

Intermediate	Python

	

Obi	Ike-Nwosu
	

This	book	is	for	sale	at	http://leanpub.com/intermediatepython

This	version	was	published	on	2015-09-29

*			*			*			*			*

This	is	a	Leanpub	book.	Leanpub	empowers	authors	and	publishers	with	the	Lean
Publishing	process.	Lean	Publishing	is	the	act	of	publishing	an	in-progress	ebook	using
lightweight	tools	and	many	iterations	to	get	reader	feedback,	pivot	until	you	have	the	right
book	and	build	traction	once	you	do.

*			*			*			*			*

©	2015	Obi	Ike-Nwosu

http://leanpub.com/intermediatepython
http://leanpub.com
http://leanpub.com/manifesto

Table	of	Contents

1.	An	Introduction
1.1	The	Evolution	of	Python
1.2	Python	2	vs	Python	3
1.3	The	Python	Programming	Language

2.	A	Very	Short	Tutorial
2.1	Using	Python
2.2	Python	Statements,	Line	Structure	and	Indentation
2.3	Strings
2.4	Flow	Control
2.5	Functions
2.6	Data	Structures
2.7	Classes
2.8	Modules
2.9	Exceptions
2.10	Input	and	Output
2.11	Getting	Help

3.	Intermezzo:	Glossary
3.1	Names	and	Binding
3.2	Code	Blocks
3.3	Name-spaces
3.4	Scopes
3.5	eval()
3.6	exec()

4.	Objects	201
4.1	Strong	and	Weak	Object	References
4.2	The	Type	Hierarchy

None	Type
NotImplemented	Type
Ellipsis	Type
Numeric	Type

Sequence	Type
Set
Mapping
Callable	Types
Custom	Type
Module	Type
File/IO	Types
Built-in	Types

5.	Object	Oriented	Programming
5.1	The	Mechanics	of	Class	Definitions
Class	Objects
Instance	Objects
Method	Objects

5.2	Customizing	User-defined	Types
Special	methods	for	Type	Emulation
Special	Methods	for	comparing	objects
Special	Methods	and	Attributes	for	Miscellaneous	Customizations

5.3	A	Vector	class
5.4	Inheritance
The	super	keyword
Multiple	Inheritance

5.5	Static	and	Class	Methods
Static	Methods
Class	Methods

5.6	Descriptors	and	Properties
Enter	Python	Descriptors
Class	Properties

5.7	Abstract	Base	Classes

6.	The	Function
6.1	Function	Definitions
6.2	Functions	are	Objects
6.3	Functions	are	descriptors
6.4	Calling	Functions
Unpacking	Function	Argument
*	and	**	Function	Parameters

6.5	Nested	functions	and	Closures
6.6	A	Byte	of	Functional	Programming
The	Basics
Comprehensions
Functools
Sequences	and	Functional	Programming

7.	Iterators	and	Generators
7.1	Iterators
The	Itertools	Module

7.2	Generators
Generator	Functions
Generator	Expressions
The	Beauty	of	Generators	and	Iterators

7.3	From	Generators	To	Coroutines
Simulating	Multitasking	with	Coroutines

7.4	The	yield	from	keyword
7.5	A	Game	of	Life

8.	MetaProgramming	and	Co.
8.1	Decorators
Function	Decorators
Decorators	in	Python
Passing	Arguments	To	Decorated	Functions
Decorator	Functions	with	Arguments
Functools.wrap
Class	Decorators

8.2	Decorator	Recipes
8.3	Metaclasses

Metaclasses	in	Action
Overriding	__new__	vs	__init__	in	Custom	Metaclasses

8.4	Context	Managers
The	Contextlib	module

9.	Modules	And	Packages
9.1	Modules
Reloading	Modules

9.2	How	are	Modules	found?
9.3	Packages
Regular	Packages
Namespace	Packages

9.4	The	Import	System
The	Import	Search	Process
Why	You	Probably	Should	Not	Reload	Modules…

9.5	Distributing	Python	Programs

10.	Inspecting	Objects
10.1	Handling	source	code
10.2	Inspecting	Classes	and	Functions
10.3	Interacting	with	Interpreter	Stacks

11.	The	Zen	of	Python	…

1.	An	Introduction

The	Python	Programming	language	has	been	around	for	quite	a	while.	Development	work
was	started	on	the	first	version	of	Python	by	Guido	Van	Rossum	in	1989.	Since	then,	it	has
grown	to	become	a	highly	loved	and	revered	language	that	has	been	used	and	continues	to
be	used	in	a	host	of	different	application	types.

The	Python	interpreter	and	the	extensive	standard	library	that	come	with	the	interpreter	are
available	for	free	in	source	or	binary	form	for	all	major	platforms	from	the	Python	Web
site.	This	site	also	contains	distributions	of	and	pointers	to	many	free	third	party	Python
modules,	programs	and	tools,	and	additional	documentation.

The	Python	interpreter	can	easily	be	extended	with	new	functions	and	data	types
implemented	in	C,	C++	or	any	other	language	that	is	callable	from	C.	Python	is	also
suitable	as	an	extension	language	for	customisable	applications.	One	of	the	most	notable
feature	of	python	is	the	easy	and	white-space	aware	syntax.

This	book	is	intended	as	a	concise	intermediate	level	treatise	on	the	Python	programming
language.	There	is	a	need	for	this	due	to	the	lack	of	availability	of	materials	for	python
programmers	at	this	level.	The	material	contained	in	this	book	is	targeted	at	the
programmer	that	has	been	through	a	beginner	level	introduction	to	the	Python
programming	language	or	that	has	some	experience	in	a	different	object	oriented
programming	language	such	as	Java	and	wants	to	gain	a	more	in-depth	understanding	of
the	Python	programming	language	in	a	holistic	manner.	It	is	not	intended	as	an
introductory	tutorial	for	beginners	although	programmers	with	some	experience	in	other
languages	may	find	the	very	short	tutorial	included	instructive.

The	book	covers	only	a	handful	of	topics	but	tries	to	provide	a	holistic	and	in-depth
coverage	of	these	topics.	It	starts	with	a	short	tutorial	introduction	to	get	the	reader	up	to
speed	with	the	basics	of	Python;	experienced	programmers	from	other	object	oriented
languages	such	as	Java	may	find	that	this	is	all	the	introduction	to	Python	that	they	need.
This	is	followed	by	a	discussion	of	the	Python	object	model	then	it	moves	on	to	discussing
object	oriented	programming	in	Python.	With	a	firm	understanding	of	the	Python	object
model,	it	goes	ahead	to	discuss	functions	and	functional	programming.	This	is	followed	by
a	discussion	of	meta-programming	techniques	and	their	applications.	The	remaining
chapters	cover	generators,	a	complex	but	very	interesting	topic	in	Python,	modules	and
packaging,	and	python	runtime	services.	In	between,	intermezzos	are	used	to	discuss
topics	are	worth	knowing	because	of	the	added	understanding	they	provide.

I	hope	the	content	of	the	book	achieves	the	purpose	for	the	writing	of	this	book.	I	welcome
all	feedback	readers	may	have	and	actively	encourage	readers	to	provide	such	feedback.

1.1	The	Evolution	of	Python

https://www.python.org/

In	December	1989,	Guido	Van	Rossum	started	work	on	a	language	that	he	christened
Python.	Guido	Van	Rossum	had	been	part	of	the	team	that	worked	on	the	ABC
programming	language	as	part	of	the	Amoeba	operating	systems	in	the	1980s	at	CWI
(Centrum	Wiskunde	&	Informatica)	in	Amsterdam	and	although	he	liked	the	ABC
programming	language,	he	was	frustrated	by	a	number	of	features	or	lack	of	thereof.
Guido	wanted	a	high	level	programming	language	that	would	speed	up	the	development	of
utilities	for	the	the	Amoeba	project	and	ABC	was	not	the	answer.	The	ABC	programming
language	would	however	play	a	very	influential	role	in	the	development	of	python	as
Guido	took	parts	he	liked	from	the	language	and	provided	solutions	for	aspects	of	the
ABC	programming	language	that	he	found	frustrating.

Guido	released	the	first	version	of	the	Python	programming	language	in	February	1991.
This	release	was	object	oriented,	had	a	module	system,	included	exception	handling,
functions,	and	the	core	data	types	of	list,	dict,	str	and	others.	Python	version	1.0	was
released	in	January	1994	and	this	release	included	functional	programming	constructs
such	as	lambda,	map,	filter	and	reduce.

Python	1.2	was	the	last	version	released	while	Guido	was	still	at	CWI.	In	1995,	Van
Rossum	continued	his	work	on	Python	at	the	Corporation	for	National	Research	Initiatives
(CNRI)	in	Reston,	Virginia	where	he	released	several	versions	of	the	language	with
indirect	funding	support	from	DARPRA.

By	version	1.4,	Python	had	acquired	several	new	features	including	the	Modula-3	inspired
keyword	arguments	and	built-in	support	for	complex	numbers.	It	also	included	a	basic
form	of	data	hiding	by	name	mangling.	Python	1.5	was	released	on	December	31,	1997
while	python	1.6	followed	on	September	5,	2000.

Python	2.0	was	released	on	October	16,	2000	and	it	introduced	list	comprehensions,	a
feature	borrowed	from	the	functional	programming	languages	SETL	and	Haskell	as	well
as	a	garbage	collection	system	capable	of	collecting	reference	cycles.

Python	2.2	was	the	first	major	update	to	the	Python	type	system.	This	update	saw	the
unification	of	Python’s	in-built	types	and	user	defined	classes	written	in	Python	into	one
hierarchy.	This	single	unification	made	Python’s	object	model	purely	and	consistently
object	oriented.	This	update	to	the	class	system	of	Python	added	a	number	of	features	that
improved	the	programming	experience.	These	included:

1.	 The	ability	to	subclass	in	built	types	such	as	dicts	and	lists.
2.	 The	addition	of	static	and	class	methods
3.	 The	addition	of	properties	defined	by	get	and	set	methods.
4.	 An	update	to	meta-classes,	__new__()	and	super()	methods,	and	MRO	algorithms.

The	next	major	milestone	was	Python	3	released	on	December	2,	2008.	This	was	designed
to	rectify	certain	fundamental	design	flaws	in	the	language	that	could	not	be	implemented
while	maintaining	full	backwards	compatibility	with	the	2.x	series.

1.2	Python	2	vs	Python	3
Perhaps	the	most	visible	and	disruptive	change	to	the	Python	ecosystem	has	been	the
introduction	of	Python	3.	The	major	changes	introduced	into	Python	3	include	the

following:

1.	 print()	is	now	a	function
2.	 Some	well	known	python	APIs	such	as	range(),	dict.keys(),	dict.values()

return	views	and	iterators	rather	than	lists	improving	efficiency	when	they	are	used.
3.	 The	rules	for	ordering	comparisons	have	been	simplified.	For	example,	a

heterogeneous	list	cannot	be	sorted,	because	all	the	elements	of	a	list	must	be
comparable	to	each	other.

4.	 The	integer	types	have	been	whittled	down	to	only	one,	i.e.	int.	long	is	also	an	int.
5.	 The	division	of	two	integers	returns	a	float	instead	of	an	integer.	//	can	be	used	to

return	an	integer	when	division	takes	place.
6.	 All	texts	are	now	unicode	but	encoded	unicode	text	is	represented	as	binary	data	and

any	attempt	to	mix	text	and	data	will	result	in	an	exception.	This	breaks	backwards
compatibility	with	python	2.x	versions.

7.	 Python	3	also	saw	the	introduction	of	some	new	syntax	such	as	function	annotations,
the	nonlocal	statement,	extended	iterable	unpacking,	set	literals,	dictionary
comprehensions	etc.

8.	 Python	3	also	saw	update	to	some	syntax	such	as	that	of	exception	handling,	meta-
class	specification,	list	comprehensions	etc.

The	full	details	on	changes	from	python	2	to	python	3	can	be	viewed	on	the	python
website.	The	rest	of	the	book	will	assumes	the	use	of	Python	3.4.

1.3	The	Python	Programming	Language
The	Python	programming	language	refers	to	the	language	as	documented	in	the	language
reference.	There	is	no	official	language	specification	but	the	language	reference	provides
enough	details	to	guide	anyone	implementing	the	Python	programming	language.	The
implementation	of	the	Python	programming	language	available	on	the	Python	website	is
an	implementation	written	in	C	and	commonly	referred	to	as	CPython.	This	is	normally
used	as	the	reference	implementation.	However,	there	are	other	Python	implementations	in
different	languages.	Popular	among	these	are	PyPy:	python	implemented	in	python	and
Jython:	python	implemented	in	Java.	For	the	rest	of	this	book,	the	reference	CPython
version	that	is	freely	distributed	through	the	Python	website	is	used.

https://docs.python.org/3.0/whatsnew/3.0.html
https://docs.python.org/3.4/reference/
https://python.org

2.	A	Very	Short	Tutorial

This	short	tutorial	introduces	the	reader	informally	to	the	basic	concepts	and	features	of
the	Python	programming	language.	It	is	not	intended	to	be	a	comprehensive	introductory
tutorial	to	programming	for	a	complete	novice	but	rather	assumes	the	reader	has	had
previous	experience	programming	with	an	object	oriented	programming	language.

2.1	Using	Python
Python	is	installed	by	default	on	most	Unix-based	systems	including	the	Mac	OS	and
various	Linux-based	distributions.	To	check	if	python	is	installed,	open	the	command-line
and	type	python.	If	not	installed	then	python	can	be	installed	by	visiting	the	python
language	website	and	following	instructions	on	how	to	install	python	for	the	given
platform.

The	Python	Interpreter

The	python	interpreter	can	be	invoked	by	opening	the	command-line	and	typing	in
python.	In	the	case	that	it	has	been	installed	but	the	command	cannot	be	found	then	the
full	path	to	the	installation	should	be	used	or	added	to	the	path.	Invoking	the	interpreter
using	python	brings	up	the	python	interactive	session	with	an	REPL	prompt.	The	primary
prompt,	>>>,	signals	a	user	to	enter	statements	while	the	secondary	prompt,	...,	signals	a
continuation	line	as	shown	in	the	following	example.

>>> def hello():

... print("Hello	world")

...

>>>

A	user	can	type	in	python	statements	at	the	interpreter	prompt	and	get	instant	feedback.
For	example,	we	can	evaluate	expressions	at	the	REPL	and	get	values	for	such	expressions
as	in	the	following	example.

Python 2.7.6 (default, Sep 9 2014, 15:04:36)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> var_1 = 3

>>> var_2 = 3

>>> var_1*var_2

9

>>>

Typing	Ctrl-D	at	the	primary	prompt	causes	the	interpreter	to	exit	the	session.

2.2	Python	Statements,	Line	Structure	and	Indentation
A	program	in	Python	is	composed	of	a	number	of	logical	lines	and	each	of	these	logical
lines	is	delimited	by	the	NEWLINE	token.	Each	logical	line	is	equivalent	to	a	valid

https://www.python.org/

statement.	Compound	statements	however	can	be	made	up	of	multiple	logical	lines.	A
logical	line	is	made	from	one	or	more	physical	lines	using	the	explicit	or	implicit	line
joining	rules.	A	physical	line	is	a	sequence	of	characters	terminated	by	an	end-of-line
sequence.	Python	implicitly	sees	physical	lines	as	logical	lines	eliminating	the	explicit
need	for	semi-colons	in	terminating	statements	as	in	Java.	Semi-colons	however	play	a
role	in	python;	it	is	possible	to	have	multiple	logical	lines	on	the	same	physical	line	by
separating	the	logical	lines	with	semi-colons	such	as	shown	below:

>>> i = 5; print i;

5

Multiple	physical	lines	can	be	explicitly	joined	into	a	single	logical	line	by	use	of	the	line
continuation	character,	\,	as	shown	below:

>>> name = "Obi	Ike-Nwosu"

>>> cleaned_name = name.replace("-", "	").

... replace("	", "")

>>> cleaned_name

'ObiIkeNwosu'

>>>

Lines	are	joined	implicitly,	thus	eliminating	the	need	for	line	continuation	characters,
when	expressions	in	triple	quoted	strings,	enclosed	in	parenthesis	(…),	brackets	[….]	or
braces	{…}	spans	multiple	lines.

From	discussions	above,	it	can	be	inferred	that	there	are	two	types	of	statements	in
python:

1.	 Simple	statements	that	span	a	single	logical	line.	These	include	statements	such	as
assignment	statements,	yield	statements	etc.	A	simple	statement	can	be	summarized
as	follows:

simple_stmt ::= expression_stmt

| assert_stmt

| assignment_stmt

| augmented_assignment_stmt

| pass_stmt

| del_stmt

| return_stmt

| yield_stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| global_stmt

| nonlocal_stmt

::= means is defined as

| means or

1.	 Compound	statements	that	span	multiple	logical	lines	statements.	These	include
statements	such	as	the	while	and	for	statements.	A	compound	statement	is
summarized	as	thus	in	python:

compound_stmt ::= if_stmt

| while_stmt

| for_stmt

| try_stmt

| with_stmt

| funcdef

| classdef

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

statement ::= stmt_list NEWLINE | compound_stmt

stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Compound	statements	are	made	up	of	one	or	more	clauses.	A	clause	is	made	up	of	a
header	and	a	suite.	The	clause	headers	for	a	given	compound	statement	are	all	at	the	same
indentation	level;	they	begin	with	a	unique	identifier,	while,	if	etc.,	and	end	with	a	colon.
The	suite	execution	is	controlled	by	the	header.	This	is	illustrate	with	the	example	below:

>>> num = 6

#	if	statement	is	a	compound	statement

#	clause	header	controls	execution	of	indented	block	that	follows

>>> if num % 2 == 0:

#	indented	suite	block

... print("The	number	{}	is	even".format(num))

...

The number 6 is even

>>>

The	suite	may	be	a	set	of	one	or	more	statements	that	follow	the	header’s	colon	with	each
statement	separated	from	the	previous	by	a	semi-colon	as	shown	in	the	following	example.

```python

>>> x = 1

>>> y = 2

>>> z = 3

>>> if x < y < z: print(x); print(y); print(z)

...

1

2

3

```

The	suite	is	conventionally	written	as	one	or	more	indented	statements	on	subsequent
lines	that	follow	the	header	such	as	below:

```python

>>> x = 1

>>> y = 2

>>> z = 3

>>> if x < y < z:

... print(x)

... print(y);

... print(z)

...

1

2

3

```


Indentations	are	used	to	denote	code	blocks	such	as	function	bodies,	conditionals,	loops
and	classes.	Leading	white-space	at	the	beginning	of	a	logical	line	is	used	to	compute	the
indentation	level	for	that	line,	which	in	turn	is	used	to	determine	the	grouping	of
statements.	Indentation	used	within	the	code	body	must	always	match	the	indentation	of
the	the	first	statement	of	the	block	of	code.

2.3	Strings
Strings	are	represented	in	Python	using	double	"..."	or	single	'...'	quotes.	Special
characters	can	be	used	within	a	string	by	escaping	them	with	\	as	shown	in	the	following
example:

#	the	quote	is	used	as	an	apostrophe	so	we	escape	it	for	python	to	

#	treat	is	as	an	apostrophe	rather	than	the	closing	quote	for	a	string

>>> name = 'men\'s'

>>> name

"men's"

>>>

To	avoid	the	interpretation	of	characters	as	special	characters,	the	character,	r,	is	added
before	the	opening	quote	for	the	string	as	shown	in	the	following	example.

>>> print('C:\some\name') #	here	\n	means	newline!

C: some

ame

>>> print(r'C:\some\name') #	note	the	r	before	the	quote

C: some name

String	literals	that	span	multiple	lines	can	be	created	with	the	triple	quotes	but	newlines
are	automatically	added	at	the	end	of	a	line	as	shown	in	the	following	snippet.

>>> para = """hello	world	I	am	putting	together	a	

				...	book	for	beginners	to	get	to	the	next	level	in	python"""

#	notice	the	new	line	character	

>>> para

'hello	world	I	am	putting	together	a	\nbook	for	beginners	to	get	to	the	next	level	in	python'

#	printing	this	will	cause	the	string	to	go	on	multiple	lines

>>> print(para)

hello world I am putting together a

book for beginners to get to the next level in python

>>>

To	avoid	the	inclusion	of	a	newline,	the	continuation	character	\	should	be	used	at	the	end
of	a	line	as	shown	in	the	following	example.

>>> para = """hello	world	I	am	putting	together	a	\

				...	book	for	beginners	to	get	to	the	next	level	in	python"""

>>> para

'hello	world	I	am	putting	together	a	book	for	beginners	to	get	to	the	next	level	in	python'

>>> print(para)

hello world I am putting together a book for beginners to get to the next level in python

>>>

String	are	immutable	so	once	created	they	cannot	be	modified.	There	is	no	character	type
so	characters	are	assumed	to	be	strings	of	length,	1.	Strings	are	sequence	types	so	support
sequence	type	operations	except	assignment	due	to	their	immutability.	Strings	can	be
indexed	with	integers	as	shown	in	the	following	snippet:

>>> name = 'obiesie'

>>> name[1]

'b'

>>>

Strings	can	be	concatenated	to	create	new	strings	as	shown	in	the	following	example

>>> name = 'obiesie'

>>> surname = "	Ike-Nwosu"

>>> full_name = name + surname

>>> full_name

'obiesie	Ike-Nwosu'

>>>

One	or	more	string	literals	can	be	concatenated	together	by	writing	them	next	to	each
other	as	shown	in	the	following	snippet:

>>> 'Py' 'thon'

'Python'

>>>

The	built-in	method	len	can	also	be	used	to	get	the	length	of	a	string	as	shown	in	the
following	snippet.

>>> name = "obi"

>>> len(name)

3

>>>

2.4	Flow	Control
if-else	and	if-elif-else	statements

Python	supports	the	if	statement	for	conditional	execution	of	a	code	block.

>>> name = "obi"

>>> if name == "obi":

... print("Hello	Obi")

...

Hello Obi

>>>

The	if	statement	can	be	followed	by	zero	or	more	elif	statements	and	an	optional	else
statement	that	is	executed	when	none	of	the	conditions	in	the	if	or	elif	statements	have
been	met.

>>> if name == "obi":

... print("Hello	Obi")

... elif name == "chuks":

... print("Hello	chuks")

... else:

... print("Hello	Stranger")

Hello Stranger

>>>

for	and	range	statements

The	while	and	for	statements	constitute	the	main	looping	constructs	provided	by	python.

The	for	statement	in	python	is	used	to	iterate	over	sequence	types	(lists,	sets,	tuples	etc.).
More	generally,	the	for	loop	is	used	to	iterate	over	any	object	that	implements	the	python
iterator	protocol.	This	will	be	discussed	further	in	chapters	that	follow.	Example	usage	of
the	for	loop	is	shown	by	the	following	snippet:

>>> names = ["Joe", "Obi", "Chris", "Nkem"]

>>> for name in names:

... print(name)

...

Joe

Obi

Chris

Nkem

>>>

Most	programming	languages	have	a	syntax	similar	to	the	following	for	iterating	over	a
progression	of	numbers:

for(int x = 10; x < 20; x = x+1) {

// do something here

}

Python	replaces	the	above	with	the	simpler	range()	statement	that	is	used	to	generate	an
arithmetic	progression	of	integers.	For	example:

>>> for i in range(10, 20):

... print i

...

10

11

12

13

14

15

16

17

18

19

>>>

The	range	statement	has	a	syntax	of	range(start,	stop,	step).	The	stop	value	is	never
part	of	the	progression	that	is	returned.

while	statement

The	while	statement	executes	the	statements	in	its	suite	as	long	as	the	condition
expression	in	the	while	statement	evaluates	to	true.

>>> counter = 10

>>> while counter > 0: #	the	conditional	expression	is	'counter>0'

... print(counter)

... counter = counter - 1

...

10

9

8

7

6

5

4

3

2

1

break	and	continue	statements

The	break	keyword	is	used	to	escape	from	an	enclosing	loop.	Whenever	the	break
keyword	is	encountered	during	the	execution	of	a	loop,	the	loop	is	abruptly	exited	and	no
other	statement	within	the	loop	is	executed.

>>> for i in range(10):

... if i == 5:

... break

... else:

... print(i)

...

0

1

2

3

4

The	continue	keyword	is	used	to	force	the	start	of	the	next	iteration	of	a	loop.	When	used
the	interpreter	ignores	all	statements	that	come	after	the	continue	statement	and	continues
with	the	next	iteration	of	the	loop.

>>> for i in range(10):

#	if	i	is	5	then	continue	so	print	statement	is	ignored	and	the	next	iteration

#	continues	with	i	set	to	6

... if i == 5:

... continue

... print("The	value	is	" + str(i))

...

The value is 0

The value is 1

The value is 2

The value is 3

The value is 4

#	no	printed	value	for	i	==	6

The value is 6

The value is 7

The value is 8

The value is 9

In	the	example	above,	it	can	be	observed	that	the	number	5	is	not	printed	due	to	the	use	of
continue	when	the	value	is	5	however	all	subsequent	values	are	printed.
else	clause	with	looping	constructs

Python	has	a	quirky	feature	in	which	the	else	keyword	can	be	used	with	looping
constructs.	When	an	else	keyword	is	used	with	a	looping	construct	such	as	while	or	for,
the	statements	within	the	suite	of	the	else	statement	are	executed	as	long	as	the	looping
construct	was	not	ended	by	a	break	statement.

#	loop	exits	normally	

>>> for i in range(10):

... print(i)

... else:

... print("I	am	in	quirky	else	loop")

...

0

1

2

3

4

5

6

7

8

9

I am in quirky else loop

>>>

If	the	loop	was	exited	by	a	break	statement,	the	execution	of	the	suite	of	the	else
statement	is	skipped	as	shown	in	the	following	example:

>>> for i in range(10):

... if i == 5:

... break

... print(i)

... else:

... print("I	am	in	quirky	else	loop")

...

0

1

2

3

4

>>>

Enumerate

Sometimes,	when	iterating	over	a	list,	a	tuple	or	a	sequence	in	general,	having	access	to
the	index	of	the	item,	as	well	as	the	item	being	enumerated	over	maybe	necessary.	This
could	achieved	using	a	while	loop	as	shown	in	the	following	snippet:

>>> names = ["Joe", "Obi", "Chris", "Jamie"]

>>> name_count = len(names)

>>> index = 0

>>> while index < name_count:

... print("{}.	{}".format(index, names[index]))

... index = index + 1

...

0. Joe

1. Obi

2. Chris

3. Jamie

The	above	solution	is	how	one	would	go	about	it	in	most	languages	but	python	has	a	better
alternative	to	such	in	the	form	of	the	enumerate	keyword.	The	above	solution	can	be
reworked	beautifully	in	python	as	shown	in	the	following	snippet:

>>> for index, name in enumerate(names):

... print("{}.	{}".format(index, name))

...

0. Joe

1. Obi

2. Chris

3. Jamie

>>>

2.5	Functions
Named	functions	are	defined	with	the	def	keyword	which	must	be	followed	by	the
function	name	and	the	parenthesized	list	of	formal	parameters.	The	returnkeyword	is
used	to	return	a	value	from	a	function	definition.	A	python	function	definition	is	shown	in
the	example	below:

def full_name(first_name, last_name):

return "	".join((first_name, last_name))

Functions	are	invoked	by	calling	the	function	name	with	required	arguments	in	parenthesis
for	example	full_name("Obi",	"Ike-Nwosu").	Python	functions	can	return	multiple
values	by	returning	a	tuple	of	the	required	values	as	shown	in	the	example	below	in	which
we	return	the	quotient	and	remainder	from	a	division	operation:

>>> def divide(a, b):

... return divmod(q, r)

...

>>> divide(7, 2)

(3, 1)

>>>

Python	functions	can	be	defined	without	return	keyword.	In	that	case	the	default	returned
value	is	None	as	shown	in	the	following	snippet:

>>> def print_name(first_name, last_name):

... print("	".join((first_name, last_name)))

...

>>> print_name("Obi", "Ike-Nwosu")

Obi Ike-Nwosu

>>> x = print_name("Obi", "Ike-Nwosu")

Obi Ike-Nwosu

>>> x

>>> type(x)

<type 'NoneType'>

>>>

The	return	keyword	does	not	even	have	to	return	a	value	in	python	as	shown	in	the
following	example.

>>> def dont_return_value():

... print("How	to	use	return	keyword	without	a	value")

... return

...

>>> dont_return_value()

How to use return keyword without a value

Python	also	supports	anonymous	functions	defined	with	the	lambda	keyword.	Python’s
lambda	support	is	rather	limited,	crippled	a	few	people	may	say,	because	it	supports	only	a
single	expression	in	the	body	of	the	lambda	expression.	Lambda	expressions	are	another
form	of	syntactic	sugar	and	are	equivalent	to	conventional	named	function	definition.	An
example	of	a	lambda	expression	is	the	following:

>>> square_of_number = lambda x: x**2

>>> square_of_number

<function <lambda> at 0x101a07158>

>>> square_of_number(2)

4

>>>

2.6	Data	Structures
Python	has	a	number	of	built-in	data	structures	that	make	programming	easy.	The	built-in
data	structures	include	lists,	tuples	and	dictionaries.

1.	 Lists:	Lists	are	created	using	square	brackets,	[]	or	the	list()	function.	The	empty
list	is	denoted	by	[].	Lists	preserve	the	order	of	items	as	they	are	created	or	insert
into	the	list.	Lists	are	sequence	types	so	support	integer	indexing	and	all	other
sequence	type	subscripting	that	will	be	discussed	in	chapters	that	follow.	Lists	are
indexed	by	integers	starting	with	zero	and	going	up	to	the	length	of	the	list	minus
one.

>>> name = ["obi", "ike", "nwosu"]

>>> name[0]

'obi'

>>>

Items	can	be	added	to	a	list	by	appending	to	the	list.

>>> name = ["obi", "ike", "nwosu"]

>>> name.append("nkem")

>>> names

["obi", "ike", "nwosu", "nkem"]

Elements can also be added to other parts of a list not just the end using `insert` method.

>>> name = ["obi", "ike", "nwosu"]

>>> name.insert(1, "nkem")

>>> names

["obi", "nkem", "ike", "nwosu"]

Two or more lists can be concatenated together with the `+` operator.

>>> name = ["obi", "ike", "nwosu"]

>>> name1 = ["James"]

>>> name + name1

["obi", "ike", "nwosu", "James"]

To	get	a	full	listing	of	all	methods	of	the	list,	run	the	help	command	with	list	as
argument.

1.	 Tuples:	These	are	also	another	type	of	sequence	structures.	A	tuple	consists	of	a
number	of	comma	separated	objects	for	example.

>>> companies = "Google", "Microsoft", "Tesla"

>>> companies

('Google', 'Microsoft', 'Tesla')

>>>

When	defining	a	non-empty	tuple	the	parenthesis	is	optional	but	when	the	tuple	is	part	of	a
larger	expression,	the	parenthesis	is	required.	The	parenthesis	come	in	handy	when
defining	an	empty	tuple	for	instance:

>>> companies = ()

>>> type(companies)

<class 'tuple'>

>>>

Tuples	have	a	quirky	syntax	that	some	people	may	find	surprising.	When	defining	a	single
element	tuple,	the	comma	must	be	included	after	the	single	element	regardless	of	whether
or	not	parenthesis	are	included.	If	the	comma	is	left	out	then	the	result	of	the	expression	is
not	a	tuple.	For	instance:

>>> company = "Google",

>>> type(company)

<class 'tuple'>

>>>

>>> company = ("Google",)

>>> type(company)

<class 'tuple'>

#	absence	of	the	comma	returns	the	value	contained	within	the	parenthesis

>>> company = ("Google")

>>> company

'Google'

>>> type(company)

<class 'str'>

>>>

Tuples	are	integer	indexed	just	like	lists	but	are	immutable;	once	created	the	contents
cannot	be	changed	by	any	means	such	as	by	assignment.	For	instance:

>>> companies = ("Google", "Microsoft", "Palantir")

>>> companies[0]

'Google'

>>> companies[0] = "Boeing"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>>

However,	if	the	object	in	a	tuple	is	a	mutable	object	such	as	a	list,	such	object	can	be
changed	as	shown	in	the	following	example:

>>> companies = (["lockheedMartin", "Boeing"], ["Google", "Microsoft"])

>>> companies

(['lockheedMartin', 'Boeing'], ['Google', 'Microsoft'])

>>> companies[0].append("SpaceX")

>>> companies

(['lockheedMartin', 'Boeing', 'SpaceX'], ['Google', 'Microsoft'])

>>>

1.	 Sets:	A	set	is	an	unordered	collection	of	objects	that	does	not	contain	any	duplicates.
An	empty	set	is	created	using	set()	or	by	using	curly	braces,	{}.	Sets	are	unordered
so	unlike	tuples	or	lists	they	cannot	be	indexed	by	integers.	However	sets,	with	the
exception	of	frozen	sets,	are	mutable	so	one	can	add,	update	or	remove	from	a	set	as
shown	in	the	following:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

>>> basket_set = set()

>>> basket_set

set()

>>> basket_set.update(basket)

>>> basket_set

{'pear', 'orange', 'apple', 'banana'}

>>> basket_set.add("clementine")

>>> basket_set

{'pear', 'orange', 'apple', 'banana', 'clementine'}

>>> basket_set.remove("apple")

>>> basket_set

{'pear', 'orange', 'banana', 'clementine'}

>>>

2.	 Dictionary:	This	is	a	mapping	data	structure	that	is	commonly	referred	to	as	an
associative	array	or	a	hash	table	in	other	languages.	Dictionaries	or	dicts	as	they	are
commonly	called	are	indexed	by	keys	that	must	be	immutable.	A	pair	of	braces,
{...}	or	method	dict()	is	used	to	create	a	dict.	Dictionaries	are	unordered	set	of
key:value	pairs,	in	which	the	keys	are	unique.	A	dictionary	can	be	initialized	by
placing	a	set	of	key:value	pairs	within	the	braces	as	shown	in	the	following
example.

ages = {"obi": 24,

"nkem": 23,

"Chris": 23

}

The	primary	operations	of	interest	that	are	offered	by	dictionaries	are	the	storage	of	a
value	by	the	key	and	retrieval	of	stored	values	also	by	key.	Values	are	retrieved	by
using	indexing	the	dictionary	with	the	key	using	square	brackets	as	shown	in	the
following	example.

>>> ages["obi"]

24

Dictionaries	are	mutable	so	the	values	indexed	by	a	key	can	be	changed,	keys	can	be
deleted	and	added	to	the	dict.

Python’s	data	structures	are	not	limited	to	just	those	listed	in	this	section.	For	example	the
collections	module	provides	additional	data	structures	such	as	queues	and	deques
however	the	data	structures	listed	in	this	section	form	the	workhorse	for	most	Python
applications.	To	get	better	insight	into	the	capabilities	of	a	data	structure,	the	help()
function	is	used	with	the	name	of	the	data	structure	as	argument	for	example,	help(list).

2.7	Classes
The	class	statement	is	used	to	define	new	types	in	python	as	shown	in	the	following
example:

class Account:

#	class	variable	that	is	common	to	all	instances	of	a	class

num_accounts = 0

def __init__(self, name, balance):

#	start	of	instance	variable

self.name = name

self.balance = balance

#	end	of	instance	variables

Account.num_accounts += 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

@classmethod

def from_dict(cls, params):

params_dict = json.loads(params)

return cls(params_dict.get("name"), params_dict.get("balance"))

Classes	in	python	just	like	classes	in	other	languages	have	class	variables,	instance
variables,	class	methods,	static	methods	and	instance	methods.	When	defining	classes,	the
base	classes	are	included	in	the	parenthesis	that	follows	the	class	name.	For	those	that	are
familiar	with	Java,	the	__init__	method	is	something	similar	to	a	constructor;	it	is	in	this
method	that	instance	variables	are	initialized.	The	above	defined	class	can	be	initialized	by
calling	the	defined	class	with	required	arguments	to	__init__	in	parenthesis	ignoring	the
self	argument	as	shown	in	the	following	example.

>>> acct = Account("obie", 10000000)

Methods	in	a	class	that	are	defined	with	self	as	first	argument	are	instance	methods.	The
self	argument	is	similar	to	this	in	java	and	refers	to	the	object	instance.	Methods	are
called	in	python	using	the	dot	notation	syntax	as	shown	below:

>>> acct = Account("obie", 10000000)

>>>account.inquiry()

Name=obie, balance=10000000

Python	comes	with	built-in	function,	dir,	for	introspection	of	objects.	The	dir	function
can	be	called	with	an	object	as	argument	and	it	returns	a	list	of	all	attributes,	methods	and
variables,	of	a	class.

2.8	Modules
Functions	and	classes	provide	mean	for	structuring	your	Python	code	but	as	the	code
grows	in	size	and	complexity,	there	is	a	need	for	such	code	to	be	split	into	multiple	files
with	each	source	file	containing	related	definitions.	The	source	files	can	then	be	imported
as	needed	in	order	to	access	definitions	in	any	of	such	source	file.	In	python,	we	refer	to
source	files	as	modules	and	modules	have	the	.py	extensions.

For	example,	the	Account	class	definition	from	the	previous	section	can	be	saved	to	a
module	called	Account.py.	To	use	this	module	else	where,	the	import	statement	is	used	to
import	the	module	as	shown	in	the	following	example:

>>> import Account

>>> acct = Account.Account("obie", 10000000)

Note	that	the	import	statement	takes	the	name	of	the	module	without	the	.py	extension.
Using	the	import	statement	creates	a	name-space,	in	this	case	the	Account	name-space	and
all	definitions	in	the	module	are	available	in	such	name-space.	The	dot	notation	(.)	is	used
to	access	the	definitions	as	required.	An	alias	for	an	imported	module	can	also	be	created
using	the	as	keyword	so	the	example	from	above	can	be	reformulated	as	shown	in	the
following	snippet:

>>> import Account as acct

>>> account = acct.Account("obie". 10000000)

It	is	also	possible	to	import	only	the	definitions	that	are	needed	from	the	module	resulting
in	the	following:

>>> from Account import Account

>>> account = Account("obie", 10000000)

All	the	definitions	in	a	module	can	also	be	imported	by	using	the	wild	card	symbol	a
shown	below:

>>> from Account import *

This	method	of	imports	is	not	always	advised	as	it	can	result	in	name	clashes	when	one	of
the	name	definitions	being	imported	is	already	used	in	the	current	name-space.	This	is
avoided	by	importing	the	module	as	a	whole.	Modules	are	also	objects	in	Python	so	we

can	introspect	on	them	using	the	dir	introspection	function.	Python	modules	can	be
further	grouped	together	into	packages.	Modules	and	packages	are	discussed	in	depth	in	a
subsequent	chapter	that	follows.

2.9	Exceptions
Python	has	support	for	exceptions	and	exception	handling.	For	example,	when	an	attempt
is	made	to	divide	by	zero,	a	ZeroDivisionError	is	thrown	by	the	python	interpreter	as
shown	in	the	following	example.

>>> 2/0

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

>>>

During	the	execution	of	a	program,	an	exception	is	raised	when	an	error	occurs;	if	the
exception	is	not	handled,	a	trace-back	is	dumped	to	the	screen.	Errors	that	are	not	handled
will	normally	cause	an	executing	program	to	terminate.

Exceptions	can	be	handled	in	Python	by	using	the	try…catch	statements.	For	example,	the
divide	by	zero	exception	from	above	could	be	handled	as	shown	in	the	following	snippet.

>>> try:

... 2/0

... except ZeroDivisionError as e:

... print("Attempting	to	divide	by	0.	Not	allowed")

...

Attempting to divide by 0. Not allowed

>>>

Exceptions	in	python	can	be	of	different	types.	For	example,	if	an	attempt	was	made	to
catch	an	IOError	in	the	previous	snippet,	the	program	would	terminate	because	the
resulting	exception	type	is	a	ZeroDivisionError	exception.	To	catch	all	types	of
exceptions	with	a	single	handler,	try…catch	Exception	is	used	but	this	is	advised	against
as	it	becomes	impossible	to	tell	what	kind	of	exception	has	occurred	thus	masking	the
exception

Custom	exceptions	can	be	defined	to	handle	custom	exceptions	in	our	code.	To	do	this,
define	a	custom	exception	class	that	inherits	from	the	Exception	base	class.

2.10	Input	and	Output
Python	as	expected	has	support	for	reading	and	writing	to	and	from	input	and	output
sources.	The	file	on	the	hard	drive	is	the	most	popular	IO	device.	The	content	of	a	file	can
be	opened	and	read	from	using	the	snippet	below:

f = open("afile.txt")

line = f.readline()

while line:

print(line)

line = f.readline()

The	open	method	returns	a	file	object	or	throws	an	exception	if	the	file	does	not	exist.	The
file	object	supports	a	number	of	methods	such	as	read	that	reads	the	whole	content	of	the
file	into	a	string	or	readline	that	reads	the	contents	of	the	file	one	line	at	a	time.	Python
supports	the	following	syntactic	sugar	for	iterating	through	the	lines	of	a	file.

for line in open("afile.txt"):

print(line)

Python	supports	writing	to	a	file	as	shown	below:

f = open("out.txt", "w")

contents = ["I", "love", "python"]

for content in contents:

f.write(content)

f.close()

Python	also	has	support	for	writing	to	standard	input	and	standard	output.	This	can	be
done	using	the	sys.stdout.write()	or	the	sys.stdin.readline()	from	the	sys	module.

2.11	Getting	Help
The	python	programming	language	has	a	very	detailed	set	of	documentation	that	can	be
obtained	at	the	interpreter	prompt	by	using	the	help	method.	To	get	more	information
about	a	syntactic	construct	or	data	structure,	pass	it	as	an	argument	to	the	help	function	for
example	help(list).

3.	Intermezzo:	Glossary

A	number	of	terms	and	esoteric	python	functions	are	used	throughout	this	book	and	a	good
understanding	of	these	terms	is	integral	to	gaining	a	better.	and	deeper	understanding	of
python.	A	description	of	these	terms	and	functions	is	provided	in	the	sections	that	follow.

3.1	Names	and	Binding
In	python,	objects	are	referenced	by	names.	names	are	analogous	to	variables	in	C++	and
Java.

>>> x = 5

In	the	above,	example,	x	is	a	name	that	references	the	object,	5.	The	process	of	assigning	a
reference	to	5	to	x	is	called	binding.	A	binding	causes	a	name	to	be	associated	with	an
object	in	the	innermost	scope	of	the	currently	executing	program.	Bindings	may	occur
during	a	number	of	instances	such	as	during	variable	assignment	or	function	or	method
call	when	the	supplied	parameter	is	bound	to	the	argument.	It	is	important	to	note	that
names	are	just	symbols	and	they	have	no	type	associated	with	them;	names	are	just
references	to	objects	that	actually	have	types

3.2	Code	Blocks
A	code	block	is	a	piece	of	program	code	that	is	executed	as	a	single	unit	in	python.
Modules,	functions	and	classes	are	all	examples	of	code	blocks.	Commands	typed	in
interactively	at	the	REPL,	script	commands	run	with	the	-c	option	are	also	code	blocks.	A
code	block	has	a	number	of	name-spaces	associated	with	it.	For	example,	a	module	code
block	has	access	to	the	globalname-space	while	a	function	code	block	has	access	to	the
local	as	well	as	the	global	name-spaces.

3.3	Name-spaces
A	name-space	as	the	name	implies	is	a	context	in	which	a	given	set	of	names	is	bound	to
objects.	name-spaces	in	python	are	currently	implemented	as	dictionary	mappings.	The
built-in	name-space	is	an	example	of	a	name-space	that	contains	all	the	built-in	functions
and	this	can	be	accessed	by	entering	__builtins__.__dict__	at	the	terminal	(the	result	is
of	a	considerable	amount).	The	interpreter	has	access	to	multiple	name-spaces	including
the	global	name-space,	the	built-in	name-space	and	the	local	name-space.	name-spaces
are	created	at	different	times	and	have	different	lifetimes.	For	example,	a	new	local	name-
space	is	created	at	the	start	of	a	function	execution	and	this	name-space	is	discarded	when
the	function	exits	or	returns.	The	global	name-space	refers	to	the	module	wide	name-
space	and	all	names	defined	in	this	name-space	are	available	module-wide.	The	local
name-space	is	created	by	function	definitions	while	the	built-in	name-space	contains	all

the	built-in	names.	These	three	name-spaces	are	the	main	name-space	available	to	the
interpreter.

3.4	Scopes
A	scope	is	an	area	of	a	program	in	which	a	set	of	name	bindings	(name-spaces)	is	visible
and	directly	accessible.	Direct	access	is	an	important	characteristic	of	a	scope	as	will	be
explained	when	classes	are	discussed.	This	simply	means	that	a	name,	name,	can	be	used
as	is,	without	the	need	for	dot	notation	such	as	SomeClassOrModule.name	to	access	it.	At
runtime,	the	following	scopes	may	be	available.

1.	 Inner	most	scope	with	local	names
2.	 The	scope	of	enclosing	functions	if	any	(this	is	applicable	for	nested	functions)
3.	 The	current	module’s	globals	scope
4.	 The	scope	containing	the	builtin	name-space.

Whan	a	name	is	used	in	python,	the	interpreter	searches	the	name-spaces	of	the	scopes	in
ascending	order	as	listed	above	and	if	the	name	is	not	found	in	any	of	the	name-spaces,	an
exception	is	raised.	Python	supports	static	scoping	also	known	as	lexical	scoping;	this
means	that	the	visibility	of	a	set	of	name	bindings	can	be	inferred	by	only	inspecting	the
program	text.

Note

Python	has	a	quirky	scoping	rule	that	prevents	a	reference	to	an	object	in	the	global	scope
from	being	modified	in	a	local	scope;	such	an	attempt	will	throw	an	UnboundLocalError
exception.	In	order	to	modify	an	object	from	the	global	scope	within	a	local	scope,	the
global	keyword	has	to	be	used	with	the	object	name	before	modification	is	attempted.
The	following	example	illustrates	this.

>>> a = 1

>>> def inc_a(): a += 2

...

>>> inc_a()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 1, in inc_a

UnboundLocalError: local variable 'a' referenced before assignment

In	order	to	modify	the	object	from	the	global	scope,	the	global	statement	is	used	as	shown
in	the	following	snippet.

>>> a = 1

>>> def inc_a():

... global a

... a += 1

...

>>> inc_a()

>>> a

2

Python	also	has	the	nonlocal	keyword	that	is	used	when	there	is	a	need	to	modify	a
variable	bound	in	an	outer	non-global	scope	from	an	inner	scope.	This	proves	very	handy
when	working	with	nested	functions	(also	referred	to	as	closures).	A	very	trivial
illustration	of	the	nonlocal	keyword	in	action	is	shown	in	the	following	snippet	that
defines	a	simple	counter	object	that	counts	in	ascending	order.

>>> def make_counter():

... count = 0

... def counter():

... nonlocal count #	nonlocal	captures	the	count	binding	from	enclosing	scope	not	global\

scope

... count += 1

... return count

... return counter

...

>>> counter_1 = make_counter()

>>> counter_2 = make_counter()

>>> counter_1()

1

>>> counter_1()

2

>>> counter_2()

1

>>> counter_2()

2

3.5	eval()
eval	is	a	python	built-in	method	for	dynamically	executing	python	expressions	in	a	string
(the	content	of	the	string	must	be	a	valid	python	expression)	or	code	objects.	The	function
has	the	following	signature	eval(expression,	globals=None,	locals=None).	If
supplied,	the	globals	argument	to	the	eval	function	must	be	a	dictionary	while	the
locals	argument	can	be	any	mapping.	The	evaluation	of	the	supplied	expression	is	done
using	the	globals	and	locals	dictionaries	as	the	global	and	local	name-spaces.	If	the
__builtins__	is	absent	from	the	globals	dictionary,	the	current	globals	are	copied	into
globals	before	expression	is	parsed.	This	means	that	the	expression	will	have	either	full	or
restricted	access	to	the	standard	built-ins	depending	on	the	execution	environment;	this
way	the	exection	environment	of	eval	can	be	restricted	or	sandboxed.	eval	when	called
returns	the	result	of	executing	the	expression	or	code	object	for	example:

```python

>>> eval("2	+	1") # note the expression is in a string

3

```

Since	eval	can	take	arbitrary	code	obects	as	argument	and	return	the	value	of	executing
such	expressions,	it	along	with	exec,	is	used	in	executing	arbitrary	Python	code	that	has
been	compiled	into	code	objects	using	the	compile	method.	Online	Python	interpreters	are
able	to	execute	python	code	supplied	by	their	users	using	both	eval	and	exec	among	other
methods.

3.6	exec()

exec	is	the	counterpart	to	eval.	This	executes	a	string	interpreted	as	a	suite	of	python
statements	or	a	code	object.	The	code	supplied	is	supposed	to	be	valid	as	file	input	in	both
cases.	exec	has	the	following	signature:	exec(object[,	globals[,	locals]]).	The
following	is	an	example	of	exec	using	a	string	and	the	current	name-spaces.

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

#	the	acct.py	file	is	located	somewhere	on	file

>>> cont = open('acct.py', 'r').read()

>>> cont

'class	Account:\n				"""base	class	for	representing	user	accounts"""\n				num_accounts	=	0\n\n				de\

f	__init__(self,	name,	balance):\n								self.name	=	name	\n								self.balance	=	balance	\n						\

		Account.num_accounts	+=	1\n\n				def	del_account(self):\n								Account.num_accounts	-=	1\n\n				\

def	__getattr__(self,	name):\n								"""handle	attribute	reference	for	non-existent	attribute"""\n	\

							return	"Hey	I	dont	see	any	attribute	called	{}".format(name)\n\n				def	deposit(self,	amt):\n\

								self.balance	=	self.balance	+	amt	\n\n				def	withdraw(self,	amt):\n								self.balance	=	s\

elf.balance	-	amt	\n\n				def	inquiry(self):\n								return	"Name={},	balance={}".format(self.name,\

	self.balance)	\n\n'

>>> exec(cont)

#	exec	content	of	file	using	the	default	name-spaces

>>> Account #	we	can	now	reference	the	account	class

<class '__main__.Account'>

>>>

In	all	instances,	if	optional	arguments	are	omitted,	the	code	is	executed	in	the	current
scope.	If	only	the	globals	argument	is	provided,	it	has	to	be	a	dictionary,	that	is	used	for
both	the	global	and	the	local	variables.	If	globals	and	locals	are	given,	they	are	used	for
the	global	and	local	variables,	respectively.	If	provided,	the	locals	argument	can	be	any
mapping	object.	If	the	globals	dictionary	does	not	contain	a	value	for	the	key
__builtins__,	a	reference	to	the	dictionary	of	the	built-in	module	builtins	is	inserted
under	that	key.	One	can	control	the	builtins	that	are	available	to	the	executed	code	by
inserting	custom	__builtins__	dictionary	into	globals	before	passing	it	to	exec()	thus
creating	a	sandbox.

4.	Objects	201

Python	objects	are	the	basic	abstraction	over	data	in	python;	every	value	is	an	object	in
python.	Every	object	has	an	identity,	a	type	and	a	value.	An	object’s	identity	never
changes	once	it	has	been	created.	The	id(obj)	function	returns	an	integer	representing	the
obj's	identity.	The	is	operator	compares	the	identity	of	two	objects	returning	a	boolean.
In	CPython,	the	id()	function	returns	an	integer	that	is	a	memory	location	for	the	object
thus	uniquely	identifying	such	object.	This	is	an	implementation	detail	and
implementations	of	Python	are	free	to	return	whatever	value	uniquely	identifies	objects
within	the	interpreter.

The	type()	function	returns	an	object’s	type;	the	type	of	an	object	is	also	an	object	itself.
An	object’s	type	is	also	normally	unchangeable.	An	object’s	type	determines	the
operations	that	the	object	supports	and	also	defines	the	possible	values	for	objects	of	that
type.	Python	is	a	dynamic	language	because	types	are	not	associated	with	variables	so	a
variable,	x,	may	refer	to	a	string	and	later	refer	to	an	integer	as	shown	in	the	following
example.

x = 1

x = "Nkem"

However,	Python	unlike	dynamic	languages	such	as	Javascript	is	strongly	typed	because
the	interpreter	will	never	change	the	type	of	an	object.	This	means	that	actions	such	as
adding	a	string	to	a	number	will	cause	an	exception	in	Python	as	shown	in	the	following
snippet:

>>> x = "Nkem"

>>> x + 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't	convert	'int'	object	to	str	implicitly

This	is	unlike	Javascript	where	the	above	succeeds	because	the	interpreter	implicitly
converts	the	integer	to	a	string	then	adds	it	to	the	supplied	string.

Python	objects	are	either	one	of	the	following:

1.	 Mutable	objects:	These	refer	to	objects	whose	value	can	change.	For	example	a	list	is
a	mutable	data	structure	as	we	can	grow	or	shrink	the	list	at	will.

>>> x = [1, 2, 4]

>>> y = [5, 6, 7]

>>> x = x + y

>>> x

[1, 2, 4, 5, 6, 7]

>>>

Programmers	new	to	Python	from	other	languages	may	find	some	behavior	of	mutable
object	puzzling;	Python	is	a	pass-by-object-reference	language	which	means	that	the
values	of	object	references	are	the	values	passed	to	function	or	method	calls	and	names
bound	to	variables	refer	to	these	reference	values.	For	example	consider	the	snippets
shown	in	the	following	example.

>>> x

[1, 2, 3]

#	now	x	and	y	refer	to	the	same	list

>>> y = x

#	a	change	to	x	will	also	be	reflected	in	y

>>> x.extend([4, 5, 6])

>>> y

[1, 2, 3, 4, 5, 6]

y	and	x	refer	to	the	same	object	so	a	change	to	x	is	reflected	in	y.	To	fully	understand	why
this	is	so,	it	must	be	noted	that	the	variable,	x	does	not	actually	hold	the	list,	[1,	2,	3],
rather	it	holds	a	reference	that	points	to	the	location	of	that	object	so	when	the	variable,	y
is	bound	to	the	value	contained	in	x,	it	now	also	contains	the	reference	to	the	original	list,
[1,	2,	3].	Any	operation	on	x	finds	the	list	that	x	refers	to	and	carries	out	the	operation
on	the	list;	y	also	refers	to	the	same	list	thus	the	change	is	also	reflected	in	the	variable,	y.

1.	 Immutable	objects:	These	objects	have	values	that	cannot	be	changed.	A	tuple	is	an
example	of	an	immutable	data	structure	because	once	created	we	can	not	change	the
constituent	objects	as	shown	below:

>>> x = (1, 2, 3, 4)

>>> x[0]

1

>>> x[0] = 10

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>>

However	if	an	immutable	object	contains	a	mutable	object	the	mutable	object	can	have	its
value	changed	even	if	it	is	part	of	an	immutable	object.	For	example,	a	tuple	is	an
immutable	data	structure	however	if	a	tuple	contains	a	list	object,	a	mutable	object,	then
we	can	change	the	value	of	the	list	object	as	shown	in	the	following	snippet.

```python

>>> t = [1, 2, 3, 4]

>>> x = t,

>>> x

([1, 2, 3, 4],)

>>> x[0]

[1, 2, 3, 4]

>>> x[0].append(10)

>>> x

([1, 2, 3, 4, 10],)

>>>

```


4.1	Strong	and	Weak	Object	References
Python	objects	get	references	when	they	are	bound	to	names.	This	binding	can	be	in	form
of	an	assignment,	a	function	or	method	call	that	binds	objects	to	argument	names	etc.
Every	time	an	object	gets	a	reference,	the	reference	count	is	increased.	In	fact	the
reference	count	for	an	object	can	be	found	using	the	sys.getrefcount	method	as	shown
in	the	following	example.

>>> import sys

>>> l = []

>>> m = l

#	note	that	there	are	3	references	to	the	list	object,	l,	m	and	the	binding	

#	to	the	object	argument	for	sys.getrefcount	function

>>> sys.getrefcount(l)

3

Two	kind	of	references,	strong	and	weak	references,	exist	in	Python	but	when	discussing
references,	it	is	almost	certainly	the	strong	reference	that	is	being	referred	to.	The	previous
example	for	instance,	has	three	references	and	these	are	all	strong	references.	The	defining
characteristic	of	a	strong	reference	in	Python	is	that	whenever	a	new	strong	reference	is
created,	the	reference	count	for	the	referenced	object	is	incremented	by	1.	This	means	that
the	garbage	collector	will	never	collect	an	object	that	is	strongly	referenced	because	the
garbage	collector	collects	only	objects	that	have	a	reference	count	of	0.	Weak	references
on	the	other	hand	do	not	increase	the	reference	count	of	the	referenced	object.	Weak
referencing	is	provided	by	the	weakref	module.	The	following	snippet	shows	weak
referencing	in	action.

>>> class Foo:

... pass

...

>>> a = Foo()

>>> b = a

>>> sys.getrefcount(a)

3

>>> c = weakref.ref(a)

>>> sys.getrefcount(a)

3

>>> c()

<__main__.Foo object at 0x1012d6828>

>>> type(c)

<class 'weakref'>

The	weakref.ref	function	returns	an	object	that	when	called	returns	the	weakly
referenced	object.	The	weakref	module	the	weakref.proxy	alternative	to	the	weakref.ref
function	for	creating	weak	references.	This	method	creates	a	proxy	object	that	can	be	used
just	like	the	original	object	without	the	need	for	a	call	as	shown	in	the	following	snippet.

>>> d = weakref.proxy(a)

>>> d

<weakproxy at 0x10138ba98 to Foo at 0x1012d6828>

>>> d.__dict__

{}

When	all	the	strong	references	to	an	object	have	deleted	then	the	weak	reference	looses	it
reference	to	the	original	object	and	the	object	is	ready	for	garbage	collection.	This	is
shown	in	the	following	example.

>>> del a

>>> del b

>>> d

<weakproxy at 0x10138ba98 to NoneType at 0x1002040d0>

>>> d.__dict__

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ReferenceError: weakly-referenced object no longer exists

>>> c()

>>> c().__dict__

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute '__dict__'

4.2	The	Type	Hierarchy
Python	comes	with	its	own	set	of	built-in	types	and	these	built-in	types	broadly	fall	into
one	of	the	following	categories:

None	Type
The	None	type	is	a	singleton	object	that	has	a	single	value	and	this	value	is	accessed
through	the	built-in	name	None.	It	is	used	to	signify	the	absence	of	a	value	in	many
situations,	e.g.,	it	is	returned	by	functions	that	don’t	explicitly	return	a	value	as	illustrated
below:

```python

>>> def print_name(name):

... print(name)

...

>>> name = print_name("nkem")

nkem

>>> name

>>> type(name)

<class 'NoneType'>

>>>

```

The	None	type	has	a	truth	value	of	false.

NotImplemented	Type
The	NotImplemented	type	is	another	singleton	object	that	has	a	single	value.	The	value	of
this	object	is	accessed	through	the	built-in	name	NotImplemented.	This	object	should	be
returned	when	we	want	to	delegate	the	search	for	the	implementation	of	a	method	to	the
interpreter	rather	than	throwing	a	runtime	NotImplementedError	exception.	For	example,
consider	the	two	types,	Foo	and	Bar	below:

class Foo:

def __init__(self, value):

self.value = value

def __eq__(self, other):

if isinstance(other, Foo):

print('Comparing	an	instance	of	Foo	with	another	instance	of	Foo')

return other.value == self.value

elif isinstance(other, Bar):

print('Comparing	an	instance	of	Foo	with	an	instance	of	Bar')

return other.value == self.value

print('Could	not	compare	an	instance	of	Foo	with	the	other	class')

return NotImplemented

class Bar:

def __init__(self, value):

self.value = value

def __eq__(self, other):

if isinstance(other, Bar):

print('Comparing	an	instance	of	Bar	with	another	instance	of	Bar')

return other.value == self.value

print('Could	not	compare	an	instance	of	Bar	with	the	other	class')

return NotImplemented

When	an	attempt	is	made	at	comparisons,	the	effect	of	returning	NotImplemented	can	be
clearly	observed.	In	Python,	a	==	b	results	in	a	call	to	a.__eq__(b).	In	this	example,
instance	of	Foo	and	Bar	have	implementations	for	comparing	themselves	to	other	instance
of	the	same	class,	for	example:

>>> f = Foo(1)

>>> b = Bar(1)

>>> f == b

Comparing an instance of Foo with an instance of Bar

True

>>> f == f

Comparing an instance of Foo with another instance of Foo

True

>>> b == b

Comparing an instance of Bar with another instance of Bar

True

>>>

What	actually	happens	when	we	compare	f	with	b?	The	implementation	of	__eq__()	in
Foo	checks	that	the	other	argument	is	an	instance	of	Bar	and	handles	it	accordingly
returning	a	value	of	True:

>>> f == b

Comparing an instance of Foo with an instance of Bar

True

If	b	is	compared	with	f	then	b.__eq__(f)	is	invoked	and	the	NotImplemented	object	is
returned	because	the	implementation	of	__eq__()	in	Bar	only	supports	comparison	with	a
Bar	instances.	However,	it	can	be	seen	in	the	following	snippet	that	the	comparison
operation	actually	succeeds;	what	has	happened?

>>> b == f

Could not compare an instance of Bar with the other class

Comparing an instance of Foo with an instance of Bar

True

>>>

The	call	to	b.__eq__(f)	method	returned	NotImplemented	causing	the	python	interpreter
to	invoke	the	__eq__()	method	in	Foo	and	since	a	comparison	between	Foo	and	Bar	is
defined	in	the	implementation	of	the	__eq__()	method	in	Foo	the	correct	result,	True,	is
returned.

The	NotImplmented	object	has	a	truth	value	of	true.

>>>bool(NotImplemented)

True

Ellipsis	Type
This	is	another	singleton	object	type	that	has	a	single	value.	The	value	of	this	object	is
accessed	through	the	literal	...	or	the	built-in	name	Ellipsis.	The	truth	value	for	the
Ellipsis	object	is	true.	The	Ellipsis	object	is	mainly	used	in	numeric	python	for
indexing	and	slicing	matrices.	The	numpy	documentation	provides	more	insight	into	how
the	Ellipsis	object	is	used.

Numeric	Type

Numeric	types	are	otherwise	referred	to	as	numbers.	Numeric	objects	are	immutable	thus
once	created	their	value	cannot	be	changed.	Python	numbers	fall	into	one	of	the	following
categories:

1.	 Integers:	These	represent	elements	from	the	set	of	positive	and	negative	integers.
These	fall	into	one	of	the	following	types:
1.	 Plain	integers:	These	are	numbers	in	the	range	of	-2147483648	through

2147483647	on	a	32-bit	machine;	the	range	value	is	dependent	on	machine	word
size.	Long	integers	are	returned	when	results	of	operations	fall	outside	the	range
of	plain	integers	and	in	some	cases,	the	exception	OverflowError	is	raised.	For
the	purpose	of	shift	and	mask	operations,	integers	are	assumed	to	have	a	binary,
2’s	complement	notation	using	32	or	more	bits,	and	hiding	no	bits	from	the	user.

2.	 Long	integers:	Long	integers	are	used	to	hold	integer	values	that	are	as	large	as
the	virtual	memory	on	a	system	can	handle.	This	is	illustrated	in	the	following
example.

>>> 238**238

422003234274091507517421795325920182528086611140712666297183769

390925685510755057402680778036236427150019987694212157636287196

316333783750877563193837256416303318957733860108662430281598286

073858990878489423027387093434036402502753142182439305674327314

588077348865742839689189553235732976315624152928932760343933360

660521328084551181052724703073395502160912535704170505456773718

101922384718032634785464920586864837524059460946069784113790792

337938047537052436442366076757495221197683115845225278869129420

5907022278985117566190920525466326339246613410508288691503104L

It	is	important	to	note	that	from	the	perspective	of	a	user,	there	is	no	difference
between	the	plain	and	long	integers	as	all	conversions	if	any	are	done	under

http://docs.scipy.org/doc/numpy/user/basics.indexing.html

covers	by	the	interpreter.

3.	 Booleans:	These	represent	the	truth	values	False	and	True.	The	Boolean	type	is
a	subtype	of	plain	integers.	The	False	and	True	Boolean	values	behave	like	0
and	1	values	respectively	except	when	converted	to	a	string,	then	the	strings
“False”	or	“True”	are	returned	respectively.	For	example:

>>> x = 1

>>> y = True

>>> x + y

2

>>> a = 1

>>> b = False

>>> a + b

1

>>> b == 0

True

>>> y == 1

True

>>>

>>> str(True)

'True'

>>> str(False)

'False'

2.	 Float:	These	represent	machine-level	only	double	precision	floating	point	numbers.
The	underlying	machine	architecture	and	specific	python	implementation	determines
the	accepted	range	and	the	handling	of	overflow;	so	CPython	will	be	limited	by	the
underlying	C	language	while	Jython	will	be	limited	by	the	underlying	Java	language.

3.	 Complex	Numbers:	These	represent	complex	numbers	as	a	pair	of	machine-level
double	precision	floating	point	numbers.	The	same	caveats	apply	as	for	floating	point
numbers.	Complex	numbers	can	be	created	using	the	complex	keyword	as	shown	in
the	following	example.

>>> complex(1,2)

(1+2j)

>>>

Complex	numbers	can	also	be	created	by	using	a	number	literal	prefixed	with	a	j.	For
instance,	the	previous	complex	number	example	can	be	created	by	the	expression,	1+2j.
The	real	and	imaginary	parts	of	a	complex	number	z	can	be	retrieved	through	the	read-
only	attributes	z.real	and	z.imag.

Sequence	Type
Sequence	types	are	finite	ordered	collections	of	objects	that	can	be	indexed	by	integers;
using	negative	indices	in	python	is	legal.	Sequences	fall	into	two	categories	-	mutable	and
immutable	sequences.

1.	 Immutable	sequences:	An	immutable	sequence	type	object	is	one	whose	value	cannot
change	once	it	is	created.	This	means	that	the	collection	of	objects	that	are	directly
referenced	by	an	immutable	sequence	is	fixed.	The	collection	of	objects	referenced
by	an	immutable	sequence	maybe	composed	of	mutable	objects	whose	value	may

change	at	runtime	but	the	mutable	object	itself	that	is	directly	referenced	by	an
immutable	sequence	cannot	be	changed.	For	example,	a	tuple	is	an	immutable
sequence	but	if	one	of	the	elements	in	the	tuple	is	a	list,	a	mutable	sequence,	then	the
list	can	change	but	the	reference	to	the	list	object	that	tuple	holds	cannot	be	changed
as	shown	below:

>>> t = [1, 2, 3], "obi", "ike"

>>> type(t)

<class 'tuple'>

>>> t[0].append(4) #	mutate	the	list

>>> t

([1, 2, 3, 4], 'obi', 'ike')

>>> t[0] = [] #	attempt	to	change	the	reference	in	tuple

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

The	following	are	built-in	immutable	sequence	types:

1. Strings: A string is an immutable sequence of Unicode code points or more informally an immutable

sequence of characters. There is no `char` type in python so a character is just a string of length

, 1.

Strings in python can represent all unicode code points in the range `U+0000	-	U+10FFFF`. All text

n python is Unicode and the type of the objects used to hold such text is `str`.

2. Bytes: A `bytes` object is an immutable sequence of 8-bit bytes. Each bytes is represented by

integer in the range `0	<=	x	<	256`. Bytes literals such as `b'abc'` and the built-in function `byte\

s()` are used to create `bytes` objects. `Bytes` object have an intimate relationship with `strings`

. Strings are abstractions over text representation used in the computer; text is represented intern

ally using binary or bytes. Strings are just sequences of bytes that have been decoded using an enco

ding such as `UTF-8`. The abstract characters of a string can also be encoded using available encodi

ngs such as `UTF-8` to get the binary representation of the string in bytes objects. The relationshi

p between `bytes` and `strings`is illustrated with the following example.

```python							

				>>>	b	=	b'abc'

				>>>	b

				b'abc'

				>>>	type(b)

				<class	'bytes'>

				>>>	b	=	bytes('abc',	'utf-16')	#	encode	a	string	to	bytes	using	UTF-16	encoding

				>>>	b

				b'\xff\xfea\x00b\x00c\x00'

				>>>	b

				b'\xff\xfea\x00b\x00c\x00'

				>>>	b.decode("utf-8")	#	decoding	fails	as	encoding	has	been	done	with	utf-16

				Traceback	(most	recent	call	last):

						File	"<stdin>",	line	1,	in	<module>

				UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0xff	in	position	0:	invalid	start	byte

				>>>	b.decode("utf-16")	#	decoding	to	string	passes

				'abc'

				>>>	type(b.decode("utf-16"))

				<class	'str'>

				```

3. Tuple: A tuple is a sequence of arbitrary python objects. Tuples of two or more items are formed

by comma-separated lists of expressions. A tuple of one item is formed by affixing a comma to an

ression while an empty tuple is formed by an empty pair of parentheses. This is illustrated in the

following example.

```python

				>>>	names	=	"Obi",		#	tuple	of	1

				>>>	names

				('Obi',)

				>>>	type(names)

				<class	'tuple'>				

				>>>	names	=	()		#	tuple	of	0

				>>>	names

				()

				>>>	type(names)

				<class	'tuple'>		

				>>>	names	=	"Obi",	"Ike",	1		#	tuple	of	2	or	more

				>>>	names

				('Obi',	"Ike",	1)

				>>>	type(names)

				<class	'tuple'>		

				```

1.	 Mutable	sequences:	An	immutable	sequence	type	is	one	whose	value	can	change
after	it	has	created.	There	are	currently	two	built-in	mutable	sequence	types	-	byte
arrays	and	lists
1.	 Byte	Arrays:	Bytearray	objects	are	mutable	arrays	of	bytes.	Byte	arrays	are

created	using	the	built-in	bytearray()	constructor.	Apart	from	being	mutable
and	thus	unhashable,	byte	arrays	provide	the	same	interface	and	functionality	as
immutable	byte	objects.	Bytearrays	are	very	useful	when	the	efficiency	offered
by	their	mutability	is	required.	For	example,	when	receiving	an	unknown
amount	of	data	over	a	network,	byte	arrays	are	more	efficient	because	the	array
can	be	extended	as	more	data	is	received	without	having	to	allocate	new	objects
as	would	be	the	case	if	the	immutable	byte	type	was	used.

2.	 Lists:	Lists	are	a	sequence	of	arbitrary	Python	objects.	Lists	are	formed	by
placing	a	comma-separated	list	of	expressions	in	square	brackets.	The	empty	list
is	formed	with	the	empty	square	bracket,	[].	A	list	can	be	created	from	any
iterable	by	passing	such	iterable	to	the	list	method.	The	list	data	structure	is
one	of	the	most	widely	used	data	type	in	python.

Sequence	types	have	some	operations	that	are	common	to	all	sequence	types.	These	are
described	in	the	following	table;	x	is	an	object,	s	and	t	are	sequences	and	n,	i,	j,	k	are
integers.

Operation Result
x	in	s True	if	an	item	of	s	is	equal	to	x,	else	False
x	not	in	s False	if	an	item	of	s	is	equal	to	x,	else	True
s	+	t the	concatenation	of	s	and	t
s	*	n	or	n	*	s n	shallow	copies	of	s	concatenated
s[i] ith	item	of	s,	origin	0
s[i:j] slice	of	s	from	i	to	j
s[i:j:k] slice	of	s	from	i	to	j	with	step	k
len(s) length	of	s
min(s) smallest	item	of	s
max(s) largest	item	of	s
s.index(x[,
i[,	j]])

index	of	the	first	occurrence	of	x	in	s	(at	or	after	index	i
and	before	index	j)

s.count(x) total	number	of	occurrences	of	x	in	s

Note

1.	 Values	of	n	that	are	less	than	0	are	treated	as	0	and	this	yields	an	empty	sequence	of
the	same	type	as	s	such	as	below:

>>> x = "obi"

>>> x*-2

''

2.	 Copies	made	from	using	the	*	operation	are	shallow	copies;	any	nested	structures	are
not	copied.	This	can	result	in	some	confusion	when	trying	to	create	copies	of	a
structure	such	as	a	nested	list.

>>> lists = [[]] * 3 #	shallow	copy

>>> lists

[[], [], []] #	all	three	copies	reference	the	same	list

>>> lists[0].append(3)

>>> lists

[[3], [3], [3]]

To	avoid	shallow	copies	when	dealing	with	nested	lists,	the	following	method	can	be
adopted

```python

>>> lists = [[] for i in range(3)]

>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

[[3], [5], [7]]

```

3.	 When	i	or	j	is	negative,	the	index	is	relative	to	the	end	of	the	string	thus	len(s)	+	i
or	len(s)	+	j	is	substituted	for	the	negative	value	of	i	or	j.

4.	 Concatenating	immutable	sequences	such	as	strings	always	results	in	a	new	object	for
example:

>>> name = "Obi"

>>> id(name)

4330660336

>>> name += "Obi" + "	Ike-Nwosu"

>>> id(name)

4330641208

Python	defines	the	interfaces	(thats	the	closest	word	that	can	be	used)	-	Sequences	and
MutableSequences	in	the	collections	library	and	these	define	all	the	methods	a	type
must	implement	to	be	considered	a	mutable	or	immutable	sequence;	when	abstract	base
classes	are	discussed,	this	concept	will	become	much	clearer.

Set
These	are	unordered,	finite	collection	of	unique	python	objects.	Sets	are	unordered	so	they
cannot	be	indexed	by	integers.	The	members	of	a	set	must	be	hash-able	so	only	immutable
objects	can	be	members	of	a	set.	This	is	so	because	sets	in	python	are	implemented	using	a
hash	table;	a	hash	table	uses	some	kind	of	hash	function	to	compute	an	index	into	a	slot.	If
a	mutable	value	is	used	then	the	index	calculated	will	change	when	this	object	changes
thus	mutable	values	are	not	allowed	in	sets.	Sets	provide	efficient	solutions	for
membership	testing,	de-duplication,	computing	of	intersections,	union	and	differences.
Sets	can	be	iterated	over,	and	the	built-in	function	len()	returns	the	number	of	items	in	a
set.	There	are	currently	two	intrinsic	set	types:-	the	mutable	set	type	and	the	immutable
frozenset	type.	Both	have	a	number	of	common	methods	that	are	shown	in	the	following
table.

Method Description
len(s) return	the	cardinality	of	the	set,	s.
x	in	s Test	x	for	membership	in	s.
x	not	in	s Test	x	for	non-membership	in	s.

isdisjoint(other)

Return	True	if	the	set	has	no	elements	in
common	with	other.	Sets	are	disjoint	if
and	only	if	their	intersection	is	the
empty	set.

issubset(other),	set	<=	other Test	whether	every	element	in	the	set	is
in	other.

set	<	other
Test	whether	the	set	is	a	proper	subset
of	other,	that	is,	set	<=	other	and	set	!
other.

issuperset(other),	set	>=
other

Test	whether	every	element	in	other	is
in	the	set.

set	>	other
Test	whether	the	set	is	a	proper	superset
of	other,	that	is,	set	>=	other	and	set	!=
other.

union(other,	…),	set	|	other	|
…

Return	a	new	set	with	elements	from	the
set	and	all	others.

intersection(other,	…),	set	&
other	&	…

Return	a	new	set	with	elements
common	to	the	set	and	all	others.

difference(other,	…),	set	-
other	-	…

Return	a	new	set	with	elements	in	the
set	that	are	not	in	the	others.

symmetric_difference(other),
set	^	other

Return	a	new	set	with	elements	in	either
the	set	or	other	but	not	both.

copy() Return	a	new	set	with	a	shallow	copy	of
s.

1.	 Frozen	set:	This	represents	an	immutable	set.	A	frozen	set	is	created	by	the	built-in
frozenset()	constructor.	A	frozenset	is	immutable	and	thus	hashable	so	it	can	be
used	as	an	element	of	another	set,	or	as	a	dictionary	key.

2.	 Set:	This	represents	a	mutable	set	and	it	is	created	using	the	built-in	set()
constructor.	The	mutable	set	is	not	hashable	and	cannot	be	part	of	another	set.	A	set
can	also	be	created	using	the	set	literal	{}.	Methods	unique	to	the	mutable	set
include:

Method Description

update(other,	…),	set	|=	other	|	… Update	the	set,	adding	elements
from	all	others.

intersection_update(other,	…),	set
&=	other	&	…

Update	the	set,	keeping	only
elements	found	in	it	and	all
others.

difference_update(other,	…),	set	-=
other	|	…

Update	the	set,	removing
elements	found	in	others.

symmetric_difference_update(other),
set	^=	other

Update	the	set,	keeping	only
elements	found	in	either	set,	but
not	in	both.

add(elem) Add	element	elem	to	the	set.

remove(elem)
Remove	element	elem	from	the
set.	Raises	KeyError	if	elem	is
not	contained	in	the	set.

discard(elem) Remove	element	elem	from	the
set	if	it	is	present.

pop()
Remove	and	return	an	arbitrary
element	from	the	set.	Raises
KeyError	if	the	set	is	empty.

clear() Remove	all	elements	from	the
set.

Mapping
A	python	mapping	is	a	finite	set	of	objects	(values)	indexed	by	a	set	of	immutable	python
objects	(keys).	The	keys	in	the	mapping	must	be	hashable	for	the	same	reason	given
previously	in	describing	set	members	thus	eliminating	mutable	types	like	lists,	frozensets,
mappings	etc.	The	expression,	a[k],	selects	the	item	indexed	by	the	key,	k,	from	the
mapping	a	and	can	be	used	as	in	assignments	or	del	statements.	The	dictionary	mostly
called	dict	for	convenience	is	the	only	intrinsic	mapping	type	built	into	python:

1.	 Dictionary:	Dictionaries	can	be	created	by	placing	a	comma-separated	sequence	of
key:	value	pairs	within	braces,	for	example:	{'name':	"obi",	'age':	18},	or	by
the	dict()	constructor.	The	main	operations	supported	by	the	dictionary	type	is	the
addition,	deletion	and	selection	of	values	using	a	given	key.	When	adding	a	key	that
is	already	in	use	within	a	dict,	the	old	value	associated	with	that	key	is	forgotten.
Attempting	to	access	a	value	with	a	non-existent	key	will	result	in	a	KeyError
exception.	Dictionaries	are	perhaps	one	of	the	most	important	types	within	the
interpreter.	Without	explicitly	making	use	of	a	dictionary,	the	interpreter	is	already
using	them	in	a	number	of	different	places.	For	example,	the	namespaces,
namespaces	are	discussed	in	a	subsequent	chapter,	in	python	are	implemented	using
dictionaries;	this	means	that	every	time	a	symbol	is	referenced	within	a	program,	a
dictionary	access	occurs.	Objects	are	layered	on	dictionaries	in	python;	all	attributes
of	python	objects	are	stored	in	a	dictionary	attribute,	__dict__.	These	are	but	a	few
applications	of	this	type	within	the	python	interpreter.

Python	supplies	more	advanced	forms	of	the	dictionary	type	in	its	collections	library.
These	are	the	OrderedDict	that	introduces	order	into	a	dictionary	thus	remembering	the
order	in	which	items	were	insert	and	the	defaultdict	that	takes	a	factory	function	that	is
called	to	produce	a	value	when	a	key	is	missing.	If	a	key	is	missing	from	a	defaultdict
instance,	the	factory	function	is	called	to	produce	a	value	for	the	key	and	the	dictionary	is
updated	with	this	key,	value	pair	and	the	created	value	is	returned.	For	example,

```python

>>> from collections import defaultdict

>>> d = defaultdict(int)

>>> d

defaultdict(<class 'int'>,	{})

>>> d[7]

0

>>>d

defaultdict(<class 'int'>,	{7:	0})

```

Callable	Types
These	are	types	that	support	the	function	call	operation.	The	function	call	operation	is	the
use	of	()	after	the	type	name.	In	the	example	below,	the	function	is	print_name	and	the
function	call	is	when	the	()	is	appended	to	the	function	name	as	such	print_name().

def print_name(name):

print(name)

Functions	are	not	the	only	callable	types	in	python;	any	object	type	that	implements	the
__call__	special	method	is	a	callable	type.	The	function,	callable(type),	is	used	to
check	that	a	given	type	is	callable.	The	following	are	built-in	callable	python	types:

1.	 User-defined	functions:	these	are	functions	that	a	user	defines	with	the	def	statement
such	as	the	print_name	function	from	the	previous	section.

2.	 Methods:	these	are	functions	defined	within	a	class	and	accessible	within	the	scope	of
the	class	or	a	class	instance.	These	methods	could	either	be	instance	methods,	static
or	class	methods.

3.	 Built-in	functions:	These	are	functions	available	within	the	interpreter	core	such	as
the	len	function.

4.	 Classes:	Classes	are	also	callable	types.	The	process	of	creating	a	class	instance
involves	calling	the	class	such	as	Foo().

Each	of	the	above	types	is	covered	in	detail	in	subsequent	chapters.

Custom	Type
Custom	types	are	created	using	the	class	statements.	Custom	class	objects	have	a	type	of
type.	These	are	types	created	by	user	defined	programs	and	they	are	discussed	in	the
chapter	on	object	oriented	programming.

Module	Type
A	module	is	one	of	the	organizational	units	of	Python	code	just	like	functions	or	classes.	A

module	is	also	an	object	just	like	every	other	value	in	the	python.	The	module	type	is
created	by	the	import	system	as	invoked	either	by	the	import	statement,	or	by	calling
functions	such	as	importlib.import_module()	and	built-in	__import__().

File/IO	Types
A	file	object	represents	an	open	file.	Files	are	created	using	the	open	built-in	functions	that
opens	and	returns	a	file	object	on	the	local	file	system;	the	file	object	can	be	open	in	either
binary	or	text	mode.	Other	methods	for	creating	file	objects	include:

1.	 os.fdopen	that	takes	a	file	descriptor	and	create	a	file	object	from	it.	The	os.open
method	not	to	be	confused	with	the	open	built-in	function	is	used	to	create	a	file
descriptor	that	can	then	be	passed	to	the	os.fdopen	method	to	create	a	file	object	as
shown	in	the	following	example.

>>> import os

>> fd = os.open("test.txt", os.O_RDWR|os.O_CREAT)

>>> type(fd)

<class 'int'>

>>> fd

3

>>> fo = os.fdopen(fd, "w")

>>> fo

<_io.TextIOWrapper name=3 mode='w' encoding='UTF-8'>

>>> type(fo)

<class '_io.TextIOWrapper'>

2.	 os.popen():	this	is	marked	for	deprecation.
3.	 makefile()	method	of	a	socket	object	that	opens	and	returns	a	file	object	that	is

associated	with	the	socket	on	which	it	was	called.

The	built-in	objects,	sys.stdin,	sys.stdout	and	sys.stderr,	are	also	file	objects
corresponding	to	the	python	interpreter’s	standard	input,	output	and	error	streams.

Built-in	Types
These	are	objects	used	internally	by	the	python	interpreter	but	accessible	by	a	user
program.	They	include	traceback	objects,	code	objects,	frame	objects	and	slice	objects

Code	Objects

Code	objects	represent	compiled	executable	Python	code,	or	bytecode.	Code	objects	are
machine	code	for	the	python	virtual	machine	along	with	all	that	is	necessary	for	the
execution	of	the	bytecode	they	represent.	They	are	normally	created	when	a	block	of	code
is	compiled.	This	executable	piece	of	code	can	only	be	executed	using	the	exec	or	eval
python	methods.	To	give	a	concrete	understanding	of	code	objects	we	define	a	very	simple
function	below	and	dissect	the	code	object.

def return_author_name():

return "obi	Ike-Nwosu"

https://docs.python.org/3/library/functions.html#open

The	code	object	for	the	above	function	can	be	obtained	from	the	function	object	by
assessing	its	__code__	attribute	as	shown	below:

>>> return_author_name.__code__

<code object return_author_name at 0x102279270, file "<stdin>", line 1>

We	can	go	further	and	inspect	the	code	object	using	the	dir	function	to	see	the	attributes
of	the	code	object.

>>> dir(return_author_name.__code__)

['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattri

bute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '

_reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'co_argcount'

, 'co_cellvars', 'co_code', 'co_consts', 'co_filename', 'co_firstlineno', 'co_flags', 'co_freevars',

'co_kwonlyargcount', 'co_lnotab', 'co_name', 'co_names', 'co_nlocals', 'co_stacksize', 'co_varnames

']

Of	particular	interest	to	us	at	this	point	in	time	are	the	non-special	methods	that	is	methods
that	do	not	start	with	an	underscore.	We	give	a	brief	description	of	each	of	these	non-
special	methods	in	the	following	table

Method Description
co_argcount number	of	arguments	(not	including	*	or	**	args)
co_code string	of	raw	compiled	bytecode
co_consts tuple	of	constants	used	in	the	bytecode
co_filename name	of	file	in	which	this	code	object	was	created
co_firstlineno number	of	first	line	in	Python	source	code
co_flags bitmap:	1=optimized	|	2=newlocals	|	4=*arg	|	8=**arg
co_lnotab encoded	mapping	of	line	numbers	to	bytecode	indices
co_name name	with	which	this	code	object	was	defined
co_names tuple	of	names	of	local	variables
co_nlocals number	of	local	variables
co_stacksize virtual	machine	stack	space	required
co_varnames tuple	of	names	of	arguments	and	local	variables

We	can	view	the	bytecode	string	for	the	function	using	the	co_code	method	of	the	code
object	as	shown	below.

>>> return_author_name.__code__.co_code

b'd\x01\x00S'

The	bytecode	returned	however	is	basically	of	no	use	to	someone	investigating	code
objects.	This	is	where	the	python	dis	module	comes	into	play.	The	dis	module	can	be
used	to	generate	a	human	readable	version	of	the	code	object.	We	use	the	dis	function
from	the	dis	module	to	generate	the	code	object	for	return_author_name	function.

>>> dis.dis(return_author_name)

2 0 LOAD_CONST 1 ('obi Ike-Nwosu')

3 RETURN_VALUE

The	above	shows	the	human	readable	version	of	the	the	python	code	object.	The
LOAD_CONST	instruction	reads	a	value	from	the	co_consts	tuple,	and	pushes	it	onto	the	top
of	the	stack	(the	CPython	interpreter	is	a	stack	based	virtual	machine).	The	RETURN_VALUE
instruction	pops	the	top	of	the	stack,	and	returns	this	to	the	calling	scope	signalling	the	end
of	the	execution	of	that	python	code	block.

Code	objects	serve	a	number	of	purposes	while	programming.	They	contain	information
that	can	aid	in	interactive	debugging	while	programming	and	can	provide	us	with	readable
tracebacks	during	an	exception.

Frame	Objects

Frame	objects	represent	execution	frames.	Python	code	blocks	are	executed	in	execution
frames.	The	call	stack	of	the	interpreter	stores	information	about	currently	executing
subroutines	and	the	call	stack	is	made	up	of	stack	frame	objects.	Frame	objects	on	the
stack	have	a	one-to-one	mapping	with	subroutine	calls	by	the	program	executing	or	the
interpreter.	The	frame	object	contains	code	objects	and	all	necessary	information,
including	references	to	the	local	and	global	name-spaces,	necessary	for	the	runtime
execution	environment.	The	frame	objects	are	linked	together	to	form	the	call	stack.	To
simplify	how	this	all	fits	together	a	bit,	the	call	stack	can	be	thought	of	as	a	stack	data
structure	(it	actually	is),	every	time	a	subroutine	is	called,	a	frame	object	is	created	and
inserted	into	the	stack	and	then	the	code	object	contained	within	the	frame	is	executed.
Some	special	read-only	attributes	of	frame	objects	include:

1.	 f_back	is	to	the	previous	stack	frame	towards	the	caller,	or	None	if	this	is	the	bottom
stack	frame.

2.	 f_code	is	the	code	object	being	executed	in	this	frame.
3.	 f_locals	is	the	dictionary	used	to	look	up	local	variables.
4.	 f_globals	is	used	for	global	variables.
5.	 f_builtins	is	used	for	built-in	names.
6.	 f_lasti	gives	the	precise	instruction	-	it	is	an	index	into	the	bytecode	string	of	the

code	object.

Some	special	writable	attributes	include:

1.	 f_trace:	If	this	is	not	None,	this	is	a	function	called	at	the	start	of	each	source	code
line.

2.	 f_lineno:	This	is	the	current	line	number	of	the	frame.	Writing	to	this	from	within	a
trace	function	jumps	to	the	given	line	only	for	the	bottom-most	frame.	A	debugger
can	implement	a	Jump	command	by	writing	to	f_lineno.

Frame	objects	support	one	method:

1.	 frame.clear():	This	method	clears	all	references	to	local	variables	held	by	the
frame.	If	the	frame	belonged	to	a	generator,	the	generator	is	finalized.	This	helps
break	reference	cycles	involving	frame	objects.	A	RuntimeError	is	raised	if	the	frame
is	currently	executing.

Traceback	Objects

Traceback	objects	represent	the	stack	trace	of	an	exception.	A	traceback	object	is	created
when	an	exception	occurs.	The	interpreter	searches	for	an	exception	handler	by
continuously	popping	the	execution	stack	and	inserting	a	traceback	object	in	front	of	the
current	traceback	for	each	frame	popped.	When	an	exception	handler	is	encountered,	the
stack	trace	is	made	available	to	the	program.	The	stack	trace	object	is	accessible	as	the
third	item	of	the	tuple	returned	by	sys.exc_info().	When	the	program	contains	no
suitable	handler,	the	stack	trace	is	written	to	the	standard	error	stream;	if	the	interpreter	is
interactive,	it	is	also	made	available	to	the	user	as	sys.last_traceback.	A	few	important
attributes	of	a	traceback	object	is	shown	in	the	following	table.

Method Description

tb_next is	the	next	level	in	the	stack	trace	(towards	the	frame	where
the	exception	occurred),	or	None	if	there	is	no	next	level

tb_frame points	to	the	execution	frame	of	the	current	level;	tb_lineno
gives	the	line	number	where	the	exception	occurred

tb_lasti

indicates	the	precise	instruction.	The	line	number	and	last
instruction	in	the	traceback	may	differ	from	the	line	number
of	its	frame	object	if	the	exception	occurred	in	a	try
statement	with	no	matching	except	clause	or	with	a	finally
clause.

Slice	Objects

Slice	objects	represent	slices	for	__getitem__()	methods	of	sequence-like	objects	(more
on	special	methods	such	as	__getitem__()	in	the	chapter	on	object	oriented
programming).	Slice	object	return	a	subset	of	the	sequence	they	are	applied	to	as	shown
below.

>>> t = [i for i in range(10)]

>>> t

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> t[:10:2]

[0, 2, 4, 6, 8]

>>>

They	are	also	created	by	the	built-in	slice([start,],	stop	[,step])	function.	The
returned	object	can	be	used	in	between	the	square	brackets	as	a	regular	slice	object.

>>> t = [i for i in range(10)]

>>> t

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> t[:10:2]

[0, 2, 4, 6, 8]

>>> s = slice(None, 10, 2)

>>> s

slice(None, 10, 2)

>>> t[s]

[0, 2, 4, 6, 8]

Slice	object	read-only	attributes	include:

Attribute Description
start which	is	the	lower	bound;
stop the	optional	upper	bound;
step the	optional	step	value;

Each	of	the	optional	attributes	is	None	if	omitted.	Slices	can	take	a	number	of	forms	in
addition	to	the	standard	slice(start,	stop	[,step]).	Other	forms	include

a[start:end] #	items	start	to	end-1	equivalent	to	slice(start,	stop)

a[start:] #	items	start	to	end-1	equivalent	to	slice(start)

a[:end] #	items	from	the	beginning	to	end-1	equivalent	to	slice(None,	end)

a[:] #	a	shallow	copy	of	the	whole	array	equivalent	to	slice(None,	None)

The	start	or	end	values	may	also	be	negative	in	which	case	we	count	from	the	end	of	the
array	as	shown	below:

a[-1] #	last	item	in	the	array	equivalent	to	slice(-1)

a[-2:] #	last	two	items	in	the	array	equivalent	to	slice(-2)

a[:-2] #	everything	except	the	last	two	items	equivalent	to	slice(None,	-2)

Slice	objects	support	one	method:

1.	 slice.indices(self,	length):	This	method	takes	a	single	integer	argument,	length,	and
returns	a	tuple	of	three	integers	-	(start,	stop,	stride)	that	indicates	how	the	slice
would	apply	to	the	given	length.	The	start	and	stop	indices	are	actual	indices	they
would	be	in	a	sequence	of	length	given	by	the	length	argument.	An	example	is	shown
below:

```python

>>> s = slice(10, 30, 1)

#	applying	slice(10,	30,	1)	to	sequence	of	length	100	gives	[10:30]

>>> s.indices(100)

(10, 30, 1)

#	applying	slice(10,	30,	1)	to	sequence	of	length	15	gives	[10:15]

>>> s.indices(15)

(10, 15, 1)

#	applying	slice(10,	30,	1)	to	sequence	of	length	1	gives	[1:1]

>>> s.indices(1)

(1, 1, 1)

>>> s.indices(0)

(0, 0, 1)

```

Generator	Objects

Generator	objects	are	created	by	the	invocation	of	generator	functions;	these	are	functions
that	use	the	keyword,	yield.	This	type	is	discussed	in	detail	in	the	chapter	on	Sequences
and	Generators.

With	a	strong	understanding	of	the	built-in	type	hierarchy,	the	stage	is	now	set	for
examining	object	oriented	programming	and	how	users	can	create	their	own	type
hierarchy	and	even	make	such	types	behave	like	built-in	types.

5.	Object	Oriented	Programming

Classes	are	the	basis	of	object	oriented	programming	in	python	and	are	one	of	the	basic
organizational	units	in	a	python	program.

5.1	The	Mechanics	of	Class	Definitions
The	class	statement	is	used	to	define	a	new	type.	The	class	statement	defines	a	set	of
attributes,	variables	and	methods,	that	are	associated	with	and	shared	by	a	collection	of
instances	of	such	a	class.	A	simple	class	definition	is	given	below:

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return self.balance

Class	definitions	introduce	class	objects,	instance	objects	and	method	objects.

Class	Objects
The	execution	of	a	class	statement	creates	a	class	object.	At	the	start	of	the	execution	of	a
class	statement,	a	new	name-space	is	created	and	this	serves	as	the	name-space	into	which
all	class	attributes	go;	unlike	languages	like	Java,	this	name-space	does	not	create	a	new
local	scope	that	can	be	used	by	class	methods	hence	the	need	for	fully	qualified	names
when	accessing	attributes.	The	Account	class	from	the	previous	section	illustrates	this;	a
method	trying	to	access	the	num_accounts	variable	must	use	the	fully	qualified	name,
Account.num_accounts	else	an	error	results	such	as	when	the	fully	qualified	name	is	not
used	in	the	__init__	method	as	shown	below:

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return self.balance

>>> acct = Account('obi', 10)

Traceback (most recent call last):

File "python", line 1, in <module>

File "python", line 9, in __init__

UnboundLocalError: local variable 'num_accounts' referenced before assignment

At	the	end	of	the	execution	of	a	class	statement,	a	class	object	is	created;	the	scope
preceding	the	class	definition	is	reinstated,	and	the	class	object	is	bound	in	this	scope	to
the	class	name	given	in	the	class	definition	header.

A	little	diversion	here.	One	may	ask,	if	the	class	created	is	an	object	then	what	is	the	class
of	the	class	object?.	In	accordance	with	the	Python	philosophy	that	every	value	is	an
object	,	the	class	object	does	indeed	have	a	class	which	it	is	created	from;	this	is	the	type
class.

>>> type(Account)

<class 'type'>

So	just	to	confuse	you	a	bit,	the	type	of	a	type,	the	Account	type,	is	type.	To	get	a	better
understanding	of	the	fact	that	a	class	is	indeed	an	object	with	its	own	class	we	go	behind
the	scenes	to	explain	what	really	goes	on	during	the	execution	of	a	class	statement	using
the	Account	example	from	above.

>>>class_name = "Account"

>>>class_parents = (object,)

>>>class_body = """

				num_accounts	=	0

				def	__init__(self,	name,	balance):

								self.name	=	name	

								self.balance	=	balance	

								num_accounts	+=	1

				def	del_account(self):

								Account.num_accounts	-=	1

				def	deposit(self,	amt):

								self.balance	=	self.balance	+	amt	

				def	withdraw(self,	amt):

								self.balance	=	self.balance	-	amt	

				def	inquiry(self):

								return	self.balance	

				"""

#	a	new	dict	is	used	as	local	name-space

>>>class_dict = {}

#the	body	of	the	class	is	executed	using	dict	from	above	as	local	

#	name-space	

>>>exec(class_body, globals(), class_dict)

#	viewing	the	class	dict	reveals	the	name	bindings	from	class	body

>>> class_dict

{'del_account': <function del_account at 0x106be60c8>, 'num_accounts': 0, 'inquiry': <function

nquiry at 0x106beac80>, 'deposit': <function deposit at 0x106be66e0>, 'withdraw': <function withdraw

at 0x106be6de8>, '__init__': <function __init__ at 0x106be2c08>}

#	final	step	of	class	creation

>>>Foo = type(class_name, class_parents, class_dict)

#	view	created	class	object

>>>Account

<class '__main__.Account'>

>>>type(Account)

<type 'type'>

During	the	execution	of	class	statement,	the	interpreter	carries	out	the	following	steps
behind	the	scene:

1.	 The	body	of	the	class	statement	is	isolated	in	a	string.
2.	 A	class	dictionary	representing	the	name-space	for	the	class	is	created.
3.	 The	body	of	the	class	is	executed	as	a	set	of	statements	within	this	name-space.
4.	 During	the	final	step,	the	class	object	is	created	by	instantiating	the	type	class,

passing	in	the	class	name,	base	classes	and	class	dictionary	as	arguments.	The	type
class	used	here	in	creating	the	Account	class	object	is	a	meta-class,	the	class	of	a
class.	The	meta-class	used	in	the	class	object	creation	can	be	explicitly	specified	by
supplying	the	metaclass	keyword	argument	in	the	class	definition.	In	the	case	that
this	is	not	supplied,	the	class	statement	examines	the	first	entry	in	the	tuple	of	the	the
base	classes	if	any.	If	no	base	classes	are	used,	the	global	variable	__metaclass__	is
searched	for	and	if	no	value	is	found	for	this,	Python	uses	the	default	meta-class.
More	about	meta-classes	is	discussed	in	subsequent	chapters.

Class	objects	support	attribute	reference	and	object	instantiation.	Attributes	are	referenced
using	the	standard	dot	syntax;	an	object	followed	by	dot	and	then	attribute	name:
obj.name.	Valid	attribute	names	are	all	the	variable	and	method	names	present	in	the	class’
name-space	when	the	class	object	was	created.	For	example:

>>> Account.num_accounts

0

>>> Account.deposit

>>> <unbound method Account.deposit>

Object	instantiation	is	carried	out	by	calling	the	class	object	like	a	normal	function	with
required	parameters	for	the	__init__	method	of	the	class	as	shown	in	the	following

example:

>>> Account("obi", 0)

An	instance	object	that	has	been	initialized	with	supplied	arguments	is	returned	from
instantiation	of	a	class	object.	In	the	case	of	the	Account	class,	the	account	name	and
account	balance	are	set	and,	the	number	of	instances	is	incremented	by	1	in	the	__init__
method.

Instance	Objects
If	class	objects	are	the	cookie	cutters	then	instance	objects	are	the	cookies	that	are	the
result	of	instantiating	class	objects.	Instance	objects	are	returned	after	the	correct
initialization	of	a	class	just	as	shown	in	the	previous	section.	Attribute	references	are	the
only	operations	that	are	valid	on	instance	objects.	Instance	attributes	are	either	data
attribute,	better	known	as	instance	variables	in	languages	like	Java,	or	method	attributes.

Method	Objects
If	x	is	an	instance	of	the	Account	class,	x.deposit	is	an	example	of	a	method	object.
Method	objects	are	similar	to	functions	however	during	a	method	definition,	an	extra
argument	is	included	in	the	arguments	list,	the	self	argument.	This	self	argument	refers
to	an	instance	of	the	class	but	why	do	we	have	to	pass	an	instance	as	an	argument	to	a
method?	This	is	best	illustrated	by	a	method	call	such	as	the	following.

>>> x = Account()

>>> x.inquiry()

10

But	what	exactly	happens	when	an	instance	method	is	called?	It	can	be	observed	that
x.inquiry()	is	called	without	an	argument	above,	even	though	the	method	definition	for
inquiry()	requires	the	self	argument.	What	happened	to	this	argument?

In	the	example	from	above,	the	call	to	x.inquiry()	is	exactly	equivalent	to
Account.inquiry(x);	notice	that	the	object	instance,	x,	is	being	passed	as	argument	to	the
method	-	this	is	the	self	argument.	Invoking	an	object	method	with	an	argument	list	is
equivalent	to	invoking	the	corresponding	method	from	the	object’s	class	with	an	argument
list	that	is	created	by	inserting	the	method’s	object	at	the	start	of	the	list	of	argument.	In
order	to	understand	this,	note	that	methods	are	stored	as	functions	in	class	dicts.

>>> type(Account.inquiry)

<class 'function'>

To	fully	understand	how	this	transformation	takes	place	one	has	to	understand	descriptors
and	Python’s	attribute	references	algorithm.	These	are	discussed	in	subsequent	sections	of
this	chapter.	In	summary,	the	method	object	is	a	wrapper	around	a	function	object;	when
the	method	object	is	called	with	an	argument	list,	a	new	argument	list	is	constructed	from
the	instance	object	and	the	argument	list,	and	the	underlying	function	object	is	called	with
this	new	argument	list.	This	applies	to	all	instance	method	objects	including	the	__init__
method.	Note	that	the	self	argument	is	actually	not	a	keyword;	the	name,	self	is	just	a

convention	and	any	valid	argument	name	can	be	used	as	shown	in	the	Account	class
definition	below.

class Account(object):

num_accounts = 0

def __init__(obj, name, balance):

obj.name = name

obj.balance = balance

Account.num_accounts += 1

def del_account(obj):

Account.num_accounts -= 1

def deposit(obj, amt):

obj.balance = obj.balance + amt

def withdraw(obj, amt):

obj.balance = obj.balance - amt

def inquiry(obj):

return obj.balance

>>> Account.num_accounts

0

>>> x = Account('obi', 0)

>>> x.deposit(10)

>>> Account.inquiry(x)

10

5.2	Customizing	User-defined	Types
Python	is	a	very	flexible	language	providing	user	with	the	ability	to	customize	classes	in
ways	that	are	unimaginable	in	other	languages.	Attribute	access,	class	creation	and	object
initialization	are	a	few	examples	of	ways	in	which	classes	can	be	customized.	User
defined	types	can	also	be	customized	to	behave	like	built-in	types	and	support	special
operators	and	syntax	such	as	*,	+,	-,	[]	etc.

All	these	customization	is	possible	because	of	methods	that	are	called	special	or	magic
methods.	Python	special	methods	are	just	ordinary	python	methods	with	double
underscores	as	prefix	and	suffix	to	the	method	names.	Special	methods	have	already
encountered	in	this	book.	An	example	is	the	__init__	method	that	is	called	to	initialize
class	instances;	another	is	the	__getitem__	method	invoked	by	the	index,	[]	operator;	an
index	such	as	a[i]	is	translated	by	the	interpreter	to	a	call	to	type(a).__getitem__(a,
i).	Methods	with	the	double	underscore	as	prefix	and	suffix	are	just	ordinary	python
methods;	users	can	define	their	own	class	methods	with	method	names	prefixed	and
suffixed	with	the	double	underscore	and	use	it	just	like	normal	python	methods.	This	is
however	not	the	conventional	approach	to	defining	normal	user	methods.

User	defined	classes	can	also	implement	these	special	methods;	a	corollary	of	this	is	that
built-in	operators	such	as	+	or	[]	can	be	adapted	for	use	by	user	defined	classes.	This	is
one	of	the	essence	of	polymorphism	in	Python.	In	this	book,	special	methods	are	grouped
according	to	the	functions	they	serve.	These	groups	include:

Special	methods	for	instance	creation

The	__new__	and	__init__	special	methods	are	the	two	methods	that	are	integral	to
instance	creation.	New	class	instances	are	created	in	a	two	step	process;	first	the	static
method,	__new__,	is	called	to	create	and	return	a	new	class	instance	then	the	__init__
method	is	called	to	to	initialize	the	newly	created	object	with	supplied	arguments.	A	very
important	instance	in	which	there	is	a	need	to	override	the	__new__	method	is	when	sub-
classing	built-in	immutable	types.	Any	initialization	that	is	done	in	the	sub-class	must	be
done	before	object	creation.	This	is	because	once	an	immutable	object	is	created,	its	value
cannot	be	changed	so	it	makes	no	sense	trying	to	carry	out	any	function	that	modifies	the
created	object	in	an	__init__	method.	An	example	of	sub-classing	is	shown	in	the
following	snippet	in	which	whatever	value	is	supplied	is	rounded	up	to	the	next	integer.

>>> import math

>>> class NextInteger(int):

... def __new__(cls, val):

... return int.__new__(cls, math.ceil(val))

...

>>> NextInteger(2.2)

3

>>>

Attempting	to	do	the	math.ceil	operation	in	an	__init__	method	will	cause	the	object
initialization	to	fail.	The	__new__	method	can	also	be	overridden	to	create	a	Singleton
super	class;	subclasses	of	this	class	can	only	ever	have	a	single	instance	throughout	the
execution	of	a	program;	the	following	example	illustrates	this.

class Singleton:

def __new__(cls, *args, **kwds):

it = cls.__dict__.get("__it__")

if it is None:

return it

cls.__it__ = it = object.__new__(cls)

it.init(*args, **kwds)

return it

def __init__(self, *args, **kwsds):

pass

It	is	worth	noting	that	when	implementing	the	__new__	method,	the	implementation	must
call	its	base	class’	__new__	and	the	implementation	method	must	return	an	object.

Users	are	already	familiar	with	defining	the	__init__	method;	the	__init__	method	is
overridden	to	perform	attribute	initialization	for	an	instance	of	a	mutable	types.

Special	methods	for	attribute	access

The	special	methods	in	this	category	provide	means	for	customizing	attribute	references;
this	maybe	in	order	to	access	or	set	such	an	attribute.	This	set	of	special	methods	available
for	this	include:

1.	 __getattr__:	This	method	can	be	implemented	to	handle	situations	in	which	a
referenced	attribute	cannot	be	found.	This	method	is	only	called	when	an	attribute

that	is	referenced	is	neither	an	instance	attribute	nor	is	it	found	in	the	class	tree	of	that
object.	This	method	should	return	some	value	for	the	attribute	or	raise	an
AttributeError	exception.	For	example,	if	x	is	an	instance	of	the	Account	class
defined	above,	trying	to	access	an	attribute	that	does	not	exist	will	result	in	a	call	to
this	method	as	shown	in	the	following	snippet

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def __getattr__(self, name):

return "Hey	I	don't	see	any	attribute	called	{}".format(name)

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

>>> x = Account('obi', 0)

>>> x.balaance

Hey I dont see any attribute called balaance

Care	should	be	taken	with	the	implementation	of	__getattr__	because	if	the
implementation	references	an	instance	attribute	that	does	not	exist,	an	infinite	loop	may
occur	because	the	__getattr__	method	is	called	successively	without	end.

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def __getattr__(self, name):

return self.namee #	trying	to	acess	a	variable	that	doesnt	exist	will	result	in	__getatt\

r___ calling itself over and over again

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

>>> x = Account('obi', 0)

>>> x.balaance #	this	will	result	in	a	RuntimeError:	maximum	recursion	depth	exceeded	while	call\

ing a Python object exception

1.	 __getattribute__:	This	method	is	implemented	to	customize	the	attribute	access	for
a	class.	This	method	is	always	called	unconditionally	during	attribute	access	for
instances	of	a	class.

2.	 __setattr__:	This	method	is	implemented	to	unconditionally	handle	all	attribute
assignment.	__setattr__	should	insert	the	value	being	assigned	into	the	dictionary
of	the	instance	attributes	rather	than	using	self.name=value	which	results	in	an
infinite	recursive	call.	When	__setattr__()	is	used	for	instance	attribute
assignment,	the	base	class	method	with	the	same	name	should	be	called	such	as
super().__setattr__(self,	name,	value).

3.	 __delattr__:	This	is	implemented	to	customize	the	process	of	deleting	an	instance
of	a	class.	it	is	invoked	whenever	del	obj	is	called.

4.	 __dir__:	This	is	implemented	to	customize	the	list	of	object	attributes	returned	by	a
call	to	dir(obj).

Special	methods	for	Type	Emulation
Built-in	types	in	python	have	special	operators	that	work	with	them.	For	example,	numeric
types	support	the	+	operator	for	adding	two	numbers,	numeric	types	also	support	the	-
operator	for	subtracting	two	numbers,	sequence	and	mapping	types	support	the	[]
operator	for	indexing	values	held.	Sequence	types	even	also	have	support	for	the	+
operator	for	concatenating	such	sequences.	User	defined	classes	can	be	customized	to
behave	like	these	built-in	types	where	it	makes	sense.	This	can	be	done	by	implementing
the	special	methods	that	are	invoked	by	the	interpreter	when	these	special	operators	are
encountered.	The	special	methods	that	provide	these	functionalities	for	emulating	built-in
types	can	be	broadly	grouped	into	one	of	the	following:
Numeric	Type	Special	Methods

The	following	table	shows	some	of	the	basic	operators	and	the	special	methods	invoked
when	these	operators	are	encountered.

Special	Method Operator	Description
a.__add__(self,	b) binary	addition,	a	+	b
a.__sub__(self,	b) binary	subtraction,	a	-	b
a.__mul__(self,	b) binary	multiplication,	a	*	b
a.__truediv__(self,	b) division	of	a	by	b
a.__floordiv__(self,	b) truncating	division	of	a	by	b
a.__mod__(self,	b) a	modulo	b
a.__divmod__(self,	b) returns	a	divided	by	b,	a	modulo	b
a.__pow__(self,	b[,	modulo]) a	raised	to	the	bth	power

Python	has	the	concept	of	reflected	operations;	this	was	covered	in	the	section	on	the
NotImplemented	of	previous	chapter.	The	idea	behind	this	concept	is	that	if	the	left
operand	of	a	binary	arithmetic	operation	does	not	support	a	required	operation	and	returns
NotImplemented	then	an	attempt	is	made	to	call	the	corresponding	reflected	operation	on
the	right	operand	provided	the	type	of	both	operands	differ.	An	example	of	this	rarely	used
functionality	is	shown	in	the	following	trivial	example	for	emphasis.

class MyNumber(object):

def __init__(self, x):

self.x = x

def __str__(self):

return str(self.x)

>>> 10 - MyNumber(9) #	int	type,	10,	does	not	know	how	to	subtract	MyNumber	type	and	MyNumbe\

r does not know how to handle the operation too

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'int' and 'MyNumber'

In	the	next	snippet	the	class	implements	the	reflected	special	method	and	this	reflected
method	is	called	by	the	interpreter.

class MyFixedNumber(MyNumber):

def __rsub__(self, other): #	reflected	operation	implemented

return MyNumber(other - self.val)

>>> (10 - MyFixedNumber(9)).val

1

The	following	special	methods	implement	reflected	binary	arithmetic	operations.

Special	Method Operator	Description
a.__radd__(self,	b) reflected	binary	addition,	a	+	b
a.__rsub__(self,	b) reflected	binary	subtraction,	a	-	b

a.__rmul__(self,	b)
reflected	binary	multiplication,	a	*
b

a.__rtruediv__(self,	b) reflected	division	of	a	by	b

a.__rfloordiv__(self,	b)
reflected	truncating	division	of	a	by
b

a.__rmod__(self,	b) reflected	a	modulo	b
a.__rdivmod__(self,	b) reflected	a	divided	by	b,	a	modulo	b
a.__rpow__(self,	b[,

modulo])
reflected	a	raised	to	the	bth	power

Another	set	of	operators	that	work	with	numeric	types	are	the	augmented	assignment
operators.	An	example	of	an	augmented	operation	is	shown	in	the	following	code	snippet.

>>> val = 10

>>> val += 90

>>> val

100

>>>

A	few	of	the	special	methods	for	implementing	augmented	arithmetic	operations	are	listed
in	the	following	table.

Special	Method Description
a.__iadd__(self,	b) a	+=	b
a.__isub__(self,	b) a	-=	b
a.__imul__(self,	b) a	*=	b
a.__itruediv__(self,	b) a	//=	b
a.__ifloordiv__(self,	b) a	/=	b
a.__imod__(self,	b) a	%=	b
a.__ipow__(self,	b[,	modulo]) a	**=	b

Sequence	and	Mapping	Types	Special	Methods

Sequence	and	mapping	are	often	referred	to	as	container	types	because	they	can	hold
references	to	other	objects.	User-defined	classes	can	emulate	container	types	to	the	extent
that	this	makes	sense	if	such	classes	implement	the	special	methods	listed	in	the	following
table.

Special	Method Description

__len__(obj)

returns	length	of	obj.	This	is	invoked	to
implement	the	built-in	function	len().	An	object
that	doesn’t	define	a	__bool__()	method	and
whose	__len__()	method	returns	zero	is
considered	to	be	false	in	a	Boolean	context.

__getitem__(obj,

key)

fetches	item,	obj[key].	For	sequence	types,	the
keys	should	be	integers	or	slice	objects.	If	key	is
of	an	inappropriate	type,	TypeError	may	be
raised;	if	the	key	has	a	value	outside	the	set	of
indices	for	the	sequence,	IndexError	should	be
raised.	For	mapping	types,	if	key	is	absent	from
the	container,	KeyError	should	be	raised.

__setitem__(obj,

key,	value)
Sets	obj[key]	=	value

__delitem__(obj,

key)
deletes	obj[key].	Invoked	by	del	obj[key]

__contains__(obj,

key)

Returns	true	if	key	is	contained	in	obj	and	false
otherwise.	Invoked	by	a	call	to	key	in	obj

__iter__(self)

This	method	is	called	when	an	iterator	is
required	for	a	container.	This	method	should
return	a	new	iterator	object	that	can	iterate	over
all	the	objects	in	the	container.	For	mappings,	it
should	iterate	over	the	keys	of	the	container.
Iterator	objects	also	need	to	implement	this
method;	they	are	required	to	return	themselves.
This	is	also	used	by	the	for..in	construct.

Sequence	types	such	as	lists	support	the	addition	(for	concatenating	lists)	and
multiplication	operators	(for	creating	copies),	+	and	*	respectively,	by	defining	the
methods	__add__(),	__radd__(),	__iadd__(),	__mul__(),	__rmul__()	and	__imul__().
Sequence	types	also	implement	the	__reversed__	method	that	implements	the
reversed()	method	that	is	used	for	reverse	iteration	over	a	sequence.	User	defined	classes
can	implement	these	special	methods	to	get	the	required	functionality.

Emulating	Callable	Types

Callable	types	support	the	function	call	syntax,	(args).	Classes	that	implement	the
__call__(self[,	args…])	method	are	callable.	User	defined	classes	for	which	this
functionality	makes	sense	can	implement	this	method	to	make	class	instances	callable.
The	following	example	shows	a	class	implementing	the	__call__(self[,	args…])
method	and	how	instances	of	this	class	can	be	called	using	the	function	call	syntax.

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def __call__(self, arg):

return "I	was	called	with	\'{}\'".format(arg)

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return self.balance

>>> acct = Account()

>>> acct("Testing	function	call	on	instance	object")

I was called with 'Testing	function	call	on	instance	object'

Special	Methods	for	comparing	objects
User-defined	classes	can	provide	custom	implementation	for	the	special	methods	invoked
by	the	five	object	comparison	operators	in	python,	<,	>,	>=,	<=,	=	in	order	to	control	how
these	operators	work.	These	special	methods	are	given	in	the	following	table.

Special	Method Description
a.__lt__(self,	b) a	<	b
a.__le__(self,	b) a	<=	b
a.__eq__(self,	b) a	==	b
a.__ne__(self,	b) a	!=	b
a.__gt__(self,	b) a	>	b
a.__ge__(self,	b) a	>=	b

In	Python,	x==y	is	True	does	not	imply	that	x!=y	is	False	so	__eq__()	should	be	defined
along	with	__ne__()	so	that	the	operators	are	well	behaved.	__lt__()	and	__gt__(),	and
__le__()	and	__ge__()	are	each	other’s	reflection	while	__eq__()	and	__ne__()	are	their
own	reflection;	this	means	that	if	a	call	to	the	implementation	of	any	of	these	methods	on
the	left	argument	returns	NotImplemented,	the	reflected	operator	is	is	used.

Special	Methods	and	Attributes	for	Miscellaneous	Customizations

1.	 __slots__:	This	is	a	special	attribute	rather	than	a	method.	It	is	an	optimization	trick
that	is	used	by	the	interpreter	to	efficiently	store	object	attributes.	Objects	by	default
store	all	attributes	in	a	dictionary	(the	__dict__	attribute)	and	this	is	very	inefficient
when	objects	with	few	attributes	are	created	in	large	numbers.	__slots__	make	use
of	a	static	iterable	that	reserves	just	enough	space	for	each	attribute	rather	than	the
dynamic	__dict__	attribute.	The	iterable	representing	the	__slot__	variable	can	also
be	a	string	made	up	of	the	attribute	names.	The	following	example	shows	how
__slots__	works.

class Account:

"""base	class	for	representing	user	accounts"""

#	we	can	also	use	__slots__	=	"name	balance"

__slots__ = ['name', 'balance']

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def __getattr__(self, name):

"""handle	attribute	reference	for	non-existent	attribute"""

return "Hey	I	dont	see	any	attribute	called	{}".format(name)

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

>>>acct = Account("obi", 10)

>>>acct.__dict__ #	__dict__	attribute	is	gone

Hey I dont see any attribute called __dict__

>>>acct.x = 10

Traceback (most recent call last):

File "acct.py", line 32, in <module>

acct.x = 10

AttributeError: 'Account' object has no attribute 'x'

>>>acct.__slots__

['name', 'balance']

A	few	things	that	are	worth	noting	about	__slots__	include	the	following:

1.	 If	a	superclass	has	the	__dict__	attribute	then	using	__slots__	in	sub-classes	is	of
no	use	as	the	dictionary	is	available.

2.	 If	__slots__	are	used	then	attempting	to	assign	to	a	variable	not	in	the	__slots__
variable	will	result	in	an	AttributeError	as	shown	in	the	previous	example.

3.	 Sub-classes	will	have	a	__dict__	even	if	they	inherit	from	a	base	class	with	a
__slots__	declaration;	subclasses	have	to	define	their	own	__slots__	attribute
which	must	contain	only	the	additional	names	in	order	to	avoid	having	the	__dict__
for	storing	names.

4.	 Subclasses	with	“variable-length”	built-in	types	as	base	class	cannot	have	a	non-
empty	__slots__	variable.

5.	 __bool__:	This	method	implements	the	truth	value	testing	for	a	given	class;	it	is
invoked	by	the	built-in	operation	bool()	and	should	return	a	True	or	False	value.	In
the	absence	of	an	implementation,	__len__()	is	called	and	if	__len__	is

implemented,	the	object’s	truth	value	is	considered	to	be	True	if	result	of	the	call	to
__len__	is	non-zero.	If	neither	__len__()	nor	__bool__()	are	defined	by	a	class	then
all	its	instances	are	considered	to	be	True.

6.	 __repr__	and	__str__:	These	are	two	closely	related	methods	as	they	both	return
string	representations	for	a	given	object	and	only	differ	subtly	in	the	intent	behind
their	creation.	Both	are	invoked	by	a	call	to	repr	and	str	methods	respectively.	The
__repr__	method	implementation	should	return	an	unambiguous	string
representation	of	the	object	it	is	being	called	on.	Ideally,	the	representation	that	is
returned	should	be	an	expression	that	when	evaluated	by	the	eval	method	returns	the
given	object;	when	this	is	not	possible	the	representation	returned	should	be	as
unambiguous	as	possible.	On	the	other	hand,	__str__	exists	to	provide	a	human
readable	version	of	an	object;	a	version	that	would	make	sense	to	some	one	reading
the	output	but	that	doesn’t	necessarily	understand	the	semantics	of	the	language.	A
very	good	illustration	of	how	both	methods	differ	is	shown	below	by	calling	both
methods	on	a	data	object.

>>> import datetime

>>> today = datetime.datetime.now()

>>> str(today)

'2015-07-05	20:55:58.642018' #	human	readable	version	of	datetime	object

>>> repr(today)

'datetime.datetime(2015,	7,	5,	20,	55,	58,	642018)' #	eval	will	return	the	datetime	object

When	using	string	interpolation,	%r	makes	a	call	to	repr	while	%s	makes	a	call	to
str.

7.	 __bytes__:	This	is	invoked	by	a	call	to	the	bytes()	built-in	and	it	should	return	a
byte	string	representation	for	an	object.	The	byte	string	should	be	a	bytes	object.

8.	 __hash__:	This	is	invoked	by	the	hash()	built-in.	It	is	also	used	by	operations	that
work	on	types	such	as	set,	frozenset,	and	dict	that	make	use	of	object	hash	values.
Providing	__hash__	implementation	for	user	defined	classes	is	an	involved	and
delicate	act	that	should	be	carried	out	with	care	as	will	be	seen.	Immutable	built-in
types	are	hashable	while	mutable	types	such	as	lists	are	not.	For	example,	the	hash	of
a	number	is	the	value	of	the	number	as	shown	in	the	following	snippet.

>>> hash(1)

1

>>> hash(12345)

12345

>>>

User	defined	classes	have	a	default	hash	value	that	is	derived	from	their	id()	value.	Any
__hash__()	implementation	must	return	an	integer	and	objects	that	are	equal	by
comparison	must	have	the	same	hash	value	so	for	two	object,	a	and	b,	(a==b	and
hash(a)==hash(b))	must	be	true.	A	few	rules	for	implementing	a	__hash__()	method
include	the	following:	1.	A	class	should	only	define	the	__hash__()	method	if	it	also
defines	the	__eq__()	method.

1.	 The	absence	of	an	implementation	for	the	__hash__()	method	in	a	class	renders	its
instances	unhashable.

2.	 The	interpreter	provides	user-defined	classes	with	default	implementations	for
__eq__()	and	__hash__().	By	default,	all	objects	compare	unequal	except	with
themselves	and	x.__hash__()	returns	a	value	such	that	(x	==	y	and	x	is	y	and
hash(x)	==	hash(y))	is	always	true.	In	CPython,	the	default	__hash__()
implementation	returns	a	value	derived	from	the	id()	of	the	object.

3.	 Overriding	the	__eq__()	method	without	defining	the	__hash__()	method	sets	the
__hash__()	method	to	None	in	the	class.	When	the	__hash__()	method	of	a	class	is
None,	an	instance	of	the	class	will	raise	an	appropriate	TypeError	when	an	attempt	is
made	to	retrieve	its	hash	value.	The	object	will	also	be	correctly	identified	as
unhashable	when	checking	isinstance(obj,	collections.Hashable).

4.	 If	a	class	overrides	the	__eq__()	and	needs	to	keep	the	implementation	of
__hash__()	from	a	base	class,	this	must	be	done	explicitly	by	setting	__hash__	=
BaseClass.__hash__.

5.	 A	class	that	does	not	override	the	__eq__()	can	suppress	hash	support	by	setting
__hash__	to	None.	If	a	class	defines	its	own	__hash__()	method	that	explicitly	raises
a	TypeError,	instances	of	such	class	will	be	incorrectly	identified	as	hashable	by	an
isinstance(obj,	collections.Hashable)	test.

5.3	A	Vector	class
In	this	section,	a	complete	example	of	the	use	of	special	methods	to	emulate	built-in	types
is	provided	by	a	Vector	class.	The	Vector	class	provides	support	for	performing	vector
arithmetic	operations.

#	Copyright	2013	Philip	N.	Klein

class Vec:

"""

												A	vector	has	two	fields:

												D	-	the	domain	(a	set)

												f	-	a	dictionary	mapping	(some)	domain	elements	to	field	elements

																elements	of	D	not	appearing	in	f	are	implicitly	mapped	to	zero

												"""

def __init__(self, labels, function):

assert isinstance(labels, set)

assert isinstance(function, dict)

self.D = labels

self.f = function

def __getitem__(self, key):

"""

																Return	the	value	of	entry	k	in	v.

																Be	sure	getitem(v,k)	returns	0	if	k	is	not	represented	in	v.f.

																>>>	v	=	Vec({'a','b','c',	'd'},{'a':2,'c':1,'d':3})

																>>>	v['d']

																3

																>>>	v['b']

																0

																"""

assert key in self.D

if key in self.f:

return self.f[key]

return 0

def __setitem__(self, key, val):

"""

																Set	the	element	of	v	with	label	d	to	be	val.

																setitem(v,d,val)	should	set	the	value	for	key	d	even	if	d

																is	not	previously	represented	in	v.f,	and	even	if	val	is	0.

																>>>	v	=	Vec({'a',	'b',	'c'},	{'b':0})

																>>>	v['b']	=	5

																>>>	v['b']

																5

																>>>	v['a']	=	1

																>>>	v['a']

																1

																>>>	v['a']	=	0

																>>>	v['a']

																0

																"""

assert key in self.D

self.f[key] = val

def __neg__(self):

"""

																Returns	the	negation	of	a	vector.

																>>>	u	=	Vec({1,3,5,7},{1:1,3:2,5:3,7:4})

																>>>	-u

																Vec({1,	3,	5,	7},{1:	-1,	3:	-2,	5:	-3,	7:	-4})

																>>>	u	==	Vec({1,3,5,7},{1:1,3:2,5:3,7:4})

																True

																>>>	-Vec({'a','b','c'},	{'a':1})	==	Vec({'a','b','c'},	{'a':-1})

																True

																"""

return Vec(self.D, {key:-self[key] for key in self.D})

def __rmul__(self, alpha):

"""

																Returns	the	scalar-vector	product	alpha	times	v.

																>>>	zero	=	Vec({'x','y','z','w'},	{})

																>>>	u	=	Vec({'x','y','z','w'},{'x':1,'y':2,'z':3,'w':4})

																>>>	0*u	==	zero

																True

																>>>	1*u	==	u

																True

																>>>	0.5*u	==	Vec({'x','y','z','w'},{'x':0.5,'y':1,'z':1.5,'w':2})

																True

																>>>	u	==	Vec({'x','y','z','w'},{'x':1,'y':2,'z':3,'w':4})

																True

																"""

return Vec(self.D, {key : alpha*self[key] for key in self.D })

def __mul__(self,other):

#If	other	is	a	vector,	returns	the	dot	product	of	self	and	other

if isinstance(other, Vec):

return dot(self,other)

else:

return NotImplemented #		Will	cause	other.__rmul__(self)	to	be	invoked

def __truediv__(self,other): #	Scalar	division

return (1/other)*self

def __add__(self, other):

"""

																Returns	the	sum	of	the	two	vectors.

																

																Make	sure	to	add	together	values	for	all	keys	from	u.f	and	v.f	even	if	some	keys	in	\

u.f	do	not

																exist	in	v.f	(or	vice	versa)

																>>>	a	=	Vec({'a','e','i','o','u'},	{'a':0,'e':1,'i':2})

																>>>	b	=	Vec({'a','e','i','o','u'},	{'o':4,'u':7})

																>>>	c	=	Vec({'a','e','i','o','u'},	{'a':0,'e':1,'i':2,'o':4,'u':7})

																>>>	a	+	b	==	c

																True

																>>>	a	==	Vec({'a','e','i','o','u'},	{'a':0,'e':1,'i':2})

																True

																>>>	b	==	Vec({'a','e','i','o','u'},	{'o':4,'u':7})

																True

																>>>	d	=	Vec({'x','y','z'},	{'x':2,'y':1})

																>>>	e	=	Vec({'x','y','z'},	{'z':4,'y':-1})

																>>>	f	=	Vec({'x','y','z'},	{'x':2,'y':0,'z':4})

																>>>	d	+	e	==	f

																True

																>>>	d	==	Vec({'x','y','z'},	{'x':2,'y':1})

																True

																>>>	e	==	Vec({'x','y','z'},	{'z':4,'y':-1})

																True

																>>>	b	+	Vec({'a','e','i','o','u'},	{})	==	b

																True

																"""

assert self.D == other.D

return Vec(self.D, {key: self[key] + other[key] for key in self.D})

def __radd__(self, other):

"Hack	to	allow	sum(...)	to	work	with	vectors"

if other == 0:

return self

def __sub__(a,b):

"Returns	a	vector	which	is	the	difference	of	a	and	b."

return a+(-b)

def __eq__(self, other):

"""

																Return	true	iff	u	is	equal	to	v.

																Consider	using	brackets	notation	u[...]	and	v[...]	in	your	procedure

																to	access	entries	of	the	input	vectors.		This	avoids	some	sparsity	bugs.

																>>>	Vec({'a',	'b',	'c'},	{'a':0})	==	Vec({'a',	'b',	'c'},	{'b':0})

																True

																>>>	Vec({'a',	'b',	'c'},	{'a':	0})	==	Vec({'a',	'b',	'c'},	{})

																True

																>>>	Vec({'a',	'b',	'c'},	{})	==	Vec({'a',	'b',	'c'},	{'a':	0})

																True

																Be	sure	that	equal(u,	v)	checks	equalities	for	all	keys	from	u.f	and	v.f	even	if

																some	keys	in	u.f	do	not	exist	in	v.f	(or	vice	versa)

																>>>	Vec({'x','y','z'},{'y':1,'x':2})	==	Vec({'x','y','z'},{'y':1,'z':0})

																False

																>>>	Vec({'a','b','c'},	{'a':0,'c':1})	==	Vec({'a','b','c'},	{'a':0,'c':1,'b':4})

																False

																>>>	Vec({'a','b','c'},	{'a':0,'c':1,'b':4})	==	Vec({'a','b','c'},	{'a':0,'c':1})

																False

																The	keys	matter:

																>>>	Vec({'a','b'},{'a':1})	==	Vec({'a','b'},{'b':1})

																False

																The	values	matter:

																>>>	Vec({'a','b'},{'a':1})	==	Vec({'a','b'},{'a':2})

																False

																"""

assert self.D == other.D

return all([self[key] == other[key] for key in self.D])

def is_almost_zero(self):

s = 0

for x in self.f.values():

if isinstance(x, int) or isinstance(x, float):

s += x*x

elif isinstance(x, complex):

y = abs(x)

s += y*y

else: return False

return s < 1e-20

def __str__(v):

"pretty-printing"

D_list = sorted(v.D, key=repr)

numdec = 3

wd = dict([(k,(1+max(len(str(k)), len('{0:.{1}G}'.format(v[k], numdec))))) if isinst

ance(v[k], int) or isinstance(v[k], float) else (k,(1+max(len(str(k)), len(str(v[k]))))) for k in D_

list])

s1 = ''.join(['{0:>{1}}'.format(str(k),wd[k]) for k in D_list])

s2 = ''.join(['{0:>{1}.{2}G}'.format(v[k],wd[k],numdec) if isinstance(v[k], int)

isinstance(v[k], float) else '{0:>{1}}'.format(v[k], wd[k]) for k in D_list])

return "\n" + s1 + "\n" + '-'*sum(wd.values()) +"\n" + s2

def __hash__(self):

"Here	we	pretend	Vecs	are	immutable	so	we	can	form	sets	of	them"

h = hash(frozenset(self.D))

for k,v in sorted(self.f.items(), key = lambda x:repr(x[0])):

if v != 0:

h = hash((h, hash(v)))

return h

def __repr__(self):

return "Vec(" + str(self.D) + "," + str(self.f) + ")"

def copy(self):

"Don't	make	a	new	copy	of	the	domain	D"

return Vec(self.D, self.f.copy())

def __iter__(self):

raise TypeError('%r	object	is	not	iterable' % self.__class__.__name__)

if __name__ == "__main__":

import doctest

doctest.testmod()

5.4	Inheritance
Inheritance	is	one	of	the	basic	tenets	of	object	oriented	programming	and	python	supports
multiple	inheritance	just	like	C++.	Inheritance	provides	a	mechanism	for	creating	new
classes	that	specialise	or	modify	a	base	class	thereby	introducing	new	functionality.	We
call	the	base	class	the	parent	class	or	the	super	class.	An	example	of	a	class	inheriting
from	a	base	class	in	python	is	given	in	the	following	example.

class Account:

"""base	class	for	representing	user	accounts"""

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def __getattr__(self, name):

"""handle	attribute	reference	for	non-existent	attribute"""

return "Hey	I	dont	see	any	attribute	called	{}".format(name)

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

class SavingsAccount(Account):

def __init__(self, name, balance, rate):

super().__init__(name, balance)

self.rate = rate

def __repr__(self):

return "SavingsAccount({},	{},	{})".format(self.name, self.balance, self.rate)

>>>acct = SavingsAccount("Obi", 10, 1)

>>>repr(acct)

SavingsAccount(Obi, 10, 1)

The	super	keyword
The	super	keyword	plays	an	integral	part	in	python	inheritance.	In	a	single	inheritance
hierarchy,	the	super	keyword	is	used	to	refer	to	the	parent/super	class	without	explicitly
naming	it.	This	is	similar	to	the	super	method	in	Java.	This	comes	into	play	when
overriding	a	method	and	there	is	a	need	to	also	call	the	parent	version	of	such	method	as
shown	in	the	above	example	in	which	the	__init__	method	in	the	SavingsAccount	class
is	overridden	but	the	__init__	method	of	the	parent	class	is	also	called	using	the	super
method.	The	super	keyword	plays	a	more	integral	role	in	python	inheritance	when	a
multiple	inheritance	hierarchy	exists.

Multiple	Inheritance
In	multiple	inheritance,	a	class	can	have	multiple	parent	classes.	This	type	of	hierarchy	is
strongly	discouraged.	One	of	the	issues	with	this	kind	of	inheritance	is	the	complexity
involved	in	properly	resolving	methods	when	called.	Imagine	a	class,	D,	that	inherits	from
two	classes,	B	and	C	and	there	is	a	need	to	call	a	method	from	the	parent	classes	however
both	parent	classes	implement	the	same	method.	How	is	the	order	in	which	classes	are
searched	for	the	method	determined	?	A	Method	Resolution	Order	algorithm	determines
how	a	method	is	found	in	a	class	or	any	of	the	class’	base	classes.	In	Python,	the	resolution
order	is	calculated	at	class	definition	time	and	stored	in	the	class	__dict__	as	the	__mro__
attribute.	To	illustrate	this,	imagine	a	class	hierarchy	with	multiple	inheritance	such	as	that
showed	in	the	following	example.

>>> class A:

... def meth(self): return "A"

...

>>> class B(A):

... def meth(self): return "B"

...

>>> class C(A):

... def meth(self): return "C"

...

>>> class D(B, C):

... def meth(self): return "X"

...

>>>

>>> D.__mro__

(<class '__main__.D'>,	<class	'__main__.B'>,	<class	'__main__.C'>,	<class	'__main__.A'>,	<class	

'object'>)

>>>

To	obtain	an	mro,	the	interpreter	method	resolution	algorithm	carries	out	a	left	to	right
depth	first	listing	of	all	classes	in	the	hierarchy.	In	the	trivial	example	above,	this	results	in
the	following	class	list,	[D,	B,	A,	C,	A,	object].	Note	that	all	objects	will	inherit	from
the	root	object	class	if	no	parent	class	is	supplied	during	class	definition.	Finally,	for	each
class	that	occurs	multiple	times,	all	occurrences	are	removed	except	the	last	occurrence
resulting	in	an	mro	of	[D,	B,	C,	A,	object]	for	the	previous	class	hierarchy.	This	result
is	the	order	in	which	classes	would	be	searched	for	attributes	for	a	given	instance	of	D.

Cooperative	method	calls	with	super

This	section	will	show	the	power	of	the	super	keyword	in	a	multiple	inheritance
hierarchy.	The	class	hierarchy	from	the	previous	section	is	used.	This	example	is	from	the
excellent	write	up	by	Guido	Van	Rossum	on	Type	Unification.	Imagine	that	A	defines	a
method	that	is	overridden	by	B,	C	and	D.	Suppose	that	there	is	a	requirement	that	all	the
methods	are	called;	the	method	may	be	a	save	method	that	saves	an	attribute	for	each	type
it	is	defined	for,	so	missing	any	call	will	result	in	some	unsaved	data	in	the	hierarchy.	A
combination	of	super	and	__mro__	provide	the	ammunition	for	solving	this	problem.	This
solution	is	referred	to	as	the	call-next	method	by	Guido	van	Rossum	and	is	shown	in	the
following	snippet:

class A(object):

def meth(self):

"save	A's	data"

print("saving	A's	data")

class B(A):

def meth(self):

"save	B's	data"

super(B, self).meth()

print("saving	B's	data")

class C(A):

def meth(self):

"save	C's	data"

super(C, self).meth()

print("saving	C's	data")

class D(B, C):

def meth(self):

"save	D's	data"

super(D, self).meth()

print("saving	D's	data")

When	self.meth()	is	called	by	an	instance	of	D	for	example,	super(D,	self).meth()	will
find	and	call	B.meth(self),	since	B	is	the	first	base	class	following	D	that	defines	meth	in
D.__mro__.	Now	in	B.meth,	super(B,	self).m()	is	called	and	since	self	is	an	instance
of	D,	the	next	class	after	B	is	C	(__mro__	is	[D,	B,	C,	A])	and	the	search	for	a	definition
of	meth	continues	here.	This	finds	C.meth	which	is	called,	and	which	in	turn	calls
super(C,	self).m().	Using	the	same	MRO,	the	next	class	after	C	is	A,	and	thus	A.meth	is
called.	This	is	the	original	definition	of	m,	so	no	further	super()	call	is	made	at	this	point.
Using	super	and	method	resolution	order,	the	interpreter	has	been	able	to	find	and	call	all
version	of	the	meth	method	implemented	by	each	of	the	classes	in	the	hierarchy.	However,
multiple	inheritance	is	best	avoided	because	for	more	complex	class	hierarchies,	the	calls
may	be	way	more	complicated	than	this.

5.5	Static	and	Class	Methods
All	methods	defined	in	a	class	by	default	operate	on	instances.	However,	one	can	define
static	or	class	methods	by	decorating	such	methods	with	the	corresponding
@staticmethod	or	@classmethod	decorators.

Static	Methods

https://www.python.org/download/releases/2.2.3/descrintro/

Static	methods	are	normal	functions	that	exist	in	the	name-space	of	a	class.	Referencing	a
static	method	from	a	class	shows	that	rather	than	an	unbound	method	type,	a	function	type
is	returned	as	shown	below:

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

@staticmethod

def static_test_method():

return "Current	Account"

>>> Account.static_test_method

<function Account.static_test_method at 0x101b846a8>

To	define	a	static	method,	the	@staticmethod	decorator	is	used	and	such	methods	do	not
require	the	self	argument.	Static	methods	provide	a	mechanism	for	better	organization	as
code	related	to	a	class	are	placed	in	that	class	and	can	be	overridden	in	a	sub-class	as
needed.	Unlike	ordinary	class	methods	that	are	wrappers	around	the	actual	underlying
functions,	static	methods	return	the	underlying	functions	without	any	modification	when
used.

Class	Methods
Class	methods	as	the	name	implies	operate	on	classes	themselves	rather	than	instances.
Class	methods	are	created	using	the	@classmethod	decorator	with	the	class	rather	than
instance	passed	as	the	first	argument	to	the	method.

import json

class Account(object):

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance)

@classmethod

def from_json(cls, params_json):

params = json.loads(params_json)

return cls(params.get("name"), params.get("balance"))

@staticmethod

def type():

return "Current	Account"

A	motivating	example	of	the	usage	of	class	methods	is	as	a	factory	for	object	creation.
Imagine	data	for	the	Account	class	comes	in	different	formats	such	as	tuples,	json	string
etc.	It	is	not	possible	to	define	multiple	__init__	methods	in	a	class	so	class	methods
come	in	handy	for	such	situations.	In	the	Account	class	defined	above	for	example,	there
is	a	requirement	to	initialize	an	account	from	a	json	string	object	so	we	define	a	class
factory	method,	from_json	that	takes	in	a	json	string	object	and	handles	the	extraction	of
parameters	and	creation	of	the	account	object	using	the	extracted	parameters.	Another
example	of	a	class	method	in	action	as	a	factory	method	is	the	dict.fromkeys	methods
that	is	used	for	creating	dict	objects	from	a	sequence	of	supplied	keys	and	value.

5.6	Descriptors	and	Properties
Descriptors	are	an	esoteric	but	integral	part	of	the	python	programming	language.	They
are	used	widely	in	the	core	of	the	python	language	and	a	good	grasp	of	descriptors
provides	a	python	programmer	with	a	deeper	understanding	of	the	language.	To	set	the
stage	for	the	discussion	of	descriptors,	some	scenarios	that	a	programmer	may	encounter
are	described;	this	is	followed	by	an	explanation	of	descriptors	and	how	they	provide
elegant	solutions	to	these	scenarios.

1.	 Consider	a	program	in	which	some	rudimentary	type	checking	of	object	data
attributes	needs	to	be	enforced.	Python	is	a	dynamic	languages	so	does	not	support
type	checking	but	this	does	not	prevent	anyone	from	implementing	a	version	of	type
checking	regardless	of	how	rudimentary	it	may	be.	The	conventional	way	to	go	about
type	checking	object	attributes	may	take	the	following	form.

def __init__(self, name, age):

if isinstance(str, name):

self.name = name

else:

raise TypeError("Must	be	a	string")

if isinstance(int, age):

self.age = age

else:

raise TypeError("Must	be	an	int")

https://docs.python.org/3/library/stdtypes.html#dict.fromkeys

The	above	method	maybe	feasible	for	enforcing	such	type	checking	for	one	or	two
data	attributes	but	as	the	attributes	increase	in	number	it	gets	cumbersome.
Alternatively,	a	type_check(type,	val)	function	could	be	defined	and	this	will	be
called	in	the	__init__	method	before	assignment;	but	this	cannot	be	elegantly
applied	when	the	attribute	value	is	set	after	initialization.	A	quick	solution	that	comes
to	mind	is	the	getters	and	setters	present	in	Java	but	that	is	un-pythonic	and
cumbersome.

2.	 Consider	a	program	that	needs	object	attributes	to	be	read-only	once	initialized.	One
could	also	think	of	ways	of	implementing	this	using	Python	special	methods	but	once
again	such	implementation	could	be	unwieldy	and	cumbersome.

3.	 Finally,	consider	a	program	in	which	the	attribute	access	needs	to	be	customized.
This	maybe	to	log	such	attribute	access	or	to	even	perform	some	kind	of
transformation	of	the	attribute	for	example.	Once	again,	it	is	not	too	difficult	to	come
up	with	a	solution	to	this	although	such	solution	maybe	unwieldy	and	not	reusable.

All	the	above	mentioned	issues	are	all	linked	together	by	the	fact	that	they	are	all	related
to	attribute	references.	Attribute	access	is	trying	to	be	customized.

Enter	Python	Descriptors
Descriptors	provide	elegant,	simple,	robust	and	re-usable	solutions	to	the	above	listed
issues.	Simply	put,	a	descriptor	is	an	object	that	represents	the	value	of	an	attribute.	This
means	that	if	an	account	object	has	an	attribute	name,	a	descriptor	is	another	object	that
can	be	used	to	represent	the	value	held	by	that	attribute,	name.	Such	an	object	implements
the	__get__,	__set__	or	__delete__	special	methods	of	the	descriptor	protocol.	The
signature	for	each	of	these	methods	is	shown	below:

descr.__get__(self, obj, type=None) --> value

descr.__set__(self, obj, value) --> None

descr.__delete__(self, obj) --> None

Objects	implementing	only	the	__get__	method	are	non-data	descriptors	so	they	can	only
be	read	from	after	initialization	while	objects	implementing	the	__get__	and	__set__	are
data	descriptors	meaning	that	such	descriptor	objects	are	writable.

To	get	a	better	understanding	of	descriptors	descriptor	based	solutions	are	provided	to	the
issues	mentioned	in	the	previous	section.	Implementing	type	checking	on	an	object
attribute	using	descriptors	is	a	simple	and	straightforward	task.	A	decorator	implementing
this	type	checking	is	shown	in	the	following	snippet.

class TypedAttribute:

def __init__(self, name, type, default=None):

self.name = "_" + name

self.type = type

self.default = default if default else type()

def __get__(self, instance, cls):

return getattr(instance, self.name, self.default)

def __set__(self,instance,value):

if not isinstance(value,self.type):

raise TypeError("Must	be	a	%s" % self.type)

setattr(instance,self.name,value)

def __delete__(self,instance):

raise AttributeError("Can't	delete	attribute")

class Account:

name = TypedAttribute("name",str)

balance = TypedAttribute("balance",int, 42)

>> acct = Account()

>> acct.name = "obi"

>> acct.balance = 1234

>> acct.balance

1234

>> acct.name

obi

#	trying	to	assign	a	string	to	number	fails

>> acct.balance = '1234'

TypeError: Must be a <type 'int'>

In	the	example,	a	descriptor,	TypedAttribute	is	implemented	and	this	descriptor	class
enforces	rudimentary	type	checking	for	any	attribute	of	a	class	which	it	is	used	to
represent.	It	is	important	to	note	that	descriptors	are	effective	in	this	kind	of	case	only
when	defined	at	the	class	level	rather	than	instance	level	i.e.	in	__init__	method	as	shown
in	the	example	above.

Descriptors	are	integral	to	the	Python	language.	Descriptors	provide	the	mechanism
behind	properties,	static	methods,	class	methods,	super	and	a	host	of	other	functionality	in
Python	classes.	In	fact,	descriptors	are	the	first	type	of	object	searched	for	during	an
attribute	reference.	When	an	object	is	referenced,	a	reference,	b.x,	is	transformed	into
type(b).__dict__['x'].__get__(b,	type(b)).	The	algorithm	then	searches	for	the
attribute	in	the	following	order.

1.	 type(b).__dict__	is	searched	for	the	attribute	name	and	if	a	data	descriptor	is
found,	the	result	of	calling	the	descriptor’s	__get__	method	is	returned.	If	it	is	not
found,	then	all	base	classes	of	type(b)	are	searched	in	the	same	way.

2.	 b.__dict__	is	searched	and	if	attribute	name	is	found	here,	it	is	returned.
3.	 type(b).__dict	is	searched	for	a	non-data	descriptor	with	given	attribute	name	and

if	found	it	is	returned,
4.	 If	the	name	is	not	found,	an	AttributeError	is	raised	or	__getattr__()	is	called	if

provided.

This	precedence	chain	can	be	overridden	by	defining	custom	__getattribute__	methods
for	a	given	object	class	(the	precedence	defined	above	is	contained	in	the	default
__getattribute__	provided	by	the	interpreter).

With	a	firm	understanding	of	the	mechanics	of	descriptors,	it	is	easy	to	implement	elegant
solutions	to	the	second	and	third	issues	raised	in	the	previous	section.	Implementing	a	read
only	attribute	with	descriptors	becomes	a	simple	case	of	implementing	a	non-data

descriptor	i.e	descriptor	with	no	__set__	method.	To	solve	the	custom	access	issue,
whatever	functionality	is	required	is	added	to	the	__get__and	__set__	methods
respectively.

Class	Properties
Defining	descriptor	classes	each	time	a	descriptor	is	required	is	cumbersome.	Python
properties	provide	a	concise	way	of	adding	data	descriptors	to	attributes.	A	property
signature	is	given	below:

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

fget,	fset	and	fdel	are	the	getter,	setter	and	deleter	methods	for	such	class	attributes.
The	process	of	creating	properties	is	illustrated	with	the	following	example.

class Accout(object):

def __init__(self):

self._acct_num = None

def get_acct_num(self):

return self._acct_num

def set_acct_num(self, value):

self._acct_num = value

def del_acct_num(self):

del self._acct_num

acct_num = property(get_acct_num, set_acct_num, del_acct_num, "Account	number	property.")

If	acct	is	an	instance	of	Account,	acct.acct_num	will	invoke	the	getter,	acct.acct_num	=
value	will	invoke	the	setter	and	del	acct_num.acct_num	will	invoke	the	deleter.

The	property	object	and	functionality	can	be	implemented	in	python	as	illustrated	in
Descriptor	How-To	Guide	using	the	descriptor	protocol	as	shown	below	:

class Property(object):

"Emulate	PyProperty_Type()	in	Objects/descrobject.c"

def __init__(self, fget=None, fset=None, fdel=None, doc=None):

self.fget = fget

self.fset = fset

self.fdel = fdel

if doc is None and fget is not None:

doc = fget.__doc__

self.__doc__ = doc

def __get__(self, obj, objtype=None):

if obj is None:

return self

if self.fget is None:

raise AttributeError("unreadable	attribute")

return self.fget(obj)

def __set__(self, obj, value):

if self.fset is None:

https://docs.python.org/2/howto/descriptor.html

raise AttributeError("can't	set	attribute")

self.fset(obj, value)

def __delete__(self, obj):

if self.fdel is None:

raise AttributeError("can't	delete	attribute")

self.fdel(obj)

def getter(self, fget):

return type(self)(fget, self.fset, self.fdel, self.__doc__)

def setter(self, fset):

return type(self)(self.fget, fset, self.fdel, self.__doc__)

def deleter(self, fdel):

return type(self)(self.fget, self.fset, fdel, self.__doc__)

Python	also	provides	the	@property	decorator	that	can	be	used	to	create	read	only
attributes.	A	property	object	has	getter,	setter,	and	deleter	decorator	methods	that	can	be
used	to	create	a	copy	of	the	property	with	the	corresponding	accessor	function	set	to	the
decorated	function.	This	is	best	explained	with	an	example:

class C(object):

def __init__(self):

self._x = None

@property

#	the	x	property.	the	decorator	creates	a	read-only	property

def x(self):

return self._x

@x.setter

#	the	x	property	setter	makes	the	property	writeable

def x(self, value):

self._x = value

@x.deleter

def x(self):

del self._x

If	a	property	is	read-only	then	the	setter	method	is	left	out.

An	understanding	of	descriptors	puts	us	in	a	better	corner	to	understand	what	actually	goes
on	during	a	method	call.	Note	that	methods	are	stored	as	ordinary	functions	in	a	class
dictionary	as	shown	in	the	following	snippet.

>>>Account.inquiry

<function Account.inquiry at 0x101a3e598>

>>>

However,	object	methods	are	of	bound	method	type	as	shown	in	the	following	snippet.

>>> x = Account("nkem", 10)

>>> x.inquiry

<bound method Account.inquiry of <Account object at 0x101a3c588>>

To	understand	how	this	transformation	takes	place,	note	that	a	bound	method	is	just	a	thin
wrapper	around	the	class	function.	Functions	are	descriptors	because	they	have	the
__get__	method	attribute	so	a	reference	to	a	function	will	result	in	a	call	to	the	__get__
method	of	the	function	and	this	returns	the	desired	type,	the	function	itself	or	a	bound
method,	depending	on	whether	this	reference	is	from	a	class	or	from	an	instance	of	the
class.	It	is	not	difficult	to	imagine	how	static	and	class	methods	maybe	implemented	by
the	function	descriptor	and	this	is	left	to	the	reader	to	come	up	with.

5.7	Abstract	Base	Classes
Sometimes,	it	is	necessary	to	enforce	a	contract	between	classes	in	a	program.	For
example,	it	may	be	necessary	for	all	classes	to	implement	a	set	of	methods.	This	is
accomplished	using	interfaces	and	abstract	classes	in	statically	typed	languages	like	Java.
In	Python,	a	base	class	with	default	methods	may	be	implemented	and	then	all	other
classes	within	the	set	inherit	from	the	base	class.	However,	there	is	a	requirement	for	each
each	subclass	to	have	its	own	implementation	and	this	rule	needs	to	be	enforced.	All	the
needed	methods	can	be	defined	in	a	base	class	with	each	of	them	having	an
implementation	that	raises	the	NotImplementedError	exception.	All	subclasses	then	have
to	override	these	methods	in	order	to	use	them.	However	this	does	not	still	solve	the
problem	fully.	It	is	possible	that	some	subclasses	may	not	implement	some	of	these
method	and	it	would	not	be	known	till	a	method	call	was	attempted	at	runtime.

Consider	another	situation	of	a	proxy	object	that	passes	method	calls	to	another	object.
Such	a	proxy	object	may	implement	all	required	methods	of	a	type	via	its	proxied	object,
but	an	isinstance	test	on	such	a	proxy	object	for	the	proxied	object	will	fail	to	produce
the	correct	result.

Python’s	Abstract	base	classes	provide	a	simple	and	elegant	solution	to	these	issues
mentioned	above.	The	abstract	base	class	functionality	is	provided	by	the	abc	module.
This	module	defines	a	meta-class	(we	discuss	meta-classes	in	the	chapter	on	meta-
programming)	and	a	set	of	decorators	that	are	used	in	the	creation	of	abstract	base	classes.
When	defining	an	abstract	base	class	we	use	the	ABCMeta	meta-class	from	the	abc	module
as	the	meta-class	for	the	abstract	base	class	and	then	make	use	of	the	@abstractmethod
and	@abstractproperty	decorators	to	create	methods	and	properties	that	must	be
implemented	by	non-abstract	subclasses.	If	a	subclass	doesn’t	implement	any	of	the
abstract	methods	or	properties	then	it	is	also	an	abstract	class	and	cannot	be	instantiated	as
illustrated	below:

from abc import ABCMeta, abstractmethod

class Vehicle(object):

__meta-class__ = ABCMeta

@abstractmethod

def change_gear(self):

pass

@abstractmethod

def start_engine(self):

pass

class Car(Vehicle):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

#	abstract	methods	not	implemented

>>> car = Car("Toyota", "Avensis", "silver")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't	instantiate	abstract	class	Car	with	abstract	methods	change_gear,	start_engine

>>>

Once,	a	class	implements	all	abstract	methods	then	that	class	becomes	a	concrete	class	and
can	be	instantiated	by	a	user.

from abc import ABCMeta, abstractmethod

class Vehicle(object):

__meta-class__ = ABCMeta

@abstractmethod

def change_gear(self):

pass

@abstractmethod

def start_engine(self):

pass

class Car(Vehicle):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

def change_gear(self):

print("Changing	gear")

def start_engine(self):

print("Changing	engine")

>>> car = Car("Toyota", "Avensis", "silver")

>>> print(isinstance(car, Vehicle))

True

Abstract	base	classes	also	allow	existing	classes	to	register	as	part	of	its	hierarchy	but	it
performs	no	check	on	whether	such	classes	implement	all	the	methods	and	properties	that
have	been	marked	as	abstract.	This	provides	a	simple	solution	to	the	second	issue	raised	in
the	opening	paragraph.	Now,	a	proxy	class	can	be	registered	with	an	abstract	base	class
and	isinstance	check	will	return	the	correct	answer	when	used.

from abc import ABCMeta, abstractmethod

class Vehicle(object):

__meta-class__ = ABCMeta

@abstractmethod

def change_gear(self):

pass

@abstractmethod

def start_engine(self):

pass

class Car(object):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

>>> Vehicle.register(Car)

>>> car = Car("Toyota", "Avensis", "silver")

>>> print(isinstance(car, Vehicle))

True

Abstract	base	classes	are	used	a	lot	in	python	library.	They	provide	a	mean	to	group
python	objects	such	as	number	types	that	have	a	relatively	flat	hierarchy.	The
collections	module	also	contains	abstract	base	classes	for	various	kinds	of	operations
involving	sets,	sequences	and	dictionaries.	Whenever	we	want	to	enforce	contracts
between	classes	in	python	just	as	interfaces	do	in	Java,	abstract	base	classes	is	the	way	to
go.

6.	The	Function

The	function	is	another	organizational	unit	of	code	in	Python.	Python	functions	are	either
named	or	anonymous	set	of	statements	or	expressions.	In	Python,	functions	are	first	class
objects.	This	means	that	there	is	no	restriction	on	function	use	as	values;	introspection	on
functions	can	be	carried	out,	functions	can	be	assigned	to	variables,	functions	can	be	used
as	arguments	to	other	function	and	functions	can	be	returned	from	method	or	function
calls	just	like	any	other	python	value	such	as	strings	and	numbers.

6.1	Function	Definitions
The	def	keyword	is	the	usual	way	of	creating	user-defined	functions.	Function	definitions
are	executable	statements.

def square(x):

return x**2

When	a	function	definition	such	as	the	square	function	defined	above	is	encountered,
only	the	function	definition	statement,	that	is	def	square(x),	is	executed;	this	implies
that	all	arguments	are	evaluated.	The	evaluation	of	arguments	has	some	implications	for
function	default	arguments	that	have	mutable	data	structure	as	values;	this	will	be	covered
later	on	in	this	chapter.	The	execution	of	a	function	definition	binds	the	function	name	in
the	current	name-space	to	a	function	object	which	is	a	wrapper	around	the	executable	code
for	the	function.	This	function	object	contains	a	reference	to	the	current	global	name-space
which	is	the	global	name-space	that	is	used	when	the	function	is	called.	The	function
definition	does	not	execute	the	function	body;	this	gets	executed	only	when	the	function	is
called.

Python	also	has	support	for	anonymous	functions.	These	functions	are	created	using	the
lambda	keyword.	Lambda	expressions	in	python	are	of	the	form:

lambda_expr ::= "lambda" [parameter_list]: expression

Lambda	expressions	return	function	objects	after	evaluation	and	have	same	attributes	as
named	functions.	Lambda	expressions	are	normally	only	used	for	very	simple	functions	in
python	due	to	the	fact	that	a	lambda	definition	can	contain	only	one	expression.	A	lambda
definition	for	the	square	function	defined	above	is	given	in	the	following	snippet.

>>> square = lambda x: x**2

>>> for i in range(10):

square(i)

0

1

4

9

16

25

36

49

64

81

>>>

6.2	Functions	are	Objects
Functions	just	like	other	values	are	objects.	Functions	have	the	type	function.

>>> def square(x):

... return x*x

>>> type(square)

<class 'function'>

Like	every	other	object,	introspection	on	functions	using	the	dir()	function	provides	a	list
of	function	attributes.

def square(x):

return x**2

>>> square

<function square at 0x031AA230>

>>> dir(square)

['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delat

tr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribut

e__', '__globals__', '__gt__', '__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', '__modu

le__', '__name__', '__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '

__setattr__', '__sizeof__', '__str__', '__subclasshook__']

>>>

Some	important	function	attributes	include:

__annotations__	this	attribute	contains	optional	meta-data	information	about
arguments	and	return	types	of	a	function	definition.	Python	3	introduced	the	optional
annotation	functionality	primarily	to	help	tools	used	in	developing	python	software.
An	example	of	a	function	annotation	is	shown	in	the	following	example.

>>> def square(x: int) -> int:

... return x*x

...

square.__annotations__

{'x': <class 'int'>,	'return':	<class	'int'>}

Parameters	are	annotated	by	a	colon	after	the	parameter	name,	followed	by	an
expression	evaluating	to	the	value	of	the	annotation.	Return	values	are	annotated	by	a
literal	->,	followed	by	an	expression,	between	the	parameter	list	and	the	colon
denoting	the	end	of	the	def	statement.	In	the	case	of	default	values	for	functions,	the
annotation	is	of	the	following	form.

>>> def def_annotation(x: int, y: str = "obi"):

... pass

__doc__	returns	the	documentation	string	for	the	given	function.

def square(x):

"""return	square	of	given	number"""

return x**2

>>> square.__doc__

'return	square	of	given	number'

__name__	returns	function	name.

>>> square.func_name

'square'

__module__	returns	the	name	of	module	function	is	defined	in.

>>> square.__module__

'__main__'

__defaults__	returns	a	tuple	of	the	default	argument	values.	Default	arguments	are
discussed	later	on.
__kwdefaults__	returns	a	dict	containing	default	keyword	argument	values.
__globals__	returns	a	reference	to	the	dictionary	that	holds	the	function’s	global
variables	(see	the	chapter	5	for	a	word	on	global	variables).

>>> square.func_globals

{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__', 'square': <

n square at 0x10f099c08>, '__doc__': None, '__package__': None}

__dict__	returns	the	name-space	supporting	arbitrary	function	attributes.

>>> square.func_dict

{}

__closure__	returns	tuple	of	cells	that	contain	bindings	for	the	function’s	free
variables.	Closures	are	discussed	later	on	in	this	chapter.

Functions	can	be	passed	as	arguments	to	other	functions.	These	functions	that	take	other
functions	as	argument	are	commonly	referred	to	as	higher	order	functions	and	these	form
a	very	important	part	of	functional	programming.	A	very	good	example	of	a	higher	order
function	is	the	map	function	that	takes	a	function	and	an	iterable	and	applies	the	function
to	each	item	in	the	iterable	returning	a	new	list.	In	the	following	example,	we	illustrate
the	use	of	the	map()	higher	order	function	by	passing	the	square	function	previously
defined	and	an	iterable	of	numbers	to	the	map	function.

>>> map(square, range(10))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A	function	can	be	defined	inside	another	function	as	well	as	returned	from	a	function	call.

>>> def make_counter():

... count = 0

... def counter():

https://docs.python.org/2/library/functions.html#map

... nonlocal count #	nonlocal	captures	the	count	binding	from	enclosing	scope	not	gl\

obal scope

... count += 1

... return count

... return counter

In	the	previous	example,	a	function,	counter	is	defined	within	another	function,
make_counter,	and	the	counter	function	is	returned	whenever	the	make_counter	function
is	executed.	Functions	can	also	be	assigned	to	variables	just	like	any	other	python	object
as	shown	below:

>>> def make_counter():

... count = 0

... def counter():

... nonlocal count #	nonlocal	captures	the	count	binding	from	enclosing	scope	not	global\

scope

... count += 1

... return count

... return counter

>>> func = make_counter()

>>> func

<function inner at 0x031AA270>

>>>

In	the	above	example,	the	make_counter	function	returns	a	function	when	called	and	this
is	assigned	to	the	variable	func.	This	variable	refers	to	a	function	object	and	can	be	called
just	like	any	other	function	as	shown	in	the	following	example:

>>> func()

1

6.3	Functions	are	descriptors
As	mentioned	in	the	previous	chapter,	functions	are	also	descriptors.	An	inspection	of	the
attributes	of	a	function	as	shown	in	the	following	example	shows	that	a	function	has	the
__get__	method	attribute	thus	making	them	non-data	descriptors.

>>> def square(x):

... return x**2

...

>>> dir(square) #	see	the	__get__	attribute

['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delat

tr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribut

e__', '__globals__', '__gt__', '__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', '__modu

le__', '__name__', '__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '

__setattr__', '__sizeof__', '__str__', '__subclasshook__']

>>>

This	__get__	method	is	called	whenever	a	function	is	referenced	and	provides	the
mechanism	for	handling	method	calls	from	objects	and	ordinary	function	calls.	This
descriptor	characteristic	of	a	function	enables	functions	to	return	either	itself	or	a	bound
method/	when	referenced	depending	on	where	and	how	it	is	referenced.

6.4	Calling	Functions

In	addition	to	calling	functions	in	the	conventional	way	with	normal	arguments,	Python
also	supports	functions	with	variable	number	of	arguments.	These	variable	number	of
arguments	come	in	three	flavours	that	are	described	below:

Default	Argument	Values:	This	allows	a	user	to	define	default	values	for	some	or	all
function	arguments.	In	this	case,	such	a	function	can	be	called	with	fewer	arguments
and	the	interpreter	will	use	default	values	for	arguments	that	are	not	supplied	during
function	call.	This	following	example	is	illustrative.

def show_args(arg, def_arg=1, def_arg2=2):

return "arg={},	def_arg={},	def_arg2={}".format(arg, def_arg, def_arg2)

The	above	function	has	been	defined	with	a	single	normal	positional	argument,	arg
and	two	default	arguments,	def_arg	and	def_arg2.	The	function	can	be	called	in	any
of	the	following	ways	below:

Supplying	non-default	positional	argument	values	only;	in	this	case	the	other
arguments	take	on	the	supplied	default	values:

def show_args(arg, def_arg=1, def_arg2=2):

return "arg={},	def_arg={},	def_arg2={}".format(arg, def_arg, def_arg2)

>>> show_args("tranquility")

'arg=tranquility,	def_arg=1,	def_arg2=2'

Supplying	values	to	override	some	default	arguments	in	addition	to	the	non-
default	positional	arguments:

def show_args(arg, def_arg=1, def_arg2=2):

return "arg={},	def_arg={},	def_arg2={}".format(arg, def_arg, def_arg2)

>>> show_args("tranquility", "to	Houston")

'arg=tranquility,	def_arg=to	Houston,	def_arg2=2'

Supplying	values	for	all	arguments	overriding	even	arguments	with	default
values.

def show_args(arg, def_arg=1, def_arg2=2):

return "arg={},	def_arg={},	def_arg2={}".format(arg, def_arg, def_arg2)

>>> show_args("tranquility", "to	Houston", "the	eagle	has	landed")

'arg=tranquility,	def_arg=to	Houston,	def_arg2=the	eagle	has	landed'

It	is	also	very	important	to	be	careful	when	using	mutable	data	structures	as	default
arguments.	Function	definitions	get	executed	only	once	so	these	mutable	data
structures	are	created	once	at	definition	time.	This	means	that	the	same	mutable	data
structure	is	used	for	all	function	calls	as	shown	in	the	following	example:

def show_args_using_mutable_defaults(arg, def_arg=[]):

def_arg.append("Hello	World")

return "arg={},	def_arg={}".format(arg, def_arg)

>>> show_args_using_mutable_defaults("test")

"arg=test,	def_arg=['Hello	World']"

>>> show_args_using_mutable_defaults("test	2")

"arg=test	2,	def_arg=['Hello	World',	'Hello	World']"

On	every	function	call,	Hello	World	is	added	to	the	def_arg	list	and	after	two
function	calls	the	default	argument	has	two	hello	world	strings.	It	is	important	to	take
note	of	this	when	using	mutable	default	arguments	as	default	values.

Keyword	Argument:	Functions	can	be	called	using	keyword	arguments	of	the	form
kwarg=value.	A	kwarg	refers	to	the	name	of	arguments	used	in	a	function	definition.
Take	the	function	defined	below	with	positional	non-default	and	default	arguments.

def show_args(arg, def_arg=1):

return "arg={},	def_arg={}".format(arg, def_arg)

To	illustrate	function	calls	with	key	word	arguments,	the	following	function	can	be
called	in	any	of	the	following	ways:

show_args(arg="test", def_arg=3)

show_args(test)

show_args(arg="test")

show_args("test", 3)

In	a	function	call,	keyword	arguments	must	not	come	before	non-keyword	arguments
thus	the	following	will	fail:

show_args(def_arg=4)

A	function	cannot	supply	duplicate	values	for	an	argument	so	the	following	is	illegal:

show_args("test", arg="testing")

In	the	above	the	argument	arg	is	a	positional	argument	so	the	value	
test	is	assigned	to	it.	Trying	to	assign	to	the	keyword	arg	again	is	an	attempt	at
multiple	assignment	and	this	is	illegal.

All	the	keyword	arguments	passed	must	match	one	of	the	arguments	accepted	by	the
function	and	the	order	of	keywords	including	non-optional	arguments	is	not
important	so	the	following	in	which	the	order	of	argument	is	switched	is	legal:

show_args(def_arg="testing", arg="test")

Arbitrary	Argument	List:	Python	also	supports	defining	functions	that	take
arbitrary	number	of	arguments	that	are	passed	to	the	function	in	a	
tuple.	An	example	of	this	from	the	python	tutorial	is	given	below:

def write_multiple_items(file, separator, *args):

file.write(separator.join(args))

The	arbitrary	number	of	arguments	must	come	after	normal	arguments;	in	this	case,
after	the	file	and	separator	arguments.	The	following	is	an	example	of	function
calls	to	the	above	defined	function:

f = open("test.txt", "wb")

write_multiple_items(f, "	", "one", "two", "three", "four", "five")

The	arguments	one	two	three	four	five	are	all	bunched	together	into	a	tuple	that
can	be	accessed	via	the	args	argument.

Unpacking	Function	Argument
Sometimes,	arguments	for	a	function	call	are	either	in	a	tuple,	a	list	or	a	dict.	These
arguments	can	be	unpacked	into	functions	for	function	calls	using	*	or	**	operators.
Consider	the	following	function	that	takes	two	positional	arguments	and	prints	out	the
values

def print_args(a, b):

print a

print b

If	the	values	for	a	function	call	are	in	a	list	then	these	values	can	be	unpacked	directly	into
the	function	as	shown	below:

>>> args = [1, 2]

>>> print_args(*args)

1

2

Similarly,	dictionaries	can	be	used	to	store	keyword	to	value	mapping	and	the	**
operator	is	used	to	unpack	the	keyword	arguments	to	the	functions	as	shown	below:

>>> def parrot(voltage, state=’a stiff’, action=’voom’):

print "--	This	parrot	wouldn’t", action,

print "if	you	put", voltage, "volts	through	it.",

print "E’s", state, "!"

>>> d = {"voltage": "four	million", "state": "bleedin’	demised", "action": "VOOM"}

>>> parrot(**d)

>>> This parrot wouldn’t VOOM if you put four million volts through it. E’s bleedin’ demised

*	and	**	Function	Parameters
Sometimes,	when	defining	a	function,	it	is	not	known	before	hand	the	number	of
arguments	to	expect.	This	leads	to	function	definitions	of	the	following	signature:

show_args(arg, *args, **kwargs)

The	*args	argument	represents	an	unknown	length	of	sequence	of	positional	arguments
while	**kwargs	represents	a	dict	of	keyword	name	value	mappings	which	may	contain
any	amount	of	keyword	name	value	mapping.	The	*args	must	come	before	**kwargs	in
the	function	definition.	The	following	illustrates	this:

def show_args(arg, *args, **kwargs):

print arg

for item in args:

print args

for key, value in kwargs:

print key, value

>>> args = [1, 2, 3, 4]

>>> kwargs = dict(name='testing', age=24, year=2014)

>>> show_args("hey", *args, **kwargs)

hey

1

2

3

4

age 24

name testing

year 2014

The	normal	argument	must	be	supplied	to	the	function	but	the	*args	and	**kwargs	are
optional	as	shown	below:

>>> show_args("hey", *args, **kwargs)

hey

At	function	call	the	normal	argument(s)	is/are	supplied	normally	while	the	optional
arguments	are	unpacked.	This	kind	of	function	definition	comes	in	handy	when	dealing
with	function	decorators	as	will	be	seen	in	the	chapter	on	decorators.

6.5	Nested	functions	and	Closures
Function	definitions	within	another	function	creates	nested	functions	as	shown	in	the
following	snippet.

>>> def make_counter():

... count = 0

... def counter():

... nonlocal count #	nonlocal	captures	the	count	binding	from	enclosing	scope	not	global\

scope

... count += 1

... return count

... return counter

...

In	the	nested	function	definition,	the	function	counter	is	in	scope	only	inside	the	function
make_counter,	so	it	is	often	useful	when	the	counter	function	is	returned	from	the
make_counter	function.	In	nested	functions	such	as	in	the	above	example,	a	new	instance
of	the	nested	function	is	created	on	each	call	to	outer	function.	This	is	because	during	each
execution	of	the	make_counter	function,	the	definition	of	the	counter	function	is	executed
but	the	body	is	not	executed.

A	nested	function	has	access	to	the	environment	in	which	it	was	created.	A	result	is	that	a
variable	defined	in	the	outer	function	can	be	referenced	in	the	inner	function	even	after	the
outer	functions	has	finished	execution.

>>> x = make_counter()

>>> x

<function counter at 0x0273BCF0>

>>> x()

1

When	nested	functions	reference	variables	from	the	outer	function	in	which	they	are
defined,	the	nested	function	is	said	to	be	closed	over	the	referenced	variable.	The
__closure__	special	attribute	of	a	function	object	is	used	to	access	the	closed	variables	as
shown	in	the	next	example.

>>> cl = x.__closure__

>>> cl

(<cell at 0x029E4470: str object at 0x02A0FD90>,)

>>> cl[0].cell_contents

0

Closures	in	previous	versions	of	Python	have	a	quirky	behaviour.	In	Python	2.x	and	below,
variables	that	reference	immutable	types	such	as	string	and	numbers	cannot	be	rebound
within	a	closure.	The	following	example	illustrates	this.

def counter():

count = 0

def c():

count += 1

return count

return c

>>> c = counter()

>>> c()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 4, in c

UnboundLocalError: local variable 'count' referenced before assignment

A	rather	wonky	solution	to	this	is	to	make	use	of	a	mutable	type	to	capture	the	closure	as
shown	below:

def counter():

count = [0]

def c():

count[0] += 1

return count[0]

return c

>>> c = counter()

>>> c()

1

>>> c()

2

>>> c()

3

Python	3	introduced	the	nonlocal	key	word	that	fixed	this	closure	scoping	issue	as	shown
in	the	following	snippet.

def counter():

count = 0

def c():

nonlocal count

count += 1

return count

return c

Closures	can	be	used	for	maintaining	states	(isn’t	that	what	classes	are	for)	and	for	some
simple	cases	provide	a	more	succinct	and	readable	solution	than	classes.	A	class	version	of
a	logging	API	tech_pro	is	shown	in	the	following	example.

class Log:

def __init__(self, level):

self._level = level

def __call__(self, message):

print("{}:	{}".format(self._level, message))

log_info = Log("info")

log_warning = Log("warning")

log_error = Log("error")

The	same	functionality	that	the	class	based	version	possesses	can	be	implemented	with
functions	closures	as	shown	in	the	following	snippet:

def make_log(level):

def _(message):

print("{}:	{}".format(level, message))

return _

log_info = make_log("info")

log_warning = make_log("warning")

log_error = make_log("error")

The	closure	based	version	as	can	be	seen	is	way	more	succinct	and	readable	even	though
both	versions	implement	exactly	the	same	functionality.	Closures	also	play	a	major	role	in
a	major	function	decorators.	This	is	a	widely	used	functionality	that	is	explained	in	the
chapter	on	meta-programming.	Closures	also	form	the	basis	for	the	partial	function,	a
function	that	is	described	in	detail	in	the	next	section.	With	a	firm	understanding	of
functions,	a	tour	of	some	techniques	and	modules	for	functional	programming	in	Python	is
given	in	the	following	section.

6.6	A	Byte	of	Functional	Programming

The	Basics
The	hallmark	of	functional	programming	is	the	absence	of	side	effects	in	written	code.
This	essentially	means	that	in	the	functional	style	of	programming	object	values	do	not
change	once	they	are	created	and	to	reflect	a	change	in	an	object	value,	a	new	object	with

http://tech.pro/tutorial/1512/python-decorators

the	changed	value	is	created.	An	example	of	a	function	with	side	effects	is	the	following
snippet	in	which	the	original	argument	is	modified	and	then	returned.

def squares(numbers):

for i, v in enumerate(numbers):

numbers[i] = v**2

return numbers

A	functional	version	of	the	above	would	avoid	any	modification	to	arguments	and	create
new	values	that	are	then	returned	as	shown	in	the	following	example.

def squares(numbers):

return map(lambda x:x*x, numbers)

Language	features	such	as	first	class	functions	make	functional	programming	possible
while	programming	techniques	such	as	mapping,	reducing,	filtering,	currying	and
recursion	are	examples	of	techniques	for	implementing	a	functional	style	of
programming.	In	the	above	example,	the	map	function	applies	the	function	lambda	x:x*x
to	each	element	in	the	supplied	sequence	of	numbers.

Python	provides	built-in	functions	such	as	map,	filter	and	reduce	that	aid	in	functional
programming.	A	description	of	these	functions	follows.

1.	 map(func,	iterable):	This	is	a	classic	functional	programming	construct	that	takes
a	function	and	an	iterable	as	argument	and	returns	an	iterator	that	applies	the	function
to	each	item	in	the	iterable.	The	squares	function	from	above	is	an	illustration	of	map
in	use.	The	ideas	behind	the	map	and	reduce	constructs	have	seen	application	in	large
scale	data	processing	with	the	popular	MapReduce	programming	model	that	is	used	to
fan	out	(map)	operation	on	large	data	streams	to	a	cluster	of	distributed	machines	for
computation	and	then	gather	the	result	of	these	computations	together	(reduce).

2.	 filter(func,	iterable):	This	also	takes	a	function	and	an	iterable	as	argument.	It
returns	an	iterator	that	applies	func	to	each	element	of	the	iterable	and	returns
elements	of	the	iterable	for	which	the	result	of	the	application	is	True.	The	following
trivial	example	selects	all	even	numbers	from	a	list.

>>> even = lambda x: x%2==0

>>> even(10)

True

>>> filter(even, range(10))

<filter object at 0x101c7b208>

>>> list(filter(even, range(10)))

[0, 2, 4, 6, 8]

3.	 reduce(func,	iterable[,	initializer]):	This	is	no	longer	a	built-in	and	was
moved	into	the	functools	modules	in	Python	3	but	is	discussed	here	for
completeness.	The	reduce	function	applies	func	cumulatively	to	the	items	in
iterable	in	order	to	get	a	single	value	that	is	returned.	func	is	a	function	that	takes
two	positional	arguments.	For	example,	reduce(lambda	x,	y:	x+y,	[1,	2,	3,	4,
5])	calculates	((((1+2)+3)+4)+5);	it	starts	out	reducing	the	first	two	arguments	then
reduces	the	third	with	the	result	of	the	first	two	and	so	on.	If	the	optional	initializer	is

provided,	then	it	serves	as	the	base	case.	An	illustration	of	this	is	flattening	a	nested
list	which	we	illustrate	below.

>>> import functools

>>> def flatten_list(nested_list):

... return functools.reduce(lambda x, y: x + y, nested_list, [])

...

>>> flatten_list([[1, 3, 4], [5,6, 7], [8, 9, 10]])

[1, 3, 4, 5, 6, 7, 8, 9, 10]

The	above	listed	functions	are	examples	of	built-in	higher	order	functions	in	Python.
Some	of	the	functionality	they	provide	can	be	replicated	using	more	common	constructs.
Comprehensions	are	one	of	the	most	popular	alternatives	to	these	higher	order	functions.

Comprehensions
Python	comprehensions	are	syntactic	constructs	that	enable	sequences	to	be	built	from
other	sequences	in	a	clear	and	concise	manner.	Python	comprehensions	are	of	three	types
namely:

1.	 List	Comprehensions.
2.	 Set	Comprehensions.
3.	 Dictionary	Comprehensions.

List	Comprehensions

List	comprehensions	are	by	far	the	most	popular	Python	comprehension	construct.	List
comprehensions	provide	a	concise	way	to	create	new	list	of	elements	that	satisfy	a	given
condition	from	an	iterable.	A	list	of	squares	for	a	sequence	of	numbers	can	be	computed
using	the	following	squaresfunction	that	makes	use	of	the	map	function.

def squares(numbers):

return map(lambda x:x*x, numbers)

>>> sq = squares(range(10))

The	same	list	can	be	created	in	a	more	concise	manner	by	using	list	comprehensions	rather
than	the	map	function	as	in	the	following	example.

>>> squares = [x**2 for x in range(10)]

The	comprehension	version	is	clearer	and	more	concise	than	the	conventional	map	method
for	one	without	any	experience	in	higher	order	functions.

According	to	the	python	documentation,

a	list	comprehension	consists	of	square	brackets	containing	an	expression
followed	by	a	for	clause	and	zero	or	more	for	or	if	clauses.

[expression for item1 in iterable1 if condition1

for item2 in iterable2 if condition2

...

for itemN in iterableN if conditionN]

The	result	of	a	list	comprehension	expression	is	a	new	list	that	results	from	evaluating	the
expression	in	the	context	of	the	for	and	if	clauses	that	follow	it.	For	example,	to	create	a
list	of	the	squares	of	even	numbers	between	0	and	10,	the	following	comprehension	is
used.

>>> even_squares = [i**2 for i in range(10) if i % 2 == 0]

>>> even_squares

[0, 4, 16, 36, 64]

The	expression	i**2	is	computed	in	the	context	of	the	for	clause	that	iterates	over	the
numbers	from	0	to	10	and	the	if	clause	that	filters	out	non-even	numbers.
Nested	for	loops	and	List	Comprehensions

List	comprehensions	can	also	be	used	with	multiple	or	nested	for	loops.	Consider	for
example,	the	simple	code	fragment	shown	below	that	creates	a	tuple	from	pair	of	numbers
drawn	from	the	two	sequences	given.

>>> combs = []

>>> for x in [1,2,3]:

... for y in [3,1,4]:

... if x != y:

... combs.append((x, y))

...

>>> combs

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

The	above	can	be	rewritten	in	a	more	concise	and	simple	manner	as	shown	below	using
list	comprehensions

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

It	is	important	to	take	into	consideration	the	order	of	the	for	loops	as	used	in	the	list
comprehension.	Careful	observation	of	the	code	snippets	using	comprehension	and	that
without	comprehension	shows	that	the	order	of	the	for	loops	in	the	comprehension	follows
the	same	order	if	it	had	been	written	without	comprehensions.	The	same	applies	to	nested
for	loops	with	nesting	depth	greater	than	two.
Nested	List	Comprehensions

List	comprehensions	can	also	be	nested.	Consider	the	following	example	drawn	from	the
Python	documentation	of	a	3x4	matrix	implemented	as	a	list	of	3	lists	each	of	length	4:

>>> matrix = [

... [1, 2, 3, 4],

... [5, 6, 7, 8],

... [9, 10, 11, 12],

...]

Transposition	is	a	matrix	operation	that	creates	a	new	matrix	from	an	old	one	using	the
rows	of	the	old	matrix	as	the	columns	of	the	new	matrix	and	the	columns	of	the	old	matrix
as	the	rows	of	the	new	matrix.	The	rows	and	columns	of	the	matrix	can	be	transposed
using	the	following	nested	list	comprehension:

https://docs.python.org/2/tutorial/datastructures.html

>>> [[row[i] for row in matrix] for i in range(4)]

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

The	above	is	equivalent	to	the	following	snippet.

>>> transposed = []

>>> for i in range(4):

... transposed.append([row[i] for row in matrix])

...

>>> transposed

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

Set	Comprehensions

In	set	comprehensions,	braces	rather	than	square	brackets	are	used	to	create	new	sets.	For
example,	to	create	the	set	of	the	squares	of	all	numbers	between	0	and	10,	the	following
set	comprehensions	is	used.

>>> x = {i**2 for i in range(10)}

>>> x

set([0, 1, 4, 81, 64, 9, 16, 49, 25, 36])

>>>

Dict	Comprehensions

Braces	are	also	used	to	create	new	dictionaries	in	dict	comprehensions.	In	the	following
example,	a	mapping	of	a	number	to	its	square	is	created	using	dict	comprehensions.

>>> x = {i:i**2 for i in range(10)}

>>> x

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

Functools
The	functools	module	in	Python	contains	a	few	higher	order	functions	that	act	on	and
return	other	functions.	A	few	of	the	interesting	higher	order	functions	that	are	included	in
this	module	are	described.

1.	 partial(func,	*args,	**keywords)	This	is	a	function	that	when	called	returns	an
object	that	can	be	called	like	the	original	func	argument	with	*args	and	**keywords
as	arguments.	If	the	returned	object	is	called	with	additional	*args	or	**keyword
arguments	then	these	are	added	to	the	original	*args	and	**keywords	and	the
updated	set	of	arguments	are	used	in	the	function	call.	This	is	illustrated	with	the
following	trivial	example.

>>> from functools import partial

>>> basetwo = partial(int, base=2)

>>> basetwo.__doc__ = 'Convert	base	2	string	to	an	int.'

>>> basetwo('10010')

18

In	the	above	example,	a	new	callable,	basetwo,	that	takes	a	number	in	binary	and
converts	it	a	number	in	decimal	is	created.	What	has	happened	is	that	the	int()
functions	that	takes	two	arguments	has	been	wrapped	by	a	callable,	basetwo	that

takes	only	one	argument.	To	understand	how	this	may	work,	take	your	mind	back	to
the	discussion	about	closures	and	how	variable	captures	work.	Once	this	is
understood,	it	is	easy	to	imagine	how	to	implement	this	partial	function.	The	partial
function	has	functionality	that	is	equivalent	to	the	following	closure	as	defined	in	the
Python	documentation.

def partial(func, *args, **keywords):

def newfunc(*fargs, **fkeywords):

newkeywords = keywords.copy()

newkeywords.update(fkeywords)

return func(*(args + fargs), **newkeywords)

newfunc.func = func

newfunc.args = args

newfunc.keywords = keywords

return newfunc

Partial	objects	provide	elegant	solutions	to	some	practical	problems	that	are
encountered	during	development.	For	example,	suppose	one	has	a	list	of	points
represented	as	tuples	of	(x,y)	coordinates	and	there	is	a	requirement	to	sort	all	the
points	according	to	their	distance	from	some	other	central	point.	The	following
function	computes	the	distance	between	two	points	in	the	xy	plane:

>>> points = [(1, 2), (3, 4), (5, 6), (7, 8)]

>>> import math

>>> def distance(p1, p2):

... x1, y1 = p1

... x2, y2 = p2

... return math.hypot(x2 - x1, y2 - y1)

The	built-in	sort()	method	of	lists	is	handy	here	and	accepts	a	key	argument	that	can
be	used	to	customize	sorting,	but	it	only	works	with	functions	that	take	a	single
argument	thus	distance()	is	unsuitable.	The	partial	method	provides	an	elegant
method	of	dealing	with	this	as	shown	in	the	following	snippet.

>>> pt = (4, 3)

>>> points.sort(key=partial(distance,pt))

>>> points

[(3, 4), (1, 2), (5, 6), (7, 8)]

>>>

The	partial	function	creates	and	returns	a	callable	that	takes	a	single	argument,	a
point.	Now	note	that	the	partial	object	has	captured	the	reference	point,	pt	already	so
when	the	key	is	called	with	the	point	argument,	the	distance	function	passed	to	the
partial	function	is	used	to	compute	the	distance	between	the	supplied	point	and	the
reference	point.

2.	 @functools.lru_cache(maxsize=128,	typed=False):	This	decorator	is	used	to
wrap	a	function	with	a	memoizing	callable	that	saves	up	to	the	maxsize	number	of
most	recent	calls.	When	maxsize	is	reached,	oldest	cached	values	are	ejected.
Caching	can	save	time	when	an	expensive	or	I/O	bound	function	is	periodically
called	with	the	same	arguments.	This	decorator	makes	use	of	a	dictionary	for

storing	results	so	is	limited	to	caching	only	arguments	that	are	hashable.	The
lru_cache	decorator	provides	a	function,	the	cache_info	for	stats	on	cache	useage.

3.	 @functools.singledispatch:	This	is	a	decorator	that	changes	a	function	into	a
single	dispatch	generic	function.	The	functionality	aims	to	handle	dynamic
overloading	in	which	a	single	function	can	handle	multiple	types.	The	mechanics	of
this	is	illustrated	with	the	following	code	snippet.

@singledispatch

def fun(arg, verbose=False):

if verbose:

print("Let	me	just	say,", end="	")

print(arg)

@fun.register(int)

def _(arg, verbose=False):

if verbose:

print("Strength	in	numbers,	eh?", end="	")

print(arg)

@fun.register(list)

def _(arg, verbose=False):

if verbose:

print("Enumerate	this:")

for i, elem in enumerate(arg):

print(i, elem)

fun("Hello,	world.")

fun(1, verbose=True)

fun([1, 2, 3], verbose=True)

fun((1, 2, 3), verbose=True)

Hello, world.

Strength in numbers, eh? 1

Enumerate this:

0 1

1 2

2 3

Let me just say, (1, 2, 3)

A	generic	function	is	defined	with	the	@singledispatch	function,	the	register
decorator	is	then	used	to	define	functions	for	each	type	that	is	handled.	Dispatch	to
the	correct	function	is	carried	out	based	on	the	type	of	the	first	argument	to	the
function	call	hence	the	name,	single	generic	dispatch.	In	the	event	that	no
function	is	defined	for	the	type	of	the	first	argument	then	the	base	generic	function,
fun	in	this	case	is	called.

Sequences	and	Functional	Programming
Sequences	such	as	lists	and	tuples	play	a	central	role	in	functional	programming.	The
Structure	and	Interpretation	of	Computer	Programs,	one	of	the	greatest	computer	science
books	ever	written	devotes	almost	a	whole	chapter	to	discussing	sequences	and	their
processing.	The	importance	of	sequences	can	be	seen	from	their	pervasiveness	in	the
language.	Built-ins	such	as	map	and	filter	consume	and	produce	sequences.	Other	built-

ins	such	as	min,	max,	reduce	etc.	consume	sequence	and	return	values.	Functions	such
range,	dict.items()	produce	sequences.

The	ubiquity	of	sequences	requires	that	they	are	represented	efficiently.	One	could	come
up	with	multiple	ways	of	representing	sequences.	For	example,	a	naive	way	of
implementing	sequences	would	be	to	store	all	the	members	of	a	sequence	in	memory.	This
however	has	a	significant	drawback	that	sequences	are	limited	in	size	to	the	RAM
available	on	the	machine.	A	more	clever	solution	is	to	use	a	single	object	to	represent
sequences.	This	object	knows	how	to	compute	the	next	required	elements	of	the	sequence
on	the	fly	just	as	it	is	needed.	Python	has	a	built-in	protocol	exactly	for	doing	this,	the
__iter__	protocol.	This	is	strongly	related	to	generators,	a	brilliant	feature	of	the
language	and	these	are	both	dived	into	in	the	next	chapter.

7.	Iterators	and	Generators

In	the	last	section	of	the	previous	chapter,	the	central	part	sequences	play	in	functional
programming	and	the	need	for	their	efficient	representation	was	mentioned.	The	idea	of
representing	a	sequence	as	an	objects	that	computes	and	returns	the	next	value	of	a
sequence	just	at	the	time	such	value	is	needed	for	computation	was	also	introduces.	This
may	seem	hard	to	grasp	at	first	but	this	chapter	is	dedicated	to	explaining	all	about	this
wonderful	idea.	It	however	begins	with	a	description	of	a	profound	construct	that	has	been
left	out	of	the	discussion	till	now,	iterators.

7.1	Iterators
An	iterable	in	Python	is	any	object	that	implements	the	__iter__	special	method	that
when	called	returns	an	iterator	(the	__iter__	special	method	is	invoked	by	a	call	to
iter(obj)).	Simply	put,	a	Python	iterable	is	any	type	that	can	be	used	with	a	for..in
loop.	Python	lists,	tuples,	dicts	and	sets	are	all	examples	of	built-in	iterables.
Iterators	are	objects	that	implement	the	iterator	protocol.	The	iterator	protocol	in	defines
the	following	set	of	methods	that	need	to	be	implemented	by	any	object	that	wants	to	be
used	as	an	iterator.

__iter__	method	that	is	called	on	initialization	of	an	iterator.	This	should	return	an
object	that	has	a	__next__	method.
__next__	method	that	is	called	whenever	the	next()	global	function	is	invoked	with
the	iterator	as	argument.	The	iterator’s	__next__	method	should	return	the	next	value
of	the	iterable.	When	an	iterator	is	used	with	a	for…in	loop,	the	for	loop	implicitly
calls	next()	on	the	iterator	object.	This	method	should	raise	a	StopIteration
exception	when	there	is	no	longer	any	new	value	to	return	to	signal	the	end	of	the
iteration.

Care	should	be	taken	when	distinguishing	between	an	iterable	and	an	iterator	because
an	iterable	is	not	necessarily	an	iterator.	The	following	snippet	shows	how	this	is	possible.

>>> x = [1, 2, 3]

>>> type(x)

<class 'list'>

>>> x_iter = iter(x)

>>> type(x_iter)

<class 'list_iterator'>

#	x	is	iterable	&	can	be	used	in	a	for	loop	but	is	not	an	iterators	as	it

#	does	not	have	the	__next__	method

>>> dir(x)

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__

eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',

'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__',

__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',

'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index',

'insert', 'pop', 'remove', 'reverse', 'sort']

#	x_iter	is	an	iterator	as	it	has	the	__iter__	and	__next__	methods

>>> dir(x_iter)

['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattri

bute__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__length_hint__', '__lt__', '__ne_

_', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__',

'__sizeof__', '__str__', '__subclasshook__']

Something	worth	noting	is	that	most	times	an	iterable	object	is	also	an	iterator	so	a	call	to
such	an	object’s	__iter__	special	method	returns	the	object	itself.	This	will	be	seen	later
on	in	this	section.

Any	class	that	fully	implements	the	iterator	protocol	can	be	used	as	an	iterator.	This	is
illustrated	in	the	following	by	implementing	a	simple	iterator	that	returns	Fibonacci
numbers	up	to	a	given	maximum	value.

class Fib:

def __init__(self, max):

self.max = max

def __iter__(self): self.a = 0 self.b = 1 return self #

object is an iterable and an iterator

def __next__(self):

fib = self.a

if fib > self.max:

raise StopIteration

self.a, self.b = self.b, self.a + self.b

return fib

>>>for i in Fib(10):

print i

0

1

1

2

3

5

8

A	custom	range	function	for	looping	through	numbers	can	also	be	modelled	as	an	iterator.
The	following	is	a	simple	implementation	of	a	range	function	that	loops	from	0	upwards.

class CustomRange:

def __init__(self, max):

self.max = max

def __iter__(self):

self.curr = 0

return self

def __next__(self):

numb = self.curr

if self.curr >= self.max:

raise StopIteration

self.curr += 1

return numb

for i in CustomRange(10):

print i

0

1

2

3

4

5

6

7

8

9

Before	attempting	to	move	on,	stop	for	a	second	and	study	both	examples	carefully.	The
essence	of	an	iterator	is	that	an	iterator	object	knows	how	to	calculate	and	return	the
elements	in	the	sequence	as	needed	not	all	at	once.	The	CustomRange	does	not	return	all
the	elements	in	the	range	when	it	is	initialized	rather	it	returns	an	object	that	when	the
object’s	__iter__	method	is	called	returns	an	iterator	object	that	can	calculate	the	next
element	of	the	range	using	the	steps	defined	in	the	__next__	method.	It	is	possible	to
define	a	range	function	that	returns	all	positive	whole	numbers	(an	infinite	sequence)	by
simply	removing	the	upper	bound	on	the	method.	The	same	idea	applies	to	the	Fib
iterator.	This	basic	idea	just	explained	above	can	be	seen	in	built-in	functions	that	return
sequences.	For	example,	the	built-in	range	function	does	not	return	a	list	as	one	would
intuitively	expect	but	returns	an	object	that	returns	a	range	iterator	object	when	its
__iter__	method	is	called.	To	get	the	sequence	as	expected	the	range	iterator	object	is
passed	to	the	list	constructor	as	shown	in	the	following	example.

>>> ran = range(0, 10)

>>> type(ran)

<class 'range'>

>>> dir(ran)

['__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge

__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__l

en__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__

setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index', 'start', 'step', 'stop']

>>> iter = ran.__iter__()

>>> iter

<range_iterator object at 0x1012a4090>

>>> type(iter)

<class 'range_iterator'>

>>> iter.__next__()

0

>>> iter.__next__()

1

>>> iter.__next__()

2

>>> iter.__next__()

3

>>> iter.__next__()

4

>>> iter.__next__()

5

>>> iter.__next__()

6

>>> iter.__next__()

7

>>> iter.__next__()

8

>>> iter.__next__()

9

>>> iter.__next__()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>> ran=range(10)

>>> ran

range(0, 10)

>>> list(ran) #	use	list	to	calculate	all	values	in	the	sequence	at	once

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

The	iterator	protocol	implements	a	form	of	computing	that	is	referred	to	as	lazy
computation;	it	does	not	do	more	work	than	it	has	to	do	at	any	given	time.

The	Itertools	Module
The	concept	of	iterators	is	so	important	that	Python	comes	with	a	module,	the	itertools
module,	that	provides	some	useful	general	purpose	functions	that	return	iterators.	The
results	of	these	functions	can	be	obtained	eagerly	by	passing	the	returned	iterator	to	the
list()	constructor.	A	few	of	these	functions	are	described	below.

1.	 accumulate(iterable[,	func]):	This	takes	an	iterable	and	an	optional	func
argument	that	defaults	to	the	operator.add	function.	The	supplied	function	should
take	two	arguments	and	return	a	single	value.	The	elements	of	the	iterable	must	be	a
type	that	is	acceptable	to	the	supplied	function.	A	call	to	accumulate	returns	an
iterator	that	represents	the	result	of	applying	the	supplied	function	to	the	elements	of
the	iterable.	The	accumulated	result	for	the	first	element	of	an	iterable	is	the	element
itself	while	the	accumulated	result	for	the	nth	element	is	func(nth	element,
accumulated	result	of	(n-1)th	element).	Examples	of	the	usage	of	this	function
are	shown	in	the	following	snippet.

>>> from itertools import *

>>> accumulate([1,2,3,4,5])

<itertools.accumulate object at 0x101c67c08>

>>> list(accumulate([1,2,3,4,5]))

[1, 3, 6, 10, 15]

>>> import operator

>>> accumulate(range(1, 10), operator.mul)

<itertools.accumulate object at 0x101c6d0c8>

>>> list(accumulate(range(1, 10), operator.mul))

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

>>>

2.	 chain(*iterables):	This	takes	a	single	iterable	that	contains	a	variable	number	of
iterables	and	returns	an	iterator	representing	a	union	of	all	the	iterables	in	supplied
iterable.

>>> x = [['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']]

>>> chain.from_iterable(x)

<itertools.chain object at 0x101c6a208>

>>> list(chain.from_iterable(x))

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

>>>

3.	 combinations(iterable,	r)	This	returns	an	iterator	representing	a	set	of	r	length
sub-sequences	of	elements	from	the	input	iterable.	Elements	are	treated	as	unique
based	on	their	value	and	not	on	their	position.

>>> combinations('ABCDE', 3)

<itertools.combinations object at 0x101c71138>

>>> list(combinations('ABCDE', 3))

[('A', 'B', 'C'), ('A', 'B', 'D'), ('A', 'B', 'E'), ('A', 'C', 'D'), ('A', 'C', 'E'),

, 'E'), ('B', 'C', 'D'), ('B', 'C', 'E'), ('B', 'D', 'E'), ('C', 'D', 'E')]

>>>

4.	 filterfalse(predicate,	iterable)::	This	returns	an	iterator	that	filters	elements
from	the	iterable	argument	returning	only	those	for	which	the	value	of	applying	the
predicate	to	the	element	is	False.	If	predicate	is	None,	the	function	returns	the	items
that	are	false.

5.	 groupby(iterable,	key=None):	This	returns	an	iterator	that	returns	consecutive
keys	and	corresponding	groups	for	these	keys	from	the	iterable	argument.	The	key
argument	is	a	function	computing	a	key	value	for	each	element.	If	a	key	function	is
not	specified	or	is	None,	the	key	defaults	to	an	identity	function	that	returns	the
element	unchanged.	Generally,	the	iterable	needs	to	already	be	sorted	on	the	same
key	function.	The	returned	group	is	itself	an	iterator	that	shares	the	underlying
iterable	with	groupby().	An	example	usage	of	this	is	shown	in	the	following	snippet.

>>> from itertools import groupby

>>> {k:list(g) for k, g in groupby('AAAABBBCCD')}

{'D': ['D'], 'B': ['B', 'B', 'B'], 'A': ['A', 'A', 'A', 'A'], 'C': ['C', 'C']}

>>> >>> [k for k, g in groupby('AAAABBBCCDAABBB')]

['A', 'B', 'C', 'D', 'A', 'B']

6.	 islice(terable,	start,	stop[,	step]):	This	returns	an	iterator	that	returns
elements	from	the	iterable	that	are	within	the	specified	range.	If	start	is	non-zero,
then	elements	from	the	iterable	are	skipped	until	start	is	reached.	Afterwards,
elements	are	returned	consecutively	with	step	elements	skipped	if	step	is	greater	than
one	just	as	in	the	conventional	slice	until	the	iterable	argument	is	exhausted.	Unlike
conventional	slicing,islice()	does	not	support	negative	values	for	start,	stop,	or
step.

7.	 permutation(iterable,	r=None):	This	returns	a	succession	of	r	length
permutations	of	elements	in	the	iterable.	If	r	is	not	specified	or	is	None,	it	defaults	to
the	length	of	the	iterable.	Elements	are	treated	as	unique	based	on	their	position,	not
on	their	value	and	this	is	where	permutations	differs	from	combinations	that	was
previously	defined.	So	if	the	input	elements	are	unique,	there	will	be	no	repeat	values
in	each	permutation.

8.	 product(*iterables,	repeat=1):	This	returns	a	iterator	that	returns	successive
Cartesian	product	of	input	iterables.	This	is	equivalent	to	nested	for-loops	in	a	list

expression.	For	example,	product(A,	B)	returns	an	iterator	that	returns	values	that
are	the	same	as	[(x,y)	for	x	in	A	for	y	in	B].	This	function	can	compute	the
product	of	an	iterable	with	itself	by	specifying	the	number	of	repetitions	with	the
optional	repeat	keyword	argument.	For	example,	product(A,	repeat=4)	means	the
same	as	product(A,	A,	A,	A).

7.2	Generators
Generators	and	iterators	have	a	very	intimate	relationship.	In	short,	Python	generators	are
iterators	and	understanding	generators	gives	one	an	idea	of	how	iterators	can	be
implemented.	This	may	sound	quite	circular	but	after	going	through	an	explanation	of
generators,	it	will	become	clearer.	PEP	255	that	describes	simple	generators	refers	to
generators	by	their	full	name,	generator-iterators.	Generators	just	like	the	name	suggests
generate	(or	consume)	values	when	their	__next__	method	is	called.	Generators	are	used
either	by	explicitly	calling	the	__next__	method	on	the	generator	object	or	using	the
generator	object	in	a	for…in	loop.	Generators	are	of	two	types:

1.	 Generator	Functions
2.	 Generator	Expressions

Generator	Functions
Generator	functions	are	functions	that	contain	the	yield	expression.	Calling	a	function
that	contains	a	yield	expression	returns	a	generator	object.	For	example,	the	Fibonacci
iterator	can	be	recast	as	a	generator	using	the	yield	keyword	as	shown	in	the	following
example.

def fib(max):

a, b = 0, 1

while a < max:

yield a

a, b = b, a + b

The	yield	keyword

The	yield	keyword	has	the	following	syntax.

`yield expression_list`

The	yield	keyword	expression	is	central	to	generator	functions	but	what	does	this
expression	really	do?	To	understand	the	yield	expression,	contrast	it	with	the	return
keyword.	The	return	keyword	when	encountered	returns	control	to	the	caller	of	a
function	effectively	ending	the	function	execution.	This	is	shown	in	the	following	example
by	calling	the	normal	Fibonacci	function	to	return	all	Fibonacci	numbers	less	than	10.

>>> def fib(max):

... numbers = []

... a, b = 0, 1

... while a < max:

... numbers.append(a)

... a, b = b, a+b

... return numbers

https://www.python.org/dev/peps/pep-0255/

...

>>> fib(10) #	all	values	are	returned	at	once

[0, 1, 1, 2, 3, 5, 8]

On	the	other	hand,	the	presence	of	the	yield	expression	in	a	function	complicates	things	a
bit.	When	a	function	with	a	yield	expression	is	called,	the	function	does	not	run	like	a
normal	function	rather	it	returns	a	generator	expression.	This	is	illustrated	by	a	call	to	the
fib	function	in	the	following	snippet.

>>> f = fib(10)

>>> f

<generator object fib at 0x1013d8828>

The	generator	object	executes	when	its	__next__	method	is	invoked	and	the	generator
object	executes	all	statements	in	the	function	definition	till	the	yield	keyword	is
encountered.

>>> f.__next__()

0

>>> f.__next__()

1

>>> f.__next__()

1

>>> f.__next__()

2

The	object	suspends	execution	at	that	point,	saves	its	context	and	returns	any	value	in	the
expression_list	to	the	caller.	When	the	caller	invokes	__next__()	method	of	the	generator
object,	execution	of	the	function	continues	till	another	yield	or	return	expression	is
encountered	or	end	of	function	is	reached.	This	continues	till	the	loop	condition	is	false
and	a	StopIteration	exception	is	raised	to	signal	that	there	is	no	more	data	to	generate.
To	quote	PEP	255,

If	a	yield	statement	is	encountered,	the	state	of	the	function	is	frozen,	and	the	value
of	expression_list	is	returned	to	.__next__()'s	caller.	By	“frozen”	we	mean	that	all
local	state	is	retained,	including	the	current	bindings	of	local	variables,	the	instruction
pointer,	and	the	internal	evaluation	stack:	enough	information	is	saved	so	that	the
next	time	.next()	is	invoked,	the	function	can	proceed	exactly	as	if	the	yield
statement	were	just	another	external	call.	On	the	other	hand	when	a	function
encounters	a	return	statement,	it	returns	to	the	caller	along	with	any	value
proceeding	the	return	statement	and	the	execution	of	such	function	is	complete	for	all
intent	and	purposes.	One	can	think	of	yield	as	causing	only	a	temporary	interruption
in	the	executions	of	a	function.

With	a	better	understanding	of	generators,	it	is	not	difficult	to	see	how	generators	can	be
used	to	implement	iterators.	Generators	know	how	to	calculate	the	next	value	in	a
sequence	so	functions	that	return	iterators	can	be	rewritten	using	the	yield	statement.	To
illustrate	this,	the	accumulator	function	from	the	itertools	module	can	be	rewritten
using	generators	as	in	the	following	snippet.

def accumulate(iterable, func=operator.add):

'Return	running	totals'

#	accumulate([1,2,3,4,5])	-->	1	3	6	10	15

#	accumulate([1,2,3,4,5],	operator.mul)	-->	1	2	6	24	120

it = iter(iterable)

try:

total = next(it)

except StopIteration:

return

yield total

for element in it:

total = func(total, element)

yield total

Similarly,	one	can	emulate	a	generator	object	by	implementing	the	iterator	protocol
discussed	at	the	start	of	this	chapter.	However,	the	yield	keyword	provides	a	more
succinct	and	elegant	method	for	creating	generators.

Generator	Expressions
In	the	previous	chapter,	list	comprehensions	were	discussed.	One	drawback	with	list
comprehensions	is	that	values	are	calculated	all	at	once	regardless	of	whether	the	values
are	needed	at	that	time	or	not	(eager	calculation).	This	may	sometimes	consume	an
inordinate	amount	of	computer	memory.	PEP	289	proposed	the	generator	expression	to
resolve	this	and	this	proposal	was	accepted	and	added	to	the	language.	Generator
expressions	are	like	list	comprehensions;	the	only	difference	is	that	the	square	brackets	in
list	comprehensions	are	replaced	by	circular	brackets	that	return	a	generator	expression
object.

To	generate	a	list	of	the	square	of	number	from	0	to	10	using	list	comprehensions,	the
following	is	done.

>>> squares = [i**2 for i in range(10)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A	generator	expression	could	be	used	in	place	of	a	list	comprehension	as	shown	in	the
following	snippet.

>>> squares = (i**2 for i in range(10))

>>> squares

<generator object <genexpr> at 0x1069a6d70>

The	values	of	the	generator	can	then	be	accessed	using	for…in	loops	or	via	a	call	to	the
__next__()	method	of	the	generator	object	as	shown	below.

>>> squares = (i**2 for i in range(10))

>>> for square in squares:

print(square)

0

1

4

9

16

https://www.python.org/dev/peps/pep-0289/

25

36

49

64

81

Generator	expression	create	generator	objects	without	using	the	yield	expression.

The	Beauty	of	Generators	and	Iterators
Generators	really	shine	when	working	with	massive	amounts	of	data	streams.	Consider	the
very	representative	but	rather	trivial	example	of	generating	a	stream	of	prime	numbers.	A
method	for	calculating	this	set	is	the	Sieve	of	Eratosthenes.	The	following	algorithm	will
find	all	the	prime	numbers	less	than	or	equal	to	a	given	integer,	n,	by	the	sieve	of
Eratosthenes’	method:

1. Create a list of consecutive integers from 2 to n: (2, 3, 4, ..., n).

2. Initially, let p equal 2, the first prime number.

3. Starting from p, enumerate its multiples by counting to n in increments of p, and mark them

n the list (these will be 2p, 3p, 4p, ... ; p itself should not be marked).

4. Find the first number greater than p in the list that is not marked. If there was no such

ber, stop. Otherwise, let p now equal this new number (which is the next prime), and repeat from

p 3.

When	the	algorithm	terminates,	the	remaining	numbers	not	marked	in	the	list	are	all	the
primes	below	n.	Now	this	is	a	rather	trivial	algorithm	and	this	is	implemented	using
generators.

from itertools import count

def primes_to(gen, max_val):

for i in range(max_val):

print(gen.__next__())

def filter_multiples_of_n(n, ints):

#	ints	is	a	generator	that	can	have	other	generators	within	it

for i in ints:

if (i % n) != 0:

yield i

def sieve(ints):

while True:

prime = ints.__next__()

yield prime

#	ints	is	now	a	generator	that	produces	integers	that	are	not

#	multiples	of	prime

ints = filter_multiples_of_n(prime, ints)

#	all	prime	numbers	less	than	400

primes_to(sieve(count(2)), 10)

2

3

5

7

11

13

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

17

19

23

29

The	above	example	though	very	simple,	shows	the	beauty	of	how	generators	can	be
chained	together	with	the	output	of	one	acting	as	input	to	another;	think	of	this	stacking	of
generators	with	one	another	as	a	kind	of	processing	pipeline.	The
filter_multiples_of_n	function	is	worth	discussing	a	bit	here	because	it	maybe
confusing	at	first.	counts(2)	when	initialized	returns	a	generator	that	returns	a	sequence
of	consecutive	numbers	from	2	so	the	line,	prime=ints.__next__()	returns	2	on	the	first
iteration.	After	the	yield	expression,	ints=filter_multiples_of_n(2,	ints)	is	invoked
creating	a	generator	that	returns	a	stream	of	numbers	that	are	not	multiples	of	2	-	note	that
the	original	sequence	generator	is	captured	within	this	new	generator	(this	is	very
important).	Now	on	the	next	iteration	of	the	loop	within	the	sieve	function,	the	ints
generator	is	invoked.	The	generator	loops	through	the	original	sequence	now	[3,	4,	5,
6,	7,]	yielding	the	first	number	that	is	not	divisible	by	2,	3	in	this	case.	This	part	of
the	pipeline	is	easy	to	understand.	The	prime,	3,	is	yielded	from	the	sieve	function	then
another	generator	that	returns	non-multiples	of	the	prime,	3,	is	created	and	assigned	to
ints.	This	generator	captures	the	previous	generator	that	produces	non-	multiples	of	2	and
that	generator	captured	the	original	generator	that	produces	sequences	of	infinite
consecutive	numbers.	A	call	to	the	__next__()	method	of	this	generator	will	loop	through
the	previous	generator	that	returns	non-multiples	of	2	and	every	non-multiple	of	2	returned
by	the	generator	is	checked	for	divisibility	by	3	and	if	the	number	is	not	divisible	by	3	it	is
yielded.	This	chaining	of	generators	goes	on	and	on.	The	next	prime	is	5	so	the	generator
excluding	the	multiples	of	primes	will	loop	through	the	generator	that	returns	non-
multiples	of	3	which	in	turn	loops	through	the	generator	that	produces	non-multiple	of	2.

This	streaming	of	data	through	multiple	generators	can	be	applied	to	the	space	and
sometime	time	efficient	processing	of	any	other	stream	of	massive	data	such	as	log	files
and	data	bases.	Generators	however	have	other	nifty	and	mind-blowing	use	cases	as	will
be	seen	in	the	following	sections.

7.3	From	Generators	To	Coroutines

“Subroutines	are	special	cases	of	…	coroutines.”

–	Donald	Knuth

A	subroutine	is	a	set	of	program	instructions	bundled	together	to	perform	a	specific	task.
Functions	and	methods	are	examples	of	subroutines	in	Python.	Subroutines	have	a	single
point	of	entry	or	exit;	this	is	seen	in	ordinary	functions	and	methods	which	once	called
execute	till	they	exit	and	cannot	be	suspended.	Coroutines	however	are	a	more	general
program	construct	that	allow	multiple	entry	points	for	suspending	and	resuming	execution.
Multiple	entry	points	for	suspending	and	resuming	sounds	exactly	just	like	what	the	yield
expression	provides	to	generator	functions	and	in-fact	one	could	argue	that	Python
generators	are	in-fact

coroutines	because	they	allow	the	production	and	consumption	of	values	at	their
suspension	or	resumption	points.	The	send()	method	of	generators	added	in	Python
version	2.5	provides	generators	with	the	ability	to	consume	data	when	a	generator	resumes
execution.	The	documentation	provided	for	the	send()	method	by	the	Python
documentation	follows.

generator.send(value):	Resumes	the	execution	and	“sends”	a	value	into	the	generator
function.	The	value	argument	becomes	the	result	of	the	current	yield	expression.	The
send()	method	returns	the	next	value	yielded	by	the	generator,	or	raises	StopIteration
if	the	generator	exits	without	yielding	another	value.	When	send()	is	called	to	start
the	generator,	it	must	be	called	with	None	as	the	argument,	because	there	is	no	yield
expression	that	could	receive	the	value.

The	above	explanation	maybe	a	little	ambiguous	so	an	illustration	of	the	use	of	the	send()
method	is	provided	with	the	following	example.

>>> def find_pattern(pattern):

... print("looking	for	{}".format(pattern))

... while True:

... line = yield

... if pattern in line:

... print(line)

...

The	generator	is	initialized	and	run	as	shown	in	the	following	snippet.

>>> g = find_pattern('python')

#	coroutines	must	be	primed	with	a	call	to	next	before	sending	in	values

>>> g.__next__()

looking for python

>>> g.send("Yeah,	but	no,	but	year,	but	no")

>>> g.send("python	generators	rock!")

python generators rock!

To	fully	grasp	the	send()	method,	observe	that	the	argument	passed	to	the	send()	method
of	the	generator	will	be	the	result	of	the	yield	expression	so	in	the	above	example,	the
value	that	send()	is	called	with	is	assigned	to	the	variable,	line.	The	rest	of	the	function
is	straightforward	to	understand.	Note	that	calling	send(None)	is	equivalent	to	calling	the
generator’s	__next__()	method.

Simulating	Multitasking	with	Coroutines
The	ability	to	send	data	into	generators	using	the	send()	method	truly	expands	the	frontier
for	generators.	Now	think	carefully	about	the	tools	in	our	arsenal	at	this	point:

1. Functions that can run independent of one another while maintaining state

2. Functions that can suspend execution and resume execution multiple times.

3. Functions that can receive data at resumption.

A	little	thinking	shows	that	multiple	generators	or	coroutines	can	be	scheduled	to	run	in	an
interleaved	manner	and	it	would	be	like	they	were	executing	simultaneously.	With	that,	we

have	multitasking	or	something	like	it.	In	this	section,	rudimentary	multitasking	is
simulated	to	illustrate	the	versatility	of	generators/coroutines.
In	reality,	even	a	full	blown	multitasking	operating	system	is	only	ever	executing	a	single
task	at	one	time.	A	task	is	any	set	of	instructions	with	own	internal	state.	For	example,	a
simple	task	may	take	a	stream	of	text	count	the	occurrence	of	some	words	and	print	a
running	count	of	some	words	in	the	stream	or	may	just	print	any	word	it	receives.	What	is
important	here	is	that	tasks	are	totally	independent	of	each	other.	The	illusion	of
multitasking	is	achieved	by	giving	each	task	a	slice	of	time	to	run	until	it	encounters	a	trap
which	forces	it	to	stop	running	so	that	other	tasks	can	run.	This	happens	so	fast	that	human
users	cannot	sense	what	is	happening.	This	can	easily	be	simulated	with	a	collection	of
coroutines	that	run	independent	of	each	as	shown	in	this	section.	A	very	simple	example
of	this	multitasking	is	shown	in	the	following	snippet	in	which	text	is	read	from	a	source
and	then	sent	for	processing	to	multiple	coroutines.	In	the	snippet,	a	task	is	modelled	as	a
thin	wrapper	around	a	coroutine.

from collections import defaultdict

class Task():

def __init__(self, coroutine):

self.coroutine = coroutine

next(self.coroutine)

def run(self, value):

self.coroutine.send(value)

def read(source):

for line in source:

yield line

def print_line():

while True:

text = yield

print(text)

def word_count():

word_counts = defaultdict(int)

while True:

text = yield

for word in text.split():

word_counts[word] += 1

print("Word	distribution	so	far	is	", word_counts)

def run():

f = open("data.txt")

source = read(f)

tasks = [Task(print_line()), Task(word_count())]

for line in source:

for task in tasks:

try:

task.run(line)

except StopIteration:

tasks.remove(task)

if __name__ == '__main__':

run()

We love python don't	we?

Word distribution so far is defaultdict(<class 'int'>,	{"don't":	1,	'we?':	1,	'python':	1,	'lov

e':	1,	'We':	1})

No we don't	love	python

Word distribution so far is defaultdict(<class 'int'>,	{"don't":	2,	'we?':	1,	'python':	2,	'we'

:	1,	'We':	1,	'No':	1,	'love':	2})

Observer	how	the	outputs	are	interleaved	because	execution	of	each	coroutine	happens	for
a	limited	time	then	another	coroutines	executes.	The	above	example	is	very	instructive	in
showing	the	power	of	generators	and	coroutines.	The	above	has	just	been	provided	for
illustration	purposes.	The	asyncio	module	is	provided	in	Python	3.5	for	concurrent
programming	using	coroutines.

7.4	The	yield	from	keyword
Sometimes	re-factoring	a	code	block	may	involve	moving	some	functionality	into	another
generator.	Using	just	the	yield	keyword	may	prove	cumbersome	in	some	of	these	cases
and	impossible	in	other	cases	such	as	when	there	is	a	need	to	send	data	to	the	delegated
generator	that	was	sent	to	the	delegating	generator.	This	kind	of	scenarios	led	to	the
introduction	of	the	yield	from	keyword.
This	keyword	allows	a	section	of	code	containing	yield	to	be	moved	into	another
generator.	Furthermore,	the	delegated	generator	can	return	a	value	that	is	made	available
to	the	delegating	generator.	An	instructive	example	on	how	the	yield	from	keyword
works	is	given	in	the	following	example	(note	that	a	call	to	the	range	function	returns	a
generator).

>>> def g(x):

... yield	from range(x, 0, -1)

... yield	from range(x)

...

>>> list(g(5))

[5, 4, 3, 2, 1, 0, 1, 2, 3, 4]

As	previously	mentioned,	yielding	data	from	a	delegated	generator	was	not	the	only
reason	for	the	introduction	of	the	yield	from	keyword	because	the	previous	yield	from
snippet	can	be	replicated	without	yield	from	as	shown	in	the	following	example.

>>> def g(x):

... r = []

... for i in range(x, 0, -1):

... r.append(i)

... for j in range(x):

... r.append(j)

... return r

...

>>> x = g(5)

>>> x

[5, 4, 3, 2, 1, 0, 1, 2, 3, 4]

The	real	benefit	of	using	the	new	yield	from	keyword	comes	from	the	ability	of	a	calling
generator	to	send	values	into	the	delegated	generator	as	shown	in	the	following	example.
Thus	if	a	value	is	sent	into	a	generator	yield	from	enables	that	generator	to	also
implicitly	send	the	same	value	into	the	delegated	generator.

>>> def accumulate():

... tally = 0

... while 1:

... next = yield

... if next is None:

... return tally

... tally += next

...

>>> def gather_tallies(tallies):

... while 1:

... tally = yield	from accumulate()

... tallies.append(tally)

...

>>> tallies = []

>>> acc = gather_tallies(tallies)

>>> next(acc) #	Ensure	the	accumulator	is	ready	to	accept	values

>>> for i in range(4):

... acc.send(i)

...

>>> acc.send(None) #	Finish	the	first	tally

>>> for i in range(5):

... acc.send(i)

...

>>> acc.send(None) #	Finish	the	second	tally

>>> tallies

[6, 10]

The	complete	semantics	for	yield	from	is	explained	in	PEP	380	and	given	below.

1.	 Any	values	that	the	iterator	yields	are	passed	directly	to	the	caller.
2.	 Any	values	sent	to	the	delegating	generator	using	send()	are	passed	directly	to	the

iterator.	If	the	sent	value	is	None,	the	iterator’s	__next__()	method	is	called.	If	the
sent	value	is	not	None,	the	iterator’s	send()	method	is	called.	If	the	call
raises	StopIteration`,	the	delegating	generator	is	resumed.	Any	other	exception	is
propagated	to	the	delegating	generator.

3.	 Exceptions	other	than	GeneratorExit	thrown	into	the	delegating	generator	are
passed	to	the	throw()	method	of	the	iterator.	If	the	call	raises	StopIteration,	the
delegating	generator	is	resumed.	Any	other	exception	is	propagated	to	the	delegating
generator.

4.	 If	a	GeneratorExit	exception	is	thrown	into	the	delegating	generator,	or	the	close()
method	of	the	delegating	generator	is	called,	then	the	close()	method	of	the	iterator
is	called	if	it	has	one.	If	this	call	results	in	an	exception,	it	is	propagated	to	the
delegating	generator.	Otherwise,	GeneratorExit	is	raised	in	the	delegating	generator.

5.	 The	value	of	the	yield	from	expression	is	the	first	argument	to	the	StopIteration
exception	raised	by	the	iterator	when	it	terminates.

6.	 return	expr	in	a	generator	causes	StopIteration(expr)	to	be	raised	upon	exit	from
the	generator.

https://www.python.org/dev/peps/pep-0380/

7.5	A	Game	of	Life
To	end	the	chapter,	a	very	simple	game,	Conway’s	Game	of	Life,	is	implemented	using
generators	and	coroutines	to	simulate	the	basics	of	the	game;	a	thorough	understanding	of
this	example	will	prove	further	enlightening.	This	example	is	inspired	by	Brett	Slatkin’s
Effective	Python	chapter	on	using	coroutines	for	running	thousands	of	function	and	all
credits	are	due	to	him.

An	explanation	of	the	Game	of	Life	as	given	by	Wikipedia	follows.	The	Game	of	Life	is	a
simulation	that	takes	place	on	a	two-dimensional	orthogonal	grid	of	cells	each	of	which	is
either	in	an	alive	or	dead	state.	Each	cell	transitions	to	a	new	state	in	a	step	of	time	by	its
interaction	with	its	neighbours,	which	are	the	cells	that	are	horizontally,	vertically,	or
diagonally	adjacent.	At	each	step	of	time,	the	following	transitions	occur:

1. Any live cell with fewer than two live neighbours dies.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies.

4. Any dead cell with exactly three live neighbours becomes a live cell.

The	initial	pattern	of	cells	on	the	grid	constitutes	the	seed	of	the	system.	The	first
generation	is	created	by	applying	the	above	rules	simultaneously	to	every	cell	and	the
discrete	moment	at	which	this	happens	is	sometimes	called	a	tick.	The	rules	continue	to	be
applied	repeatedly	to	create	further	generations.

In	the	following	implementation,	each	cell’s	simulation	is	carried	out	using	a	coroutine
with	the	state	of	the	cells	stored	in	a	Grid	object	from	generation	to	generation.

#	Copyright	2014	Brett	Slatkin,	Pearson	Education	Inc.

#

#	Licensed	under	the	Apache	License,	Version	2.0	(the	"License");

#	you	may	not	use	this	file	except	in	compliance	with	the	License.

#	You	may	obtain	a	copy	of	the	License	at

#

#					http://www.apache.org/licenses/LICENSE-2.0

#

#	Unless	required	by	applicable	law	or	agreed	to	in	writing,	software

#	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,

#	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.

#	See	the	License	for	the	specific	language	governing	permissions	and

#	limitations	under	the	License.

from collections import namedtuple

ALIVE = '*'

EMPTY = '-'

TICK = object()

Position = namedtuple('Position', 'y	x')

Transition = namedtuple('Transition', 'y	x	state')

def count_neighbors(y, x):

n_ = yield Position(y + 1, x + 0) #	North

ne = yield Position(y + 1, x + 1) #	Northeast

e_ = yield Position(y + 0, x + 1) #	East

se = yield Position(y - 1, x + 1) #	Southeast

s_ = yield Position(y - 1, x + 0) #	South

sw = yield Position(y - 1, x - 1) #	Southwest

w_ = yield Position(y + 0, x - 1) #	West

nw = yield Position(y + 1, x - 1) #	Northwest

neighbor_states = [n_, ne, e_, se, s_, sw, w_, nw]

return sum([1 for state in neighbor_states if state is == ALIVE])

def game_logic(state, neighbors):

if state == ALIVE:

if neighbors < 2 or neighbors > 3:

return EMPTY #	Die:	Too	few

else:

if neighbors == 3:

return ALIVE #	Regenerate

return state

def transition_cell(y, x):

#	request	info	on	the	state	of	the	cell	at	y,	x

state = yield Position(y, x)

neighbors = yield	from count_neighbors(y, x)

next_state = game_logic(state, neighbors)

yield Transition(y, x, next_state)

def simulate(height, width):

while True:

for y in range(height):

for x in range(width):

yield	from transition_cell(y, x)

yield TICK

def live_a_generation(grid, sim):

progeny = Grid(grid.height, grid.width)

item = next(sim)

while item is not TICK:

if isinstance(item, Position):

state = grid[item.y, item.x]

item = sim.send(state)

else: #	Must	be	a	Transition

progeny[item.y, item.x] = item.state

item = next(sim)

return progeny

class Grid(object):

def __init__(self, height, width):

self.height = height

self.width = width

self.rows = []

for _ in range(self.height):

self.rows.append([EMPTY] * self.width)

def __str__(self):

output = ''

for row in self.rows:

for cell in row:

output += cell

output += '\n'

return output

def __getitem__(self, position):

y, x = position

return self.rows[y % self.height][x % self.width]

def __setitem__(self, position, state):

y, x = position

self.rows[y % self.height][x % self.width] = state

class ColumnPrinter(object):

def __init__(self):

self.columns = []

def append(self, data):

self.columns.append(data)

def __str__(self):

row_count = 1

for data in self.columns:

row_count = max(row_count, len(data.splitlines()) + 1)

rows = [''] * row_count

for j in range(row_count):

for i, data in enumerate(self.columns):

line = data.splitlines()[max(0, j - 1)]

if j == 0:

rows[j] += str(i).center(len(line))

else:

rows[j] += line

if (i + 1) < len(self.columns):

rows[j] += '	|	'

return '\n'.join(rows)

grid = Grid(5, 5)

grid[1, 1] = ALIVE

grid[2, 2] = ALIVE

grid[2, 3] = ALIVE

grid[3, 3] = ALIVE

columns = ColumnPrinter()

sim = simulate(grid.height, grid.width)

for i in range(6):

columns.append(str(grid))

grid = live_a_generation(grid, sim)

print(columns)

0 | 1 | 2 | 3 | 4 | 5

----- | ----- | ----- | ----- | ----- | -----

-*--- | --*-- | --**- | --*-- | ----- | -----

--**- | --**- | -*--- | -*--- | -**-- | -----

---*- | --**- | --**- | --*-- | ----- | -----

----- | ----- | ----- | ----- | ----- | -----

Generators	are	a	fascinating	topic	and	this	chapter	has	barely	scratched	the	surface	of	what
is	possible.	David	Beazley	gave	a	series	of	excellent	talks,	1,2	and	3,	that	go	into	great
detail	about	very	advanced	usage	of	generators.

http://www.dabeaz.com/generators-uk/GeneratorsUK.pdf
http://www.dabeaz.com/coroutines/Coroutines.pdf
http://www.dabeaz.com/finalgenerator/FinalGenerator.pdf

8.	MetaProgramming	and	Co.

Metaprogramming	is	quite	an	interesting	area	of	programming.	Metaprogramming	deals
with	code	that	manipulates	other	code.	It	is	a	broad	category	that	covers	areas	such	as
function	decorators,	class	decorators,	metaclasses	and	the	use	of	built-ins	like	exec,	eval
and	context	managers	etc.	These	constructs	sometimes	help	to	prevent	repetitive	code	and
most	times	add	new	functionality	to	a	piece	of	code	in	elegant	ways.	In	this	chapter,
decorators,	metaclasses	and	context	managers	are	discussed.

8.1	Decorators
A	decorator	is	a	function	that	wraps	another	function	or	class.	It	introduces	new
functionality	to	the	wrapped	class	or	function	without	altering	the	original	functionality	of
such	class	or	function	thus	the	interface	of	such	class	or	function	remains	the	same.

Function	Decorators
A	good	understanding	of	functions	as	first	class	objects	is	important	in	order	to	understand
function	decorators.	A	reader	will	be	well	served	by	reviewing	the	material	on	functions.
When	functions	are	first	class	objects	the	following	will	apply	to	functions:

1.	 Functions	can	be	passed	as	arguments	to	other	functions.
2.	 Functions	can	be	returned	from	other	function	calls.
3.	 Functions	can	be	defined	within	other	functions	resulting	in	closures.

The	above	listed	properties	of	first	class	functions	provide	the	foundation	needed	to
explain	function	decorators.	Put	simply,	function	decorators	are	“wrappers”	that	enable
the	execution	of	code	before	and	after	the	function	they	decorate	without	modifying	the
function	itself.

Function	decorators	are	not	unique	to	Python	so	to	explain	them,	Python	function
decorators	and	the	corresponding	syntax	are	ignored	for	the	moment	and	instead	the
essence	of	function	decorators	is	focused	on.	To	understand	what	decorators	do,	a	very
trivial	function	is	decorated	with	another	trivial	function	that	logs	calls	to	the	decorated
function	in	the	following	example.	This	function	decoration	is	achieved	using	function
composition	as	shown	below	(follow	the	comments):

import datetime

#	decorator	expects	another	function	as	argument

def logger(func_to_dec):

#	A	wrapper	function	is	defined	on	the	fly

def func_wrapper():

#	add	any	pre	original	function	execution	functionality	

print("Calling	function:	{}	at	{}".format(func_to_dec.__name__, datetime.datetime.now()))

#	execute	original	function

func_to_dec()

#	add	any	post	original	function	execution	functionality

print("Finished	calling	:	{}".format(func_to_dec.__name__))

#	return	the	wrapper	function	defined	on	the	fly.	Body	of	the	

#	wrapper	function	has	not	been	executed	yet	but	a	closure	

#	over	the	func_to_decorate	has	been	created.

return func_wrapper

def print_full_name():

print("My	name	is	John	Doe")

#	use	composition	to	decorate	the	print_full_name	function

>>>decorated_func = logger(print_full_name)

>>>decorated_func

#	the	returned	value,	decorated_func,	is	a	reference	to	a	func_wrapper

<function func_wrapper at 0x101ed2578>

>>>decorated_func()

#	decorated_func	call	output

Calling function: print_full_name at 2015-01-24 13:48:05.261413

#	the	original	functionality	is	preserved

My name is John Doe

Finished calling : print_full_name

In	the	trivial	example	defined	above,	the	decorator	adds	a	new	feature,	printing	some
information	before	and	after	the	original	function	call,	to	the	original	function	without
altering	it.	The	decorator,	logger	takes	a	function	to	be	decorated,	print_full_name	and
returns	a	function,	func_wrapper	that	calls	the	decorated	function,	print_full_name,
when	it	is	executed.	The	decoration	process	here	is	calling	the	decorator	with	the	function
to	be	decorated	as	argument.	The	function	returned,	func_wrapper	is	closed	over	the
reference	to	the	decorated	function,	print_full_name	and	thus	can	invoke	the	decorated
function	when	it	is	executing.	In	the	above,	calling	decorated_func	results	in
print_full_name	being	executed	in	addition	to	some	other	code	snippets	that	implement
new	functionality.	This	ability	to	add	new	functionality	to	a	function	without	modifying
the	original	function	is	the	essence	of	function	decorators.	Once	this	concept	is
understood,	the	concept	of	decorators	is	understood.

Decorators	in	Python
Now	that	the	essence	of	function	decorators	have	been	discussed,	an	attempt	is	made	to
de-construct	Python	constructs	that	enable	the	definition	of	decorators	more	easily.	The
previous	section	describes	the	essence	of	decorators	but	having	to	use	decorators	via
function	compositions	as	described	is	cumbersome.	Python	introduces	the	@	symbol	for
decorating	functions.	Decorating	a	function	using	the	Python	decorator	syntax	is	achieved
as	shown	in	the	following	example.

@decorator

def a_stand_alone_function():

pass

Calling	stand_alone_function	now	is	equivalent	to	calling	decorated_func	function
from	the	previous	section	but	there	is	no	longer	a	need	to	to	define	the	intermediate
decorated_func.

It	is	important	to	understand	what	the	@	symbol	does	with	respect	to	decorators	in	Python.
The	@decorator	line	does	not	define	a	python	decorator	rather	one	can	think	of	it	as
syntactic	sugar	for	decorating	a	function.	I	like	to	define	decorating	a	function	as	the
process	of	applying	an	existing	decorator	to	a	function.	The	decorator	is	the	actual
function,	decorator,	that	adds	the	new	functionality	to	the	original	function.	According	to
PEP	318,	the	following	decorator	snippet

@dec2

@dec1

def func(arg1, arg2, ...):

pass

is	equivalent	to

def func(arg1, arg2, ...):

pass

func = dec2(dec1(func))

without	the	intermediate	func	argument.	In	the	above,	@dec1	and	@dec2	are	the	decorator
invocations.	Stop,	think	carefully	and	ensure	you	understand	this.	dec1	and	dec2	are
function	object	references	and	these	are	the	actual	decorators.	These	values	can	even	be
replaced	by	any	function	call	or	a	value	that	when	evaluated	returns	a	function	that
takes	another	function.	What	is	of	paramount	importance	is	that	the	name	reference
following	the	@	symbol	is	a	reference	to	a	function	object	(for	this	tutorial	we	assume	this
should	be	a	function	object	but	in	reality	it	should	be	a	callable	object)	that	takes	a
function	as	argument.	Understanding	this	profound	fact	will	help	in	understanding	python
decorators	and	more	involved	decorator	topics	such	as	decorators	that	take	arguments.

Passing	Arguments	To	Decorated	Functions
Arguments	are	supplied	to	functions	that	are	being	decorated	by	simply	passing	the
arguments	into	the	function	that	wraps,	i.e	the	inner	function	returned	when	the
decorator	is	invoked,	the	decorated	function.	This	is	illustrated	with	the	following
example.

import datetime

#	decorator	expects	another	function	as	argument

def logger(func_to_decorate):

#	A	wrapper	function	is	defined	on	the	fly

def func_wrapper(*args, **kwargs):

#	add	any	pre	original	function	execution	functionality	

print("Calling	function:	{}	at	{}".format(func_to_decorate.__name__, datetime.datetime

ow()))

#	execute	original	function

https://www.python.org/dev/peps/pep-0318/#why

func_to_decorate(*args, **kwargs)

#	add	any	post	original	function	execution	functionality

print("Finished	calling	:	{}".format(func_to_decorate.__name__))

#	return	the	wrapper	function	defined	on	the	fly.	Body	of	the	

#	wrapper	function	has	not	been	executed	yet	but	a	closure	over

#	the	func_to_decorate	has	been	created.

return func_wrapper

@logger

def print_full_name(first_name, last_name):

print("My	name	is	{}	{}".format(first_name, last_name))

print_full_name("John", "Doe")

Calling function: print_full_name at 2015-01-24 14:36:36.691557

My name is John Doe

Finished calling : print_full_name

Note	how	the	*args	and	**kwargs	parameters	are	used	in	defining	the	inner	wrapper
function;	this	is	for	the	simple	reason	that	it	cannot	be	known	beforehand	what	functions
are	going	to	be	decorated	and	thus	the	function	signature	of	such	functions.

Decorator	Functions	with	Arguments
Decorator	functions	can	also	be	defined	to	take	arguments	but	this	is	more	involved	than
the	case	of	passing	functions	to	decorated	functions.	The	following	example	illustrates
this.

#	this	function	takes	arguments	and	returns	a	function.

#	the	returned	functions	is	our	actual	decorator

def decorator_maker_with_arguments(decorator_arg1):

#	this	is	our	actual	decorator	that	accepts	a	function

def decorator(func_to_decorate):

#	wrapper	function	takes	arguments	for	the	decorated	

#	function

def wrapped(function_arg1, function_arg2) :

#	add	any	pre	original	function	execution	

#	functionality	

print("Calling	function:	{}	at	{}	with	decorator	arguments:	{}	and	function	argument

s:{}	{}".

format(func_to_decorate.__name__, datetime.datetime.now(), decorator_arg1, funct

ion_arg1, function_arg2))

func_to_decorate(function_arg1, function_arg2)

#	add	any	post	original	function	execution

#	functionality

print("Finished	calling	:	{}".format(func_to_decorate.__name__))

return wrapped

return decorator

@decorator_maker_with_arguments("Apollo	11	Landing")

def print_name(function_arg1, function_arg2):

print ("My	full	name	is—{}	{}	--".format(function_arg1, function_arg2))

>>> print_name("Tranquility	base	", "To	Houston")

Calling function: print_name at 2015-01-24 15:03:23.696982 with decorator arguments: Apollo 11

anding and function arguments:Tranquility base To Houston

My full name is -- Tranquility base To Houston --

Finished calling : print_name

As	mentioned	previously,	the	key	to	understanding	what	is	going	on	with	this	is	to	note
that	we	can	replace	the	reference	value	following	the	@	in	a	function	decoration	with	any
value	that	evaluates	to	a	function	object	that	takes	another	function	as	argument.	In	the
above	snippet,	the	value	returned	by	the	function	call,
decorator_maker_with_arguments("Apollo	11	Landing")	,	is	the	decorator.	The	call
evaluates	to	a	function,	decorator	that	accepts	a	function	as	argument.	Thus	the
decoration	@decorator_maker_with_arguments("Apollo	11	Landing")	is	equivalent	to
@decorator	but	with	the	decorator,	decorator	,	closed	over	the	argument,	Apollo	11
Landing	by	the	decorator_maker_with_arguments	function	call.	Note	that	the	arguments
supplied	to	a	decorator	can	not	be	dynamically	changed	at	run	time	as	they	are	executed
on	script	import.

Functools.wrap
Using	decorators	involves	swapping	out	one	function	for	another.	A	result	of	this	is	that
meta	information	such	as	docstrings	in	the	swapped	out	function	are	lost	when	using	a
decorator	with	such	function.	This	is	illustrated	below:

import datetime

#	decorator	expects	another	function	as	argument

def logger(func_to_decorate):

#	A	wrapper	function	is	defined	on	the	fly

def func_wrapper():

#	add	any	pre	original	function	execution	functionality	

print("Calling	function:	{}	at	{}".format(func_to_decorate.__name__, datetime.datetime

ow()))

#	execute	original	function

func_to_decorate()

#	add	any	post	original	function	execution	functionality

print("Finished	calling	:	{}".format(func_to_decorate.__name__))

#	return	the	wrapper	function	defined	on	the	fly.	Body	of	the	

#	wrapper	function	has	not	been	executed	yet	but	a	closure	

#	over	the	func_to_decorate	has	been	created.

return func_wrapper

@logger

def print_full_name():

"""return	john	doe's	full	name"""

print("My	name	is	John	Doe")

>>> print(print_full_name.__doc__)

None

>>> print(print_full_name.__name__)

func_wrapper

In	the	above	example,	an	attempt	to	print	the	documentation	string	returns	None	because
the	decorator	has	swapped	out	the	print_full_name	function	with	the	func_wrapper
function	that	has	no	documentation	string.	Even	the	function	name	now	references	the
name	of	the	wrapper	function	rather	than	the	actual	function.	This,	most	times,	is	not	what
we	want	when	using	decorators.	To	work	around	this	Python	functools	module	provides
the	wraps	function	that	also	happens	to	be	a	decorator.	This	decorator	is	applied	to	the
wrapper	function	and	takes	the	function	to	be	decorated	as	argument.	The	usage	is
illustrated	in	the	following	example.

import datetime

from functools import wraps

#	decorator	expects	another	function	as	argument

def logger(func_to_decorate):

@wraps(func_to_decorate)

#	A	wrapper	function	is	defined	on	the	fly

def func_wrapper(*args, **kwargs):

#	add	any	pre	original	function	execution	functionality	

print("Calling	function:	{}	at	{}".format(func_to_decorate.__name__, datetime.datetime

ow()))

#	execute	original	function

func_to_decorate(*args, **kwargs)

#	add	any	post	original	function	execution	functionality

print("Finished	calling	:	{}".format(func_to_decorate.__name__))

#	return	the	wrapper	function	defined	on	the	fly.	Body	of	the	

#	wrapper	function	has	not	been	executed	yet	but	a	closure	over

#	the	func_to_decorate	has	been	created.

return func_wrapper

@logger

def print_full_name(first_name, last_name):

"""return	john	doe's	full	name"""

print("My	name	is	{}	{}".format(first_name, last_name))

>>> print(print_full_name.__doc__)

return john doe's	full	name

>>>print(print_full_name.__name__)

print_full_name

Class	Decorators
Like	functions,	classes	can	also	be	decorated.	Class	decorations	server	the	same	purpose
as	function	decorators	-	introducing	new	functionality	without	modifying	the	actual

classes.	An	example	of	a	class	decorator	is	given	in	the	following	singleton	decorator	that
ensures	that	only	one	instance	of	a	decorated	class	is	ever	initialised	throughout	the
lifetime	of	the	execution	of	the	program.

def singleton(cls):

instances = {}

def get_instance():

if cls not in instances:

instances[cls] = cls()

return instances[cls]

return get_instance

Putting	the	decorator	to	use	in	the	following	examples	shows	how	this	works.	In	the
following	example,	the	Foo	class	is	initialized	twice	however	comparing	the	ids	of	both
initialized	objects	shows	that	they	both	refer	to	the	same	object.

@singleton

class Foo(object):

pass

>>> x = Foo()

>>> id(x)

4310648144

>>> y = Foo()

>>> id(y)

4310648144

>>> id(y) == id(x) #	both	x	and	y	are	the	same	object

True

>>>

The	same	singleton	functionality	can	be	achieved	using	a	metaclass	by	overriding	the
__call__	method	of	the	metaclass	as	shown	below:

class Singleton(type):

_instances = {}

def __call__(cls, *args, **kwargs):

if cls not in cls._instances:

cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)

return cls._instances[cls]

class Foo(object):

__metaclass__ = Singleton

>>> x = Foo()

>>> y = Foo()

>>> id(x)

4310648400

>>> id(y)

4310648400

>>> id(y) == id(x)

True

Applying	Decorators	to	instance	and	static	methods

Instance,	static	and	class	methods	can	also	be	decorated.	The	important	thing	is	to	take
note	of	the	order	in	which	the	decroators	are	placed	in	static	and	class	methods.	The
decorator	must	come	before	the	static	and	class	method	decorators	that	are	used	to	create
static	and	class	methods	because	these	method	decorators	do	not	return	callable	objects.	A
valid	example	of	method	decorators	is	shown	in	the	following	example.

def timethis(func):

@wraps(func)

def wrapper(*args, **kwargs):

start = time.time()

r = func(*args, **kwargs)

end = time.time()

print(end - start)

return r

return wrapper

#	Class	illustrating	application	of	the	decorator	to	different	kinds	of	methods

class Spam:

@timethis

def instance_method(self, n):

print(self, n)

while n > 0:

n -= 1

@classmethod

@timethis

def class_method(cls, n):

while n > 0:

print(n)

n -= 1

@staticmethod

@timethis

def static_method(n):

while n > 0:

print(n)

n -= 1

>>>Spam.class_method(10)

10

9

8

7

6

5

4

3

2

1

0.00019788742065429688

>>>Spam.static_method(10)

10

9

8

7

6

5

4

3

2

1

0.00014591217041015625

8.2	Decorator	Recipes
Decorators	have	a	wide	range	of	applications	in	python;	this	section	discusses	some
interesting	uses	of	decorators	providing	the	implementation	for	such	decorators.	The
following	are	just	samples	of	the	possible	applications	of	decorators.	A	more
comprehensive	listing	of	recipes	including	the	examples	listed	that	are	discussed	in	this
section	can	be	found	at	Python	decorator	library	website.	A	major	benefit	of	a	lot	of
decorators	is	that	cross	cutting	concerns	such	as	logging	information	can	be	done	in	a
single	place,	the	decorator,	rather	across	multiple	functions.	The	benefit	of	having	such
functionality	in	one	place	is	glaringly	obvious	as	changes	are	localised	and	way	easier	to
maintain.	The	following	recipes	illustrate	this.

1.	 Decorators	provide	a	mean	to	log	information	about	other	functions;	these	maybe
information	such	as	timing	information	or	argument	information.	An	example	of	such
a	decorator	is	shown	in	the	following	example.

import logging

def log(func):

'''Returns	a	wrapper	that	wraps	func.	The	wrapper	will	log	the	entry	and	exit	points	of	the\

	function	with	logging.INFO	level.'''

logging.basicConfig()

logger = logging.getLogger(func.__module__)

@functools.wraps(func)

def wrapper(*args, **kwds):

logger.info("About	to	execute	{}".format(func.__name__))

f_result = func(*args, **kwds)

logger.info("Finished	the	execution	of	{}".format(func.__name__))

return f_result

return wrapper

2.	 A	memoization	decorator	can	be	used	to	decorate	a	function	that	performs	a
calculation	so	that	for	a	given	argument	if	the	result	has	been	previously	computed,
the	stored	value	is	returned	but	if	it	has	not	then	it	is	computed	and	stored	before	it	is
returned	to	the	caller.	This	kind	of	decorator	is	available	in	the	functools	module	as
discussed	in	the	chapter	on	functions.	An	implementation	for	such	a	decorator	is
shown	in	the	following	example.

import collections

def cache(func):

cache = {}

logging.basicConfig()

https://wiki.python.org/moin/PythonDecoratorLibrary

logger = logging.getLogger(func.__module__)

logger.setLevel(10)

@functools.wraps(func)

def wrapper(*arg, **kwds):

if not isinstance(arg, collections.Hashable):

logger.info("Argument	cannot	be	cached:	{}".format(arg))

return func(*arg, **kwds)

if arg in cache:

logger.info("Found	precomputed	result,	{},	for	argument,	{}".format(cache[arg

))

return cache[arg]

else:

logger.info("No	precomputed	result	was	found	for	argument,	{}".format(arg))

value = func(*arg, **kwds)

cache[arg] = value

return value

return wrapper

3.	 Decorators	could	also	easily	be	used	to	implement	functionality	that	retries	a	callable
up	to	a	maximum	amount	of	times.

def retries(max_tries, delay=1, backoff=2, exceptions=(Exception,), hook=None):

"""Function	decorator	implementing	retrying	logic.	The	decorator	will	call	the	function	up	\

to	max_tries	times	if	it	raises	an	exception.

									"""

def dec(func):

def f2(*args, **kwargs):

mydelay = delay

tries = range(max_tries)

tries.reverse()

for tries_remaining in tries:

try:

return func(*args, **kwargs)

except exceptions as e:

if tries_remaining > 0:

if hook is not None:

#	hook	is	any	function	we	want	to	call	

#	when	the	original	function	fails

hook(tries_remaining, e, mydelay)

sleep(mydelay)

mydelay = mydelay * backoff

else:

raise

else:

break

return f2

return dec

4.	 Another	very	interesting	decorator	recipe	is	the	use	of	decorators	to	enforce	types	for
function	call	as	shown	in	the	following	example.

import sys

def accepts(*types, **kw):

'''Function	decorator.	Checks	decorated	function's	arguments	are

	of	the	expected	types.

	Parameters:

	types—The	expected	types	of	the	inputs	to	the	decorated	function.

										Must	specify	type	for	each	parameter.

	kw			—Optional	specification	of	'debug'	level	(this	is	the	only	valid

										keyword	argument,	no	other	should	be	given).

										debug	=	(0	|	1	|	2)

	'''

if not kw:

#	default	level:	MEDIUM

debug = 1

else:

debug = kw['debug']

try:

def decorator(f):

def newf(*args):

if debug is 0:

return f(*args)

assert len(args) == len(types)

argtypes = tuple(map(type, args))

if argtypes != types:

msg = info(f.__name__, types, argtypes, 0)

if debug is 1:

raise TypeError(msg)

return f(*args)

newf.__name__ = f.__name__

return newf

return decorator

except KeyError as err:

raise KeyError(key + "is	not	a	valid	keyword	argument")

except TypeError(msg):

raise TypeError(msg)

def info(fname, expected, actual, flag):

'''Convenience	function	returns	nicely	formatted	error/warning	msg.'''

format = lambda types: ',	'.join([str(t).split("'")[1] for t in types])

expected, actual = format(expected), format(actual)

msg = "'{}'	method	".format(fname)

+ ("accepts", "returns")[flag] + "	({}),	but	".format(expected)

+ ("was	given", "result	is")[flag] + "	({})".format(actual)

return msg

>>> @test_concat.accepts(int, int, int)

... def div_sum_by_two(x, y, z):

... return sum([x, y, z])/2

...

>>> div_sum_by_two('obi', 'nkem', 'chuks') #	calling	with	wrong	arguments

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/c4obi/src/test_concat.py", line 104, in newf

raise TypeError(msg)

TypeError: 'div_sum_by_two' method accepts (int, int, int), but was given (str, str, str)

5.	 A	common	use	of	class	decorators	is	for	registering	classes	as	the	class	statements	are
executed	as	shown	in	the	following	example.

registry = {}

def register(cls):

registry[cls.__clsid__] = cls

return cls

@register

class Foo(object):

__clsid__ = ".mp3"

def bar(self):

pass

A	more	comprehensive	listing	of	recipes	including	the	examples	listed	that	are	discussed
in	this	section	can	be	found	at	Python	decorator	library	website.

8.3	Metaclasses

“Metaclasses	are	deeper	magic	than	99%	of	users	should	ever	worry	about.	If	you
wonder	whether	you	need	them,	you	don’t”

–	Tim	Peters

All	values	in	Python	are	objects	including	classes	so	a	given	class	object	must	have
another	class	from	which	it	is	created.	Consider,	an	instance,	f,	of	a	user	defined	class	Foo.
The	type/class	of	the	instance,	f,	can	be	found	by	using	the	built-in	method,	type	and	in
the	case	of	the	object,	f,the	type	of	f	is	Foo.

>>> class Foo(object):

... pass

...

>>> f = Foo()

>>> type(f)

<class '__main__.Foo'>

>>>

This	introspection	can	also	extended	to	a	class	object	to	find	out	the	type/class	of	such	a
class.	The	following	example	shows	the	result	of	applying	the	type()	function	to	the	the
Foo	class.

class Foo(object):

pass

>>> type(Foo)

<class 'type'>

In	Python,	the	class	of	all	other	class	objects	is	the	type	class.	This	applies	to	user	defined
classes	as	shown	above	as	well	as	built-in	classes	as	shown	in	the	following	code	example.

>>>type(dict)

<class 'type'>

https://wiki.python.org/moin/PythonDecoratorLibrary

A	class	such	as	the	type	class	that	is	used	to	create	other	classes	is	called	a	metaclass.
That	is	all	there	is	to	a	metaclass	-	a	metaclass	is	a	class	that	are	used	in	creating	other
classes.	Custom	metaclasses	are	not	used	often	in	Python	but	sometimes	it	is	necessary	to
control	the	way	classes	are	created	most	especially	when	working	on	big	projects	with	big
team.

Before	explaining	how	metaclasses	are	used	to	customize	class	creation,	a	recap	of	how
class	objects	are	created	when	a	class	statement	is	encountered	during	the	execution	of	a
program	is	provided.

The	following	snippet	is	the	class	definition	for	a	simple	class	that	every	Python	user	is
familiar	with	but	this	is	not	the	only	way	a	class	can	be	defined.

#	class	definition

class Foo(object):

def __init__(self, name):

self.name = name

def print_name():

print(self.name)

The	following	snippet	shows	a	more	involved	method	for	defining	the	same	class	with	all
the	syntactic	sugar	provided	by	the	class	keyword	stripped	away.	This	snippet	provides	a
better	understanding	of	what	actually	goes	on	under	the	covers	during	the	execution	of	a
class	statement.

class_name = "Foo"

class_parents = (object,)

class_body = """

				def	__init__(self,	name):

								self.name	=	name

				def	print_name(self):

								print(self.name)

				"""

#	a	new	dict	is	used	as	local	namespace

class_dict = {}

#the	body	of	the	class	is	executed	using	dict	from	above	as	local	

#	namespace	

exec(class_body, globals(), class_dict)

#	viewing	the	class	dict	reveals	the	name	bindings	from	class	body

>>>class_dict

{'__init__': <function __init__ at 0x10066f8c8>, 'print_name': <function blah at 0x10066fa60>}

#	final	step	of	class	creation

Foo = type(class_name, class_parents, class_dict)

During	the	execution	of	class	statement,	the	interpreter	carries	out	the	following
procedures	behind	the	scene:

1.	 The	body	of	the	class	statement	is	isolated	in	a	string.
2.	 A	class	dictionary	representing	the	namespace	for	the	class	is	created.
3.	 The	body	of	the	class	is	executed	as	a	set	of	statements	within	this	namespace.

4.	 As	a	final	step	in	the	process,	the	class	object	is	created	by	instantiating	the	type
class	passing	in	the	class	name,	base	classes	and	class	dictionary	as	arguments.	The
type	class	used	here	in	creating	the	Account	class	object	is	the	metaclass.	The
metaclass	value	used	in	creating	the	class	object	can	be	explicitly	specified	by
supplying	the	metaclass	keyword	argument	in	the	class	definition.	In	the	case	that	it
is	not	supplied,	the	class	statement	examines	the	first	entry	in	the	tuple	of	the	the	base
classes	if	any.	If	no	base	classes	are	used,	the	global	variable	__metaclass__	is
searched	for	and	if	no	value	is	found	for	this,	the	default	metaclass	value	is	used.

Armed	with	a	basic	understanding	of	metaclasses,	a	discussion	of	their	applications
follows.

Metaclasses	in	Action
It	is	possible	to	define	custom	metaclasses	that	can	be	used	when	creating	classes.	These
custom	metaclasses	will	normally	inherit	from	type	and	re-implement	certain	methods
such	as	the	__init__	or	__new__	methods.

Imagine	that	you	are	the	chief	architect	for	a	shiny	new	project	and	you	have	diligently
read	dozens	of	software	engineering	books	and	style	guides	that	have	hammered	on	the
importance	of	docstrings	so	you	want	to	enforce	the	requirement	that	all	non-private
methods	in	the	project	must	have	*docstrings;	how	would	you	enforce	this	requirement?

A	simple	and	straightforward	solution	is	to	create	a	custom	metaclass	for	use	across	the
project	that	enforces	this	requirement.	The	snippet	that	follows	though	not	of	production
quality	is	an	example	of	such	a	metaclass.

class DocMeta(type):

def __init__(self, name, bases, attrs):

for key, value in attrs.items():

#	skip	special	and	private	methods

if key.startswith("__"):

continue

#	skip	any	non-callable

if not hasattr(value, "__call__"):

continue

#	check	for	a	doc	string.	a	better	way	may	be	to	store	

#	all	methods	without	a	docstring	then	throw	an	error	showing

#	all	of	them	rather	than	stopping	on	first	encounter

if not getattr(value, '__doc__'):

raise TypeError("%s	must	have	a	docstring" % key)

type.__init__(self, name, bases, attrs)

DocMeta	is	a	type	subclass	that	overrides	the	type	class	__init__	method.	The
implemented	__init__	method	iterates	through	all	the	class	attributes	searching	for	non-
private	methods	missing	a	docstring;	if	such	is	encountered	an	exception	is	thrown	as
shown	below.

class Car(object, metaclass=DocMeta):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

def change_gear(self):

print("Changing	gear")

def start_engine(self):

print("Changing	engine")

car = Car()

Traceback (most recent call last):

File "abc.py", line 47, in <module>

class Car(object):

File "abc.py", line 42, in __init__

raise TypeError("%s	must	have	a	docstring" % key)

TypeError: change_gear must have a docstring

Another	trivial	example	that	illustrates	an	application	of	a	metaclass	is	in	the	creation	of	a
final	class,	that	is	a	class	that	cannot	be	sub-classed.	Some	people	may	argue	that	final
classes	are	unpythonic	but	for	illustration	purposes	such	functionality	is	implemented
using	a	metaclass	in	the	following	snippet.

class Final(type):

def __init__(cls, name, bases, namespace):

super().__init__(name, bases, namespace)

for c in bases:

if isinstance(c, Final):

raise TypeError(c.__name__ + "	is	final")

class B(object, metaclass=Final):

pass

class C(B):

pass

>>> class B(object, metaclass=Final):

... pass

...

>>> class C(B):

... pass

...

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 6, in __init__

TypeError: B is final

In	the	example,	the	metaclass	simply	performs	a	check	ensuring	that	the	final	class	is
never	part	of	the	base	classes	for	any	class	being	created.

Another	very	good	example	of	a	metaclass	in	action	is	in	Abstract	Base	Classes	that	was
previously	discussed.	When	defining	an	abstract	base	class,	the	ABCMeta	metaclass	from
the	abc	module	is	used	as	the	metaclass	for	the	abstract	base	class	being	defined	and	the
@abstractmethod	and	@abstractproperty	decorators	are	used	to	create	methods	and
properties	that	must	be	implemented	by	non-abstract	subclasses.

from abc import ABCMeta, abstractmethod

class Vehicle(object):

__metaclass__ = ABCMeta

@abstractmethod

def change_gear(self):

pass

@abstractmethod

def start_engine(self):

pass

class Car(Vehicle):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

#	abstract	methods	not	implemented

>>> car = Car("Toyota", "Avensis", "silver")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't	instantiate	abstract	class	Car	with	abstract	methods	change_gear,	start_engine

>>>

Once	a	class	implements	all	abstract	methods	then	such	a	class	becomes	a	concrete	class
and	can	be	instantiated	by	a	user.

from abc import ABCMeta, abstractmethod

class Vehicle(object):

__metaclass__ = ABCMeta

@abstractmethod

def change_gear(self):

pass

@abstractmethod

def start_engine(self):

pass

class Car(Vehicle):

def __init__(self, make, model, color):

self.make = make

self.model = model

self.color = color

def change_gear(self):

print("Changing	gear")

def start_engine(self):

print("Changing	engine")

>>> car = Car("Toyota", "Avensis", "silver")

>>> print(isinstance(car, Vehicle))

True

Overriding	__new__	vs	__init__	in	Custom	Metaclasses
Sometimes,	there	is	confusion	over	whether	to	override	the	__init__	or	__new__	method
when	defining	custom	metaclasses.	The	decision	about	which	to	override	depends	the
objective	of	such	custom	metaclasses.	If	the	intent	is	to	modify	the	class	by	changing
some	class	attribute	such	as	the	list	of	base	classes	then	the	__new__	method	should	be
overridden.	The	following	example	is	a	metaclass	that	checks	for	camel	case	attribute
names	and	converts	such	to	names	with	underscores	between	words.

class NamingMeta(type):

def __new__(mcl, name, bases, attrs):

new_attrs = dict()

for key, value in attrs.items():

updated_name = NamingMeta.convert(key)

new_attrs[updated_name] = value

return super(NamingMeta, mcl).__new__(mcl, name, bases, new_attrs)

@staticmethod

def convert(name):

s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)

return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()

It	would	not	be	possible	to	modify	class	attributes	such	as	the	list	of	base	classes	or
attribute	names	in	the	__init__	method	because	as	has	been	said	previously,	this	method
is	called	after	the	object	has	already	been	created.	On	the	other	hand,	when	the	intent	is
just	to	carry	out	initialization	or	validation	checks	such	as	was	done	with	the	DocMeta	and
Final	metaclasses	then	the	__init__	method	of	the	metaclass	should	be	overridden.

8.4	Context	Managers
Sometimes,	there	is	a	need	to	execute	some	operations	between	another	pair	of	operations.
For	example,	open	a	file,	read	from	the	file	and	close	the	file	or	acquire	a	lock	on	a	data
structure,	work	with	the	data	structure	and	release	the	data	structure.	These	kinds	of
requirements	come	up	most	especially	when	dealing	with	system	resources	where	the
resource	is	acquired,	worked	with	and	then	released.	It	is	important	that	the	acquisition
and	release	of	such	resources	are	handled	carefully	so	that	any	errors	that	may	occur	are
correctly	handled.	Writing	code	to	handle	this	all	the	time	leads	to	a	lot	of	repetition	and
cumbersome	code.	Context	managers	provide	a	solution	to	this.	They	provide	a	mean	for
abstracting	away	a	pair	of	operations	that	are	executed	before	and	after	another	group	of
operation	using	the	with	statement.	The	with	statement	enables	a	set	of	operations	to	run
within	a	context.	The	context	is	controlled	by	a	context	manager	object.	An	example	of	the
use	of	the	with	statement	is	in	opening	files;	this	involves	a	pair	of	operations	-	opening
and	closing	the	file.

#	create	a	context	

with open('output.txt', 'w') as f:

#	carry	out	operations	within	context

f.write('Hi	there!')

The	with	statement	can	be	used	with	any	object	that	implements	the	context	management
protocol.	This	protocol	defines	a	set	of	operations,	__enter__	and	__exit__	that	are
executed	just	before	the	start	of	execution	of	some	piece	of	code	and	after	the	end	of
execution	of	some	piece	of	code	respectively.	Generally,	the	definition	and	use	of	a
context	manager	is	shown	in	the	following	snippet.

class context:

def __enter__(self):

set resource up

return resource

def __exit__(self, type, value, traceback):

tear resource down

#	the	context	object	returned	by	__enter__	method	is	bound	to	name

with context() as name:

do some functionality

If	the	initialised	resource	is	used	within	the	context	then	the	__enter__	method	must
return	the	resource	object	so	that	it	is	bound	within	the	with	statement	using	the	as
mechanism.	A	resource	object	must	not	be	returned	if	the	code	being	executed	in	the
context	doesn’t	require	a	reference	to	the	object	that	is	set-up.	The	following	is	a	very
trivial	example	of	a	class	that	implements	the	context	management	protocol	in	a	very
simple	fashion.

>>> class Timer:

... def __init__(self):

... pass

... def __enter__(self):

... self.start_time = time.time()

... def __exit__(self, type, value, traceback):

... print("Operation	took	{}	seconds	to	complete".format(time.time()-self.start_time))

...

...

>>> with Foo():

... print("Hey	testing	context	managers")

...

Hey testing context managers

Operation took 0.00010395050048828125 seconds to complete

>>>

When	the	with	statement	executes,	the	__enter__()	method	is	called	to	create	a	new
context;	if	a	resource	is	initialized	for	use	here	then	it	is	returned	but	this	is	not	the	case	in
this	example.	After	the	operations	within	the	context	are	executed,	the	__exit__()	method
is	called	with	the	type,	value	and	traceback	as	arguments.	If	no	exception	is	raised
during	the	execution	of	the	of	the	operations	within	the	context	then	all	arguments	are	set
to	None.	The	__exit__	method	returns	a	True	or	False	depending	on	whether	any	raised
exceptions	have	been	handled.	When	False	is	returned	then	exception	raised	are
propagated	outside	of	the	context	for	other	code	blocks	to	handle.	Any	resource	clean-up

is	also	carried	out	within	the	__exit__()	method.	This	is	all	there	is	to	context
management.	Now	rather	than	write	try…finally	code	to	ensure	that	a	file	is	closed	or
that	a	lock	is	released	every	time	such	resource	is	used,	such	chores	can	be	handled	in	the
the	__exit__	method	of	a	context	manager	class	thus	eliminating	code	duplication	and
making	the	code	more	intelligible.

The	Contextlib	module
For	very	simple	use	cases,	there	is	no	need	to	go	through	the	hassle	of	implementing	our
own	classes	with	__enter__	and	__exit__	methods.	The	python	contextlib	module
provides	us	with	a	high	level	method	for	implementing	context	manager.	To	define	a
context	manager,	the	@contextmanager	decorator	from	the	contextlib	module	is	used	to
decorate	a	function	that	handles	the	resource	in	question	or	carries	out	any	initialization
and	clean-up;	this	function	carrying	out	the	initialization	and	tear	down	must	however	be	a
generator	function.	The	following	example	illustrates	this.

from contextlib import contextmanager

>>> from contextlib import contextmanager

>>> @contextmanager

... def time_func():

... start_time = time.time()

... yield

... print("Operation	took	{}	seconds".format(time.time()-start_time))

>>> with time_func():

... print("Hey	testing	the	context	manager")

...

Hey testing the context manager

Operation took 7.009506225585938e-05 seconds

This	context	generator	function,	time_func	in	this	case,	must	yield	exactly	one	value	if	it
is	required	that	a	value	be	bound	to	a	name	in	the	with	statement’s	as	clause.	When
generator	yields,	the	code	block	nested	in	the	with	statement	is	executed.	The	generator	is
then	resumed	after	the	code	block	finishes	execution.	If	an	exception	occurs	during	the
execution	of	a	block	and	is	not	handled	in	the	block,	the	exception	is	re-raised	inside	the
generator	at	the	point	where	the	yield	occurred.	If	an	exception	is	caught	for	purposes
other	than	adequately	handling	such	an	exception	then	the	generator	must	re-raise	that
exception	otherwise	the	generator	context	manager	will	indicate	to	the	with	statement	that
the	exception	has	been	handled,	and	execution	will	resume	normally	after	the	context
block.

Context	managers	just	like	decorators	and	metaclasses	provide	a	clean	method	for
abstracting	away	these	kind	of	repetitive	code	that	can	clutter	code	and	makes	following
code	logic	difficult.

9.	Modules	And	Packages

Modules	and	packages	are	the	last	organizational	unit	of	code	that	are	discussed.	They
provide	the	means	by	which	large	programs	can	be	developed	and	shared.

9.1	Modules
Modules	enable	the	reuse	of	programs.	A	module	is	a	file	that	contains	a	collection	of
definitions	and	statements	and	has	a	.py	extension.	The	contents	of	a	module	can	be	used
by	importing	the	module	either	into	another	module	or	into	the	interpreter.	To	illustrate
this,	our	favourite	Account	class	shown	in	the	following	snippet	is	saved	in	a	module
called	account.py.

class Account:

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return self.balance

To	re-use	the	module	definitions,	the	import	statement	is	used	to	import	the	module	as
shown	in	the	following	snippet.

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import account

>>> acct = account.Account("obi", 10)

>>> acct

<account.Account object at 0x101b6e358>

>>>

All	executable	statements	contained	within	a	module	are	executed	when	the	module	is
imported.	A	module	is	also	an	object	that	has	a	type	-	module	as	such	all	generic
operations	that	apply	to	objects	can	be	applied	to	modules.	The	following	snippets	show
some	unintuitive	ways	of	manipulating	module	objects.

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import account

>>> type(account)

<class 'module'>

>>> getattr(account, 'Account') #	access	the	Account	class	using	getattr

<class 'cl.Account'>

>>> account.__dict__

{'json': <module 'json' from '/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/js

on/__init__.py'>, '__cached__': '/Users/c4obi/writings/scratch/src/__pycache__/cl.cpython-34.pyc', '\

__loader__': <_frozen_importlib.SourceFileLoader object at 0x10133d4e0>, '__doc__': None, '__file__'

: '/Users/c4obi/writings/scratch/src/cl.py', 'Account': <class 'account.Account'>,	'__package__':	''\

,	'__builtins__':	{	...}	...	

}

Each	module	possesses	its	own	unique	global	namespace	that	is	used	by	all	functions	and
classes	defined	within	the	module	and	when	this	feature	is	properly	used,	it	eliminates
worries	about	name	clashes	from	third	party	modules.	The	dir()	function	without	any
argument	can	be	used	within	a	module	to	find	out	what	names	are	available	in	a	module’s
namespace.

As	mentioned,	a	module	can	import	another	module;	when	this	happens	and	depending	on
the	form	of	the	import,	the	imported	module’s	name,	part	of	the	name	defined	within	the
imported	module	or	all	names	defined	with	the	imported	module	could	be	placed	in	the
namespace	of	the	module	doing	the	importing.	For	example,	from	account	import
Account	imports	and	place	the	Account	name	from	the	account	module	into	the
namespace,	import	account	imports	and	adds	the	account	name	referencing	the	whole
module	to	the	namespace	while	from	account	import	*	will	import	and	add	all	names	in
the	account	module	except	those	that	start	with	an	underscore	to	the	current	namespace.
Using	from	module	import	*	as	a	form	of	import	is	strongly	advised	against	as	it	may
import	names	that	the	developer	is	not	aware	of	and	that	conflict	with	names	used	in	the
module	doing	the	importing.	Python	has	the	__all__	special	variable	that	can	be	used
within	modules.	This	value	of	the	__all__	variable	should	be	a	list	that	contains	the
names	within	a	module	that	are	imported	from	such	module	when	the	from	module
import	*	syntax	is	used.	Defining	this	method	is	totally	optional	on	the	part	of	the
developer.	We	illustrate	the	use	of	the	__all__	special	method	with	the	following
example.

__all__ = ['Account']

class Account:

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return self.balance

class SharedAccount:

pass

>>> from account import *

>>> dir()

['Account', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__'] #	on\

ly Account has been imported

>>>

The	name	of	an	imported	module	is	gotten	by	referencing	the	__name__	attribute	of	the
imported	module.	In	the	case	of	a	module	that	is	currently	executing,	the	__name__	value
is	set	to	__main__.	Python	modules	can	be	executed	with	python	module	<arguments>.	A
corollary	of	the	fact	that	the	__name__	of	the	currently	executing	module	is	set	to
__main__	is	that	we	can	have	a	recipe	such	as	the	following.

if __name__ == "__main__":

#	run	some	code

That	makes	the	module	usable	as	a	standalone	script	as	well	as	an	importable	module.	A
popular	use	of	the	above	recipe	is	for	running	unittest;	we	can	run	the	module	as	a
standalone	to	test	it	but	then	import	it	for	use	into	another	module	without	running	the	test
cases.

Reloading	Modules
Once	modules	have	been	imported	into	the	interpreter,	any	change	to	such	a	module	is	not
reflected	within	the	interpreters.	However,	Python	provides	the	importlib.reload	that
can	be	used	to	re-import	a	module	once	again	into	the	current	namepace.

9.2	How	are	Modules	found?
Import	statements	are	able	to	import	modules	that	are	in	any	of	the	paths	given	by	the
sys.path	variable.	The	import	system	uses	a	greedy	strategy	in	which	the	first	module
found	is	imported.	The	content	of	the	sys.path	variable	is	unique	to	each	Python
installation.	An	example	of	the	value	of	the	sys.path	variable	on	a	Mac	operating	system
is	shown	in	the	following	snippet.

>>> import sys

>>> sys.path

['', '/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip', '/Library/Frameworks/Pyth\

on.framework/Versions/3.4/lib/python3.4', '/Library/Frameworks/Python.framework/Versions/3.4/lib/pyt\

hon3.4/plat-darwin', '/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload',

'/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages']

The	sys.path	list	can	be	modified	at	runtime	by	adding	or	removing	elements	from	this
list.	However,	when	the	interpreter	is	started	conventionally,	the	sys.path	list	contains

paths	that	come	from	three	sources	namely:	sys.prefix,	PYTHONPATH	and	initialization
by	the	site.py	module.

1.	 sys.prefix:	This	variable	specifies	the	base	location	for	a	given	Python	installation.
From	this	base	location,	the	Python	interpreter	can	work	out	the	location	of	the
Python	standard	library	modules.	The	location	of	the	standard	library	is	given	by	the
following	paths.

sys.prefix + '/lib/python3X.zip'

sys.prefix + '/lib/python3.X'

sys.prefix + '/lib/python3.X/plat-sysname'

sys.exec_prefix + '/lib/python3.X/lib-dynload'

The	paths	of	the	standard	library	can	be	found	by	running	the	Python	interpreter	with	the	-
S	option;	this	prevents	the	site.py	initialization	that	adds	the	third	party	package	paths	to
the	sys.path	list.	The	location	of	the	standard	library	can	also	be	overriden	by	defining
the	PYTHONHOME	environment	variable	that	replaces	the	sys.prefix	and
sys.exec_prefix.

1.	 PYTHONPATH:	Users	can	define	the	PYTHONPATH	environment	variable	and	the
value	of	this	variable	is	added	as	the	first	argument	to	the	sys.path	list.	This	variable
can	be	set	to	the	directory	where	a	user	keeps	user	defined	modules.

2.	 site.py:	This	is	a	path	configuration	module	that	is	loaded	during	the	initialization
of	the	interpreter.	This	modules	adds	site-specific	paths	to	the	module	search	path.
The	site.py	starts	by	constructing	up	to	four	directories	from	a	prefix	and	a	suffix.
For	the	prefix,	it	uses	sys.prefix	and	sys.exec_prefix.	For	the	suffix,	it	uses	the
empty	string	and	then	lib/site-packages	on	Windows	or	lib/pythonX.Y/site-
packages	on	Unix	and	Macintosh.	For	each	of	these	distinct	combinations,	if	it	refers
to	an	existing	directory,	it	is	added	to	the	sys.path	and	further	inspected	for
configuration	files.	The	configuration	files	are	files	with	.pth	extension.	The
contents	are	additional	items	one	per	line	to	be	added	to	sys.path.	Non-existing
items	are	never	added	to	sys.path,	and	no	check	is	made	that	the	item	refers	to	a
directory	rather	than	a	file.	Each	item	is	added	to	sys.pathonce.	Blank	lines	and
lines	beginning	with	#	are	skipped.	Lines	starting	with	import	followed	by	space	or
tab	are	executed.	After	these	path	manipulations,	an	attempt	is	made	to	import	a
module	named	sitecustomize	that	can	perform	arbitrary	site-specific
customizations.	It	is	typically	created	by	a	system	administrator	in	the	site-packages
directory.	If	this	import	fails	with	an	ImportError	exception,	it	is	silently	ignored.
After	this,	if	ENABLE_USER_SITE	is	true,	an	attempt	is	made	to	import	a	module
named	usercustomize	that	can	perform	arbitrary	user-specific	customizations,	.	This
file	is	intended	to	be	created	in	the	user	site-packages	directory	that	is	part	of
sys.path	unless	disabled	by	-s.	Any	ImportError	is	silently	ignored.

9.3	Packages
Just	as	modules	provide	a	mean	for	organizing	statements	and	definitions,	packages
provide	a	mean	for	organizing	modules.	A	close	but	imperfect	analogy	of	the	relationship
of	packages	to	modules	is	that	of	folders	to	files	on	computer	file	systems.	A	package	just

like	a	folder	can	be	composed	of	a	number	of	module	files.	In	Python	however,	packages
are	just	like	modules;	in	fact	all	packages	are	modules	but	not	all	modules	are	packages.
The	difference	between	a	module	and	package	is	the	presence	of	a	__path__	special
variable	in	a	package	object	that	does	not	have	a	None	value.	Packages	can	have	sub-
packages	and	so	on;	when	referencing	a	package	and	it	corresponding	sub-packages	the
dot	notation	is	used	so	a	complex	number	sub-package	within	a	mathematics	package	will
be	referenced	as	math.complex.

There	are	currently	two	types	of	packages:-	regular	packages	and	namespace	packages.

Regular	Packages
A	regular	package	is	one	that	consists	of	a	group	of	modules	in	a	folder	with	an
__init__.py	module	within	the	folder.	The	presence	of	this	__init__.py	file	within	the
folder	cause	the	interpreter	to	treat	the	folder	as	a	package.	An	example	of	package
structure	is	the	following.

parent/ <----- folder

__init__.py

one/ <------ sub-folder

__init__.py

a.py

two/ <------ sub-folder

__init__.py

b.py

The	parent,	one	and	two	folders	are	all	packages	because	they	all	contain	an	__init__.py
module	within	each	of	their	respective	folders.	one	and	two	are	sub-packages	of	the
parent	package.	Whenever	a	package	is	imported,	the	__init__.py	module	of	such	a
package	is	executed.	One	can	think	of	the	__init__.py	as	the	store	of	attributes	for	the
package	-	only	symbols	defined	in	this	module	are	attributes	of	the	imported	module.
Assuming	the	__init__.py	module	from	the	above	parent	package	is	empty	and	the
package,	parent,	is	imported	using	import	parent,	the	parent	package	will	have	no
module	or	subpackage	as	an	attribute.	The	following	code	listing	shows	this.

>>> import parent

>>> dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'parent']

>>> dir(parent)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__

', '__path__', '__spec__']

As	the	example	shows,	none	of	the	modules	or	sub-packages	is	listed	as	an	attribute	of	the
imported	package	object.	On	the	other	hand,	if	a	symbol,	package="testing	packages",
is	defined	in	the	__init__.py	module	of	the	parent	package	and	the	parent	package	is
imported,	the	package	object	has	this	symbol	as	an	attribute	as	shown	in	the	following
code	listing	.

>>> import parent

>>> dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'parent']

>>> dir(parent)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__

', '__path__', '__spec__', 'package']

>>> parent.package

'testing	packages'

>>>

When	a	sub-package	is	imported,	all	__init__.py	modules	in	parent	packages	are
imported	in	addition	to	the	__init__.py	module	of	the	sub-package.	Sub-packages	are
referenced	during	import	using	the	dot	notation	just	like	modules	in	packages	are.	In	the
previous	package	structure,	the	notation	would	be	parent.one	to	reference	the	one	sub-
package.	Packages	support	the	same	kind	of	import	semantics	as	modules;	individual
modules	or	packages	can	be	imported	as	in	the	following	example.

#	import	the	module	a

import parent.one.a

When	the	above	method	is	used	then	the	fully	qualified	name	for	the	module,
parent.one.a,	must	be	used	to	access	any	symbol	in	the	module.	Note	that	when	using
this	method	of	import,	the	last	symbol	can	be	either	a	module	or	sub-package	only;
classes,	functions	or	variables	defined	within	modules	are	not	allowed.	It	is	also	possible
to	import	just	the	module	or	sub-package	that	is	needed	as	the	following	example	shows.

#	importing	just	required	module

from parent.one import a

#	importing	just	required	sub-package

from parent import one

Symbols	defined	in	the	a	module	or	modules	in	the	one	package	can	then	be	referenced
using	dot	notation	with	just	a	or	one	as	the	prefix.	The	import	forms,	from	package
import	*	or	from	package.subpackage	import	*,	can	be	used	to	import	all	the	modules
in	a	package	or	sub-package.	This	form	of	import	should	however	be	used	carefully	if	ever
used	as	it	may	import	some	names	into	the	namespace	that	may	cause	naming	conflicts.
Packages	support	the	__all__	(the	value	of	this	should	by	convention	be	a	list)	variable
for	listing	modules	or	names	that	are	visible	when	the	package	is	imported	using	the	from
package	import	*	syntax.	If	__all__	is	not	defined,	the	statement	from	package	import
*	does	not	import	all	submodules	from	the	package	into	the	current	namespace	rather	it
only	ensures	that	the	package	has	been	imported	possibly	running	any	initialization	code
in	__init__.py	and	then	imports	whatever	symbols	are	defined	in	the	__init__.py
module;	including	any	names	defined	here	and	submodules	imported	here.

Namespace	Packages
A	namespace	package	is	a	package	in	which	the	component	modules	and	sub-packages	of
the	package	may	reside	in	multiple	different	locations.	The	various	components	may
reside	on	different	part	of	the	file	system,	in	zip	files,	on	the	network	or	on	any	other
location	searched	by	interpreter	during	the	import	process	however	when	the	package	is
imported,	all	components	exist	in	a	common	namespace.	To	illustrate	a	namespace
package,	observe	the	following	directory	structures	containing	modules;	both	directories,
apollo	and	gemini	could	be	located	on	any	part	of	the	file	system	and	not	necessarily	next
to	each	other.

apollo/

space/

test.py

gemini/

space/

test1.py

In	these	directories,	the	name,	space,	is	used	as	a	common	namespace	and	will	serve	as
the	package	name.	Observe	the	absence	of	__init__.py	modules	in	either	directory.	The
absence	of	this	module	within	these	directories	is	a	signal	to	the	interpreter	that	it	should
create	a	namespace	package	when	it	encounters	such.	To	be	able	to	import	this	space
package,	the	paths	for	its	components	must	first	of	all	be	added	to	interpreter’s	module
search	path,	sys.path.

>>> import sys

>>> sys.path.extend(['apollo', 'gemini'])

>>> import space.test

>>> import space.test1

Observe	that	the	two	different	package	directories	are	now	logically	regarded	as	a	single
name	space	and	either	space.test	or	space.test1	can	be	imported	as	if	they	existed	in
the	same	package.	The	key	to	a	namespace	package	is	the	absence	of	the	__init__.py
modules	in	the	top-level	directory	that	serves	as	the	common	namespace.	The	absence	of
the	__init__.py	module	causes	the	interpreter	to	create	a	list	of	all	directories	within	its
sys.path	variable	that	contain	a	matching	directory	name	rather	than	throw	an	exception.
A	special	namespace	package	module	is	then	created	and	a	read-only	copy	of	the	list	of
directories	is	stored	in	its	__path__	variable.	The	following	code	listing	gives	an	example
of	this.

>>> space.__path__

_NamespacePath(['apollo/space', 'gemini/space'])

Namespaces	bring	added	flexibility	to	package	manipulation	because	namespaces	can	be
extend	by	anyone	with	their	own	code	thus	eliminating	the	need	to	modify	package
structures	in	third	party	packages.	For	example,	suppose	a	user	had	his	or	her	own
directory	of	code	like	this:

my-package/

space/

custom.py

Once	this	directory	is	added	to	sys.path	along	with	the	other	packages,	it	would
seamlessly	merge	together	with	the	other	space	package	directories	and	the	contents	can
also	be	imported	along	with	any	existing	artefacts.

>>> import space.custom

>>> import space.test

>>> import space.test1

9.4	The	Import	System

The	import	statement	and	importlib.import_module()	function	provide	the	required
import	functionality	in	Python.	A	call	to	the	import	statement	combines	two	actions:

1.	 A	search	operation	to	find	the	requested	module	through	a	call	to	the	__import__
statement	and

2.	 A	binding	operation	to	add	the	module	returned	from	operation	1	to	the	current
namespace.

If	the	__import__	call	does	not	find	the	requested	module	then	an	ImportError	is
returned.

The	Import	Search	Process
The	import	mechanism	uses	the	fully	qualified	name	of	the	module	for	the	search.	In	the
case	that	the	fully	qualified	name	is	a	sequence	of	names	separated	by	dots	e.g
foo.bar.baz,	the	interpreter	will	attempt	to	import	foo	followed	by	bar	followed	by	bar.
If	any	of	these	modules	is	not	found	then	an	ImportError	is	raised.

The	sys.modules	variable	is	a	cache	for	all	previously	imported	modules	and	is	the	first
port	of	call	in	the	module	search	process.	If	a	module	is	present	in	the	sys.modules	cache
then	it	is	returned	otherwise	an	ImportError	is	raised	and	the	search	continues.	The
sys.modules	cache	is	writeable	so	user	code	can	manipulate	the	content	of	the	cache.	An
example	of	the	content	of	the	cache	is	shown	in	the	following	snippet.

>>> import sys

>>> sys.modules

{'readline': <module 'readline' from '/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.\

4/lib-dynload/readline.so'>, 'json.scanner': <module 'json.scanner' from '/Library/Frameworks/Python

.framework/Versions/3.4/lib/python3.4/json/scanner.py'>, '_sre': <module '_sre' (built-in)>, 'copyre

g': <module 'copyreg' from '/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/copyreg.\

py'>, '_collections_abc': <module '_collections_abc' from '/Library/Frameworks/Python.framework/Vers

ions/3.4/lib/python3.4/_collections_abc.py'>, 'cl': <module 'cl' from '/Users/c4obi/writings/scratch

/src/cl.py'>, 'rlcompleter': <module 'rlcompleter' from '/Library/Frameworks/Python.framework/Versio

ns/3.4/lib/python3.4/rlcompleter.py'>, '_sitebuiltins': <module '_sitebuiltins' from '/Library/Frame

works/Python.framework/Versions/3.4/lib/python3.4/_sitebuiltins.py'>, '_imp': <module '_imp' (built-

in)>, '_json': <module '_json' from '/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/lib-dynload/_json.so'>, '_weakrefset': <module '_weakrefset' from '/Library/Frameworks/Python.frame

work/Versions/3.4/lib/python3.4/_weakrefset.py'>, 'json.decoder': <module 'json.decoder' from '/Libr

ary/Frameworks/Python.framework/Versions/3.4/lib/python3.4/json/decoder.py'>, '_codecs': <module '_c\

odecs' (built-in)>, 'codecs': <module 'codecs' from '/Library/Frameworks/Python.framework/Versions/3

.4/lib/python3.4/codecs.py'>, ... }

Finders	and	Loaders

When	a	module	is	not	found	in	the	cache,	the	interpreter	makes	use	of	its	import	protocol
to	try	and	find	the	module.	The	Python	import	protocol	defines	finder	and	loader	objects.
Objects	that	implement	both	interfaces	are	called	importers.

Finders	define	strategies	for	locating	modules.	Modules	maybe	available	locally	on	the
file	system	in	regular	files	or	in	zipped	files,	or	in	other	locations	such	as	a	database	or
even	at	a	remote	location.	Finders	have	to	be	able	to	deal	with	such	locations	if	modules
are	going	to	be	imported	from	any	of	such	locations.	By	default,	Python	has	support	for
finders	that	handle	the	following	scenarios.

1.	 Built-in	modules,
2.	 Frozen	modules	and
3.	 Path	based	modules	-	this	finder	handles	imports	that	have	to	interact	with	the	import

path	given	by	the	sys.path	variable	as	shown	in	the	following.

These	finders	are	located	in	the	sys.meta_path	variable	as	shown	in	the	following
snippet.

>>> import sys

>>> sys.meta_path

[<class '_frozen_importlib.BuiltinImporter'>,	<class	'_frozen_importlib.FrozenImporter'>,	<class	'_f

rozen_importlib.PathFinder'>]

>>>

The	interpreter	continues	the	search	for	the	module	by	querying	each	finder	in	the
meta_path	to	find	which	can	handle	the	module.	The	finder	objects	must	implement	the
find_spec	method	that	takes	three	arguments:	the	first	is	the	fully	qualified	name	of	the
module,	the	second	is	an	import	path	that	is	used	for	the	module	search	-	this	is	None	for
top	level	modules	but	for	sub-modules	or	sub-packages,	it	is	the	value	of	the	parent
package’s	__path__	and	the	third	argument	is	an	existing	module	object	that	is	passed	in
by	the	system	only	when	a	module	is	being	reloaded.

If	one	of	the	finders	locates	the	module,	it	returns	a	module	spec	that	is	used	by	the
interpreter	import	machinery	to	create	and	load	the	module	(loading	is	tantamount	to
executing	the	module).	The	loaders	carry	out	the	module	execution	in	the	module’s	global
namespace.	This	is	done	by	a	call	to	the	importlib.abc.Loader.exec_module()	method
with	the	already	created	module	object	as	argument.

Customizing	the	import	process

The	import	process	can	be	customized	via	import	hooks.	There	are	two	types	of	this	hook:
meta	hooks	and	import	path	hooks.
Meta	hooks

These	are	called	at	the	start	of	the	import	process	immediately	after	the	sys.modules
cache	lookup	and	before	any	other	process.	These	hooks	can	override	any	of	the	default
finders	search	processes.	Meta	hooks	are	registered	by	adding	new	finder	objects	to	the
sys.meta_path	variable.

To	understand	how	a	custom	meta_path	hook	can	be	implemented,	a	very	simple	case	is
illustrated.	In	online	Python	interpreters,	some	built-in	modules	such	as	the	os	are	disabled
or	restricted	to	prevent	malicious	use.	A	very	simple	way	to	implement	this	is	to
implement	a	meta	import	hook	that	raises	an	exception	any	time	a	restricted	import	is
attempted;	the	following	snippet	shows	such	an	example.

class RestrictedImportFinder:

def __init__(self):

self.restr_module_names = ['os']

def find_spec(self, fqn, path=None, module=None):

if fqn in self.restr_module_names:

raise ImportError("%s	is	a	restricted	module	and	cannot	be	imported" % fqn)

return None

import sys

#	remove	os	from	sys.module	cache

del sys.modules['os']

sys.meta_path.insert(0, RestrictedImportFinder())

import os

Traceback (most recent call last):

File "test_concat.py", line 16, in <module>

import os

File "test_concat.py", line 9, in find_spec

raise ImportError("%s	is	a	restricted	module	and	cannot	be	imported" % fqn)

ImportError: os is a restricted module and cannot be imported

Import	Path	hooks

These	hooks	are	called	as	part	of	the	sys.path	or	package.__path__	processing.	Recall
from	our	previous	discussion	that	a	path	based	finder	is	one	of	the	default	meta-finder	and
this	finder	works	with	entries	in	the	sys.path	variable.	The	meta	path	based	finder
delegates	the	job	of	finding	modules	on	the	sys.path	variables	to	other	finders	-	these	are
the	import	path	hooks.	The	sys.path_hooks	is	a	collection	of	built	in	path	entry	finders.
By	default,	the	Python	interpreter	has	support	for	processing	files	in	zip	folders	and
normal	files	in	directories	as	shown	in	the	following	snippet.

import sys

>>> sys.path_hooks

[<class 'zipimport.zipimporter'>,	<function	FileFinder.path_hook.<locals>.path_hook_for_FileFinder	a\

t	0x1003c1b70>]

Each	hooks	knows	how	to	handle	a	particular	kind	of	file.	For	example,	an	attempt	to	get
the	finder	for	one	of	the	entries	in	sys.path	is	attempted	in	the	following	snippet.

>>> sys.path_hooks

[<class 'zipimport.zipimporter'>,	<function	FileFinder.path_hook.<locals>.path_hook_for_FileFind

er	at	0x1003c1b70>]

#	sys.prefix	is	a	directory

>>> path = sys.prefix

#	sys.path_hooks[0]	is	associated	with	zip	files

>>> finder = sys.path_hooks[0](path)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

zipimport.ZipImportError: not a Zip file

>>> finder = sys.path_hooks[1](path)

>>> finder

FileFinder('/Library/Frameworks/Python.framework/Versions/3.4')

>>>

New	import	path	hooks	can	be	added	by	inserting	new	callables	into	the	sys.path_hooks.

Why	You	Probably	Should	Not	Reload	Modules…
Now	that	we	understand	that	the	last	step	of	a	module	import	is	the	exec	of	the	module
code	within	the	global	namespace	of	the	importing	module,	it	is	clearer	why	it	maybe	a
bad	idea	to	use	the	importlib.reaload	to	reload	modules	that	have	changed.

A	module	reload	does	not	purge	the	global	namespace	of	objects	from	the	module	being
imported.	Imagine	a	module,	Foo,	that	has	a	function,	print_name	imported	into	another
module,	Bar;	the	function,	Foo.print_name,	is	referenced	by	a	variable,	x,	in	the	module,
Bar.	Now	if	the	implementation	for	print_name	is	changed	for	some	reason	and	then
reloaded	in	Bar,	something	interesting	happens.	Since	the	reload	of	the	module	Foo	will
cause	an	exec	of	the	module	contents	without	any	prior	clean-up,	the	reference	that	x
holds	to	the	previous	implementation	of	Foo.print_name	will	persist	thus	we	have	two
implementations	and	this	is	most	probably	not	the	behaviour	expected.

For	this	reason,	reloading	a	module	is	something	that	maybe	worth	avoiding	in	any
sufficiently	complex	Python	program.

9.5	Distributing	Python	Programs
Python	provides	the	distutils	module	for	packaging	up	Python	code	for	distribution.
Assuming	the	program	has	been	properly	written,	documented	and	structured	then
distributing	it	is	relatively	straightforward	using	distutils.	One	just	has	to:

1. write a setup script (setup.py by convention)

2. (optional) write a setup configuration file

3. create a source distribution

4. (optional) create one or more built (binary) distributions

A	set-up	script	using	distutils	is	a	setup.py	file.	For	a	program	with	the	following
package	structure,

```python

parent/

__init__.py

spam.py

one/

__init__.py

a.py

two/

__init__.py

b.py

```

an	example	of	a	simple	setup.py	file	is	given	in	the	following	snippet.

from distutils.core import setup

setup(name='parent',

version='1.0',

author="xxxxxx",

maintainer="xxxx",

maintainer_email="xxxxx"

py_modules=['spam'],

packages=['one', 'two'],

scripts=[]

)

The	setup.py	file	must	exist	at	the	top	level	directory	so	in	this	case,	it	should	exist	at
parent/setup.py.	The	values	used	in	the	set-up	script	are	self	explanatory.	py_modules
will	contain	the	names	of	all	single	file	python	modules,	packages	will	contains	a	list	of	all

packages,scripts	will	contain	a	list	of	all	scripts	within	the	program.	The	rest	of	the
arguments	though	not	exhaustive	of	the	possible	parameters	are	self	explanatory.

Once	the	setup.py	file	is	ready,	the	following	snippet	is	used	at	the	commandline	to
create	an	archive	file	for	distribution.

>>> python setup.py sdist

sdist	will	create	an	archive	file	(e.g.,	tarball	on	Unix,	ZIP	file	on	Windows)	containing
your	setup	script	setup.py,	your	modules	and	packages.	The	archive	file	will	be	named
parent-1.0.tar.gz	(or	.zip),	and	will	unpack	into	a	directory	parent-1.0..	To	install	the
created	distribution,	the	file	is	unzipped	and	python	setup.py	install	is	run	inside	the
directory.	This	will	install	the	package	in	the	site-packages	directory	for	the	installation.

One	can	also	create	one	or	more	built	distributions	for	programs.	For	instance,	if	running	a
Windows	machine,	one	can	make	the	use	of	the	program	easy	for	end	users	by	creating	an
executable	installer	with	the	bdist_wininst	command.	For	example:
python	setup.py	bdist_wininst

will	create	an	executable	installer,	parent-1.0.win32.exe,	in	the	current	directory.

Other	useful	built	distribution	formats	are	RPM,	implemented	by	the	bdist_rpmcommand,
bdist_pkgtool	for	Solaris,	and	bdist_sdux	for	HP-UX	install.	It	is	important	to	note	that
the	use	of	distutils	assumes	that	the	end	user	of	a	distributed	package	will	have	the
python	interpreter	already	installed.

10.	Inspecting	Objects

The	Python	inspect	module	provides	powerful	methods	for	interacting	with	live	Python
objects.	The	methods	provided	by	this	module	help	with	type	checking,	sourcecode
retrieval,	class	and	function	inspection	and	Interpreter	stack	inspection.	The
documentation	is	the	golden	source	of	informtion	for	this	module	but	a	few	of	the	classes
and	methods	in	this	module	are	discussed	to	show	the	power	of	this	module.

10.1	Handling	source	code
The	inspect	module	provides	functions	for	accessing	the	source	code	of	functions,
classes	and	modules.	All	examples	are	carried	out	using	our	Account	class	as	defined	in
the	following	snippet.

#	python	class	for	intermediate	python	book

class Account:

"""base	class	for	representing	user	accounts"""

num_accounts = 0

def __init__(self, name, balance):

self.name = name

self.balance = balance

Account.num_accounts += 1

def del_account(self):

Account.num_accounts -= 1

def __getattr__(self, name):

"""handle	attribute	reference	for	non-existent	attribute"""

return "Hey	I	dont	see	any	attribute	called	{}".format(name)

def deposit(self, amt):

self.balance = self.balance + amt

def withdraw(self, amt):

self.balance = self.balance - amt

def inquiry(self):

return "Name={},	balance={}".format(self.name, self.balance) =

Some	of	the	methods	from	the	inspect	module	for	handling	source	code	include:

1.	 inspect.getdoc(object):	This	returns	the	documentation	string	for	the	argument
object.	The	string	returned	is	cleaned	up	with	inspect.cleandoc().

>>> acct = test.Account("obi", 1000000)

>>> import inspect

>>> inspect.getdoc(acct)

'base	class	for	representing	user	accounts'

>>>

2.	 inspect.getcomments(object):	This	returns	a	single	string	containing	any	lines	of
comments.	For	a	class,	function	or	method	these	are	comments	immediately
preceding	the	argument	object’s	source	code	while	for	a	module,	it	is	the	comments
at	the	top	of	the	Python	source	file.

>>> import test

>>> import inspect

>>> acct = test.Account("obi", 1000000)

>>> inspect.getcomments(acct)

>>> inspect.getcomments(test)

'#	python	class	for	intermediate	python	book\n'

3.	 inspect.getfile(object):	Return	the	name	of	the	file	in	which	an	object	was
defined.	The	argument	should	be	a	module,	class,	method,	function,	traceback,	frame
or	code	object.	This	will	fail	with	a	TypeError	if	the	object	is	a	built-in	module,
class,	or	function.

>>> inspect.getfile(test.Account)

'/Users/c4obi/src/test_concat.py'

>>>

4.	 inspect.getmodule(object):	This	function	attempts	to	guess	the	module	that	the
argument	object	was	defined	in.

>>> inspect.getmodule(acct)

<module 'test' from '/Users/c4obi/src/test.py'>

>>>

5.	 inspect.getsourcefile(object):	This	returns	the	name	of	the	Python	source	file	in
which	the	argument	object	was	defined.	This	will	fail	with	a	TypeError	if	the	object
is	a	built-in	module,	class,	or	function.

>>> inspect.getsourcefile(test_concat.Account)

'/Users/c4obi/src/test.py'

>>>

6.	 inspect.getsourcelines(object):	This	returns	a	tuple	of	the	list	of	source	code
lines	and	the	line	number	on	which	the	source	code	for	the	argument	object	begins.
The	argument	may	be	a	module,	class,	method,	function,	traceback,	frame,	or	code
object.	An	OSError	is	raised	if	the	source	code	cannot	be	retrieved.

>>> inspect.getsourcelines(test_concat.Account)

(['class	Account:\n', '				"""base	class	for	representing	user	accounts"""\n', '				num_accounts	=	

0\n', '\n', '				def	__init__(self,	name,	balance):\n', '								self.name	=	name	\n', '								self

.balance	=	balance	\n', '								Account.num_accounts	+=	1\n', '\n', '				def	del_account(self):

'								Account.num_accounts	-=	1\n', '\n', '				def	__getattr__(self,	name):\n', '								"""hand

le	attribute	reference	for	non-existent	attribute"""\n', '								return	"Hey	I	dont	see	any	attribu

te	called	{}".format(name)\n', '\n', '				def	deposit(self,	amt):\n', '								self.balance	=	self.b

alance	+	amt	\n', '\n', '				def	withdraw(self,	amt):\n', '								self.balance	=	self.balance	-	amt

	\n', '\n', '				def	inquiry(self):\n', '								return	"Name={},	balance={}".format(self.name,	self

.balance)	\n'], 52)

7.	 inspect.getsource(object):	Return	the	human	readable	text	of	the	source	code	for
the	argument	object.	The	argument	may	be	a	module,	class,	method,	function,
traceback,	frame,	or	code	object.	The	source	code	is	returned	as	a	single	string.	An
OSError	is	raised	if	the	source	code	cannot	be	retrieved.	Note	the	difference	between
this	and	inspect.getsourcelines	is	that	this	method	returns	the	source	code	as	a
single	string	while	inspect.getsourcelines	returns	a	list	of	source	code	lines.

>>> inspect.getsource(test.Account)

'class	Account:\n				"""base	class	for	representing	user	accounts"""\n				num_accounts	=	0\n\n				d

ef	__init__(self,	name,	balance):\n								self.name	=	name	\n								self.balance	=	balance	\n					

			Account.num_accounts	+=	1\n\n				def	del_account(self):\n								Account.num_accounts	-=	1\n\n

	def	__getattr__(self,	name):\n								"""handle	attribute	reference	for	non-existent	attribute"""

								return	"Hey	I	dont	see	any	attribute	called	{}".format(name)\n\n				def	deposit(self,	amt):

n self.balance = self.balance + amt n n def withdraw(self, amt): n self

self.balance - amt n n def inquiry(self): n return "Name={},	balance={}".format(

, self.balance) n'

>>>

8.	 inspect.cleandoc(doc):	This	cleans	up	indentation	from	documentation	strings	that
have	been	indented	to	line	up	with	blocks	of	code.	Any	white-space	that	can	be
uniformly	removed	from	the	second	line	onwards	is	removed	and	all	tabs	are
expanded	to	spaces.

10.2	Inspecting	Classes	and	Functions
The	inspect	module	provides	some	classes	and	functions	for	interacting	with	classes	and
functions.	Signature,	Parameter	and	BoundArguments	are	important	classes	in	the	the
inspect	module.

1.	 Signature:	This	can	be	used	to	represent	the	call	signature	and	return	annotation	of	a
function	or	method.	A	Signature	object	can	be	obtained	by	calling	the
inspect.signature	method	with	a	function	or	method	as	argument.	Each	parameter
accepted	by	the	function	or	method	is	represented	as	a	Parameter	object	in	the
parameter	collection	of	the	Signature	object.	Signature	objects	support	the	bind
method	for	mapping	from	positional	and	keyword	arguments	to	parameters.	The
bind(*args,	**kwargs)	method	will	return	a	BoundsArguments	object	if	*args	and
**kwargs	match	the	signature	else	it	raises	a	TypeError.	The	Signature	class	also
has	the	bind_partial(*args,	**kwargs)	method	that	works	in	the	same	way	as
Signature.bind	but	allows	the	omission	of	some	arguments.

>>> def test(a, b:int) -> int:

... return a^2+b

...

>>> inspect.signature(test)

<inspect.Signature object at 0x101b3c518>

>>> sig = inspect.signature(test)

>>> dir(sig)

['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribut

e__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__',

duce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subcla

sshook__', '_bind', '_bound_arguments_cls', '_parameter_cls', '_parameters', '_return_annotation'

bind', 'bind_partial', 'empty', 'from_builtin', 'from_function', 'parameters', 'replace', 'return_an

notation']

>>> sig.parameters

mappingproxy(OrderedDict([('a', <Parameter at 0x101cbf708 'a'>), ('b', <Parameter at 0x101cbf828

'>)]))

>>> str(sig)

'(a,	b:int)	->	int'

2.	 Parameter:	Parameter	objects	represent	function	or	method	arguments	within	a
Signature.	Using	the	previous	example	for	illustration,	the	parameters	of	a	signature
can	be	accessed	as	shown	in	the	following	snippet.

>>> sig.parameters['a']

<Parameter at 0x101cbf708 'a'>

>>> sig.parameters['b']

<Parameter at 0x101cbf828 'b'>

>>> type(sig.parameters['a']

...)

<class 'inspect.Parameter'>

>>> dir(sig.parameters['a'])

['KEYWORD_ONLY', 'POSITIONAL_ONLY', 'POSITIONAL_OR_KEYWORD', 'VAR_KEYWORD', 'VAR_POSITIONAL',

ass__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__'

__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__'

, '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook_

_', '_annotation', '_default', '_kind', '_name', 'annotation', 'default', 'empty', 'kind', 'name'

replace']

Important	attributes	of	a	Parameter	object	are	the	name	and	kind	attributes.	The	kind
attribute	is	a	string	that	could	either	be	POSITIONAL_ONLY,	POSITIONAL_OR_KEYWORD,
VAR_POSITIONAL,	KEYWORD_ONLY	or	VAR_KEYWORD.

3.	 BoundArguments:	This	is	the	return	value	of	a	Signature.bind	or
Signature.partial_bind	method	call.

>>> sig

<inspect.Signature object at 0x101b3c5c0>

>>> sig.bind(1, 2)

<inspect.BoundArguments object at 0x1019e6048>

A	BoundArguments	objects	contains	the	mapping	of	arguments	to	function	or	method
parameters.

>>> arg = sig.bind(1, 2)

>>> dir(arg)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__'

_getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__'

ew__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclas

shook__', '__weakref__', '_signature', 'args', 'arguments', 'kwargs', 'signature']

>>> arg.args

(1, 2)

>>> arg.arguments

OrderedDict([('a', 1), ('b', 2)])

A	BoundArguments	object	has	the	following	attributes.

1.	 args:	this	is	a	tuple	of	postional	parameter	argument	values.

2.	 arguments:	this	is	an	ordered	mapping	of	parameter	argument	names	to
parameter	argument	values.

3.	 kwargs:	this	is	a	dict	of	keyword	argument	values.
4.	 signature:	this	is	a	reference	to	the	parent	Signature	object.

Interesting	functionality	can	be	implemented	by	making	use	of	these	classes	mentioned
above.	For	example,	we	can	implement	a	rudimentary	type	checker	decorator	for	a
function	by	making	use	of	these	classes	as	shown	in	the	following	snippet	(thanks	to	the
python	cookbook	for	this).

from inspect import signature

from functools import wraps

def typeassert(*ty_args, **ty_kwargs):

def decorate(func):

#	If	in	optimized	mode,	disable	type	checking

if not __debug__:

return func

#	Map	function	argument	names	to	supplied	types

sig = signature(func)

bound_types = sig.bind_partial(*ty_args, **ty_kwargs).arguments

@wraps(func)

def wrapper(*args, **kwargs):

bound_values = sig.bind(*args, **kwargs)

#	Enforce	type	assertions	across	supplied	arguments	for	name,	value	in	bound_values.\

arguments.items():

if name in bound_types:

if not isinstance(value, bound_types[name]):

raise TypeError('Argument	{}	must	be	{}'.format(name,bound_types[name])

return func(*args, **kwargs)

return wrapper

return decorate

The	defined	decorator,	type_assert,	can	then	be	used	to	enforce	type	assertion	as	shown
in	the	following	example.

>>> @typeassert(str)

... def print_name(name):

... print("My	name	is	{}".format(name))

...

>>> print_name(10)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/c4obi/src/test_concat.py", line 43, in wrapper

raise TypeError('Argument	{}	must	be	{}'.format(name,bound_types[name]))

TypeError: Argument name must be <class 'str'>

>>>

The	bind_partial	is	used	rather	than	bind	so	that	we	do	not	have	to	specify	the	type	for
all	arguments;	the	idea	behind	the	partial	function	from	the	functools	module	is	also
behind	this.

The	inspect	module	further	defines	some	functions	for	interacting	with	classes	and
functions.	A	cross-section	of	these	functions	include:

1.	 inspect.getclasstree(classes,	unique=False):	This	arranges	the	list	of	classes
into	a	hierarchy	of	nested	lists.	If	the	returned	list	contains	a	nested	list,	the	nested	list
contains	classes	derived	from	the	class	whose	entry	immediately	precedes	the	list.
Each	entry	is	a	tuple	containing	a	class	and	a	tuple	of	its	base	classes.

>>> class Account:

... pass

...

>>> class CheckingAccount(Account):

... pass

...

>>> class SavingsAccount(Account):

... pass

...

>>> import inspect

>>> inspect.getclasstree([Account, CheckingAccount, SavingsAccount])

[(<class 'object'>,	()),	[(<class	'__main__.Account'>,	(<class	'object'>,)),	[(<class	'__main__.Chec

kingAccount'>,	(<class	'__main__.Account'>,)),	(<class	'__main__.SavingsAccount'>,	(<class	'__main__

.Account'>,))]]]

>>>

1.	 inspect.getfullargspec(func):	This	returns	the	names	and	default	values	of	a
function’s	arguments;	the	return	value	is	a	named	tuple	of	the	form:
FullArgSpec(args,	varargs,	varkw,	defaults,	kwonlyargs,	kwonlydefaults,

annotations).
args	is	a	list	of	the	argument	names.
varargs	and	varkw	are	the	names	of	the	*	and	**	arguments	or	None.
defaults	is	an	n-tuple	of	the	default	values	of	the	last	n	arguments,	or	None	if
there	are	no	default	arguments.
kwonlyargs	is	a	list	of	keyword-only	argument	names.
kwonlydefaults	is	a	dictionary	mapping	names	from	kwonlyargs	to	defaults.
annotations	is	a	dictionary	mapping	argument	names	to	annotations.

>>> def test(a:int, b:str='the') -> str:

... pass

...

>>> import inspect

>>> inspect.getfullargspec(test)

FullArgSpec(args=['a', 'b'], varargs=None, varkw=None, defaults=('the',), kwonlyargs=[], kwonlydefau

lts=None, annotations={'a': <class 'int'>,	'b':	<class	'str'>,	'return':	<class	'str'>})

2.	 inspect.getargvalues(frame):	This	returns	information	about	function	arguments
that	have	been	passed	into	a	particular	frame.	The	return	value	is	a	named	tuple
ArgInfo(args,	varargs,	keywords,	locals).

args	is	a	list	of	the	argument	names.
varargs	and	keywords	are	the	names	of	the	*	and	**	arguments	or	None.
locals	is	the	locals	dictionary	of	the	given	frame.

3.	 inspect.getcallargs(func,	*args,	**kwds):	This	binds	the	args	and	kwds	to	the
argument	names	of	the	function	or	method,	func,	as	if	it	was	called	with	them.	For
bound	methods,	bind	also	the	first	argument	typically	named	self	to	the	associated
instance.	A	dict	is	returned,	mapping	the	argument	names	including	the	names	of	the

*	and	**	arguments,	if	any	to	their	values	from	args	and	kwds.	Whenever
func(*args,	**kwds)	would	raise	an	exception	because	of	incompatible	signature,
an	exception	of	the	same	type	and	the	same	or	similar	message	is	raised.

4.	 inspect.getclosurevars(func):	This	returns	the	mapping	of	external	name
references	in	function	or	method,	func,	to	their	current	values.	A	named	tuple
ClosureVars(nonlocals,	globals,	builtins,	unbound)	is	returned.	

nonlocals	maps	referenced	names	to	lexical	closure	variables.
globals	maps	referenced	names	to	the	function’s	module	globals	and
builtins	maps	referenced	names	to	the	builtins	visible	from	the	function	body.
unbound	is	the	set	of	names	referenced	in	the	function	that	could	not	be	resolved
at	all	given	the	current	module	globals	and	builtins.

The	inspect	module	also	supplies	functions	for	accessing	members	of	objects.	An
example	of	this	is	the	inspect.getmembers(object[,	predicate])	that	returns	all
attribute	members	of	the	object	arguments;	the	predicate	is	an	optional	value	that	serves
as	a	filter	on	the	values	returned.	For	example	for	a	given	class	instance,	i,	we	can	get	a
list	of	attribute	members	of	i	that	are	methods	by	making	the	call
inspect.getmembers(i,	inspect.ismethod);	this	returns	a	list	of	tuples	of	the	attribute
name	and	attribute	object.	The	following	example	illustrates	this.

>>> acct = test_concat.Account("obi", 1000000000)

>>> import inspect

>>> inspect.getmembers(acct, inspect.ismethod)

[('__getattr__', <bound method Account.__getattr__ of <test_concat.Account object at 0x101b3c470

>>), ('__init__', <bound method Account.__init__ of <test_concat.Account object at 0x101b3c470>>),

'del_account', <bound method Account.del_account of <test_concat.Account object at 0x101b3c470>>),

'deposit', <bound method Account.deposit of <test_concat.Account object at 0x101b3c470>>), ('inquiry

', <bound method Account.inquiry of <test_concat.Account object at 0x101b3c470>>), ('withdraw', <bou

nd method Account.withdraw of <test_concat.Account object at 0x101b3c470>>)]

The	inspect	module	has	predicates	for	this	method	that	include	isclass,	ismethod,
isfunction,	isgeneratorfunction,	isgenerator,	istraceback,	isframe,	iscode,
isbuiltin,	isroutine,	isabstract,	ismethoddescriptor.

10.3	Interacting	with	Interpreter	Stacks
The	inspect	module	also	provides	functions	for	dealing	with	interpeter	stacks.	The
interpeter	stack	is	composed	of	frames.	All	the	functions	below	return	a	tuple	of	the	frame
object,	the	filename,	the	line	number	of	the	current	line,	the	function	name,	a	list	of	lines
of	context	from	the	source	code,	and	the	index	of	the	current	line	within	that	list.	The
provided	functions	enable	user	to	inspect	and	manipulate	the	frame	records.

1.	 inspect.currentframe():	This	returns	the	frame	object	for	the	caller’s	stack	frame.
This	function	relies	on	stack	frame	support	in	the	interpreter	and	this	is	not
guaranteed	to	exist	in	all	implementations	of	Python	for	example	stackless	python.	If
running	in	an	implementation	without	Python	stack	frame	support	this	function
returns	None.

2.	 inspect.getframeinfo(frame,	context=1):	This	returns	information	about	the
given	argument	frame	or	traceback	object.	A	named	tuple	Traceback(filename,

lineno,	function,	code_context,	index)	is	returned.
3.	 inspect.getouterframes(frame,	context=1):	This	returns	a	list	of	frame	records

for	a	given	frame	argument	and	all	outer	frames.	These	frames	represent	the	calls	that
led	to	the	creation	of	the	argument	frame.	The	first	entry	in	the	returned	list
represents	the	argument	frame;	the	last	entry	represents	the	outermost	call	on	the
arugment	frame’s	stack.

4.	 inspect.getinnerframes(traceback,	context=1):	This	returns	a	list	of	frame
records	for	a	traceback’s	frame	and	all	inner	frames.	These	frames	represent	calls
made	as	a	consequence	of	frame.	The	first	entry	in	the	list	represents	traceback;	the
last	entry	represents	where	the	exception	was	raised.

5.	 inspect.stack(context=1):	This	returns	a	list	of	frame	records	for	the	caller’s
stack.	The	first	entry	in	the	returned	list	represents	the	caller;	the	last	entry	represents
the	outermost	call	on	the	stack.

6.	 inspect.trace(context=1):	This	returns	a	list	of	frame	records	for	the	stack
between	the	current	frame	and	the	frame	in	which	an	exception	currently	being
handled	was	raised	in.	The	first	entry	in	the	list	represents	the	caller;	the	last	entry
represents	where	the	exception	was	raised.

11.	The	Zen	of	Python	…
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't	special	enough	to	break	the	rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're	Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's	a	bad	idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's	do	more	of	those!	

	1. An Introduction
	1.1 The Evolution of Python
	1.2 Python 2 vs Python 3
	1.3 The Python Programming Language

	2. A Very Short Tutorial
	2.1 Using Python
	2.2 Python Statements, Line Structure and Indentation
	2.3 Strings
	2.4 Flow Control
	2.5 Functions
	2.6 Data Structures
	2.7 Classes
	2.8 Modules
	2.9 Exceptions
	2.10 Input and Output
	2.11 Getting Help

	3. Intermezzo: Glossary
	3.1 Names and Binding
	3.2 Code Blocks
	3.3 Name-spaces
	3.4 Scopes
	3.5 eval()
	3.6 exec()

	4. Objects 201
	4.1 Strong and Weak Object References
	4.2 The Type Hierarchy
	None Type
	NotImplemented Type
	Ellipsis Type
	Numeric Type
	Sequence Type
	Set
	Mapping
	Callable Types
	Custom Type
	Module Type
	File/IO Types
	Built-in Types

	5. Object Oriented Programming
	5.1 The Mechanics of Class Definitions
	Class Objects
	Instance Objects
	Method Objects

	5.2 Customizing User-defined Types
	Special methods for Type Emulation
	Special Methods for comparing objects
	Special Methods and Attributes for Miscellaneous Customizations

	5.3 A Vector class
	5.4 Inheritance
	The super keyword
	Multiple Inheritance

	5.5 Static and Class Methods
	Static Methods
	Class Methods

	5.6 Descriptors and Properties
	Enter Python Descriptors
	Class Properties

	5.7 Abstract Base Classes

	6. The Function
	6.1 Function Definitions
	6.2 Functions are Objects
	6.3 Functions are descriptors
	6.4 Calling Functions
	Unpacking Function Argument
	* and ** Function Parameters

	6.5 Nested functions and Closures
	6.6 A Byte of Functional Programming
	The Basics
	Comprehensions
	Functools
	Sequences and Functional Programming

	7. Iterators and Generators
	7.1 Iterators
	The Itertools Module

	7.2 Generators
	Generator Functions
	Generator Expressions
	The Beauty of Generators and Iterators

	7.3 From Generators To Coroutines
	Simulating Multitasking with Coroutines

	7.4 The yield from keyword
	7.5 A Game of Life

	8. MetaProgramming and Co.
	8.1 Decorators
	Function Decorators
	Decorators in Python
	Passing Arguments To Decorated Functions
	Decorator Functions with Arguments
	Functools.wrap
	Class Decorators

	8.2 Decorator Recipes
	8.3 Metaclasses
	Metaclasses in Action
	Overriding __new__ vs __init__ in Custom Metaclasses

	8.4 Context Managers
	The Contextlib module

	9. Modules And Packages
	9.1 Modules
	Reloading Modules

	9.2 How are Modules found?
	9.3 Packages
	Regular Packages
	Namespace Packages

	9.4 The Import System
	The Import Search Process
	Why You Probably Should Not Reload Modules…

	9.5 Distributing Python Programs

	10. Inspecting Objects
	10.1 Handling source code
	10.2 Inspecting Classes and Functions
	10.3 Interacting with Interpreter Stacks

	11. The Zen of Python …

