling Exceptions 305
8.4.4 Exception Handling and User Input 307
8.4.5 Exception Handling and File Processing 309
8.4.6 Let’s Apply It—Word Frequency Count Program 310
Self-Test Questions 314

COMPUTATIONAL PROBLEM SOLVING 314
8.5 Cigarette Use/Lung Cancer Correlation Program 314

8.5.1 The Problem 315
8.5.2 Problem Analysis 315
8.5.3 Program Design 316
8.5.4 Program Implementation and Testing 318
8.5.5 Determining the Correlation Between Smoking and Lung Cancer 331

Chapter Summary 331
Chapter Exercises 332
Python Programming Exercises 333
Program Modifi cation Problems 333
Program Development Problems 334

9 Dictionaries and Sets 337

Contents xv

FMTOC.indd Page xv 27/10/12 1:28 PM user-019AFMTOC.indd Page xv 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

xvi Contents

10 Object-Oriented Programming 383

MOTIVATION 384
FUNDAMENTAL CONCEPTS 384
10.1 What Is Object-Oriented Programming? 384

10.1.1 What Is a Class? 385
10.1.2 Three Fundamental Features of Object-Oriented Programming 385

10.2 Encapsulation 386
10.2.1 What Is Encapsulation? 386
10.2.2 Defi ning Classes in Python 387
10.2.3 Let’s Apply It—A Recipe Conversion Program 394
Self-Test Questions 399

10.3 Inheritance 400
10.3.1 What Is Inheritance? 400
10.3.2 Subtypes 401
10.3.3 Defi ning Subclasses in Python 402
10.3.4 Let’s Apply It—A Mixed Fraction Class 407
Self-Test Questions 411

10.4 Polymorphism 411
10.4.1 What Is Polymorphism? 411
10.4.2 The Use of Polymorphism 414
Self-Test Questions 417

10.5 Object-Oriented Design Using UML 417
10.5.1 What Is UML? 417
10.5.2 UML Class Diagrams 418
Self-Test Questions 422

COMPUTATIONAL PROBLEM SOLVING 423
10.6 Vehicle Rental Agency Program 423

10.6.1 The Problem 423

9.2 Set Data Type 346
9.2.1 The Set Data Type in Python 346
9.2.2 Let’s Apply It—Kitchen Tile Visualization Program 348
Self-Test Questions 356

COMPUTATIONAL PROBLEM SOLVING 356
9.3 A Food Co-op’s Worker Scheduling Simulation 356

9.3.1 The Problem 357
9.3.2 Problem Analysis 357
9.3.3 Program Design 358
9.3.4 Program Implementation and Testing 360
9.3.5 Analyzing a Scheduled vs. Unscheduled Co-op Worker Approach 375

Chapter Summary 379
Chapter Exercises 379
Python Programming Exercises 380
Program Modifi cation Problems 380
Program Development Problems 381

FMTOC.indd Page xvi 27/10/12 1:28 PM user-019AFMTOC.indd Page xvi 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6.2 Problem Analysis 423
10.6.3 Program Design 423
10.6.4 Program Implementation and Testing 429

Chapter Summary 453
Chapter Exercises 454
Python Programming Exercises 455
Program Modifi cation Problems 456
Program Development Problems 457

11 Recursion 460

MOTIVATION 461
FUNDAMENTAL CONCEPTS 461
11.1 Recursive Functions 461

11.1.1 What Is a Recursive Function? 461
11.1.2 The Factorial Function 464
11.1.3 Let’s Apply It—Fractals (Sierpinski Triangle) 467
Self-Test Questions 471

11.2 Recursive Problem Solving 472
11.2.1 Thinking Recursively 472
11.2.2 MergeSort Recursive Algorithm 472
11.2.3 Let’s Apply It—MergeSort Implementation 474
Self-Test Questions 476

11.3 Iteration vs. Recursion 476

COMPUTATIONAL PROBLEM SOLVING 477
11.4 Towers of Hanoi 477

11.4.1 The Problem 477
11.4.2 Problem Analysis 477
11.4.3 Program Design and Implementation 481

Chapter Summary 487
Chapter Exercises 487
Python Programming Exercises 488
Program Modifi cation Problems 489
Program Development Problems 490

Contents xvii

12 Computing and Its Developments 491

CONTRIBUTIONS TO THE MODERN COMPUTER 492
12.1 The Concept of a Programmable Computer 492

12.1.1 “Father of the Modern Computer”—Charles Babbage (1800s) 492
12.1.2 “The First Computer Programmer”—Ada Lovelace (1800s) 493

12.2 Developments Leading to Electronic Computing 493
12.2.1 The Development of Boolean Algebra (mid-1800s) 493
12.2.2 The Development of the Vacuum Tube (1883) 494
12.2.3 The Development of Digital Electronic Logic Gates (1903) 494

FMTOC.indd Page xvii 05/11/12 4:26 PM user-019AFMTOC.indd Page xvii 05/11/12 4:26 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.2.4 The Development of Memory Electronic Circuits (1919) 495
12.2.5 The Development of Electronic Digital Logic Circuits (1937) 495
12.2.6 “The Father of Information Theory”—Claude Shannon (1948) 496

FIRST-GENERATION COMPUTERS (1940s–mid-1950s) 496
12.3 The Early Groundbreakers 496

12.3.1 The Z3—The First Programmable Computer (1941) 496
12.3.2 The Mark I—First Computer Project in the United States (1937–1943) 497
12.3.3 The ABC—The First Fully Electronic Computing Device (1942) 498
12.3.4 Colossus—A Special-Purpose Electronic Computer (1943) 499
12.3.5 ENIAC—The First Fully Electronic Programmable Computer 500
12.3.6 EDVAC/ACE—The First Stored Program Computers (1950) 501
12.3.7 Whirlwind—The First Real-Time Computer (1951) 502

12.4 The First Commercially Available Computers 503
12.4.1 The Struggles of the Eckert-Mauchly Computer Corporation (1950) 503
12.4.2 The LEO Computer of the J. Lyons and Company (1951) 504

SECOND-GENERATION COMPUTERS (mid-1950s to mid-1960s) 505
12.5 Transistorized Computers 505

12.5.1 The Development of the Transistor (1947) 505
12.5.2 The First Transistor Computer (1953) 506

12.6 The Development of High-Level Programming Languages 506
12.6.1 The Development of Assembly Language (early 1950s) 506
12.6.2 The First High-Level Programming Languages (mid-1950s) 507
12.6.3 The First “Program Bug” (1947) 508

THIRD-GENERATION COMPUTERS (mid-1960s to early 1970s) 508
12.7 The Development of the Integrated Circuit (1958) 508

12.7.1 The Catalyst for Integrated Circuit Advancements (1960s) 509
12.7.2 The Development of the Microprocessor (1971) 511

12.8 Mainframes, Minicomputers, and Supercomputers 512
12.8.1 The Establishment of the Mainframe Computer (1962) 512
12.8.2 The Development of the Minicomputer (1963) 513
12.8.3 The Development of the UNIX Operating System (1969) 513
12.8.4 The Development of Graphical User Interfaces (early 1960s) 514
12.8.5 The Development of the Supercomputer (1972) 515

FOURTH-GENERATION COMPUTERS (early 1970s to the Present) 515
12.9 The Rise of the Microprocessor 515

12.9.1 The First Commercially Available Microprocessor (1971) 515
12.9.2 The First Commercially Available Microcomputer Kit (1975) 516

12.10 The Dawn of Personal Computing 516
12.10.1 The Beginnings of Microsoft (1975) 516
12.10.2 The Apple II (1977) 517
12.10.3 IBM’s Entry into the Microcomputer Market (1981) 517
12.10.4 Society Embraces the Personal Computer (1983) 518
12.10.5 The Development of Graphical User Interfaces (GUIs) 518
12.10.6 The Development of the C11 Programming Language 519

xviii Contents

FMTOC.indd Page xviii 27/10/12 1:28 PM user-019AFMTOC.indd Page xviii 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

THE DEVELOPMENT OF COMPUTER NETWORKS 520
12.11 The Development of Wide Area Networks 520

12.11.1 The Idea of Packet-Switched Networks (early 1960s) 520
12.11.2 The First Packet-Switched Network: ARPANET (1969) 520

12.12 The Development of Local Area Networks (LANs) 521
12.12.1 The Need for Local Area Networks 521
12.12.2 The Development of Ethernet (1980) 521

12.13 The Development of the Internet and World Wide Web 522
12.13.1 The Realization of the Need for “Internetworking” 522
12.13.2 The Development of the TCP/IP Internetworking Protocol (1973) 522
12.13.3 The Development of the World Wide Web (1990) 522
12.13.4 The Development of the Java Programming Language (1995) 523

Appendix 525

Index 569

Contents xix

FMTOC.indd Page xix 01/11/12 1:08 PM user-019AFMTOC.indd Page xix 01/11/12 1:08 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FMTOC.indd Page xx 27/10/12 1:28 PM user-019AFMTOC.indd Page xx 27/10/12 1:28 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

Book Concept

This text introduces students to programming and computational problem solving using the Python 3
programming language. It is intended primarily for a fi rst-semester computer science (CS1) course,
but is also appropriate for use in any course providing an introduction to computer programming
and/or computational problem solving. The book provides a step-by-step, “hands on” pedagogical
approach which, together with Python’s clear and simple syntax, makes this book easy to teach and
learn from.
 The primary goal in the development of this text was to create a pedagogically sound and ac-
cessible textbook that emphasizes fundamental programming and computational problem- solving
concepts over the minutiae of a particular programming language. Python’s ease in the creation and
use of both indexed and associative data structures (in the form of lists/tuples and dictionaries), as
well as sets, allows for programming concepts to be demonstrated without the need for detailed
discussion of programming language specifi cs.
 Taking advantage of Python’s support of both the imperative (i.e., procedural) and object-
oriented paradigms, a “back to basics,” “objects-late” approach is taken to computer programming.
It follows the belief that solid grounding in imperative programming should precede the larger
number of (and more abstract) concepts of the object-oriented paradigm. Therefore, objects are not
covered until Chapter 5, and object-oriented programming is not introduced until Chapter 10. For
those who do not wish to introduce object-oriented programming, Chapter 10 can easily be skipped.

How This Book Is Different

This text has a number of unique pedagogical features including:

♦ A short motivation section at the beginning of each chapter which provides a larger perspective
on the chapter material to be covered.

♦ Hands-on exercises throughout each chapter which take advantage of the interactive capabilities
of Python.

♦ A fully-developed computational problem solving example at the end of each chapter that places
an emphasis on program testing and program debugging.

♦ A richly illustrated, fi nal chapter on “Computing and Its Developments” that provides a storyline
of notable individuals, accomplishments, and developments in computing, from Charles Babbage
through modern times.

♦ A Python 3 Programmers’ Reference in the back of the text which allows the book to serve as
both a pedagogical resource and as a convenient Python reference.

Preface

xxi

Preface.indd Page xxi 27/10/12 1:30 PM user-019APreface.indd Page xxi 27/10/12 1:30 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Pedagogical Features

The book takes a step-by-step pedagogical approach. Each new concept is immediately followed by
a pedagogical element that elucidates the material covered and/or challenges students’ understanding.
The specifi c pedagogical features of the book are listed below.

Summary Boxes
At the end of each subsection, a clearly outlined summary box is provided containing the most
 salient information of the material just presented. These concise summaries also serve as useful
reference points as students review the chapter material.

Let’s Try It Sections
Also at the end of each subsection, a short Let’s Try It section is given in which students are asked to
type in Python code (into the Python shell) and observe the results. These “hands on” exercises help
to immediately reinforce material as students progress through the chapter.

Let’s Apply It Sections
At the end of each major section, a complete program example is provided with detailed line-by-line
discussion. These examples serve to demonstrate the programming concepts just learned in the con-
text of an actual program.

Self-Test Questions
Also at the end of each major section, a set of multiple-choice/short-answer questions is given. The
answers are included so that students may perform a comprehension self check in answering these.
 A variety of exercises and program assignments are also included at the end of every chapter.
These are designed to gradually ease students from review of general concepts, to code-writing exercises,
to modifi cation of signifi cant-sized programs, to developing their own programs, as outlined below.

Chapter Exercises
At the end of each chapter, a set of simple, short-answer questions are provided.

Python Programming Exercises
Also at the end of each chapter, a set of simple, short Python programming exercises are given.

Program Modifi cation Problems
Additionally, at the end of each chapter is a set of programming problems in which students are
asked to make various modifi cations to program examples in the chapter. Thus, these exercises do
not require students to develop a program from scratch. They also serve as a means to encourage
students to think through the chapter program examples.

Program Development Problems
Finally, at the end of each chapter is a set of computational problems which students are to develop
programs for from scratch. These problems are generally similar to the program examples given in
the chapters.

Emphasis on Computational Problem Solving

The capstone programs at the end of each chapter show students how to go through the process of
computational problem solving. This includes problem analysis, design, implementation, and testing,
as outlined in Chapter 1. As a program is developed and tested, errors are intentionally placed in the
code, leading to discussion and demonstration of program testing and debugging. Programming
 errors, therefore, are presented as a normal part of software development. This helps students develop

xxii Preface

Preface.indd Page xxii 05/11/12 4:09 PM user-019APreface.indd Page xxii 05/11/12 4:09 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

their own program debugging skills, and reinforces the idea that program debugging is an inevitable
part of program development—an area of coverage that is crucial for beginning programmers, and yet
often lacking in introductory computer science books.
 Given the rigor with which these problems are presented, the sections are somewhat lengthy.
Since the capstones do not introduce any new concepts, they may be skipped if the instructor does
not have time to cover them.

Guided Book Tour

Chapter 1 addresses the question “What is computer science?” Computational problem solving is
introduced, including discussions on the limits of computation, computer algorithms, computer
hardware, computer software, and a brief introduction to programming in Python. The end of the
chapter lays out a step-by-step computational problem solving process for students consisting of
problem analysis, program design, program implementation, and program testing.

Chapter 2 covers data and expressions, including arithmetic operators, discussion of limits of preci-
sion, output formatting, character encoding schemes, control characters, keyboard input, operator
precedence and associativity, data types, and coercion vs. type conversion.

Chapter 3 introduces control structures, including relational, membership and Boolean operators,
short-circuit (lazy) evaluation, selection control (if statements) and indentation in Python, iterative con-
trol (while statements), and input error checking. (For statements are not covered until Chapter 4 on
Lists.) Break and continue statements are not introduced in this book. It is felt that these statements,
which violate the principles of structured programming, are best not introduced to the beginning
 programmer.

Chapter 4 presents lists and for statements. The chapter opens with a general discussion of lists and
list operations. This is followed by lists and tuples in Python, including nested lists, for loops, the
built-in range function, and list comprehensions. Since all values in Python are (object) references,
and lists are the fi rst mutable type to which students are introduced, a discussion of shallow vs. deep
copying is provided without explicit mention of references. The details of object representation in
Python is covered in Chapter 6.

Chapter 5 introduces the notion of a program routine, including discussions of parameter passing
(actual argument vs. formal parameters), value vs. non-value returning functions, mutable vs.
 immutable arguments, keyword and default arguments in Python, and local vs. global scope.

Chapter 6 introduces students to the concept of objects in programming. Here students see how
objects are represented as references, and therefore are able to fully understand the behavior of as-
signment and copying of lists (initially introduced in Chapter 4), as well as other types. Turtle
graphics is introduced (by use of the turtle module of the Python Standard Library) and is used to
provide an intuitive, visual means of understanding the concept of object instances. This also al-
lows students to write fun, graphical programs, while at the same time reinforcing the notion and
behavior of objects.

Chapter 7 covers modules and modular design. It starts off by explaining the general notion of a mod-
ule and module specifi cation, including docstrings in Python. It is followed by a discussion of top-
down design. It then introduces modules in Python, including namespaces, the importing of modules,
module private variables, module loading and execution, and local, global, and built-in namespaces.
The notion of a stack is introduced here via the development of a programmer-defi ned stack module.

Preface xxiii

Preface.indd Page xxiii 27/10/12 1:30 PM user-019APreface.indd Page xxiii 27/10/12 1:30 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter 8 introduces text fi les and string processing. It starts with how to open/close, and read/
write fi les in Python. Then the string-applicable sequence operations from Chapter 4 are revisited,
and additional string methods are covered. Exception handling is introduced in the context of fi le
handling, and some of the more commonly occurring Python Standard Exceptions are introduced.

Chapter 9 presents dictionaries (Python’s associative data structure) and sets.

Chapter 10 introduces object-oriented programming. It begins with a discussion of classes, and the
notion of encapsulation. Then, how classes are defi ned is presented, including discussion of special
methods in Python. Inheritance and subtypes are discussed next, followed by a discussion of the use of
polymorphism. Finally, the chapter ends with a brief introduction to class diagrams in UML.

Chapter 11 covers recursion and recursive problem solving, including discussion of recursion vs.
iteration, and when recursion is appropriately used.

Chapter 12 concludes the book by providing an overview of the people, achievements and develop-
ments in computing. This chapter serves to “humanize” the fi eld and educate students on the history
of the discipline.

Online Textbook Supplements

All supplements are available via the book’s companion website at www.wiley.com/college/dierbach.
Below is the list of supplements that accompany this text:

♦ Instructor’s manual, with answers to all exercises and program assignments

♦ PowerPoint slides, summarizing the key points of each chapter

♦ Program code for all programs in the book

♦ Test bank of exam questions for each chapter

A separate student companion site is available at the above web site which grants students access to
the program code and additional fi les needed to execute and/or modify programs in the book.
All other program code is available to instructors only.

xxiv Preface

Preface.indd Page xxiv 05/11/12 4:09 PM user-019APreface.indd Page xxiv 05/11/12 4:09 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Acknowledgments

I would fi rst like to thank the people at Wiley & Sons. To Dan Sayre, for getting this project going;
to my editor Beth Golub, for all her patience and guidance during the evolution of the book; and
to Samantha Mandel, Assistant Editor, for her invaluable help. I would also like to thank Harry
Nolan, Design Director, who took the time to ensure that the book design turned out as I envi-
sioned; to Jolene Ling, Production Editor, who so graciously worked on the production of the
book and the ensuing changes, and for seeing that everything came together.
 There are many others to thank who have in some way contributed to this project. First, thanks
to Harry Hochheiser, for all the motivating and informative discussions that eventually led me to
 Python, and ultimately the development of this book. Many thanks to my colleague Josh Dehlinger,
who lent his extremely critical eye to the project (and took up the slack on many of my department
duties!). Thanks to my department chair, Chao Lu, for his support, friendship, and for creating such
a collegial and productive environment to work (and for funneling some of my duties to Josh!). And
thanks to Shiva Azadegan, who fi rst planted the idea of writing a book in my head, and for being
such a supportive friend, as well as a wonderful colleague.
 I would also like to acknowledge a couple of my outstanding graduate TAs in the Python
course for all their help and enthusiasm on the project. I thank Crystal McKinney, for so freely
 offering her time to review chapters and offer her suggestions. I owe a great debt of thanks to Leela
Sedaghat, who contributed to the project in so many ways—her insightful review of chapters, the
enormous amount of time spent on verifying and obtaining image permissions, and her design of
and contribution to the Python Programmers’ Reference manual, which without her help, would
never have been completed on time. Previous graduate students Ahbi Grover and Lanlan Wang also
read earlier drafts of the book.
 Finally, I thank the reviewers. Without them, the book could never be what it is now. First, spe-
cial thanks to Claude Anderson of Rose-Hulman Institute of Technology. His meticulous review for
technical errors, and his suggestions on pedagogy, have signifi cantly contributed to the book. In addi-
tion, I thank each of the following individuals who served as reviewers on this project: James Atlas,
University of Delaware; Richard Borie, University of Alabama; Tim Bower, Kansas State University
Salina; Darin Brezeale, University of Texas at Arlington; Diana Cukierman, Simon Fraser University;
Chris Heiden, St. Clair County Community College; Ric Heishman, George Mason University;
 Jennifer Kay, Rowan University; Debby Keen, University of Kentucky; Clayton Lewis, University of
Colorado; Alan McLeod, Queen’s University at Kingston; Ethan Miller, University of California,
 Santa Cruz; Joe Oldham, Centre College; Susan Mary Rosselet, Bemidji State University; Terry A. Scott,
University of Northern Colorado; and Leon Tietz, Minnesota State University Mankato.

xxv

Acknowledgments.indd Page xxv 05/11/12 4:10 PM user-019AAcknowledgments.indd Page xxv 05/11/12 4:10 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Acknowledgments.indd Page xxvi 31/10/12 4:59 PM user-019AAcknowledgments.indd Page xxvi 31/10/12 4:59 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

About the Author

Charles Dierbach is an Associate Professor of computer science at Towson University, and has
regularly taught introductory undergraduate computer science courses for the past thirty-fi ve years.
He received his Ph.D. in Computer Science from the University of Delaware. While a lecturer
there, he received the Outstanding Teaching Award from the undergraduate chapter of the ACM.
At Towson, he served as Director of the Undergraduate Computer Science program for over ten
years. In addition to teaching introductory computer science courses, Dr. Dierbach also teaches
undergraduate and graduate courses in object-oriented design and programming.

xxvii

Acknowledgments.indd Page xxvii 05/11/12 4:10 PM user-019AAcknowledgments.indd Page xxvii 05/11/12 4:10 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Acknowledgments.indd Page xxviii 31/10/12 4:59 PM user-019AAcknowledgments.indd Page xxviii 31/10/12 4:59 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

This page is intentionally left blank

1

 Introduction

 This chapter addresses the question “What is computer science?” We begin by introducing the essence
of computational problem solving via some classic examples. Next, computer algorithms, the heart of
computational problem solving, are discussed. This is followed by a look at computer hardware (and
the related issues of binary representation and operating systems) and computer software (and the
related issues of syntax, semantics, and program translation). The chapter fi nishes by presenting the
process of computational problem solving, with an introduction to the Python programming language.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain the essence of computational problem solving

 ♦ Explain what a computer algorithm is

 ♦ Explain the fundamental components of digital hardware

 ♦ Explain the role of binary representation in digital computing

 ♦ Explain what an operating systems is

 ♦ Explain the fundamental concepts of computer software

 ♦ Explain the fundamental features of IDLE in Python

 ♦ Modify and execute a simple Python program

 CHAPTER CONTENTS

 Motivation

 Fundamentals

 1.1 What Is Computer Science?

 1.2 Computer Algorithms

 1.3 Computer Hardware

 1.4 Computer Software

 Computational Problem Solving

 1.5 The Process of Computational Problem Solving

 1.6 The Python Programming Language

 1.7 A First Program—Calculating the Drake Equation

 CHAPTER 1

c01Introduction.indd Page 1 05/11/12 5:05 PM user-019Ac01Introduction.indd Page 1 05/11/12 5:05 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2 CHAPTER 1 Introduction

 MOTIVATION

 Computing technology has changed, and is continu-
ing to change the world. Essentially every aspect of
life has been impacted by computing. Just-in-time
inventory allows companies to signifi cantly reduce
costs. Universal digital medical records promise to
save the lives of many of the estimated 100,000
 people who die each year from medical errors. Vast
 information resources, such as Wikipedia, now pro-
vide easy, quick access to a breadth of knowledge as
never before. Information sharing via Facebook and
Twitter has not only brought family and friends
 together in new ways, but has also helped spur
 political change around the world. New interdisci-
plinary fi elds combining computing and science
will lead to breakthroughs previously unimagina-
ble. Computing-related fi elds in almost all areas of
study are emerging (see Figure 1-1).

 In the study of computer science, there are fundamental principles of computation to be
learned that will never change. In addition to these principles, of course, there is always changing
technology. That is what makes the fi eld of computer science so exciting. There is constant change
and advancement, but also a foundation of principles to draw from. What can be done with computa-
tion is limited only by our imagination. With that said, we begin our journey into the world of com-
puting. I have found it an unending fascination—I hope that you do too. Bon voyage!

 FUNDAMENTALS

 1.1 What Is Computer Science?

 Many people, if asked to defi ne the fi eld of computer science, would likely say that it is about pro-
gramming computers. Although programming is certainly a primary activity of computer science,
 programming languages and computers are only tools . What computer science is fundamentally

FIGURE 1-1 Computing-Related Specialized Fields

G
lo

b
e/

W
ik

im
ed

ia
 C

om
m

on
s

c01Introduction.indd Page 2 15/10/12 8:15 AM user-019Ac01Introduction.indd Page 2 15/10/12 8:15 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.1 What Is Computer Science? 3

about is computational problem solving —that
is, solving problems by the use of computation
(Figure 1-2).

 This description of computer science pro-
vides a succinct defi nition of the fi eld. However, it
does not convey its tremendous breadth and di-
versity . There are various areas of study in com-
puter science including software engineering (the
design and implementation of large software sys-
tems), database management, computer networks,
computer graphics, computer simulation, data
mining, information security, programming lan-
guage design, systems programming, computer architecture, human–computer interaction, robotics,
and artifi cial intelligence, among others.

 The defi nition of computer science as computational problem solving begs the question: What
is computation? One characterization of computation is given by the notion of an algorithm . The
defi nition of an algorithm is given in section 1.2. For now, consider an algorithm to be a series of
steps that can be systematically followed for producing the answer to a certain type of problem.
We look at fundamental issues of computational problem solving next.

Computer science is fundamentally about computational problem solving.

 1.1.1 The Essence of Computational Problem Solving

 In order to solve a problem computationally, two
things are needed: a representation that captures all
the relevant aspects of the problem, and an algo-
rithm that solves the problem by use of the repre-
sentation. Let’s consider a problem known as the
 Man, Cabbage, Goat, Wolf problem (Figure 1-3).

 A man lives on the east side of a river. He
wishes to bring a cabbage, a goat, and a wolf to a
village on the west side of the river to sell. How-
ever, his boat is only big enough to hold himself,
and either the cabbage, goat, or wolf. In addition,
the man cannot leave the goat alone with the cab-
bage because the goat will eat the cabbage, and he
cannot leave the wolf alone with the goat because
the wolf will eat the goat. How does the man solve
his problem?

 There is a simple algorithmic approach for
solving this problem by simply trying all possible
combinations of items that may be rowed back
and forth across the river. Trying all possible solu-
tions to a given problem is referred to as a brute
force approach . What would be an appropriate

FIGURE 1-2 Computational Problem Solving

To
m

m
L/

iS
to

ck
p

ho
to

FIGURE 1-3 Man, Cabbage, Goat, Wolf Problem

c01Introduction.indd Page 3 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 3 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4 CHAPTER 1 Introduction

 representation for this problem? Since only the relevant aspects of the problem need to be repre-
sented, all the irrelevant details can be omitted. A representation that leaves out details of what is
being represented is a form of abstraction .

 The use of abstraction is prevalent in computer science. In this case, is the color of the boat
relevant? The width of the river? The name of the man? No, the only relevant information is where
each item is at each step. The collective location of each item, in this case, refers to the state of the
problem. Thus, the start state of the problem can be represented as follows.

FIGURE 1-4 Calendar Month

 man cabbage goat wolf
 [W, E, W, E]

 in which the symbol W indicates that the corresponding object is on the west side of the river—in
this case, the man and goat. (The locations of the cabbage and wolf are left unchanged.) A solution
to this problem is a sequence of steps that converts the initial state,

 [E, E, E, E]

 in which all objects are on the east side of the river, to the goal state ,

 [W, W, W, W]

 in which all objects are on the west side of the river. Each step corresponds to the man rowing a
particular object across the river (or the man rowing alone). As you will see, the Python program-
ming language provides an easy means of representing sequences of values. The remaining task is
to develop or fi nd an existing algorithm for computationally solving the problem using this repre-
sentation. The solution to this problem is left as a chapter exercise.

 As another example computational problem, suppose that you needed to write a program that
displays a calendar month for any given month and year, as shown in Figure 1-4. The representa-
tion of this problem is rather straightforward. Only a few values need to be maintained—the month
and year, the number of days in each month, the names of the days of the week, and the day of the
week that the fi rst day of the month falls on. Most
of these values are either provided by the user
(such as the month and year) or easily determined
(such as the number of days in a given month).

 The less obvious part of this problem is how
to determine the day of the week that a given date
falls on. You would need an algorithm that can
compute this. Thus, no matter how well you may
know a given programming language or how good
a programmer you may be, without such an algo-
rithm you could not solve this problem.

 man cabbage goat wolf
 [E, E, E, E]

 In this representation, the symbol E denotes that each corresponding object is on the east side of
the river. If the man were to row the goat across with him, for example, then the representation of
the new problem state would be

c01Introduction.indd Page 4 23/10/12 11:28 AM user-019Ac01Introduction.indd Page 4 23/10/12 11:28 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.1 What Is Computer Science? 5

 1.1.2 Limits of Computational Problem Solving

 Once an algorithm for solving a given problem is developed or found, an important question is, “Can
a solution to the problem be found in a reasonable amount of time?” If not, then the particular algo-
rithm is of limited practical use.

FIGURE 1-5 Traveling Salesman Problem

San Francisco

Los Angeles

Boston

New York

Atlanta

Chicago

2708 mi.

344 mi.
1749 mi.

748 mi.

In order to solve a problem computationally, two things are needed: a representation that captures all the
relevant aspects of the problem, and an algorithm that solves the problem by use of the representation.

 The Traveling Salesman problem (Figure 1-5) is a classic computational problem in computer science.
The problem is to fi nd the shortest route of travel for a salesman needing to visit a given set of cities. In a
brute force approach, the lengths of all possible routes would be calculated and compared to fi nd the
shortest one. For ten cities, the number of possi-
ble routes is 10! (10 factorial), or over three and a
half million (3,628,800). For twenty cities, the
number of possible routes is 20!, or over two and
a half quintillion (2,432,902,008,176,640,000).
If we assume that a computer could compute the
lengths of one million routes per second, it would
take over 77,000 years to fi nd the shortest route
for twenty cities by this approach. For 50 cities,
the number of possible routes is over 10 64 . In this
case, it would take more time to solve than the
age of the universe!

 A similar problem exists for the game of
chess (Figure 1-6). A brute force approach for a
chess-playing program would be to “look ahead”
to all the eventual outcomes of every move that
can be made in deciding each next move. There FIGURE 1-6 Game of Chess

A
A

A
 S

V
G

 C
he

ss
b

oa
rd

 a
nd

 c
he

ss
 p

ie
ce

s
06

/
W

ik
im

ed
ia

 C
om

m
on

s

c01Introduction.indd Page 5 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 5 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6 CHAPTER 1 Introduction

 Self-Test Questions

 1. A good defi nition of computer science is “the science of programming computers.”
(TRUE/FALSE)

 2. Which of the following areas of study are included within the fi eld of computer science?
 (a) Software engineering
 (b) Database management
 (c) Information security
 (d) All of the above

 3. In order to computationally solve a problem, two things are needed: a representation of the
problem, and an _______________ that solves it.

 4. Leaving out detail in a given representation is a form of _______________.

 5. A “brute-force” approach for solving a given problem is to:
 (a) Try all possible algorithms for solving the problem.
 (b) Try all possible solutions for solving the problem.
 (c) Try various representations of the problem.
 (d) All of the above

 6. For which of the following problems is a brute-force approach practical to use?
 (a) Man, Cabbage, Goat, Wolf problem
 (b) Traveling Salesman problem
 (c) Chess-playing program
 (d) All of the above

 ANSWERS: 1. False, 2. (d), 3. algorithm, 4. abstraction, 5. (b), 6. (a)

Any algorithm that correctly solves a given problem must solve the problem in a reasonable
amount of time, otherwise it is of limited practical use.

are approximately 10 120 possible chess games that can be played. This is related to the average number
of look-ahead steps needed for deciding each move. How big is this number? There are approximately
10 80 atoms in the observable universe, and an estimated 3 3 10 90 grains of sand to fi ll the universe solid.
Thus, there are more possible chess games that can be played than grains of sand to fi ll the universe
solid! For problems such as this and the Traveling Salesman problem in which a brute-force approach is
impractical to use, more effi cient problem-solving methods must be discovered that fi nd either an exact
or an approximate solution to the problem.

 1.2 Computer Algorithms

 This section provides a more complete description of an algorithm than given above, as well as an
 example algorithm for determining the day of the week for a given date.

 1.2.1 What Is an Algorithm?

 An algorithm is a fi nite number of clearly described, unambiguous “doable” steps that can be
 systematically followed to produce a desired result for given input in a fi nite amount of time (that is, it

c01Introduction.indd Page 6 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 6 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.2 Computer Algorithms 7

eventually terminates). Algorithms solve general
problems (determining whether any given number is a
prime number), and not specifi c ones (determining
whether 30753 is a prime number). Algorithms, there-
fore, are general computational methods used for
solving particular problem instances.

 The word “algorithm” is derived from the
ninth-century Arab mathematician, Al-Khwarizmi
(Figure 1-7), who worked on “written processes to
achieve some goal.” (The term “algebra” also derives
from the term “al-jabr,” which he introduced.)

 Computer algorithms are central to computer
science. They provide step-by-step methods of compu-
tation that a machine can carry out. Having high-speed
machines (computers) that can consistently follow and
execute a given set of instructions provides a reliable
and effective means of realizing computation. How-
ever, the computation that a given computer performs
is only as good as the underlying algorithm used .
 Understanding what can be effectively programmed
and executed by computers, therefore, relies on the
 understanding of computer algorithms.

An algorithm is a fi nite number of clearly described, unambiguous “doable” steps that can be
systematically followed to produce a desired result for given input in a fi nite amount of time.

 1.2.2 Algorithms and Computers: A Perfect Match

 Much of what has been learned about algorithms and computation since the beginnings of
 modern computing in the 1930s–1940s could have been studied centuries ago, since the study
of algorithms does not depend on the existence of computers. The algorithm for performing
long division is such an example. However, most algorithms are not as simple or practical to
apply manually. Most require the use of computers either because they would require too much
time for a person to apply, or involve so much detail as to make human error likely. Because
 computers can execute instructions very quickly and reliably without error , algorithms and
computers are a perfect match! Figure 1-8 gives an example algorithm for determining the day
of the week for any date between January 1, 1800 and December 31, 2099.

Because computers can execute instructions very quickly and reliably without error, algorithms
and computers are a perfect match.

FIGURE 1-7 Al-Khwarizmi
(Ninth Century A.D.)

P
er

si
an

_k
hw

ar
iz

m
i/W

ik
im

ed
ia

 C
om

m
on

s

c01Introduction.indd Page 7 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 7 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8 CHAPTER 1 Introduction

 Self-Test Questions

 1. Which of the following are true of an algorithm?
 (a) Has a fi nite number of steps
 (b) Produces a result in a fi nite amount of time
 (c) Solves a general problem
 (d) All of the above

 2. Algorithms were fi rst developed in the 1930–1940s when the fi rst computing machines
appeared. (TRUE/FALSE)

 3. Algorithms and computers are a “perfect match” because: (Select all that apply.)
 (a) Computers can execute a large number of instructions very quickly.
 (b) Computers can execute instructions reliably without error.
 (c) Computers can determine which algorithms are the best to use for a given problem.

FIGURE 1-8 Day of the Week Algorithm

 Note that there is no value to add for the months of April and July.

c01Introduction.indd Page 8 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 8 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.3 Computer Hardware 9

 4. Given that the year 2016 is a leap year, what day of the week does April 15 th of that year
fall on? Use the algorithm in Figure 1-8 for this.

 5. Which of the following is an example of an algorithm? (Select all that apply.)
 (a) A means of sorting any list of numbers
 (b) Directions for getting from your home to a friend’s house
 (c) A means of fi nding the shortest route from your house to a friend’s house.

 ANSWERS: 1. (d), 2. False, 3. (a,b) 4. Friday, 5. (a,c)

 1.3 Computer Hardware

 Computer hardware comprises the physical part of a computer system. It includes the all-important
components of the central processing unit (CPU) and main memory . It also includes peripheral
components such as a keyboard, monitor, mouse, and printer. In this section, computer hardware and
the intrinsic use of binary representation in computers is discussed.

 1.3.1 Digital Computing: It’s All about Switches

 It is essential that computer hardware be reliable and error free. If the hardware gives incorrect re-
sults, then any program run on that hardware is unreliable. A rare occurrence of a hardware error was
discovered in 1994. The widely used Intel processor was found to give incorrect results only when
certain numbers were divided, estimated as likely to occur once every 9 billion divisions. Still, the
discovery of the error was very big news, and Intel promised to replace the processor for any one
that requested it.

 The key to developing reliable systems is to keep the design as simple as possible. In digital
computing, all information is represented as a series of digits. We are used to representing numbers
using base 10 with digits 0–9. Consider if information were represented within a computer system
this way, as shown in Figure 1-9.

4V
ol

ta
ge

 L
ev

el
s

(0
–9

)

5 2 9 0 1 8 6 2 4

FIGURE 1-9 Decimal Digitalization

 In current electronic computing, each digit is represented by a different voltage level. The more volt-
age levels (digits) that the hardware must utilize and distinguish, the more complex the hardware
design becomes. This results in greater chance of hardware design errors. It is a fact of information
theory, however, that any information can be represented using only two symbols. Because of this,
 all information within a computer system is represented by the use of only two digits, 0 and 1 , called
 binary representation , shown in Figure 1-10.

c01Introduction.indd Page 9 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 9 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10 CHAPTER 1 Introduction

 Other radix systems work in a similar manner. Base 2 has digits 0 and 1, with place values that are
powers of two, as depicted in Figure 1-12.

 In this representation, each digit can be one of only two possible values, similar to a light switch
that can be either on or off. Computer hardware, therefore, is based on the use of simple electronic
“on/off” switches called transistors that switch at very high speed. Integrated circuits (“chips”),
the building blocks of computer hardware, are comprised of millions or even billions of transistors.
The development of the transistor and integrated circuits is discussed in Chapter 12. We discuss
binary representation next.

All information within a computer system is represented using only two digits, 0 and 1, called
binary representation.

 1.3.2 The Binary Number System

 For representing numbers, any base (radix) can be used. For example, in base 10, there are ten pos-
sible digits (0, 1, . . ., 9), in which each column value is a power of ten , as shown in Figure 1-11.

1 0 1 0 0 0 1 0 1 1

V
ol

ta
ge

Le
ve

ls
 (

0,
1)

FIGURE 1-10 Binary Digitalization

FIGURE 1-11 Base 10 Representation

FIGURE 1-12 Base 2 Representation

 As shown in this fi gure, converting from base 2 to base 10 is simply a matter of adding up the col-
umn values that have a 1.

 The term bit stands for bi nary digi t . Therefore, every bit has the value 0 or 1. A byte is a
group of bits operated on as a single unit in a computer system, usually consisting of eight bits.
Although values represented in base 2 are signifi cantly longer than those represented in base 10,
binary representation is used in digital computing because of the resulting simplicity of hardware
design.

c01Introduction.indd Page 10 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 10 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.3 Computer Hardware 11

 The algorithm for the conversion from base 10 to base 2 is to successively divide a number by
two until the remainder becomes 0. The remainder of each division provides the next higher-order
(binary) digit, as shown in Figure 1-13.

The term bit stands for binary digit. A byte is a group of bits operated on as a single unit in a
computer system, usually consisting of eight bits.

The central processing unit (CPU) is the “brain” of a computer, containing digital logic circuitry
able to interpret and execute instructions.

 Thus, we get the binary representation of 99 to be 1100011. This is the same as in Figure 1-12 above,
except that we had an extra leading insignifi cant digit of 0, since we used an eight-bit representation
there.

FIGURE 1-13 Converting from Base 10 to Base 2

 1.3.3 Fundamental Hardware Components

 The central processing unit (CPU) is the “brain” of a computer system, containing digital logic
circuitry able to interpret and execute instructions. Main memory is where currently executing
programs reside, which the CPU can directly and very quickly access. Main memory is volatile; that
is, the contents are lost when the power is turned off. In contrast, secondary memory is nonvolatile,
and therefore provides long-term storage of programs and data. This kind of storage, for example,
can be magnetic (hard drive), optical (CD or DVD), or nonvolatile fl ash memory (such as in a USB
drive). Input/output devices include anything that allows for input (such as the mouse and key-
board) or output (such as a monitor or printer). Finally, buses transfer data between components
within a computer system, such as between the CPU and main memory. The relationship of these
devices is depicted in Figure 1-14 below.

 1.3.4 Operating Systems—Bridging Software and Hardware

 An operating system is software that has the job of managing and interacting with the hardware
resources of a computer. Because an operating system is intrinsic to the operation a computer, it is
referred to as system software .

c01Introduction.indd Page 11 05/11/12 5:05 PM user-019Ac01Introduction.indd Page 11 05/11/12 5:05 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12 CHAPTER 1 Introduction

FIGURE 1-14 Fundamental Hardware Components

A
d

ap
te

d
 fr

om
 P

et
er

 A
st

b
ur

y/
C

om
p

ut
in

g
D

ev
ic

es
/W

ik
im

ed
ia

 C
om

m
on

s

An operating system is software that has the job of managing
the hardware resources of a given computer and providing a
particular user interface.

 An operating system acts as the “middle man” between the hard-
ware and executing application programs (see Figure 1-15). For
example, it controls the allocation of memory for the various pro-
grams that may be executing on a computer. Operating systems
also provide a particular user interface. Thus, it is the operating
system installed on a given computer that determines the “look and
feel” of the user interface and how the user interacts with the sys-
tem, and not the particular model computer.

FIGURE 1-15 Operating
System

G
ol

ft
he

m
an

/O
p

er
at

in
g

sy
st

em
 p

la
ce

m
en

t/
W

ik
im

ed
ia

 C
om

m
on

s

 1.3.5 Limits of Integrated Circuits Technology: Moore’s Law

 In 1965, Gordon E. Moore (Figure 1-16), one of the pioneers in the development of integrated
circuits and cofounder of Intel Corporation, predicted that as a result of continuing engineering

c01Introduction.indd Page 12 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 12 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.3 Computer Hardware 13

Moore’s Law states that the number of transistors that can be placed on a single silicon chip
doubles roughly every two years.

 developments, the number of transistors that
would be able to be put on a silicon chip would
double roughly every two years, allowing the
complexity and therefore the capabilities of in-
tegrated circuits to grow exponentially. This
prediction became known as Moore’s Law .
Amazingly, to this day that prediction has held
true. While this doubling of performance cannot
go on indefi nitely, it has not yet reached its
limit.

 Self-Test Questions

 1. All information in a computer system is in binary representation. (TRUE/FALSE)

 2. Computer hardware is based on the use of electronic switches called _______________.

 3. How many of these electronic switches can be placed on a single integrated circuit, or “chip”?
 (a) Thousands
 (b) Millions
 (c) Billions

 4. The term “bit” stands for _______________.

 5. A bit is generally a group of eight bytes. (TRUE/FALSE)

 6. What is the value of the binary representation 0110.
 (a) 12
 (b) 3
 (c) 6

 7. The _______________ interprets and executes instructions in a computer system.

 8. An operating system manages the hardware resources of a computer system, as well as
provides a particular user interface. (TRUE/FALSE)

 9. Moore’s Law predicts that the number of transistors that can fi t on a chip doubles about every
ten years. (TRUE/FALSE)

 ANSWERS: 1. True, 2. transistors, 3. (c), 4. binary digit, 5. False, 6. (c), 7. CPU, 8. True, 9. False

FIGURE 1-16 Gordon E. Moore

C
ou

rt
es

y
of

 In
te

l C
or

p
or

at
io

n

c01Introduction.indd Page 13 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 13 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

14 CHAPTER 1 Introduction

 1.4 Computer Software

 The fi rst computer programs ever written were for
a mechanical computer designed by Charles
 Babbage in the mid-1800s. (Babbage’s Analytical
Engine is discussed in Chapter 12). The person
who wrote these programs was a woman, Ada
Lovelace (Figure 1-17), who was a talented math-
ematician. Thus, she is referred to as “the fi rst
computer programmer.” This section discusses
fundamental issues of computer software.

 1.4.1 What Is Computer Software?

 Computer software is a set of program instruc-
tions, including related data and documentation,
that can be executed by computer. This can be in
the form of instructions on paper, or in digital form.
While system software is intrinsic to a computer
system, application software fulfi lls users’ needs,
such as a photo-editing program. We discuss the
important concepts of syntax, semantics, and pro-
gram translation next.

Computer software is a set of program instructions, including related data and documentation,
that can be executed by computer.

 1.4.2 Syntax, Semantics, and Program Translation

 What Are Syntax and Semantics?

 Programming languages (called “artifi cial languages”) are languages just as “natural languages”
such as English and Mandarin (Chinese). Syntax and semantics are important concepts that apply to
all languages.

 The syntax of a language is a set of characters and the acceptable arrangements (sequences)
of those characters. English, for example, includes the letters of the alphabet, punctuation, and prop-
erly spelled words and properly punctuated sentences. The following is a syntactically correct sen-
tence in English,

 “Hello there, how are you?” The following, however, is not syntactically correct,
 “Hello there, hao are you?”

 In this sentence, the sequence of letters “hao” is not a word in the English language. Now consider
the following sentence,

 “Colorless green ideas sleep furiously.”

 This sentence is syntactically correct, but is semantically incorrect, and thus has no meaning.

FIGURE 1-17 Ada Lovelace “The First
 Computer Programmer”

R
oy

al
 In

st
itu

tio
n

of
 G

re
at

 B
rit

ai
n/

P
ho

to
 R

es
ea

rc
he

rs
, I

nc
.

c01Introduction.indd Page 14 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 14 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.4 Computer Software 15

 The semantics of a language is the meaning associated with each syntactically correct se-
quence of characters. In Mandarin, “Hao” is syntactically correct meaning “good.” (“Hao” is from a
system called pinyin, which uses the Roman alphabet rather than Chinese characters for writing
Mandarin.) Thus, every language has its own syntax and semantics, as demonstrated in Figure 1-18.

FIGURE 1-18 Syntax and Semantics of Languages

The syntax of a language is a set of characters and the acceptable sequences of those characters.
The semantics of a language is the meaning associated with each syntactically correct sequence
of characters.

FIGURE 1-19 Execution of Machine Code

FIGURE 1-20 Program Execution by Use of a Compiler

 Program Translation

 A central processing unit (CPU) is designed to interpret and execute a specifi c set of instructions
represented in binary form (i.e., 1s and 0s) called machine code . Only programs in machine code
can be executed by a CPU, depicted in Figure 1-19.

 Writing programs at this “low level” is tedious and error-prone. Therefore, most programs are writ-
ten in a “high-level” programming language such as Python. Since the instructions of such programs
are not in machine code that a CPU can execute, a translator program must be used. There are two
fundamental types of translators. One, called a compiler , translates programs directly into machine
code to be executed by the CPU, denoted in Figure 1-20.

c01Introduction.indd Page 15 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 15 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

16 CHAPTER 1 Introduction

 The other type of translator is called an interpreter , which executes program instructions in place
of (“running on top of”) the CPU, denoted in Figure 1-21.

A compiler is a translator program that translates programs directly into machine code to be
 executed by the CPU. An interpreter executes program instructions in place of (“running on
top of”) the CPU.

FIGURE 1-21 Program Execution by Use of a
Interpreter

 Thus, an interpreter can immediately execute instructions as they are entered. This is referred to as
 interactive mode . This is a very useful feature for program development. Python, as we shall see,
is executed by an interpreter. On the other hand, compiled programs generally execute faster than
interpreted programs. Any program can be executed by either a compiler or an interpreter, as long
there exists the corresponding translator program for the programming language that it is written in.

 Program Debugging: Syntax Errors vs. Semantic Errors

 Program debugging is the process of fi nding and correcting errors (“bugs”) in a computer pro-
gram. Programming errors are inevitable during program development. Syntax errors are caused by
invalid syntax (for example, entering prnt instead of print). Since a translator cannot understand
instructions containing syntax errors, translators terminate when encountering such errors indicating
where in the program the problem occurred.

 In contrast, semantic errors (generally called logic errors) are errors in program logic. Such
errors cannot be automatically detected, since translators cannot understand the intent of a given
computation. For example, if a program computed the average of three numbers as follows,

 (num1 1 num2 1 num3) / 2.0

 a translator would have no means of determining that the divisor should be 3 and not 2. Computers
do not understand what a program is meant to do, they only follow the instructions given . It is up to
the programmer to detect such errors. Program debugging is not a trivial task, and constitutes much
of the time of program development.

Syntax errors are caused by invalid syntax. Semantic (logic) errors are caused by errors in
program logic.

c01Introduction.indd Page 16 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 16 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.5 The Process of Computational Problem Solving 17

 1.4.3 Procedural vs. Object-Oriented Programming

 Programming languages fall into a number of programming paradigms . The two major program-
ming paradigms in use today are procedural (imperative) programming and object-oriented
 programming . Each provides a different way of thinking about computation. While most program-
ming languages only support one paradigm, Python supports both procedural and object-oriented
programming. We will start with the procedural aspects of Python. We then introduce objects in
Chapter 6, and delay complete discussion of object-oriented programming until Chapter 10.

Procedural programming and object-oriented programming are two major programming
paradigms in use today.

 Self-Test Questions

 1. Two general types of software are system software and _______________ software.

 2. The syntax of a given language is,
 (a) the set of symbols in the language.
 (b) the acceptable arrangement of symbols.
 (c) both of the above

 3. The semantics of a given language is the meaning associated with any arrangement of
symbols in the language. (TRUE/FALSE)

 4. CPUs can only execute instructions that are in binary form called _______________.

 5. The two fundamental types of translation programs for the execution of computer programs
are _______________ and _______________.

 6. The process of fi nding and correcting errors in a computer program is called
_______________.

 7. Which kinds of errors can a translator program detect?
 (a) Syntax errors
 (b) Semantic errors
 (c) Neither of the above

 8. Two major programming paradigms in use today are _______________ programming and
_______________ programming.

 ANSWERS: 1. application, 2. (c), 3. False, 4. machine code, 5. compilers, interpreters, 6. program debugging, 7. (a), 8. procedural, object-oriented

 COMPUTATIONAL PROBLEM SOLVING

 1.5 The Process of Computational Problem Solving

 Computational problem solving does not simply involve the act of computer programming. It is a
 process , with programming being only one of the steps. Before a program is written, a design for the
program must be developed. And before a design can be developed, the problem to be solved must
be well understood. Once written, the program must be thoroughly tested. These steps are outlined
in Figure 1-22.

c01Introduction.indd Page 17 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 17 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

18 CHAPTER 1 Introduction

 1.5.1 Problem Analysis

 Understanding the Problem

 Once a problem is clearly understood, the fundamental computational issues for solving it can be
 determined. For each of the problems discussed earlier, the representation is straightforward. For
the calendar month problem, there are two
algorithmic tasks— determining the fi rst day
of a given month, and displaying the calen-
dar month in the proper format. The fi rst day
of the month can be obtained by direct calcu-
lation by use of the algorithm provided in
 Figure 1-8.

 For the Man, Cabbage, Goat, Wolf
(MCGW) problem, a brute-force algorithmic
approach of trying all possible solutions works
very well, since there are a small number of
actions that can be taken at each step, and only
a relatively small number of steps for reaching
a solution. For both the Traveling Salesman
problem and the game of chess, the brute-force
approach is infeasible. Thus, the computa-
tional issue for these problems is to fi nd other,
more effi cient algorithmic approaches for their

FIGURE 1-22 Process of Computational Problem Solving

San Francisco

Los Angeles

Boston

New York

Atlanta

Chicago

2708 mi.

344 mi.
1749 mi.

748 mi.

A
A

A
 S

V
G

 C
he

ss
b

oa
rd

 a
nd

 c
he

ss
 p

ie
ce

s
06

/
W

ik
im

ed
ia

 C
om

m
on

s

c01Introduction.indd Page 18 15/10/12 8:16 AM user-019Ac01Introduction.indd Page 18 15/10/12 8:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.5 The Process of Computational Problem Solving 19

solution. (In fact, methods have been developed for solving Traveling Salesman problems involving
tens of thousands of cities. And current chess-playing programs can beat top-ranked chess masters.)

 Knowing What Constitutes a Solution

 Besides clearly understanding a computational problem, one must know what constitutes a solution.
For some problems, there is only one solution. For others, there may be a number (or infi nite num-
ber) of solutions. Thus, a program may be stated as fi nding,

 ♦ A solution

 ♦ An approximate solution

 ♦ A best solution

 ♦ All solutions

 For the MCGW problem, there are an infi nite number of solutions since the man could pointlessly
row back and forth across the river an arbitrary number of times. A best solution here is one with the
shortest number of steps. (There may be more than one “best” solution for any given problem.) In
the Traveling Salesman problem there is only one solution (unless there exists more than one short-
est route). Finally, for the game of chess, the goal (solution) is to win the game. Thus, since the
number of chess games that can be played is on the order of 10 120 (with each game ending in a win,
a loss, or a stalemate), there are a comparable number of possible solutions to this problem.

 1.5.2 Program Design

 Describing the Data Needed

 For the Man, Cabbage, Goat, Wolf problem, a list can be used to represent the correct location (east
and west) of the man, cabbage, goat, and wolf as discussed earlier, reproduced below,

 man cabbage goat wolf
 [W, E, W, E]

 For the Calendar Month problem, the data include the month and year (entered by the user), the
number of days in each month, and the names of the days of the week. A useful structuring of the
data is given below,

 [month , year]
 [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

 [‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’]

 The month and year are grouped in a single list since they are naturally associated. Similarly, the
names of the days of the week and the number of days in each month are grouped. (The advantages
of list representations will be made clear in Chapter 4.) Finally, the fi rst day of the month, as deter-
mined by the algorithm in Figure 1-8, can be represented by a single integer,

 0 – Sunday, 1 – Monday, . . ., 6 – Saturday

 For the Traveling Salesman problem, the distance between each pair of cities must be represented.
One possible way of structuring the data is as a table, depicted in Figure 1-23.

 For example, the distance from Atlanta to Los Angeles is 2175 miles. There is duplication of
information in this representation, however. For each distance from x to y , the distance from y to x is

c01Introduction.indd Page 19 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 19 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

20 CHAPTER 1 Introduction

also represented. If the size of the table is small, as here, this is not much of an issue. However, for
a signifi cantly larger table, signifi cantly more memory would be wasted during program execution.
Since only half of the table is really needed (for example, the shaded area in the fi gure), the data
could be represented as a list of lists instead,

 [[‘Atlanta’, [‘Boston’, 1110], [‘Chicago’, 718], [‘Los Angeles’, 2175], [‘New York’, 888],
 [‘San Francisco’, 2473]],
 [‘Boston’, [‘Chicago’, 992], [‘Los Angeles’, 2991], [‘New York’, 215], [‘San Francisco’, 3106]],
 [‘Chicago’, [‘Los Angeles’, 2015], [‘New York’, 791], [‘San Francisco’, 2131]],
 [‘Los Angeles’, [‘New York’, 2790], [‘San Francisco’, 381]],
 [‘New York’, [‘San Francisco’, 2901]]]

 Finally, for a chess-playing program, the location and identifi cation of each chess piece needs to be
represented (Figure 1-24). An obvious way to do this is shown on the left below, in which each piece
is represented by a single letter (‘K’ for the king, ‘Q’ for the queen, ‘N’ for the knight, etc.),

FIGURE 1-23 Table Representation of Data

FIGURE 1-24 Representations of Pieces on a Chess Board

 There is a problem with this choice of symbols, however—there is no way to distinguish the white
pieces from the black ones. The letters could be modifi ed, for example, PB for a black pawn and
PW for a white pawn. While that may be an intuitive representation, it is not the best representation
for a program. A better way would be to represent pieces using positive and negative integers as
shown on the right of the fi gure: 1 for a white pawn and 21 for a black pawn; 2 for a white bishop

A
A

A
 S

V
G

 C
he

ss
b

oa
rd

 a
nd

ch

es
s

p
ie

ce
s

06
/W

ik
im

ed
ia

C

om
m

on
s

c01Introduction.indd Page 20 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 20 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.5 The Process of Computational Problem Solving 21

and 22 for a black bishop, and so forth. Various ways of representing chess boards have been
 developed, each with certain advantages and disadvantages. The appropriate representation of data
is a fundamental aspect of computer science.

 Describing the Needed Algorithms

 When solving a computational problem, either suitable existing algorithms may be found or new
algorithms must be developed. For the MCGW problem, there are standard search algorithms that
can be used. For the calendar month problem, a day of the week algorithm already exists. For the
Traveling Salesman problem, there are various (nontrivial) algorithms that can be utilized, as men-
tioned, for solving problems with tens of thousands of cities. Finally, for the game of chess, since it
is infeasible to look ahead at the fi nal outcomes of every possible move, there are algorithms that
make a best guess at which moves to make. Algorithms that work well in general but are not guar-
anteed to give the correct result for each specifi c problem are called heuristic algorithms .

 1.5.3 Program Implementation

 Design decisions provide general details of the data representation and the algorithmic approaches
for solving a problem. The details, however, do not specify which programming language to use, or
how to implement the program. That is a decision for the implementation phase. Since we are pro-
gramming in Python, the implementation needs to be expressed in a syntactically correct and
 appropriate way, using the instructions and features available in Python.

 1.5.4 Program Testing

 As humans, we have abilities that far exceed the capabilities of any machine, such as using com-
monsense reasoning, or reading the expressions of another person. However, one thing that we are
not very good at is dealing with detail, which computer programming demands. Therefore, while
we are enticed by the existence of increasingly capable computing devices that unfailingly and
speedily execute whatever instructions we give them, writing computer programs is diffi cult and
challenging. As a result, programming errors are pervasive, persistent and inevitable . However,
the sense of accomplishment of developing software that can be of benefi t to hundreds, thousands,
or even millions of people can be extremely gratifying. If it were easy to do, the satisfaction would
not be as great.

 Given this fact, software testing is a crucial part of software development. Testing is done incre-
mentally as a program is being developed, when the program is complete, and when the program needs
to be updated. In subsequent chapters, program testing and debugging will be discussed and expanded
upon. For now, we provide the following general truisms of software development in Figure 1-25.

FIGURE 1-25 Truisms of Software Development

c01Introduction.indd Page 21 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 21 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

22 CHAPTER 1 Introduction

 Truism 1 refl ects the fact that programming errors are inevitable and that we must accept it. As a
result of truism 1, truism 2 states the essential role of software testing. Given the inevitability of
programming errors, it is important to test a piece of software in a thorough and systematic manner.
Finally, truism 3 states the importance of understanding why a given change (or set of changes) in a
program fi xes a specifi c error. If you make a change to a program that fi xes a given problem but you
don’t know why it did, then you have lost control of the program logic. As a result, you may have
corrected one problem, but inadvertently caused other, potentially more serious ones.

 Accountants are committed to reconciling balances to the penny. They do not disregard a dis-
crepancy of one cent, for example, even though the difference between the calculated and expected
balances is so small. They understand that a small, seemingly insignifi cant difference can be the
result of two (or more) very big discrepancies. For example, there may be an erroneous credit of
$1,500.01 and an erroneous debit of $1,500. (The author has experienced such a situation in which
the people involved worked all night to fi nd the source of the error.) Determining the source of errors
in a program is very much the same. We next look at the Python programming language.

 1.6 The Python Programming Language

 Now that computational problem solving and computer programming have been discussed, we turn
to the Python programming language and associated tools to begin putting this knowledge into
practice.

 1.6.1 About Python

 Guido van Rossum (Figure 1-26) is the creator of
the Python programming language, fi rst released
in the early 1990s. Its name comes from a 1970s
 British comedy sketch television show called
 Monty Python’s Flying Circus . (Check them out on
YouTube!) The development environment IDLE
provided with Python (discussed below) comes
from the name of a member of the comic group.

 Python has a simple syntax. Python pro-
grams are clear and easy to read. At the same time,
Python provides powerful programming features,
and is widely used. Companies and organizations
that use Python include YouTube, Google, Yahoo,
and NASA. Python is well supported and freely
available at www.python.org. (See the Python 3
Programmers’ Reference at the end of the text for
how to download and install Python.)

 1.6.2 The IDLE Python

 Development Environment

 IDLE is an integrated development environment
(IDE). An IDE is a bundled set of software tools
for program development. This typically includes FIGURE 1-26 Guido van Rossum

Ja
so

n
E

. K
ap

la
n

c01Introduction.indd Page 22 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 22 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.6 The Python Programming Language 23

an editor for creating and modifying programs, a translator for executing programs, and a program
debugger . A debugger provides a means of taking control of the execution of a program to aid in fi nding
program errors.

 Python is most commonly translated by use of an interpreter. Thus, Python provides the
very useful ability to execute in interactive mode. The window that provides this interaction is
referered to as the Python shell . Interacting with the shell is much like using a calculator, except
that, instead of being limited to the operations built into a calculator (addition, subtraction, etc.),
it allows the entry and creation of any Python code. Example use of the Python shell is demon-
strated in Figure 1-27.

 Here, the expression 2 1 3 is entered at the shell prompt (. . .), which immediately responds
with the result 5.

 Although working in the Python shell is convenient, the entered code is not saved. Thus, for
program development, a means of entering, editing, and saving Python programs is provided by
the program editor in IDLE. Details are given below.

FIGURE 1-27 Python Shell

An Integrated Development Environment (IDE) is a bundled set of software tools for program
development.

 1.6.3 The Python Standard Library

 The Python Standard Library is a collection of built-in modules , each providing specifi c function-
ality beyond what is included in the “core” part of Python. (We discuss the creation of Python mod-
ules in Chapter 7.) For example, the math module provides additional mathematical functions. The
random module provides the ability to generate random numbers, useful in programming, as we
shall see. (Other Python modules are described in the Python 3 Programmers’ Reference.) In order
to utilize the capabilities of a given module in a specifi c program, an import statement is used as
shown in Figure 1-28.

 The example in the fi gure shows the use of the import math statement to gain access to a
particular function in the math module, the factorial function. The syntax for using the factorial

c01Introduction.indd Page 23 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 23 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

24 CHAPTER 1 Introduction

 function is math.factorial(n), for some positive integer n. We will make use of library mod-
ules in Chapter 2. In section 1.7, we see how to enter and execute a complete Python program.

FIGURE 1-28 Using an import statement

The Python Standard Library is a collection of modules, each providing specifi c functionality
beyond what is included in the core part of Python.

 1.6.4 A Bit of Python

 We introduce a bit of Python, just enough to begin writing some simple programs. Since all computer
programs input data, process the data, and output results, we look at the notion of a variable, how to
perform some simple arithmetic calculations, and how to do simple input and output.

 Variables

 One of the most fundamental concepts in programming is that of a variable . (Variables are discussed
in detail in Chapter 2.) A simple description of a variable is “a name that is assigned to a value,” as
shown below,

 n 5 5 variable n is assigned the value 5

 Thus, whenever variable n appears in a calculation, it is the current value that n is assigned to that
is used, as in the following,

 n 1 20 (5 1 20)

 If variable n is assigned a new value, then the same expression will produce a different result,

 n 5 10
 n 1 20 (10 1 20)

 We next look at some basic arithmetic operators of Python.

c01Introduction.indd Page 24 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 24 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.6 The Python Programming Language 25

 Some Basic Arithmetic Operators

 The common arithmetic operators in Python are 1 (addition), 2 (subtraction), * (multiplication),
/ (division), and ** (exponentiation). Addition, subtraction, and division use the same symbols as
standard mathematical notation,

 10 1 20 25 2 15 20 / 10

 (There is also the symbol // for truncated division, discussed in Chapter 2.) For multiplication and
exponentiation, the asterisk (*) is used.

 5 * 10 (5 times 10) 2 ** 4 (2 to the 4th power)

 Multiplication is never denoted by the use of parentheses as in mathematics, as depicted below,

 10 * (20 1 5) CORRECT 10(20 1 5) INCORRECT

 Note that parentheses may be used to denote subexpressions. Finally, we see how to input informa-
tion from the user, and display program results.

A variable is “a name that is assigned to a value.”

The common arithmetic operators in Python are 1 (addition), 2 (subtraction), * (multiplication),
/ (division), and ** (exponentiation).

 Basic Input and Output

 The programs that we will write request and get information from the user. In Python, the input
function is used for this purpose,

 name 5 input('What is your name?: ')

 Characters within quotes are called strings . This particular use of a string, for requesting input from
the user, is called a prompt . The input function displays the string on the screen to prompt the user
for input,

 What is your name?: Charles

 The underline is used here to indicate the user’s input.
 The print function is used to display information on the screen in Python. This may be used to

display a message,

>>> print('Welcome to My First Program!')

 Welcome to My First Program!

 or used to output the value of a variable,

 >>> n 5 10

 >>> print(n)

 10

c01Introduction.indd Page 25 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 25 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

26 CHAPTER 1 Introduction

 or to display a combination of both strings and variables,

>>> name 5 input('What is your name?: ')

 What is your name?: Charles

>>> print('Hello', name)

 Hello Charles

 Note that a comma is used to separate the individual items being printed, causing a space to appear
between each when displayed. Thus, the output of the print function in this case is Hello
Charles, and not HelloCharles. There is more to say about variables, operators, and input/
output in Python. This will be covered in the chapters ahead.

In Python, input is used to request and get information from the user, and print is used to
 display information on the screen.

FIGURE 1-29 Creating a Python Program File

 1.6.5 Learning How to Use IDLE

 In order to become familiar with writing your own Python programs
using IDLE, we will create a simple program that asks the user for their
name and responds with a greeting. This program utilizes the following
 concepts:

 ♦ creating and executing Python programs
 ♦ input and print

 First, to create a Python program fi le, select New Window from the File menu in the Python shell as
shown in Figure 1-29:

V
in

ic
iu

s
D

ep
iz

zo
l/

Te
xt

-x
-p

yt
ho

n/
W

ik
im

ed
ia

C
om

m
on

s

c01Introduction.indd Page 26 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 26 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.6 The Python Programming Language 27

 A new, untitled program window will appear:

 Type the following in the program window exactly as shown.

 When fi nished, save the program fi le by selecting Save As under the File menu, and save in the
 appropriate folder with the name MyFirstProgram.py.

c01Introduction.indd Page 27 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 27 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

28 CHAPTER 1 Introduction

 If you have entered the program code correctly, the program should execute as shown in Figure 1-30.

 If, however, you have mistyped part of the program resulting in a syntax error (such as mistyping
print), you will get an error message similar to that in Figure 1-31.

 To run the program, select Run Module from the Run menu (or simply hit function key F5).

 FIGURE 1-30 Sample Output of MyFirstProgram.py

 FIGURE 1-31 Output Resulting from a Syntax Error

c01Introduction.indd Page 28 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 28 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

1.7 A First Program—Calculating the Drake Equation 29

 In that case, go back to the program window and make the needed corrections, then re-save and
 re-execute the program. You may need to go through this process a number of times until all the
syntax errors have been corrected.

FIGURE 1-32 Proposed Values for the Drake Equation

 1.7 A First Program—Calculating the Drake Equation

 Dr. Frank Drake conducted the fi rst search for
radio signals from extraterrestrial civilizations in
1960. This established SETI (Search for Extra-
terrestrial Intelligence), a new area of scientifi c
inquiry. In order to estimate the number of civili-
zations that may exist in our galaxy that we may
be able to communicate with, he developed what
is now called the Drake equation .

 The Drake equation accounts for a number
of different factors. The values used for some of
these are the result of scientifi c study, while oth-
ers are only the result of an “intelligent guess.”
The factors consist of R, the average rate of star
creation per year in our galaxy; p, the percentage
of those stars that have planets; n, the average
number of planets that can potentially support
life for each star with planets; f, the percentage of
those planets that actually go on to develop life; i,
the percentage of those planets that go on to develop intelligent life; c, the percentage of those that
have the technology communicate with us; and L, the expected lifetime of civilizations (the period
that they can communicate). The Drake equation is simply the multiplication of all these factors,
giving N, the estimated number of detectable civilizations there are at any given time,

 N 5 R ? p ? n ? f ? i ? c ? L

 Figure 1-32 shows those parameters in the Drake equation that have some consensus as to their
 correct value.

V
in

ce
d

ev
rie

s/
Li

tt
le

G
re

en
M

en
/W

ik
im

ed
ia

 C
om

m
on

s

c01Introduction.indd Page 29 05/11/12 5:05 PM user-019Ac01Introduction.indd Page 29 05/11/12 5:05 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

30 CHAPTER 1 Introduction

FIGURE 1-33 The Overall Steps of the Drake Equation Program

 1.7.4 Program Implementation

 The implementation of this program is fairly simple. The only programming elements needed are
input, assignment, and print, along with the use of arithmetic operators. An implementation is given
in Figure 1-34. Example execution of the program is given in Figure 1-35.

 First, note the program lines beginning with the hash sign, #. In Python, this symbol is used to
 denote a comment statement . A comment statement contains information for persons reading the
program. Comment statements are ignored during program execution—they have no effect on the
program results. In this program, the initial series of comment statements (lines 1–23) explain
the Drake equation and provide a brief summary of the purpose of the program.

 1.7.1 The Problem

 The value of 7 for R, the rate of star creation, is the least disputed value in the Drake equation today.
Given the uncertainty of the remaining factors, you are to develop a program that allows a user to
enter their own estimated values for the remaining six factors (p, n, f, i, c, and L) and displays the
calculated result.

 1.7.2 Problem Analysis

 This problem is very straightforward. We only need to understand the equation provided.

 1.7.3 Program Design

 The program design for this problem is also straightforward. The data to be represented consist of
numerical values, with the Drake equation as the algorithm. The overall steps of the program are
depicted in Figure 1-33.

c01Introduction.indd Page 30 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 30 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 Comment statements are also used in the program to denote the beginning of each program section
(lines 25, 32, 40, and 43). These section headers provide a broad outline of the program following
the program design depicted in Figure 1-33.

 The program welcome section (lines 25–30) contains a series of print instructions displaying
output to the screen. Each begins with the word print followed by a matching pair of parentheses.
Within the parentheses are the items to be displayed. In this case, each contains a particular string of
characters. The fi nal “empty” print, print() on line 30 (and line 44), does not display anything.
It simply causes the screen cursor to move down to the next line, therefore creating a skipped line in
the screen output. (Later we will see another way of creating the same result.)

FIGURE 1-34 Drake Equation Program

1.7 A First Program—Calculating the Drake Equation 31

c01Introduction.indd Page 31 05/11/12 10:22 PM user-019Ac01Introduction.indd Page 31 05/11/12 10:22 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

32 CHAPTER 1 Introduction

FIGURE 1-35 Execution of the Drake Equation Program

 The following section (lines 32–38) contains the instructions for requesting the input from the user.
Previously, we saw the input function used for inputting a name entered by the user. In that case,
the instruction was of the form,

 name 5 input('What is your name?:')

 In this program, there is added syntax,

 p 5 int(input('What percentage of stars do you think have planets?:'))

 The input function always returns what the user enters as a string of characters. This is appropriate
when a person’s name is being entered. However, in this program, numbers are being entered, not
names. Thus, in, the following,

 What percentage of stars do you think have planets?: 40

 40 is to be read as single number and not as the characters '4' and '0'. The addition of the
int (. . .) syntax around the input instruction accomplishes this. This will be discussed more
fully when numeric and string (character) data are discussed in Chapter 2.

 On line 41 the Drake equation is calculated and stored in variable num_detectable_
civilizations. Note that since some of the input values were meant to be percentages (p, f, i,
and c), those values in the equation are each divided by 100. Finally, lines 44–47 display the results.

 1.7.5 Program Testing

 To test the program, we can calculate the Drake equation for various other values using a calculator,
providing a set of test cases . A test case is a set of input values and expected output of a given pro-
gram. A test plan consists of a number of test cases to verify that a program meets all requirements.
A good strategy is to include “average,” as well as “extreme” or “special” cases in a test plan. Such
a test plan is given in Figure 1-36.

 Based on these results, we can be fairly confi dent that the program will give the correct results
for all input values.

c01Introduction.indd Page 32 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 32 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Summary 33

FIGURE 1-36 Test Plan Results for Drake's Equation Program

General Topics

Computational Problem Solving/Representation/
 Abstraction
Algorithms/Brute Force Approach
Computer Hardware/Transistors/Integrated Circuits/
 Moore’s Law
Binary Representation/Bit/Byte/
 Binary-Decimal Conversion
Central Processing Unit (CPU)/Main and
 Secondary Memory
Input/Output Devices/Buses
Computer Software/System Software/
 Application Software
Operating Systems
Syntax and Semantics/Program Translation/
 Compiler vs. Interpreter

Program Debugging/Syntax Errors vs. Logic
 (Semantic) Errors
Procedural Programming vs. Object-Oriented
 Programming
The Process of Computational Problem Solving/
 Program Testing
Integrated Development Environments (IDE)/
 Program Editors/Debuggers
Comment Statements as Program Documentation
Test Cases/Test Plans

Python-Specifi c Programming Topics

The Python Programming Language/
 Guido van Rossum (creator of Python)
Comment Statements in Python

C H A P T E R S U M M A R Y

c01Introduction.indd Page 33 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 33 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

34 CHAPTER 1 Introduction

 C H A P T E R E X E R C I S E S

 Section 1.1

 1. Search online for two computing-related fi elds named “computational X” other than the ones listed in
Figure 1-1.

 2. Search online for two areas of computer science other than those given in the chapter.

 3. For the Man, Cabbage, Goat, Wolf problem:
 (a) List all the invalid states for this problem, that is, in which the goat is left alone with the cabbage, or

the wolf is left alone with the goat.
 (b) Give the shortest sequence of steps that solves the MCGW problem.
 (c) Give the sequence of state representations that correspond to your solution starting with (E,E,E,E)

and ending with (W,W,W,W).
 (d) There is an alternate means of representing states. Rather than a sequence representation, a set repre-

sentation can be used. In this representation, if an item is on the east side of the river, its symbol is in
the set, and if on the west side, the symbol is not in the set as shown below,

 {M,C,G,W}—all items on east side of river (start state)
 {C,W}—cabbage and wolf on east side of river, man and goat on west side
 { }—all items on the west side of the river (goal state)

 Give the sequence of states for your solution to the problem using this new state representation.
 (e) How many shortest solutions are there for this problem?

 4. For a simple game that starts with fi ve stones, in which each player can pick up either one or two stones,
the person picking up the last stone being the loser,

 (a) Give a state representation appropriate for this problem.
 (b) Give the start state and goal state for this problem.
 (c) Give a sequence of states in which the fi rst player wins the game.

 Section 1.2

 5. Using the algorithm in Figure 1-8, show all steps for determining the day of the week for January 24,
2018. (Note that 2018 is not a leap year.)

 6. Using the algorithm in Figure 1-8, determine the day of the week that you were born on.

 7. Suppose that an algorithm was needed for determining the day of the week for dates that only occur
within the years 2000–2099. Simplify the day of the week algorithm in Figure 1-8 as much as possible by
making the appropriate changes.

 8. As precisely as possible, give a series of steps (an algorithm) for doing long addition.

 Section 1.3

 9. What is the number of bits in 8 bytes, assuming the usual number of bits in a byte?

 10. Convert the following values in binary representation to base 10. Show all steps .
 (a) 1010 (b) 1011 (c) 10000 (d) 1111

Introduction to Variables, Arithmetic Operators,
 input and print in Python
Introduction to Strings with the input Function
 in Python
Introduction to the Python Standard Library and
 the import Statement

The Python Shell/The IDLE Integrated
 Development Environment
The Standard Python Library

c01Introduction.indd Page 34 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 34 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 35

 11. Convert the following values into binary (base 2) representation. Show all steps .
 (a) 5 (b) 7 (c) 16 (d) 15 (e) 32
 (f) 33 (g) 64 (h) 63 (i) 128 (j) 127

 12. What is in common within each of the following groups of binary numbers?
 (a) values that end with a “0” digit (e.g., 1100)
 (b) values that end with a “1” digit (e.g., 1101)
 (c) values with a leftmost digit of “1,” followed by all “0s” (e.g., 1000)
 (d) values consisting only of all “1” digits (e.g., 1111)

 13. Assuming that Moore’s Law continues to hold true, where n is the number of transistors that can currently
be placed on an integrated circuit (chip), and k*n is the number that can be placed on a chip in eight years,
what is the value of k?

 Section 1.4

 14. Give two specifi c examples of an application program besides those mentioned in the chapter.

 15. For each of the following statements in English, indicate whether the statement contains a syntax error, a
logic (semantic) error, or is a valid statement.

 (a) Witch way did he go?
 (b) I think he went over their.
 (c) I didn’t see him go nowhere.

 16. For each of the following arithmetic expressions for adding up the integers 1 to 5, indicate whether the
expression contains a syntax error, a semantic error, or is a valid expression.

 (a) 1 1 2 11 3 1 4 1 5
 (b) 1 1 2 1 4 1 5
 (c) 1 1 2 1 3 1 4 1 5
 (d) 5 1 4 1 3 1 2 1 1

 17. Give one benefi t of the use of a compiler, and one benefi t of the use of an interpreter.

 Section 1.5

 18. Use the Python Interactive Shell to calculate the number of routes that can be taken for the Traveling
Salesman problem for:

 (a) 6 cities (b) 12 cities (c) 18 cities (d) 36 cities

 19. Enter the following statement into the interactive shell:

 print('What is your favorite color?')

 Record the output. Now enter the following statement exactly as given,

 printt('What is your favorite color?')

 Record the output. Is this a syntax error or a logic error?

 20. For the Traveling Salesman problem,
 (a) Update the list representation of the distances between cities in the table in Figure 1-23 to add the city

of Seattle. The distances between Seattle and each of the other cities is given below.

 Atlanta to Seattle, 2641 miles, Boston to Seattle, 3032 miles, Chicago to Seattle, 2043
miles, LA to Seattle, 1208 miles, NYC to Seattle, 2832 miles, San Francisco to Seattle,
808 miles

 (b) Determine a reasonably short route of travel for visiting each city once and only once, starting in
Atlanta and ending in San Francisco.

c01Introduction.indd Page 35 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 35 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

36 CHAPTER 1 Introduction

 Section 1.6

 21. Which of the following capabilities does an integrated development environment (IDE) provide?
 (a) Creating and modifying programs
 (b) Executing programs
 (c) Debugging programs
 (d) All of the above

 22. The Python shell is a window in which Python instructions are immediately executed. (TRUE/FALSE)

 23. Suppose that the math module of the Python Standard Library were imported. What would be the
proper syntax for calling a function in the math module named sqrt to calculate the square root
of four?

 24. What is the value of variable n after the following instructions are executed?

 j 5 5

 k 5 10

 n 5 j * k

 25. Which of the following is a proper arithmetic expression in Python?
 (a) 10(15 1 6)

 (b) (10 * 2)(4 1 8)

 (c) 5 * (6 - 2)

 26. Exactly what is output by the following if the user enters 24 in response to the input prompt.

 age 5 input('How old are you?: ')

 print('You are', age, 'years old')

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a simple Python program that displays the following powers of 2, one per line: 2 1 , 2 2 , 2 3 , 2 4 , 2 5 ,
2 6 , 2 7 , 2 8 .

 P2. Write a Python program that allows the user to enter any integer value, and displays the value of 2 raised
to that power. Your program should function as shown below.

 What power of two? 10

 Two to the power of 10 is 1024

 P3. Write a Python program that allows the user to enter any integer base and integer exponent, and displays
the value of the base raised to that exponent. Your program should function as shown below.

 What base? 10

 What power of 10 ? 4

 10 to the power of 4 is 10000

 P4. Write a Python program that allows the user to enter a four-digit binary number and displays its value in
base 10. Each binary digit should be entered one per line, starting with the leftmost digit , as shown below.

 Enter leftmost digit: 1

 Enter the next digit: 0

 Enter the next digit: 0

 Enter the next digit: 1

 The value is 9

c01Introduction.indd Page 36 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 36 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 37

 P5. Write a simple Python program that prompts the user for a certain number of cities for the Traveling
Salesman problem, and displays the total number of possible routes that can be taken. Your program
should function as shown below.

 How many cities? 10

 For 10 cities, there are 3628800 possible routes

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Modify the sample “hello” Python program in section 1.6.5 to fi rst request the user’s fi rst name, and then
request their last name. The program should then display,

 Hello fi rstname lastname

 Welcome to Python!

 for the fi rstname and lastname entered.

 M2. Modify the Drake’s Equation Program in section 1.7 so that it calculates results for a best case scenario,
that is, so that factors p (percentage of stars that have planets), f (percentage of those planets that develop
life), i (percentage of those planets that develop intelligent life), and c (percentage of those planets that
can communicate with us) are all hard-coded as 100%. The value of R should remain as 7. Design the
program so that the only values that the user is prompted for are how many planets per star can support
life, n, and the estimated number of years civilizations last, L. Develop a set of test cases for your pro-
gram with the included test results.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Develop and test a program that allows the user to enter an integer value indicating the number of cities to
solve for the Traveling Salesman problem. The program should then output the number of years it would
take to solve using a brute force-approach. Make use of the factorial function of the math module as shown
in Figure 1-28. Estimate the total amount of time it takes by using the assumptions given in section 1.1.2.

 D2. Based on the information provided about the game of chess in section 1.1.2, develop and test a program
that determines how many years it would take for all possible chess games to be played if everyone in the
world (regardless of age) played one (unique) chess game a day. Assume the current world population to
be 7 billion.

c01Introduction.indd Page 37 15/10/12 8:17 AM user-019Ac01Introduction.indd Page 37 15/10/12 8:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

38

 Data and Expressions

 With this chapter, we begin a detailed discussion of the concepts and techniques of computer
 programming. We start by looking at issues related to the representation, manipulation, and input/
output of data—fundamental to all computing.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain and use numeric and string literal values

 ♦ Explain the limitations in the representation of fl oating-point values

 ♦ Explain what a character-encoding scheme is

 ♦ Explain what a control character is

 ♦ Explain and use variables, identifi ers, and keywords

 ♦ Describe and perform variable assignment

 ♦ Describe and use operators and expressions

 ♦ Describe and use operator precedence and operator associativity

 ♦ Defi ne a data type, and explain type coercion vs. type conversion

 ♦ Explain the difference between static and dynamic typing

 ♦ Effectively use arithmetic expressions in Python

 ♦ Write a simple straight-line Python program

 ♦ Explain the importance and use of test cases in program testing

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 2.1 Literals

 2.2 Variables and Identifi ers

 2.3 Operators

 CHAPTER 2

c02DataAndExpressions.indd Page 38 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 38 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 2.4 Expressions and Data Types

 Computational Problem Solving

 2.5 Age in Seconds Program

FIGURE 2-1 Measurements of Data Size (bytes)

 MOTIVATION

 The generation, collection, and analysis of data is a
driving force in today’s world. The sheer amount of
data being created is staggering. Chain stores gener-
ate terabytes (see Figure 2-1) of customer informa-
tion, looking for shopping patterns of individuals.
Facebook users have created 40 billion photos re-
quiring more than a petabyte of storage. A certain
radio telescope is expected to generate an exabyte
of information every four hours. All told, the current
amount of data created each year is estimated to be
almost two zettabytes , more than doubling every
two years. In this chapter, we look at how data is
represented and operated on in Python.

CHAPTER 2 Data and Expressions 39

ed
ge

69
/iS

to
ck

p
ho

to

c02DataAndExpressions.indd Page 39 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 39 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

40 CHAPTER 2 Data and Expressions

A literal is a sequence of one or more characters that stands for itself.

 2.1.2 Numeric Literals

 A numeric literal is a literal containing only the digits 0–9, an optional sign character (1 or 2),
and a possible decimal point. (The letter e is also used in exponential notation, shown in the next
subsection). If a numeric literal contains a decimal point, then it denotes a fl oating-point value , or
“ fl oat ” (e.g., 10.24); otherwise, it denotes an integer value (e.g., 10). Commas are never used in
numeric literals . Figure 2-2 gives additional examples of numeric literals in Python.

 Since numeric literals without a provided sign character denote positive values, an explicit positive sign
character is rarely used. Next we look at how numeric values are represented in a computer system.

A numeric literal is a literal containing only the digits 0–9, a sign character (1 or 2) and a
 possible decimal point. Commas are never used in numeric literals.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 1024 ... 21024 1024
??? ??? ???

... 1,024 ... 0.1024 ... 1,024.46
??? ??? ???

FIGURE 2-2 Numeric Literals in Python

 FUNDAMENTAL CONCEPTS

 2.1 Literals

 2.1.1 What Is a Literal?

 To take something literally is to take it at “face value.” The same is true of literals in programming.
A literal is a sequence of one of more characters that stands for itself, such as the literal 12. We look
at numeric literals in Python next.

c02DataAndExpressions.indd Page 40 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 40 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.1 Literals 41

 Limits of Range in Floating-Point Representation

 There is no limit to the size of an integer that can be represented in Python. Floating-point values,
however, have both a limited range and a limited precision . Python uses a double-precision standard
format (IEEE 754) providing a range of 10 2 308 to 10 308 with 16 to 17 digits of precision. To denote
such a range of values, fl oating-points can be represented in scientifi c notation,

 9.0045602e 1 5 (9.0045602 3 10 5 , 8 digits of precision)
 1.006249505236801e8 (1.006249505236801 3 10 8 , 16 digits of precision)
 4.239e216 (4.239 3 10 2 16 , 4 digits of precision)

 It is important to understand the limitations of fl oating-point representation. For example, the mul-
tiplication of two values may result in arithmetic overfl ow , a condition that occurs when a calcu-
lated result is too large in magnitude (size) to be represented,

 ... 1.5e200 * 2.0e210

 ... inf

 This results in the special value inf (“infi nity”) rather than the arithmetically correct result
3.0e410, indicating that arithmetic overfl ow has occurred. Similarly, the division of two numbers
may result in arithmetic underfl ow , a condition that occurs when a calculated result is too small in
magnitude to be represented,

 ... 1.0e2300 / 1.0e100

 0.0

 This results in 0.0 rather than the arithmetically correct result 1.0e2400, indicating that arith-
metic underfl ow has occurred. We next look at possible effects resulting from the limited precision
in fl oating-point representation.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 1.2e200 * 2.4e100 ... 1.2e200 / 2.4e100
??? ???

... 1.2e200 * 2.4e200 ... 1.2e2200 / 2.4e200
??? ???

Arithmetic overfl ow occurs when a calculated result is too large in magnitude to be represented.
Arithmetic underfl ow occurs when a calculated result is too small in magnitude to be represented.

 Limits of Precision in Floating-Point Representation

 Arithmetic overfl ow and arithmetic underfl ow are relatively easily detected. The loss of precision
that can result in a calculated result, however, is a much more subtle issue. For example, 1/3 is
equal to the infi nitely repeating decimal .33333333 . . ., which also has repeating digits in base two,
.010101010. . . . Since any fl oating-point representation necessarily contains only a fi nite number

c02DataAndExpressions.indd Page 41 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 41 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

42 CHAPTER 2 Data and Expressions

of digits, what is stored for many fl oating-point values is only an approximation of the true value,
as can be demonstrated in Python,

 ... 1/3

 .3333333333333333

 Here, the repeating decimal ends after the 16th digit. Consider, therefore, the following,

 ... 3 * (1/3)

 1.0

 Given the value of 1/3 above, we would expect the result to be .9999999999999999, so what is
happening here? The answer is that Python displays a rounded result to keep the number of digits
displayed manageable. However, the representation of 1/3 as .3333333333333333 remains the
same, as demonstrated by the following,

 ... 1/3 1 1/3 1 1/3 1 1/3 1 1/3 1 1/3

 1.9999999999999998

 In this case we get a result that refl ects the representation of 1/3 as an approximation, since the last
digit is 8, and not 9. However, if we use multiplication instead, we again get the rounded value
displayed,

 ... 6 * (1/3)

 2.0

 The bottom line, therefore, is that no matter how Python chooses to display calculated results, the
value stored is limited in both the range of numbers that can be represented and the degree of preci-
sion. For most everyday applications, this slight loss in accuracy is of no practical concern. How-
ever, in scientifi c computing and other applications in which precise calculations are required, this
is something that the programmer must be keenly aware of.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 1/10 ... 6 * (1/10)
??? ???

... 1/10 1 1/10 1 1/10 ... 6 * 1/10
??? ???

... 10 * (1/10)
???

Since any fl oating-point representation contains only a fi nite number of digits, what is stored for
many fl oating-point values is only an approximation of the true value.

c02DataAndExpressions.indd Page 42 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 42 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.1 Literals 43

 Built-in format Function

 Because fl oating-point values may contain an arbitrary number of decimal places, the built-in
 format function can be used to produce a numeric string version of the value containing a specifi c
number of decimal places,

 ... 12/5 ... 5/7

 2.4 0.7142857142857143

 ... format(12/5, '.2f') ... format(5/7, '.2f')

 '2.40' '0.71'

 In these examples, format specifi er '.2f' rounds the result to two decimal places of accuracy in
the string produced. For very large (or very small) values 'e' can be used as a format specifi er,

 ... format(2 ** 100, '.6e')

 '1.267651e 1 30'

 In this case, the value is formatted in scientifi c notation, with six decimal places of precision. For-
matted numeric string values are useful when displaying results in which only a certain number of
decimal places need to be displayed,

 without use of ... tax 5 0.08

format specifi er ... print('Your cost: $', (1 1 tax) * 12.99)

 Your cost: $ 14.029200000000001

 with use of ... print('Your cost: $', format((1 1 tax) * 12.99, '.2f'))

format specifi er Your cost: $ 14.03

 Finally, a comma in the format specifi er adds comma separators to the result,

 ... format(13402.25, ' , .2f')

 13,402.24

 We will next see the use of format specifi ers for formatting string values as well.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... format(11/12, '.2f') ... format(11/12, '.2e')
??? ???

... format(11/12, '.3f') ... format(11/12, '.3e')
??? ???

The built-in format function can be used to produce a numeric string of a given fl oating-point
value rounded to a specifi c number of decimal places.

c02DataAndExpressions.indd Page 43 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 43 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

44 CHAPTER 2 Data and Expressions

 2.1.3 String Literals

 Numerical values are not the only literal values in programming. String literals , or “ strings ,” rep-
resent a sequence of characters,

 'Hello' 'Smith, John' "Baltimore, Maryland 21210"

 In Python, string literals may be delimited (surrounded) by a matching pair of either single (') or
double (") quotes. Strings must be contained all on one line (except when delimited by triple quotes,
discussed in Chapter 7). We have already seen the use of strings in Chapter 1 for displaying screen
output,

 ... print('Welcome to Python!')

 Welcome to Python!

 Additional examples of string literals are given in Figure 2-3.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... print('Hello') ... print('Hello") ... print('Let's Go')
??? ??? ???

... print("Hello") ... print("Let's Go!') ... print("Let's go!")
??? ??? ???

FIGURE 2-3 String Literal Values

 As shown in the fi gure, a string may contain zero or more characters, including letters, digits, special
characters, and blanks. A string consisting of only a pair of matching quotes (with nothing in between)
is called the empty string , which is different from a string containing only blank characters. Both
blank strings and the empty string have their uses, as we will see. Strings may also contain quote
characters as long as different quotes are used to delimit the string,

 "Jennifer Smith's Friend"

 If this string were delimited with single quotes, the apostrophe (single quote) would be considered
the matching closing quote of the opening quote, leaving the last fi nal quote unmatched,

 'Jennifer Smith's Friend' … matching quote?

 Thus, Python allows the use of more than one type of quote for such situations. (The convention
used in the text will be to use single quotes for delimiting strings, and only use double quotes when
needed.)

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

c02DataAndExpressions.indd Page 44 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 44 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.1 Literals 45

 The Representation of Character Values

 There needs to be a way to encode (represent) characters within a computer. Although various en-
coding schemes have been developed, the Unicode encoding scheme is intended to be a universal
encoding scheme. Unicode is actually a collection of different encoding schemes utilizing between
8 and 32 bits for each character. The default encoding in Python uses UTF-8 , an 8-bit encoding
compatible with ASCII, an older, still widely used encoding scheme.

 Currently, there are over 100,000 Unicode-defi ned characters for many of the languages
around the world. Unicode is capable of defi ning more than 4 billion characters. Thus, all the world’s
languages, both past and present, can potentially be encoded within Unicode. A partial listing of the
ASCII-compatible UTF-8 encoding scheme is given in Figure 2-4.

A string literal, or string, is a sequence of characters denoted by a pair of matching single or
double (and sometimes triple) quotes in Python.

 UTF-8 encodes characters that have an ordering with sequential numerical values. For example, 'A' is
encoded as 01000001 (65), 'B' is encoded as 01000010 (66), and so on. This is true for character
digits as well, '0' is encoded as 00110000 (48) and '1' is encoded as 00110001 (49). This under-
scores the difference between a numeric representation (that can be used in arithmetic calculations) vs.
a number represented as a string of digit characters (that cannot), as demonstrated in Figure 2-5.

FIGURE 2-5 Numeric vs. String Representation of Digits

 Python has means for converting between a character and its encoding. The ord function gives the
UTF-8 (ASCII) encoding of a given character. For example, ord('A') is 65. The chr function
gives the character for a given encoding value, thus chr(65) is 'A'. (Functions are discussed in
Chapter 5.) While in general there is no need to know the specifi c encoding of a given character,
there are times when such knowledge can be useful.

FIGURE 2-4 Partial UTF-8 (ASCII) Code Table

c02DataAndExpressions.indd Page 45 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 45 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

46 CHAPTER 2 Data and Expressions

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... ord('1') ... chr(65) ... chr(97)
??? ??? ???

... ord('2') ... chr(90) ... chr(122)
??? ??? ???

Unicode is capable of representing over 4 billion different characters, enough to represent the
characters of all languages, past and present. Python’s (default) character encoding uses UTF-8,
an eight-bit encoding that is part of the Unicode standard.

 2.1.4 Control Characters

 Control characters are special characters that are not displayed on the screen. Rather, they control
the display of output (among other things). Control characters do not have a corresponding key-
board character. Therefore, they are represented by a combination of characters called an escape
 sequence .

 An escape sequence begins with an escape character that causes the sequence of characters
following it to “escape” their normal meaning. The backslash (\) serves as the escape character in
Python. For example, the escape sequence '\n', represents the newline control character , used to
begin a new screen line. An example of its use is given below,

 print('Hello\nJennifer Smith')

 which is displayed as follows,

 Hello

 Jennifer Smith

 Further discussion of control characters is given in the Python 3 Programmers’ Reference.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... print('Hello World') ... print('Hello\nWorld')
??? ???

... print('Hello World\n') ... print('Hello\n\nWorld')
??? ???

... print('Hello World\n\n') ... print(1, '\n', 2, '\n', 3)
??? ???

... print('\nHello World') ... print('\n', 1, '\n', 2, '\n', 3)
??? ???

c02DataAndExpressions.indd Page 46 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 46 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.1 Literals 47

 2.1.5 String Formatting

 We saw above the use of built-in function format for controlling how numerical values are dis-
played. We now look at how the format function can be used to control how strings are displayed.
As given above, the format function has the form,

 format(value, format_specifi er)

 where value is the value to be displayed, and format_specifi er can contain a combination of
formatting options. For example, to produce the string 'Hello' left-justifi ed in a fi eld width of
20 characters would be done as follows,

 format('Hello', ' < 20') ➝ 'Hello '

 To right-justify the string, the following would be used,

 format('Hello', ' > 20') ➝ ' Hello'

 Formatted strings are left-justifi ed by default. To center the string the '^' character is used:
format('Hello', '^20'). Another use of the format function is to create strings of blank
characters, which is sometimes useful,

 format(' ', '30') ➝ ' '

 Finally blanks, by default, are the fi ll character for formatted strings. However, a specifi c fi ll char-
acter can be specifi ed as shown below,

 ... print('Hello World', format('.', '. < 30'), 'Have a Nice Day!')
 Hello World Have a Nice Day!

Control characters are nonprinting characters used to control the display of output (among
other things). An escape sequence is a string of one or more characters used to denote control
characters.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... print(format('Hello World', '^40'))
???

... print(format('2','2<20'), 'Hello World', format('2','2>20'))
???

Built-in function format can be used to control how strings are displayed.

c02DataAndExpressions.indd Page 47 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 47 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

48 CHAPTER 2 Data and Expressions

 2.1.6 Implicit and Explicit Line Joining

 Sometimes a program line may be too long to fi t in the Python-recommended maximum length of
79 characters. There are two ways in Python to do deal with such situations—implicit and explicit
line joining. We discuss this next.

 Explicit Line Joining

 In addition to implicit line joining, program lines may be explicitly joined by use of the backslash
(\) character. Program lines that end with a backslash that are not part of a literal string (that is,
within quotes) continue on the following line,

 numsecs_1900_dob 5 ((year_birth 2 1900) * avg_numsecs_year) 1 \

 ((month_birth 2 1) * avg_numsecs_month) 1 \

 (day_birth * numsecs_day)

Matching parentheses, square brackets, and curly braces can be used to span a logical program
line on more than one physical line.

 2.1.7 Let’s Apply It—“Hello World Unicode Encoding”

 It is a long tradition in computer science to demonstrate a program that simply displays “Hello
World!” as an example of the simplest program possible in a particular programming language. In
Python, the complete Hello World program is comprised of one program line,

 print('Hello World!')

Program lines may be explicitly joined by use of the backslash (\).

 Implicit Line Joining

 There are certain delimiting characters that allow a logical program line to span more than one
physical line. This includes matching parentheses, square brackets, curly braces, and triple quotes.
For example, the following two program lines are treated as one logical line,

 print('Name:', student_name, 'Address:', student_address,

 'Number of Credits:', total_credits, 'GPA:', current_gpa)

 Matching quotes (except for triple quotes, covered later) must be on the same physical line. For
example, the following will generate an error,

 print('This program will calculate a restaurant tab for a couple

with a gift certifi cate, and a restaurant tax of 3%')

 We will use this aspect of Python throughout the book.

c02DataAndExpressions.indd Page 48 05/11/12 5:07 PM user-019Ac02DataAndExpressions.indd Page 48 05/11/12 5:07 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.1 Literals 49

 We take a twist on this tradition and give a Python program that displays the Unicode encoding for
each of the characters in the string “Hello World!” instead. This program utilizes the following pro-
gramming features:

 ➤ string literals ➤ print ➤ ord function

 The program and program execution are given in Figure 2-6.

FIGURE 2-6 Hello World Unicode Encoding Program

 The statements on lines 1 , 3 , and 6 are comment statements, introduced in Chapter 1. They are
 ignored during program execution, used to provide information to those reading the program. The
print function on line 4 displays the message ‘Hello World!’. Double quotes are used to delimit the
corresponding string, since the single quotes within it are to be taken literally. The use of print on
 line 7 prints out the Unicode encoding, one-by-one, for each of the characters in the “Hello World!”
string. Note from the program execution that there is a Unicode encoding for the blank character
(32), as well as the exclamation mark (33).

 Self-Test Questions

 1. Indicate which of the following are valid numeric literals in Python.
 (a) 1024 (b) 1,024 (c) 1024.0 (d) 0.25 (e) .45 (f) 0.25 1 10

 2. Indicate which of the following exceed the range and/or precision of fl oating-point values
that can be represented in Python.
 (a) 1.89345348392e 1 301 (c) 2.0424e2320
 (b) 1.62123432632322e 1 300 (d) 1.323232435342327896452e2140

 3. Which of the following would result in either overfl ow or underfl ow for the fl oating-point
representation scheme mentioned in the chapter.
 (a) 6.25e 1 240 * 1.24e 1 10 (c) 6.25e 1 240 / 1.24e 1 10
 (b) 2.24e 1 240 * 1.45e 1 300 (d) 2.24e2240 / 1.45e 1 300

 4. Exactly what is output by print(format(24.893952, '.3f'))
 (a) 24.894 (b) 24.893 (c) 2.48e1

c02DataAndExpressions.indd Page 49 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 49 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

50 CHAPTER 2 Data and Expressions

 5. Which of the following are valid string literals in Python.
 (a) "Hello" (b) 'hello' (c) "Hello' (d) 'Hello there' (e) ''

 6. Which of the following results of the ord and chr functions are correct?
 (a) ord('1') ➝ 49 (b) chr(68) ➝ 'd' (c) chr(99) ➝ 'c'

 7. How many lines of screen output is displayed by the following,

print('apple\nbanana\ncherry\npeach')

 (a) 1 (b) 2 (c) 3 (d) 4

 ANSWERS: 1. (a,c,d,e), 2. (c), 3. (b, overfl ow), (d, underfl ow), 4. (a) 5. (a,b,d,e), 6. (a,c), 7. (d)

 2.2 Variables and Identifiers

 So far, we have only looked at literal values in programs. However, the true usefulness of a computer
program is the ability to operate on different values each time the program is executed. This is pro-
vided by the notion of a variable . We look at variables and identifi ers next.

 2.2.1 What Is a Variable?

 A variable is a name (identifi er) that is associated with a value, as for variable num depicted in
Figure 2-7.

FIGURE 2-7 Program Variable

 A variable can be assigned different values during a program’s execution—hence, the name “vari-
able.” Wherever a variable appears in a program (except on the left-hand side of an assignment
statement), it is the value associated with the variable that is used , and not the variable’s name,

 num 1 1 ➝ 10 1 1 ➝ 11

 Variables are assigned values by use of the assignment operator , 5 ,

 num 5 10 num 5 num 1 1

 Assignment statements often look wrong to novice programmers. Mathematically, num 5 num 1 1
does not make sense. In computing, however, it is used to increment the value of a given variable
by one. It is more appropriate, therefore, to think of the 5 symbol as an arrow symbol, as shown in
 Figure 2-8.

FIGURE 2-8 Variable Update

c02DataAndExpressions.indd Page 50 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 50 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.2 Variables and Identifi ers 51

 When thought of this way, it makes clear that the right side of an assignment is evaluated fi rst, then
the result is assigned to the variable on the left . An arrow symbol is not used simply because there
is no such character on a standard computer keyboard. Variables may also be assigned to the value
of another variable (or expression, discussed below) as depicted in Figure 2-9.

 Variables num and k are both associated with the same literal value 10 in memory. One way to see
this is by use of built-in function id,

 ... id(num) ... id(k)

 505494040 505494040

 The id function produces a unique number identifying a specifi c value (object) in memory. Since
variables are meant to be distinct, it would appear that this sharing of values would cause problems.
Specifi cally, if the value of num changed, would variable k change along with it? This cannot hap-
pen in this case because the variables refer to integer values, and integer values are immutable . An
 immutable value is a value that cannot be changed. Thus, both will continue to refer to the same
value until one (or both) of them is reassigned, as depicted in Figure 2-10.

FIGURE 2-10 Variable Reassignment

 If no other variable references the memory location of the original value, the memory location is
 deallocated (that is, it is made available for reuse).

 Finally, in Python the same variable can be associated with values of different type during
program execution, as indicated below.

 var 5 12 integer
 var 5 12.45 fl oat
 var 5 'Hello' string

FIGURE 2-9 Variable Assignment (to another variable)

c02DataAndExpressions.indd Page 51 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 51 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

52 CHAPTER 2 Data and Expressions

 2.2.2 Variable Assignment and Keyboard Input

 The value that is assigned to a given variable does not have to be specifi ed in the program, as dem-
onstrated in previous examples. The value can come from the user by use of the input function
 introduced in Chapter 1,

 ... name 5 input('What is your fi rst name?')

 What is your fi rst name? John

 In this case, the variable name is assigned the string 'John'. If the user hit return without entering
any value, name would be assigned to the empty string ('').

 All input is returned by the input function as a string type. For the input of numeric values,
the response must be converted to the appropriate type. Python provides built-in type conversion
 functions int () and fl oat () for this purpose, as shown below for a gpa calculation program,

 line 5 input('How many credits do you have?')

 num_credits 5 int(line)

 line 5 input('What is your grade point average?')

 gpa 5 fl oat(line)

 Here, the entered number of credits, say '24', is converted to the equivalent integer value, 24,
before being assigned to variable num_credits. For input of the gpa, the entered value,

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... num 5 10 ... k 5 30

... num ... k
??? ???
... id(num) ... num
??? ???
 ... id(k)
... num 5 20 ???
... num ... id(num)
??? ???
... id(num)
??? ... k 5 k 1 1
 ... k
... k 5 num ???
... k ... id(num)
??? ???
... id(k) ... id(k)
??? ???
... id(num)
???

A variable is a name that is associated with a value. The assignment operator, 5, is used to
assign values to variables. An immutable value is a value that cannot be changed.

c02DataAndExpressions.indd Page 52 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 52 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.2 Variables and Identifi ers 53

say '3.2', is converted to the equivalent fl oating-point value, 3.2. Note that the program lines
above could be combined as follows,

 num_credits 5 int(input('How many credits do you have? '))

 gpa 5 fl oat(input('What is your grade point average? '))

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... num 5 input('Enter number: ') ... num 5 input('Enter name: ')
Enter number: 5 Enter name: John
??? ???

... num 5 int(input('Enter number: ')) ... num 5 int(input('Enter name: '))
Enter number: 5 Enter name: John
??? ???

All input is returned by the input function as a string type. Built-in functions int() and
fl oat() can be used to convert a string to a numeric type.

 2.2.3 What Is an Identifier?

An identifi er is a sequence of one or more characters used to provide a name for a given program
element. Variable names line, num_credits, and gpa are each identifi ers. Python is case
sensitive , thus, Line is different from line. Identifi ers may contain letters and digits, but cannot
begin with a digit. The underscore character, _, is also allowed to aid in the readability of long iden-
tifi er names. It should not be used as the fi rst character, however, as identifi ers beginning with an
underscore have special meaning in Python.

 Spaces are not allowed as part of an identifi er. This is a common error since some operating
systems allow spaces within fi le names. In programming languages, however, spaces are used to
delimit (separate) distinct syntactic entities. Thus, any identifi er containing a space character
would be considered two separate identifi ers. Examples of valid and invalid identifi ers in Python
are given in Figure 2-11.

FIGURE 2-11 Identifi er Naming

c02DataAndExpressions.indd Page 53 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 53 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

54 CHAPTER 2 Data and Expressions

 2.2.4 Keywords and Other Predefined Identifiers in Python

 A keyword is an identifi er that has predefi ned meaning in a programming language. Therefore,
keywords cannot be used as “regular” identifi ers. Doing so will result in a syntax error, as demon-
strated in the attempted assignment to keyword and below,

 ... and 5 10

 SyntaxError: invalid syntax

 The keywords in Python are listed in Figure 2-12. To display the keywords, type help() in the
Python shell, and then type keywords (type 'q' to quit).

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... spring2014SemCredits 5 15 ... spring2014-sem-credits 5 15
??? ???

... spring2014_sem_credits 5 15 ... 2014SpringSemesterCredits 5 15
??? ???

An identifi er is a sequence of one or more characters used to name a given program element. In
Python, an identifi er may contain letters and digits, but cannot begin with a digit. The special
underscore character can also be used.

 There are other predefi ned identifi ers that can be used as regular identifi ers, but should not be. This
includes fl oat, int, print, exit, and quit, for example. A simple way to check whether
a given identifi er is a keyword in Python is given below,

 ... 'exit' in dir(__builtins__) ... 'exit_program' in dir(__builtins__)

 True False

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... yield 5 1000 ... print('Hello')
??? ???

... Yield 5 1000 ... print 5 10
??? ... print('Hello')
 ???

FIGURE 2-12 Keywords in Python

c02DataAndExpressions.indd Page 54 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 54 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.2 Variables and Identifi ers 55

A keyword is an identifi er that has predefi ned meaning in a programming language and therefore
cannot be used as a “regular” identifi er. Doing so will result in a syntax error.

FIGURE 2-13 Execution of the Restaurant Tab Calculation Program

 The program is given in Figure 2-14. Lines 1–2 contain comment lines describing what the program
does. The remaining comment lines provide an outline of the basic program sections. Line 5 provides
the required initialization of variables in the program, with variable tax assigned to 8% (.08).
Variable tax is used throughout the program (in lines 9 , 35 , and 39). Thus, if the restaurant tax needs
to be altered, only this line of the program needs to be changed. (Recall that * is used to denote mul-
tiplication in Python, introduced in Chapter 1.)

 Lines 8–9 display to the user what the program does. The control character \n as the last
character of the print function causes a screen line to be skipped before the next line is displayed.
The cost of the menu items ordered is obtained from the user in lines 15–27 .

 Lines 30 and 31 total the cost of the orders for each person, assigned to variables amt_person1
and amt_person2. Lines 34 and 35 compute the tab, including tax (stored in variable tab). Finally,
 lines 38–41 display the cost of the ordered items, followed by the added restaurant tax and the amount
due after deducting the amount of the gift certifi cate. The customers owe any remaining amount.

 2.2.5 Let’s Apply It—“Restaurant Tab Calculation”

 The program below calculates a restaurant tab for a couple based on the use of a gift certifi cate and
the items ordered. This program utilizes the following programming features:

 ➤ variables

➤ keyboard input
 ➤ built-in format function
 ➤ type conversion functions

 An example execution of the program is given in Figure 2-13.

c02DataAndExpressions.indd Page 55 05/11/12 5:07 PM user-019Ac02DataAndExpressions.indd Page 55 05/11/12 5:07 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

56 CHAPTER 2 Data and Expressions

A negative amount indicates the amount left on the gift certifi cate. Built-in function format is used to
limit the output to two decimal places.

 Self-Test Questions

 1. Which of the following are valid assignment statements, in which only variable k has already
been assigned a value?
 (a) n 5 k 1 1 (b) n 5 n 1 1 (c) n 1 k 5 10 (d) n 1 1 5 1

 2. What is the value of variable num after the following assignment statements are executed?
 num 5 0

 num 5 num 1 1

 num 5 num 1 5

FIGURE 2-14 Restaurant Tab Calculation Program

c02DataAndExpressions.indd Page 56 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 56 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.3 Operators 57

 3. Do variables num and k reference the same memory location after the following instructions
are executed? (YES/NO)

 num 5 10

 k 5 num

 num 5 num 1 1

 4. Which of the following are valid identifi ers in Python?
 (a) errors (b) error_count (c) error-count

 5. Which of the following are keywords in Python?
 (a) and (b) As (c) while (d) until (e) NOT

 6. Which one of the following is correct for reading and storing an integer value from the
user?
 (a) n 5 int_input('Enter: ') (b) n 5 int(input('Enter: '))

 ANSWERS: 1. (a), 2. 6, 3. No, 4. (a,b), 5. (a,c), 6. (b)

 2.3 Operators

 Now that we have used numeric and string types in Python, we look at operations that may be per-
formed on them.

An operator is a symbol that represents an operation that may be performed on one or more
operands. Operators that take one operand are called unary operators. Operators that take two
operands are called binary operators.

 2.3.2 Arithmetic Operators

 Python provides the arithmetic operators given in Figure 2-15.
 The 1 , 2 , * (multiplication) and / (division) arithmetic operators perform the usual opera-

tions. Note that the 2 symbol is used both as a unary operator (for negation) and a binary operator
(for subtraction).

 20 2 5 ➝ 15 (2 as binary operator)
 2 10 * 2 ➝ 2 20 (2 as unary operator)

 2.3.1 What Is an Operator?

 An operator is a symbol that represents an operation that may be performed on one or more oper-
ands . For example, the 1 symbol represents the operation of addition. An operand is a value that a
given operator is applied to, such as operands 2 and 3 in the expression 2 1 3. A unary operator
operates on only one operand, such as the negation operator in 2 12. A binary operator operates on
two operands, as with the addition operator. Most operators in programming languages are binary
operators. We look at the arithmetic operators in Python next.

c02DataAndExpressions.indd Page 57 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 57 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

58 CHAPTER 2 Data and Expressions

FIGURE 2-15 Arithmetic Operators in Python

 Python also includes an exponentiation (**) operator. Integer and fl oating-point values can be used
in both the base and the exponent,

 2**4 ➝ 16

 2.5 ** 4.5 ➝ 61.76323555016366

 Python provides two forms of division. “true” division is denoted by a single slash, /. Thus, 25 /
10 evaluates to 2.5. Truncating division is denoted by a double slash, //, providing a truncated
result based on the type of operands applied to. When both operands are integer values, the result is a
truncated integer referred to as integer division . When as least one of the operands is a fl oat type, the
result is a truncated fl oating point. Thus, 25 // 10 evaluates to 2, while 25.0 // 10 becomes
2.0. This is summarized in Figure 2-16.

FIGURE 2-16 Division Operators in Python

 An example of the use of integer division would be to determine the number of dozen doughnuts for
a given number of doughnuts. If variable numDoughnuts had a current value of 29, the number
of dozen doughnuts would be calculated by,

 numDoughnuts // 12 ➝ 29 // 12 ➝ 2

 Lastly, the modulus operator (%) gives the remainder of the division of its operands, resulting in
a cycle of values. This is shown in Figure 2-17.

c02DataAndExpressions.indd Page 58 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 58 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.3 Operators 59

 The modulus and truncating (integer) division operators are complements of each other. For exam-
ple, 29 // 12 gives the number of dozen doughnuts, while 29 % 12 gives the number of leftover
doughnuts (5).

FIGURE 2-17 The Modulus Operator

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 10 1 35 ... 4 ** 2 ... 45 // 10.0
??? ??? ???

... 210 1 35 ... 45 / 10 ... 2025 % 10
??? ??? ???

... 4 * 2 ... 45 // 10 ... 2025 // 10
??? ??? ???

The division operator, /, produces “true division” regardless of its operand types. The truncating
division operator, //, produces either an integer or fl oat truncated result based on the type
of operands applied to. The modulus operator (%) gives the remainder of the division of its
 operands.

 2.3.3 Let’s Apply It—“Your Place in the Universe”

 The following program (Figure 2-18) calculates the approximate number of atoms that the average
person contains, and the percentage of the universe that they comprise. This program utilizes the
following programming features:

 ➤ fl oating-point scientifi c notation ➤ built-in format function

c02DataAndExpressions.indd Page 59 05/11/12 5:07 PM user-019Ac02DataAndExpressions.indd Page 59 05/11/12 5:07 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

60 CHAPTER 2 Data and Expressions

FIGURE 2-18 Your Place in the Universe Program

 Lines 1–4 describe the program. Needed variables num_atoms_universe, weight_avg_
person, and num_atoms_avg_person are initialized in lines 7–9 . The program greeting is on
 line 12 . Line 15 inputs the person’s weight. Line 18 converts the weight to kilograms for use in the
calculations on lines 21–22 which compute the desired results. Finally, lines 25–27 display the results.

 Self-Test Questions

 1. Give the results for each of the following.
 (a) 2 2 * 3 (b) 15 % 4 (c) 3 ** 2

 2. Give the exact results of each of the following division operations.
 (a) 5 / 4 (b) 5 // 4 (c) 5.0 // 4

 3. Which of the expressions in question 2 is an example of integer division?

 4. Do any two of the expressions in question 2 evaluate to the exact same result? (YES/NO)

 5. How many operands are there in the following arithmetic expression?
 2 * 24 1 60 2 10

 (a) 4 (b) 3 (c) 7

 6. How many binary operators are there in the following arithmetic expression?
 2 10 1 25 / (16 1 12)

 (a) 2 (b) 3 (c) 4

 ANSWERS: 1. (a) 2 6, (b) 3 (c) 9, 2. (a) 1.25 (b) 1 (c) 1.0, 3. (b), 4. no, 5. (a), 6. (b)

c02DataAndExpressions.indd Page 60 15/10/12 10:10 AM user-019Ac02DataAndExpressions.indd Page 60 15/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.4 Expressions and Data Types 61

 2.4 Expressions and Data Types

 Now that we have looked at arithmetic operators, we will see how operators and operands can be
combined to form expressions. In particular, we will look at how arithmetic expressions are evalu-
ated in Python. We also introduce the notion of a data type .

 2.4.1 What Is an Expression?

 An expression is a combination of symbols that evaluates to a value. Expressions, most commonly,
consist of a combination of operators and operands,

 4 1 (3 * k)

 An expression can also consist of a single literal or variable. Thus, 4, 3, and k are each expressions.
This expression has two subexpressions, 4 and (3 * k). Subexpression (3 * k) itself has two
subexpressions, 3 and k.

 Expressions that evaluate to a numeric type are called arithmetic expressions . A subexpres-
sion is any expression that is part of a larger expression. Subexpressions may be denoted by the use
of parentheses, as shown above. Thus, for the expression 4 1 (3 * 2), the two operands of the
addition operator are 4 and (3 * 2), and thus the result it equal to 10. If the expression were
 instead written as (4 1 3) * 2, then it would evaluate to 14.

 Since a subexpression is an expression, any subexpression may contain subexpressions of its own,

 4 1 (3 * (2 2 1)) ➝ 4 1 (3 * 1) ➝ 4 1 3 ➝ 7

 If no parentheses are used, then an expression is evaluated according to the rules of operator prece-
dence in Python, discussed in the next section.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... (2 1 3) * 4 ... 2 + ((3 * 4) 2 8)
??? ???

... 2 1 (3 * 4) ... 2 1 3 * (4 2 1)
??? ???

An expression is a combination of symbols (or single symbol) that evaluates to a value. A sub-
expression is any expression that is part of a larger expression.

 2.4.2 Operator Precedence

 The way we commonly represent expressions, in which operators appear between their oper-
ands, is referred to as infi x notation . For example, the expression 4 1 3 is in infi x notation since
the 1 operator appears between its two operands, 4 and 3. There are other ways of representing
expressions called prefi x and postfi x notation, in which operators are placed before and after their
operands, respectively.

c02DataAndExpressions.indd Page 61 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 61 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

62 CHAPTER 2 Data and Expressions

 The expression 4 1 (3 * 5) is also in infi x notation. It contains two operators, 1 and *.
The parentheses denote that (3 * 5) is a subexpression. Therefore, 4 and (3 * 5) are the
 operands of the addition operator, and thus the overall expression evaluates to 19. What if the paren-
theses were omitted, as given below?

 4 1 3 * 5

 How would this be evaluated? These are two possibilities,

 4 1 3 * 5 ➝ 4 1 15 ➝ 19

 4 1 3 * 5 ➝ 7 * 5 ➝ 35

 Some might say that the fi rst version is the correct one by the conventions of mathematics. However,
each programming language has its own rules for the order that operators are applied, called opera-
tor precedence , defi ned in an operator precedence table . This may or may not be the same as in
mathematics, although it typically is. In Figure 2-19, we give the operator precedence table for the
Python operators discussed so far. (We will discuss the issue of associativity indicated in Figure 2-19
in the next section.)

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

 In the table, higher-priority operators are placed above lower-priority ones. Thus, we see that multi-
plication is performed before addition when no parentheses are included,

 4 1 3 * 5 ➝ 4 1 15 ➝ 19

 In our example, therefore, if the addition is to be performed fi rst, parentheses would be needed,

 (4 1 3) * 5 ➝ 7 * 5 ➝ 35

 As another example, consider the expression below. Following Python’s rules of operator prece-
dence, the exponentiation operator is applied fi rst, then the truncating division operator, and fi nally
the addition operator,

 4 1 2 ** 5 // 10 ➝ 4 1 32 // 10 ➝ 4 1 3 ➝ 7

 Operator precedence guarantees a consistent interpretation of expressions. However, it is good pro-
gramming practice to use parentheses even when not needed if it adds clarity and enhances read-
ability, without overdoing it. Thus, the previous expression would be better written as,

 4 1 (2 ** 5) // 10

FIGURE 2-19 Operator Precedence of Arithmetic Operators in Python

c02DataAndExpressions.indd Page 62 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 62 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.4 Expressions and Data Types 63

 2.4.3 Operator Associativity

 A question that you may have already had is, “What if two operators have the same level of prece-
dence, which one is applied fi rst?” For operators following the associative law, the order of evalua-
tion doesn’t matter,

 (2 1 3) 1 4 ➝ 9 2 1 (3 1 4) ➝ 9

 In this case, we get the same results regardless of the order that the operators are applied. Division
and subtraction, however, do not follow the associative law,

 (a) (8 2 4) 2 2 ➝ 4 2 2 ➝ 2 8 2 (4 2 2) ➝ 8 2 2 ➝ 6
 (b) (8 / 4) / 2 ➝ 2 / 2 ➝ 1 8 / (4 / 2) ➝ 8 / 2 ➝ 4
 (c) 2 ** (3 ** 2) ➝ 512 (2 ** 3) ** 2 ➝ 64

 Here, the order of evaluation does matter. To resolve the ambiguity, each operator has a specifi ed
 operator associativity that defi nes the order that it and other operators with the same level of pre-
cedence are applied (as given in Figure 2-19). All operators in the fi gure, except for exponentiation,
have left-to-right associativity—exponentiation has right-to-left associativity.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 2 1 3 * 4 ... 2 * 3 // 4
??? ???

... 2 * 3 1 4 ... 5 1 42 % 10
??? ???

... 2 * 3 / 4 ... 2 * 2 ** 3
??? ???

Operator precedence is the relative order that operators are applied in the evaluation of
 expressions, defi ned by a given operator precedence table.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 6 2 3 1 2 ... 2 * 3 / 4 ... (2 ** 2) ** 3
??? ??? ???

... (6 2 3) 1 2 ... 12 % (10 / 2) ... 2 ** (2 ** 3)
??? ??? ???

... 6 2 (3 1 2) ... 2 ** 2 ** 3
??? ???

c02DataAndExpressions.indd Page 63 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 63 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

64 CHAPTER 2 Data and Expressions

 2.4.4 What Is a Data Type?

 A data type is a set of values, and a set of operators that may be applied to those values. For
 example, the integer data type consists of the set of integers, and operators for addition, subtraction,
multiplication, and division, among others. Integers, fl oats, and strings are part of a set of predefi ned
data types in Python called the built-in types .

 Data types prevent the programmer from using values inappropriately. For example, it does
not make sense to try to divide a string by two, 'Hello' / 2. The programmer knows this by
common sense. Python knows it because 'Hello' belongs to the string data type, which does not
 include the division operation. The need for data types results from the fact that the same internal
representation of data can be interpreted in various ways, as shown in Figure 2-20.

Operator associativity is the order that operators are applied when having the same level of
precedence, specifi c to each operator.

FIGURE 2-20 Multiple Interpretations
of a Sequence of Bits

 The sequence of bits in the fi gure can be interpreted as a character ('A') or an integer (65). If a
programming language did not keep track of the intended type of each value, then the programmer
would have to. This would likely lead to undetected programming errors, and would provide even
more work for the programmer. We discuss this further in the following section.

 Finally, there are two approaches to data typing in programming languages. In static typing ,
a variable is declared as a certain type before it is used, and can only be assigned values of that type.
Python, however, uses dynamic typing . In dynamic typing , the data type of a variable depends only
on the type of value that the variable is currently holding. Thus, the same variable may be assigned
values of different type during the execution of a program.

A data type is a set of values, and a set of operators that may be applied to those values.

 2.4.5 Mixed-Type Expressions

 A mixed-type expression is an expression containing operands of different type. The CPU can only
perform operations on values with the same internal representation scheme, and thus only on oper-
ands of the same type. Operands of mixed-type expressions therefore must be converted to a com-
mon type. Values can be converted in one of two ways—by implicit (automatic) conversion, called
 coercion , or by explicit type conversion . We look at each of these next.

c02DataAndExpressions.indd Page 64 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 64 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.4 Expressions and Data Types 65

 Coercion vs. Type Conversion

 Coercion is the implicit (automatic) conversion of operands to a common type. Coercion is au-
tomatically performed on mixed-type expressions only if the operands can be safely converted,
that is, if no loss of information will result. The conversion of integer 2 to fl oating-point 2.0
below is a safe conversion—the conversion of 4.5 to integer 4 is not, since the decimal digit
would be lost,

 2 1 4.5 ➝ 2.0 1 4.5 ➝ 6.5 safe (automatic conversion of int to fl oat)

 Type conversion is the explicit conversion of operands to a specifi c type. Type conversion can be
applied even if loss of information results. Python provides built-in type conversion functions
int() and fl oat(), with the int() function truncating results as given in Figure 2-21.

 fl oat(2) 1 4.5 ➝ 2.0 1 4.5 ➝ 6.5

 2 1 int(4.5) ➝ 2 1 4 ➝ 6

 2.4.6 Let’s Apply It—“Temperature Conversion Program”

 The following Python program (Figure 2-22) requests from the user a temperature in degrees
 Fahrenheit, and displays the equivalent temperature in degrees Celsius. This program utilizes the
following programming features:

 ➤ arithmetic expressions ➤ operator associativity ➤ format function

A mixed-type expression is an expression with operands of different type.

Coercion is the implicit (automatic) conversion of operands to a common type. Type conversion
is the explicit conversion of operands to a specifi c type.

FIGURE 2-21 Conversion Functions int() and fl oat() in Python

 Note that numeric strings can also be converted to a numeric type. In fact, we have already been
doing this when using int or fl oat with the input function,

 num_credits 5 int(input('How many credits do you have? '))

c02DataAndExpressions.indd Page 65 05/11/12 5:07 PM user-019Ac02DataAndExpressions.indd Page 65 05/11/12 5:07 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

66 CHAPTER 2 Data and Expressions

 Lines 1–4 contain the program description. Line 7 provides the program greeting. Line 10 reads
the Fahrenheit temperature entered, assigned to variable fahren. Either an integer or a fl oating-
point value may be entered, since the input is converted to fl oat type. Line 13 performs the calcu-
lation for converting Fahrenheit to Celsius. Recall that the division and multiplication operators
have the same level of precedence. Since these operators associate left-to-right, the multiplication
operator is applied fi rst. Because of the use of the “true” division operator /, the result of the
expression will have fl oating-point accuracy. Finally, lines 16–17 output the converted tempera-
ture in degrees Celsius.

 Self-Test Questions

 1. What value does the following expression evaluate to?
 2 1 9 * ((3 * 12) – 8) / 10

 (a) 27 (b) 27.2 (c) 30.8

 2. Evaluate the following arithmetic expressions using the rules of operator precedence in
Python.
 (a) 3 1 2 * 10 (b) 2 1 5 * 4 1 3 (c) 20 // 2 * 5 (d) 2 * 3 ** 2

 3. Evaluate the following arithmetic expressions based on Python’s rules of operator
 associativity.
 (a) 24 // 4 // 2 (b) 2 ** 2 ** 3

 4. Which of the following is a mixed-type expression?
 (a) 2 1 3.0 (b) 2 1 3 * 4

FIGURE 2-22 Temperature Conversion Program

c02DataAndExpressions.indd Page 66 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 66 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.5 Age in Seconds Program 67

 5. Which of the following would involve coercion when evaluated in Python?
 (a) 4.0 1 3 (b) 3.2 * 4.0

 6. Which of the following expressions use explicit type conversion?
 (a) 4.0 1 fl oat(3) (b) 3.2 * 4.0 (c) 3.2 1 int(4.0)

 ANSWERS: 1. (b), 2. (a) 23 (b) 25 (c) 50 (d) 18, 3. (a) 3 (b) 256, 4. (a), 5. (a), 6. (a, c)

 COMPUTATIONAL PROBLEM SOLVING

 2.5 Age in Seconds Program

 We look at the problem of calculating an individual’s age in
seconds. It is not feasible to determine a given person’s age to
the exact second. This would require knowing, to the second,
when they were born. It would also involve knowing the time
zone they were born in, issues of daylight savings time, con-
sideration of leap years, and so forth. Therefore, the problem
is to determine an approximation of age in seconds. The pro-
gram will be tested against calculations of age from online
resources.

 2.5.1 The Problem

 The problem is to determine the approximate age of an individ-
ual in seconds within 99% accuracy of results from online
 resources. The program must work for dates of birth from
 January 1, 1900 to the present.

 2.5.2 Problem Analysis

 The fundamental computational issue for this problem is the development of an algorithm
 incorporating approximations for information that is impractical to utilize (time of birth to the
second, daylight savings time, etc.), while producing a result that meets the required degree of
accuracy.

 2.5.3 Program Design

 Meeting the Program Requirements

 There is no requirement for the form in which the date of birth is to be entered. We will therefore
design the program to input the date of birth as integer values. Also, the program will not perform
input error checking, since we have not yet covered the programming concepts for this.

 Data Description

 The program needs to represent two dates, the user’s date of birth, and the current date. Since each
part of the date must be able to be operated on arithmetically, dates will be represented by three
 integers. For example, May 15, 1992 would be represented as follows:

 year 5 1992 month 5 5 day 5 15

Ju
ffi

n/
iS

to
ck

p
ho

to

c02DataAndExpressions.indd Page 67 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 67 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

68 CHAPTER 2 Data and Expressions

 Hard-coded values will also be utilized for the number of seconds in a minute, number of minutes
in an hour, number of hours in a day, and the number of days in a year.

 Algorithmic Approach

 The Python Standard Library module datetime will be used to obtain the current date. (See the
Python 3 Programmers’ Reference.) We consider how the calculations can be approximated without
greatly affecting the accuracy of the results.

 We start with the issue of leap years. Since there is a leap year once every four years (with
some exceptions), we calculate the average number of seconds in a year over a four-year period that
 includes a leap year. Since non-leap years have 365 days, and leap years have 366, we need to
 compute,

1900 current datedate of birth

num secs 1900 to present

num secs 1900 to date of birth age in seconds

 Note that if we directly determined the number of seconds between the date of birth and current date,
the months and days of each would need to be compared to see how many full months and years
there were between the two. Using 1900 as a basis avoids these comparisons. Thus, the rest of our
algorithm is given below.

 To calculate someone’s age in seconds, we use January 1, 1900 as a basis. Thus, we compute
two values—the number of seconds from January 1 1900 to the given date of birth, and
the number of seconds from January 1 1900 to the current date. Subtracting the former from the
latter gives the approximate age,

 numsecs_1900_to_dob 5 (year_birth 2 1900) * avg_numsecs_year 1

 (month_birth 2 1) * avg_numsecs_month 1

 (day_birth * numsecs_day)

 numsecs_1900_to_today 5 (current_year 2 1900) * avg_numsecs_year 1

 (current_month 2 1) * avg_numsecs_month 1

 (current_day * numsecs_day)

 age_in_secs 5 num_secs_1900_to_today 2 numsecs_1900_to_dob

 Overall Program Steps

 The overall steps in this program design are in Figure 2-23.

 numsecs_day 5 (hours per day) * (mins per hour) * (secs per minute)
 numsecs_year 5 (days per year) * numsecs_day
 avg_numsecs_year 5 (4 * numsecs_year) 1 numsecs_day) // 4
 avg_numsecs_month 5 avgnumsecs_year // 12

(one extra day
for leap year)

c02DataAndExpressions.indd Page 68 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 68 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.5 Age in Seconds Program 69

 2.5.4 Program Implementation and Testing

 Stage 1—Getting the Date of Birth and Current Date

 First, we decide on the variables needed for the program. For date of birth, we use variables month_
birth, day_birth, and year_birth. Similarly, for the current date we use variables current_
month, current_day, and current_year. The fi rst stage of the program assigns each of these
values, shown in Figure 2-24.

FIGURE 2-23 Overall Steps of the Age in Seconds Program

FIGURE 2-24 First Stage of Age in Seconds Program

c02DataAndExpressions.indd Page 69 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 69 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

70 CHAPTER 2 Data and Expressions

 Stage 1 Testing

 We add test statements that display the values of the assigned variables. This is to ensure that the
dates we are starting with are correct; otherwise, the results will certainly not be correct. The test run
below indicates that the input is being correctly read.

 The lines of code prompting for input are commented out (lines 6–9 and 11–14). Since it is easy to
comment out (and uncomment) blocks of code in IDLE, we do so; the input values are irrelevant to
this part of the program testing.

 Stage 2 Testing

 Following is the output of this test run. Checking online sources, we fi nd that the number of
seconds in a regular year is 31,536,000 and in a leap year is 31,622,400. Thus, our approximation

FIGURE 2-25 Second Stage of Age in Seconds Program

 Enter month born (1-12): 4

 Enter day born (1-31): 12

 Enter year born (4-digit): 1981

 The date of birth read is: 4 12 1981

 The current date read is: 1 5 2010

 ...

 Stage 2—Approximating the Number of Seconds in a Year/Month/Day

 Next we determine the approximate number of seconds in a given year and month, and the exact
number of seconds in a day stored in variables avg_numsecs_year, avg_numsecs_month,
and numsecs_day, respectively, shown in Figure 2-25.

c02DataAndExpressions.indd Page 70 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 70 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.5 Age in Seconds Program 71

of 31,557,600 as the average number of seconds over four years (including a leap year) is reason-
able. The avg_num_seconds_month is directly calculated from variable avg_ numsecs_
year, and numsecs_day is found to be correct.

 numsecs_day 86400

 avg_numsecs_month 5 2629800

 avg_numsecs_year 5 31557600

 ...

 Final Stage—Calculating the Number of Seconds from 1900

 Finally, we complete the program by calculating the approximate number of seconds from 1900 to
both the current date and the provided date of birth. The difference of these two values gives the
approximate age in seconds. The complete program is shown in Figure 2-26.

FIGURE 2-26 Final Stage of Age in Seconds Program

 We develop a set of test cases for this program. We follow the testing strategy of including “average” as
well as “extreme” or “special case” test cases in the test plan. The test results are given in Figure 2-27.

c02DataAndExpressions.indd Page 71 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 71 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

72 CHAPTER 2 Data and Expressions

 The “correct” age in seconds for each was obtained from an online source. January 1, 1900 was
included in the test plan since it is the earliest date (“extreme case”) that the program is required
to work for. April 12, 1981 was included as an average case in the 1900s, and January 4, 2000 as
an average case in the 2000s. December 31, 2009 was included since it is the last day of the last
month of the year. Finally, a test case for a birthday on the day before the current date was
 included as a special case. (See sample program execution in Figure 2-28). Since these values are
continuously changing by the second, we consider any result within one day’s worth of seconds
(± 84,000) to be an exact result.

FIGURE 2-27 Results of First Execution of Test Plan

FIGURE 2-28 Example Output of Final Stage Testing

 The program results are obviously incorrect, since the result is approximately equal to the average
number of seconds in a month (determined above). The only correct result is for the day before the
current date. The inaccuracy of each result was calculated as follows for April 12, 1981,

 ((abs(expected_results – actual_results) – 86,400) / expected_results) * 100
 5 ((917,110,352 – 518,433) 2 86400) / 917,110,352) * 100 5 99.93 %

 Either our algorithmic approach is fl awed, or it is not correctly implemented. Since we didn’t fi nd
any errors in the development of the fi rst and second stages of the program, the problem must be
in the calculation of the approximate age in lines 29–37 . These lines defi ne three variables:
 numsecs_1900_dob, numsecs_1900_today, and age_in_secs. We can inspect the
values of these variables after execution of the program to see if anything irregular pops out at us.

c02DataAndExpressions.indd Page 72 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 72 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

2.5 Age in Seconds Program 73

 This program computes the approximate age in seconds of an

 individual based on a provided date of birth. Only ages for

 dates of birth from 1900 and after can be computed

 Enter month born (1-12): 4

 Enter day born (1-31): 12

 Enter year born: (4-digit)1981

 You are approximately 604833 seconds old

 ...

 ... numsecs_1900_dob

 2 59961031015

 ... numsecs_1900_today

 2 59960426182

 ...

 Clearly, this is where the problem is, since we are getting negative values for the times between 1900
and date of birth, and from 1900 to today. We “work backwards” and consider how the expressions
could give negative results. This would be explained if, for some reason, the second operand of the
subtraction were greater than the fi rst. That would happen if the expression were evaluated, for
 example, as

 numsecs_1900_dob 5 (year_birth 2 (1900 * avg_numsecs_year)) 1 \

 (month_birth 2 (1 * avg_numsecs_month)) 1 \

 (day_birth * numsecs_day)

 rather than the following intended means of evaluation,

 numsecs_1900_dob 5 ((year_birth 2 1900) * avg_numsecs_year) 1 \

 ((month_birth 2 1) * avg_numsecs_month) 1 \

 (day_birth * numsecs_day)

 Now we realize! Because we did not use parentheses to explicitly indicate the proper order of op-
erators, by the rules of operator precedence Python evaluated the expression as the fi rst way above,
not the second as it should be. This would also explain why the program gave the correct result for
a date of birth one day before the current date. Once we make the corrections and re-run the test
plan, we get the following results shown in Figure 2-29.

FIGURE 2-29 Results of Second Execution of Test Plan

c02DataAndExpressions.indd Page 73 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 73 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

74 CHAPTER 2 Data and Expressions

 These results demonstrate that our approximation of the number of seconds in a year was suffi cient
to get very good results, well within the 99% degree of accuracy required for this program. We
would expect more recent dates of birth to give less accurate results given that there is less time that
is approximated. Still, for test case December 31, 2009 the inaccuracy is less than .05 percent.
Therefore, we were able to develop a program that gave very accurate results without involving all
the program logic that would be needed to consider all the details required to give an exact result.

 C H A P T E R E X E R C I S E S

 Section 2.1

 1. Based on the information in Figure 2-1, how many novels can be stored in one terabyte of storage?

 2. Give the following values in the exponential notation of Python, such that there is only one signifi cant
digit to the left of the decimal point.

 (a) 4580.5034 (b) 0.00000046004 (c) 5000402.000000000006

 3. Which of the fl oating-point values in question 2 would exceed the representation of the precision of fl oat-
ing points typically supported in Python, as mentioned in the chapter?

 4. Regarding the built-in format function in Python,
 (a) Use the format function to display the fl oating-point value in a variable named result with three

decimal digits of precision.
 (b) Give a modifi ed version of the format function in (a) so that commas are included in the displayed

results.

 5. Give the string of binary digits that represents, in ASCII code,
 (a) The string 'Hi!'
 (b) The literal string 'I am 24'

 6. Give a call to print that is provided one string that displays the following address on three separate lines.

 John Doe

 123 Main Street

 Anytown, Maryland 21009

 7. Use the print function in Python to output It's raining today.

 C H A P T E R S U M M A R Y

 General Topics

 Numeric and String Literals
 Limitations of Floating-Point Representation
 Arithmetic Overfl ow and Underfl ow
 Character Representation Schemes
 (Unicode/ASCII)
 Control Characters
 String Formatting Implicit and Explicit Line
 Joining/Variables and Variable Use/
 Keyboard Input/Identifi er Naming/ Keywords
 Arithmetic Operators/Expressions/Infi x Notation
 Operator Precedence and Associativity
 Data Types/Static vs. Dynamic Typing

 Mixed-Type Expressions/Coercion and
 Type Conversion

 Python-Specifi c Programming Topics

 Numeric Literal and String Literal Values in Python
 Built-in format Function in Python
 Variable Assignment and Storage in Python
 Immutable Values in Python
 Identifi er Naming and Keywords in Python
 Arithmetic Operators in Python
 Operator Precedence and Associativity in Python
 Built-in int() and fl oat() Type Conversion
 Functions in Python

c02DataAndExpressions.indd Page 74 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 74 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 75

 Section 2.2

 8. Regarding variable assignment,
 (a) What is the value of variables num1 and num2 after the following instructions are executed?

 num 5 0

 k 5 5

 num1 5 num 1 k * 2

 num2 5 num 1 k * 2

 (b) Are the values id(num1) and id(num2) equal after the last statement is executed?

 9. Regarding the input function in Python,
 (a) Give an instruction that prompts the user for their last name and stores it in a variable named last_

name.
 (b) Give an instruction that prompts the user for their age and stores it as an integer value named age.
 (c) Give an instruction that prompts the user for their temperature and stores it as a fl oat named

 current_temperature.

 10. Regarding keywords and other predefi ned identifi ers in Python, give the result for each of the following,
 (a) 'int' in dir(__builtins__)
 (b) 'import' in dir(__builtins__)

 Section 2.3

 11. Which of the following operator symbols can be used as both a unary operator and a binary operator?
 1 , 2 , *, /

 12. What is the exact result of each of the following when evaluated?
 (a) 12 / 6.0
 (b) 21 // 10
 (c) 25 // 10.0

 13. If variable n contains an initial value of 1, what is the largest value that will be assigned to n after the
following assignment statement is executed an arbitrary number of times?

 n 5 (n 1 1) % 100

 14. Which of the following arithmetic expressions could potentially result in arithmetic overfl ow, where n
and k are each assigned integer values?

 (a) n * k (b) n ** k (c) n / k (d) n 1 k

 Section 2.4

 15. Evaluate the following expressions in Python.
 (a) 10 2 (5 * 4)
 (b) 40 % 6
 (c) 2 (10 / 3) 1 2

 16. Give all the possible evaluated results for the following arithmetic expression (assuming no rules of
 operator precedence).

 2 * 4 1 25 – 5

 17. Parenthesize all of the subexpressions in the following expressions following operator precedence in
 Python.

 (a) var1 * 8 2 var2 1 32 / var3

 (b) var1 2 6 ** 4 * var2 ** 3

 18. Evaluate each of the expressions in question 17 above for var1 5 10, var2 5 30, and var3 5 2.

c02DataAndExpressions.indd Page 75 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 75 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

76 CHAPTER 2 Data and Expressions

 19. For each of the following expressions, indicate where operator associativity of Python is used to resolve
ambiguity in the evaluation of each expression.

 (a) var1 * var2 * var3 2 var4
 (b) var1 * var2 / var3
 (c) var1 ** var2 ** var3

 20. Using the built-in type conversion function fl oat(), alter the following arithmetic expressions so that
each is evaluated using fl oating-point accuracy. Assume that var1, var2, and var3 are assigned integer
values. Use the minimum number of calls to function fl oat() needed to produce the results.

 (a) var1 1 var2 * var3
 (b) var1 // var2 1 var3
 (c) var1 // var2 / var3

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python program that prompts the user for two integer values and displays the result of the fi rst
number divided by the second, with exactly two decimal places displayed.

 P2. Write a Python program that prompts the user for two fl oating-point values and displays the result of the
fi rst number divided by the second, with exactly six decimal places displayed.

 P3. Write a Python program that prompts the user for two fl oating-point values and displays the result of the
fi rst number divided by the second, with exactly six decimal places displayed in scientifi c notation.

 P4. Write a Python program that prompts the user to enter an upper or lower case letter and displays the
 corresponding Unicode encoding.

 P5. Write a Python program that allows the user to enter two integer values, and displays the results when
each of the following arithmetic operators are applied. For example, if the user enters the values 7 and 5,
the output would be,

 7 1 5 5 12
 7 2 5 5 2
 7 * 5 5 35
 7 / 5 5 1.40
 7 // 5 5 1
 7 % 5 5 2
 7 ** 5 5 16,807

 All fl oating-point results should be displayed with two decimal places of accuracy. In addition, all values
should be displayed with commas where appropriate.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Modify the Restaurant Tab Calculation program of section 2.2.5 so that, instead of the restaurant tax
being hard coded in the program, the tax rate is entered by the user.

 M2. Modify the Restaurant Tab Calculation program of section 2.2.5 so that, in addition to displaying the total
of the items ordered, it also displays the total amount spent on drinks and dessert, as well as the percent-
age of the total cost of the meal (before tax) that these items comprise. Display the monetary amount
rounded to two decimal places.

 M3. Modify the Your Place in the Universe program in section 2.3.3 for international users, so that the user
enters their weight in kilograms, and not in pounds.

 M4. Modify the Temperature Conversion program in section 2.4.6 to convert from Celsius to Fahrenheit
 instead. The formula for the conversion is f 5 (c * 9/5) 1 32.

c02DataAndExpressions.indd Page 76 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 76 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 77

 M5. Modify the Age in Seconds program so that it displays the estimated age in number of days, hours, and
minutes.

 M6. Modify the Age in Seconds program so that it determines the difference in age in seconds of two friends.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Losing Your Head over Chess
 The game of chess is generally believed to have been invented in India in the sixth century for a ruling

king by one of his subjects. The king was supposedly very delighted with the game and asked the sub-
ject what he wanted in return. The subject, being clever, asked for one grain of wheat on the fi rst
square, two grains of wheat on the second square, four grains of wheat on the third square, and so forth,
doubling the amount on each next square. The king thought that this was a modest reward for such an
invention. However, the total amount of wheat would have been more than 1,000 times the current
world production.

 Develop and test a Python program that calculates how much wheat this would be in pounds, using
the fact that a grain of wheat weighs approximately 1/7,000 of a pound.

 D2. All That Talking
 Develop and test a Python program that determines how much time it would take to download all instances

of every word ever spoken. Assume the size of this information as given in Figure 2-1. The download
speed is to be entered by the user in million of bits per second (mbps). To fi nd your actual connection
speed, go to the following website (from Intel Corporation) or similar site,

 www.intel.com/content/www/us/en/gamers/broadband-speed-test.html

 Because connection speeds can vary, run this connection speed test three times. Take the average of three
results, and use that as the connection speed to enter into your program. Finally, determine what is an
appropriate unit of time to express your program results in: minutes? hours? days? other?

 D3. Pictures on the Go
 Develop and test a Python program that determines how many images can be stored on a given size USB

(fl ash) drive. The size of the USB drive is to be entered by the user in gigabytes (GB). The number of
images that can be stored must be calculated for GIF, JPEG, PNG, and TIFF image fi le formats. The
program output should be formatted as given below.

 Enter USB size (GB): 4

 xxxxx images in GIF format can be stored

 xxxxx images in JPEG format can be stored

 xxxxx images in PNG format can be stored

 xxxxx images in TIFF format can be stored

 The ultimate fi le size of a given image depends not only on the image format used, but also on the image
itself. In addition, formats such as JPEG allow the user to select the degree of compression for the image
quality desired. For this program, we assume the image compression ratios given below. Also assume that
all the images have a resolution of 800 3 600 pixels.

 Thus, for example, a 800 3 600 resolution image with 16-bit (2 bytes) color depth would have a total
number of bytes of 800 3 600 3 2 5 960,000. For a compression rate of 25:1, the total number of bytes
needed to store the image would be 960000/25 5 38400.

 Finally, assume that a GB (gigabyte) equals 1,000,000,000 bytes, as given in Figure 2.1.

c02DataAndExpressions.indd Page 77 22/10/12 3:15 PM user-019Ac02DataAndExpressions.indd Page 77 22/10/12 3:15 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

78 CHAPTER 2 Data and Expressions

 Note that a “lossless” compression is one in which no information is lost. A “lossy” compression does
lose some of the original information.

 D4. Life Signs
 Develop and test a program that prompts the user for their age and determines approximately how many

breaths and how many heartbeats the person has had in their life. The average respiration (breath) rate of
people changes during different stages of development. Use the breath rates given below for use in your
program:

 Breaths per Minute
 Infant 30–60
 1–4 years 20–30
 5–14 years 15–25
 adults 12–20

 For heart rate, use an average of 67.5 beats per second.

c02DataAndExpressions.indd Page 78 15/10/12 10:11 AM user-019Ac02DataAndExpressions.indd Page 78 15/10/12 10:11 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

79

 Control Structures

 In Chapter 2 we looked at the “nuts and bolts” of programming. In this chapter, we discuss the three
fundamental means of controlling the order of execution of instructions within a program, referred
to as sequential, selection, and iterative control.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain what a control structure is

 ♦ Explain the difference between sequential, selection, and iterative control

 ♦ Describe and use Boolean operators

 ♦ Explain the notion of logically equivalent Boolean expressions

 ♦ Explain what is meant by an infi nite loop

 ♦ Explain the difference between a defi nite and indefi nite loop

 ♦ Explain the use of indentation in Python

 ♦ Effectively use if statements in Python for selection control

 ♦ Effectively implement multi-way selection in Python

 ♦ Effectively use while statements in Python for iterative control

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 3.1 What Is a Control Structure?

 3.2 Boolean Expressions (Conditionals)

 3.3 Selection Control

 3.4 Iterative Control

 Computational Problem Solving

 3.5 Calendar Month Program

 CHAPTER 3

c03ControlStructures.indd Page 79 16/10/12 10:07 AM user-019Ac03ControlStructures.indd Page 79 16/10/12 10:07 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

80 CHAPTER 3 Control Structures

 MOTIVATION

 The fi rst electronic computers over sixty years
ago were referred to as “Electronic Brains.” This
gave the misleading impression that computers
could “think.” Although very complex in their
 design, computers are machines that simply do,
step-by-step (instruction-by-instruction), what
they are told. Thus, there is no more intelligence
in a computer than what it is instructed to do.

 What computers can do, however, is to exe-
cute a series of instructions very quickly and very
reliably. It is the speed in which instructions can be
executed that gives computers their power (see
 Figure 3-1), since the execution of many simple instructions can result in very complex behavior. And
thus this is the enticement of computing. A computer can accomplish any task for which there is an
 algorithm for doing so. The instructions could be for something as simple as sorting lists, or as ambitious
as performing intelligent tasks that as of now only humans are capable of performing.

 In this chapter, we look at how to control the order that instructions are executed in Python.

FIGURE 3-1 Processing Speed—Floating-Point Operations per Second (FLOPS)

G
ar

ry
 B

la
ck

/M
as

te
rfi

 le

 FUNDAMENTAL CONCEPTS

 3.1 What Is a Control Structure?

 C ontrol fl ow is the order that instructions are executed in a program. A control statement is a statement
that determines the control fl ow of a set of instructions. There are three fundamental forms of control
that programming languages provide— sequential control , selection control , and iterative control.

 Sequential control is an implicit form of control in which instructions are executed in the
order that they are written. A program consisting of only sequential control is referred to as a
“straight-line program.” The program examples in Chapter 2 are all straight-line programs. Selec-
tion control is provided by a control statement that selectively executes instructions, while iterative

c03ControlStructures.indd Page 80 16/10/12 10:07 AM user-019Ac03ControlStructures.indd Page 80 16/10/12 10:07 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.2 Boolean Expressions (Conditions) 81

control is provided by an iterative control statement that repeatedly executes instructions. Each is
based on a given condition. Collectively a set of instructions and the control statements controlling
their execution is called a control structure .

 Few programs are straight-line programs. Most use all three forms of control, depicted in
Figure 3-2. We look at selection control and iterative control next.

A control statement is a statement that determines the control fl ow of a set of instructions.
A control structure is a set of instructions and the control statements controlling their
 execution. Three fundamental forms of control in programming are sequential, selection,
and iterative control.

FIGURE 3-2 if Statement

 3.2 Boolean Expressions (Conditions)

 The Boolean data type contains two Boolean values, denoted as True and False in Python.
A Boolean expression is an expression that evaluates to a Boolean value. Boolean expressions are
used to denote the conditions for selection and iterative control statements. We look at the use of
Boolean expressions next.

The Boolean data type contains two Boolean values, denoted as True and False in Python.
A Boolean expression is an expression that evaluates to a Boolean value.

 3.2.1 Relational Operators

 The relational operators in Python perform the usual comparison operations, shown in Figure 3-3.
Relational expressions are a type of Boolean expression, since they evaluate to a Boolean result.
These operators not only apply to numeric values, but to any set of values that has an ordering, such
as strings.

 Note the use of the comparison operator , 5 5 , for determining if two values are equal. This,
rather than the (single) equal sign, 5 , is used since the equal sign is used as the assignment operator.
This is often a source of confusion for new programmers,

 num 5 10 variable num is assigned the value 10
 num 5 5 10 variable num is compared to the value 10

c03ControlStructures.indd Page 81 16/10/12 10:07 AM user-019Ac03ControlStructures.indd Page 81 16/10/12 10:07 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

82 CHAPTER 3 Control Structures

FIGURE 3-3 The Relational Operators

 Also, ! 5 is used for inequality simply because there is no keyboard character for the fi symbol.
 String values are ordered based on their character encoding, which normally follows a

 lexographical (dictionary) ordering . For example, 'Alan' is less than 'Brenda' since the
Unicode (ASCII) value for 'A' is 65, and 'B' is 66. However, 'alan' is greater than (comes
 after) 'Brenda' since the Unicode encoding of lowercase letters (97, 98, . . .) comes after the
encoding of uppercase letters (65, 66, . . .). Recall from Chapter 2 that the encoding of any char-
acter can be obtained by use of the ord function.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 10 55 20 ... '2' , '9' ... 'Hello' 55 "Hello"
??? ??? ???

... 10 !5 20 ... '12' , '9' ... 'Hello' , 'Zebra'
??? ??? ???

... 10 ,5 20 ... '12' . '9' ... 'hello' , 'ZEBRA'
??? ??? ???

The relational operators 55, !5, ,, ., ,5, .5 can be applied to any set of values that has an
ordering.

 3.2.2 Membership Operators

 Python provides a convenient pair of membership operators . These operators can be used to easily
determine if a particular value occurs within a specifi ed list of values. The membership operators are
given in Figure 3-4.

 The in operator is used to determine if a specifi c value is in a given list, returning True if
found, and False otherwise. The not in operator returns the opposite result. The list of values
surrounded by matching parentheses in the fi gure are called tuples in Python. Tuples (and lists) are
covered in Chapter 4.

c03ControlStructures.indd Page 82 16/10/12 10:07 AM user-019Ac03ControlStructures.indd Page 82 16/10/12 10:07 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.2 Boolean Expressions (Conditions) 83

FIGURE 3-4 The Membership Operators

 The membership operators can also be used to check if a given string occurs within another string ,

 . . . 'Dr.' in 'Dr. Madison'

 True

 As with the relational operators, the membership operators can be used to construct Boolean
expressions.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 10 in (40, 20, 10) ... grade 5 'A'
??? ... grade in ('A','B','C','D','F')
 ???

... 10 not in (40, 20, 10)
??? ... city 5 'Houston'
 ... city in ('NY', 'Baltimore', 'LA')

... .25 in (.45, .25, .65) ???
???

Python provides membership operators in and not in for determining if a specifi c value is in
(or not in) a given list of values.

 3.2.3 Boolean Operators

 George Boole, in the mid-1800s, developed what we now call Boolean algebra . His goal was to
develop an algebra based on true/false rather than numerical values. Boolean algebra contains a
set of Boolean (logical) operators , denoted by and, or, and not in Python. These logical op-
erators can be used to construct arbitrarily complex Boolean expressions. The Boolean operators
are shown in Figure 3-5.

 Logical and is true only when both its operands are true—otherwise, it is false. Logical or is
true when either or both of its operands are true, and thus false only when both operands are false.
Logical not simply reverses truth values—not False equals True, and not True equals
False.

c03ControlStructures.indd Page 83 22/10/12 3:16 PM user-019Ac03ControlStructures.indd Page 83 22/10/12 3:16 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

84 CHAPTER 3 Control Structures

FIGURE 3-5 Boolean Logic Truth Table

 One must be cautious when using Boolean operators. For example, in mathematics, to denote that a
value is within a certain range is written as

 1 , 5 num , 5 10

 In most programming languages, however, this expression does not make sense. To see why, let’s
assume that num has the value 15. The expression would then be evaluated as follows,

1 ,5 num ,5 10 ➝ 1 ,5 15 ,5 10 ➝ True ,5 10 ➝ ?!?

⎛ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎝

 It does not make sense to check if True is less than or equal to 10. (Some programming languages
would generate a mixed-type expression error for this.) The correct way of denoting the condition is
by use of the Boolean and operator,

 1 , 5 num and num , 5 10

 In some languages (such as Python), Boolean values True and False have integer values 1 and 0,
respectively. In such cases, the expression 1 ,5 num ,5 10 would evaluate to True , 5 10
would evaluate to 1 , 5 10, which equals True. This would not be the correct result for this
 expression, however. Let’s see what we get when we do evaluate this expression in the Python shell,

 . . . num 5 15

 . . . 1 , 5 num , 5 10

 False

 We actually get the correct result, False. So what is going on here? The answer is that Python is
playing a trick here. For Boolean expressions of the particular form,

 value1 , 5 var , 5 value2

 Python automatically rewrites this before performing the evaluation,

 value1 , 5 var and var , 5 value2

 Thus, it is important to note that expressions of this form are handled in a special way in Python, and
would not be proper to use in most other programming languages.

 One must also be careful in the use of and/or Boolean operators. For example, not(num 5 5
0 and num 5 5 1) is True for any value of num, as is (num ! 5 0) or (num ! 5 1), and

c03ControlStructures.indd Page 84 22/10/12 3:16 PM user-019Ac03ControlStructures.indd Page 84 22/10/12 3:16 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.2 Boolean Expressions (Conditions) 85

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... True and False ... (10 , 0) and (10 . 2)
??? ???

... True or False ... (10 , 0) or (10 . 2)
??? ???

... not(True) and False ... not(10 , 0) or (10 . 2)
??? ???

... not(True and False) ... not(10 , 0 or 10 . 2)
??? ???

 3.2.4 Operator Precedence and Boolean Expressions

 The operator precedence (and operator associativity) of arithmetic operators was given in Chapter 2.
Operator precedence also applies to Boolean operators. Since Boolean expressions can contain
arithmetic as well as relational and Boolean operators, the precedence of all operators needs to be
collectively applied. An updated operator precedence table is given in Figure 3-6.

FIGURE 3-6 Operator Precedence of Arithmetic, Relational, and Boolean Operators

Boolean operators in Python are denoted by and, or, and not.

therefore are not useful expressions. The Boolean expression num , 0 and num . 10 is also
useless since it is always False.

 Finally, Boolean literals True and False are never quoted. Doing so would cause them to
be taken as string values ('True'). And as we saw, Boolean expressions do not necessarily
 contain Boolean operators. For example, 10 , 5 20 is a Boolean expression. By defi nition,
Boolean literals True and False are Boolean expressions as well.

c03ControlStructures.indd Page 85 16/10/12 10:07 AM user-019Ac03ControlStructures.indd Page 85 16/10/12 10:07 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

86 CHAPTER 3 Control Structures

 As before, in the table, higher-priority operators are placed above lower-priority ones. Thus, we see
that all arithmetic operators are performed before any relational or Boolean operator ,

 10 1 20 , 20 1 30 ➝ 30 , 50 ➝ True

⎛ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎝

In addition, all of the relational operators are performed before any Boolean operator,

 10 , 20 and 30 , 20 ➝ True and False ➝ False

 10 , 20 or 30 , 20 ➝ True or False ➝ True

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

⎛ ⎜ ⎜ ⎝

And as with arithmetic operators, Boolean operators have various levels of precedence. Unary
 Boolean operator not has higher precedence than and, and Boolean operator and has higher
precedence than or.

10 , 20 and 30 , 20 or 30 , 40 ➝ True and False or True

 ➝ False or True ➝ True

not 10 , 20 or 30 , 20 ➝ not True or False

 ➝ False or False ➝ False

As with arithmetic expressions, it is good programming practice to use parentheses, even if not
needed, to add clarity and enhance readability. Thus, the above expressions would be better written
by denoting at least some of the subexpressions,

(10 , 20 and 30 , 20) or (30 , 40)

(not 10 , 20) or (30 , 20)

if not all subexpressions,

((10 , 20) and (30 , 20)) or (30 , 40)

(not (10 , 20)) or (30 , 20)

Finally, note from Figure 3.6 above that all relational and Boolean operators associate from left
to right.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... not True and False ... 10 , 0 and not 10 . 2
??? ???

... not True and False or True ... not (10 , 0 or 10 , 20)
??? ???

 3.2.5 Short-Circuit (Lazy) Evaluation

 There are differences in how Boolean expressions are evaluated in different programming languages.
For logical and, if the fi rst operand evaluates to false, then regardless of the value of the second
 operand, the expression is false. Similarly, for logical or, if the fi rst operand evaluates to true, regardless
of the value of the second operand, the expression is true. Because of this, some programming languages

c03ControlStructures.indd Page 86 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 86 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.2 Boolean Expressions (Conditions) 87

In short-circuit (lazy) evaluation, the second operand of Boolean operators and and or is not
evaluated if the value of the Boolean expression can be determined from the fi rst operand alone.

 3.2.6 Logically Equivalent Boolean Expressions

 In numerical algebra, there are arithmetically equivalent expressions of different form. For
 example, x(y 1 z) and xy 1 xz are equivalent for any numerical values x, y, and z.
Similarly, there are logically equivalent Boolean expressions of different form. We give some
examples in Figure 3-7.

FIGURE 3-7 Logically Equivalent Conditional Expressions

do not evaluate the second operand when the result is known by the fi rst operand alone, called short-
circuit (lazy) evaluation . Subtle errors can result if the programmer is not aware of this. For example,
the expression

 if n ! 5 0 and 1/n , tolerance:

 would evaluate without error for all values of n when short-circuit evaluation is used. If program-
ming in a language not using short-circuit evaluation, however, a “divide by zero” error would result
when n is equal to 0. In such cases, the proper construction would be,

 if n ! 5 0:

 if 1/n , tolerance:

 In the Python programming language, short-circuit evaluation is used.

c03ControlStructures.indd Page 87 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 87 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

88 CHAPTER 3 Control Structures

 The range of values satisfying each set of expressions is shaded in the fi gure. Both expressions in
(1) are true for any value except 0. The expressions in (2) are true for any value except 0 and 6. The
expressions in (3) are only true for values in the range 0 through 6, inclusive. The expressions in (4)
are true for all values except 0 through 6, inclusive. Figure 3-8 lists common forms of logically
equivalent expressions.

 The last two equivalences above are referred to as De Morgan’s Laws.

FIGURE 3-8 Forms of Logically Equivalent Boolean Expressions

There are logically equivalent Boolean expressions of different form.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... 10 , 20 ... not(10 , 20 and 10 , 30)
??? ???

... not(10 .5 20) ... (not 10 , 20) or (not 10 , 30)
??? ???

... 10 !5 20 ... not(10 , 20 or 10 , 30)
??? ???

... not (10 55 20) ... (not 10 , 20) and (not 10 , 30)
??? ???

 Self-Test Questions

 1. Three forms of control in programming are sequential, selection, and _______________
control.

 2. Which of the following expressions evaluate to True?
(a) 10 .5 8 (b) 8 ,5 10 (c) 10 55 8 (d) 10 !5 8 (e) '8' , '10'

3. Which of the following Boolean expressions evaluate to True?
(a) 'Dave' , 'Ed' (b) 'dave' , 'Ed' (c) 'Dave' , 'Dale'

c03ControlStructures.indd Page 88 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 88 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.3 Selection Control 89

4. What is the value of variable num after the following is executed?

... num 5 10

... num 5 num 1 5

... num 55 20

... num 5 num 1 1

5. What does the following expression evaluate to for name equal to 'Ann'?

name in ('Jacob', 'MaryAnn', 'Thomas')

6. Evaluate the following Boolean expressions using the operator precedence rules of Python.
(a) 10 .5 8 and 5 !5 3 (b) 10 .5 8 and 5 55 3 or 14 , 5

7. Which one of the following Boolean expressions is not logically equivalent to the other two?
(a) not(num , 0 or num . 10)
(b) num . 0 and num , 10
(c) num .5 0 and num ,5 10

 ANSWERS: 1. Iterative, 2. (a,b,d), 3. (a), 4. 16, 5. False, 6. (a) True, (b) False, 7. (b)

 3.3 Selection Control

 A selection control statement is a control statement providing selective execution of instructions.
A selection control structure is a given set of instructions and the selection control statement(s)
controlling their execution. We look at the if statement providing selection control in Python next.

 3.3.1 If Statement

 An if statement is a selection control statement based on the value of a given Boolean expression.
The if statement in Python is depicted in Figure 3-9.

FIGURE 3-9 if Statement

 Note that if statements may omit the “else” part. A version of the temperature conversion program
from Chapter 2 using an if statement is given in Figure 3-10.

 This program extends the original program by converting Celsius to Fahrenheit, as well as
Fahrenheit to Celsius. The if statement (line 13) selects the appropriate set of instructions to execute
based on user input ('F' for Fahrenheit to Celsius, and 'C' for Celsius to Fahrenheit). A statement
that contains other statements, such as the if statement, is called a compound statement . We look
at Python’s use of indentation in compound statements next.

A selection control statement is a control statement providing selective execution of instructions.

c03ControlStructures.indd Page 89 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 89 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

90 CHAPTER 3 Control Structures

FIGURE 3-10 Temperature Conversion (Two-Way Conversion)

An if statement is a selection control statement based on the value of a given Boolean expression.
Statements that contain other statements are referred to as a compound statement.

 3.3.2 Indentation in Python

 One fairly unique aspect of Python is that the amount of indentation of each program line is signifi -
cant. In most programming languages, indentation has no affect on program logic—it is simply used
to align program lines to aid readability. In Python, however, indentation is used to associate and
group statements, as shown in Figure 3-11.

FIGURE 3-11 Compound Statement in Python

 A header in Python is a specifi c keyword followed by a colon. In the fi gure, the if-else statement
contains two headers, “if which 5 5 'F':” containing keyword if, and “else:” consisting
only of the keyword else. Headers that are part of the same compound statement must be indented
the same amount—otherwise, a syntax error will result.

c03ControlStructures.indd Page 90 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 90 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.3 Selection Control 91

FIGURE 3-12 Compound Statements and Indentation in Python

 Both (a) and (b) in the fi gure are properly indented. In (a), both suites have the same amount of
 indentation. In (b), each suite has a different amount of indentation. This is syntactically correct
(although not good practice) since the amount of indentation within each suite is consistent. Both
(c) and (d) are examples of invalid indentation, and thus syntactically incorrect. In (c), the if and
else headers of the if statement are not indented the same amount. In (d), the headers are indented
the same amount. However, the statements within the second suite are not properly aligned. Finally,
note that the suite following a header can itself be a compound statement (another if statement, for
example). Thus, compound statements may be nested one within another. We look at nested com-
pounded statements next.

 The set of statements following a header in Python is called a suite (commonly called a
 block). The statements of a given suite must all be indented the same amount. A header and its
 associated suite are together referred to as a clause . A compound statement in Python may consist
of one or more clauses. While four spaces is commonly used for each level of indentation, any num-
ber of spaces may be used, as shown in Figure 3-12.

L E T ’ S T R Y I T

From IDLE, create and run a Python program containing the code on the left and observe the results. Modify
and run the code to match the version on the right and again observe the results. Make sure to indent the code
exactly as shown.

grade 5 90

if grade .5 70:
 print('passing grade')
else:
 print('failing grade')

grade 5 90

if grade .5 70:
 print('passing grade')
 else:
 print('failing grade')

A header in Python starts with a keyword and ends with a colon. The group of statements following
a header is called a suite. A header and its associated suite are together referred to as a clause.

 3.3.3 Multi-Way Selection

 In this section, we look at the two means of constructing multi-way selection in Python—one
 involving multiple nested if statements, and the other involving a single if statement and the use of
elif headers.

c03ControlStructures.indd Page 91 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 91 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

92 CHAPTER 3 Control Structures

 Nested if Statements

 There are often times when selection among more than two sets of statements (suites) is needed. For
such situations, if statements can be nested, resulting in multi-way selection . An example of this is
given in Figure 3-13.

FIGURE 3-13 Multi-way Selection Using if Statements

 The nested if statements on the right result in a 5-way selection. In the fi rst if statement, if variable
grade is greater than or equal to 90, then 'Grade of A' is displayed. Therefore, its else suite
is not executed, containing the remaining if statements. If grade is less than 90, the else suite is
executed. If grade is greater than or equal to 80, 'Grade of B' is displayed and the rest of the
if statements in its else suite are skipped, and so on. The fi nal else clause is executed only if all the
previous conditions fail, displaying 'Grade of F'. This is referred to as a catch-all case. As an
example use of nested if statements and a check for invalid input in a program, we give a revised ver-
sion of the temperature conversion program from Figure 3-10 in Figure 3-14.

FIGURE 3-14 Temperature Conversion Program (Input Error Dectection)

c03ControlStructures.indd Page 92 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 92 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.3 Selection Control 93

L E T ’ S T R Y I T

From IDLE, create and run a simple program containing the code below and observe the results. Make sure
to indent the code exactly as shown.

credits 5 45

if credits .5 90:
 print('Senior')
else:
 if credits .5 60:
 print('Junior')
 else:
 if credits .5 30:
 print('Sophomore')
 else:
 if credits .5 1:
 print('Freshman')
 else:
 print('* No Earned Credits *')

 In this version, there is a catch-all clause (line 20) for handling invalid input. We next look at a more
concise means of denoting multi-way selection in Python.

FIGURE 3-15 The elif Header in Python

If statements can be nested in Python, resulting in multi-way selection.

 The elif Header in Python

 If statements may contain only one else header. Thus, if-else statements must be nested to
achieve multi-way selection. Python, however, has another header called elif (“else-if”) that
provides multi-way selection in a single if statement, shown in Figure 3-15.

 All the headers of an if-elif statement are indented the same amount, thus avoiding the
deeply nested levels of indentation with the use of if-else statements. A fi nal else clause may
be used for “catch-all” situations. We next look at iterative control in Python.

c03ControlStructures.indd Page 93 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 93 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

94 CHAPTER 3 Control Structures

L E T ’ S T R Y I T

From IDLE, create and run a Python program containing the code below and observe the results. Make sure
to indent the code exactly as shown.

credits 5 45

if credits .5 90:
 print('Senior')
elif credits .5 60:
 print('Junior')
elif grade .5 30:
 print('Sophomore')
elif grade .5 1:
 print('Freshman')
else:
 print('* No Earned Credits *')

If statements may contain any number of elif headers, providing for multi-way selection.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ ⎝

 3.3.4 Let’s Apply It—Number of Days in Month Program

 The following Python program (Figure 3-16) prompts the user for a given month (and year for
 February), and displays how many days are in the month. This program utilizes the following pro-
gramming features:

➤ if statement ➤ elif header

 Lines 1–4 provide the program header and program greeting. On line 7 , variable valid_input
is initialized to True for the input error-checking performed. Line 10 prompts the user for the
month, read as an integer value (1–12), and stores in variable month. On line 15 the month of
February is checked for. February is the only month that may have a different number of days—28
for a regular year, and 29 for leap years. Thus, when February (2) is entered, the user is also
prompted for the year (line 16). If the year is a leap year, then variable num_days is set to
29— otherwise, it is set to 28.

 Generally, if a year is (evenly) divisible by 4, then it is a leap year. However, there are a
couple of exceptions. If the year is divisible by 4 but is also divisible by 100, then it is not a leap
year— unless, it is also divisible by 400, then it is. For example, 1996 and 2000 were leap years, but
1900 was not. This condition is given below.

 (year % 4 5 5 0) and (not (year % 100 5 5 0) or (year % 400 5 5 0))

 Thus, the conditions for which this Boolean expression is true are,

 (year % 4 5 5 0) and not (year % 100 5 5 0)

 and

 (year % 4 5 5 0) and (year % 400 5 5 0)

c03ControlStructures.indd Page 94 05/11/12 5:37 PM user-019Ac03ControlStructures.indd Page 94 05/11/12 5:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.3 Selection Control 95

FIGURE 3-16 Number of Days in Month Program

c03ControlStructures.indd Page 95 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 95 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

96 CHAPTER 3 Control Structures

 3.4 Iterative Control

 An iterative control statement is a control statement providing the repeated execution of a set
of instructions. An iterative control structure is a set of instructions and the iterative control
statement(s) controlling their execution. Because of their repeated execution, iterative control
structures are commonly referred to as “loops.” We look at one specifi c iterative control state-
ment next, the while statement.

An iterative control statement is a control statement that allows for the repeated execution of a
set of statements.

 Line 24 checks if month is equal to 1, 3, 5, 7, 8, 10, or 12. If true, then num_days is assigned to
31. If not true, line 28 checks if month is equal to 4, 6, 9, or 11 (all the remaining months except
February). If true, then num_days is assigned to 30. If not true, then an invalid month (number)
was entered, and valid_input is set to False. Finally, the number of days in the month is dis-
played only if the input is valid (line 38).

 Self-Test Questions

 1. All if statements must contain either an else or elif header. (TRUE/FALSE)

 2. A compound statement is,
 (a) A statement that spans more than one line
 (b) A statement that contains other statements
 (c) A statement that contains at least one arithmetic expression

 3. Which of the following statements are true regarding headers in Python?
 (a) Headers begin with a keyword and end with a colon.
 (b) Headers always occur in pairs.
 (c) All headers of the same compound statement must be indented the same amount.

 4. Which of the following statements is true?
 (a) Statements within a suite can be indented a different amount.
 (b) Statements within a suite can be indented a different amount as long as all headers in the

statement that it occurs in are indented the same amount.
 (c) All headers must be indented the same amount as all other headers in the same statement,

and all statements in a given suite must be indented the same amount.

 5. The elif header allows for,
 (a) Multi-way selection that cannot be accomplished otherwise
 (b) Multi-way selection as a single if statement
 (c) The use of a “catch-all” case in multi-way selection

 ANSWERS: 1. False, 2. (b), 3. (a) (c), 4. (c), 5. (b)

c03ControlStructures.indd Page 96 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 96 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.4 Iterative Control 97

 3.4.1 While Statement

 A while statement is an iterative control statement that repeatedly executes a set of statements
based on a provided Boolean expression (condition). All iterative control needed in a program can
be achieved by use of the while statement. Figure 3-17 contains an example of a while loop in
 Python that sums the fi rst n integers, for a given (positive) value n entered by the user.

 As long as the condition of a while statement is true, the statements within the loop are (re)executed.
Once the condition becomes false, the iteration terminates and control continues with the fi rst state-
ment after the while loop. Note that it is possible that the fi rst time a loop is reached, the condition
may be false, and therefore the loop would never be executed.

 Suppose, for the example in the fi gure, that the user enters the value 3. Since variable current
is initialized to 1 (referred to as a counter variable), the fi rst time the while statement is reached,
 current , 5 3 is true. Thus, the statements within the loop are executed and sum is u pdated to
sum 1 current. Since sum is initialized to 0, sum becomes 1. Similarly, current is updated and
assigned to 2. After the fi rst time through the loop, control returns to the “top” of the loop. The condi-
tion is again found to be true and thus the loop is executed a second time. In this iteration, both sum
and current become 3. In the next iteration, the condition is still true, and therefore, the loop is
executed a third time. This time, sum becomes 6 and current becomes 4. Thus, when control
 returns to the top of the loop, the condition is False and the loop terminates. The fi nal value of sum
therefore is 6(1 1 2 1 3). This process is summarized in Figure 3-18.

FIGURE 3-17 The while Statement in Python

FIGURE 3-18 Iterative Steps for Adding First Three Integers

A while statement is an iterative control statement that repeatedly executes a set of statements
based on a provided Boolean expression.

c03ControlStructures.indd Page 97 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 97 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

98 CHAPTER 3 Control Structures

FIGURE 3-19 Temperature Conversion Program (Invalid Input Checking)

 The difference in this program from the previous version is that rather than terminating on invalid
input, the program continues to prompt the user until a valid temperature conversion, 'F' or 'C',
is entered. Thus, the associated input statement is contained within a while loop that keeps iterat-
ing as long as variable which contains an invalid value. Once the user enters a proper value, the
loop terminates allowing the program to continue.

L E T ’ S T R Y I T

In IDLE, create and run a simple program containing the code below and observe the results. Make sure to
indent the code exactly as shown.

n 5 10
sum 5 0
current 5 1

while current <5 n:
 sum 5 sum 1 current
 current 5 current 1 1

print(sum)

???

n 5 10
sum 5 0
current 5 1

while current <5 n:
 sum 5 sum 1 current
 current 5 current 1 1

 print(sum)

???

The while statement is well suited for input error checking.

 3.4.2 Input Error Checking

 The while statement is well suited for input error checking in a program. This is demonstrated in the
revised version of the temperature conversion program from Figure 3-14, reproduced in Figure 3-19.

c03ControlStructures.indd Page 98 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 98 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.4 Iterative Control 99

 3.4.3 Infinite loops

 An infi nite loop is an iterative control structure that never terminates (or eventually terminates
with a system error). Infi nite loops are generally the result of programming errors. For example,
if the condition of a while loop can never be false, an infi nite loop will result when executed.
Consider if the program segment in Figure 3-17, reproduced in Figure 3-20, omitted the statement
incrementing variable current. Since current is initialized to 1, it would remain 1 in all
 iterations, causing the expression current , 5 n to be always be true. Thus, the loop would
never terminate.

FIGURE 3-20 Infi nite Loop

 Such infi nite loops can cause a program to “hang,” that is, to be unresponsive to the user. In such
cases, the program must be terminated by use of some special keyboard input (such as ctrl-C) to
interrupt the execution.

L E T ’ S T R Y I T

From IDLE, create and run a simple program containing the code below and observe the results. Make sure
to indent the code exactly as shown. To terminate an executing loop, hit ctrl-C.

while True:
 print ('Looping')

???

n 5 10
sum 5 0
current 5 1

while current ,5 n:
 sum 5 sum 1 current

print(sum)

???

n 5 10
sum 5 0
current 5 1

while current ,5 n:
 sum 5 sum 1 current
 n 5 n 2 1

print(sum)

???

An infi nite loop is an iterative control structure that never terminates (or eventually terminates
with a system error).

c03ControlStructures.indd Page 99 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 99 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

100 CHAPTER 3 Control Structures

 3.4.4 Definite vs. Indefinite Loops

 A defi nite loop is a program loop in which the number of times the loop will iterate can be determined
before the loop is executed. For example, the while loop introduced in Figure 3-17 is a defi nite loop,

 sum 5 0

 current 5 1

 n 5 input('Enter value: ')

 while current , 5 n:

 sum 5 sum 1 current

 current 5 current 1 1

 Although it is not known what the value of n will be until the input statement is executed, its value
 is known by the time the while loop is reached. Thus, it will execute “n times.”

 An indefi nite loop is a program loop in which the number of times that the loop will iterate
cannot be determined before the loop is executed. Consider the while loop in the temperature con-
version program of Figure 3-19.

 which 5 input("Enter selection: ")

 while which ! 5 'F' and which ! 5 'C':

 which 5 input("Please enter 'F' or 'C': ")

 In this case, the number of times that the loop will be executed depends on how many times the user
mistypes the input. Thus, a while statement can be used to construct both defi nite and indefi nite
loops. In the next chapter we look at the for statement, specifi cally suited for the construction of
defi nite loops.

A defi nite loop is a program loop in which the number of times the loop will iterate can be
 determined before the loop is executed. A indefi nite loop is a program loop in which the number
of times the loop will iterate is not known before the loop is executed.

 3.4.5 Boolean Flags and Indefinite Loops

 Often the condition of a given while loop is denoted by a single Boolean variable, called a Boolean
fl ag . This is shown in Figure 3-21.

 Boolean variable valid_entries is a Boolean fl ag, controlling the while loop at line 12 .
If the mileage of the last oil change is greater than the current mileage, an error message is displayed
(lines 17–18), and the while loop is re-executed. If the current mileage is greater than (or equal to)
the mileage of the last oil change, miles_traveled is set to this difference and valid_
entries is set to True, causing the loop to terminate. Thus, lines 23–28 display either that they
are due for an oil change, an oil change will soon be needed, or there is no immediate need for an oil
change.

A single Boolean variable used as the condition of a given control statement is called a
 Boolean fl ag.

c03ControlStructures.indd Page 100 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 100 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.4 Iterative Control 101

FIGURE 3-21 Indefi nite Loop Using a Boolean Flag

 3.4.6 Let’s Apply It—Coin Change Exercise Program

 The Python program in Figure 3-22 implements an exercise for children learning to count change.
It displays a random value between 1 and 99 cents, and asks the user to enter a set of coins that sums
exactly to the amount shown. The program utilizes the following programming features:

➤ while loop ➤ if statement ➤ Boolean fl ag
➤ random number generator

 On line 3 , the random module is imported for use of function randint. This function is called
(on line 18) to randomly generate a coin value for the user to match, stored in variable amount.
 Lines 6–10 provide the program greeting. On line 13 variable terminate is initialized to False,
used to control when the main loop (and thus the program) terminates. On line 14 , empty_str is
initialized to the empty string literal '', used to determine when the user has entered an empty line
to end the coin entries. These two variables need only be initialized once, and therefore are assigned
before the main while loop.

 The game begins on line 17 . Since Boolean fl ag terminate is initialized to False, the
while loop is executed. Besides variable amount, game_over is initialized to False, and
total is initialized to 0. Variable game_over serves as another Boolean fl ag to determine if the
current game is to continue or not. The coin entry ends if either the user enters a blank line (indicat-
ing that they are done entering coins) in which case the result is displayed and game_over is set
to True (line 37–43), or if the total amount accumulated exceeds the total amount to be matched
(on line 45–48).

 At the top of the while loop, a third Boolean fl ag is used, valid_entry. The value of this
fl ag determines whether the user should be prompted again because of an invalid input—a value

c03ControlStructures.indd Page 101 05/11/12 5:37 PM user-019Ac03ControlStructures.indd Page 101 05/11/12 5:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

102 CHAPTER 3 Control Structures

FIGURE 3-22 Coin Change Exercise Program (Continued)

other than '1', '5', '10', or '25', or the empty string. Note the use of the membership
operator in (line 32). Thus, once the user inputs an appropriate value, valid_entry is set to
True (line 33)—otherwise, the message 'Invalid entry' is displayed and valid_entry
 remains False, causing the loop to execute again. The list of valid entered values on line 32
 includes variable empty_str since this is the value input when the user hits return to terminate
their entry of coin values. When the empty string is found (line 37), the total coin value entered
in variable total is compared with variable amount (the amount to be matched). If equal, the
message 'Correct!' is displayed (line 39)—otherwise, a message is displayed indicating how
much they entered. This amount is always less than the required amount, since whenever variable
total exceeds amount, the current game ends (lines 46–48).

c03ControlStructures.indd Page 102 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 102 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.4 Iterative Control 103

FIGURE 3-22 Coin Change Exercise Program

c03ControlStructures.indd Page 103 16/10/12 10:08 AM user-019Ac03ControlStructures.indd Page 103 16/10/12 10:08 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

104 CHAPTER 3 Control Structures

 When line 50 is reached, Boolean fl ag game_over may be either True or False. It is True
when the user has indicated that they have entered all their coin values (by hitting return), or if the
total of the coin values entered exceeds the value in variable amount—it is False otherwise.
Therefore, fl ag variable game_over is used to determine whether the user should be prompted to
play another game (line 51). If they choose to quit the program when prompted, then Boolean vari-
able terminate is set to True. This causes the encompassing while loop at line 17 to terminate,
leaving only the fi nal “goodbye” message on line 56 to be executed before the program terminates.

 Self-Test Questions

 1. A while loop continues to iterate until its condition becomes false. TRUE/FALSE

 2. A while loop executes zero or more times. TRUE/FALSE

 3. All iteration can be achieved by a while loop. TRUE/FALSE

 4. An infi nite loop is an iterative control structures that,
 (a) Loops forever and must be forced to terminate
 (b) Loops until the program terminates with a system error
 (c) Both of the above

 5. The terms defi nite loop and indefi nite loop are used to indicate whether,
 (a) A given loop executes at least once
 (b) The number of times that a loop is executed can be determined before the loop is executed.
 (c) Both of the above

 6. A Boolean fl ag is,
 (a) A variable
 (b) Has the value True or False
 (c) Is used as a condition for control statements
 (d) All of the above

 ANSWERS: 1. True, 2. True, 3. True, 4. (c), 5. (b), 6. (d)

 COMPUTATIONAL PROBLEM SOLVING

 3.5 Calendar Month Program

 3.5.1 The Problem

 The problem is to display a calendar month for any
given month between January 1800 and December
2099. The format of the month should be as shown in
Figure 3-23.

 3.5.2 Problem Analysis

 Two specifi c algorithms are needed for this problem.
First, we need an algorithm for computing the fi rst day
of a given month for years 1800 through 2099. This algorithm is given in Chapter 1. The second
needed algorithm is for appropriately displaying the calendar month, given the day of the week that

FIGURE 3-23 Calendar Month Display

c03ControlStructures.indd Page 104 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 104 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 105

the fi rst day falls on, and the number of days in the month. We shall develop this algorithm. The data
representation issues for this problem are straight forward.

 3.5.3 Program Design

 Meeting the Program Requirements

 We will develop and implement an algorithm that displays the month as given. There is no require-
ment of how the month and year are to be entered. We shall therefore request the user to enter the
month and year as integer values, with appropriate input error checking.

 Data Description

 What needs to be represented in the program is the month and year entered, whether the year is a
leap year or not, the number of days in the month, and which day the fi rst of the month falls on.
Given that information, the calendar month can be displayed. The year and month will be entered
and stored as integer values, represented by variables year and month,

 year 5 2012 month 5 5

 The remaining values will be computed by the program based on the given year and month, as given
below,

 leap_year num_days_in_month day_of_week

 Variable leap_year holds a Boolean (True/False) value. Variables num_days_in_month
and day_of_week each hold integer values.

 Algorithmic Approach

 First, we need an algorithm for determining the day of the week that a given date falls on. The algo-
rithm for this from Chapter 1 is reproduced in Figure 3-24.

 We also need to determine how many days are in a given month, which relies on an algorithm
for determining leap years for the month of February. The code for this has already been developed
in the “Number of Days in Month” program in section 3.3.4. We shall also reuse the portion of code
from that program for determining leap years, reproduced below.

 if (year % 4 5 5 0) and (not (year % 100 5 5 0) or year % 400):

 leap_year 5 True

 else:

 leap_Year 5 False

 Let’s review how this algorithm works, and try to determine the day of the week on which May 24,
2025 falls. First, variable century_digits (holding the fi rst two digits of the year) is set to 20
and year_digits (holding the last two digits of the year) is set to 25 (steps 1 and 2). Variable
value, in step 3 , is then set to

 value 5 year_digits 1 fl oor(year_digits / 4)

 5 25 1 fl oor(25/4) ➝ 25 1 fl oor(6.25) ➝ 25 1 6 ➝ 31

c03ControlStructures.indd Page 105 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 105 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

106 CHAPTER 3 Control Structures

FIGURE 3-24 Day of the Week Algorithm (from Chapter 1)

 In step 4 , since century_digits is equal to 20, value is incremented by 6,

 value 5 value 1 6 ➝ 31 1 6 ➝ 37

 In step 5 , since the month is equal to May, value is incremented by 2,

 value 5 value 1 2 ➝ 37 1 2 ➝ 39

 In step 6 , value is updated based on the day of the month. Since we want to determine the day of
the week for the 24th (of May), value is updated as follows,

 value 5 (value 1 day of the month) mod 7

 5 (39 1 24) mod 7

 5 63 mod 7

 5 0

 Therefore, by step 7 of the algorithm, the day of the week for May 24, 2025 is a Saturday. A table
for the interpretation of the day of the week for the fi nal computed value is given in Figure 3-25.

c03ControlStructures.indd Page 106 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 106 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 107

FIGURE 3-25 Interpretation of the Day of the Week Algorithm Results

 Overall Program Steps

 The overall steps in this program design are given in Figure 3-26.

 3.5.4 Program Implementation and Testing

 Stage 1—Determining the Number of Days in the Month/Leap Years

 We develop and test the program in three stages. First, we implement and test the code that deter-
mines, for a given month and year, the number of days in the month and whether the year is a leap
year or not, given in Figure 3-27.

FIGURE 3-26 Overall Steps of Calendar
Month Program

c03ControlStructures.indd Page 107 25/10/12 11:39 AM user-019Ac03ControlStructures.indd Page 107 25/10/12 11:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

108 CHAPTER 3 Control Structures

 The month and year entered by the user are stored in variables month and year. While loops are used
at lines 16 and 21 to perform input error checking. Lines 25–28 are adapted from the previous Number
of Days in Month program for determining leap years. Lines 31–38 are similar to the previous program
for determining the number of days in a month, stored in variable num_days_in_month. Lines 42–
45 contain added code for the purpose of testing. These instructions will not be part of the fi nal program.
The program continues to prompt for another month until 2 1 is entered. Thus, Boolean fl ag termi-
nate is initialized to False (line 4) and set to True (line 14) when the program is to terminate.

 Stage 1 Testing

 We give output from the testing of this version of the program in Figure 3-28.

FIGURE 3-27 First Stage of Calendar Month Program

c03ControlStructures.indd Page 108 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 108 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 109

FIGURE 3-28 Example Output of First Stage Testing

 The set of test cases for this stage of the program is given in Figure 3-29. The test cases are selected
such that each month is tested within the 1800s, 1900s, and 2000s. The month of February has a
number of test cases to ensure that the program is working for non-leap years (1985), “typical” leap
years (1984), and exception years (1900 and 2000). The test plan also includes the “extreme” cases
of January 1800 and December 2099 (the beginning and end of the range of valid months). All test
cases are shown to have passed, and thus we can move on to stage 2 of the program development.

 Stage 2—Determining the Day of the Week

 We give the next stage of the program in Figure 3-30. This version includes the code for determining
the day of the week for the fi rst day of a given month and year (lines 40–71), with the fi nal print
statement (line 74) displaying the test results. Note that for testing purposes, there is no need to
convert the day number into the actual name (e.g., “Monday”)—this “raw output” is good enough.
Also, for this program, we will need to determine only the day of the week for the fi rst day of any

FIGURE 3-29 Results of Execution of Test Plan for Stage 1

c03ControlStructures.indd Page 109 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 109 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

110 CHAPTER 3 Control Structures

FIGURE 3-30 Second Stage of Calendar Month Program (Continued)

given month, since all remaining days follow sequentially. Therefore, the day value in the day of the
week algorithm part of the code is hard-coded to 1 (on line 71). Let’s look at the code that imple-
ments the day of the week algorithm.

 The algorithm operates separately on the fi rst two digits and last two digits of the year. On
 line 41 , integer division is used to extract the fi rst two digits of the year (for example, 1860 // 100

c03ControlStructures.indd Page 110 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 110 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 111

FIGURE 3-31 Example Output of Second Stage Testing

FIGURE 3-30 Second Stage of Calendar Month Program

 Figure 3-32 shows the results of the execution of the test plan for this version of the program. It
 includes the same months as in the test plan for the fi rst stage.

 Since all test cases passed, we can move on to the fi nal stage of program development.

 Final Stage—Displaying the Calendar Month

 In the fi nal stage of the program (Figure 3-33), we add the code for displaying the calendar month.
 The corresponding name for the month number is determined on lines 74–97 and displayed

(line 100). The while loop at line 113 moves the cursor to the proper starting column by “printing”

equals 18). On line 42 , the modulus operator, %, is used to extract the last two digits (for example,
1860 % 100 equals 60). The rest of the program (through line 71) follows the day of the week algo-
rithm given above.

 Stage 2 Testing

 We give a sample test run of this version of the program in Figure 3-31.

c03ControlStructures.indd Page 111 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 111 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

112 CHAPTER 3 Control Structures

FIGURE 3-33 Final Stage of Calendar Month Program (Continued)

FIGURE 3-32 Results of Execution of Test Plan for Stage 2

c03ControlStructures.indd Page 112 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 112 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 113

the column_width number of blank characters (4) for each column to be skipped. The while loop
at line 119 displays the dates. Single-digit dates are output (line 121) with three leading spaces, and
two-digit dates with two (line 123) so that the columns line up. Each uses the newline suppression
form of print , print(..., end 5 '') to prevent the cursor from moving to the next screen line
until it is time to do so.

 Variable current_day is incremented from 1 to the number of days in the month. Variable
current_col is also incremented by 1 to keep track of what column the current date is being

FIGURE 3-33 Final Stage of Calendar Month Program (Continued)

c03ControlStructures.indd Page 113 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 113 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

114 CHAPTER 3 Control Structures

FIGURE 3-33 Final Stage of Calendar Month Program

c03ControlStructures.indd Page 114 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 114 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

3.5 Calendar Month Program 115

displayed in. When current_col equals 7, it is reset to 1 (line 128) and print() moves the
cursor to the start of the next line (line 129). Otherwise, current_col is simply incremented by
1 (line 126).

 An example test run of this fi nal version of the program is given in Figure 3-34.

FIGURE 3-34 Example Output of Final Stage Testing

 Something is obviously wrong . The calendar month is displayed with eight columns instead of
seven. The testing of all other months produces the same results. Since the fi rst two stages of the
program were successfully tested, the problem must be in the code added in the fi nal stage. The
code at line 74 simply assigns the month name. Therefore, we refl ect on the logic of the code start-
ing on line 103 .

 Lines 128–129 is where the column is reset back to column 1 and a new screen line is started,
based on the current value of variable current_col,

 if current_col , 5 7:

 current_col 5 current_col 1 1

 else:

 current_col 5 1

 print()

 Variable current_col is initialized to 1 at line 108 , and is advanced to the proper starting col-
umn on lines 113–115 . Variable starting_col is set to the value (0-6) for the day of the week
for the particular month being displayed. Since the day of the week results have been successfully
tested, we can assume that current_col will have a value between 0 and 6. With that assump-
tion, we can step though lines 125–129 and see if this is where the problem is. Stepping through a
program on paper by tracking the values of variables is referred to as deskchecking . We check what
happens as the value of current_col approaches 7, as shown in Figure 3-35.

 Now it is clear what the problem is—the classic “off by one” error ! The condition of the
while loop should be current_col , 7, not current_col , 5 7. Current_col should
be reset to 1 once the seventh column has been displayed (when current_col is 7). Using the

c03ControlStructures.indd Page 115 16/10/12 10:09 AM user-019Ac03ControlStructures.indd Page 115 16/10/12 10:09 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

116 CHAPTER 3 Control Structures

FIGURE 3-35 Deskchecking the Value of Variable current_col

FIGURE 3-36 Display Output of Final Stage of Calendar Month Program

 , 5 operator causes current_col to be reset to 1 only after an eighth column is displayed.
Thus, we make this correction in the program,

 if current_col , 7:

 current_col 5 current_col 1 1

 else:

 current_col 5 1

 print()

 After re-executing the program with this correction we get the current output, depicted in Figure 3-36.

 Although the column error has been corrected, we fi nd that the fi rst of the month appears under the
wrong column—the month should start on a Wednesday (fourth column), not a Thursday column
(fi fth column). The problem must be in how the fi rst row of the month is displayed. Other months
are tested, each found to be off by one day. We therefore look at lines 113–115 that are responsible
for moving over the cursor to the correct starting column,

 while current_col , 5 starting_col:

 print(blank_column, end 5 '')

 current_col 5 current_col 1 1

c03ControlStructures.indd Page 116 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 116 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FIGURE 3-37 Results of Execution of Test Plan for Final Stage

 General Topics

 Control Statement/Control Structure
 Sequential, Selection, and Iterative Control
 Relational Operators/Boolean Operators/
 Boolean Expressions
 Operator Precedence and Boolean Expressions
 Logically Equivalent Boolean Expressions
 Short-Circuit (Lazy) Evaluation
 Selection Control Statements/if Statement
 Compound Statement
 Multi-way Selection
 While Statements

 Input Error Checking
 Infi nite Loops
 Defi nite vs. Indefi nite Loops
 Boolean Flags and Indefi nite Loops
 Deskchecking

 Python-Specifi c Programming Topics

 Membership Operators in, not in
 if Statement in Python/else and elif headers
 Indentation in Python
 Multi-way Selection in Python
 while Statement in Python

 C H A P T E R S U M M A R Y

 We consider whether there is another “off by one” error. Reconsidering the condition of the while
loop, we realize that, in fact, this is the error. If the correct starting column is 4 (Wednesday), then
the cursor should move past three columns and place a 1 in the fourth column. The current condition,
however, would move the cursor past four columns, thus placing a 1 in the fi fth column (Thursday).
The corrected code is given below.

 while current_col , starting_col:

 print(' ', end 5 '')

 current_col 5 current_col 1 1

 The month is now correctly displayed. We complete the testing by executing the program on a set of
test cases (Figure 3-37). Although the test plan is not as complete as it could be, it includes test cases
for months from each century, including both leap years and non-leap years.

Chapter Summary 117

c03ControlStructures.indd Page 117 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 117 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

118 CHAPTER 3 Control Structures

 C H A P T E R E X E R C I S E S

 Section 3.1

 1. Which of the three forms of control is an implicit form of control?

 2. What is meant by a “straight-line” program?

 3. What is the difference between a control statement and a control structure?

 Section 3.2

 4. The Boolean data type contains two literal values, denoted as ________________ and ________________
in Python.

 5. Which of the following relational expressions evaluate to True?
 (a) 5 , 8 (c) '10' , '8'

 (b) '5' , '8' (d) 'Jake' , 'Brian'

 6. Which of the following relational expressions evaluate to False?
 (a) 5 , 5 5 (c) 5 5 5 5 (e) 5 ! 5 10
 (b) 5 . 5 5 (d) 5 ! 5 5

 7. Give an appropriate expression for each of the following.
 (a) To determine if the number 24 does not appear in a given list of numbers assigned to variable nums.
 (b) To determine if the name 'Ellen' appears in a list of names assigned to variable names.
 (c) To determine if a single last name stored in variable last_name is either 'Morris' or

 'Morrison'.

 8. Evaluate the following Python expressions.
 (a) (12 * 2) 5 5 (3 * 8)
 (b) (14 * 2) ! 5 (3 * 8)

 9. What value for x makes each of the following Boolean expressions true?
 (a) x or False
 (b) x and True
 (c) not (x or False)
 (d) not (x and True)

 10. Evaluate the Boolean expressions below for n 5 10 and k 5 20.
 (a) (n . 10) and (k 5 5 20)
 (b) (n . 10) or (k 5 5 20)
 (c) not((n . 10) and (k 5 5 20))
 (d) not(n . 10) and not(k 5 5 20)
 (e) (n . 10) or (k 5 5 10 or k ! 5 5)

 11. Give an appropriate Boolean expression for each of the following.
 (a) Determine if variable num is greater than or equal to 0, and less than 100.
 (b) Determine if variable num is less than 100 and greater than or equal to 0, or it is equal to 200.
 (c) Determine if either the name 'Thompson' or 'Wu' appears in a list of names assigned to variable

last_names.
 (d) Determine if the name 'Thomson' appears and the name 'Wu' does not appear in a list of last

names assigned to variable last_names.

 12. Evaluate the following Boolean expressions for num1 5 10 and num2 5 20.
 (a) not (num1 , 1) and num2 , 10
 (b) not (num1 , 1) and num2 , 10 or num1 1 num3 , 100

c03ControlStructures.indd Page 118 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 118 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 119

 13. Give a logically equivalent expression for each of the following.
 (a) num ! 5 25 or num 5 5 0
 (b) 1 , 5 num and num , 5 50
 (c) not num . 100 and not num , 0
 (d) (num , 0 or num . 100)

 Section 3.3

 14. Give an appropriate if statement for each of the following.
 (a) An if statement that displays 'within range' if num is between 0 and 100, inclusive.
 (b) An if statement that displays 'within range' if num is between 0 and 100, inclusive, and dis-

plays 'out of range' otherwise.

 15. Rewrite the following if-else statements using a single if statement and elif headers.

 if temperature . 5 85 and humidity . 60:

 print('muggy day today')

 else:

 if temperature . 5 85:

 print('warm, but not muggy today')

 else:

 if temperature . 5 65:

 print('pleasant today')

 else:

 if temperature , 5 45:

 print('cold today')

 else:

 print('cool today')

 16. Regarding proper indentation,
 (a) Explain the change in indentation needed in order for the following code to be syntactically correct.
 (b) Indicate other changes in the indentation of the code that is not strictly needed, but would make the

code more readable.

 if level , 5 1:

 print('Value is well within range')

 print('Recheck in one year')

 elif level , 5 2:

 print('Value is within range')

 print('Recheck within one month')

 elif level , 5 3:

 print('Value is slightly high)

 print('Recheck in one week')

 elif level , 5 4:

 print('Value abnormally high')

 print('Shut down system immediately')

 Section 3.4

 17. Write a program segment that uses a while loop to add up all the even numbers between 100 and 200,
inclusive.

c03ControlStructures.indd Page 119 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 119 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

120 CHAPTER 3 Control Structures

 18. The following while loop is meant to multiply a series of integers input by the user, until a sentinel value
of 0 is entered. Indicate any errors in the code given.

 product 5 1

 num 5 input('Enter fi rst number: ')

 while num ! 5 0:

 num 5 input('Enter fi rst number: ')

 product 5 product * num

 print('product 5 ', product)

 19. For each of the following, indicate which is a defi nite loop, and which is an indefi nite loop.
 (a) num 5 input('Enter a non-zero value: ')

 while num 5 5 0:

 num 5 input('Enter a non-zero value: ')

 (b) num 5 0

 while n , 10:

 print 2 ** n

 n 5 n 1 1

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python program in which the user enters either 'A', 'B', or 'C'. If 'A' is entered, the pro-
gram should display the word 'Apple'; if 'B' is entered, it displays 'Banana'; and if 'C' is entered,
it displays 'Coconut'. Use nested if statements for this as depicted in Figure 3-13.

 P2. Repeat question P1 using an if statement with elif headers instead.

 P3. Write a Python program in which a student enters the number of college credits earned. If the number of
credits is greater than 90, 'Senior Status' is displayed; if greater than 60, 'Junior Status' is
displayed; if greater than 30, 'Sophomore Status' is displayed; else, 'Freshman Status' is
displayed.

 P4. Write a program that sums a series of (positive) integers entered by the user, excluding all numbers that
are greater than 100.

 P5. Write a program, in which the user can enter any number of positive and negative integer values, that
displays the number of positive values entered, as well as the number of negative values.

 P6. Write a program containing a pair of nested while loops that displays the integer values 1–100, ten num-
bers per row, with the columns aligned as shown below,

 1 2 3 4 5 6 7 8 9 10

 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30

 .

 .

 91 92 93 94 95 96 97 98 99 100

 P7. Display the integer values 1–100 as given in question P6 using only one while loop.

c03ControlStructures.indd Page 120 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 120 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Modifi cation Problems 121

 M9. Calendar Month Program: User Entry of Month Name
 Modify the fi nal version of the Calendar Month program to allow the user to enter a month’s name

(e.g., 'January') rather than a number (e.g., 1). Make all appropriate changes in the program as a
 result of this change.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Temperature Conversion Program: Input Error Checking
 Modify the Temperature Conversion program in Figure 3-19 to perform input error checking of entered

temperatures. On the Fahrenheit scale, absolute zero is 2 459.67. Therefore, all valid Fahrenheit tem-
peratures start at that value (with no upper limit). On the Celsius scale, absolute zero is 2 273.15. The
program should reprompt the user for any invalid entered temperatures.

 M2. Temperature Conversion Program: Addition of Kelvin Scale
 Modify the Temperature Conversion program in Figure 3-19 to add an additional option of converting to

and from degrees Kelvin. The formula for conversion to Kelvin (K) from Celsius (C) is K 5 C 1 273.15.

 M3. Number of Days in Month Program: Input Error Checking
 Modify the Number of Days in Month Program of section 3.3.4 so that the program prompts the user to

re-enter any month (not in the range 1–12) or year that is an invalid value.

 M4. Number of Days in Month Program: Indication of Leap Years
 Modify the Number of Days in Month program of section 3.3.4 so that the program displays, in addition

to the number of days in the month, that the year is a leap year or not as shown below.

 Enter the month (1-12): 2

Please enter the year (e.g., 2010): 2000

There are 29 days in the month (a leap year)

 M5. Oil Change Notifi cation Program: Number of Miles before Change
 Modify the Oil Change Notifi cation program in Figure 3-21 so that the program displays the number of

miles left before the next oil change, or the number of miles overdue for an oil change, as appropriate.

 M6. Coin Change Exercise Program: Addition of Half-Dollar Coins
 Modify the Coin Change Exercise program in section 3.4.6 to allow for the use of half-dollar coins. Make

all necessary changes in the program.

 M7. Coin Change Exercise Program: Raising the Challenge
 Modify the Coin Change Exercise program in section 3.4.6 so that the least possible number of coins

must be entered. For example, the least number of coins that total to 43 cents is 6 (one quarter, one dime,
one nickel, and three pennies).

 M8. Calendar Month Program: Indication of Leap Year
 Modify the fi nal version of the Calendar Month program in section 3.5 so that for leap years, the month

heading is displayed as in the following,

c03ControlStructures.indd Page 121 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 121 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

122 CHAPTER 3 Control Structures

 M10. Calendar Month Program: Day of the Week Headings
 Modify the fi nal version of the Calendar Month program in section 3.5 so that there is day heading for

each of the columns as shown below.

 M11. Sage Program Modifi cation
 Following is the output of an “all knowing” Sage program that replies with random responses to ques-

tions posed by the user. The responses generated have no meaningful connection to the questions asked.

c03ControlStructures.indd Page 122 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 122 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 123

 In the 1960s, a program called Eliza was developed that was able to behave as a psychotherapist. It did
not really understand anything, it only looked for certain words to turn the patient’s comments or ques-
tions back to the patient. For example, if a patient said, “My mom drives me crazy,” it might reply with
“Tell me more about your mom.” Modify this program so that it appears to have understanding by similar
means of word recognition as used in the Eliza program. Specifi cally, incorporate a set of “trigger” words
that, if found, causes a specifi c response to be given. For example, if the word “I” appears in the question
(for example, “Will I ever be rich?” or “Am I always going to be happy?”), the response may be “You are
in charge of your own destiny.” If the word “new” appears in the question (for example, “Will I fi nd a new
boyfriend soon?” or “Will I fi nd a new life?,” the response may be “Changes are up to you and the unpre-
dictable events in life.”

 Be creative. In order to determine if a given word (or phrase) appears in a given question, make use
of the in membership operator.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Metric Conversion
 Develop and test a Python program that converts pounds to grams, inches to centimeters, and kilometers

to miles. The program should allow conversions both ways.

 D2. Leap Years to Come
 Develop and test a Python program that displays future leap years, starting with the fi rst occurring leap

year from the current year, until a fi nal year entered by the user. (HINT: Module datetime used in the
Age in Seconds Program of Chapter 2 will be needed here.)

c03ControlStructures.indd Page 123 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 123 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

124 CHAPTER 3 Control Structures

 D3. The First-Time Home Buyer Tax Credit
 Develop and test a Python program that determines if an individual qualifi es for a government First-Time

Home Buyer Tax Credit of $8,000. The credit was only available to those that (a) bought a house that cost
less than $800,000, (b) had a combined income of under $225,000 and (c) had not owned a primary resi-
dence in the last three years.

 D4. Home Loan Amortization
 Develop and test a Python program that calculates the monthly mortgage payments for a given loan

amount, term (number of years) and range of interest rates from 3% to 18%. The fundamental formula for
determining this is A/D, where A is the original loan amount, and D is the discount factor. The discount
factor is calculated as,

D 5 ((1 1 r) n 2 1) / r(1 1 r) n

 where n is the number of total payments (12 times the number of years of the loan) and r is the interest rate,
expressed in decimal form (e.g., .05), divided by 12. A monthly payment table should be generated as shown
below,

Loan Amount: $350,000 Term: 30 years

 Interest Rate Monthly Payment

 3% 1475.61

 4% 1670.95

 5% 1878.88

 6% 2098.43

 . .

 . .

 18% 5274.80

 Check your results with an online mortgage calculator.

 D5. Life Signs
 Develop and test a program that determines how many breaths and how many heartbeats a person has had

in their life. The average respiration (breath) rate of people varies with age. Use the breath rates given
below for use in your program,

 Breaths per Minute
 Infant 25–60
 1–4 years 20–30
 5–14 years 15–25
 15–18 years 11–23

 For heart rate, use an average of 67.5 beats per second.

c03ControlStructures.indd Page 124 16/10/12 10:10 AM user-019Ac03ControlStructures.indd Page 124 16/10/12 10:10 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

125

 Lists

 In this chapter, we look at a means of structuring and accessing a collection of data. In particular,
we look at a way of organizing data in a linear sequence, generally referred to as a list.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain what a list is in programming

 ♦ Describe the typical operations performed on lists

 ♦ Explain what is meant by list traversal

 ♦ Effectively create and use lists in Python

 ♦ Explain the difference between lists and tuples in Python

 ♦ Explain what a sequence is in Python

 ♦ Describe the sequence operations common to lists, tuples, and strings in Python

 ♦ Effectively use nested lists and tuples in Python

 ♦ Effectively iterate over lists (sequences) in Python

 ♦ Effectively use for statements for iterative control in Python

 ♦ Use the range function in Python

 ♦ Explain how list representation relates to list assignment in Python

 ♦ Effectively use list comprehensions in Python

 ♦ Write Python programs using sequences

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 4.1 List Structures

 4.2 Lists (Sequences) in Python

 CHAPTER 4

c04Lists.indd Page 125 16/10/12 10:55 AM user-019Ac04Lists.indd Page 125 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

126 CHAPTER 4 Lists

 4.3 Iterating Over Lists (Sequences) in Python

 4.4 More on Python Lists

 Computational Problem Solving

 4.5 Calendar Year Program

 MOTIVATION

 The way that data is organized has a signifi cant impact on how effec-
tively it can be used. One of the most obvious and useful ways to
 organize data is as a list. We use lists in our everyday lives—we make
shopping lists, to-do lists, and mental checklists. Various forms of
lists are provided by programming languages, differing in the ele-
ments they can store (mixed type?), their size (variable size?), whether
they can be altered (mutable?), and the operations that can be per-
formed on them (see Figure 4-1).

 Lists also occur in nature. Our DNA is essentially a long list
of molecules in the form of a double helix, found in the nucleus of
all human cells and all living organisms. Its purpose is also to store
 information—specifi cally, the instructions that are used to construct
all other cells in the body—that we call genes . Given the 2.85 billion nucleotides that make up the
human genome, determining their sequencing (and thus understanding our genetic makeup) is
fundamentally a computational problem.

 In this chapter, we look at the use of lists and other sequences in Python.

 F IGURE 4- 1 List Properties and Common Operations

c04Lists.indd Page 126 16/10/12 10:55 AM user-019Ac04Lists.indd Page 126 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.1 List Structures 127

 FUNDAMENTAL CONCEPTS

 4.1 List Structures

 In this section we introduce the use of lists in programming. The concept of a list is similar to our
everyday notion of a list. We read off (access) items on our to-do list, add items, cross off (delete)
items, and so forth. We look at the use of lists next.

 4.1.1 What Is a List?

 A list is a linear data structure , meaning that its elements have a linear ordering. That is, there
is a fi rst element, a second element, and so on. Figure 4-2 depicts a list storing the average
temperature for each day of a given week, in which each item in the list is identifi ed by its index
 value .

 The location at index 0 stores the temperature for Sunday, the location at index 1 stores the
 temperature for Monday, and so on. It is customary in programming languages to begin number-
ing sequences of items with an index value of 0 rather than 1. This is referred to as zero-based
indexing . This is important to keep in mind to avoid any “off by one” errors in programs, as we
shall see. We next look at some common operations performed on lists.

 A list is a linear data structure, thus its elements have a linear ordering.

 F IGURE 4-2
Indexed Data
Structure daily_temperatures

 4.1.2 Common List Operations

 Operations commonly performed on lists include retrieve, update, insert, delete (remove) and
append. Figure 4-3 depicts these operations on a list of integers.

c04Lists.indd Page 127 16/10/12 10:55 AM user-019Ac04Lists.indd Page 127 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

128 CHAPTER 4 Lists

 FIGURE 4-3 Common List Operations

 The operation depicted in (a) retrieves elements of a list by index value. Thus, the value 50 is
 retrieved at index 4 (the fi fth item in the list). The replace operation in (b) updates the current
value at index 4, 50, with 55. The insert operation in (c) inserts the new value 25 at index 2, thus
shifting down all elements below that point and lengthening the list by one. In (d), the remove
operation deletes the element at index 6, thus shifting up all elements below that point and
 shortening the list by one. Finally, the append operation in (e) adds a new value, 80, to the end
of the list. In the following sections we will see how these operations are accomplished in
 Python. First, we look at what is called list traversal , a way of accessing each of the elements
of a given list.

 Operations commonly performed on lists include retrieve, update, insert, remove, and append.

 4.1.3 List Traversal

 A list traversal is a means of accessing, one-by-one, the elements of a list. For example, to add up
all the elements in a list of integers, each element can be accessed one-by-one, starting with the fi rst,
and ending with the last element. Similarly, the list could be traversed starting with the last element

c04Lists.indd Page 128 16/10/12 10:55 AM user-019Ac04Lists.indd Page 128 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.1 List Structures 129

 Self-Test Questions

 1. What would be the range of index values for a list of 10 elements?
 (a) 0–9 (b) 0–10 (c) 1–10

 2. Which one of the following is NOT a common operation on lists?
 (a) access (b) replace (c) interleave (d) append (e) insert
 (f) delete

 3. Which of the following would be the resulting list after inserting the value 50 at index 2?

 A list traversal is a means of accessing, one-by-one, the elements of a list.

 ANSWERS: 1. a, 2. c, 3. b

 0: 35
 1: 15
 2: 45
 3: 28

 0: 35
 1: 50
 2: 15
 3: 45
 4: 28

 0: 35
 1: 15
 2: 50
 3: 45
 4: 28

 0: 50
 1: 35
 2: 15
 3: 45
 4: 28

(a) (c)(b)

and ending with the fi rst. To fi nd a particular value in a list also requires traversal. We depict the
tasks of summing and searching a list in Figure 4-4.

 FIGURE 4-4 List Traversal

c04Lists.indd Page 129 16/10/12 10:55 AM user-019Ac04Lists.indd Page 129 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

130 CHAPTER 4 Lists

 For longer lists, we would want to have a more concise way of traversing the elements. We discuss
this below. Elements of a list can be updated (replaced) or deleted (removed) as follows (for lst 5
[1, 2, 3]),

lst[2] 5 4

del lst[2]

 [1, 2, 4] replacement of 3 with 4 at index 2
 [1, 2] removal of 4 at index 2

 4.2 Lists (Sequences) in Python

 Next, we look at lists (and other sequence types) in Python.

 4.2.1 Python List Type

 A list in Python is a mutable, linear data structure of variable length, allowing mixed-type
 elements. Mutable means that the contents of the list may be altered. Lists in Python use zero-
based indexing. Thus, all lists have index values 0 ... n-1, where n is the number of elements
in the list. Lists are denoted by a comma-separated list of elements within square brackets as
shown below,

 [1, 2, 3] ['one', 'two', 'three'] ['apples', 50, True]

 An empty list is denoted by an empty pair of square brackets, []. (We shall later see the useful-
ness of the empty list.) Elements of a list are accessed by using an index value within square
brackets,

lst 5 [1, 2, 3] lst[0] ➝ 1 access of fi rst element
 lst[1] ➝ 2 access of second element
 lst[2] ➝ 3 access of third element

 Thus, for example, the following prints the fi rst element of list lst,

 print(lst[0])

 The elements in list lst can be summed as follows,

 sum 5 lst[0] 1 lst[1] 1 lst[2]

 Methods insert and append also provide a means of altering a list,

 lst.insert(1, 3) [1, 3, 2] insertion of 3 at index 1
 lst.append(4) [1, 3, 2, 4] appending of 4 to end of list

 In addition, methods sort and reverse reorder the elements of a given list. These list modifying
 operations are summarized in Figure 4-5.

c04Lists.indd Page 130 16/10/12 10:55 AM user-019Ac04Lists.indd Page 130 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.2 Lists (Sequences) in Python 131

 FIGURE 4-5 List Modifi cation Operations in Python

 Methods , and the associated dot notation used, are fully explained in Chapter 6 on Objects
and Their Use. We only mention methods here for the sake of completeness in covering the
topic of list operations.

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... lst 5 [10, 20, 30] ... del lst[2]
 ... lst ... lst
 ??? ???

 ... lst[0] ... lst.insert(1, 15)
 ??? ... lst
 ???

 ... lst[0] 5 5 ... lst.append(40)
 ... lst ... lst
??? ???

 A list in Python is a mutable linear data structure, denoted by a comma-separated list of elements
within square brackets, allowing mixed-type elements.

 4.2.2 Tuples

 A tuple is an immutable linear data structure. Thus, in contrast to lists, once a tuple is defi ned, it
cannot be altered. Otherwise, tuples and lists are essentially the same. To distinguish tuples from
lists, tuples are denoted by parentheses instead of square brackets as given below,

 nums 5 (10, 20, 30)
 student 5 ('John Smith', 48, 'Computer Science', 3.42)

c04Lists.indd Page 131 16/10/12 10:55 AM user-019Ac04Lists.indd Page 131 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

132 CHAPTER 4 Lists

 4.2.3 Sequences

 A sequence in Python is a linearly ordered set of elements accessed by an index number. Lists,
 tuples, and strings are all sequences. Strings, like tuples, are immutable ; therefore, they cannot be
altered. We give sequence operations common to strings, lists, and tuples in Figure 4-6.

 For any sequence s, len(s)gives its length, and s[k] retrieves the element at index k.
The slice operation, s[index1:index2], returns a subsequence of a sequence, starting with
the fi rst index location up to but not including the second. The s[index :] form of the slice
operation returns a string containing all the list elements starting from the given index location to
the end of the sequence. The count method returns how many instances of a given value occur
within a sequence, and the fi nd method returns the index location of the fi rst occurrence of a
specifi c item, returning 2 1 if not found. For determining only if a given value occurs within a

 Another difference between tuples and lists is that tuples of one element must include a comma
following the element. Otherwise, the parenthesized element will not be made into a tuple, as
shown below,

 CORRECT WRONG
 ... (1,) ... (1)

 (1) 1

 An empty tuple is represented by a set of empty parentheses, (). (We shall later see the useful-
ness of the empty tuple.) The elements of tuples are accessed the same as lists, with square
brackets,

 ... nums[0] ... student[0]

 10 'John Smith'

 Any attempt to alter a tuple is invalid. Thus, delete, update, insert, and append operations are not
defi ned on tuples. For now, we can consider using tuples when the information to represent should
not be altered. We will see additional uses of tuples in the coming chapters.

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

... t 5 (10, 20, 30) ... t.insert(1, 15)
 ... t[0] ... ???
 ??? ???

 ... del t[2] ... t.append(40)
??? ???

 A tuple in Python is an immutable linear data structure, denoted by a comma-separated list of
elements within parentheses, allowing mixed-type elements.

c04Lists.indd Page 132 16/10/12 10:55 AM user-019Ac04Lists.indd Page 132 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.2 Lists (Sequences) in Python 133

sequence, without needing to know where, the in operator (introduced in Chapter 3) can be used
instead.

 The 1 operator is used to denote concatenation. Since the plus sign also denotes addition,
Python determines which operation to perform based on the operand types. Thus the plus sign, 1,
is referred to as an overloaded operator . If both operands are numeric types, addition is performed.
If both operands are sequence types, concatenation is performed. (If a mix of numeric and sequence
operands is used, an “unsupported operand type(s) for 1 ” error message will occur.)
Operations min/max return the smallest/largest value of a sequence, and sum returns the sum of all
the elements (when of numeric type). Finally, the comparison operator, 55 , returns True if the two
sequences are the same length, and their corresponding elements are equal to each other.

 FIGURE 4-6 Sequence Operations in Python

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... s 5 'coconut' ... s 5 (10, 30, 20, 10) ... s 5 [10, 30, 20, 10]
 ... s[4:7] ... s[1:3] ... s[1:3]
 ??? ??? ???

 ... s.count('o') ... s.count(10) ... s.count(10)
 ??? ??? ???

 ... s.index('o') ... s.index(10) ... s.index(10)
 ??? ??? ???

 ... s 1 ' juice' ... s 1 (40, 50) ... s 1 (40, 50)
??? ??? ???

c04Lists.indd Page 133 16/10/12 10:55 AM user-019Ac04Lists.indd Page 133 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

134 CHAPTER 4 Lists

 4.2.4 Nested Lists

 Lists and tuples can contain elements of any type, including other sequences. Thus, lists and tuples
can be nested to create arbitrarily complex data structures. Below is a list of exam grades for each
student in a given class,

 class_grades 5 [[85, 91, 89], [78, 81, 86], [62, 75, 77], ...]

 In this list, for example, class_grades[0] equals [85, 91, 89], and class_grades[1]
equals [78, 81, 86]. Thus, the following would access the fi rst exam grade of the fi rst student
in the list,

 student1_grades 5 class_grades[0]

 student1_exam1 5 student1_grades[0]

 However, there is no need for intermediate variables student1_grades and student1_
exam1. The exam grade can be directly accessed as follows,

 class_grades[0][0] ➝ [85, 91, 89][0] ➝ 85

 In Python, a sequence is a linearly ordered set of elements accessed by index value. Lists, tuples,
and strings are sequence types in Python.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
 To calculate the class average on the fi rst exam, a while loop can be constructed that iterates over the
fi rst grade of each student’s list of grades,

 sum 5 0

 k 5 0

 while k , len(class_grades):

 sum 5 sum 1 class_grades[k][0]

 k 5 k 1 1

 average_exam1 5 sum / fl oat(len(class_grades))

 If we wanted to produce a new list containing the exam average for each student in the class,
we could do the following,

 exam_avgs 5 []

 k 5 0

 while k , len(class_grades):

 avg 5 (class_grades[k][0] 1 class_grades[k][1] 1 \

 class_grades[k][2]) / 3.0

 exam_avgs.append(avg)

 k 5 k 1 1

 Each time through the loop, the average of the exam grades for a student is computed and appended
to list exam_avgs. When the loop terminates, exam_avgs will contain the corresponding exam
average for each student in the class.

c04Lists.indd Page 134 16/10/12 10:55 AM user-019Ac04Lists.indd Page 134 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.2 Lists (Sequences) in Python 135

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

... lst 5 [[1, 2 ,3], [4, 5, 6], [7, 8, 9]]
 ... lst[0] ... lst[1]
 ??? ???
 ... lst[0][1] ... lst[1][1]
??? ???

 Lists and tuples can be nested within each other to construct arbitrarily complex data structures.

 Line 3 imports the datetime module. It provides the current year (line 31), used to check for
 invalid years of birth (only years between 1900 and the current year are considered valid).
 Lines 9–24 perform the initialization for the program. The variables on lines 9–20 are assigned
the characteristics of each animal. The set of characteristics is represented as a tuple

 4.2.5 Let’s Apply It—A Chinese Zodiac Program

 The following program (Figure 4-8) determines the animal and associated characteristics from the
Chinese Zodiac for a given year of birth. This program utilizes the following programming features:

 ➤ tuples ➤ datetime module

 Example execution of the program is given in Figure 4-7.

 FIGURE 4-7 Execution of the Chinese Zodiac Program

c04Lists.indd Page 135 05/11/12 5:33 PM user-019Ac04Lists.indd Page 135 05/11/12 5:33 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

136 CHAPTER 4 Lists

 FIGURE 4-8 Chinese Zodiac Program

(line 22), and not a list type, since the information is not meant to be altered. It associates each set
of characteristics with the corresponding year of the twelve-year cycle of the zodiac based on
their position in the tuple. (We could have defi ned characteristics to contain each of the
twelve string descriptions, without the use of variables rat, ox, and so on. It was written this

c04Lists.indd Page 136 16/10/12 10:55 AM user-019Ac04Lists.indd Page 136 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.3 Iterating Over Lists (Sequences) in Python 137

way for the sake of readability.) Variable terminate, initialized to False, is a Boolean fl ag
used to quit the program once set to True (in response to the user being asked to continue with
another month or not at line 50). Lines 27–28 display the program greeting.

 Lines 33–56 comprise the main loop of the program. The while loop at line 38 ensures
that the entered year is valid. On line 43 , the cycle_num for the individual is assigned a value
 between 0–11, based on their year of birth. Since the year 1900 was the year of the rat in the
 Chinese Zodiac, the value of cycle_num is (birth_year — 1900) % 12. Lines 45–47
then use the cycle_num as an index into tuple zodiac_animals (to get the animal for that
birth year) and tuple characteristics (to get the associated personal characteristics) to
display the results.

 Self-Test Questions

 1. Which of the following sequence types is a mutable type?
 (a) strings (b) lists (c) tuples

 2. Which of the following is true?
 (a) Lists and tuples are denoted by the use of square brackets.
 (b) Lists are denoted by use of square brackets and tuples are denoted by the use of

 parentheses.
 (c) Lists are denoted by use of parentheses and tuples are denoted by the use of square

brackets.

 3. Lists and tuples must each contain at least one element. (TRUE/FALSE)

 4. For lst 5 [4, 2, 9, 1], what is the result of the following operation,
lst.insert(2, 3)?
 (a) [4, 2, 3, 9, 1] (b) [4, 3 ,2, 9, 1] (c) [4, 2, 9, 2, 1]

 5. Which of the following is the correct way to denote a tuple of one element?
 (a) [6] (b) (6) (c) [6,] (d) (6,)

 6. Which of the following set of operations can be applied to any sequence?
 (a) len(s), s[i], s 1 w (concatenation)
 (b) max(s), s[i], sum(s)
 (c) len(s), s[i], s.sort()

 ANSWERS: 1. (b), 2. (b), 3. False, 4. (a), 5. (d), 6. (a)

 4.3 Iterating Over Lists (Sequences) in Python

 Python’s for statement provides a convenient means of iterating over lists (and other sequences).
In this section, we look at both for loops and while loops for list iteration.

 4.3.1 For Loops

 A for statement is an iterative control statement that iterates once for each element in a specifi ed
sequence of elements. Thus, for loops are used to construct defi nite loops. For example, a for loop
is given in Figure 4-9 that prints out the values of a specifi c list of integers.

c04Lists.indd Page 137 16/10/12 10:55 AM user-019Ac04Lists.indd Page 137 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

138 CHAPTER 4 Lists

 FIGURE 4-9 The for Statement in Python

 Variable k is referred to as a loop variable . Since there are six elements in the provided list, the for
loop iterates exactly six times. To contrast the use of for loops and while loops for list iteration, the
same iteration is provided as a while loop below,

 k 5 0

 while k , len(nums):

 print(nums[k])

 k 5 k 1 1

 In the while loop version, loop variable k must be initialized to 0 and incremented by 1 each time
through the loop. In the for loop version, loop variable k automatically iterates over the provided
sequence of values.

 The for statement can be applied to all sequence types, including strings. Thus, iteration over
a string can be done as follows (which prints each letter on a separate line).

 for ch in 'Hello':

 print(ch)

 Next we look at the use of the built-in range function with for loops.

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... for k in [4, 2 ,3, 1]: ... for k in ['Apple', 'Banana', 'Pear']:
 print(k) print(k)

 ??? ???

 ... for k in (4, 2, 3, 1): ... for k in 'Apple':
 print(k) print(k)

??? ???

 A for statement is an iterative control statement that iterates once for each element in a specifi ed
sequence of elements.

 4.3.2 The Built-in range Function

 Python provides a built-in range function that can be used for generating a sequence of integers that
a for loop can iterate over, as shown below.

 sum 5 0

 for k in range(1, 11):

 sum 5 sum 1 k

c04Lists.indd Page 138 16/10/12 10:55 AM user-019Ac04Lists.indd Page 138 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.3 Iterating Over Lists (Sequences) in Python 139

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... for k in range(0, 11): ... for k in range(2, 102, 2):
 print(k) print(k)
 ??? ???

 ... for k in range[0, 11]: ... for k in range(10, 2 1, 2 2):
 print(k) print(k)
??? ???

 Python provides a built-in range function that can be used for generating a sequence of integers
that a for loop can iterate over.

 The values in the generated sequence include the starting value, up to but not including the ending
value. For example, range(1, 11) generates the sequence [1, 2, 3, 4, 5, 6, 7, 8,
9, 10]. Thus, this for loop adds up the integer values 1–10.

 The range function is convenient when long sequences of integers are needed. Actually,
range does not create a sequence of integers. It creates a generator function able to produce each
next item of the sequence when needed. This saves memory, especially for long lists. Therefore,
typing range(0, 9) in the Python shell does not produce a list as expected—it simply “echoes
out” the call to range.

 By default, the range function generates a sequence of consecutive integers. A “step” value
can be provided, however. For example, range(0, 11, 2) produces the sequence [0, 2,
4, 6, 8, 10], with a step value of 2. A sequence can also be generated “backwards” when
given a negative step value. For example, range(10, 0, 2 1) produces the sequence [10,
9, 8, 7, 6, 5, 4, 3, 2, 1]. Note that since the generated sequence always begins with
the provided starting value, “up to” but not including the fi nal value, the fi nal value here is 0, and
not 1.

 4.3.3 Iterating Over List Elements vs. List Index Values

 When the elements of a list need to be accessed, but not altered, a loop variable that iterates over
each list element is an appropriate approach. However, there are times when the loop variable
must iterate over the index values of a list instead. A comparison of the two approaches is shown
in Figure 4-10.

 FIGURE 4-10 Iterating Over the Elements vs. the Index Values of a Given Sequence

c04Lists.indd Page 139 16/10/12 10:55 AM user-019Ac04Lists.indd Page 139 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

140 CHAPTER 4 Lists

 Suppose the average of a list of class grades named grades needs to be computed. In this case, a
for loop can be constructed to iterate over the grades,

 for k in grades:

 sum 5 sum 1 k

 print('Class average is', sum/len(grades))

 However, suppose that the instructor made a mistake in grading, and a point needed to be added to
each student’s grade? In order to accomplish this, the index value (the location) of each element
must be used to update each grade value. Thus, the loop variable of the for loop must iterate over the
index values of the list,

 for k in range(len(grades)):

 grades[k] 5 grades[k] 1 1

 In such cases, the loop variable k is also functioning as an index variable . An index variable is a
variable whose changing value is used to access elements of an indexed data structure . Note that the
range function may be given only one argument. In that case, the starting value of the range defaults
to 0. Thus, range(len(grades)) is equivalent to range(0,len(grades)).

 L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... nums 5 [10, 20, 30] ... for k in range(len(nums)21, 2 1, 2 1):
 print(nums[k])
 ... for k in range(len(nums)): ???
 print(nums[k])
???

 An index variable is a variable whose changing value is used to access elements of an indexed
data structure.

 4.3.4 While Loops and Lists (Sequences)

 There are situations in which a sequence is to be traversed while a given condition is true. In such
cases, a while loop is the appropriate control structure. (Another approach for the partial traversal of
a sequence is by use of a for loop containing break statements. We avoid the use of break state-
ments in this text, favoring the more structured while loop approach.)

 Let’s say that we need to determine whether the value 40 occurs in list nums (equal to [10,
20, 30]). In this case, once the value is found, the traversal of the list is terminated. An example of
this is given in Figure 4-11.

 Variable k is initialized to 0, and used as an index variable. Thus, the fi rst time through the
loop, k is 0, and nums[0] (with the value 10) is compared to item_to_fi nd. Since they are not
equal, the second clause of the if statement is executed, incrementing k to 1. The loop continues
until either the item is found, or the complete list has been traversed. The fi nal if statement determines

c04Lists.indd Page 140 16/10/12 10:55 AM user-019Ac04Lists.indd Page 140 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.3 Iterating Over Lists (Sequences) in Python 141

 FIGURE 4-11 List Search in Python

 L E T ’ S T R Y I T

 Enter and execute the following Python code and observe the results.

 k 5 0
 sum 5 0
 nums 5 range(100)

 while k , len(nums) and sum , 100:
 sum 5 sum 1 nums[k]
 k 5 k 1 1

print('The fi rst', k, 'integers sum to 100 or greater')

 For situations in which a sequence is to be traversed while a given condition is true, a while loop
is the appropriate control structure to use.

which of the two possibilities for ending the loop occurred, displaying either 'item found' or
'item not found'. Finally, note that the correct loop condition is k , len(nums), and
not k , 5 len(nums). Otherwise, an “index out of range” error would result.

 4.3.5 Let’s Apply It—Password Encryption/Decryption Program

 The following program (Figure 4-13) allows a user to encrypt and decrypt passwords containing
uppercase/lowercase characters, digits, and special characters. This program utilizes the following
programming features:

 ➤ for loop ➤ nested sequences (tuples)

 Example program execution is given in Figure 4-12.
 Lines 4–9 perform the initialization needed for the program. Variable password_out

is used to hold the encrypted or decrypted output of the program. Since the output string is created
by appending to it each translated character one at a time, it is initialized to the empty string.

c04Lists.indd Page 141 05/11/12 5:33 PM user-019Ac04Lists.indd Page 141 05/11/12 5:33 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

142 CHAPTER 4 Lists

 Variable encryption_key holds the tuple (of tuples) used to encrypt/decrypt passwords. This
tuple contains as elements tuples of length two,

 encryption_key 5 (('a', 'm'), ('b', 'h'), etc.

 The fi rst tuple, ('a', 'm'), for example, is used to encode the letter 'a'. Thus, when encrypting
a given fi le, each occurrence of 'a' is replaced by the letter 'm'. When decrypting, the reverse is
done—all occurrences of letter 'm' are replaced by the letter 'a'.

 Line 12 contains the program greeting. Line 15 inputs from the user whether they wish to
encrypt or decrypt a password. Based on the response, variable encrypting is set to either True
or False (line 20).

 The program section in lines 26–47 performs the encryption and decryption. If variable
 encrypting is equal to True, then from_index is set to 0 and to_index is set to 1, causing
the “direction” of the substitution of letters to go from the fi rst in the pair to the second ('a' re-
placed by 'm'). When encrypting is False (and thus decryption should be performed), the direc-
tion of the substitution is from the second of the pair to the fi rst ('m' replaced by 'a').

 Variable case_changer (line 33) is set to the difference between the encoding of the low-
ercase and the uppercase letters (recall that the encoding of the lowercase letters is greater than that
of the uppercase letters). The for loop at line 38 performs the iteration over the pairs of letters in the
encryption key. The fi rst time through the loop, t 5 ('a', 'm'). Thus, t[from_index] and
t[to_index] refer to each of the characters in the pair. Since all characters in the encryption key
are in lowercase, when uppercase letters are found in the password, they are converted to lowercase
by use of variable case_changer (line 43) before being compared to the (lowercase) letters in the
encryption key. This works because the character encoding of all lowercase letters is greater than the
corresponding uppercase version,

 ... ord('A') ... ord('a') ... ord('a') 2 ord('A')

 65 97 32

 A similar approach is used for converting from lowercase back to uppercase. Finally, on lines 50–53 ,
the encrypted and decrypted versions of the password are displayed to the user.

 FIGURE 4-12 Execution of Password Encryption/Decryption Program

c04Lists.indd Page 142 16/10/12 10:55 AM user-019Ac04Lists.indd Page 142 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.3 Iterating Over Lists (Sequences) in Python 143

 FIGURE 4-13 Password Encryption/Decryption Program

 The substitution occurs in the nested for loops in lines 35–47 . The outer for loop iterates variable
ch over each character in the entered password (to be encrypted or decrypted). The fi rst step of the
outer for loop is to initialize letter_found to False. This variable is used to indicate if each
character is a (uppercase or lowercase) letter. If so, it is replaced by its corresponding encoding
character. If not, it must be a digit or special character, and thus appended as is (line 47). The code
on lines 39–41 and lines 42–46 is similar to each other. The only difference is that since the letters in

c04Lists.indd Page 143 16/10/12 10:55 AM user-019Ac04Lists.indd Page 143 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

144 CHAPTER 4 Lists

the encryption key are all lowercase, any uppercase letters in the password need to be converted to
lowercase before being compared to the letters in the key.

 Self-Test Questions

 1. For nums 5 [10,30,20,40], what does the following for loop output?

 for k in nums:

 print(k)

 (a) 10 (b) 10 (c) 10
 20 30 30
 30 20 20
 40 40

 2. For nums 5 [10, 30, 20, 40], what does the following for loop output?

 for k in range(1, 4):

 print(nums[k])

 (a) 10 (b) 30 (c) 10
 30 20 30
 20 40 20
 40

 3. For fruit 5 'strawberry', what does the following for loop output?

 for k in range(0, len(fruit), 2):

 print(fruit[k], end='')

 (a) srwer (b) tabry

 4. For nums 5 [12, 4, 11, 23, 18, 41, 27], what is the value of k when the
while loop terminates?

 k 5 0

 while k , len(nums) and nums[k] ! 5 18:

 k 5 k 1 1

 (a) 3 (b) 4 (c) 5

 ANSWERS: 1. (b), 2. (b), 3. (a), 4. (b)

 4.4 More on Python Lists

 In this section, we take a closer look at the assignment of lists. We also introduce a useful and
convenient means of generating lists that the range function cannot produce, called list
 comprehensions .

 4.4.1 Assigning and Copying Lists

 Because of the way that lists are represented in Python, when a variable is assigned to another vari-
able holding a list, list2 5 list1, each variable ends up referring to the same instance of the list
in memory. This is depicted in Figure 4-14.

c04Lists.indd Page 144 16/10/12 10:55 AM user-019Ac04Lists.indd Page 144 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.4 More on Python Lists 145

 FIGURE 4-14 Assignment of Lists

 This has important implications. For example, if an element of list1 is changed, then the corre-
sponding element of list2 will change as well,

 ... list1 5 [10, 20, 30, 40]

 ... list2 5 list1

 ... list1[0] 5 5

 ... list1

 [5, 20, 30, 40] change made in list1
 ... list2

 [5, 20, 30, 40] change in list1 causes a change in list2

 Knowing that variables list1 and list2 refer to the same list explains this behavior. This issue
does not apply to strings and tuples, since they are immutable and therefore cannot be modifi ed.

 When needed, a copy of a list can be made as given below,

 list2 5 list(list1)

 In this case, we get the following results,

 ... list1 5 [10, 20, 30, 40]

 ... list2 5 list(list1)

 ... list1[0] 5 5

 ... list1

 [5, 20, 30, 40] change made in list1
 ... list2

 [10, 20, 30, 40] change in list1 does NOT cause any change in list2

 When copying lists that have sublists, another means of copying, called deep copy , may be needed.
We will discuss this further in Chapter 6 when discussing objects in Python.

L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

... list1 5 [' red ' , ' blue ', ' green '] ... list1 5 [' red ' , ' blue ', ' green ']

 ... list2 5 list1 ... list2 5 list(list1)
 ... list1[2] 5 ' yellow ' ... list1[2] 5 ' yellow '

 ... list1 ... list1
 ??? ???

 ... list2 ... list2
??? ???

c04Lists.indd Page 145 16/10/12 10:55 AM user-019Ac04Lists.indd Page 145 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

146 CHAPTER 4 Lists

 In the fi gure, (a) generates a list of squares of the integers in list [1, 2, 3]. In (b), squares are
generated for each value in range(5). In (c), only positive elements of list nums are included in
the resulting list. In (d), a list containing the character encoding values in the string 'Hello' is
created. Finally, in (e), tuple vowels is used for generating a list containing only the vowels in
string w. List comprehensions are a very powerful feature of Python.

 4.4.2 List Comprehensions

 The range function allows for the generation of sequences of integers in fi xed increments. List
comprehensions in Python can be used to generate more varied sequences. Example list compre-
hensions are given in Figure 4-15.

 FIGURE 4-15 List Comprehensions

L E T ’ S T R Y I T

 From the Python Shell, enter the following and observe the results.

 ... temperatures 5 [88, 94, 97, 89, 101, 98, 102, 95, 100]
 ... [t for t in temperatures if t .5 100]
 ???

 ... [(t 2 32) * 5/9 for t in temperatures]
 ???

 List comprehensions in Python provide a concise means of generating a more varied set of se-
quences than those that can be generated by the range function.

 When a variable is assigned to another variable holding a list, each variable ends up referring to
the same instance of the list in memory.

c04Lists.indd Page 146 16/10/12 10:55 AM user-019Ac04Lists.indd Page 146 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 147

 COMPUTATIONAL PROBLEM SOLVING

 4.5 Calendar Year Program

 In this section, we extend the calendar month program given in the Computational Problem Solving
section of Chapter 3 to display a complete calendar year.

 4.5.1 The Problem

 The problem is to display a calendar year for any year between 1800 and 2099, inclusive. The format
of the displayed year should be as depicted in Figure 4-16.

 FIGURE 4-16 Calendar Month Display

 4.5.2 Problem Analysis

 The computational issues for this problem are similar to the calendar month program of Chapter 3.
We need an algorithm for computing the fi rst day of a given month for years 1800–2099. However,
since the complete year is being displayed, only the day of the week for January 1st of the given year
needs be computed—the rest of the days follow from knowing the number of days in each month

c04Lists.indd Page 147 16/10/12 10:55 AM user-019Ac04Lists.indd Page 147 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

148 CHAPTER 4 Lists

(including February for leap years). The algorithm previously developed to display a calendar
month, however, is not relevant for this program. Instead, the information will fi rst be stored in a
data structure allowing for the months to be displayed three across.

 4.5.3 Program Design

 Meeting the Program Requirements

 We will develop and implement an algorithm that displays the calendar year as shown in Figure
4-16. We shall request the user to enter the four-digit year to display, with appropriate input error
checking.

 Data Description

 The program needs to represent the year entered, whether it is a leap year, the day of the week for
January 1st of the year, and the number of days in each month (accounting for leap years). The
names of each of the twelve months will also be stored for display in the calendar year. Given this
information, the calendar year can be appropriately constructed and displayed.

 We make use of nested lists for representing the calendar year. The data structure will start out
as an empty list and will be built incrementally as each new calendar month is computed. The list
structures for the calendar year and calendar month are given below,

 calendar_year 5 [[calendar_month], [calendar_month], etc.]]

 calendar_month 5 [week_1, week_2, . . ., week_k]

 Each italicized month is represented as a list of four to six strings, with each string storing a week
of the month to be displayed (or a blank line for alignment purposes).

 The strings are formatted to contain all the spaces needed for proper alignment when displayed.
For example, since the fi rst week of May 2015 begins on a Friday, the string value for this week
would be,

 ' 1 2'

 The complete representation for the calendar year 2015 is given below, with the details shown for
the months of February and May.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

MAY 2015

Sun Mon Tues Wed Thur Fri Sat

 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

⎧
⎪
⎨
⎪
⎩

FEBRUARY 2015

Sun Mon Tues Wed Thur Fri Sat

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

⎧
⎨
⎩

4

lines 6

lines

c04Lists.indd Page 148 16/10/12 10:55 AM user-019Ac04Lists.indd Page 148 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 149

 [[January],

 [' 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14', February
 ' 15 16 17 18 19 20 21', ' 22 23 24 25 26 27 28'],

 [March],
 [April],

 [' 1 2 ' , ' 3 4 5 6 7 8 9 ' , May
 ' 10 11 12 13 14 15 16', ' 17 18 19 20 21 22 23',
 ' 24 25 26 27 28 29 30', ' 31 '],

 [June],
 [July],
 [August],
 [September],
 [October],
 [November],
 [December]]

 (Typically, yearly calendars combine the one or two remaining days of the month on the sixth line
of a calendar month onto the previous week. We shall not do that in this program, however.)

 Algorithmic Approach

 We make use of the algorithm for determining the day of the week previously used. For this
program, however, the only date for which the day of the week needs to be determined is
 January 1 of a given year. Thus, the original day of the week algorithm can be simplifi ed by
removing variable day and replacing its occurrence on line 6 with 1, given in Figure 4-17.

 F IGURE 4-17 Simplifi ed Day of the Week Algorithm

 Overall Program Steps

 The overall steps in this program design are given in Figure 4-18.

 4.5.4 Program Implementation and Testing

 Stage 1—Determining the Day of the Week (for January 1st)

 We fi rst develop and test the code for determining the day of the week for January 1st of a given year.
This modifi ed code from the calendar month program is given in Figure 4-19.

c04Lists.indd Page 149 16/10/12 10:55 AM user-019Ac04Lists.indd Page 149 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

150 CHAPTER 4 Lists

 FIGURE 4-18 Overall Steps of Calendar Year
Program

 Line 4 initializes Boolean fl ag terminate to False. If the user enters −1 for the year (in
 lines 10–13), terminate is set to True and the while loop at line 7 terminates, thus terminating
the program. If a valid year is entered, lines 19–42 are executed.

 Lines 19–22 determine if the year is a leap year using the same code as in the calendar month
program, assigning Boolean variable leap_year accordingly. Lines 25–40 implement the simpli-
fi ed day of the week algorithm for determining the day of the week for January 1 of a given year in
 Figure 4.17, with the result displayed on line 42 .

 Stage 1—Testing

 We show a sample test run of this stage of the program in Figure 4-20.
 Figure 4-21 displays the test cases used for this program.
 Since all test cases passed, we can move on to the next stage of program development.

 Stage 2—Constructing the Calendar Year Data Structure

 Next we develop the part of the program that constructs the data structure holding all of the calendar
year information to be displayed. The data structure begins empty and is incrementally built, con-
sisting of nested lists, as previously discussed.

c04Lists.indd Page 150 16/10/12 10:55 AM user-019Ac04Lists.indd Page 150 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 151

 FIGURE 4-19 Stage 1 of the Calendar Year Program

 FIGURE 4-20 Example Output of First Stage Testing

c04Lists.indd Page 151 16/10/12 10:55 AM user-019Ac04Lists.indd Page 151 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

152 CHAPTER 4 Lists

 FIGURE 4-21 Test Cases for Stage 1 of the Calendar Year Program

 Figure 4-22 shows an implementation of this stage of the program.
 Lines 4–14 perform the required initialization. Tuples days_in_month and month_

names have been added to the program to store the number of days for each month (with
 February handled as an exception) and the month names. On line 11 , calendar_year is
initialized to the empty list. It will be constructed month-by-month for the twelve months of the
year. There is the need for strings of blanks of various lengths in the program, initialized as
month_ separator, blank_week, and blank_col (lines 12–14). The calendar_
year data structure will contain all the space characters needed for the calendar months to be
properly displayed. Therefore, there will be no need to develop code that determines how each
month should be displayed as in the calendar month program. The complete structure will sim-
ply be displayed row by row.

 Lines 17–49 are the same as the fi rst stage of the program for determining the day of the week
of a given date. Once the day of the week for January 1st of the given year is known, the days of the
week for all remaining dates simply follow. Thus, there is no need to calculate the day of the week
for any other date.

 Line 52 begins the for loop for constructing each of the twelve months. On line 53 , the month
name is retrieved from tuple month_names and assigned to month_name. Variable current_
day, holding the current day of the month, is initialized to 1 for the new month (line 56).
In lines 57–60 , fi rst_day_of_current_month, determined by the day of the week
 algorithm, is converted to the appropriate column number. Thus, since 0 denotes Saturday, if
fi rst_day_of_current_month equals 0, starting_col is set to 7. Otherwise,
 starting_col is set to fi rst_day_of_current_month (e.g., if fi rst_day_of_
current_month is 1, then starting_col is set to 1).

 In lines 62–64 , the initialization for a new month fi nishes with the reassignment of
 current_col, calendar_week, and calendar_month. Each calendar week of a given
month is initially assigned to the empty string, with each date appended one-by-one. Variable
current_col is used to keep track of the current column (day) of the week, incremented from
0 to 6. Since the fi rst day of the month can fall on any day of the week, the fi rst week of any month
may contain blank (“skipped”) columns. This includes the columns from current_col up to
but not including starting_col. The while loop in lines 67–69 appends any of these skipped
columns to empty string calendar_week.

 Lines 72–75 assign num_days_this_month to the number of days stored in tuple days_
in_month. The exception for February, based on whether the year is a leap year or not, is handled as
a special case. The while loop at line 77 increments variable current_day from 1 to the number of

c04Lists.indd Page 152 16/10/12 10:55 AM user-019Ac04Lists.indd Page 152 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 153

 FIGURE 4-22 Stage 2 of the Calendar Year Program (Continued)

c04Lists.indd Page 153 16/10/12 10:55 AM user-019Ac04Lists.indd Page 153 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

154 CHAPTER 4 Lists

days in the month. In lines 80–81 each date is appended to calendar_week right-justifi ed as a string
of length three by use of the format function. Thus, a single-digit date will be appended with two leading
blanks, and a double-digit date with one leading blank so that the columns of dates align.

 For each new date appended to calendar_week, a check is made on line 84 as to whether
the end of the week has been reached. If the last column of the calendar week has been reached
(when column_col equals 7) then the constructed calendar_week string is appended to the
calendar_month (line 85). In addition, calendar_week is re-initialized to the empty string,
and current_col is reset to 1 (lines 86–87). If the last column of the calendar week has not yet
been reached, then current_col is simply incremented by 1 (line 89). Then, on line 92 , variable
current_day is incremented by 1, whether or not a new week is started.

 When the while loop (at line 77) eventually terminates, variable current_week holds the
last week of the constructed month. Therefore, as with the fi rst week of the month, the last week may
contain empty columns. This is handled by lines 95–97 . Before appending calendar_week to
calendar_month, any remaining unfi lled columns are appended to it (the reason that these fi nal

 FIGURE 4-22 Stage 2 of the Calendar Year Program

c04Lists.indd Page 154 16/10/12 10:55 AM user-019Ac04Lists.indd Page 154 16/10/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 155

columns must be blank-fi lled is because months are displayed side-by-side, and therefore are needed
to keep the whole calendar properly aligned),

 calendar_week 5 calendar_week 1 blank_week[0:(7-current_col 1 1) * 3]

 Thus, the substring of blank_week produced will end up as an empty string if the value of
 current_col is 6 (for Saturday, the last column) as it should. Line 100 sets variable fi rst_day_
of_current_month to current_col since current_col holds the column value of the
next column that would have been used for the current month, and thus is the fi rst day of the following
month. On line 101 , the completed current month is appended to list calendar_year. And on line
102 , calendar_month is reset to an empty list in anticipation of the next month to be constructed.

 Finally, on line 104 , the complete calendar_year list is displayed. Because the program
prompts the user for other years to be constructed and displayed, the calendar_year list is reset
to the empty list (line 107).

 Stage 2—Testing

 The program terminates with an error on line 53,

 Enter year (yyyy) (-1 to quit): 2015

 Traceback (most recent call last):

 File “C:\My Python Programs\CalendarYearStage2.py”, line 54, in , module .

 month_name 5 month_names[month_num]

 IndexError: tuple index out of range

 This line is within the for loop at line 52,

 for month_num in range(12):

 month_name 5 month_names[month_num]

 For some reason, index variable month_num is out of range for tuple month_names. We look at
the fi nal value of month_num by typing the variable name into the Python shell,

 ... month_num

 11

 Since month_names has index values 0–11 (since of length 12), an index value of 11 should not
be out of range. How, then, can this index out of range error happen? Just to make sure that month_
names has the right values, we display its length,

 .. len(month_names)

 11

 This is not right! The tuple month_names should contain all twelve months of the year. That is
the way it was initialized on line 7, and tuples, unlike lists, cannot be altered, they are immutable.
This does not seem to make sense. To continue our investigation, we display the value of the tuple,

 .. month_names

 ('January', 'February', 'March', 'April', 'May', 'JuneJuly', 'August',

'September', 'October', 'November', 'December')

 ...

c04Lists.indd Page 155 16/10/12 10:56 AM user-019Ac04Lists.indd Page 155 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

156 CHAPTER 4 Lists

 Now we see something that doesn’t look right. Months June and July are concatenated into one
string value 'JuneJuly’ making the length of the tuple 11, and not 12 (as we discovered). That
would explain why the index out of range error occurred.

 What, then, is the problem. Why were the strings 'June' and 'July' concatenated? We
need to look at the line of code that creates this tuple,

 Enter year (yyyy) (-1 to quit): 2015

 [[' 1 2 3', ' 4 5 6 7 8 9 10', ' 11 12 13 14 15 16 17', ' 1
8 19 20,21 22 23 24', ' 25 26 27 28 29 30 31',' '], [' 1
2 3 4 5 6 7', ' 8 9 10 11 12 13 14', ' 15 16 17 18 19 20 21', ' 22 23 24
25 26 27 28', ' '], [' 1 2 3 4 5 6 7', ' 8 9 10 11
12 13 14', ' 15 16 17 18 19 20 21', ' 22 23 24 25 26 27 28', ' 29 30 31
 '], [' 1 2 3 4', ' 5 6 7 8 9 10 11', ' 12 13 14 15 16 17 18
', ' 19 20 21 22 23 24 25', ' 26 27 28 29 30 '], [' 1 2',
' 3 4 5 6 7 8 9', ' 10 11 12 13 14 15 16', ' 17 18 19 20 21 22 23', ' 24
25 26 27 28 29 30', ' 31 '], [' 1 2 3 4 5 6', ' 7 8
 9 10 11 12 13', ' 14 15 16 17 18 19 20', ' 21 22 23 24 25 26 27', ' 28 29 30
 '], [' 1 2 3 4', ' 5 6 7 8 9 10 11', ' 12 13 14 15 16
 17 18', ' 19 20 21 22 23 24 25', ' 26 27 28 29 30 31 '], ['
 1', ' 2 3 4 5 6 7 8', ' 9 10 11 12 13 14 15', ' 16 17 18 19 20 21 22',
 ' 23 24 25 26 27 28 29', ' 30 31 '], [' 1 2 3 4 5', '
 6 7 8 9 10 11 12', ' 13 14 15 16 17 18 19', ' 20 21 22 23 24 25 26', ' 27 28
 29 30 '], [' 1 2 3', ' 4 5 6 7 8 9 10', ' 11 12 13
 14 15 16 17', ' 18 19 20 21 22 23 24', ' 25 26 27 28 29 30 31', '
 '], [' 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14', ' 15 16 17 18 19 2
0 21', ' 22 23 24 25 26 27 28', ' 29 30 '], [' 1 2 3 4
5', ' 6 7 8 9 10 11 12', ' 13 14 15 16 17 18 19', ' 20 21 22 23 24 25 26', '
 27 28 29 30 31 ']]
Enter year (yyyy) (-1 to quit):

 month_names 5 ('January', 'February', 'March', 'April', 'May', 'June'

 'July', 'August', 'September', 'October', 'November', 'December')

 It looks OK. Strings 'June' and 'July' were written as separate strings. We then decide to count
the number of items in the tuple. Since items in tuples and lists are separated by commas, we count
the number of items between the commas. We count the items up to 'May', which is fi ve items as
it should be, then 'June', which is six items . . . ah, there is no comma after the string 'June'!
 That must be why strings 'June' and 'July' were concatenated, and thus the source of the index
out of range error. We try to reproduce this in the shell,

 ... 'June' 'July'

 'JuneJuly'

 That’s it! We have found the problem and should feel good about it. After making the correction and
re-executing the program, we get the following results,

 We can see if the output looks like the structure that we expect. The fi rst item in the list, the structure
for the month of January, is as follows,

 [[' 1 2 3', ' 4 5 6 7 8 9 10', ' 11 12 13 14 15 16 17',
' 18 19 20 21 22 23 24', ' 25 26 27 28 29 30 31', ' ']

c04Lists.indd Page 156 16/10/12 10:56 AM user-019Ac04Lists.indd Page 156 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 157

 Since there are fi ve weeks in the month, there should be one extra “blank week” at the end of the list
to match the vertical spacing of all other months. We see, in fact, that the last (sixth) string is a string
of blanks.

 Since the calendar_year structure looks correct, we now develop the fi nal stage of the
program that displays the complete calendar year.

 Stage 3—Displaying the Calendar Year Data Structure

 We now give the complete calendar year program in Figure 4-23. In this fi nal version, the only
change at the start of the program is that a program greeting is added on line 19 . The rest of the
program is the same up to line 105 , the point where the calendar year has been constructed. (The
print(calendar_year) line and re-initialization of calendar_year to the empty list
have been removed from the previous version, since they were only there for testing purposes.)

 The new code in this version of the program is in lines 107–141 , which displays the calendar
year. The calendar year output is given in Figure 4-24.

 On line 108 the year is displayed. Because the months are displayed three across, as shown
in Figure 4-16, the for loop on line 111 iterates variable month_num over the values [0, 3,
6, 9]. Thus, when month_num is 0, months 0-2 (January–March) are displayed. When
month_num is 3, months 3-5 (April–June) are displayed, and so forth.

 The for loop at line 114 displays the month names for each row (for example, January,
February, and March). Each is displayed left-justifi ed in a fi eld width of 19. A leading blank
character is appended to the formatting string to align with the fi rst column of numbers displayed
for each month. The print(. . ., end 5 '') form of print is used, which prevents the cursor
from moving to the next line. Thus, the months can be displayed side-by-side. Variable month_
separator contains the appropriate number of blank spaces (initialized at the top of the pro-
gram) to provide the required amount of padding between the months, as shown below,

 In checking against available calendar month calculators, we see that the fi rst day of the month for
January 2015 is a Thursday. Thus, the fi rst week of the month should have four skipped days,
 followed by 1, 2, and 3 each in a column width of 3. We fi nd that there are fourteen blank characters
in the fi rst line. The fi rst twelve are for the four skipped columns, and the last two are for the
 right-justifi ed string ‘1’ in the column of the fi rst day of the month,

 ' 1 2 3' ⎛ ⎜ ⎜ ⎝⎛⎜⎜⎜⎝
12 blank

chars
2 blank
chars

 January February March
 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7

month_separator

⎛⎜⎜⎜⎜⎜⎝
month_separator

⎛⎜⎜⎜⎜⎜⎜⎜⎝

 Lines 119–120 perform the initialization needed for the following while loop (at line 122),
which displays each week, one-by-one, of the current three months. Variable week is initial-
ized to zero for each month and is used to keep count of the number of weeks displayed.
 Variable lines_to_print is initialized to True to start the execution of the following
while loop.

 At line 125 within the while loop, lines_to_print is initialized to False. It is then
set to True by any (or all) of the current three months being displayed only if they still have
more calendar lines (weeks) to print, thus causing the while loop to continue with another

c04Lists.indd Page 157 16/10/12 10:56 AM user-019Ac04Lists.indd Page 157 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

158 CHAPTER 4 Lists

 FIGURE 4-23 Final Stage of the Calendar Year Program (continued)

c04Lists.indd Page 158 16/10/12 10:56 AM user-019Ac04Lists.indd Page 158 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

4.5 Calendar Year Program 159

 FIGURE 4-23 Final Stage of the Calendar Year Program (continued)

c04Lists.indd Page 159 16/10/12 10:56 AM user-019Ac04Lists.indd Page 159 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

160 CHAPTER 4 Lists

 FIGURE 4-23 Final Stage of the Calendar Year Program

January

 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30 31

February

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28

March

 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31

 iteration. This occurs within the for loop at lines 128–135 . Since variable month_num indicates
the current month being displayed, the number of weeks in the month is determined by the length
of the tuple of strings for the current month k.

 len(calendar_year[k])

 Note that some months may have no more weeks to display, whereas others may. This is the case for
the fi rst three months of 2015,

 In this case, the while loop needs to continue to iterate in order to display the last lines of January
and March even though the last line of February has been displayed. Therefore, in cases where a
given month has a line to print but another month doesn’t, a blank line is displayed in order to main-
tain the correct alignment of month weeks. After the week of dates (or blank week) is output for each
of the three months, the cursor is moved to the start of the next line (on line 138) and variable week
is incremented by one (line 141) before the loop begins the next iteration for displaying the next row
of calendar weeks.

c04Lists.indd Page 160 16/10/12 10:56 AM user-019Ac04Lists.indd Page 160 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 FIGURE 4-24 Calendar Year Program Output

 C H A P T E R S U M M A R Y

 General Topics

 Linear Data Structures
 List Operations
 List Traversal

 The Empty List and Its Use
 Nested Lists
 List Iteration
 Loop Variable/Index Variable

Chapter Summary 161

 Finally, the while loop at line 122 continues to iterate until there are no more lines to display for all
of the three months currently being displayed—that is, until lines_to_print is False.

 Figure 4-25 displays the results of testing this fi nal version by using the test plan from the
Calendar Month program of Chapter 3. The test plan passed for all test cases.

c04Lists.indd Page 161 05/11/12 5:33 PM user-019Ac04Lists.indd Page 161 05/11/12 5:33 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

162 CHAPTER 4 Lists

 FIGURE 4-25 Final Calendar Year Program Testing

 C H A P T E R E X E R C I S E S

 Section 4.1

 1. (a) Give the index values of all the odd numbers in the following list representation, assuming zero-based
indexing.

 23

 16

 14

 33

 19

 6

 11

 Python-Specifi c Programming Topics

 Lists in Python
 List Operations in Python
 Empty Lists and Tuples in Python
 Lists, Tuples, and Strings as Sequences in Python
 Additional Sequence Operations
 Nested Lists and Tuples in Python

For/ While Loops and List Iteration in Python
 Built-in Range Function in Python
 Iterating over List (Sequence) Elements vs.
 Iterating over Index Values in Python
 Assigning Lists in Python
 List Comprehensions in Python

c04Lists.indd Page 162 05/11/12 5:33 PM user-019Ac04Lists.indd Page 162 05/11/12 5:33 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 (b) How many elements would be looked at when the list is traversed (from top to bottom) until the value
19 was found?

 Section 4.2

 2. Which of the following lists are syntactically correct in Python?
 (a) [1, 2, 3, 'four'] (b) [1, 2, [3, 4]] (c) [[1, 2, 3]['four']]

 3. For lst 5 [4, 2, 9, 1], what is the result of each of the following list operations?
 (a) lst[1] (b) lst.insert(2, 3) (c) del lst[3] (d) lst.append(3)

 4. For fruit 5 ['apple', 'banana', 'pear', 'cherry'], use a list operation to change the
list to ['apple', 'banana', 'cherry'] .

 5. For a list of integers, lst, give the code to retrieve the maximum value of the second half of the list.

 6. For variable product_code containing a string of letters and digits,
 (a) Give an if statement that outputs “Verifi ed” if product_code contains both a “Z” and a “9”,

and outputs “Failed” otherwise.
 (b) Give a Python instruction that prints out just the last three characters in product_code.

 7. Which of the following are valid operations on tuples (for tuples t1 and t2)?
 (a) len(t1) (b) t1 1 t2 (c) t1.append(10) (d) t1.insert(0, 10)

 8. For str1 5 'Hello World', answer the following,
 (a) Give an instruction that prints the fourth character of the string.
 (b) Give an instruction that fi nds the index location of the fi rst occurrence of the letter 'o' in the string.

 9. For a nested list lst that contains sublists of integers of the form [n1, n2, n3],
 (a) Give a Python instruction that determines the length of the list.
 (b) Give Python code that determines how many total integer values there are in list lst.
 (c) Give Python code that totals all the values in list lst.
 (d) Given an assignment statement that assigns the third integer of the fourth element (sublist) of lst to

the value 12.

 Section 4.3

 10. For a list of integers named nums,
 (a) Write a while loop that adds up all the values in nums.
 (b) Write a for loop that adds up all the values in nums in which the loop variable is assigned each value

in the list.
 (c) Write a for loop that adds up all the elements in nums in which the loop variable is assigned to the

index value of each element in the list.
 (d) Write a for loop that displays the elements in nums backwards.
 (e) Write a for loop that displays every other element in nums, starting with the fi rst element.

 Section 4.4

 11. For list1 5 [1, 2, 3, 4] and list2 5 [5, 6, 7, 8], give the values of list1[0] and
list2[0] where indicated after the following assignments.

 (a) list1[0] 5 10
 list2[0] 5 50 list1[0] ______ list2[0] ______

 (b) list2 5 list1 list1[0] ______ list2[0] ______

 (c) list2[0] 5 15 list1[0] ______ list2[0] ______
 (d) list1[0] 5 0 list1[0] ______ list2[0] ______

Chapter Exercises 163

c04Lists.indd Page 163 16/10/12 10:56 AM user-019Ac04Lists.indd Page 163 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

164 CHAPTER 4 Lists

 12. Give an appropriate list comprehension for each of the following.
 (a) Producing a list of consonants that appear in string variable w.
 (b) Producing a list of numbers between 1 and 100 that are divisible by 3.
 (c) Producing a list of numbers, zero_values, from a list of fl oating-point values, data_values,

that are within some distance, epsilon, from 0.

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python program that prompts the user for a list of integers, stores in another list only those values
between 1–100, and displays the resulting list.

 P2. Write a Python program that prompts the user for a list of integers, stores in another list only those values
that are in tuple valid_values, and displays the resulting list.

 P3. Write a Python program that prompts the user for a list of integers and stores them in a list. For all values
that are greater than 100, the string 'over' should be stored instead. The program should display the
resulting list.

 P4. Write a Python program that prompts the user to enter a list of fi rst names and stores them in a list. The
program should display how many times the letter 'a' appears within the list.

 P5. Write a Python program that prompts the user to enter a list of words and stores in a list only those words
whose fi rst letter occurs again within the word (for example, 'Baboon'). The program should display
the resulting list.

 P6. Write a Python program that prompts the user to enter types of fruit, and how many pounds of fruit there
are for each type. The program should then display the information in the form fruit , weight listed in al-
phabetical order, one fruit type per line as shown below,

 Apple, 6 lbs.

 Banana, 11 lbs.

 etc.

 P7. Write a Python program that prompts the user to enter integer values for each of two lists. It then should
displays whether the lists are of the same length, whether the elements in each list sum to the same value,
and whether there are any values that occur in both lists.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Chinese Zodiac Program: Japanese and Vietnamese Variations
 Modify the Chinese Zodiac program in the chapter to allow the user to select the Chinese Zodiac, the

Japanese Zodiac, or the Vietnamese Zodiac. The Japanese Zodiac is the same as the Chinese Zodiac, ex-
cept that “Pig” is substituted with “Wild Boar.” The Vietnamese Zodiac is also the same except that the
“Ox” is substituted with “Water Buffalo” and “Rabbit” is replaced with “Cat.”

 M2. Chinese Zodiac Program: Improved Accuracy
 The true Chinese Zodiac does not strictly follow the year that a given person was born. It also depends on

the month and date as well, which vary over the years. Following are the correct range of dates for each
of the Zodiac symbols for the years 1984 to 2007 (which includes two full cycles of the zodiac). Modify

c04Lists.indd Page 164 16/10/12 10:56 AM user-019Ac04Lists.indd Page 164 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

the Chinese Zodiac program in the chapter so that the user is prompted to enter their date of birth, includ-
ing month and day, and displays the name and characteristics of the corresponding Chinese Zodiac sym-
bol based on the more accurate zodiac provided here.

 M3. Password Encryption/Decryption Program: Multiple Executions
 Modify the Password Encryption/Decryption program in the chapter so that it allows the user to continue

to encrypt and decrypt passwords until they quit.

 M4. Password Encryption/Decryption Program: Secure Password Check
 Modify the Password Encryption/Decryption program in the chapter so that the program rejects any en-

tered password for encryption that is not considered “secure” enough. A password is considered secure if
it contains at least eight characters, with at least one digit and one special character (!, #, etc).

 M5. Password Encryption/Decryption Program: Random Key Generation
 Modify the Encryption/Decryption program in the chapter so that a new encryption key is randomly

generated each time the program is executed. (See the Python 3 Programmers’ Reference for information
on the Random module.)

 M6. Calendar Year Program: Multilingual Version
 Modify the Calendar Year program so that the user can select the language with which the calendar

months are labeled. Give the user the choice of at least three different languages from which to select.
Find the month names for the other languages online.

 M7. Calendar Year Program: Flexible Calendar Format
 The program as is always displays three months per row. Modify the Calendar Year program so that the

user can select how many months are displayed per row. Allow the user to select either two, three, or four
months per row.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Morse Code Encryption/Decryption Program
 Develop and test a Python program that allows a user to type in a message and have it converted into

Morse code, and also enter Morse code and have it converted back to the original message. The encoding
of Morse code is given below.

Program Development Problems 165

c04Lists.indd Page 165 16/10/12 10:56 AM user-019Ac04Lists.indd Page 165 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

166 CHAPTER 4 Lists

 Format the original message (containing English words) so that there is one sentence per line. Format the
Morse code fi le (containing dots and dashes) so that there is one letter per line, with a blank line following
the last letter of each word, and two blank lines following the end of each sentence (except the last).

 D2. Holidays Calendar
 Develop and test a Python program that displays the day of the week that the following holidays fall on

for a year entered by the user,

 ♦ New Year’s Eve
 ♦ Valentine’s Day
 ♦ St. Patrick’s Day
 ♦ April Fool’s Day
 ♦ Fourth of July
 ♦ Labor Day
 ♦ Halloween
 ♦ User’s Birthday

 Note that Labor Day, as opposed to the other holidays above, does not fall on the same date each year.
It occurs each year on the fi rst Monday of September.

 D3. The Game of Battleship
 Battleship is a game involving ships at sea for each of two players. The ships are located in a grid in which

each column of the grid is identifi ed by a letter, and each row by a number, as shown below.

c04Lists.indd Page 166 16/10/12 10:56 AM user-019Ac04Lists.indd Page 166 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 167

 The top half of the board contains the ships of player 1, and the bottom half the ships of player 2. The
darkened areas indicate the size and location of ships. Each player starts with the same number and types
of ships. The location of each player’s ships is determined by the player. Players take turns taking a shot
at the opponent’s ships by “calling out” a particular grid location. For example, if player 1 calls out
“C10,” no ship would be hit in this example. If, however, they were to call out “G10,” then player 2’s ship
(on the bottom half of the board) would be hit. Each player calls out “hit” or “miss” when they are shot
at by the other player. When all grid locations of a given ship have been hit, the ship is sunk, and the op-
ponent gets the number of points based on the ship’s size (given below).

 The number of grid locations that a given ship takes up indicates its type and point value. A typical
set of ships is given below.

 Develop and test a Python program that can play the game of battleship. The user should be able to select
the skill level. The higher the skill level, the larger the grid that is created for play. All games start with
exactly one of each type of ship for each player. The locations of the computer’s ships will be randomly
placed. The user, however, must be able to enter the location of each of their ships. The computer’s shots
into the opponent’s grid area should be randomly generated.

 D4. Heuristic Play for the Game of Battleship
 A heuristic is a general “rule of thumb” for solving a problem. Modify the Game of Battleship program

from the previous problem so that the locations of the shots that the computer makes into the opponent’s
grid area are based on heuristics, rather than being randomly generated. Include an explanation of the
heuristics developed.

c04Lists.indd Page 167 16/10/12 10:56 AM user-019Ac04Lists.indd Page 167 16/10/12 10:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

168

 Functions

 Up until this point, we have viewed a computer program as a single series of instructions. Most
programs, however, consist of distinct groups of instructions, each of which accomplishes a specifi c
task. Such a group of instructions is referred to as a “routine.” Program routines, called “functions”
in Python, are fundamental building blocks in software development. We take our fi rst look at
 functions in this chapter.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain the concept of a program routine

 ♦ Explain the concept of parameter passing

 ♦ Explain the concept of value-returning and non-value-returning functions

 ♦ Explain the notion of the side-effects of a function call

 ♦ Differentiate between local scope and global scope

 ♦ Defi ne and use functions in Python

 ♦ Explain the concept of keyword and default arguments in Python

 ♦ Write a Python program using programmer-defi ned functions

 ♦ Effectively use trace statements for program testing

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 5.1 Program Routines

 5.2 More on Functions

 Computational Problem Solving

 5.3 Credit Card Calculation Program

 CHAPTER 5

c05Functions.indd Page 168 17/10/12 10:25 AM user-019Ac05Functions.indd Page 168 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.1 Program Routines 169

 MOTIVATION

 So far, we have limited ourselves to using only
the most fundamental features of Python—
variables, expressions, control structures,
input/print, and lists. In theory, these are the
only instructions needed to write any pro-
gram (that is, to perform any computation).
From a practical point-of-view, however,
these instructions alone are not enough.

 The problem is one of complexity. Some
smart phones, for example, contain over
10 million lines of code (see Figure 5-1). Imagine
the effort needed to develop and debug software
of that size. It certainly cannot be implemented by
any one person, it takes a team of programmers to
develop such a project.

 In order to manage the complexity of a large problem, it is broken down into smaller subprob-
lems. Then, each subproblem can be focused on and solved separately. In programming, we do the
same thing. Programs are divided into manageable pieces called program routines (or simply rou-
tines). Doing so is a form of abstraction in which a more general, less detailed view of a system can
be achieved. In addition, program routines provide the opportunity for code reuse, so that systems
do not have to be created from “scratch.” Routines, therefore, are a fundamental building block in
software development.

 In this chapter, we look at the defi nition and use of program routines in Python.

 FUNDAMENTAL CONCEPTS

 5.1 Program Routines

 We fi rst introduce the notion of a program routine. We then look in particular at program routines in
Python, called functions . We have already been using Python’s built-in functions such as len,
range, and others. We now look more closely at how functions are used in Python, as well as how
to defi ne our own.

 5.1.1 What Is a Function Routine?

 A routine is a named group of instructions performing some task. A routine can be invoked (called)
as many times as needed in a given program, as shown in Figure 5-2.

FIGURE 5-1 Measures of Lines of Program Code

A
la

n
C

hi
a/

Le
go

 C
ol

or
 B

ric
ks

/W
ik

im
ed

ia

C
om

m
on

s

c05Functions.indd Page 169 17/10/12 10:25 AM user-019Ac05Functions.indd Page 169 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

170 CHAPTER 5 Functions

 When a routine terminates, execution automatically returns to the point from which it was called.
Such routines may be predefi ned in the programming language, or designed and implemented by the
programmer.

 A function is Python’s version of a program routine. Some functions are designed to return a
value, while others are designed for other purposes. We look at these two types of functions next.

FIGURE 5-2 Program Routine

A program routine is a named group of instructions that accomplishes some task. A routine may
be invoked (called) as many times as needed in a given program. A function is Python’s version
of a program routine.

 5.1.2 Defining Functions

 In addition to the built-in functions of Python, there is the capability to defi ne new functions. Such
functions may be generally useful, or specifi c to a particular program. The elements of a function
defi nition are given in Figure 5-3.

FIGURE 5-3 Example of Python Function Defi nition

 The fi rst line of a function defi nition is the function header . A function header starts with the key-
word def, followed by an identifi er (avg), which is the function’s name. The function name is
followed by a comma-separated (possibly empty) list of identifi ers (n1, n2, n3) called formal
parameters , or simply “parameters.” Following the parameter list is a colon (:). Following the
function header is the body of the function, a suite (program block) containing the function’s
 instructions. As with all suites, the statements must be indented at the same level, relative to the
function header.

c05Functions.indd Page 170 17/10/12 10:25 AM user-019Ac05Functions.indd Page 170 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.1 Program Routines 171

Actual arguments, or simply “arguments,” are the values passed to functions to be operated on.
Formal parameters, or simply “parameters,” are the “placeholder” names for the arguments
passed.

 The number of items in a parameter list indicates the number of values that must be passed to
the function, called actual arguments (or simply “arguments”), such as the variables num1, num2,
and num3 below.

FIGURE 5-4 Call to Value-Returning Function

 Value-Returning Functions

 A value-returning function is a program routine called for its return value, and is therefore similar
to a mathematical function. Take the simple mathematical function f(x) 5 2x. In this notation, “x”
stands for any numeric value that function f may be applied to, for example, f(2) 5 2x 5 4. Pro-
gram functions are similarly used, as illustrated in Figure 5-4.

 Function avg takes three arguments (n1, n2, and n3) and returns the average of the three.
The function call avg(10, 25, 16), therefore, is an expression that evaluates to the returned
 function value. This is indicated in the function’s return statement of the form return expr ,
where expr may be any expression. Next, we look at a second form of program routine called for
a purpose other than a returned function value.

 ... num1 5 10

 ... num2 5 25

 ... num3 5 16

 ... avg(num1,num2,num3)

 Functions are generally defi ned at the top of a program. However, every function must be defi ned
before it is called .

 We discuss more about function defi nition and use in the following sections.

c05Functions.indd Page 171 17/10/12 10:25 AM user-019Ac05Functions.indd Page 171 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

172 CHAPTER 5 Functions

L E T ’ S T R Y I T

From the Python Shell, fi rst enter the following function, making sure to indent the code as given. Hit return
twice after the last line of the function is entered. Then enter the following function calls and observe the
results.

... def avg(n1, n2, n3): ... avg(40, 10, 25)
return (n1 1 n2 1 n3) / 3.0 ???

... avg(10, 25, 40) ... avg(40, 25, 10)
??? ???

A value-returning function in Python is a program routine called for its return value, and is there-
fore similar to a mathematical function.

 Non-Value-Returning Functions

 A non-value-returning function is called not for a returned value, but for its side effects . A side
effect is an action other than returning a function value, such as displaying output on the screen.
There is a fundamental difference in the way that value-returning and non-value-returning functions
are called. A call to a value-returning function is an expression, as for the call to function avg:
result 5 avg(10, 25, 16) * factor.

 When non-value-returning functions are called, however, the function call is a statement , as
shown in Figure 5-5. Since such functions do not have a return value, it is incorrect to use a call to a
non-value-returning function as an expression.

FIGURE 5-5 Call to Non-Value-Returning Function

L E T ’ S T R Y I T

From the Python Shell, fi rst enter the following function, making sure to indent the code as given. Then enter
the following function calls and observe the results.

... def hello(name): ... name 5 'John'
 print('Hello', name 1 '!') ... hello(name)
 ???

 In this example, function displayWelcome is called only for the side-effect of the screen output
produced. Finally, every function in Python is technically a value-returning function since any func-
tion that does not explicitly return a function value (via a return statement) automatically returns the
special value None. We will, however, consider such functions as non-value-returning functions.

c05Functions.indd Page 172 17/10/12 10:25 AM user-019Ac05Functions.indd Page 172 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.1 Program Routines 173

A non-value-returning function is a function called for its side effects, and not for a returned
function value.

FIGURE 5-6 Execution of Temperature Conversion Program

 5.1.3 Let’s Apply It—Temperature Conversion Program

(Function Version)

 The following is a program (Figure 5-7) that allows a user to convert a range of values from Fahren-
heit to Celsius, or Celsius to Fahrenheit, as presented in Chapter 3. In this version, however, the
program is designed with the use of functions. This program utilizes the following programming
features.

➤ value-returning functions ➤ non-value-returning functions

Example execution of the program is given in Figure 5-6.

c05Functions.indd Page 173 05/11/12 5:40 PM user-019Ac05Functions.indd Page 173 05/11/12 5:40 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

174 CHAPTER 5 Functions

 In lines 3–29 are defi ned functions displayWelcome, getConvertTo, displayFahren-
ToCelsius, and displayCelsiusToFahren. The functions are directly called from the
main module of the program in lines 32–48 .

 On line 35 , the non-value-returning function displayWelcome is called. Its job is to dis-
play information about the program to the user. It does not need to be passed any arguments since
it performs the same output each time it is called. Next, on line 38 , value-returning function get-
ConvertTo is called. This function also is not passed any arguments. It simply asks the user to

FIGURE 5-7 Temperature Conversion Program (Function Version)

c05Functions.indd Page 174 17/10/12 10:25 AM user-019Ac05Functions.indd Page 174 17/10/12 10:25 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.1 Program Routines 175

enter either 'F' or 'C' to indicate whether they want to convert from Fahrenheit to Celsius, or
Celsius to Fahrenheit. The input value entered is returned as the function value.

 The instructions on line 41–42 then prompt the user for the start and end range of temperatures
to be converted. This task does not warrant the construction of a function since there are only two
input instructions to accomplish this.

 The fi nal part of the program displays the converted range of temperatures. Two non-value-
returning functions are defi ned for accomplishing this task—displayFahrenToCelsius and
displayCelsiusToFahren. Each is passed two arguments, temp_start and temp_end,
which indicate the range of temperature values to be converted.

 What is left to look at is the implementation of each of the individual functions. The imple-
mentation of function displayWelcome (lines 3–6) is very straightforward. It simply contains
three print instructions. Function getConvertTo (lines 8–13) contains a call to input followed
by a while loop that performs input validation. The user is forced to enter either 'F' or 'C', and
is continually prompted to re-enter as long as a value other than these two values is entered. When
the loop terminates, variable which is returned by the return statement in line 13 .

 Function displayFahrenToCelsius (lines 15–21) and function displayCelsius-
ToFahren (lines 23–29) are similar in design. Each contains two parameters—start and end
(which are each passed actual arguments temp_start and temp_end in the main section of the
program). Each fi rst prints the appropriate column headings followed by a for statement that iterates
variable temp over the requested temperature range. The conversion formula is different in each,
however. Each has the same fi nal print instruction to print out the original temperature and the
 converted temperature in each of the columns.

 Self-Test Questions

 1. The values passed in a given function call in Python are called,
 (a) formal parameters
 (b) actual arguments

 2. The identifi ers of a given Python function providing names for the values passed to it are called,
 (a) formal parameters
 (b) actual arguments

 3. Functions can be called as many times as needed in a given program. (TRUE/FALSE)

 4. When a given function is called, it is said to be,
 (a) subrogated (b) invoked (c) activated

 5. Which of the following types of functions must contain a return statement,
 (a) value-returning functions (b) non-value-returning functions

 6. Value-returning function calls are,
 (a) expressions (b) statements

 7. Non-value-returning function calls are,
 (a) expressions (b) statements

 8. Which of the following types of routines is meant to produce side effects?
 (a) value-returning functions (b) non-value-returning functions

 ANSWERS: 1. (b), 2. (a), 3. TRUE, 4. (b), 5. (a), 6. (a), 7. (b), 8. (b)

c05Functions.indd Page 175 22/10/12 3:17 PM user-019Ac05Functions.indd Page 175 22/10/12 3:17 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

176 CHAPTER 5 Functions

 5.2 More on Functions

 In this section we further discuss issues related to function use, including more on function invoca-
tion and parameter passing.

 5.2.1 Calling Value-Returning Functions

 Calls to value-returning functions can be used anywhere that a function’s return value is appropriate,

 result 5 max(num_list) * 100

 Here, we apply built-in function max to a list of integers, num_list. Examples of additional
 allowable forms of function calls are given below.

 (a) result 5 max(num_list1) * max(num_list2)

 (b) result 5 abs(max(num_list))

 (c) if max(num_list) , 10:...

 (d) print('Largest value in num_list is ', max(num_list))

 The examples demonstrate that an expression may contain multiple function calls, as in (a); a function
call may contain function calls as arguments, as in (b); conditional expressions may contain function
calls, as in (c); and the arguments in print function calls may contain function calls, as in (d).

 What if a function is to return more than one value, such as function maxmin to return both
the maximum and minimum values of a list of integers? In Python, we can do this by returning the
two values as a single tuple,

 function defi nition
 def maxmin(num_list):

 return (max(num_list), min(num_list))

 function use
 weekly_temps 5 [45, 30, 52, 58, 62, 48, 49]

 (a) highlow_temps 5 maxmin(weekly_temps)

 (b) high, low 5 maxmin(weekly_temps)

 In (a) above, the returned tuple is assigned to a single variable, highlow_temps. Thus, highlow_
temps[0] contains the maximum temperature, and highlow_temps[1] contains the mini-
mum temperature. In (b), however, a tuple assignment is used. In this case, variables high and low
are each assigned a value of the tuple based on the order that they appear. Thus, high is assigned to
the tuple value at index 0, and low the tuple value at index 1 of the returned tuple.

 Note that it does not make sense for a call to a value-returning function to be used as a state-
ment, for example,

 max(num_list)

 Such a function call does not have any utility because the expression would evaluate to a value that
is never used and thus is effectively “thrown away.”

 Finally, we can design value-returning functions that do not take any arguments, as we saw in
the getConvertTo function of the previous temperature conversion program. Empty parentheses

c05Functions.indd Page 176 17/10/12 10:26 AM user-019Ac05Functions.indd Page 176 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 177

 5.2.2 Calling Non-Value-Returning Functions

 As we have seen, non-value-returning functions are called for their side effects, and not for a
 returned function value. Thus, such function calls are statements, and therefore can be used
anywhere that an executable statement is allowed. Consider such a function call to display-
Welcome from Figure 5-7,

 displayWelcome()

 It would not make sense to treat this function call as an expression, since no meaningful value is
returned (only the default return value None). Thus, for example, the following assignment state-
ment would not serve any purpose,

 welcome_displayed 5 displayWelcome()

 Finally, as demonstrated by function displayWelcome(), functions called for their side effects
can be designed to take no arguments, the same as we saw for value-returning functions. Parentheses
are still included in the function call to indicate that identifi er displayWelcome is a function
name, and not a variable.

are used in both the function header and the function call. This is needed to distinguish the identifi er
as denoting a function name and not a variable.

Function calls to value-returning functions can be used anywhere that a function’s return value is
appropriate.

L E T ’ S T R Y I T

Enter the defi nitions of functions avg (from section 5.1.2) and minmax given above. Then enter the
following function calls and observe the results.

... avg(10,25,40) ... num_list 5 [10,20,30]
???

 ... max_min 5 maxmin(num_list)
... avg(10,25,40) 1 10 ... max_min[0]
??? ???

... if avg(10,25,240) , 0: ... max_min[1]
 print 'Invalid avg' ???
???

 ... max, min 5 maxmin(num_list)
... avg(avg(2,4,6),8,12) ... max
??? ???

... avg(1,2,3) * avg(4,5,6) ... min
??? ???

c05Functions.indd Page 177 17/10/12 10:26 AM user-019Ac05Functions.indd Page 177 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

178 CHAPTER 5 Functions

Function calls to non-value-returning functions can be used anywhere that an executable
 statement is allowed.

L E T ’ S T R Y I T

Enter the defi nition of function hello given below, then enter the following function calls and observe the
results.

... def sayHello():

print('Hello!')

... sayHello()
???
... t 5 sayHello()
???
... t
???
... t 55 None
???

... def buildHello(name):

return 'Hello' 1 name 1 '!'

... greeting 5 buildHello('Charles')

... print(greeting)
???
... buildHello('Charles')
???
... buildHello()
???

 5.2.3 Parameter Passing

 Now that we have discussed how functions are called, we take a closer look at the passing of argu-
ments to functions.

 Actual Arguments vs. Formal Parameters

 Parameter passing is the process of passing arguments to a function. As we have seen, actual argu-
ments are the values passed to a function’s formal parameters to be operated on. This is illustrated
in Figure 5-8.

FIGURE 5-8 Parameter Passing

c05Functions.indd Page 178 17/10/12 10:26 AM user-019Ac05Functions.indd Page 178 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 179

 In this example, function ordered is called once with arguments num1, num2 and a second time
with arguments num2, num1. Each is a proper function call and each is what is logically needed in
this instance.

L E T ’ S T R Y I T

Enter the defi nition of function ordered given above into the Python Shell. Then enter the following and
observe the results.

... nums_1 5 [5,2,9,3]

... nums_2 5 [8,4,6,1]
... ordered(max(nums_1), max(nums_2))
... ???

... ordered(min(nums_1), max(nums_2))
???

The correspondence of actual arguments and formal parameters is determined by the order of the
arguments passed, and not their names.

FIGURE 5-9 Parameter Passing and Argument Names

 Here, the values of birthYr (the user’s year of birth) and HSGradYr (the user’s year of
high school graduation) are passed as the actual arguments to formal parameters n1 and n2.
Each call is part of the same Boolean expression ordered(birthYr, HSGradYr) and
ordered(HSGradYr, colGradYr). In the second function call of the expression, a differ-
ent set of values HSGradYr and colGradYr are passed. Formal parameter names n1 and n2,
however, remain the same.

 Note that the correspondence of actual arguments and formal parameters is determined by the
 order of the arguments passed, and not their names. Thus, for example, it is perfectly fi ne to pass an
actual argument named num2 to formal parameter n1, and actual argument num1 to formal
 parameter n2, as given in Figure 5-9.

c05Functions.indd Page 179 17/10/12 10:26 AM user-019Ac05Functions.indd Page 179 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

180 CHAPTER 5 Functions

 Mutable vs. Immutable Arguments

 There is an issue related to parameter passing that we have yet to address. We know that when a
function is called, the current values of the arguments passed become the initial values of their cor-
responding formal parameters,

 def avg(n1, n2, n3):

 avg(10, 25, 40)

 In this case, literal values are passed as the arguments to function avg. When variables are passed
as actual arguments, however, as shown below,

 def avg(n1 , n2 , n3):

 avg(num1 , num2 , num3)

 there is the question as to whether any changes to formal parameters n1, n2, and n3 in the function
result in changes to the corresponding actual arguments num1, num2, and num3. In this case, func-
tion avg doesn’t assign values to its formal parameters, so there is no possibility of the actual argu-
ments being changed. Consider, however, the following function,

 def countDown(n):

 while n .5 0:

 if (n != 0):

 print(n, '..', end='')

 else:

 print(n)

 n 5 n 2 1

 This function simply displays a countdown of the provided integer parameter value. For example,
function call countDown(4) produces the following output,

 4 . . 3 . . 2 . . 1 . . 0

 What if the function call contained a variable as the argument, for example, countDown(num_
tics)? Since function countDown alters the value of formal parameter n, decrementing it
until it reaches the value − 1, does the corresponding actual argument num_tics have value
 − 1 as well?

 ... num_tics 5 10

 ... countDown(num_tics)

 ... num_tics

 ???

c05Functions.indd Page 180 17/10/12 10:26 AM user-019Ac05Functions.indd Page 180 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 181

Only arguments of mutable type can be altered when passed as an argument to a function. In general,
function results should be through a function’s return value, and not through altered parameters.

L E T ’ S T R Y I T

Enter the following and observe the results.

... num 5 10 ... nums_1 5 [1,2,3] ... nums_2 5 (1,2,3)

... def incr(n): ... def update(nums): ... update(nums_2)
 n 5 n 1 1 nums[1] 5 nums[1] 1 1 ... ???
... incr(num) ... update(nums_1)
... num ... nums_1
??? ???

 5.2.4 Keyword Arguments in Python

 The functions we have looked at so far were called with a fi xed number of positional arguments.
A positional argument is an argument that is assigned to a particular parameter based on its posi-
tion in the argument list, as illustrated below.

 def mortgage_rate(amount, rate, term)

 monthly_payment 5 mortgage_rate(350000, 0.06, 20)

 If you try this, you will see that num_tics is unchanged. Now consider the following function,

 def sumPos(nums): ... nums_1 5 [5, 22, 9, 4, 2 6, 1]

 for k in range(0, len(nums)): ... total 5 sumPos(nums_1)

 if nums[k] , 0: ... total

 nums[k] 5 0 19

 ... nums_1

 return sum(nums) [5,0,9,4,0,1]

 Function sumPos returns the sum of only the positive numbers in the provided argument. It does
this by fi rst replacing all negative values in parameter nums with 0, then summing the list using
built-in function sum. We see above that the corresponding actual argument nums_1 has been al-
tered in this case, with all of the original negative values set to 0.

 The reason that there was no change in integer argument num_tics above but there was in
list argument nums_1 has to do with their types. Lists are mutable. Thus, arguments of type list will
be altered if passed to a function that alters its value. Integers, fl oats, Booleans, strings, and tuples,
on the other hand, are immutable. Thus, arguments of these types cannot be altered as a result of any
function call.

 It is generally better to design functions that do not return results through their arguments. In
most cases, the result should be returned as the function’s return value. What if a function needs to
return more than one function value? The values can be returned in a tuple, as discussed above.

c05Functions.indd Page 181 17/10/12 10:26 AM user-019Ac05Functions.indd Page 181 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

182 CHAPTER 5 Functions

L E T ’ S T R Y I T

Enter the following function defi nition in the Python Shell. Execute the statements below and observe the
results.

... def addup(fi rst, last): ... addup(1,10)
 ???
 if fi rst . last:

 sum 5 21 ... addup(fi rst51, last510)
 else: ???
 sum 5 0
 for i in range(fi rst, last11): ... addup(last510, fi rst51)
 sum 5 sum 1 i ???

 return sum

 This function computes and returns the monthly mortgage payment for a given loan amount
(amount), interest rate (rate), and number of years of the loan (term).

 Python provides the option of calling any function by the use of keyword arguments. A key-
word argument is an argument that is specifi ed by parameter name, rather than as a positional argu-
ment as shown below (note that keyword arguments, by convention, do not have a space before or
after the equal sign),

 def mortgage_rate(amount, rate, term)

 monthly_payment 5 mortgage_rate(rate 5 0.06, term 5 20, amount 5 350000)

 This can be a useful way of calling a function if it is easier to remember the parameter names than
it is to remember their order. It is possible to call a function with the use of both positional and key-
word arguments. However, all positional arguments must come before all keyword arguments in the
function call, as shown below.

 def mortgage_rate(amount, rate, term)

 monthly_payment 5 mortgage_rate(35000, term 5 20, rate 5 0.06)

 This form of function call might be useful, for example, if you remember that the fi rst argument is
the loan amount, but you are not sure of the order of the last two arguments rate and term.

A positional argument is an argument that is assigned to a particular parameter based on its posi-
tion in the argument list. A keyword argument is an argument that is specifi ed by parameter name.

c05Functions.indd Page 182 17/10/12 10:26 AM user-019Ac05Functions.indd Page 182 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 183

 5.2.6 Variable Scope

 Looking back at the temperature conversion program in section 5.1.3, we see that functions
 displayFahrenToCelsius and displayCelsiusToFahren each contain variables
named temp and converted_temp. We ask, “Do these identifi ers refer to common entities,
or does each function have its own distinct entities?” The answer is based on the concept of
identifi er scope , which we discuss next.

 Local Scope and Local Variables

 A local variable is a variable that is only accessible from within a given function. Such variables are
said to have local scope . In Python, any variable assigned a value in a function becomes a local vari-
able of the function. Consider the example in Figure 5-10.

A default argument is an argument that can be optionally provided in a given function call.
When not provided, the corresponding parameter provides a default value.

 5.2.5 Default Arguments in Python

 Python also provides the ability to assign a default value to any function parameter allowing for the
use of default arguments. A default argument is an argument that can be optionally provided, as
shown here.

 def mortgage_rate(amount, rate, term 5 20)

 monthly_payment 5 mortgage_rate(35000, 0.62)

 In this case, the third argument in calls to function mortgage_rate is optional. If omitted, pa-
rameter term will default to the value 20 (years) as shown. If, on the other hand, a third argument
is provided, the value passed replaces the default parameter value. All positional arguments must
come before any default arguments in a function defi nition.

L E T ’ S T R Y I T

Enter the following function defi nition in the Python Shell. Execute the statements below and observe the
results.

... def addup(fi rst, last, incr51): ... addup(1,10)
 ???
 if fi rst . last: ... addup(1,10,2)
 sum 5 21 ???
 else: ... addup(fi rst=1, last=10)
 sum 5 0 ???
 for i in range(fi rst, last11, incr): ... addup(incr=2, fi rst=1,
 sum 5 sum 1 i last=10)
 return sum ???

c05Functions.indd Page 183 17/10/12 10:26 AM user-019Ac05Functions.indd Page 183 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

184 CHAPTER 5 Functions

FIGURE 5-10 Defi ning Local Variables

 Both func1 and func2 contain identifi er n. Function func1 assigns n to 10, while function
func2 assigns n to 20. Both functions display the value of n when called—func2 displays the
value of n both before and after its call to func1. If identifi er n represents the same variable, then
shouldn’t its value change to 10 after the call to func1? However, as shown by the output, the value
of n remains 20. This is because there are two distinct instances of variable n, each local to the func-
tion assigned in and inaccessible from the other.

 Now consider the example in Figure 5-11. In this case, the functions are the same as above
except that the assignment to variable n in func1 is commented out.

 In this case, we get an error indicating that variable n is not defi ned within func1. This is because
variable n defi ned in func2 is inaccessible from func1. (In this case, n is expected to be a global
variable, discussed next.)

 The period of time that a variable exists is called its lifetime . Local variables are automatically
created (allocated memory) when a function is called, and destroyed (deallocated) when the function

FIGURE 5-11 Inaccessibility of Local Variables

c05Functions.indd Page 184 17/10/12 10:26 AM user-019Ac05Functions.indd Page 184 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 185

terminates. Thus, the lifetime of a local variable is equal to the duration of its function’s execution.
Consequently, the values of local variables are not retained from one function call to the next.

 The concept of a local variable is an important one in programming. It allows variables to be
defi ned in a function without regard to the variable names used in other functions of the program. It
also allows previously written functions to be easily incorporated into a program. The use of global
variables, on the other hand, brings potential havoc to programs, discussed next.

 Global Variables and Global Scope

 A global variable is a variable that is defi ned outside of any function defi nition. Such variables are
said to have global scope . This is demonstrated in Figure 5-12.

A local variable is a variable that is only accessible from within the function it resides. Such
variables are said to have local scope.

 Variable max is defi ned outside func1 and func2 and therefore “global” to each. As a result, it
is directly accessible by both functions. For this reason, the use of global variables is generally
considered to be bad programming style . Although it provides a convenient way to share values
among functions, all functions within the scope of a global variable can access and alter it. This
may include functions that have no need to access the variable, but none-the-less may unintention-
ally alter it.

 Another reason that the use of global variables is bad practice is related to code reuse. If a
function is to be reused in another program, the function will not work properly if it is reliant on
the existence of global variables that are nonexistent in the new program. Thus, it is good

FIGURE 5-12 Access to Value of Global Variable

L E T ’ S T R Y I T

Enter the following function defi nition in the Python Shell. Execute the statements below and observe the
results.

... def func1(): ... func1()
 some_var 5 10 ... some_var
 ???

c05Functions.indd Page 185 17/10/12 10:26 AM user-019Ac05Functions.indd Page 185 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

186 CHAPTER 5 Functions

A global variable is a variable defi ned outside of any function defi nition. Such variables are said
to have global scope. The use of global variables is considered bad programming practice.

 programming practice to design functions so all data needed for a function (other than its local
variables) are explicitly passed as arguments, and not accessed through global variables.

FIGURE 5-13 Execution of GPA Calculation Program

FIGURE 5-14 GPA Calculation Program (Continued)

 5.2.7 Let’s Apply It—GPA Calculation Program

 The following program (Figure 5-14) computes a semester GPA and new cumulative GPA for a
given student. This program utilizes the following programming features:

 ➤ tuple assignment

 Figure 5-13 illustrates an example execution of the program.

c05Functions.indd Page 186 05/11/12 5:40 PM user-019Ac05Functions.indd Page 186 05/11/12 5:40 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.2 More on Functions 187

 The program begins with the display of the program greeting on line 49 . Lines 49–50 get the num-
ber of earned credits (total_credits) and current cumulative GPA (cumm_gpa) from the user.
These two variables are bundled into a tuple named cumm_gpa_info on line 51 . Since they are
always used together, bundling these variables allows them to be passed to functions as one param-
eter rather than as separate parameters.

 Function getGrades is called on line 55 , which gets the semester grades from the user
and assigns it to variable semester_grades. The value returned by function getGrades is

FIGURE 5-14 GPA Calculation Program

c05Functions.indd Page 187 17/10/12 10:26 AM user-019Ac05Functions.indd Page 187 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

188 CHAPTER 5 Functions

a list of sublists, in which each sublist contains the letter grade for a given course, and the associ-
ated number of credits,

 [['A', 3], ['B', 4], ['A', 3], ['C', 3]]

 On line 58 , function calculateGPA is called with arguments semester_grades and cumm_
gpa_info. The function returns a tuple containing the semester GPA and new cumulative GPA of
the user. A tuple assignment is used to unpack the two values into variables semester_gpa and
cumm_gpa. Finally, these values are displayed on lines 61 and 62 .

 Function calculateGPA is defi ned in lines 24–41 with parameters sem_grades_
info and cumm_gpa_info. A GPA is calculated as the total quality points earned for a given
set of courses, divided by the total number of credits the courses are worth. The number of qual-
ity points for a given course is defi ned as a course grade times the number of credits the course
is worth. Thus, assuming a grade of A is worth 4 points, B worth 3 points, and grades of C, D,
and F worth 2, 1 and 0 points, respectively, to calculate the semester GPA for a student receiving
A’s in two four-credit courses, B’s in two three-credit courses, and a C in a one-credit course
would be,

 (4 * 4 1 4 * 4 1 3 * 3 1 3 * 3 1 2 * 1) / 15 5 3.47

 A A B B C

 where 15 is the total number of credits of all courses.
 Similarly, in order to calculate a new cumulative GPA, the total quality points of the current

cumulative GPA plus the total quality points of the new semester GPA is divided by the total number
of credits the student has earned to date. Thus, to calculate a new cumulative GPA for a current cu-
mulative GPA of 3.25 earning thirty credits, and a new semester GPA as given above (3.47 earning
fi fteen credits) would be,

 (3.25 * 30 1 3.47 * 15) / 45 5 3.32

 with 45 total earned credits. Thus, in function calculateGPA, local variables sem_quality_
pts and sem_credits are initialized to zero. Their values for the courses provided in parameter
sem_grades_info are computed in the for loop on lines 29–35 . This loop also calculates the
semester quality points and the number of credits of the current semester, assigned to local variables
sem_quality_pts and sem_credits, respectively (at lines 32 and 35). Note that in the cal-
culation of the semester quality points, function convertGrade is called to convert each letter
grade to its corresponding numerical value. Finally, at the end of function calculateGPA, local
variable sem_gpa is assigned to the total semester quality points divided by the total semester
credits. Similarly, local variable new_cumm_gpa is assigned to the total quality points to date
(current_cumm_gpa * total_credits 1 sem_gpa * sem_credits) divided by the
total number of credits earned to date (num_credits 1 sem_credits). Finally, on line 41 , a
tuple is returned containing both of these computed values.

 The remaining functions defi ned in this program are convertGrade and getGrades.
Function convertGrade is passed a letter grade, and returns the corresponding numerical value.
Since the ordinal value (via the ord function) of letters in Python are sequential integers, determin-
ing the difference between the ordinal value of A and the ordinal value of a given letter grade allows

c05Functions.indd Page 188 17/10/12 10:26 AM user-019Ac05Functions.indd Page 188 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 189

the numerical value of the letter grade to be determined. For example, for a letter grade of A through
D, its numerical value is determined and returned as,

 return 4 2 (ord('A') 2 ord('A')) ➝ return 4

 return 4 2 (ord('B') 2 ord('A')) ➝ return 3

 return 4 2 (ord('C') 2 ord('A')) ➝ return 2

 return 4 2 (ord('D') 2 ord('A')) ➝ return 1

 Since there is no letter of grade E used, a grade of F has to be handled separately.
 Finally, function getGrades returns a list of sublists of grades and credits entered by the

user, as mentioned above. Thus, local variable semester_info is initialized to an empty list on
 line 10 . The while loop at line 14 iterates until Boolean variable more_grades is False, initial-
ized to True in line 11 . The loop continues to iterate and append another pair of grade/credits to the
list until the user hits the Enter key when prompted for a course grade (line 15).

 Self-Test Questions

 1. A function call can be made anywhere within a program in which the return type of the
function is appropriate. (TRUE/FALSE)

 2. An expression may contain more than one function call. (TRUE/FALSE)

 3. Function calls may contain arguments that are function calls. (TRUE/FALSE)

 4. All value-returning functions must contain at least one parameter. (TRUE/FALSE)

 5. Every function must have at least one mutable parameter. (TRUE/FALSE)

 6. A local variable in Python is a variable that is,
 (a) defi ned inside of every function in a given program
 (b) local to a given program
 (c) only accessible from within the function it is defi ned

 7. A global variable is a variable that is defi ned outside of any function defi nition.
(TRUE/FALSE)

 8. The use of global variables is a good way to allow different functions to access and modify
the same variables. (TRUE/FALSE)

 ANSWERS: 1. True, 2. True, 3. True, 4. False, 5. False, 6. (c), 7. True, 8. False

 COMPUTATIONAL PROBLEM SOLVING

 5.3 Credit Card Calculation Program

 In this section, we design, implement, and test a program that will allow us to determine the length
of time needed to pay off a credit card balance, as well as the total interest paid.

 5.3.1 The Problem

 The problem is to generate a table showing the decreasing balance and accumulating interest paid
on a credit card account for a given credit card balance, interest rate, and monthly payment, as
shown in Figure 5-15.

c05Functions.indd Page 189 17/10/12 10:26 AM user-019Ac05Functions.indd Page 189 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

190 CHAPTER 5 Functions

 5.3.2 Problem Analysis

 The factors that determine how quickly a loan is paid off are the amount of the loan, the interest rate
charged, and the monthly payments made. For a fi xed-rate home mortgage, the monthly payments
are predetermined so that the loan is paid off within a specifi c number of years. Therefore, the total
interest that will be paid on the loan is made evident at the time the loan is signed.

 For a credit card, there is only a minimum payment required each month. It is not always ex-
plicitly stated by the credit card company, however, how long it would take to pay off the card by
making only the minimum payment. The minimum payment for a credit card is dependent on the
particular credit card company. However, it is usually around 2–3% of the outstanding loan amount
each month, and no less than twenty dollars. Thus, calculating this allows us to project the amount
of time that it would take before the account balance becomes zero, as well as the total interest paid.

 5.3.3 Program Design

 Meeting the Program Requirements

 No particular format is specifi ed for how the output is to be displayed. All that is required is that the
user be able to enter the relevant information and that the length of time to pay off the loan and the total
interest paid is displayed. The user will also be given the choice of assuming the monthly payment to
be the required minimum payment, or a larger specifi ed amount.

FIGURE 5-15 Example Execution of the Credit Card
Calculation Program

c05Functions.indd Page 190 17/10/12 10:26 AM user-019Ac05Functions.indd Page 190 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 191

 Data Description

 All that needs to be represented in this program are numerical values for the loan amount, the inter-
est rate, and the monthly payment made. There is no need to create a data structure as the table of
payments can be generated as it is displayed.

 Algorithmic Approach

 The only algorithm needed for this problem is the calculation of the required minimum payment.
The minimum payment is usually calculated at 2% or 3% of the outstanding balance, with a lower
limit of around $20. Therefore, we will assume a worst case scenario of a minimum payment calcu-
lated at 2%, with a minimum payment of $20.

 Overall Program Steps

 The overall steps in this program design are given in Figure 5-16.

FIGURE 5-16 Overall Steps of the Credit Card
Calculation Program

 5.3.4 Program Implementation and Testing

 Stage 1—Developing the Overall Program Structure

 We fi rst develop and test the overall program structure given in Figure 5-17.
 The program begins on line 15 with a call to function displayWelcome(). Next, the cur-

rent credit card balance and annual interest rate (APR) are input from the user (lines 18–19), each
read as an integer value. Since the monthly interest rate is what will be used in the calculations, the
value in apr is divided by 1200 (on line 21). This converts the value to a monthly interest rate, as
well as converting it to decimal form (for example, 18% as 0.18).

 The fi nal value input from the user is the monthly payments that they wish to have the payoff
calculated with. They have a choice of either going with the minimum required monthly payment,
assumed to be $20 for testing purposes (line 28), or a specifi ed monthly payment (line 31). The
credit card balance, annual percentage rate, and the assumed monthly payments are passed to func-
tion displayPayments (on line 34) to calculate and display the pay down of the balance as well
as the interest paid over each month of the payoff period.

c05Functions.indd Page 191 17/10/12 10:26 AM user-019Ac05Functions.indd Page 191 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

192 CHAPTER 5 Functions

FIGURE 5-17 Credit Card Calculation Program (Stage 1)

 Functions displayWelcome (line 3) and displayPayments (line 6) consist only of trace
statements . A trace statement prints, for testing purposes, a message indicating that a certain point
in the program has been reached. Trace statements are also used to display the value of certain vari-
ables. Once this part of the program is working, we can focus on implementing the functions and
further developing the main program section.

 Stage 1 Testing

 We show sample test runs of this version of the program in Figure 5-18.
 From the test results, we see that the appropriate values are being input and passed to func-

tion displayPayments. So it looks like the overall structure of this stage of the program is
working correctly.

 Stage 2—Generating an Unformatted Display of Payments

 We next implement function displayWelcome, and develop an initial implementation of
function displayPayments, given in Figure 5-19. We remove the two print instructions that
were included only for test purposes in stage 1 of the program (previously on lines 27 and 30).

c05Functions.indd Page 192 17/10/12 10:26 AM user-019Ac05Functions.indd Page 192 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 193

Also, the minimum required monthly payment is computed (lines 45–48) rather than being set
to 20.

 Function displayPayments is where most of the work is done in the program. Therefore,
we shall develop this function in stages as well. At this point, we develop the function to display, for
each month during the loan payoff, the year, the current balance, and the total interest paid to date.
We delay issues of screen formatting for the alignment of numbers, and only include formatting for
rounding numeric values to two decimal places.

 The while loop on line 21 iterates while balance, passed as an argument to the function, is
greater than zero. The function will keep count of the number of months (lines) displayed, as well
as the total interest paid. Variables num_months and total_int_paid are used for this pur-
pose, and are therefore initialized before the loop to 0 (lines 11–12). On lines 15–18 the initial in-
formation for the calculation is displayed. Within the while loop, on line 22 , the monthly interest
paid (monthly_int) is computed as the current balance of that month during the payoff period
(balance), times the monthly interest rate (int_rate). The total interest paid is then updated on
 line 23 . On line 24 , the new balance is computed as the current balance, plus the interest for the
month, minus the monthly payment.

 The next step is to display these computed values. Since time is kept track of in terms of months,
the current year to be displayed is computed using integer division (line 26), adding one so that the fi rst
year is displayed as 1, and not 0. Then on line 27 , the line representing the payment for the current
month is displayed. Formatting is used so that all numerical values are displayed with two decimal
places. Finally, variable num_months is incremented by one for the next iteration of the loop.

 Stage 2 Testing

 We test this program once for a specifi ed monthly payment amount, and once for the option of
minimum monthly payments. The results are given in Figures 5-20 and 5-21.

FIGURE 5-18 Output of First Stage Testing

c05Functions.indd Page 193 17/10/12 10:26 AM user-019Ac05Functions.indd Page 193 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

194 CHAPTER 5 Functions

FIGURE 5-19 Credit Card Calculation Program (Stage 2)

c05Functions.indd Page 194 17/10/12 10:26 AM user-019Ac05Functions.indd Page 194 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 195

FIGURE 5-20 Output of Second Stage Testing (User-Entered Payment)

FIGURE 5-21 Output of Second Stage Testing (Minimum Payment)

c05Functions.indd Page 195 17/10/12 10:26 AM user-019Ac05Functions.indd Page 195 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

196 CHAPTER 5 Functions

 Clearly, there is something wrong with this version of the program. The ValueError generated in
Figure 5-20 indicates that the format specifi er .2f is an unknown format code for a string type value,
referring to line 18 . Thus, this must be referring to variable monthly_payment. But that should
be a numeric value, and not a string value! How could it have become a string type? Let’s check if
the problem also occurs when selecting the minimum payment option (Figure 5-21).

 In this case the program works. Since the problem only occurred when the user entered the
monthly payment (as opposed to the minimum payment option), we next try to determine what dif-
ferences there are in the program related to the assignment of variable monthly_payment.

 # determine monthly payment

 response 5 input('Use the minimum monthly payment? (y/n): ')

 if response in ('y', 'Y'):

 if balance < 1000:
 monthly_payment 5 20

 else:
 monthly_payment = balance * .02

 else:

 monthly_payment = input('Enter monthly payment: ')

 When the user selects the minimum monthly payment option, variable monthly_payment is set
to integer value 20 (or 2% of the current balance if balance is greater than 1000). Otherwise, its
value is input from the user. This variable is not redefi ned anywhere else in the program. Since the
variable monthly_payment is not a local variable, we can display its value directly from the
Python shell,

 ... monthly_payment

 '140'

 It is a string value. We immediately realize that the input value for variable monthly_payment
was not converted to an integer type, and was thus left as a string type! We fi x this problem by re-
placing the line with the following,

 monthly_payment 5 int(input('Enter monthly payment: '))

 This explains why the problem did not appear in the testing of stage 1 of the program. In that ver-
sion, variable monthly_payment was never formatted as a numeric value, and also never used in
a numerical calculation (both of which would have generated an error).

 At this point, we execute a number of test cases for various initial balances, interest rates, and
monthly payments. The result is given in Figure 5-22, checked against online loan payoff calculator
tools. We next move on to the fi nal stage of program development.

 Stage 3—Formatting the Displayed Output

 In this fi nal stage of the program, input error checking is added. The program is also modifi ed to
allow the user to continue to enter various monthly payments for recalculating a given balance pay-
off. Output formatting is added to make the displayed information more readable. Finally, we cor-
rect the display of a negative balance at the end of the payoff schedule, as appears in Figure 5-21.
The fi nal version of the program is given in Figure 5-23.

c05Functions.indd Page 196 17/10/12 10:26 AM user-019Ac05Functions.indd Page 196 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 197

FIGURE 5-22 Test Cases for Stage 2 of the Credit Card Calculation Program

FIGURE 5-23 Final Stage of the Credit Card Calculation Program (Continued)

c05Functions.indd Page 197 17/10/12 10:26 AM user-019Ac05Functions.indd Page 197 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

198 CHAPTER 5 Functions

FIGURE 5-23 Final Stage of the Credit Card Calculation Program (Continued)

c05Functions.indd Page 198 17/10/12 10:26 AM user-019Ac05Functions.indd Page 198 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

5.3 Credit Card Calculation Program 199

 The fi rst set of changes in the program provides some input error checking. (We will address means
of more complete error checking in Chapter 7.) In lines 55–56 , tuples yes_response and no_
response are defi ned. These are used to check if input from the user is an appropriate yes/no
response. For example, the while statement on line 73 checks that the input from line 72 is either
'y', 'Y' ,'n', or 'N',

 while response not in yes_response 1 no_response:

 by checking if response is in the concatenation of tuples yes_response and no_response.
For determining the specifi c response, the tuples can be used individually (line 76),

 if response in yes_response:

 Similar input error checking is done on line 101 .
 The next set of changes allows a number of payoff schedules for an entered balance to be

calculated. A while statement is added at line 59 , with its condition based on the value of Boolean
variable calc (initialized to True on line 58). To accommodate the recalculation of payoff sched-
ules, variables num_months, total_int_paid and payment_num are each reset to 0 in
function displayPayments (lines 11–13).

 Output formatting is added in function displayPayments. On line 18 , 'PAYOFF SCHED-
ULE' is displayed right-justifi ed within a fi eld of twenty. On lines 19–20 , the column headings are
displayed with appropriate fi eld widths. Lines 37–39 display the balance, payment number and in-
terest of each month, aligned under the column headings. Lines 32–35 ensure that each year is dis-
played only once. Finally, in lines 29–30 variable balance is set to zero if it becomes negative so
that negative balances are not displayed.

FIGURE 5-23 Final Stage of the Credit Card Calculation Program

c05Functions.indd Page 199 17/10/12 10:26 AM user-019Ac05Functions.indd Page 199 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

200 CHAPTER 5 Functions

 Stage 3 Testing

 We give example output of this version of the program for both a payoff using the required minimum
monthly payment, and for a user-entered monthly payment in Figures 5-24 and 5-25.

 Figure 5-25 depicts a portion of the output for the sake of space. We run the same set of test
cases used in the testing of the previous (stage 2) version of the program, given in Figure 5-26.

Based on these results, we can assume that the program is functioning properly.

FIGURE 5-24 Output of Third Stage Testing (User-Entered Payment)

c05Functions.indd Page 200 17/10/12 10:26 AM user-019Ac05Functions.indd Page 200 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

FIGURE 5-26 Test Cases for Stage 3 of the Credit Card Calculation Program

FIGURE 5-25 Output of Third Stage Testing (Minimum Payment)

201

c05Functions.indd Page 201 17/10/12 10:26 AM user-019Ac05Functions.indd Page 201 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

202 CHAPTER 5 Functions

General Topics

Program Routines
Value-Returning vs. Non-Value-Returning Functions
Side Effects (of Function Calls)
Parameter Passing: Actual Arguments vs.
 Formal Parameters
Local Scope and Local Variables
Global Scope and Global Variables
Variable Lifetime

Python-Specifi c Programming Topics

Defi ning Functions in Python
Built-in Functions of Python
Value-Returning and Non-Value-Returning
 Functions in Python
Tuple Assignment in Python
Mutable vs. Immutable Arguments in Python
Local vs. Global Variables in Python

C H A P T E R S U M M A R Y

 C H A P T E R E X E R C I S E S

 Section 5.1

 1. Function avg returns the average of three values, as given in the chapter. Which of the following state-
ments, each making calls to function avg, are valid? (Assume that all variables are of numeric type.)

 (a) result 5 avg(n1, n2)
 (b) result 5 avg(n1, n2, avg(n3, n4, n5))
 (c) result 5 avg(n1 1 n2, n3 1 n4, n5 1 n6)
 (d) print(avg(n1, n2, n3))
 (e) avg(n1, n2, n3)

 2. Which of the following statements, each involving calls to function displayWelcome displaying a
welcome message on the screen as given in the chapter, are valid?

 (a) print(displayWelcome)
 (b) displayWelcome
 (c) result 5 displayWelcome()
 (d) displayWelcome()

 Section 5.2

 3. Suppose there are nine variables, each holding an integer value as shown below, for which the average of
the largest value in each line of variables is to be computed.

 num1 5 10 num2 5 20 num3 5 25 max1 5 25

 num4 5 5 num5 5 15 num6 5 35 max2 5 35

 num7 5 20 num8 5 30 num9 5 25 max3 5 30

 average 5 (max1 1 max2 1 max3) / 3.0

 5 (25 1 35 1 30) / 3.0

 5 30.0

 Using functions avg and max, give an expression that computes the average as shown above.

 4. Assume that there exists a Boolean function named isLeapYear that determines if a given year is a
leap year or not. Give an appropriate if statement that prints “Year is a Leap Year” if the year passed is a
leap year, and “Year is Not a Leap Year” otherwise, for variable year.

c05Functions.indd Page 202 17/10/12 10:26 AM user-019Ac05Functions.indd Page 202 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 5. For the following function defi nition and associated function calls,

 def somefunction(n1, n2):

 .

 .

 # main

 num1 5 10

 somefunction(num1, 15)

 (a) List all the formal parameters.
 (b) List all the actual arguments.

 6. For the following function, indicate whether each function call is proper or not. If improper, explain why.

 def gcd(n1, n2): function gcd calculates the greatest common divisor of n1 and
n2, with the requirement that n1 be less than or equal to n2,
and n1 and n2 are integer values.

 (a) a 5 10
 b 5 20

 result 5 gcd(a, b)
 (b) a 5 10.0
 b 5 20
 result 5 gcd(a, b)
 (c) a 5 20
 b 5 10
 result 5 gcd(b, a)
 (d) a 5 10
 b 5 20
 c 5 30
 result 5 gcd(gcd(a, b), c)
 (e) a 5 10
 b 5 20
 c 5 30
 print(gcd(a, gcd(c, b)))

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python function named zeroCheck that is given three integers, and returns true if any of the
integers is 0, otherwise it returns false.

 P2. Write a Python function named ordered3 that is passed three integers, and returns true if the three in-
tegers are in order from smallest to largest, otherwise it returns false.

 P3. Write a Python function named modCount that is given a positive integer, n, and a second positive inte-
ger, m <= n, and returns how many numbers between 1 and n are evenly divisible by m.

 P4. Write a Python function named helloWorld that displays "Hello World, my name is name ",
for any given name passed to the routine.

 P5. Write a Python function named printAsterisks that is passed a positive integer value n, and prints
out a line of n asterisks. If n is greater than 75, then only 75 asterisks should be displayed.

Python Programming Exercises 203

c05Functions.indd Page 203 17/10/12 10:26 AM user-019Ac05Functions.indd Page 203 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

204 CHAPTER 5 Functions

 P6. Write a Python function named getContinue that displays to the user “Do you want to continue
(y/n): ”, and continues to prompt the user until either uppercase or lowercase 'y' or 'n' is entered,
returning (lowercase) 'y' or 'n' as the function value.

 P7. Implement a Python function that is passed a list of numeric values and a particular threshold value, and
returns the list with all values above the given threshold value set to 0. The list should be altered as a side
effect to the function call, and not by function return value.

 P8. Implement the Python function described in question P7 so that the altered list is returned as a function
value, rather than by side effect.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Temperature Conversion Program: Adding Kelvin Scale
 Modify the Temperature Conversion program in section 5.1.3 so that it allows the user to select tempera-

ture conversion to include degrees Kelvin, in addition to degrees Fahrenheit and degrees Celsius. Include
input error checking for inappropriate temperature values. (NOTE: Refer to questions M1 and M2 from
Chapter 3.)

 M2. GPA Calculation Program: Accommodating First-Semester Students
 Modify the GPA Calculation program in section 5.2.7 so that it asks the student if this is their fi rst

 semester. If so, the program should only prompt for their current semester grades, and not their cumula-
tive GPA and total earned credits, and display their semester GPA and cumulative GPA accordingly.

 M3. GPA Calculation Program: Allowing for Plus/Minus Grading
 Modify the GPA Calculation program in section 5.2.7 so that it is capable of calculating a GPA for plus/

minus letter grades: A, A2, B 1 , B, B2, and so forth.

 M4. Credit Card Calculation Program: Summarized Output
 Modify the Credit Card Calculation program in section 5.3 so that the user is given the option of either

displaying the balance and interest paid month-by-month as currently written, or to simply have the total
number of months and the total interest paid without the month-by-month details.

 M5. Credit Card Calculation Program: Adjustable Minimum Payment
 Modify the Credit Card Calculation program in section 5.3 so that the user can enter the percentage from

which the minimum monthly payment is calculated. Also modify the program so that this minimum pay-
ment percentage is displayed along with the other credit card related information.

 M6. Credit Card Calculation Program: Recalculation with New Balance
 Modify the Credit Card Calculation program in section 5.3 so that the program will allow the user to

recalculate a new payoff schedule for a new entered balance.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Metric Conversion Program
 Develop and test a Python program that allows the user to convert between the metric measurements of

millimeter, centimeter, meter, kilometer, and inches, feet, yards, and miles. The program should be writ-
ten so that any one measurement can be converted to the other.

 D2. GPA Projection Program
 Develop and test a Python program that lets the user enter their current cumulative GPA, their total cred-

its earned, and the number of credits they are currently taking. The program should then request from the

c05Functions.indd Page 204 17/10/12 10:26 AM user-019Ac05Functions.indd Page 204 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

user a target cumulative GPA that they wish to achieve, and display the GPA of the current semester
needed to achieve it.

 D3. Tic-Tac-Toe Two-Player Program
 Develop and test a Python program that lets two players play tic-tac-toe. Let player 1 be X and player 2

be O. Devise a method for each player to indicate where they wish to place their symbol. The program
should terminate if either there is a winner, or if the game results in a tie. The tic-tac-toe board should be
displayed after every move as shown below.

 D4. Tic-Tac-Toe Automated Play
 Develop and test a Python program that plays tic-tac-toe against the user. Develop an appropriate strategy

of play and implement it in your program. The program should be designed to allow the user to continue
to play new games until they decide to quit. The program should display the total number of wins by the
computer versus the player at the start of each new game.

Program Development Problems 205

c05Functions.indd Page 205 17/10/12 10:26 AM user-019Ac05Functions.indd Page 205 17/10/12 10:26 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

206

 Objects and Their Use

 In procedural programming, functions are the primary building blocks of program design. In
object-oriented programming, objects are the fundamental building blocks in which functions
(methods) are a component. We fi rst look at the use of individual software objects in this chapter,
and in Chapter 10 look at the use of objects in object-oriented design.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain the concept of an object

 ♦ Explain the difference between a reference and dereferenced value

 ♦ Describe the use of object references

 ♦ Explain the concept of memory allocation and deallocation

 ♦ Describe automatic garbage collection

 ♦ Explain the fundamental features of turtle graphics

 ♦ Effectively use objects in Python

 ♦ Develop simple turtle graphics programs in Python

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 6.1 Software Objects

 6.2 Turtle Graphics

 Computational Problem Solving

 6.3 Horse Race Simulation Program

 CHAPTER 6

c06ObjectsandTheirUse.indd Page 206 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 206 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.1 Software Objects 207

 MOTIVATION

 An object is one of the fi rst concepts that a
baby understands during its development.
They understand an object as something
that has a set of attributes (“big,” “red”
ball) and a related set of behaviors (it rolls,
it bounces).

 The idea of incorporating “objects”
into a programming language came out of
work in computer simulation. Given the
prevalence of objects in the world, it was
natural to provide the corresponding notion
of an object within a simulation program.

 In the early 1970s, Alan Kay at Xerox PARC (Palo Alto Research Center) fully evolved the
notion of object-oriented programming with the development of a programming language called
Smalltalk. The language became the inspiration for the development of graphical user interfaces
(GUIs)—the primary means of interacting with computers today. Before that, all interaction was
through typed text. In fact, it was a visit to Xerox PARC by Steve Jobs of Apple Computers that led
to the development of the fi rst commercially successful GUI-based computer, the Apple Macintosh
in 1984. Figure 6-1 lists some of the most commonly used programming languages and whether
they support procedural (imperative) programming, object-oriented programming, or both. In this
chapter, we look at the creation and use of objects in Python.

FIGURE 6-1 Common Programming Languages Supporting
Procedural and/or Object-Oriented Programming

 FUNDAMENTAL CONCEPTS

 6.1 Software Objects

 Objects are the fundamental component of object-oriented programming. Although we have not yet
stated it, all values in Python are represented as objects. This includes, for example, lists, as well as
numeric values. We discuss object-oriented programming in Chapter 10. In this chapter, we discuss
what objects are and how they are used.

“B
ill

ar
d

,”
 N

o-
w

-a
y,

 u
se

d
 u

nd
er

a

C
re

at
iv

e
C

om
m

on
s

A
tt

rib
ut

io
n

2.
5

G
en

er
ic

 li
ce

ns
e

c06ObjectsandTheirUse.indd Page 207 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 207 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

208 CHAPTER 6 Objects and Their Use

 6.1.1 What Is an Object?

 The notion of software objects derives from objects in the real world. All objects have certain attri-
butes and behavior . The attributes of a car, for example, include its color, number of miles driven,
current location, and so on. Its behaviors include driving the car (changing the number of miles
driven attribute) and painting the car (changing its color attribute), for example.

 Similarly, an object contains a set of attributes, stored in a set of instance variables , and a set
of functions called methods that provide its behavior. For example, when sorting a list in procedural
programming, there are two distinct entities—a sort function and a list to pass it, as depicted in
 Figure 6-2.

 In object-oriented programming, the sort routine would be part of the object containing the list,
depicted in Figure 6-3.

FIGURE 6-2 Procedural Programming Approach

FIGURE 6-3 Object names_list

 Here, names_list is an object instance of the Python built-in list type. All list objects contain the
same set of methods. Thus, names_list is sorted by simply calling that object’s sort method,

 names_list.sort()

 The period is referred to as the dot operator , used to select a member of a given object—in this
case, the sort method. Note that no arguments are passed to sort. That is because methods oper-
ate on the data of the object that they are part of. Thus, the sort method does not need to be told
which list to sort.

 Suppose there were another list object called part_numbers, containing a list of automo-
bile part numbers. Since all list objects behave the same, part_numbers would contain the iden-
tical set of methods as names_list. The data that they would operate on, however, would be
different. Thus, two objects of the same type differ only in the particular set of values that each
holds. This is depicted in Figure 6-4.

c06ObjectsandTheirUse.indd Page 208 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 208 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.1 Software Objects 209

 In order to sort this list, therefore, the sort method of object part_numbers is called,

 part_numbers.sort()

 The sort routine is the same as the sort routine of object names_list. In this case, however,
the list of part numbers is sorted instead. Methods append, insert, remove, count, and
 reverse also provide additional functionality for lists, as was discussed in Chapter 4. We next
discuss the way that objects are represented in Python.

 A reference is a value that references, or “points to,” the location of another entity. Thus, when a new
object in Python is created, two entities are stored—the object, and a variable holding a reference to
the object. All access to the object is through the reference value. This is depicted in Figure 6-6.

An object contains a set of attributes, stored in a set of instance variables, and a set of functions
called methods that provide its behavior.

 6.1.2 Object References

 In this section we look at how objects are represented (which all values in Python are), and the effect
it has on the operations of assignment and comparison, as well as parameter passing.

 References in Python

 In Python, objects are represented as a reference to an object in memory, as shown in Figure 6-5.

FIGURE 6-5 Object Reference

FIGURE 6-4 Object part_numbers

c06ObjectsandTheirUse.indd Page 209 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 209 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

210 CHAPTER 6 Objects and Their Use

 We can get the reference value of a variable (that is, the location in which the corresponding object
is stored) by use of built-in function id .

 The value that a reference points to is called the dereferenced value . This is the value that the vari-
able represents, as shown in Figure 6-7.

FIGURE 6-6 Object References to Python Values

FIGURE 6-7 Variables’ Dereferenced Values

 ... id(n) ... id(k) ... id(s)
 505498136 505498136 505498296

 We see that the dereferenced values of n and k, 10, is stored in the same memory location
(505498136), whereas the dereferenced value of s, 20, is stored in a different location
(505498296). Even though n and k are each separately assigned literal value 10, they reference the
 same instance of 10 in memory (505498136). We would expect there to be separate instances of
10 stored. Python is using a little cleverness here. Since integer values are immutable, it assigned
both n and k to the same instance. This saves memory and reduces the number of reference loca-
tions that Python must maintain. From the programmer’s perspective however, they can be treated
as if they are separate instances.

L E T ’ S T R Y I T

From the Python Shell, fi rst enter the following and observe the results.

... n 5 10

... k 5 20

... id(n)
???
... id(k)
???

... n 5 20

... k 5 20

... id(n)
???
... id(k)
???

A reference is a value that references, or “points to,” the location of another entity. The value that
a reference points to is called the dereferenced value. A variable’s reference value can be deter-
mined with built-in function id.

c06ObjectsandTheirUse.indd Page 210 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 210 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.1 Software Objects 211

 The Assignment of References

 With our current understanding of references, consider what happens when variable n is assigned to
variable k, depicted in Figure 6-8.

 Here, variable k is assigned a reference value to a new memory location holding the value 30. The
previous memory location that variable k referenced is retained since variable n is still referencing
it. As a result, n and k point to different values, and therefore are no longer equal.

FIGURE 6-8 The Assignment of References

 When variable n is assigned to k, it is the reference value of k that is assigned, not the dereferenced
value 20, as shown in Figure 6-8. This can be determined by use of the built-in id function, as
 demonstrated below.

FIGURE 6-9 Reassignment of Reference Value

 ... id(k) ... id(k) 55 id(n)

 505498136 True

 ... id(n) ... n is k

 505498136 True

 Thus, to verify that two variables refer to the same object instance, we can either compare the
two id values by use of the comparison operator, or make use of the provided is operator
(which performs id(k) 55 id(n)).

 Thus, both n and k reference the same instance of literal value 20. This occurred in the above
example when n and k were separately assigned 20 because integers are an immutable type, and
Python makes attempts to save memory. In this case, however, n and k reference the same instance
of 20 because assignment in Python assigns reference values. We must be aware of the fact, therefore,
that when assigning variables referencing mutable values, such as lists, both variables reference the
same list instance as well. We will discuss the implication of this next.

 Finally, we look at what happens when the value of one of the two variables n or k is changed,
as depicted in Figure 6-9.

c06ObjectsandTheirUse.indd Page 211 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 211 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

212 CHAPTER 6 Objects and Their Use

 After n is assigned to 40, the memory location storing integer value 20 is no longer referenced—
thus, it can be deallocated . To deallocate a memory location means to change its status from
“currently in use” to “available for reuse.” In Python, memory deallocation is automatically per-
formed by a process called garbage collection . Garbage collection is a method of automatically
determining which locations in memory are no longer in use and deallocating them. The garbage
collection process is ongoing during the execution of a Python program.

L E T ’ S T R Y I T

From the Python Shell, fi rst enter the following and observe the results.

... k 5 10

... n 5 k

... id(k)
???
... id(n)
???
... id(k) 5 5 id(n)
???
... n is k
???

... k 5 30

... id(k)
???
... id(n)
???
... id(k) 5 5 id(n)
???
... n is k
???

When one variable is assigned to another, it is the reference value that is assigned, not the
dereferenced value.

FIGURE 6-10 Inaccessible Values

 Memory Deallocation and Garbage Collection

 Next we consider what happens when in addition to variable k being reassigned, variable n is reas-
signed as well. The result is depicted in Figure 6-10.

 List Assignment and Copying

 Now that we understand the use of references in Python, we can revisit the discussion on copying
lists from Chapter 4. We know that when a variable is assigned to another variable referencing a list,
each variable ends up referring to the same instance of the list in memory, depicted in Figure 6-11.

Garbage collection is a method of determining which locations in memory are no longer in use,
and deallocating them.

c06ObjectsandTheirUse.indd Page 212 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 212 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.1 Software Objects 213

 Thus, any changes to the elements of list1 results in changes to list2,

 ... list1[0] 5 5

 ... list2[0]

 5

 We also learned that a copy of a list can be made as follows,

 ... list2 5 list(list1)

 list() is referred to as a list constructor . The result of the copying is depicted in Figure 6-12.

FIGURE 6-11 List Assignment

FIGURE 6-12 Copying of Lists by Use of the List Constructor

FIGURE 6-13 Shallow Copy List Structures

 The resulting list structure after the assignment is depicted in Figure 6-13.

 A copy of the list structure has been made. Therefore, changes to the list elements of list1 will
 not result in changes in list2.

 ... list1[0] 5 5

 ... list2[0]

 10

 The situation is different if a list contains sublists, however.

 ... list1 5 [[10, 20], [30, 40], [50, 60]]

 ... list2 5 list(list1)

c06ObjectsandTheirUse.indd Page 213 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 213 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

214 CHAPTER 6 Objects and Their Use

 We see that although copies were made of the top-level list structures, the elements within each list
were not copied. This is referred to as a shallow copy . Thus, if a top-level element of one list is reas-
signed, for example list1[0] 5 [70, 80], the other list would remain unchanged, as shown
in Figure 6-14.

FIGURE 6-14 Top-Level Reassignment of Shallow Copies

FIGURE 6-15 Sublevel Reassignment of Shallow Copies

 If, however, a change to one of the sublists is made, for example, list1[0][0] 5 70, the cor-
responding change would be made in the other list. That is, list2[0][0] would be equal to 70
also, as depicted in Figure 6-15.

 A deep copy operation of a list (structure) makes a copy of the complete structure, including sub-
lists. (Since immutable types cannot be altered, immutable parts of the structure may not be copied.)
Such an operation can be performed with the deepcopy method of the copy module,

 ... import copy

 ... list2 5 copy.deepcopy(list1)

 The result of this form of copying is given in Figure 6-16.

c06ObjectsandTheirUse.indd Page 214 25/10/12 10:33 AM user-019Ac06ObjectsandTheirUse.indd Page 214 25/10/12 10:33 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.1 Software Objects 215

 Thus, the reassignment of any part (top level or sublist) of one list will not result in a change in the
other. It is up to you as the programmer to determine which form of copy is needed for lists, and
other mutable types, such as dictionaries and sets covered in Chapter 9.

FIGURE 6-16 Deep Copy List Structures

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... import copy

... list1 5 [10, 20, 30, 40]

... list2 5 list1

... id(list1) 55 id(list2)

???

... list1[0] 5 60

... list1

???

... list2

???

... list1 5 [10, 20, 30, [40]]

... list2 5 list(list1)

... id(list1) 55 id(list2)

???

... list1[0] 5 60

... list1[3][0] 5 90

... list1

???

... list2

???

... list1 5 [10, 20, 30, [40]]

... list2 5 copy.deepcopy(list1)

... id(list1) 55 id(list2)

???

... list1[0] 5 60

... list1[3][0] 5 90

... list1

???

... list2

???

... list1 5 [10, 20, 30, (40)]

... list2 5 copy.deepcopy(list1)

... list1[3][0] 5 90

???

... list1[3] 5 (100,)

... list1

???

... list2

???

The list constructor list() makes a copy of the top level of a list, in which the sublist
(lower-level) structures are shared is referred to as a shallow copy. A deep copy operation makes
a complete copy of a list. A deep copy operator is provided by method deepcopy of the copy
module in Python.

c06ObjectsandTheirUse.indd Page 215 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 215 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

216 CHAPTER 6 Objects and Their Use

 Self-Test Questions

 1. All objects have a set of _____________ and ______________.

 2. The _____________ operator is used to select members of a given object.

 3. Functions that are part of an object are called _____________.

 4. There are two values associated with every object in Python, the _____________ value and
the _____________ value.

 5. When memory locations are deallocated , it means that,
 (a) The memory locations are marked as unusable for the rest of the program execution.
 (b) The memory locations are marked as available for reuse during the remaining program

execution.

 6. Garbage collection is the process of automatically identifying which areas of memory can be
deallocated. (TRUE/FALSE)

 7. Indicate which of the following is true,
 (a) When one variable is assigned to another holding an integer value, if the second variable

is assigned a new value, the value of the fi rst variable will change as well.
 (b) When one variable is assigned to another holding a list of integer values, if the second

variable assigns a new integer value to an element in the list, the list that the fi rst variable
is assigned to will be changed as well.

 ANSWERS: 1. attributes/behavior, 2. dot, 3. methods, 4. reference/dereferenced, 5. (b), 6. True, 7. (b)

Turtle graphics refers to a means of controlling a graphical entity (a “turtle”) in a graphics
 window with x,y coordinates.

 6.2.1 Creating a Turtle Graphics Window

 The fi rst step in the use of turtle graphics is the creation of a turtle graphics window (a turtle screen).
Figure 6-17 shows how to create a turtle screen of a certain size with an appropriate title bar.

 Assuming that the import turtle form of import is used, each of the turtle graphics
 methods must be called in the form turtle. methodname . The fi rst method called, setup,

 6.2 Turtle Graphics

 Turtle graphics refers to a means of controlling a graphical entity (a “turtle”) in a graphics window
with x,y coordinates. A turtle can be told to draw lines as it travels, therefore having the ability to
create various graphical designs. Turtle graphics was fi rst developed for a language named Logo in
the 1960s for teaching children how to program. Remnants of Logo still exist today.

 Python provides the capability of turtle graphics in the turtle Python standard library mod-
ule. There may be more than one turtle on the screen at once. Each turtle is represented by a distinct
object. Thus, each can be individually controlled by the methods available for turtle objects. We
introduce turtle graphics here for two reasons—fi rst, to provide a means of better understanding
objects in programming, and second, to have some fun!

c06ObjectsandTheirUse.indd Page 216 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 216 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 217

 The background color of the turtle window can be changed from the default white background color.
This is done using method bgcolor,

 creates a graphics window of the specifi ed size (in pixels). In this case, a window of size 800 pixels
wide by 600 pixels high is created. The center point of the window is at coordinate (0,0). Thus,
x-coordinate values to the right of the center point are positive values, and those to the left are nega-
tive values. Similarly, y-coordinate values above the center point are positive values, and those
below are negative values. The top-left, top-right, bottom-left, and bottom-left coordinates for a
window of size (800, 600) are as shown in Figure 6-18. A turtle graphics window in Python is
also an object. Therefore, to set the title of this window, we need the reference to this object. This is
done by call to method Screen.

FIGURE 6-18 Python Turtle Graphics Window (of size 800 3 600)

FIGURE 6-17 Creating a Turtle Graphics Window

 window 5 turtle.Screen()

 window.bgcolor('blue')

 See the discussion about pen color below for details on the specifi cation of color values.

c06ObjectsandTheirUse.indd Page 217 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 217 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

218 CHAPTER 6 Objects and Their Use

 6.2.2 The “Default” Turtle

 A “turtle” is an entity in a turtle graphics window that can be controlled in various ways. Like the
graphics window, turtles are objects. A “default” turtle is created when the setup method is called.
The reference to this turtle object can be obtained by,

The fi rst step in the use of turtle graphics is to create a turtle graphics window of a specifi c size
with an appropriate title.

FIGURE 6-19 The Default Turtle

 The default turtle shape is an arrowhead. (The size of the turtle shape was enlarged from its
default size for clarity.) A turtle’s shape can be set to basic geometric shapes, or even made
from a provided image fi le (shown in section 6.2.4).

A default turtle is created when the setup method is called. A call to method getturtle
returns the reference to the default turtle and causes it to appear on the screen.

 the_turtle 5 turtle.getturtle()

 A call to getturtle returns the reference to the default turtle and causes it to appear on the
screen. The initial position of all turtles is the center of the screen at coordinate (0,0), as shown in
Figure 6-19.

c06ObjectsandTheirUse.indd Page 218 08/11/12 10:55 AM user-019Ac06ObjectsandTheirUse.indd Page 218 08/11/12 10:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 219

 6.2.3 Fundamental Turtle Attributes and Behavior

 Recall that objects have both attributes and behavior. Turtle objects have three fundamental attri-
butes: position, heading (orientation), and pen attributes. We discuss each of these attributes next.

 Absolute Positioning

 Method position returns a turtle’s current position. For newly created turtles, this returns the
tuple (0, 0). A turtle’s position can be changed using absolute positioning by moving the turtle
to a specifi c x,y coordinate location by use of method setposition. An example of this is given
in Figure 6-20.

FIGURE 6-20 Absolute Positioning of Turtle

 The turtle is made invisible by a call to method hideturtle. Since newly created turtles are
 positioned at coordinates (0, 0), the square will be displayed near the middle of the turtle window. To
draw the square, the turtle is fi rst positioned at coordinates (100, 0), 100 pixels to the right of its
current position. Since the turtle’s pen is down, a line will be drawn from location (0, 0) to loca-
tion (100, 0). The turtle is then positioned at coordinates (100, 100), which draws a line from the
bottom-right corner to the top-right corner of the square. Positioning the turtle to coordinates (0, 100)
draws a line from the top-right corner to the top-left corner. Finally, positioning the turtle back to co-
ordinates (0, 0) draws the fi nal line from the top-left corner to the bottom-left corner.

A turtle’s position can be changed using absolute positioning by use of method setposition.

 Turtle Heading and Relative Positioning

 A turtle’s position can also be changed through relative positioning . In this case, the location that a
turtle moves to is determined by its second fundamental attribute, its heading. A newly created turtle’s
heading is to the right, at 0 degrees. A turtle with heading 90 degrees moves up; with a heading
180 degrees moves left; and with a heading 270 degrees moves down. A turtle’s heading can be
changed by turning the turtle a given number of degrees left, left(90), or right, right(90).
The forward method moves a turtle in the direction that it is currently heading. An example of
relative positioning is given in Figure 6-21.

c06ObjectsandTheirUse.indd Page 219 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 219 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

220 CHAPTER 6 Objects and Their Use

 In this example, the turtle is controlled using relative positioning, drawing the same square as in
Figure 6-20 above. Since turtles are initially positioned at coordinates (0, 0) with an initial head-
ing of 0 degrees, the fi rst step is to move the turtle forward 100 pixels. That draws the bottom line of
the square. The turtle is then turned left 90 degrees and again moved forward 100 pixels. This draws
the line of the right side of the square. These steps continue until the turtle arrives back at the origi-
nal coordinates (0, 0), completing the square.

 Methods left and right change a turtle’s heading relative to its current heading. A turtle’s
heading can also be set to a specifi c heading by use of method setheading: the_turtle.set-
heading(90). In addition, method heading can be used to determine a turtle’s current heading.

A turtle’s position can be changed using relative positioning by use of methods setheading,
left, right, and forward.

FIGURE 6-21 Relative Positioning of Turtle

 Pen Attributes

 The pen attribute of a turtle object is related to its drawing capabilities. The most fundamental of these
attributes is whether the pen is currently “up” or “down,” controlled by methods penup() and pen-
down(). When the pen attribute value is “up,” the turtle can be moved to another location without lines
being drawn. This is especially needed when drawing graphical images with disconnected segments.
Example use of these methods is given in Figure 6-22.

 In this example, the turtle is hidden so that only the needed lines appear. Since the initial
location of the turtle is at coordinate (0, 0), the pen is set to “up” so that the position of the
turtle can be set to (2100, 0) without a line being drawn as it moves. This puts the turtle at
the bottom of the left side of the letter. The pen is then set to “down” and the turtle is moved to
coordinate (0, 250), drawing as it moves. This therefore draws a line from the bottom of the
left side to the top of the “A.” The turtle is then moved (with its pen still down) to the location of
the bottom of the right side of the letter, coordinate (100, 0). To cross the “A,” the pen is again
set to “up” and the turtle is moved to the location of the left end of the crossing line, coordi-
nate (264, 90). The pen is then set to “down” and moved to the end of the crossing line, at
coordinate (64, 90), to fi nish the letter.

c06ObjectsandTheirUse.indd Page 220 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 220 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 221

 The pen size of a turtle determines the width of the lines drawn when the pen attribute is “down.”
The pensize method is used to control this: the_turtle.pensize(5). The width is given
in pixels, and is limited only by the size of the turtle screen. Example pen sizes are depicted in
Figure 6-23.

FIGURE 6-23 Example Turtle Pen Sizes

FIGURE 6-22 Example Use of Methods penup and pendown

 The pen color can also be selected by use of the pencolor method: the_turtle.
pencolor('blue'). The name of any common color can be used, for example 'white',
'red', 'blue', 'green', 'yellow', 'gray', and 'black'. Colors can also be specifi ed
in RGB (red/green/blue) component values. These values can be specifi ed in the range 0–255 if the
color mode attribute of the turtle window is set as given below,

 turtle.colormode(255)

 the_turtle.pencolor(238, 130, 238) # violet

 This provides a means for a full spectrum of colors to be displayed.

c06ObjectsandTheirUse.indd Page 221 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 221 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

222 CHAPTER 6 Objects and Their Use

 6.2.4 Additional Turtle Attributes

 In addition to the fundamental turtle attributes already discussed, we provide details on other attri-
butes of a turtle that may be controlled. This includes whether the turtle is visible or not, the size
(both demonstrated above), shape, and fi ll color of the turtle, the turtle’s speed, and the tilt of the
turtle. We will discuss each of these attributes next.

 Turtle Size

 The size of a turtle shape can be controlled with methods resizemode and turtlesize as
shown in Figure 6-24.

Methods showturtle() and hideturtle() control a turtle’s visibility.

The pen attributes that can be controlled include whether the pen is down or up (using methods
penup and pendown), the pen size (using method pensize), and the pen color (using method
pencolor).

 The fi rst instruction sets the resize attribute of a turtle to ‘user’. This allows the user (programmer)
to change the size of the turtle by use of method turtlesize. Otherwise, calls to turtlesize
will have no effect. The call to method turtlesize in the fi gure is passed two parameters. The
fi rst is used to change the width of the shape (perpendicular to its orientation), and the second
changes its length (parallel to its orientation). Each value provides a factor by which the size is to be
changed. Thus, the_turtle.turtlesize(3, 3)stretches both the width and length of the
current turtle shape by a factor of 3. (A third parameter can also be added that determines the thick-
ness of the shape’s outline.)

FIGURE 6-24 Changing the Size of a Turtle

 Turtle Visibility

 As we saw, a turtle’s visibility can be controlled by use of methods hideturtle() and show-
turtle() (in which an invisible turtle can still draw on the screen). There are various reasons for
doing this. A turtle may be made invisible while being repositioned on the screen. In gaming, a
turtle might be made invisible when it meets its “demise.” Or maybe a given turtle needs to blink, as
we will see at the end of the chapter.

c06ObjectsandTheirUse.indd Page 222 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 222 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 223

 Turtle Shape

 There are a number of ways that a turtle’s shape (and fi ll color) may be defi ned to something other
than the default shape (the arrowhead) and fi ll color (black). First, a turtle may be assigned one of
the following provided shapes: 'arrow', 'turtle', 'circle', 'square', 'triangle',
and 'classic' (the default arrowhead shape), as shown in Figure 6-25.

FIGURE 6-25 Available Turtle Shapes

 The shape and fi ll colors are set by use of the shape and fi llcolor methods,

 the_turtle.shape('circle')

 the_turtle.fi llcolor('white')

 New shapes may be created and registered with (added to) the turtle screen’s shape dictionary .
One way of creating a new is shape by providing a set of coordinates denoting a polygon, as
shown in Figure 6-26.

FIGURE 6-26 Creating a New Polygon Turtle Shape

The size of a given turtle shape can be controlled with methods resizemode and
 turtlesize.

 There are two other values that method resizemode may be set to. An argument value
of 'auto' causes the size of the turtle to change with changes in the pen size, whereas a value
of 'noresize' causes the turtle shape to remain the same size.

c06ObjectsandTheirUse.indd Page 223 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 223 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

224 CHAPTER 6 Objects and Their Use

 Only a few lines of code are needed to generate this design. The for loop in the fi gure iterates vari-
able angle over the complete range of degrees, 0 to 360, by increments of 10 degrees. Within the
loop the turtle’s heading is set to the current angle, and the stamp() method is called to stamp the
polygon shape at the turtle’s current position. By varying the shape of the polygon and the angles
that the turtle is set to, a wide range of such designs may be produced.

 Another way that a turtle shape can be created is by use of an image. The image fi le used must
be a “gif fi le” (with fi le extension .gif). The name of the fi le is then registered and the shape of the
turtle set to the registered name,

FIGURE 6-27 Creating a Design from a Turtle using a Polygon Shape

 In the figure, method register_shape is used to register the new turtle shape with the
name mypolygon. The new shape is provided by the tuple of coordinates in the second argu-
ment. These coordinates define the polygon shown in the figure. Once the new shape is defined,
a turtle can be set to that shape by calling the shape method with the desired shape’s name.
The fi llcolor method is then called to make the fill color of the polygon white (with the
edges remaining black). It is also possible to create turtle shapes composed of various indi-
vidual polygons called compound shapes . We refer the reader to the official online Python
documentation of the turtle module for details (see http://docs.python.org/py3k/library/turtle.
html#module-turtle).

 The creation of this polygon may not seem too exciting, but the orientation of a turtle can be
changed. In addition, a turtle is able to stamp its shape on the screen, which remains there even after
the turtle is repositioned (or relocated). That means that we can create all sorts interesting graphic
patterns by appropriately repositioning the turtle, as shown in Figure 6-27.

 register_shape('image1.gif')

 the_turtle.shape('image1.gif')

 The fi nal program of this chapter gives an example of the use of image shapes.

c06ObjectsandTheirUse.indd Page 224 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 224 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 225

 6.2.5 Creating Multiple Turtles

 So far, we have seen examples in which there is only one turtle object, the default turtle created with
a turtle window. However, it is possible to create and control any number of turtle objects. To create
a new turtle, the Turtle() method is used,

 turtle1 5 turtle.Turtle()

 turtle2 5 turtle.Turtle()

 etc.

 By storing turtle objects in a list, any number of turtles may be maintained,

 turtles 5 []

 turtles.append(turtle.Turtle())

 turtles.append(turtle.Turtle())

 etc.

 An example of using multiple turtle objects is given in the following “Let’s Apply It” section.

The speed of a turtle can be controlled by use of the speed method.

Any number of turtle objects can be created by use of method Turtle().

A turtle’s shape may be set to one of the provided shapes, a described polygon (or collection of
polygons), or an image.

 Turtle Speed

 At times, you may want to control the speed at which a turtle moves. A turtle’s speed can be set to a
range of speed values from 0 to 10, with a “normal” speed being around 6. To set the speed of the
turtle, the speed method is used, the_turtle.speed(6). The following speed values can be
set using a descriptive rather than a numeric value,

 10: 'fast' 6: 'normal' 3: 'slow' 1: 'slowest' 0: 'fastest'

 Thus, a normal speed can also be set by the_turtle.speed('normal'). When using the
turtle for line drawing only, the turtle will move more quickly if it is made invisible (by use of the
hideturtle method).

c06ObjectsandTheirUse.indd Page 225 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 225 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

226 CHAPTER 6 Objects and Their Use

 In addition to the turtle graphics module, this program makes use of the time and random
Python standard library modules to allow control of how long (in seconds) the simulation is exe-
cuted, as indicated by the user, and to generate the random motion of the bouncing balls.

 The main section of the program begins on line 52 with the programming greeting. On
 lines 58–60 , the size of the turtle screen (in pixels) is hard-coded into the program, assigned to
variables screen_width and screen_height. Since all references to the screen size are
through these variables, the desired window size can be altered by simply altering these
 variables.

FIGURE 6-28 Execution of Bouncing Balls Program

 6.2.6 Let’s Apply It—Bouncing Balls Program

 Following is a program (Figure 6-29) that displays one or more bouncing balls within a turtle screen.
This program utilizes the following programming features.

 ➤ turtle module ➤ time module ➤ random module

 Example execution of the program is given in Figure 6-28.

c06ObjectsandTheirUse.indd Page 226 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 226 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.2 Turtle Graphics 227

 On lines 63–64 , the turtle screen is created and its reference value assigned to variable window.
The title of the window is assigned through a call to the title method. Following that, the user is
prompted to enter the number of seconds for the simulation, as well as the number of simultaneously
bouncing balls.

FIGURE 6-29 Bouncing Balls Program (Continued)

c06ObjectsandTheirUse.indd Page 227 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 227 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

228 CHAPTER 6 Objects and Their Use

 Function createBalls is called (on line 71) to create and return a list of turtle objects with a ball
shape. The function defi nition (lines 39–50) initializes an empty list named balls and creates the
requested number of balls one-by-one, each appended to the list, by use of the for loop at line 41 .
Each ball is created with shape 'circle', fi ll color of 'black', speed of 0 (fastest speed), and
with pen attribute 'up'. In addition, the initial heading of each turtle is set to a random angle
 between 1 and 359 (line 47).

FIGURE 6-29 Bouncing Balls Program

c06ObjectsandTheirUse.indd Page 228 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 228 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 229

 Back in the main program section at line 74 , the current time (in seconds) is obtained from a
call to method time of the time module: time.time(). The current time value is stored in
variable start_time. (The current time is the number of seconds since the “epoch,” which is
January 1, 1970. This will be discussed further in the Horse Racing program that follows.) The
while loop beginning on line 79 begins the simulation. The loop iterates as long as Boolean vari-
able terminate is False (initialized to False on line 77). The for loop at line 80 moves each
of the specifi ed number of balls a small distance until reaching one of the four edges of the window
(left, right, top, or bottom edge). Boolean functions atLeftEdge, atRightEdge, atTopEdge,
and atBottomEdge are used to determine when a ball is at an edge (defi ned in lines 7–29). Func-
tion bounceBall is called to bounce the ball in the opposite direction it is heading, and returns
the new heading of the ball, passed as the argument to that ball’s setheading method. Finally,
on line 92 a check is made to determine whether the user-requested simulation time has been ex-
ceeded. If so, Boolean variable terminate is set to True, and the program terminates. Because
of the call to exitonclick() on line 96 , the program will properly shut down when the close
button of the turtle window is clicked.

 Self-Test Questions

 1. A turtle screen is an 800-pixel wide by 600-pixel high graphics window.
(TRUE/FALSE).

 2. The three main attributes of a turtle object are ______________, _____________, and
_____________.

 3. A turtle can be moved using either _____________ or _____________ positioning.

 4. A turtle can only draw lines when it is not hidden. (TRUE/FALSE)

 5. A turtle shape is limited to an arrow, turtle, circle, square, triangle, or classic (default) shape.
(TRUE/FALSE)

 6. What attribute of a turtle determines the size of the lines it draw?
 (a) Pen size
 (b) Turtle size

 7. A turtle can draw in one of seven colors. (TRUE/FALSE)

 8. A turtle can leave an imprint of its shape on the screen by use of the _____________
method.

 9. In order to create a new turtle object, the _____________ method is called.

 ANSWERS: 1. False, 2. position, heading, pen, 3. absolute/relative 4. False, 5. False, 6. (a), 7. False, 8. stamp, 9. Turtle

 COMPUTATIONAL PROBLEM SOLVING

 6.3 Horse Race Simulation Program

 In this section, we design, implement and test a program that simulates a horse race.

c06ObjectsandTheirUse.indd Page 229 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 229 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

230 CHAPTER 6 Objects and Their Use

 6.3.2 Problem Analysis

 The program needs a source of random numbers for advancing the horses a random distance in the
race. We can use the random number generator of the Python standard library module random that
we used in Chapter 3 in the Coin Change Exercise example. The remaining part of the problem is

 6.3.1 The Problem

 The problem is to create a visualization of a horse race in which horses are moved ahead a random
distance at fi xed intervals until there is a winner, as shown in Figure 6-30.

FIGURE 6-30 Example Horse Race Simulation

A
d

ap
te

d
 fr

om
 J

an
-E

ric
 N

ys
tr

öm
/A

ni
m

ho
rs

e/
W

ik
im

ed
ia

 C
om

m
on

s

c06ObjectsandTheirUse.indd Page 230 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 230 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 231

 6.3.4 Program Implementation and Testing

 Stage 1—Creating an Initial Turtle Screen Layout

 We fi rst develop and test an initial program that lays out the positions of the starting horses on
the turtle graphics screen, as shown in Figure 6-32. Figure 6-33 provides this fi rst stage of the
 program.

in the creation of appropriate graphics for producing a visualization of a horse race. We shall make
use of the turtle graphics module from the Python standard library to do this.

 6.3.3 Program Design

 Meeting the Program Requirements

 There are no specifi c requirements for this problem, other than to create an appropriate simulation
of a horse race. Therefore, the requirement is essentially the generation of a horse race in which the
graphics look suffi ciently compelling, and each horse has an equal chance of winning a given race.
Since a specifi c number of horses was not specifi ed, we will design the program for ten horses in
each race.

 Data Description

 The essential information for this program is the current location of each of the ten horses in a given
race. Each turtle is an object, whose attributes include its shape and its coordinate position on the
turtle screen. Therefore, we will maintain a list of ten turtle objects with the shape attribute of a
horse image for this purpose. Thus, suitable horse images must be found or created for this purpose.

 Algorithmic Approach

 There is no algorithm, per se, needed in this program other than to advance each horse a random
distance at fi xed time intervals until one of the horses reaches a certain point on the turtle screen (the
“fi nish line”).

 Overall Program Steps

 The overall steps in this program design are given in Figure 6-31.

FIGURE 6-31 Overall Steps of the Horse Race Simulation
Program

c06ObjectsandTheirUse.indd Page 231 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 231 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

232 CHAPTER 6 Objects and Their Use

 At line 3 the turtle module is imported. Since the import module_name form of import is used,
each call to a method of this module must be prefi xed with the module name. For example, turtle.
setup(750, 800) on line 31 (which sets the turtle screen size to a width of 750 and a height of
800 pixels).

 The intent of this version of the program is to ensure that the turtle screen is appropriately
sized and that the initial layout of horse locations is achieved. Therefore, only the default turtle
shape is used at this point. In the next version we will focus on generating a set of horse images
on the screen. Thus, on line 34 , the turtle screen object is retrieved (by the call to turtle.
Sreen()) and its reference assigned to variable window. The start location of the fi rst (lowest)
horse is set to an x coordinate value of 240, and a y coordinate value of 2 200. This puts the turtle
screen object at the lower right corner of the screen. The amount of vertical separation between
the horses is assigned to variable track_separation. These values were determined from
knowledge of the screen coordinates in turtle graphics and a little trial and error.

 Next, on line 44 a call is made to function generateHorses (at lines 9–15). This function
returns a list of ten new turtle objects, and assigned to variable horses. Function newHorse
(lines 5–7) is called by function generateHorses to create each new horse turtle object. At this
stage, function newHorse simply creates and returns a regular turtle object. In the next stage how-
ever, it will be responsible for returning new turtle objects with an appropriate horse shape.

 The position for each of these horses is determined by function placeHorses on lines 17–
23 . It is passed the list of horse turtle objects, the location of the fi rst turtle, and the amount of sepa-
ration between each (established as 60 pixels on line 41). Function placeHorses, therefore,

FIGURE 6-32 Output of Stage 1 of the Horse Race Simulation
Program

c06ObjectsandTheirUse.indd Page 232 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 232 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 233

FIGURE 6-33 Stage 1 of the Horse Race Simulation Program

contains a for loop that iterates over the list of horse objects and makes them initially hidden with
their pen up (lines 19–20), moves each to its starting position (line 21), sets the heading of each to
180 degrees to move left (line 22), and then makes each visible (line 23). Finally, method exiton-
click() is called so that the program will terminate when the user clicks on the program win-
dow’s close box.

 In the next stage, we further develop the program to include the specifi c shapes and images for
the simulation.

c06ObjectsandTheirUse.indd Page 233 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 233 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

234 CHAPTER 6 Objects and Their Use

 In this stage of the program we add functions getHorseImages and registerHorseImages,
called from lines 61 and 62 of the main program section. Function getHorseImages returns a list
of GIF image fi les. Each image contains the same horse image, each with a unique number 1 to 10.
Function registerHorseImages does the required registering of images in turtle graphics by
calling method turtle.register_shape on each.

 Function generateHorses (lines 26–32) is implemented the same way as in stage 1 to
return a list of horse turtle objects, except that it is altered to be passed an argument containing a list
of horse images. Thus, the call to generateHorses in line 65 is altered to pass the list of images
in variable horse_images. Function newHorse (lines 19–24) is altered as well to be passed a
particular horse image for the horse that is created, horse.shape(image_fi le).

 Stage 3—Animating the Horses

 Next we develop and test the program with additional code that animates the horses so that they
are randomly advanced until a horse crosses the fi nish line. The resulting turtle screen is shown in
 Figure 6-36. Figure 6-37 provides this third stage of the program.

 Stage 2—Adding the Appropriate Shapes and Images

 We next develop and test the program with additional code that adds the horse shapes (images) needed.
The resulting turtle screen is shown in Figure 6-34. Figure 6-35 shows this second stage of the program.

FIGURE 6-34 Output of Stage 2 of the Horse Race Simulation
Program

A
d

ap
te

d
 fr

om
 J

an
-E

ric
 N

ys
tr

öm
/A

ni
m

ho
rs

e/
W

ik
im

ed
ia

 C
om

m
on

s

c06ObjectsandTheirUse.indd Page 234 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 234 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 235

 Two new functions are added in this version of the program, startHorses and display-
Winner. Function startHorses (lines 44–58) is passed the list of horse turtle objects, the
location of the fi nish line (as an x coordinate value on the turtle screen) and the fundamental incre-
ment amount—each horse is advanced by one to three times this amount. The while loop for
 incrementally moving the horses is on line 49 . The loop iterates until a winner is found, that is,
until the variable have_winner is True. Therefore, have_winner is initialized to False
in line 46 . Variable k, initialized on line 48 , is used to index into the list of horse turtle objects.
Since each horse in turn is advanced some amount during the race, variable k is incremented by
one, modulo the number of horses in variable num_horses (10) (line 57). When k becomes
equal to num_horses 21 (9), it is reset to 0 (for horse 1).

 The amount that each horse is advanced is a factor of one to three randomly determined by call
to method randint(1,3) of the Python standard library module random in line 51 . Variable
forward_incr is multiplied by this factor to move the horses forward an appropriate amount.

FIGURE 6-35 Stage 2 of the Horse Simulation Race Program (Continued)

c06ObjectsandTheirUse.indd Page 235 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 235 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

236 CHAPTER 6 Objects and Their Use

FIGURE 6-35 Stage 2 of the Horse Simulation Race Program

FIGURE 6-36 Output of Stage 3 of the Horse Race Simulation Program

A
d

ap
te

d
 fr

om
 J

an
-E

ric
 N

ys
tr

öm
/A

ni
m

ho
rs

e/
W

ik
im

ed
ia

C

om
m

on
s

c06ObjectsandTheirUse.indd Page 236 25/10/12 10:34 AM user-019Ac06ObjectsandTheirUse.indd Page 236 25/10/12 10:34 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 237

FIGURE 6-37 Stage 3 of the Horse Race Simulation Program (Continued)

c06ObjectsandTheirUse.indd Page 237 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 237 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

238 CHAPTER 6 Objects and Their Use

The value of forward_incr is initialized in the main program section. This value can be adjusted
to speed up or slow down the overall speed of the horses.

 Function displayWinner displays the winning horse number in the Python shell (lines 60–61).
This function will be rewritten in the next stage of program development to display a “winner” banner
image in the turtle screen. Thus, this implementation of the function is for testing purposes only.

 The main program section (lines 63–100) is the same as in the previous stage of program
 development, except for the inclusion of the calls to functions startHorses and display-
Winner in lines 94 and 97 .

FIGURE 6-37 Stage 3 of the Horse Race Simulation Program

c06ObjectsandTheirUse.indd Page 238 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 238 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 239

FIGURE 6-38 Final Stage of the Horse Race Simulation Program (Continued)

 Final Stage—Adding Race Banners

 Finally, we add the code for the displaying of banners at various points in the race as shown earlier
in Figure 6-30. In Figure 6-38 is the fi nal stage of the program. This fi nal version imports one
 additional module, Python Standard Library module time (line 5), used to control the blink rate of
the winning horse.

 While the race progresses within the while loop at line 102 , checks for the location of the lead
horse are made in two places—before and after the halfway mark of the race (on line 108). If the

c06ObjectsandTheirUse.indd Page 239 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 239 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

240 CHAPTER 6 Objects and Their Use

x coordinate location of the lead horse is less then 125, the “early lead banner” is displayed on
 line 117 by a call to function displayBanner. Otherwise, if one second has elapsed, then the
“midrace lead banner” is displayed on line 111 .

 The sleep method of the time module is used to control the blinking of the winning horse
in function displayWinner. A “count-down” variable, blink_counter, is set to 5 on line
133 . This will cause the winning horse to blink fi ve times. The following while loop decrements

FIGURE 6-38 Final Stage of the Horse Race Simulation Program (Continued)

c06ObjectsandTheirUse.indd Page 240 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 240 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

6.3 Horse Race Simulation Program 241

blink_counter and continues to iterate until blink_counter is 0. Variable show, initial-
ized to False on line 132 , is used to alternately show and hide the turtle based on its current
(Boolean) value, which is toggled back and forth between True and False each time through
the loop. The sleep method is called on line 143 to cause the program execution to suspend for
four-tenths of a second so that the switch between the visible and invisible horse appears slowly
enough to cause a blinking effect. This version of displayWinner replaces the previous ver-
sion that simply displayed the winning horse number in the Python shell window.

 Added functions getBannerImages (lines 17–41), registerBannerImages (lines
47–50), and displayBanner (lines 86–90) incorporate the banner images into the program the
same way that the horse images were incorporated in the previous program version. Function
startHorses was modifi ed to take another parameter, banners, containing the list of regis-
tered banners displayed during the race, passed to it from the main program section.

FIGURE 6-38 Final Stage of the Horse Race Simulation Program (Continued)

c06ObjectsandTheirUse.indd Page 241 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 241 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

242 CHAPTER 6 Objects and Their Use

FIGURE 6-38 Final Stage of the Horse Race Simulation Program (Continued)

 Finally, the default turtle (created with the turtle graphics window) is utilized in function
 displayBanners and in the main section. It is used to display the various banners at the bottom
of the screen. To do this, the turtle’s “shape” is changed to the appropriate banner images stored in
list banner_images. To prevent the turtle from drawing lines when moving from the ini-
tial (0, 0) coordinate location to where banners are displayed, the default turtle is hidden and its
pen attribute is set to “up” (lines 160–161).

c06ObjectsandTheirUse.indd Page 242 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 242 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 243

FIGURE 6-38 Final Stage of the Horse Race Simulation Program

General Topics

Software Objects/Methods
References/Reference vs. Dereferenced Values
Reference Assignment
Memory Allocation/Deallocation

Garbage Collection
Shallow vs. Deep Copy Operations

Python-Specifi c Programming Topics

Objects and Turtle Graphics in Python

C H A P T E R S U M M A R Y

 C H A P T E R E X E R C I S E S

 Section 6.1

 1. Indicate exactly what the contents of lst1 and lst2 would be after each of the following set of
 assignments,

 (a) lst1 5 [10, 20, 30] (b) lst1 5 [10, 20, 30] (c) lst1 5 [10, 20, 30]
 lst2 5 [10, 20, 30] lst2 5 lst1 lst2 5 list(lst1)
 lst1[2] 5 50 lst1[2] 5 50 lst1[2] 5 50

 2. Indicate which of the following set of assignments would result in automatic garbage collection in
Python.

 (a) lst1 5 [1, 2, 3] (b) str1 5 ' Hello World ' (c) tuple1 5 (1, 2, 3)
 lst2 5 [5, 6, 7] str2 5 ' Nice Day ' tuple2 5 tuple1

 lst1 5 lst2 str3 5 str1 tuple1 5 (4, 5, 6)

 3. For the set of assignments in question 1, indicate how both the id method and is operator can be used
to determine if lists lst1 and lst2 are each referencing the same list instance in memory.

 Section 6.2

 4. Give a set of instructions to create a turtle window of size 400 pixels wide and 600 pixels high, with a title
of 'Turtle Graphics Window'.

 5. Give a set of instructions that gets the default turtle and sets it to an actual turtle shape.

c06ObjectsandTheirUse.indd Page 243 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 243 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

244 CHAPTER 6 Objects and Their Use

 6. For each of the following method calls on turtle the_turtle, indicate in what part of the screen the
turtle will be placed relative to the center of the screen.

 (a) the_turtle.setposition(0, 0)
 (b) the_turtle.setposition(2100, 0)
 (c) the_turtle.setposition(250, 0)
 (d) the_turtle.setposition(0, 2 50)

 7. For the following method calls on turtle the_turtle, describe the shape that will be drawn.
 the_turtle.penup()

 the_turtle.setposition(2100, 0)

 the_turtle.pendown()

 the_turtle.setposition(100, 0)

 the_turtle.setposition(100, 50)

 the_turtle.setposition(2100, 50)

 the_turtle.setposition(2100, 0)

 8. What color line will be drawn in the following?
 turtle.colormode(255)

 the_turtle.pencolor(128, 0, 0)

 the_turtle.pendown()

 the_turtle.forward(100)

 9. What will be displayed by the following turtle actions?
 the_turtle.pendown()

 the_turtle.showturtle()

 the_turtle.forward(25)

 the_turtle.penup()

 the_turtle.hide_turtle()

 the_turtle.forward(25)

 the_turtle.pendown()

 the_turtle.showturtle()

 the_turtle.forward(25)

P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Give a set of instructions for controlling the turtle to draw a line from the top-left corner of the screen to
the bottom-right corner, and from the top-right corner to the bottom-left corner, thereby making a big X
on the screen. There should be no other lines drawn on the screen.

 P2. Using relative positioning, give a set of instructions for controlling the turtle to draw an isosceles triangle
on the screen (that is, a triangle with two equal-length sides).

 P3. Give a set of instructions for controlling the turtle to draw the letter W using relative positioning.

 P4. Give a set of instructions for controlling the turtle to create three concentric circles, each of different color
and line width.

 P5. Give a set of instructions that sets the turtle to an actual turtle shape, and moves it from the bottom of the
screen towards the top, getting smaller as it moves along.

 P6. Give a set of instructions that moves the turtle with an actual turtle shape from the bottom of the screen
toward the top, changing its fi ll color when it crosses the x axis of the grid coordinates.

 P7. Give a set of instructions to create your own polygon shape and create an interesting design with it.

c06ObjectsandTheirUse.indd Page 244 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 244 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Modifi cation Problems 245

 P8. Give a set of instructions so that the turtle initially moves slowly around the edge of the screen, then
moves faster and faster as it goes around.

 P9. Give a set of instructions to create two turtle objects each with circle shape that move to various locations
of the turtle screen, each stamping their circle shape of varying sizes and colors.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Bouncing Balls with Color
 Modify the bouncing balls simulation program so that exactly three balls are created, each with a different

color.

 M2. Bouncing Balls with Changing Color
 Modify the bouncing balls simulation program so that each time a ball hits an edge of the turtle graphics

screen, it changes color.

 M3. Bouncing Balls with Trailing Lines
 Modify the bouncing balls simulation program so that a trail is left on the screen of each ball’s path.

 M4. Bouncing Ball Chase
 Modify the bouncing balls simulation program so that there are exactly three balls generated, with the

fi rst ball started in a random direction (heading), and the other two balls following it closely behind.

 M5. Horse Racing Program: Multiple Races and Score Keeping
 Modify the Horse Racing program so that the user can continue to play another race without having to

rerun the program. Also, the cumulative wins of all the horses should be displayed in the shell window.
This allows the user to see if some horses are a more “winning” horse than others.

 M6. Horse Racing Program: Handicap Racing
 Modify the Horse Racing program so that the user can assign a handicap to one or more horses on a scale

of 1 to 5. (A “handicap” in racing is a means of giving advantage to less competitive horses over more
competitive ones.) If a horse is assigned a handicap of 1, it should move ahead one-fi fth farther than usual.
A handicap of 2 would increase its move by two-fi fths, and so forth. The list of handicaps should be dis-
played in the shell window each time before the race begins.

 M7. Horse Racing Program: Pari-mutuel Betting
 Modify the Horse Racing program to allow individuals to enter their name to “register themselves” to

place bets. The program should be modifi ed so that races can be consecutively run without having to re-
start the program. Before each race, bets can be placed by registered players. Each bet is for which horse
will win. The payout will be based on the rules of pari-mutuel betting described below. The amount of
money gained or lost by each registered player should be constantly displayed in the shell.

 Example of pari-mutuel betting
 Each horse has a certain amount of money wagered on it (assuming eight horses):

1 2 3 4 5 6 7 8

$30.00 $70.00 $12.00 $55.00 $110.00 $47.00 $150.00 $40.00

 Thus, the total pool of money on this particular wagering event is $514.00. Following the start of the
event, no more wagers are accepted. The event is decided and the winning outcome is determined to
be outcome 4 with $55.00 wagered. The payout is now calculated. First, the commission or take for the
wagering company is deducted from the pool. For example, with a commission rate of 14.25% the pool
is: $514 3 (1 2 0.1425) 5 $440.76. This remaining amount in the pool is now distributed to those who

c06ObjectsandTheirUse.indd Page 245 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 245 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

246 CHAPTER 6 Objects and Their Use

wagered on outcome 4: $440.76 / $55 ≈ $8 per $1 wagered. This payout includes the $1 wagered plus
an additional $7 profi t. Thus, the odds of outcome 4 are 7-to-1.
 Wikipedia contributors. “Parimutuel betting.” Wikipedia, The Free Encyclopedia . Wikipedia, The
Free Encyclopedia, May 7, 2011. Web, May 11, 2011.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Drunkard’s Walk
 A random walk is a trajectory taken by a sequence of random steps. Random walks can be used to model

the travel of molecules, the path that animals take when looking for food, and fi nancial fl uctuations, for
example. A specifi c form of random walk is called the “Drunkard’s Walk.” A (drunken) man tries to fi nd
his way home. He does so by making a random choice at each street intersection of which of the four
paths to take: continue in the same direction; go back from the direction he came; turn left; or turn right.
Thus, the man is traveling the same distance after each choice of direction (one city block). Implement
and test a Python program using turtle graphics to display random walks. Select an appropriate number
of pixels as the length of a city block.

 D2. Name Reversal
 Implement and test a Python program using turtle graphics to allow the user to enter their fi rst name, and

have it displayed in the turtle window as a reverse mirror image.

 D3. Battleship Game Visualization
 Implement and test a Python program using turtle graphics to provide a visualization for the game of

Battleship discussed in Program Development problem D3 in Chapter 4.

c06ObjectsandTheirUse.indd Page 246 25/10/12 10:35 AM user-019Ac06ObjectsandTheirUse.indd Page 246 25/10/12 10:35 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

247

 Modular Design

 Until now, we have looked at programs comprised of a set of individual functions. In complex
 software systems, however, programs are organized at a higher level as a set of modules, each module
 containing a set of functions (or objects). Modules, like functions, are a fundamental building block
in software development.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Explain the use of modular design in software development

 ♦ Explain the specifi cation of modules

 ♦ Explain the process of top-down design

 ♦ Describe the concept of a stack

 ♦ Differentiate between unit testing and integration testing

 ♦ Become familiar with the use of docstrings in Python

 ♦ Explain the use of modules and namespaces in Python

 ♦ Describe and use the different forms of module import in Python

 ♦ Develop well-specifi ed Python programs using top-down design

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 7.1 Modules

 7.2 Top-Down Design

 7.3 Python Modules

 Computational Problem Solving

 7.4 Calendar Year Program (function version)

 CHAPTER 7

c07ModularDesign.indd Page 247 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 247 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

248 CHAPTER 7 Modular Design

 MOTIVATION

 Software systems are some of the most complex entities
ever created. Web browsers and operating systems, for
example, contain as many as 50–100 million lines of
code. Developing programs of such size and complexity
can easily take 10,000 person-years of effort to develop.
It is natural, therefore, to fi nd ways to divide the task of
software development among various individuals (or
groups of individuals).

 We can make complex systems more manage-
able by designing them as a set of subsystems, or mod-
ules. For example, NASA’s space shuttle (Figure 7-1)
is one of the most complex systems ever engineered,
containing more than 2.5 million parts. The major
components are the orbiter vehicle, a large external
liquid-fuel tank, and two solid rocket boosters. The
 orbiter vehicle itself is composed of several subsys-
tems (e.g., the communications system), which in turn may be composed of sub-subsystems
(e.g., the data network system), as shown in Figure 7-2.

 Although many of the technicians involved with the shuttle may understand its overall design,
only a few select individuals need to understand or be involved with the detailed design, imple-
mentation, and testing of any specifi c subsystem. The same is true for the modular design of
software. In this chapter, we look at the issue of modular program design.

FIGURE 7-2 Modular Design of the NASA Space Shuttle

 FUNDAMENTAL CONCEPTS

 7.1 Modules

 7.1.1 What Is a Module?

 An important aspect of well-designed software is that programs are designed as a collection of
modules. The term “module,” broadly speaking, refers to the design and/or implementation of

FIGURE 7-1 Space Shuttle

N
A

S
A

/S
p

ac
e

S
hu

tt
le

 C
ol

um
b

ia
 la

un
ch

in
g/

W
ik

im
ed

ia
 C

om
m

on
s

c07ModularDesign.indd Page 248 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 248 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.1 Modules 249

 specifi c functionality to be incorporated into a program. While an individual function may be con-
sidered a module, modules generally consists of a collection of functions (or other entities). The
Python turtle module is an example of a software module. The use of modules has a number of
advantages as shown in Figure 7-3.

 Modular design allows large programs to be broken down into manageable size parts, in which each
part (module) provides a clearly specifi ed capability. It aids the software development process by
providing an effective way of separating programming tasks among various individuals or teams. It
allows modules to be individually developed and tested, and eventually integrated as a part of a
complete system. Finally, modular design facilitates program modifi cation since the code responsi-
ble for a given aspect of the software is contained within specifi c modules, and not distributed
throughout the program.

The term “module” refers to the design and/or implementation of specifi c functionality to be
incorporated into a program.

 7.1.2 Module Specification

 Every module needs to provide a specifi cation of how it is to be used. This is referred to as the mod-
ule’s interface . Any program code making use of a particular module is referred to as a client of the
module. A module’s specifi cation should be suffi ciently clear and complete so that its clients can
effectively utilize it. For example, numPrimes is a function that returns the number of primes in a
given integer range, as shown in Figure 7-4.

FIGURE 7-4 docstring Specifi cation

 The function’s specifi cation is provided by the line immediately following the function header,
called a docstring in Python. A docstring is a string literal denoted by triple quotes given as the

FIGURE 7-3 Advantages of Modular Programming

c07ModularDesign.indd Page 249 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 249 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

250 CHAPTER 7 Modular Design

 This is now a reasonable specifi cation of the function. This docstring follows the Python convention
of putting a blank line after the fi rst line of the docstring, which should be an overall description of
what the function does, followed by an arbitrary number of lines providing additional details. These
additional lines must be indented at the same level, as shown in the fi gure. Appropriate use of this
function by a client is given below.

fi rst line of certain program elements. The docstring of a particular program element can be dis-
played by use of the __doc__ extension,

 ... print(numPrimes.__doc__)

 Returns the number of primes between start and end.

 This provides a convenient way for discovering how to use a particular function without having to
look at the function defi nition itself. Some software development tools also make use of docstrings.
Let’s consider how complete this specifi cation is for this function. At fi rst look it may seem suffi -
cient. However, it does not answer whether the number of primes returned includes the endpoints of
the range or not. Also, it is not clear what will happen if the function is called with a fi rst argument
(start) greater than the second (end). Thus, a more complete specifi cation is needed. This is
given in Figure 7-5.

FIGURE 7-5 A More Complete docstring Specifi cation

 .

 .

 fi rst_num 5 int(input('Enter the start of the range: '))

 second_num 5 int(input('Enter the end of the range: '))

 result 5 numprimes(fi rst_num, second_num)

 if result 55 2 1:

 print('* Invalid range entered *')

 else:

 print('The number of primes between', fi rst_num, 'and', second_num,

 'is', result)

 In this example, the user inputs a start and end value for the range of integers to check. Since the user
may inappropriately enter a start value greater than the value of the end value, a check is made for a
returned value of 2 1 after the call to numprimes. If 2 1 is found, then an error message is output;
otherwise, the result is displayed.

 There are potential problems when returning both a computed result and an error result as a
function’s return value. First, there is no guarantee that the client will perform the necessary check
for the special error value. Thus, an incorrect result may be displayed to the user,

 The number of primes between 100 and 1 is 2 1

c07ModularDesign.indd Page 250 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 250 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.2 Top-Down Design 251

A module’s interface is a specifi cation of what it provides and how it is to be used. Any program
code making use of a given module is called a client of the module. A docstring is a string literal
 denoted by triple quotes used in Python for providing the specifi cation of certain program elements.

 Self-Test Questions

 1. Which of the following is not an advantage in the use of modules in software development?
 (a) Provides a natural means of dividing up programming tasks.
 (b) Provides a means of reducing the size of a program.
 (c) Provides a means for the reuse of program code.
 (d) Provides a means of separately testing individual parts of a program.
 (e) Provides a means of integrating parts of a program during testing.
 (f) Facilitates the modifi cation of specifi c program functionalities.

 2. A specifi cation of how a particular module is used is called the module’s _______________.

 3. Program code that makes use of a given module is called a _______________ of the module.

 4. Indicate which of the following are true. A docstring in Python is
 (a) A string literal denoted by triple or double quotes.
 (b) A means of providing specifi cation for certain program elements in Python.
 (c) A string literal that may span more than one line.

 ANSWERS: 1. (b), 2. interface, 3. client, 4. (b), (c)

 Second, there may not be a special value that can be returned for error reporting. For example, if
there is a function meant to return any integer value, including negative numbers, there is no special
integer value that can be returned. We will see a better means of error reporting by a function when
we discuss exception handling in Chapter 8.

Top-down design is an approach for deriving a modular design in which the overall design of a
system is developed fi rst, deferring the specifi cation of more detailed aspects of the design until
later steps.

 7.2.1 Developing a Modular Design of the Calendar Year Program

 We will develop a modular design for the calendar year program from Chapter 4 (implemented there
without the use of functions) using a top-down design approach. The three overall steps of the pro-
gram are getting the requested year from the user, creating the calendar year structure, and displaying
the year. This is depicted in Figure 7-6.

 7.2 Top-Down Design

 One method of deriving a modular design is called top-down design . In this approach, the overall
design of a system is developed fi rst, deferring the specifi cation of more detailed aspects of the
 design until later steps. We next consider a modular design using a top-down approach for the cal-
endar year program from Chapter 4.

c07ModularDesign.indd Page 251 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 251 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

252 CHAPTER 7 Modular Design

FIGURE 7-6 First Stage of a Modular Design of the Calendar Year Program

FIGURE 7-7 Second Stage of Modular Design of a Calendar Year Program

 7.2.2 Specification of the Calendar Year Program Modules

 The modular design of the calendar year program provides a high-level view of the program. How-
ever, there are many issues yet to resolve in the design. Since each module is to be implemented as

The goal of top-down design is that each module provides clearly defi ned functionality, which
collectively provide all of the required functionality of the program.

 We then consider whether any of these modules needs to be further broken down. Making such a
decision is more of an art than a science. The goal of modular design is that each module provides
clearly defi ned functionality, which collectively provide all of the required functionality of the pro-
gram. Modules get year and display calendar year are not complex enough to require further
breakdown. Module construct calendar year, on the other hand, is where most of the work is
done, and is therefore further broken down. Figure 7-7 contains the modules of this next design step.

 In order to construct a calendar year, it must be determined whether the year is a leap year, what day
of the week January 1st of that year falls on, and how many days are in each month (accounting for
leap years). Thus, modules leap year, day of week January1, and num days in month are added
as submodules of module construct calendar year. The calendar month for each of the twelve
months must then be individually constructed, handled by module construct calendar month.

c07ModularDesign.indd Page 252 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 252 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.2 Top-Down Design 253

FIGURE 7-8 Calendar Year Module Specifi cation (Continued)

a function, we need to specify the details of each function. For example, for each function it needs
to be decided if it is a value-returning function or a non-value-returning function; what parameters
it will take; and what results it will produce. We give such a specifi cation in Figure 7-8 using Python
docstrings.

 This stage of the design provides suffi cient detail from which to implement the program. The
main module provides the overall construction of the program. It simply displays the program

c07ModularDesign.indd Page 253 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 253 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

254 CHAPTER 7 Modular Design

 greeting, calls module getYear to get the year from the user, calls module constructCalYear to
construct the year, and fi nally calls module displayCalendar to display the calendar year. The only
detail that the main module is concerned with is allowing the user to keep displaying another calen-
dar year, or enter 21 to terminate the program. This is controlled by Boolean variable terminate.

 The fi rst module called, getYear, returns the integer value entered by the user. The mod-
ule’s specifi cation indicates that it returns an integer value between 1800 and 2099, inclusive; or
21 (if the user decides to terminate the program). Therefore, it is the responsibility of the mod-
ule to ensure that no other value is returned. This relieves the main module of having to check
for bad input.

 The next module that the main module uses is module constructCalYear. This module re-
turns a list of twelve sublists, one for each month, in which each sublist begins with the name of the
month (as a string value), followed by each of the weeks in the month, each week formatted as a
single string. The module’s specifi cation indicates that it is to be passed a year between 1800 and
2099, inclusive. Therefore, any year given to it that is outside that range violates its condition for
use, and therefore the results are not guaranteed.

 The last module called from the main module is module displayCalendar. It is given a con-
structed calendar year, as constructed by module constructCalMonth.

 Based on the modular design of the calendar year program, constructCalYear is the only
module relying on the use of submodules, specifi cally modules leapYear, dayOfWeekJan1,
numDaysInMonth, and constructCal. The leapYear module determines whether a given a year is
a leap year or not, returning a Boolean result. Module dayOfWeekJan1 returns the day of the week
for January 1st of the provided year. Boolean value leap_year must also be provided to the module,
needed in the day of the week algorithm on which the module is based. Module numDaysInMonth
must be passed an integer in the range 1–12, as well as a Boolean value for leap_year. This is so
that the module can determine the number of days in the month for the month of February. Finally,
constructCalMonth is given a month number, the day of the week of the fi rst day of the month
(1-Sun, 2-Mon, . . ., 0-Sat) and the number of days in the month. With this information, module
 constructCalYear can construct the calendar list and its sublists to be displayed.

 Finally, module displayCalendarMonth is given a formatted calendar year. Its job is to dis-
play the calendar year three months across.

 This more detailed modular design provides the details of how each module is to be incorpo-
rated into a complete program. We will discuss the implementation of this design at the end of the
chapter.

FIGURE 7-8 Calendar Year Module Specifi cation

c07ModularDesign.indd Page 254 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 254 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 255

 Self-Test Questions

 1. In top-down design (select one),
 (a) The details of a program design are addressed before the overall design.
 (b) The overall design of a program is addressed before the details.

 2. All modular designs are a result of a top-down design process. (TRUE/FALSE)

 3. In top-down design, every module is broken down into the same number of submodules.
(TRUE/FALSE)

 4. Which of the following advantages of modular design apply to the design of the calendar
program.
 (a) Provides a means for the development of well-designed programs.
 (b) Provides a natural means of dividing up programming tasks.
 (c) Provides a means of separately testing individual parts of a program.

 ANSWERS: 1. (b), 2. False, 3. False, 4. (a), (b), (c)

L E T ’ S T R Y I T

Create a Python module by entering the following in a fi le name simple.py. Then execute the instructions
in the Python shell as shown and observe the results.

module simple ... import simple
print('module simple loaded') ???
 ... simple.func1()
def func1(): ???
 print('func1 called')
 ... simple.func2()
def func2(): ???
 print('func2 called')

 7.3 Python Modules

 7.3.1 What Is a Python Module?

 A Python module is a fi le containing Python defi nitions and statements. When a Python fi le is
 directly executed, it is considered the main module of a program. Main modules are given the special
name __main__. Main modules provide the basis for a complete Python program. They may import
(include) any number of other modules (and each of those modules import other modules, etc.).
Main modules are not meant to be imported into other modules.

 As with the main module, imported modules may contain a set of statements. The statements
of imported modules are executed only once, the fi rst time that the module is imported. The pur-
pose of these statements is to perform any initialization needed for the members of the imported
module. The Python Standard Library contains a set of predefi ned Standard (built-in) modules . We
have in fact seen some of these modules already, such as the math and random Standard Library
 modules.

 Python modules provide all the benefi ts of modular software design we have discussed.
By convention, modules are named using all lower case letters and optional underscore characters.
We will look more closely at Python modules in the next section.

c07ModularDesign.indd Page 255 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 255 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

256 CHAPTER 7 Modular Design

 7.3.2 Modules and Namespaces

 A namespace is a container that provides a named context for a set of identifi ers. Namespaces en-
able programs to avoid potential name clashes by associating each identifi er with the namespace
from which it originates. In software development, a name clash is when two otherwise distinct
entities with the same name become part of the same scope. Name clashes can occur, for example,
if two or more Python modules contain identifi ers with the same name and are imported into the
same program, as shown in Figure 7-9.

A Python module is a fi le containing Python defi nitions and statements. The Python Standard
Library contains a set of predefi ned standard (built-in) modules.

 In this example, module1 and module2 are imported into the same program. Each module con-
tains an identifi er named double, which return very different results. When the function call
double(num_list) is executed in main, there is a name clash. Thus, it cannot be determined
which of these two functions should be called. Namespaces provide a means for resolving such
problems.

 In Python, each module has its own namespace. This includes the names of all items in the
module, including functions and global variables—variables defi ned within the module and outside
the scope of any of its functions. Thus, two instances of identifi er double, each defi ned in their
own module, are distinguished by being fully qualifi ed with the name of the module in which each
is defi ned: module1.double and module2.double. Figure 7-10 illustrates the use of fully
qualifi ed identifi ers for calls to function double.

 The use of namespaces to resolve problems associated with duplicate naming is not restricted
to computer programming. In fact, it occurs in everyday situations. Imagine, for instance, that you

FIGURE 7-9 Example Name Clash of Imported Functions

c07ModularDesign.indd Page 256 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 256 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 257

FIGURE 7-10 Example Use of Fully Qualifi ed Function Names

run into a friend who tells you that “Paul is getting married.” In fact, you have two friends in com-
mon named Paul. Because you are not certain which Paul your friend is referring to, you may re-
spond “Paul from back home, or Paul from the dorm?” In this case, you are asking your friend to
respond with a fully qualifi ed name to resolve the ambiguity: “home:Paul” vs. “dorm:Paul.”
Next, we look at different ways that Python modules can be imported.

 7.3.3 Importing Modules

 In Python, the main module of any program is the fi rst (“top-level”) module executed. When work-
ing interactively in the Python shell, the Python interpreter functions as the main module, containing
the global namespace. The namespace is reset every time the interpreter is started (or when selecting
Shell ➝ Restart Shell). Next we look at various means of importing modules in Python. (We note
that module __builtins__ is automatically imported in Python programs, providing all the
built-in constants, functions, and classes.)

L E T ’ S T R Y I T

Enter each of the following functions in their own modules named mod1.py and mod2.py. Enter and
 execute the following and observe the results.

mod1 ... import mod1, mod2
def average(lst): ... mod1.average([10, 20, 30])

print('average of mod1 called') ???
 ... mod2.average([10, 20, 30])
mod2 ???
def average(lst): ... average([10, 20, 30])

print('average of mod2 called') ???

A namespace provides a context for a set of identifi ers. Every module in Python has its own
namespace. A name clash is when two otherwise distinct entities with the same identifi er become
part of the same scope.

In Python, the main module of any program is identifi ed as the fi rst (“top-level”) module executed.

c07ModularDesign.indd Page 257 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 257 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

258 CHAPTER 7 Modular Design

 The “import modulename ” Form of Import

 When using the import modulename form of import, the namespace of the imported module
 becomes available to , but not part of , the importing module. Identifi ers of the imported module, there-
fore, must be fully qualifi ed (prefi xed with the module’s name) when accessed. Using this form of
 import prevents any possibility of a name clash. Thus, as we have seen, if two modules, module1 and
module2, both have the same identifi er, identifi er1, then module1.identifi er1 denotes the
entity of the fi rst module and module2.identifi er1 denotes the entity of the second module.

 The “from-import” Form of Import

 Python also provides an alternate import statement of the form

 from modulename import something

 where something can be a list of identifi ers, a single renamed identifi er, or an asterisk, as shown
below,

 (a) from modulename import func1, func2
 (b) from modulename import func1 as new_func1
 (c) from modulename import *

 In example (a), only identifi ers func1 and func2 are imported. In example (b), only identifi er
func1 is imported, renamed as new_func1 in the importing module. Finally, in example (c), all
of the identifi ers are imported, except for those that begin with two underscore characters, which are
meant to be private in the module, which will be discussed later.

 There is a fundamental difference between the from modulename import and import
 modulename forms of import in Python. When using import modulename , the namespace of
the imported module does not become part of the namespace of the importing module, as men-
tioned. Therefore, identifi ers of the imported module must be fully qualifi ed (e.g., modulename.
func1) in the importing module. In contrast, when using from-import, the imported module’s
namespace becomes part of the importing module’s namespace. Thus, imported identifi ers are ref-
erenced without being fully qualifi ed (e.g., func1).

 The from modulename import func1 as new_func1 form of import is used
when identifi ers in the imported module’s namespace are known to be identical to identifi ers of the

L E T ’ S T R Y I T

Enter the following into the Python shell and observe the results.

... factorial(5) ... import math
??? ... factorial(5)
 ???
... math.factorial(5)
??? ... math.factorial(5)
 ???

With the import modulename form of import in Python, the namespace of the imported module
becomes available to, but does not become part of, the namespace of the importing module.

c07ModularDesign.indd Page 258 22/10/12 3:17 PM user-019Ac07ModularDesign.indd Page 258 22/10/12 3:17 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 259

importing module. In such cases, the renamed imported function can be used without needing to be
fully qualifi ed. Finally, using the from modulename import * form of import in example (c),
 although convenient, makes name clashes more likely. This is because the names of the imported
identifi ers are not explicitly listed in the import statement, creating a greater chance that the pro-
grammer will unintentionally defi ne an identifi er with the same name as in the importing module.
 And since the from-import form of import allows imported identifi ers to be accessed without
being fully qualifi ed, it is unclear in the importing module where these identifi ers come from.
We provide an example of this in Figure 7-11.

 Module somemodule contains functions func1 and func2. Since somemodule is imported
with from somemodule import *, identifi ers func1 and func2 become part of the main
module’s namespace. However, since the module’s namespace already contains identifi er func2
(denoting the function defi ned there), access to func2 of somemodule is masked , and therefore
is inaccessible. Using the fully qualifi ed form somemodule.func2 does not work either, since
somemodule is not part of the imported namespace for this form of import.

 Finally, it is recommended Python style that standard modules be imported before the
 programmer-defi ned ones, with each section of imports separated by a blank line as shown below.

 import standardmodule1 # standard modules

 import standardmodule2

 import somemodule1 # programmer-defi ned modules

 import somemodule2

FIGURE 7-11 Example Use of from-import Form of Import

c07ModularDesign.indd Page 259 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 259 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

260 CHAPTER 7 Modular Design

L E T ’ S T R Y I T

Enter the following into the Python shell and observe the results.

... from math import factorial ... from math import factorial as fact

... factorial(5) ... fact(5)
??? ???

... def factorial(n): ... def factorial(n):
 print('my factorial') print('my factorial')

... factorial(5) ... factorial(5)
??? ???

... math.factorial(5) ... fact(5)
??? ???

With the from-import form of import, imported identifi ers become part of the importing
module’s namespace. Because of the possibility of name clashes, import modulename is the
preferred form of import in Python.

 Module Private Variables

 In Python, all identifi ers in a module are “public”—that is, accessible by any other module that
 imports it. Sometimes, however, entities (variables, functions, etc.) in a module are meant to be
“private”—used within the module, but not meant to be accessed from outside it.

 Python does not provide any means for preventing access to variables or other entities meant
to be private. Instead, there is a convention that names beginning with two underscores (_) are in-
tended to be private. Such entities, therefore, should not be accessed. It does not mean that they
 cannot be accessed, however. There is one situation in which access to private variables is restricted.
When the from modulename import * form of import is used to import all the identifi ers of a
module’s namespace, names beginning with double underscores are not imported. Thus, such enti-
ties become inaccessible from within the importing module.

In Python, all the variables in a module are “public,” with the convention that variables beginning
with an two underscores are intended to be private.

 7.3.4 Module Loading and Execution

 Each imported module of a Python program needs to be located and loaded into memory. Python fi rst
searches for modules in the current directory. If the module is not found, it searches the directories
specifi ed in the PYTHONPATH environment variable. If the module is still not found (or PYTHON-
PATH is not defi ned), a Python installation-specifi c path is searched (e.g., C:\Python32\Lib). If the
program still does not fi nd the module, an error (ImportError exception) is reported. For our pur-
poses, all of the modules of a program will be kept in the same directory. However, if you wish to develop
a module made available to other programs, then the module can be saved in your own Python modules
directory specifi ed in the PYTHONPATH, or stored in the particular Python installation Lib directory.

c07ModularDesign.indd Page 260 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 260 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 261

 When a module is loaded, a compiled version of the module with fi le extension .pyc is auto-
matically produced. Then, the next time that the module is imported, the compiled .pyc fi le is
loaded, rather than the .py fi le, to save the time of recompiling. A new compiled version of a mod-
ule is automatically produced whenever the compiled version is out of date with the source code
version of the module when loading, based on the dates that the fi les were created/modifi ed.

 Built-in Function dir()

 Built-in function dir() is very useful for monitoring the items in the namespace of the main mod-
ule for programs executing in the Python shell. For example, the following gives the namespace of
a newly started shell,

 ... dir()

 ['__builtins__', '__doc__', '__name__', '__package__']

 The following shows the namespace after importing and defi ning variables,

 ... import random

 ... n 5 10

 ... dir()

 ['__builtins__', '__doc__', '__name__', '__package__', 'n', 'random']

 Selecting Shell ➝ Restart Shell (Ctrl-F6) in the shell resets the namespace,

 (after Restart Shell selected)

 ... dir()

 ['__builtins__', '__doc__', '__name__', '__package__']

L E T ’ S T R Y I T

Create the following Python module named simplemodule, import it, and call function display-
Greeting as shown from the Python shell and observe the results.

simplemodule

def displayGreeting():
 print('Hello World!')

... import simplemodule

... simplemodule.displayGreeting()

Modify module simplemodule to display 'Hey there world!', import and again execute function
displayGreeting as shown. Observe the results.

... import simplemodule

... simplemodule.displayGreeting()

Finally, reload the module as shown and again call function displayGreeting.

... reload(simplemodule)

... simplemodule.displayGreeting()
???

c07ModularDesign.indd Page 261 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 261 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

262 CHAPTER 7 Modular Design

FIGURE 7-12 Local, Global, and Built-in Namespaces of Python

When a module is loaded, a compiled version of the module with fi le extension .pyc is
 automatically produced. When using the Python shell, an updated module can be forced to
be reloaded and recompiled by use of the reload() function.

 7.3.5 Local, Global, and Built-in Namespaces in Python

 During a Python program’s execution, there are as many as three namespaces that are referenced
(“active”)—the built-in namespace, the global namespace, and the local namespace. The built-in
namespace contains the names of all the built-in functions, constants, and so on, in Python. The
 global namespace contains the identifi ers of the currently executing module. And the local
namespace is the namespace of the currently executing function (if any).

 When Python looks for an identifi er, it fi rst searches the local namespace (if defi ned), then the
global namespace, and fi nally the built-in namespace. Thus, if the same identifi er is defi ned in more
than one of these namespaces, it becomes masked, as depicted in Figure 7-12.

 Functions sum and max are built-in functions in Python, and thus in the built-in namespace. Built-in
function sum returns the sum of a sequence (list or tuple) or integers. Built-in function max returns
the largest value of a string, list, tuple, and other types.

 In the module (and thus part of the global namespace) is defi ned another function named
max. This programmer-defi ned function returns the index of the largest value from an ordered
collection of items, not the value itself as built-in function max is designed to do. This is dem-
onstrated below.

 max([4, 2, 7, 1, 9, 6]) ➝ 9 (built-in function max)
 max([4, 2, 7, 1, 9, 6]) ➝ 4 (programmer-defi ned function max)

 Which specifi c functions are called from within somefunction depends on where the functions
are defi ned. Function sum, for example, is not defi ned within the global namespace. Therefore,
built-in function sum of the built-in namespace is called. The call to function max, on the other
hand, does not access the built-in function max; rather, it calls function max of the more closely

c07ModularDesign.indd Page 262 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 262 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 263

defi ned global namespace. This demonstrates how issues of scope, if not clearly considered, can
result in subtle and unexpected program errors. Consider the example program in Figure 7-13.

FIGURE 7-13 Inadvertent Masking of Identifi er in the Built-in Namespace

 This program is meant to read in the exam grades of a class. (The grades are hard-coded here for the sake
of an example.) The main module imports module grade_calc that contains function grades_
highlow, which returns as a tuple the highest grade (with extra credit grades over 100 returned as 100)
and lowest grade in a list of grades. Upon executing this program, we fi nd the following results,

 Highest adjusted grade on the exam was 100

 Lowest grade on the exam was 72

 The actual highest grade on the exam was 100

 ...

For the list of grades 86, 72, 94, 102, 89, 76, 96, the high and low grades of 72 and 100 is correct
(counting the grade 102 as a grade of 100). Then the program is to display the actual highest grade
of 102. However, a grade of 100 is displayed instead.

 The problem is that the grade_calc module was imported using from grade_calc
 import *. Thus, all of the entities of the module were imported, including the defi ned max
 function. This function returns a “truncated” maximum grade of 100 from a list of grades, used as
a supporting function for function grades_highlow. However, since it is defi ned in the global
(module) namespace of the classgrades program, that defi nition of function max masks the

c07ModularDesign.indd Page 263 22/10/12 3:17 PM user-019Ac07ModularDesign.indd Page 263 22/10/12 3:17 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

264 CHAPTER 7 Modular Design

At any given point in a Python program’s execution, there are three possible namespaces referenced
(“active”)—the built-in namespace, the global namespace, and the local namespace.

L E T ’ S T R Y I T

Enter the following in the Python shell: Create a fi le with the following module:

... sum([1, 2, 3]) # module max_test_module
??? def test_max():
 print 'max 5', max([1, 2, 3])

... def sum(n1, n2, n3):
 total 5 n1 1 n2 1 n3 Create and execute the following program:

 return total import max_test_module

... sum([1, 2, 3]) def max():
??? print('max:local namespace called')

... sum(1, 2, 3) print(max_test_module.test_max())
???

built-in max function of the built-in namespace. Thus, when called from within the class-
grades program, it also produces a truncated highest grade, thus returning the actual highest
grade of 100 instead of 102.

 This example shows the care that must be taken in the use and naming of global identifi ers,
 especially with the from-import * form of import. Note that if function max were named as a
private member of the module, __max, then it would not have been imported into the main module
and the actual highest grade displayed would have been correct.

 7.3.6 A Programmer-Defined Stack Module

 In order to demonstrate the development of a programmer-defi ned module, we present an example
stack module. A stack is a very useful mechanism in computer science. Stacks are used to temporar-
ily store and retrieve data. They have the property that the last item placed on the stack is the fi rst to
be retrieved. This is referred to as LIFO—“last in, fi rst out.” A stack can be viewed as a list that can
be accessed only at one end, as depicted in Figure 7-14.

FIGURE 7-14 Stack Mechanism

c07ModularDesign.indd Page 264 05/11/12 1:35 PM user-019Ac07ModularDesign.indd Page 264 05/11/12 1:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 265

 In this example, three items are pushed on the stack, denoted by A, B, and C. First, item A is pushed,
followed by item B, and then item C. After the three items have been placed on the stack, the only
item that can be accessed or removed is item C, located at the top of stack . When C is retrieved, it is
said to be popped from the stack, leaving item B as the top of stack. Once item B is popped, item A
becomes the top of stack. Finally, when item A is popped, the stack becomes empty. It is an error to
attempt to pop an empty stack.

 In Figure 7-15 is a Python module containing a set of functions that implements this stack
behavior. For demonstration purposes, the program displays and pushes the values 1 through 4 on
the stack. It then displays the numbers popped off the stack, retrieved in the reverse order that they
were pushed.

 The stack module consists of fi ve functions—getStack, isEmpty, top, push, and
pop. The stack is implemented as a list. Only the last element in the list is accessed—that is where

FIGURE 7-15 Programmer-Defi ned Stack Module

c07ModularDesign.indd Page 265 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 265 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

266 CHAPTER 7 Modular Design

all items are “pushed” and “popped” from. Thus, the end of the list logically functions as the “top”
of stack.

 Function getStack (lines 3–7) creates and returns a new empty stack as an empty list. Func-
tion isEmpty (lines 9–16) returns whether a stack is empty or not (by checking if an empty list).
Function top (lines 18–27) returns the top item of a stack without removing it. Functions push
(lines 29–33) and pop (lines 35–44) provide the essential stack operations. The push function
pushes an item on the stack by appending it to the end of the list. The pop function removes the item
from the top of stack by retrieving the last element of the list, and then deleting it. If either pop or
top are called on an empty stack, the special value None is returned.

FIGURE 7-16 Demonstration of the Programmer-Defi ned Stack Module

 The small program in Figure 7-16 demonstrates the use of the stack module. First, a new stack is
 created by assigning variable mystack to the result of the call to function getStack (line 3).
Even though a list is returned, it is intended to be more specifi cally a stack type. Therefore, only the
stack-related functions should be used with this variable—the list should not be directly accessed,
otherwise the stack may become corrupted. Then the values 1 through 4 are pushed on the stack, and
popped in the reverse order,

 Pushing 1 on stack
 Pushing 2 on stack
 Pushing 3 on stack
 Pushing 4 on stack
 Popping 4 from stack
 Popping 3 from stack
 Popping 2 from stack
 Popping 1 from stack

 Ensuring that only the provided functions can be used on the stack represents a fundamental advan-
tage of objects. Since an object consists of data and methods (routines), only the methods of the
object can be used to access and alter the data. Thus, the stack type is best implemented as an object,
as all other values in Python are. We will see how do to this after the introduction of object-oriented
programming in Chapter 10.

c07ModularDesign.indd Page 266 18/10/12 11:16 AM user-019Ac07ModularDesign.indd Page 266 18/10/12 11:16 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.3 Python Modules 267

 7.3.7 Let’s Apply It—A Palindrome Checker Program

 The program in Figure 7-18 determines if a given string is a palindrome. A palindrome is something
that reads the same forwards and backwards. For example, the words “level” and “radar” are palin-
dromes. The program imports the stack module developed in the previous section. This program
utilizes the following programming feature:

➤ Programmer-defi ned module

 Example execution of the program is given in Figure 7-17.

FIGURE 7-17 Execution of the Palindrome Checker Program

 The stack module is imported on line 3 of the program. The “import modulename ” form of im-
port is used. Therefore, each stack function is referenced by stack. function_name . Lines 6–7
displays a simple program welcome. The following lines perform the required initialization for the
program. Line 10 sets char_stack to a new empty stack by call to getStack(). Line 11 initial-
izes variable empty_string to the empty string. This is used in the program for determining if the
user has fi nished entering all the words to check.

 The string to check is input by the user on line 14 . If the string is of length one, then by defi nition
the string is a palindrome. This special case is handled in lines 17–18 . Otherwise, the complete string
is checked. First, variable palindrome is initialized to True. On line 24 , variable compare_
length is set to half the length of the input string, using integer division to truncate the length to an
equal number of characters. This represents the number of characters from the front of the string
(working forward) that must match the number of characters on the rear of the string (working back-
wards). If there are an odd number of characters, then the middle character has no other character to
match against.

 On lines 27–28 the second half of the string chars are pushed character-by-character onto the
stack. Then, on lines 31–37 the characters are popped from the stack one by one, returning in the
reverse order that they were pushed. Thus, the fi rst character popped (the last character pushed on
the stack) is compared to the fi rst character of the complete string. This continues until there are no
more characters to be checked. If characters are found that do not match, then is_palindrome is
set to False (lines 34–35) and the while loop terminates. Otherwise, is_palindrome remains
True. Lines 40–43 output whether the input string is a palindrome or not, based on the fi nal value
of is_palindrome. Lines 45–46 prompt the user for another string to enter, and control returns
to the top of the while loop.

c07ModularDesign.indd Page 267 05/11/12 1:35 PM user-019Ac07ModularDesign.indd Page 267 05/11/12 1:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

268 CHAPTER 7 Modular Design

 It is important to mention that the problem of palindrome checking could be done more effi ciently
without the use of a stack. A for loop can be used that compares the characters k locations from each
end of the given string. Thus, our use of a stack for this problem was for demonstration purposes
only. We leave the checking of palindromes by iteration as a chapter exercise.

 Self-Test Questions

 1. Any initialization code in a Python module is only executed once, the fi rst time that the
module is loaded. (TRUE/FALSE)

FIGURE 7-18 Palindrome Checker Program

c07ModularDesign.indd Page 268 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 268 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 269

 2. With the “import moduleName” form of import, any utilized entities from the imported
module must be prefi xed with the module name. (TRUE/FALSE)

 3. By convention, variables names in a module beginning with two _______________ characters
are meant to be treated as private variables of the module.

 4. When importing modules, all Python Standard Library modules must be imported before any
programmer-defi ned modules, otherwise a runtime error will occur. (TRUE/FALSE)

 5. If a particular module is imported more than once in a Python program, the Python interpreter
will ensure that the module is only loaded and executed the fi rst time that it is imported.
(TRUE/FALSE)

 6. The _______________ command can be used to force the reloading of a given module, useful
for when working interactively in the Python shell.

 7. The three active namespaces that may exist during the execution of any given Python
program are the _______________, _______________ and _______________ namespaces.

 ANSWERS: 1. True, 2. True, 3. Underscore, 4. False, 5. True, 6. reload, 7. built-in, global, local

 COMPUTATIONAL PROBLEM SOLVING

 7.4 Calendar Year Program (function version)

 In this section, we implement and test the modular design for the calendar year program in section 7.2.

 7.4.1 The Problem

 The problem is the same as that given in Chapter 4—to display a calendar year from 1800 to 2099,
displayed as shown in Figure 7-19.

 7.4.2 Problem Analysis

 Since the same problem is being solved, the algorithms utilized are also the same—an algorithm for
computing the day of the week (for the years 1800 to 2099), an algorithm for storing the calendar
year, and a means of displaying a calendar year three months across.

 7.4.3 Program Design

 The program requirements, data structures, algorithms, and overall program steps are the same as
specifi ed in Chapter 4. This program will only differ in that we will utilized a modular design for the
program, as introduced in section 7.2. This will result in a program that is more easily understood,
more easily modifi ed, and more amenable to program testing.

 7.4.4 Program Implementation and Testing

 Now that we are using modular design, we can more easily incrementally test the program.
Given the specifi cation of each module (function), we can fi rst test each function separately to
see if the implementation correctly meets the specifi cation. The individual testing of modules is
called unit testing . Once each module is individually tested, they can all be tested together.

c07ModularDesign.indd Page 269 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 269 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

270 CHAPTER 7 Modular Design

This is called integration testing . We demonstrate unit testing and integration testing of the
calendar program in this section.

 Implementation of the Calendar Year Program

 Figure 7-20 shows an implementation of the Calendar Year program based on the modular design
developed.

 The main section of the program, lines 188–207 , follows directly from our modular design,
developed in section 7.2. The fi rst function call is to function getYear (lines 3–12). This function
simply contains an input statement and while loop to ensure that the year returned is in the range
1800 to 2099, inclusive.

 Next, function constructCalYear (lines 121–147) is called. As seen from the modular
design, it relies on calls to functions leapYear, dayOfWeekJan1, numDaysInMonth, and
constructCalMonth. This function essentially consists of a for loop that iterates once for each
of the twelve months, calling constructCalMonth to construct each month and append each to
the list calendar_year. The constructed year is a list of lists as given below,

 [year, [month, week1, week2,...], [month, week1, week2,...],...]

FIGURE 7-19 Calendar Year Display

c07ModularDesign.indd Page 270 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 270 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 271

FIGURE 7-20 Implementation of the Calendar Year Program (Continued)

 Functions dayOfWeekJan1 (lines 26–47) and numDaysInMonth (lines 49–63) are straightfor-
ward, neither relying on a call to any other function.

 Function constructCalMonth is the largest of all the functions. It uses the same
basic approach as before to properly align the weeks for display. In this function, a list of
strings is created to be output to the screen. Finally, function displayCalendar is given a
particular calendar year structure and displays it in four rows of months, with three months
across each row.

c07ModularDesign.indd Page 271 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 271 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

272 CHAPTER 7 Modular Design

FIGURE 7-20 Implementation of the Calendar Year Program (Continued)

c07ModularDesign.indd Page 272 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 272 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 273

FIGURE 7-20 Implementation of the Calendar Year Program (Continued)

c07ModularDesign.indd Page 273 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 273 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

274 CHAPTER 7 Modular Design

 Development and Unit Testing of Individual Modules

 To begin, we can create a program that contains each of the function headers and docstring specifi ca-
tions, and implement and test them one by one. This is given in Figure 7-21, with an implementation
for function getYear.

 Running this version of the program will not produce any output. However, it will defi ne func-
tion getYear. Therefore, this function can be unit tested in the Python shell,

 ... getYear()

 Enter year (yyyy) (21 to quit): 1800

 1800

FIGURE 7-20 Implementation of the Calendar Year Program (Continued)

c07ModularDesign.indd Page 274 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 274 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 275

FIGURE 7-20 Implementation of the Calendar Year Program

FIGURE 7-21 Implementation and Unit Testing of Function getyear

 ... getYear()

 Enter year (yyyy) (21 to quit): 2099

 2099

 ... getYear()

 Enter year (yyyy) (21 to quit): 1985

 1985

 ... getYear()

 Enter year (yyyy) (21 to quit): 1799

 INVALID INPUT – Year must be between 1800 and 2099

 Enter year: 2100

 INVALID INPUT – Year must be between 1800 and 2099

 Enter year: 2050

 2050

 ...

c07ModularDesign.indd Page 275 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 275 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

276 CHAPTER 7 Modular Design

 Since the getYear function tested OK, we can next implement and test the leapYear function.
This is given in Figure 7-22.

FIGURE 7-22 Implementation and Unit Testing of Function leapYear

 Running this version of the program defi nes function leapYear, which can then be unit tested.

 ... leapYear(1803)

 False

 ... leapYear(1800)

 False

 ... leapYear(1860)

 True

 ... leapYear(1900)

 False

 ... leapYear(1964)

 True

 ... leapYear(2000)

 True

 ... leapYear(2012)

 True

 Based on the test results, both getYear and leapYear are properly working. Next, we will unit
test function dayOfWeekJan1. The implementation of this function is given in Figure 7-23.

c07ModularDesign.indd Page 276 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 276 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 277

FIGURE 7-23 Implementation and Unit Testing of Function dayOfWeekJan1

 As with previous stages of development, running this version of the program defi nes function
leapYear, which we can then unit test.

 ... dayOfWeekJan1(1800, False)

 4

 ... dayOfWeekJan1(1864, True)

 6

 ... dayOfWeekJan1(1900, False)

 2

 ... dayOfWeekJan1(2000, True)

 0

 ... dayOfWeekJan1(2012, True)

 1

 ... dayOfWeekJan1(2013, False)

 3

c07ModularDesign.indd Page 277 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 277 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

278 CHAPTER 7 Modular Design

 Recalling that the values 0–6 represent the days of the week Saturday to Sunday (where Saturday
is 0), checking these results with other sources, they are found to be correct. Next, we unit test func-
tion numDaysInMonth as shown in Figure 7-24.

FIGURE 7-24 Implementation and Unit Testing of Function numDaysInMonth

 By executing this version of the program and unit testing function numDaysInMonth, we get the
following results.

 ... numDaysInMonth(1, False)

 28

 ... numDaysInMonth(2, False)

 31

 ... numDaysInMonth(2, True)

 29

 ... numDaysInMonth(3, False)

 30

 ... numDaysInMonth(12,False)

 Traceback (most recent call last):

 File “ , pyshell#5 . ”, line 1, in , module .

 numDaysInMonth(12,False)

 File “C:\My Python Programs\CalendarYearFunc.py”, line 65, in

 numDaysInMonth

 num_days 5 num_days_in_month[month_num]

 IndexError: tuple index out of range

 ...

c07ModularDesign.indd Page 278 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 278 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 279

 Obviously, something is wrong with this function. First, we have to make sure that we called it with
proper values. The function specifi cation indicates that it should be given values in the range 1 to 12,
inclusive, as the fi rst argument, and a Boolean value (indicating whether the year is a leap year or
not) for the second. Therefore, it is being called correctly.

 Looking at the results produced for the consecutive months tested, it seems that the results are
off by one month. That is, numDaysInMonth(1, False) is giving the result 28, which would
be correct for February (of a non-leap year), and numDaysInMonth(2, False) is giving the
result 31, which would be the correct results for March (of either a leap year or a non-leap year). So,
if the index value used to index list num_days_in_month were one greater than it should be, this
would be consistent with the test results. Furthermore, the fact that an index out of range error occurs
for a month number of 12 further supports the likely “off by one” error.

 However, there is one result that is inconsistent with this hypotheses. For February of a leap
year, numDaysInMonth(2, True), we get the correct result of 29. This could be explained if
the case of February in a leap year is handled as a special case in the function code. In fact, that is
exactly the case by the if-else statement. Therefore, we make the needed correction in the function,
given in Figure 7-25.

 We again test the function, and this time get the correct result for each test case.

 ... numDaysInMonth(1, False)

 31

 ... numDaysInMonth(2, False)

 28

 ... numDaysInMonth(2, True)

 29

 ... numDaysInMonth(3, False)

 31

 ... numDaysInMonth(4, False)

 30

 etc.

 Since there are only 13 possible sets of input values to the function (including two sets for February),
we test each one and fi nd that the function is working for each of these cases.

FIGURE 7-25 Corrected numDaysInMonth Function

c07ModularDesign.indd Page 279 18/10/12 11:17 AM user-019Ac07ModularDesign.indd Page 279 18/10/12 11:17 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

280 CHAPTER 7 Modular Design

 Function constructCalMonth is tested next. It is passed a month number (1 to 12), a day
of the week value (0 to 6) and the number of days in the month, and returns a constructed calendar
month as given below,

FIGURE 7-26 Integration Testing with Function constructCalYear

 ... constructCalMonth(1, 0, 31)

 [' January ', ' 1', ' 2 3 4 5 6 7 8',

 ' 9 10 11 12 13 14 15', ' 16 17 18 19 20 21 22', ' 23 24 25 26 27 28 29',

 ' 30 31']

 ...

 Additional testing of this function indicates that it is working correctly.

 Integration Testing of Modules

 The remaining functions to test are constructCalYear and displayCalendar. Function
constructCalYear relies on the use of functions leapYear, dayOfWeekJan1, numDaysIn-
Month, and constructCalMonth. Since each of these has been tested and found correct, we can
now perform integration testing of all these functions with function constructCalYear. We there-
fore execute a version of the program in which all the code developed so far, except these functions, are
commented out, as depicted in Figure 7-26.

c07ModularDesign.indd Page 280 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 280 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 281

 Test results from a call to ConstructCalYear are given below.

 ... constructCalYear(2012)

 [2012, [' January ', ' 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14

', ' 15 16 17 18 19 20 21', ' 22 23 24 25 26 27 28', ' 29 30 31'], [' February

 ', ' 1 2 3 4', ' 5 6 7 8 9 10 11', ' 12 13 14 15 16

17 18', ' 19 20 21 22 23 24 25', ' 26 27 28 29'], [' March ', '

 1 2 3', ' 4 5 6 7 8 9 10', ' 11 12 13 14 15 16 17', ' 18 19 2

0 21 22 23 24', ' 25 26 27 28 29 30 31', [' April ', ' 1 2 3

4 5 6 7', ' 8 9 10 11 12 13 14', ' 15 16 17 18 19 20 21', ' 22 23 24 25 26

27 28', ' 29 30'], [' May ', ' 1 2 3 4 5', ' 6 7 8

 9 10 11 12', ' 13 14 15 16 17 18 19', ' 20 21 22 23 24 25 26', ' 27 28 29 30 3

1'], [' June ', ' 1 2', ' 3 4 5 6 7 8 9',

 ' 10 11 12 13 14 15 16', ' 17 18 19 20 21 22 23', ' 24 25 26 27 28 29 30'], ['

July ', ' 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14', ' 15 16

 17 18 19 20 21', ' 22 23 24 25 26 27 28', ' 29 30 31'], [' August

', ' 1 2 3 4', ' 5 6 7 8 9 10 11', ' 12 13 14 15 16 17 18', '

19 20 21 22 23 24 25', ' 26 27 28 29 30 31'], [' September ', '

 1', ' 2 3 4 5 6 7 8', ' 9 10 11 12 13 14 15', ' 16 17 18 19

 20 21 22', ' 23 24 25 26 27 28 29', ' 30'], [' October ', ' 1

2 3 4 5 6', ' 7 8 9 10 11 12 13', ' 14 15 16 17 18 19 20', ' 21 22 23 24

25 26 27', ' 28 29 30 31'], [' November ', ' 1 2 3', '

 4 5 6 7 8 9 10', ' 11 12 13 14 15 16 17', ' 18 19 20 21 22 23 24', ' 25 2

6 27 28 29 30',] [' December ', ' 1', ' 2 3 4

5 6 7 8', ' 9 10 11 12 13 14 15', ' 16 17 18 19 20 21 22', ' 23 24 25 26 27

28 29', ' 30 31']]

 ...

 This program will display a calendar year for a given year

 Enter year (yyyy) (21 to quit): 2012

 2012

 J

 a 1 8

 n

 u

 a 2 9

 r

 y 1

 3 0

 1

 4 1

 1

 5 2

 .
 .
 .

 The constructed year looks correct, and so we include the fi nal function to be tested,
displayCalendar, in this integration testing. Test results from a call to displayCalendar
are given below.

c07ModularDesign.indd Page 281 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 281 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

282 CHAPTER 7 Modular Design

 This output does not look even close to what it should be. The output displayed by function
 displayCalendar depends on providing it with a correctly structured calendar year. So maybe
we should think through each step of function displayCalendar with the test output from func-
tion constructCalYear to see if we can gain any insight into the problem. The output from
function constructCalYear for the year 2012 is partially reproduced below.

 1 # init

 2 leap_year 5 leapYear(year)

 3 fi rst_day_of_month 5 dayOfWeekJan1(year, leap_year)

 4 calendar_year 5 [year]

 5

 6 # construct calendar from twelve constructed months

 7 for month_num in range(1, 13):

 8 num_days_in_month 5 numDaysInMonth(month_num, leap_year)

 9

 10 calendar_year 5 calendar_year 1 \

 11 constructCalMonth(month_num, fi rst_day_of_month,

 12 num_days_in_month)

 13

 14 fi rst_day_of_month 5 (fi rst_day_of_month 1 num_days_in_month) % 7

 15

 16 return calendar_year

 Lines 2 and 3 make calls to functions leapYear and dayOfWeekJan1, which have both been
tested, so we can assume, for now, that the results of these function calls are correct. On line 4 , list
calendar_year is initialized to a list of one element, the integer representing the year. The for
loop at line 7 is used to construct each of the calendar months one at a time, appending each to list
calendar_year.

 One thing to double-check is the range of the for loop, since there is always a chance that
we have an “off by one” error. In this case, range is called with a fi rst argument of 1, and a
second argument of 13. Thus, variable month_num will be assigned to the values 1,2,...,12.
The loop will iterate, therefore, 12 times—once for each of the 12 months. This is the correct
number of iterations. Now we should check to see if they are the correct range of values.

 Variable month_num is only used in the call to function constructCalMonth on line 11 .
Thus, we check the specifi cation of the function to see if it requests month values in the range 1–12,
or if it requests their index values 0–11. Looking back at the specifi cation for this function in
 Figure 7-8, 1–12 is the correct range of month values to be passed to it.

 ... constructCalYear(2012)

 [2012, ' January ', ' 1 2 3 4 5 6 7', ' 8 9 10 11 12 13 14

', ' 15 16 17 18 19 20 21', ' 22 23 24 25 26 27 28', ' 29 30 31'], [' February

 ', ' 1 2 3 4', ' 5 6 7 8 9 10 11', ' 12 13 14 15 16

17 18', ' 19 20 21 22 23 24 25', ' 26 27 28 29'], [' March ', '

 The body of function constructCalYear, for parameter year, is shown below.

c07ModularDesign.indd Page 282 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 282 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

7.4 Calendar Year Program (function version) 283

 Next, we consider the concatenation of calendar_year with a newly constructed calendar
month each time through the loop. This occurs in lines 10–12 , given below.

 calendar_year 5 calendar_year 1 \

 constructCalMonth(month_num,fi rst_day_of_month,

 num_days_in_month)

 We know that calendar_year is initialized to the list [2012]. Also, calls to constructCalMonth
return a constructed calendar month as a list of the form,

 [' January ', ' 1', ' 2 3 4 5 6 7 8', ' 9

10 11 12 13 14 15', ' 16 17 18 19 20 21 22', ' 23 24 25 26 27 28 29', ' 30 31']

 Thus, the above instruction would result in the following,

 calendar_year 5 [2012] 1 [' January ', ' 1',

' 2 3 4 5 6 7 8', ' 9 10 11 12 13 14 15', ' 16 17 18 19 20 21 22', ' 23

24 25 26 27 28 29', ' 30 31']

 Now we realize something. The structure of a calendar year is designed to be,

 [year, [month, week1, week2,...], [month, week1, week2,...],....]

 So we check the initial result of the structure of calendar_year after doing a simplifi ed version
of the above concatenation in the Python shell,

 ... [2012] 1 [' January ', ' 1']

 [2012, ' January ', ' 1']

 Here is a problem! The result of the concatenations should be a list of lists, with each sublist contain-
ing a constructed month. The result above is a single list of values. That would certainly be a cause
for the displayCalYear function not working correctly. The error is that instead of concatenating
the two lists, each constructed month should be appended to the calendar year list, as given below.

 calendar_year.append(constructCalMonth(

 month_num,

 fi rst_day_of_month,

 num_days_in_month))

 Testing again in the Python shell, this gives the following (correct) results.

 ... [2012] 1 [[' January ', ' 1']]

 [2012, [' January ', ' 1']]

 Therefore, we make the correction and retest function displayCalYear. This time we get a
 correctly displayed calendar year, as shown in Figure 7-27. (Note that the width of the shell window
needs to be adjusted for the weeks of the calendar year to properly align.)

c07ModularDesign.indd Page 283 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 283 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

284 CHAPTER 7 Modular Design

FIGURE 7-27 Calendar Year Program Output

 General Topics

 Modules/Module Interface/Specifi cation
 Top-Down Design
 Stacks
 Namespaces and Name Clashes
 Global Scope/Global Variables

 Python-Specifi c Programming Topics

 Python Docstring Specifi cation
 Built-in/Global/Local Namespaces in Python
 Main Modules/Standard Modules in Python
 Forms of Module Import in Python
 Global vs. Private Module Variables in Python
 Module Loading and Execution in Python

 C H A P T E R S U M M A R Y

C H A P T E R E X E R C I S E S

 Section 7.1

 1. For the following function,

 def hours_of_daylight(month, year)

c07ModularDesign.indd Page 284 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 284 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 285

 (a) Give an appropriate docstring specifi cation where hours_of_daylight returns the total number
of hours of daylight for the month and year given (each passed an integer value) designed so that the
function does not check for invalid parameter values.

 (b) Give a print statement that displays the docstring for this function.

 Section 7.2

 2. Develop a modular design depicting the components of a typical computer, similar to that for the Space
Shuttle in Figure 7-2. Assume that the major components of a computer system consist of a CPU (central
processing unit), busses (connections between components), main memory (RAM), secondary memory
(hard drive, USB drive, etc.), and input/output devices (mouse, keyboard, etc.). Search online for more
specifi c subsystems and devices to complete your design.

 3. For the hours_of_daylight function in exercise 1, give a code segment that prompts the user for a
month and year, and appropriately calls function hours_of_daylight according to its docstring
specifi cation, displaying the result.

 Section 7.3

 4. For module1, module2, and the client module shown below, indicate which of the imported identifi ers
would result in a name clash if the imported identifi ers were not fully qualifi ed.

 5. Depict what is left on stack s after the following series of push and pop operations (starting with the fi rst
column of operations and continuing with the second). Assume that the stack is initially empty.

 push(s,10) push(s,50)

 push(s,20) push(s,60)

 push(s,40) push(s,80)

 pop(s) pop(s)

 pop(s) pop(s)

 6. For the program in Figure 7-9 that imports modules module1 and module1, indicate how many total
namespaces exist for this program.

 7. For the Palindrome Checker program in section 7.3.7, describe the changes that would be needed in the
program if the import statement were changed from import Stack to from Stack import *.

 8. For the following program and the imported modules, describe any name clashes that would occur for
both program version1 and version 2.

c07ModularDesign.indd Page 285 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 285 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

286 CHAPTER 7 Modular Design

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a function called convertStatus that is passed status code 'f', 's', 'j', or 'r' and returns
the string 'freshman', 'sophomore', 'junior', or 'senior', respectively. Design your
function so that if an inappropriate letter is passed, an error value is returned. Make sure to include an
 appropriate docstring with your function.

 P2. Write a function called palindromeChecker using iteration to return True if a provided string is a
palindrome, and False otherwise. Make sure to include docstring specifi cation for the function.

 P3. Implement a set of functions called getData, extractValues, and calcRatios. Function
 getData should prompt the user to enter pairs of integers, two per line, with each pair read as a
single string, for example,

 Enter integer pair (hit Enter to quit):

 134 289 (read as '134 289')
 etc.

 These strings should be passed one at a time as they are being read to function extractValue, which
is designed to return the string as a tuple of two integer values,

 extractValues('134 289') returns (134, 289)
 etc.

 Finally, each of these tuples is passed to function calcRatios one at a time to calculate and return the
ratio of the two values. For example,

 calcRatios((134, 289)) returns 0.46366782006920415
 etc.

 Implement a complete program that displays a list of ratios for an entered series of integer value pairs.
Make sure to include docstring specifi cation for each of the functions.

c07ModularDesign.indd Page 286 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 286 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Stack Module: Limited Stack Size
 For the stack module given in Figure 7-15, suppose that the implementation is to limit stacks to no more

than 100 items. Redesign and re-implement the relevant parts of the module that need to be changed.
Write a small program to demonstrate this new version of the stack module.

 M2. Stack Module: Ability to “Peek” in Stack
 For the stack module given in Figure 7-15, redesign and re-implement the relevant parts of the module to

allow the ability to “peek” into the stack to fi nd out if a given element is on the stack or not. Write a small
program to demonstrate this new version of the stack module.

 M3. Stack Module: Double-Ended Stacks
 A double-ended stack is essentially a pair of stacks that share a fi xed amount of storage (memory). The

two stacks are designed so that the top of stack of each begins at each end of a list structure. Each top of
stack moves towards the other when an element is pushed, as depicted below. This stack implementation
has the advantage of more effectively utilizing a fi xed amount of memory than if each stack were allo-
cated its own storage.

 Modify and test the stack module to behave as a double-ended stack.

 M4. Calendar Year Program: Optional Month/Year Display
 Modify the Calendar Year Program so the user can select whether they want to display a complete calen-

dar year, or just a specifi c calendar month.

 M5. Calendar Year Program: Flexible Layout of Months
 Modify the Calendar Year Program so the user can select whether they want the calendar displayed “row

oriented” (with January, February, and March in the fi rst row, April, May, and June in the second row,
etc.) or “column oriented” (with January, February, March, and April in the fi rst column, May, June, July,
and August in the second column, etc.).

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Parentheses Matching Program
 Implement and test a Python program that determines if all parentheses in an entered line of code form

matching pairs. Note: Pairs of parentheses may be nested.

 D2. Determining Body Mass Index (BMI)
 Following is a chart for determining one’s body mass index (BMI). BMI is a general indication of the

amount of body fat that a person has. The formula for computing BMI is,

 BMI 5 mass / height2

 Implement a Python program that prompts a user for their height and weight. Height should be entered as
inches and weight should be entered in pounds. Perform the calculation in units of kilograms and meters as
shown in the chart. Compare the result to the information in the chart. Use functions in your program design.

Program Development Problems 287

c07ModularDesign.indd Page 287 18/10/12 11:18 AM user-019Ac07ModularDesign.indd Page 287 18/10/12 11:18 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

288 CHAPTER 7 Modular Design

 D3. Create interesting geometric animations by the use of turtle graphics and the stack module provided in the
chapter. A snapshot of an example is shown below.

 To do this, create a geometric shape in turtle graphics. Then, create multiple invisible turtle objects of
this shape, each scaled down to a smaller size than the previous and pushed on a stack. Once the stack
has been “loaded” with a suffi cient number of such turtle objects, continually pop the stack and make
each visible on the screen, pushing the popped turtle object onto a second stack. When the fi rst stack is
empty, reverse the process using the second stack (pushing the popped turtle objects from the second
stack back onto the fi rst stack), making each visible again. Use the sleep function of the time module
of Python to control the speed of the animation.

c07ModularDesign.indd Page 288 22/10/12 3:17 PM user-019Ac07ModularDesign.indd Page 288 22/10/12 3:17 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

289

Text Files

We have, up to now, been storing data only in the variables and data structures of programs. How-
ever, such data is not available once a program terminates. Therefore, in order for information to
persist from one program execution to the next, the data must be stored in a data fi le. In this chapter
we discuss the use of one particular type of data fi le, text fi les.

OBJECTIVES

After reading this chapter and completing the exercises, you will be able to:

♦ Explain what a text fi le is

♦ Differentiate between a text fi le and a binary fi le

♦ Explain the process of opening and closing a fi le

♦ Explain the process of reading and writing fi les

♦ Explain the process of exception handling

♦ Explain the process of unit testing using test drivers

♦ Effectively utilize text fi les in Python

♦ Effectively perform string processing in Python

♦ Catch and handle exceptions in Python

CHAPTER CONTENTS

Motivation

Fundamental Concepts

8.1 What Is a Text File?

8.2 Using Text Files

8.3 String Processing

8.4 Exception Handling

Computational Problem Solving

8.5 Cigarette Use/Lung Cancer Correlation Program

CHAPTER 8

c08TextFiles.indd Page 289 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 289 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

290 CHAPTER 8 Text Files

 MOTIVATION

 The vast amount of information being gen-
erated today means that there must also be
vast amounts of storage for all this data. In-
formation sharing on the web through Wiki-
pedia, social networks, and other means
keeps driving this growth. It has been esti-
mated that 90% of all the data in the world
has been generated in the last two years.

 Throughout the age of computing, data
has always been shared in some manner. In
the early days data had to be physically carried on storage media such as reels of magnetic tapes. Later,
early developments in computer networks allowed the sharing of data between a small number of large
and expensive connected computers. With the advent of the Internet, computers are not directly con-
nected, but indirectly through routers that temporarily store and forward data toward its destination. The
World Wide Web has made access to information easy and intuitive by the incorporation of hypertext—
text that can be clicked on to retrieve more text—effectively making text “three-dimensional.”

 The evolving technology of “cloud computing” is a further step in the sharing of information.
Not only is data easily shared, but also the programs and other services needed to use that data.
Figure 8-1 shows the various information storage devices in use today. (Note that a volatile memory
device is one that loses its contents when power is lost, whereas a nonvolatile device retains its
contents.)

FIGURE 8-1 Types of Storage Technology

 FUNDAMENTAL CONCEPTS

 8.1 What Is a Text File?

 A text fi le is a fi le containing characters, structured as individual lines of text. In addition to printable char-
acters, text fi les also contain the nonprinting newline character, \n, to denote the end of each text line. As
discussed in Chapter 2, the newline character causes the screen cursor to move to the beginning of the next
screen line. Thus, text fi les can be directly viewed and created using a text editor.

 In contrast, binary fi les can contain various types of data, such as numerical values, and are
therefore not structured as lines of text. Such fi les can only be read and written via a computer program.

In
an

ni
s

K
on

to
m

itr
os

/A
nc

ie
nt

gr

ee
k

te
xt

/W
ik

im
ed

ia

C
om

m
on

s

c08TextFiles.indd Page 290 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 290 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.2 Using Text Files 291

Any attempt to directly view a binary fi le will result in “garbled” characters on the screen. Our
 purpose is not to cover all of types of fi les in Python. Rather, we cover enough to be able to perform
simple reading and writing of text fi les.

L E T ’ S T R Y I T

Let’s view both a text fi le and a binary fi le using a simple text editor like notepad. First, create a simple fi le
within IDLE named hello.py containing only two lines :

print 'Hello'
print 'There'

Execute the program. From the shell window that the program displays the results in, enter the following,

... import hello

This will both execute the program and compile it into a binary fi le named hello.pyc. Open the Python source
fi le using notepad (or other simple text editor). The two print statements of the program should be displayed.
Open the Python compiled fi le of this program using notepad and observe what is displayed.

A text fi le is a fi le containing characters, structured as lines of text. A binary fi le is a fi le that is
formatted in a way that only a computer program can read.

 8.2 Using Text Files

 Fundamental operations of all types of fi les include opening a fi le, reading from a fi le, writing to a
fi le, and closing a fi le. Next we discuss each of these operations when using text fi les in Python.

All fi les must fi rst be opened before they can be used. In Python, when a fi le is opened, a fi le
object is created that provides methods for accessing the fi le.

 Opening for Reading

 To open a fi le for reading, the built-in open function is used as shown,

 input_fi le 5 open('myfi le.txt','r')

 The fi rst argument is the fi le name to be opened, 'myfi le.txt'. The second argument, 'r', indi-
cates that the fi le is to be opened for reading. (The second argument is optional when opening a fi le

 8.2.1 Opening Text Files

 All fi les must fi rst be opened before they can be read from or written to. In Python, when a fi le is
(successfully) opened, a fi le object is created that provides methods for accessing the fi le. We look
how to open fi les for either reading (from) or writing (to) a fi le in this section.

c08TextFiles.indd Page 291 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 291 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

292 CHAPTER 8 Text Files

for reading.) If the fi le is successfully opened, a fi le object is created and assigned to the provided
identifi er, in this case identifi er input_fi le.

 When opening a fi le for reading, there are a few reasons why an I/O error may occur. (We look
at how to include the ability of a program to catch and handle such errors in the discussion of excep-
tion handling in section 8.4.) First, if the fi le name does not exist, then the program will terminate
with a “no such fi le or directory” error,

 ... open('testfi le.txt','r')

 Traceback (most recent call last):

 File " , pyshell#1 . ", line 1, in , module .

 open('testfi le.txt','r')

 IOError: [Errno 2] No such fi le or directory:

'testfi le.txt'

 This error can also occur if the fi le name is not found in the location looked for (uppercase and low-
ercase letters are treated the same for fi le names). When a fi le is opened, it is fi rst searched for in the
same folder/directory that the program resides in. The programs in the text are written this way.
However, an alternate location can be specifi ed in the call to open by providing a path to the fi le,

 input_fi le 5 open('data/myfi le.txt','r')

 In this case, the fi le is searched for in a subdirectory called data of the directory in which the pro-
gram is contained. Thus, its location is relative to the program location. (Although some operating
systems use forward slashes, and other backward slashes in path names, directory paths in Python
are always written with forward slashes and are automatically converted to backward slashes when
required by the operating system executing on.) Absolute paths can also be provided giving the loca-
tion of a fi le anywhere in the fi le system,

 input_fi le 5 open('C:/mypythonfi les/data/myfi le.txt','r')

 When the program has fi nished reading the fi le, it should be closed by calling the close method on
the fi le object,

 input_fi le.close()

 Once closed, the fi le may be reopened (with reading starting at the beginning of the fi le) by the same,
or another program. Next, we look at how to open fi les for writing in Python.

L E T ’ S T R Y I T

In a new Python fi le window, enter the following lines,

Line one
Line two
Line three

Save the fi le under the name data.txt. (Make sure to save it with extension '.txt' and not '.py'.)
Then, in the same folder (directory) as the data fi le, create the following Python program,

fi le_name 5 input('Enter fi le name: ')
input_fi le 5 open(fi le_name, 'r')

Run this program twice. The fi rst time, enter the fi le name garbage.txt. The second time, enter the
correct fi le name data.txt and observe the results.

c08TextFiles.indd Page 292 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 292 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.2 Using Text Files 293

To open a fi le for reading in Python, the built-in function open is called with (optional) argument
value 'r'.

 Opening for Writing

 To open a fi le for writing, the open function is used as shown below,

 output_fi le 5 open('mynewfi le.txt','w')

 Note that, in this case, 'w' is used to indicate that the fi le is to be opened for writing. If the fi le al-
ready exists, it will be overwritten (starting with the fi rst line of the fi le). When using a second argu-
ment of 'a', the output will be appended to an existing fi le instead.

 It is important to close a fi le that is written to, otherwise the tail end of the fi le may not be
written to the fi le (discussed below),

 output_fi le.close()

 When opening fi les for writing, there is not much chance of an I/O error occurring. The provided fi le
name does not need to exist since it is being created (or overwritten). Thus, the only error that may
occur is if the fi le system (such as the hard disk) is full.

To open a fi le for writing in Python, the built-in function open is called with a second argument
of 'w'. A second argument of 'a' will open a fi le for appending to instead.

L E T ’ S T R Y I T

In a new Python fi le window, enter the following lines,

fi le_name 5 input('Enter fi le name: ')
fi le 5 open(fi le_name, 'w')
fi le.close()

Save the fi le under the name createfi le.py and run it. When the program requests a fi le name, give it any fi le
name you wish with the extension '.txt'. Then, look in the folder in which the program resides to see if a new
fi le with the fi le name that you entered exists. (This fi le will be empty—we will see how to write to a fi le next.)

Modify the open instruction above, changing 'w' to 'r' and rerun the program. When it requests a
fi le name, enter the name of the fi le you just created. Run it a second time; this time give it the wrong fi le
name. Observe the different results in each case.

 8.2.2 Reading Text Files

 The readline method returns as a string the next line of a text fi le, including the end-of-line char-
acter, \n. When the end-of-fi le is reached, it returns an empty string as demonstrated in the while
loop of Figure 8-2.

c08TextFiles.indd Page 293 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 293 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

294 CHAPTER 8 Text Files

The readline method returns the next line of a text fi le, including the end-of-line character.
If at the end of the fi le, an empty string is returned.

 8.2.3 Writing Text Files

 The write method is used to write strings to a fi le, as demonstrated in Figure 8-3.

FIGURE 8-2 Reading from a Text File

 It is also possible to read the lines of a fi le by use of the for statement,

 input_fi le 5 \

 open('myfi le.txt','r')

 for line in input_fi le:

 Using a for statement, all lines of the fi le will be read one by one. Using a while loop, however, lines
can be read until a given value is found, for example.

 Finally, note the blank lines in the screen output. Since read_line returns the newline
 character, and print adds a newline character, two newline characters are output for each line
displayed, resulting in a skipped line after each. We will see an easy way to correct this when
we discuss string methods.

L E T ’ S T R Y I T

Create a text fi le named 'myfi le.txt'. Enter and execute the following program and observe the results.
Make sure that the program and text fi le reside in the same folder.

input_fi le 5 open('myfi le.txt','r')
for line in input_fi le:

print(line)

FIGURE 8-3 Writing to a Text File

c08TextFiles.indd Page 294 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 294 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.2 Using Text Files 295

 This code copies the contents of the input fi le, 'myfi le.txt', line by line to the output fi le, 'myfi le_
copy.txt'. In contrast to print when writing to the screen, the write method does not add a
newline character to the output string . Thus, a newline character will be output only if it is part of the
string being written. In this case, each line read contains a newline character.

 Finally, when writing to a fi le, data is fi rst placed in an area of memory called a buffer .
Only when the buffer becomes full is the data actually written to the fi le. (This makes reading and
writing fi les more effi cient.) Since the last lines written may not completely fi ll the buffer, the last
buffer’s worth of data may not be written. The close() method fl ushes the buffer to force the
buffer to be written to the fi le.

Use the write()method to output text to a fi le. To ensure that all data has been written, call the
close() method to close the fi le after all information has been written.

L E T ’ S T R Y I T

In the Python shell, open an existing fi le myfi le.txt and do the following.

... input_fi le 5 ('myfi le.txt','r')

... output_fi le 5 ('newfi le.txt','w')

... line 5 input_fi le.readline()

... output_fi le.write(line)

... output_fi le.close()

Observe that newfi le.txt has been created, and examine its contents.

 Self-Test Questions

 1. Only fi les that are written to need to be opened fi rst. (TRUE/FALSE)

 2. Indicate which of the following reasons an IOError (exception) may occur when opening a fi le.
 (a) Misspelled fi le name (c) File not found in directory searched
 (b) Unmatched uppercase and lowercase letters

 3. Which one of the following is true?
 (a) When calling the built-in open function, a second argument of 'r' or 'w' must always

be given
 (b) When calling the built-in open function, a second argument of 'r' must always be

given when opening a fi le for reading
 (c) When calling the built-in open function, a second argument of 'w' must always be

given when opening a fi le for writing

 4. Which one of the following is true?
 (a) There is more chance of an I/O error when opening a fi le for reading.
 (b) There is more chance of an I/O error when opening a fi le for writing.

 5. The readline method reads every character from a text fi le up to and including the next
newline character '\n'. (TRUE/FALSE)

 6. It is especially important to close a fi le that is open for writing. (TRUE/FALSE)

 ANSWERS: 1. False, 2. (a),(c), 3. (c), 4. (a), 5. True, 6. True

c08TextFiles.indd Page 295 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 295 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

296 CHAPTER 8 Text Files

String processing refers to the operations performed on strings that allow them to be accessed,
analyzed, and updated.

 8.3 String Processing

 The information in a text file, as with all information, is most likely going to be searched,
analyzed, and/or updated. Collectively, the operations performed on strings is called string
 processing . We have already seen some operations on strings—for example, str[k], for
accessing individual characters, and len(str)for getting the length of a string. In this
section, we revisit sequence operations that apply to strings, and look at additional string-
specific methods.

The characters in a string can be easily traversed, without the use of an explicit index variable,
using the for chr in string form of the for statement.

 8.3.1 String Traversal

 We saw in Chapter 4 how any sequence can be traversed, including strings. This is usually done by
the use of a for loop. For example, if we want to read a line of a text fi le and determine the number
of blank characters it contains, we could do the following,

 space 5 ' '

 num_spaces 5 0

 line 5 input_fi le.readline()

 for k in range(0,len(line)):

 if line[k] 55 space:

 num_spaces 5 num_spaces 1 1

 We also saw that the last lines can be done more simply without the explicit use of an index
 variable,

 for chr in line:

 if chr 55 space:

 num_spaces 5 num_spaces 1 1

 Given the ability to traverse a string, each character can be individually “looked at” for various types
of string processing. We look at some string processing operations next.

 8.3.2 String-Applicable Sequence Operations

 Because strings (unlike lists) are immutable, sequence-modifying operations are not applicable to
strings. For example, one cannot add, delete, or replace characters of a string. Therefore, all string
operations that “modify” a string return a new string that is a modifi ed version of the original
string . Sequence operations relevant to string processing are given in Figure 8-4. We look at string-
specifi c operations in the next section.

c08TextFiles.indd Page 296 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 296 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.3 String Processing 297

 Recall that as we saw with lists, the slice operator s[start:end] returns the substring starting
with index start, up to but not including index end. Also, s.index(chr) returns the index of
the fi rst occurrence of chr in s. Finally, min and max as applied to strings return the smallest (larg-
est) character based on the underlying Unicode encoding. Thus, for example, all lowercase letters
are larger (have a larger Unicode value) than all uppercase letters. We give examples of each of these
operations for s 5 'Hello Goodbye!'.

... len(s) s.count('o') ... s 1 '!!'
14 3 'Hello Goodbye!!!'

... s[6] ... s.index('b') ... min(s)
'G' 10 ' '

... s[6:10] ... 'a' in s ... max(s)
'Good' False 'y'

Because strings are immutable, sequence modifying operations do not modify the string applied
to. Rather, they construct new strings that are a modifi ed version of the original.

 8.3.3 String Methods

 There are a number of methods specifi c to strings in addition to the general sequence operations.
We discuss these methods next.

FIGURE 8-4 Sequence Operations on Strings

 We next look at methods in Python that are specifi c to strings.

 Checking the Contents of a String

 There are times when the individual characters in a string (or substring) needs to be checked. For
example, to check whether a character is an appropriate denotation of a musical note, we could do
the following,

 if char not in ('A', 'B', 'C', 'D', 'E', 'F', 'G'):

 print('Invalid musical note found')

c08TextFiles.indd Page 297 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 297 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

298 CHAPTER 8 Text Files

FIGURE 8-5 String Methods in Python

 Since the in operator can also be applied to strings, we can also do the following,

 if char not in 'ABCDEFG':

 print('Invalid musical note character found')

 We could take a similar approach for determining if a given character is a lowercase or uppercase
letter or digit character; for example,

 char in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' or \ letter?
 char in 'abcdefghijklmnopqrstuvwxyz' or \
 char in '0123456789'

 Since checking for uppercase/lowercase and digit characters is common in programming, Py-
thon provides string methods isalpha, isdigit, isupper, and islower (among others).

c08TextFiles.indd Page 298 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 298 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.3 String Processing 299

For example, to perform error checking on an entered credit card number could be done as
 follows,

 if not credit_card.isdigit():

 print('Invalid card number')

 The method isdigit returns True if and only if each character in string credit_card is a
digit. If only part of a string is to be checked, then a method can be applied to a slice of a string. For
example, if the part numbers of a given company all begin with three letters, a check for invalid part
numbers could be done as follows,

 if not part_num[0:3].isalpha():

 print('Invalid part number')

 in which isalpha returns True if and only if the fi rst three characters in part_num are letters.
Additional string methods are listed in Figure 8-5. We look at the issue of string search and string
modifi cation next.

Python provides a number of methods specifi c to strings, in addition to the general sequence
 operations.

 Searching and Modifying Strings

 String processing involves search. For example, to determine the user name and domain parts of an
email address, the ampersand character separating the two would be searched for,

 ... email_addr 5 'jsmith@somecollege.edu'

 ... amper_index 5 email_addr.fi nd('@')

 ... username 5 email_addr[0:amper_index]

 ... domain 5 email_addr[amper_index 1 1:len(email_addr)]

 ... print('Username:', username, 'Domain:', domain)

 Username: jsmith Domain: somecollege.edu

 The fi nd method returns the index location of the fi rst occurrence of a specifi ed substring. Since in
Python strings are immutable, to update the email address, a new string would be constructed with
the desired replacement as shown,

 ... email_addr 5 username 1 '@' 1 'newcollege.edu'

 ... email_addr

 jsmith@newcollege.edu

 The replace method produces a new string with every occurrence of a given substring within the
original string replaced with another,

... word 5 'common' ... word 5 'common'

... word.replace('m', 't') ... word 5 word.replace('m', 't')
'cotton' 'cotton'
... word ... word
'common' 'cotton'

c08TextFiles.indd Page 299 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 299 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

300 CHAPTER 8 Text Files

 Note that for all string modifi cations, the variable references the same string until it is reassigned.
 Python also provides a strip method that “strips off” leading and trailing characters from a

string. This is especially useful for stripping off the newline character, \n, from the end of a line in
text processing if needed,

 ... line 5 'Hello\n' ... line 5 'Hello\n'

 ... print(line) ... print(line.strip('\n'))

 'Hello' 'Hello'

 ...

 ...

The fi nd, replace, and strip methods in Python can be used to search and produce
modifi ed strings.

 8.3.4 Let’s Apply It—Sparse Text Program

 Sparse data is data that lacks “density.” A diary containing entries only for holidays and special occa-
sions would contain sparse data. Sparse data can often be compressed. Compressed data should retain
all (or most) of the original information. To explore this, the program in Figure 8-7 removes all occur-
rences of the letter ‘e’ from a provided text fi le. How much of the compressed text can be understood
indicates how much of the information is retained. This program utilizes the following programming
features:

 ➤ text fi les ➤ string methods (replace, strip)

 Figure 8-6 shows the fi le produced by the Sparse Text Program for a passage from Alice ’s Adventures
in Wonderland.

 The main section of the program begins on line 32 . The program welcome is displayed
on lines 33–34 . In lines 37–38 , the file name entered by the user is opened for reading and
assigned to file object input_fi le. In lines 37–40 , a file is opened for writing with the same
file name as the input file but with 'e_' added to the beginning and assigned to the file object
output_fi le.

 The creation of the modifi ed fi le is handled by function createModifi edFile (lines 3–28)
called on line 44 . The function returns a tuple containing how many occurrences of letter 'e' were
removed, and the total character count of the fi le. The values of the tuple are therefore assigned to
variables num_total_char and num_removals. (Note that Python allows such a multiple as-
signment on lists, tuples, and even on strings.) The input and output fi les are closed on lines 47–48 .
Finally, both the number of characters removed and the percentage of the fi le that the removed char-
acters comprised are displayed (lines 52–54).

 What remains is function createModifi edFile. On lines 9–11 , variable empty_str is
initialized to the empty string, and variables num_total_chars and num_ removals are ini-
tialized to 0. On line 16 , variable orig_line_length is set to the length of the currently read
line (in variable line) minus one. This is so that the newline character (\n) at the end of the line is
not counted.

c08TextFiles.indd Page 300 05/11/12 1:37 PM user-019Ac08TextFiles.indd Page 300 05/11/12 1:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.3 String Processing 301

 On line 20 , variable modifi ed_line is then set to the new string produced by the replace
method applied to the current line. Each occurrence of 'e' and 'E' is replaced with the empty
string, thus removing these occurrences from the string. Note the consecutive calls to the
replace method,

 modifi ed_line 5 line.replace('e',empty_str).replace('E',empty_str)

 This is possible to do when the fi rst method call returns a value (object) for which the second method
call can be applied. In this case, line.replace('e',empty_str) returns a string (consist-
ing of a copy of the original string with all occurrences of the letter 'e' removed), which is then
operated on by the second instance of the method call to remove all instances of 'E'.

 On line 21 , the number of characters removed (num_removals) is updated. The number
removed from the current line is determined by taking the difference between the original line
length (without the newline character) and the length of the new modifi ed line minus one, so that
the newline character in the modifi ed line is not counted. Finally, the modifi ed line of output to the
screen (as well as to the output fi le) is displayed so the user may observe the results of the fi le pro-
cessing as it is occurring. A tuple including the number of total characters in the fi le and the number
of removed characters is returned as the function value.

FIGURE 8-6 Execution of the Sparse Text Program

c08TextFiles.indd Page 301 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 301 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

302 CHAPTER 8 Text Files

FIGURE 8-7 Sparse Text Program

c08TextFiles.indd Page 302 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 302 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 303

 Self-Test Questions

 1. Some string methods alter the string they are called on, while others return a new altered
version of the string. (TRUE/FALSE)

 2. The fi nd method returns the number of occurrences of a character or substring within a given
string. (TRUE/FALSE)

 3. Which of the results below does s[2:4] return for the string s = 'abcdef'.
 (a) 'cd' (b) 'bcd' (c) 'bc' (d) 'cde'

 4. Indicate which of the following is true.
 (a) String method isdigit returns true if the string applied to contains any digits.
 (b) String method isdigit returns true if the string applied to contains only digits.

 5. Indicate which of the following s.replace('c','e')returns for s 5 'abcabc'.
 (a) 'abeabc' (b) 'abeabe'

 6. Which of the results below does s.strip('-')return for the string
s 5 '---ERROR---'.
 (a) '---ERROR' (b) 'ERROR---' (c) 'ERROR'

 ANSWERS: 1. False, 2. False, 3. (a), 4. (b), 5. (b), 6. (c)

 8.4 Exception Handling

 Various error messages can occur when executing Python programs. Such errors are called excep-
tions . So far we have let Python handle these errors by reporting them on the screen. Exceptions can
be “caught” and “handled” by a program, however, to either correct the error and continue execu-
tion, or terminate the program gracefully. We take this opportunity to discuss the fundamentals of
exception handling in the use of text fi les.

 8.4.1 What Is an Exception?

 An exception is a value (object) that is raised (“thrown”) signaling that an unexpected, or “excep-
tional,” situation has occurred. Python contains a predefi ned set of exceptions referred to as
 standard exceptions . We list some of the standard exceptions in Figure 8-8.

FIGURE 8-8 Some Standard Exceptions in Python

c08TextFiles.indd Page 303 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 303 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

304 CHAPTER 8 Text Files

An exception is a value (object) that is “raised” by a function signaling that an unexpected, or
“exceptional,” situation has occurred that the function itself cannot handle.

 Raising an exception is a way for a function to inform its client a problem has occurred that the func-
tion itself cannot handle . For example, suppose a function called getYN prompts a user to enter
'y' or 'n'. If the user enters something other than these two values, the function can simply
prompt the user to re-enter. On the other hand, if a function called isEven is to be passed a numeric
value, but is passed a string instead, it cannot correct the problem. It can only notify the client of the
problem, leaving it up to the client to determine what to do. We next discuss in detail the raising and
catching of exceptions.

 8.4.2 The Propagation of Raised Exceptions

 Raised exceptions are not required to be handled in Python. When an exception is raised and not
handled by the client code, it is automatically propagated back to the client’s calling code (and its
calling code, etc.) until handled. If an exception is thrown all the way back to the top level (main
module) and not handled, then the program terminates and displays the details of the exception as
depicted in Figure 8-9.

 For example, a program might not be able to determine whether a password is valid at the
source of the input. Rather, the password must be verifi ed in a password fi le that is accessed only
after a chain of function calls have been made. If the password is found invalid, an exception is
propagated from the function identifying the error all the way back to the function responsible for
user input, which can then prompt the user to re-enter their password.

 The standard exceptions are defi ned within the exceptions module of the Python Standard
 Library, which is automatically imported into Python programs. We have seen a number of these
exceptions before in our programming,

... lst 5 [1, 2, 3] ... lsst[0]

... lst[3] Traceback (most recent call last):
Traceback (most recent call last):

File ",pyshell#4.", line 1, in
File ",pyshell#5.", line 1, in

 ,module. lsst[0]
 ,module. lst[3] NameError: name 'lsst' is not defi ned

IndexError: list index out of range

... 2 1 '3' ... int('12.04')
Traceback (most recent call last): Traceback (most recent call last):

File ",pyshell#7.", line 1, in

,module. 2 1 '3'

File ",pyshell#9.", line 1, in

,module. int('12.04')
TypeError: unsupported operand

type(s) for 1: 'int' and 'str'

ValueError: invalid literal for

int() with base 10: '12.04'

c08TextFiles.indd Page 304 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 304 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 305

An exception is either handled by the client code, or automatically propagated back to the client’s
calling code, and so on, until handled. If an exception is thrown all the way back to the main
 module (and not handled), the program terminates displaying the details of the exception.

 8.4.3 Catching and Handling Exceptions

 Many of the functions in the Python Standard Library raise exceptions. For example, the factorial
function of the Python math module raises a ValueError exception when a negative value is
passed to it, as shown in Figure 8-10.

FIGURE 8-9 The Propagation of Exceptions

 When 25 is passed to the factorial function, an exception is raised, thrown back to the client
code to catch and handle. Since the client code (here, the code in the main module) does not attempt
to catch the exception, the exception is caught by the Python interpreter, causing the program to
terminate and display an error message indicating the exception type. The last line of the message
indicates that a ValueError exception occurred within the factorial function. The previous
lines indicate where in the client code this function was called (line 4). In Figure 8-11 we give a
version of the program that catches the raised exception.

FIGURE 8-10 Simple Program without Exception Handling

c08TextFiles.indd Page 305 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 305 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

306 CHAPTER 8 Text Files

 The call to the factorial function is contained within a try suite (try block)—the block
of code surrounded by try and except headers. The suite following the except header is
 referred to as an exception handler . This exception header “catches” exceptions of type
 ValueError. The exception handler in this case simply outputs an error message to the
user before terminating the program. This program termination is much more user-friendly
than the previous version.

 Finally we show a version of the program that recovers from the exception. Rather than termi-
nating the program, the user is prompted again for input so that the program can continue executing.
This new version is given in Figure 8-12.

FIGURE 8-11 Simple Program with Exception Handling

FIGURE 8-12 Program Recovery via Exception Handling

 Note that within a try suite in Python, any statement making a call (either directly or indirectly) to a
function that raises an exception causes the rest of the statements in the suite to be skipped, as
 depicted in the fi gure.

c08TextFiles.indd Page 306 25/10/12 9:38 AM user-019Ac08TextFiles.indd Page 306 25/10/12 9:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 307

Exceptions are caught and handled in Python by use of a try block and exception handler.

 8.4.4 Exception Handling and User Input

 Besides exceptions raised by built-in functions, programmer-defi ned functions may raise exceptions
as well. Suppose we prompted the user to enter the current month as a number,

 month 5 input('Enter current month (1–12): ')

 The input function will return whatever is entered as a string. We can do integer type conversion
on this value to make it an integer type,

 month 5 int(input('Enter current month (1–12): '))

 If the input string contained non-digit characters (except for 1 and 2), the int function would raise
a ValueError exception. However, there also needs to be a check for values outside the range
1–12. This can be done as shown in Figure 8-13.

 Athough this works, a better approach is to design a function called getMonth that raises a
 ValueError exception for either error condition—if the user enters non-digit characters, or if the
user enters a numeric value outside the range 1–12. Such a function is given in Figure 8-14.

FIGURE 8-13 Input Error Checking (Version 1)

FIGURE 8-14 Programmer-Defi ned Function with Raised Exception

c08TextFiles.indd Page 307 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 307 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

308 CHAPTER 8 Text Files

 In this version of getMonth, if non-digit characters are entered, the ValueError exception is
automatically raised by the built-in int type conversion function,

FIGURE 8-15 Input Error Checking (Version 2)

 ... getMonth()

 Enter current month (1–12): 1a

 Traceback (most recent call last):

 File " , pyshell#18 . ", line 1, in , module .

 getMonth()

 File " C:\My Python Programs\exception /Raising Excpt Test.py",

line 2, in getMonth

 month 5 int(input('Enter current month (1–12): '))

 ValueError: invalid literal for int() with base 10: '1a'

 Since there is no try block around the input assignment statement, the exception is not caught and
therefore is thrown back to the Python interpreter. If a valid numeric string is entered, but the value
is outside the range 1–12, then a ValueError is raised by function getMonth and is thrown
back to the client,

 ... getMonth()

 Enter current month (1–12): 14

 Traceback (most recent call last):

 File " , pyshell#23 . ", line 1, in , module .

 getMonth()

 File " C:\My Python Programs\exception /Raising Excpt Test.py",

 line 5, in getMonth

 raise ValueError('Invalid Month Value')

 ValueError: Invalid Month Value

 Note that raised exceptions can optionally have a description that further describes the error, as has
been done here,

 raise ValueError('Invalid Month Value')

 This error message is displayed when the ValueError generated is the one thrown by function
getMonth. With this function, the less elegant error checking code in Figure 8-13 can now be
replaced with that in Figure 8-15.

c08TextFiles.indd Page 308 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 308 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 309

 In this case, when an invalid input is entered, we get the following,

 Enter current month (1–12): 1a

 Invalid Month Value

 Enter current month (1–12): 14

 Invalid Month Value

 This is a much cleaner error reporting for the user. The error message Invalid Month Value,
however, doesn’t indicate why the input was invalid (that is, either that an invalid character was found,
or an integer outside the range 1–12 was entered). We could go one step further and output the error
message associated with the specifi c ValueError exception thrown, as shown in Figure 8-16.

FIGURE 8-16 Input Error Checking (Version 3)

 The line except ValueError as err_mesg not only catches the ValueError exceptions, but
with as identifi er added (here as err_mesg), the error message of the particular ValueError
exception is assigned to the specifi ed identifi er name,

 Enter current month (1–12): 1a
 invalid literal for int() with base 10: '1a'

 Enter current month (1–12): 14

 Invalid Month Value

 Enter current month (1–12): 12

 ...

 We next look at exception handling related to fi le processing.

Programmer-defi ned functions may raise exceptions in addition to the exceptions raised by the
built-in functions of Python.

 8.4.5 Exception Handling and File Processing

 We saw that when opening a fi le for reading, an exception is raised if the fi le cannot be found. In this
case, the standard IOError exception is raised and the program terminates with a 'No such
fi le or directory' error message. We can catch this exception and handle the error as shown
in Figure 8-17.

c08TextFiles.indd Page 309 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 309 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

310 CHAPTER 8 Text Files

 Variable fi le_name stores the fi le name entered by the user. Variable input_fi le_opened
is initialized to False. The while loop continues to iterate as long as input_fi le_opened
is False. Because of the try block within the loop, every time that open(fi le_name, 'r') raises
an exception, the remaining lines in the try block are skipped, and the exception handler following
the except header is executed. Only when the call to open does not throw an exception do all the
instructions in the try block get executed, with the program continuing after the while loop. A simi-
lar, but much less likely exception can be raised when opening a fi le for writing and the fi le system
(hard disk, for example) we want to write to is full.

 Note that when reading from a text fi le, the readline method does not raise any exceptions.
When the end of fi le is reached, readline returns an empty string rather than throwing an exception.

IOError exceptions raised as a result of a fi le open error can be caught and handled.

FIGURE 8-17 Exception Handling of Open File Error

 8.4.6 Let’s Apply It—Word Frequency Count Program

 The following Python program (Figure 8-19) prompts the user for the name of a text fi le to open and
a word to search for, and displays the number of times that the word occurs within the fi le. This
program utilizes the following Python programming features:

 ➤ text fi les/readline()
➤ string methods lower(), index()

 Example execution of the program is given in Figure 8-18.
 Program execution begins at line 77 . First, the program welcome is displayed. On line 81 ,

function getFile is called, which prompts the user for the fi le name to open for reading. It returns
a tuple containing both the fi le name and the associated input fi le object, assigned to variables
fi le_name and input_fi le, respectively.

c08TextFiles.indd Page 310 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 310 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 311

FIGURE 8-18 Execution of the Word Frequency Count Program

 On line 84 the user is prompted for the word to search for, stored in variable search_word. In the
following line, search_word is reassigned to all lowercase characters by use of method lower().
The fi le lines read in function countWords are also converted to lowercase so that the matching
of words does not depend on whether letters are in uppercase or lowercase (in other words, so that
it is not case sensitive).

 The function that does most of the work, function countWords, is called on line 88 . It is
passed the fi le object, input_fi le, as well as the words to search for. The function returns, as an
integer, the number of occurrences found. Finally, in lines 91–98 , the results of the search are
displayed.

 The getFile function called from the main section of the program prompts the user for
a file name to open (line 12). The file is opened for reading on line 13 . If the file is not found,
an IOException is raised and caught by the except clause on line 15 . In this case, an error
message is printed (line 16) and the while loop at line 10 iterates again, prompting the user to
re-enter. If an exception is not thrown, then line 14 is executed setting input_fi le_opened
to True, causing the loop to terminate and the function to return both the file name and input
file object as a tuple.

 Function countWords, the fi nal function of the program, is on lines 21–72 . It is passed
the input_fi le object and the search word, and returns the number of occurrences of the
search word within the fi le. Lines 28–31 perform the initialization for the function. Variable
space is assigned to a string containing only a single blank character (to aid in the readability
of the program). Variable num_occurrences, which keeps count of the number of times the
search word appears in the fi le, is initialized to 0. And word_delimiters is set to a tuple

c08TextFiles.indd Page 311 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 311 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

312 CHAPTER 8 Text Files

FIGURE 8-19 Word Frequency Count Program (Continued)

containing all the possible word delimiters—a space character, a comma, a semicolon, a colon,
a period, and a newline character.

 Because the length of the search word is used multiple times, it is calculated once and stored
in variable search_word_len (line 33). The for loop on line 35 reads each line of the fi le. Each
line is scanned for all occurrences of the search word. Variable end_of_line is initialized to

c08TextFiles.indd Page 312 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 312 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.4 Exception Handling 313

FIGURE 8-19 Word Frequency Count Program

False (line 36) for the while loop below it. On line 39 , all characters in the line are converted to
lowercase to allow for the matching of words of different case (mentioned above). Then, beginning
on line 42 , a while loop is used to search for all occurrences of the search word in the current line,
continuing until the end of line is found.

 On line 45 the index string method is called on the current line to search for the fi rst occur-
rence of the search word. It therefore performs the same task as the fi nd method. However, whereas
fi nd returns a 2 1 if the string is not found, the index method raises a ValueError exception
instead. Since we have now introduced exception handling in Python, we here use the index
method.

c08TextFiles.indd Page 313 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 313 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

314 CHAPTER 8 Text Files

 The if statement on line 48 checks if the search string matches the beginning characters of the
line (followed by a delimiter). This determines if the fi rst word of the current line matches the search
string. If so, then found_search_string is set to True (line 50). Otherwise, a check is made
on line 54 to see if the matched string in the current line is immediately preceded and followed by a
delimiter. If found, then found_search_string is also set to True, otherwise, found_
search_string is set to False. On lines 63–64 , if found_search_word is True, num_
occurences is incremented by 1.

 Variable line is reassigned to the substring following the last word found (line 67). This
is needed because the index method only fi nds the fi rst occurrence of a given substring within
a string, and not all occurrences. Therefore, the line is continually shortened and scanned until
no further instances of the word are found within the line. Once the complete line is scanned, the
while loop terminates and control is returned to the top of the for loop (on line 35). When there
are no more lines of the fi le to read, execution continues at line 72 and the value of num_
occurrences is returned.

 Self-Test Questions

 1. An exception is,
 (a) an object (b) a standard module (c) a special function

 2. Which of the following is not a standard exception in Python?
 (a) ValueError (b) AssignmentError (c) NameError (d) IOError

 3. The standard exceptions are automatically imported into Python programs.
(TRUE/FALSE)

 4. All raised standard exceptions must be handled in Python. (TRUE/FALSE)

 5. Which one of the following is true?
 (a) When calling the built-in open function for fi le handling, it must be called from within a

try block with an appropriate exception handler.
 (b) When calling the built-in open function for fi le handling, it should be called from within

a try block with an appropriate exception handler.

 6. In addition to catching standard exceptions in Python, a program may also raise standard
exceptions. (TRUE/FALSE)

 ANSWERS: 1. (a), 2. (b), 3. True, 4. False, 5. (b), 6. True

 COMPUTATIONAL PROBLEM SOLVING

 8.5 Cigarette Use/Lung Cancer Correlation Program

 In this section, we design a program using data from the Centers for Disease Control and Preven-
tion (CDC) for computing the correlation between cigarette use and incidences of lung cancer
(Figure 8-20). One data set gives the percentage of the population that smoke cigarettes within the
United States by state. The other gives the rate of lung cancer per 100,000 individuals by state. The
computed correlation, along with other factors, can be used to determined if there is a causal rela-
tionship between the two.

c08TextFiles.indd Page 314 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 314 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 315

 8.5.1 The Problem

 The problem is to calculate a cor-
relation value for two sets of data.
Correlation is measured on a
scale of 2 1 to 1, with 1 indicat-
ing a perfect positive correlation ,
and 2 1 a perfect negative corre-
lation . For example, there is a
positive correlation between the
amount of ice cream sold and the
current temperature—as temper-
atures rise, so do the sales of ice
cream. There is a negative corre-
lation between the number of
snow blowers sold and the cur-
rent temperature—as tempera-
tures rise, the number of snow
blowers sold decreases.

 In a perfect correlation,
knowing one value allows one to
determine the exact value of the
other. In real-world situations,
perfect correlations are almost never found. For example, many other factors can affect exactly how much
ice cream is sold—there may be a truckers’ strike reducing deliveries, there may be a recall of a certain
brand of ice cream, and so forth. Therefore, most correlation values fall somewhere between 2 1 and 1.

 8.5.2 Problem Analysis

 In the two sets of data provided in Figure 8-21, one contains the percentage of the population that
smokes state-by-state in the United States, and the other the state-by-state rates of incidence of lung
cancer per 100,000 individuals.

 The mathematical formula for computing correlation is given below.

 where,
 N is equal to the number of pairs of values in the data
 x and y are a given pair of values
 ∑ xy is the sum of the products of paired scores
 ∑ x is the sum of the scores of one data set
 ∑ y is the sum of the scores of the other data set
 ∑ x 2 is the sum of the squares of the scores of one data set
 ∑ y 2 is the sum of the squares of the scores of the other data set

 For our data, N is equal to 48 (all states except Arizona and Wisconsin, which were not provided in
the data sets from the CDC). An example of x and y values are the two values for Alabama, x 5
23.3 (percent of population that smokes) and y 5 75.1 (lung cancer cases per 100,000 individuals).
Note that to apply this formula, the values of x and y do not have to be in the same units.

M
ik

ae
l H

ag
gs

tr
om

/A
d

ve
rs

e
ef

fe
ct

s
of

 t
ob

ac
co

sm

ok
in

g-
nu

m
b

er
ed

/W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 8-20 Adverse Effects of Cigarette Smoking

c08TextFiles.indd Page 315 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 315 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

316 CHAPTER 8 Text Files

FIGURE 8-21 Cigarette Smoking and Incidence of Lung Cancer Data

 8.5.3 Program Design

 The data is provided in two comma-separated (CSV) fi les. Thus, we must fi rst read the data from
these fi le. Using this data, we must then compute the correlation of the two sets of data on a scale of
 2 1 (a perfect negative correlation) to 1 (a perfect positive correlation).

c08TextFiles.indd Page 316 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 316 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 317

 Meeting the Program Requirements

 The program must only display the correlation value between the two sets of data. Since the program
requirements do not specify how the result is to be presented (for example, on a scale), the raw
numerical value will simply be displayed on the screen.

 Data Description

 The data from the fi les will be stored in two lists so that the values can be easily accessed during the
calculation of the correlation. Thus, the data is simply organized as two corresponding “parallel”
lists of fl oating-point values.

 Algorithmic Approach

 The algorithm for this program is the means of calculating the correlation values using the mathe-
matical formula given above.

 Overall Program Steps

 The overall steps in the program design are given in Figure 8-22.

FIGURE 8-22 Overall Steps of the Smoking/
Lung Cancer Correlation Program

c08TextFiles.indd Page 317 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 317 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

318 CHAPTER 8 Text Files

 Modular Design

 The modular design for this program is given in Figure 8-23.

FIGURE 8-23 Modular Design of the Smoking/Lung Cancer Correlation Program

 Following this modular design, there are three functions in the program: openFiles, readFiles,
and calculateCorrelation. The main module utilizing these functions is given in Figure 8-24.

FIGURE 8-24 Main Module of the Smoking/Lung Cancer Correlation Program Design

 8.5.4 Program Implementation and Testing

 We develop and test the program in stages by developing and unit testing each of the three functions
of the modular design. We begin with function openFiles.

 Development and Unit Testing of Function openFiles

 In the main module, we see that openFiles is designed as a value-returning function with no
 arguments, returning fi le objects for each of the opened data fi les. An implementation of this function
is given in Figure 8-25.

c08TextFiles.indd Page 318 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 318 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 319

FIGURE 8-25 Implementation of Function openFiles

 Function openFiles is initially put in its own Python fi le so that it can be easily imported for unit
testing. The function handles the task of inputting from the user the data fi le names (for both the
smoking-related data fi le and the lung cancer–related data fi le), opening the fi les for reading, and
returning the two fi le objects created as a tuple of the form (smoking_datafi le, cancer_
datafi le).

 In the init section, variables smoking_datafi le_opened and cancer_datafi le_
opened are initialized to False (lines 13–14). They are used in the control of the following while
loop so that the user is continually prompted until correct fi le names for the data fi les are entered.
On line 15 , variable num_attempts is initialized to 4. This variable is decremented each time that
an invalid fi le name (for either fi le) is entered. If the counter reaches 0, the while loop terminates and
the fi nal if statement checks if the fi les have been successfully opened. If not, then an IOError
exception is raised, terminating the function.

c08TextFiles.indd Page 319 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 319 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

320 CHAPTER 8 Text Files

 The while loop at line 18 continues to iterate as long as either of the two data fi les has not been
successfully opened, and as long as the value of variable num_attempts is greater than zero. The state-
ments in the loop are contained within a try block (lines 21–29), used to catch any IOError exceptions
raised when attempting to open either of the two data fi les by call to method open,

 smoking_datafi le 5 open(fi le_name, 'r')

 cancer_datafi le 5 open(fi le_name, 'r')

 Following the calls to method open for the smoking data fi le (line 23) and the cancer data fi le (line 28)
is an assignment statement that assigns smoking_datafi le_opened and cancer_datafi le_
opened, respectively, to True. Since these statements would not be reached if the call to the open
method raised an exception, these Boolean variables provide a means of determining which, if any, of
the two fi les has been opened successfully. If either call to method open raises an exception, it is
caught by the except clause (line 30). As a result, on line 31 the error message 'File not found:
 fi lename . Please reenter', for the fi lename in variable fi le_name is displayed. In addition,
variable num_attempts is decremented by 1 (line 32), and control returns to the top of the while
loop. Finally, when the loop terminates with both fi les successfully opened, a tuple containing each of
the fi le objects is returned (line 38).

 Function openFiles is not easily tested interactively in the Python shell. Therefore,
we develop a test driver program that simply calls function openFile (imported from module_
openFiles) to open the data fi les, and displays the fi rst line of each fi le on the screen. The test
driver program is given in Figure 8-26.

FIGURE 8-26 Test Driver for Function openFiles

c08TextFiles.indd Page 320 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 320 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 321

 Since function openFiles is designed to raise an IOError exception if the fi les are not
successfully opened after four attempts, we test this aspect of the program by purposely entering
incorrect fi le names four times. The result of this testing is given in Figure 8-27.

 Thus, this aspect of the function appears to be working. We next give it correct fi le names to see if
the function successfully opens and correctly displays the fi rst line of each fi le. The results are
shown in Figure 8-28.

 The output is as expected. We can assume that function openFiles is implemented correctly.
We therefore unit test function readFiles next.

 Development and Unit Testing of Function readFiles

 As done for function openFiles, we put function readFiles in its own fi le to be imported by
its test driver, named module_readFiles.py. An implementation of function readFiles,
implemented as a separate module, is given in Figure 8-29.

FIGURE 8-27 Invalid File Names Test Case for Function openFiles

FIGURE 8-28 Valid File Names Test Case for Function openFiles

c08TextFiles.indd Page 321 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 321 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

322 CHAPTER 8 Text Files

FIGURE 8-29 Implementation of Function readFiles

 Function readFiles parameters are passed the fi le objects of the smoking-related and
 cancer-related data fi les (line 3). It reads the data from each fi le and returns it in two lists. On
 lines 11–12 , variables smoking_data and cancer_data are initialized to an empty list, and
on line 13 variable empty_str is assigned to an empty string. The fi rst line is then read from each
fi le (line 16–17), which contain fi le headers (descriptions of the fi le contents),

 State, Percent Cigarette Smokers (header of smoking-related data fi le)

 Cases Lung Cancer per 100,000 (header of cancer-related data fi le)

c08TextFiles.indd Page 322 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 322 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 323

 On line 20 , variable eof is set to False. The value of this variable indicates whether the end-
of-fi le has been reached for the fi les. The while loop at line 22 continues to iterate as long as eof is
False. A line from each fi le is then read (line 25–26) and stored in variables s_line (from the
smoking-related data fi le) and c_line (from the cancer-related data fi le). The following if state-
ment (line 29) checks if each of these variables is equal to the empty string. If true, then the end of
fi le of each has been reached, and thus variable eof is assigned to True (line 30) If not, then a
check is made (on line 33 and line 37) if either s_line or c_line is equal to the empty string. If
so, then the end of one fi le has been reached before the other. In that case, an IOError exception
is raised (on line 34 or 38) with one of the following error message strings,

 'Unexpected end-of-fi le: smoking data fi le'

 or
 'Unexpected end-of-fi le: cancer data fi le'

 If the strings in variables s_line and c_line are each found non-empty, then on lines 42–43 they
are appended to lists smoking_data and cancer_data, respectively. Since each line returned
by readLine contains a fi nal newline character, method strip is used to strip off the last char-
acter of each line. Also, because each line of the fi les is of the form

 state_name, data_value

 the split string method is used to split each string into two values (state_name and data_
value) using the comma as the separation character. This returns the two values in a list of the form

 [state_name , data_value]

 Finally, when all the lines of the fi les have been read, the data in lists smoking_data and
cancer_data are returned as a tuple.

 As we did for function openFile, we develop a simple test driver program for testing func-
tion readFiles. The test driver (in Figure 8-30) fi rst prompts the user for each of the fi le names

FIGURE 8-30 Test Driver for Function readFiles

c08TextFiles.indd Page 323 25/10/12 9:39 AM user-019Ac08TextFiles.indd Page 323 25/10/12 9:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

324 CHAPTER 8 Text Files

without doing any I/O error checking. This is because in the complete program version, function
openFile will handle this, and therefore we can alleviate the test driver of that. Thus, the fi les are
opened (assuming that correct fi le name are given) and the contents read and displayed on the
screen.

 Function readFiles raises an exception if the two data fi les do not have the same number
of lines. Therefore, we test for that condition by purposely entering the names of two data fi les in
which one fi le is shorter than the other. The results of this test case is given in Figure 8-31.

 We next enter the names of equal length data fi les to test if the lists returned by readFiles contain
the proper data. The results are given in Figure 8-32.

FIGURE 8-31 Unexpected End-of-File Test Case for Function readFiles

FIGURE 8-32 Proper Data Files Test Case for Function readFiles

c08TextFiles.indd Page 324 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 324 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 325

 Looking at the output, it appears that the data from both fi les has been properly read and properly
constructed in each list.

 Development and Unit Testing of Function calculateCorrelation

 The fi nal function of the program to unit test is function calculateCorrelation. An imple-
mentation of this function is given in Figure 8-33.

FIGURE 8-33 Implementation of Function calculateCorrelation

 The test driver for this function is given in Figure 8-34. For testing the correctness of the calculation
performed by function calculateCorrelation, we do not use the data from the data fi les.
Instead, we use data for which we know what the calculated correlation value is. Therefore, three
sets of data are hard-coded in the test driver—values in which there is a perfect correlation, another
set of values with no correlation, and a fi nal set of values in which there is a perfect negative correla-
tion.

c08TextFiles.indd Page 325 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 325 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

326 CHAPTER 8 Text Files

FIGURE 8-34 Test Driver for Function calculateCorrelation

 In the fi rst set of lists, the values in list smoking_data (line 8) range from 10 to 40 in increments
of ten. The values in list cancer_data (line 9) range from 100 to 400, in increments of 100. Since
the rise in value in each list in proportion to the other, there is a perfect correlation; thus there is, a
correlation value of 1. (Note that we simply use the letters ‘A’, ‘B’, etc., for the names of the states
since this information is irrelevant for this testing.)

 In the second set of lists, half of the values in list cancer_data (line 15) rise as the values
in list smoking_data rise (line 16), and the other half of values decrease as the values in smok-
ing_data rise (each by proportional amounts). Therefore, there is no correlation between these
two lists of values; thus, there is a correlation value of 0.

 Finally, in the third set of lists, the values in list smoking_data (line 23) increase as the
values in list cancer_data decrease (line 24), each by proportional amounts. Therefore, there is
a perfect negative correlation; thus there is a correlation value of 2 1. The results of the execution of
the test driver are given in Figure 8-35.

 At this point, each of the three functions has been successfully unit tested. What follows next
is to perform integrating testing by incorporating each of the functions into the main module and
testing the program as a whole.

 Integration Testing of the Smoking/Cancer Correlation Program

 For the purposes of unit testing, we developed each function in its own module. Now that we are
ready to perform integration testing, we put all function defi nitions into one program fi le with the
main module. The complete program is given in Figure 8-36.

c08TextFiles.indd Page 326 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 326 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 327

FIGURE 8-36 Cigarette Use/Lung Cancer Correlation Program (Continued)

FIGURE 8-35 Test Results for Function calculateCorrelation

c08TextFiles.indd Page 327 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 327 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

328 CHAPTER 8 Text Files

FIGURE 8-36 Cigarette Use/Lung Cancer Correlation Program (Continued)

c08TextFiles.indd Page 328 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 328 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

8.5 Cigarette Use/Lung Cancer Correlation Program 329

FIGURE 8-36 Cigarette Use/Lung Cancer Correlation Program

c08TextFiles.indd Page 329 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 329 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

330 CHAPTER 8 Text Files

 The three test results of the program for the data sets above is given below in Figure 8-37.
 The results are as expected. We get the same results as in the unit testing of

 calculateCorrelation. Therefore, all three functions are properly integrated into the pro-
gram. We next run the program on the actual data fi les CDC_Cigaratte_Smoking_Data and
CDC_Lung_Cancer_Data.

 We test the program with the same data used for the unit testing of function calculate-
Correlation. In this case, however, the data is contained in fi les to be opened and read by the
program. The fi les and their contents are given below.

FIGURE 8-37 Integration Testing Results for Cigarette Use/Lung Cancer Correlation Program

c08TextFiles.indd Page 330 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 330 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Summary 331

FIGURE 8-39 Depiction of Results on a Correlation Scale

 8.5.5 Determining the Correlation Between Smoking and Lung Cancer

 The output from the execution of this program on the actual data is given in Figure 8-38.

 So, can we conclude from this result alone that smoking causes lung cancer? No. Causation cannot
be easily determined even with a perfect correlation. For example, there is a strong correlation
 between the amount of ice cream sold and the number of drownings that occur in the United States.
Does that mean that eating ice cream raises the likelihood of drowning? Common sense tells us no,
that the correlation results from them both being summertime activities.

 To interpret our results, we have to decide that either (a) smoking causes lung cancer; (b) lung
cancer causes the urge to smoke; (c) there exists a third factor simultaneously causing the desire for
smoking and lung cancer; or (d) there is no causal relationship. Since a strong correlation is not enough
to argue that causation exists, other evidence needs to be considered, such as the lung tissue of those
who have died from lung cancer. This, in fact, is what medical research has investigated. Based on the
fi ndings, along with the demonstrated correlation, tells us that yes, smoking does cause lung cancer.

General Topics

Text Files vs. Binary Files
Opening and Closing Files
Reading and Writing Text Files
String Processing
Exception Handling
Comma Separated Data Files

Python-Specifi c Programming Topics

Built-in Functions open and close in Python
File Object Methods readline and write in
 Python
String Methods in Python
Catching and Handling Exceptions in Python
Standard Exceptions in Python

C H A P T E R S U M M A R Y

 In the output, we see a correlation value of approximately 0.79. That indicates a very strong cor-
relation, depicted in Figure 8-39.

FIGURE 8-38 Output of the Cigarette Use/Lung Cancer Correlation Program

c08TextFiles.indd Page 331 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 331 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

332 CHAPTER 8 Text Files

 C H A P T E R E X E R C I S E S

 Section 8.1

 1. Explain the difference in how numbers are represented in a text fi le versus how they are represented in a
binary fi le containing numerical values.

 2. Explain why binary fi les do not contain newline characters.

 Section 8.2

 3. Give an instruction in Python that opens a fi le named 'datafi le.txt' for reading and assigns identi-
fi er input_fi le to the fi le object created.

 4. Give an instruction in Python that opens a fi le named 'datafi le2.txt' for writing and assigns identi-
fi er output_fi le to the fi le object created.

 5. Assume that input_fi le is a fi le object for a text fi le open for reading, and output_fi le is a fi le object
for a text fi le open for writing. Explain the contents of the output fi le after the following code is executed,

 empty_str 5 ''

 line 5 input_fi le.readline()

 while line ! 5 empty_str:

 output_fi le.write(line 1 '\n')

 line 5 input_fi le.readline()

 Section 8.3

 6. Give a for loop that counts all the letter characters in string line.

 7. For variable month which contains the full name of any given month, give an instruction to display just
the fi rst three letters of the month.

 8. Give an instruction that displays True if the letter ‘r’ appears in a variable named month, otherwise
displays False.

 9. Give an instruction for determining how many times the letter ‘r’ appears in a variable named month.

 10. For variables fi rst_name and last_name, give an instruction that displays the person’s name in the
form last name, fi rst name.

 11. Give an instruction that determines if a variable named ss_num contains any non-digit characters, other
than a dash.

 12. Give an instruction that determines the index of the ‘@’ character in an email address in variable email_
addr.

 13. For variable date containing a date of the form 12/14/2012, write a function that produces the same date,
but with all slashes characters replaced with dashes.

 14. For a variable named err_mesg that contains error messages in the form ** error message **,
give an instruction that produces a string containing the error message without the leading and trailing
asterisks and blank characters.

 Section 8.4

 15. Identify the error in the following code,

 input_fi le_opened 5 False

 while not input_fi le_opened:

c08TextFiles.indd Page 332 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 332 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Modifi cation Problems 333

 try:

 fi le_name 5 input('Enter fi le name: ')

 input_fi le 5 open(fi le_name, 'r')

 except:

 print('Input fi le not found – please reenter')

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python function called reduceWhitespace that is given a line read from a text fi le and returns
the line with all extra whitespace characters between words removed,

 ‘This line has extra space characters’ ➝ ‘This line has extra space characters’

 P2. Write a Python function named extractTemp that is given a line read from a text fi le and displays the
one number (integer) found in the string,

 ‘The high today will be 75 degrees’ ➝ 75

 P3. Write a Python function named checkQuotes that is given a line read from a text fi le and returns True
if each quote characters in the line has a matching quote (of the same type), otherwise returns False.

 ‘Today’s high temperature will be 75 degrees’ ➝ False

 P4. Write a Python function named countAllLetters that is given a line read from a text fi le and returns
a list containing every letter in the line and the number of times that each letter appears (with upper/lower
case letters counted together),

 ‘This is a short line’ ➝ [('t', 2), ('h', 2), ('i', 3), ('s', 3), ('a', 1),

('o', 1), ('r', 1), ('l', 1), ('n', 1), ('e', 1)]

 P5. Write a Python function named interleaveChars that is given two lines read from a text fi le, and
returns a single string containing the characters of each string interleaved,

 ‘Hello’, ‘Goodbye’ ➝ 'HGeololdobye'

 P6. Write a program segment that opens and reads a text fi le and displays how many lines of text are in the fi le.

 P7. Write a program segment that reads a text fi le named original_text, and writes every other line,
starting with the fi rst line, to a new fi le named half_text.

 P8. Write a program segment that reads a text fi le named original_text, and displays how many times the
 letter ‘e’ occurs.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Sparse Text Program: User-Selected Letter Removed
 Modify the Sparse Text program in section 8.3.4 so that instead of the letter ‘e’ being removed, the user

is prompted for the letter to remove.

 M2. Sparse Text Program: Random Removal of Letters
 Modify the Sparse Text program in section 8.3.4 so that instead of a particular letter removed, a percent-

age of the letters are randomly removed based on a percentage entered by the user.

 M3. Word Frequency Count Program: Display of Scanned Lines
 Modify the Word Frequency Count program in section 8.4.6 so that the text lines being scanned are at the

same time displayed on the screen.

c08TextFiles.indd Page 333 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 333 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

334 CHAPTER 8 Text Files

 M4. Word Frequency Count Program: Counting of a Set of Words
 Modify the Word Frequency Count Program so that the user can enter any number of words to be counted

within a given text fi le.

 M5. Word Frequency Count Program: Counting of All Words
 Modify the Word Frequency Count program so that all the words in a given text fi le are counted.

 M6. Word Frequency Count Program: Outputting Results to a File
 Modify the Word Frequency Count program so that the counts of all words in a given text fi le are output

to a fi le with the same name as the fi le read, but with the fi le extension '.wc' (for ‘word count’).

 M7. Lung Cancer Correlation Program: Air Pollution and Lung Cancer
 Modify the cigarettes and lung cancer correlation program in the Computational Problem Solving section of

the chapter to correlate lung cancer with air pollution instead. Use the data from the following ranking of states
from highest to lowest amounts of air pollution given below.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Sentence, Word, and Character Count Program
 Develop and test a Python program that reads in any given text fi le and displays the number of lines,

words, and total number of characters there are in the fi le, including spaces and special characters, but not
the newline character, '\n'.

 D2. Variation on a Sparsity Program
 Develop and test a program that reads the text in a given fi le, and produces a new fi le in which the fi rst

occurrence only of the vowel in each word is removed, unless the removal would leave an empty word
(for example, for the word “I”). Consider how readable the results are for various sample text.

 D3. Message Encryption/Decryption Program
 Develop and test a Python program that reads messages contained in a text fi le, and encodes the messages

saved in a new fi le. For encoding messages, a simple substitution key should be used as shown below,

c08TextFiles.indd Page 334 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 334 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 335

 Each letter in the left column is substituted with the corresponding letter in the right column when encod-
ing. Thus, to decode, the letters are substituted the opposite way. Unencrypted message fi les will be simple
text fi les with fi le extension .txt. Encrypted message fi les will have the same fi le name, but with fi le
extension .enc. For each message encoded, a new substitution key should be randomly generated and
saved in a fi le with the extension '.key'. Your program should also be able to decrypt messages given a
specifi c encoded message and the corresponding key.

 D4. Morse Code Encryption/Decryption Program
 Develop and test a Python program that allows a user to open a text fi le containing a simple message using

only the (uppercase) letters A . . . Z, and saves a Morse code version of the message, that is, containing only
the characters dash (“-”), dot (“.”). In the encoded version, put the encoding of each character on its own
line in the text fi le. Use a blank line to indicate the end of a word, and two blank lines to indicate the end of
a sentence. Your program should be able to both convert an English message fi le into Morse code, and a
Morse code fi le into English. The Morse code for each letter is given below.

c08TextFiles.indd Page 335 05/11/12 1:39 PM user-019Ac08TextFiles.indd Page 335 05/11/12 1:39 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

336 CHAPTER 8 Text Files

0 3 6 0 0 0 2 9 1 4 5 2

 D5. Universal Product Code Check Digit Verifi cation Program
 A check digit is a digit added to a string of digits that is derived from other digits in the string. Check

digits provide a form of redundancy of information, used for determining if any of the digits in the string
are incorrect or misread.

 The Universal Product Code on almost all purchase items utilizes a bar code to allow for the scanning
of items. Below the bar code is the sequence of digits that the bar code encodes, as illustrated below.

 The last digit of the product code (2) is a check digit computed as follows,
 1. Add up all digits in the odd numbered positions (fi rst, third, fi fth, etc., starting with the leftmost digit)

excluding the last check digit, and multiply the result by 3,

 0 1 6 1 0 1 2 1 1 1 5 5 14, 14 * 3 5 42

 2. Add up all digits in the even numbered positions (second, fourth, etc.) excluding the last check digit,

 3 1 0 1 0 1 9 1 4 5 16

 3. Take the sum of the two previous results mod 10,

 (42 1 16) mod 10 5 58 mod 10 5 8

 4. Subtract the result from 10 to get the checksum digit.

 10] 8 5 2

 Develop and test a Python program that verifi es the check digit of Universal Product Codes.

c08TextFiles.indd Page 336 25/10/12 9:40 AM user-019Ac08TextFiles.indd Page 336 25/10/12 9:40 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

337

 Dictionaries and Sets

 Since Chapter 4, we have been using linear (sequential) data structures—lists, tuples, and strings—
in which elements are accessed by their index value (that is, by location). There also exist data struc-
tures in which elements are not accessed by location, but rather by an associated key value, called
dictionaries in Python. We look at both dictionaries and sets in Python in this chapter.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

♦ Explain the concept of an associative data structure

 ♦ Defi ne and use dictionaries in Python

 ♦ Defi ne and use sets in Python

 ♦ Write Python programs using dictionaries and sets

 ♦ Perform unit testing using test stubs (and test drivers)

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 9.1 Dictionary Type in Python

 9.2 Set Data Type

 Computational Problem Solving

 9.3 A Food Co-op’s Worker Scheduling Simulation

 CHAPTER 9

c09DictionariesandSets.indd Page 337 25/10/12 2:34 PM user-019Ac09DictionariesandSets.indd Page 337 25/10/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

338 CHAPTER 9 Dictionaries and Sets

 MOTIVATION

 The vast amounts of data being stored today
could not be effectively utilized without being
organized in some way. Databases do not sim-
ply store large amounts of data. Rather, they
provide a complete database management sys-
tem (DBMS) used in conjunction with stored
data to allow the data to be associated and ac-
cessed in various ways.

 Database management systems provide
access to data without needing to know how
the data is physically structured, only how it is
 logically organized. Access is provided by a query language that allows arbitrarily complex queries
to be made of the data. For example, one can construct a query that returns the set of students who
have a perfect 4.0 GPA and are graduating at the end of the current semester. Or, one could construct
a more complex query that returns the set of students that have a GPA of 3.6 or above, with senior
status, female, a computer science major, and has taken at least twelve credits of biology or eight
credits of biology and four credits of chemistry.

 Some of the concerns of database management systems include: integrity of data—that is, data
that is accessible and properly organized; security in the control of who has what level of access; and
management of concurrency issues when multiple users are accessing the same data. Data mining
 (Figure 9-1) is a relatively new fi eld in which database management systems are used in conjunction with
methods from statistics and artifi cial intelligence to extract patterns from very large amounts of data.

FIGURE 9-1 Data Mining Applications

 FUNDAMENTAL CONCEPTS

 9.1 Dictionary Type in Python

 In this section we introduce the notion of an associative data structure . Elements of indexed linear
data structures, such as lists, are ordered—the fi rst element (at index 0), second element (at index 1),
and so forth. In contrast, the elements of an associative data structure are unordered, instead accessed
by an associated key value. In Python, an associative data structure is provided by the dictionary
type . We look at the use of dictionaries in Python next.

Ly
nd

sa
y

R
ue

ll/
S

to
ra

ge
 G

al
le

ry
/

W
ik

im
ed

ia
 C

om
m

on
s

c09DictionariesandSets.indd Page 338 25/10/12 2:34 PM user-019Ac09DictionariesandSets.indd Page 338 25/10/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.1 Dictionary Type in Python 339

 9.1.1 What Is a Dictionary?

 A dictionary is a mutable, associative data structure of variable length. The syntax for declaring
dictionaries in Python is given below.

 daily_temps 5 {'sun': 68.8, 'mon': 70.2, 'tue': 67.2, 'wed': 71.8,

 'thur': 73.2, 'fri': 75.6, 'sat': 74.0}

 Dictionary daily_temps stores the average temperature for each day of the week, as we did ear-
lier in Chapter 4 using a list. However, in this case, each temperature has associated with it a unique
key value ('sun', 'mon', etc.). Strings are often used as key values. The syntax for accessing an
element of a dictionary is the same as for accessing elements of sequence types, except that a
key value is used within the square brackets instead of an index value: daily_temps['sun'].
A comparison of accessing indexed data structures vs. associative data structures is given in
Figure 9-2.

 On the left is an indexed data structure, and on the right an associative data structure. Although the
elements of the associative data structure are physically ordered, the ordering is irrelevant to the way
that the structure is utilized. The location that an element is stored in and retrieved from within an
associative data structure depends only on its key value , thus there is no logical fi rst element, second
element, and so forth. The specifi c location that a value is stored is determined by a particular
method of converting key values into index values called hashing . Example use of dictionary
daily_temps is given below.

 if daily_temps['sun'] . daily_temps['sat']:

 print 'Sunday was the warmer weekend day'

 else

 if daily_temps['sun'] , daily_temps['sat']:

 print 'Saturday was the warmer weekend day'

 else:

 print 'Saturday and Sunday were equally warm'

 Although strings are often used as key values, any immutable type may be used as well, such as a
tuple (shown in Figure 9-3). In this case, the temperature for a specifi c date is retrieved by,

 temps[('Apr', 14, 2001)] ➝ 74.6

FIGURE 9-2 Indexed vs. Associative Data Structure

c09DictionariesandSets.indd Page 339 05/11/12 1:42 PM user-019Ac09DictionariesandSets.indd Page 339 05/11/12 1:42 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

340 CHAPTER 9 Dictionaries and Sets

FIGURE 9-3 Associative Data Structure Using Tuple Key Values

 Note that this key contains both string and integer values. To give an example of when an associative
array may be of benefi t over an indexed type, we give two versions of a program that displays the
recorded average temperature for any day of the week—one using a list, and the other using a dic-
tionary. We fi rst give the list version of the program in Figure 9-4, which allows a user to enter a day
of the week and have the average temperature for that day displayed.

FIGURE 9-4 Temperature Display Program (Indexed Array Version)

c09DictionariesandSets.indd Page 340 25/10/12 2:34 PM user-019Ac09DictionariesandSets.indd Page 340 25/10/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.1 Dictionary Type in Python 341

 The program prompts the user for the day of the week (as 'sun', 'mon', 'tue', etc.) to
display the average temperature for. The average temperatures are stored in list daily_
temps. Once read, an if statement (with elif headers) is used to set variable dayname to
the full name of the day entered, as well as retrieve the corresponding temperature from list
daily_temps. The result is then displayed to the user. An example execution of this pro-
gram is given below.

 This program will display the average temperature for a given day
 Enter 'sun', 'mon', 'tue', 'wed', 'thur', 'fri', or 'sat': wed

 The average temperature for Wednesday was 71.8 degrees

 ...

 The program in Figure 9-5 provides the identical functionality, but instead using an associative array
instead of a list for storing the average daily temperatures.

FIGURE 9-5 Temperature Display Program (Dictionary Version)

 This version of the program is much more concise and elegant than the previous one. Rather than
using a series of conditions in an if-elif statement for checking the day of the week entered by the
user, the entered day is directly used for retrieving the corresponding average temperature from
dictionary daily_temps. A second associative array is also used in the program for storing the
corresponding full day names, accessed by the same set of key values.

 In the previous example, the values of the dictionaries are “hard-coded” into the program.
Dictionaries, however, may also be created and modifi ed dynamically (that is, during program
 execution). There are cases where this capability is needed. For example, if a given dictionary con-
tains thousands of elements, too many to hard-code into a program, then the key/value pairs can be
read from a fi le and the dictionary “built” at runtime. Or, it may be that some of the values to be
stored are not yet known, and therefore, the dictionary needs to be expanded and updated at execu-
tion time (for example, when storing user-selected passwords). The operations related to the dynamic
creation and updating of dictionaries are shown in Figure 9-6.

c09DictionariesandSets.indd Page 341 05/11/12 1:42 PM user-019Ac09DictionariesandSets.indd Page 341 05/11/12 1:42 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

342 CHAPTER 9 Dictionaries and Sets

 9.1.2 Let’s Apply It—Phone Number Spelling Program

 The following Python program (Figure 9-8) generates all the possible spellings of the last four digits
of any given phone number. The program utilizes the following programming features:

 ➤ dictionaries

 Example execution of the program is given in Figure 9-7.
 The program begins at line 55 . First, a program welcome is displayed on lines 55–56 . On

 line 59 , variable terminate is assigned False. This variable controls the while loop at line 61 .
It is set to True, which terminates the loop, when the user indicates that they do not wish to enter
any more phone numbers (line 69).

 Within the loop, functions getPhoneNum and displayAllSpellings are called. Func-
tion getPhoneNum (lines 3–32) reads a phone number from the user of the form 123-456-7890.

A dictionary in Python is a mutable, associative data structure of variable length denoted by the
use of curly braces.

FIGURE 9-6 Some Operations for Dynamically Manipulating Dictionaries

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... fruit_prices 5 {'apples': .66, 'pears': .25,
'peaches': .74, 'bananas': .49}

... fruit_prices['apples']
???

... fruit_prices[0]
???

... veg_data 5 [['corn', .25], ['tomatoes', .49], ['peas', .39]]

... veg_prices 5 dict(veg_data)

... veg_prices
???
... veg_prices['peas']
???

c09DictionariesandSets.indd Page 342 05/11/12 1:42 PM user-019Ac09DictionariesandSets.indd Page 342 05/11/12 1:42 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.1 Dictionary Type in Python 343

FIGURE 9-7 Execution of Phone Number Spelling Program

On line 8 , variable valid_ph_num is initialized to False, used to control the while loop on
 line 12 . Only when a valid phone number has been entered is this variable set to True, which ter-
minates the loop and returns the (valid) entered phone number.

 Within the while loop, the entered phone number is input as a string (line 13). Two checks are
made for the validity of the entered string. First, a check (line 16) is made as to whether the string is
the wrong length (should be twelve characters long) or if the fourth (index 3) or eighth (index 7)
characters are not a dash. If any of these errors are found, an error message is displayed (line 18) and
another iteration of the while loop is executed. If, however, no error is found at this point, a second
check is made that the remaining characters in the string (other than the two dashes) are digit char-
acters. In this case, the string is assumed to contain proper digit characters (that is, valid_ph_
num is set to True on line 22), unless found otherwise (by use of string method isdigit on
 line 26). Thus, if a non-digit character is found, valid_ph_num is set to False and the inner
while loop terminates, continuing with another execution of the outer while loop (at line 12). If,
however, no non-digits are found, valid_ph_num remains True, thus terminating the outer
while loop and returning the entered phone number.

c09DictionariesandSets.indd Page 343 25/10/12 2:34 PM user-019Ac09DictionariesandSets.indd Page 343 25/10/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

344 CHAPTER 9 Dictionaries and Sets

FIGURE 9-8 Phone Number Spelling Program (Continued)

 In function displayAllSpellings (lines 34–50), we see our fi rst example of the use of
deeply nested (for) loops. Because we want to generate all combinations of each of the four pos-
sible letters of the last four digits of the entered phone number, we utilize for loops nested four
deep (line 46). Each digit ranges over its particular set of letters that appear on phone keys. Dic-
tionary translate is defi ned for this purpose. In the dictionary, each digit 0–9 is a key value.
The value associated with each key is a tuple containing the associated keypad letters for that

c09DictionariesandSets.indd Page 344 25/10/12 2:34 PM user-019Ac09DictionariesandSets.indd Page 344 25/10/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.1 Dictionary Type in Python 345

FIGURE 9-8 Phone Number Spelling Program

digit. (Digits '0' and '1' return a string equal to themselves, since these phone digits do not
have any letters associated with them.) For example, within the fi rst for statement, dictionary
translate contains the list of letters associated with the digit currently in the eighth position
(the digit right after the second dash) of the entered phone number. Let’s say that digit is 7.
Then the retrieved tuple would be ('p','q','r','s'). Therefore, all combinations of
strings starting with these letters will be generated, as shown in Figure 9-9.

 On line 67 , the user is prompted if they want to continue with another phone number. If they respond
no ('n'), variable terminate is set to True, which terminates the outer while loop, and thus
ends the program; otherwise, the program prompts for another number.

FIGURE 9-9 Nested for Loops in the
Generation of Phone Number Spellings

c09DictionariesandSets.indd Page 345 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 345 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

346 CHAPTER 9 Dictionaries and Sets

 Self-Test Questions

 1. A dictionary type in Python is an associative data structure that is accessed by a
_______________ rather than an index value.

 2. Associative data structures such as the dictionary type in Python are useful for,
 (a) accessing elements more intuitively than by use of an indexed data structure
 (b) maintaining elements in a particular order

 3. Which of the following types can be used as a key in Python dictionaries?
 (a) strings
 (b) lists
 (c) tuples
 (d) numerical values

 4. Which of the following is a syntactically correct sequence, s, for dynamically creating a
dictionary using dict(s).
 (a) s 5 [[1: 'one'], [2: 'two'], [3: 'three']]
 (b) s 5 [[1, 'one'], [2, 'two'], [3, 'three']]
 (c) s 5 {1:'one', 2:'two', 3:'three'}

 5. For dictionary d 5 {'apples':0.66,'pears':1.25,'bananas':0.49}, which
of the following correctly updates the price of bananas.
 (a) d[2] 5 0.52

 (b) d[0.49] 5 0.52
 (c) d['bananas'] 5 0.52

 ANSWERS: 1. key value, 2. (a), 3. (a), (c), (d), 4. (b), 5. (c)

 9.2 Set Data Type

 9.2.1 The Set Data Type in Python

 A set is a mutable data type with nonduplicate, unordered values, providing the usual mathematical
set operations as shown in Figure 9-10.

FIGURE 9-10 Set Operators

c09DictionariesandSets.indd Page 346 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 346 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.2 Set Data Type 347

 One of the most commonly used set operators is the in operator (which we have been already using
with sequences) for determining membership,

 ... fruit 5 {'apple', 'banana', 'pear', 'peach'}

 ... fruit

 {'pear', 'banana', 'peach', 'apple'}

 ... 'apple' in fruit

 True

 Note that the items in the set are not displayed in the order that they were defi ned. Sets, like diction-
aries, do not maintain a logical ordering. The order that items are stored is determined by Python,
and not by the order in which they were provided. Therefore, it is invalid and makes no sense to
 access an element of a set by index value.

 The add and remove methods allow sets to be dynamically altered during program execu-
tion, as shown below,

 ... fruit.add('pineapple')

 ... fruit

 {'pineapple', 'pear', 'banana', 'peach', 'apple'}

 To defi ne an initially empty set, or to initialize a set to the values of a particular sequence, the set
constructor is used,

 ... set1 5 set() ... vegs 5 ['peas', 'corn'] ... vowels 5 'aeiou'

 ... len(set1) ... set(vegs) ... set(vowels)

 0 {'corn', 'peas'} {'a', 'i', 'e', 'u', 'o'}

 Note that set(), and not empty braces are not used to create an empty set, since that notation is
used to create an empty dictionary. Because sets do not have duplicate elements, adding an already
existing item to a set results in no change to the set.

 Finally, there are two set types in Python—the mutable set type, and the immutable
 frozenset type. Methods add and remove are not allowed on sets of frozenset type.
Thus, all its members are declared when it is defi ned,

 ... apple_colors 5 frozenset(['red', 'yellow', 'green'])

 As shown, the values of a set of type frozenset must be provided in a single list when defi ned.
(A frozenset type is needed when a set is used as a key value in a given dictionary.)

c09DictionariesandSets.indd Page 347 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 347 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

348 CHAPTER 9 Dictionaries and Sets

 9.2.2 Let’s Apply It—Kitchen Tile Visualization Program

 The following Python program (Figure 9-12) allows the user to select a particular kitchen tile size,
a primary and secondary tile color, the frequency in which the secondary color is to be placed, and
a grout color. It then displays the resulting tile pattern. This program utilizes the following program-
ming features:

 ➤ sets

 Example execution of the program is given in Figure 9-11 (shown as grey tones in this image).
 Program execution begins on line 154 . Variable tile_area is assigned to a dictionary

that holds the width and height of the turtle window to be created. Variable grout_color_
selection is assigned to a set containing string values 'white', 'gray', 'brown', and
'black'. These strings are recognized in turtle graphics as color values. The user is prompted to
enter one of these values as the grout color, which is set as the background color of the turtle screen
within function layoutTile. Variable scaling is used to appropriately adjust the size of the
displayed tile. Changing this value will make tiles appear larger or smaller on the screen.

 Function greeting is called on line 159 to display an explanation of the program to the
user. On line 162 , the getTileSelections function is called. This function prompts the user
for the tile width and length, the primary and secondary colors of the tiles, the number of primary
colors that should be displayed for each secondary tile color, and the grout color. These values are
returned in a dictionary of the form,

A set is a mutable data structure with nonduplicate, unordered values, providing the usual set
operations. A frozenset is an immutable set type.

L E T ’ S T R Y I T

From the Python shell, enter the following and observe the results.

... s 5 {1,2,3}

... 1 in s
???

... s.add(4)

... s
???

... s 5 set('abcde')

... s
???

... s 5 set(['apple', 'banana', 'pear'])

... s
???

... s.add('pineapple')
???

... s 5 frozenset(['apple', 'banana', 'pear'])

... s.add('pineapple')

... ???

 {'tile_size':{'length':tile_length, 'width':tile_width},
 'primary_color':color1, 'secondary_color':color2,

 'tile_skip':skip, 'grout_color':grout}

c09DictionariesandSets.indd Page 348 05/11/12 1:42 PM user-019Ac09DictionariesandSets.indd Page 348 05/11/12 1:42 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.2 Set Data Type 349

FIGURE 9-11 Execution of the Kitchen Tile Visualization Program

 Thus, for example, for variable selections assigned to this dictionary, selections['tile_
size'] gets the selected tile length and width, and selections['primary_color'] gets
the primary tile color. Note that the value associated with key 'tile_size' is itself a dictionary
of the form,

 {'length':tile_length, 'width':tile_width}

 Thus, for variable tile_size assigned to this dictionary, tile_size['length'] returns the
user-selected tile length, and tile_size['height'] returns the height.

 On line 165 , the setup method of turtle graphics is called to establish the turtle screen. On
 line 168 , the reference to the screen created is assigned to variable window. For this particular
program, the normal coordinate system in turtle graphics with coordinate (0,0) at the center of the
screen is not the most “natural” coordinate system. Turtle graphics allows the coordinate system to
be redefi ned by specifying the coordinates of the bottom-left corner and the top-right corner of the

c09DictionariesandSets.indd Page 349 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 349 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

350 CHAPTER 9 Dictionaries and Sets

FIGURE 9-12 Kitchen Tile Visualization Program (Continued)

c09DictionariesandSets.indd Page 350 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 350 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.2 Set Data Type 351

FIGURE 9-12 Kitchen Tile Visualization Program (Continued)

c09DictionariesandSets.indd Page 351 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 351 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

352 CHAPTER 9 Dictionaries and Sets

FIGURE 9-12 Kitchen Tile Visualization Program

c09DictionariesandSets.indd Page 352 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 352 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.2 Set Data Type 353

screen. This is done by call to method setworldcoordinates on line 174 . We therefore set the
bottom-left corner to be coordinate (0,0), and the top-right corner to be coordinate (tile_
area['width'], tile_area['height']). Thus, for the current tile width of 660 and tile
height of 400, the top-right coordinate would be (660,400). This is depicted in Figure 9-13.

FIGURE 9-13 Screen Coordinates for the Kitchen Tile
Visualization Program

 In order to utilize the new coordinate system, the turtle screen mode must be set to 'world' (on
line 175).

 The fi nal steps of the program includes a call (line 178) to function layoutTiles. It is passed
variable window, holding a reference to the turtle screen created, variable selections, which
holds all the user-selected options, variable tile_area, which holds the dimensions of the turtle
screen, and variable scaling, which indicates how the tile dimensions in dictionary selections
are to be scaled. In the last line of the program, line 181 , turtle method exitonclick() is called so
that the program terminates when the turtle window is closed.

 We now look at program functions getTileSelections and layoutTile. Function
getTileSelections (lines 15–75) begins by setting variable empty_set to an empty set,
empty_set 5 set(). Recall that empty braces are used to create an empty dictionary, and
therefore set() is used to created an empty set. Variable empty_set is used for input error
checking as we will see. Variable hex_digits is assigned to a set containing each of the digits
0–9, as well as the uppercase and lowercase letters A–F. Collectively, these are the symbols used in
denoting hexadecimal numbers. This set is also used for input error checking. In lines 35–64 , the
user is prompted to enter all the tile selection options. At line 36 , the user is prompted for the tile
length, limited to a size of four inches. Following, at line 40 , the user is likewise prompted for
the tile width, also limited to four inches. At line 45 , the user is prompted for the primary tile color.
This is the color that will appear most often (or just as often, if the selected pattern is one primary
color followed by one secondary color, etc.). Finally, at line 51 , the user is prompted for the sec-
ondary color.

 Color values are entered as six hexadecimal digits in the range 000000 (black) to FFFFFF
(white). Since color values may contain the letters A–F (a–f), as well as the digits 0–9, any
entered color value containing characters other than that is invalid. Example color values are
given in Figure 9-14.

c09DictionariesandSets.indd Page 353 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 353 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

354 CHAPTER 9 Dictionaries and Sets

 The check for invalid color values occurs on lines 46 and 52 . First, the color values must be six
 characters long. Then, the color value strings are converted into a set using set(color1) and
set(color2). Thus, for example, for color1 equal to FF3243, set(color1) would produce
the following set,

 {'3', '2', '4', 'F'}

 Then, the set difference operator, 2, is applied to this set, and the set hexdigits defi ned at the
start of the function,

 set(color1) 2 hexdigits

 Recall that the set difference operator, A – B, returns any items that are in set A, but not in set B.
Since set A is the entered color string and set hexdigits contains all the valid characters of a
hexadecimal number, if this difference is not empty (the empty set), then color1 (or color 2)
must contain invalid characters.

 The fi nal items for which the user is prompted is the skip pattern of the tiles and the grout
color. The value of skip indicates how many primary color tiles are placed before a secondary
color tile is placed. Thus, for a skip value of 1, the primary and secondary tiles will alternate
every other tile. For a skip value of 2, two primary color tiles will be placed for every secondary

FIGURE 9-14 Selected Hexadecimal Color Codes

c09DictionariesandSets.indd Page 354 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 354 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.2 Set Data Type 355

color tile, and so forth. The grout color entered by the user must be one of the string values in set
grout_color_options. Thus, if the entered string is not in this set, the user is prompted to
re-enter.

 Finally, on lines 67 and 68 , the '#' symbol is prepended to each of the color strings, color1
and color2. This indicates in Python that the string contains a hexadecimal value. At line 71 , a
dictionary is built containing all of the selected values to be returned as the function value (line 75).

 Function layoutTile, lines 77–153 , is passed all the information needed to lay out the
tiles according to the turtle screen size, the user’s selections, and the scaling factor to be used. On
 line 85 , the background color of the turtle screen is set to the user-selected grout color. On line 88 ,
variable tile_size is set to the value for key 'tile_size' in the selections dictionary. Re-
call that this value is itself a dictionary. Thus, variable tile_size is holding a dictionary with
keys 'length' and 'width'.

 On line 91 , the reference to the turtle is set to variable the_turtle. On lines 94–95 the
dimensions of each tile are scaled by the scaling factor in variable scaling, and assigned to vari-
ables scaled_length and scaled_width. Since the user is entering tile size in inches, a four-
inch by four-inch tile would be displayed as four pixels by four pixels, which is too small for the
purpose of displaying tile patterns. Thus, with a scaling factor of 20, for example, a four-by-four
inch tile would be displayed as 80 pixels by 80 pixels. The spacing between tiles (in pixels) is set to
6, assigned to variable tile_spacing on line 98 .

 In order to create the appropriate tile shape as specifi ed by the user, the register_shape
method in turtle graphics is used to both describe the shape and provide a shape name. Thus, on line
101 , register_shape is called with the name 'tileshape' as the fi rst parameter value, fol-
lowed by a list of coordinate values defi ning the desired shape. The coordinate values are specifi ed
in terms of the values scaled_length and scaled_width to defi ne the specifi c size of the tile
shape to match the user's specifi ed size.

 On lines 106–109 , the turtle attributes are set for laying out tiles. Since the tiles will be laid
out from the top of the screen going left to right, the turtle heading is set to 0 (facing right) and the
shape is set to 'tileshape' (on lines 106–107) . Since the turtle is used to stamp its image where
each tile is to be placed, and not be visible or draw lines on the screen, the turtle is hidden (line 108)
with its pen set to up (line 109).

 In order for the tile to appear in the correct location, a ten-pixel adjustment is made. Thus, on
 line 112 , variable loc_fi rst_tile is set to the coordinate (210, tile_area['height'] 1
10). The turtle is then positioned at this location (line 113) to begin the placement of tiles. Since
the primary color tile is always the fi rst tile placed, variable fi rst-tile-color is set to the key
value 'primary_color' (of dictionary selections). Variable skip_counter is also set
to the skip value stored in the selections dictionary with the key value 'tile_skip'. In order to
determine where to begin the placement of tiles for each new row, variable row_counter is ini-
tialized to 1 and incremented for each next row of tiles. Thus, knowing the number of each new row
allows for the coordinate value of each new row to be calculated (since each row of tiles is the same
height).

 Lines 120–149 perform the placement of tiles. Variable terminate_layout is initial-
ized to False on line 120 , which controls the while loop on line 121 . It is not set to True until
the last row of tiles has been completed. The if statement at line 124 checks whether the
x-coordinate value of the turtle’s current location is past the right edge of the screen. If not, then
the color of the next tile to be placed is determined based on the current value of variable skip_
counter. This variable is used as a “count-down” counter. That is, it is decremented by one
each time another tile has been placed. When skip_counter reaches 0, the next tile is set to
the secondary color, and the skip_counter is reset to the value in variable tile_skip to

c09DictionariesandSets.indd Page 355 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 355 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

356 CHAPTER 9 Dictionaries and Sets

again count down to zero (lines 127–132). Once the color of the tile has been determined, the
stamp method is called on the turtle to “imprint” its image on the screen (line 135). The turtle is
then moved forward (to the right) by an amount equal to the tile length plus the amount of tile
spacing (line 138). Thus, the turtle is positioned for the placement of the next tile, and execution
returns to the top of the while loop.

 If the condition of the if statement on line 124 is false, that is, the current tile is past the right
edge of the screen, then a check is made on line 141 if the current tile position is past the bottom of
the screen (that is, the_turtle.ycor() is less than zero). If not, then the turtle is repositioned
to the beginning of the next row of tiles (lines 143–145) making use of variable row_counter, as
mentioned. Because a new row of tiles is started, row_counter is incremented by one. Finally, if
the conditions at both line 124 and line 141 are found false (that is, the current turtle position is at
the end of the last row of tiles), then terminate_layout is set to True and thus the while loop
terminates, also terminating the function.

 Self-Test Questions

 1. Indicate all of the following that are syntactically correct for creating a set.
 (a) set([1, 2, 3])
 (b) set((1, 2, 3))
 (c) {1, 2, 3}

 2. For set s containing values 1, 2, 3, and set t containing 3, 4, 5, which of the following
are the correct results for each given set operation?
 (a) s | t ➝ {3}
 (b) s & t ➝ {1, 2, 3, 4, 5}
 (c) s 2 t ➝ {1, 2}
 (d) s ^ t ➝ {1, 2, 4, 5}

 3. For set s containing values 1, 2, 3 and set w of type frozenset containing values
'a','b','c', which of the following are valid set operations?
 (a) 'a' in s
 (b) 'a' in w
 (c) len(s) 1 len(w)
 (d) s.add(4)
 (e) w.add('d')
 (f) s | w
 (g) s & w
 (h) s 2 w

 ANSWERS: 1. (a), (b), (c), 2. (c), (d), 3. (a), (b), (c), (d), (f), (g)

 COMPUTATIONAL PROBLEM SOLVING

 9.3 A Food Co-op’s Worker Scheduling Simulation

 In this section, we develop a program for simulating the number of people that show up for work at
a food co-op using two different worker scheduling methods—one in which workers sign up for
certain time slots, and the other in which workers show up whenever they want.

c09DictionariesandSets.indd Page 356 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 356 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 357

 9.3.1 The Problem

 A food co-op in a university town found an
interesting solution to a scheduling problem.
The co-op offered two prices for everything—
one price for members, and a higher price for
 nonmembers. To qualify for the lower prices,
each member had to volunteer to work at the
co-op for a couple hours each week.

 The problem was that the co-op needed
two people to be working at all times. Mem-
bers would be asked to sign up for time slots,
limited to two workers for each slot. Too often, however, members who had signed up for a given time
did not show up, leaving the co-op either completely or partially uncovered.

 The co-op eventually devised an effective, albeit daring solution to this problem. They decided
to just let members come in to work whenever they wanted to, with no planned scheduling! This
unscheduled approach ran the risk of there being times in which the co-op was left without any
workers. What was interesting was that they found this approach to be a better solution than the
scheduled approach. (We will look at whether this is also better for the individual members or not.)

 In this section, we develop a program capable of performing a simulation of both approaches
based on assumed probabilities of typical human behavior. We then compare the effectiveness
of the scheduled vs. the unscheduled approach both from the co-op’s and the members’ point of
view.

 9.3.2 Problem Analysis

 The computational issue for this problem is to model and simulate the behavior of individuals for
assumed probabilities of certain actions. The behaviors in this case are related to fulfi lling a
commitment to work a given number of hours each week. In one scenario, workers sign up in
advance to work certain time slots; in the other scenario, workers show up to work whenever
they feel like it.

 Besides assumed probabilities of workers showing up for work, there are also assumed prob-
abilities of workers showing up late or leaving early. Since each of these actions is probabilistic,
there needs to be a computational means of determining when such actions take place. We use a
random number generator for this. For example, if there is an assumed 10% chance that any given
person may show up late, a random number between 1 and 10 is generated. If the generated value is
1, the action is assumed to occur; otherwise, the action is assumed not to occur.

 We will assume a certain schedule of hours that the co-op is open, given below.

 Sunday 12:00 pm–6:00 pm
 Monday–Thursday 8:00 am–6:00 pm
 Friday, Saturday 8:00 am–8:00 pm

 We also assume that every time slot is two hours long. Thus, for example, there would be three time
slots on Sundays, 12:00–2:00 pm, 2:00–4:00 pm, and 4:00–6:00 pm. Based on this, there are 35 time
slots in a week. We also assume that the co-op has 75 members.

 Because of the different natures of the two scheduling approaches, we assume different
probabilities for the behaviors of members. For the scheduled approach, we assume a probability

Ji
m

 T
ho

m
p

so
n/

A
lb

uq
ue

rq
ue

Jo

ur
na

l/Z
U

M
A

P
R

E
S

S
.c

om
/

N
ew

sC
om

c09DictionariesandSets.indd Page 357 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 357 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

358 CHAPTER 9 Dictionaries and Sets

of 15% that a given member will not show up for their time slot. For the unscheduled approach,
we assume a probability that any given worker will decide to show up for a given time slot to be
5%. Also, we assume that the chance that a scheduled worker will show up late for the start of the
time slot is greater than in the unscheduled approach, since in the unscheduled approach workers
show up for the time slot that is convenient for them. On the other hand, we assume a greater
chance that unscheduled workers will leave fi fteen minutes earlier than scheduled workers, since
they may feel less committed to working the complete time slot. We assume the probabilities for
these behaviors as given in Figure 9-15.

 9.3.3 Program Design

 Meeting the Program Requirements

 The program must simulate the number of workers that show up for each of the time slots that the
co-op is open by utilizing assumed probabilities. The co-op requires two workers in the store at all
times that it is open. The program must also utilize the probabilities that workers will show up 15,
30, or 45 minutes late for work, or leave 15 or 30 minutes early.

 Data Description

 The data that needs to be represented in this program includes the number of co-op members (stored
as an integer), the two-hour time slots that a worker may work (stored as a tuple), the probabilities
of each of the actions that may occur (stored as a dictionary), and the names of the days of the week
(stored as a tuple) as given below:

 num_members 5 75

 time_slots 5 ('8:00am','10:00am','12:00pm','2:00pm','4:00pm','6:00pm')

 days 5 ('Sunday','Monday','Tuesday','Wednesday','Thursday','Friday',

'Saturday')

 sched_probabilities 5 { 'CLate_15':15, 'CLate_30':5, 'CLate_45':2,

 'CLEarly_15':5, 'CLEarly_30':3,'CNoshow':15}

 unsched_probabilities 5 { 'CLate_15':5, 'CLate_30':2, 'CLate_45':1,

 'CLEarly_15':10, 'CLEarly_30':3,'CShowup':5}

 In dictionary probabilities, CLate_15, CLate_30, and CLate_45 contain the chances
that a worker will arrive 15, 30, or 45 minutes late, respectively; CLEarly_15 and CLEarly_30
contain the chances that a worker will leave 15 or 30 minutes early, respectively; CNoshow contains
the chance that a scheduled worker will not show up for their time slot; and CShowup is the chance
that an unscheduled worker will decide to show up to work.

FIGURE 9-15 Assumed Probabilities for the Food Co-op Simulation Program

c09DictionariesandSets.indd Page 358 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 358 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 359

 Algorithmic Approach

 The algorithmic approach for this problem relies on the use of randomization to run the simu-
lation. One complete week of co-op staffing is simulated, including the number of workers
showing up for each of the 35 time slots in a week, how many show up a given number of
minutes late, and how many leave a given number of minutes early. For the assumed probabil-
ity of each of these actions, a random number will be generated for simulating whether each
event has occurred or not.

 Overall Program Steps

 The overall steps of the program are given in Figure 9-16.

FIGURE 9-16 Overall Steps of Food Co-op Program

 Modular Design

 The modular design for this program is given in Figure 9-17. Following this design, there are six
functions in the program. Function execute ScheduledSimulation determines the time slots
for a given day of the week by calling function displayScheduledWorkerHours to probabilis-
tically determine whether a scheduled worker shows up, and if so, if they show up a certain number of
minutes late and/or leave a certain number of minutes early. The function, in turn, relies on the use of
function eventOccurred, which is provided a probability value, and returns True or False to

c09DictionariesandSets.indd Page 359 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 359 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

360 CHAPTER 9 Dictionaries and Sets

simulate whether the event has occurred or not. Function executeUnscheduledSimulation is
designed similarly, except that it also needs to determine how many (unscheduled) workers decide to
show up at their convenience. Thus, the function relies on function numWorkersShowedUp (which
in turn relies on function eventOccurred). We give the specifi cation for each of these functions in
 Figure 9-18. From this we can begin to implement and test the program.

 9.3.4 Program Implementation and Testing

 The implementation of the main module of this program is given in Figure 9-19. The main mod-
ule gives the overall steps of the program. First, all values that determine the model’s behaviors
are initialized. Variable num_members is assigned the assumed number of co-op members for
the simulation, 75 (line 4). Tuple time_slots is assigned the start time of all the two-hour
time slots that workers may work (line 5), and tuple days is assigned the days of the week that
the co-op is open (every day of the week) on line 8 . The dictionary sched_ probabilities
contains the assumed probabilities for when scheduled workers show up late, leave early, or
don’t show up at all (lines 11–12). The dictionary unsched_probabilities contains the
assumed probabilities for when unscheduled workers show up late, leave early, and decide to
show up to work for a given time slot (lines 14–15).

 On line 18 , the seed function for the random number generator is called (the required
 import random statement is provided at the top of the program). When random.seed() is
called without an argument, the seed value is taken from the system clock (usually from the lower
order digits of the time in the milliseconds range). This ensures that each time the program is run, a
different sequence of random numbers most likely will be generated.

 The remainder of the program handles the task of prompting the user for the type of simulation
to execute (“scheduled” or “unscheduled”). Based on the user’s response, either function
 executeScheduledSimulation (at line 36) or function executeUnscheduledSimu-
lation (at line 40) is called. Variable valid_input is initialized to False (at line 23), set to
True only when a valid response of 1 or 2 is entered for the desired simulation (at line 43). Thus,

FIGURE 9-17 Modular Design of the Food Co-op Simulation Program

c09DictionariesandSets.indd Page 360 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 360 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 361

FIGURE 9-18 Function Specifi cations of the Food Co-op Simulation Program

c09DictionariesandSets.indd Page 361 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 361 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

362 CHAPTER 9 Dictionaries and Sets

the while loop continues to execute as long as an invalid response is entered. Because the input value
is converted to an integer type,

 response 5 int(input('(1) scheduled, (2) unscheduled simulation? '))

 a ValueError will be raised (by function input) if the user enters a non-digit character. There-
fore, this line (and the rest of the code) is placed within a try-except block (within lines 25–45).
Thus, if a non-digit is entered, the raised exception is caught by the except ValueError clause,

FIGURE 9-19 Main Module of the Food Co-op Simulation Program

c09DictionariesandSets.indd Page 362 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 362 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 363

FIGURE 9-20 Unit Testing of Function executeScheduledSimulation

and the message 'Please enter numerical value 1 or 2' is displayed (at line 46).
Since valid_input is still False in this case, the while loop performs another iteration, again
prompting the user for their selection.

 Because a user may enter a numerical value other than 1 or 2, the while loop at line 29 catches
such errors and immediately re-prompts the user. Once the loop terminates, the input is known to be
valid. Therefore, based on the selection, either function executeScheduledSimulation or
function executeUnscheduleSimulation is called, and valid_input is set to True
causing the outer while loop at line 24 to terminate.

 Test Drivers and Test Stubs

 In the development of the smoking/lung cancer correlation program of Chapter 8, we utilized unit
testing, testing each function separately by developing an appropriate test driver for each. This was
followed by integration testing, which tested the complete program with all functions working
together.

 We use unit testing and integration testing for this program as well. However, in the smoking/
lung cancer program, there were only three functions, each directly called by the main module as
given below.

 Since these functions did not call any other function of the program, they were simply individually
implemented and tested. However, based on the design of the current program, there are functions
that call other functions. Thus, these functions cannot be tested without having some version of the
other functions to call. This is true for function executeScheduledSimulation for example,
shown in Figure 9-20.

 As shown in the fi gure, both a test driver and a test stub are needed for testing the function. A test
driver , as we saw in Chapter 8, is code developed simply for calling and testing a given function.

c09DictionariesandSets.indd Page 363 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 363 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

364 CHAPTER 9 Dictionaries and Sets

FIGURE 9-21 Implementation of Function executeScheduledSimulation

A test stub , on the other hand, is a simple, incomplete implementation of a function for testing
 functions that call it. For example, a test stub for a function designed to calculate the GPA of a given
student might be implemented to simply return an arbitrary fl oating-point value, as if it were a cal-
culated result. Thus, test drivers and test stubs are developed for testing purposes only, and do not
become part of the ultimate implementation.

 Unit Testing Function executeScheduledSimulation

 We begin with the unit testing of function executeScheduledSimulation, given in
 Figure 9-21.

 We develop a test driver that calls function executeScheduledSimulation with values for
parameters probabilities, days, and time_slots defi ned in the main module, given in
Figure 9-22.

 In addition, since the function depends on the use of function displayScheduledWorker-
Hours, a test stub is developed for this function for executeScheduled Simulation to call,
given in Figure 9-23. All this test stub does is display the value of workernum. The time slots and day
of the week are displayed by function execute ScheduledSimulation. Finally, we put function

c09DictionariesandSets.indd Page 364 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 364 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 365

FIGURE 9-22 Test Driver for Function executeScheduledSimulation

execute ScheduledSimulation in its own fi le named executescheduledsimulation.
py, as well as the test driver and test stub to be used as modules. Since module execute-
scheduledsimulation needs to call function stub displayScheduledWorkerHours, it
contains an import statement of the form from displayscheduledworkerhours import *.
Also, since the driver makes a call to function executeScheduledSimulation, it contains an
import statement of the form from executescheduledsimulation import *. The result of
the testing is given in Figure 9-24.

 The output shows the scheduled time slots for each day of the week. However, we see an
error for the time slots for Sundays. Only one time slot is displayed (for 8:00 am) but there
should be three (8:00 am, 10:00 am, and 12:00 pm). To track down this error, we do some inter-
active testing in the Python shell. First, we display the value of variable days to make sure it
contains each weekday,

 ... days

 ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', ' Saturday')

 This is correct. We also check the value of variable time_slots,

 ... time_slots

 ('8:00am', '10:00am', '12:00pm', '2:00pm', '4:00pm', '6:00pm')

FIGURE 9-23 Test Stub for Function displayScheduledWorkerHours

c09DictionariesandSets.indd Page 365 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 365 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

366 CHAPTER 9 Dictionaries and Sets

FIGURE 9-24 Unit Testing Results for Function
displayScheduledWorkerHours

c09DictionariesandSets.indd Page 366 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 366 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 367

 This is also correct. We then consider the part of function executeScheduledSimulation
that determines the time slots for each day,

 for day in days:
 print(day)

 print('-------')

 if (day 55 'Sunday'): # sunday?

 current_timeslot 5 '12:00pm'

 num_timeslots 5 3

 elif day in days[1:5]: # mon–thurs?

 current_timeslot 5 '8:00am'

 num_timeslots 5 5

 else: # friday, saturday

 current_timeslot 5 '8:00am'

 num_timeslots 5 6

 # fi nd loc of current_timeslot in tuple time_slots

 index_val 5 time_slots.index(current_timeslot)

 # iterate through num_timeslots starting with current time slot

 for time_slot in time_slots[index_val:num_timeslots]:

 print('{0: . 7}'.format(time_slot), ' ', end 5 '')

 We see that variable num_timeslots is set to 3 for Sundays. Since that seems correct, we see
what happens in the following code. Variable index is set to the index value of the fi rst occurrence
of the fi rst time slot for the day, held by variable current_timeslot. Since the value of
 current_timeslot should be '12:00pm', we call method index to be sure of the index
value returned,

 ... index_val 5 time_slots.index('12:00pm')

 ... index_val

 2

 This is correct. We therefore focus on the for loop,

 for time_slot in time_slots[index_val: num_timeslots]:

 print('{0: . 7}'.format(time_slot), ' ', end 5 '')

 For all other days, this loop iterates the correct number of times, once for each time slot of each day.
We check to see the slice of time_slots that is returned specifi cally for index_value equal
to 2 and num_timeslots equal to 3.

 ... time_slots[2:3]

 ('12:00pm',)

 Ah, there is a problem! The result should have been ('12:00pm', '2:00pm', '4:00pm'). But
why does it work correctly for all the other days of the week? We see that Sunday is the only day that
the fi rst time slot does not begin at 8:00 am. Thus, all other slices of list time_slots are of the form,

 time_slots[0:k]

c09DictionariesandSets.indd Page 367 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 367 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

368 CHAPTER 9 Dictionaries and Sets

 whereas for Sunday, it is of the form,

 time_slots[3:k]

 It must come down to how the index values are used in the slice notation. We checked on this and
found that we had incorrectly used the slice operation. The fi rst index value is the starting location of
the slice, and the second index value is one greater than the last index of the substring. We had written
the code as if the second index indicated how many elements to include. So the actual code should be,

 for time_slot in time_slots[index_val: index_val 1 num_timeslots]:

 print('{0: . 7}'.format(time_slot), ' ', end 5 '')

 It worked for all the other days of the week because in those cases, index_val was 0, and there-
fore index_val 1 num_timeslots was equal to num_timeslots. So that explains every-
thing! We fi nd a similar error in function executeUnscheduledSimulation, so we make the
correction there as well.

 We should feel good about ourselves. Not only did we fi nd the error, but we are able to fully
explain why this error created the incorrect output. As we have said, making a change that fi xes a
problem without knowing why the change fi xes it is disconcerting and risky. We therefore make this
correction to executeScheduledSimulation and again perform unit testing, this time
getting the expected output for Sunday (as well as the rest of the days).

c09DictionariesandSets.indd Page 368 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 368 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 369

 We leave as an exercise the unit testing of the remaining program functions.

 Integration Testing of the Food Co-op Program

 Assuming each function of the program has been unit tested, we next perform integration testing.
The complete program is given in Figure 9-25.

 The main section of the program is in lines 213–267 . This part of the program has already
been discussed. The displayScheduledWorkerHours, displayUnscheduledWorker-
Hours, executeScheduledSimulation, and executeUnscheduledSimulation func-
tions contain the bulk of the implementation.

 Function executeScheduledSimulation (lines 135–165) consists of three nested for
loops. The outer loop (line 142) iterates through each of the days in the schedule, in this simulation,
all seven days. The next inner for loop (line 160) iterates through each of the time slots for the day.
 Lines 146–154 initialize the fi rst time slot (current_timeslot) as well as the number of time
slots (num_timeslots) based on the current value of day. Variable time_slots passed to the
function contains all the possible time slots for all the days that the co-op is open. In order to fi nd
that fi rst time slot for the current day within this list time_slots, the index method is used
(line 157), as discussed in the unit testing of this function.

 Finally, for each time slot, we iterate over the number of workers for the slot in the innermost
for loop in lines 162–164 . In this case, the for loop iterates exactly two times since, in the scheduled
worker approach, that is the number of workers assigned to each time slot. It is within this innermost
loop that function displayScheduledWorkerHours is called (line 163). The argument in the
function call is adjusted by 1 (k + 1), because function displayScheduledWorkerHours
 expects to be passed worker numbers starting at 1.

 Function displayScheduledWorkerHours (lines 38–90) generates the events that
may occur for a given scheduled worker; specifically, whether the worker arrives late and/or
leaves early or does not show up at all. Thus, at the start of the function (in lines 57–58),
 variables mins_late and mins_left_early are initialized to zero. Following that is an
if statement (line 60) determining if the (scheduled) worker does not show up for their as-
signed time slot. The probability of this occurring is contained in the dictionary probabil-
ities. If the event is found to be true, then mins_late is set to the special value 21, to be
used later on line 80 .

c09DictionariesandSets.indd Page 369 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 369 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

370 CHAPTER 9 Dictionaries and Sets

FIGURE 9-25 Food Co-op Simulation Program (Continued)

c09DictionariesandSets.indd Page 370 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 370 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 371

FIGURE 9-25 Food Co-op Simulation Program (Continued)

c09DictionariesandSets.indd Page 371 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 371 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

372 CHAPTER 9 Dictionaries and Sets

FIGURE 9-25 Food Co-op Simulation Program (Continued)

 If the “no show” event does not occur, the simulation checks events for when the volunteers are
15, 30, or 45 minutes late (lines 63–68). Because showing up late and leaving early are indepen-
dent events, the program also checks for the particular worker leaving 15 or 30 minutes early
(lines 70–73). The remaining lines of function display_scheduledworkerhours

c09DictionariesandSets.indd Page 372 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 372 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 373

FIGURE 9-25 Food Co-op Simulation Program (Continued)

(lines 75–90) involve checking which events occurred and displaying (and properly spacing) the
appropriate output.

 Functions executeUnscheduledSimulation (lines 167–211) and its supporting function
displayUnscheduledWorkerHours (lines 92–133) are very similar to the corresponding
 functions executeScheduledSimulation and displayScheduled WorkerHours. One
 difference is the way that the simulation handles the number of possible workers for a given time slot in
function executeUnscheduledSimulation. Because in the unscheduled approach any number
of workers can show up, this section indicates how many workers actually stay to work that time

c09DictionariesandSets.indd Page 373 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 373 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

374 CHAPTER 9 Dictionaries and Sets

FIGURE 9-25 Food Co-op Simulation Program

c09DictionariesandSets.indd Page 374 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 374 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 375

slot—no more than two—and how many go home. Another minor difference is the way that display-
UnscheduledWorkerHours is designed. This is due to the fact that a “no show” only applies to
scheduled workers, and not to unscheduled workers since unscheduled workers never sign up for a time
slot to work.

 Function event_occurred (lines 13–22) is a simple function that returns a Boolean
(True/False) value used to simulate whether a given event has occurred or not. The function is
passed an integer value between 1 and 100 representing the probability of the event (where 100
represents certainty). It then makes a call to the random number generator to randomly generate an
integer in the same range of 1 to 100 (in line 19). If the number is less than or equal to the value
passed in parameter chance, then the event is assumed to have occurred, and the value True is
returned. Otherwise, the event is assumed not to have occurred, and thus returns False. This func-
tion is what drives the simulation.

 Finally, function numworkersShowedUp (lines 24–36) is a supporting function, called
from line 194 of function executeUnscheduledSimulation. In the simulation of the
 unscheduled approach, any number of members may show up for work for any given time slot.
To simulate this, function numworkershowedup is designed to be given the chances that an indi-
vidual member may show up (in parameter indiv_chance), as well as the total number of mem-
bers in the co-op (in parameter num_individuals).

 9.3.5 Analyzing a Scheduled vs. Unscheduled Co-op Worker Approach

 We now look at the simulation results for worker coverage at the food co-op, one using a sched-
uled approach (Figure 9-26), and the other using an unscheduled approach (Figure 9-27).

 We can compare these two simulation runs. Since each run is based on assumed probabili-
ties of events, the results are only as accurate as the probability estimates. Also, multiple simula-
tion runs would provide a more accurate picture of likely events. Comparative results are given in
Figure 9-28.

So with these caveats in mind , what can we conclude from this simulation? We fi rst look at
the reason that the food co-op chose to try an unscheduled approach—that too often, time slots
were left partially or completely uncovered. From our simulation of a scheduled approach, we
do see three times in which time slots are completely uncovered, and fourteen times in which
there is only partial coverage (that is, only one person showing up). In the simulation of the
unscheduled approach, there were no time slots left uncovered, and only three time slots in
which there was partial coverage. This, therefore, coincides with the co-op’s experience that
there is better coverage in an unscheduled approach.

 We next focus on the number of times a worker was 15 or 30 minutes late. In the scheduled
approach, members were 15 minutes late six times, 30 minutes late two times, and 45 minutes late
one time. For the unscheduled approach, members were 15 minutes late six times, 30 minutes late
three times, and never 45 minutes late. Thus, there is no appreciable difference in the amount of time
workers arrive late based on the simulation. When we look at the number of times workers left early,
we see that in the scheduled approach, workers left 15 minutes early three times and 30 minutes
early four times. In the unscheduled approach, workers left 15 minutes early four times, and
30 minutes early only once. Thus, there is also no appreciable difference in the amount of times
workers leave early, except that scheduled workers were more likely to leave 30 minutes early than
unscheduled workers (based on our assumed probabilities of human behavior).

 Overall, the results indicate that an unscheduled approach does improve the problem of un-
covered time slots. This, therefore, improves the functioning of the co-op. However, is there a hid-
den cost to this? A downside of the unscheduled approach is that there are times when more than the

c09DictionariesandSets.indd Page 375 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 375 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

376 CHAPTER 9 Dictionaries and Sets

FIGURE 9-26 Scheduled Worker Simulation

c09DictionariesandSets.indd Page 376 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 376 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

9.3 A Food Co-op’s Worker Scheduling Simulation 377

FIGURE 9-27 Unscheduled Worker Simulation (Continued)

c09DictionariesandSets.indd Page 377 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 377 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

378 CHAPTER 9 Dictionaries and Sets

FIGURE 9-27 Unscheduled Worker Simulation

FIGURE 9-28 Results of Simulation Runs of Scheduled vs. Unscheduled Approach

two workers show up. Thus, there are expected to be times when members who show up to work are
not needed, and therefore need to return another time. In our simulation, this happened 77 times,
which depending on other factors (for example, how long it takes to get to the co-op, how far out of
the way is it from other locations that members would typically go to, etc.) is an additional burden
on individual members.

 Thus, it is understandable from the co-op’s point of view that an unscheduled approach to
worker “scheduling” is a better approach. However, for individual members it adds an extra burden
of time, and thus it may not be considered an improvement from their perspective.

c09DictionariesandSets.indd Page 378 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 378 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

General Topics

Associative Data Structures
Set Operations
Hexadecimal Numbers
Computer Simulation
Test Drivers/Test Stubs

Python-Specifi c Programming Topics

Dictionaries in Python
Set and Frozenset Types in Python

C H A P T E R S U M M A R Y

Chapter Exercises 379

 C H A P T E R E X E R C I S E S

 Section 9.1

 1. Indicate whether an indexed data structure, an associative data structure, or a set type would be most
appropriate for each of the following.

 (a) The number of inches of rain for each day of the year in a given locality, used for computing the aver-
age yearly rainfall.

 (b) The number of inches of rain, only for the days when there was rainfall in a given locality, used to
retrieve the amount of rain for any given day as quickly as possible.

 (c) Faculty members that belong to various committees, in which each faculty member on the university
senate must also be a member of at least one college committee, but may not also be a member of
another university-level committee.

 2. Create a dictionary named password_lookup that contains usernames as keys (as string types), and
passwords as associated string values. Make up data for fi ve dictionary entries.

 3. Give a program segment that creates an initially empty dictionary named password_lookup, prompt-
ing one-by-one for usernames and passwords (until a username of 'z' is read) entering each into the
 dictionary.

 4. Create a dictionary named password_hint that contains email addresses as keys, and associated val-
ues that contain both a user’s “password security question,” and the answer to the question. Make up data
for fi ve dictionary entries.

 5. Create a dictionary named member_table that contains users’ email addresses as keys, and their cur-
rent password as the values. Write a function that generates a temporary new password for a given user
and updates it in the table.

 Section 9.2

 6. Declare a set named vowels containing the strings 'a','e','i','o', and 'u'. Give a program seg-
ment that prompts the user for any English word, and displays how many vowels it contains.

 7. Give a program segment that prompts the user for two English words, and displays which letters the two
words have in common.

 8. Give a program segment that prompts the user for two English words, and displays which letters are in
the fi rst word but not in the second.

 9. Give a program segment that prompts the user for two English words, and displays which letters of the
alphabet are in neither of the two words.

 10. Give a program segment that prompts the user for two English words, and displays which letters are in
either the fi rst word or the second word, but not in both words.

c09DictionariesandSets.indd Page 379 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 379 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

380 CHAPTER 9 Dictionaries and Sets

 11. Give a program segment that prompts the user for two English words, entered in no particular order, and
determines if all the letters of fi rst word are contained within the second.

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write a Python function called addDailyTemp that is given a (possibly empty) dictionary meant to
hold the average daily temperature for each day of the week, the day, and the day’s average tempera-
ture. The function should add the temperature to the dictionary only if does not already contain
a temperature for that day. The function should return the resulting dictionary, whether or not it is
updated.

 P2. Write a Python function named moderateDays that is given a dictionary containing the average daily
temperature for each day of a week, and returns a list of the days in which the average temperature was
between 70 and 79 degrees.

 P3. Write a Python function named getDailyTemps that prompts the user for the average temperature for
each day of the week, and returns a dictionary containing the entered information.

 P4. Write a Python function named getWeekendAvgTemp that is passed a dictionary of daily temperatures,
and returns the average temperature over the weekend for the weekly temperatures given.

 P5. Write a Python function named addVegetable that is passed a (possible empty) set of vegetable
names, and raises a ValueError exception if the given vegetable is already in the set, otherwise, the
new vegetable should be added and the new set returned.

 P6. Write a Python function named numVowels that is passed a string containing letters, each of which may
be in either uppercase or lowercase, and returns a tuple containing the number of vowels and the number
of consonants the string contains.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Word Frequency Count Program: Making Use of Sets
 Modify the Word Frequency Count Program in Chapter 8 making use of the set type where possible.

 M2. Phone Number Spelling Program: Modifying for Australia
 In Australia, phone numbers are of the form 0x-xxxx-xxxx. Modify the Phone Number Spelling program

so that it prints out Australian phone numbers with spellings for the last four digits.

 M3. Kitchen Tile Visualization Program: Color Name Entry
 Modify the Kitchen Tile Visualization Program so that, instead of requiring the user to enter hexadecimal

RGB color codes, they are given a subset of twelve color names from which to select (from the colors
listed in Figure 9-11).

 M4. Kitchen Tile Visualization Program: Randomly Generated Patterns
 Modify the Kitchen Tile Visualization Program so that the user can enter up to three different tile colors,

as well as the grout color. The program should then display a pattern of tiles that is randomly generated
using the three colors specifi ed.

 M5. Kitchen Tile Visualization Program: Automatic Complementary Colors
 The complementary color of a given color is the “opposite” color (directly opposite on the color wheel).

Designers often use complementary colors because of their vibrant contrast. Modify the Kitchen Tile visu-
alization program so that the user enters one tile color, with the complementary color automatically

c09DictionariesandSets.indd Page 380 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 380 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

generated as the secondary tile color. To calculate the complementary color of a color, each of the three
color values is replaced by its arithmetic complement to 255,

 FFFFFF (white) ➝ 255 255 255 ➝ 255-255 255-255 255-255 ➝ 000000 (black)
 00FF00 (green) ➝ 0 255 0 ➝ 255-0 255-255 255-0 ➝ 255 0 255 ➝ FF00FF (magenta)
 87CEEB (sky blue) ➝ 135 206 235 ➝ 255-135 255-206 255-235 ➝ 120 49 20 ➝ 783114 (brownish red)

Program Development Problems 381

 M6. Kitchen Tile Visualization Program: Muted and Tinted Colors
 Sometimes two colors are too vibrant together. Colors can be muted, or made less vibrant and “toned

down,” by adding some of their complementary color. Modify the Kitchen Tile Visualization Program so
that the user can mute either or both of the two displayed colors to varying degrees. (See problem M5
about complementary colors.)

 M7. Food Co-op Worker Schedule Simulation Program: Adjusting the Model
 The program developed for the food co-op simulation allows for easy adjustment of some of the pa-

rameters in the model. This includes the assumed number of co-op members, as well as the various
assumed probabilities for members’ behaviors. Since the number of members in the co-op only affects
the unscheduled simulation results, run the unscheduled simulation for various number of co-op mem-
bers and

 (a) Plot a graph using the x-axis for the number of co-op members, and the y-axis for the number of
members turned away when showing up to work over the period of one week.

 (b) Determine the optimal number of co-op members so that each time slot is covered, but with the least
number of members showing up to work turned away.

 (c) Adjust the probabilities for the assumed behavior of co-op members to what you consider to be a
more accurate refl ection of peoples’ behavior and describe the results.

 M8. Food Co-op Worker Schedule Simulation Program: Multiple Simulations
 Modify the Food Co-op Worker Schedule Simulation program so that the user can select the number of

multiple, sequential simulations. The program should output the average results over all the simulation
runs as shown below:

 ♦ average number of workers that showed up to work for any given time slot
 ♦ average number of workers that worked the complete time slot
 ♦ average number of workers that were 15, 30, and 45 minutes late
 ♦ average number of workers that left 15 or 30 minutes early
 ♦ average number of workers turned away over the week because the co-op had enough

workers (for unscheduled approach)

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Reverse Phone Spelling Program
 Develop and test a program that allows the user to enter a spelled phone number for the last four digits

(for example, 410-555-book) and generates the phone number that produces that spelling.

 D2. Color Encoding Conversion Program
 Develop and test a program that allows the user to enter six-digit hexadecimal RGB color codes and

converts them to base 10. (You are not to use the '#' symbol for denoting hexadecimal values in Python
in this program.) In this format, the fi rst two hexadecimal digits represents the amount of red, the second
two the amount of green, and the last two the amount of blue. Following is the hexadecimal value for the
color “tomato,”

c09DictionariesandSets.indd Page 381 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 381 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

382 CHAPTER 9 Dictionaries and Sets

 Hexadecimal numbers have place values that are powers of 16, in which the letters A–F have the val-
ues 10–15, respectively. Thus, FF in hexadecimal is equal to 15 * 16 1 15 * 1 5 240 1 15 5 255. Like-
wise, 63 in hexadecimal is equal to 6 * 16 1 3 * 1 5 96 1 3 5 99.

 D3. Color Code Recording Program
 Develop and test a program that allows the user to store color codes that they would like to save for

 future reference. The program should be designed so that they can enter a color code in either hexa-
decimal or decimal format (see problem D2). Whichever color code format is entered, it should be
stored in both hexadecimal and decimal form. For example, if the user enters F0A514, it should be
stored as both F0A514 and (240, 165, 20), and vice versa. The program should allow an annotation to
be added for each color (for example, “Used this shade of green on my website”). The user should also
be able to delete unwanted color entries.

c09DictionariesandSets.indd Page 382 25/10/12 2:35 PM user-019Ac09DictionariesandSets.indd Page 382 25/10/12 2:35 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

383

 Object-Oriented Programming

 In Chapter 6, we learned what objects are and how they are used. We found that all values in Python
are objects. Classes in object-oriented programming defi ne objects. Thus, a class is a “cookie cutter”
for creating any number of objects of that type. As with functions, there are predefi ned classes in
Python, as well as the ability of programmers to defi ne their own. In this chapter, we see how to
defi ne and use classes in Python.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to

 ♦ Explain the fundamental concepts of object-oriented programming

 ♦ Explain the concept of a class

 ♦ Defi ne encapsulation, inheritance, and polymorphism

 ♦ Explain the use of subclasses as a subtype

 ♦ Explain the purpose of UML

 ♦ Explain the relationships of a UML class diagram

 ♦ Write simple UML class diagrams

 ♦ Defi ne and use classes in Python

 ♦ Explain and use special methods in Python

 ♦ Effectively use inheritance and polymorphism in Python

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 10.1 What Is Object-Oriented Programming?

 10.2 Encapsulation

 10.3 Inheritance

 10.4 Polymorphism

 10.5 Object-Oriented Design Using UML

 Computational Problem Solving

 10.6 Vehicle Rental Agency Program

 CHAPTER 10

c10Object-OrientedProgramming.indd Page 383 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 383 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

384 CHAPTER 10 Object-Oriented Programming

 MOTIVATION

 Classifi cation can be described as the act of
grouping entities into various categories that
have something in common. In Biology, or-
ganisms are placed in a taxonomy based on
their individual traits, for example. Libraries
group books using various classifi cation sys-
tems based on subject matter.

 Most classifi cation systems contain sub-
categories (and subcategories of subcategories,
etc.), resulting in a hierarchy of types as shown
in Figure 10.1. For example, chimpanzees are
species in the Hominidae family, which is in the
order Primate, which is in the mammal class,
which is in the Animal Kingdom. The African
elephant, on the other hand, is a species in the
Elephantidae family, which is in the order
 Proboscidea, which is in the same class as chim-
panzees, the Mammal class.

 By this taxonomy, therefore, chimpan-
zees and African elephants have the same traits
identifi ed in the Mammal class, as well as traits
of the Animal Kingdom. Their differences, on
the other hand, are identifi ed in the Primate and Proboscidea orders, as well as the traits within the
 Hominidae and Elephantidae families, and the chimpanzee and African elephant species. In this chap-
ter, we see how the organization of class type and subtypes are utilized in object-oriented programming.

FIGURE 10-1 Taxonomy of Chimpanzees and African Elephants

 FUNDAMENTAL CONCEPTS

 10.1 What Is Object-Oriented Programming?

 We have discussed and have been using objects in our programs. The use of objects in itself, however,
does not constitute object-oriented programming. For that, we fi rst need to introduce the concept of a
class, which we discuss next.

N
ic

ka
nd

m
el

/fl
 ic

kr
/E

le
p

ha
nt

 n
ea

r
N

d
ut

u/
W

ik
im

ed
ia

C

om
m

on
s

c10ObjectOrientedProgramming.indd Page 384 05/11/12 1:43 PM user-019Ac10ObjectOrientedProgramming.indd Page 384 05/11/12 1:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.1 What Is Object-Oriented Programming? 385

 10.1.1 What Is a Class?

 A class specifi es the set of instance variables and methods that are “bundled together” for defi ning
a type of object. A class, therefore, is a “cookie cutter” that can be used to make as many object
 instances of that type object as needed. For example, strings in Python are object instances of the
built-in String class, depicted in Figure 10-2.

 One method of the String class is isdigit. Thus, every string object has this method. The
specifi c object whose isdigit method is called determines the specifi c string that it is applied to,

 name.isdigit() ➝ False city_state.isdigit() ➝ False

 address.isdigit() ➝ False zip_code.isdigit() ➝ True

 We next look at the three fundamental features of object-oriented programming.

FIGURE 10-2 Object Instances of String Class

A class specifi es the set of instance variables and methods that are “bundled together” for
 defi ning a type of object.

 10.1.2 Three Fundamental Features of Object-Oriented Programming

 Object-oriented programming languages, such as Python, provide three fundamental features that
support object-oriented programming— encapsulation , inheritance , and polymorphism . These sup-
port a paradigm shift in software development from the focus on variables and passing of variables
to functions in procedural programming, to the focus on objects and message passing between them.

 Message passing occurs when a method of one object calls a method of another, as depicted
in Figure 10-3. For example, if Object B were a list and B1 a sorting method, then a call to B1 is a
message (or request) for it to become sorted. A message to one object can result in the propagation
of messages among many other objects in order to accomplish a request. In the next sections we
discuss these three features of object-oriented programming, as well as introduce a means of speci-
fying an object-oriented design using UML.

c10Object-OrientedProgramming.indd Page 385 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 385 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

386 CHAPTER 10 Object-Oriented Programming

 10.2 Encapsulation

 In this section we develop a Fraction class for demonstrating the notion of encapsulation. (Note
that the Fraction class developed here is unrelated to the Fraction class of the Python Standard
Library.)

 10.2.1 What Is Encapsulation?

 Encapsulation is a means of bundling together instance variables and methods to form a given type
(class). Selected members of a class can be made inaccessible (“hidden”) from its clients, referred
to as information hiding . Information hiding is a form of abstraction. This is an important capability
that object-oriented programming languages provide. As an example, we give a depiction of a Frac-
tion object in Figure 10-4.

FIGURE 10-4 Fraction Object Access

 The Fraction object shows private instance variables __numerator and __denominator, and
four public methods. Private members of a class begin with two underscore characters, and cannot

FIGURE 10-3 Message Passing in Object-Oriented
Programming

Three fundamental features supporting the design of object-oriented programs are referred to as
encapsulation, inheritance, and polymorphism.

c10Object-OrientedProgramming.indd Page 386 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 386 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 387

be directly accessed. For example, trying to access the instance variables of Fraction object frac1
is invalid,

 frac1.__numerator 5 4 NOT ALLOWED
 frac1.__denominator 5 6 NOT ALLOWED

 Public members of a class, on the other hand, are directly accessible. For example, the following are
valid method calls,

 frac1.getNumerator() ALLOWED

 frac1.getDenominator() ALLOWED

 frac1.setNumerator(4) ALLOWED

 frac1.setDenominator(6) ALLOWED

 These methods are referred to as getters and setters since their purpose is to get (return) and set
(assign) private instance variables of a class. Restricting access to instance variables via getter and
setter methods allows the methods to control what values are assigned (such as not allowing an
assignment of 0 to the denominator), and how they are represented when retrieved. Thus, the
 instance variables of a class are generally made private, and the methods of the class generally
made public.

Encapsulation is a means of bundling together instance variables and methods to form a given
type, as well as a way of restricting access to certain class members.

 10.2.2 Defining Classes in Python

 In this section, we develop a Python Fraction class.

 Defining a Fraction Class

 The fi rst stage in the development of a Fraction class is given in Figure 10-5.
 The class keyword is used to define classes, much as def is used for defining func-

tions. All lines following the class declaration line are indented. Instance variables are initial-
ized in the __init__ special method. (We discuss special methods in the following.) Being
private, instance variables __numerator and __denominator are not meant to be directly
 accessed.

 ... frac1.__numerator

 AttributeError: 'Fraction' object has no attribute '__numerator'

 In actuality, however, private members are accessible if written as follows:

 ... frac1._Fraction__numerator

c10Object-OrientedProgramming.indd Page 387 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 387 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

388 CHAPTER 10 Object-Oriented Programming

 To understand this, all private class members are automatically renamed to begin with a sin-
gle underscore character followed by the class name. Such renaming of identifi ers is called
 name mangling . Unless the variable or method is accessed with its complete (mangled) name,
it will not be found. Name mangling prevents unintentional access of private members of
a class, while still allowing access when needed.

 The methods of a class, as we have seen, are essentially functions meant to operate on the
instance variables of the class. In Python, functions serving as a method must have an extra fi rst
parameter, by convention named self. This parameter contains a reference to the object in-
stance to which the method belongs. When a method accesses any other member of the same
class, the member name must be preceded by 'self' (self.__numerator). Getter and set-
ter methods are also defi ned. Note that setDenominator raises an exception when passed a
value of 0 to ensure that Fraction objects cannot be set to an invalid value. We further discuss
special methods in Python next.

FIGURE 10-5 Initial Fraction Class

c10Object-OrientedProgramming.indd Page 388 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 388 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 389

 Special Methods in Python

 Method names that begin and end with two underscore characters are called special methods in
Python. Special methods are automatically called. For example, the __init__ method of the
Fraction class developed is automatically called whenever a new Fraction object is created,

 frac1 5 Fraction(1,2) – creates new fraction with value 1/2
 frac2 5 Fraction(6,8) – creates new fraction with value 6/8

 The values in parentheses are arguments to the __init__ method to initialize a new Fraction
 object to a specifi c value. Note that although there are three parameters defi ned (self, numerator,
denominator), the fi rst is always implied. Therefore, only the remaining arguments (numerator
and denominator) are explicitly provided when creating a Fraction object.

 Two other special methods of Python are __str__ and __repr__. These methods are
used for representing the value of an object as a string. The __str__ method is called when an
object is displayed using print (and when the str conversion function is used.) The __repr__
function is called when the value of an object is displayed in the Python shell (when interactively
using Python). This is demonstrated below.

 class DemoStrRepr(): ... s 5 DemoStrRepr()

 def __repr__(self): ... print(s)

 return '__repr__ called' __str__ called

 def __str__(self): ... s

 return '__str__ called' __repr__ called

 The difference in these special methods is that __str__ is for producing a string representa-
tion of an object’s value that is most readable (for humans), and __repr__ is for producing a
string representation that Python can evaluate. If special method __str__ is not implemented,

The class keyword is used to defi ne a class in Python. Class members beginning with two
underscore characters are intended to be private members of a class. This is effectively accom-
plished in Python by the use of name mangling.

L E T ’ S T R Y I T

Enter and execute the following Python class. Then enter the given instructions within the Python shell and
observe the results.

class SomeClass(object):

def __init__(self):
self.__n 5 0
self.n2 5 0

... obj 5 SomeClass()

... obj.__n
???

... obj._SomeClass__n
???

... obj.n2
???

c10Object-OrientedProgramming.indd Page 389 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 389 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

390 CHAPTER 10 Object-Oriented Programming

 Adding Arithmetic Operators to the Fraction Class

 Special methods used to provide arithmetic operators for class types are shown in Figure 10-7.

L E T ’ S T R Y I T

Enter and save the following class defi nition in a Python fi le and execute it. Then enter the given instructions
in the Python shell and observe the results.

class XYcoord(object): ... coord 5 XYcoord(5, 2)
 ... print(coord)

def __init__(self, x, y): ???
self.__x 5 x
self.__y 5 y ... str(coord)

 ???

def __repr__(self):
return '(' 1 str(self.__x) 1 ',' \ ... coord

1 str(self.__y) 1 ')' ???

Special methods in Python have names that begin and end with two underscore characters, and
are automatically called in Python.

FIGURE 10-6 Additional Special Method repr

 We will look at more Python special methods in the next section.

then special method __repr__ is used in its place. An implementation of __repr__ for the
Fraction class is given below.

 def __repr__(self):

 return str(self.__numerator) 1 '/' 1 str(self.__denominator)

 This, therefore, will display Fraction values as we normally write them:

 ... frac1 5 Fraction(3,4) ... print('Value of frac1 is', frac1)

 ... frac1 Value of frac1 is 3/4

 3/4

 We give special method __repr__ of the Fraction class (to also serve as the implementation of

special method __str__) in Figure 10-6.

c10Object-OrientedProgramming.indd Page 390 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 390 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 391

FIGURE 10-7 Arithmetic Operator Special Methods

 The expression frac1 1 frac2, for example, evaluates to the returned value of the __add__
method in the class, where the left operand (frac1) is the object on which the method call is made:
frac1.__add__(frac2). Arithmetic methods for the Fraction class are given in Figure 10-8.

FIGURE 10-8 Arithmetic Operators of the Fraction Class

 Special method __add__ is implemented to add the numerator and denominator of each fraction
based on a common denominator as shown below,

 2/4 1 1/5 ➝ (2 * 5)/(4 * 5) 1 (1 * 4)/(5 * 4)

 ➝ 10/20 1 4/20

 ➝ 14/20

 ➝ 7/10 (after call to method reduce)

c10Object-OrientedProgramming.indd Page 391 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 391 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

392 CHAPTER 10 Object-Oriented Programming

FIGURE 10-9 Relational Operator Special Methods

L E T ’ S T R Y I T

Enter and save the following class defi nition in a Python fi le, and execute. Then enter the given instructions
in the Python shell and observe the results.

class XYcoord(object): ... coord_1 5 XYcoord(4,2)

 ... coord_2 5 XYCoord(6,10)
def __init__(self, x, y): ... coord_1 1 coord_2

self.__x 5 x ???
self.__y 5 y

... coord 5 coord_1 1 coord_2
def __repr__(self) ... print(coord)

return '(' 1 str(self.__x) 1 ',' \ ???
1 str(self.__y) 1 ')'

def __add__(self, rCoord):
new_x 5 self.__x 1 rCoord.__x
new_y 5 self.__y 1 rCoord.__y

return XYCoord(new_x, new_y)

 Note that a reduce method of the class (not given) is called on the resulting fraction to return the
result in simplest form. Thus, rather than returning 14/20, the value 7/10 is returned.

 The __sub__ special method has a very simple and elegant implementation. It simply adds
the fi rst fraction to the negation of the second fraction, relying on the implementation of the
__add__ and __neg__ methods. Finally, the __mul__ special method multiplies the numera-
tors of each of the fractions, as well as the denominators of each, building a new Fraction object
from the results, and reducing the new fraction to simplest form by call to method reduce. (We
omit the special method for the division operator here.)

 Just as with the other arithmetic operators, a new (negated) Fraction object is returned by
the __neg__ method, rather than the original fraction object being altered. To negate a fraction,
reassignment would be used instead,

 frac1 5 2frac1

 Adding Relational Operators to the Fraction Class

 We have yet to add the capability of applying relational operators to Fraction objects. The set of
relational operator special methods that can be implemented is shown in Figure 10-9.

c10Object-OrientedProgramming.indd Page 392 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 392 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 393

 The special methods for providing the relational operators of the Fraction class are given in

Figure 10-10.

FIGURE 10-10 Relational Operators of the Fraction Class

c10Object-OrientedProgramming.indd Page 393 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 393 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

394 CHAPTER 10 Object-Oriented Programming

There exist special methods for the arithmetic and relational operators in Python that can be
 implemented to determine how these operators are evaluated for a given object type.

 10.2.3 Let’s Apply It—A Recipe Conversion Program

 The following Python program (Figure 10-12) will convert the measured amount of ingredients of
recipes, based on a provided conversion factor, to vary the number of servings. The program utilizes
the following programming features:

 ➤ programmer-defi ned class

 Example execution of the program is given in Figure 10-11.
 The program makes use of the fraction class module developed

in section 10.2.2, imported on line 3 . Since there is only one item to
be imported (the class), the choice of using import Fraction vs.
from Fraction import * only affects whether Fraction objects
are created as frac1 5 Fraction.Fraction(1,2) for the
fi rst form of import, or frac1 5 Fraction(1,2) for the second

 Each of the special methods for the relational operators is implemented. For example, frac1 ,
frac2 is determined by call to method __lt__ on the fi rst object, frac1, with the second object,
frac2, passed as an argument,

 frac1.__lt__(frac2)

 In order to compare two fractions, they must have common denominators. Therefore, method __lt__
fi rst checks if the denominators are equal. If so, then the result of self.__getNumerator() ,
rfraction.__getNumerator()is returned. Otherwise, since we do not want the two fractions
to be altered as a result of the comparison, a copy of each is made, assigned to temp_frac1 and
temp_frac2. In order to convert them common denominators, the numerator and denominator of
each is multiplied by the denominator of the other. This is accomplished by call to private method
__adjust. Then, the Boolean result temp_frac1.__getNumerator() , temp_frac2.__
getNumerator() is returned.

 Most other relational operators are grounded in the implementation of the less than special
method, __lt__. The implementation of special method __le__ (less than or equal to) is based
on the fact that a ,5 b is the same as not (b , a). Special method __neq__ (not equal to) is sim-
ply implemented as not (a 5 b). Finally, special method __gt__ (greater than) is implemented as not
a ,5 b, and special method __ge__ (greater than or equal to) is implemented as not (a , b). Finally,
the implementation of methods copy, reduce, and __adjust are left as an exercise at the end of
the chapter.

 The Fraction type developed represents the power of abstraction, as implemented through
the use of encapsulation. The Fraction class contains two integer instance variables and an as-
sociated set of methods. That is what it “really” is. Through the use of information hiding, however,
the client is provided an abstract view, which, for all intents and purposes, is a Fraction type. The
Fraction class can be defi ned within its own Python fi le, and thus serve as a module that can be
easily imported and used by any program.

c10Object-OrientedProgramming.indd Page 394 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 394 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 395

form. We therefore choose the from-import form of import. Note that the methods of a class are
called the same way regardless of the form of import used to import the class.

 The main section of the program is in lines 106–143 . The program welcome is provided on
 lines 109–111 . The rest of the code is encompassed within a try block for catching any IOError
exceptions. There is one instance of an IOError exception that is raised by the program (in addi-
tion to those raised by the Python standard functions) in function getFile (lines 5–28).

 The getFile function prompts for a fi le name to open, returning both the fi le name and as-
sociated fi le object as a tuple. If, after three attempts the fi le fails to open successfully, an IOError
exception is raised containing the error message 'Exceeded number of open fi le attempts'
(line 26). Thus, a try block is used to catch each IOError exception raised by the open function.
When such an exception is caught, variable num_attempts is incremented (line 22) in the corre-
sponding exception handler (lines 21–23). When an input fi le is successfully opened, the loop termi-
nates and fi le_name and input_fi le are returned as a tuple.

 Back in the main module of the program, the user is prompted for the conversion factor (line 119).
Since all calculations in the program are executed as Fraction types, the conversion factor is scanned
(read) by call to function scanAsFraction (lines 45–84). If a single integer value (read as a string) is
entered, for example '2', then scanAsFraction returns the Fraction value 2/1. If a single frac-
tion value is entered, such as '2/4', then the Fraction value (in reduced form) 1/2 is returned. If an
integer and fraction are entered, such as '1 1/2', then a Fraction equal to the sum of both is
 returned, 3/2.

 Function scanAsFraction returns, as a Fraction value, the total value of the initial part
of the parameter string passed.

 4 1/2 cups all-purpose fl our

FIGURE 10-11 Execution of the Recipe Conversion Program

⎛ ⎜ ⎜ ⎝

c10Object-OrientedProgramming.indd Page 395 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 395 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

396 CHAPTER 10 Object-Oriented Programming

FIGURE 10-12 Recipe Conversion Program (Continued)

c10Object-OrientedProgramming.indd Page 396 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 396 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 397

FIGURE 10-12 Recipe Conversion Program (Continued)

c10Object-OrientedProgramming.indd Page 397 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 397 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

398 CHAPTER 10 Object-Oriented Programming

 First, variable completed_scan is initialized to False (line 53) and set to True when the initial
digit (and '/') characters have been scanned. Then variable value_as_frac (line 54) is initialized
to the Fraction value 0/1, so that it can be used to accumulate values (line 73) when both an inte-
ger and a fractional value are found, as shown. Within the while loop, index variable k is initialized
to 0 (line 57). Following that, k is incremented to scan past each character in line that is a digit
character (as long as k is less than the length of the line). This places k at the index location of the fi rst
non-digit. Then, the range of characters scanned so far, line[0:k], is converted to an integer type
and assigned to numerator. The next character is then scanned for the ‘/’ character (indicating that
a fraction notation exists), as long as the end of line has not been reached (that is, k , len(line)).
If the slash character is found, then there is a denominator to go with the numerator value just scanned.
Thus, the following characters are scanned until a non-digit is found (lines 66–67).

 The current location of k is fi rst stored in variable start (line 65) so that the beginning of
the new substring of digits can be scanned. At that point, denominator is set to the integer value

FIGURE 10-12 Recipe Conversion Program

c10Object-OrientedProgramming.indd Page 398 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 398 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.2 Encapsulation 399

of the digits from index start to k21 (line[start:k]. Then, on line 73 , variable value_
as_frac is set to the current value of value_as_frac plus the newly created Fraction
 object with the current values of numerator and denominator. If a slash character is not
found, then denominator is set to one (line 71) so that the integer value scanned, for example 2,
is returned as 2/1.

 On line 76 a check is made to determine if the end of the line has been reached. (This would
not normally be true of a recipe line, but would be True when scanning a conversion value.) If
the end has been reached, then completed_scan is set to True, which terminates the main
while loop, causing the fi nal return statement to return the scanned value. If, however, the end of
the line has not been reached, the next character is checked to see if it is a digit. If it is, then the
while loop at line 56 iterates again to scan the following value, which is expected to be a frac-
tional value. If the next character is not a digit, then completed_scan is set to True (line 82),
causing the function to return the (non-fractional) value scanned.

 In lines 123–124 of the main module, output_fi le_name is assigned to the name of the
input fi le name and prepended with the string 'conv_', and fi le object output_fi le is created
(where the converted recipe is written). Following that, the process of converting each line of the
recipe fi le begins. First, empty_str is initialized and the fi rst line of the recipe fi le is read as
recipe_line (lines 127–128). The while loop at line 130 then converts the current recipe line
by a call to convertLine. Function convertLine (lines 86–104) fi rst checks that the fi rst
character of the line is a digit. If not, then the line is assigned unaltered to conv_line on line 102
(since there is no initial numerical value to convert). If a digit is found, then blank_char is initial-
ized (line 94), and frac_meas is set to the Fraction value returned by scanAsFunction
(for the given conversion factor). If the denominator of frac_meas is found to be 1 (e.g., 2/1),
then frac_meas is set to the value of the numerator (2), otherwise it is left as is. Variable line is
set to the remaining part of the line by call to removeMeasure (line 100), and conv_line is set
to the string representation of frac_meas concatenated with a blank and the remaining part of the
original line, and returned. Finally, function removeMeasure (lines 30–43) scans past the initial
digit, blank, and slash characters, returning the remaining part of the line.

 Self-Test Questions

 1. Encapsulation bundles together instance variables and methods of a class, and allows certain
members of the class to be made inaccessible by use of keyword private in Python. (TRUE/
FALSE)

 2. Private members of a class are not meant to be directly accessed by methods of other classes.
(TRUE/FALSE)

 3. Methods of a class that provide access to privates members of the class are called
________________ and ________________.

 4. Which of the following are special methods in Python?
 (a) Getter and setters
 (b) Method names that begin and end with two underscore characters
 (c) Methods that are part of any Python built-in type

c10Object-OrientedProgramming.indd Page 399 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 399 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

400 CHAPTER 10 Object-Oriented Programming

FIGURE 10-13 Class Hierarchy

 5. Which of the following is a special method for defi ning an operator in a class?
 (a) __init__
 (b) __add
 (c) __add__

 ANSWERS: 1. False, 2. True, 3. getters/setters, 4. (b), 5. (c)

 10.3 Inheritance

 The true capabilities of object-oriented programming present themselves when inheritance of classes
is employed. In this section, we explore the use of inheritance in Python.

 10.3.1 What Is Inheritance?

 Inheritance , in object-oriented programming, is the ability of a class to inherit members of another
class as part of its own defi nition. The inheriting class is called a subclass (also “derived class” or
“child class”), and the class inherited from is called the superclass (also “base class” or “parent
class”). Superclasses may themselves inherit from other classes, resulting in a hierarchy of classes
as shown in Figure 10-13 (inherited class members are in gray).

 Class A is the superclass of all the classes in the fi gure. Thus, subclasses B and E each inherit
variable var1 and method method1 from Class A. In addition, Class B defi nes variable var2 and
method method2, and Class E defi nes method5. Since Class C is a subclass of Class B, it inher-
its everything in Class A and Class B, adding var3 and method3 in its own defi nition. And since
Class D is also a subclass of Class B, it inherits everything in Class A and Class B, also defi ning
method4.

c10Object-OrientedProgramming.indd Page 400 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 400 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.3 Inheritance 401

 Mammals are a type of animal. Therefore, they have the characteristic of being multicellular. In
addition, they have the characteristics of having hair, mammary glands, and vertebrae. Primates
(which include chimpanzees) are a type of mammal (and thus a type of animal). Therefore, they
have the characteristics of mammals, as well as having large brains and opposable thumbs. Pro-
boscidea (which includes elephants) are a type of mammal (and a type of animal) and thus have
the characteristics of mammals, as well as having some form of trunk and being plant eaters.
Thus, each classifi cation describes a subtype of the classifi cations from which it derives. For
 example, consider the following simple story.

 Andy was very interested in animals. He had many books about them, and went to see
animals whenever he had the chance.

Inheritance in object-oriented programming is the ability of a subclass (also “derived class” or
“child class”) to inherit members of a superclass (also “base class” or “parent class”) as part of
its own defi nition.

FIGURE 10-14 Hierarchy of Characteristics of Animals

 10.3.2 Subtypes

 A subtype is something that can be substituted for and behave as its parent type (and its parent’s
parent type, etc.). For example, consider the characteristic features within the Animal Kingdom in
Figure 10-14.

c10Object-OrientedProgramming.indd Page 401 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 401 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

402 CHAPTER 10 Object-Oriented Programming

 Because chimpanzees are a type of animal, an alternate version of the story can be generated by
substituting “chimpanzee” for “animal,”

 Andy was very interested in chimpanzees. He had many books about them, and went to
see chimpanzees whenever he had the chance.

 Now consider the following story,

 Andy was very interested in chimpanzees. He had many books about them, and loved to
watch the chimpanzees swing from tree to tree.

 In this case, if we substitute another animal, “elephant,” for “chimpanzee,” we get the following
story,

 Andy was very interested in elephants. He had many books about them, and loved to
watch the elephants swing from tree to tree.

 Because an elephant is not a chimpanzee, this version of the story does not make sense. Note, how-
ever, that since an elephant is a type of animal, “elephant” can be substituted in the original story just
as chimpanzee was and make sense. We next look at how to create subclasses in Python.

A subtype is something that can be substituted for and behave as its parent type (and its parent
type, etc.).

 10.3.3 Defining Subclasses in Python

 We now look at how to employ the object-oriented programming feature of inheritance in Python.
We give an example of an “exploded” string class as a subclass of the built-in string class, and look
at whether an exploded string can be substituted as a string type.

 Class Names of the Built-In Types in Python

 Recall that all values in Python are objects. Thus, there exists a class defi nition for each of the built-
in types. To determine the type (class name) of a particular value (object) in Python, the built-in
function type can be used.

 ... type(12) ... type(12.4) type('')

 , class 'int' . , class 'fl oat' . , class 'str' .

 ... type([]) ... type(()) type({})

 , class 'list' . , class 'tuple' . , class 'dict' .

 The resulting expression , class classname . gives the associated class name for any value.
(We use some empty values here, such as the empty string, but the type of any value can be

c10Object-OrientedProgramming.indd Page 402 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 402 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.3 Inheritance 403

 determined this way.) A detailed description of a built-in class can be displayed by use of the
help function,

 ... help(int) ... help(str)

 Partial display of the str built-in type is given in Figure 10-15.

FIGURE 10-15 Description of Built-in String Class

 For programmer-defi ned classes, such as the Fraction class developed earlier, we use the name
of the class (with any required arguments) for creating objects of that type,

 frac1 5 Fraction(1,2)

 For built-in types such as the str type, object instances are generally created using a more conve-
nient syntax. For example, to create a new string value (object), we simply put quotes around the
desired characters of the string,

 name 5 'John Smith'

c10Object-OrientedProgramming.indd Page 403 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 403 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

404 CHAPTER 10 Object-Oriented Programming

 For creating a new list, the list elements are surrounded by square brackets,

 nums 5 [10,20,30,40]

 We have seen a similar means of creating tuples, dictionaries, and sets. Knowing the class names of
the built-in types, we can alternatively create object instances of each as follows,

 ... int(1) ... int('1') ... int(1.2)

 1 1 1

 ... list([1, 2, 3]) ... list((1,2,3)) ... list('123')

 [1, 2, 3] [1, 2, 3] [1, 2, 3]

 When using the class name of a built-in type to create a new object instance, arguments of various
types can be used to initialize its value. For example, an integer can be created from a provided
string or fl oat value; a list can be created from a provided tuple or string. Finally, we note that the
built-in class names in Python contain only lowercase letters. Programmer-defi ned classes, such
as Fraction however, are by convention named with a beginning uppercase letter.

L E T ’ S T R Y I T

Enter the following in the Python shell and observe the results.

... type(1) ... type([]) ... help(int)

??? ??? ???

... type(1.5) ... type([1,2,3]) ... help(fl oat)
??? ??? ???

... type('') ... type(()) ... help(list)
??? ??? ???

... type('Hi') ... type((1,2,3)) ... help(tuple)
??? ???

Built-in function type can be used to determine the type (class name) of any value in Python.
Built-in function help can be used to get the class description of a built-in type.

 Defining an Exploded String Type

 Given the built-in string class, we can easily create a new string type that is identical to the string
class, and in addition provide the option of being “exploded.” By an exploded string is meant a string
with spaces (blank characters) between all characters, for example, 'H e l l o'. We call this
new class ExplodedStr, and give its defi nition in Figure 10.16.

 When defi ning a subclass, the name of the class is followed by the name of the parent class
within parentheses,

 class ExplodedStr(str):

c10Object-OrientedProgramming.indd Page 404 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 404 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.3 Inheritance 405

 Our new exploded string type can be used as shown below.

 ... title 5 ExplodedStr('My Favorite Movies')

 ... print(title.explode())

 M y F a v o r i t e M o v i e s

 Let’s see how this works. The ExplodedStr class does not defi ne any instance variables of
its own. Thus, its __init__ method simply calls the __init__ method of the built-in str
class to pass the value that the string is to be initialized to. If an initial value is not provided, the
method has a default argument assigned to the empty string,

 def __init__(self, value 5 ''):

 # call to init of str class

 str.__init__(value)

 Here str.__init__(value) is used to call the str class’s__init__ method.

FIGURE 10-16 ExplodedStr Type as a Subclass of the Built-in str Class

c10Object-OrientedProgramming.indd Page 405 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 405 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

406 CHAPTER 10 Object-Oriented Programming

 Method explode returns the exploded version of the string. First, a check is made to see if the
string is the empty string. If so, then the reference self is returned, thus returning its unaltered value.
Otherwise, a new string is created (temp_str), equal to the original string referenced by self, with a
blank appended after every character except the last. A for loop is used for this construction,

L E T ’ S T R Y I T

For the following underlined string uStr class defi nition, enter and save it in a Python fi le, and execute.
Then enter the associated instructions within the Python shell and observe the results.

class uStr(str): ... reg_str 5 'Hello'
 ... u_str 5 uStr('Hello')

def __init__(self, u_str):

str.__init__(u_str) ... reg_str
 ???

def underline(self): ... u_str
 ???

return str.__str__(self) 1 '\n' 1 \

format('', '2,' 1 str(len(self))) ... u_str.underline()
 ???

 ... reg_str 55 u_str
 ???

 for k in range(0, len(self) 2 1):

 temp_str 5 temp_str 1 self[k] 1 blank_char

 Since the range function is called with parameters 0 and len(self) – 1, all except the last
character of the original string is appended by this loop (since the last character should not have
a blank character appended after it). Finally, the newly constructed exploded string (temp_str)
is returned.

 We can place the ExplodedStr class in its own module called exploded_str and im-
port it when needed. Testing this new string type, we see that it behaves as desired.

 ... reg_str 5 'Hello' defi ning a regular string
 ... ex_str 5 ExplodedStr('Hello') defi ning an exploded string

 ... reg_str value of regular string
 'Hello'

 ... ex_str value of exploded string
 'Hello'

 ... ex_str.explode() call to explode method
 H e l l o

 ... reg_str 55 ex_str comparing the strings
 True

 ...

c10Object-OrientedProgramming.indd Page 406 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 406 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.3 Inheritance 407

 We see that exploded strings can be used as a regular string or in exploded form. Thus, it is only
the added behavior of being able to be exploded that is different, not its value. As a result, the
ExplodedStr subclass serves as a subtype of the built-in string class. We discuss the related
issue of polymorphism next.

When defi ning a subclass, the name of the class is followed by the name of the parent class within
parentheses.

 The implementation of the MixedFraction class is given in Figure 10-18. The Fraction class
is imported on line 3 using the from-import form of import. This class provides the (special)
methods for performing arithmetic and relational operations on fractions. Therefore, the operations

 10.3.4 Let’s Apply It—A Mixed Fraction Class

 The following MixedFraction class is implemented as a subclass (subtype) of the Fraction
class developed earlier. The program utilizes the following programming features:

 The Fraction class that we developed only represents values as common fractions, that is, with
just a numerator and denominator. Thus, the value one and a half is represented as 3/2. Mixed (com-
pound) fractions denote values with a separate whole value and (proper) fraction—3/2 is represented
as 1 1/2. In certain applications, such as in the recipe conversion program developed earlier, the
latter representation is preferable. An example of this is given below for a conversion of the
chocolate chip cookie recipe. Example testing of the Fraction class is shown in Figure 10-17.

➤ Inheritance of classes

FIGURE 10-17 Interactive Testing of the MixedFraction Class

c10ObjectOrientedProgramming.indd Page 407 05/11/12 1:44 PM user-019Ac10ObjectOrientedProgramming.indd Page 407 05/11/12 1:44 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

408 CHAPTER 10 Object-Oriented Programming

of addition, subtraction, multiplication, and comparison on mixed fractions can be accomplished by
the inherited methods of the Fraction class.

 The difference between the Fraction class and the MixedFraction class is in how frac-
tion values are displayed. For example, a Fraction object with the value 3/2 is displayed by the

FIGURE 10-18 MixedFraction Class (Continued)

c10Object-OrientedProgramming.indd Page 408 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 408 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.3 Inheritance 409

FIGURE 10-18 MixedFraction Class

MixedFraction class as 1 1/2. For each object instance, however, the same values are stored—
as an integer numerator and integer denominator value, and thus can be operated on the same way.

 How fractions are displayed is determined by the implementation of the __str__ special
method. In the Fraction class, the numerator and denominator values are simply concate-
nated with a ‘/’ between them. In the MixedFraction class, however, the fraction value is
reconstructed in three parts, a whole number part (possibly 0), and a proper fraction part in
which the numerator is less than the denominator. How the fraction is displayed depends on
these three values. If, for example, the whole number part is 0, then only a proper fraction is
displayed,

 0 1 1/2 displayed as 1/2

c10Object-OrientedProgramming.indd Page 409 23/10/12 7:55 AM user-019Ac10Object-OrientedProgramming.indd Page 409 23/10/12 7:55 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

410 CHAPTER 10 Object-Oriented Programming

 If the denominator is 1, then only the numerator is displayed,

 4/1 displayed as 4

 Otherwise, both the whole number part and the associated proper fraction part are displayed,

 5/4 displayed as 1 1/4

 The implementation of special method __str__ in the MixedFraction class is on lines 18–
49 . Variables empty_str and blank are initialized on lines 19–20 . These are used in the con-
struction of the mixed-fraction string. On line 22 a copy is made of the object’s value by use of
the copy method of the Fraction class. This is so that the value of the fraction can be reduced
to its simplest form, in preparation for the conversion of the fraction value to a whole number and
proper fraction part. The reduction is performed by the reduce() method inherited from the
Fraction class.

 Once the (temporary) fraction object is reduced to simplest terms, it can be determined
whether there is a whole number part to be displayed as part of the fraction value. This depends
on whether the numerator is greater than the denominator. Thus, on line 25 , variable whole_num
is initialized to 0. The numerator and denominator values of the temporary displayFrac
 object are set to variables numer and denom, respectively (lines 26–27). What remains is to
determine how the fraction value should be displayed based on these three values. On line 29 ,
if variable numer is 0, then the fraction value is also 0; therefore '0' is returned (line 30). If the
denominator in variable denom is 1, then the fraction value can be displayed as a single integer
value (lines 32–33).

 Next, special method __str__ handles the proper display of negative fractions. For exam-
ple, 24/3 is stored as negative integer value 4 and positive integer value 3. When this value is
displayed in mixed fraction form, the negative sign should appear as follows,

 2 1 1/3

 Thus, on line 35 , a check is made to determine if the numerator value in numer is negative. If so,
then numer is set to its absolute value (line 36). This prevents a negative sign with the numerator
from being displayed. Because a negative sign will need to appear with the whole number part of the
displayed value, variable sign is set the dash character (line 37). If, on the other hand, the numera-
tor is found to be nonnegative, then variable sign is set to the empty string (line 39).

 In addition to checking the sign of the numerator, a check is made to see if the numerator is
greater than the denominator (line 41). If so, then there needs to be a separate whole number value
displayed along with the (proper) fraction value. Thus, if the numerator is found to be greater, then
variable whole_num is set to the result of the integer division of the absolute value of the numera-
tor by the absolute value of the denominator (line 42). Absolute values are used because the sign of
the displayed result has already been determined (stored in variable sign). The numerator is then
set to the remaining fractional part by use of the modulo operator (line 43). Thus, for 4/3, whole_
num is set to 1 (4 // 3), and numer is set to 1 (4 % 3). Finally, if the whole number part of the
value is 0, then a string containing only the proper fraction is returned (line 46). If not 0, then a
string of the form ‘1 1/3’ is constructed and returned (lines 48–49).

 The remaining part of the MixedFraction class provided the needed getters and setters
for mixed fractions (lines 56–65). It also provides a set of arithmetic operators and arithmetic
methods to replace those inherited from the Fraction class (lines 69–87). Finally, private method
__createMixedFraction is defi ned as a private supporting method called by the arithmetic
operators in the class.

c10Object-OrientedProgramming.indd Page 410 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 410 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.4 Polymorphism 411

FIGURE 10-19 Polymorphic Shape Class

 Self-Test Questions

 1. A class is made a subclass of another class by the use of _______________.

 2. Which of the following contains terms that mean the same thing?
 (a) Parent class, derived class
 (b) Parent class, base class
 (c) Subclass, base class

 3. All subclasses are a subtype in object-oriented programming. (TRUE/FALSE)

 4. When defi ning a subclass in Python that is meant to serve as a subtype, the subtype Python
keyword is used. (TRUE/FALSE)

 5. Built-in function type can be used to,
 (a) Determine the type of only the built-in types in Python
 (b) Determine the type of only programmer-defi ned types (classes)
 (c) Determine the type of all types

 ANSWERS: 1. inheritance, 2. (b), 3. False, 4. False, 5. (c)

 10.4 Polymorphism

 Polymorphism is a powerful feature of object-oriented programming languages. It allows for the
implementation of elegant software that is well designed and easily modifi ed. We explore the use of
polymorphism in this section.

 10.4.1 What Is Polymorphism?

 The word polymorphism derives from Greek meaning “something that takes many forms.” In object-
oriented programming, polymorphism allows objects of different types, each with their own spe-
cifi c behaviors, to be treated as the same general type. For example, consider the Shape class and
its subclasses given in Figure 10-19.

 All Shape objects have an x, y coordinate (with corresponding getter and setter methods). In
addition, Shape objects can also calculate their areas. How a shape’s area is computed, however,

c10Object-OrientedProgramming.indd Page 411 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 411 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

412 CHAPTER 10 Object-Oriented Programming

 Subclasses of the Shape class must implement the calcArea method, otherwise a Not-
ImplementedError exception is raised. A class in which one or more methods are unimple-
mented (or only implemented to raise an exception) is called an abstract class . Figure 10-21 gives
Circle, Square, and Triangle subclasses of the Shape class.

FIGURE 10-21 Subclasses Circle, Square, and Triangle

depends on what shape it is. Thus, it is not possible to defi ne a calcArea method in the Shape
class that serves the purposes of all types of shapes. On the other hand, we want all shape types to
have a calcArea method. Therefore, we add an unimplemented version of the calcArea method
to the Shape class as shown in Figure 10-20.

FIGURE 10-20 Abstract Shape Class

c10Object-OrientedProgramming.indd Page 412 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 412 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.4 Polymorphism 413

L E T ’ S T R Y I T

For the following class defi nitions, enter and save them in a single Python fi le, and execute. Then enter the
associated instructions within the Python shell and observe the results.

class Bird(object): ... b1 5 BlueJay(1)
def __init__(self, w): ???

print('__init__ of Bird Class called')
self.__weight 5 w ... b2 5 Cardinal(1.4)
 ???

def getWeight(self):
return str(self.__weight) 1 'ounces' ... b3 5 BlackBird(3.5)

 ???
def getColor(self):

raise NotImplementedError(\
'Method color not implemented') ... b1.getWeight()
 ???

class BlueJay(Bird):
def __init__(self, w): ... b2.getWeight()

Bird.__init__(self, w) ???

def getColor(self): ... b3.getWeight()
return 'Blue' ???

class Cardinal(Bird):
def __init__(self, w): ... b1.getColor()

Bird.__init__(self, w) ???

def getColor(self): ... b2.getColor()
return 'Red' ???

class BlackBird(Bird): ... b3.getColor()
def __init__(self, w): ???

Bird.__init__(self, w)
 ... b4 5 Bird(2.0)

def getColor(self): ... b.getColor()
return 'Black'

 Each of the subclasses contains an __init__ method, in which the fi rst two arguments provide
the x,y location of the shape (within a graphics window) and the third argument indicates its
size. Each fi rst calls the __init__ method of the Shape class with arguments x,y to set its
location, since the x,y values are maintained by the Shape class. Note that methods getXYLoc
and setXYLoc are not defi ned in the subclasses, as they are inherited from the Shape class.

 The size of each shape is handled differently, however. In the Circle class size is stored as
the radius, and in the Square and Triangle classes it is stored as the length of each side. (The
 Triangle class represents only equilateral triangles, those in which each side is of the same
length.) Given these classes, we can now see how polymorphism works in Python.

 Suppose that there was a list of Shape objects for which the total area of all shapes combined
was to be calculated,

 shapes_list 5 (circle1, circle2, square1, triangle1, triangle2)

 Because each implements the methods of the Shape class, they are all of a common general type,
and therefore can be treated in the same way,

 total_area 5 0

 for shape in shapes_list:

 total_area 5 total_area 1 shape.calcArea()

c10Object-OrientedProgramming.indd Page 413 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 413 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

414 CHAPTER 10 Object-Oriented Programming

 10.4.2 The Use of Polymorphism

 To fully appreciate the benefi ts of polymorphism, let’s consider the development of a program
for manipulating geometric shapes. We consider a graphical environment in which classes
 Circle, Square, and Triangle do not have a common set of methods, and therefore cannot
be treated polymorphically.

 We assume that we have a graphics program in which the user selects the geometric shape that
they want (stored in variable selected_shape) for which the appropriate object type is created:

 if selected_shape 55 1:

 cir 5 Circle(0, 0, 1)

 elif selected_shape 55 2:

 sqr 5 Square(0, 0, 1)

 elif selected_shape 55 3:

 tri 5 Triangle(0, 0, 1)

 Next, the geometric object is displayed. Since each object has its own set of methods, the appro-
priate method must be called. This is determined by use of another if statement:

 if selected_shape 55 1:

 cir.drawCircle()

 elif selected_shape 55 2:

 sqr.drawSquare()

 elif selected_shape 55 3:

 tri.drawTriangle()

 The user may then request that the area of the graphic object be displayed. Since each of the Circle,
Square, and Triangle classes have a different method for calculating their area, then an if
statement must again be used:

 if selected_shape 55 1:

 area 5 cir.calcCircleArea()

 elif selected_shape 55 2:

 area 5 sqr.calcSquareArea()

 elif selected_shape 55 3:

 area 5 tri.calcTriangleArea()

 In Python, it is not because Circle, Square, and Triangle are subclasses of the Shape class
that allows them to be treated in a similar way. It is because the classes are subtypes of a common
parent class. (Actually, in Python, any set of classes with a common set of methods, even if not
subclasses of a common type, can be treated similarly. This kind of typing is called duck typing—
 that is, “if it looks like a duck and quacks like a duck, then it’s a duck.”)

In object-oriented programming, polymorphism allows objects of different types, each with their
own specifi c behaviors, to be treated as the same general type.

c10Object-OrientedProgramming.indd Page 414 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 414 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.4 Polymorphism 415

 As before, the unimplemented methods of the class raise a NotImplementedError exception.
In this case, each of the Circle, Square, and Triangle classes are defi ned as subclasses of the
Shape class. Therefore, each is required to have methods for the unimplemented methods of the
Shape class in order to be completely defi ned.

 We reconsider the implementation of a graphics program for manipulating geometric shapes.
We give side-by-side listing of nonpolymorphic vs. polymorphic code in Figure 10-23.

 One benefi t of polymorphism, as apparent from the example, is that the program code is much
more straightforward and concise. Without polymorphism, there is constant use of if statements that
clutters up the code. Another benefi t is that it allows the programmer to think at a more abstract level
(“this section of code needs to draw some kind of geometric shape ”) without having to keep in mind
specifi c entities such as circles, squares, and triangles (“this section of code needs to draw either a
circle, square, or triangle ”).

 The most signifi cant benefi t of polymorphism is that programs are much easier to maintain
and update. Suppose, for example, that our program had to be updated to also handle rectangles.

FIGURE 10-22 Methods of Circle, Square, and Triangle Classes Following Duck Typing

 And when the graphic object is repositioned, an if statement is again needed:

 if selected_shape 55 1:

 cir.moveCircle(x, y)

 elif selected_shape 55 2:

 sqr.moveSquare(x, y)

 elif selected_shape 55 3:

 tri.moveTriangle(x, y)

 The design of this program becomes rather tedious and inelegant. If statements abound throughout
the program. Let’s now look at how the same program can be written with the use of polymorphism.
First, we give a more complete Shape class in Figure 10-22.

c10Object-OrientedProgramming.indd Page 415 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 415 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

416 CHAPTER 10 Object-Oriented Programming

How much of the program would need to be changed? Without polymorphism, every if statement for
the selection of method calls would need to be updated. With polymorphism, however, only the fi rst
if statement that creates the appropriate type object would need to be changed to include a Rect-
angle type. The rest of the code would remain the same, as shown in Figure 10-24.

 In the end, selection needs to occur somewhere—either within the program (in the nonpoly-
morphic approach), or by the programming language (with the use of polymorphism).

Polymorphism allows the programmer to think at a more abstract level during program develop-
ment, and supports the development of programs that are easier to maintain and update.

FIGURE 10-23 Nonpolymorphic vs. Polymorphic Code

c10Object-OrientedProgramming.indd Page 416 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 416 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.5 Object-Oriented Design Using UML 417

 Self-Test Questions

 1. The term polymorphism in object-oriented programming refers to
 (a) The ability to treat various type objects in a similar way
 (b) The ability to change an object from one type to another type
 (c) The ability to have multiple objects of the same type treated as one

 2. The use of duck typing in Python results in
 (a) More restriction on the type values that can be passed to a given method
 (b) Less restriction on the type values that can be passed to a given method

 3. The biggest reason for the use of polymorphism in a program is
 (a) There is less program code to write
 (b) The program will result in a more elegant design, and thus will be easier to maintain and

update
 (c) It allows the programmer to think at a more abstract level

 ANSWERS: 1. (a), 2. (b), 3. (b)

 10.5 Object-Oriented Design Using UML

 We have mainly focused on object-oriented programming (OOP) . The fi rst step in the development of
any object-oriented program, however, is the development of an appropriate object-oriented design
 (OOD) . Next we discuss a specifi cation language for denoting an object-oriented design, referred to as
the Unifi ed Modeling Language .

 10.5.1 What Is UML?

 The Unifi ed Modeling Language (UML) is a standardized design specifi cation (modeling) lan-
guage for specifying an object-oriented design. The term “Unifi ed” comes from the fact that the
language is a unifi cation of three earlier object-oriented design modeling languages.

 UML is a language-independent, graphical specifi cation language. It contains numerous
types of graphical diagrams for expressing various aspects of an object-oriented design. One of
the most widely used graphical diagrams is called a “class diagram.” A class diagram specifi es the

FIGURE 10-24 Updated Polymorphic
Code for Incorporating a New
 Rectangle Type

c10Object-OrientedProgramming.indd Page 417 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 417 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

418 CHAPTER 10 Object-Oriented Programming

 The Representation of Classes

 A class is denoted in UML in three parts: a class name, a set of class attributes (instance variables),
and a set of methods, as given below.

A class is denoted in UML in three parts: a class name, a set of class attributes (instance vari-
ables), and a set of methods.

classes and their relationships of a given object-oriented design. We look at class diagrams in
UML next.

UML (“Unifi ed Modeling Language”) is a standardized language-independent, graphical modeling
language for specifying an object-oriented design.

 10.5.2 UML Class Diagrams

 In UML, class diagrams are used to express the static aspects of a design, such as the instance
variables and methods of individual classes, their visibility (i.e., public or private), and various
relationships between classes. Other UML diagrams, called interaction diagrams , are used to
represent the sequence of method calls between objects during program execution (the dynamic
aspect of a design). We omit discussion of interaction diagrams and look at the UML notation for
denoting the classes of an object-oriented design.

Class diagrams in UML are used to express the static aspects of an object-oriented design. Other
diagrams, called interaction diagrams, are used to represent the sequence of method calls be-
tween objects during program execution.

 We give the UML specifi cation for the abstract Shape class and the (concrete) Circle class in
Figure 10-25. The names of unimplemented (abstract) methods are denoted in italics.

 Initialization methods like __init__ in Python are named create() in UML. The types of
attributes (instance variables) and the return type of methods is indicated by : , type name . , for
any given type (for example, :Integer). The 1 and 2 symbols are used to specify if a given member
of a class has either public (1) or private (2) access.

c10Object-OrientedProgramming.indd Page 418 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 418 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.5 Object-Oriented Design Using UML 419

 In this example, it is assumed that the classes are part of a graphical design package, in which the
GraphicsWindow class creates and can manipulate a set of Shape objects. (We have left out the
details of the GraphicsWindow and Shape classes in this diagram.)

 The numbers above the association ends are referred to as multiplicity . The multiplicity of 1
at the GraphicsWindow end of the association and 0..* at the Shape end indicates that one
GraphicsWindow object may be associated with any number of (zero or more) Shape objects.
The “creates” label at the GraphicsWindow association end is referred to as a role name .
Role names are used to describe an association between two classes.

 Finally, the arrow denotes navigability . It indicates the direction of method calls made. In this
example, it shows that a GraphicsWindow object makes method calls (sends messages) to
Shape objects, and not the other way around.

FIGURE 10-25 UML Class Diagrams for Shape and Circle Classes

FIGURE 10-26 Association in UML

 Denoting Associations between Classes

 Associations are the most common relationship in UML class diagrams. An association between
two classes indicates that the methods of one class make calls to methods of the other, as shown in
Figure 10-26.

An association between two classes, denoted by a connecting solid line (and a possible arrow-
head) indicates that methods of one class call methods of the other.

 Denoting Subclass Relationships

 Subclasses are indicated in UML by use of a solid line with a closed arrow head from a subclass to
its superclass, as shown in Figure 10-27.

c10Object-OrientedProgramming.indd Page 419 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 419 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

420 CHAPTER 10 Object-Oriented Programming

 When denoting composition, a fi lled diamond head is used at the end of the line connected to the
containing class (the Shape class). With composition, it is implied that the containing class
(Shape) makes calls to the member class (XYCoord), and thus composition also connotes the
 relationship of association.

 We note that, since all values in Python are objects, every class with instance variables
 involves the use of composition, including the Shape class. However, the reason to indicate a
 non-built-in type as composition is that it provides a place to specify the details of the type.

FIGURE 10-28 Composition of Classes in UML

Subclass relationships in UML are indicated by use of a solid line with a closed arrow head from
a subclass to a superclass.

 This diagram indicates that the Circle class is a subclass of the abstract Shape class. (We again
have left out the details of both the Shape and Circle classes.) Note that multiplicity is not used
in subclass relationships.

 Denoting Composition vs. Aggregation

 Composition indicates a “part-of” relationship between classes (Figure 10-28). The containing ob-
ject is viewed as “owning” the contained object, of which the contained object is an integral part. For
example, the Shape class is comprised of two integers for holding the x,y location of any Shape
type. Because these two integer values are used together, we could develop an XYCoord class, in
which the Shape class contains an instance. This is an example of the use of composition.

 FIGURE 10-27 UML
Subclass Notation

c10Object-OrientedProgramming.indd Page 420 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 420 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.5 Object-Oriented Design Using UML 421

 An Example Class Diagram

 Although UML is a specifi cation language for modeling object-oriented software, it can be used to
specify any set of entities and their relationships. Modeling everyday concepts and entities can be
instructive in understanding UML. Figure 10-30 shows a UML class diagram modeling the concept
of a car.

 For every car, there is one engine, an integral part of a car. Thus, a composition relationship is
denoted between Car and Engine, with a multiplicity of 1 on each end. As with engines, tires are an
integral part of a car, so this is also indicated by composition, with a multiplicity of four tires for
each passenger car.

 A car is still a car with or without a driver. Therefore, a relationship of composition is not ap-
propriate here. There is simply an association between Car and Driver with multiplicity of 0..1 on
the driver end of the association. Since a Driver is a Person, a subclass relationship is denoted be-
tween the two.

 There is an association between Car and Person with a multiplicity of 0..*. Since the asso-
ciation denoted is not so apparent (owner? passenger?), we add the role name Passenger to the
Person end of the association to be more explicit. Finally, any number of Drivers may belong to
AAA (Automobile Association of America), denoted by the use of aggregation.

Composition is a “part of” relationship between classes denoted by a fi lled diamond head in
UML. Aggregation is a “grouping” relationship, denoted by an unfi lled diamond head.

 Instance variables of a built-in type can simply be included in the class as primitive types as was
done for the x and y instances variables of the Shape class above.

 Aggregation , in contrast to composition, is not a part-of relationship. It is used to denote a
class that groups together, or aggregates, a set of objects that exists independently of the aggregating
class. An example of aggregation is given in Figure 10-29.

 Aggregation is denoted by an unfi lled diamond head. Here, the ShapeCollection class contains
references to an arbitrary number of Shape objects. This might be used, for example, when a graph-
ics window allows the user to select a group of Shape objects on the screen and change an attribute
of each, such as their size, all at once.

FIGURE 10-29 Aggregation of Classes in UML

c10Object-OrientedProgramming.indd Page 421 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 421 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

422 CHAPTER 10 Object-Oriented Programming

 Self-Test Questions

 1. Which of the following is true of UML?
 (a) UML is a specifi cation language for designing Python programs
 (b) UML is a specifi cation language that can be used for designing programs in various pro-

gramming languages

 2. In UML, class diagrams are used to express the _______________ aspects of a design, and
_______________ are used to denote the dynamic aspects

 3. In UML, an association between two classes indicates that
 (a) The two classes have a common superclass
 (b) Objects of each of the two class types are created at the same time
 (c) Methods of one of the classes make calls to methods of the other

 4. Multiplicity in UML indicates
 (a) How many objects of a given class type exist
 (b) How many objects of one given class there are in relation to another
 (c) How many subclasses of a given class there may be

 5. Composition in UML indicates,
 (a) A “part of” relationship
 (b) A grouping of objects

 6. Aggregation in UML indicates,
 (a) A “part of” relationship
 (b) A grouping of objects

 ANSWERS: 1. (b), 2. static, interaction diagrams, 3. (c), 4. (b), 5. (a), 6. (b)

FIGURE 10-30 Passenger Car UML
Class Diagram

c10Object-OrientedProgramming.indd Page 422 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 422 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 423

 COMPUTATIONAL PROBLEM SOLVING

 10.6 Vehicle Rental Agency Program

 In this section, we design, implement, and test a program that will
serve the needs of a vehicle rental agency.

 10.6.1 The Problem

 The problem is to develop an object-oriented design and imple-
mentation of a program capable of maintaining reservations for a
vehicle rental agency. The agency rents out three types of vehicles—
cars, vans, and moving trucks. The program should allow users to
check for available vehicles, request rental charges by vehicle type, get the cost of renting a
particular type vehicle for a specifi ed period of time, and make/cancel reservations.

 10.6.2 Problem Analysis

 The program needs an appropriate set of objects for the vehicle rental agency domain. An obvi-
ous class to include is a Vehicle class. It can be implemented to maintain information common
to all vehicle types. Subclasses of the Vehicle class can maintain information specifi c to each
subtype.

 For example, all vehicles have a miles-per-gallon rating and a vehicle identifi cation number
(VIN). Thus, this information can be maintained in the Vehicle class. However, there are different
make and model cars (with either two or four doors, that hold a specifi c number of passengers); dif-
ferent make and model vans (able to hold a specifi c number of passengers); and moving trucks of
various lengths, each providing a certain amount of cargo space. Therefore, the Vehicle class is
made a superclass of classes Car, Van, and Truck, in which each subclass contains information
(instance variables and/or methods) specifi c to that vehicle type.

 For each type vehicle, there is a rental charge based on daily, weekly, and weekend rental
rates. There is also a mileage charge and some number of free miles (on select vehicles), plus the
cost of optional insurance. Because these costs are associated with particular types, but cost is not
inherently part of a vehicle’s attribute, we include a separate VehicleCost class.

 Finally, we incorporate a Reservation class that maintains the information for each reserva-
tion made. This will include the customer name, address, credit card number, and the VIN of the
vehicle rented.

 10.6.3 Program Design

 Meeting the Program Requirements

 The general requirements for this program are for users to be able to check for the availability of
vehicles of a certain type (cars, vans, or trucks); request rental charges by vehicle type; determine
the rental cost for a particular vehicle and rental period; and make and cancel reservations. The spe-
cifi c requirements of this program are given in Figure 10-31.

c10Object-OrientedProgramming.indd Page 423 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 423 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

424 CHAPTER 10 Object-Oriented Programming

 The specifi c rental costs for each vehicle type are given in Figure 10-32.

FIGURE 10-32 Rental Costs by Vehicle Type

 The specifi c vehicles in stock at the rental agency are shown in Figure 10-33.

 Data Description

 All the data is stored as string types, converted to a numeric type when needed in a computation
(such as the cost of daily insurance).

 Algorithmic Approach

 The algorithmic methods of the program will consist of simple search (for fi nding and retrieving
the requested vehicle information by the user), updating of information (for marking vehicles as
reserved or unreserved), and direct calculation (for calculating the total cost of a rental).

FIGURE 10-31 Program Requirements for the Vehicle Rental Agency Program

c10Object-OrientedProgramming.indd Page 424 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 424 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 425

FIGURE 10-33 Specifi c Vehicles of the Vehicle Rental Agency

 Overall Program Steps

 The overall steps in this program design are given in Figure 10-34.

 UML Class Diagram

 We give a UML class diagram for the program in Figure 10-35. In addition to the “domain objects”
that we have decided on in our analysis, we add a text-based user interface, provided by the
RentalAgencyUI class.

 Three classes store the information in the system—Vehicle (and its subclasses), Vehicle-
Cost, and Reservation. For each of these classes there is a corresponding aggregator class—
Vehicles, VehicleCosts, and Reservations—that maintains a collection of the corresponding
object type. Each aggregator class has methods for maintaining its collection of objects (for
 example, addVehicle in the Vehicles class and addVehicleCost in the VehicleCosts class).

c10Object-OrientedProgramming.indd Page 425 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 425 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

426 CHAPTER 10 Object-Oriented Programming

 The Vehicle class has three subclasses—Car, Van, and Truck. It is responsible for maintaining a
vehicle’s type, its VIN, and its reservation status. Method getDescription is provided in the Vehicle
class to return the information common to all vehicles: miles per gallon, and a VIN. Each subclass
builds on this inherited method to include the specifi c information for that vehicle type. The Car
class stores the maximum number of passengers and number of doors, the Van class stores the
maximum number of passengers, and the Truck class stores its length and the number of rooms of
storage it can hold.

 The VehicleCost class does not have any subclasses. Its create (__init__) method is
passed six arguments: the daily/weekly/weekend rates, the number of free miles, the per mile
charge, and the daily insurance rate to initialize the object with. The getVehicleCost method
of the VehicleCosts aggregating class returns the cost of a specifi ed vehicle type as a single
string for display. The Reservation and corresponding Reservations aggregator class are de-
signed in a similar manner.

 Finally, a SystemInterface class provides all the methods that any user interface would
need for interacting with the system. Such a set of methods is referred to as an API— Application
Programming Interface . Thus, the SystemInterface object is created fi rst. It then reads all the
vehicle rental agency data from text fi les VehiclesStock.txt and RentalCost.txt
and populates the corresponding objects. Then, an instance of the RentalAgencyUI is created
and initialized with a reference to the system interface. The only public method of the

FIGURE 10-34 Overall Design of the Vehicle Rental Agency
Program

c10Object-OrientedProgramming.indd Page 426 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 426 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 427

 RentalAgencyUI class, start, is called to start the console interaction. The main menu for
the program is given in Figure 10-36.

 Example use of the system is shown in Figure 10-37. (For the sake of space, the main menu is
not repeatedly shown before each selection as in the actual program execution.)

FIGURE 10-35 Class Diagram for Vehicle Rental Agency Program

c10Object-OrientedProgramming.indd Page 427 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 427 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

428 CHAPTER 10 Object-Oriented Programming

FIGURE 10-37 Example Program Execution (Continued)

FIGURE 10-36 Text-Based (Console)
Interface for the Vehicle Rental Agency
Program

c10Object-OrientedProgramming.indd Page 428 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 428 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 429

 10.6.4 Program Implementation and Testing

 From the UML specifi cation, we implement and test the program. We start with the implementation
of the Vehicle class, given in Figure 10-38. The classes will be placed in their own fi le, and im-
ported into the program.

 Development and Testing of the Vehicle, Car, Van, and Truck Classes

 In the Vehicle class, the __init__ method (lines 10–15) defi nes the attributes common to each
subclass—mpg, vin, and reserved. There is only one setter method, setReserved, since the
other values are defi ned when the object is created. Other methods include getters getType (line
17), getVin (line 22), getDescription (line 27), and Boolean isReserved (line 35).

FIGURE 10-37 Example Program Execution

c10Object-OrientedProgramming.indd Page 429 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 429 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

430 CHAPTER 10 Object-Oriented Programming

 The getType methods returns the specifi c type of a Vehicle object (Car, Van, or Truck) by use
of type(self).__name__ which returns its own type.

 We can execute the fi le and interactively and unit test the class in the Python shell.

 ... v 5 Vehicle('32', 'ABC123') — create instance
 ... v.getType()

 'Vehicle' — get object type

 ... v.getVin()

 'ABC123' — get vehicle identifi cation number

 We test the setReserved and isReserved methods similarily.

FIGURE 10-38 Vehicle Class

c10Object-OrientedProgramming.indd Page 430 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 430 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 431

 The Car class is defi ned as a subclass of the Vehicle class, imported on line 3 . The methods inherited
from the Vehicle class have already been tested. We therefore test method getDescription
(lines 21–30) by executing the Car class fi le and performing the following.

 ... v 5 Car('Ford Fusion', '34', '5', '4', 'AB4FG5689GM')

 ... v.getDescription()

 'Ford Fusion passengers: 5 doors: 4 mpg: 34 vin: AB4FG5689GM'

 These results are correct. Figure 10-40 and Figure 10-41 show similar implementations of the Van
and Truck classes.

 The Van and Truck classes differ from the Car class in the particular instance variables they
contain, and the information returned by method getDescription. These differences support
the polymorphic behavior of Vehicle types.

 Development and Testing of the Vehicles Class

 Whereas the Vehicle class represents the information of a single vehicle, the Vehicles class
maintains a complete collection of Vehicle types. Figure 10-42 illustrates an implementation of
the Vehicles class, maintaining the cost, availability, and reservation status of all vehicles of the
rental agency.

FIGURE 10-39 Car Subclass of the Vehicle Class

 An implementation of the Car subclass is given in Figure 10-39.

c10Object-OrientedProgramming.indd Page 431 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 431 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

432 CHAPTER 10 Object-Oriented Programming

FIGURE 10-41 Truck Subclass of the Vehicle Class

FIGURE 10-40 Van Subclass of the Vehicle Class

c10Object-OrientedProgramming.indd Page 432 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 432 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 433

FIGURE 10-42 Vehicles Class

c10Object-OrientedProgramming.indd Page 433 23/10/12 7:56 AM user-019Ac10Object-OrientedProgramming.indd Page 433 23/10/12 7:56 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

434 CHAPTER 10 Object-Oriented Programming

 The Vehicles class imports classes Vehicle, Car, Van, and Truck (lines 3–6). An In-
validVinError exception class is defi ned (lines 8–10), raised when method getVehicle is
called for a nonexistent VIN. Method addVehicle (lines 30–33) adds a new vehicle to the collec-
tion. This is called when the Vehicles object is initially populated at the start of the program (in
the SystemInterface class). Method getAvailVehicles (lines 40–44) returns a list of
vehicles that are not currently reserved.

 We can easily test these classes from the Python shell as given below.

 First, the needed classes are imported:

 ... from vehicle import Vehicle

 ... from car import Car

 ... from van import Van

 ... from truck import Truck

 ... from vehicles import Vehicles

 Then, an instance of each type Vehicle is created:

 ... veh_1 5 Car('Ford Fusion', '34', '5', '4', 'FG1000')

 ... veh_2 5 Van('Dodge Caravan', '25', '7', 'TF1000')

 ... veh_3 5 Truck('12', '10', '1', 'HG1000')

 A Vehicles instance is created, and each Vehicle instance is added to the collection:

 ... v 5 Vehicles()

 ... v.addVehicle(veh_1)

 ... v.addVehicle(veh_2)

 ... v.addVehicle(veh_3)

 Finally, the description of each vehicle is obtained:

 ... v.getAvailVehicles('Car')[0].getDescription()

 'Ford Fusion passengers: 5 doors: 4 mpg: 34 vin: FG1000'

 ... v.getAvailVehicles('Van')[0].getDescription()

 'Dodge Caravan passengers: 7 mpg: 25 vin: TF1000'

 ... v.getAvailVehicles('Truck')[0].getDescription()

 'length(feet): 10 rooms: 1 mpg: 12 vin: HG1000'

 ...

 Method getAvailVehicles returns a list of available cars for the provided vehicle type. Since
this returns a list of vehicles, the fi rst vehicle in the list is selected (at index [0]), and the
 getDescription method is called to display the full description of the vehicle. We see that
we get the correct results.

 Implementation of the VehicleCost and VehicleCosts Classes

 The VehicleCosts class is responsible for maintaining and providing the costs for each vehicle
type. First, the VehicleCost class is given in Figure 10-43.

c10Object-OrientedProgramming.indd Page 434 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 434 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 435

FIGURE 10-43 VehicleCost Class

 The VehicleCost class, like the Vehicle class, stores information accessed by the provided
getter methods. The information to be stored is passed to the __init__ method (lines 6–15). The
getCosts method (lines 47–52) returns all the individual cost components as a list. This method
is called when the vehicle costs need to be displayed, or the cost of a particular vehicle rental needs
to be determined.

c10Object-OrientedProgramming.indd Page 435 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 435 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

436 CHAPTER 10 Object-Oriented Programming

 We can easily test the VehicleCost class from the Python shell as given below.

 First, the VehicleCost class is imported:

 ... from vehicleCost import VehicleCost

 Then, an instance of each type VehicleCost is created:

 ... vc 5 VehicleCost('24.99', '180.00', '45.00', '100', '.15', '14.99')

 Finally, each getter method is tested:

 ... vc.getDailyRate()

 24.99

 ... vc.getWeeklyRate()

 180.0

 ... vc.getWeekendRate()

 45.0

 ... vc.getFreeMiles()

 100

 ... vc.getPerMileCharge()

 0.15

 ... vc.getInsuranceRate()

 14.99

 ... vc.getCosts()

 ['24.99', '180.00', '45.00', '100', '.15', '14.99']

 ...

 We see that we get the correct results.
 In Figure 10-44, we give the VehicleCosts class that maintains the collection of

 VehicleCost objects.
 The vehicleCosts class, as with the Vehicles class, maintains a collection of Vehi-

cleCost objects. The VehicleCost class is imported on line 3 . On lines 6–8 three symbolic
constants are defi ned, DAILY_RENTAL, WEEKLY_RENTAL, and WEEKEND_RENTAL. The use of
these constants (equal to integer values 1, 2, and 3, respectively) make the program more readable
than if the corresponding integer values were used.

 The VehicleCosts class is defi ned on lines 10–89 . The vehicle costs for the three
types of vehicles (cars, vans, and trucks) are stored in a dictionary using the vehicle types as
key values. The __init__ method (lines 13–16), therefore, initializes instance variable
vehicle_costs to an empty dictionary. The vehicle costs are individually added to the col-
lection of costs by method addVehicleCost (lines 23–26), called from the System-
Interface class when populating the rental costs from fi le. Method getVehicleCost
(lines 18–21) returns the costs as a list of individual costs. Finally, method calcRentalCost
(lines 28–89) calculates the cost of a particular rental. We test the VehicleCosts class from
the Python shell.

c10Object-OrientedProgramming.indd Page 436 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 436 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 437

FIGURE 10-44 VehicleCosts Class (Continued)

c10Object-OrientedProgramming.indd Page 437 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 437 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

438 CHAPTER 10 Object-Oriented Programming

 First, the VehicleCosts class is imported:

 ... from vehicleCosts import VehicleCosts

 Then, instances of type VehicleCost are created:

 ... vc_1 5 VehicleCost('24.99', '180.00', '45.00', '100', '.15', '14.99')

 ... vc_2 5 VehicleCost('35.00', '220.00', '55.00', '0', '.20', '14.99')

 ... vc_3 5 VehicleCost('55.00', '425.00', '110.00', '25', '.25', '24.99')

 Then a VehicleCosts instance is created, and each VehicleCost instance is added to the

collection:

 ... vc.addVehicleCost('Car', vc_1)

 ... vc.addVehicleCost('Van', vc_2)

 ... vc.addVehicleCost('Truck', vc_3)

 Then, each getter method is tested:

 ... vc.getVehicleCost('Car').getCosts()

 ['24.99', '180.00', '45.00', '100', '.15', '14.99']

 ... vc.getVehicleCost('Van').getCosts()

 ['35.00', '220.00', '55.00', '0', '.20', '14.99']

 ... vc.getVehicleCost(‘Truck').getCosts()

 ['55.00', '425.00', '110.00', '25', '.25', '24.99']

FIGURE 10-44 VehicleCosts Class

c10ObjectOrientedProgramming.indd Page 438 05/11/12 1:46 PM user-019Ac10ObjectOrientedProgramming.indd Page 438 05/11/12 1:46 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 439

FIGURE 10-45 Reservation Class

 Finally, method calcRentalCost is tested:

 ... vc.calcRentalCost('Car', (1, 3), False, 150)

 {'insur_rate': 0, 'base_charges': 74.97, 'num_free_miles': 100,

'per_mile_charge': 0.15, 'estimated_mileage_charges': 7.5}

 In the call to calcRentalCost, recall that the fi rst parameter is the vehicle type, the second is the
rental period (1 for DAILY_RENTAL) and the number of days (3), the third indicates if the insur-
ance is desired, and the fourth is the expected number of miles to be driven.

 We see that we get the correct results. We next give the implementation of the Reservation
and Reservations classes.

 Implementation of the Reservation and Reservations Classes

 The remaining aggregating class in the program is the Reservations class. We fi rst give the
Reservation class in Figure 10-45.

 The Reservation class maintains the information for a given reservation. The __init__
method (lines 6–14) is provided a name, address, credit card number, and VIN when a new Reser-
vation object is created, with a getter methods provided for each of these four values. We omit the
testing of this class and next give the implementation of the corresponding Reservations class in
Figure 10-46.

c10Object-OrientedProgramming.indd Page 439 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 439 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

440 CHAPTER 10 Object-Oriented Programming

FIGURE 10-46 Reservations Class

 The Reservation class is imported on line 3 . The __init__ method initializes an empty dic-
tionary for storing the reservations, with credit card numbers serving as the key values. The remain-
ing methods of the class include method isReserved (lines 13–16), getVinForReserv (lines
18–21), addReservation (lines 23–26), fi ndReservation (lines 28–31), and Cancel-
Reservation (lines 33–36). We omit the testing of the Reservations class. We fi nally look
at the implementation of the SystemInterface and RentalAgencyUI classes.

 Implementation of the SystemInterface and RentalAgencyUI Classes

 An implementation of the SystemInterface class is given in Figure 10-47.
 The docstring for the module specifi es the formatting of the fi les storing the vehicle and

 vehicle rental cost information. There is one exception raised by the module to inform the user
 interface when a fi le error has occurred. This could be due to either a fi le not being found, or an
improperly formatted fi le.

 The import statements on lines 28–30 import most of the classes in the system. Symbolic
constants VEHICLE_TYPES, VEHICLE_FILENAME, and VEHICLE_COSTS_FILENAME are
defi ned (lines 33–35). Defi ning these constants makes the program more readable and modifi able.

c10ObjectOrientedProgramming.indd Page 440 05/11/12 1:46 PM user-019Ac10ObjectOrientedProgramming.indd Page 440 05/11/12 1:46 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 441

Exception class InvalidFileFormatError is defi ned (lines 39–49) and used within the
SystemInterface class. Having this exception type allows typical I/O errors (such as a fi le not
found error) to be reported as errors specifi c to the fi le formatting requirements of the program. The
exception class defi nes special method __str__ to enable information to be displayed specifi c to
the error (that is, which fi le header was expected and not found, in which fi le).

 The __init__ method (lines 55–77) fi rst creates instances of the three aggregator classes of
the system—Vehicles, VehicleCosts, and Reservations. Each is initially empty when cre-
ated. The rest of the __init__ method consists of a try block that attempts to open and read the fi les
defi ned by VEHICLES_FILENAME and VEHICLE_COSTS_FILENAME. If opened successfully,

FIGURE 10-47 SystemInterface Class (Continued)

c10Object-OrientedProgramming.indd Page 441 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 441 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

442 CHAPTER 10 Object-Oriented Programming

FIGURE 10-47 SystemInterface Class (Continued)

then each is read to populate the corresponding object. The exception handler catches two types of
exceptions, InvalidFileFormatError and IOERROR, as mentioned.

 A set of getter methods is provided (lines 86–103) for retrieving vehicle, vehicle type, and
vehicle cost information. Method getAvailVehicles returns the list of vehicles that are not
currently reserved. (Note that the list returned is constructed by the use of a list comprehension.)
The list of unreserved vehicles is of a specifi ed type. Four additional methods are provided
(lines 113–132) for maintaining reservation information (isReserved, fi ndReservation,

c10Object-OrientedProgramming.indd Page 442 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 442 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 443

FIGURE 10-47 SystemInterface Class (Continued)

 addReservation, and cancelReservation). Finally, method calcRentalCost (lines
134–143) returns the calculated rental charges for a given vehicle type, rental period, insurance
 option, and expected miles driven.

 The remainder of the class consists of private supporting methods. Private method
 populateVehicles reads the information given by VEHICLES_FILENAME and populates the
Vehicles instance. Private method populateCosts reads the information given by
 VEHICLE_COSTS_FILENAME and populates the VehicleCosts instance.

c10Object-OrientedProgramming.indd Page 443 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 443 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

444 CHAPTER 10 Object-Oriented Programming

FIGURE 10-47 SystemInterface Class

 We next look at the implementation of the fi nal class, the RentalAgencyUI, given in Figure 10-48.
 Any user interface for the rental agency system must access it through the system interface.

Thus, the __init__ method (lines 14–16) of the RentalAgencyUI class is passed a reference
to the system interface to store (in a private variable) providing it access to the system. The only

c10Object-OrientedProgramming.indd Page 444 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 444 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 445

FIGURE 10-48 RentalAgencyUI Class (Continued)

other public method of the class is method start (lines 18–31). This method begins the command
loop when called—that is, the repeated action of displaying the main menu, getting the user’s selec-
tion, and executing the selected command. The loop continues until a value of 7 (to quit the pro-
gram) is entered. The rest of the methods of the class are private methods in support of the execution
of commands in the start method.

c10Object-OrientedProgramming.indd Page 445 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 445 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

446 CHAPTER 10 Object-Oriented Programming

FIGURE 10-48 RentalAgencyUI Class (Continued)

 The methods provided by the system interface correspond to the user options given in the main
menu in the user interface (as shown in Figure 10-49).

 Private method displayWelcomeScreen (lines 36–41) provides the welcome message
of the program. Private method displayMenu (lines 43–53) is repeatedly called to redisplay the
users’ options before each next command. Private method getSelection is called whenever
the user is to enter a number within a provided range, such as in the main menu. Such selection
occurs in other places in the program as well. Therefore, the method is designed to be passed an
argument indicating the upper limit of the range of selections. (For example, for the selection of

c10Object-OrientedProgramming.indd Page 446 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 446 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 447

FIGURE 10-48 RentalAgencyUI Class (Continued)

items from the main menu, getSelection would be passed the value 7.) Two types of errors
are checked by the method. One is if a value is outside of the allowable range. The other checks
for invalid type of input (such as entering a letter instead of a number). The method requires that
an appropriate value be entered by the user before returning.

c10Object-OrientedProgramming.indd Page 447 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 447 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

448 CHAPTER 10 Object-Oriented Programming

FIGURE 10-48 RentalAgencyUI Class (Continued)

c10Object-OrientedProgramming.indd Page 448 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 448 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 449

FIGURE 10-48 RentalAgencyUI Class (Continued)

 Method displayDivLine is called to display a row of dashes. It has a default parameter title.
Thus, the method may be called with or without a supplied argument. If an argument is not supplied,
then a complete row of dashes is displayed. If a title is displayed, it is centered within the displayed
line of dashes as given below:

 -----------------Types of Vehicles Available for Rent-----------------

c10Object-OrientedProgramming.indd Page 449 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 449 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

450 CHAPTER 10 Object-Oriented Programming

FIGURE 10-48 RentalAgencyUI Class

c10Object-OrientedProgramming.indd Page 450 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 450 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

10.6 Vehicle Rental Agency Program 451

 Method executeCmd (lines 83–97) is called to execute each command of the main menu by selec-
tion number. Rather than place the code for each command within this method, a specifi c command
method is called for each command. Private method CMD_DisplayVehicleTypes (lines 99–
104) displays the three types of vehicles (Cars, Vans, and Trucks). It in turn makes use of private
method displayVehicleTypes (lines 281–293). Within this method, getVehicleTypes
of the systemInterface is called to retrieve the types, since that is where they are defi ned.

 Private method CMD_DisplayVehicleCosts (lines 106–139) displays the rental costs
for a specifi c vehicle type:

 It displays a selection of vehicle types (line 113) for the user to choose from, constructs two
rows of column headings (lines 118–123), and gets the vehicle costs for the selected vehicle
type by call to method getVehicleCosts of the system interface (line 126). The rest of
the method displays the information using formatted strings to align under the column
 headings.

 Private method CMD_DisplayAvailVehicles displays all vehicles of a given vehicle
type that are not currently reserved:

 It displays a selection of vehicle types (lines 158–159) for the user to select from, and gets
the available vehicles for the selected type from the system interface by call to method

FIGURE 10-49 Correspondence of Menu Selections and Methods of System Interface

c10Object-OrientedProgramming.indd Page 451 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 451 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

452 CHAPTER 10 Object-Oriented Programming

 getAvailVehicles of the system interface (line 147). The rest of the method simply dis-
plays, row by row, the information for each vehicle.

 Private method CMD__PromptAndDisplayAvailVehicles (lines 161–169) prompts
the user for a vehicle type, and then displays the information of vehicles of that type not currently
 reserved. Private method CMD_DisplaySpecifi cRentalCost (lines 171–226) displays the costs
of a particular vehicle rental based on the vehicle type, the time period rented, whether insurance is
opted for, and the estimated number of miles driven:

 First, it displays a selection of vehicle types for the user to choose from (line 176). It then requests
the desired rental period by a call to private method getRentalPeriod (line 180). A tuple is
returned containing constant value DAILY_RENTAL, WEEKLY_RENTAL, or WEEKEND_RENTAL,
and the number of days or weeks rental period (with weekends defaulting to 1). The user is then
asked if they want the optional insurance (line 186) and the number of miles expected to drive
(line 193). The estimated rental cost is then calculated by a call to method calcRentalCost
of the system interface. The rest of the method has to do with formatting and displaying the
output.

 Private method makeReservation allows the user to reserve a vehicle of a given
type (line 227). The method fi rst checks if there are vehicles available (line 235). It then calls
CMD__DisplayAvailVehicles (line 239) with the default argument set to True. This
causes the vehicle descriptions to be listed as a number list so that the desired vehicle can be
selected. On lines 242–253 , the vehicle number selected is read, checking for any invalid
 selections. On line 255 , the VIN is retrieved for the selected vehicle. The VIN is needed by
method getVehicle (of the SystemInterface class) to retrieve a given Vehicle object.
Having the object, it then calls method getDescription (line 257) to display the description
of the vehicle to the user. It also sets the reservation status to True by a call to setReserved
(line 259).

 The user’s name, address, and credit card number are requested (lines 261–263) to make the
reservation. It does this by creating a new Reservation object constructed with the provided
information (line 265) and adds it to the collection of reservations (line 266). Confi rmation of the
reservation is displayed (line 267). Private method CMD_CancelReservation (line 269–279)
cancels reservations by the credit card number used for making the reservation. Finally, private
methods displayVehicleTypes and getRentalPeriod, supporting methods of the com-
mand methods, are given on lines 281–337 .

 Putting it All Together

 Figure 10-50 shows the main module of the Vehicle Rental Agency Program that puts everything
together. It fi rst creates the vehicle rental agency system (with a system interface) and then creates
a user interface containing a reference to the system, providing the user with a natural means of
 accessing the system.

c10Object-OrientedProgramming.indd Page 452 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 452 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Summary 453

FIGURE 10-50 Rental Agency Program Main Module

 The main module for the program imports the SystemInterface class (line 6) and the
RentalAgencyUI class (line 7). First, an instance of the SytemInterface class is cre-
ated (line 11). The __init__ method of the class is implemented to open the vehicle
 information fi le, as well as the vehicle cost fi le. The information in these fi les is used to populate
the vehicle and vehicle cost objects in the system. If any fi le errors occur during this process,
an IOError exception is raised by the system interface and caught (line 19) to terminate the
 program.

 Once the fi les are successfully opened and read, an instance of the RentalAgencyUI class
is created (line 14). It is passed the needed reference to the system interface. Once the user interface
is created, the start method of the user interface is called to begin the command loop and receive
and execute commands from the user.

 General Topics

 Classes
 Encapsulation, Inheritance, and Polymorphism
 Public vs. Private Class Members
 Getters and Setters
 Name Mangling
 Superclass (Base Class/Parent Class)
 Subclass (Derived Class/Child Class)
 Subclass vs. Subtype
 UML (Unifi ed Modeling Language)
 Class Diagrams in UML
 Association, Multiplicity, and Role Names in UML
 Composition vs. Aggregation

 Python-Specifi c Programming Topics

 Defi ning Classes in Python
 Denoting Public and Private Class Members in
 Python
 The Use of self in Python
 Special Method __init__ in Python
 Arithmetic and Relational Special Methods in
 Python
Inheritance and Polymorphism in Python
 Duck Typing in Python

 C H A P T E R S U M M A R Y

c10Object-OrientedProgramming.indd Page 453 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 453 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

454 CHAPTER 10 Object-Oriented Programming

 C H A P T E R E X E R C I S E S

 Section 10.1

 1. What are the two kinds of entities “bundled” in a class?

 2. What kind of entity can there be any number of instances created for a given class?

 3. What are the three fundamental features that object-oriented programming languages have in support of
object-oriented programming?

 Section 10.2

 4. What else does encapsulation provide other than the ability to bundle together instance variables and
methods?

 5. Describe what it means for a member of a class to be private.

 6. Explain the purpose of getters and setters.

 7. Explain what the special identifi er self is used for in Python.

 8. Explain the use of name mangling in Python.

 9. Explain when special methods __str__ and __repr__ are each used in Python.

 10. Give an implementation of special method __str__ for a Range class (representing a range of integers)
that contains integer instance variables, __start and __end, so that the value of Range objects are
displayed as follows: '10 . . . 16', when output with print.

 11. Give an implementation of special method __lt__ for the Range class of exercise 10 so that range1 ,
range2 evaluates to True if all the values in range1 are less than all the values in range2, and returns
False otherwise.

 Section 10.3

 12. Give the one-line class defi nition header for a class named MySubclass that is a subclass of the class
MySuperclass.

 13. Explain when a subclass can serve as a subtype.

 14. For an object obj, show how in Python the type of the object may be determined from within a program
or the Python shell.

 15. Show how in the Python shell information about one of the built-in types of Python can be displayed.

 Section 10.4

 16. Explain the concept of polymorphism in object-oriented programming.

 17. Explain the advantages of using polymorphism in program design.

 18. What is meant by “duck typing” in Python?

 Section 10.5

 19. What does the name UML stand for?

 20. What are the two types of diagrams in UML mentioned in the chapter, and what aspects of a program
design does each represent?

 21. Give a class diagram for the XYCoord class in the Let’s Try It box of section 10.2.2.

 22. Give a class diagram that includes the partial description of the built-in str type in Figure 10-15, and the
ExplodedStr subclass in Figure 10-16.

 23. Give a class diagram for the Fraction class developed in section 10.2. Include the MixedFraction
subclass in the diagram.

c10Object-OrientedProgramming.indd Page 454 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 454 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Python Programming Exercises 455

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Give a UML class diagram for a library. Include as entities tangible objects (such as books), persons (such
as borrowers and librarians), and status (such as whether a book is checked out or not). Use multiplicity,
navigation, and role names where appropriate.

 P2. Design and implement a Money class that stores monetary values in dollars and cents. Special method
__init__ should have the following function header,

 def __init__(self, dollars, cents)

 Include special method __repr__ (__str__) for displaying values in dollars and cents: $ 0.45,
$ 1.00, $ 1.25. Also include special method __add__, and three getter methods that each provide the
monetary value in another currency. Choose any three currencies to convert to.

 P3. Implement a class named AvgList as a subclass of the built-in list class in Python, able to compute the
average of a list of numeric values. If the list contains any nonnumeric types, a ValueError exception
should be raised.

 P4. Design and implement a FootMeasure class that stores a linear measurement of feet and inches. Your
class should have the following function header for special method __init__,

 def __init__(self, feet 5 0, inches 5 0)

 Thus, the class should be able to create a FootMeasure object in various ways by use of optional key-
word arguments,

 meas 5 FootMeasure()

 meas 5 FootMeasure(feet 5 5)

 meas 5 FootMeasure(feet 5 5, inches 5 8)

 meas 5 FootMeasure(inches 5 68)

 Implement special method __repr__ in the class so that measurements are displayed as follows,

 5 ft. NOT 5 ft. 0 in.

 5 ft. 8 in. NOT 68 in.

 When the measurement is 0, it should be displayed as, 0 ft. 0. ins. Include special method add()
for adding FootMeasure values. Also include all the special methods for implementing the relational
operators.

 P5. Develop an abstract class named Temperature that stores a single temperature. The class should have
the following function header for special method __init__,

 def __init__(self, temperature)

 The abstract class should contain the following methods:

 __str__ — should return a string of the form “75 degrees Fahrenheit”

 aboveFreezing() — returns True if temperature above the freezing point

 convertToFahren — returns a new Temperature object converted to degrees Fahrenheit

 convertToCelsius — returns a new Temperature object converted to degrees Celsius

 convertToKelvin — returns a new Temperature object converted to degrees Kelvin

c10Object-OrientedProgramming.indd Page 455 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 455 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

456 CHAPTER 10 Object-Oriented Programming

 Develop the subclasses Fahrenheit, Celsius and Kelvin to appropriately implement each of
the methods in the abstract Temperature class. (Note that when a meaningless conversion method
is applied, for example, temp1.convertToFahrenheit() where temp1 is an object of type
 Fahrenheit, then a copy of the Temperature object should be returned.)

 Demonstrate the correctness of your classes by doing the following:

 ♦ Create a list of Temperature objects of a mix of Temperature types
 ♦ Print out the value of each temperature in the list, and add “above freezing” if the temperature is above

freezing (for the specifi c temperature scale).
 ♦ Create a new list of temperatures containing each temperature of the original list converted to a com-

mon temperature scale (Fahrenheit, Celsius, or Kelvin).
 ♦ For each temperature object in the new list, print out its temperature value, and if it is above the freez-

ing point.

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Fraction Class—Adding a Supporting Reduce Method
 Complete the Fraction class in section 10.2.2 by implementing the missing methods using the speci-

fi cations below,

 def copy(self):

 """Creates a copy of a given Fraction."""

 def reduce(self):

 """Reduces self to simplest terms. Also removes the signs

 if both numerator and denominator are negative."""

 def __adjust(self, factor):

 """Multiplies numerator and denominator by factor."""

 M2. Vehicle Rental Agency Program—View Reservations
 Modify the Vehicle Rental Agency program in section 10.6 to add the capability of viewing all current

reservations.

 M3. Division Operator for Fraction Class
 Modify the Fraction class developed in section 10.2.2 to include a division operator by implementing

special method __truediv__.

 M4. Screen Display in Recipe Conversion Program
 Modify the Recipe Conversion Program in section 10.2.3 so that the original recipe ingredient measure-

ments and the converted measurements are both displayed on the screen (in addition to having the con-
verted recipe written to a fi le).

 M5. Adjusted Measurements in the Recipe Conversion Program
 Modify the Recipe Conversion Program in section 10.2.3 so that the units of measure for teaspoons

and tablespoons in a converted recipe are displayed more appropriately. For example, if a recipe that
calls for 2 teaspoons of baking soda is tripled, 6 teaspoons of baking soda are currently displayed in
the converted recipe. Since there are 3 teaspoons to a tablespoon, the converted measurement would
be more appropriately displayed as 2 tablespoons. Similarly, since there are 16 tablespoons in a cup,

c10Object-OrientedProgramming.indd Page 456 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 456 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Development Problems 457

any number of tablespoons over 16 would be more appropriately displayed as one cup, plus some
number of tablespoons.

 M6. Revised Estimated Rental Cost in Vehicle Rental Agency Program
 The rental cost for a particular type vehicle computed in the Vehicle Rental Agency Program is based on

the number of days (or weeks) rented, the cost of optional insurance, and the estimated number of miles
that the vehicle is expected to be driven. However, the estimate does not include the cost of gas that the
customer must also pay. Since the miles per gallon (mpg) is available for all vehicles, modify the program
so that this additional expense is added to the calculation of the estimated cost. The cost that is displayed
should identify this additional expense. Use an instance variable in the VehicleCosts class to store
the current price of gas per gallon.

 M7. Additional Vehicle Type in Vehicle Rental Agency Program
 Modify the Vehicle Rental Agency Program to include a fourth SUV vehicle type, in addition to cars,

vans, and trucks. The attributes stored for an SUV object should include make and model, miles per
 gallon (mpg), number of passengers, whether or not it has automatic sliding doors, and the vehicle iden-
tifi cation number (VIN). Make all changes in the program to incorporate this new vehicle type.

 M8. Polymorphic Behavior of Vehicle Cost in Vehicle Rental Agency Program
 Modify the Vehicle Rental Agency Program to include three subclasses of the VehicleCost class,

CarCost, VanCost, and TruckCost so that VehicleCost can behave polymorphically. Make all
changes to the program to incorporate these new vehicle cost types.

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. RGB/Hexadecimal Color Code Manipulation Program
 Design an abstract class named ColorCode, and two subclass named RGBColorCode and

 HexColorCode. RGB color codes (as discussed in Chapter 9) are of the form (125, 80, 210), indi-
cating the amount of red, green, and blue, respectively, for a given color. Each color value is on a scale
of 0–255. Hexadecimal color codes are of the form F4F060, in which the fi rst two hexadecimal digits
indicate the amount of red, the middle two digits the amount of green, and the last two digits the
amount of blue. Each pair of hexadecimal digits represent values in the range 0–255. Thus, these
color encodings are just different representations of the same range of colors. Include in abstract class
ColorCode methods for displaying a color code, for adding and reducing the amount of red, green,
or blue by a given percentage, and for producing the complement of a given color. The complement
is determined by subtracting each color value from 255. Develop a program in which the user can
enter a series of colors in both RGB and hexadecimal form, and have them altered in the ways given
above.

 D2. Morse Code Translation Program
 Implement a Morse code translator program from the UML design given below for translating English

message fi les into Morse code, and Morse code fi les into English. The requirements for this program are
as follows:

 ♦ English message fi les will be stored as text fi les, one sentence per line.
 ♦ Morse code message fi les will be stored as text fi les, one encoded character per line, where end of

words are indicated by a blank line, and end of sentences by two blank lines.
 ♦ English message fi les will contain fi le extension .eng, and Morse code fi les fi le extension .mor.

c10Object-OrientedProgramming.indd Page 457 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 457 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

458 CHAPTER 10 Object-Oriented Programming

 The assumptions for this program are as follows:

 ♦ Messages will only contain lowercase letters, the digits 0–9, periods, commas, and question marks.

 Following is the UML diagram for the program.

 The Translator class coordinates the translation of messages (English to Morse code, and Morse
code to English). It contains two class members through composition: InputBuffer and Output-
Buffer. Thus the Translator class is responsible for their construction.

 The InputBuffer contains the current message line read from the fi le. If the fi le contains an
 English message, then an EnglishInputBuffer is used; if the fi les contains a Morse-coded mes-
sage, then a MorseInputBuffer is used. As the Translator reads the current MesgChar from
the InputBuffer, it requests the MesgChar to translate itself, sending it to the OutputBuffer.
When isEndOfWord or isEndOfSentence is found true, it calls the corresponding MarkEnd-
OfWord or MarkEndOfSentence method of the OuputBuffer. If the output is in English, a space
character for each end of word and a period for each end of sentence is added to the buffer; if the output
is in Morse code, then a blank line for each end of word, and two blank lines for each end of sentence is
added to the buffer. This is repeated until the end of fi le has been reached.

c10Object-OrientedProgramming.indd Page 458 23/10/12 7:57 AM user-019Ac10Object-OrientedProgramming.indd Page 458 23/10/12 7:57 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 Note that what a given MesgChar is depends on the type of message fi le reading. If the message
being read is an English message, then a MesgChar is a single character (letter, digit, etc.). If, however,
the message being read is a Morse-code message, then a MesgChar is a MorseChar (i.e., a string
 containing up to six dot and dash characters). Thus, when getting and putting MesgChars of a given
InputBuffer and OutputBuffer, the number of characters actually retrieved or placed in the buf-
fer depends on what type of buffer is involved. The Morse Code table for this assignment is given below.

Program Development Problems 459

c10Object-OrientedProgramming.indd Page 459 23/10/12 7:58 AM user-019Ac10Object-OrientedProgramming.indd Page 459 23/10/12 7:58 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

460

 Recursion

 In Chapter 3, we covered the fundamental types of control—sequential, selection, and
 iterative—used to affect the control fl ow of programs. There is one fi nal form of control that we
have yet to cover, referred to as recursion. We look at the use of recursion and recursive problem
solving in this chapter.

 OBJECTIVES

 After reading this chapter and completing the exercises, you will be able to:

 ♦ Describe the design of recursive functions

 ♦ Defi ne infi nite recursion

 ♦ Apply recursive program solving

 ♦ Explain the appropriate use of iteration vs. recursion

 ♦ Develop recursive functions in Python

 CHAPTER CONTENTS

 Motivation

 Fundamental Concepts

 11.1 Recursive Functions

 11.2 Recursive Problem Solving

 11.3 Iteration vs. Recursion

 Computational Problem Solving

 11.4 Towers of Hanoi

 CHAPTER 11

c11Recursion.indd Page 460 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 460 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 461

 MOTIVATION

 Almost all computation involves the repetition of
steps. Iterative control statements, such as the for
and while statements, provide one means of control-
ling the repeated execution of instructions. Another
way is by the use of recursion .

 In recursive problem solving , a problem is
repeatedly broken down into similar subproblems,
until the subproblems can be directly solved with-
out further breakdown. For example, consider the
method of searching for a name in a sorted list of
names below.

 1. If the list contains only one name, then if the
name found is the name you are looking for,
then terminate with “name found,” otherwise terminate with “name not found.”

 2. Otherwise, look at the middle item in the list. If that is the name you are looking for, then
terminate with “name found.”

 3. Otherwise, continue by searching in a similar manner either the top half of the list, if the name
you are looking for is alphabetically before the middle name of the list, or the bottom half of
list, if the name you are looking for is alphabetically after.

 The fi rst two steps of this method are straightforward. The detail comes when the list needs to be
continually broken down into sublists, and the appropriate sublists are searched. The beauty of re-
cursive problem solving, however, is that the details of how to solve (smaller) subproblems do not
need to be specifi ed—the same steps that were used on the original list still apply. Although it is
natural to try to think through all the resulting steps that are taken to recursively solve a problem, the
power of “recursive thinking” is to understand that doing so is unnecessary. In this chapter, we dem-
onstrate the power of recursive problem solving by looking at some classic examples that highlight
its effectiveness.

 FUNDAMENTAL CONCEPTS

 11.1 Recursive Functions

 Computational problem solving via the use of recursion is a pow-
erful problem-solving approach. The development and use of
 recursive functions, however, requires a different perspective on
computation than we have had so far. We discuss the design and
use of recursive functions in this section.

 11.1.1 What Is a Recursive Function?

 A recursive function is often defi ned as “a function that calls
 itself.” While this is an accepted defi nition, it is not necessarily the
most appropriate explanation, for it plants in one’s mind the image
given in Figure 11-1.

FIGURE 11-1 Recursive
 Function Defi nition

c11Recursion.indd Page 461 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 461 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

462 CHAPTER 11 Recursion

 The illustration in the fi gure depicts a function, A, that is defi ned at some point to call func-
tion A (itself). The notion of a self-referential function is inherently confusing. There are two types
of entities related to any function however—the function defi nition , and any current execution
 instances .

 What is meant by the phrase “a function that calls itself ” is a function execution instance that
calls another execution instance of the same function. A function defi nition is a “cookie cutter” from
which any number of execution instances can be created. Every time a call to a function is made,
another execution instance of the function is created. Thus, while there is only one defi nition for any
function, there can be any number of execution instances. In order to fully understand the mecha-
nism of recursive function calls, we fi rst consider the general mechanism of non-recursive function
calls as depicted in Figure 11-2.

FIGURE 11-2 General Function Calls

 In the function calls in the fi gure, there is no trouble visualizing the sequence of events that occur.
First, an execution instance from the defi nition of function A is created and begins executing. When
the call to function B is reached, the execution instance of function A is suspended while an execu-
tion instance of function B is created and begins executing. In turn, when the function call to func-
tion C is reached, function B suspends execution while an execution instance of function C is
 created and begins executing.

 This calling and suspending of executing function instances could (theoretically) continue
indefi nitely. However, in this case, function C does not make a call to any other function. Thus, it
simply executes until termination, returning control to the function that called it, function B.
Function B then continues its execution until terminating, returning control to the function that
called it, function A. Finally, function A completes and terminates, returning control to wherever
it was called from.

 Now, let’s consider the situation when the original function, function A, is a recursive
 function—that is, its defi nition includes a call to function A (itself). As depicted in Figure 11-3, each
current execution instance of function A will spawn a new execution instance of function A.

c11Recursion.indd Page 462 05/11/12 5:43 PM user-019Ac11Recursion.indd Page 462 05/11/12 5:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 463

FIGURE 11-3 Recursive Function Execution Instances

 Note that the execution of a series of recursive function instances is similar to the execution of a
series of non-recursive instances, except that the execution instances are “clones” of each other (that
is, of the same function defi nition). Thus, since all instances are identical, the function calls occur in
exactly the same place in each.

 Clearly, if the defi nition of a recursive function were written so that the function calls itself
unconditionally, then every execution instance would unconditionally call another execution
 instance, ad infi nitum. Such a nonterminating sequence of calls is referred to as infi nite recur-
sion , similar to the notion of an infi nite loop. Therefore, properly designed recursive functions
always conditionally call another execution instance so that eventually the chain of function
calls terminates.

 Now that we have better understanding of recursive functions, we can use the description of a
recursive function as “a function that calls itself,” understanding that this means that the function
 defi nition is self-referential, while the function execution instances are not. Next we will look at a
classic example of a recursive function, computing the factorial of a given number.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... def rfunc(n): ... def rfunc(n):
 print(n) if n 55 1:
 if n . 0: return 1
 rfunc(n 2 1) else:
 return n 1 rfunc(n 2 1)

... rfunc(4) ... rfunc(1)
??? ???

... rfunc(0) ... rfunc(3)
??? ???

... rfunc(100) ... rfunc(100)
??? ???

A recursive function is a function (defi nition) that conditionally calls itself.

c11Recursion.indd Page 463 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 463 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

464 CHAPTER 11 Recursion

 11.1.2 The Factorial Function

 We now look at a particular mathematical function, factorial, which is often defi ned by a recursive
defi nition. We then look at how such a recursive defi nition can be written as a recursively defi ned
program function.

 The Recursive Definition of the Factorial Function

 The factorial function is an often-used example of the use of recursion. The computation of the
 factorial of 4 is given as,

 factorial(4) 5 4 ? 3 ? 2 ? 1 5 24

 In general, the computation of the factorial of any (positive, nonzero) integer n is,

 factorial(n) 5 n ? (n 2 1) ? (n 2 2) ? . . . 1

 The one exception is the factorial of 0, defi ned to be 1. Note that if we apply this defi nition to the
factorial of n 2 1, we get factorial(n 2 1) 5 (n 2 1)(n 2 2) . . . 1. Therefore, the factorial of n can
be defi ned as n times the factorial of n 2 1,

 factorial(n) 5 n ? (n 2 1) ? (n 2 2) ? . . . 1

 factorial(n 2 1)

 Thus, the complete defi nition of the factorial function is,

 factorial(n) 5 1, if n 5 0
 5 n ? factorial(n 2 1), otherwise

 This defi nition of the factorial function is clearly defi ned in terms of itself, referred to as a recursive
defi nition . The part of the defi nition “factorial(n) 5 1, if n 5 0” is referred to as the base case . The
base case of a recursive defi nition is what terminates the repeated application of the defi nition (and
thus the repeated function calls when executed).

 Consider what would happen if the base case for the factorial function were not part of the
defi nition,

 factorial(n) 5 n ? factorial(n 2 1), for all n

 Applying this defi nition, the computation of the factorial of 4 would be,

 factorial(4) 5 4 ? 3 ? 2 ? 1 ? 0 ? 21 ? 22 ? 23 ? 24 ? . . .

 The factorial of any (positive) number would be 0, since 0 would always be part of the product of
values. Thus, not only is this an incorrect defi nition of the factorial function, if we implemented this
defi nition as a recursive function, it would never terminate (and thus never produce a result).

 Suppose, on the other hand, the base case for the defi nition of the factorial function is given,
but that n * factorial(n 2 1) were given as n * factorial(n 1 1) instead,

 factorial(n) 5 1, if n 5 0
 5 n ? factorial(n 1 1), otherwise

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

c11Recursion.indd Page 464 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 464 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 465

 Applying this defi nition, the computation of the factorial of 4 would be,

 factorial(4) 5 4 ? 5 ? 6 ? 7 ? 8 ? 9 ? 10 ? 11 ? 12 ? . . .

 If we implemented this (incorrect) version of factorial as a recursive function, the function would also
never terminate. The problem, however, it is not because a base case is not included. It is because the
problem is not being broken down into subproblems in which the base case can be applied.

 This highlights three important characteristics of any recursive function, given in Figure 11-4.

 Going back to the original (correct) defi nition of the factorial function therefore,

 factorial(n) 5 1, if n 5 0
 5 n ? factorial(n 2 1), otherwise

 we see that the fi rst condition holds since the base case, factorial(0) 5 1, can be applied without any
future recursive breakdown of the problem. It follows the second condition since the problem is
broken down into a subproblem that is a smaller instance of the original. Finally, it meets that third
condition since the results of the original problem can be determined by multiplying the solution of
each subproblem. Thus, this is a properly defi ned recursive function. We next look at an actual im-
plementation of a recursive factorial function.

5

 Examination of this function reveals that the recursive function call is conditionally made. That is,
only if n is not equal to zero is another execution instance created, otherwise the current execution

 Every properly defi ned recursive function must have at least one base case, and must redefi ne the
problem into subproblems that work towards a base case such that the solution of the original
problem can be derived from the solutions of the recursively solved subproblems.

 A Recursive Factorial Function Implementation

 Given a recursive defi nition of the factorial function, we can simply write it as Python program code.
This is given in Figure 11-5.

FIGURE 11-4 Requirements of a Properly Designed Recursive Function

FIGURE 11-5 Recursive Factorial Function
Implementation

c11Recursion.indd Page 465 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 465 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

466 CHAPTER 11 Recursion

instance terminates and returns a value of 1. Termination is guaranteed since the initial value of
parameter n is required to be greater than or equal to 0, and each next function call operates on
smaller values (i.e., n 2 1). Finally, the solutions of all of the subproblems provide a solution to the
original one. The sequence of function execution instances generated for the factorial of 4 is given
in Figure 11-6.

 Each execution instance of function factorial is suspended while the evaluation of expression n *
factorial(n 2 1) is completed. When factorial is fi nally called with the value 0, fi ve execu-
tion instances of the function exist, the fi rst four suspended until instance factorial(0) completes.
When factorial(0) returns the value 1, the evaluation of expression 1 * factorial(0) can
be completed, returning 1 as the value of factorial(1), and so on, until 4 * factorial(3) is
evaluated and 24 is returned as the value of the original function call.

 Finally, we point out that although the factorial function serves as a good example, in practice,
recursion is an inappropriate choice for implementing this function. This is because an iterative
 version can be easily implemented, providing a much more effi cient computation. (We discuss the
 appropriate use of recursion in section 11.3.)

FIGURE 11-6 Factorial Recursive Instance Calls

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... def factorial(n):
 if n 55 0:
 return 1
 return n * factorial(n 2 1)

... factorial(4)
???

... factorial(0)
???

... factorial(100)
???

... factorial(10000)
???

... def ifactorial(n):

 result 5 1
 if n 55 0:
 return result

 for k in range(n, 0, 21):
 result 5 result * k

 return result

... ifactorial(0)
???

... ifactorial(100)
???

... ifactorial(10000)
???

c11Recursion.indd Page 466 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 466 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 467

 In addition to the turtle module, the program also imports the math module, needed for the
square root function in the calculation of the height of a triangle (in function triangle-
Height on lines 21–25). In the Sierpinski triangle, each next level in the pattern replaces each
triangle with three smaller triangles. In order for the position of each next triangle to be deter-
mined (by functions getLeftTrianglePosition, getRightTrianglePosition,
and getTopTrianglePosition at lines 27 , 38 , and 49 , respectively) both the length of the
sides of the triangle, as well as its height are needed. This is depicted in Figure 11-10.

 The position of turtle shapes in turtle graphics is relative to the center of the shape. Each tri-
angle is positioned relative to its center point (shown by the dot in the fi gure). Thus, method
getLeftTrianglePosition calculates the location of the bottom left triangle as,

 [position [0] 2 side / 4, position [1] 2 triangleHeight(side) / 4]

 11.1.3 Let’s Apply It—Fractals (Sierpinski Triangle)

 Figure 11-7 illustrates a well-known recursive set of images called the Sierpinski triangle. The
 Sierpinski triangle is an example of a fractal . A fractal is a shape that contains parts that are similar
to the whole shape, thus having the property of self-similarity (Figure 11-8). The turtle graphics
program in Figure 11-9 generates Sierpinski triangles at various levels of repetition. This program
utilizes the following programming features:

 ➤ recursive functions

Although the factorial function is an often-used example of a recursive function, the function can
be executed more effi ciently when implemented to use iteration.

FIGURE 11-7 Sierpinski Triangle (Fractal Image)

S
ie

rp
in

sk
i t

ria
ng

le

ev
ol

ut
io

n/
W

ik
im

ed
ia

C

om
m

on
s

FIGURE 11-8 Other Fractal Images

Jo
ha

nn
es

 R
os

se
l/

S
ie

rp
in

sk
i c

ar
p

et
 4

/
W

ik
im

ed
ia

 C
om

m
on

s

W
rt

lp
rn

ft
/K

oc
h

sn
ow

fl a
ke

 6
th

 it
er

at
io

n/
W

ik
im

ed
ia

 C
om

m
on

s

D
S

P
-u

se
r/

B
ar

ns
le

y
fe

rn
 m

ut
at

ed
 -

 Le

p
to

sp
or

an
gi

at
e

fe
rn

/
W

ik
im

ed
ia

 C
om

m
on

s

c11Recursion.indd Page 467 05/11/12 5:43 PM user-019Ac11Recursion.indd Page 467 05/11/12 5:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

468 CHAPTER 11 Recursion

 As a result, the x (horizontal) position of the lower left triangle is one quarter of the length of the
side less than the larger triangle, therefore positioned to the left of the larger triangle’s location.
The y (vertical) position of the smaller triangle is one quarter of the height of the triangle less than
the larger triangle, thus placed below the position of the original triangle. Positioning of the lower
right triangle (by method getRightTrianglePosition) is similarly determined (positioned
to the right of and below the location of the original triangle). Finally, method getTopTriangle-
Position determines the position of the smaller top triangle to be at the same x location as the
original triangle, and one quarter of the height of the triangle higher.

FIGURE 11-9 Sierpinski Triangle Program (Continued)

c11Recursion.indd Page 468 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 468 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 469

FIGURE 11-9 Sierpinski Triangle Program (Continued)

 Once the proper positioning of the smaller triangles is determined, the rest of the program is
based on the use of recursion to repeatedly apply this division of triangles until a given number of
levels have been drawn. Function createTriangleShape (lines 6–19) creates an equilateral
triangle by positioning the turtle to each of the screen locations provided in parameter coords. Be-
cause this movement occurs within the begin_poly and end_poly instructions, the polynomial

c11Recursion.indd Page 469 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 469 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

470 CHAPTER 11 Recursion

FIGURE 11-9 Sierpinski Triangle Program

FIGURE 11-10 Relative Placement
of Inner Triangles

drawn can be retrieved (line 18) and registered as a new turtle shape that can be used within the
 program (line 19).

 The main section of the program (lines 101–129) does the needed preparation before draw-
ing can begin. On line 102 the size of the turtle window is set. On line 105 the (default) turtle is
retrieved and named the_turtle. The turtle is then initialized so that the drawing capability is

c11Recursion.indd Page 470 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 470 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.1 Recursive Functions 471

off (penup) and it is hidden. This is done since the only graphics to be produced by the turtle is
when its (triangle) shape is stamped. Thus, the turtle is moved and resized to create all the stamped
triangle images needed for creating a given Sierpinski triangle. On line 112 the number of levels
of the triangle is set. Thus, by changing this value, a Sierpinski triangle of various levels can be
created.

 On line 115 a tuple of coordinates is defi ned that creates an equilateral triangle. (The absolute
positions of these coordinates are not relevant, only their relative positions are used for defi ning the
shape.) The length of the triangle is specifi ed on line 117 , matching the length of the triangle given by
the specifi ed coordinates. The turtle specifi ed by the_turtle is set to shape 'my_triangle'. It
is then positioned at location (0, 2 50) of the screen (a little below the center) and the heading is set
to 90 degrees (to ensure that the triangle is pointing up).

 Recursive function drawSierpinskiTriangle (lines 58–97) is passed three arguments:
the turtle (in parameter t), the length of the sides of the overall triangle, and the number of levels of
the Sierpinski triangle pattern to draw (line 125). As a recursive function, there must be a base case
in which the function no longer calls itself. Since the number of levels starts at some nonzero value,
the base case is reached when the value of parameter levels is 0 (line 65). At that point, the turtle
size and location is specifi ed for the smallest of the embedded triangles. Therefore, since no further
breakdown of the triangles is needed, these lowest-level triangles are simply displayed.

 When function drawSierpinskiTriangle is called with levels not equal to zero, the
size of the current triangle shape of the turtle is cut in half (lines 73–74). The positions of each of
the three smaller triangle to fi t in the area of the current turtle shape are determined, and three recur-
sive calls are made—one for each of the smaller triangles (lines 85–97). For each recursive call, the
turtles are fi rst positioned (lines 85 , 90 , and 95), and the recursive function calls made (lines 86, 91
and 95). Because each recursive call resizes the turtle shape, on lines 87 , 92 , and 97 the turtle shape
is reset to what it was before each such call.

 Self-Test Questions

 1. A recursive function is best thought of as
 (a) A function that calls itself
 (b) A function execution instance that calls another execution instance of the same function

 2. A recursive function call that never terminates is called .

 3. What does the following recursive function return as a value, for any given positive integer
argument n?

 def rfunc(n):

 if n 55 0:

 return 0

 else:

 return rfunc(n 2 1) 1 2

 4. How many times does the factorial function in the chapter get called when computing the
factorial of 4?

 5. Iteration and recursion are two means of repeating a set of instructions. (TRUE/FALSE)

 ANSWERS: 1. b, 2. infi nite recursion, 3. 2n, 4. n 1 1, 5. True

c11Recursion.indd Page 471 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 471 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

472 CHAPTER 11 Recursion

 11.2 Recursive Problem Solving

 11.2.1 Thinking Recursively

 We commonly solve problems by breaking a problem into
 subproblems, and separately solving each subproblem. Recur-
sive problem solving is the same, except that a problem is bro-
ken down into subproblems that are another instance of the
original type problem. This was true of the factorial function in
 section 11.1. The problem of solving the factorial of n was bro-
ken down into two subproblems—the multiplication by n as one subproblem, and the determina-
tion of the factorial of n 2 1 as the other, as shown in Figure 11-11.

 The factorial function is an “easy” example of recursion, because the function itself is defi ned
recursively. Thus, the recursive function developed is just an implementation of the mathematical
defi nition. The use of recursion is most interesting when applied to problems that are not recur-
sively defi ned. To do this, we need to meet the three requirements of recursive functions given
earlier in Figure 11-4.

 The power of recursion is that it provides a conceptually elegant means of problem solving.
The “elegance” derives from the fact that there is no need to specify or even think through all the
steps that are taken to solve the problem. Since the recursive subproblems are the same kind of
problem as the original, specifying the solution of the overall problem provides suffi cient detail for
solving each of the similar subproblems. To illustrate this, we look at some of the most well-known
problems submitting to a recursive solution. We begin with an effi cient means of sorting called
MergeSort.

The power of recursion is that it provides a conceptually elegant means of problem solving.

 11.2.2 MergeSort Recursive Algorithm

 In this section we look at how we can apply recursive problem solving to the problem of sorting lists. In
order to solve this problem recursively, we have to imagine how the problem of sorting can be broken into
subproblems, so that one or more of the subproblems is also the problem of sorting a (smaller) list.

 When breaking a problem down, it is often most effective to break the problem into equal size
subproblems. We consider, therefore, breaking down the problem of sorting n elements, into two
subproblems of sorting lists of size n/2, as depicted in Figure 11-12.

FIGURE 11-12 Breakdown of the Problem of Sorting
a List

FIGURE 11-11 Subproblems of
Factorial Function

c11Recursion.indd Page 472 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 472 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.2 Recursive Problem Solving 473

 At this point, the power of recursive thinking comes into play. Since we are developing a method for
sorting lists of size n, we can assume that any list of size less than n can be sorted, without needing
to determine in detail how that is done . (This is closely related to proof by induction in mathemat-
ics.) Thus, we can continue to develop our method for sorting lists of size n based on that fact.

 The next step is to identify a base case that does not need to be broken down any further in
order to be solved. The obvious base case is lists of size 1, since by defi nition they are sorted. Since
we are dividing each list into two sublists at each step of the recursion, eventually each sublist will
be of size 1. Thus, the breakdown into subproblems lead towards the base case, as required.

 The last step is to determine how two (recursively solved) sorted sublists can be combined into
one complete sorted list as depicted in Figure 11-13.

 We cannot simply concatenate one sublist with the other. We need to somehow merge the values into
one properly sorted list. This can be done as follows. Compare the smallest (top) item in each of the
two lists. Whichever is the smaller value, move that as the fi rst item of a new list. Cross off the item
moved. Continue in the same manner until all the elements have been moved to the new list. The fi rst
steps of this process are shown in Figure 11-14.

FIGURE 11-13 After Sorting Each of the Two Sublists

FIGURE 11-14 The Process of Merging Two Sorted Lists

 Now that we have determined how to break down the problem into (smaller) subproblems, and how
to combine the solutions of the subproblem into a solution of the larger problem, we can specify the
complete steps of this “merge sort” algorithm.

 1. Split the list into two sublists.

 2. Sort each sublist.

 3. Merge the sorted sublists into one sorted list.

 Figure 11-15 shows how this recursive method works on a particular list.

c11Recursion.indd Page 473 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 473 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

474 CHAPTER 11 Recursion

 The initial problem is to sort the list 12, 9, 4, 15, 18, 3. This is broken down into the problem
of sorting the sublists 12, 9, 4 and 15, 18, 3. Since each sublist will be sorted in a similar man-
ner, let’s follow how the sublist 12, 9, 4 is sorted. It is broken down into the two sublists 12, 9
and 4. Since the sublist containing only the value 4 is by defi nition sorted (as a base case) that
subproblem does not need to be broken down any more—it is solved. So the sublist 12, 9 is
broken down into the list containing 12 and another containing 9. These are now also solved
since they are each a base case. The diagram indicates how the original sublist 15, 18, 3 is
similarly broken down.

 Now that since all base cases have been reached, the process of merging sublists begins as
shown on the right side of the fi gure. Thus, to produce the sorted list 9, 12 the two base cases 9 and
12 are merged. We have shown how this merging can be systematically done. To produce the sublist
4, 9, 12, the sorted sublist 9, 12 is merged with the sorted sublist 4. The sorted sublist 3, 15, 18 is
similarly produced. Thus, the fi nal step is to merge the sorted versions of the original two subprob-
lems, 4, 9, 12 and 3, 15, 18. We next give a Python implementation of this algorithm.

 11.2.3 Let’s Apply It—MergeSort Implementation

 An implementation of the MergeSort algorithm is given in Figure 11-16. This program utilizes the
following programming features.

➤ recursive functions

 Function mergesort implements the recursive algorithm given above. When mergesort re-
ceives a list of length 1 (the base case), it simply returns the list (lines 3–4). Otherwise, the list is
broken into two sublists, sublist1 and sublist2 (lines 6–7). Note that integer division is used,
len(lst)//2, so that we don’t compute non-integer lengths. Thus, when lst contains an uneven
number of elements, for example 5, sublist1 and sublist2 will be of lengths 2 and 3, respec-
tively, which makes no difference in the algorithm.

 Once the list is divided into sublists, each of the sublists is sorted by a recursive call to
mergesort (lines 9–10). Utilizing the power of recursive thinking, we can assume that these
 recursive calls work without having to think through all the recursive steps . Attempting to think

FIGURE 11-15 Recursive Problem-Solving Example (MergeSort)

c11Recursion.indd Page 474 05/11/12 5:43 PM user-019Ac11Recursion.indd Page 474 05/11/12 5:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.2 Recursive Problem Solving 475

through the steps at each recursive level is tedious, confusing and unnecessary. Finally, the two
sorted sublists are merged and returned as the fi nal sorted list (line 12).

 Note that supporting function merge is longer and more detailed than function mergesort.
This should not be surprising, since the real work lies in the merging of sublists. In the function, the
new merged list to be returned is constructed in variable merged_list. Thus, merged_list is
initialized as an empty list (line 17). Variables i and k are used to keep track of the position of the
current elements being compared in each of sublist1 and sublist2; thus, each is initialized to
0 (lines 19–20).

 The while loop in lines 22–28 merges one more element into merged_list for each itera-
tion of the loop. If the current item in lst1 (determined by the current value of i) is less than the
current item in lst2 (determined by the current value of k), then the current item of lst1,
lst1[i], is appended to merged_list. Otherwise, the current item of lst2, lst2[k], is
appended. Once the while loop terminates, all of the elements of lst1 and/or lst2 have been

FIGURE 11-16 Recursive Function mergesort

c11Recursion.indd Page 475 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 475 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

476 CHAPTER 11 Recursion

merged. What is left to do is append any remaining items of either sublist whose elements have not
yet been merged (when the two sublists are not of equal length). This is taken care of in lines 30–35 .
Finally, on line 37 , the newly created merged list is returned.

 We note that the MergeSort function makes two recursive calls. Such recursive functions are
called doubly recursive . Double recursion makes the conversion of a recursive solution to an itera-
tive one more diffi cult than a “singly recursive” algorithm. We shall see another example of a doubly
recursive function in the Computational Problem Solving section of the chapter.

 Self-Test Questions

 1. Only problems that are recursively defi ned can be solved using recursion. (TRUE/FALSE)

 2. The power of recursion is the execution speed over iteration. (TRUE/FALSE)

 3. The base case in the MergeSort algorithm is,
 (a) an empty list (b) a list of length one (c) a list of length two

 4. The MergeSort algorithm only works on lists of length two or more. (TRUE/FALSE)

 5. The MergeSort algorithm divides a list into equal, or nearly equal, sublists in each recursive
level (except for the base case). (TRUE/FALSE)

 ANSWERS: 1. False, 2. False, 3. (b), 4. False, 5. True

 11.3 Iteration vs. Recursion

 Recursion is fundamentally a means of repeatedly executing a set of instructions. The set of instruc-
tions are those of a function, and the repetition comes from the fact that the function is repeatedly
executed, once for each recursive function call. Thus, recursion and iteration are two means of ac-
complishing the same result. Whatever can be computed using recursion can also be computed using
iteration, and vice versa.

 Since iteration and recursion are equivalent in terms of what can be computed, a natural ques-
tion is “When should I use recursion, and when should I use iteration?” There is no clear-cut answer
to this question, but there are some guidelines. Generally, a recursive function generally takes more
time to execute than an equivalent iterative approach. This is because the multiple function calls are
relatively time-consuming. In contrast, while and for loops execute very effi ciently. Thus, when a
problem can be solved both recursively and iteratively with similar programming effort, it is gener-
ally best to use an iterative approach . Recall that the Factorial function was an example of such a
situation. The iterative version of computing factorial is simple to implement, and executes much
more effi ciently.

 On the other hand, some problems are very diffi cult to solve iteratively, and almost trivial to
solve recursively. This is when recursion is most effectively used. A classic example of such a prob-
lem is the Towers of Hanoi, discussed next.

Whatever can be computed using recursion can also be computed using iteration, and vice versa.

c11Recursion.indd Page 476 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 476 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.4 Towers of Hanoi 477

 COMPUTATIONAL PROBLEM SOLVING

 11.4 Towers of Hanoi

 In this section we look at a classic example of recursive problem solving in computer science, the
Towers of Hanoi.

 11.4.1 The Problem

 The Towers of Hanoi problem (Figure 11-17) is based
on a legend of unknown origin. According to the leg-
end, there is a Vietnamese temple with a large room
containing three pegs and 64 golden disks. Each disk
has a hole in it so that it can be slipped onto any of the
pegs. In addition, each disk is of different size. The
64 disks are moved by priests from one peg to an-
other, with the following conditions,

♦ Only one disk can be moved at a time.

 ♦ At no time can a larger disk be placed on top of a smaller one.

 When the complete pile of 64 disks have been moved, the world is to end. There is not much need
for concern, however—assuming that the priests moved one disk per second, it would take roughly
585 billion years to fi nish!

 11.4.2 Problem Analysis

 We will fi rst attempt to solve this problem for three disks to gain some insight into the problem, and
then develop a general solution for any number of disks. Thus, we will solve the simple problem of
moving three disks from peg A to peg C as shown in Figure 11-18.

FIGURE 11-17 Towers of Hanoi

FIGURE 11-18 Towers of Hanoi Problem for Three Disks

 First, let’s solve this the hard way, by considering every step that must be taken. The obvious fi rst move
is to remove the smallest disk, and place it on either peg B or peg C. If we place the smallest disk on peg
C, then we must place the next smallest disk on peg B, resulting in the confi guration in Figure 11-19.

 We then consider our third move. We can place the disk currently on peg B back on peg A, but
that will be undoing what we just did in the last step. So in order to make progress, we move the
smallest disk on peg C somewhere. We can move it on either peg A or peg B, since in each case it
would be placed on a larger disk (thus not violating the problem’s conditions). Let’s assume that we

c11Recursion.indd Page 477 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 477 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

478 CHAPTER 11 Recursion

move the smallest disk currently on peg C on top of the second smallest disk on peg B. This move
results in the confi guration shown in Figure 11-20.

FIGURE 11-19 Towers of Hanoi after Two Moves

FIGURE 11-20 Towers of Hanoi after Three Moves

FIGURE 11-21 Towers of Hanoi Final Moves

 Now, we can move the largest disk currently on peg A to peg C (since peg C is currently empty).
Then we can move the smallest disk from peg B to peg A, then move the second smallest disk from
peg B to peg C, and fi nally move the smallest disk from peg A to peg C, thereby solving the problem
as shown in Figure 11-21.

 The question is, what have we learned by thinking through the solution of this problem for three
disks? What insight have we gained into the problem involving four disks? Five disks? Attempting
to think through the individual steps for a larger and larger number of disks quickly becomes over-
whelming.

 As you should expect, there is a much more elegant solution for this problem involving
recursion. The fundamental steps of a recursive solution for the Towers of Hanoi problem is
given below:

 Step 1 : View the stack as two stacks, one on top of the other.
Call the top stack Stack1, and the bottom stack Stack2.

 Step 2 : Recursively move Stack1 from peg A to peg B.
 Step 3 : Recursively move (the exposed) Stack2 from peg A to peg C.
 Step 4 : Recursively move Stack1 from peg B to peg C.

c11Recursion.indd Page 478 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 478 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.4 Towers of Hanoi 479

 Here is where we can benefi t from recursive thinking. From this confi guration, we need to (recur-
sively) move the stack of disks on peg B to peg C to complete the problem solution. However, we
are not allowed to move the whole stack at once, but instead must move each disk one at a time. This
is accomplished by solving this problem in an identical way to the solution of the larger problem
involving all disks. Without thinking through all of the details of each step, we know that the top disk
on peg B must be moved at this point (since only top disks can be moved, and we do not want to
move the disks on peg C, since they are currently in the correct position). So we can move the top
disk from peg B to either currently empty peg A, or on top of the disks on peg C.

 Note that this is the smallest disk of all disks. Therefore, once we place this smallest disk on
either peg, that peg cannot be used to place any other disks on top of it . But the one insight we
should have gained by working through the detailed solution of three disks is that there is always the
need for a spare peg when moving a stack of disks from one peg to another. Thus, once the smallest
disk is placed on a peg, that peg becomes unusable for placing any other disks on it (and thus unus-
able as a spare peg), as shown in Figure 11-23 for peg A.

 As we have said, in recursive problem solving, we do not need to specify the detailed steps solving
any subproblem that is a smaller, similar problem to the original problem. Here, steps 2, 3, and 4
have to do with solving subproblems that are the same type of problem as the original—moving a
stack of disks from one peg to another. It does not matter that the stacks being moved are different,
or are being moved between different pegs. Each of the subproblems can be recursively solved in a
similar way, and thus we can assume that they can be solved without explicitly specifying how.
Therefore, in order to effectively solve the general problem, we only need to decide and specify the
details of step 1, how to break down a stack of disks into two separate (sub)stacks. Let’s consider
different ways of breaking down this problem.

 Suppose we start with the obvious breakdown, that is, dividing the stack of disks (six in this
example) into two equal (or close to equal) size stacks. If we choose that approach, then after (recur-
sively) moving the top half of the original stack to peg B and (recursively) moving the bottom half
of the stack to peg C, we have the confi guration given in Figure 11-22.

FIGURE 11-22 One Possible Breakdown of the Towers of Hanoi

FIGURE 11-23 Inappropriate Breakdown of the Towers of Hanoi

c11Recursion.indd Page 479 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 479 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

480 CHAPTER 11 Recursion

 Since we have determined that dividing the stack of disks into two (essentially) equal-size stacks
will not work, we need to consider alternate methods of dividing the stack of disks. Suppose we take
the opposite approach, and divide the stack into very unequal -sized stacks? That is, let’s consider
dividing the stack so that the top stack consists of the top (smallest) disk only, and the bottom stack
consists of the rest of the disks. Let’s see how this plays out.

 Moving the top stack from peg A to peg B means moving the one smallest disk to peg B, as
shown in Figure 11-24.

 That is easy, since it is a stack of only one! Now, we must (recursively) move the bottom stack (with
all the remaining disks) from peg A to peg C. We know that this cannot be done in one step, and must
be done by moving one disk at a time. We also know that in order to move such a stack of disks from
any peg to any other peg, we must have a spare peg. However, since the smallest disk has been
placed on peg B (our spare peg), that is unavailable for use! Again, then, this approach will not work!

 Finally, we consider the correct approach. We again break down the stack of disks into very
unequal-sized stacks. However, this time, we break it down so that the top stack consists of all disks
except the bottom (largest) disk . Therefore, the correct approach would be to recursively move the
top stack (of n 2 1 disks) from peg A to peg B. Then, simply move the largest (remaining) disk from
peg A to peg C. Then recursively move the stack of disks from peg B to peg C (on top of the largest
disk), as shown in Figure 11-25.

 Note that in this case, when moving the stack of disks from peg B to peg C, we have the needed spare
peg, since peg A is currently empty, and peg C has on it the largest disk, making it possible to use
either as a spare peg. Thus, our recursive solution is:

FIGURE 11-24 Another Possible Breakdown of the Towers of Hanoi

FIGURE 11-25 Correct Breakdown of the Towers of Hanoi

1

2

3

A B C

 Step 1: Recursively move the top n 2 1 disks from peg A to peg B.
 Step 2: Move the one (remaining) largest disk from peg A to peg C.
 Step 3: Recursively move the n 2 1 disks from peg B to peg C.

c11Recursion.indd Page 480 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 480 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.4 Towers of Hanoi 481

 As with MergeSort, this is a doubly recursive algorithm. This is a well-designed recursive solution
because:

 ♦ There is a base case . When the stack of disks consists of only one disk, such a “stack” can be
moved without further breakdown.

 ♦ The recursive steps work towards the base case . The subproblem involves the solution of smaller
and smaller sized stacks of disks.

 ♦ The solutions of the subproblems provide a solution for the original problem. Solutions of sub-
problems eventually result in all the disks being on the destination peg in the required order.

 11.4.3 Program Design and Implementation

 Now that we have defi ned a recursive solution to this problem, implementation of a program that
solves it is surprisingly simple, given in Figure 11-26.

 Hopefully you have gained an appreciation for the power and elegance of recursion through the
examples given, and that you will be able to begin to apply “recursive thinking” in your own prob-
lem solving. We give a program utilizing turtle graphics that produces an animation of the solution
of the Towers of Hanoi for a given number of disks in Figure 11-27.

 In addition to the turtle module, the program also imports the time module (lines 3
and 4). The time module contains a sleep function used to control the speed at which the anima-
tion proceeds (line 217), pausing 0.5 seconds between the movement of disks.

 The main module is in lines 229–277 . On line 230 a welcome message is displayed indicating
what the program does. The call to setup on line 233 establishes the turtle screen size (in pixels).
The three pegs are positioned at the bottom center of the turtle screen (line 236) and the vertical
separation of the disks on each peg is set to 24 pixels (line 237). (The separation between disks on
a peg will be proportionally reduced in function calcDiskLocations so that smaller disks at
the top of a stack of disks are closer together than larger disks.)

 Variables peg_A, peg_B, and peg_C are initialized to integer values 0, 1, and 2, respec-
tively. Thus, these values can serve as index values for lists holding both the disk objects on each
peg, and a list storing all disk locations. The number of disks to solve the problem for is retrieved
from the user by a call to getNumDisks and assigned to variable num_disks (line 245). Func-
tion displayPegs is then called to display the three pegs (line 249) for the locations in variable
peg_locations. In lines 252–253 the image fi le names the required number of disks (specifi ed
in num_disks) are assigned to variable disk_images by a call to function getDisk Images.
The image fi le names are then passed to function registerDiskImages to be registered in
turtle graphics as shapes to which turtle objects can be assigned.

 The locations on each peg for where all the disks are to be placed is calculated by function
calcDiskLocations (lines 98–126), called on line 256 . The required number of disks

FIGURE 11-26 Recursive Function Implementation of the Towers of Hanoi

c11Recursion.indd Page 481 05/11/12 5:43 PM user-019Ac11Recursion.indd Page 481 05/11/12 5:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

482 CHAPTER 11 Recursion

FIGURE 11-27 Towers of Hanoi Program (Continued)

 (turtle objects) are created by function createDisks (lines 80–96) called on line 261 . All disks
are initially placed on the start peg (peg A) by function placeDisksOnStartPeg (lines 128–
132), called on line 264 . After being properly placed, the disks are made visible by function
 makeDisksVisible (lines 134–138) called on line 267 . Once the disks are placed, there is a

c11Recursion.indd Page 482 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 482 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.4 Towers of Hanoi 483

two-second delay by a call to the sleep function of the time module (line 270), followed by a call to
the recursive function towers to begin the problem-solving process (line 273).

 Function towers (lines 211–225) implements the recursive algorithm for solving the prob-
lem. When called, it is passed the peg to be treated as the start peg (from which disks are to be
moved), a destination peg (where the disks are to be moved), and a spare peg (used as temporary
storage while moving disks), and the number of disks to move. The base case is when there is only

FIGURE 11-27 Towers of Hanoi Program (Continued)

c11Recursion.indd Page 483 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 483 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

484 CHAPTER 11 Recursion

FIGURE 11-27 Towers of Hanoi Program (Continued)

one disk to move (checked for on line 215). In this case, the disk is simply moved from the start
peg to the destination peg by call to moveDisk. Otherwise, the top num_disks – 1 are (recur-
sively) moved from the start peg to the spare peg, the single remaining (bottom) disk is then moved
from the start peg to the destination peg, and the num_disks 2 1 disks on the spare peg are
(recursively) moved to the destination peg.

c11Recursion.indd Page 484 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 484 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

11.4 Towers of Hanoi 485

FIGURE 11-27 Towers of Hanoi Program (Continued)

c11Recursion.indd Page 485 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 485 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

486 CHAPTER 11 Recursion

FIGURE 11-27 Towers of Hanoi Program (Continued)

c11Recursion.indd Page 486 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 486 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Chapter Exercises 487

FIGURE 11-27 Towers of Hanoi Program

 General Topics

 Recursive Functions
 Infi nite Recursion
 Factorial Function
 Recursive Problem Solving
 MergeSort
 Iteration vs. Recursion
Fractals
Towers of Hanoi

 Python-Specifi c Programming Topics

 Recursive Functions in Python

 C H A P T E R S U M M A R Y

 C H A P T E R E X E R C I S E S

 Section 11.1

 1. For the following recursive functions, indicate which of the requirements of a properly designed recursive
function each violates.

 (a) def rfunc1(n):
 return n 1 rfunc(n 2 1)
 (b) def rfunc2(n):
 if n 55 0:
 return 1

 return n 1 rfunc2(n 1 1)

 2. For the following Sierpinski triangle, indicate how many times function drawSierpinskiTriangle
is called in the Sierpinski triangle program of Figure 11-9.

c11Recursion.indd Page 487 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 487 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

488 CHAPTER 11 Recursion

 Section 11.2

 3. Give all the steps for MergeSort in sorting the following list.

 11 4 16 9 5 12 2 14

 4. Indicate the results produced by the recursive function MergeSort in Figure 11-16 if line 3 was replaced with,

 if len(lst) 55 0:

 P Y T H O N P R O G R A M M I N G E X E R C I S E S

 P1. Write both a nonrecursive and recursive function that determines if a given number is even or not.

 P2. Write both a nonrecursive and recursive function that determines how many times a given letter occurs in
a provided string.

 P3. Write both a nonrecursive and recursive function that displays a provided string backwards.

 P4. Write both a nonrecursive and recursive function that converts numbers to base 2.

 P5. Write both a nonrecursive and recursive function that calculates the Fibonacci number for any positive
integer, defi ned as follows,

 fi b(0) 5 0,
 fi b(1) 5 1,
 fi b(n) 5 fi b(n 2 1) 1 fi b(n 2 2)

 P6. Write both a nonrecursive and recursive function that displays the rows of asterisks given below,

 **

 P7. Write both a nonrecursive and recursive function that displays the rows of asterisks given below,

 **

S
ie

rp
in

sk
i t

ria
ng

le
 e

vo
lu

tio
n/

W
ik

im
ed

ia
 C

om
m

on
s

c11Recursion.indd Page 488 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 488 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Program Modifi cation Problems 489

 P R O G R A M M O D I F I C AT I O N P R O B L E M S

 M1. Towers of Hanoi: Reversal of Pegs
 Modify the Towers of Hanoi program in section 11.4.3 so that the initial stack of disks is placed on peg

C (as the start peg), and the fi nal stack of disks is placed on peg A (the destination peg).

 M2. Towers of Hanoi: Displayed List of Moves
 Modify the Towers of Hanoi program in section 11.4.3 so that in addition to the movement of disks on the

screen, the list of moves is displayed in the Python shell as given below,

 Move disk from peg A to peg C

 Move disk from peg A to peg B

 Move disk from Peg C to peg A

 etc.

 M3. Sierpinski Triangle Program: Multiple Levels of Fractal Displayed
 Modify the Sierpinski Triangle Program in section 11.1.3 so that it displays fours levels of the fractal as

given below on the screen at once.

 M4. Sierpinski Triangle Program: Modifi ed for Creating Sierpinki Carpet
 Modify the Sierpinski Triangle Program in section 11.1.3 so that it instead displays a Sierpinski carpet as

the repeated pattern of a solid square surrounded by eight smaller squares as depicted below.

 M5. Sierpinski Triangle Program: Modifi ed for a Koch Snowfl ake
 Modify the Sierpinski Triangle Program in section 11.1.3 so that a Koch snowfl ake fractal is generated

instead. The progressive levels of a Koch snowfl ake fractal, like the Sierpinski triangle, are based on the
repeated use of an equilateral triangle as given below,

 1. Divide each side of the equilateral triangle into three segments.
 2. Draw an equilateral triangle (of smaller size) with sides the length of the line segments above, with the

base placed at the middle line segment, pointing outwards.
 3. Remove the line segment forming the base of the newly placed triangle.

S
ie

rp
in

sk
i t

ria
ng

le

ev
ol

ut
io

n/
W

ik
im

ed
ia

 C

om
m

on
s

Jo
ha

nn
es

 R
os

se
l/

S
ie

rp
in

sk
i c

ar
p

et
 1

,
 ca

rp
et

 2
, c

ar
p

et
 3

,
ca

rp
et

 4
/W

ik
im

ed
ia

C

om
m

on
s

c11Recursion.indd Page 489 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 489 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

490 CHAPTER 11 Recursion

 P R O G R A M D E V E L O P M E N T P R O B L E M S

 D1. Coin Change Program (Revisited)
 Consider the Coin Change program in section 3.4.6 (for children learning to count change) in which the

user had to enter a combination of coins that added up to a specifi ed amount between 1 and 99 cents.
Develop and test a program based on the use of recursion that “turns the tables” in which the user enters
an amount between 1 and 99 cents, and the program must determine a set of coins that adds up to that
amount using the least number of coins.

 D2. Palindrome Checker (Revisited)
 In Chapter 7 (section 7.3.7) a Palindrome Checker program was given based on the use of a stack

that was also developed. Develop and test a Palindrome Checker program based on the use of recursion,
instead of a stack.

 D3. Phone Number Spelling Program (Revisited)
 In Chapter 9 (section 9.1.2) a Phone Number Spelling program was given based on the use of deeply

nested for loops. Develop and test a Phone Number Spelling program based on the use of recursion
 instead.

 D4. Creative Designs
 Using your imagination, develop and test a program using recursion that generates a fractal of your own

design. As with the example fractals in the chapter, start with a basic geometric shape, and defi ne the next
level of the fractal pattern containing two or more smaller versions of the original-size shape.

 D5. Develop a program that uses recursion to solve the Man, Cabbage, Goat, Wolf problem from Chapter 1.

W
rt

lp
rn

ft/
K

oc
h

 sn
ow

fl a
ke

 0
th

 it
er

at
io

n
(1

st
 it

er
at

io
n,

 2
nd

 ite

ra
tio

n,
 3

rd
 it

er
at

io
n)

/
W

ik
im

ed
ia

 C
om

m
on

s

c11Recursion.indd Page 490 23/10/12 10:54 AM user-019Ac11Recursion.indd Page 490 23/10/12 10:54 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

491

 In this fi nal chapter, we look at the many developments and innovations that have led to
 present-day computing. This includes advancements in computer hardware, computer software,
and computer networks, as well as theoretical developments that underlie our understanding
and effective utilization of computing.

 OBJECTIVES

 After reading this chapter you will:

 ♦ Be knowledgeable about many of the developments in computing

 ♦ Become familiar with some of the most notable individuals in the fi eld

 ♦ Be able to describe the four generations of computer technology

 CHAPTER CONTENTS

 Contributions to the Modern Computer

 12.1 The Concept of a Programmable Computer

 12.2 Developments Leading to Electronic Computing

First-Generation Computers (1940s to mid-1950s)

 12.3 The Early Groundbreakers

 12.4 The First Commercially Available Computers

 Second-Generation Computers (mid-1950s to mid-1960s)

 12.5 Transistorized Computers

12.6 The Development of High-Level Programming Languages

 Third-Generation Computers (mid-1960s to early 1970s)

 12.7 The Development of the Integrated Circuit (1958)

 12.8 Mainframes, Minicomputers, and Supercomputers

 CHAPTER 12 Computing and Its

Developments

c12ComputingandItsDevelopments.indd Page 491 23/10/12 10:36 AM user-019Ac12ComputingandItsDevelopments.indd Page 491 23/10/12 10:36 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

492 CHAPTER 12 Computing and Its Developments

 Fourth-Generation Computers (early 1970s to the Present)

 12.9 The Rise of the Microprocessor

 12.10 The Dawn of Personal Computing

 The Development of Computer Networks

 12.11 The Development of Wide Area Networks

 12.12 The Development of Local Area Networks (LANs)

 12.13 The Development of the Internet and World Wide Web

 CONTRIBUTIONS TO THE MODERN COMPUTER

 12.1 The Concept of a Programmable Computer

 12.1.1 “Father of the Modern Computer”—Charles Babbage (1800s)

 In London, England, during the 1800s, Charles Babbage
 (Figure 12-1) worked on a couple of different designs for a cal-
culating machine. The fi rst, called the “Difference Engine,” was
designed to perform only certain calculations. It was to be pow-
ered by steam with a built-in “printer” that would punch out
 calculation tables on metal plates, important for British navigation.
A partial prototype was fi nished in 1822. Because of technical,
fi nancial, and other problems however, his continued attempts
over the next nearly twenty years to fi nish its construction ended
in failure. If completed, it would have measured ten-feet by ten-
feet by fi ve-feet, and would have weighted two tons.

 Another machine that Babbage envisioned, however,
would lead to his historical imminence—the Analytical Engine
(Figure 12-2). He completed the fi rst workable prototype in 1837,

working on its completion until his death in 1871. A major conceptual breakthrough of the Analytical
Engine was that the calculations it performed were based on a set of instructions fed to it. Therefore,
it could be “programmed” to solve any mathematical problem, not just certain problems as with the
Difference Engine. As designed, it would have
been fi fteen feet tall and twenty-fi ve feet long;
about the size of a small locomotive train.

 The Analytical Engine was never com-
pleted due to the limited technology of the time.
Its design, however, is considered one of the
greatest intellectual achievements of the nine-
teenth century. It contained the two fundamental
components of current-day computers: a mill (a
kind of central processing unit for executing in-
structions, fed as punched cards), and a store (a
kind of memory or storage area). Because of
Babbage’s foresight, he has been given the de-
served name “Father of the Modern Computer.”

FIGURE 12-1 Charles Babbage

W
or

ld
 H

is
to

ry
 A

rc
hi

ve
/A

la
m

y
Li

m
ite

d

FIGURE 12-2 The Analytical Engine

S
S

P
L/

G
et

ty
 Im

ag
es

, I
nc

.

c12ComputingandItsDevelopments.indd Page 492 05/11/12 3:36 PM user-019Ac12ComputingandItsDevelopments.indd Page 492 05/11/12 3:36 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.2 Developments Leading to Electronic Computing 493

Charles Babbage is considered the “Father of the Modern Computer” for his work on the
 Analytical Engine in the 1800s.

Ada Lovelace is considered the “First Computer Programmer” for her work, insight and writings
on the Analytical Engine.

 12.1.2 “The First Computer Programmer”—Ada Lovelace (1800s)

 Augusta Ada Byron (Figure 12-3), Countess of Lovelace (“Ada
Lovelace”) and daughter of the poet Lord Byron, was a talented
mathematician, who fi rst met Charles Babbage in 1833. She was
intrigued with his work, and inspired Babbage to continue with his
Analytical Engine. She helped write widely published scientifi c
 articles on the machine and Babbage’s ideas. She showed her
 insightfulness by predicting that such machines were capable of pro-
cessing not only numbers, but any encoded information. For exam-
ple, she gave predictions that someday these machines would be
able to produce graphics, compose music, and have scientifi c use
(beyond mere scientifi c calculation). Because of her foresight, she is
credited with being the “First Computer Programmer.” The Ada
programming language is named in her honor.

FIGURE 12-3 Ada Lovelace

S
P

L/
P

ho
to

 R
es

ea
rc

he
rs

, I
nc

.

 12.2 Developments Leading to Electronic Computing

 12.2.1 The Development of Boolean Algebra (mid-1800s)

 We have already mentioned George Boole (Figure 12-4) in
 Chapter 3 in our discussions of Boolean algebra. His development
of what we now call Boolean algebra, and the corresponding
Boolean operators AND, OR, and NOT was conceived as a means
of mathematically proving the answers to any true/false question.
Later work showed that there are always some questions that
 cannot be answered mathematically. However, Boolean algebra
became greatly applicable one hundred years later. It provides the
logical foundation for the design of digital logic circuits of mod-
ern electronic computers.

FIGURE 12-4 George Boole

U
ni

ve
rs

al
 H

is
to

ry
 A

rc
hi

ve
/

G
et

ty
 Im

ag
es

, I
nc

.

The development by George Boole, of what is now called Boolean algebra, provided the logical
foundation for the development of digital circuits.

c12ComputingandItsDevelopments.indd Page 493 05/11/12 3:36 PM user-019Ac12ComputingandItsDevelopments.indd Page 493 05/11/12 3:36 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

494 CHAPTER 12 Computing and Its Developments

FIGURE 12-8 AND Logic Gate

 12.2.2 The Development of the Vacuum Tube (1883)

 In 1883, Thomas Edison (Figure 12-5) invented
the vacuum tube (Figure 12-6), an electronic
device containing electrodes that electrons can
travel between. The vacuum tube became the
building block for the entire electronics industry
at the time. A version of the device can be used as
an electronic switch, which became a critical
component in the development of the fi rst mod-
ern electronic computers.

 12.2.3 The Development of Digital Electronic Logic Gates (1903)

 Serbian-born Nikola Tesla (Figure 12-7), who once worked for Thomas
Edison, patented in 1903 the electronic logic gate. Such gates, com-
posed of a small number of vacuum tubes as electronic switches, could
electronically execute the logical operators of Boolean algebra—AND,
OR, and NOT. Two different electrical signals representing either true
or false were input to the gate, with an output electrical signal repre-
senting the true/false result, as shown in Figure 12-8. Logic gates
would become fundamental to all electronic digital computers to come,
the idea to be rediscovered decades later.

FIGURE 12-7 Nikola
Tesla

FIGURE 12-6 Vacuum TubesFIGURE 12-5
Thomas Edison

K
ey

st
on

e/
G

et
ty

 Im
ag

es
, I

nc
.

Thomas Edison invented the vacuum tube, which became the fi rst form of electronic switch in
electronic computers.

Nikola Tesla patented the electronic logic gate, which would become a fundamental component
of all electronic computers.

Tv
ez

ym
er

/1
2A

U
7/

W
ik

im
ed

ia

 C
om

m
on

s

Te
sl

a3
/W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 494 23/10/12 12:59 PM user-019Ac12ComputingandItsDevelopments.indd Page 494 23/10/12 12:59 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.2 Developments Leading to Electronic Computing 495

 12.2.4 The Development of Memory Electronic Circuits (1919)

 American physicists W. H. Eccles (Figure 12-9) and R. W. Jordan in
1919 invented the fl ip-fl op electronic switching circuit. These devices,
based on use of vacuum tubes, were able to “fl ip and fl op” from one stable
state to another. Such a device is always in one of two states, thus provides
a form of electronic storage, or “memory.” Flip-fl op electronic compo-
nents, like Tesla’s electronic logic gates, would become key components
in the development of future digital electronic computers.

FIGURE 12-9
W. H. Eccles

W. H. Eccles and R. W. Jordan invented the fl ip-fl op electronic switching circuit to become a
fundamental component of all electronic computers.

 12.2.5 The Development of Electronic Digital Logic Circuits (1937)

 In 1937, George Stibitz (Figure 12-10) of Bell Laboratories,
working on his kitchen table one night created the fi rst digi-
tal electronic logic circuit. A digital electronic circuit is a
circuit built out of electronic logic gates that can execute
arithmetic or logical operations. Because such circuits are
built out of combinations of logic gates, they are referred
to as combinatorial circuits. Boolean algebra provides a
mathematical basis for denoting, analyzing, and understand-
ing such circuits.

 The digital logic circuit that Stibitz built was for adding
two binary digits, called a (full) binary adder. Such an adder
is a fundamental component of all modern computers. Stibitz’s
work demonstrated the feasibility of building electronic logi-
cal and arithmetic circuits from the basic building blocks of
electronic logic gates that Tesla earlier developed. This
 development, along with the fl ip-fl op electronic circuit of
 Eccles and Jordan for the electronic storage of information,
completed the technology needed for the design and construc-
tion of a fully electronic computer.

George Stibitz created the fi rst digital electronic logic circuit, constructed out of a combination
of electronic logic gates.

W
ill

ia
m

H
en

ry
E

cc
le

s/
W

ik
im

ed
ia

 C
om

m
on

s

C
ou

rt
es

y
of

 th
e

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

s
an

d

C
om

pu
te

r S
ci

en
ce

, D
en

is
on

 U
ni

ve
rs

ity

FIGURE 12-10 George Stibitz

c12ComputingandItsDevelopments.indd Page 495 23/10/12 10:37 AM user-019Ac12ComputingandItsDevelopments.indd Page 495 23/10/12 10:37 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

496 CHAPTER 12 Computing and Its Developments

 12.2.6 “The Father of Information Theory”—Claude Shannon (1948)

 While many of his colleagues were working on the hardware
design of modern computers, Claude Shannon (Figure 12-11)
at Bell Laboratories, worked on a theory of information to be
processed by such machines. In 1937, at the age of 21, Shannon
wrote a master’s thesis that showed how Boolean algebra can be
simulated electronically by simple electronic switches to per-
form both logical and numerical calculations—the fundamental
concept of digital computing today. Some considered Shannon’s
result possibly the most important master’s thesis of the twenti-
eth century.

 Later, in 1948, Shannon published a paper that laid the
foundation for what would become the fi eld of information
theory. Shannon’s Fundamental Theorem of Information Sci-

ence states that all information can be represented by use of only two symbols, “0” and “1,” which
he called bits (b inary dig its). It has been said that the digital revolution began with Shannon’s work.

 It was therefore clear that electronic switches could both be used for the design of digital logic
circuits (e.g., a circuit for adding two numbers), and for the storage of information of any kind, not
only numerical values (as Ada Lovelace foresaw). Given Shan-
non’s demonstration of the suffi ciency of binary encoding for
encoding all information, the stage was set for the develop-
ment of electronic binary digital computing as we know it
today. For his work, Shannon is known as the “Father of Infor-
mation Theory.”

 Such binary coding of information was already in practical
use for the transmittance of messages as audible electronic signals
over wire. Earlier, in 1837, Samuel Morse (Figure 12-12) pat-
ented his design of a telegraph, which could electronically send
messages (text) in the form of two signals, dots (e.g. short beep)
and dashes (long beep), called Morse Code. Since only two sig-
nals were used, this represented a form of binary encoding.

FIGURE 12-11 Claude Shannon

S
ci

en
ce

 S
ou

rc
e/

P
ho

to

R
es

ea
rc

he
rs

, I
nc

.

FIGURE 12-12 Samuel Morse

Claude Shannon developed the Fundamental Theorem of Information Science, stating that all
information can be represented by only two symbols, “0” and “1,” which he called bits (binary
digits).

 FIRST-GENERATION COMPUTERS (1940s–mid-1950s)

 12.3 The Early Groundbreakers

 12.3.1 The Z3—The First Programmable Computer (1941)

 Konrad Zuse (Figure 12-13) built a number of binary computing devices starting in 1935, at a time when
other computers were being built based on the decimal system. His initial machines were the Z1 , the fi rst
mechanical binary digital computing device, and the Z2 , the fi rst fully functioning electromechanical

S
am

ue
l F

 B
 M

or
se

 g
ra

vu
re

/
W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 496 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 496 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.3 The Early Groundbreakers 497

computing device, completed in 1939 as World War
II was approaching. Each of these devices had lim-
ited programmability, however.

 While his design of binary computers with
the Z1 and Z2 was signifi cant, his most notable
 accomplishment was the development of the Z3 ,
the fi rst working electromechanical programmable
computer, completed in 1941. The Z3, like the Z2,
was an electromechanical device. After serving in
the German army, he realized the computing poten-
tial of a fully electronic version of his computing
devices. He submitted a proposal to the German
army for funding for his next generation of machine, a fully electronic calculator, the Z4.

 A fully electronic machine would have been thousands of times faster than his electrome-
chanical versions. It would therefore have signifi cant military use, such as for aircraft design and
breaking coded messages. (We shall see that the Allies had crucial success here.) He estimated the
project would take two years. His proposal was fl atly turned down by the German Army Command
since it was believed that Germany would soon win the war (which, of course, they lost a few years
later in 1945). He went on to build the Z4 after the war, completing an electromechanical version in
1949 to become the world’s fi rst commercially available digital computer. He even wrote his own
programming language for the Z4, called Plankalkul, with features of modern-day languages that
was defi nitely ahead of its time.

FIGURE 12-13 Konrad Zuse

K
ar

st
en

 T
hi

el
ke

r/
©

A
P

/W
id

e
W

or
ld

 P
ho

to
s

Konrad Zuse developed the fi rst working programmable computing device, the Z3, an electro-
mechanical binary digital computer, as well as the fi rst commercially available electronic com-
puter, the Z4.

 12.3.2 The Mark I—First Computer Project in the

United States (1937–1943)

 Howard Aiken (Figure 12-14), a mathematics instructor at Harvard University, began a project in 1937
to build a general-purpose (i.e., programmable) electromechanical calculating machine. It was the fi rst
project for the development of a modern computer in the United States (developed without knowledge
of the work of Konrad Zuse). Aiken, as opposed to most others in the early
computing fi eld, knew of Babbage’s work, and therefore saw himself as
following through with Babbage’s unfulfi lled dream. Now, however, Aiken
had available current-day technology that Babbage did not.

 The technology available at the time was electromechanical,
making use of relay switches that mechanically switched on and off by
 control of electrical signals. The machine, therefore, was not a fully
electronic computer, and thus limited in speed by the speed of the
 mechanical switching of the relay switches. IBM agreed to fund the
project and supplied an engineering team to build the machine follow-
ing Aiken’s design. When the machine was fi nally fi nished in 1943,
it was eight feet tall, fi fty-one feet long, two feet thick, and weighed

FIGURE 12-14 Howard
Aiken

A
ik

en
/W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 497 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 497 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

498 CHAPTER 12 Computing and Its Developments

fi ve tons (Figure 12-15). It read instructions from (punched)
paper tape, and data from punched cards.

 Ironically, true to technological developments of today,
the Mark I was obsolete the moment it was completed, since
fully electronic computers were just on the horizon. It was,
however, very newsworthy at the time, and a big press release
was given to announce its completion. The Mark I turned out to
be very reliable compared to other electronic computers. It was
able to run 24 hours a day, seven days a week, and therefore
was very productive. It was used over a period of 16 years. Its
development has been called the “real dawn of the computer
age” (in the United States).

FIGURE 12-15 Harvard Mark I
Electromechanical Computer

B
et

tm
an

n/
©

C
or

bi
s

The Mark I computer, designed by Howard Aiken at Harvard, was the fi rst project for the
 development of a modern computer in the United States. Other, more advanced computers,
 however, were built before the completion of the Mark I.

 12.3.3 The ABC—The First Fully Electronic Computing Device (1942)

 John V. Atanasoff (Figure 12-16), a physicist at Iowa State
University, completed a design of a calculating device
 between 1939 and 1942 with graduate student Clifford
Berry, called the ABC (Atanasoff-Berry Computer). It was
the fi rst to use vacuum tubes both for calculations (for the
logic circuits) and for memory storage. Therefore, it was the
fi rst fully electronic computing device. However, since it was
designed to solve only particular types of mathematical prob-
lems and could not be programmed, it was not a general-
purpose computer.

 The ABC was a binary computer, designed to store
 numerical values in base 2 (i.e., binary notation), and not base 10
as had all other machines previously built, with the exception
of the computing
 devices developed

by Konrad Zuse in Germany. Because of the war, neither
Atanasoff nor Zuse knew of the others’ work. Therefore
each independently hit upon the novel idea of a binary
computer at essentially the same time.

 A functioning prototype was fi nished in October
1939 that could do simple addition and subtraction in
 binary of eight digit decimal values. In 1942, the fi nal
 version was completed and tested (Figure 12-17). It
was the size of a desk, weighed 700 pounds, had over
300 vacuum tubes, and contained a mile of wire.

FIGURE 12-16 John
Atanasoff

U
se

d
by

 P
er

m
is

si
on

. “
Jo

hn
 A

ta
na

so
ff—

U
ni

ve
rs

ity
 A

rc
hi

ve
s,

 Io
w

a
S

ta
te

U

ni
ve

rs
ity

 L
ib

ra
ry

”

FIGURE 12-17 The ABC Was the
First Fully Electronic Computing
Device

U
se

d
by

 P
er

m
is

si
on

. “
Jo

hn

A
ta

na
so

ff—
U

ni
ve

rs
ity

A

rc
hi

ve
s,

 Io
w

a
S

ta
te

U

ni
ve

rs
ity

 L
ib

ra
ry

”

c12ComputingandItsDevelopments.indd Page 498 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 498 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.3 The Early Groundbreakers 499

 After testing of the machine was completed, Atanasoff worked on assignments for the war
effort, and no further development or use of the machine followed. Given that the ABC was not
a programmable device, it lacked a key feature of other machines at the time, but is credited as
the fi rst fully electronic (binary) computing device.

John V. Atanasoff and Clifford Berry developed the ABC (Atanasoff-Berry Computer), a fully
electronic binary computer. It was not, however, a programmable device.

 12.3.4 Colossus—A Special-Purpose Electronic Computer (1943)

 At the start of World War II, in 1939, Great Britain had decided
that it would call upon the greatest mathematical and scientifi c
minds available to break the ciphers that Germany was using
for top-secret communications. The Enigma (Figure 12-18),
developed at the end of World War I, generated complex coding
of messages based on constantly changing alphabetic substitu-
tions. It was believe by the Germans to be an unbreakable code.

 A secret project
was begun in Great
Britain to build a ma-
chine capable of break-
ing the Enigma code.
The electromechanical
machine was called
 Bombe (Figure 12-19).

 This allowed, in particular, the breaking of German
naval codes, and resulted in the signifi cant reduction of
shipping losses across the Atlantic to the United States,
essential for the allied support. Later, however, a second
generation of encryption was developed by the Germans that was signifi cantly more complex,
using a new encryption called Lorenz code. A second new, fully electronic machine was designed
and built for breaking this new code.

 The machine was called the Colossus , a fully electronic binary machine, completed at the end of
1943. A number of machines of this design were built and used (Figure 12-20). A second version, the
Colossus II, was fi nished on June 1, 1944. A few days after its completion, the Allies were able to inter-
cept and decode a message from the German High Com-
mand. The message indicated that the Germans had fallen for
misinformation put out by the Allies that their landing point
was an area called Calais, while in fact, their planned landing
location was the beaches of Normandy. As a result, com-
mander Dwight D. Eisenhower decided to go ahead with the
Normandy invasion—the infamous D-Day—on June 6, 1944
(less than a week after the Colossus II was fi nished). It is
believed by many that the ability to break German codes
brought the turning point of the war in the Allies favor.

FIGURE 12-18 The Enigma
(During World War II)

K
ar

st
en

 S
p

er
lin

g/
E

ni
gm

aM
ac

hi
ne

La
b

el
ed

/W
ik

im
ed

ia

C
om

m
on

s

FIGURE 12-19 Bombe

N
S

A
/B

om
b

e/
W

ik
im

ed
ia

C

om
m

on
s

FIGURE 12-20 The Colossus

U
K

/C
ol

os
su

s/
W

ik
im

ed
ia

C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 499 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 499 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

500 CHAPTER 12 Computing and Its Developments

The Colossus, built in Britain to break German codes during World War II, is believed by many
to have turned the war in the Allies, favor.

In 1943, the U.S. army was in desperate need of a means of computing the large number of fi ring
tables needed for various ballistic missiles.

 12.3.5 ENIAC—The First Fully Electronic Programmable Computer

 The U.S. Army’s Need for a Fully Electronic Computer (1943)

 When the United States entered World War II in 1941,
there was a sudden increased need of people who calcu-
lated ballistic fi ring tables, so-called “human computers”
(Figure 12-21). In order to hit their target, gunners
needed to aim their weapon at the proper angle and
 direction based on a number of factors including the
distance of the target, the wind speed, wind direction,
and air temperature. Gunners depended on such fi ring
tables to fi nd the correct angle of fi re for all the current
conditions for all the different ballistic missiles.

 At the U.S. Army’s Ballistic Research Labora-
tory at Aberdeen Proving Ground in Maryland, hun-
dreds of human computers (mostly female mathematicians) were employed to calculate such
tables. Two to four thousand possible trajectories had to be calculated for each pair of projectile
and gun. Each human computer, using an electromechanical desk calculator, took almost three
days to compute a single trajectory! By 1943, the Army was not able to keep up with the calcula-
tion of all the fi ring tables needed, and was desperately in need of a solution. Thus, the Army was
willing to fund the construction of a fully electronic computer capable of solving this problem.

FIGURE 12-21 “Computers”
During World War II

N
A

S
A

/E
ar

ly
 N

A
C

A
 h

um
an

co

m
pu

te
rs

 a
t w

or
k/

df
rc

.n
as

a.
go

v

 The Development of the ENIAC at the University of Pennsylvania (1945)

 In August 1942, an assistant professor at The Moore School of Electrical Engineering at the
University of Pennsylvania, John W. Mauchly (Figure 12-22) had written a paper on “The Use
of High Speed Vacuum Tube Devices for Calculat-
ing.” While his idea was realized by others, he un-
derstood the kinds of computing speeds that such
an electronic switching device could produce over
electromechanical machines—tens of thousands of
operations per second. He, along with a young
electronics engineer named Presper Eckert, was
awarded a contract by the U.S. Army in June 1943
to build their electronic calculating machine, with
an agreement to build a duplicate of the machine at
Aberdeen Proving Grounds. (The size of comput-
ers then did not allow them to be moved around—
they were permanently located!)

FIGURE 12-22 John Mauchly and
Presper Eckert

C
ou

rt
es

y
of

 th
e

Tr
us

te
es

 o
f t

he

U
ni

ve
rs

ity
 o

f P
en

ns
yl

va
ni

a

c12ComputingandItsDevelopments.indd Page 500 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 500 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.3 The Early Groundbreakers 501

 The ENIAC (for “Electronic Numerical Integrator
and Computer”), shown in Figure 12-23, was fi nished in
November 1945 (too late for its originally intended pur-
pose) about three months after the end of the war.

 It was eight feet high, eighty feet long, and weighed
30 tons. It used decimal notation, and thus was not a binary
computer. When fi nished, however, it was roughly a thousand
times faster than any other computer at the time. Whereas
existing specialized calculators took fi fteen to thirty minutes
to compute the trajectory of a ballistic missile, the ENIAC
took only twenty seconds, capable of 5,000 ten-digit addi-
tions per second.

 As a demonstration of ENIAC’s general-purpose
functionality, the ENIAC was reprogrammed to do crucial
calculations on the development of the fi rst hydrogen bomb (an advanced weapon of the atomic
bomb was used in World War II). Programming on the ENIAC, however, did not mean sitting
down and typing lines at a keyboard as is done today. It had to be physically reprogrammed by
changing switches and reconnecting a patchwork of wires.

 The data for the currently confi gured program was submitted on punch cards. Its biggest prob-
lem was the unreliability of the almost 18,000 vacuum tubes it contained. In fact, the reason that
base ten representation was chosen over binary was that the binary approach would have taken many
more such vacuum tubes. Although ENIAC proved itself to be extremely fast at the time, the unreli-
ability of the vacuum tube was to remain one of its shortcomings.

 Because of intellectual property rights disputes in 1946 with the University of Pennsylvania,
John Mauchly and Presper Eckert decided to leave the university to form the Eckert-Mauchly Com-
puter Corporation. They believed in the potential of commercial computers, whereas others did not
see the need for more than one or two computers in the whole country. They went on to design and
build one the fi rst commercial computer in the United States, the UNIVAC I (shown in Figure 12-22).

John Mauchly and Presper Eckert developed the ENIAC, the fi rst fully-electronic program-
mable computer in the U.S.

 12.3.6 EDVAC/ACE—The First Stored Program Computers (1950)

 Even before Eckert and Mauchly had completed the design of
the ENIAC, they conceived of the idea of a stored-program com-
puter. In the ENIAC, only the data was stored in memory (via
punched cards). To execute diffferent programs, the ENIAC had
to be rewired, and later was reprogrammed through a series of
switches. In a stored-program computer, the program need only
be entered once and stored in memory. This concept was an im-
portant next step since high-speed computers like the ENIAC
were slowed by the need to be reprogrammed this way.

 In 1944, Eckert and Mauchly received another contract from
the army’s Ballistic Research Laboratory, this time for the develop-
ment of a stored-program computer to be called EDVAC. A distin-
guished mathematician from Princeton named John von Neumann
(Figure 12-24) joined the project. Even though Eckert and Mauchly

FIGURE 12-23 The ENIAC
Computer

E
ni

ac
/W

ik
im

ed
ia

 C
om

m
on

s

FIGURE 12-24 John von
Neumann

Lo
s

A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y/

Jo
hn

vo
nN

eu
m

an
n-

Lo
sA

la
m

os
/

W
ik

im
ed

ia
 C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 501 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 501 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

502 CHAPTER 12 Computing and Its Developments

had earlier conceived of the idea of a stored- program computer, von Neumann developed a method of
how it could work, and thus is generally cited as the originator of the idea. The von Neumann machine
remains the predominant means of stored program execution today.

John von Neumann is credited with the concept of a stored-program computer. The fi rst such
computer built was called EDVAC. Its method of executing stored programs is utilized in essen-
tially all computers today, called a von Neumann machine.

After the development of the EDVAC computer, Great Britain began worked on their own stored-
program computer named ACE (for “Automatic Computing Engine”). The lead designer of the project
was one of the most infl uential and signifi cant individuals in the history of computing, Alan Turing.

 12.3.7 Whirlwind—The First Real-Time Computer (1951)

 In December 1944, the U.S. Navy asked MIT to do a feasibility study of the development of a special-
purpose fl ight trainer to train pilots. This required the machine to be capable of real-time processing—
that is, to compute fast enough to instantaneously respond to the actions of training pilots. A young
gifted engineering graduate student, Jay W. Forrester, was of-
fered the project. He changed the goal of the project from the
development of a special-purpose device, to the design and de-
velopment of a general electronic digital stored-program com-
puter that could operate in real time.

 The computer that Forrester developed was called
Whirlwind (Figure 12-26). Although it operated in real time,
it had one serious problem. The method of memory storage,
consisting of thirty-two cathode ray tubes that rarely lasted
more than a month, was unreliable, often putting the machine
out of service.

FIGURE 12-26 The Whirlwind
Computer

C
ou

rt
es

y
of

 M
IT

 The British Stored-Program Computer—ACE (1950)

 British scientists visited the Moore School of Electrical Engineer-
ing at the University of Pennsylvania soon after the end of World
War II. On return to Britain, they worked on their own stored pro-
gram computer named ACE (for “Automatic Computing Engine”).
The lead designer of the project was one of the most infl uential
and signifi cant individuals in the history of computing, Alan
 Turing, who also played a key role in breaking German codes of
World War II (Figure 12-25). A scaled-down version of the stored-
program machine was completed in 1950 (before the completion of
the EDVAC).

FIGURE 12-25 Alan Turing

S
ci

en
ce

 S
ou

rc
e/

P
ho

to
 R

es
ea

rc
he

rs
, I

nc
.

c12ComputingandItsDevelopments.indd Page 502 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 502 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.4 The First Commercially Available Computers 503

 Forrester revolutionized the technology of
memory storage by using magnetically charged,
doughnut-shaped ceramic ferrite “cores” that could
be electronically magnetized in a clockwise or
counterclockwise direction (to represent “1” and
“0”), shown in Figure 12-27. The cores were confi g-
ured in a grid form, threaded with cross sections of
wires so that any given core could be read or written
by selection of the proper “vertical and horizontal”
wires. The memory board in the fi gure is 6.5 inches
square, and contained a storage capacity of 1024
bits. The term core is still used today—mainly in the
term core dump referring to the raw display, or
“dump” of the contents of main memory—even
though computers no longer use magnetic core memory.

 Besides the speed of this form of memory, another important feature was that each bit (or core)
of memory could be read and written in the same amount of time. This was called random access
memory (RAM), an essential characteristic of computer memory today. Core memory technology
remained the main memory technology for almost thirty years.

The Whirlwind, developed by Jay W. Forrester, was the fi rst real-time computer, also introduc-
ing the use of core (random access) memory.

 12.4 The First Commercially Available Computers

 A new stage of computer history began when companies started manufacturing commercial com-
puters. This was the fi rst time that computers were not thought of as unique, one-of-a-kind
 machines, but as particular model computers. A new industry was beginning that many people did
not see coming. This is refl ected in a quote by Thomas Watson, president of IBM in 1943: “I think
there is a market for maybe fi ve computers in the world.” Two of the more notable commercially
available computers fi rst appeared at essentially the same time—the UNIVAC (mentioned earlier)
in the United States, and the LEO, in Great Britain (discussed in the following).

 12.4.1 The Struggles of the Eckert-Mauchly Computer Corporation (1950)

 Eckert and Mauchly needed fi nancial backing to produce their com-
puter, the UNIVAC I. The Census Bureau was very interested in the
development of this machine, and in 1946 gave the company their
fi rst contract to build a UNIVAC. However, the amount agreed on was
not enough to cover all the development cost. By 1948, Eckert and
Mauchly had fi ve UNIVAC contracts but no completed machine, sell-
ing out to the Remington Rand Corporation in early 1950. Finally, in
March 1951, the fi rst UNIVAC (Figure 12-28) was built and delivered
to the U.S. Census Bureau. Eventually, forty-six UNIVAC I comput-
ers were built and sold. The UNIVAC became very publicly known,
appearing in cartoons and movies of the time. One notable event was
when it was used on live TV to predict the U.S. presidential election

FIGURE 12-27 One Plane of
Magnetic Core Memory

O
rio

n
8/

Fe
rr

ite
 c

or
e

m
em

or
y;

 Th

ie
rr

y4
6/

M
ag

ne
tic

 c
or

e;

H
.J

. S
om

m
er

 II
I,

P
ro

fe
ss

or
 o

f
 M

ec
ha

ni
ca

l E
ng

in
ee

rin
g,

 P
en

n
S

ta
te

 U
ni

ve
rs

ity
/M

ag
ne

tic
 c

or
e

m
em

or
y

ca
rd

/W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 12-28 The
UNIVAC I

M
at

th
ia

s.
K

irs
ch

ne
r/

U
N

IV
A

C
 I

 Fa
ct

ro
ni

c/
W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 503 05/11/12 3:37 PM user-019Ac12ComputingandItsDevelopments.indd Page 503 05/11/12 3:37 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

504 CHAPTER 12 Computing and Its Developments

between Dwight D. Eisenhower and Adlai Stevenson in the
1952 election (Figure 12-29).

 Most pollsters had predicted a close election race.
However, UNIVAC, using data from past elections, pre-
dicted a landslide win for Eisenhower. Given the unbeliev-
ability of the results, they did not announce this prediction
to the TV viewers. As it turned out, Eisenhower won by one
of the biggest landslides in history. Afterwards, later that
evening, news commentator Walter Cronkite had to admit
that UNIVAC had earlier made the right predication—
“UNIVAC was right, we were wrong!”

 12.4.2 The LEO Computer of the J. Lyons and Company (1951)

 The J. Lyons and Company of London, England, was one of
the largest catering and food manufacturing companies in the
world (Figure 12-30). After a trip to the United States in 1947
by two managers of the company, they realized that electronic
computers would hold the key to improved effi ciency of cler-
ical procedures. Given that there was an ongoing computer
project at Cambridge University, they offered some funding
to the university for the project in return for advice on how to
build their own computer. A recent Ph.D. graduate of Cam-
bridge who had worked on the computer project there joined
the Lyons company, and a team of technical employees was
hired.

 Work started on the construction of the computer,
named LEO (for “Lyons Electronic Offi ce”), started in Janu-
ary 1949 (Figure 12-31). The computer became operational in
 September 1951, just six months after the construction of the
fi rst UNIVAC computer in the United States. However, it took
a couple more years before the machine was reliable enough

to market. It became, however, the “world’s fi rst business computer.”
 Soon, many companies heard of the machine,

and it became a big success. At fi rst, Lyons began
“renting out” time on their machine. Eventually,
Lyons started building machines for sale to others,
and thus became, in addition to a food service com-
pany, a computer manufacturer. Various models of
the LEO computer sold moderately well until the
1960s, when American-built computers began
dominating the UK computer market. Great Britain
was soon after that out of the computer manufactur-
ing business.

The UNIVAC I was the fi rst commercially available computer in the U.S.

FIGURE 12-30 The J. Lyons and
Company

P
ho

to
 b

y
S

as
ha

/H
ul

to
n

A
rc

hi
ve

/G
et

ty
 Im

ag
es

, I
nc

.

FIGURE 12-29 UNIVAC
Predicting the 1952 Presidential
Election

U
.S

. C
en

su
s

B
ur

ea
u/

U
N

IV
A

C
 1

 d
em

o/
W

ik
im

ed
ia

 C
om

m
on

s

FIGURE 12-31 The LEO (“Lyons
Electronic Offi ce”) I Computer

C
ou

rt
es

y
of

 t
he

 L
E

O

 C
om

p
ut

er
s

S
oc

ie
ty

c12ComputingandItsDevelopments.indd Page 504 23/10/12 10:37 AM user-019Ac12ComputingandItsDevelopments.indd Page 504 23/10/12 10:37 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.5 Transistorized Computers 505

The LEO (“Lyons Electronic Offi ce”) was the fi rst commercially available computer in the
United Kingdom, with its production beginning in 1951.

 Transistors operate through three connections, referred to as the emitter , the collector , and the
 base lead . The fl ow of current from emitter to collector is strictly determined by whether there is cur-
rently a positive voltage or negative voltage applied to the base lead. When a positive voltage is applied

FIGURE 12-33 Transistor Switching Devices

current flows through

Transistor Switched On
(E – emitter C – collector B – base lead)

Transistor Switched Off
(E – emitter C – collector B – base lead)

barrier prohibits
current flow

positive current applied
to base lead

negative current
applied to base lead

B B

E C E C

 SECOND-GENERATION COMPUTERS (mid-1950s to mid-1960s)

 12.5 Transistorized Computers

 12.5.1 The Development of the Transistor (1947)

 The transistor, developed by William B. Shockley, John Bardeen,
and Walter H. Brattain at Bell Telephone Laboratories in
December 1947, is a solid-state, semiconductor device that
 enables the switching of electrical circuits “on” (e.g., “1”) and
“off (“0”). Thus in combination, transistors can be used to create
logic circuits (such as the addition of two numbers). A transistor
is referred to as a solid-state device because it is composed of
solid material, in contrast to the previous switching technology
of the vacuum tube. Vacuum tubes are similar to light bulbs in
size, generate signifi cant heat, and eventually “burn out,” need-
ing replacement. Solid-state devices do not burn out, do not
generate signifi cant heat, can be made arbitrarily small, and do
not draw much power. A comparison of these two devices is
shown in Figure 12-32.

 Transistors are referred to as semiconductors because
their electrical conductivity lies between that of insulators (like rubber) and conductors (like cop-
per). The degree of conductivity can be ectronically altered, which is what makes them a suitable
electronic switching device, as shown in Figure 12-33.

FIGURE 12-32 The Vacuum
Tube vs. the Transistor

w
w

w
.n

ob
el

p
riz

e.
or

g.
 U

se
d

 b
y

p
er

m
is

si
on

.

c12ComputingandItsDevelopments.indd Page 505 23/10/12 10:37 AM user-019Ac12ComputingandItsDevelopments.indd Page 505 23/10/12 10:37 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

506 CHAPTER 12 Computing and Its Developments

to the base lead, the material between the emitter and the
collector becomes conductive, and electrons are free to
fl ow, thus turning the connection “on.” Alternatively,
when a negative voltage is applied to the base lead, mate-
rial between the emitter and collector becomes noncon-
ductive, preventing electrons from freely fl owing, thus
turning the connection “off.” These simple switching
 devices can be used in arbitrary combinations in order
to produce any given digital logic combinatorial circuit
desired. William B. Shockley, John Bardeen, and Walter
H. Brattain (Figure 12-34) received the Nobel Prize in
Physics in 1956 for their discovery of the transistor effect.

 12.5.2 The First Transistor Computer (1953)

 The world’s fi rst transistorized computer was com-
pleted in 1953 at the University of Manchester in the
United Kingdom (Figure 12-35). A computer using all
transistors as electronic switching devices rather than
the vacuum tube standard at the time had a number of
advantages, as mentioned above transistors do not
burn out like they took much less space, and did not
generated signifi cant heat as compared to vacuum tube
technology. In 1962, a transistorized computer that
was developed by this research group was the fastest
in the world.

FIGURE 12-34 Bardeen, Brattain,
and Shockley (Nobel Prize in
Physics 1956)

Em
ilio

 S
eg

re
 V

is
ua

l A
rc

hi
ve

s/
A

m
er

ic
an

 In
st

itu
te

 o
f P

hy
si

cs
/

P
ho

to
 R

es
ea

rc
he

rs
, I

nc
.

The transistor is a solid state electronic switching device developed by William B. Shockley,
John Bardeen, and Walter H. Brattain.

The fi rst fully-transistorized computer was completed at the University of Manchester in 1953.

 12.6 The Development of High-Level Programming Languages

 12.6.1 The Development of Assembly Language (early 1950s)

 In the mid-1950s, all of the computers at the time were extremely tedious to program. They needed
to be programmed in either machine code or assembly language . Machine code (or machine lan-
guage) is a numerical code and is the “native” language of the machine. For example, the numerical
code “1001” might represent an add operation. Assembly language is a symbolic notation using

FIGURE 12-35 The First Transistorized
Computer

C
ou

rt
es

y
of

 T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r

c12ComputingandItsDevelopments.indd Page 506 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 506 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.6 The Development of High-Level Programming Languages 507

 12.6.2 The First High-Level Programming Languages (mid-1950s)

 The use of assembly language, although an improvement over
machine code, was only of minor help. Therefore, better pro-
gramming languages needed to be designed. One of the most
infl uential individuals in the history of computer science was
Grace Murray Hopper (Figure 12-36). In 1951, working at
Remington Rand (maker of the UNIVAC computer), she con-
ceived a new type of programming language that could help
 “automate” the task of programming. The language was called a
high-level language since the programmer could write instruc-
tions in a more natural form. For example, a programmer could
write a single instruction such as A 5 B 1 C, without needing
to break it down into the more primitive set of machine/ assembly
language instructions.

 Since computers are designed to execute only machine
code, in order to execute programs written in a high-level pro-
gramming language, they need to fi rst be translated into machine
code. Such a translator is called a compiler. Whereas each line of an assembly language program is
translated to one line of machine code, and thus a “one-to-one” translation, a compiler is capable of
a “one-to-many” translation. Thus, one line of a program written in a high-level language is translated
into many machine code instructions that accomplish it. The idea of a compiler that Grace Murray
Hopper put forth was one of the most important in the development of modern computers.

 IBM came out with the fi rst programming language for commercially available computers in
1957 called FORTRAN (“FORmula TRANslation”). FORTRAN was a language suited for scien-
tifi c programming. Other languages of note that were developed around the same time were COBOL
(“Common Business Oriented Language”) based largely on the work that Hopper did at Remington
Rand, meant for business processing needs; ALGOL (“ALGOrithmic Language”), for general com-
puting; LISP (“List Processing Language”), well suited for developing artifi cial intelligence pro-
grams; and BASIC (“Beginners All-Purpose Symbolic Instruction Code”), meant as an easy-to-
learn language to make computer programming accessible to all college students, developed by
John Kemeny at Dartmouth College in 1963. BASIC became the fi rst programming language avail-
able on the earliest personal computers, and by the end of the 1980s, millions of school children had
learned to use it.

what are called mnemonics in place of the numerical codes of machine language—“add” might be
used in place of “1001”.

 Although assembly language is somewhat better than machine code, it is still a low-level
 language. Low level means that each instruction performs a very simple task. For example, to
 accomplish the assignment A 5 B 1 C takes a number of assembly language instructions to accom-
plish. Assembly language represents some improvement over numerical machine code notation.
However, programming in assembly language is still very tedious. Thus, high-level programming
languages were developed, discussed next.

Assembly language is a symbolic notation using what are called mnemonics in place of the
 numerical codes of machine language.

FIGURE 12-36 Navy Admiral
Grace Murray Hopper

©
A

P
/W

id
e

W
or

ld
 P

ho
to

s

c12ComputingandItsDevelopments.indd Page 507 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 507 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

508 CHAPTER 12 Computing and Its Developments

Grace Murray Hopper, in 1951, conceived of a new type of programming language that could
help “automate” the task of programming, referred to as high-level languages.

In 1947, engineers working on the Mark II computer at Harvard University found a moth stuck
in one of the components, causing the machine to malfunction. They taped the insect in their
logbook and labeled it “fi rst actual case of bug being found.”

 THIRD-GENERATION COMPUTERS (mid-1960s to early 1970s)

 12.7 The Development of the Integrated Circuit (1958)

 While transistors had the aforementioned advantages over vac-
uum tube technology, there remained the problem of how to wire
together the increasing number of transistors needed for the in-
creasingly powerful computers being designed, known as the
“tyranny of numbers.” This was evident with the transistorized
computers. The solution to this problem was the development of
the integrated circuit (or semiconductor chip), in which such wir-
ing of components became unnecessary.

 Two different individuals, Jack Kilby at Texas Instru-
ments and Robert Noyce at Fairchild Semiconductor, were
both working hard on a solution to the problem. The elegant,
practical solution that they eventually found was to replace the
method of wiring together components on digital circuit boards
with a method of printing the “wiring” onto a thin wafer of semiconductor material (as shown in
Figure 12-38). Thus, transistors and circuits were “integrated” together in the manufacturing. This
device, therefore, was called an integrated circuit (IC) (or semiconductor chip). This not only

 12.6.3 The First “Program Bug” (1947)

 American engineers have been calling small
fl aws in machines bugs for over a century.
Thomas Edison talked about bugs in electrical
circuits in the 1870s. When the fi rst computers
were built during the early 1940s, people work-
ing on them similarly referred to “bugs” in both
the hardware of the machines and in the pro-
grams that ran them.

 In 1947, engineers working on the Mark II
computer at Harvard University found a moth stuck
in one of the components, causing the machine to
malfunction. They taped the insect in their logbook
and labeled it “fi rst actual case of bug being found
(Figure 12-37).” It has become a standard part of the language of computer programmers. The log
book, complete with the attached bug, is on display at the Smithsonian Institution in Washington, D.C.

FIGURE 12-37 The First “Computer Bug”

U
.S

. N
av

al
 H

is
to

ric
al

 C
en

te
r

O
nl

in
e

Li
b

ra
ry

 P
ho

to
gr

ap
h/

H
96

56
6k

/W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 12-38 Integrated
(Printed) Circuit

w
w

w
.n

ob
el

pr
iz

e.
or

g.
 U

se
d

by

pe
rm

is
si

on
.

c12ComputingandItsDevelopments.indd Page 508 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 508 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.7 The Development of the Integrated Circuit (1958) 509

The integrated circuit, invented and developed by Jack Kilby and Robert Noyce, stands as one
of the most important inventions of mankind.

made circuits smaller, but much cheaper to mass-produce. By 1961,
both companies were producing commercially available integrated
circuits.

 It is generally agreed that Jack Kilby was fi rst to conceive of
and develop the integrated circuit in 1958, and Robert Noyce is cred-
ited with developing practical manufacturing principles that allowed
for its commercialization. Jack Kilby went on to invent the portable
calculator in 1967. Robert Noyce (with Gordon E. Moore, who was a
cofounder of Fairchild) started in 1968 a new company named Intel
(for “Integrated Electronics”).

 In the year 2000, Jack Kilby (Figure 12-39) was awarded the
Nobel Prize in Physics for the invention of the integrated circuit. The
importance of the development of the integrated circuit cannot be over-
stated. It forms the basis of all modern computing today, and is said to
have caused a “second industrial

revolution.” It stands historically as one of the most important in-
ventions of mankind.

 “What we didn’t realize then was that the integrated circuit
would reduce the cost of electronic functions by a factor of
a million to one, nothing had ever done that for anything
before.”— Jack Kilby

 An example packaged integrated circuit (“chip”) is shown in
Figure 12-40.

R
E

U
TE

R
S

/C
ou

rt
es

y
of

 T
ex

as

In
st

ru
m

en
ts

/H
O

/N
ew

sC
om

FIGURE 12-39 Jack
Kilby—Inventor of the
Integrated Circuit

FIGURE 12-40 A Modern
 Integrated Circuit

H
en

ke
B

/Z
84

C
00

10
FE

C

LQ
FP

/W
ik

im
ed

ia

 C
om

m
on

s

 12.7.1 The Catalyst for Integrated Circuit Advancements (1960s)

 While integrated circuits had been commercially available since 1961, computer manufacturers did
not jump on the new technology because it meant completely redesigning their current transistor-
based machines. However, there was a politically motivated, impossible-seeming challenge that
would be put forth to Americans that would speed up the development of this technology. America
and the Soviet Union were about to enter a “space race.”

 The Beginning of the Space Race

 On October 4, 1957, the Soviet Union (now Russia) launched the fi rst
artifi cial satellite, named “Sputnik” (Figure 12-41), sending shock
waves throughout the United States. In April 1961, the Soviets had
their fi rst successful manned fl ight, by Cosmonaut Yuri Gagarin, with
many successful manned fl ights following. The United States had no
space program.

 In response, in October 1958, NASA (National Aeronautics
and Space Administration) was created, exactly one year after
 Sputnik was launched. The fi rst U.S. manned space fl ight occurred
on May 5, 1961. Alan B. Shepard Jr. took a 15-minute suborbital

FIGURE 12-41 Sputnik
Satellite

N
S

S
D

C
, N

A
S

A
/S

p
ut

ni
k

as
m

/
W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 509 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 509 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

510 CHAPTER 12 Computing and Its Developments

spacefl ight that made him the fi rst American in space. Less than a year later, on February 20,
1962, John H. Glenn Jr. became the fi rst American to orbit the Earth. These were the fi rst steps on
a race to the moon.

On October 4, 1957, the Soviet Union (now Russia) launched the fi rst artifi cial satellite, named
“Sputnik” sending shock waves through the United States.

President Kennedy had in clear terms put out a challenge to the Soviets, a “space race,” to see
who could reach the moon fi rst. Because of the limited space and constrained environment of
space fl ight, the integrated circuit was the technology needed.

 President Kennedy’s Challenge of Going to the Moon (1961)

 In 1961, John F. Kennedy was inaugurated as presi-
dent. It was the height of the cold war with the Soviet
Union. Although Allies in World War II, the United
States and Soviet Union came out of the war distrust-
ful of each other. The biggest arms race in history had
begun.

 President Kennedy, concerned about the
lead that the Soviets had in space, decided to
raise the goal. In a speech to a special joint ses-
sion of congress on May 25, 1961 (Figure 12-42),
20 days after Alan Shepard’s fl ight, Kennedy
 proposed:

 “I believe that this nation should commit itself to achieving the goal, before this decade
is out, of landing a man on the moon and returning him safely to the earth. No single
space project in this period will be more impressive to mankind, or more important for
the long-range exploration of space; and none will be so diffi cult or expensive to ac-
complish. . . . in a very real sense, it will not be one man going to the moon . . . it will be
an entire nation. For all of us must work to put him there.”— President John F. Kennedy

 Thus, President Kennedy had in clear terms put out a
challenge to the Soviets, a “space race,” to see who
could reach the moon fi rst. It was on July 22, 1969,
that Neil Armstrong, Michael Collins, and Edwin
Aldren safely reached and returned from the moon
(Figure 12-43)—just over fi ve months from the end
of the decade, within the timeframe that President
Kennedy had proposed. What technological devel-
opments had to be made to make this happen in a
little over eight years time? Because of the limited
space and constrained environment of space fl ight,
the integrated circuit was the technology needed.

FIGURE 12-42 President Kennedy’s
challenge to go to the Moon

N
A

S
A

/K
en

ne
d

y
G

iv
in

g
H

is
to

ric
 S

p
ee

ch
 t

o
C

on
gr

es
s-

G

P
N

-2
00

0-
00

16
58

/W
ik

im
ed

ia

C
om

m
on

s

FIGURE 12-43 The Apollo 11
 Astronauts—Armstrong, Collins,
and Aldren

N
A

S
A

/T
he

 A
p

ol
lo

 1
1

P
rim

e
C

re
w

-G
P

N
-2

00
0-

00
11

64
/

W
ik

im
ed

ia
 C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 510 05/11/12 3:38 PM user-019Ac12ComputingandItsDevelopments.indd Page 510 05/11/12 3:38 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.7 The Development of the Integrated Circuit (1958) 511

 The Crucially Needed Advancements in Integrated Circuits (early 1960s)

 Integrated circuits were obviously the way to go to achieve Kennedy’s
goal, given their reliability and reduced weight and size over current
technology. The problem was that, in 1961, integrated circuits were in
their primitive stages of development, and extremely costly, at about
$1,000 per chip.

 The project for the development of what became called the
Apollo Guidance Computer (AGC) (Figure 12-44) was given to MIT.
The integrated circuits that were needed pushed electrical engineers to
work on the development of better and
more cheaply produced chips. By

1964, the cost of each chip had dropped to $25. When it was fi nished
for the fi rst Apollo missions using the Saturn V rocket (Figure 12-45)
the AGC weight only 70 pounds, contained 4,000 integrated circuits,
measuring only two feet by one foot by six inches! It was the only
computer in existence completely designed using integrated circuits.
The requirements of the AGC drove technological developments in the
design and production of integrated circuits. By 1973, computers built
completely out of integrated circuits were commonplace. By the end of
the decade, integrated circuits were developed containing tens of thou-
sands of transistors on a chip.

 12.7.2 The Development of the Microprocessor (1971)

 While integrated circuits were in use in computer systems, each chip was a special-purpose compo-
nent used together in “chip sets.” A different set of chip sets was needed for each particular comput-
ing device, and the cost of designing chips was expensive.

 By 1969, integrated circuits were becoming more and more advanced in capability. An engineer
working at Intel, named Marcian E. (“Ted”) Hoff, hit
upon a brilliant idea. Instead of Intel manufacturing nu-
merous special-purpose chips for specifi c devices (such
as handheld calculators or digital alarm clocks), why
not build a general-purpose logic chip that could be
programmed to perform any logical task. In this way, a
single chip can satisfy the needs of any device. This was
an advantageous approach for Intel, since they could
strictly focus on the production of such general logic
chips. Those incorporating them into their products
would be responsible for writing the programs.

 This general logic chip was equivalent to the
central processing unit (CPU) in mainframe comput-
ers. In mainframes computers, however, the CPU was

The challenge by President John F. Kennedy of putting a man on the moon was a catalyst for
the advancements made in integrated circuits technology.

FIGURE 12-46 Marcian “Ted” Hoff
(center), Inventor of the Microprocessor
with co-developers Federico Faggin and
Stanley Mazor

P
au

l S
ak

um
a/

©
A

P
/W

id
e

W
or

ld
 P

ho
to

s
FIGURE 12-45 The Saturn
V Rocket

N
A

S
A

/K
sc

-6
9p

c-
44

2/
W

ik
im

ed
ia

C

o
m

m
o

ns

FIGURE 12-44 The
Apollo Guidance
Computer (AGC)

N
A

S
A

/A
G

C
 u

se
r

in
te

rf
ac

e/
W

ik
i-

m
ed

ia
 C

o
m

m
o

ns

c12ComputingandItsDevelopments.indd Page 511 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 511 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

512 CHAPTER 12 Computing and Its Developments

composed of a number of different circuit boards. A general logic chip compressed all those circuits
onto one integrated circuit. Since this logic chip contained all the functionality of a central process-
ing unit (the “heart” of any computer system), it became known as a microprocessor.

 The fi rst microprocessor was produced and made available on the open market in November
1971. It was developed with co-developers Federico Faggin and Stanley Mazor (Figure 12-46), as
well as Masatoshi Shima (not shown). It was a four-bit processor called the 4004, and the fi rst com-
mercially available integrated circuit that could be programmed for different tasks. It contained all
the necessary components of a central processing unit squeezed onto a chip one-sixth of an inch long
and one-eighth of an inch wide, containing 2,250 transistors. (The term “microprocessor” was used
to emphasize a complete CPU on a chip. While most CPUs are microprocessors, they are now sim-
ply referred to as a “processor.”) The 4004 was used in the fi rst scientifi c handheld calculators pro-
duced by Hewlett-Packard in 1972.

Marcian E. (“Ted”) Hoff invented the microprocessor—a complete central processing unit on a
chip.

 12.8 Mainframes, Minicomputers, and Supercomputers

 As computing became more and more of a commercial item, and used by various types of compa-
nies and organizations, the computing needs likewise became varied. Some required and could
 afford large computer systems, while others needed something less. We will see next how this diver-
sity of needs was satisfi ed though the development of a more diverse set of commercial computer
systems.

 12.8.1 The Establishment of the Mainframe Computer (1962)

 As commercial computing developed, large computers
became known as mainframe computers (or simply
 mainframes). Such system could consist of multiple
cabinets, storing the central processing unit (before the
development of the microprocessor), memory, tape
drives for storage, and so forth, taking up a whole
room. An example of an early mainframe was the IBM
7090, shown at NASA in 1962 in Figure 12-47.

 In 1964, IBM came out with a system called the
IBM 360 (Figure 12-48). It is considered by some to
be one of
the most
success-

ful computers in history. Various models of the 360
were developed until 1978. Its design infl uenced many
other computer systems that followed.

 The IBM 360 was actually a series of models that
were compatible enough so that companies could “trade
up” for a larger system without the need for signifi cant
reprogramming. It was the fi rst series of computers of-
fering a large range of computing needs. Customers had FIGURE 12-48 IBM 360

M
ar

y
Ev

an
s

P
ic

tu
re

 L
ib

ra
ry

/
A

la
m

y
Li

m
ite

d

FIGURE 12-47 IBM 7090 Mainframe
at NASA

N
A

S
A

/N
A

S
A

C
om

p
ut

er
-

R
oo

m
70

90
.N

A
R

A
/W

ik
im

ed
ia

C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 512 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 512 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.8 Mainframes, Minicomputers, and Supercomputers 513

the option of purchasing systems with various processor speeds and a range of main memory size,
among other options.

 12.8.2 The Development of the Minicomputer (1963)

 Until the early 1960s, all computers were
large and expensive mainframes, costing mil-
lions of dollars, only affordable by universi-
ties and large companies. An MIT graduate,
named Kenneth Olsen, who had worked in
the research labs there, came to a realization
that smaller, less expensive computers had a
place in the world, so-called minicomputers.
He formed his own company in the early
1960s, called Digital Equipment Corporation
(DEC). Chief Engineer Gordon Bell (Figure
12-49) at DEC designed a series of computers

that were small and inexpensive, transistor-based single-user systems—the PDP series.
 In, 1965, DEC produced a model called the PDP-8 (Figure 12-50). This was the fi rst widely

successful minicomputer, and is considered as ushering in the minicomputer age (and eventually,
personal computers). The PDP-8 was an 11-bit computer. Following the PDP-8 was the 16-bit
PDP-11, and the 32-bit Vax-11. This series of computers proved to be very successful and long-
lasting. The last VAX system was manufactured in 2005.

 A new dimension was added to the classifi cation of
systems—by size and cost. Prior to their development,
companies and other organizations that were not able to
afford their own computer had to purchase time-sharing
from an available mainframe over very slow phone line
connections. Now a new alternative was available.

 In 2010, Bell received an honorary Doctor of
Science and Technology degree from Carnegie Mel-
lon University. The university referred to him as the
 “Father of the Minicomputer.”

Gordon Bell, in the early 1960s, designed the fi rst minicomputers, and thus is called the “Father
of the Minicomputer.”

 12.8.3 The Development of the UNIX Operating System (1969)

 In the early 1960s a joint project was formed between General Electric, MIT, and Bell Labs to
 develop a time-shared computer called MULTICS. The project, however, ended without being as
successful as hoped.

 Work on the MULTICS project, however, motivated those involved from Bell Labs to continue
towards the goal of interactive computing. Thus, they began work on their own time-sharing operating

FIGURE 12-50 PDP-8 Minicomputer

S
ta

hl
ko

ch
er

/D
E

C
 P

D
P

 8
e/

W
ik

im
ed

ia
 C

om
m

on
s

P
ho

to
 c

ou
rte

sy
 Q

ue
en

sl
an

d

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y,

 fr
om

ht

tp
://

co
m

m
on

s.
w

ik
im

ed
ia

.o
rg

/
w

ik
i/F

ile
:G

or
do

n_
B

el
l.jp

g

FIGURE 12-49 Gordon Bell—“Father of
the Minicomputer”

c12ComputingandItsDevelopments.indd Page 513 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 513 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

514 CHAPTER 12 Computing and Its Developments

system in 1969, to be known as UNIX (see www.bell-labs.
com/history/unix/). The two individuals that developed UNIX
were Kenneth Thompson and Dennis Ritchie (Figure 12-51).

 During the development of UNIX, a new programming
language named “C” was developed by Dennis Ritchie, evolved
from an earlier language named “B” that Ken Thompson had de-
veloped. Eventually, the UNIX operating system was rewritten in
the C language, which along with UNIX, became widely used.

 The developments
of UNIX and C, and

their adoption by industry and academia, is one of the biggest
success stories in computer science. Thompson and Ritchie re-
ceived numerous prestigious awards, including the A.M. Turing
Award from the Association for Computing Machinery (ACM)
in 1983, the U.S. National Medal of Technology from President
Bill Clinton (Figure 12-52) in 1999, and the Japan Prize for
Information and Technology (2011).

 UNIX and C (and its object-oriented successor C 11)
are in much use today, including a personal computer version
of UNIX called Linux.

 12.8.4 The Development of Graphical User

Interfaces (early 1960s)

 Another major advance in operating systems design was the
move from text-based user interfaces (in which all com-
mands were typed) to graphical user interfaces (GUIs).
A GUI interface provides the familiar computer user interac-
tion by use of a mouse. It might surprise you that the com-
puter mouse was invented and fi rst demonstrated back in the
early 1960s, by a professor at Stanford University named
Doug Engelbart (Figure 12-53). He is shown here holding a
prototype of the mouse, constructed out of a wood shell and
two metal wheels. Soon afterward he demonstrated the fi rst
word processor and the fi rst hypertext, the kind of links that
now exist in web pages. He has received numerous awards,
including the Lemelson-MIT prize—the world’s largest single
prize for innovation—and the National Medal of Technology,
the nation’s highest technology award.

Kenneth Thompson and Dennis Ritchie developed the high successfully UNIX operating sys-
tem. In addition, Dennis Ritchie developed the C programming language evolved from the B
programming language developed by Thompson.

Doug Engelbart invented the computer mouse in the early 1960s.

FIGURE 12-51 Kenneth
Thompson and Dennis Ritchie

K
en

ne
th

 a
nd

 D
en

ni
s/

W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 12-53 Doug Engelbart—
Inventor of the Computer Mouse

P
ho

to
 r

ep
ro

d
uc

ed
 b

y
p

er
m

is
si

on
 o

f
S

R
I I

nt
er

na
tio

na
l

FIGURE 12-52 Thompson and
Ritchie Receiving the National
Medal of Technology

M
ed

al
 L

g/
W

ik
im

ed
ia

C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 514 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 514 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.9 The Rise of the Microprocessor 515

 12.8.5 The Development of the Supercomputer (1972)

 A supercomputer, as the name implies, is a computer system
designed for maximum computational power. Whereas main-
frame computers generally timeshare computations over a num-
ber of users, supercomputers focus their power on executing a
few programs as quickly as possible. They are used in solving
problems that require massive numbers of mathematical calcu-
lations, such as for weather forecasting.

 In 1972, Seymour Cray (Figure 12-54), the “Father of
Supercomputing,” started a company called Cray Research. The
CRAY-1, released in 1976, became one of the most successful
supercomputers in history, setting a new standard for high-speed
computing (Figure 12-55).

 What is classifi ed as a supercomputer is relative to current
technological capabilities. A typical personal computer today
would have been considered a “supercomputer” in the not so dis-
tant past. There is a
website that each

year lists the top 500 supercomputers worldwide (see
www.top500.org). These supercomputers have demon-
strated computational speeds measured in “terafl ops,”
i.e., trillions of fl oating-point operations per second. The
fastest supercomputer as of this writing is the Cray-XT5
HE, dubbed the “jaguar,” with a speed of 1.75 petafl ops
(almost 2 quadrillion fl oating-point operations per sec-
ond), with 224,000 individual processors. It is installed at
the National Center for Computational Sciences at Oak
Ridge National Laboratories in Tennessee.

Seymour Cray is called the “Father of the Supercomputer.”

 FOURTH-GENERATION COMPUTERS

(early 1970s to the Present)

 12.9 The Rise of the Microprocessor

 12.9.1 The First Commercially Available Microprocessor (1971)

 The development of the personal computer (originally “microcomputer”) has been one of the biggest
technical revolutions in history. It didn’t emerge from the research labs of major companies and uni-
versities, but rather from a group of hobbyists interested in building and owning their own computers.

 Before the development of the microprocessor in the early 1970s, it was not possible for indi-
viduals to build their own computer system. A central processing unit (CPU) was too technically
sophisticated for hobbyists to build. The fi rst microprocessor, the 4-bit 4004 released by Intel in
1971, was only powerful enough for handheld calculators. But in 1974, Intel came out with the 8080

FIGURE 12-55 The CRAY-1

Ev
er

et
t C

ol
le

ct
io

n,
 In

c.
/A

la
m

y
Li

m
ite

d

FIGURE 12-54 Seymour Cray—
“The Father of the Supercomputer”

S
ey

m
ou

r
C

ra
y-

cr
op

/W
ik

im
ed

ia
 C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 515 05/11/12 3:38 PM user-019Ac12ComputingandItsDevelopments.indd Page 515 05/11/12 3:38 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

516 CHAPTER 12 Computing and Its Developments

processor (Figure 12-56). The 8080 was an 8-bit proces-
sor with a clock speed of 2 MHz (thousands of times
slower than a typical CPU in personal computers today)
and contained about 6,000 transistors (compared to bil-
lions of transistors today). It was powerful enough, how-
ever, to build a computer system around. Thus, the age of
the personal computer was about to begin. We look at the
development of the personal computer next.

The fi rst commercially available microprocessor was the Intel 4004, a four-bit processor
 released in 1971.

The Altair was the fi rst available microcomputer (personal computer), appearing in 1975.

 12.10 The Dawn of Personal Computing

 12.10.1 The Beginnings of Microsoft (1975)

 In 1975, the Homebrew Computer Club began in the San Francisco area. Among the soon to be
 infamous members were Paul Allen and Bill Gates (Figure 12-58), who created a version of the
BASIC programming language for the new Al-
tair system, and comprised the beginnings of
Microsoft. Also present at the club was Gary
Kildall, who wrote the fi rst programming lan-
guage and disk operating system for micro-
computers, among many other contributions.

 In the mid-1980s, Microsoft produced
 the MS-DOS operating system for personal
computers, which dominated the market.
MS-DOS was a text-based operating system.

 12.9.2 The First Commercially Available Microcomputer Kit (1975)

 The fi rst commercially available microcomputer was a kit
(also offered fully assembled) called the Altair 8800
(Figure 12-57), fi rst advertised in January 1975 on the cover
of Popular Electronics magazine. It consisted of a box with
levers and lights, used to input and display information in
binary notation (i.e., light on for “1,” light off for “0”). This
was, especially by today’s standards, a very crude and sim-
ple computer. However, given that no one until then could
say that they had their own “personal computer,” it was a
thrill for many hobbyists. FIGURE 12-57 The Altair

8800—The First
Microcomputer Kit

M
ic

ha
el

 H
ol

le
y/

A
lta

ir
88

00

C
om

p
ut

er
/W

ik
im

ed
ia

 C

om
m

on
s

FIGURE 12-56 The Intel
8080 Microprocessor

K
on

st
an

tin

La
nz

et
/K

L
In

te
l D

80
80

/
W

ik
im

ed
ia

C

om
m

on
s

FIGURE 12-58 Bill Gates and Paul Allen

A
nn

 E
. Y

ow
-D

ys
on

/
G

et
ty

 Im
ag

es
, I

nc
.

c12ComputingandItsDevelopments.indd Page 516 23/10/12 10:38 AM user-019Ac12ComputingandItsDevelopments.indd Page 516 23/10/12 10:38 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.10 The Dawn of Personal Computing 517

 12.10.3 IBM’s Entry into the Microcomputer Market (1981)

 IBM, which fi rst had doubts about the future of micro-
computers, saw the success of the Apple II computer
and decided to develop their own microcomputer. In
1981, they came out with the IBM-PC (for “Personal
Computer”), and before long, had sold 1 million ma-
chines (Figure 12-61). By the end of the 1980s, 65 mil-
lion PCs were being used in offi ces, homes, and schools.
Because of their size, reputation, and sales force, IBM
dominated the personal computer market. Eventually,
the generic name for microcomputers became “per-
sonal computer.”

In 1975, Bill Gates and Paul Allen started the Microsoft Corporation. Gary Kildall wrote the
fi rst programming language and disk operating system specifi cally for microcomputers.

 12.10.2 The Apple II (1977)

 Two other members of the Homebrew Computer Club
were Steve Jobs and Steve Wozniak (Figure 12-59). In
1977 they went on to create the most successful personal
computer at the time, the Apple II (Figure 12-60) and
form the Apple Computer company. One of the Apple II’s
main features was the ability to display color graphics,
displaying output on a standard television monitor. Vari-
ous models of the Apple II were produced until 1993.

FIGURE 12-59 Steve Jobs and Steve
Wozniak

D
B

 A
pp

le
/p

ic
tu

re
-a

llia
nc

e/
dp

a/
N

ew
sC

om

FIGURE 12-60 The Apple II

Er
ic

 R
is

be
rg

/©
A

P
/W

id
e

W
or

ld
 P

ho
to

s

In 1977, Steve Jobs and Steve Wozniak created the most successful personal computer at the
time, the Apple II.

FIGURE 12-61 IBM-PC in 1981

R
ub

en
 d

e
R

ijc
ke

/I
B

M
-P

C
 5

15
0/

W
ik

im
ed

ia
 C

om
m

on
s

In the 1990s, Microsoft came out with the GUI-based Windows operating system, which remains the
most widely used operating system today.

c12ComputingandItsDevelopments.indd Page 517 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 517 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

518 CHAPTER 12 Computing and Its Developments

 12.10.4 Society Embraces the Personal Computer (1983)

 In a very unconventional selection, Time Magazine selected the personal computer for its January 3,
1983 “Man (Machine) of the Year” cover article. In the article, it said that by the millions, computers
were fi nding their way into offi ces, schools, and homes. In addition, it discussed a survey showing
that the average American believed that “in the near future,” computers would be as commonplace
as TVs and refrigerators. The public image of what computers were had made a big change. The
article stated (even in 1983) that the 30-ton ENIAC computer “could now fi t on a chip the size of a
pea.” (In fact, as part of the fi ftieth anniversary of the ENIAC at the place of its birth, the University
of Pennsylvania, a group of students did just that. They made an exact logical replication of the
original ENIAC on a chip about 1/3” by 1/5” in size.)

In 1981, IBM came out with the IBM-PC (“personal computer”). By the end of the 1980s, 65 million
PCs were in use.

In 1983, given the widespread use and impact of the personal computer, Time Magazine selects
the personal computer as the “Man” of the Year.

 12.10.5 The Development of Graphical User Interfaces (GUIs)

 An Early Machine Using a Mouse Driven Graphical User Interface (1975)

 Because computers at the time were not powerful enough to support the computationally intensive
graphical interactive method of computing (as demonstrated by Doug Engelbart), the idea did not
initially catch on. However, in 1975, a computer was developed at Xerox Palo Alto Research Center
(Xerox-PARC) that incorporated the use of a mouse device into a rather novel computer called the
Alto. Its screen was the dimension of a normal sheet of paper, and had a graphical user interface.
Although this was a notable advancement by those working at Xerox research center, it was never
marketed by Xerox, leaving many of the developers feeling frustrated. Some years later, however, in
1979, Steve Jobs visited Xerox-PARC, and after seeing the Alto and its interactive mouse, immedi-
ately knew that the future of computing was about to change.

In 1975, a computer was developed at Xerox Palo Alto Research Center (Xerox-PARC) that in-
corporated the use of a mouse device into a rather novel computer called the Alto.

 The First Commercially Successful Computer with GUI/Mouse (1984)

 In January 1984, Apple came out with the fi rst commercially successful computer with a graph-
ical user interface, the Macintosh (Figure 12-62). In 1983, Apple had come out with another
mouse/GUI system named Lisa aimed at the business market, its high selling price kept it from
being commercially successful. The Macintosh, on the other hand, was priced for individuals,
and highly marketed. In one of the most famous commercials in the history of television during

c12ComputingandItsDevelopments.indd Page 518 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 518 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.10 The Dawn of Personal Computing 519

 Mouse-Driven GUI Operating Systems Predominate (1995)

 Microsoft began releasing its GUI interface operating systems, Windows, in 1985 with the release
of Windows 1.0. However, its Windows operating system for the IBM-PC (and clones) did not begin
to catch on until the release of Windows 3.0 in 1990, some waiting until the release of Window 3.1
in 1993. However, when the much promoted and completely redesigned Windows 95 was released
in August 1995, within six weeks 7 million copies had been sold. The GUI-based computing para-
digm of computing had become mainstream.

In January 1984, Apple came out with the fi rst commercially successful computer with a graphi-
cal user interface, the Macintosh.

With the release of the Microsoft Windows operating system the GUI-based computing para-
digm of computing had become mainstream.

 12.10.6 The Development of the C 11 Programming Language

 We take the opportunity here to mention one of the most widely used programming languages today,
C 11 (pronounced “cee plus plus”). The other widely used programming language is Java (dis-
cussed in section 12.13.4).

 C 11 was developed by Bjarne Stroustrup in the
early 1980s at Bell Labs (Figure 12-63). It was de-
signed essentially as an extension of the C program-
ming language, also developed at Bell Labs over a
 decade earlier. The most signifi cant feature added to
C 11 is the ability to use classes, therefore facilitating
object-oriented programming. However, as opposed to
most object-oriented programming languages, such as
Java, the use of classes is not required. Therefore,
C 11 program can be written strictly in the procedural
style. In this way C 11 is a hybrid language. There is
some playfulness in the name of the language. The
 operator symbol “ 11 ” that exists in C (and C 11)

the 1984 Super Bowl game, Apple created an image of a new
wave of computing, awaking large groups of robotlike, hyp-
notized individuals, meant to represent the awakening of the
“blind” followers of IBM (which had not yet come out with
a GUI-based machine).

FIGURE 12-62 Apple
Macintosh in 1984

A
le

xa
nd

er
 S

ch
ae

ls
s/

M
ac

in
to

sh
 c

la
ss

ic
/

W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 12-63 Bjarne Stroustrup—
Inventor of the C11 Programming
Language

B
ja

rn
eS

tr
ou

st
ru

p
/

W
ik

im
ed

ia
 C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 519 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 519 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

520 CHAPTER 12 Computing and Its Developments

 THE DEVELOPMENT OF COMPUTER NETWORKS

 12.11 The Development of Wide Area Networks

 12.11.1 The Idea of Packet-Switched

Networks (early 1960s)

 During the early 1960s, Leonard Kleinrock (Figure 12-64) at MIT pub-
lished work on the notion of a packet-switched network, in which com-
munications to be sent on a network are divided into equal-sized packets
and transmitted individually. When all packets are received at the desti-
nation, they are then reassembled into the original complete communi-
cation. This is how all communication on the Internet is done. (The fi rst
experiment of having two computers—one in Massachusetts, the other
in California—communicate over standard (non-packet-switched) tele-
phone lines failed, proving Kleinrock’s claim of the need for a packet-
switched approach correct.) Because of the distance covered by these
networks, they became known as wide-area networks (WANs).

FIGURE 12-64 Leonard
 Kleinrock—Inventor of
Internet Technology

R
ob

yn
 B

ec
k/

A
FP

/G
et

ty
 Im

ag
es

, I
nc

.

Bjarne Stroustrup invented C11 at Bell Labs in the early 1980s as an extension of the C program-
ming language. C11 has become one of the most widely used programming languages today.

Leonard Kleinrock invented the notion of a packet-switched network, which is how all com-
munication on the Internet is performed.

 12.11.2 The First Packet-Switched Network: ARPANET (1969)

 What was needed next for wide-area computer networks was a standard “language” or communica-
tions protocol that all computers on a network could understand. By the end of 1968, a number of
 individuals working on packet-switched communications received funding from a military defense
department, resulting in a network called ARPANET , becoming the fi rst packet-switched network.

 In September 1969, the fi rst Arpanet node was installed at the University of California at Los
Angeles (UCLA). Another node was installed at Stanford, and in October 1969, the fi rst “host to
host” message was sent directly from one computer to another—the beginnings of what we now
know as the Internet. Over the years, more universities and companies were added to the network.
In October 1972, the fi rst public demonstration of email communication occurred. For the next ten
years, email became the most used aspect of the new ARPANET.

ARPANET was the fi rst packet-switched network, becoming operational in 1969. The fi rst pub-
lic demonstration of email was in 1972.

 increments a value by 1. Since Stroustrup’s new language was “an increment” of C, the name
C 11 was chosen.

c12ComputingandItsDevelopments.indd Page 520 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 520 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.12 The Development of Local Area Networks (LANs) 521

 12.12 The Development of Local Area Networks (LANs)

 12.12.1 The Need for Local Area Networks

 The term “wide-area network” is meant to convey communicating computers over a wide area (e.g.,
globally). This concept fi rst emerged during the era of mainframe computers (in the 1960s). How-
ever, computer networking had new emerging needs with the rise in the use of minicomputers during
the 1970s, and personal computers during the 1980s.

 Before the use of personal computers, for example, employees in a company could com-
municate and share fi les through remote terminal screens to the company’s mainframe computer.
However, during the 1980s, when the personal computer began appearing on everyone’s desk,
something was lost. Now each employee had all the computing power that they needed right at
hand, but their machine was isolated from all others in the company, each in their own “computing
island.”

Computer networking had new emerging needs with the rise in the use of minicomputers during
the 1970s, and personal computers during the 1980s.

Robert Metcalfe invented the concept of a local area network, which led to the development of
Ethernet, the most widely used local networking standard today.

 12.12.2 The Development of Ethernet (1980)

 Robert Metcalf (Figure 12-65) was working as a researcher for
the Xerox Corporation in the early 1970s when he was asked to
work on a particular problem. Xerox was in the process of
 developing the world’s fi rst laser printer, and wanted all the
computers (hundreds of them) at the Xerox-PARC research
 facility where he worked to be connected to it. This problem
called for a means of communication that was fast and allowed
 many communications at once from the hundreds of computers
in the building.

 His solution was the development of local area
 networks (LANS). Local area networks are defined as a net-
work of computers and computing devices (such as printers)
within about a one-mile radius. As opposed to wide-area
 networks, in which the topology (i.e., the connections between
computers) allows messages to be routed many different
ways, Metcalf developed a network based on a simple topol-
ogy. His topology consisted of a single, high-speed connec-
tion that all computing devices could share, called Ethernet.
Ethernet was made commercially available in 1980, and is now the most widely used local
area network standard. Robert Metcalfe was awarded the National Medal of Technology from
President George W. Bush for his work in 2003.

FIGURE 12-65 Robert
Metcalf—Inventor of Local
Area Networks

R
ob

er
t

M
et

ca
lfe

 N
at

io
na

l M
ed

al
 o

f
 Te

ch
no

lo
gy

/W
ik

im
ed

ia
 C

om
m

on
s

c12ComputingandItsDevelopments.indd Page 521 05/11/12 3:39 PM user-019Ac12ComputingandItsDevelopments.indd Page 521 05/11/12 3:39 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

522 CHAPTER 12 Computing and Its Developments

 12.13 The Development of the Internet and World Wide Web

 12.13.1 The Realization of the Need for “Internetworking”

 The development of ARPANET proved the viability of packet-switched computer networking.
However, it had its own specifi c protocol (i.e., specifi c means of communication between comput-
ers). The future was viewed, however, as developing into a number of different kinds of packet-
switched networks, each with their own unique protocols. The idea of “internetworking” was the
ability of individual networks, normally unable to communicate with each other, to be able to com-
municate using an “internetworking protocol” (IP), resulting in one big computer network.

Internetworking is the ability of individual networks, normally unable to communicate, to com-
municate using an “internetworking protocol” (IP).

Vinton G. Cerf and Robert E. Kahn developed a common network protocol called TCP/IP that
allowed for the internetworking of computer networks. Thus, they are referred to as the “Fathers
of the Internet.”

 12.13.3 The Development of the World Wide Web (1990)

 The idea of having text that can be clicked on to lead one to more text has goes all the way back to
a system developed in 1945, providing links between documents on microfi che. Doug Engelbart in
the early 1960s demonstrated the notion of “mouse-clickable” text. Later, the term “hypertext” was
coined. Hypertext documents are essentially “three-dimensional text,” in that there are words
 “behind” other words when clicked on.

 12.13.2 The Development of the TCP/IP Internetworking Protocol (1973)

 A research program was initiated in 1973 to investigate ways
of internetworking different packet-switched networks. The
standard internetworking protocol that evolved was called
TCP/IP. Since packets of a given communication travel inde-
pendently in a packet-switched network, TCP/IP had the
 responsibility of ensuring that each packet arrived at its des-
tination intact and reassembled into the complete original
communication. The development of the TCP/IP protocol
was developed by Vinton G. Cerf and Robert E. Kahn
(Figure 12-66) referred to as the “Fathers of the Internet.” In
2005 they each received the Medal of Freedom from Presi-
dent George W. Bush for their work.

 On January 1 1983, TCP/IP became the standard protocol for the internetworking of networks.
On that date, all computers currently connected to the Internet (using older protocols), smoothly
switched to the new protocol simultaneously, and thus was the birth of the Internet as we know it
today. The Internet is now comprised of a collection of over 50,000 independent networks, on all
seven continents, and even planned for use in outer space.

FIGURE 12-66 Vinton G. Cerf
and Robert E. Kahn—“The
 Fathers of the Internet”

P
au

l M
or

se
/C

er
fK

ah
n-

M
ed

al
 o

f F
re

ed
om

/
W

ik
im

ed
ia

 C
om

m
on

s

c12ComputingandItsDevelopments.indd Page 522 05/11/12 3:39 PM user-019Ac12ComputingandItsDevelopments.indd Page 522 05/11/12 3:39 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

12.13 The Development of the Internet and World Wide Web 523

 Tim Berners-Lee (Figure 12-67), while working at CERN in 1980
(a European center for nuclear research outside of Geneva, Switzerland),
developed a simple program with hypertext properties. He later revived
his idea and in 1990 developed a program he named “WorldWideWeb,”
the fi rst web browser and hypertext editor. He is thus known as the
“Father of the World Wide Web.”

 A web browser is an application program to properly display
hypertext (web) pages, performing
the necessary actions of mouse
events (e.g., mouse click on a link).
In May 1991, the WideWorldWeb
program was released for use at
CERN for the creation, searching,
and cross-referencing of research

 papers in theoretical physics.
 In 1993, a web browser was developed at the National

Center for Supercomputing Applications (NCSA) at the University
of Illinois named Mosaic, developed by Marc Andreessen
(Figure 12-68). This was the fi rst browser readily available to the
general public, credited with popularizing the World Wide Web.
Andreessen later went on to form Netscape Corporation, develop-
ing the Netscape family of browsers.

FIGURE 12-68 Marc
Andreessen—Developed the
First Readily Available Web
Browser

R
ic

ha
rd

 D
re

w
/©

A
P

/W
id

e
W

or
ld

P

ho
to

s

Tim Berners-Lee was the inventor of the World Wide Web. Marc Andreessen developed Mosaic, the
fi rst web browser readily available to the general public. He went on to form Netscape Corporation.

 12.13.4 The Development of the Java Programming Language (1995)

 The development of the World Wide Web (and Internet browsers
such as Netscape) was a very signifi cant advance for the sharing
of information. However, the information was static. One could
interact with the browser by clicking on a link of one page of
(static) information to retrieve another page. However, the web
pages themselves did not have much capability of interacting with
the user. For example, a web page offering a mortgage calculation
would get the input from the user, then send it back to the server
for calculations to occur there, with the results downloaded in an-
other static page. Thus, there was not a way to download within a
web page programs capability of performing signifi cant computa-
tion on the user’s computer (the “client”).

 As a matter of coincidence, a language perfectly suited for
embedding programs in web pages emerged at the same time as
the web. This was the Java programming language, was developed by James Gosling (Figure 12-69)
at Sun Microsystems during the early 1990s.

FIGURE 12-69 James
Gosling—Inventor of the Java
Programming Language

P
et

er
 C

am
pb

el
l/J

am
es

 G
os

lin
g

20
08

/W
ik

im
ed

ia
 C

om
m

on
s

FIGURE 12-67 Tim
Berners-Lee—“Father of
the World Wide Web”

A
nd

re
as

 R
en

tz
/G

et
ty

 Im
ag

es
, I

nc
.

c12ComputingandItsDevelopments.indd Page 523 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 523 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

524 CHAPTER 12 Computing and Its Developments

 A critical feature needed for the development of dynamic web pages was that the language
used had to be executable (“understood”) by all the different kinds of computers on the Internet if
the capability were to be available to all. The historical coincidence that occurred was that in 1990,
Sun Microsystems began work on a new programming language written with the same capability of
being able to be “complied once, run anywhere.” The need was related to software development for
embedded systems, that is, systems containing an embedded processor, such as microwave ovens.
With the new World Wide Web, it was realized the features of Java, developed for another purpose,
were fundamentally suited for dynamic web pages. Java was expanded to include features especially
suited for network applications, and was fi rst released to the public in 1995, just a couple of years
after the “web” became publically and freely available.

James Gosling invented the Java programming language at Sun Microsystems in the early 1990s.
It has become one of the most widely used programming languages today.

c12ComputingandItsDevelopments.indd Page 524 23/10/12 10:39 AM user-019Ac12ComputingandItsDevelopments.indd Page 524 23/10/12 10:39 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 The author gratefully acknowledges the contributions of Leela Sedaghat to the style and content of
this reference.

This reference provides the features of Python 3 that are most relevant for the text. Therefore, it
is not intended to be an exhaustive resource. For complete coverage of the Python programming lan-
guage, Standard Library and other Python-related information, we refer readers to the offi cial web site:
http://www.python.org

 A. Getting Started with Python 528

 A1. About Python 528

 A2. Downloading and Installing Python 528

 A3. Program Development Using IDLE 529

 A4. Common Python Programming Errors 539

 B. Python Quick Reference 540

 B1. Python Coding Style 541

 B2. Python Naming Conventions 542

 B3. Comment Statements in Python 543

 B4. Literal Values in Python 544

 B5. Arithmetic, Relational, and Boolean Operators in Python 545

 B6. Built-in Types and Functions in Python 546

 B7. Standard Input and Output in Python 549

 B8. General Sequence Operations in Python 550

 B9. String Operations in Python 551

 B10. String Formatting in Python 552

 B11. Lists in Python 553

 B12. Dictionaries in Python 554

 B13. Sets in Python 555

 Python 3 Programmers

Reference

 APPENDIX

525

BMAppendix.indd Page 525 08/11/12 12:54 PM user-019ABMAppendix.indd Page 525 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

526 Appendix

 B14. if Statements in Python 556

 B15. for Statements in Python 557

 B16. while Statements in Python 558

 B17. Functions in Python 559

 B18. Classes in Python 560

 B19. Objects in Python 561

 B20. Exception Handling in Python 562

 B21. Text Files in Python 563

 B22. Modules in Python 564

 C. Python Standard Library Modules 565

 C1. The math Module 566

 C2. The random Module 567

 C3. The turtle Module 568

 C4. The webbrowser Module 570

 A. GETTING STARTED WITH PYTHON

 A1. About Python

 The Python programming language was created by Guido van Rossum (www.python.org/~guido)
at the Centrum Wiskunde & Informatica (National Research Institute for Mathematics and Com-
puter Science) in the Netherlands in the late 1980s. It is designed for code readability . It therefore
has a clear and simple syntax. At the same time, Python also has a powerful set of programming
features.
 Python is free, open source software (http://www.python.org). The reference (standard) imple-
mentation of the Python programming language (called CPython) is managed by the non-profi t
Python Software Foundation. The language is bundled with a Python development environment
called IDLE. The bundle is available for download at the offi cial Python web site (see below). There
are two, incompatible versions of Python currently supported: Python 2 (2.7.3) and Python 3 (3.2.3
at the time of this writing). Python 2.7.3 will be the last release version of Python 2. This text uses
Python 3.
 Python is growing in popularity. Many companies and organizations use Python including
Google, Yahoo and YouTube. Python is also widely used in the scientifi c community, including the
National Weather Service, Los Alamos National Laboratory, and NASA. Python also continues to
gain popularity for use in introductory computer science courses.

 A2. Downloading and Installing Python

 To download and install the Python interpreter (and bundled IDLE program) go to http://www.
python.org/download/ which displays the page shown in Figure A-1.

BMAppendix.indd Page 526 08/11/12 12:54 PM user-019ABMAppendix.indd Page 526 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

A3. Program Development Using IDLE 527

 Select the appropriate Python 3 download for your system: Windows x86 MSI installer (for typical
Windows machines), Windows x86-64 (for 64-bit Windows machines, not typical), Mac OS X
64-bit/32-bit x86-64/i386 (for newer Macs) and Mac OS X 32-bit i386/PPC (for older Macs). There
are also versions for Linux and Unix, as shown. Follow the installation directions.

 A3. Program Development Using IDLE

 What is IDLE? IDLE is an integrated development environment (IDE) for developing Python
programs. An IDE consists of three major components: an editor for creating and modifying pro-
grams, an interpreter or compiler for executing programs, and a debugger for “debugging” (fi xing
errors in) a program.

 When you execute IDLE on your system, a window such as shown in Figure A-2 will be displayed.

 FIGURE A-1 Offi cial Download Site of Python

 FIGURE A-2 The Python Shell

BMAppendix.indd Page 527 08/11/12 12:54 PM user-019ABMAppendix.indd Page 527 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

528 Appendix

 Note that the version of Python is displayed on the lines right before the prompt (...).

 Interacting with the Python Shell The Python Shell provides a means of directly interacting
with the Python interpreter.
 Thus, whatever Python code that is typed in will be immediately executed, as shown in
Figure A-3.

 This is referred to in programming as interactive mode . All variables will remain defi ned until the
shell is either closed or restarted. To restart the shell, select Restart Shell from the Shell dropdown
list, as shown in Figure A-4.

 FIGURE A-4 Restarting the Python Shell

 After the shell is restarted, all previously-defi ned variables become undefi ned and a “fresh” instance
of the shell is executed, as shown in Figure A-5.

 FIGURE A-3 Interacting with the Python Shell

BMAppendix.indd Page 528 08/11/12 12:54 PM user-019ABMAppendix.indd Page 528 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 A3. Program Development Using IDLE 529

 Being able to immediately execute instructions in the Python Shell provides a simple means of
verifying the behavior of instructions in Python. For example, if one forgot the specifi c range of
numbers that built-in function range(start, end) produces for a given start and end
value, the single for statement in Figure A-6 can be easily executed to determine that.

 FIGURE A-5 A New Instance of the Python Shell

 FIGURE A-6 Testing Small Program Segments in the Python Shell

BMAppendix.indd Page 529 08/11/12 12:54 PM user-019ABMAppendix.indd Page 529 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

530 Appendix

 We can also execute Python code in the shell that requires the use of modules. To utilize a
particular module in the shell, the appropriate import statement is fi rst entered.

 FIGURE A-7 Importing a Module into the Python Shell

 Finally, when working in the interactive Python Shell, there are helpful keyboard short-
cuts that the user may need to use. Some of the most commonly used commands are listed in
Figure A-8.

 Creating and Editing Programs in IDLE Instructions typed into the shell are executed and
then “discarded.” For program development, however, we need to save instructions into a fi le. This
is referred to as a script in Python. A program in Python is a script. To begin creating a script in
IDLE, select New Window from the File dropdown menu, as shown in Figure A-9.
 A Python program (or other text fi les) can be typed in this window. This program is saved by
going to the File menu option and selecting Save (or by using shortcut key Ctrl 1 S), depicted in
Figure A-10.
 When selecting the Save option on a currently unnamed fi le, a fi le window appears allow-
ing a name to be entered for the new program (Figure A-11). If the program was already named,
choosing Save would save the fi le under the current name, overwriting the currently saved
fi le. Using Save As allows a fi le to be named under a different name, such as for creating a
backup fi le.

 FIGURE A-8 Python Shell Short c uts

BMAppendix.indd Page 530 08/11/12 12:54 PM user-019ABMAppendix.indd Page 530 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 A3. Program Development Using IDLE 531

 FIGURE A-10 Entering and Saving a Python Program File

 FIGURE A-9 Opening a Script Edit or Window

BMAppendix.indd Page 531 08/11/12 12:54 PM user-019ABMAppendix.indd Page 531 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

532 Appendix

 When saving a Python program, remember to add the fi le extension . py to the fi lename . Otherwise,
the saved fi le will not appear in the fi le window when working with Python programs in IDLE. It
also will not be considered a Python fi le by the operating system. In this case, Hello World
Program.py will become a new fi le in the My Python Programs folder in addition to the
existing fi le Some Program.py .
 When creating and modifying programs, there are a number of editing features that IDLE
provides. Many of these commands will likely be familiar to you. However, in addition to the famil-
iar commands (such as “cut” and “paste”) there are editing features in IDLE that are specifi c to
Python. These commands are listed in Figure A-12.
 The backspace is for deleting characters before the cursor, and delete deletes characters
 after . Lines may be deleted, copied and pasted within a program. For navigating a program fi le, there
is the ability to go to a specifi c line number, or search for lines containing a specifi c search string.
Once a search has begun, the shortcut Ctrl 1 G provides a convenient way to continue the search to
each next line found.

 FIGURE A-11 The File Window and Naming and Saving a File

BMAppendix.indd Page 532 08/11/12 12:54 PM user-019ABMAppendix.indd Page 532 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 A3. Program Development Using IDLE 533

 The Show Matching command (Ctrl 1 0) identifi es certain matching delimiters. The innermost set
of matching parentheses, square brackets or curly braces are highlighted from the current position
of the cursor. This is useful for identifying mismatched parentheses in expressions, as well as mis-
matched delimiters in data structures containing parentheses, square brackets and/or curly braces.
The Undo command (Ctrl 1 Z) will undo the most recent edit change in a fi le. This can be used to
undo all the edit changes, even before the last time the fi le was saved, way back to the state of the
fi le when it was fi rst opened (or back to an empty fi le if being created).
 One particularly useful pair of commands are the Indent / Dedent commands. These indent
and “un-indent” a selected (highlighted) set of program lines. The number of spaces of indentation by
default is four, which follows the Python convention for style. Therefore, it is recommended that you
do not change this value. (It can be set under the Options / Confi gure IDLE menu selection.) An-
other useful set of commands is Comment Out and Uncomment . These commands add (and re-
move) a “double comment” symbol, ## , on a selected set of lines. This is useful for disabling certain
portions of a program during program development and testing. A summary of some of the editing
commands in IDLE is given in Figure A-12. The shortcut keys given here are worth learning so that
you can be more effi cient in your programming . Each command has a corresponding menu option.
 We show all the menu options in the editor window of IDLE below. The File menu provides
the ability to open , save and print fi les, shown in Figure A-13.

 FIGURE A-12 Editing Commands in IDLE

BMAppendix.indd Page 533 08/11/12 12:54 PM user-019ABMAppendix.indd Page 533 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

534 Appendix

 The Edit menu provides options for the usual editing commands such as Undo/Do , Copy/Cut/
Paste , Find/Replace , shown in Figure A-14.

 FIGURE A-13 The File Menu of the IDLE Edit or Window

 FIGURE A-14 The Edit Menu of the IDLE Edit or Window

BMAppendix.indd Page 534 08/11/12 12:54 PM user-019ABMAppendix.indd Page 534 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

 A3. Program Development Using IDLE 535

 The Format menu provides options for Indenting / Dedenting, and Commenting Out /
Uncommenting a section of code, shown in Figure A-15.

 The Run menu provides the Run Module, which executes the Python code currently in the editor
window, shown in Figure A-16. The F5 shortcut key is a convenient way to execute a program .

 The Options menu provides the option Confi gure IDLE for confi guring various aspects of IDLE,
including the fonts used, the color of keywords, the color of comment lines, etc., and the number of
spaces used for each tab character (for indentation of program lines). Although there is a lot of
control provided for the “look and feel” of IDLE, it is recommended to stick with the standard

 FIGURE A-17 The Options Menu of the IDLE Edit or Window

 FIGURE A-15 The Format Menu of the IDLE Edit or Window

 FIGURE A-16 The Run Menu of the IDLE Edit or Window

BMAppendix.indd Page 535 08/11/12 12:54 PM user-019ABMAppendix.indd Page 535 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

536 Appendix

confi guration options. (Code Content is a feature intended to help aid in keeping track of the lines
in the same program block while scrolling through a fi le. We do not see the benefi ts of this option
for our purposes.)
 The Windows menu provides options for controlling the height of the window. It also
provides a list of all currently open Python windows (by fi le name), including the Python Shell.
This provides an easy way to switch from one window to another. The menu options are shown
in Figure A-18.

 Finally, the Help menu includes About IDLE , which includes the version number of IDLE in-
stalled; and IDLE Help , which gives a brief summary of the commands of the menu bar.

 FIGURE A-19 The Help Menu Options of the IDLE Edit or Window

 Using Python Docs from within IDLE A very useful feature of IDLE is the Python Docs
option under the Help menu. This option links to the offi cial documentation for the version of
Python installed, shown in Figure A-20. The most relevant parts of the documentation for this text
are marked with a (dark) checkmark. The Tutorial starts with an introduction to Python, and goes
through all the features of the language, thus covering material beyond the scope of this text. It is
a good starting point, however, for obtaining more information on a particular language feature.
The Library Reference lists all the built-in functions, constants and types. In addition, it contains
a categorized list of the Standard Library modules in Python. Finally, the Python Language
Reference contains all information about the “core” of the language. This includes documenta-
tion on general syntax, expressions, statements, and compound statements (such as if and while
statements). The Global Module Index , General Index and Python FAQ s, indicated by lighter
check marks, may also be of some help to the reader.

 FIGURE A-18 The Windows Menu Options of the IDLE Edit or Window

BMAppendix.indd Page 536 08/11/12 12:54 PM user-019ABMAppendix.indd Page 536 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

A4. Common Python Programming Errors 537

 A4. Common Python Programming Errors

 We list the typical errors for novice programmers using Python. It would be wise to use the follow-
ing as a checklist when developing and debugging your Python programs.

♦ Improper Indentation

 All instructions in the same suite (block) must be indented the same amount. Each tab press will
move the cursor the number of character spaces that is set under Options / Confi gure IDLE (four
spaces by default, recommended).

FIGURE A-20 Python Docs

BMAppendix.indd Page 537 08/11/12 12:54 PM user-019ABMAppendix.indd Page 537 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

538 Appendix

 ♦ Forgetting About Truncated (Integer) vs. Real Division

 Keep in mind the difference between the / operator (5/4 ➝ 1.25) and the // operator (5/4 ➝ 1).
 This is very easy to forget when using arithmetic expressions.

 ♦ Confusing the Assignment Operator (5) with the Comparison Operator (5 5)

 This is a very common error for new programmers, but one that you should learn to avoid as early
as possible.

 ♦ Forgetting to Convert String Values when Inputting Data

 Remember that the input function always returns a string type. It is easy to forget when reading
in numeric values to convert them to integer or fl oat before using arithmetically.

 ♦ Forgetting to Use Colons Everywhere Needed

 Don't forget to put colons where needed. Rather than trying to memorize where they are required,
a simple rule can be followed. A colon is required after any keyword (such as if or while) in
which the subsequent statements are indented.

 ♦ Forgetting about Zero-Based Indexing

 Zero-based indexing, in which the fi rst index value of an indexed entity starts at 0, can lead to
“off-by-one” errors if the programmer is not careful.

 ♦ Confusing Mutable and Immutable Types

 Remember that the value of a mutable type can be changed without the need for reassignment,
for example, list1.append(40) . Since tuples and strings are immutable types and thus their
values cannot be changed, reassignment of the variable is needed in order to “change” it. Thus,
the statement str1 1 'There ! ' does not change the value of str1 . To change its value, it
must be reassigned, str1 5 str1 1 ' There!'

 ♦ Forgetting the Syntax for Tuples of One Element

 Tuples are the only sequence type that requires a comma with tuples of only element, (1,) ➝ (1).
If the comma is left out, then the expression evaluates to that element, (1) ➝ 1.

 ♦ Improperly Ended Program Lines

 Forgetting to use the backslash (\) when continuing a program line to the next line.

 B. PYTHON QUICK REFERENCE

 The references pages contained here summarize aspects of the Python programming language most
relevant to the textbook. Therefore, the functions/operators listed, and the available optional argu-
ments for each is not meant to be comprehensive. For complete coverage, see The Python Language
Reference of the offi cial Python site at http://docs.python.org/reference/index.html .

BMAppendix.indd Page 538 08/11/12 12:54 PM user-019ABMAppendix.indd Page 538 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B1. Python Coding Style 539

 B1. Python Coding Style

This: i = i + 1
Not This: i=i+1

This: c = (a + b) * (a - b)
Not This: c = (a+b) * (a-b)

This: (a, b, c, d)
Not This: (a,b,c,d)

This:
def func1(real, imag=0.0):
Not This:
def func1(real, imag = 0):

This:
def func1(real, imag=0.0):
Not This:
def func1(real, imag = 0):

Use four spaces for each indentation level.

Limit length of lines to 79 characters (i.e., do not wrap lines around screen).

Use blank lines, sparingly, to separate logical sections of code.

Separate function definitions with two blank lines. (Same for class definitions)

Statements containing open parentheses, square brackets or curly braces can be continued on the

next line (except when containing open single or open double quotes):

result = (num1 + num2 + num3 + num4 + num5 +
num6 + num7 + num8 + num9 + num10)

Statements without such delimiters can be continued by use of the line continuation character (\):

response = \
int(input('(1)continue processing, (2)quit program '))

BMAppendix.indd Page 539 08/11/12 12:54 PM user-019ABMAppendix.indd Page 539 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

540 Appendix

 B2. Python Naming Conventions

and del from None True
as elif global nonlocal try
assert else if not while
break except import or with
class False in pass yield
continue finally is raise
def for lambda return

All uppercase, underscores used when aids readability:

RATIO ANNUAL_RATE

All lowercase, underscores used when aids readability:

n, line_count

All lowercase using underscores when needed, or mixed case (“camel case”), in which

first character is lowercase, and first letter of all other words is uppercase:

calcAverage, calc_average

Mixed case, with first character a capital letter:

VehicleClass

Short name, all lowercase, underscores used when aids readability:

math, conv_functions

BMAppendix.indd Page 540 08/11/12 12:54 PM user-019ABMAppendix.indd Page 540 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B3. Comment Statements in Python 541

 B3. Comment Statements in Python

If a # appears in a line with a prior #, then the second # is taken as part of the comment.

There is no provision for block comments in Python (i.e., commenting out a sequence of lines

with one set of comment delimiters).

The hash sign (#) is used to make single line comments

(when at the start of a line), or an in-line comment (when

within a line). All characters following the hash sign until

the end of line are treated as a comment.

Comment line

In-line comment, e.g.,

state_tax_rate = 0.08 # 2008 tax rate

Single line comment serving as program section heading, e.g.,

sum all values greater than 0
for i in range(0, len(values)):

if values[i] > 0:
sum = sum + values[i]

As an alternative to use of a triple-quoted docstring, e.g.,

def function1(n):
#--
This function returns the largest integer
less than or equal to n.
#--

Never include an in-line comment that states what is obvious from the program line, e.g.,

n = n + 1 # increment n

But this is ok,

n = n + 1 # adjust n to avoid off-by-one error

BMAppendix.indd Page 541 08/11/12 12:54 PM user-019ABMAppendix.indd Page 541 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

542 Appendix

 B4. Literal Values in Python

Numeric literals never contain commas… Integer literals never contain a decimal point…
Yes: 1200 204231 Yes: 1200
No: 1,200 204,231 No: 1200. 1200.0

Floating-point literals must contain a decimal

There is no limit for the size of an integer point…

Floats are limited to 10
-308

to 10
308

with Yes: 1200.0 1200.
16 to 17 digits of precision No: 1200

Strings are delimited (“surrounded”) by single or double quotes:

Examples: 'Hello World!' "Hello World!"

Strings must be delimited by the same type of quote characters:

Yes: 'Hello World!'
No: 'Hello World!"

Strings containing quotes must be delimited with the other quote type:

Yes: "This is John's car" 'We all yelled "Hey John!"'
No: 'This is John's car' "We all yelled "Hey John!""

Single and double-quoted strings must be contained on one line. Triple-quoted strings,

however, can span more than one line. Triple-quoted strings may be denoted with three single

quotes, or three double quote characters. These strings are mainly used as docstrings for

program documentation.

There are only two literal values for the Boolean type:

Yes: True False
No: true false TRUE FALSE 'True' 'False'

None

None is a special “place marker” in Python that can be used when there is no available value.

BMAppendix.indd Page 542 08/11/12 12:54 PM user-019ABMAppendix.indd Page 542 08/11/12 12:54 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B5. Arithmetic, Relational, and Boolean Operators in Python 543

 B5. Arithmetic, Relational, and Boolean Operators in Python

+ Addition

- Subtraction

* Multiplication

** Exponentiation

/ Float division

// Truncated

division

% Modulus

< Less than

> Greater than

<= Less than or

equal to

>= Greater than

or equal to

== Equal

!= Not equal

and logical AND

or logical OR

not logical NOT

cond1 = True cond2 = False

2 + 3 - 1 4 2 < 3 True cond1 and cond2 False

2 * 6 12 3 <= 2 False cond1 and not cond2 True

2 ** 6 64 3 == 2 False cond1 or cond2 True

3 / 2 1.5 3 != 2 True not cond1 or cond2 False

3 // 2 1 'A' < 'B' True not(cond1 and cond2) True

3.0 // 2 1.0 'a' < 'B' False (2 < 3) and cond1 True

2025 // 100 20 'Hill' < 'Wu' True 2025 % 100 25

** exponentiation

*, /, //, % multiplication, division, modulus (remainder)

+, - addition, subtraction

<, <=, … in, not in relational, membership, and identity operators

not Boolean not operator

and Boolean and operator

or Boolean or operator

NOTE: All listed operators associate left-to-right, except ** (which associates right-to-left).

BMAppendix.indd Page 543 08/11/12 12:55 PM user-019ABMAppendix.indd Page 543 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

544 Appendix

 B6. Built-in Types and Functions in Python

abs(x)
Returns the absolute value of a number (for arguments of type int, long, and float).

chr(i)
Returns a string of one character whose ASCII code is the integer i. The argument must be in

the range [0…255] inclusive, otherwise a ValueError will be raised.

cmp(x, y)
Compare the two objects x and y and returns a negative value if x<y, zero if x==y, and a

positive value if x>y.

dict(arg)
Creates a new dictionary where arg is a list of the form [(attr1, value1), (attr2,
value2), …].

float(arg)
Returns the absolute value of a number (for arguments of type int, long, and float).

format(value, format_spec)
Creates a formatted string from a provided sequence of format specifiers. (See details in

Section B10)

frozenset(arg)
Creates a frozen (immutable) set where arg is a sequence (or other iterable type).

 (continued …)

int Integers
float Floating point numbers
complex Complex numbers
bool Boolean values

str Strings
list Lists
tuple Tuples

dict Dictionary

set Sets
frozenset Immutable sets

BMAppendix.indd Page 544 08/11/12 12:55 PM user-019ABMAppendix.indd Page 544 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B6. Built-in Types and Functions in Python 545

(…continued)

pow(x, y)
Returns x to the power y. Equivalent to x**y.

print(arg1, arg2, ...)
Prints arguments arg1, arg2, … on the screen.

range(opt_start, stop, opt_step)
Creates a list of integer values of a given progression. If opt_start not provided, then

sequence begins at 0. If opt_step not provided, then increments by 1.

repr(arg)
Returns a string which is a printable representation of arg.

reload(module)
Reloads a given module that has already been loaded (imported). Useful for when

changes to modules when in interactive mode.

round(x, opt_n)
Returns the floating point value x rounded to n decimal places. If n is omitted, decimal place

returned as 0.

set(arg)
Returns a new set with values in arg, where arg is a sequence (or other iterable) type.

sorted(arg)
Returns a new sorted list with values in arg, where arg is a sequence (or other iterable) type.

str(arg)
Returns a string version of arg. If arg is omitted, returns the empty string.

tuple(arg)

Returns a tuple whose items are the same as in arg, where arg may be a sequence (or other

iterable type). If no argument is given, returns a new empty tuple.

type(arg)
Returns the type of a value (object) provided in arg.

 (…continued)

help(arg)
Used in interactive mode in the Python Shell. Displays a help page related to the string

provided in arg. When an argument not provided, starts the built-in help system.

id(object)
Returns the “identity” of an object, which is an integer unique to all other objects, and

remains the same during an object’s lifetime.

input(prompt)
Prompts user with provided prompt argument to enter input, and returns the typed input as a

string with the newline (\n) character removed. (See details in section B7)

int(arg)
Returns integer value of provided argument. Argument may be a string or an integer (in which

case, the same integer value is returned).

len(arg)
Returns the length of arg, where arg may be a string, tuple, list, or dictionary.

list(arg)
Returns a list with items contained in arg, where arg may be a sequence (or other iterable

type). If no argument given, returns an empty list.

max(arg)
Returns the largest value in a provided string, list or tuple.

min(arg)
Returns the smallest value in a provided string, list or tuple.

open(filename, opt_mode)
Opens and creates a file object for filename. Optional argument opt_mode either 'r'
(reading), 'w' (writing), or 'a' (appending). If omitted, file opened for reading.

ord(str)
Given a character (string of length one), returns the Unicode code point (character encoding

value) for the character, e.g. ord('a') = 97.

 (continued …)

BMAppendix.indd Page 545 08/11/12 12:55 PM user-019ABMAppendix.indd Page 545 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

546 Appendix

(…continued)

pow(x, y)
Returns x to the power y. Equivalent to x**y.

print(arg1, arg2, ...)
Prints arguments arg1, arg2, … on the screen. (See details in section B7)

range(opt_start, stop, opt_step)
Creates a list of integer values of a given progression. If opt_start not provided, then

sequence begins at 0. If opt_step not provided, then increments by 1.

repr(arg)
Returns a string which is a printable representation of arg.

reload(module)
Reloads a given module that has already been loaded (imported). Useful for when

making changes to modules when in interactive mode.

round(x, opt_n)
Returns the floating point value x rounded to n decimal places. If n is omitted, decimal place

returned as 0.

set(arg)
Returns a new set with values in arg, where arg is a sequence (or other iterable type).

sorted(arg)
Returns a new sorted list with values in arg, where arg is a sequence (or other iterable type).

str(arg)
Returns a string version of arg. If arg is omitted, returns the empty string.

tuple(arg)

Returns a tuple whose items are the same as in arg, where arg may be a sequence (or other

iterable type). If no argument is given, returns a new empty tuple.

type(arg)
Returns the type of a value (object) provided in arg.

BMAppendix.indd Page 546 08/11/12 12:55 PM user-019ABMAppendix.indd Page 546 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B7. Standard Input and Output in Python 547

 B7. Standard Input and Output in Python

Standard input (sys.stdin) is a data

stream used by a program to read data. By

default, standard input is from the keyboard.

Standard output (sys.stdout) is a data

stream used by a program to write data. By

default, standard output goes to the screen.

>>> name = input('Enter name: ')
Enter name: Audrey Smith
>>> name
'Audrey Smith'

>>> age = 38
>>> print('His age is', age))
His age is 38

>>> print(1, 2, 3, sep='*')
1*2*3

>>> print(1, 2, 3, end='...')
1 2 3...

>>> n = int(input('Enter age: '))
Enter age: 28
>>> n
28

input(prompt)
The input function sends (optional) string parameter, prompt, to the standard output (the

screen) to prompt the user for input. It then returns the line read from the standard input (the

keyboard) as a string, with the trailing newline character removed.

print(value, ..., sep=' ', end='\n', file=sys.stdout)
The print function sends values to the standard output (the screen). Multiple values may be

given, each separated by commas. The displayed values are separated by a blank character and

ended with a newline character. Each of the default parameter values, sep, end and file, may

be changed as keyword arguments.

The prompt string provided for the function input often is ended with a blank character

to provide space between the end of the prompt and the typed user input.

To keep the cursor on the same line when calling print, set default parameter end to the

empty string as a keyword argument.

The input function reads and returns any input by the user without generating an error.

When the input is converted to another type, such as an integer in (2) above, the type

conversion function used may raise an exception. Thus, exception handling is needed to check

for invalid input.

BMAppendix.indd Page 547 08/11/12 12:55 PM user-019ABMAppendix.indd Page 547 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

548 Appendix

 B8. General Sequence Operations in Python

len(s)
Returns the length of sequence s.

s[i] (selection)

Returns the item at index i in sequence s.

s[i:j] (slice)

Returns subsequence (“slice”) of elements in s from index i to index j – 1.

s[i:j:k] (slice with step)

Returns subsequence (“slice”) of every kth item in s[i:j].

s.count(x)
Returns the number of occurrences of x in sequence s.

s.index(x)
Returns the first occurrence of x in sequence s.

x in s (membership)

Returns True if x is equal to one of the items in sequence s, otherwise returns False.

x not in s (membership)

Returns True if x is not equal to any of the items in sequence s, otherwise returns False.

s1 + s2 (concatenation)

Returns the concatenation of sequence s2 to sequence s1 (of the same type).

n * s (or s * n)
Returns n (shallow) copies of sequence s concatenated.

min(s)
Returns the smallest item in sequence s.

max(s)
Returns the largest item in sequence s.

BMAppendix.indd Page 548 08/11/12 12:55 PM user-019ABMAppendix.indd Page 548 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B 9 . String Operations in Python 549

 B 9 . String Operations in Python

str.find(arg) / str.index(arg)
Both find and index return the lowest index matching substring provided. i

Method find returns -1 if substring not found, method index returns ValueError.

str.isalpha(arg) / str.isdigit(arg)
Returns True if str non-empty and all characters in str are all letters (isalpha), or all

digits (isdigit), otherwise returns False.

str.isidentifier()
Returns True is str is an identifier in Python, otherwise returns False.

str.islower() / str.isupper() / str.lower() / str.upper()
Methods islower / isupper return True if all letters in str are lower (upper) case,

and there is at least one letter in str. Methods lower / upper return a copy of str with all

letters in lower (upper) case.

str.join(arg)
Returns a string which is the concatenation of all strings in arg, where arg is a sequence

(or some other iterable) type. If arg does not contain any strings, a TypeError is raised.

str.partition(arg)
For string separator in arg, returns a 3-tuple containing the substring before the separator in

str, the separator itself, and the substring following the separator. If separator not found,

returns a 3-tuple containing str, and two empty strings.

str.replace(arg1, arg2)
Returns a copy of str with all occurrences of arg1 replaced by arg2.

str.split(arg)
Returns a list of words in str using arg as the delimiter string. If arg not provided, then

whitespace (a blank space) is used as the delimiter.

str.strip(arg)
Returns a copy of str with leading and trailing chars contained in string arg removed. If

arg not provided, then removes whitespace.

BMAppendix.indd Page 549 08/11/12 12:55 PM user-019ABMAppendix.indd Page 549 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

550 Appendix

 B10. String Formatting in Python

Built-in function format creates a formatted

string from a provided sequence of format

specifiers.

format(value, format specifier)

A format string may contain the following format specifiers in the order shown:
fill_chr, align, width, precision, type

fill_chr Any character except '{' (requires a provided align specifier)

align '<' (left-justified) , '>' (right-justified) , '^' (centered)

width An integer (total field width)

precision An integer (number of decimal places to display, rounded)

type 'd' (base 10), 'f' (fixed point), 'e' (exponential notation)

avg = 1.1275, sales = 143235 factor = 134.10456

>>> print('Average rainfall in April:', format(avg,'.2f'), 'inches')
Average rainfall for April: 1.13 inches

>>> print('Yearly Sales $', format(sales, ','))
Yearly Sales $ 143,235

>>> print('Conversion factor:', format(factor, '.2e'))
Conversion factor: 1.34e+02

>>> print(format('Date', '^8'), format('Num Sold', '^12')
Date Num Sold

>>> print('\n' + format('Date', '<8') + format('Num Sold', '^12') +
'\n' + format('----', '<8') + format('--------', '^12'))

Date Num Sold
---- --------

BMAppendix.indd Page 550 08/11/12 12:55 PM user-019ABMAppendix.indd Page 550 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B11. Lists in Python 551

 B11. Lists in Python

lst[i] = x
Element i of lst replaced with x (for any object x).

lst[i:j] = t
Slice of lst from i to j-1 replaced with sequence (or other iterable type) t.

del lst[i:j]
Removes slice lst[i:j] from lst.

lst[i:j:k] = t
Replaces items lst[i:j:k] in lst with t

del lst[i:j:k]
Removes slice lst[i:j:k] from lst.

s.append(x)
Adds x to the end of sequence s.

s.extend(x)
Adds the contents of sequence x to the end of sequence s.

s.insert(i, x))
Inserts x at index i in sequence s.

s.pop(i)
Removes and returns s[i]. When argument i not provided, removes last item in s.

s.remove(x)
Removes and returns the first item in sequence s that equals x.

s.reverse()
Reverses the items in sequence s.

s.sort()
Sorts sequence s from smallest to largest.

BMAppendix.indd Page 551 08/11/12 12:55 PM user-019ABMAppendix.indd Page 551 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

552 Appendix

 B12. Dictionaries in Python

dict(arg)
Returns a new dictionary initialized with items in arg, where arg may be a list, tuple

or string (or other iterable type). If no argument provided, returns an empty dictionary.

len(d)
Returns the number of items in dictionary d.

d[key]
Returns item of dictionary d with key key.

d[key] = value
Sets d[key] to value.

del d[key]
Removes d[key] from dictionary d.

key in d
Returns True if d has key key, otherwise returns False.

key not in d
Returns False if d has key key, otherwise returns True.

d.clear()
Removes all items from dictionary.

d.get(key)
Returns the value for key in dictionary d.

d.pop(key)
Removes key/value pair in d for key and returns the associated value.

d.popitem()
Removes and returns an arbitrary key/value pair from dictionary d.

BMAppendix.indd Page 552 08/11/12 12:55 PM user-019ABMAppendix.indd Page 552 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B13. Sets in Python 553

 B13. Sets in Python

set(arg) / frozenset(arg)
Returns a new set or frozenset with items provided in arg, where arg is a sequence (or other

iterable type).

len(s)
Returns the number of items in set s.

x in s (x not in s)
Returns True (False) if s has item equal to x, otherwise returns False (True).

s.add(x) / s.remove(x), s.pop(), s.clear() (Set type only)

Adds / removes x, Removes-returns arbitrary item from s, Removes all items from s.

s.isdisjoint(other)
Returns True if set s had no items in common with the set provided by argument other,

otherwise returns False.

s.issubset(other) (also set <= other)

Returns True if every item in s is also in set other, otherwise returns False.

s.issuperset(other) (also set >= other)
Returns True if every item in other is also in set s, otherwise returns False.

set < other (set > other)
Returns True if s is a proper subset (superset) of set other

s.union(other, ...)
Returns a new set containing all items in set s and all other provided sets.

s.intersection(other, ...)
Returns a new set containing all items common to set s and all other provided sets.

s.difference(other, ...)
Returns a new set containing all items in set s that are not also in other provided sets.

s.symmetric_difference(other)
Returns a new set containing items that are in set s or set other, but not both.

BMAppendix.indd Page 553 08/11/12 12:55 PM user-019ABMAppendix.indd Page 553 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

554 Appendix

 B1 4 . if Statements in Python

if n == 0:
print('n is zero')

if n1 == 0:
print('n1 is zero')

if n2 == 0:
print('n2 is zero')if n == 0:

print('n is zero')
else:

print('n is non-zero')
if n1 == 0:

print('n1 is zero')
if n2 == 0:

print('n2 is zero')
else:

print 'n2 is not zero'
else:

print 'n1 is not zero'

if n < 0:
print('n is less than 0')

elif n == 0:
print('n is zero')

else:
print('n is greater than zero')

An if statement may have zero or more elif clauses, optionally

followed by an else clause. As soon as the condition of a given

clause is found true, that clause's statements are executed, and the

rest of the clauses are skipped. If none of the clauses are found true,

then the statements of the else clause are executed (if present). As

with all data structures, if statements may be nested.

if condition:

statements

elif condition:

statements

else:

statements

Forgetting to add a semicolon (:) after each conditional expression, and after keyword else.

2. Improper operator use when checking for equality (e.g., “==”, not “=”).

3. Improper Boolean expression evaluation resulting from unconsidered operator precedence.

4. Improper indentation of nested if/elif/else clause(s) resulting in faulty logic.

It is not required to include elif or else clauses in if statements.

When selecting among a set mutually exclusive conditional expressions, the if/elif (with

optional else) form of if statement should be used.

BMAppendix.indd Page 554 08/11/12 12:55 PM user-019ABMAppendix.indd Page 554 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B1 5 . for Statements in Python 555

 B1 5 . for Statements in Python

When the elements of a sequence need to be accessed but not altered, a for loop that iterates

over the values in the sequence is the appropriate approach (1-4).

When the elements of a sequence need to be both accessed and updated, a for loop that

iterates over the index values in the sequence is the appropriate approach (5,6).

Nested for loops can be used to iterate through a list of sequence types (6).

1. Forgetting to add a semicolon (:) after the loop header.

2. Improper indentation of statements contained in the body of the for loop.

3. Forgetting that range(i,j) (and range(j)) generates values up to, but not including j.

empty_str = '', space = ' '

for num in [2, 4, 6, 8]:
print(num, end=space)

2 4 6 8

lst = [2, 4, 6, 8]
for k in range(len(lst)):

lst[k] = lst[k] + 1

print(lst)

3 5 7 9

for num in range(2, 10, 2):
print(num, end=space)

2 4 6 8

for num in range(10, 2, -2):
print(num, end=space)

10 8 6 4

t = [[1, 2, 3],[4, 5, 6]]
for i in range(len(t)):

for j in range(len(t[i])):
print(t[i][j], end=space)

print()

1 2 3

for char in 'Hello':
print(char, end=empty_str)

Hello

The for statement is used to control a

loop that iterates once for each element in

a specified sequence of elements such as a

list, string or other iterable type.

for k in sequence:
statements

BMAppendix.indd Page 555 08/11/12 12:55 PM user-019ABMAppendix.indd Page 555 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

556 Appendix

 B16. while Statements in Python

empty_str = '', space = ' '

i = 1

while i < 10:
print(i, end=space)
i = i + 1

1 2 3 4 5 6 7 8 9 10

while True:
print('This loop keeps running!')

This loop keeps running!
This loop keeps running!
etc.

i = 10

while i != 0:
print(i, end=space)
i = i – 1

10 9 8 7 6 5 4 3 2 1

file = open('filename.txt', 'r')
line = file.readline()

while line != empty_str:
line = file.readline()

num = int(input('Enter a positive number: '))

while num < 0:
print('Your input was invalid.')
num = int(input('Enter a positive number: '))

A while loop can be used to implement any kind of loop, although some while loops are

more conveniently implemented as a for loop (1,2).

An infinite loop is caused by a condition that always evaluates to True (3).

A loop to execute an indefinite number of times, such as when reading from a file, must be

implemented as a while loop (4,5).

A while loop is used when accepting and validating user input (5)

Forgetting to add a semicolon (:) after the conditional expression.

2. Not making progress in the body, thereby creating a loop that never ends (i.e. an infinite loop).

3. Improper indentation of statements contained in the body of the while loop.

while condition:
statements

The statements contained in a while loop body continue to

execute until the condition evaluates to False.

BMAppendix.indd Page 556 08/11/12 12:55 PM user-019ABMAppendix.indd Page 556 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B17. Functions in Python 557

 B17. Functions in Python

num1 = 10, num2 = 25, num3 = 35, list1 = [1, 0, 3, 8, 0]

def avg3(n1, n2, n3):
'''Returns rounded avg.'''

return round((n1 + n2 + n3) / 3)

>>> avg3(num1, num2, num3)
23

def countdown(from, to):
for i in range(from, to-1, -1):

print(i, end='...')

>>> countdown(from=5, to=1)
5...4...3...2...1...

def hello():
print('Hello World!')

>>> hello()
Hello World!

def dashLine(len,head=''):
empty_str = ''
space = ' '

if head != empty_str:
head = space + title

+ space
print(head.center(len,'-'))

>>> dashLine(16)

>>> dashLine(16, head='price')
---- price -----

def removeZeros(lst):
for k in range(len(lst)-1,-1,-1):

if lst[k] == 0:
del lst[k]

>>> list1
[1, 0, 3, 8, 0]

>>> removeZeros(list1)
[1, 3, 8]

A triple-quoted string as the first line of a function serves as its docstring (1).

Functions may define default arguments (2), and be called with keyword arguments (3).

A function may be defined having no parameters (4).

Mutable arguments passed to a function can become altered (5).

A function is a named group of instructions accomplishing some task. A function is invoked
(called) by providing its name, followed by a (possibly empty) list of arguments in parentheses.

Calls to value-returning functions are expressions that evaluate to the returned function value.

Calls to non-value returning functions are effectively statements called for their side effects.

(Strictly speaking, they are value-returning functions since they return special value None).

def name(parameters):
statements
return expression

def name(parameters):
statements

BMAppendix.indd Page 557 08/11/12 12:55 PM user-019ABMAppendix.indd Page 557 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

558 Appendix

 B18. Classes in Python

class classname(parentclass):

def __init__(self, args):
'''docstring'''

.

.
def methodname(args):

'''docstring'''
.
.

def methodname(args):
'''docstring'''

A class consists of a set of methods and instance

variables. The instances variables are created in

special method init. The init method must

have an extra first parameter, by convention

named self, that is not passed any arguments

when the method is called.

A docstring is a single or multi-line string using

triple quotes that provides documentation for

methods, classes and modules in Python.

class XYCoord(object):

def __init__(self, x, y):
self.__x = x
self.__y = y

def getX(self):
return self.__x

def setX(self, x):
self.__x = x

.

.

def __repr__(self):

return '(' + str(self.__x) + ',' + \
str(self.__y) + ')'

def __eq__(self, xycoord):

return self.__x == xycoord.getX() and \

self.__y == xycoord.getY()

__init__

__repr__

__str__

__neg__

__add__

__sub__

__mul__

__truediv__

__floordiv__

__mod__

__pow__

__lt__

__le__

__eq__

__ne__

__gt__

__ge__

Instance variables beginning with two underscores are treated as private. They are accessible only if

the mangled form of the name is used: with a single underscore followed by the class name added to

the front. For example, private instance variable __x in class XYCoord becomes _XYCoord__x.

BMAppendix.indd Page 558 08/11/12 12:55 PM user-019ABMAppendix.indd Page 558 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B19. Objects in Python 559

 B19. Objects in Python

identifier = classname(args) An object is an instance of a class. All values in Python

are objects.

(1) loc1 = XYCoord(5,10) Creates a new XYCoord object, its reference assigned to loc1

(2) loc2 = XYCoord(5,10) Creates a new XYCoord object, its reference assigned to loc2

(3) loc1 (5,10), dereferenced value of identifier loc1

(4) loc2 (5,10), dereferenced value of identifier loc2

(5) id(loc1) 37349072, reference value of identifier loc1

(6) id(loc2) 37419120, reference value of identifier loc2

(7) loc1 == loc2 True, comparison of their dereferenced values

(8) loc1 is loc2 False, comparison their reference values

(9) loc3 = loc1 Assigns reference value of loc1 to loc3

(10) loc3 == loc1 True

(11) loc3 is loc1 True

(12) loc3.setX(10,10) Changes value of loc3 to (10,10)

(13) loc3 == loc1 False

When assigning an object to an identifier, the reference to the object is assigned, not the

object itself. Thus, more than one identifier may reference the same object.

Each newly-created object has a unique id. For variables var1 and var2, if id(var1)
equals id(var2) (or var1 is var2 is True) they are referencing the same object.

Mutable objects (e.g., lists) can be Immutable objects (e.g., strings) cannot be

altered without reassignment: altered without reassignment:

>>> lst = [1, 2, 3] >>> str1 = 'Hello'
>>> lst.append(4) >>> str1.replace('H', 'J')
>>> lst >>> str1
[1, 2, 3, 4] 'Hello'

>>> str1 = str1.replace('H', 'J')
>>> str1
'Jello'

BMAppendix.indd Page 559 08/11/12 12:55 PM user-019ABMAppendix.indd Page 559 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

560 Appendix

 B20. Exception Handling in Python

try:
statements

except ExceptionType:
statements

except ExceptionType:
statements

etc.

Exception handling provides a means for functions and

methods to report errors that cannot be corrected locally. In

such cases, an exception (object) is raised that can be caught
by its client code (the code that called it), or the client’s client

code, etc., until handled (i.e. the exception is caught and the

error appropriately dealt with). If an exception is thrown back

to the top-level code and never caught, then the program

terminates displaying the exception type that occurred.

def genAsterisks(x):
"""x an integer in range 1-79."""

if x < 1 or x > 79:
raise ValueError('Must enter 1-79')

return x * '*'

#---- main
valid_input = False

while not valid_input:
try:

num = int(input("How Many '*'s?: "))
print(genAsterisks(num))
valid_input = True

except ValueError as errorMesg:

print(errorMesg)

EOFError

FloatingPointError

ImportError

IOError

IndentationError

IndexError

KeyError

NameError

OverflowError

RuntimeError

SyntaxError

TypeError

ValueError

ZeroDivisionError

The exceptions built-in module is automatically imported in Python.

Built-in exceptions, raised by the built-in functions/methods, may also be raised by user code.

New exceptions may be defined as a subclass of the built-in Exception class.

There may be any number of except clauses for a given try block.

In addition to the except clauses, an else clause may optionally follow, only executed if the

try block does not raise any exceptions. Following that, an optional finally clause, if

present, is always executed, regardless of whether an exception had been raised or not. The

else and finally clauses are often used for resource allocation, such as closing an open file.

BMAppendix.indd Page 560 08/11/12 12:55 PM user-019ABMAppendix.indd Page 560 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B21. Text Files in Python 561

 B21. Text Files in Python

A text file is a file containing characters, structured as lines of text. Text files can be directly

created and viewed using a text editor. In addition to printable characters, text files also contain

non-printing newline characters, \n, to denote the end of each line of text.

A file that is open for input can be read from, but not written to.

fileref = open(filename, 'r') Opens and creates a file object for reading filename.

Raises an IOError exception if file not found.

fileref.readline() Reads next line of file. Returns empty string if at end of file.

Includes newline character ('\n') in line read.

fileref.close() Closes file. File can be reopened to read from first line.

filename = input('Enter filename: ')
inFile = open(filename, 'r')

line = inFile.readline()
while line != '':

print(line, end='')
line = inFile.readline()

Enter filename: testfile.txt
Hi,

This is a test file.
Containing five lines.
Including one blank line.
>>>

A file that is open for output can be written to, but not read from.

fileref = open(filename, 'w') Opens and creates a file object for writing to filename.

fileref.write(s) Writes string s to file. Does not include output of '\n'.

fileref.close() Closes file. If not closed, last part of output may be lost.

filename = input('Enter filename: ')
outFile = open(filename, 'w')

line = input('Enter line of text:')
while line != '':

outFile.write(line + '\n')
line = input('Enter line:')

outFile.close()

Enter filename: newfile.txt
This is the first entered line.
This is the second entered line.
This is the last entered line.

newfile.txt
This is the first entered line.
This is the second entered line.
This is the last entered line.

BMAppendix.indd Page 561 08/11/12 12:55 PM user-019ABMAppendix.indd Page 561 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

562 Appendix

 B22. Modules in Python

A Python module is a file containing Python definitions and statements. The module that is directly

executed to start a Python program is called the main module. Python provides standard (built-in)

modules in the Python Standard Library.

import modulename

Makes the namespace of modulename available, but not part of, the importing module.

All imported identifiers used in the importing module must be fully qualified:

import math
print('factorial of 16 = ', math.factorial(16))

from modulename import identifier_1, identifier_2, ...

identifier_1, identifier_2, etc. become part of the importing module’s namespace:

from math import factorial
print('factorial of 16 = ', factorial(16))

from modulename import identifier_1 as identifier_2

identifier_1 becomes part of the importing module’s namespace as identifier_2

from math import factorial as fact
print('factorial of 16 = ', fact(16))

from modulename import *

All identifiers of modulename become part of the importing module’s namespace

(except those beginning with an underscore, which are treated as private).

from math import *
print('factorial of 16 = ', fact(16))
print('area of circle = ', pi*(radius**2)

Each module in Python has its own namespace: a named context for its set of identifiers. The fully
qualified name of each identifier in a module is of the form modulename.identifier.

Although the import * form of import is convenient in that the imported identifiers do not

have to be fully qualified in the importing module, there is the risk of a name clash. In addition, it

is not apparent which identifiers are imported, or which module they are imported from.

BMAppendix.indd Page 562 08/11/12 12:55 PM user-019ABMAppendix.indd Page 562 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

B22. Modules in Python 563

 C. PYTHON STANDARD LIBRARY MODULES

 These pages contain selected modules of the Python Standard Library. For a complete listing, see the
offi cial standard library at http://docs.python.org/reference/index.html .

 The Module Search Path Python modules may be stored in various locations on a particular
system. For this reason, when a module is imported, it must be searched for. The interpreter fi rst
searches for a built-in (standard) module with that name. If not found, it then searches for the mod-
ule in the same directory as the executed program. If still not found, the interpreter searches in a list
of directories contained in the variable sys.path , a variable of the built-in module sys . The sys
module must be imported to access this variable:

 .. . import sys
 .. . sys.path

 ['C: \\ Python32 \\ Lib \\ idlelib','C: \\ Windows \\ system32 \\ python32.zip',
'C: \\ Python32 \\ DLLs','C: \\ Python32 \\ lib','C: \\ Python32',
'C: \\ Python32 \\ lib \\ site-packages']

 The particular value for sys.path depends on your particular Python installation.

 The dir Built-In Function Built-in function dir can be used to fi nd out the names that a par-
ticular module defi nes. This may be used on any module:

 .. . import math
 .. . dir(math)

 ['__doc__', '__name__', '__package__', 'acos', 'acosh', 'asin',
'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh',
'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial',
'fl oor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 'isfi nite', 'isinf',
'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'modf', 'pi',

'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

 Note that in addition to the available mathematical methods, there are three special identifers
__doc__ , __name__ and __package__ listed. The fi rst two provide the docstring (providing
brief documentation of the module's contents) and the module name, respectively:

 .. . print(math.__doc__)
 This module is always available. It provides access to the
 mathematical functions defi ned by the C standard.

 .. . print(math.__name__)
 math

 The __package__ special identifi er is used for modules that contain submodules, called
packages.

BMAppendix.indd Page 563 08/11/12 12:55 PM user-019ABMAppendix.indd Page 563 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

564 Appendix

 C1. The math Module

This module contains a set of commonly-used mathematical functions, including number-theoretic

functions (such as factorial); logarithmic and power functions; trigonometric (and hyperbolic)

functions; angular conversion functions (degree/radians); and some special functions and constants

(including pi and e). A selected set of function from the math module are presented here.

math.ceil returns the ceiling of x (smallest integer greater than or equal to x).

math.fabs(x) returns the absolute value of x

math.factorial(x) returns the factorial of x

math.floor() returns the floor of x (largest integer less than x).

math.fsum(s) returns an accurate floating-point sum of values in s (or other iterable).

math.modf() returns the fractional and integer parts of x.

math.trunc(X) returns the truncated value of s.

math.exp(x) returns e**x, for natural log base e.

math.log(x,base) returns log x for base. If base omitted, returns log x base e.

math.sqrt(x) returns the square root of x.

math.cos(x) returns cosine of x radians.

math.sin(x) returns sine of x radians.

math.tan(x) returns tangent of x radians.

math.acos(x) returns arc cosine of x radians.

math.asin(x) returns arc sine of x radians.

math.atan(x) returns arc cosine of x radians.

math.degrees(x) returns x radians to degrees.

math.radians(x) returns x degrees to radians.

math.pi mathematical constant pi = 3.141592

math.e mathematical constant e = 2.718281

BMAppendix.indd Page 564 08/11/12 12:55 PM user-019ABMAppendix.indd Page 564 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

C2. The random Module 565

 C2. The random Module

This module provides a pseudorandom number generator using the Mersenne Twister algorithm,

allowing users to generate random numbers with near uniform distribution over a long period.

list = ['a', 'b', 'c', 'd', 'e']

>>> random.random()
0.8568285775611655

>>> random.randrange(0, 10, 2)
6
>>> random.randrange(0, 10, 2)
8
>>> random.randrange(0, 10, 2)
2

>>> random.uniform(1, 10)
9.71538746497116

>>> random.randint(1, 10)
6

>>> random.sample(list, 3)
['d', 'c', 'e']

>>> random.choice(list)
'e'

>>> random.shuffle(list)
>>> print(list)
['c', 'b', 'e', 'a', 'd']

The random module must be imported before it can be used.

The current system time is used to initialize the random number generator. If comparability and

reproducibility are important, supply a seed value x by invoking random.seed(x) before

generating any random numbers.

To generate only even numbers, use the randrange function with start of 0, step of 2.

random.random() returns random float value x, where 0 <= x < 1.
random.uniform(a, b) returns random float value x, where a <= x <= b.
random.randint(a, b) returns random integer value x, where a <= x <= b.
random.randrange(start, stop, step)
returns random integer value x, where start <= x < stop and x = start + n * step,

where n is an integer greater than or equal to zero

random.choice(seq) returns random element from sequence seq (must be non-empty).
random.shuffle(seq) randomly reorders sequence seq in place.
random.sample(seq, k) returns list (length k) of unique items randomly chosen from seq.

BMAppendix.indd Page 565 08/11/12 12:55 PM user-019ABMAppendix.indd Page 565 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

566 Appendix

 C3. The turtle Module

This module provides both procedure-oriented and object-oriented ways of controlling turtle
graphics. A turtle is a graphical entity in an x/y coordinate plane (Turtle screen) that can be

controlled in various ways including: its shape, size, color, position, movement (relative and

absolute), speed, visibility (show/hide), and drawing status (pen up/pen down).

set screen size
turtle.setup(800, 600)

get reference to turtle screen
screen = turtle.Screen()

set window title bar
screen.title('My Turtles')

getting the default turtle
t = turtle.getturtle()

creating a new turtle
t = turtle.Turtle()

screen.bgcolor(args) background color, specified by name, (RGB) or hex

screen.bgpic(filename) sets GIF file as screen background

screen,clear() clears the screen

screen.reset() resets all turtles to their initial state

screen.bye() closes turtle screen window

screen.exitonclick() closes turtle screen window on mouse click

showturtle() / hideturtle() makes turtle visible / invisible

turtle.register_shape(filename) .. GIF file name, registers image for use as turtle shape

shape(arg) sets turtle to regular or registered shape

turtle.isvisible()returns True if turtle currently visible

turtle.position()returns current position of turtle as x,y coordinate

turtle.towards(x,y)returns angle between turtle and coordinate x,y
turtle.xcor()returns turtle’s current x coordinate

turtle.ycor()returns turtle’s current y coordinate

turtle.heading()returns turtle’s current heading

turtle.distance(arg)returns distance to (x,y) or to another turtle

BMAppendix.indd Page 566 08/11/12 12:55 PM user-019ABMAppendix.indd Page 566 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

C3. The turtle Module 567

turtle.pendown() puts turtle’s pen down so draws when it moves

turtle.penup() lift’s turtle’s pen so doesn’t draw

turtle.isdown() returns True if pen currently down

turtle.pencolor(color) sets pen’s color by color name or (RGB)

turtle.pensize(size) sets pen’s line thickness, size a positive number

turtle.fillcolor(color) sets pen’s fill color by color name or (RGB)

turtle.clear() deletes turtle’s drawing from screen

turtle.write(arg)writes text representation of arg at turtle’s location

turtle.forward(x)/backward(x)...moves turtle forward/backward x pixels

turtle/right(angle)/left(x).....moves turtle left/right by angle
turtle.goto(x,y)................moves turtle to coordinate (x,y)

turtle.setx(x)/sety(y)moves turtle to x/y locations

turtle.setheading(angle) sets heading of turtle by angle
turtle.undo() undoes last turtle action

tilt(angle)..................... rotates turtle relative to its current tile-angle

settiltangle(angle) sets turtle to angle
tileangle() returns the turtle’s current tilt angle

turtle.speed(speed) 1-slowest, 2-faster, … 10-fast, 0-fastest

turtle.home()moves turtle to original position

turtle.circle(radius) draws a circle if size radius
turtle.dot(size, color) draws a dot with given size and color
turtle.stamp() stamps turtle shape screen, return unique stamp id

turtle.clearstamp(id) clears turtle stamp with provided id
turtle.clearstamps(n) clears last n stamps, if argument omitted, clears all

turtle.onclick(func)func a function of two arguments called with the

 x,y coordinates of the location of mouse click

turtle.onrelease(func)func a function of two arguments called with the

 x,y coordinates of the location of mouse release

turtle.ondrag(func)func a function of two arguments called with the

 x,y coordinates of the location of mouse click when

 mouse dragged

turtle.mainloop() starts event loop. Must be last statement in a turtle

 graphics program

BMAppendix.indd Page 567 08/11/12 12:55 PM user-019ABMAppendix.indd Page 567 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

568 Appendix

 C4. The webbrowser Module

This module provides functionality to open Web-based documents in a browser from within a

Python program. The module launches the system's default browser to open the target URL, unless

a different (supported) browser is specified.

webbrowser.open(url, new=0, autoraise=True)
Opens the page at the specified url in a browser window. If possible, a value of 0 for new
opens the page in an existing browser window, 1 in a new browser window, and 2 in a new

browser "tab." When autoraise is passed as True, the browser window is raised to the top of

the stack (this may happen on some systems regardless of autoraise value).

webbrowser.open_new(url)/ webbrowser.open_new_tab(url)
Always opens the specified url in a new browser window or tab, respectively.

webbrowser.get(name)
Returns a controller object for the specified browser type name, allowing the user to use any

browser that is registered with or predefined in the module.

Python scripts can be written to generate HTML code, which can then be opened in a

browser as part of the program using this module.

This module is not limited to opening Web pages. On some platforms, it can also be used to

open documents and media files. Instead of passing an http URL to open, pass the address

of the target file (e.g. file://host/path or, on local machine, file:///path).

The functionalities of this module are also available through the command line.

import webbrowser
webbrowser.open('http://docs.python.org/, 0, True')

import webbrowser
webbrowser.open_new('http://docs.python.org/')

import webbrowser
browser = webbrowser.get('firefox')
browser.open('http://docs.python.org/')

BMAppendix.indd Page 568 08/11/12 12:55 PM user-019ABMAppendix.indd Page 568 08/11/12 12:55 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

569

Index

A

BMIndex.indd Page 569 01/11/12 2:34 PM user-019ABMIndex.indd Page 569 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

570 Index

B C

BMIndex.indd Page 570 01/11/12 2:34 PM user-019ABMIndex.indd Page 570 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Index 571

D

BMIndex.indd Page 571 01/11/12 2:34 PM user-019ABMIndex.indd Page 571 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

572 Index

E

F

G

BMIndex.indd Page 572 01/11/12 2:34 PM user-019ABMIndex.indd Page 572 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Index 573

H

I

J

BMIndex.indd Page 573 01/11/12 2:34 PM user-019ABMIndex.indd Page 573 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

574 Index

K

L

M

BMIndex.indd Page 574 01/11/12 2:34 PM user-019ABMIndex.indd Page 574 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Index 575

N

O

P

BMIndex.indd Page 575 01/11/12 2:34 PM user-019ABMIndex.indd Page 575 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

576 Index

BMIndex.indd Page 576 01/11/12 2:34 PM user-019ABMIndex.indd Page 576 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Index 577

Q

BMIndex.indd Page 577 01/11/12 2:34 PM user-019ABMIndex.indd Page 577 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

578 Index

R

S

T

BMIndex.indd Page 578 01/11/12 2:34 PM user-019ABMIndex.indd Page 578 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

Index 579

U

BMIndex.indd Page 579 01/11/12 2:34 PM user-019ABMIndex.indd Page 579 01/11/12 2:34 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

580 Index

V

W

X

Y

Z

BMIndex.indd Page 580 05/11/12 4:15 PM user-019ABMIndex.indd Page 580 05/11/12 4:15 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

	Cover
	Title Page
	Copyright Page
	Dedication
	Brief Contents
	Contents
	Preface
	Acknowledgments
	About the Author
	1 Introduction���������������������
	MOTIVATION�����������������
	FUNDAMENTALS
	1.1 What Is Computer Science?������������������������������������
	1.1.1 The Essence of Computational Problem Solving���
	1.1.2 Limits of Computational Problem Solving��
	Self-Test Questions��������������������������

	1.2 Computer Algorithms������������������������������
	1.2.1 What Is an Algorithm?����������������������������������
	1.2.2 Algorithms and Computers: A Perfect Match��
	Self-Test Questions��������������������������

	1.3 Computer Hardware����������������������������
	1.3.1 Digital Computing: It's All about Switches
	1.3.2 The Binary Number System�������������������������������������
	1.3.3 Fundamental Hardware Components��
	1.3.4 Operating Systems-Bridging Software and Hardware
	1.3.5 Limits of Integrated Circuits Technology: Moore's Law
	Self-Test Questions��������������������������

	1.4 Computer Software����������������������������
	1.4.1 What Is Computer Software?���������������������������������������
	1.4.2 Syntax, Semantics, and Program Translation���
	1.4.3 Procedural vs. Object-Oriented Programming���
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	1.5 The Process of Computational Problem Solving���
	1.5.1 Problem Analysis�����������������������������
	1.5.2 Program Design���������������������������
	1.5.3 Program Implementation�����������������������������������
	1.5.4 Program Testing����������������������������

	1.6 The Python Programming Language��
	1.6.1 About Python�������������������������
	1.6.2 The IDLE Python Development Environment��
	1.6.3 The Python Standard Library��
	1.6.4 A Bit of Python����������������������������
	1.6.5 Learning How to Use IDLE�������������������������������������

	1.7 A First Program-Calculating the Drake Equation
	1.7.1 The Problem������������������������
	1.7.2 Problem Analysis�����������������������������
	1.7.3 Program Design���������������������������
	1.7.4 Program Implementation�����������������������������������
	1.7.5 Program Testing����������������������������

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	2 Data and Expressions�����������������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	2.1 Literals�������������������
	2.1.1 What Is a Literal?�������������������������������
	2.1.2 Numeric Literals�����������������������������
	2.1.3 String Literals����������������������������
	2.1.4 Control Characters�������������������������������
	2.1.5 String Formatting������������������������������
	2.1.6 Implicit and Explicit Line Joining���
	2.1.7 Let's Apply It-"Hello World Unicode Encoding"
	Self-Test Questions��������������������������

	2.2 Variables and Identifiers������������������������������������
	2.2.1 What Is a Variable?��������������������������������
	2.2.2 Variable Assignment and Keyboard Input���
	2.2.3 What Is an Identifier?�����������������������������������
	2.2.4 Keywords and Other Predefined Identifiers in Python��
	2.2.5 Let's Apply It-"Restaurant Tab Calculation"
	Self-Test Questions��������������������������

	2.3 Operators��������������������
	2.3.1 What Is an Operator?���������������������������������
	2.3.2 Arithmetic Operators���������������������������������
	2.3.3 Let's Apply It-"Your Place in the Universe"
	Self-Test Questions��������������������������

	2.4 Expressions and Data Types�������������������������������������
	2.4.1 What Is an Expression?�����������������������������������
	2.4.2 Operator Precedence��������������������������������
	2.4.3 Operator Associativity�����������������������������������
	2.4.4 What Is a Data Type?���������������������������������
	2.4.5 Mixed-Type Expressions�����������������������������������
	2.4.6 Let's Apply It-"Temperature Conversion Program"
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	2.5 Age in Seconds Program���������������������������������
	2.5.1 The Problem������������������������
	2.5.2 Problem Analysis�����������������������������
	2.5.3 Program Design���������������������������
	2.5.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	3 Control Structures���������������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	3.1 What Is a Control Structure?���������������������������������������
	3.2 Boolean Expressions (Conditions)���
	3.2.1 Relational Operators���������������������������������
	3.2.2 Membership Operators���������������������������������
	3.2.3 Boolean Operators������������������������������
	3.2.4 Operator Precedence and Boolean Expressions��
	3.2.5 Short-Circuit (Lazy) Evaluation��
	3.2.6 Logically Equivalent Boolean Expressions���
	Self-Test Questions��������������������������

	3.3 Selection Control����������������������������
	3.3.1 If Statement�������������������������
	3.3.2 Indentation in Python����������������������������������
	3.3.3 Multi-Way Selection��������������������������������
	3.3.4 Let's Apply It-Number of Days in Month Program
	Self-Test Questions��������������������������

	3.4 Iterative Control����������������������������
	3.4.1 While Statement����������������������������
	3.4.2 Input Error Checking���������������������������������
	3.4.3 Infinite loops���������������������������
	3.4.4 Definite vs. Indefinite Loops��
	3.4.5 Boolean Flags and Indefinite Loops���
	3.4.6 Let's Apply It-Coin Change Exercise Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	3.5 Calendar Month Program���������������������������������
	3.5.1 The Problem������������������������
	3.5.2 Problem Analysis�����������������������������
	3.5.3 Program Design���������������������������
	3.5.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	4 Lists��������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	4.1 List Structures��������������������������
	4.1.1 What Is a List?����������������������������
	4.1.2 Common List Operations�����������������������������������
	4.1.3 List Traversal���������������������������
	Self-Test Questions��������������������������

	4.2 Lists (Sequences) in Python��������������������������������������
	4.2.1 Python List Type�����������������������������
	4.2.2 Tuples�������������������
	4.2.3 Sequences����������������������
	4.2.4 Nested Lists�������������������������
	4.2.5 Let's Apply It-A Chinese Zodiac Program
	Self-Test Questions��������������������������

	4.3 Iterating Over Lists (Sequences) in Python���
	4.3.1 For Loops����������������������
	4.3.2 The Built-in range Function��
	4.3.3 Iterating Over List Elements vs. List Index Values���
	4.3.4 While Loops and Lists (Sequences)��
	4.3.5 Let's Apply It-Password Encryption/Decryption Program
	Self-Test Questions��������������������������

	4.4 More on Python Lists�������������������������������
	4.4.1 Assigning and Copying Lists��
	4.4.2 List Comprehensions��������������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	4.5 Calendar Year Program��������������������������������
	4.5.1 The Problem������������������������
	4.5.2 Problem Analysis�����������������������������
	4.5.3 Program Design���������������������������
	4.5.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	5 Functions������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	5.1 Program Routines���������������������������
	5.1.1 What Is a Function Routine?��
	5.1.2 Defining Functions�������������������������������
	5.1.3 Let's Apply It-Temperature Conversion Program (Function Version)
	Self-Test Questions��������������������������

	5.2 More on Functions����������������������������
	5.2.1 Calling Value-Returning Functions��
	5.2.2 Calling Non-Value-Returning Functions��
	5.2.3 Parameter Passing������������������������������
	5.2.4 Keyword Arguments in Python��
	5.2.5 Default Arguments in Python��
	5.2.6 Variable Scope���������������������������
	5.2.7 Let's Apply It-GPA Calculation Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	5.3 Credit Card Calculation Program��
	5.3.1 The Problem������������������������
	5.3.2 Problem Analysis�����������������������������
	5.3.3 Program Design���������������������������
	5.3.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	6 Objects and Their Use������������������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	6.1 Software Objects���������������������������
	6.1.1 What Is an Object?�������������������������������
	6.1.2 Object References������������������������������
	Self-Test Questions��������������������������

	6.2 Turtle Graphics��������������������������
	6.2.1 Creating a Turtle Graphics Window��
	6.2.2 The "Default" Turtle
	6.2.3 Fundamental Turtle Attributes and Behavior���
	6.2.4 Additional Turtle Attributes���
	6.2.5 Creating Multiple Turtles��������������������������������������
	6.2.6 Let's Apply It-Bouncing Balls Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	6.3 Horse Race Simulation Program��
	6.3.1 The Problem������������������������
	6.3.2 Problem Analysis�����������������������������
	6.3.3 Program Design���������������������������
	6.3.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	7 Modular Design�����������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	7.1 Modules������������������
	7.1.1 What Is a Module?������������������������������
	7.1.2 Module Specification���������������������������������
	Self-Test Questions��������������������������

	7.2 Top-Down Design��������������������������
	7.2.1 Developing a Modular Design of the Calendar Year Program���
	7.2.2 Specification of the Calendar Year Program Modules���
	Self-Test Questions��������������������������

	7.3 Python Modules�������������������������
	7.3.1 What Is a Python Module?�������������������������������������
	7.3.2 Modules and Namespaces�����������������������������������
	7.3.3 Importing Modules������������������������������
	7.3.4 Module Loading and Execution���
	7.3.5 Local, Global, and Built-in Namespaces in Python���
	7.3.6 A Programmer-Defined Stack Module��
	7.3.7 Let's Apply It-A Palindrome Checker Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	7.4 Calendar Year Program (function version)���
	7.4.1 The Problem������������������������
	7.4.2 Problem Analysis�����������������������������
	7.4.3 Program Design���������������������������
	7.4.4 Program Implementation and Testing���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	8 Text Files�������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	8.1 What Is a Text File?�������������������������������
	8.2 Using Text Files���������������������������
	8.2.1 Opening Text Files�������������������������������
	8.2.2 Reading Text Files�������������������������������
	8.2.3 Writing Text Files�������������������������������
	Self-Test Questions��������������������������

	8.3 String Processing����������������������������
	8.3.1 String Traversal�����������������������������
	8.3.2 String-Applicable Sequence Operations��
	8.3.3 String Methods���������������������������
	8.3.4 Let's Apply It-Sparse Text Program
	Self-Test Questions��������������������������

	8.4 Exception Handling�����������������������������
	8.4.1 What Is an Exception?����������������������������������
	8.4.2 The Propagation of Raised Exceptions���
	8.4.3 Catching and Handling Exceptions���
	8.4.4 Exception Handling and User Input��
	8.4.5 Exception Handling and File Processing���
	8.4.6 Let's Apply It-Word Frequency Count Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	8.5 Cigarette Use/Lung Cancer Correlation Program��
	8.5.1 The Problem������������������������
	8.5.2 Problem Analysis�����������������������������
	8.5.3 Program Design���������������������������
	8.5.4 Program Implementation and Testing���
	8.5.5 Determining the Correlation Between Smoking and Lung Cancer��

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	9 Dictionaries and Sets������������������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	9.1 Dictionary Type in Python������������������������������������
	9.1.1 What Is a Dictionary?����������������������������������
	9.1.2 Let's Apply It-Phone Number Spelling Program
	Self-Test Questions��������������������������

	9.2 Set Data Type������������������������
	9.2.1 The Set Data Type in Python��
	9.2.2 Let's Apply It-Kitchen Tile Visualization Program
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	9.3 A Food Co-op's Worker Scheduling Simulation
	9.3.1 The Problem������������������������
	9.3.2 Problem Analysis�����������������������������
	9.3.3 Program Design���������������������������
	9.3.4 Program Implementation and Testing���
	9.3.5 Analyzing a Scheduled vs. Unscheduled Co-op Worker Approach��

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	10 Object-Oriented Programming�������������������������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	10.1 What Is Object-Oriented Programming?��
	10.1.1 What Is a Class?������������������������������
	10.1.2 Three Fundamental Features of Object-Oriented Programming���

	10.2 Encapsulation�������������������������
	10.2.1 What Is Encapsulation?������������������������������������
	10.2.2 Defining Classes in Python��
	10.2.3 Let's Apply It-A Recipe Conversion Program
	Self-Test Questions��������������������������

	10.3 Inheritance�����������������������
	10.3.1 What Is Inheritance?����������������������������������
	10.3.2 Subtypes����������������������
	10.3.3 Defining Subclasses in Python���
	10.3.4 Let's Apply It-A Mixed Fraction Class
	Self-Test Questions��������������������������

	10.4 Polymorphism������������������������
	10.4.1 What Is Polymorphism?�����������������������������������
	10.4.2 The Use of Polymorphism�������������������������������������
	Self-Test Questions��������������������������

	10.5 Object-Oriented Design Using UML��
	10.5.1 What Is UML?��������������������������
	10.5.2 UML Class Diagrams��������������������������������
	Self-Test Questions��������������������������

	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	10.6 Vehicle Rental Agency Program���
	10.6.1 The Problem�������������������������
	10.6.2 Problem Analysis������������������������������
	10.6.3 Program Design����������������������������
	10.6.4 Program Implementation and Testing��

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	11 Recursion�������������������
	MOTIVATION�����������������
	FUNDAMENTAL CONCEPTS���������������������������
	11.1 Recursive Functions�������������������������������
	11.1.1 What Is a Recursive Function?���
	11.1.2 The Factorial Function������������������������������������
	11.1.3 Let's Apply It-Fractals (Sierpinski Triangle)
	Self-Test Questions��������������������������

	11.2 Recursive Problem Solving�������������������������������������
	11.2.1 Thinking Recursively����������������������������������
	11.2.2 MergeSort Recursive Algorithm���
	11.2.3 Let's Apply It-MergeSort Implementation
	Self-Test Questions��������������������������

	11.3 Iteration vs. Recursion�����������������������������������
	COMPUTATIONAL PROBLEM SOLVING������������������������������������
	11.4 Towers of Hanoi���������������������������
	11.4.1 The Problem�������������������������
	11.4.2 Problem Analysis������������������������������
	11.4.3 Program Design and Implementation���

	Chapter Summary����������������������
	Chapter Exercises������������������������
	Python Programming Exercises�����������������������������������
	Program Modification Problems������������������������������������
	Program Development Problems�����������������������������������

	12 Computing and Its Developments��
	CONTRIBUTIONS TO THE MODERN COMPUTER���
	12.1 The Concept of a Programmable Computer��
	12.1.1 "Father of the Modern Computer"-Charles Babbage (1800s)
	12.1.2 "The First Computer Programmer"-Ada Lovelace (1800s)

	12.2 Developments Leading to Electronic Computing��
	12.2.1 The Development of Boolean Algebra (mid-1800s)��
	12.2.2 The Development of the Vacuum Tube (1883)���
	12.2.3 The Development of Digital Electronic Logic Gates (1903)��
	12.2.4 The Development of Memory Electronic Circuits (1919)��
	12.2.5 The Development of Electronic Digital Logic Circuits (1937)���
	12.2.6 "The Father of Information Theory"-Claude Shannon (1948)

	FIRST-GENERATION COMPUTERS (1940s-mid-1950s)
	12.3 The Early Groundbreakers������������������������������������
	12.3.1 The Z3-The First Programmable Computer (1941)
	12.3.2 The Mark I-First Computer Project in the United States (1937-1943)
	12.3.3 The ABC-The First Fully Electronic Computing Device (1942)
	12.3.4 Colossus-A Special-Purpose Electronic Computer (1943)
	12.3.5 ENIAC-The First Fully Electronic Programmable Computer
	12.3.6 EDVAC/ACE-The First Stored Program Computers (1950)
	12.3.7 Whirlwind-The First Real-Time Computer (1951)

	12.4 The First Commercially Available Computers��
	12.4.1 The Struggles of the Eckert-Mauchly Computer Corporation (1950)���
	12.4.2 The LEO Computer of the J. Lyons and Company (1951)���

	SECOND-GENERATION COMPUTERS (mid-1950s to mid-1960s)���
	12.5 Transistorized Computers������������������������������������
	12.5.1 The Development of the Transistor (1947)��
	12.5.2 The First Transistor Computer (1953)��

	12.6 The Development of High-Level Programming Languages���
	12.6.1 The Development of Assembly Language (early 1950s)��
	12.6.2 The First High-Level Programming Languages (mid-1950s)��
	12.6.3 The First "Program Bug" (1947)

	THIRD-GENERATION COMPUTERS (mid-1960s to early 1970s)��
	12.7 The Development of the Integrated Circuit (1958)��
	12.7.1 The Catalyst for Integrated Circuit Advancements (1960s)
	12.7.2 The Development of the Microprocessor (1971)��

	12.8 Mainframes, Minicomputers, and Supercomputers���
	12.8.1 The Establishment of the Mainframe Computer (1962)��
	12.8.2 The Development of the Minicomputer (1963)��
	12.8.3 The Development of the UNIX Operating System (1969)���
	12.8.4 The Development of Graphical User Interfaces (early 1960s)��
	12.8.5 The Development of the Supercomputer (1972)���

	FOURTH-GENERATION COMPUTERS (early 1970s to the Present)���
	12.9 The Rise of the Microprocessor��
	12.9.1 The First Commercially Available Microprocessor (1971)��
	12.9.2 The First Commercially Available Microcomputer Kit (1975)���

	12.10 The Dawn of Personal Computing���
	12.10.1 The Beginnings of Microsoft (1975)���
	12.10.2 The Apple II (1977)����������������������������������
	12.10.3 IBM's Entry into the Microcomputer Market (1981)
	12.10.4 Society Embraces the Personal Computer (1983)��
	12.10.5 The Development of Graphical User Interfaces (GUIs)��
	12.10.6 The Development of the C++ Programming Language

	THE DEVELOPMENT OF COMPUTER NETWORKS���
	12.11 The Development of Wide Area Networks��
	12.11.1 The Idea of Packet-Switched Networks (early 1960s)���
	12.11.2 The First Packet-Switched Network: ARPANET (1969)��

	12.12 The Development of Local Area Networks (LANs)��
	12.12.1 The Need for Local Area Networks���
	12.12.2 The Development of Ethernet (1980)���

	12.13 The Development of the Internet and World Wide Web���
	12.13.1 The Realization of the Need for "Internetworking"
	12.13.2 The Development of the TCP/IP Internetworking Protocol (1973)��
	12.13.3 The Development of the World Wide Web (1990)���
	12.13.4 The Development of the Java Programming Language (1995)��

	Appendix���������������
	Index������������

