Implementing
Cryptography Using
Python®

Shannon W. Bray

WILEY

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-61220-9

ISBN: 978-1-119-61222-3 (ebk)

ISBN: 978-1-119-61545-3 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may down-
load this material at ht tp: //booksupport .wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2020940306

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Python is a registered trademark of Python Software Foundation. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

To Stephanie, Eden, Hayden, and Kenna,
with all my love, for making each and every day special.

About the Author

Shannon W. Bray started his career in information technology in 1997 after
being honorably discharged from the United States Navy. He started his IT
career working on programmable logic controllers out in the Gulf of Mexico
and then started writing business applications using various technologies until
2000 when .NET was first released; since then, the languages of choice have
been C++, C#, Windows PowerShell, and Python. From there, Shannon worked
on writing software until he started working with Microsoft SharePoint. The
Microsoft stack of technologies forced Shannon out of just writing code into
building large secure solutions. Shannon’s career has taken him to engagements
all over the world where he has worked with a number of U.S. government
agencies. Shannon became interested in cryptography while pursuing a master’s
degree in cybersecurity, and he has continued to research cryptography and
cybersecurity as he pursues a PhD in computer science.

Shannon has earned the following certifications: Microsoft Certified Master,
Microsoft Certified Solutions Master, Certified Information Security Manager
(CISM), Security+ (Plus), the CompITA Advanced Security Practitioner (CASP+),
and a number of other industry certifications. In addition to writing, Shannon
speaks nationally at technology conventions and works as a mentor teaching
technology to youth programs.

Shannon lives in the Raleigh, North Carolina, area with his wife, Stephanie,
two daughters, Eden and Kenna, and son, Hayden. During the dive season,
Shannon enjoys diving off the coast of North Carolina. During the rest of the
year, Shannon works on IT projects around the house that utilize single-board
computers and, most often, propellers. He is currently building a home security
system that uses Python, cryptography, and drones. As of the release of this

Vi

About the Author

book, Shannon is currently running for the U.S. Senate for the state of North
Carolina to help bring cybersecurity issues to the mainstream and to help people
understand the importance of end-to-end encryption.

Shannon can be contacted through LinkedIn at www.linkedin.com/in/
shannonbray.

Acknowledgments

While this is my third book, every book comes with its own set of challenges.
Completing a book is not always a fun project but does become a labor of love.
As soon as you start, life has a way of throwing changes at you, and it seems
that you never have the time that you thought you would have. Shortly after
starting this book, I started a PhD program with the Missouri University of
Science and Technology and transitioned through a number of government
contracts, ran for political office, and then became a work-from-home teacher
as the world battled a global pandemic. I knew that the editing team would be
earning their pay with whatever I put together. That team has been wonderful
with their feedback and responsiveness. Specifically, I'd like to thank the follow-
ing people on the Wiley team: Barath Kumar Rajasekaran, production editor;
Jim Minatel, acquisitions editor; Pete Gaughan, content enablement manager;
Brent Cook and James Langbridge, technical editors, and, most importantly,
Kim Wimpsett, the project editor. Kim did her best to keep me on schedule, but
I found new ways to miss a few deadlines.

vii

Introduction
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter9

Index

Contents at a Glance

Introduction to Cryptography and Python
Cryptographic Protocols and Perfect Secrecy
Classical Cryptography

Cryptographic Math and Frequency Analysis
Stream Ciphers and Block Ciphers

Using Cryptography with Images

Message Integrity

Cryptographic Applications and PKI
Mastering Cryptography Using Python

Xvii

31
65
95
139
171
199
223
247
277

Introduction

Chapter 1

Introduction to Cryptography and Python
Exploring Algorithms
Why Use Python?
Downloading and Installing Python
Installing on Ubuntu
Installing on macOS
Installing on Windows
Installing on a Chromebook
Installing Additional Packages
Installing Pip, NumPy, and Matplotlib
Installing the Cryptography Package
Installing Additional Packages
Testing Your Install
Diving into Python Basics
Using Variables
Using Strings
Introducing Operators
Understanding Arithmetic Operators
Understanding Comparison Operators
Understanding Logical Operators
Understanding Assignment Operators
Understanding Bitwise Operators
Understanding Membership Operators
Understanding Identity Operators

Contents

x
s,

—_
D5 0000 UGN N -

e el
QNU1T O W Wk =

Xi

Xii

Contents

Chapter 2

Using Conditionals
Using Loops
for
while
continue
break
else
Using Files
Understanding Python Semantics
Sequence Types
Introducing Custom Functions
Downloading Files Using Python
Introducing Python Modules
Creating a Reverse Cipher
Summary

Cryptographic Protocols and Perfect Secrecy
The Study of Cryptology
Understanding Cryptography

Cryptography’s Famous Family: Alice and Bob

Diffie-Hellman

Data Origin Authentication

Entity Authentication

Symmetric Algorithms
Asymmetric Algorithms

The Needham-Schroeder Protocols
The Otway-Rees Protocol

Kerberos

Multiple-Domain Kerberos

X.509

Formal Validation of Cryptographic Protocols
Configuring Your First Cryptographic Library

Understanding Cryptanalysis
Brute-Force Attacks
Side-Channel Attacks
Social Engineering
Analytical Attacks
Frequency Analysis

Attack Models
Shannon’s Theorem
One-Time Pad

XOR, AND, and OR

One-Time Pad Function

One-Way Hashes

16
17
17
18
18
18
18
19
20
20
26
27
28
29
30

31
32
32
33
34
34
35
36
36
36
38
39
40
41
46
47
47
47
48
48
48
48
49
50
51
51
56
58

Contents

xiii

Chapter 3

Chapter 4

Cryptographic One-Way Hashes
Message Authentication Codes
Perfect Forward Secrecy
Published and Proprietary Encryption Algorithms
Summary
References

Classical Cryptography
Password Best Practices
Password Storage
Hashing Passwords
Salting Passwords
Stretching Passwords
Password Tools
Obfuscating Data
ASCII Encoding
Base64 Encoding Text
Binary Data
Decoding
Historical Ciphers
Scytale of Sparta
Substitution Ciphers
Caesar Cipher
ROT-13
Atbash Cipher
Vigenére Cipher
Playfair
Hill 2x2
Column Transposition
Affine Cipher
Summary

Cryptographic Math and Frequency Analysis
Modular Arithmetic and the Greatest Common Devisor
Prime Numbers

Prime Number Theorem

School Primality Test

Fermat’s Little Theorem

Miller-Rabin Primality Test

Generate Large Prime Numbers
Basic Group Theory

Orders of Elements
Modular Inverses

Fermat’s Little Theorem to Find the Inverse
Extending the GCD
Euler’s Theorem

59
60
60
61
62
62

65
66
66
67
67
68
68
69
70
70
72
72
72
73
73
74
76
77
77
79
83
87
90
93

95
96
97
98
98
100
100
104
106
107
109
110
111
111

Xiv

Contents

Chapter 5

Chapter 6

Pseudorandomness
Breaking C’s rand() Function
Solving Systems of Linear Equations
Frequency Analysis
Cryptanalysis with Python
Using an Online Word List
Determining the Frequency
Breaking the Vigenére Cipher
Summary

Stream Ciphers and Block Ciphers
Convert between Hexdigest and Plaintext
Use Stream Ciphers
ARC4
Vernam Cipher
Salsa20 Cipher
ChaCha Cipher
Use Block Ciphers
Block Modes of Operations
ECB Mode
CBC Mode
CFB Mode
OFB Mode
CTR Mode
Tricks with Stream Modes
DIY Block Cipher Using Feistel Networks
Advanced Encryption Standard (AES)
Using AES with Python
File Encryption Using AES
File Decryption Using AES
Summary

Using Cryptography with Images

Simple Image Cryptography

Images and Cryptography Libraries
Understanding the Cryptography Library

Understanding the Cryptosteganography Library

Image Cryptography
File Cryptography Using Fernet
Image Cryptography Using Fernet
AES and Block Modes of Operations
Exploring a Simple ECB Mode Example
Exploring a Simple CBC Mode Example
Applying the Examples
Steganography
Storing a Message Inside an Image

115
116
117
120
123
125
126
129
138

139
140
141
147
148
149
151
156
158
158
159
160
162
163
164
165
167
167
169
169
169

171
171
174
174
175
175
176
179
180
181
185
186
187
188

Contents

Chapter 7

Chapter 8

Chapter9

Storing a Binary File Inside an Image
Working with large images
Summary

Message Integrity
Message Authentication Codes
Hash-based Message Authentication Code
Using HMAC to Sign Message
Message Digest with SHA
Binary Digests
NIST Compliance
CBC-MAC
Birthday Attacks
Crafting Forgeries
The Length Extension Attack
Setting Up a Secure Channel
Communication Channels
Sending Secure Messages over IP Networks
Create a Server Socket
Create a Client Socket
Create a Threaded Server with TCP
Adding Symmetric Encryption
Concatenate Message and MAC
Summary
References

Cryptographic Applications and PKI
The Public-Key Transformation
Exploring the Basics of RSA
Generating RSA Certificates
Constructing Simple Text Encryption and
Decryption with RSA Certificates
Constructing BLOB Encryption and
Decryption with RSA Certificates
The El-Gamal Cryptosystem
Elliptic Curve Cryptography
Generating ECC Keys
Key Lengths and Curves
Diffie-Hellman Key Exchange
Summary

Mastering Cryptography Using Python

Constructing a Plaintext Communications Application

Creating a Server
Creating the Client
Creating the Helper File
Execution

192
195
197

199
200
201
202
203
204
205
206
207
209
209
210
211
212
212
213
214
215
218
221
222

223
224
226
229

231

232
235
238
240
241
242
245

247
248
248
250
251
252

xvi

Contents

Index

Installing and Testing Wireshark
Implementing PKI in the Application Using RSA Certificates
Modifying the Server
Modifying the Client
Modifying the Helper File
Execution
Implementing Diffie-Hellman Key Exchange
Modifying the Server File
Modifying the Client File
Modifying the Helper File
Creating the Diffie-Hellman Class File
Execution

Wrapping Up

253
255
256
257
258
259
261
262
264
266
270
275
276

277

Introduction

Iinitiated my journey into cryptography while studying for my undergrad. Most
of the cryptography concepts I learned were based on what one would need for
their CISSP or Security+ exams. Most of my understanding was at a high level,
and it was difficult to remember the more intricate aspects until cryptography
became a primary focus.

It wasn't until I started my master’s in cybersecurity that I began applying
cryptographic features within a scripting environment. The concepts in this
book will help you advance your knowledge and experience as you dig deeper
into understanding the use of cryptography in Python.

Over the past few years, several governments have discussed legislation that
will ensure that any form of communication, whether it’s an email, text message, or
video chat, can always be read by the police or intelligence services if they have a
warrant. Governments are putting pressure on technology companies to give them
backdoor access or the keys to the kingdom so that they can keep the country safe.

The fight between lawmakers and encrypted messaging platforms has entered
new territory. Imagine a world where the government has seized the oppor-
tunity to scan every electronic message by government-approved scanning
software. The privacy and security of all users will suffer if law enforcement
agencies achieve their dream of breaking cryptosystems. Proponents of end-to-
end encryption, like Microsoft, Facebook, and Google, may lose their campaign
to maintain user security as a priority.

We have all heard of times when it would be beneficial for encrypted data
to magically become readable; this is often related to criminal cases. Should
criminals be allowed to plot their plans in secret? Where does the right to our
privacy start? In reality, there are technical and legal issues with allowing gov-
ernments to do this; this of course will be strongly opposed by technology and

XVii

xviii

Introduction

privacy advocates. The world is at war on what can be encrypted, what should be
encrypted, and who should have the keys to unlock someone else’s encryption.

Whether you agree or disagree with what powers a nation-state should have
over encrypted communications in their country, you should understand what
encryption is, how to apply it when needed, and how to ensure that the data
you are receiving is authentic and confidential. Over the course of this book,
you will get a basic understanding of how to cryptographically secure your
messages, files, or Internet traffic using easy-to-understand Python recipes that
have been created or updated to support Python 3.

What This Book Covers

This book focuses on helping you pick the right Python environment for your
needs so that you can hit the ground running. You will get an understanding
of what algorithms are and explore the basics of Python.

Once you have an idea of where you are starting from, you will get an over-
view of what cryptography is, what perfect secrecy means, and the history of
cryptography and how its use changed our world.

To get a full understanding of some of the cryptographic concepts, a little
math is needed. You will get an understanding of how prime numbers, basic
group theory, and pseudorandom number generators help build cryptographic
solutions. This will build the foundation for understanding various stream and
block ciphers and highlight some of their encryption modes and weaknesses.

Every cryptographic discussion is better with pictures, so we will spend a
chapter focusing on how image cryptography and steganography work. We’ll also
highlight a few issues that you will need to be aware of while dealing with images.

Message integrity is just as important as message secrecy. Knowing who sent
the message to you directly relates to whether the message is credible. You will
learn how to generate message authentication codes to ensure integrity during
transit.

The strength of encryption will be shown at the end of the book when you
will learn about PKI schemes and explore how to implement elliptic curve cryp-
tography in an application. The application you build will exchange data in a
highly secure format over an unsecure channel, thus ensuring that you are able
to control your own end-to-end encryption scheme that no one will be able to
decrypt without the keys you create. I hope you find the journey as fun as I did.

Introduction

XiX

What You Need to Know

This book assumes that you are fairly new to cryptography. While there is a
brief introduction to how to set up and use Python, you will get the most out of
the book if you have experience in another programming or scripting language.

What You Need to Have

The concepts presented in this book can be executed on Microsoft Windows,
Linux, Chromebook, or iOS. Your choice of editor will most likely depend on
the underlying operating system, although most of the Python recipes presented
here will execute in online editors as well as most shells that are using a Python
interpreter that is 3.0 or greater.

How to Use This Book

The topics in this book get more advanced as you progress through it, so you
can work through the material from front to back and build your skills as you
go. You can also use this book as a reference that you can consult when you
need help with the following situations:

m You're stuck while trying to figure out how to secure your data.

= You need to do something using cryptography that you've never
done before.

= You have some time on your hands, and you're interested in learning
something new about Python and cryptography.

The index is comprehensive, and each chapter typically focuses on a single
broad topic. Don’t be discouraged if some of the material is over your head.
As you work through the coding samples and build out the final solution, the
concepts should become easier to understand.

What’'s on the Website

Nearly everything discussed in this book has examples with it. You can (and
should) download the many useful examples included with this book. We have
verified that each file will run in environments that are Python version 3.0 and
higher.

The files are located at github.com/braycrypto/cryptography, as well as at
www.wiley.com/go/cryptographywithpython.

L

Introduction to Cryptography
and Python

Cryptography is one of the most important tools we have at our disposal as
information security professionals. It provides us with the ability to protect
sensitive information from unauthorized disclosure through encryption. Cryp-
tography is the use of mathematical algorithms that can be used to transform
data either into an encrypted form (ciphertext) or into its decrypted form (plain-
text). The purpose of these algorithms can be quite complicated. The goal of this
book is to help simplify the use of cryptography using the available libraries
in Python, so you will begin your journey into cryptography by setting up a
Python environment. You'll also get a review of using Python, and then you'll
write your first cipher using Python. Specifically, you'll do the following;:

m Gain an understanding of algorithms

m Explore various Python installations

m Set up Python 3 on various machines

m Explore the basics of the Python language
m Write your first cipher using Python

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 1 = Introduction to Cryptography and Python

Exploring Algorithms

The algorithms you will explore in this book can be quite sophisticated, but
most of the logic is encapsulated into little black boxes that allow you to inter-
face with the algorithms using functions. In the programming or mathematical
world, a function is merely a way to enter values and receive output. When using
algorithms in cryptography, we generally have two inputs for encryption and
two inputs for decryption:

m The encryption process will take the plaintext message (P) along with an
encryption key (K) and then run the plaintext through encryption algo-
rithms, which will return ciphertext (C).

m On the decryption side, the ciphertext (C) will be supplied along with the
encryption key (K), which will produce the plaintext (P) message.

As you study various encryption themes throughout this book, you will find
that they are described by three algorithms: GEN for key generation, ENC for
the encryption algorithm, and DEC for the decryption algorithm. You'll revisit
this concept at the end of this chapter when you learn how to create a Python
function.

GEN: choose a random key uniformly from {0,1} % {0,1}¢ (the set of binary strings of length £ £)
ENC: given k&{0,1}® ke(0,1)° and me{0,1} * me(0,1)€ then output is c:=kBm c:=kBm
DEC: given ke{0,1}® ke{0,1)* and c€{0,1}* c€{0,1}%, the output message is m:=kBc mi=kéBc.

Why Use Python?

Using Python for cryptography is simpler than using languages such as C or
C++; while free libraries such as OpenSSL are available, their use can be quite
complex. Python removes these complexities with many built-in libraries that
aid in cryptography scripting. It is also a great choice because Python is free in
terms of license. Python can be described as an open-source, general-purpose
language that is object oriented, functional, and procedural, and it allows for
the interface with C/ObjC/Java/Fortran and even .NET. A number of versions
are available, from 2.5.x through 3.x. Currently, 3.x is becoming more popular
as new libraries are introduced. Python comes preinstalled with Linux and
macOS, and you can install it on Windows as well. You will learn how to install
Python in each of these environments later in this chapter.

Because Python is available for Windows, Linux/Unix, Mac, and Chrome-
books, among others, the lessons you learn here will be portable to several
environments. Python has proven to be quite powerful in information security
and can be used to quickly script solutions to help you become a better secu-
rity practitioner. If you are using Ubuntu Linux, every command you see in

Chapter 1 = Introduction to Cryptography and Python

this book will work. If you are on a Mac, you can use the Terminal app found
inside the Utilities folder. On a Windows machine, you have several options
as well: you can install a number of tools such as Cygwin, Visual Studio, or
PyCharm; use the Windows 10 Linux subsystem; or just install Ubuntu Linux
from the Microsoft Store. If you are new to Linux, I recommend practicing your
command-line skills a bit to help get you comfortable.

When you start the Python shell (by typing python or python3 at the command
line), you will see the version and the date associated with the version. For in-
stance, if you install and run Python in a Linux environment, you should see
something similar to the following:

Python 3.7.4+ (default, Sep 4 2019, 08:03:05)
[GCC 9.2.1 20190827] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>>

The majority of Python interpreters use >>> as a prompt to accept user input;
one notable exception is IPython, which is discussed briefly in a moment. Once
you are in a Python shell, exit by pressing CTRL+D or typing exit(). Python
files use a .py extension, and we start their execution in Linux environments
by typing python3 filename.py; (keep in mind that you still need to chmod
+x the file).

\[* AN In Unix-like operating systems, the chmod command sets the permissions
of files or directories.

As you will learn later in this chapter, a large number of modules are avail-
able for Python, many of which we will use along your journey of learning
cryptography. One of the more notable modules you will learn more about is
NumPy. NumPy offers numerical operations to Python, including fast multi-
dimensional array operations, random number generation, and linear algebra.
Another module that you will be introduced to is Matplotlib, which is an excel-
lent library for plotting. In Chapter 6, you will learn more about PyFITS, which
is a module that provides access to Flexible Image Transport System (FITS) files.
FITS is a portable file standard that is widely used throughout the astronomy
community to store images and tables. We will be combining it with our cryp-
tography techniques to encrypt and decrypt image files.

Downloading and Installing Python

You can download the Python interpreter from www.python.org/python, where
you'll find versions for Ubuntu, macOS, and Windows. Be sure to download
version 3.7 or higher, since Python 2 is now unsupported.

Chapter 1 = Introduction to Cryptography and Python

Installing on Ubuntu

If you are running Ubuntu, install Python from the Ubuntu Software Center
using these steps:

1. Open the Ubuntu Software Center.

2. In the search box in the top-right corner of the window, type Python.
3. Select IDLE.

4. Click Install.

Installing on macOS

If you are using macOS, download the .dmg file for your version of macOS and
execute it. When the DMG package opens, do the following:
1. Double-click the Python package file (.mpkg).

2. Click Continue through the Welcome section and click Agree to accept
the license.

3. Select HD Macintosh and click Install.

Installing on Windows

If you are using Windows, download and run the Python installer; it should
have an .msi extension. Then follow these steps:

1. Click Install Now to begin the installation.

2. When the installation completes, click Close.

Notice the mention of upgrading. You can upgrade a package by clearing out
the Search PyPI and Installed Packages search box. This will show you all of
the installed packages. Any package that has an update will have an up arrow
next to it along with the newer version number (see Figure 1.1). You may have
to elevate your privileges.

Installing on a Chromebook

New Windows and Chrome OS computers give you the ability to install Linux.
The Chrome OS, which is becoming more popular, enables you to install a Linux
container that you can interact with but also keeps the rest of the environment
isolated so that you do not have to worry about messing up your system.

Chapter 1 = Introduction to Cryptography and Python 5

Python Environments > R

Add Environment...

Python 3.7 (64-bit) -
Python Software Foundation =

Packages (PyPl)

; asnicrypto (0.24.0)

B cffi (1.12.3)

B cryptography (2.6.1)

numpy (1.16.3)

B pip (18.1) + 19.1.1
i pycparser (2.19)

M setuptools (40.6.2) + 4101
B six (1.12.0)

Solution Explorer Team Explorer

Properties *h

LN

Figure 1.1: Upgrading packages

To get started with Python 3 on a Chromebook, click the time in the lower-
right corner. If you have the appropriate permissions on the Chromebook, you
should see a Settings button that looks like a flower with a dot in the middle
of it. Once you are in Settings, you can scroll down until you find Linux (Beta)
and then enable it by clicking Turn On. It may take several minutes, but once
it is complete, you will be able to run Linux tools, editors, and IDEs on your
Chromebook. To continue with the Chromebook installation, see the next sec-
tion for instructions on how to install NumPy and Matplotlib.

Installing Additional Packages

Many of the coding recipes that you will find in this book require additional
packages or modules to help reduce the amount of code you need to write to
ensure message security. Most Python interpreters use a command-line approach
of loading the packages. Integrated development environments (IDEs) may have
unique ways of loading packages for each interpreter available.

Chapter 1 = Introduction to Cryptography and Python

Installing Pip, NumPy, and Matplotlib

Ensure you are in a command shell environment with a prompt. In the follow-
ing example installation, you will get an update to the packages that come with
your Python version.

Pip, or Pip3 in this case, is the package management system for Python; it is
used to install and manage software packages written in Python. Pip is similar
to tools like Bundle, NPM, and Composer in other programming languages.
NumPy, which stands for Numerical Python, is a Python package that is the
core library for scientific computing. It contains a powerful n-dimensional array
object, and provides tools for integrating C, C++, and many other languages.
Matplotlib is an excellent solution for scientific plotting; it has the ability to be
automated and produce a wide variety of customizable high-quality plots.

Once the shell is open, type the following commands:

~$ sudo apt-get update

~$ sudo apt install python-pip
~$ pip3 install numpy

~$ pip3 install matplotlib

~$ $ python3 -c "import numpy as np; import matplotlib.pyplot as plt; x
= np.linspace(0, 2 * np.pi); y = np.sin(x); plt.plot(x, y); plt.show()"

V[AN Depending on your environment, you may need to install python3-pip to
get Pip3 to work. On installs such as Ubuntu 16.04 on Windows, you will not be able to
install version 3 when you install python-pip.

To start the Python 3 shell, type the following:

~$ python3

You should see something similar to the following depending on the version
that is installed:

Python 3.X.X (default, date)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>>

To test whether you have the additional packages installed correctly, open
your favorite Python editor. If you don’t have one, you can elect to use Nano in
a Linux environment or even Notepad in a Windows environment. Type the
following;:

#!/usr/bin/env python

import numpy as np

Chapter 1 = Introduction to Cryptography and Python

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

mu, sigma = 100, 15

X = mu + sigma*np.random.randn(10000)

the histogram of the data

n, bins, patches = plt.hist(x, 50, normed=1l, facecolor='green',
alpha=0.75)

add a 'best fit' line

y = mlab.normpdf (bins, mu, sigma)

1 = plt.plot(bins, y, 'r--', linewidth=1)

plt.xlabel ('Smarts')

plt.ylabel ('Probability')

plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$"')
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show ()

Save the file as matplot.py and execute the file. The preceding Python recipe
will generate a plot using NumPy and the Matplotlib library (see Figure 1.2).

Histogram of IQ: =100, o0=15

0.030

0.025 1

0.020 1

Probability
o
=1
=
v

0.010

0.005 4

0.000 4
40 60 80 160

Smarts

€3] #Ql=
Figure 1.2: Matplot.py test

Installing the Cryptography Package

Python has a Cryptography package that provides cryptographic recipes and
primitives to Python developers. It is designed to be your “cryptographic stan-
dard library.” As of this writing, it supports Python 2.7, Python 3.4+, and PyPy
5.4+. You can install the Cryptography package by using Pip3. The syntax is
as follows:

S pip3 install cryptography

Chapter 1 = Introduction to Cryptography and Python

The Cryptography package includes both high-level recipes and low-level
interfaces to common cryptographic algorithms such as symmetric ciphers, mes-
sage digests, and key derivation functions. For example, to encrypt something
with Cryptography’s high-level symmetric encryption recipe, use this:

>>> from cryptography.fernet import Fernet

>>> # Put this somewhere safe!

>>> key = Fernet.generate key ()

>>> f = Fernet (key)

>>> token = f.encrypt (b"A really secret message. Not for prying eyes.")

>>> token

1 1
>>> f.decrypt (token)
'A really secret message. Not for prying eyes.'

Installing Additional Packages

IPython is available through many providers; it is an enhanced, interactive
version of Python. IPython offers a combination of convenient shell features,
special commands, and a history mechanism for both input and output. IPython
offers a vastly improved set of functionality and flexibility; it is a fully compat-
ible replacement for the standard Python interpreter. You can install IPython
by typing the following:

sudo apt install IPython3

apt-get install python3-IPython

To use IPython, type 1Python3 -h at the system command line. You can start
the shell by typing this:

~$ IPython3
You should see something similar to the following:

Python 3.5.3 (default, Sep 27 2018, 17:25:39)

Type "copyright", "credits" or "license" for more information.
IPython 5.1.0 -- An enhanced Interactive Python
In [1]:

Please note that you will need to pay attention to the version of Python; this
example is using Python 3.5.3, but you may see something like Python 2.x if you
did not specify 1python3. When Python 3 first came out, many libraries didn’t
exist, so many people stayed with 2.x. Python 3 has caught up and is now a
great language. There are, however, a few differences between Python 2.x and
Python 3, so if you find that some of your scripts fail, try running them using
an alternate version.

Chapter 1 = Introduction to Cryptography and Python 9

Testing Your Install

Once you have selected the platform of your choice, open the Python IDE. Find
the Python console panel and type the following:

>>> print ('Hello World')
Hello World

>>> x = 100

>>> x* (1 + 0.5)**10
5766.50390625

>>> import math

>>> math.sqgrt (49)

7.0

If everything goes as expected, you should see the output shown in Figure 1.3.

Python Console

== print('Hello World"')
s = Hello World

= ¥ = 180
b = X*(1 + B.5)**18
oo 5766.50398625

import math

¢' © math.sqrt(49)
+ 7.0

Figure 1.3: Python installed successfully

Diving into Python Basics

Prior to getting into the variables, spacing, strings, and loops, I will cover a few
of the basics you will need to know. Names in Python are case sensitive and
cannot start with a number. They can contain letters, numbers, and underscores.
Some examples include:

H| glice

m Alice

W alice

W 2 alice

m glice_2

The language includes a number of reserved words, such as and, assert,

break, class, continue, def, del, elif, else, except, exec, finally, for, from,

global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while.

10

Chapter 1 = Introduction to Cryptography and Python

The goal of this book is not to teach Python from the ground up; it is, how-
ever, logical that you may be coming from another scripting or programming
language and may need a brief overview of the nuances of Python. While keep-
ing it as short as possible, in this section I discuss variables, operators, strings,
loops, and files. The hope is to give you enough information that you can debug
your Python code in the case of a typo.

One major difference between Python and many other languages is that
whitespace is meaningful, and many of your early errors probably will be a
result of indentation being misused. A newline in Python ends the line of code
unless you use the backslash (\) character. You will find that you need to use
consistent indentation throughout your code. The first line of code with less
indentation is outside a code block, whereas the lines with more indentation
start a nested block.

As with other languages, Python allows you to comment your code. Com-
menting your code should be considered a must. Some of the comments in the
code used in this book have been removed to shorten the code examples, but
you will be well-served by comments as you revisit previously written code.
In Python, comments start with #; everything following the pound sign will
be ignored.

Using Variables

The programs you write throughout this book will need to store values so
they can be used at a later time. Values are stored in variables; the use of a var-
iable is signified by the = sign, which is also known as the assignment operator.
For example, if you wanted to store the value 21 in a variable named age, enter
age = 21 into the shell:

>>> age = 21

Variables can be overwritten or used in calculations. Explore the following
by typing it into your shell:

>>> age + 9

30

>>> age

21

>>> age = age + 9
>>> age

30

Python doesn’t enforce any variable naming conventions, but you should use
names that reflect the type of data that is being stored. It is important to know

Chapter 1 = Introduction to Cryptography and Python

11

that in Python, variable names are case sensitive, so age and Age represent two
different variables. This overview shows the use of variables with numbers; we
will examine the use of variables and strings next.

Using Strings

Strings allow you to use text in programming languages. In cryptography, you
use strings a great deal to convert plaintext to ciphertext and back. These values
are stored in variables much like the numeric examples used in the preceding
section. Strings in Python are stored using the single quote () or double quote
(*); it does not matter which quote you use as long as they are matching. To see
an example, type the following into the shell:

>>> name = 'John'
>>> name
'John'

The single quotes are not part of the string value. Python only evaluates the
data between the quotes. If you wanted to set a variable to an empty string, you
would use the following:

>>> name = ''

In Python, you can concatenate multiple strings together by using the plus
(+) operator. See the following example:

>>> first = 'John'

>>> last = 'Doe'’

>>> name = first + last
>>> name

'JohnDoe''

Notice that the strings concatenate exactly the way they store values; if you
need a word separation, plan for the use of spaces.

Introducing Operators

You have now seen the + operator used in both numeric and string variables.
Other operators can be broken down into the following categories: arithmetic,
comparison, logical, assignment, bitwise, membership, and identity.

Understanding Arithmetic Operators

Arithmetic operators perform mathematical calculations (see Table 1.1).

12

Chapter 1 = Introduction to Cryptography and Python

Table 1.1: Arithmetic Operators

OPERATOR DESCRIPTION EXAMPLE
+ Addition 10 + 20 will give 30
Subtraction 10 - 5 will give 5
* Multiplication 10 * 10 will give 100
/ Division 10 / 2 will give 5
% Modulus 20 % 10 will give 0
ok Exponent 10**2 will give 100
// Floor Division 9//2is equal to 4 and 9.0//2.0 is equal to
4.0

Most of these operators work precisely the way you expect from other
programming languages. It is critical to our exploration to examine modular
(%) arithmetic in detail as it plays an essential role in cryptography. We write
things like 28=2(mod26), which is read out loud as “28 is equivalent to 2 mod
26.” While not entirely accurate, modular arithmetic focuses on the remainder.
In our example, 26 divides into 28 one time with two remaining, or x(mod p)
as the remainder when x divides into p. We can say that a=b(mod q) when
a-b is a multiple of q. S0 123=13(mod 11) because 123-13=110=11-10. Now I've
heard folks describe the remainder of x mod p, which does refer to the unique
number between 0 and p-1, which is equivalent to x. An infinite sequence of
numbers are equivalent to 53 (mod13), but out of that continuous sequence, there
is precisely one number that is positive and smaller than 13. In this case, it’s 1.
In a math setting , I would call 1 the canonical representative of the equivalence
class containing 53 modulo 13.

Table 1.2 shows some examples to help you wrap your head around the
concepts; they will be presented again when you examine ciphers and explore
finding the modular inverse in cryptographic math.

Table 1.2: Arithmetic Operator Examples

EXPRESSION DESCRIPTION SYNTAX
28 (mod 26) 28 is equivalent to 2 mod 26 28 % 26
29 (mod 26) 29 is equivalent to 3 mod 26 29 % 26
30 (mod 26) 30is equivalent to 4 mod 26 30 ¥ 26

One additional feature of Python is the use of the multiplication operator with
strings. The feature can be advantageous when you need to create specifically

Chapter 1 = Introduction to Cryptography and Python

13

formatted strings that may be used in some attacks such as buffer overflows.
One example can be examined using the print function, as shown here:

>>> # Python 2.7
>>> print 'a' * 25
daaaaaaaaaaaaaaaaaaaaaaaa

>>> # Python 3.5

>>> print ('a' * 25)
aaaaaaaaaaaaaaaaaaaaaaaaa

\[* AN Python 3 and higher require you to use Print () as afunction. You must
include the parentheses.

Understanding Comparison Operators

The comparison operators, also known as relational operators, compare the oper-
ands (values) on either side and return true or false based on the condition (see
Table 1.3).

Table 1.3: Comparison Operators

OPERATOR DESCRIPTION EXAMPLE

== Compares two operands to see if they are equal; (10 == 20) isnot
if the values are equal, it returns true. true

1= Compares two operands to see if they are not (10 != 20) istrue

equal; if the values are not equal, it returns true.

<> Compares two operands to see if they are not (10 <> 20) istrue
equal; if the values are not equal, it returns true.

> If the operand on the left is greater than the (10 > 5) istrue
operand on the right, the operation returns true.

< If the operand on the right is greater than the (10 < 20) istrue
operand on the left, the operation returns true.

>= If the operand on the right is equal to or less than (10 >= 5) istrue
the value on the left, the condition returns true.

<= If the operand on the left is equal to or less than (5 <= 10) istrue
the value on the right, the condition returns
true.

Understanding Logical Operators

The logical operators include and, or, and not (see Table 1.4).

14

Chapter 1 = Introduction to Cryptography and Python

Table 1.4: Logical Operators

OPERATOR

and (logical AND)

DESCRIPTION

If both the operands evaluate to
true, then condition becomes true.

EXAMPLE

(a and b) istrue.

or (logical OR)

If any of the two operands are non-
zero, then condition becomes true.

(a or D) istrue.

not (logical NOT)

Used to reverse the logical state of
its operand.

Not(a and b) isfalse.

Understanding Assignment Operators

You first explored the assignment operators when we covered variables. In
addition to using the equal sign, Python offers many assignments that work
as a shorthand for more extended tasks. To get an understanding of how this
works, examine Table 1.5.

Table 1.5: Assignment Operators

OPERATOR DESCRIPTION EXAMPLE

= Assigns values from right-side operands to c = a + bassigns
left-side operands. valueofa + bintoc

+= (add AND) Adds the right operand to the left operand c += aisequivalent
and assigns the result to the left operand. toc = ¢c + a

-= (subtract Subtracts the right operand from the left c -= aisequivalent

AND) operand and assigns the result to the left toc = ¢ - a
operand.

*= (multiply Multiplies the right operand with the left c *= aisequivalent

AND) operand and assigns the result to the left toc = ¢ * a
operand.

/= (divide Divides the left operand with the right ¢ /= aisequivalent

AND) operand and assigns the result to the left toc = ¢ /
operand.

%= (modulus Takes modulus using two operands and c

AND)

assigns the result to the left operand.

%= alisequivalent
= C

o

toc = % a

*k—

Performs exponential (power) calculation on

[¢]

**= g isequivalent

(exponent operators and assigns the value to the left toc = ¢ ** a
AND) operand.

//= (floor Performs floor division on operators and c //= aisequivalent
division) assigns the value to the left operand. toc = ¢ // a

Chapter 1 = Introduction to Cryptography and Python

15

Understanding Bitwise Operators

The bitwise operators work on bits and perform bit-by-bit operations (see Table 1.6).
Assuming a = 60 and b = 13, the binary format of a and b will be as follows:

a = 0011 1100
b = 0000 1101

Table 1.6: Bitwise Operators

OPERATOR DESCRIPTION EXAMPLE

& (binary AND) Copies a bit to the result if it exists in (@ & b)(means 0000
both operands. 1100)

| (binary OR) Copies a bit if it exists in either (@ | b)= 61 (means
operand. 0011 1101)

* (binary XOR) Copies the bit ifitis setinoneoperand (@ * b) = 49 (means
but not both. 0011 0001)

~ (binary One This operator is unary and has the (~a)=-61(means 1100

Complement) effect of “flipping” bits. 0011 intwo's

complement form due to
a signed binary number.

<< (binary Left The left operand’s value is moved left a << 2 = 240 (means
Shift) by the number of bits specified by the 1111 0000)

right operand.
>> (binary Right The left operand’s value is moved a >> 2 = 15(means
Shift) right by the number of bits specified 0000 1111)

by the right operand.

Understanding Membership Operators

Membership operators test for membership in a sequence, such as strings, lists,
or tuples. There are two membership operators, in and not in, as shown in
Table 1.7.

Table 1.7: Membership Operators

OPERATOR DESCRIPTION EXAMPLE

in Evaluates to true if it finds a variable in x in y;hereinresultsina
the specified sequence and false 1if x is a member of
otherwise. sequence y.

not in Evaluates to true if it does not find a x not in y;herenot in
variable in the specified sequence and resultsina 1ifxisnota

false otherwise. member of sequence y.

16

Chapter 1 = Introduction to Cryptography and Python

Understanding Identity Operators

Identity operators compare the memory locations of two objects. There are two
identity operators, is and is not, as shown in Table 1.8.

Table 1.8: Identity Operators

OPERATOR DESCRIPTION EXAMPLE

is Evaluates to true if the variables on either x 1is y;here isresultsin
side of the operator point to the same 1if id(x) equals 1d(y).
object and false otherwise.

is not Evaluates to false if the variables on either ~ xis noty; here is not
side of the operator point to the same resultsin 1if id(x) is not
object and true otherwise. equal to id(y).

Using Conditionals

You will need to evaluate various conditions as you are writing your code;
conditional statements in Python perform different actions or computations and
decide whether a condition evaluates to true or false. We use the 1r statement
for our Boolean test. The syntax is as follows:

If expression
Statement

Else
Statement

To use it in an actual program, type the following:

>>> # Python 3.5
>>> for i in range(1,5):

>>> if i ==
>>> print ('I found two')
>>> print (i)

In addition to the 1F statement, Python also makes use of ELSE and ELIF. ELSE
will capture the execution if the condition is false. ELIF stands for else if; this
gives us a way to chain several conditions together. Examine the following:

>>> # Python 3.5
>>> for i in range(1,5):

>>> if i == 1:
>>> print ('I found one')
>>> elif i ==
>>> print ('I found two')

>>> elif 1 ==

Chapter 1 = Introduction to Cryptography and Python

17

>>> Print ('I found three')

>>> else

>>> Print ('I found a number higher than three')
>>> print (i)

Using Loops

When you use scripting or programming languages, you can perform a set of
statements in multiple repetitions. Loops give us the ability to run logic until a
specific condition is met. For the sake of what you use in this book, this section
shows the for loop, the while loop, the continue statement, the break statement,
and the else statement. Unlike other programming languages that signify the end
of the loop by using keywords or brackets, Python uses line indentations. You
need to focus on how your syntax is spaced when writing and testing your code.

for

The for loop is used to iterate over a set of statements that need to be repeated
n number of times. The for statement can be used to execute as a counter in a
range of numbers. The following syntax prints out the values 1,2, 3,4, 5,6,7,8,9:

>>> # Python 3.5
>>> for i in range(1l, 10):
>>> print (i)

The for loop can also execute against the number of elements in an array.
Examine the following snippet, which produces the result 76:

>>> # Python 3.5

>>> numbers = [1, 5, 10, 15, 20, 25]
>>> total = 0

>>> for number in numbers:

>>> total = total + number

>>> print (total)

As with numbers, the same technique is useful against string arrays. The
following outputs three names—Eden, Hayden, and Kenna:

>>> # Python 3.5

>>> all kids = ["Eden&", "Hayden&", "Kennaé&"]
>>> for kid in all_kids:

>>> print kid

Eden

Hayden

Kenna

18

Chapter 1 = Introduction to Cryptography and Python

while

The while loop is used to execute a block of statements while a condition is true.
As with the for loop, the block of statements may be one or more lines. The
indentation of the following lines defines the block. Once a condition becomes
false, the execution exits the loop and continues. Before printing the final state-
ment, the following snippet prints 0, 1, 2, 3, 4:

>>> # Python 3.5

>>> count = 0

>>> while (count < 5):

>>> print count

>>> count = count + 1

>>> print ("The loop has finished.")

continue

The continue statement is used to tell Python to skip the remaining statements
in the current loop block and continue to the next iteration. The following snip-
pet will produce an output of 1, 3, 4. The continue statement skips printing
when i equals 2:

>>> # Python 3.5
>>> for i1 in range(1,5):

>>> if i ==

>>> continue

>>> print (i)
break

The break statement exits out from a loop. The following snippet produces an
outputof1,2,3,4,5,6,7,8,9 10, 11. Once i = 12, the loop is abandoned:

>>> # Python 3.5
>>> for i in range(1,15):

>>> if 1 == 12:

>>> break

>>> print (i)
else

You can use the else statement in conjunction with the for and while loops to
catch conditions that fail either of the loops. Notice that since the count variable
equals 10 in the following example, the while loop does not execute. You should
only see the two final print messages:

>>> # Python 3.5
>>> count = 10

Chapter 1 = Introduction to Cryptography and Python

19

>>> while (count < 5):

>>> print (count)

>>> count = count + 1

>>> else:

>>> print ("The count is greater than 5")
>>> print ("The loop has finished.")

Using Files

In this book, we will be using external files to both read and write. We will
be using the file function, which takes the file location and then performs an
operation. Table 1.9 shows the operations available.

Table 1.9: File Operations

OPERATOR DESCRIPTION

R Open text file for reading. The stream is positioned at the beginning of
the file.

r+ Open for reading and writing. The stream is positioned at the beginning
of the file.

W Truncate file to zero length or create text file for writing. The stream is
positioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does not exist,
otherwise it is truncated. The stream is positioned at the beginning of the
file.

Append Open for writing/appending to the file. The file is created if it does not

exist. The stream is positioned at the end of the file. Subsequent writes to
the file will always end up at the current end of file.

a+ Open for reading and writing. The file is created if it does not exist. The
stream is positioned at the end of the file. Subsequent writes to the file
will always end up at the current end of file.

An example we will be using later in this chapter is the following:

>>> # Python 2.7

>>> f=file('dictionary.txt', 'r')

>>> words = [word.strip() for word in f]
>>> f.close()

>>> # Python 3.5

>>> f = open('dictionary.txt', 'r')

>>> words = [word.strip() for word in f]
>>> f.close()

20

Chapter 1 = Introduction to Cryptography and Python

Understanding Python Semantics
Assume you have assigned y an object. Examine the following;:

x = y does not make a copy of the object y references.

x = y creates a reference to the object that y references.

This may be confusing but it is an important concept, so let’s look at an example:

>>> # Python 3.5

>>> a = [1, 2, 3] # a is a reference to the list [1, 2, 3]

>>> b = a # b now references a

>>> a.append(4) # appends the number 4 to the list a references
>>> print (b) # print what b references

[1, 2, 3, 4]

Why does this happen? When you type a command such as x = 3, an integer
is created and stored in memory. A variable named x is created and references
the memory location storing the value, which in this case is 3. When you say
that the value of x is 3, what you are really saying is that x now refers to the
integer 3 at a specific memory location. The data type that is created when you
assign the reference to x is of type integer.

In Python, the data types include integer, float, and string (and tuple) and
are immutable. You can change the value that is referenced by the memory
location. Here is an example:

>>> # Python 3.5
>>> X = 4

>>> X = X + 1
>>> print x

5

In the preceding example, when you increment %, you are actually looking up
the reference of the name x and the value that it references is retrieved. When you
add 1 to the value, you are producing a new data element 5, which is assigned
to a fresh memory location with a new reference. The name x is then changed
to point to the new reference. The old data, which contained 4, is then garbage
collected if no name refers to it.

Sequence Types

Python has a number of sequence types. These include str, Unicode, list, tuple,
buffer, and xrange. You were previously introduced to string literals, so let’s
examine the other ones. Unicode strings are similar to strings but are indicated

"

in the syntax using a preceding “u” character: u'abc', u"def". Lists are assembled

Chapter 1 = Introduction to Cryptography and Python

21

with square brackets, separating list items with commas: [1, 2, 31. Tuples are
constructed with the comma operator (not within square brackets), with or
without enclosing parentheses, but an empty tuple must have the enclosing
parentheses, such as a, b, cor (). A single-item tuple must have a trailing
comma, such as (d,). A tuple is a simple immutable ordered sequence of items
that can be of mixed types. An immutable object is an object that often repre-
sents a single logical structure of data. Lists in Python are a mutable ordered
sequence of list items that can be of mixed types as well. Mutable objects are
those that allow their state (i.e., data that the variable holds) to change. In Python,
only dictionaries and lists are mutable objects.

Buffer objects are not directly supported by Python syntax, but can be cre-
ated by calling the built-in function buffer(). They don’t support concatenation
or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to cre-
ate them, but they are created using the xrange () function. They don’t support
slicing, concatenation, or repetition, and using in, not in, min(), Oor max() on
them is inefficient.

Most sequence types support the following operations. The in and not in
operations have the same priorities as the comparison operations. The + and *
operations have the same priority as the corresponding numeric operations:

m Tuples are defined using parentheses (and commas):
>>> tu = (23, 'abc', 4.56, (2,3), 'def')

m Lists are defined using square brackets (and commas):
>>> 1i = ["abc", 34, 4.34, 23]

m Strings are defined using quotes (v, ', or """):

>>> st = "Hello World"
>>> st = 'Hello World'
>>> st = """This is a multi-line

string that uses triple quotes."""

You can access individual members of a tuple, list, or string using square
bracket “array” notation. All of the objects are zero-based, which means that
the first element in the group is in the zero position:

>>> tu = (23, 'abc', 4.56, (2,3), 'def")
>>> tul[l] # Second item in the tuple.
'abc!

>>> 1i = ["abe", 34, 4.34, 23]

>>> 1i[1] # Second item in the list.

34

>>> st = "Hello World"

>>> st [1l] # Second character in string.
lel

22 Chapter 1 = Introduction to Cryptography and Python

One of the most interesting operations in Python that we will make use of is

how the indices work. You can use both positive and negative indices to work
with the element you need:

>>> t = (23, 'abc', 3.14, (2,3), 'def')
With a positive index, you count from the left, starting with 0:
>>> t[1]

'abc!

With a negative index, you count from the right, starting with —1. Examine the
t assignment shown previously. You will notice that 3.14 is in the 3rd position
on the right. Using the negative number, you are able to start with the right side
and work your way left. Examine how the -3 works next:

>>> t[-3]

3.14

You can use a similar technique to parse a range of data:

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Return a copy of the container with a subset of the original members. Start
copying at the first index, and stop copying before the second index:

>>> t[1:4]

(tabe', 4.56, (2,3))

You can also use negative indices when slicing:
>>> t[1:-1]

(tabc', 4.56, (2,3))

You can omit the first index to make a copy starting from the beginning of
the container:

>>> t[:2]

(23, 'abc')

You can omit the second index to make a copy starting at the first index and
going to the end of the container:

>>> t[2:]

(4.56, (2,3), 'def')

To make a copy of an entire sequence, you can use [:]:

>>> t[:]
(23, ‘'abe', 4.56, (2,3), 'def')

Chapter 1 = Introduction to Cryptography and Python

23

Note the difference between these two lines for mutable sequences:

>>> list2 = listl # 2 names refer to 1 ref
Changing one affects both
>>> list2 = listl[:] # Two independent copies, two refs

To examine the content within lists, you use the in operator. Some examples
include the following;:

m Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t

False

>>> 4 in t

True

>>> 4 not in t
False

m For strings, tests for substrings:

>>> a = 'abcde'
>>> 'c' in a
True

>>> 'cd' in a
True

>>> 'ac' in a

False

m Be careful: the in keyword is also used in the syntax of for loops and list
comprehensions.

The + operator produces a new tuple, list, or string whose value is the con-
catenation of its arguments:

>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]

>>> "Hello" + " " + "World"

'Hello World'

The * operator produces a new tuple, list, or string that repeats the original
content:

, 3,1, 2,
>>> "Hello" * 3
'HelloHelloHello!

24 Chapter 1 = Introduction to Cryptography and Python

We will now take another look at tuples. As stated previously, tuples are
immutable, which means you cannot change them. You can only make a fresh
tuple and assign its reference to a previously used name:

>>> t = (23, 'abc', 4.56, (2,3), 'def')
>>> t[2] = 3.14

Traceback (most recent call last):

File "<pyshell#75>", line 1, in -topleveltul

2] = 3.14

TypeError: object doesn't support item assignment

>>> t = (23, 'abc', 3.14, (2,3), 'def')

Lists, on the other hand, are mutable; this means we can change the lists
without having to reassign them. The variable will continue to point to the same
memory reference when the assignment is complete. The downside is that lists
are not as fast as tuples:

>>> 11 = ['abc', 23, 4.34, 23]
>>> 1i[1] = 45
>>> 11

['abc', 45, 4.34, 23]

The following examples are operations that only apply to list objects:

>>> 11 = [1, 11, 3, 4, 5]

>>> li.append('a') # Our first exposure to method syntax
>>> 11

[1, 11, 3, 4, 5, 'a'l

>>> li.insert (2, 'i'")

>>>11

fr, 11, 'iv, 3, 4, 5, 'a'l

Python has an extend() method that operates on lists in place; this operation
is different than the plus (+) operator, which creates a fresh list with a new
memory reference.

>>> li.extend([9, 8, 71])
>>>11
(1, 2, 'i', 3, 4, 5, 'a', 9, 8, 71

You may find this a bit confusing as the extend() method takes a list as an
argument, whereas the append() method takes a singleton as an argument:

>>> li.append([10, 11, 12])
>>> 11
[, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11, 12]]

Chapter 1 = Introduction to Cryptography and Python

25

Additionally, Python list objects can also use the index(), count(), remove(),
reverse(), and sort() methods as shown here:

>>> 1i = ['a', 'b', 'c', 'b']

>>> 1li.index('b') # index of first occurrence
>>> li.count ('b') # number of occurrences

>>> li.remove ('b') # remove first occurrence

>>> 11

[ta', 'c', 'b']

>>> 1i = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in placex
>>> 11

[8, 6, 2, 5]

>>> li.sort () # sort the list *in placex*

>>> 11

[2, 5, 6, 8]

>>> li.sort (some_ function) # sort in place using user-defined comparison

One thing to keep in mind when you are debating between using tuples
versus lists is that the list objects are slower but are more powerful than tuples.
Lists can be modified and have many operations that can be used on them. You
can convert between tuples and lists by using the 1ist () and tuple() functions,
as shown here:

1i = list(tu)
tu = tuple(li)

Dictionaries provide a way to store a mapping between a set of keys and a set
of values. The keys can be any immutable type, whereas the values can be any
type. A single dictionary can store a range of different types and allow you to
define, modify, view, look up, and delete a key-value pair within the dictionary.
Here is an example of a dictionary:

>>> d = {'user':'bozo', 'pswd':1234}
>>> d['user']

'bozo!

>>> d['pswd']

1234

>>> d['bozo']

Traceback (innermost last):

File '<interactive input>' line 1, in ?
KeyError: bozo

>>> d = {'user':'bozo', 'pswd':1234}

26 Chapter 1 = Introduction to Cryptography and Python

>>> d['user'] = 'clown'

>>> d

{ruser':'clown', 'pswd':1234}

>>> d['id'] = 45

>>> d

{'user':'clown', 'id':45, 'pswd':1234}
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> del d['user'] # Remove one.
>>> d

{'pr:1234, 'i':34}

>>> d.clear() # Remove all.

>>> d

{}

>>> d = {'user':'bozo', 'p':1234, 'i':34}
>>> d.keys () # List of keys.

['user', 'p', 'i']

>>> d.values() # List of values.

['bozo', 1234, 34]

>>> d.items () # List of item tuples.
[('user', 'bozo'), ('p',1234), ('i',34)]
Introducing Python Functions

Introducing Custom Functions

Now that you understand strings, let’s examine reusable code. In Python, you cre-
ate a new function and assign it a name by using the def keyword. All functions
in Python return results to the calling statement. Arguments are passed by
assignment, and arguments and return types are not declared. When you pass
arguments to a function, the values are assigned to locally scoped names. The
assignment to argument names will not affect the caller since they are passed
by assignment and not by reference. You will, however, affect the caller if you
change a mutable argument.
Create a new file in your editor of choice and type the following:

def myEnc(plaintext, key):
return "ciphertext"

Save the file as MyFunctions.py. In the command line, type MyFunctions.py.
You should notice that nothing happens. Now type the following;:

myEnc ('hello', 'secret key')

The output should be ciphertext.

The script you created is an example of a function. The def keyword is used
to define the function; as you might have guessed, myEnc is the name of the
function. It takes two parameters or inputs and returns an output. We use
functions to build logic we intend to use multiple times. The benefit of using

Chapter 1 = Introduction to Cryptography and Python

27

functions is that if you decide you need to change the script, you can change it
in one place and not have to search for other areas in which you performed the
same logic. This will help in both troubleshooting and code maintenance. We
will be using functions quite a bit throughout this book.

In Python, you can declare some arguments as optional. Examine the fol-
lowing segment of code, paying attention to the third and fourth arguments:

def func(a, b, c¢=10, d=100):
! print (a, b, c, d)

>>> func(1,2)

1 2 10 100

>>> func(1,2,3,4)

1,2,3,4

Something to watch out for is that all functions have a return value even if
you do not provide a return line inside the code. Functions that do not provide
a return line will return the special value of None. Note also that, unlike other
languages, Python does not provide a way to overload a method, so you are not
allowed to have two different functions with the same name and a different
list of arguments. Some benefits to functions include that they can be used as
arguments to functions, return values of functions, and be assigned to variables,
and may contain parts of tuples, lists, and other objects.

Downloading Files Using Python

You can download files and content in Python in a number of ways. One of the
preferred ways in Python 3 is to use the requests module. The get method of
the requests module is used to download the file contents in binary format. You
can then use the open method to open a file on your system. Here’s an example
of downloading files using the requests module:

>>> import requests

>>> print ('Beginning file download with requests')

>>> url = 'https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/secret.txt’

>>> ¥ = requests.get (url)

>>>

>>> # Windows Path - C:\Users\ShannonBray\Downloads\

>>> with open ('/Users/ShannonBray/Downloads/secrets.txt', 'wb') as f:
>>> f.write(r.content)

>>>

>>> # Retrieve HTTP meta-data

>>> print (r.status_code)

>>> print (r.headers['content-type'])

>>> print (r.encoding)

>>>

28

Chapter 1 = Introduction to Cryptography and Python

>>> url = 'https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/dictionary.txt'

>>> r = requests.get (url)

>>> with open('/Users/ShannonBray/Downloads/dictionary.txt', 'wb') as f:
>>> f.write(r.content)

>>>

>>> # Retrieve HTTP meta-data

>>> print (r.status_code)

>>> print (r.headers['content-type'])

>>> print (r.encoding)

In this script, the open method is used once again to write binary data to
a local file. If you execute the script and go to your bownloads directory, you
should see your newly downloaded text file named secrets.txt.

Utilizing the requests module, you can also easily retrieve relevant metadata
about your request, including the status code, headers, and much more. In the
preceding script, you can see how we access some of this metadata.

You can also elect to use the curl bash command, such as in the following
example:

curl -0 https://raw.githubusercontent.com/noidentity29/AppliedCryptoPython/
master/secret.txt

curl -O https://raw.githubusercontent.com/noidentity29/AppliedCryptoPython/
master/dictionary.txt

Introducing Python Modules

Python modules are special packages that extend the language. You saw your
first module when you used the import math call shown previously. You can
examine the modules that are loaded by typing dir(). As shown with the math
module, when a module is preinstalled, we can use the import command to
upload it. To examine the modules that are preinstalled on your system, type
the following:

>>> help()
help> modules
help> modules hashlib

q

The hashlib is a built-in module that is preinstalled that will allow you to
run hash functions. We will discuss hashing in detail throughout this book, but
for now, we will explore the use of hashlib as a module. Type import hashlib,
then in the terminal type hashlib. (enter the dot after hashlib), and press the
Tab key. You should see a list of methods, as shown in Figure 1.4. You can explore
these methods by typing the module and method followed by a question mark,
such as hashlib.sha2562.

Chapter 1 = Introduction to Cryptography and Python

29

IPython 1.2.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object’, use 'object??’ for extra details.

In [1]: import hashlib

In [2]: hashlib.
hashlib.algorithms hashlib.md5 hashlib.new hashlib.shal hashlib.sha224 hashlib. sha256 hashlib.sha384 hashlib.sha512

Figure 1.4: Module methods

Now that you understand the importance of Python modules, let’s import
the hashlib library and then use the MD5 and SHA message digests. Type the
following in Python:

>>> import hashlib

>>> hashlib.md5 ('hello world'.encode ()) .hexdigest ()
'5eb63bbbe0leeed093cb22bb8f5acdc3!
>>> hashlib.sha512('hello world'.encode ()) .hexdigest ()

'309ecc489cl2d6eb4cc40£50c902f2b4d0ed77ee511a7c7a9bcdl3ca86d4cd86f
989dd35bc5££499670da34255b45b0cfd830e81£f605dcf7dc5542e93ae9cd76£!

\[*A N Python 3 and higher require that Unicode objects be encoded before they

are hashed.

Creating a Reverse Cipher

For this next exercise, we build on what we have learned in this chapter by cre-
ating a function named reversecCipher that accepts one parameter: plaintext.
We can then call our function and pass the plaintext into it and print out the
return ciphertext. Our method modifies the plaintext so that the ciphertext is
the complete reverse:

def reverseCipher (plaintext) :

ciphertext = '!

i = len(plaintext) - 1

while i >= 0:
ciphertext = ciphertext + plaintext[i]
i=1-1

return ciphertext

plaintext = 'If you want to keep a secret, you must also hide it from
yourself.'
ciphertext = reverseCipher (plaintext)

print (ciphertext)

This code should produce the following result:

.flesruoy morf ti edih osla tsum uoy ,terces a peek ot tnaw uoy fI

30

Chapter 1 = Introduction to Cryptography and Python

Summary

In this chapter, you were introduced to the use of cryptographic algorithms.
Most of the functions that you will construct throughout the course of this book
will follow the format of having functions to GEN (generate a key), ENC (encrypt
plaintext to ciphertext), and pec (decrypt ciphertext to plaintext). This chapter
also offered a few options on building your Python. You also were given an
overview of the Python concepts that you will need to know prior to taking on
complicated applications. The chapter concluded with you writing your first
cipher code that took plaintext and returned the reverse.

Cryptographic Protocols
and Perfect Secrecy

Cryptography has been used since 1900 BC to ensure message secrecy. Up until
the 1970s, the use of cryptography was primarily found in government and
military applications; the use expanded to telecommunication and financial
industries over the following decade. In today’s world, we find cryptography
in cell phones, emails, web browsers, and bank cards. Over the next few years,
we can expect cryptography to play a role in how we communicate with our
refrigerators, cars, and other devices connected through the Internet of Things.

It is important to ensure the use of strong encryption of sensitive data and
that we provide integrity and confidentiality of the data. In this chapter, we will
look at the study of cryptology and its components and then dive into perfect
secrecy. Claude Shannon, often regarded as the father of information theory,
defined perfect secrecy for secret-key systems and showed that perfect secrecy
exists. Basically, perfect secrecy is the idea that no matter how much ciphertext
you have, it will not convey anything about the contents of the plaintext or key.
It can be proved that any such scheme must use at least as much key material as
there is plaintext to encrypt. In terms of probabilities, this means that the prob-
ability distribution of the possible plaintexts is independent of the ciphertext.

In this chapter, you will continue your journey into understanding the impor-
tance of message perfect secrecy. Specifically, you will do the following;:

m Gain an understanding of cryptology and the various attack methods

m Explore key lengths and their importance for long-term security

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

31

32 Chapter 2 = Cryptographic Protocols and Perfect Secrecy

m Gain an understanding of the one-time pad

m Create message secrecy using the binary XOR operator
m Gain an understanding of cryptographic hashes

m Explore the basics of Claude Shannon’s theorem

m Explore the concepts of perfect forward secrecy

The Study of Cryptology

The term cryptology, which was first used in 1844, means the study of codes and
the practice or art of writing or solving them. The word originates from the
Greek words kryptds, meaning “hidden secret”; graphein, meaning “to write”; and
logia, meaning “to study.” It has become a much-researched field that focuses
on techniques for securing communications from eavesdroppers.

Cryptology’s focus is in the construction and analysis of protocols that
prevent any person or system from decrypting messages without authorization.
Cryptology helps ensure the core tenets of cybersecurity by providing confiden-
tiality, integrity, authentication, and nonrepudiation. We will explore how we
use cryptology for each of these using Python as we move through this book.
For now, the important takeaway is that the study of cryptology is broken down
into two fields: cryptography and cryptanalysis.

Understanding Cryptography

Specifically, cryptography is the science of secret writing with the goal of hid-
ing the meaning of the message. Cryptography is further broken down into
cryptographic protocols, symmetric algorithms, and asymmetric (or public-key)
algorithms.

Cryptographic protocols, also known as security or encryption protocols,
consist of a well-defined series of steps and message exchanges between several
entities in order to achieve a specific security objective. Cryptographic protocols
should encapsulate a number of properties in order to be viable:

m The protocol must be known by each party involved, and each party must
know the well-defined steps to follow in advance of the protocol’s use.

m The protocol must be unambiguous; every step is well-defined and easy
to understand.

m The protocol must be followed by each party involved.
m The protocol must also be complete.

m The protocol must not give away any details about the message.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

33

Cryptographic protocols are used in secure application-level data transport
such as Transport Layer Security (TLS), which is used to secure HTTPS web
connections. Another protocol that we will explore later in the chapter is the
Diffie-Hellman key exchange, which is also used by TLS in its secure com-
munications. Other applications include secret splitting, secret sharing, time-
stamping, key escrow, zero-knowledge proofs, blind signatures, electronic money;,
and securing elections. The data integrity of the message exchange process is
a critical aspect of the selected protocols; data integrity is a building block for
cryptographic protocols.

Cryptography’s Famous Family: Alice and Bob

Alice and Bob are the world’s most famous cryptographic couple; you will see
references to the dynamic couple through a wide variety of examples inside
this book (see Figure 2.1). Since their inception in 1978, Alice and Bob have at
once been called “inseparable” and been subject of numerous travels, torments,
and even divorces. In the ensuing years, other characters have joined their
cryptographic family. There’s Eve, the passive and submissive eavesdropper;
Mallory, the malicious attacker; and Trent, trusted by all, just to name a few.
Alice and Bob, along with their extended family, were first used to explain how
cryptography works but now have become widely used across engineering and
scientific domains. Alice and Bob have become an archetype of digital exchange
and a lens through which to view broader digital culture.

EVE

J(
SOURCE J ' DESTINATION
FILE ENCRYPT DECRYPT FILE

A
! 8
BU%P’; ALICd)/I,:'J’S “

ALICE PUBLIC KEY) _ PUBLIC KEY Bos)

Figure 2.1: Alice and Bob

34

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Alice and Bob are fictional characters originally invented to make research in
cryptology easier to understand. In a now-famous paper (“A method for obtain-
ing digital signatures and public key cryptosystems”), authors Ron Rivest, Adi
Shamir, and Leonard Adleman described exchanges between a sender and
receiver of information as follows: “For our scenarios we suppose that A and B
(also known as Alice and Bob) are two users of a public key cryptosystem.” In
that instant, Alice and Bob were born.

Diffie-Hellman

One of the most critical aspects of cryptography is safely exchanging secret
keys without being compromised. During the 1960s, key exchange was cost-
ing the government, banks, and big businesses a fortune as they exchanged
keys using heavily guarded couriers who traveled around in person to deliver
cryptographic keys. Fortunately, the Diffie-Hellman protocol was introduced
to handle the growing issues with key exchange.

As with any other protocol that only covers key exchange, the Diffie-Hellman
protocol does not perform any authentication. Therefore, neither Alice nor Bob
knows with whom they are exchanging the message after the protocol is run.
The Diffie-Hellman exchange cannot guarantee the privacy of a communi-
cation following the exchange; it has to be combined with an authentication
mechanism. The protocol design does offer an advantage, however; it allows
the protocol to guarantee the property of perfect forward secrecy (PFS), which
protects the message from a compromise of any data that has been protected
with other keys prior to the compromise.

To explain further, imagine that Alice and Bob both sign the data exchanged
to compute the shared key (SK) with their private keys. Even if one of the private
keys is compromised in the future, it will not allow a third party to decrypt
the data that has been protected with the SK. Authentication can be broken
down into two security service categories: data origin authentication and entity
authentication.

Data Origin Authentication

Data origin authentication, also known as data integrity, is the security ser-
vice that enables entities to verify that a message has been originated by a
particular entity and that it has not been altered after the message was created.
One approach can be conjectured by assuming that everyone knows Alice’s
public key, and that Alice can ensure data integrity of her messages by using
her private key to encrypt them. Additionally, Alice can compute a modifica-
tion digest code (MDC) over her message and append the MDC encrypted with
her private key to the message. MDC is an encryption algorithm that produces

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

35

a one-way cryptographic function. With message integrity being critical to mes-
sage security, cryptographic protocols often provide data origin authentication
services as a building block of the protocols.

Entity Authentication

Entity authentication is a security service that is used between peer entities
to verify the identity of each party involved. Each application that contains
sensitive information should be built around entity authentication and verify
the entity; authentication is typically performed using various means, such as:

m Something you know (e.g., passwords)
m Something you have (e.g., physical keys, cards, or tokens)

m Something you are (e.g., biometric properties such as fingerprint or retinal
scans)

= Someplace you are (e.g., geolocation)

Entity authentication is more than an exchange of messages. It must also pro-
vide timeliness. One cannot guarantee that any party involved in the message
exchange is actively participating at the specific moment the message is received.
Most authentication protocols establish a secret session key for security of the
session following the authentication exchange. Two main categories of protocols
are used for entity authentication:

m Arbitrated authentication: A trusted third party (TTP), also known as
an arbiter, is directly involved in every authentication exchange. The pri-
mary advantage is that it allows two parties (Alice and Bob) to authenticate
to each other without knowing any pre-established secret. Even if Alice
and Bob do not know each other, the same cryptographic key can be used.
This type of key is known as a symmetric key. One disadvantage of arbi-
trated authentication is that the TTP can become a bottleneck to the pro-
cess, therefore violating the availability of the CIA Triad. Another
disadvantage is that the TTP can monitor all authentication activity.

m Direct authentication: Alice and Bob directly authenticate to each other.
The primary advantage is that no online participation of a third party is
required; therefore, the two drawbacks mentioned in arbitrated authen-
tication do not apply. The major drawback is that it requires asymmetric
cryptography or pre-established secret keys.

\[* XN The CIA Triad is the implementation of confidentiality, integrity, and avail-
ability, which are important aspects to how we view the security of our solutions.
The security model is designed to guide policies for information within our systems,

36 Chapter 2 = Cryptographic Protocols and Perfect Secrecy

solutions, and applications. You may also see the model referred to as the AIC Triad
(availability, integrity, and confidentiality) to avoid confusion with the United States
Central Intelligence Agency. The three elements of the triad are considered the most
crucial components of security, although you may see other elements introduced. The
CIA Triad, in this context, defines confidentiality as a set of rules that limit who has
access to information, integrity as the assurance that the information is accurate and
trustworthy, and availability as the guarantee that the data can be reliably accessed
when needed by authorized personnel or systems.

Symmetric Algorithms

Symmetric algorithms are the simplest and fastest way to encrypt and decrypt
messages. They typically involve two parties, with each member having an
identical key. As a memory mnemonic, think of the “S” in symmetric as the
word same.

We will be diving into many of the symmetric key algorithms such as DES,
3DES, IDEA, Blowfish, Skipjack, and AES in Chapter 6, but we mention them
now to help prepare you for our discussion on historical ciphers later in this
chapter. Other examples of symmetric algorithms include IPSec, Kerberos, and
Point to Point.

Asymmetric Algorithms

Asymmetric algorithms are more complex and typically slower. In fact, many
systems use asymmetric algorithms simply to swap symmetric keys and then
use symmetric algorithms for the rest of the encryption operation. The key point
to take away for now is that the asymmetric algorithm requires the use of two
different keys: one public and one private. Messages that are encrypted with
one key can only be decrypted with the other. This offers many advantages,
such as nonrepudiation and the use of digital certificates.

We will explore asymmetric algorithms and the use of public and private keys
using Python in Chapter 7. An example of an asymmetric encryption algorithm
is ElGamal, which is used in OpenPGP. Other examples include Elliptic curve
cryptography, RSA, Diffie-Hellman key exchange, and DSA.

The Needham-Schroeder Protocols

In 1978, Roger Needham and Michael Schroeder invented two protocols. The first
is their symmetric key protocol, which later formed the basis for the Kerberos
protocol invented by MIT. This protocol aims to establish a session key between
two parties on a network to protect communications.

The second protocol was their public-key protocol, which is based on public-
key cryptography. The goal of the second Needham-Schroeder protocol is to

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

37

establish mutual authentication between two parties, A and B; the protocol
assumes that an adversary may intercept, delay, read, copy, or forge the mes-
sage in transit. The protocol also assumes that each party (Alice and Bob) has
received secret keys from a trusted third party (TTP). The protocol uses shared
keys for both the encryption and decryption process.

Use Table 2.1 to analyze the following exchange:

Let us assume that Alice needs to send a communication to Bob. Alice will
need to generate a random number R, and send a message to the TTP:
A> TTP(A, B, rp)

The TTP generates a session key K, 5 for secure communications between Alice
and Bob and responds to Alice: TTP = A: {ry, B, K, g, {K, 5, Algp t1pikA, TTP

Alice decrypts the message and extracts K, 5. She confirms that r, is identical
to the number generated by her in the first step; this informs her that the
reply from the TTP is fresh.

Alice sends the message to Bob: A=B: {K, 5, Alyp 11p

Bob decrypts the message and obtains K, 5. He then generates a random
number ry and replies to Alice: B> A: {rg} x5

Alice decrypts the message and verifies that it contains rp-1.

Table 2.1: Notation of Cryptographic Protocols

NOTATION MEANING

A Name of A, analogous to B, E, TTP, CA

CA, The certification authority for A

Ra A random value chosen by A

t, The timestamp generated by A

(m;, .mg, The concatenation of messagesm; = m,

A=>B:m A sends message m to B

Kag The secret key, only known to A and B

+K, The public key of A

-Ka The private key of A

{m} The message m encrypted with the key K, synonym for E(K, m)

H(m) Modification detection code (MDC) over message m, computed with
function H

Alm] Shorthand notation for (m, {H(M)}_«A

Cert_cxcactKa) The certification authority certificate for public key +K, of A, signed with
the private certification key -CKc,

CA<<A>> Shorthand notation for Cert (5 +Kp)

38

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

The protocol exchanges ry and rg-1 in an effort to ensure that an attacker,
Eve, cannot impersonate Bob by replaying messages from Alice. However, as
old session keys K, 5 remain valid, Eve may manage to get to a known session
key K, 3 and impersonate Alice:

E > B: (K, g Alcg, 11p
B = A: {rgli(a 5 “Eve has to intercept this message
E -> B: {rB'l}K(A, B)

In short, even if Eve does not know K, 11p or Kj 11p, she can impersonate Alice.

The Otway-Rees Protocol

The Needham and Schroeder public-key solution has a number of similarities
to a protocol proposed by Otway and Rees. Use Table 2.1 to analyze the follow-
ing exchange:

Alice generates a message containing an index number i,, her name (A), and
Bob’s name (B), plus an additional random number R, encrypted with the
key K, rrp she shares with the TTP, and sends the following message to Bob:

ASB: (iy, A, B, {1y, i, A, Blgarrr))

Bob generates a random number, 1, and uses it to encrypti,, A, and B using
the key Ky 11p. Bob shares the message with the TTP:

B> TTP(is, A, B, {ry, is A, B}K(A,TTP) g in A, B}K(B,TTP))

The TTP generates a new session key K, 5 and creates two encrypted mes-
sages, one for Alice and one for Bob. The TTP sends them both to Bob:

TTP = B: (iy, {ra, KA,B}KA,TTP ,Ars, KA,B}K(B,TTP))

Bob then decrypts his part of the message and verifies Ry. Bob sends part of
the message to Alice:

B > A: (i, {ra, Kaplka, Trp)

Alice decrypts the message and checks i, and R, to verify that they have not
been modified since the message exchange started. If they have not changed,
she can be sure that the TTP has sent her a fresh session key K, 5 for commu-
nications with Bob. If she uses the key in an encrypted communication with
Bob, she can be sure of his authenticity.

A benefit of the Otway-Rees protocol is that the index number, i,, further
protects against replay attacks. However, this requires that the TTP checks if
i, is bigger than the last i, he received from Alice. The TTP will generate the
two messages if both parts of the message contain the same index number i,
and names A, B. If both are true, then Alice and Bob can be sure that they have
authenticated to the TTP during the encrypted communication.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

39

Kerberos

Kerberos, an open-source security protocol developed by MIT in the late 1980s, is
an authentication and access control service for workstation clustering. Its design
goals include security, reliability, transparency, and scalability. The underlying
cryptographic primitive of Kerberos is symmetric encryption; Kerberos V4 uses
DES, while V5 allows for other algorithms.

Assume that Alice wants to access one or more different services that are
provided by different servers: Server 1, Server 2, etc. Each server is connected
over an insecure network. The Kerberos protocol will handle the authentication,
access control, and key exchange:

m Authentication: Alice will authenticate to an authentication server, which
will provide a temporary permit to demand access for services. The permit
is called a Ticket-Granting ticket (Ticket.g); the ticket can be thought of
like a temporary passport.

m Access Control: Alice is able to present her ticket (Ticket;ss) to a Ticket
Granting Server (TGS) to obtain access for a service provided by a specific
server; in this example, we will call it Server 1. The TGS decides if the
access will be permitted and answers Alice with a ticket for Server 1,
Tickety;.

m Key Exchange: The authentication server provides a session key for com-
munication between Alice and the TGS; the TGS will provide a session
key for communication between Alice and Server 1. The session key also
serves Alice for authentication purposes.

Alice begins the process by logging in to her workstation and requests access
to a service. The first message is sent to the authentication server AS, contain-
ing her name, the name of the appropriate Ticket Granting Server TGS, and a
timestamp t,:

A= AS: (A, TGS, t,)

The authentication server verifies that Alice may authenticate to access ser-
vices, generates the key K, out of Alice’s password (which is known to the
AS), extracts the workstation address Addr, from the request, creates a Ticket
Granting Ticket Ticket;;s and a session key K, 1gs, and sends the following
message to Alice:

AS = A: K, 165 TGS, t, LifetimeTicket;qg, Ticketyggl, with Ticket;gs={K,
16 A, Addr,, TGS, t g, LifetimeTicket o5} K zg 165

Once the workstation receives the message, it will ask Alice to type in her
password. The workstation will compute the key K, and use this key to decrypt
the message. If Alice does not provide her correct password, the extracted values
will be garbage and the rest of the protocol will fail.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Alice creates an authenticator and sends it together with the Ticket Granting
Ticket and the name of the server to TGS:

A = TGS: (81, Ticketygs, Authenticator, gg) with Authenticator, g5 = {A,
Addry, talka Tes

Once the TGS receives the message, it will decrypt Ticket;gg, extract the key
K, 1gs from the message, and use the key to decrypt Authenticator, 1cs. If the
name, ticket, and address of the authenticator matches, the TGS will ensure
the timestamp is still valid, check if Alice may access the service S1, and
create the following message:

TGS = A: (K, o}, S, tyg, LifetimeTickets)fx, 1gs With Ticketg; = {K, o), A,
Addr,, S, tygg, LifetimeTickets) fxrcs 51

Alice decrypts the message and holds a session key for secure communica-
tion between her and S1. She sends a message to S1 to show her ticket and a
new authenticator:

A=> Sl: (Tickets;, Authenticator, g)) with Authenticator, ¢; = {A, Addr,, t7\Jka o1

Once the ticket from Alice is received by Server 1, the server decrypts the
ticket with the key K;g ¢; and shares with TGS the session key K, g for secure
communication with A. Using the obtained key, the S1 checks the authenticator
and responds to A:

SI= A: {t7, + Uga o1

Alice is able to verify that she is communicating with S1 and only S1 and the
TGS knows the key Kygg ; to decrypt Ticketg;, which contains the session key
K4, 51 and so only Sl is able to decrypt Authenticator, ¢; and to answer with
t°s+1 encrypted with K, ;.

Multiple-Domain Kerberos

In many environments, an organization may be required to establish secure
communications with a service that is located inside another domain. If both
locations use their own Kerberos servers and user databases, then there are in
fact two different domains; in this context, we will refer to them as realms to
keep consistent with Kerberos terminology.

In an effort to avoid user duplication in both domains, Kerberos allows you
to perform an inter-realm authentication. Inter-realm authentication requires
that the Ticket Granting Servers of both domains share a secret key Krgg; 16sp-
The basic concept that is presented is that the TGS service of another realm
(domain) can be viewed as a normal server for which the TGS of the local realm
can hand out a ticket.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

1

After obtaining the ticket from the remote realm, Alice requests a service
granting ticket from the remote TGS. This sets up a dependency that the remote
realm must trust the Kerberos authentication service of the home domain of a
“visiting” user. Scalability becomes a problem as 1 realms require n x (n - 1) /
2 secret keys. The message exchange in a multiple domain protocol run would
look as follows:

A = ASI: (A, TGSL t,)

AS1 = A: {K,, rqe1r TGS], tyg, LifetimeTicket g, Ticketoq x4 With Ticket g

A = TGSL: (TGS2, Ticketygg;, Authenticator, 1gs) with Authenticator, g
={}]A, Addr,, taka esi

TGS1 = A:{K A, TGS TGS2, trge, Ticketrgelk A, TGS with Ticketygg, = {K A, TGS A

A = TGS2: (S2, Ticketygg,, Authenticator, 1gg,) with Authenticator, 1gs, =
{A, Addry, taJkacs2

TGS2 & A: {K, gy, S2, trgsy Ticketsylia tasp With Tickets, = {K, 5, A, Addry,
S2, tygs,, LifetimeTickets,lxrgsy o1

A = S2: (Tickets,, Authenticator, ,) with Authenticator, ¢, = {A, Addr,, t™\}Jka s
SI > A: {7, + Uka g

X.509

X.509 is an international recommendation of ITU-T and is part of the X.500-
series defining directory services. It is the standard that defines the format of the
public-key certificate. The X.509 certificates are used in many internet protocols
that include TLS/SSL. The X.509 certificates are also used in offline applications
such as electronic signatures. The certificate contains a public key and an iden-
tity (server name, host name, organization, or individual) and is either signed
by a certificate authority (CA) or self-signed using an internal process.

The first version of X.509 was standardized in 1988. The second version, which
resolved several security concerns, was standardized in 1993. The third version
was drafted in 1995. When a certificate is signed by a trusted CA or validated
by other processes, someone holding the certificate can be assured that the
public key can establish a secure communication session with another party or
validate documents that are digitally signed by the corresponding private key.

X.509 defines a framework for the provisioning of authentication services
that comprise the certification of public keys and certificate holding and three
different dialogues for direct authentication. The certification of public keys

42

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

and certificate handling include processes that define the certificate format, the
certificate hierarchy, and the certificate revocation lists. The three dialogues that
are provided for direct authentication include:

m One-way authentication: Requires synchronized clocks
m Two-way mutual authentication: Also requires synchronized clocks

m Three-way mutual authentication: Based on random numbers

Clock synchronization on a network is important to a number of technol-
ogies, including Kerberos and X.509 certificates. The maximum tolerance for com-
puter clocks should be 5 minutes. This helps limit that amount of time that a replay
attack can happen. The most common way to synchronize clocks automatically is to
use the Network Time Protocol (NTP). NTP is a hierarchical protocol. The source clock
is called Stratum 1. Clocks that synchronize from the original source are called Stratum
2. Clocks that synchronize from Stratum 2 are called Stratum 3, and so on.

Public-Key Certificates

Public-key certificates essentially act as a passport that certifies that a public-key
belongs to a specific name or organization. Certificates are issued by certificate
authorities, more commonly known as CAs. One of the properties of using
public-key certificates is that they allow all users to know without question
that the public-key of the CA can be checked by each user. In addition, certifi-
cates do not require the online participation of a TTP. One thing that you must
remember is that the security of the private key is crucial to the security of all
users. The following represents the notation of a certificate binding a public key
+KA to user A issued by a certificate authority CA using its private key -CKCA:

Cert-CKCA(+KA) = CA[V, SN, Al, CA, TCA, A, +KA] where:
V = version number
SN = serial number
Al = algorithm identifier of signature algorithm used
CA = name of certification authority
TCA = period of validity of this certificate
A =name to which the public key in this certificate is bound
+KA = public to be bound to a name

Certificate Chains and Certificate Hierarchy

Consider communication between our two users: Alice and Bob. Each user lives
geographically apart. Each user may have public keys from different CAs. For
simplicity, designate Alice’s certificate authority as CA, and Bob’s certificate

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

43

authority as CAg If Alice does not know or trust CAg, then Bob’s certificate is
useless to her; the same will hold true for Bob and his knowledge or trust of
Alice’s CA, In order to provide a solution to this issue, you can construct a
certificate chain. If CA , certifies CAg with a certificate CA ;<<CAp>> and CA;
certifies CA’s public key with a certificate CAz<<CA ,>>, then both Alice and
Bob can check their certificates by checking a certificate chain. Assume Alice
is presented with CAz<<Bob>> and attempts to look up if there is a certificate
CA ,<<CAz>>. She checks the chain: CA ,<<CAp>>, CAg<<Bob>>. Certificate
chains are not limited to just the two certificates.

You can use Python to create X.509 certificates. The following code will gen-
erate two certificates: rsakey.pem and csr.pen. The rsakey.pemis a private key
that is encrypted using the super-secret password I1ik32Cod3 and will then use
the private key to generate a public key. We then generate a certificate signing
request (CSR) using a number of custom attributes. Feel free to change these
up as they will not affect the example.

from cryptography.hazmat.backends import default backend

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.primitives.asymmetric import rsa

from cryptography import x509

from cryptography.x509.0id import NameOID

from cryptography.hazmat.primitives import hashes

#Generate Key (RSA,DSA,EC)

encryptedpass = b"I1ik32Cod3"

key = rsa.generate private key(

public_exponent=65537,

key size=2048,

backend=default_backend ()

)

with open ("rsakey.pem", "wb") as f:
f.write(key.private bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption algorithm=serialization.BestAvailableEncryption (encrypted

pass),

))

Generate CSR

csr = x509.CertificateSigningRequestBuilder () .subject name (x509.Name ([

x509.NameAttribute (NameOID.COUNTRY NAME, u"US"),

x509.NameAttribute (NameOID. STATE_OR_PROVINCE NAME, u"NC"),

x509.NameAttribute (NameOID.LOCALITY NAME, u"Raleigh"),

x509.NameAttribute (NameOID.ORGANIZATION NAME, u"Python Cryptography"),

x509.NameAttribute (NameOID.COMMON NAME, u"shannonbray.us"),

1)) .add_extension(

x509.SubjectAlternativeName ([

x509 .DNSName (u"shannonbray.us") ,

1),

critical=False,

44

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Sign the CSR with our private key.
) .sign(key, hashes.SHA256 (), default_backend())
with open("csr.pem", "wb") as f:
f.write(csr.public bytes(serialization.Encoding.PEM))
print ('Operateion Completed.')

Certificate Revocation

If we continue to examine the situation presented, you can see that communi-
cations between Alice and Bob rely on the trust of the certificate authority and
each party must keep their private key secure. Should one of their keys become
compromised, the certificate needs to be nullified or revoked. If Alice’s key was
compromised in an attack, the attacker (Trent) can continue to impersonate
Alice up to the end of the certificate’s validity period. If Alice detects the com-
promise, she can ask for revocation of the corresponding public-key certificate.
Certificate revocation is performed by maintaining a list of compromised cer-
tificates; these lists are known as certificate revocation lists, or CRLs. CRLs are
stored in the X.500 directory; when a user or process is checking a certificate,
it must not only confirm that the certificate exists but also make sure the cer-
tificate is not on a CRL. The certificate revocation process is quite slow and can
be costly and ineffective.

If you've used the previous example to generate a key, you will be able to
load it using the following code. Examine the use of 1oad_pem private_key(),
as shown here:

from cryptography.hazmat.backends import default backend

from cryptography.hazmat.primitives import serialization

from cryptography import x509

from cryptography.x509.0id import NameOID

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.serialization import load pem
private_key

encryptedpass = b"I1lik32Cod3"

key = load pem private key(open('rsakey.pem', 'rb').read(),encryptedpass,
default backend())

Generate CSR

csr = x509.CertificateSigningRequestBuilder () .subject_name (x509.Name ([
x509.NameAttribute (NameOID.COUNTRY NAME, u"US"),

x509.NameAttribute (NameOID.STATE OR_PROVINCE NAME, u"CA"),
x509.NameAttribute (NameOID.LOCALITY NAME, u"San Francisco"),
x509.NameAttribute (NameOID.ORGANIZATION NAME, u"Python Cryptography"),
x509.NameAttribute (NameOID.COMMON NAME, u"8gwifi.org"),

1)) .add_extension(

x509.SubjectAlternativeName ([

%509 .DNSName (u"mysite.com") ,

1),

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

45

critical=False,
Sign the CSR with our private key.
) .sign(key, hashes.SHA256 (), default backend())
with open("csr.pem", "wb") as f:
f.write(csr.public bytes(serialization.Encoding.PEM))

You can use the openssl command to view the CSR, as shown here:

$ openssl req -text -in csr.pem

Certificate Request: Data: Version: 0 (0x0) Subject: C=US, ST=CA,
L=San Francisco, O=Python Cryptography, CN=8gwifi.org Subject Public
Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (2048
bit) Modulus (2048 bit): Encrypted RSA key generated with the code
$ cat /tmp/rsakey.pem ----- BEGIN RSA PRIVATE KEY----- Proc-Type:

4 ,ENCRYPTED DEK-Info: AES-256-CBC,EA2EB61CCC7A2FFD9D83D9D103B74F69
nus1MfQNj17cAdwCKWtWheXCtOgpk61i0SmxcuUgdWg51iUujN4p6LYHbWkalUTvi
........... END RSA PRIVATE KEY----- Generated CSR in the PEM
format $ cat /tmp/csr.pem ----- BEGIN CERTIFICATE REQUEST-----
MIICOjCCAboCAQAWZTELMAKGA1UEBhMCVVMxCzAJBgNVBAgGMAKNBMRYWFAYDVQQH
DA1TYW4gRnJIhbmNpc2NVvMRwwGgYDVQQKDBNQeXRob24gQ3J5cHRVZ3JhcGh5MRMw
EQYDVQQODDA04 Z3dpZmkub3JnMIIBIjANBgkghkiGOwOBAQEFAAOCAQ8AMIIBCgKC

Generating a Self-Signed Certificate

In cryptography and computer security, a self-signed certificate is an identity
certificate that is signed by the same entity whose identity it certifies.

Examine the following Python code. In the example, you will create a self-
signed certificate named certificate.pem. When generating the self-signed
certificates, the issuer and the signer are the same:

from cryptography.hazmat.backends import default backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography import x509

from cryptography.x509.0id import NameOID

from cryptography.hazmat.primitives import hashes

import datetime

Generate Key (RSA,DSA,EC)

encryptedpass = b"I1ik32Cod3"

key = rsa.generate_ private key(public exponent=65537, key size=2048,
backend=default_backend())

46 Chapter 2 = Cryptographic Protocols and Perfect Secrecy

with open("rsakey.pem", "wb") as f:
f.write(key.private_bytes(encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption algorithm=serialization.BestAvailableEncryption (encryp
tedpass),))

In Self Signed Certificate Issuer and Signer are Same
subject = issuer = x509.Name ([x509.NameAttribute (NameOID.COUNTRY_NAME,
u"us") ,
x509.NameAttribute (NameOID.STATE OR_PROVINCE NAME, u"NC"),
x509.NameAttribute (NameOID.LOCALITY NAME, u"Apex"),
x509 .NameAttribute (NameOID.ORGANIZATION NAME, u"Python Cryptography"),
x509.NameAttribute (NameOID.COMMON NAME, u"shannonbray.us"), 1)

cert = x509.CertificateBuilder () .subject_name (
subject
) .issuer name (
issuer
) .public_key(
key.public_key ()
) .serial_number (
x509.random_serial_ number ()
) .not_valid before(
datetime.datetime.utcnow ()
) .not_valid after(
datetime.datetime.utcnow() + datetime.timedelta (days=10)
) .add_extension (
x509.SubjectAlternativeName ([x509.DNSName (u"localhost")]),
critical=False,
) .sign(key, hashes.SHA256 (), default backend())

with open("certificate.pem", "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))

Formal Validation of Cryptographic Protocols

There are several formal validation methods for cryptographic protocols; these
include expert system-based approaches, algebraic approaches, and special
logic-based approaches:

m Expert system-based approaches: The knowledge of experts is formalized
into deductive rules that can be used by a protocol designer to investigate
different scenarios. The main drawback is that it is not well suited for
finding flaws in cryptographic protocols that are based on unknown
attacking techniques.

m Algebraic approaches: Cryptographic protocols are specified as algebraic
systems. The analysis is generally conducted by examining algebraic
term-rewriting properties of the model; the approaches then inspect if
the model can attain certain wanted or undesirable states.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

47

m Specific logic-based approaches: These approaches define a set of pred-
icates and provide a mapping of messages exchanged during a protocol
run into a set of formulas. A generic set of rules allows them to analyze
the knowledge and understand that it is obtained by the peer entities of
a cryptographic protocol during a protocol run.

Configuring Your First Cryptographic Library

You will create your own code in many areas of this book, but you will also learn
about a number of Python libraries that will help you get an understanding
of cryptography by using their code that is encapsulated in defined methods.
In this section, you will install the pyca/cryptography library. The cryptog-
raphy library includes both a high-level set of recipes and a low-level set of
interfaces that will help with many cryptographic algorithms such as message
digests, symmetric ciphers, and key derivation functions. You will need this
library to examine the X.509 certificate code studied later in this chapter. You
can install the cryptography library using pip. Type the following in your shell:

pip3 install cryptography

Understanding Cryptanalysis

Cryptanalysis is the study of restoring an encrypted message back to plaintext.
Cryptanalysis is a critical aspect of cryptography as it helps ensure that current
cryptography schemes are secure. We will be performing cryptanalysis on sev-
eral of the historical ciphers presented in this chapter to show how encryption
schemes once thought secure are now breakable with just a little effort.

Brute-Force Attacks

In a brute-force attack, the advisory attempts to decrypt the ciphertext by using
every possible key. If the key is small enough, a brute-force attack can be suc-
cessful in a matter of minutes. In fact, if the keys are around 2%, we can write a
Python script to crack the password utilizing brute force. For your estimation
purposes, when it comes to brute-force attacks, the following helps you ballpark
the amount of security you get for various size problems:

m A key space/message space of 2%* is enough for a couple hours of
security.

m A key space/message space of 2!% is enough for several decades of pre-
quantum security.

m A key space/message space of 2°° is enough for several decades of post-
quantum security.

48

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

The following is an example of code that will generate a four-digit PIN and
then loop through the iterations using brute force to determine the password:

import random
generate a password
generated password = str(random.randint (0,9999))

check values 0 - 9999
for i in range(10000) :

Trial = str(i)
if Trial == generated password:
print ('Found password: ' + generated password)

Side-Channel Attacks

A side-channel attack is performed when the advisory has awareness of the
physical implementation of the code to leak information. This could be done
by observing the power usage of the CPU during the encryption or decryption
process, or examining the amount of shared memory consumption of processes
in virtual machines that are encrypting or decrypting messages.

Social Engineering

Social engineering is a nontechnical attack that is often quite successful. It
relies on exploiting people with human interactions and often involves tricking
people into breaking normal security procedures. Some common social engi-
neering attacks include phishing, pretexting, baiting, quid pro quo, tailgating,
or shoulder surfing.

Analytical Attacks

Analytical attacks in cryptography are attacks against the underlying encryp-
tion scheme to find weaknesses that can be exploited. This will be the corner-
stone of our examination of many of the historical ciphers introduced in the
previous sections.

Frequency Analysis

Frequency analysis will be a critical aspect of our ability to break ciphers using
Python. Frequency analysis is the study of the frequency with which letters or
groups of letters appear in ciphertext. In examining the English language, the
most common letters are E, T, A, and O. In addition to examining single letters,
we also examine common pairs of letters, which are referred to as digraphs.
Examples of digraphs in the English language include TH, ER, ON, and AN.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

49

There are also letters that are often repeated, which include SS, EE, TT, and FE.
In addition, the sum of the frequencies squared is always going to be near .065
when the text has the same distribution as most English language text. So, if
you check for that squared sum on the frequencies of characters in encrypted
text, you'll know if your text has been substituted in some way or another.

Attack Models

No matter what type of encryption you choose, encryption ciphers are functions
that require you to enter a message along with a secret key to produce the cipher-
text. In symmetric encryption, each party uses the same key. In asymmetric
encryption, one party uses a public key while the other uses a private key. The
term message space is used to describe all possible messages that might have
produced a specific ciphertext. The term key space is used to refer to all sets of
possible permutations of a secret key. Finally, the term cipher space refers to all
possible encrypted texts that were created. Typically, with cryptographic hashes
the size of the cipher space is the number that matters the most for security; once
the attacker can find a second input that matches the hash of a password, the
identity of the account is compromised. When analyzing a brute-force attack,
you need to estimate the number of inputs that have to be checked to reverse
the output.

In the case of a hash function there is no secret key. Everyone needs to be
able to verify that the same string hashes to the same value. A brute-force attack
on a hash function requires trying every considered input, while a brute-force
decryption requires trying every possible key. For your estimation purposes
when it comes to brute-force attacks, you can use the following to ballpark the
amount of security you get for various size problems:

m A key space/message space of 2%* is enough for a couple hours of
security.

m A key space/message space of 2!% is enough for several decades of pre-
quantum security.

m A key space/message space of 22°

quantum security.

is enough for several decades of post-

Several common attack models can be used for cryptanalysis; each requires
a different portion of the message. The common attack models include the fol-
lowing:

m Ciphertext Only (COA) is used when the malicious user only has access
to the ciphertexts and does not have access to the plaintext prior to encryp-
tion. Frequency analysis is critical when using COA.

50

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

m Known-Plaintext (KPA) is used when the malicious user has access to
both the plaintext and its encrypted version (ciphertext). Historical ciphers
were very susceptible to this type of attack.

m Chosen-Plaintext (CPA) is an attack that occurs when the malicious users
are able to define their own plaintext and have it encrypted, resulting in
ciphertext that can be analyzed to determine how to decrypt other mes-
sages. A good example is the attacks on the German Enigma machine;
once the Allies captured an Enigma machine, the CPA was used to deter-
mine how the encryption scheme worked.

m Chosen-Ciphertext (CCA) is an attack used where the cryptanalyst can
gather information by obtaining the decryptions of chosen ciphertexts.
One way to think about this type of attack is that you can test a slightly
adjusted encryption. Change a bit and see if the decrypted message turns
to gibberish. For instance, if you are a server on the internet and you
change an encrypted packet in some way, you can see how the target
reacts to your change when they go to decrypt.

Shannon’s Theorem

Claude Shannon (1916-2001) was often regarded as the father of modern cryp-
tology and information theory. After receiving his Ph.D. in mathematics, Shannon
contributed to the field of cryptanalysis for national defense during World War
II. He is also credited for the founding of digital circuit design theory in 1937.
He published a paper in 1949 entitled “Communication Theory and Secrecy
Systems.” In this revolutionary paper, Shannon defines perfect secrecy for
secret-key systems and shows that they exist. A secret-key cipher obtains perfect
secrecy if for all plaintexts x and all ciphertexts y, it holds that Pr(x) = Pr(x|y). In
other words, a ciphertext y gives no information about the plaintext. Shannon’s
principle states, “The enemy knows the system.”

Known as the gold standard of security in cryptography, “perfect security”
is a special case of information-theoretic security wherein for an encryption
algorithm, if there is ciphertext produced that uses it, no information about the
message is provided without knowledge of the key. Examine the definition of
perfect security as defined by Shannon.

Let & = (E,D) be a Shannon cipher defined over (K,M,C). Consider a probabi-
listic experiment in which the random variable k is uniformly distributed over
K. If for all my, mye M, and all ¢ € C, we have: Pr[E(k, m,) = c] = Pr[E(k, m,) = c];
then we say that € is a perfectly secure Shannon cipher.

To explain the definition in words, if the probability that a ciphertext c is m,, is
the same as the probability that the same ciphertext c is m;, then the cipher ¢ is

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

51

a perfectly secure Shannon cipher. That is, the perfectly secure Shannon cipher
e has produced a ciphertext that has equal probability of being any message, i.e.,
the ciphertext c gives no information about the plaintext m.

We will explore perfect security more as we explore the one-time pad in the
next section.

One-Time Pad

Perfect secrecy is the concept that given a ciphertext (an encrypted message) from
a cipher or perfectly secure encryption system, nothing will be revealed about
the plaintext (unencrypted message) by the ciphertext.

A perfectly secret cipher has a couple of other equivalent properties:

m There is a key that encrypts every possible plaintext to every possible
ciphertext (perfect key ambiguity). However, this is true only if the keys
used are the same size as the messages.

m Even if given a choice of two plaintexts, one the real one, for a ciphertext,
you cannot distinguish which plaintext is the real one (perfect message
indistinguishability).

What perfect secrecy means in practice is that no amount of computation
applied to the ciphertext will give you any advantage in knowing anything
about the plaintext or key. This is obviously a desirable property of a cipher,
and perfectly secret ciphers do exist. For example, a one-time pad (OTP) is a
perfectly secret cipher.

When you examine the OTPF, you may decide that it is the basis of modern
cryptography or you may determine it does not accomplish what we need.
Still, it is important that you understand the scheme and its subtleties. In this
section, you will gain a formal description of the algorithm and will explore
the OTP from Python; the goal is to show that it can be broken when used in
a repetitive scenario.

XOR, AND, and OR

The bitwise operators work on bits and perform bit-by-bit operations. Assume
a =60 and b = 13. The binary format of 2 and b will be as follows:

a = 0011 1100
b =0000 1101

Table 2.2 explains each bitwise operator and gives an example.

52 Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Table 2.2: Bitwise Operators

OPERATOR DESCRIPTION

& (Binary AND) Operator copies a bit to the result if it
exists in both operands.

EXAMPLE

(a & b) (means 0000
1100)

| (Binary OR) Operator copies a bit if it exists in either (a | b) =61 (means
operand. 0011 1101)
* (Binary XOR) Operator copies the bit if it is set in one (a * b) = 49 (means
operand but not both. 0011 0001)
~ (Binary Ones Operator is unary and has the effect of (~a) = -61(means
Complement) “flipping” bits. 1100 0011in2’s
complement form due to a
signed binary number)
<< (Binary Left The left operand’s value is moved left a << 2 = 240 (means
Shift) by the number of bits specified by the 1111 0000)
right operand.
>> (Binary Right The left operand'’s value is moved right a >> 2 = 15(means
Shift) by the number of bits specified by the 0000 1111)
right operand.

The bin() function in Python can be used to convert our integers 60 and 13
to their binary format. Type the following into the Python shell:

>>> a = 60
>>> b = 13

>>> print (bin(a))

0bl11100

>>> print (bin (b))
0b1101

>>> print (bin(a & b))
0bl1100

>>> print (bin(a | b))
0b111101

>>> print (bin(a * b))
0b110001

>>> print (bin(~a))
-0b111101

>>> print (bin(a<<2))
0b11110000

>>> print (bin(a>>2))
0b1111

Each value maps as shown. Alphanumeric characters, such as A, B, C, can
also be converted to a binary format. The use of the ordinal function, ord(),
will give a numerical value to an ASCII letter. Examine the following example:

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

53

>>> print (ord('A'))

65

>>> print (bin(oxrd('A')))
0b1000001

You will find that the use of XOR is critical to cryptography. The power of
XOR is that it is self-decrypting. If you encrypt a value using XOR, you can
easily reverse it with the same operation. We will show this with a simple
integer solution first by typing the following into the shell. The following code
takes two integers (240, 115) and gets their XOR value (131). You can then XOR
131 with either 240 or 115 and get the other value:

>>> X = 240
>>> y = 115

A

>>> z = (X y) #131
>>> print (z * 115)
240

>>> print (z
115

A

240)

To XOR a whole string with another string, we should convert plaintext into
an integer, then XOR the integer and reverse that. The print() function will
work in either scope. One of the biggest differences between the two code sam-
ples is the way we encode and decode hexadecimal values.

The following example shows how the encode method is used on the string;:

def text2int (msg) :
print (msg)

convert string to hex
hexstr = msg.encode ('hex')
print (hexstr)

convert hex to integer
integer m = int (hexstr, 16)
print (integer m)

convert integer back to hex
back2hex = format (integer m, 'x')
print (back2hex)

convert back to string

evenpad = ('0' * (len(back2hex) % 2)) + back2hex
plaintext = evenpad.decode('hex')

print (plaintext)

text2int ("Hello World")

54

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Hello World
48656c6c6£20576£726C64
87521618088882533792115812
48656c6c6£20576£726c64
Hello World

While examining the following code, notice the use of binascii along with
the hexlify() and unhexlify() methods. The hexlify() method returns the
hexadecimal representation of binary data. Each byte of the data is converted
into a two-digit hex representation. The resulting output will be twice as long
as the length of the data. The unhex1ify() method returns the binary repre-
sentation of the data. As you may have guessed, the unhex1lify() method is the
inverse of the hex1ify() method:

import binascii

def text2int (msg) :
print (msg)

convert string to hex
#hexstr = msg.encode('hex')
msg = msg.encode ()

hexstr = binascii.hexlify (msg)
print (hexstr)

convert hex to integer
integer m = int (hexstr, 16)
print (integer m)

convert integer back to hex
back2hex = format (integer m, 'x')
print (back2hex)

convert back to string

evenpad = ('0' * (len(back2hex) % 2)) + back2hex
#iplaintext = evenpad.decode ('hex')

plaintext = binascii.unhexlify (evenpad)

print (plaintext)
text2int ("Hello World")

Hello World
b'48656c6c6£20576£726c64 "
87521618088882533792115812
48656c6c6£20576£726c64
b'Hello World'

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Armed with this information, you can now encrypt plaintext to an encrypted
value and retrieve it only with a secret password, as shown here:

import binascii

def xorKey (secret) :
secret = secret.encode ()
hexstr = binascii.hexlify(secret)
key = int (hexstr, 16)
print ("key: ", key)
return key

def xorEnc(msg, key):
msg = msg.encode ()
hexstr = binascii.hexlify (msg)

print ("hexstr: ", hexstr)
ciphertext = int (hexstr, 16) * key
print ("ciphertext: ", ciphertext)
return ciphertext
def xorDec (msg, key):
xorMsgKey = msg " key
back2hex = format (xorMsgKey, 'x')
print ("back2hex: ", back2hex)
evenpad = ('0' * (len(back2hex) % 2)) + back2hex

plaintext = binascii.unhexlify (evenpad)
print ("plaintext: ", plaintext)
return plaintext

key = xorKey ("mysecret")

key2 = xorKey ("wrongpass")

cipher = xorEnc('Hello world', key)
plain = xorDec (cipher, key)

wrongplain = xorDec (cipher, key2)

As you can see, only using the right key will result in the correct message.
The preceding should return the following:

key: 7888463101613466996

key: 2203408475604721431411

hexstr: 48656c6c6£20776£726c64
ciphertext: 87521610353724475878410512
back2hex: 48656c6c6£20776£726c64
plaintext: Hello world

back2hex: 48651b73793d757c617a63
plaintext: Hey=u|azc

56

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

One-Time Pad Function

Now that you have seen how XOR works, it will be easier to understand the
one-time pad. OTP takes a random sequence of Os and 1s as the secret key and
will then XOR the key with your plaintext message to produce the ciphertext:

GEN: choose a random key uniformly from {0,1} {0,1}! (the set of binary strings
of length ()

ENC: given ke{0,1}' ke{0,1}' and me(0,1} L me{0,1}¢ then output is c:=kém c:=kédm

DEC: given ke{0,1} ' k€{0,1}¢ and c€{0,1} c€{0,1}%, the output message is m:=kdc
m:=kéc

The output given by the OTP satisfies Claude Shannon’s notion of perfect
secrecy (see “Shannon’s Theorem”). Imagine all possible messages, all possible
keys, and all possible ciphertexts. For every message and ciphertext pair, there
is one key that causes that message to encrypt to that ciphertext. This is really
saying that each key gives you a one-to-one mapping from messages to cipher-
texts, and changing the key shuffles the mapping without ever repeating a pair.

The OTP remains unbreakable as long as the key meets the following criteria:

m The key is truly random.
m The key the same length as the encrypted message.

m The key is used only once!

When the key is the same length as the encrypted message, each plaintext
letter’s subkey is unique, meaning that each plaintext letter could be encrypted
to any ciphertext letter with equal probability. This removes the ability to use
frequency analysis against the encrypted text to learn anything about the cipher.
Brute-forcing the OTP would take an incredible amount of time and would
be computationally unfeasible, as the number of keys would equal 26 raised
to the power of the total number of letters in the message. In Python 3.6 and
later, you will have the option to use the secrets module, which will allow you
to generate random numbers. The function secrets.randbelow() will return
random numbers between zero and the argument passed to it:

>>> import secrets
>>> secrets.randbelow(10)

>>> secrets.randbelow(10)

>>> secrets.randbelow(10)

You can generate a key equal to the length of the message using the follow-
ing in the Python shell:

Chapter 2 = Cryptographic Protocols and Perfect Secrecy 57

>>> msg = "helloworldthisistheonetimepad"

>>> key = !

>>> for i in range(len(msg)) :

>>> key += secrets.choice ('ABCDEFGHIJKLMNOPQRSTUVWZYZ')

>>> print (key)
CDHHCYIINAQHKMVOVAAYDPELIRNRU

In some ciphers, you can use language detectors. When the OTP is constructed
properly, there may be a condition that the wrong key will produce English text,
so there is no guarantee that using a language detector will offer the original
message. The next example demonstrates that two possible messages may occur:
Attack at Midnight! or Retreat Do Not Attack.

If you use the correct key, you will see the real message, while using the decoy
key will present the other. If an attacker is trying to brute-force this scheme, it
is possible they will find the wrong message.

The following code recipe introduces using from ... import. To refer to
items from a module within your program’s namespace, you can use the
from ... import statement. When you import modules this way, you can
refer to the functions by name rather than through dot notation. Using the
from ... import construction allows us to reference the defined elements of
a module within our program’s namespace, letting us avoid dot notation. In
this case, we use hexlify and unhexlify:

from binascii import hexlify, unhexlify

def otpSuperMsg(msgl, msg2) :
hexl = hexlify(msgl)
hex2 = hexlify(msg2)
cipherl = int (hex1l, 16)
cipher2 = int (hex2, 16)
msg = cipherl * cipher2
return msg

def otpEnc(msg, key):

A

superKey = int (msg, 16) key

return superKey

def otpDec (msg, key):
xorMsgKey = msg " key
back2hex = format (xorMsgKey, 'x')
evenpad = ('0' * (len(back2hex) % 2)) + back2hex
plaintext = unhexlify (evenpad)
return plaintext

realMessage = b"attackthematmidnight!"
decoyMessage= b"retreatanddonotattack"
msg = otpSuperMsg (realMessage, decoyMessage)

58 Chapter 2 = Cryptographic Protocols and Perfect Secrecy

realMsg = hexlify(realMessage)
decoyMsg = hexlify(decoyMessage)
realKey = int(realMsg, 16) * msg

decoyKey = int (decoyMsg, 16) * msg
print ("The secret message is: ", msg)
print ("The real key is: ", realKey)
print ("The decoy key is: ", decoyKey)
print ()

choose either the decoy key or the real key
key = realKey
plain otpDec (msg, key)

print (plain)
(

print ()

key = decoyKey

plain = otpDec (msg, key)
print ()

print (plain)

The output using the keys should resemble the following:

The secret message is: 27865585609579580086126129250694423149352332105546
The real key is: 167190391575317824697301565359800501773353221186411
The decoy key is: 142430497120678699528160795125823853486446056338465

attackthematmidnight!

retreatanddonotattack

Once you use the same key more than once, you open the key to vulnerabil-
ities as now the same key will convert more than one ciphertext to plaintext.
Since there is most likely only one key that will decrypt two different messages,
the key would be compromised. Using the real key in the preceding example
again would tip the advisories of your encryption methods.

One-Way Hashes

You were briefly introduced to hashes in the previous chapter. As a reminder,
a hash function is an algorithm that changes the input or changes the data of an
arbitrary or random length into a fixed-sized output.

In our previous example, you saw passwords that were hashed using the
SHA-512 algorithm. Storing passwords as hashes provides a level of security
in the event that the password storage database is compromised. Hashes can
be used as a more advanced version of checksums. When we move a file from
one drive to another, we have a checksum on frames called a Frame Check

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

59

Sequence (FCS). It is important to note that not all hash algorithms are suitable
for cryptography; those that are, are referred to as cryptographic hash functions.

Cryptographic One-Way Hashes

For a one-way hash to be used in cryptographic systems, the algorithm must
provide preimage resistance, secondary resistance, and collision resistance:

m Preimage resistance means that an attempt to find the original message that
produces a hash is computationally unrealistic or for a given & in the
output space of the hash function, it is hard to find any message x with
H(x) = h.

m Secondary resistance means that an attempt to find a second message that
produces the same hash is computationally unrealistic or for a given mes-
sage x2#x1 with H(x1)=H(x2).

m Collision resistance means that finding any two messages that will produce
the same hash is computationally unrealistic for the message pair or s
x1=x2 with H(x1)=H(x2).

In examining the rules, while the secondary resistance and collision resistance
may appear very similar, they are slightly different. From a (second) preimage
attack we also get a collision attack. The other direction doesn’t work as easily,
though some collision attacks on broken hash functions seem to be extensible
to be almost as useful as second preimage attacks (i.e., we find collisions where
most parts of the message can be arbitrarily fixed by the attacker).

The strength of the hash function does not equal the hash length. The strength
of the hash is about half the length of the hash due to the probability produced
by the birthday attack. The birthday attack exploits the mathematics behind the
birthday problem in probability theory. Consider the scenario in which a teacher
with a class of 30 students (n = 30) asks for everybody’s birthday to determine
whether any two students have the same birthday. The birthday attack treats
our birthdays as uniformly distributed values out of 365 days. The general intu-
ition is that it takes YN samples from a space of size N to have 50% chance of
collision. Imagine selecting some value (k) at random from N. Then out of the
k values you picked there are k(k — 1)/2 pairs. For any given pair there is a 1/N
chance of collision. This gives k(k — 1)/2N chance of collision. Therefore, k ~\N
will lead to around 50% chance of collision.

The birthday attack relies on any match coming from within a set and not a
specific match to a specific value. That intuition should guide us as we approach
Message Authentication Codes (MACs). This birthday attack gives us a generic
approach for finding two messages that hash to the same value in far less time
than brute force. The size that matters is the output size of the hash function, too.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

Message Authentication Codes

Hash-based Message Authentication Code (HMAC) is a key-based message
digest algorithm that can be used for verifying the integrity of the message, to
verify the authenticity of the sender of the message, or both. HMAC has been
widely adopted for use in various systems and domains, such as server-to-
server communications, Web Service APIs, etc. A well-known use of HMAC
is in Amazon’s AWS API calls where the signature is generated using HMAC.

HMAC can use a variety of hashing algorithms, like MD5, SHA1, SHA256,
etc. The HMAC function is not process intensive, so it has been widely accepted,
and it is easy to implement in mobile and embedded devices while maintaining
decent security. The following code example shows how to generate an HMAC-
MDS5 digest with Python:

import hmac
from hashlib import md5

key = b'DECLARATION'

h = hmac.new(key,b'',md5)

add content

h.update ('We hold these truths to be self-evident, that all men are

created equal')

print the HMAC digest
print (h.hexdigest())

Perfect Forward Secrecy

In our exploration of cryptography, perfect forward secrecy (PES), also known
as forward secrecy (FS), is a set of key agreement protocols that gives the par-
ticipants in the message exchange assurances that their session keys will not be
compromised even if the private key of the server is compromised. PFS protects
past cryptographic sessions against future compromises of passwords or secret
keys. The compromise of a single session key will not affect any data other than
that exchanged in the particular session by generating a unique session key for
each individual session; PFS further protects data on the transport layer of a
network that uses common SSL/TLS protocols such as OpenSSL. In the past,
OpenSSL was affected by the Heartbleed exploit. If PFS is used, encrypted
communications and sessions recorded that may have become compromised
cannot be used to decrypt future communications.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

61

A public-key system has the property of PFS if it generates one random secrecy
key per session to complete a key agreement, without using a deterministic
algorithm. In essence, this guarantees that the compromise of one session cannot
compromise others in the future. To examine an example, let us assume that
Alice and Bob each generate a pair of long-term asymmetric private and public
keys; they then verify the public-key fingerprints in person or out of band
using an authenticated channel. The only thing the keys will be used for is
authentication; these keys will not be used for encryption. Alice and Bob use
the Diffie-Hellman key exchange algorithm to securely agree on an ephemeral
session key. Alice sends Bob a message, encrypting it with a symmetric cipher.
Bob decrypts Alice’s message using the key negotiated previously. The process
repeats for each message sent between the two parties.

PFS is designed to prevent the compromise of a long-term secret key from
affecting the confidentiality of past conversations. PFS cannot defend against
a successful cryptanalysis of the underlying ciphers being used, since a crypt-
analysis consists of finding a way to decrypt an encrypted message without
the key, and PFS only protects keys, not the ciphers themselves. If an attacker
can capture a conversation whose confidentiality is protected through the use
of public-key cryptography and wait until the underlying cipher is broken, this
would allow the recovery of old plaintexts even if a system is employing PFS.

PFS is present in a number of protocol implementations such as IPSec
(optional), SSH, STARTTLS, ATS, and Off-the-Record Messaging. Off-the-Record
Messaging is a cryptographic protocol that is used for instant-messaging clients.
PFES is a significant security used by several large internet information providers
such as Google. Since late 2011, Google provided forward secrecy with TLS by
default to users of its Gmail service, Google Docs service, and encrypted search
services. Facebook, as of May 2014, supports STARTTLS. TLS 2.4 (released in
August 2018) dropped support for ciphers that did not support PFS. ATS, which
stands for App Transport Security, is a security that is used by Apple on iOS
apps; it became mandatory on all its iOS devices after January 1, 2017.

We will explore PFS in more detail as we dig into the Diffie-Hellman key
exchange and elliptic curve Diffie-Hellman in Chapter 8.

Published and Proprietary Encryption Algorithms

In the late 19th century, Auguste Kerckhoffs stated:

The cipher method must not be required to be secret, and it must be able
to fall into the hands of the enemy without inconvenience.

Security must rely solely on secrecy of the key.

62

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

In today’s age, keeping one’s proprietary algorithm secret would be almost
impossible. Information about the algorithm could be leaked by a disgruntled
employee or obtained by an attacker and then reverse-engineered. In general,
it is much easier for two parties to change their shared secret as opposed to
having to re-create new cryptographic algorithms. For enterprise deployments,
it would be much easier for all systems to use a standardized, well-proven
cryptographic scheme.

Kerckhoffs” principle is accepted industry wide by making cryptographic
schemes completely public as opposed to hoping systems stay secure by keep-
ing the algorithms secret or “security by obscurity.” It can be quite costly to an
organization to create its own algorithms that may be broken without the orga-
nization ever finding out about it. The encryption schemes used publicly have
all been publicly scrutinized, and studied, and have no known weaknesses.

Summary

Cryptology is broken down into the two fields of cryptography and crypt-
analysis. Cryptography is the science of secret writing with the goal of hiding
the meaning of the message. Cryptography is further broken down into cryp-
tographic protocols, symmetric algorithms, and asymmetric (or public-key)
algorithms. You were introduced to cryptographic protocols that include the
works of Needham-Schroeder and Otway-Rees. You saw examples of how
the key lengths are important to how long a cryptographic solution may be
viable. You were introduced to the common attack models. These included the
Ciphertext only (COA), Known-Plaintext (KPA), Chosen-Plaintext (CPA), and
Chosen-Ciphertext (CCA).

Perfect secrecy is the concept that states that nothing from the ciphertext
reveals anything useful about the plaintext. In this chapter, you were able to
explore the Python syntax that allows you to convert a message to hexadecimal
and binary. You found that the use of XOR is critical to cryptography. The power
of XOR is that it is self-decrypting. If you encrypt a value using XOR, you can
easily reverse it with the same operation. You were also introduced to crypto-
graphic hashing using Python.

References

B. Bryant. Designing an Authentication System: A Dialogue in Four Scenes.
Project Athena, Massachusetts Institute of Technology, Cambridge,
MA, 1988.

L.Gong, R.Needham, R. Yahalom. “Reasoning about Belief in Cryptographic
Protocols.” Proceedings of the IEEE Symposium on Security and Privacy,
pp- 234-248, Oakland, CA, 1990.

Chapter 2 = Cryptographic Protocols and Perfect Secrecy

63

J. Kohl, C. Neuman, T. T’so. “The Evolution of the Kerberos Authentication
System.” In Distributed Open Systems, pp. 78-94. IEEE Computer Society
Press, 1994.

R. Needham, M. Schroeder. “Using Encryption for Authentication in Large
Networks of Computers.” Communications of the ACM, Vol. 21, No. 12,
1978.

R. Needham, M. Schroeder. “Authentication Revisited.” Operating Systems
Review, Vol. 21, No. 1, 1987.

D. Otway, R. Rees. “Efficient and Timely Mutual Authentication.” ACM
SIGOPS Operating Systems Review, Vol. 21, No. 1, 1987.

Classical Cryptography

Authentication protocols need to employ encryption to protect the session from
exposure to intruders; over the past few years, we have heard time and time
again of data breaches that have left user data vulnerable and passwords in the
hands of bad actors. In a secure world, passwords are typically hashed, salted,
and stretched, and electronic communications should be encrypted to ensure
secrecy. Just hashing or encrypting data may not be enough, though. The best
encryption schemes will not protect data from poorly constructed passwords. In
this chapter, you'll be introduced to password practices, get an understanding
of some common historical cryptography schemes, and learn the Python code
that will bring all the topics together. Specifically, you will gain cryptographic
knowledge as you do the following:

m Explore best practices for passwords
m Explore the basics of encryption schemes
m Explore the use of historical ciphers and their cryptanalysis

m Gain an understanding of why it is critical to use well-established
encryption algorithms

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

65

Chapter 3 = Classical Cryptography

Password Best Practices

Throughout this book, your purpose is to gain an understanding of how to use
strong cryptographic schemes and how to identify and attack weak schemes.
If you work as a security professional, you will also need to help people in
your organization protect their data from themselves. You may be required
to define policies, procedures, and controls regarding passwords. Even if our
systems or cell phones are encrypted, once the password is entered, the system
becomes vulnerable. In truth, the password is the only secret to the kingdom,
and depending on the type of user account the person has, the more vulnerable
the data. No system, encrypted or not, is safe with poor password management.
The following are some things to keep in mind regarding passwords:

m Users should sign an agreement with the system or data owners to keep
their passwords confidential and safe. Passwords should not be written
down.

m Temporary passwords should be used only once and immediately changed
once a user logs in.

m Passwords should have length requirements and require the use of special
characters to meet a defined complexity.

m Passwords should never be stored in clear text.
m A password for one system should not be used for another.
m Passwords should be changed regularly.

m Corporate policies must be in place to lock accounts that have excessive
failed password attempts.

m Users should not be able to reuse passwords.

m Passwords should never be shared with support staff.

Most modern-day systems are getting better at forcing users to use stronger
passwords, but for those systems that do not, it is critical that you understand
password hashing, salting, stretching, and storage.

Password Storage

As just stated, as a security-minded professional, whether you are working as
a security architect or a software designer, it is vital that you do not store user
passwords in clear text. Doing so gives anyone who has access to the file, data-
base, or server direct access to the users’ passwords. One way to combat this is
by hashing passwords that need to be stored.

Chapter 3 = Classical Cryptography

67

Hashing Passwords

Python, like many other languages, provides you a way to call hashing functions
that accept a message of any length and return a fixed-length result that is
referred to as a message digest or hash code. Hashing functions use specific hash-
ing algorithms but do not use secret keys. If the exact message is entered into
a hashing function, the same hash code will be produced.

There are several reasons to use hash codes in communications. They can
assist in ensuring the confidentiality and the integrity of the message. You can
use a number of hashing algorithms, including MD5, SHA-3, SHA-512, HAVAL,
and RIPEMD-160, just to name a few. The most important properties of hash
algorithms are that the output is not predictable, different messages do not
produce the same hash code, messages are not reversible, and given the same
value, a hash algorithm should always produce the same result.

The following example shows the SHA-512 hash values for the words password
and Password. Notice that even though only the first letter was capitalized, the
entire message digest is different.

Here is the hash value for password:

b109f3bbbc244eb82441917ed06d618b9008dd09b3befdlb5e07394c706a8bb980b1d778
5e5976ec049b46df5f1326af5a2ea6d103£d07c95385ffab0cacbc86

Here is the hash value for Password:

e6c83b282aeb2e022844595721cc00bbdad7¢cb24537¢1779f9bb84£f04039e1676e6bag857
3e588dal052510e3aala32a9e55879ae22b0c2d62136fc0a3e85£8bb

To examine the hashed password using SHA-512, type the following into
Python:

import hashlib

plaintext password = b'Password'

hashed sha512 = hashlib.sha512 (plaintext password) .hexdigest ()
print (hashed sha512)

There are two primary ways to attack hash functions: through cryptanalysis
and through brute force. Storing passwords in the database in their hash code
form still offers malicious users a way to figure out passwords. A rainbow table,
which is a precomputed table for reversing cryptographic hash functions, can
be used to crack password hashes. Rainbow tables are used in recovering a
plaintext password up to a certain length consisting of a limited set of charac-
ters. This is where salting and stretching come in.

Salting Passwords

You have learned that you need to use cryptographic hashing to minimize
readability when storing passwords, but just hashing alone isn't enough. Salting
is the process of adding or concatenating a random chunk of bits to the end of

Chapter 3 = Classical Cryptography

the password before it goes through the hashing process. You would then save
that random chunk of bits along with the hashed password. The reason salting
is effective is that if bad actors attack your hashing scheme, they are unable to
scale their attack to a large number of users or launch brute-force attacks across
the enterprise.

Salting means that a rainbow attack must be recomputed for each individual
user. That makes an attacker spend a lot more money per user, which is the
way I tend to analyze security. As a fun exercise, you can type hashed values
straight into the Google search engine. Try to get the plaintext for 161ebd7d-
45089b3446ee4e0d86dbcfI2.

To examine salting in Python, type the following;:

import hashlib

def saltPassword_ sha512 (password) :
salt = b'cHp3'
hashed = hashlib.sha512(salt + password) .hexdigest ()
print ("%s:%s" % (salt, hashed)) # Store these
return hashed

plaintext password = b'Password'
hashed sha512 = saltPassword sha512 (plaintext password)

Stretching Passwords

Our next defense is the concept of key or password stretching. Stretching is a
technique used to make a weak key, passphrase, or password more secure against
brute-force attacks by increasing the time it takes to test each possible iteration.
Key stretching works by accepting input that is fed into an algorithm, and the
return result is an enhanced key. The enhanced key should be of a sufficient size
to make it impractical to break using brute-force techniques. The key-stretching
process may be repeated several times to consume a longer amount of processing
time. The idea is that if the user knows the correct key, the additional second or
two it takes to verify it doesn’t impact the user; however, if the system is under
attack, it should slow down the attacker significantly.

Password Tools

A number of Python libraries offer you ways to perform password functions
without having to develop your own; you will probably be better served by
using a library instead of rolling your own as it will keep your code simpler.
One of the most popular libraries is berypt. You can install berypt by using the
following statement:

pip3 install bcrypt

Chapter 3 = Classical Cryptography

69

The berypt library may have dependencies on pycparser and cffi. A few alterna-
tives are worth mentioning, but berypt is one of the more popular choices. Some
alternatives include scrypt either using the hashlib or cryptography libraries.
Simplecrypt also provides libraries for encryption, decryption, and salting.

To add a salt to your hashed password, examine the following Python code:

>>> import bcrypt

>>> passwd = b'sScretl2!'

>>> salt = bcrypt.gensalt ()

>>> hashed = bcrypt.hashpw(passwd, salt)
>>>

>>> print (salt)

>>> print (hashed)

b'$2b3$123gfG2n514PG51LD5X0d/a8u’
b'$2b312$qfG2n514PG51LD5X0d/a8unGLIxQJI8KbVppzf0yGbtk7aE6x]jgqPHO'

The generated output should look similar to what is shown here, but will not
match completely because the salt is generated each time the code is executed.
Even though the hashed password will be identical each time, the added salt
ensures that the hashed password remains secure.

Obfuscating Data

Before jumping into cryptographic schemes to encrypt and decrypt data, we
will examine various ways to obfuscate data. Data obfuscation (DO) is a tech-
nique used to mask data; it scrambles data to prevent unauthorized access to
sensitive information.

There are two types of DO encryption: network security DO and cryptographic
DO. Network security DO deals with payload attacks that are purposely used to
avoid detection by network protection systems. Cryptographic DO is the input
of data encoding prior to being transferred to another encryption scheme. Here,
we will look at the latter. Using any of the schemes mentioned will remove the
ability to use frequency analysis; we will explore frequency analysis in great
depth in the next chapter.

You were first introduced to DO in the previous chapter when you learned
about the XOR function. Here, we will continue examining techniques to mask
data using ASCII encoding, Base64 encoding, binary data, and decoding. ASCII,
abbreviated from American Standard Code for Information Interchange, is a
character-encoding standard for electronic communication. ASCII codes rep-
resent text in computers, telecommunications equipment, and other devices.
Most modern character-encoding schemes are based on ASCII, although they
support many additional characters.

70

Chapter 3 = Classical Cryptography

ASCll Encoding

In ASCII encoding, each letter is converted to one byte. Look at the following
examples:

A =65 or 0b01000001
B = 66 or 0b01000010
C =67 or 0b01000011
ABC = 0b01000001 0b01000010 0b01000011

Base64 Encoding Text

Base64, also known as privacy enhanced electronic mail (PEM), is the encoding
that converts binary data into a textual format; it can be passed through com-
munication channels where text can be handled in a safe environment. PEM is
primarily used in the email encryption process. To use the functions included
in the Base64 module, you will need to import the library in your code. Base64
offers a decode and encode module that both accepts input and provides output.

To break ASCII encoding into Base64-encoded text, each sequence of six bits
encodes to a single character. The characters used can be seen in the following
examples:

A-Z: 0-25
a-z: 26-51
o, 1, 2, ..., 9: 52-61

+, /: 62 and 63

Examine the 24 bits from the previous section:
0001000001 0b01000010 0b01000011

Break the line into 6-bit groups:

0b010000 010100 001001 000011

When you convert the four groups to decimal, you will see that they are
equal to the following;:

16 20 9 3
You now convert the numbers to Base64:

QU JdD

Chapter 3 = Classical Cryptography

Therefore, when you encode “ABC” to Base64, you should end up with QUJD,
as shown here:

>>> import baseé64

>>> value = 'ABC'.encode ()
>>> print (base64 .b64encode (value))
b'QUJID!'

In the previous example, we used Python to encode three bytes at a time.
When performing Base64 encoding, the text is broken down into groups of
three. In the event that the text cannot be broken down into groups of three,
you will see the padding character, which is shown using the equal sign (=).
If the example had four bytes, then the output would look like the following;:

>>> value = 'ABCD'.encode ()

>>> print (base64.b64encode (value))
b 'QUJIDRA=="

>>> value = 'ABCDE'.encode ()

>>> print (base64 .b64encode (value))
b 'QUJIDREU="

>>> value = 'ABCDEF'.encode ()

>>> print (base64 .b64encode (value))
b 'QUJIDREVG'

The preceding padding uses null bytes, which equals A. The capital A is the
first character you have in Base64; it stands for six bits of zero (000000). You can
prove that with the following;:

>>> valuel = 'ABCD'.encode ()

>>> value2 = 'ABCD\x00”.encode ()

>>> value3 = 'ABCD\x00\x00” .encode ()
>>> print (base64 .b64encode (valuel))
b 'QUJIDRA=="

>>> print (base64 .b64encode (value2))
b'QUIDRAA="

>>> print (base64.b64encode (value3l))
b 'QUJIDRAAA'

Once you start evaluating Base64, it may become confusing to tell Base64 and
ASCII apart. One of the major differences between the two is the encoding pro-
cess. When you encode text in ASCII, you first start with a text string, and it is
converted into a sequence of bytes. When you encode Base64, you are starting
with a sequence of bytes and converting the bytes to text.

72

Chapter 3 = Classical Cryptography

Binary Data

We will now examine binary data. The file types on your computer are com-
posed of binary data. ASCII data always begins with a first bit of zero. When
you open a file using Python, you can convert binary data to Base64:

With open('file.exe','rb') as f:
data = f.read()
data.encode ()

Decoding

In this section, we will take what you have learned using the encode () methods
and get the inverse using the decode () method. Examine the following syntax:

>>> # encode ABCD

>>> valuel = 'ABCD'.encode ()
>>> valuel

B'ABCD'

>>> f#tdecode ABCD
>>> valuel.decode ()
'ABCD'

Once you have the binary values, you can use the base64 library to encode
the values using bé4encode. The inverse is the b64decode:

>>> myb64 = baseé64.bé64encode (valuel)
>>> mybé64
B'QUJDRA=="

>>> my = base64.b64decode (myb64)
>> my
B'ABCD'

>>> print (my.decode())

ABCD

>>>

Historical Ciphers

Since the invention of writing, there has been the need for message secrecy:.
While most of the historical ciphers you will learn about in this chapter have
been broken, it is important to understand their encryption scheme so that you
have a better understanding of how to break them.

Chapter 3 = Classical Cryptography

73

In fact, all historical codes used prior to 1980 have been broken except for
the one the Native American code talkers used in World Wars I and II. During
World War I, the Choctaw Indian language was used, and during World War
II, the Navajo language was used. The US Marine Corps recruited Navajo men
to serve as Marine Corps radio operators. Both languages served perfectly as
they were unwritten and undecipherable due to their complexities.

Scytale of Sparta

One of the oldest cryptographic tools was the Spartan scytale, which was used
to perform a transposition cipher. We will examine transposition ciphers in
greater detail both later in this chapter and throughout the book. The scytale
consisted of a cylinder with a strip of parchment; the parchment would wrap
around the cylinder and then the message would be written lengthwise on the
parchment. The key in this case would be the radius of the cylinder itself. If the
parchment were wrapped around a cylinder of a different radius, the letters
would not align in the same way, making the message unreadable.

Substitution Ciphers

The substitution cipher simply substitutes one letter in the alphabet for another
based upon a cryptovariable. The substitution involves shifting positions in the
alphabet. This includes the Caesar cipher and ROT-13, which will be covered
shortly. Examine the following example:

Plaintext: WE HOLD THESE TRUTHS TO BE SELF-EVIDENT, THAT ALL
MEN ARE CREATED EQUAL.

Ciphertext: ZH KROG WKHVH WUXWKYV WR EH VHOI-HYLGHQW, WKDW
DOO PHQ DUH FUHDWHG HTXDO.

The Python syntax to both encrypt and decrypt a substitution cipher is pre-
sented next. This example shows the use of ROT-13:

key = 'abcdefghijklmnopgrstuvwxyz'

def enc_substitution(n, plaintext):
result = '!'
for 1 in plaintext.lower () :
try:
i = (key.index(l) + n) % 26
result += key[i]
except ValueError:
result += 1
return result.lower ()

74 Chapter 3 = Classical Cryptography

def dec_substitution(n, ciphertext):
result = '!'
for 1 in ciphertext:
try:
i = (key.index(l) - n) % 26
result += key[i]
except ValueError:
result += 1

return result

origtext = 'We hold these truths to be self-evident, that all men are
created equal.'

ciphertext = enc_substitution (13, origtext)

plaintext = dec_substitution (13, ciphertext)

print (origtext)
print (ciphertext)
print (plaintext)

Caesar Cipher

The Caesar cipher is one of the oldest recorded ciphers. De Vita Caesarum, Divus
Iulis (“The Lives of the Caesars, the Deified Julius), commonly known as The
Twelve Caesars, was written in approximately 121 CE. In The Twelve Caesars,
it states that if someone has a message that they want to keep private, they can
do so by changing the order of the letters so that the original word cannot be
determined. When the recipient of the message receives it, the reader must sub-
stitute the letters so that they shift by four positions.

Simply put, the cipher shifted letters of the alphabet three places forward so
that the letter A was replaced with the letter D, the letter B was replaced with E,
and so on. Once the end of the alphabet was reached, the letters would start over:

B|C|DIE|F|G|H|[I|J |K|L|M|N|O|P|QIR|[S|T|U|V|WX|Y|Z
E{F|G|H|I|J|K|LIM|[N|OIP|QIR|S|T|U|V|IWX|Y|Z|A|B|C

The Caesar cipher is an example of a mono-alphabet substitution. This type
of substitution substitutes one character of the ciphertext from a character in
plaintext. Other examples that include this type of substitution are Atbash,
Affine, and the ROT-13 cipher. There are many flaws with this type of cipher,
the most obvious of which is that the encryption and decryption methods are
fixed and require no shared key. This would allow anyone who knew this
method to read Caesar’s encrypted messages with ease. Over the years, there
have been several variations that include ROT-13, which shifts the letters 13

Chapter 3 = Classical Cryptography

75

places instead of 3. We will explore how to encrypt and decrypt Caesar cipher
and ROT-13 codes using Python.

For example, given that x is the current letter of the alphabet, the Caesar
cipher function adds three for encryption and subtracts three for decryption.
While this could be a variable shift, let’s start with the original shift of 3:

Enc(x) = (x + 3) % 26
Dec(x) = (x - 3) % 26

These functions are the first use of modular arithmetic; there are other ways
to get the same result, but this is the cleanest and fastest method. The encryp-
tion formula adds 3 to the numeric value of the number. If the value exceeds 26,
which is the final position of Z, then the modular arithmetic wraps the value
back to the beginning of the alphabet. While it is possible to get the ordinal
(ord) of a number and convert it back to ASCII, the use of the key simplifies
the alphabet indexing. You will learn how to use the ord() function when we
explore the Vigenere cipher in the next section. In the following Python recipe,
the enc_caesar function will access a variable index to encrypt the plaintext
that is passed in.

key = 'abcdefghijklmnopgrstuvwxyz'
def enc_caesar(n, plaintext):
result = '!'
for 1 in plaintext.lower () :
try:
i = (key.index(l) + n) % 26
result += key[i]
except ValueError:
result += 1
return result.lower ()

plaintext = 'We hold these truths to be self-evident, that all men are
created equal.'

ciphertext = enc_caesar (3, plaintext)

print (ciphertext)

The output of this should result in the following:

zh krog wkhvh wuxwkv wr eh vhoi-hylghgw, wkdw doo phg duh fuhdwhg htxdo.

The reverse in this case is straightforward. Instead of adding, we subtract.
The decryption would look like the following;:

key = 'abcdefghijklmnopgrstuvwxyz'
def dec caesar(n, ciphertext):
result = '!'
for 1 in ciphertext:
try:

76 Chapter 3 = Classical Cryptography

i = (key.index(l) - n) % 26
result += key[i]
except ValueError:
result += 1
return result
ciphertext = 'zh krog wkhvh wuxwkv wr eh vhoi-hylghgw, wkdw doo phg duh

fuhdwhg htxdo.'
plaintext = dec_caesar (3, ciphertext)
print (plaintext)

ROT-13

Now that you understand the Caesar cipher, take a look at the ROT-13 cipher.
The unique construction of the ROT-13 cipher allows you to encrypt and decrypt
using the same method. The reason for this is that since ROT-13 moves the letter
of the alphabet exactly halfway, when you run the process again, the letter goes
back to its original value.

To see the code behind the cipher, take a look at the following;:

key = 'abcdefghijklmnopgrstuvwxyz'
def enc_dec_ROT13(n, plaintext):
result = "'
for 1 in plaintext.lower():
try:
i = (key.index(l) + n) % 26
result += key[i]
except ValueError:
result += 1
return result.lower ()

plaintext = 'We hold these truths to be self-evident, that all men are
created equal.'

ciphertext = enc_dec_ROT13(13, plaintext)

print (ciphertext)

plaintext = enc_dec_ROT13 (13, ciphertext)
print (plaintext)

jr ubyg gurfr gehguf gb or frys-rivgrag, gung nyy zra ner perngrqg rdhny.
we hold these truths to be self-evident, that all men are created equal.

Whether we use a Caesar cipher or the ROT-13 variation, brute-forcing an
attack would take at most 25 tries, and we could easily decipher the plaintext
results when we see a language we understand. This will get more complex as
we explore the other historical ciphers; the cryptanalysis requires frequency
analysis and language detectors. We will focus on these concepts in upcoming
chapters.

Chapter 3 = Classical Cryptography

77

Atbash Cipher

The Atbash cipher is one of many substitution ciphers you will explore. Similar
to ROT-13, the Atbash cipher is also its own inverse, which means you can
encode and decode using the same key; this also means we need to have only
one function to perform both the encryption and decryption processes. The
original cipher was used to encode the Hebrew alphabets but, in reality, it can be
modified to encode or decode any alphabet. The Atbash cipher is often thought
to be a special case of the Alphine cipher that we will be exploring next.
The following is the Atbash key as it maps to the English alphabet:

A(B|C|D|E|F|G|H|I |J|K|L|M|N|J|O|IP|[Q|R|S|T|U|V[W[X]|Y

Z|Y|X|W[V|IUIT|S|R|Q|P|OIN|M|L|K]|J]|I |H|G|F|E|D|C|BJ|A

The Python code that implements the Atbash cipher is as follows:

def toAtBash(text):
characters = list (text.upper())
result = ""
for character in characters:
if character in code_dictionary:
result += code dictionary.get (character)
else:
result += character # preserve non-alpha chars found
return result

alphabet = list ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

reverse alphabet = list (reversed(alphabet))

code dictionary = dict(zip(alphabet, reverse_ alphabet))
plainText= "we hold these truths to be self-evident"
print (plainText)

cipherText = toAtBash(plainText)

print (cipherText)

cipherText = toAtBash(cipherText)

print (cipherText)

we hold these truths to be self-evident
DV SLOW GSVHV GIFGSH GL YV HVOU-VERWVMG
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT

Vigeneére Cipher

The Vigenere cipher consists of using several Caesar ciphers in sequence with
different shift values. To encipher, a table of alphabets can be used, termed a
tabula recta, Vigenere square, or Vigenere table. It consists of the alphabet writ-
ten out 26 times in different rows, each alphabet shifted cyclically to the left

78

Chapter 3 = Classical Cryptography

compared to the previous alphabet, corresponding to the 26 possible Caesar
ciphers. At different points in the encryption process, the cipher uses a differ-
ent alphabet from one of the rows. The alphabet used at each point depends on
a repeating keyword.

Here’s an example:

Keyword: DECLARATION

D E C L A R A T | (0] N

3 4 2 1 0 17 0 19 8 14 13

Plaintext: We hold these truths to be self-evident, that all men are created equal.

Ciphertext: zi jzlu tamgr wvwehj th js fhph-pvzdxvh, gkev llc mxv oeh gtpakew
mehdp.

To create a numeric key such as the one shown, use the following syntax. You
should see the output [3, 4, 2, 11,0, 17,0, 19, 8, 14, 13]:

def key vigenere (key) :
keyArray = []
for i in range(0,len(key)) :
keyElement = ord(key[i]) - 65
keyArray.append (keyElement)
return keyArray

secretKey = 'DECLARATION'
key = key vigenere (secretKey)
print (key)

Once you have created the key, you can use it to create ciphertext. You should
see the output dpnemvnmifrwgtpakewbsdxen:

def shiftEnc(c, n):
return chr(((ord(c) - ord('A') + n) % 26) + ord('a'))

def enc_vigenere(plainttext, key):
secret = "".join([shiftEnc(plainttext[i], key[i % len(key)]) for i
in range(len(plainttext))])

return secret

secretKey = 'DECLARATION'

key = key_ vigenere (secretKey)

plaintext = 'ALL MEN ARE CREATED EQUAL'
ciphertext = enc vigenere (plaintext, key)

print (ciphertext)

Chapter 3 = Classical Cryptography

79

When you know the key, such as in this case, you can decrypt the Vigeneére
cipher with the following:

def shiftDec(c, n):
c = c.upper()
return chr(((ord(c) - ord('A') - n) % 26) + ord('a'))

def dec_vigenere (ciphertext, key):

plain = "".join([shiftDec (ciphertext[i], key[i % len(key)]) for i in
range (len (ciphertext))])

return plain

secretKey = 'DECLARATION'
key = key vigenere (secretKey)
decoded = dec vigenere (ciphertext, key)

We will examine how to brute-force the Vigenere cipher in a later chapter.
We will do this by creating a random key that will use the same encryption
function, and then we will use frequency analysis to help find the appropriate
key. For now, it is more important to understand how the Python code works
with this cryptography scheme.

Playfair

The Playfair cipher was used by the Allied forces in World War II; it is the most
common digraphic system, and was named after Lord Playfair of England. With
this scheme, the sender and the receiver use a shared keyword. The keyword
is then used to construct a table that consists of five rows and five columns; the
shared word is then populated into the table followed by the rest of the alphabet.
As the table is being built out, letters that already appear in the key are skipped.
In addition, the letters I and J use the same letter. For this example, we will use
the word DECLARATION, as shown here:

D E C L A
R T | 0] N
B F G H K
M P Q S V)
\Y W X Y z

The Playfair table is read by looking at where the two letters of the blocks
intersect. For example, if the first block, TH, were made into a rectangle, the
letters at the other two corners of the rectangle would be OF. To see a graphical
interpretation of this, examine the next table:

80

Chapter 3 = Classical Cryptography

D E C L A
R T I 0] N
B F G H K
M P Q S U
Vv W X Y z

When you have two letters that fall in the same column such as WE, you will
need to incorporate the next lower letter, and wrap to the top of the column if
necessary. This would form a block around the letters ET. The block WE would
be encrypted as ET. The same rule applies if letters fall in the same row.

D E C L A
R T I (0] N
B F G H K
M P Q S U
\" w X Y z

Using the preceding table, examine the following plaintext and ciphertext:

Plaintext: He has obstructed the Administration of Justice by refusing his

Assent to Laws for establishing Judiciary Powers

Ciphertext: flklyhhmitqafterfldeqrropondionrthazpogiawhvvntpmuorkxgouylu-

plriwnnyadypwkntwapodkcoysorkxazcrigdnzystetom

To create a function in Python that encrypts plaintext using Playfair, type
the following;:

def Playfair box shift (il,

rl = 11/5
r2 = i2/5
cl = i1 5
c2 = 12 % 5
out_rl = rl
out cl = c2

out_r2 = r2
out_c2 = cl
if rl == r2:
out_cl
out_c2
elif cl ==
out_rl
out_r2

return out_rl*5 + out_

(cl + 1)
(c2 + 1)

(r1 + 1)
(r2 + 1)

i2) :

o° oe
[0

o°

5
5
cl, out_r2*5 + out_c2

o°

Chapter 3 = Classical Cryptography

81

def Playfair enc(plain):
random. shuffle (words)

seed = "".join(words[:10]) .replace('j','i")

alpha = 'abcdefghiklmnopgrstuvwxyz'

suffix = "".join(sorted(list(set(alpha) - set(seed))))
seed_set = set()

prefix = ""

for letter in seed:
if not letter in seed_set:
seed_set.add(letter)
prefix += letter
key = prefix + suffix
secret = ""
for i in range(0,len(plain),2):
chrl = plain[il]
chr2 = plain[i+1]

if chrl == chr2:

chr2 = 'X!
il = key.find(chrl.lower())
i2 = key.find(chr2.lower())

cil, ci2 = Playfair box shift(il, i2)
secret += keyl[cil] + keyl[ci2]
return secret, key

As with the other historical ciphers presented in this chapter, the Playfair
cipher can be cracked given enough text. Playfair has a weakness; it will decrypt
to the same letter pattern in the plaintext for digraphs that are reciprocals of each
other. Examine the next table. Notice how the letters DT and ER form a block.
The letters ER (and their reverse RE) form a common digraph in the English
language. Digraphs are often used for phonemes that cannot be represented
using a single character, like the English sh in ship and fish. When using the
English language, there are many words that contain these digraphs, such as
receiver; notice how receiver contains both an RE and the reciprocal ER; these
two letter combinations would encrypt to letter combinations that are easy to
identify such as TD and DT. This weakness gives you additional foresight into
the cryptographic scheme.

D E C L A
R T I 0] N
B F G H K
M P Q S u
Vv W X Y z

Other digraphs in the English language include sc, ng, ch, ck, gh, py, rh, sh, ti,
th, wh, zh, ci, wr, qu. Identifying nearby reversed digraphs in the ciphertext and
matching the pattern to a list of known plaintext words containing the pattern

82

Chapter 3 = Classical Cryptography

is an easy way to generate possible plaintext strings with which to begin con-

structing the key.

Another way to break the Playfair cipher is with a method called shotgun
hill climbing. This starts with a random square of letters. Then minor changes
are introduced (i.e.,, switching letters, or rows, or reflecting the entire square)
to see if the candidate plaintext is more like standard plaintext than before the
change. The minor changes are examined through frequency analysis and lan-
guage detectors. For now, here is the Python that decrypts the ciphertext using

Playfair with a known shared key:

def Playfair box_ shift dec(il, 1i2):

def

rl
r2
cl
c2

i1/5
i2/5
il
i2

o°
(S0]

o

out_rl = rl

out cl = c2

out_r2 = r2
out_c2 = cl
if rl == r2:
out_cl = (cl - 1) % 5
out_c2 = (c2 - 1) % 5
elif cl == c2:
out_rl = (rl - 1) % 5
out_r2 = (r2 - 1) % 5

return out_rl*5 + out_cl, out_r2*5 + out_c2

Playfair dec(ciphertext, sharedkey) :

seed = "".join(sharedkey) .replace('j"',
alpha = 'abcdefghiklmnopgrstuvwxyz'

suffix = "".join(sorted(list(set (alpha)
seed_set = set()

prefix = ""

for letter in seed:

key

if not letter in seed set:
seed_set.add(letter)
prefix += letter

= prefix + suffix

plaintext = ""

for

i in range (0,len(ciphertext),2):
chrl = ciphertext[i]
chr2 = ciphertext [i+1]
print chrl, chr2
if chrl == chr2:
chr2 = 'X!
i1 = key.find(chrl.lower())
i2 = key.find(chr2.lower())

cil, ci2 = Playfair box shift dec(il,

plaintext += keyl[cil] + keyl[ci2]

return plaintext

Chapter 3 = Classical Cryptography

Hill 2x2

The Hill 2x2 cipher is a polygraphic substitution cipher based on linear algebra.
The inventor, Lester S. Hill, created the cipher in 1929. The cipher uses matrices
and matrix multiplication to mix the plaintext to produce the ciphertext. To
fully understand the Hill cipher, it helps to be familiar with a branch of math-
ematics known as number theory. The Hill cipher is often covered in depth in
many textbooks on the number theory topic. The key used here is HILL, which
corresponds to the numbers 7, 8, 11, and 11:

Key:7,8,11, 11
Plaintext: SECRETMESSAG
Ciphertext: CTUBYTMUKGWO

To create a Python function that will create the Hill 2x2 encryption, type the
following:

import sys
import numpy as np

def cipher encryption(plain, key):

if message length is an odd number, place a zero at the end.
len chk = 0
if len(plain) % 2 != 0:

plain += "0"

len chk =1

msg to matrices

row = 2

col = int(len(plain)/2)

msg2d = np.zeros((row, col), dtype=int)

itrl = 0
itr2 = 0
for i in range(len(plain)) :
if i%2 ==
msg2d [0] [itrl]= int (ord(plain[i]) - 65)
itrl += 1
else:
msg2d[1] [itr2] = int (ord(plain[i]) - 65)
itr2 += 1

key to 2x2

key2d = np.zeros((2,2), dtype=int)
itr3 = 0

for i in range(2):

84 Chapter 3 = Classical Cryptography

for j in range(2):
key2d[i] [j] = oxd(key[itxr3]) - 65
itr3 += 1

print (key2d)

checking validity of the key

finding determinant

deter = key2d[0] [0] * key2d[1l] [1] - key2d[0] [1] * key2d[1] [0]
deter = deter % 26

finding multiplicative inverse
for i in range(26) :
temp_inv = deter * i
if temp_inv % 26 ==
mul_inv = i
break
else:

continue

if mul_inv == -1:
print ("Invalid key")
sys.exit ()

encryp text = ""
itr count = int(len(plain)/2)
if len_chk ==
for i in range(itr_count) :
templ = msg2d[0] [i] * key2d[0] [0] + msg2d[1] [i] * key2d[0]

[1]

encryp_text += chr((templ % 26) + 65)

temp2 = msg2d[0] [i] * key2d[1] [0] + msg2d[1l] [i] * key2d[1]
[1]

encryp_text += chr((temp2 % 26) + 65)

else:
for i in range(itr_count-1):

templ = msg2d[0] [i] * key2d[0] [0] + msg2d[1] [i] * key2d[0]
[1]

encryp_text += chr((templ % 26) + 65)

temp2 = msg2d[0] [i] * key2d[1] [0] + msg2d[1l] [i] * key2d[1]
[1]

encryp text += chr((temp2 % 26) + 65)

print ("Encrypted text: {}".format (encryp text))
return encryp_text

def cipher decryption(cipher, key):

Chapter 3 = Classical Cryptography 85

if message length is an odd number, place a zero at the end.
len_chk = 0
if len(cipher) % 2 != 0:

cipher += "QO"

len chk =1

msg to matrices

row = 2

col = int (len(cipher)/2)

msg2d = np.zeros((row, col), dtype=int)

itrl = 0
itr2 = 0
for i in range(len(cipher)):
if i%2 == 0:
msg2d [0] [itrl] = int (ord(cipher[i]) - 65)
itrl += 1
else:

msg2d[1] [itr2] = int (ord(cipher[i]) - 65)
itr2 += 1

key to 2x2
key2d = np.zeros((2,2), dtype=int)
itr3 = 0
for i in range(2):
for j in range(2):
key2d[i] [j] = ord(key[itr3]) - 65
itr3 += 1

finding determinant
deter = key2d[0] [0] * key2d[1l][1] - key2d[0] [1] * key2d[1] [0]
deter = deter % 26

finding multiplicative inverse
for i in range(26) :
temp_inv = deter * i
if temp_inv % 26 ==
mul_inv = i
break
else:
continue

adjugate matrix
swapping
key2d[0] [0], key2d[1] [1] = key2d[1] [1], key2d[0] [0]

#changing signs
key2d[0] [1] *= -1
key2d[1] [0] *= -1

86

Chapter 3 = Classical Cryptography

key2d[0] [1]
key2d[1] [0]

= key2d[0] [1
key2d[1] [0

multiplying multiplicative inverse with adjugate matrix

for i in range(2):

for j in range(2):

key2d[i] [§] *= mul_inv

modulo

for i in range(2):

for j in range(2):
key2d[i] [j] = key2d[i] [j] % 26

cipher to
decryp_text
itr count =

plaintext

— nn

int (len(cipher) /2)

if len chk ==
for i in range(itr_count):
templ = msg2d[0] [i] * key2d[0] [0] + msg2d([1] [i] *
[1]
decryp_text += chr((templ % 26) + 65)
temp2 = msg2d[0] [1] * key2d[1] [0] + msg2d([1] [i] *
[1]
decryp_text += chr((temp2 % 26) + 65)
for
else:
for i in range(itr_count-1):
templ = msg2d[0] [1] * key2d[0] [0] + msg2d([1] [i] *
[1]
decryp_text += chr((templ % 26) + 65)
temp2 = msg2d[0] [i] * key2d[1] [0] + msg2d[1] [i] *
[1]
decryp_text += chr((temp2 % 26) + 65)
for
if else
print ("Decrypted text: {}".format (decryp text))
plaintext = "Secret Message"

plaintext = plaintext.upper () .replace(" ","")
key = "hill"

key

= key.upper () .replace(" ", ")
ciphertext = cipher encryption(plaintext, key)

cipher decryption(ciphertext, key)

[l

8]

[11 1111
Encrypted text:
Decrypted text:

CIUBYTMUKGWO
SECRETMESSAG

key2d[0]

key2d[1]

key2d[0]

key2d[1]

Chapter 3 = Classical Cryptography

87

To examine the cryptanalysis of a Hill 2 x 2 cipher, you attack it by measuring
the frequencies of all the digraphs that occur in the ciphertext. In standard
English, the most common digraph is th, followed by he. If you know that the
Hill cipher has been employed and the most common digraph is kx, followed
by vz, you would guess that kx and vz correspond to th and he, respectively.
Once you have a better understanding of frequency analysis, you will revisit
this cipher and break it without a key.

Column Transposition

The column transposition cipher is based on a geometric arrangement. While
relatively insecure as a standalone cipher, columnar transposition can be a pow-
erful enhancement to other systems. A keyword is chosen as a permutation of
N columns. The message is then written in a grid with N columns. Finally, in
the order of the permutation, the columns are taken as the ciphertext. The key-
word in this case is 11 characters long. The columns are read off in the letters’
numerical order. The order is represented by the numbers under the keyword
to give you a visual representation. See Figure 3.1.

P select C:\Program Files (x86)\Microsoft Visual Studic\Shared\Python37_64\python.exe

Plain Text: Attack by sea and land at dawn!
Encrypted Text: TYNDWASDANAKAADTBANACELT!
Decrypted Text: ATTACKBYSEAANDLANDATDAWN!

key to continue . . .

Figure 3.1: Column transposition table

The following code reworks the example to be a shorter (it is really long) and
removes some debug and fairly self-evident comments in the code. Note that
this code works only on Python 3:

def cipher encryption(plain text, key):

keyword num list = keyword num assign (key)
num_of rows = int(len(plain_text) / len(key))

break message into grid for key
arr = [[0] * len(key) for i in range (num of rows)]
z =0

88

Chapter 3 = Classical Cryptography

def

def

def

for 1 in range(num_of_ rows) :
for j in range(len(key)) :
arr[i] [j] = plain_text[z]

Z += 1

num_loc = get number location(key, keyword num list)

cipher text = ""
k=0
for i in range(num_of rows) :
if k == len(key):
break
else:
d = int (num_loc[k])

for j in range(num_of rows) :
cipher text += arr[j] [d]
k +=1
return cipher text

get_number location(key, keyword num list):
num_loc = ""
for i in range(len(key) + 1):
for j in range(len (key)) :
if keyword num list[j] == 1i:
num_loc += str(j)
return num_loc

keyword num assign (key) :

alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
keyword num list = list (range(len(key)))
init = 0

for i in range(len(alpha)) :
for j in range(len(key)) :
if alphali] == key[j]l:
init += 1
keyword num list[j] = init
return keyword num list

print grid(plain text, key):
keyword num list = keyword num assign (key)

for i in range(len(key)):
print (key[i], end = " ", flush=True)

print ()
for i in range(len (key)) :

print (str (keyword num_list[i]), end=" ",

print ()

flush=True)

Chapter 3 = Classical Cryptography

89

def

in case characters don't fit the entire grid perfectly.

o

extra letters = len(plain text) % len(key)
dummy characters = len(key) - extra letters

if extra letters != 0:
for i in range (dummy characters) :
plain_text += "."

num of rows = int(len(plain text) / len(key))

Converting message into a grid
arr = [[0] * len(key) for i in range(num of rows)]
z =0

for i in range (num _of rows) :
for j in range(len (key)) :
arr[i] [J] = plain_text[z]

Z += 1

for i in range (num_of rows) :
for j in range(len (key)) :
print (arr[i] [j], end=" ", flush=True)
print ()

cipher decryption(encrypted, key):

keyword num list = keyword num assign (key)
num_of rows = int(len(encrypted) / len(key))

num_loc = get number_ location(key, keyword num list)

Converting message into a grid
arr = [[0] * len(key) for i in range (num of rows)]

decipher
plain_text = "
k=0

itr = 0

for i in range(len (encrypted)) :

d=0
if k == len(key):
k=0
else:
d: int = int (num_loc[k])

for j in range (num_of_ rows) :
arr[j] [d] = encrypted[itr]

20 Chapter 3 = Classical Cryptography

itr += 1

if itr == len(encrypted) :
break

k +=1

print ()

for 1 in range (num_of_ rows) :
for j in range(len(key)) :
plain_text += str(arr[i] []j])
return plain text

plain_text = "Attack by sea and land at dawn!"
key = "fleet"

msg = plain text.replace(" ","") .upper ()
msgkey = key.upper ()

encrypted = cipher encryption(msg, msgkey)
decrypted = cipher decryption(encrypted, msgkey)

print ("Plain Text: " + plain text)
print ("Encrypted Text: " + encrypted)
print ("Decrypted Text: " + decrypted)
print ()

print_grid(msg, key)

Affine Cipher

Next on our list is the Affine cipher. The Affine cipher is a mono-alphabetic
substitution cipher. The difference with the Affine cipher is that each letter is
mapped to a numeric equivalent, encrypted using a mathematical function,
and then converted back to a letter. While using the mathematical function may
sound difficult, the process is fundamentally a standard substitution cipher with
a set of rules that govern which letters map to other letters. The mathematical
function makes use of the modulo m, where m is the length of the alphabet.
Each letter is mapped to a number as shown in the following grid where A =
0,B=1,...,Y=24,72=25

A|B |C|D|E |F |G |H |l [J |[K|L [M|N|O|P |Q|R |S|T |U |V WX |Y |Z

00{01{02(03|04|05|06|07 [08|09|10|11 |12 (13 (14 |15|16[17 {18 |19|20|21|22|23|24|25

The encryption process of the Affine cipher uses modular arithmetic to trans-
form letters into their corresponding integers and then converts the integer into

Chapter 3 = Classical Cryptography 91

another number, which in turn is converted back into a letter. The encryption
function for a single letter would look like the following:

Encrypt (x) = (@ x + b) mod m

where x is the integer represented by the letter and m is the number of letters
in the alphabet.

To decrypt the Affine cipher, you must find the inverse function. The first step
is to convert the encrypted letter into an integer, use a mathematical function
to convert the number to another number, and then convert the number back
into a letter. The decryption process would look like the following:

Decrypt (x) = a*1 (x - b) mod m

where x is the integer represented by the letter, 1 is the number of letters in the
alphabet, and a"-1 is the modular multiplicative inverse of a modulo m . We
will explore the multiplicative inverse of a modulo in more detail in the next
chapter. If you find yourself having a hard time understanding the code, feel
free to review the next chapter and come back to this cipher.

For now, you will see a working example of the Affine cipher in practice.
Let’s re-examine the formula for the encryption process: E(x) = (a x + b). You can
use the previous table to find the letter in the top row and the corresponding
integer in the second row. You are left needing to know what the value is for
both a and b. This is the key for the cipher. In this case, we will set the value of
a=17 and b = 20:

Plaintext C o D E B 0] 0] K
Value of x 02 14 03 04 01 14 14 10
ax+b %26 02 24 19 10 n 24 24 8
Encrypted C Y T K L Y Y I

Examine the letter E in the table. The letter maps to integer 04. You can use
Python to validate the math using the following:

>>> print ((17 * 4 + 20) % 26)
10

The multiplicative inverse for the Affine cipher is D(x) = 23 * (x — b) % 26. You
will learn how it is derived in the next chapter. You should find that you are
able to decode the cipher using the following table.

Encrypted C Y T K L Y Y |
Encrypted x 02 24 19 10 1 24 24 8
23 * (x-b) % 26 02 14 03 04 01 14 14 10

Plaintext C (0] D E B (0] (o] K

92

Chapter 3 = Classical Cryptography

To prove the previous encryption and decryption scheme, examine the decryp-
tion of the letter K. The letter maps to integer 04. You can use Python to validate
the math using the following:

>>> print ((23 * (10 - 20) % 26))
4

This explanation should give you a bit of insight as you examine the following
Python script for implementing the Affine cipher:

Extended Euclidean Algorithm for finding modular inverse
eg: modinv (7, 26) = 15
def egcd(a, b):
X, ¥y, u,v=20,1, 1,0
while a != 0:
g, r = b//a, b%a
m, n = X-u*qg, y-v*qg
b,a, x,y, u,v = a,r, u,v, m,n
gcd = b
return gcd, X, Yy

def modinv(a, m):
gcd, x, y = egcd(a, m)
if ged != 1:
return None # modular inverse does not exist
else:
return x % m

affine cipher encryption function
returns the cipher text
def encrypt (text, key):

E=(a*x+ b) % 26
return ''.join([chr(((key[0]*(ord(t) - ord('A')) + keyl[l]) % 26)
+ ord('A')) for t in text.upper().replace(' ', '') 1)

affine cipher decryption function
returns original text
def decrypt (cipher, key):

T

D= (a1 * (x - b)) % 26

Chapter 3 = Classical Cryptography 93

return ''.join([chr(((modinv(key[0], 26)* (ord(c) - ord('A') -
key[1]1))
% 26) + ord('A')) for c in cipher])

Test the encrypt and decrypt functions

def main() :
declaring text and key
text = 'CODEBOOK'
key = [17, 20]

calling encryption function
encrypted_text = encrypt (text, key)

print ('Encrypted Text: {}'.format (encrypted text))
calling decryption function

print ('Decrypted Text: {}'.format
(decrypt (encrypted_text, key)))

if name == ' main ':

main ()

Summary

Maintaining password best practices will help mitigate against brute-force
attacks on your data. If you are responsible for creating your own authentication
system, it is highly recommended that you hash, salt, and/or stretch passwords
. As you have learned, just encrypting the data is not enough. In fact, in the next
chapter, you will learn how to use Python to crack historical ciphers. We will
be building on the mathematical concepts that will enable you to determine the
language and encryption scheme of several historical ciphers and determine
methods toward their cryptanalysis.

Cryptographic Math
and Frequency Analysis

By now, you have a basic understanding of historical ciphers and their cryptanal-
ysis using Python. In this chapter, you’ll turn your attention to the mathematics
that is essential to understanding cryptography through the remainder of this
book. This chapter introduces basic group theory and the Chinese remainder
theorem, shows how to solve systems of linear equations, and gives a more
in-depth look at modular arithmetic. You'll learn the proper importance of
secure pseudorandom number generators and their use in cryptography. This
chapter is the basis for the remainder of this book as you explore public-key
cryptography. Finally, you'll start to construct a frequency analysis (FA) module
that has a wide range of cryptanalysis functions. Through this chapter, you'll
gain cryptographic knowledge as you do the following:

m Gain an understanding of modular arithmetic

m Understand the importance of the greatest common divisor (GCD)
m Gain an understanding of group theory

m Gain an understanding of pseudorandom numbers

m Create a Python script for frequency analysis

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

95

Chapter 4 = Cryptographic Math and Frequency Analysis

Modular Arithmetic and the Greatest Common Devisor

You witnessed briefly in the previous chapter how Python uses modular arithmetic
in cryptography. In this chapter, you'll gain a greater understanding of it. The
logic of modular arithmetic began with the quotient-remainder theorem. The
quotient-remainder theorem states that for every integer A and positive B there
exist different integers Q and R such that: A=B*Q + R, 0=<r=<b. When
a =95 and b = 10, what is the unique value of g (quotient) and r (remainder)?
You find that the quotient equals 9 and the remainder equals 5.

Once you understand the quotient-remainder theorem, it is easier to under-
stand our first bit of cryptographic math: modular arithmetic.

Here is an example: 23 = 2(mod?7), which reads as “23 is equivalent to 2 mod
7” You can also type it into a search engine as 23 mod 7 to see the answer. You
can further examine the modulo by stating that a = b (mod 4) when a2 minus
b is a multiple of g. Another way to state it numerically would be: 123 = 13
(mod 11) because 123 — 13 = 110 = 11 * 10. An alternative way to think about it is to
examine 53 (mod 13), which would be to say that 53 is equivalent to 53 — 13 = 40,
which is equivalent to 27, which is equivalent to 14, which is equivalent to
1, which is equivalent to —12, which is equivalent to 25, and so on. In fact,
53 = {53 + k13|Vk €Z} (you can read that as “is equivalent to the set of all numbers
of form 53 plus an integer multiple of 13”). As shown in the previous chapter,
we take the modulus by using the % sign.

To illustrate this example in Python, type the following;:

>>> 53 % 13
>>> 40 % 13
>>> 27 % 13
>>> 14 % 13

>>> -12 % 13

Now that you understand modular arithmetic, we turn our attention to the
greatest common divisor (GCD). The GCD is the largest number that perfectly
divides two integers: a and b. For example, the GCD of 12 and 18 is 6. This is
an excellent opportunity to introduce Euclid’s algorithm, which is a technique
for finding the GCD of two integers with negligible effort. To find the GCD of
two integers A and B, use the following rules:

If A = 0 then GCD(4, B) = B
If B = 0 then GCD(4, B) = A

Chapter 4 = Cryptographic Math and Frequency Analysis

97

A=B*Q+ RandB =% 0 then GCD(A4, B) = GCD(B,R)
Therefore, write A using the quotient remainder form: A=B* Q + R
Find GCD(B, R)

Euclid’s algorithm works by continuously dividing one number into another
and calculating the quotient and remainder at each step. Each phase produces a
decreasing sequence of remainders, which terminate at zero, and the last non-
zero remainder in the sequence is the GCD. You will revisit Euclid’s algorithm
shortly when you examine the modular inverses; for now, you can use the
algorithm to write a GCD function in Python:

def gcd(a,b):
if b ==
return a
else:
return gcd(b, a % b)

print (ged(12,18))

Now that you know how to create your own GCD function, note that it is
very inefficient due to its use of recursion. Prefer using Python’s built-in GCD
function, which is part of the standard Python math library. You will see an
example of this when you explore Euler’s totient function later in this chapter.

Prime Numbers

Prime numbers in cryptography are vital to the security of our encryption
schemes. Prime factorization, also known as integer factorization, is a mathematical
problem that is used to secure public-key encryption schemes. This is achieved
by using extremely large semiprime numbers that are a result of the multi-
plication of two prime numbers. As you may remember, a prime number is
any number that is only divisible by 1 and itself. The first prime number is 2.
Additional prime numbers include 3, 5, 7, 11, 13, 17, 19, 23, and so on. An infinite
number of prime numbers exist, and all numbers have one prime factorization.
A semiprime number, also known as biprime, 2-almost prime, or a pq number,
is a natural number that is the product of two prime numbers. The semiprimes
less than 50 are 4, 6,9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, and 49.

Prime numbers are significant in cryptography. Here is a simple Python script
that tests if an integer value is prime:

def isprime (x):
x = abs(int (x))
if x < 2:
return "Less 2", False

98 Chapter 4 = Cryptographic Math and Frequency Analysis

elif x == 2:

return True

°

elif x % 2 ==
return False
else:
for n in range(3, int(x**0.5)+2, 2):

°

if x & n ==
return n, False
return True

print (isprime(100000007))

Computationally speaking, it is easy to generate large prime numbers that
will require most humans to either perform math on paper or use a computer.
You can calculate a fairly large number and then check if there are any available
factors. Take, for example, 19 x 13 = 589. Both 19 and 13 are prime numbers as
their only factors are themselves and 1; the product of the two numbers results
in a semiprime. Multiplying 19 and 13 together is straightforward. However,
finding the factors of 589 is a bit more challenging. To find all factors, you will
need to examine all of the primes that are less than 589 until you find which
prime numbers are used. You can achieve this reasonably quickly for smaller
numbers, but once you start dealing with larger numbers, the amount of pos-
sible numbers that are required to check becomes so large that even modern
computers are not able to calculate them within a reasonable time frame.

Prime Number Theorem

To estimate the generation of prime numbers, you can use the prime number
theorem. The prime number theorem returns an approximate value for the
number of primes less than or equal to a provided positive real number x. The
usual notation for this number is n(x), so that n(2) = 1, n(3.5) = 2, and =(10) = 4.
To generate large prime numbers, you will need to take an approximation and
then use a primality test to verify the number. You will see how this works at
the end of this section when you review the code listing for generating large
prime numbers.

You can write a number of primality tests in Python. Some of the examples
provided in this chapter include the school primality test, Fermat’s little the-
orem, and the Miller-Rabin primality test.

School Primality Test

The school primality test solves the problem of whether an integer is prime or
not by iterating through all of the numbers starting from 2 to (1/2) using a loop
for every number check to see if it divides 7. If the program finds any number

Chapter 4 = Cryptographic Math and Frequency Analysis 929

that divides 1, the program will return false. In the reverse, if no numbers are
found between 2 and (1/2) that divides 7, the value is prime.
Here’s a school primality test method:

A school primality test method
def isPrime (n) :
Corner case
if n <= 1:
return False

Check from 2 to n-1
for i in range(2, n):

ifn%i==0:
return False;

return True

print (isPrime (11))
print (isPrime (14))

For a little cleaner execution, you can optimize the preceding code by observing
that all primes are of the form 6k + 1, with the exception of 2 and 3. This is due
to the fact that all integers can be expressed as (6k + i) for some integer k and
fori=-1,0,1,2,3, or4; 2 divides (6k + 0), (6k + 2), (6k + 4); 3 divides (6k + 3).
Therefore, a more efficient method is to test if n is divisible by 2 or 3, then to
check through all the number of the form 6k =+ 1.

A optimized school method based
def isPrime (n) :
Corner cases
if (n <= 1):
return False
if (n <= 3):
return True

This is checked so that we can skip
middle five numbers in below loop
if (n $ 2 == 0orn % 3 == 0)

return False

i=25
while(i * i <= n):
if (n $ 1 ==0o0orn % (i + 2) == 0):
return False

i=1+6
return True

print (isPrime(11))
print (isPrime (15))

100

Chapter 4 = Cryptographic Math and Frequency Analysis

Fermat’s Little Theorem

Fermat’s little theorem is used in number theory to compute the powers of inte-
gers modulo prime numbers. The theorem is a special case of Euler’s theorem.
(We explore Euler’s theorem later in this chapter.) Fermat’s little theorem states
let p be a prime number, and a be any integer.

If n is a prime number, then for everya, 1 <a<p -1,
a’~1=1 (mod p)
or

ﬂp_l(%)p =1
To ensure this makes sense, let’s look at an example:

p = prime integer number

a = integer which is not a multiple of p
According to Fermat’s little theorem,
207-1 =1 mod (17)

65,536 % 17 =1

This means (65,536 — 1) is a multiple of 17. This is proven by multiplying 17 *
3,855, which equals (65,536 — 1) or 65,535. If you know the modulo m is prime,
then you can also use Fermat’s little theorem to find the inverse. We will cover
this in more detail later in this chapter.

Here is a quick and easy function that will return whether an integer is
prime or not:

>>> def CheckIfProbablyPrime (x) :
return pow(2, x-1, x) == 1

>>> CheckIfProbablyPrime (19)
True
>>> CheckIfProbablyPrime (31)
True
>>> CheckIfProbablyPrime (589)
False

Miller-Rabin Primality Test

Similar to the other tests featured in this section, the Miller-Rabin primality
test is a primality test; it was first discovered by M. M. Artjuhov in 1967. It was
later rediscovered in 1976 by Gary L. Miller. Miller’s version of the test is deter-
ministic. Michael Rabin further modified the algorithm in 1980 to obtain an
unconditional probabilistic algorithm.

Chapter 4 = Cryptographic Math and Frequency Analysis 101

In computer science, a deterministic algorithm is one that will always produce
the same output when given a particular set of inputs. Deterministic algorithms
are the most studied. To get a better understanding of how the Miller-Rabin
primality test works, enter the following Python code:

Miller-Rabin primality test
import random

Utility function to do modular exponentiation.

Returns (x“y) % p
def power(x, y, p):

Initialize result
res = 1;

Update x if it is more than or equal to p
s Pi
while (y > 0):

o

X = X

If vy is odd, multiply x with result
if (y & 1):
res = (res * x) % p;

y must be even now
y>>1; #y = vy/2

x = (x * xX) % p;

b
I

return res;

This function is called for all k trials. It returns

false if n is composite and returns false if n is

probably prime. d is an odd

number such that d*2^r = n-1 for some r >= 1

def millerTest (d, n):

Pick a random number in [2..n-2]
Corner cases make sure that n > 4
a = 2 + random.randint (1, n - 4);

Compute a®™d % n
x = power(a, d, n);

if (x == 1 or x ==n - 1):
return True;

Keep squaring x while one of the following doesn't happen
(1) d does not reach n-1
(ii) (x®2) % n is not 1

H H H

(iii) (x™2) % n is not n-1

102 Chapter 4 = Cryptographic Math and Frequency Analysis

while (d !'= n - 1)
X = (x * X) % n;
d *= 2;
if (x == 1):

return False;
if (x == n - 1):
return True;

Return composite
return False;

It returns false if n is composite and returns true if n

is probably prime. k is an input parameter that determines
accuracy level. Higher value of k indicates more accuracy.
def isPrime(n, k):

Corner cases

if (n <= 1 or n == 4):
return False;

if (n <= 3):
return True;

Find r such that n =
2°d * r + 1 for some r >= 1

d=n - 1;
while (d % 2 == 0):
a //= 2;

Iterate given nber of 'k' times
for i in range (k) :
if (millerTest (d, n) == False):
return False;

return True;

Main Program
Number of iterations
k = 4;

print ("All primes smaller than 1000: ");
print () ;
for n in range(1,1000) :
if (isPrime(n, k)):
print(n , end=" ")

print 3 blank lines
print ('\n' * 3)

Chapter 4 = Cryptographic Math and Frequency Analysis

103

Figure 4.1 shows the use the Miller-Rabin primality test to display all prime
numbers between 1 and 1000.

P C\Program Files (x86)\Microsoft Visual Studic\Shared\Python37_64\python.exe - m] X
111 primes smaller than leee: -

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 121 183 187 189 113 127 131 137 135 149 151 157 1
53 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 3087 311 313 317 331 3
37 347 349 353 359 367 373 379 383 389 397 401 489 419 421 431 433 439 443 449 457 451 463 4567 479 487 491 499 503 589 5
21 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 7el Je9 7
19 727 733 739 743 751 757 78l 769 772 787 797 889 811 821 823 827 829 830 B53 857 859 863 877 BR1 883 BA7 987 911 919 9
[20 937 941 947 953 987 971 977 983 991 9497

Press any key to continue . . .

Figure4.1: Miller.py test

Now that you have a better understanding of primality tests, you can use
the Miller-Rabin primality test to verify if much larger numbers are prime. In
the next code listing, you can test to make sure that a specific prime satisfies
a specific set of bits such as 1,024 or 2,048; large primes such as these will be
used in stronger encryption that will be introduced in Chapter 8. In the next
section, you will see the is_prime() function used to ensure that the numbers
being generated are prime.

The code will use the prime number theorem to generate an approximation
of n(1) because when 7 tends to infinity, n(1)/(n/In(n)) = 1. The probability that
a randomly chosen number is prime is 1/In(n). This is due to the fact that there
are n positive integers < n and approximately n/In(n) primes, and (n/In(n))/
n = (1/In(n)). To get an understanding of what the theorem states, examine the
probability of finding a prime number of 1,024 bits. Using the prime number
theorem, you will see that the probability is 1/(In(2'%%%)) = (1/710). Prime numbers
have to be odd since 2 will divide into any even number; the single exception
is the number 2. When attempting to generate a large prime, you can increase
the probability by 2, so on average, to generate a 1,024-bit prime number, you
may need to test 355 randomly generated numbers.

Examine the following Python code to test large prime numbers:

def is_prime(n, k=128):
nnen Test if a number is prime
Args:
n -- int -- the number to test
k -- int -- the number of tests to do
return True if n is prime
i
Test if n is not even.
But take care, 2 is prime !
if n == 2 or n == 3:
return True

104 Chapter 4 = Cryptographic Math and Frequency Analysis

if n<=1o0orn¢%2 ==0:
return False

find r and s

s =0

r=n-1

while r & 1 ==
s += 1
r //= 2

do k tests

for _ in range (k) :
a = randrange (2, n - 1)
x = pow(a, r, n)

if x != 1 and x !=n - 1:
j =1
while j < s and x !=n - 1:
X = pow(x, 2, n)
if x ==

return False
jo+=1
if x !'=n - 1:
return False
return True

Generate Large Prime Numbers

Now that you have the code listings and knowledge to test large prime
numbers, you can use the next block of code to generate the semiprime of the
two large prime numbers. The security of many public-key cryptography algo-
rithms is based on the fact that it is difficult to generate extremely large primes.
Extremely large primes are used in one of the most popular and secure encryption
algorithms, known as the RSA algorithm; you will learn more about RSA encryp-
tion in Chapter 8.

In the next example, you will generate two prime numbers, p and g, and cal-
culate their semiprime (product) n where n = p * g. The larger the values p and
g need to be, the harder it will be to find them given only the value of n. Review
Figure 4.2 to see the output of the following code, which generates the value of
n using two prime numbers p and 4.

Generate two large prime numbers
from random import randrange, getrandbits

def is_prime(n, k=128):
nnr Test if a number is prime
Args:
n -- int -- the number to test
k -- int -- the number of tests to do

Chapter 4 = Cryptographic Math and Frequency Analysis 105

return True if n is prime
o
Test if n is not even.
But take care, 2 is prime !
if n == 2 or n == 3:
return True
ifn<=1o0ormné%2 ==20:
return False
find r and s
s =0
r=n -1
while r & 1 ==
s += 1
r //= 2
do k tests
for _ in range (k) :
a = randrange (2, n - 1)
x = pow(a, r, n)

if x !=1 and x !=n - 1:
j=1
while j < s and x !=n - 1:

X = pow(x, 2, n)
if x ==
return False
jo+=1
if x !'=n - 1:
return False
return True

def generate prime candidate (length) :

"mn Generate an odd integer randomly

Args:
length -- int -- the length of the number to generate, in bits

return a integer

W

generate random bits

p = getrandbits (length)

apply a mask to set MSB and LSB to 1

p |= (1 << length - 1) | 1

return p

def generate prime number (length=1024) :
"mn Generate a prime
Args:
length -- int -- length of the prime to generate, in bits
return a prime
wun
p =4
keep generating while the primality test fails

106 Chapter 4 = Cryptographic Math and Frequency Analysis

while not is_prime(p, 128):
p = generate_prime_candidate (length)

return p
print ('Generate the value of n using two prime numbers p and g:')
print ('\n"')
print (generate_ prime number())
print ('\n")
P select CA\Pragram Files (x86)\Microsaft Visual Studio\Shared\Pythan37_64\python.exe - a x

Generate the value of n using two prime numbers p and q:

L6B3732139462722289176845798820554019423561544805831435449261161508106987874424546921665390288609730049670625938636131025
#87432789516050129517470763878068315658497744736625974869837379539543419354734467631346134313080683680655234649652938574
EEB501262187366565135532989167624859€716823175011319345513824641683823

Press any key to continue . . .

Figure 4.2: Generate large primes.py

Basic Group Theory

In abstract algebra and other fields of mathematics, group theory studies the
algebraic structures known as groups. The concept of a group is central to abstract
algebra: other familiar algebraic structures, such as vector spaces, rings, and fields,
can all perform as groups endowed with additional operations and axioms. Group
theory comes into play as you explore the Diffie-Hellman and RSA encryption
systems in Chapter 8. For now, consider the idea that elements in groups (e.g.,
integers) have orders (i.e., cycle lengths), and this lets you use modular arithmetic
to speed up significant computations. Group theory is exploited to build cryp-
tographic schemes and the associated cryptanalysis.

To start your exploration into the basics of group theory, we define a group
as a set, G, together with a binary operation * (called the group law of G) that
combines any two elements to form another element. The operation may be mul-
tiplication, addition, rotation, composition, or any other action that consumes
two elements and returns one.

To be eligible as a group, the set and operation (G, *) requires four properties,
known as the group axioms.

m Closure:a,b € Gimpliesa *b € G
m Identity: There exists e € Gsuch thata *e=e*a=aforallae G
m Inverse: For each a € G, there existsa™' € Gsuch thata *a ' =a1*a=¢

m Associativity: 4, b, c € G implies (@ *b) * c =a* (b * ¢)

Chapter 4 = Cryptographic Math and Frequency Analysis

107

Additionally, a group is said to be abelian if it satisties the commutativity
property, as shown here:

A*b=b*aforalla be G

This is simply stating that a group in which the result of applying the group
G operation to two elements (g, b) has no dependency on the order in which
they are written.

Furthermore, in an additive group, you write 0 instead of e; in a multiplicative
group, you write 1 instead of e.

An example of this is shown in modular arithmetic. Suppose you have the
group G =10, 1, 2, 3, 4}; the group falls under the operation of addition modular
5. Review the following examples:0+0=0,0+4=4,1+4=0,2+4=1,3+3
=1. You will notice that adding any two elements in G together makes another
element in G. This example has an identity 0: x + 0 = 0 + x for each x. You should
also notice that every element has an inverse that will returnitto0:4+1=0,3 +
2 =0. The group example can be written as Z; (which reads “Z five” or “Z mod
5”). Modular arithmetic is also known as clock arithmetic; if you are struggling
with the concept, think of a clock but instead of starting with 1, use 0. This will
give you the group G =1{0,1, 2, 3,4, 5, 6, 7,8, 9,10, 11}; when you add an hour
to 11 (11 + 1), you return to 0. Therefore, 11 +2=1,11 + 3 = 2.

To continue, in a multiplicative group of numbers, the set {0, 1, 2, 3, 4} is not
a group under multiplication modulo 5 since 1 is the identity element but 0 o
x = 0 and there can’t be any element that would send 0 to 1; there is no inverse
for 0 under multiplication modulo 5, but the group G = {1, 2} is a group multi-
plication modulo 3 (22 =1, 2 is its inverse).

Orders of Elements

Suppose you have a group G with an identity element e. The order of x € G
is the smallest positive integer n such that x” = e. In abstract algebra, this is
expressed as |x| = n. If there is no such 7, then x has infinite order. Review the
following example.

L\Ko AN While this looks like the same notation as the absolute value, remember
that in abstract algebra it is different.

The nonzero real numbers form a group under multiplication. You must
omit zero since you cannot divide by zero; zero does not have a multiplicative
inverse. In abstract algebra, you indicate that you are omitting zero with the
symbol R*. As briefly mentioned earlier, the identity element in any group is 1.
Incidentally, the order of |1| = 1; this is because 1' = 1. Furthermore, the order
of -1 is 2, notated as |-1| = 2; this is because —1% = 1. Other than 1 and -1, no

108

Chapter 4 = Cryptographic Math and Frequency Analysis

other nonzero real number can be raised to a positive integer power to get 1.
Therefore, all other real numbers have an infinite order in this group.

Now suppose you have a group G; it is possible to have a subset of G that is
also a group. In abstract algebra, this is called a subgroup, and it is typically
represented by the letter H. You specify that H is a subgroup of G by using the
notation H < G. Technically, you can use the notation H < G but G is also con-
sidered to be a subset of G and H could equal G.

When working with groups, you typically use additive notation (+) or
multiplicative notation (x); this is true even when the elements of the group are
not numbers, and the group operation is not numerical but is function com-
positions or geometrical transformations. A group G is considered a “cyclic”
group if it can be generated by a single element: G = <x>. Review the following
definition for cyclic groups:

Let G be a group with operation x
Pickx € G

Think about the smallest subgroup of G that contains x. First, you have x, but
any group that contains x must also contain its inverse: x~L It also must con-
tain the identity element, which you should remember is 1 for a multiplicative
group. It must also contain all powers of x: x2, x3, x*. Don’t forget all powers of
the inverse of x: x!, x2, x3, x*. Therefore, a set of all integral powers of x would
be the smallest subgroup of G; it would look as follows: {...x™ x3,x2,x7, 1, x,
x%,x%, x*, .. }. This is an example of a group generated by x.

<x>={..x4%x3x2 x 1, x %% 23 x4, ...} = Group generated by x
If G = <x> for some x, then G is a cyclic group.
It is probably worth reviewing the same definition using additive notation:

Let H be a group with operation +
Pick y € H.

The group generated by y is the smallest subgroup of H containing y. It must
contain y, its inverse (-y), and the identity element 0. It must also contain all
multiples of y:

<y>={...,-3y,-2y,-v,0,y,2y, 3y, ...} = Group generated by y.
If H = <y> for some y, then we call H a cyclic group.

There are two types of cyclic groups: infinite and finite. The infinite group
contains all integers. The finite group contains the integers mod n. Cyclic groups
are essential because of the fundamental theorem of finitely generated abelian
groups. It states that any abelian group that is finitely generated can be broken
apart into a finite number of cyclic groups and every cyclic group is the inte-
gers Z or the integers mod n. Cyclic groups are the building blocks for finite
numbered abelian groups.

Chapter 4 = Cryptographic Math and Frequency Analysis

109

Ideally, you now have a general idea of groups and subgroups. Enter “cosets”;
these are objects in abstract algebra that help you find subgroups using Lagrange’s
theorem. The theorem uses a simple rule that dramatically narrows down the
possible list of subgroups.

Recall that the notation for group H is a subgroup of group G: H < G. Every
group has at least two subgroups. These include G itself and the trivial group =
{e}. The trivial group consists of only the identity element. The idea of Lagrange’s
theorem is to find if a group has more than these two subgroups. The theorem
states: if H < G, then the order of H divides the order of G.

Recall that the order of a group G is the number of elements in the group
and it is denoted using the absolute value symbol |G|. This notation allows
you to write Lagrange’s theorem by stating: H < G =» |H| divides |G|. What
the theorem is stating is that the subgroup H cannot be just any size and that
there are strong restrictions on the subsets of G. Here is a simplified example:

Let G be a group with |G| =323 =17 x 19
Divisors of 323: 1, 17, 19, 323

The results of the theorem present the possible orders of the subgroups include
1,17, 19, and 323.
Every group has at least two subgroups: G (itself) and {e} (trivial group):

|G| =323
l{e}] =1

This means that if G has any other subgroups, their orders are 17 or 19. It is essential
to understand that the theorem is not stating that there are indeed subgroups of
order 17 and 19. In this case, it does, but there are many cases where it will not.

The proof of this is not that difficult. Mostly, a subgroup is closed under the
operation in question, so if you have some element that is not in the subgroup,
you can multiply or add it to the elements in the subgroup and get another set
not equal to the subgroup that has the same size. Repeat the process, and you'll
chunk all the elements in G into “cosets” of H.

Modular Inverses

You'll now turn your focus to modular inverses. For an integer a and a modulus
m you want to find a number #; the notation looks like the following: a™! such
thatn ° a =1 (mod m).

That is, it is the multiplicative inverse in the ring of integers modulo m. The
multiplicative inverse of a modulo m exists if and only if 2 and m are coprime
(i.e., if ged(a, m) = 1).

For every number a and a prime p that aP ~* = 1 (mod p). If you need to com-
pute the inverse of a modulo p since a * a? =% = a? ~! = 1, when the modulus is
prime, you can compute a? =% (mod p).

110

Chapter 4 = Cryptographic Math and Frequency Analysis

If the modulus is prime, Python provides an internal function called pow that
takes a, p — 2, and p to compute the inverse modulo. Consider the following

example:
>>> a = 14
>>> p = 101
>>> a_inv = pow(a, p-2, p)
>>> a check = a * a_inv % p

>>> print ("The modular inverse is ",
65

print ("The check value should equal 1.

a_inv)
The modular inverse is
>>>

The check value should equal 1. It equals 1

It equals ",

a_check)

Fermat’s Little Theorem to Find the Inverse

As mentioned earlier in this chapter, we can use Fermat’s little theorem to cal-

culate the inverse if we know that m is prime:
a™-V =1 (mod m)

al=a""? (mod m)

Here’s the Python code to calculate the inverse if we know that m is prime:

Fermat's little theorem.
modular inverse of a under modulo m using
Assumption: m is prime

(a,b):
b 0):
return a

def gcd
if (

else:

return gcd(b, a % b)

To compute x“y under modulo m
def power(x,y,m) :

if (y == 0):
return 1
p = power(x, v // 2, m) $m
p=(*p) $mn
return p if(y % 2 == 0) else (x * p) %

m

Function to find modular inverse of a under modulo m

def modInverse(a,m) :
if (gcd(a, 1= 1):
print ("Inverse doesn't exist")

m)

else:
If a and m are relatively prime,

then

Chapter 4 = Cryptographic Math and Frequency Analysis

111

modulo inverse is a” (m-2) mode m
print ("Modular multiplicative inverse is ",
power(a, m - 2, m))

a =3
m = 11
modInverse (a, m)

‘[AN Inthe preceding code listing, the code uses a gcd () function instead of
using the built-in math library to help you understand how to code the GCD. You will
find this helpful when you use the extended GCD.

Extending the GCD

To find the inverse when you have a nonprime modulus, you need to add a new
trick: the extended Euclidean algorithm. The extended Euclidean algorithm is
useful when two integers (a, b) are coprime; two numbers are said to be coprime
if the only positive number that divides both numbers is 1.

The next example returns the inverse using the extended Euclidean algorithm:

def egcd(a, b):
if a ==
return (b, 0, 1)
else:
g, v, x = egcd(b % a, a)
return (g, x - (b // a) *y, y)

def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:

o

return x % m

a = 102721840089015263978980446
p = 6768924473842051155435121

print modinv(a, p)

4751454584755824717584097

Euler’s Theorem

Earlier in this chapter, you were introduced to Fermat’s little theorem. We will
now examine a generalization of Fermat’s theorem known as Euler’s theorem.

112

Chapter 4 = Cryptographic Math and Frequency Analysis

Both Fermat’s and Euler’s theorems play an important role in public-key cryp-
tography, which will be explored in greater detail in Chapter 8.

In number theory, Euler’s theorem, also known as Euler’s totient theorem or
the Fermat-Euler theorem, states that if n and a are coprime positive integers,
then ap® = 1 mod n where @(n) is Euler’s totient function. In 1736, Leonhard
Euler published his proof of Fermat’s little theorem, which Fermat had presented
without proof. Subsequently, Euler presented other proofs of the theorem, cul-
minating with “Euler’s theorem” in his paper of 1763, in which he attempted to
find the smallest exponent for which Fermat’s little theorem was always true.

Euler investigated the properties of numbers; he specifically studied the
distribution of prime numbers. One crucial function he defined is named the
PHI function; the PHI function measures the breakability of a number. Assume
you have the number #; the function calculates the number of integers that are
less than or equal to n and do not share any common factor with 7; you see it
in the following notation: ¢ [1]. For example, if you wanted to examine ¢ [8],
you would examine all values from 1 to 8 and count all integers with which 8
does not share a factor greater than 1; the numbers are 1, 3, 5, 7. The function
produces 4. As it turns out, calculating the PHI of a prime number P is simple.
¢ [P] = P - 1. To calculate ¢ [7], you count all integers except 7 since none of the
integers share a factor with 7; therefore, ¢ [7] = 6. Assume a larger prime such
as 21,377. ¢ [21,377] = 21,376. The equation looks like the following;:

ap—-1=1modp

To take full advantage of this trick, which helps when you explore RSA, you
need to see the general version. If you know the prime factorization of a mod-
ulus, then computing the Euler’s totient works as follows:

PN - ™) = (1) ... (P, K1) where G(p) - p KT =pKi-To (p,- 1)

We extend the ideas presented in this chapter into some classical number
theory that also happens to be practical for cryptographers. Euler totient functions
offer benefits to speed up modular inverse computations. You also learn why
raising numbers to substantial powers is not expensive when you are working
with modular arithmetic.

For instance:

$(305023)=dB3) o db(5) 0 $(23) =204 022 =32

Euler’s totient function ®(n) for an input 7 is the count of numbers in the
format of {1, 2, 3, 4, 5, n} that are relatively prime to 7, i.e., the numbers whose
GCD with n is 1. Examine the following six examples, which calculate the Euler’s
totient function @ (1) in respect to the inputs 1 through 6. The output will be
the number of positive integers that do not exceed 1 and also have no common
divisors with n other than the common divisor 1:

®1)=1
ged (1, 1) is 1

Chapter 4 = Cryptographic Math and Frequency Analysis 113

o) =1
ged (1, 2) is 1, but ged (2, 2) is 2

®(3)=2
ged (1,3)is 1and ged (2, 3)is 1

D @4)=2
ged (1,4)is1and ged (3,4) is 1

D (B)=4
ged (1,5)is 1, ged (2,5)is 1,
ged (3,5)is 1, and ged (4, 5) is 1

d6)=2
ged (1,6)is 1 and ged (5, 6) is 1

Use the following Python to test Euler’s totient function on integers 1 through
20. The output should resemble Figure 4.3.

import math

def phi(n):
amount = 0
for k in range(l, n + 1):
if math.gcd(n, k) == 1:
amount += 1
return amount

for n in range(1,20) :
print ("®(",n,") = ",phi(n))

To add a little pizzazz to your Python program, you can use the matplotlib
library and create a graph, as shown here:

import math
import numpy as np
from matplotlib import pyplot as plt

def phi (n):
amount = 0
1):

for k in range(l, n +
) == 1:

if math.gcd(n, k
amount += 1
return amount

114 Chapter 4 = Cryptographic Math and Frequency Analysis

for i in range (500):
phi n = phi (i)
#print (i ,phi_n)
plt . plot (i ,phi n , 'o ')

plt.xlabel ("Value of x")
plt.ylabel ("Value of y")
plt.title("Euler's Theorem")
plt.show ()

Figure 4.4 shows the output of using Euler’s theorem and the MatPlot library
to create a graph.

L T T R TR
- L S R

)
)
)
)
]
)
o(16)
o 17)
o 18)
o(18)
o(20)

=
T el el - I - T B ST
[T T)
N o®

[

LR T T T)

o

Press any key to continue . . .

Figure 4.3: Euler.py test

Euler’'s Theorem

500 ~ .'
[]

o e e
400 A
....o. o
- % (ol
é_?’oo_ .' ...o o‘. ‘.
: PO
5200— o’ .ﬁo...d .‘.&cﬁ"(P
x. »’ o % % * &
"o. > P "t.o: ..:..o' .‘.o.o *
100 .‘5~$ O e o
0_
0 100 200 300 400 500
Value of n

Figure 4.4: EulerPlot.py test

Chapter 4 = Cryptographic Math and Frequency Analysis

115

Pseudorandomness

You will now examine pseudorandom number generation (PRNG) and why it
is insecure for use in cryptography. The goal of PRNG is to have a reproduc-
ible sequence of random-feeling numbers. PRNG offers benefits when running
simulations that need to be consistent between each execution. Some examples
of simulation that benefit from the consistency of a PRNG generator include
testing stock market predictions, testing scientific experiments, rolling dice in
games, and generating symmetric-key encryption.

In the early days of computing, when applications needed to simulate nuclear
reactions but also needed to be reproducible in the case of an error in the program,
John von Neumann generated one of the first pseudorandom generators using
the middle-square method. The method generates a sequence of n-digit numbers
based on the digits in the middle of the number and then squares them. For
example, if you have a seed number of 682117, you square it to get 465283601689.
The middle numbers are 283601. Square this number and repeat. So while the
number appears random, you can reproduce the generated numbers as long as
you start with the same seed.

Take a look at how this can be done using Python:

n = int (input ("Please enter a six-digit number: "))
for i in range(1,10):

n = int(str(n * n).z£i11(12) [3:9])

print (n)

Please enter a six-digit number: 682117
283601
429527
493443
485994
190168
163868
852721
133103
716408

PRNG in encryption needs to have two properties that ensure its security.
When the properties exist, the PRNG is known as a cryptographically secure
pseudorandom number generator (CSPRNG). A CSPRNG must have the following
properties:

m Next-bit test: You should not be able to guess the next bit with no better
than 50% probability. This means given S;, 1, S;,» Si 3 ---,S;,, you
should not be able to guess S

i+n+1°

m State compromised extension: You should not be able to calculate
S, Si_1...,givenS; ..., 5,

116

Chapter 4 = Cryptographic Math and Frequency Analysis

Breaking C’s rand() Function

In the C programming language, and most other software languages, the
compiler implements pseudorandom number generators. Almost all module
functions depend on the basic function random(), which generates a random
float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne
Twister algorithm as the core generator. It produces 53-bit precision floats and
has a period of 2**19937 — 1. The underlying implementation in C, the rand()
function, is both fast and thread safe. The Mersenne Twister is one of the most
extensively tested random number generators in existence. However, being
completely deterministic, it is not suitable for all purposes and is completely
unsuitable for cryptographic purposes. The random module also provides the
SystemRandom class, which uses the system function os.urandom() to generate
random numbers from sources provided by the operating system:

def crand(seed):
r=[]
r.append (seed)
for i in range(30) :
r.append ((16807*r[-1]) % 2147483647)
if r[-1] < 0:
r[-1] += 2147483647
for i in range (31, 34):
r.append (r[len(r)-31])
for i in range (34, 344):
r.append((r[len(r)-31] + rllen(r)-3]) % 2**32)
while True:
next = r[len(r)-31]l+r[len(r)-3] % 2**32
r.append (next)
yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)

my_generator = crand(123)
for i in range(5) :
print (next (my generator))

The output for the program will match the “random” numbers produced
here. If the numbers are predictable, then they are not random:

128959393
1692901013
436085873
748533630
776550279

Chapter 4 = Cryptographic Math and Frequency Analysis

117

Solving Systems of Linear Equations

In this section, you will learn how to solve systems of linear equations using
Python. Linear equations can increase the level of difficulty in breaking cryp-
tographic schemes by using large matrices to encode and decode messages. The
first matrix is typically referred to as an encoding matrix. While we could start
writing programs from scratch, linear equations have been made much sim-
pler using the NumPy library. NumPy also provides methods that will allow
you to multiply matrices without having to worry about how the rows and
columns are being multiplied. NumPy also provides linear algebra libraries to
find inverses and determinates quickly. The inverse of a matrix is known as the
decoding matrix. For our example, we examine the following:

la +1b =35
20 +4b =94
These two equations will look like the following. Notice that the values from

the first equation fill in the top row, while the values from the second fill the
second row:

Al xeaf el

When we write this in matrices form, it should be in the form of AX = B.
To solve this equation (and solve for X), you multiply both sides of the equation
for the inverse of A (shown as A™"). A multiplied by A will produce the iden-
tity matrix: A7 AX = A7'B. This will allow us to isolate X such that X = A~'B.
Completed, it should resemble the following:

111ja| |35
24|b| |94
Here is the Python code that will produce the matrices shown previously:
import numpy as np
solve the following linear equation
print ('la + 1b = 35')
print ('2a + 4b = 94')

A
B

np.matrix ([[1,1],[2,4]1]1)
np.matrix ([[35],[94]1)

118 Chapter 4 = Cryptographic Math and Frequency Analysis

find the inverse of A
A inverse = np.linalg.inv(A)
print (A_inverse)

solve for X
X = A inverse * B
print (X)

You can alternatively use the NumPy array method to accomplish the same
task, as shown here:

import numpy as np

solve the following linear equation
print ('la + 1b = 35')
print ('2a + 4b = 94"')

create equations
a = np.array([[1, 11,[2,41]1)
b = np.array([35, 941)

print answers
print (np.linalg.solve(a, b))

Now we will examine a practical example to show how matrices can be used
for encryption.
In this example, we will encrypt the message “prepare to negotiate.”

Message = “prepare to negotiate”
The encoding matrix for this example is as follows:

-3-3-4
011
4 3 4

Assign a number to each letter in the alphabet much like you did for a Caesar
cipher. The letters do not have to map to the same numbers as long as both the
sender and receiver know the assignments. Python uses the ord() function to
assign a letter to a numerical value. You can convert the number back to a letter
using the chr() function.

A B CDEFGHI JKLMNOPQRSTUVWIXYZ
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

This message that we want to encrypt will look like the following:

P R E P A R E T O N E G O T I A T E

16 18 05 16 01 18 05 27 20 15 27 14 05 07 15 20 09 O1 20 05

Chapter 4 = Cryptographic Math and Frequency Analysis 119

Because we started with a 3 x 3 encoding matrix, we will break the enumerated
message into a sequence of 3 x 1 vectors:

16| |16| |05 [15]| |05] [20] |20

18| |01| |27 |27 | |07 | [09] |05

05| |18 | [20| |14| |15 |01 |27
There are only 20 characters in the message; since we have a matrix with 21
positions, we need to populate the last position with a space (27) to complete

the last vector. We may now encode the message by multiplying each of the
preceding vectors by the original encoding matrix:

-3-3-4| |16 16 05 15 05 20 20
011 18 01 27 27 07 09 05
4 3 4 0518 20 14 15 01 27

This will produce the following encoded message that can be transmitted
in a linear form:

-122, 23,138, -123, 19, 139, —176, 47, 181, -182, 41, 197, -96, 22, 101, -91, 10, 111,
-183, 32, 203

To decrypt the message, the recipient writes the message as a sequence of a
3 x 3 matrices and uses the inverse of the encoding matrix:

101
4 43
—4-3-3
With the inverse, you can perform matrix multiplication on the received
message:
101 ||-122-123-176-182-96-91-183
4 43 23 19 47 41 22 10 32
—4-3-3| 138 139 181 197 101 111 203

The matrix multiplication should produce the following:

16 16 05 15 05 20 20
18 01 27 27 07 09 05
0518 20 14 15 01 27

Once you have the matrix calculated, you should be able to expand the mes-
sage and map the numbers back to their original letters:

P R E P A R E T O N E G O T I A T E

16 18 05 16 01 18 05 27 20 15 27 14 05 07 15 20 09 01 20 05

120

Chapter 4 = Cryptographic Math and Frequency Analysis

Frequency Analysis

The primary focus of this section is to teach the computer to recognize when
a set of letters matches the frequency distribution of plaintext English. You
can apply the information in this section in a number of different ways. The
ultimate goal is to give you the tools you need to be able to crack a number of
classical ciphers.

Frequency analysis is the study of the frequency of letters or the combination
of letters. It is based on the fact that, within any written language, certain letters
and combinations of letters will occur with varying frequencies. When you
examine the frequency of letters used in the English language, you find that the
letters E, T, A, and O are the most common, while Z, Q, and X are found with
much less frequency. Examine Figure 4.5 to see the occurrence of each letter.

0.14
0.12 +

0.1 A

abcdefghijkimneoepgrstuvwxy?z

Figure 4.5: FA .py

We will also find higher frequency of letter combinations such as TH, ER, ON,
and AN. These combinations are known as bigrams or digraphs. There are also
common pairs of repeating letters such as SS, EE, TT, and FF. When you encrypt
English plaintext into ciphertext using many historical ciphers, these same
properties will be preserved and can be exploited in a ciphertext-only attack.

As you will recall, historical substitution ciphers replace each letter in the
plaintext with an alternate letter. If you use the Caesar cipher to encrypt the
letter E with a key of 3, then each occurrence of E will now be H. If you have
enough text to determine that H is the letter with the most frequency, then you
may determine that the key is the difference between the letters H and E. This

Chapter 4 = Cryptographic Math and Frequency Analysis

121

would give you enough details to attempt to break the cipher. With the Caesar
cipher, you will be able to brute-force a solution within 25 rounds. More advanced
substitution ciphers, like the Vigenere cipher, offer a little more of a challenge.

We will first take a look at understanding how frequency analysis works; we
will then apply the analysis to both the Caesar and the Vigenere cipher so that
you can truly understand the power of frequency analysis. Frequency analysis
isn’t always helpful. Take the case of the novel Gadsby. Gadsby is a 1939 novel
by Ernest Vincent Wright written as a lipogram, which does not include words
that contain the letter E. Our first example will take a small set of text and count
the occurrence of each letter, as shown here:

initializing string

test str = "We hold these truths to be self-evident, that all men are
created equal, "

test _str += "that they are endowed by their Creator with certain
unalienable Rights, "

test_str += "that among these are Life, "

test_str += "Liberty and the pursuit of Happiness."

get count of each element in string
all freq = {}

for i in test_str:
if i in all_freq:
all freqg[i] += 1
else:
all freqfi] =1

printing result
print ()
print ("Count of all characters in the provided text is :\n " + str(all freq))

frequency using collections.Counter ()
from collections import Counter

initializing string

test str = "We hold these truths to be self-evident, that all men are created equal, "
test_str += "that they are endowed by their Creator with certain unalienable Rights, "
test str += "that among these are Life, "

test_str += "Liberty and the pursuit of Happiness."

using collections.Counter() to get
count of each element in string
res = Counter (test_ str)

122

Chapter 4 = Cryptographic Math and Frequency Analysis

printing result
print ()
:\n " + str(res))

print ("Count of all characters in the provided text is

Figure 4.6 shows the occurrence of letters that are present in the test _ str

value. The first part of the execution shows the letters as they appear in the mes-
sage, while the second part of the execution sorts the letters by their occurrence.

Count of all characters in the provided text is :
{'W': 1, "e': 28, ' ": 34, 'h': 12, '0": &, '1"
Ny i': 19, "n': 9, ',': 4, 'a': 18, 'm': 2, ‘¢’
‘; 1}

Count of all characters in the provided text is :
Counter({" ": 34, "e': 28, "t': 22, 'a": 1§,
‘b': 4, ",': 4, '"f": "y': 3, "p': 3, 'm":
‘R": 1, "H': 1, "."

M

Press any key to continue . . .

Figure 4.6: Frequency.py

Frequency analysis works best in situations where you have a great deal of text.

In our next example, you will open a copy of the Declaration of Independence
and then process the frequency analysis for it. A number of books are available

at

the Gutenberg project (gutenberg.org) that you can use to try a variety of

texts in a number of languages. One of the techniques you are going to want to
implement is the removal of unwanted characters, numbers, and spaces; we also
typically make the letter case uniform, such as making each letter lowercase.
The reason we do this is so that we can use modular arithmetic on a group of
letters from a to z and when we reach z, we start back over with a like a typical
Caesar cipher.

Review the following code to examine the frequencies of the letters:

import urllib.request, ssl

get the text of the Declaration of Independence

response urllib.request.urlopen("https://raw.githubusercontent.com/

noidentity29/AppliedCryptoPython/master/declaration.txt", context=ssl._
create_unverified context())

originalText response.read ()

Strip out all non-alphabet characters

There are a number of ways to do this but this is the simplest to understand

modifiedText = str(originalText.strip())
modifiedText = modifiedText.replace(" ", "")
modifiedText = " ".join(modifiedText.split())

Chapter 4 = Cryptographic Math and Frequency Analysis

123

modifiedText = modifiedText.lower ()

plaintext = ""
for ¢ in modifiedText:
if (c.isalpha()):
plaintext = plaintext + c

Determine the frequency analysis of the plaintext

frequency = {}

for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (plaintext.count (chr(ascii)))/

len (plaintext)

sum_fregs_squared = 0.0
for ltr in frequency:
sum_fregs squared += frequency[ltr]*frequency[ltr]

Results
print ()
print ("The frequency should be near .065 if plaintext in English: " +

str (sum_fregs_ squared))

Figure 4.7 shows the frequency analysis of the text of the Declaration of
Independence. Since the document is in English, the frequency analysis should
be near the value .065. When you are checking to see if your cryptanalysis is
complete, your result should be similar.

The frequency should be near .285 if plaintext in English: 2.06843895288936651
Press any key to continue . . .

Figure4.7: declaration freq.py

Cryptanalysis with Python

Now that you understand the importance of frequency analysis (FA), you can
start to explore how to use FA to start cracking classical ciphers. The techniques
you learn here can be applied to a number of substitution-type ciphers such as
the Caesar, ROT-13, and Vigenére ciphers. As your understanding grows, you
will also be able to apply these techniques to the other classical ciphers that are
outlined in Chapter 3.

The next cryptanalysis code listing we will examine will take the Declaration
of Independence and encrypt it using a randomly generated key. It will then use
FA to examine all key possibilities; remember that when using a letter-shifting
cipher such as the Caesar cipher, there are only 26 possible keys. The code listing

124 Chapter 4 = Cryptographic Math and Frequency Analysis

will brute-force the decryption by examining the frequency analysis of each
attempt. You will know you have the correct key once you have a frequency
analysis of .065:

import urllib.request, ssl, random

get the text of the Declaration of Independence

response = urllib.request.urlopen ("https://raw.githubusercontent.com/
noidentity29/AppliedCryptoPython/master/declaration.txt", context=ssl._
create_unverified context())

originalText = response.read()

Strip out all non-alphabet characters

There are a number of ways to do this but this is the simplest to
understand

modifiedText = str(originalText.strip())

modifiedText = modifiedText.replace(" ", "")

modifiedText = " ".join(modifiedText.split())

modifiedText = modifiedText.lower ()

plaintext = ""
for ¢ in modifiedText:
if (c.isalpha()):
plaintext = plaintext + ¢

Encrypt the plaintext using a random Caesar shift
def shiftBy(c, n):
return chr(((ord(c) - ord('a') + n) % 26) + ord('a'))

caesar key = random.randint (1,25)
print ("shhh the secret caesar key is: ", caesar_ key)
encrypted = list (map(lambda x: shiftBy(x, caesar_key), plaintext))

Use FA to determine Caesar key for encrypted text

normal_ fregs = {‘a‘: 0.080642499002080981, 'c': 0.026892340312538593,
'b': 0.015373768624831691,

'e': 0.12886234260657689, 'd': 0.043286671390026357, 'g': 0.019625534749730816, 'f':
.024484713711692099, 'i': 0.06905550211598431, 'h': 0.060987267963718068, 'k':
.0062521823678781188, 'j': 0.0011176940633901926, 'm': 0.025009719347800208, 'l':
.041016761327711163, 'o': 0.073783151266212627, 'n': 0.069849754102356679, 'q':
.0010648594165322703, 'p': 0.017031440203182008, 's': 0.063817324270355996, 'r':
.06156572691936394, 'u': 0.027856851020401599, 't': 0.090246649949305979, 'w':
.021192261444145363, 'v': 0.010257964235274787, 'y': 0.01806326249861108, 'x':
.0016941732664605912, 'z': 0.0009695838238376564}

O O O o o o o

Chapter 4 = Cryptographic Math and Frequency Analysis

125

frequency = {}
for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (encrypted.count (chr(ascii)))/len(plaintext)

sum_fregs squared = 0.0
for 1ltr in frequency:
sum_fregs_ squared += frequencyl[ltr]*frequency[ltr]

print ("Will be near .065 despite Caesar: " + str(sum_fregs_ squared))

for possible key in range(1l, 26):
sum_f sqgr = 0.0
for ltr in normal fregs:
caesar_guess = shiftBy(ltr, possible key)
sum_f sqgr += normal fregs[ltr]*frequency[caesar_ guess]
if abs(sum _f sqgr - .065) < .005:
print ("Key is probably: ", possible key, " f sqgr is ",sum_f sqr)

Figure 4.8 shows the key that was randomly generated to encrypt the text.
The code will then return the FA of the encrypted code, which will be relatively
close to .065 since it is a substitution cipher. The code looks for which key gets
the closest to .065 and will then recommend that result as a key. Each time you
execute your solution, you will generate a new key.

shhh the secret caesar key is: 7 A
Will be near .265 despite Caesar: 2.0684399508893666

Key is probably: 7 f_sgr is ©.86694545595378748

Press any key to continue . . .

Figure 4.8: Cearsar FA.py

Using an Online Word List

One useful technique to help identify when you have successfully decrypted a
historical cipher is to use known word lists. In the following example, we simply
load a text file containing 10,000 common English words. In the technique shown
we will read in the words using the .split() method to break them into a list
of words. Additionally, you will see that we are interested only in the words
that are at least three letters long. The quickest way to filter these words is to
use a filter with the lambda function. Lambda functions are functions that do not
require a name like the defined functions do. The lambda function returns a
function object that can be assigned to a variable. In Python, the most common
use for lambda functions is for a simple one-line function. You will typically
see the lambda functions used in conjunction with a map or filter function.

126

Chapter 4 = Cryptographic Math and Frequency Analysis

Here's the example code to read in the words using the .split() method
to break them into a list of words. Using the following Python code, you will
download a file from the Internet called common_en_words.txt, which contains
10,000 common words in the English language. The output will show each of
these words on their own line:

import urllib.request, ssl

URL to Common English Words
commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common en words.txt"

create URL request

response = urllib.request.urlopen (commonWordsPath, context=ssl. create_
unverified context ())

readText = response.read()

the file is in a binary format, decode
fileOfWords = readText.decode('utf-8')

create an array for each word
words = fileOfWords.split ()

print word list
for word in words:

print (word)

filter out the shorter words
longerwords = list(filter(lambda x: len(x)> 2, words))

print out longer words
for word in longerwords:
print (word)

Determining the Frequency

The trick to decrypting historical ciphers using cryptanalysis relies on being
able to determine the frequency of letters regardless of their encryption state.
In the next example, you will see how to examine the frequency of letters
used in text. The online provided file, ch4_encrypted.txt, is encrypted with
a computer-generated key that represents the letters of the alphabet. From our
previous lessons, you learned that the most common letters include E, T, A, O,
I, N. Armed with this, you can start examining the frequency of letters in text

Chapter 4 = Cryptographic Math and Frequency Analysis

127

and if the words are not readable in English, you can start swapping the most
common letters with the frequency key of letters produced by the following code:

import urllib.request, random, ssl

import operator

def

def

def

getLetterFregs (text) :
frequency = {}
for ascii in range(ord('a'), ord('a')+26):

frequency [chr (ascii)] = float (text.count (chr (ascii)))/len(text)
sum_fregs_squared = 0.0
for ltr in frequency:

sum_fregs squared += frequency[ltr]*frequency[ltr]
return sum_ fregs squared

getFitnessScore (message) :
lower = message.lower ()
score = 0.0
for word in longerwords:

wordWeight = lower.count (word)

if wordWeight>0:

score += wordWeight * 50 * len(word)

return score

getFregKey (text) :

frequency = {}

message = text.lower ()

normal fregs = {'a': 0.080642499002080981, 'c': 0.026892340312538593, 'b':

0.015373768624831691, 'e': 0.12886234260657689, 'd': 0.043286671390026357, 'g':
0.019625534749730816, 'f': 0.024484713711692099, 'i': 0.06905550211598431, 'h':
0.060987267963718068, 'k': 0.0062521823678781188, 'j': 0.0011176940633901926, 'm':
0.025009719347800208, 'l': 0.041016761327711163, 'o': 0.073783151266212627, 'n':
0.069849754102356679, 'g': 0.0010648594165322703, 'p': 0.017031440203182008, 's':
0.063817324270355996, 'r': 0.06156572691936394, 'u': 0.027856851020401599, 't':
0.090246649949305979, 'w': 0.021192261444145363, 'v': 0.010257964235274787, 'y':
0.01806326249861108, 'x': 0.0016941732664605912, 'z': 0.0009695838238376564}
tolerance = .013

for ascii in range(ord('a'), ord('a')+26):
frequency[chr (ascii)] = message.count (chr (ascii))
sorted_x = sorted(frequency.items(), key=operator.itemgetter (1),

reverse=True)

print (sorted_x)
sortedkey = ""

128 Chapter 4 = Cryptographic Math and Frequency Analysis

for 1 in range(0, len(sorted x)):
sortedkey += sorted x[i] [0]
return sortedkey

def getTextOnly (text) :

Strip out all non-alphabet characters

There are a number of ways to do this but this is the simplest to
understand

modifiedText = str(text.strip())

modifiedText = modifiedText.replace(" ", "")

modifiedText = " ".join(modifiedText.split())

modifiedText = modifiedText.lower ()

return modifiedText

encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master//ch4 encrypted.txt"

commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en words.txt"

ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

response = urllib.request.urlopen (encryptedFilePath, context=ssl.
create unverified context())

readText = response.read()

cipherText = getTextOnly (readText)

create URL request

response = urllib.request.urlopen (commonWordsPath, context=ssl. create
unverified context ())

readText = response.read()

the file is in a binary format, decode
fileOfWords = readText.decode('utf-8"')

create an array for each word
words = fileOfWords.split ()

filter out the shorter words
longerwords = list(filter(lambda x: len(x)> 2, words))

keys = []
frequency = {}
frequency = getlLetterFregs (cipherText)

print ("Frequency of the cipherText: ", frequency)
print ()

Chapter 4 = Cryptographic Math and Frequency Analysis

129

keys = getFregKey (cipherText)
print ()

print ("Frequency key: ", keys)
print ()

Figure 4.9 shows the frequency analysis of an encrypted file that is downloaded
from a specific location. Using the common English words as a decryption tool,
the code listing will use the frequency occurrence of the letters to build a fre-
quency key that can be used to decrypt the file.

Frequency of the cipherText: 0.86542348691194181

[('p", €6), ("c', 63), ('u', 49), ('x', 46), ('y', 46), ('w', 43), ('3', 37), ('k’, 37), ('b', 32), ('g", 28), ('d’, 23)
, ('e', 22), ('h’, 18), ('n’, 14), ('1°, 13), ('q', 22), ('2', 12}, ('m’, 10), ('a°, 8), ('i’, 8), ('t’, 7), (*f', 3}, (
‘e’ 1), ('s', 1), (°r', @), ('v', @)]

Frequency key: pcuxywjkbgdohnlgzmaitfesrv

Press any key to continue . . .

Figure4.9: online example fa.py

Breaking the Vigeneére Cipher

When it comes to using cryptanalysis on historical crypto schemes, such as the
Vigenere cipher, frequency analysis is essential. Here is a trick that program-
matically detects when your text looks plain.

The sum of the frequencies squared is always going to be near .065 when
the text has the same distribution as most English language text. In symbols,
that is ¥?°,_, p% = 0.065, where p; is the rate of character i in standard English
text. When you check for the squared sum of the frequencies of characters in
encrypted text, you'll know if your text has been substituted in some way or
another.

The following program will build on what you have already learned and will
download an encrypted file. You should find that the frequency score for the
text is around .04. Without opening the file, you would know that it is either
not in English or that the contents have been encrypted:

import urllib.request, random, ssl
import operator

def getLetterFreqgs (text) :
frequency = {}
for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (text.count (chr(ascii)))/len(text)

130 Chapter 4 = Cryptographic Math and Frequency Analysis

sum_fregs_squared = 0.0
for ltr in frequency:

sum_fregs_ squared += frequency[ltr]*frequency[ltr]
return sum_fregs_squared

def getTextOnly (text) :

Strip out all non-alphabet characters

There are a number of ways to do this but this is the simplest to
understand

modifiedText = str(text.strip())

modifiedText = modifiedText.replace(" ", "")

modifiedText = " ".join(modifiedText.split())

modifiedText = modifiedText.lower ()

return modifiedText

def getEncryptedData() :
encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/encryptedmoby.txt"

response = urllib.request.urlopen (encryptedFilePath, context=ssl._
create_unverified context())

readText = response.read()

textOnly = getTextOnly (readText)

return textOnly

cipherText = getEncryptedData ()

fregScore = getLetterFregs (cipherText)

print ()

print ("The frequency score for this file is: ", fregScore)
print ()

In something like this Vigeneére cipher with a key length of 10, you won't get
the nice 0.065 number from the text because there are 10 distinct shifts going on.
But if you only look at every 10th character, you should see the 0.065 squared
frequency property! When you isolate your search to every tenth character the
problem is reduced to your first shift cipher attack (which we can even detect
using the p; x q;,; analysis).

Now what if you didn't know the key length? Well, if you know that this
polyalphabetic cipher is the one being used, then you can start testing poten-
tial key lengths looking for the 0.065 rate along the subsequences. Pretend the
key length is 1 and check for .065, then try looking in every other character for
.065, then every third character, and so on until you find the key length. After
that, you can find the shift sequence/key.

Chapter 4 = Cryptographic Math and Frequency Analysis

131

Examine the following program, which will predict the length of the key
used to encrypt the text using the Vigeneére cipher:

import urllib.request, random, ssl

import operator

def

def

getLetterFregs (text) :
frequency = {}
for ascii in range(ord('a'), ord('a')+26):

frequency [chr (ascii)] = float (text.count (chr (ascii)))/len(text)
sum_fregs_squared = 0.0
for ltr in frequency:

sum_fregs squared += frequency[ltr]*frequency[ltr]
return sum_ fregs squared

getTextOnly (text) :
Strip out all non-alphabet characters
There are a number of ways to do this but this is the simplest to

understand

def

modifiedText = str(text.strip())

modifiedText = modifiedText.replace("™ ", "")
modifiedText = " ".join(modifiedText.split())
modifiedText = modifiedText.lower ()

return modifiedText

getEncryptedData() :
encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/

AppliedCryptoPython/master/encryptedmoby.txt"

response = urllib.request.urlopen(encryptedFilePath, context=ssl.

create_unverified context ())

def

def

readText = response.read()
textOnly = getTextOnly (readText)
return textOnly

getFitnessScore (message, longerwords) :

score = 0.0
for word in longerwords:
wordWeight = message.count (word)
if wordWeight>0:
score += wordWeight * 50 * len (word)
return score

getDictionary () :

132 Chapter 4 = Cryptographic Math and Frequency Analysis

commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en words.txt"
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

create URL request

response = urllib.request.urlopen (commonWordsPath, context=ssl.
create_unverified context())

readText = response.read()

the file is in a binary format, decode
fileOfWords = readText.decode('utf-8')

create an array for each word
words = fileOfWords.split ()

filter out the shorter words
longerwords = list(filter(lambda x: len(x)> 2, words))

return longerwords

def getKeyLength (encryptedText) :
highest = 0;
highCtr = 0;
encryptedText = encryptedText.lower ()
for KeyLength in range(1,26):
sampling = encryptedText [::KeyLength]
fregCheck = getFregs (sampling)
if highest < fregCheck:
highest = fregCheck
highCtr = KeyLength

return highCtr

def getFregs (text) :
frequency = {}

for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (text.count (chr(ascii)))/len(text)
sum_fregs squared = 0.0

for ltr in frequency:
sum_fregs squared += frequency[ltr]*frequency[ltr]
return sum_fregs_squared

myDictionary = getDictionary()

cipherText = getEncryptedData ()

fregScore = getLetterFregs (cipherText)

fitScore = getFitnessScore (cipherText, myDictionary)
keyLength = getKeyLength (cipherText)

Chapter 4 = Cryptographic Math and Frequency Analysis

133

print ()

print ("The frequency score for this file is: ", fregScore)
print ()

print ("The fitness score for this file is: ", fitScore)
print ()

print ("The key length for this file is: ", keyLength)

print ()

Figure 4.10 shows the initial frequency and fitness score of the file; based
on this the output specifies the determined key length that should be used to
crack the encryption.

The frequency score for this file is: @.839258265526867064
The fitness score for this file is: 11968@0.8
The key length for this file is: 16

Press any key to continue . . .

Figure 4.10: Vigenere break.py

Now that we can determine the length of the key, we can use the knowledge
we gained on cracking Caesar ciphers and apply it to cracking the Vigeneére
cipher. When we examine every letter that is in a specific position, we can use
frequency analysis to find the best letter for each position.

The following program may take up to 20 minutes but should reveal the secret
key used to encrypt the file:

import urllib.request, random, ssl
import operator

from itertools import cycle

from functools import reduce

def shiftBy(c, n):
shift = chr(((ord(c) - ord('a') + n) % 26) + ord('a'))
return shift

def getLetterFregs (text) :
frequency = {}
for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (text.count (chr(ascii)))/len(text)

sum_fregs_squared = 0.0
for ltr in frequency:

sum_fregs_squared += frequency[ltr]*frequency[ltr]
return sum_fregs_squared

134

Chapter 4 = Cryptographic Math and Frequency Analysis

def getTextOnly (text) :

Strip out all non-alphabet characters

There are a number of ways to do this but this is the simplest to
understand

modifiedText = str(text.strip())

modifiedText = modifiedText.replace(" ", "")

modifiedText = " ".join(modifiedText.split())

modifiedText = modifiedText.lower ()

return modifiedText

def getEncryptedDatal() :
encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/encryptedmoby.txt"

response = urllib.request.urlopen (encryptedFilePath, context=ssl._
create_unverified context())

readText = response.read()

readText = readText.decode ('utf-8"')

textOnly = getTextOnly (readText)

return textOnly

def getFitnessScore (message, longerwords) :

score = 0.0
for word in longerwords:
wordWeight = message.count (word)
if wordWeight>0:
score += wordWeight * 50 * len(word)
return score

def getDictionary() :

commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common en words.txt"
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

create URL request

response = urllib.request.urlopen (commonWordsPath, context=ssl._
create_unverified context())

readText = response.read()

the file is in a binary format, decode
fileOfWords = readText.decode('utf-8')

create an array for each word
words = fileOfWords.split ()

filter out the shorter words
longerwords = list(filter (lambda x: len(x)> 2, words))

Chapter 4 = Cryptographic Math and Frequency Analysis

135

def

def

def

return longerwords

getKeyLength (encryptedText) :
highest = 0;
highCtr = 0;
encryptedText = encryptedText.lower ()
for KeyLength in range(1,26):
sampling = encryptedText [::KeyLengthl]
fregCheck = getFregs (sampling)
if highest < fregCheck:
highest = freqCheck
highCtr = KeyLength

return highCtr

getFregs (text) :
frequency = {}
for ascii in range(ord('a'), ord('a')+26):
frequency [chr (ascii)] = float (text.count (chr(ascii)))/len(text)

sum_fregs_squared = 0.0
for ltr in frequency:

sum_fregs squared += frequency[ltr]*frequency[ltr]
return sum fregs squared

decryptIndex (keys, ciphertext) :
"""Decrypt the string and return the plaintext"""

key = nn
ALPHA = 'abcdefghijklmnopgrstuvwxyz'
ciphertext = ciphertext.upper ()

ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for i in range(len(keys)) :
key = key + chr(keys[i] + 65)

pairs = list(zip(ciphertext, cycle(key)))

result = '!'

for pair in pairs:
total = reduce(lambda x, y: ALPHA.index(x) - ALPHA.index(y),

pair)

def

result += ALPHA[total % 26]
return result

findKeyPos (message, keyLength, keyPos) :
frequency = {}

allKeys = []

return_key = 0

tolerance = .01

136

Chapter 4 = Cryptographic Math and Frequency Analysis

normal fregs = {'a': 0.080642499002080981, 'c':

.015373768624831691, 'e': 0.12886234260657689, 'd':
.019625534749730816, 'f': 0.024484713711692099, 'i':
.060987267963718068, 'k': 0.0062521823678781188, 'j':

.025009719347800208, 'l1': 0.041016761327711163,

0

0

0

0 'o':
0.069849754102356679, 'g': 0.0010648594165322703, 'p':
0

0

0

.063817324270355996, 'r': 0.06156572691936394, 'u':
.090246649949305979, 'w': 0.021192261444145363, 'v':

.01806326249861108, 'x': 0.0016941732664605912, 'z':

lowerMessage = message.lower ()

sampling = lowerMessage [keyPos: :keyLength]
for ascii in range(ord('a'), ord('a')+26):

frequency [chr (ascii)] =
len (sampling)

sum_fregs_squared = 0.0
for ltr in frequency:

0.026892340312538593, 'b':
0.043286671390026357, 'g':
0.06905550211598431, 'h':
0.0011176940633901926, 'm':
0.073783151266212627, 'n':
0.017031440203182008, 's':
0.027856851020401599, 't':
0.010257964235274787, 'y':

0.0009695838238376564}

float (sampling.count (chr (ascii)))/

sum_fregs_ squared += frequency[ltr]*frequency[ltr]

for possible key in range (1, 26):
0.0

for ltr in normal_ fregs:

sum_f sqgr =

caesar_guess =
fregCalc =
sum_f sqr += freqgCalc
engValue = abs(sum _f sgr - .065)
if engValue < tolerance:
allKeys.append (possible_key)

return allKeys

def getKey(encrypted, kl, dictionary) :
keys = []

testKey = []

defaultKey = []

for i in range (0,kl):

keyPos = findKeyPos (encrypted, 16,1)
answerLen = len (keyPos)
answerIndex = 0

if answerLen > 1:
defaultKey =
testKey =

keys|[:]

keys|[:]
defaultKey.append (keyPos[0])
decrypted =

shiftBy (1ltr, possible_key)

normal_ fregs[ltr] *frequency[caesar guess]

decryptIndex (defaultKey, encrypted)

Chapter 4 = Cryptographic Math and Frequency Analysis

137

defaultScore = getFitnessScore (decrypted, dictionary)
for a in range (1, answerlen) :
testKey.append (keyPos [a])
decrypted = decryptIndex(testKey, encrypted)
testScore = getFitnessScore (decrypted, dictionary)
if testScore > defaultScore:
answerIndex = a
defaultKey = testKey

keys.append (keyPos [answerIndex])
fullKey = ""
for i in range(len (keys)):
fullKey = fullKey + chr(keys[i] + 65)

fullKey = ""
for i in range(len(keys)):
fullKey = fullKey + chr(keys[i] + 65)

return (fullKey)

myDictionary = getDictionary ()

cipherText = getEncryptedData ()

fregScore = getLetterFregs (cipherText)

fitScore = getFitnessScore (cipherText, myDictionary)
keyLength = getKeyLength (cipherText)

decryptKey = getKey(cipherText, keyLength, myDictionary)

print (
print ("The frequency score for this file is: ", fregScore)
print (
print ("The fitness score for this file is: ", fitScore)
print ()

print ("The key length for this file is: ", keyLength)
print
print ("The decryption key for this file is: ", decryptKey)

print

Figure 4.11 shows the output of an encrypted Moby Dick file and uses frequency
analysis to find the frequency, fitness score, and key length to decrypt the file.

The frequency score for this file is: ©.839258416716995266
The fitness score for this file is: 1196868.8
The key length for this file is: 16

1

=

e decryption key for this file is: YKVWVPLXDDRSNHCT

Press any key to continue . . .

Figure 4.11: Vigenere crypto.py

138

Chapter 4 = Cryptographic Math and Frequency Analysis

Summary

This chapter was fairly heavy on the important mathematical concepts you
need to break classical ciphers. You may find yourself referring to this chapter
several times as you progress through the remaining chapters. Before moving
on to the next chapter, make sure you have a pretty good understanding of
modular arithmetic and how to find the inverse. In addition, you should have
an understanding of basic group theory, the Chinese remainder theorem, and
solving linear equations. A number of Python libraries are available that will
simplify a great deal of the concepts offered in this chapter. It is vital that you
remember the importance of using cryptographically secure pseudorandom
generators and also understand how to determine the random number gen-
eration that is offered using C’s rand() function. Frequency analysis will be
your greatest ally. As you generate decryption keys, knowing how frequency
analysis works will help you decrypt many of these ciphers without knowing
the keys or key lengths.

We will be continuing our exploration of cryptanalysis as you progress through
the remaining chapters, but you should have a good understanding of how to
decrypt a wide variety of cryptographic schemes.

Stream Ciphers and Block Ciphers

In this chapter, you'll learn the means of support of the entire cryptographic
world. You will learn how to encrypt and decrypt messages with a shared secret,
which is how the vast majority of today’s encryption on the Internet functions. In
fact, encryption is used every day using techniques you'll learn in this chapter.
This chapter introduces you to the development of stream ciphers, block ciphers,
and cryptographically secure pseudorandom number generators. You'll gain
an understanding of some of the analyses of the underlying algorithms and the
best attacks that exist in the real world. You'll also learn the amount of security
you must build in, based on the client you are serving, and how long it needs to
stay secure. You'll walk away with being able to randomize every message you
send, which will help you build a solid career in cryptography. Through this
chapter, you'll gain cryptographic knowledge as you do the following;:

m [earn how to convert between hexdigest and plaintext

m Gain an understanding of stream ciphers and CSPRNGs

m [earn about block ciphers

m Explore various modes of encryption and their weaknesses

m Gain an understanding of blocks as streams

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

139

140

Chapter 5 = Stream Ciphers and Block Ciphers

Convert between Hexdigest and Plaintext

Before we dive into stream and block ciphers, I will show you some of the harder
bits that involve the conversion between hexdigest and plaintext. To perform the
conversions in Python, you'll use the binascii library. The binascii module pro-
vides several methods to convert between ASCII-ended binary expressions and
binary. It comprises low-level functions written in C for superior performance.
In this section, you will learn about hex1ify and unhex1ify, modules in the
binascii library. Hex1ify returns the hexadecimal representation; each byte
of data converts into a two-digit hex representation. The output results in the
returned hexadecimal being twice the length of the data passed into the hex-
1ify function. The following code converts the string “apples are red” to its
hexadecimal representation. You will find that the length of the value referenced
by passhex is twice the size of the value referenced by the password variable.

import binascii
password = b"apples are red"
print (password)

apples are red

>>> passhex = Dbinascii.hexlify (password)
>>> print (passhex)
b'6170706c65732061726520726564 "

>>> print (len (password))
14
>>> print (len (passhex))
28

You probably noticed that the first two digits of the passhex variable equal
61; you can look up the code, hex, and characters in an ASCII table. To demon-
strate how to convert from characters, code, and hex, examine the following
Python code:

>>> passhex
b'6170706c65732061726520726564 "
>>> print (ord('a'))

97

>>> print (hex(97))

0x61

>>> print (format (ord('a'), 'x'))
61

The binascii function unhex1ify, which takes a hexadecimal string as a
parameter, is the inverse. As you might imagine, the hexadecimal string must

Chapter 5 = Stream Ciphers and Block Ciphers

141

contain an even number of hexadecimal digits. Since the output of the hexlify
function returns twice the length, unhex1ify returns half the length. Here’s
an example of using unhex1ify to convert back to binary from hexadecimal:

>>> unpasshex = binascii.unhexlify (passhex)
>>> unpasshex
b'apples are red'

Furthermore, Python allows you to use an x escape character to convert from
hexadecimal back to plaintext, as shown here:

>>> hx = '\x61'

>>> hx

g

Use Stream Ciphers

Let’s now start exploring private-key cryptography by looking at what stream
ciphers are and then examine them as a combination of the one-time pad (OTP)
and cryptographically secure pseudorandom number generators (CSPRNGs).
The concepts of the OTP that make it perfectly secure are what you capitalize
on to make a more robust cipher. As you may recall from Chapter 2, the one-
time pad takes a message of 1 bits and a uniformly random secret key of the
same length and generates a ciphertext by bitwise XOR. The encryption and
decryption methods are identical operations.

When you examine the elegance of the OTP, you will undoubtedly see its
weaknesses as well:

= You must arrange a key exchange between the sender and receiver of the
message; this is true in all symmetric schemes.

= You can use the key only once.

m The key length is equal to the message length; if you have a way to send
the key securely, then perhaps you could have just sent the message.

You could resolve one of the most significant OTP problems if both parties
could generate keys on the fly with the other party. Ideally, both parties would
use an unpredictable pseudorandom number generator that would start from
the same seed and generate a uniformly random stream of noise that acts like
the one-time pad key. As you witnessed in the previous chapter, PRNGs can
be predictable and therefore can be cracked. Thus, we need to find improved
cryptographically secure pseudorandom number generators.

The goal of this section is to guide you through the creation of your first
“do it yourself” stream cipher. We will utilize an insecure stream cipher as an

142

Chapter 5 = Stream Ciphers and Block Ciphers

experiment to gain an understanding of the underlying mechanics. Once you
complete it, you should feel comfortable with the use of XOR, seeds, and the
general structure of a stream cipher. This section builds the base in which we
add improvements with true security in mind.

In building your first stream cipher, you take the idea of the one-time pad
mixed with the convenience of PRGN to create an encryption scheme. Since
we haven't explored any nonbreakable PRNGs yet, we will work with an inse-
cure one, but the mechanics are identical when you have a more secure source
of pseudorandom bits. It is important to know that since you want to use the
stream cipher to work on real-world data, it is going to have to encrypt ASCII
characters, which means you need to think about the use of random bytes more
than the use of random bits. It is not much of a change, but it is worth mentioning.

To start, we select the ¢ rand() function as our PRNG since we have code for
it from Chapter 4. It generates 31 bits at a time (the numbers are mod 2*'), and
you want 8 bits at a time. For the sake of this example, use the lowest 24 bits of
each number that comes out and generate three bytes of randomness for our
stream. Using these guidelines, this should allow you to generate a convention
that matches the partner with which you are communicating. A rand()-generated
number might look like temp = 2158094741372. If you want three bytes of ran-
domness from that, you could follow these steps:

>>> temp = 2158094741372
>>> temp % 2**8

124

>>> (temp >> 8) % 2**8
111

>>> (temp >> 16) % 2**8
120

The code should produce three numbers uniformly chosen between 0 and
255. Now let’s write our own simple PRNG function. It should produce four
output numbers, [1471611625, 1204518815, 463882823, 963005816]:

def crand(seed) :
r=[]
r.append (seed)
for i in range(30):
r.append ((16807*r[-1]) % 2147483647)
if r[-1] < 0:
r[-1] += 2147483647
for i in range (31, 34):
r.append(r[len(r)-31])
for i in range (34, 344):
r.append((r[len(r)-31] + rl[len(r)-3]) % 2**32)
while True:
next = r[len(r)-31l]l+r[len(r)-3] % 2**32

Chapter 5 = Stream Ciphers and Block Ciphers

143

r.append (next)
yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)

mygen = crand(2018)

firstfour = [next (mygen) for i in range (4)]
print firstfour

[1471611625, 1204518815, 463882823, 963005816]

Now that you have your PRNG producing a predictable output, let’s take the
message “Hello world!” using the secret seed of 2018. We'll take the bytes in
largest to smallest order for convenience, as shown here:

import binascii
def crand(seed) :
r=[]
r.append (seed)
for i in range(30):
r.append((16807*r[-1]) % 2147483647)
if r[-1] < O:
r[-1] += 2147483647

for i in range (31, 34):
r.append (r[len(r)-31])
for i in range (34, 344):
r.append((r[len(r)-31] + rl[len(r)-3]) % 2**32)

while True:
next = r[len(r)-31]+r[len(r)-3] % 2**32
r.append (next)
yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)

mygen = crand(2018)
rands = [next(mygen) for i in range(4)]
plaintext = b"Hello world!"

hexplain = binascii.hexlify(plaintext)
hexkey = "".join(map (lambda x: format(x, 'x')[-6:], rands))

A

cipher as_int = int (hexplain, 16) int (hexkey, 16)

cipher as hex = format (cipher as_int, 'x')

Armed with what you have learned thus far, can you find the original mes-
sage to the following?

Hex: eb5d8443c6ac32d3ee5c7398ecf7£9e03£619
Seed: 54321

If you get stuck, you can find the solution in the ch5_decrypt file on this
book’s website.

One crucial concept you'll now explore is the use of the nonce, also called
the initialization vector (IV). These concepts, which would have been monu-

144

Chapter 5 = Stream Ciphers and Block Ciphers

mental during World War II, are the encryption version of a salt and save us
from the inherent risks of a user sending the same message several times. You
have explored how to fix one flaw of the one-time pad by generating a key that
is the same length as the message; you still cannot use the same key multiple
times. Two possible fixes could include the following:

m Do not restart the PRNG: Not restarting the PRNG requires both sides
to carefully coordinate with each other so that they stay at the same part
of the communication stream on the encryption and decryption side; this
could offer challenges if some messages are lost in transit or if there are
parallel message-sending channels.

m Use some public randomness to change the secret key effectively: This
idea is that you generate, from a true entropy source, a nonce. A nonce is
a one-time set of random bytes that mingles with the private key to change
the output of the encryption scheme.

The ultimate goal of this is to allow you to send the same message 100 times
in a row, with the same private key, and each time it would look entirely random
and uncorrelated. From here on out, your goal is to use a nonce/IV so that the
same message is never encrypted the same way twice. Most computers have a
source of randomized bytes from entropy that we can pull data from to build
random bytes. They pool sources of entropy like temperature, user actions, tim-
ings, and other unique factors. This information is then used by CSPRNGs to
turn that entropy into uniform random bytes. A poorly generated key or initial
seed will cripple even the most secure CSPRNG.

In the previous encryption scheme, you created a PRNG function along with a
secret seed. Now we begin by generating a nonce so that when you are encrypt-
ing a message, you first generate some entropy bytes that pass along with the
ciphertext. The nonce should be sent in the clear, so it should look random. To
generate six bytes of noise, use the following Python code:

import os
nonce = os.urandom(6)
print (nonce)

Ideally, you need a convention to translate the nonce and your secret key
(54321) into a new seed or key. Other schemes may have their ways of letting
the nonce interact with the scheme; in this case, changing the seed is excellent
for learning the concepts. The method presented here will be to concatenate
the nonce and the secret key (as hex), then to apply the SHA256 hash function
to those bytes (not hex), and take the lowest 32 bits as the new seed.

Here is what the Python looks like:

import os, hashlib, binascii
nonce = os.urandom(6)

Chapter 5 = Stream Ciphers and Block Ciphers 145

hexnonce = binascii.hexlify (nonce)

oursecret = 54321

concatenated hex = hexnonce + format (oursecret, 'x')

even length = concatenated hex.rjust (len(concatenated hex) +
len(concatenated hex) % 2, '0')

hexhash = hashlib.sha256 (binascii.unhexlify(even length)) .hexdigest ()
newseed = (int (hexhash, 16)) % 2**32

print (newseed)

To get a consistent key on both the sending and receiving side, we directly
pass the nonce. To test this, replace the previous nonce with “cc4304c0%aee” and
keep the original seed of 54321. The new seed that generates should equate to
“3336748862.” Now you need a system for sending the nonce in your ciphertext.
If you have the first six bytes as nonce bytes and the remaining bytes as the
ciphertext, you can pass everything in the same message. Since the underlying
generator is C’s rand function, the encryption is still not strong enough to pro-
tect any secrets, but it is much stronger than it was.

Knowing the first six bytes are nonce bytes, here is a new challenge for you:

Secret Key: 61983
Message: 3e08816£f1377£89f1c596£fc197dd52946c92577bfd7c25¢c3

If you get stuck, you can find the solution in the ch5_decrypt2 file on this
book’s website.

Answer: Seed is 42847799; the message is 'this is a message.'

Ideally, by now, you are gaining an understanding of how stream ciphers
work. Stream ciphers are generally not as secure or well-understood as block
ciphers (which we study next). In software, you will most likely deal with
block ciphers, though there are tools such as Wireguard which will use stream
ciphers. Wireguard is a software VPN protocol that uses the ChaCha20 stream
cipher; you will learn more about ChaCha20 later in this chapter. So, while some
tools may use stream ciphers, stream ciphers play a more significant role in the
hardware ecosystem. With space-constrained devices that need encrypted data
streams, we need fast hardware implementations that encrypt bit-by-bit. So,
as you code these, imagine the hardware version. As outlined in the previous
section, the encryption schemes are still not strong enough to protect any clas-
sified data. In this part, you examine a full-strength encryption scheme called
Trivium. Bart Preneel and Christophe De Canniere created it and submitted
it to the eSSTREAM competition. eESTREAM is a project that was organized by
the EU Ecrypt network to help identify new stream ciphers that may be suit-
able for widespread adoption. The project began in November 2004 and com-
pleted in April 2008. It is designed to provide a reasonably efficient software
encryption implementation and is specified as an International Standard under
ISO/IEC 29192-3.

146

Chapter 5 = Stream Ciphers and Block Ciphers

In Chapter 4, you first learned about pseudorandomness. A linear-feedback
shift register (LFSR) is an algorithm for generating pseudorandom numbers.
The sequence of pseudorandom numbers generated by an LFSR can be used as
the one-time pad for an encryption algorithm. However, it has a major weak-
ness: the numbers generated are periodic, and an attacker can figure out the key
using a known plaintext attack. In the previous section, you used a PRNG to
make a stream cipher. The next level of complexity that you can utilize would
be something similar to the Trivium stream cipher, which uses a CSPRNG that
generates one bit at a time. It tries to make the LFSR idea more secure by hav-
ing multiple registers that interfere with each other. The intuitive notion is that
LFSRs yield to linear algebra, so let’s add just enough complexity to be nonlinear.
Figure 5.1 represents a schematic of a three-register Trivium implementation.

Cell 1 | Cell 93]
<> > 1 66| |69 01203 ,C)
. Cellf | | Ccellss
f\ 1 69 78 82(83/84 >N >N
L L Y Output
Jan
N
Cell 1 | Cell 111
’CD > 1 66 87| 109|11011| '<>

Figure 5.1: Three-register representation of Trivium

When looking at Figure 5.1, you see it as three separate registers that each
produce their own output. The final output bit is the XOR of all three output bits.
The output of each register is also used to help form the input of another register.

For the initialization, to kick-start Trivium, it accepts two inputs: an 80-bit
key and an 80-bit IV. The 80-bit key is loaded into the leftmost 80 bits of the first
register. The 80-bit IV is loaded into the leftmost 80 bits of the second register.
Finally, the final 3 bits of the third register are set to 1 (the rightmost bits).

The stream is then run 4 x 288 times with the output discarded; this is now
the opening state.

Let’s do the first (tossed-out) run using an all 1 key and an all 1 IV, to show the
idea. Bits 1-80 are all 1, bits 94-173 are all 80, and bits 286288 are all 1; every-
thing else is 0. The first output bit is an XOR of three different bits, so let’s look

Chapter 5 = Stream Ciphers and Block Ciphers

147

at the first register. The output of register 1 is the XOR of bit 66 (1) and bit 93
(0), which is 1. Register 2’s output is bit 162 XOR bit 177, which is also 1. Finally,
register 3 is the XOR of bit 288 (1) and bit 243 (0), so also a 1. Thus, the first
output is 1. Now everything must slide, so let’s look at the feedback. The input
to register 2 is the XOR of bit 171 (1) and the XOR of that first register’s output
bit (1) and the product of bits 91 and 92 (0), so 1 + 1 + 0 = 0 is the new input bit
to register 2. All the other bits in register 2 slide one to the right. (Register 2 is
now 0 in bit 94, 1 in bits 95-174, and 0 everywhere else.) Likewise, you can trace
that the new input bit of register 3 is a 1. The new input bit for register 1 is a 0.

Now that we have introduced stream ciphers, you can examine some addi-
tional stream ciphers, namely, ARC4, Vernam, Salsa20, and the ChaCha20 ciphers.
Both the Salsa20 and the ChaCha20 are similar in nature as they were created
by the same author.

ARC4

The RC4 stream cipher was created by Ron Rivest in 1987. RC4 was classified as
a trade secret by RSA Security but was eventually leaked to a message board
in 1994. RC4 was originally trademarked by RSA Security so it is often referred
to as ARCFOUR or ARC4 to avoid trademark issues. ARC4 would later become
commonly used in a number of encryption protocols and standards such as SSL,
TLS, WEP, and WPA. In 2015, it was prohibited for all versions of TLS by RFC
7465. ARC4 has been used in many hardware and software implementations.
One of the main advantages of ARC4 is its speed and simplicity, which you will
notice in the following code:

Implement the ARC4 stream cipher. - Chapter 5

def arc4crypt (data, key):
x =0
box
for

range (256)
in range(256) :
= (x + box[i] + ord(key[i % len(key)]l)) % 256

XoR-

swap range objects

box = list (box)

box[i], box[x] = box[x], box[il
0

0

out = []

for char in data:
x = (x + 1) % 256
y = (v + box[x]) % 256

148 Chapter 5 = Stream Ciphers and Block Ciphers

box [x], box[y] = boxl[y], box[x]
out .append (chr (ord (char) * box[(box[x] + box[yl) % 2561))

return ''.join(out)
key = 'SuperSecretKey!!'
origtext = 'Dive Dive Dive'
ciphertext = arc4crypt (origtext, key)

plaintext = arc4crypt (ciphertext, key)

print ('The original text is: {}'.format (origtext))

(
print ()
print ('The ciphertext is: {}'.format (ciphertext))
print ()
print ('The plaintext is {}'.format (plaintext))
print ()

The ARC4 example should produce the same output that you see in Figure 5.2.

The original text is: Dive Dive Dive
The ciphertext is: °WU' »Z~F@a-IW
The plaintext is Dive Dive Dive

Press any key to continue . . .

Figure 5.2: ARC4 stream cipher

Vernam Cipher

The Vernam cipher was developed by Gilbert Vernam in 1917. It is a type of one-
time pad for data streams and is considered to be unbreakable. The algorithm
is symmetrical, and the plaintext is combined with a random stream of data of
the same length using the Boolean XOR function; the Boolean XOR function is
also known as the Boolean exclusive OR function. Claude Shannon would later
mathematically prove that it is unbreakable. The characteristics of the Vernam
cipher include:

m The plaintext is written as a binary sequence of Os and 1s.

m The secret key is a completely random binary sequence and is the same
length as the plaintext.

m The ciphertext is produced by adding the secret key bitwise modulo 2 to
the plaintext.

Chapter 5 = Stream Ciphers and Block Ciphers

149

One of the disadvantages of using an OTP is that the keys must be as long as
the message it is trying to conceal; therefore, for long messages, you will need
a long key:

def VernamEncDec (text, key):
result = "";
ptr = 0;
for char in text:
result = result + chr(ord(char) * ord(keylptrl));
ptr = ptr + 1;
if ptr == len(key):
ptr = 0;
return result

key = "thisismykeyl2345";

while True:
input text = input ("\nEnter Text To Encrypt:\t");
ciphertext = VernamEncDec (input text, key);
print ("\nEncrypted Vernam Cipher Text:\t" + ciphertext) ;
plainttext = VernamEncDec (ciphertext, key);
print ("\nDecrypted Vernam Cipher Text:\t" + plainttext);

Salsa20 Cipher

The Salsa20 cipher was developed in 2005 by Daniel Bernstein, and submitted to
eSTREAM. The Salsa20/20 (Salsa20 with 20 rounds) is built on a pseudorandom
function that is based on add-rotate-xor (ARX) operations. ARX algorithms are
designed to have their round function support modular addition, fixed rotation,
and XOR. These ARX operations are popular because they are relatively fast and
cheap in hardware and software, and because they run in constant time, and
are therefore immune to timing attacks. The rotational cryptanalysis technique
attempts to attack such round functions.

The core function of Salsa20 maps a 128-bit or 256-bit key, a 64-bit nonce/IV,
and a 64-bit counter to a 512-bit block of the keystream. Salsa20 provides speeds of
around 4-14 cycles per byte on modern x86 processors and is considered accept-
able hardware performance. The numeric indicator in the Salsa name specifies
the number of encryption rounds. Salsa20 has 8, 12, and 20 variants. One of the
biggest benefits of Salsa20 is that Bernstein has written several implementations
that have been released to the public domain, and the cipher is not patented.

150

Chapter 5 = Stream Ciphers and Block Ciphers

Salsa20 is composed of sixteen 32-bit words that are arranged in a 4x4 matrix.
The initial state is made up of eight words of key, two words of the stream posi-
tion, two words for the nonce/IV, and four fixed words or constants. The initial
state would look like the following:

Constant Key Key Key

Key Constant Nonce Nonce
Stream Stream Constant Key

Key Key Key Constant

The Salsa20 core operation is the quarter-round that takes a four-word input
and produces a four-word output. The quarter-round is denoted by the following
function: QR(a, b, ¢, d). The odd-numbered rounds apply QR(a, b, ¢, d) to each
of the four columns in the preceding 4x4 matrix; the even-numbered rounds
apply the rounding to each of the four rows. Two consecutive rounds (one for a
column and one for a row) operate together and are known as a double-round.
To help understand how the rounds work, let us first examine a 4x4 matrix
with labels from 0 to 15:

0 1 2 3
4 5 6 7
8 9 10 n
12 13 14 15

The first double-round starts with a quarter-round on column 1 and row
1. The first QR round examines column 1, which contains 0, 4, 8, and 12. The
second QR round examines row 1, which contains 0, 1, 2, 3. The second double-
round picks up starting at the second column and second row position (5, 9,
13, 1). The even round picks up 5, 5, 7, 4. Notice that the starting cell is the same
for each double-round:

DOUBLE-ROUND 1 DOUBLE-ROUND 3

QR(0, 4,8, 12) QR(10, 14, 2, 6)
QR(0,1,2,3) QR(10, 11,8,9)
DOUBLE-ROUND 2 DOUBLE-ROUND 4
QR(5,9, 13, 1) QR(15,3,7,11)
QR(5,6,7,4) QR(15, 12, 13, 14)

A couple libraries are available that will help simplify the Salsa20 encryption
scheme. You can access the salsa20 library by doing a pip install salsa20.

Chapter 5 = Stream Ciphers and Block Ciphers

151

Once you have the library installed, you can use the xsalsa20_keystream
to generate a keystream of the desired length, or you can pass any message
(plaintext or ciphertext) to have it XOR'd with the keystream. All values must
be binary strings that include str for Python 2 or the byte for Python 3. Here,
you will see a Python implementation of the salsa2o library:

from salsa20 import XSalsa20_xor

from os import urandom

IV = urandom(24)

KEY = b'*secret**secret**secret**gsecret*'

ciphertext = XSalsa20 xor (b"IT'S A YELLOW SUBMARINE", IV, KEY)
print (XSalsa20_xor (ciphertext, IV, KEY) .decode())

IT'S A YELLOW SUBMARINE

One of the reasons why you should be familiar with Salsa20 is that it is con-
sistently faster than AES. It is recommended to use Salsa20 for encryption in
typical cryptographic applications.

ChaCha Cipher

ChaCha is a modification of Salsa20 published by Bernstein in 2008. It uses a
new round function that increases diffusion and increases performance on
some architectures. The ChaCha cipher is a stream cipher that uses a 256-bit
key and a 64-bit nonce/IV. Currently the AES block cipher has a dominant role
in secret key encryption; in addition, many systems have started to implement
hardware acceleration for AES, thus adding to its growing adoption. With AES
owning the market share for secret key encryption, it would cause major issues
if AES becomes cryptographically insecure. AES has been shown to be weak
around cache-collision attacks; therefore, Google has proposed ChaCha20 as
an alternative and actively uses it within TLS connections. Currently ChaCha is
three times faster than software-enabled AES and, like Salsa20, is not vulnerable
to timing attacks. ChaCha operates by creating a keystream that is then XOR'd
with the plaintext and has been standardized with RFC 7539.

Some of the key differences between ChaCha and Salsa include improved dif-
fusion per round, which offers an enhanced resistance to cryptanalysis. ChaCha,
like Salsa20, builds a 4x4 matrix and adds the results to the original matrix to
obtain a 16-word or 64-byte output block. Three additional differences should
be noted. First, the ChaCha series permutes the order of words in the output
block to match the permutation; this is designed to save time on SIMD (single
instruction, multiple data) platforms but does not make any difference on speed
in other platforms. SIMD is a class of parallel computers that can perform the

152

Chapter 5 = Stream Ciphers and Block Ciphers

same operation on multiple data points simultaneously. Most modern-day CPU
designs include SIMD instruction to improve the performance of multimedia.

The second difference is that ChaCha builds the initial matrix with all attacker-
controlled input words at the bottom:

Constant Constant Constant Constant
Key Key Key Key

Key Key Key Key
Input Input Input Input

These constants are the same as in Salsa20. The first round of ChaCha adds
keys into the constants. The key words are copied in order; the input words are
the block counter followed by the nonce.

The third difference is that ChaCha processes through rows in the same order
in every round. The first round modifies first, fourth, third, second, first, fourth,
third, second along columns, and the second round modifies first, fourth, third,
second, first, fourth, third, second along southeast diagonals:

quarter_round
quarter_round
quarter_round
quarter round
quarter round

quarter round

(x0,x4,x8,x12)
x1,x5,x9,x13)
x2,%x6,x10,x14)
x3,x7,x11,x15)

x1,x6,x11,x12)

x2,x7,%x8,x13)
x3,x4,x9,x14)

(
(
(
(x0,x5,%x10,x15)
(

quarter round (

(

quarter_ round

The four quarter-round words are always in top-to-bottom order in the matrix.
A couple libraries are available that will offer ChaCha as an encryption scheme.
You may also elect to use a pure Python implementation. To implement ChaCha
using Python, use the following recipe:

nun

Implement the ChaCha20 stream cipher.

nun

import struct
import sys, os, binascii
from baseé64 import bé4encode

def yield chacha20_ xor stream(key, iv, position=0):
Generate the xor stream with the ChaCha20 cipher."""
if not isinstance(position, int):
raise TypeError
if position & ~Oxffffffff:
raise ValueError ('Position is not uint32.')
if not isinstance(key, bytes):

Chapter 5 = Stream Ciphers and Block Ciphers 153

raise TypeError
if not isinstance(iv, bytes):
raise TypeError
if len(key) != 32:
raise ValueError
if len(iv) != 8:
raise ValueError

def rotate(v, c):
return ((v << c¢) & OxEEffffff) | v >> (32 - ¢)

def quarter round(x, a, b, c, d):

x[al = (x[a] + x[b]) & Oxffffffff
x[d] = rotate(x[d] * x[a]l, 16)
x[c] = (x[c] + x[d]) & Oxffffffff
x[b] = rotate(x[b] * x[c]l, 12)
x[a]l = (x[a] + x[b]) & Oxffffffff
x[d] = rotate(x[d] * x[al, 8)
x[c] = (x[c] + x[d]) & Oxffffffff
x[b] = rotate(x[b] * xI[cl, 7)
ctx = [0] * 16
ctx[:4] = (1634760805, 857760878, 2036477234, 1797285236)
ctx[4 : 12] = struct.unpack('<8L', key)
ctx[12] = ctx[13] = position
ctx[14 : 16] = struct.unpack('<LL',6 iv)
while 1:

x = list(ctx)
for i in range(10) :

quarter_round(x, 0, 4, 8, 12)
quarter_round(x, 1, 5, 9, 13)
quarter_round(x, 2, 6, 10, 14)
quarter_round(x, 3, 7, 11, 15)
quarter_ round(x, 0, 5, 10, 15)
quarter round(x, 1, 6, 11, 12)
quarter_ round(x, 2, 7, 8, 13)
quarter_round(x, 3, 4, 9, 14)
for ¢ in struct.pack('<1l6L', *(

(x[1] + ctx[i]) & Oxffffffff for i in range(1l6))):

yield c
ctx[12] = (ctx[12] + 1) & Oxffffffff
if ctx[12] ==

ctx[13] = (ctx[13] + 1) & OxEffffffff

def chacha20_encrypt (data, key, iv=None, position=0) :
Encrypt (or decrypt) with the ChaCha20 cipher.
if not isinstance(data, bytes):
raise TypeError
if iv is None:
iv = b'\0o' * 8

154 Chapter 5 = Stream Ciphers and Block Ciphers

if isinstance (key, bytes):
if not key:
raise ValueError ('Key is empty.')
if len(key) < 32:
key = (key * (32 // len(key) + 1)) [:32]
if len(key) > 32:
raise ValueError ('Key too long.')

A

return bytes(a b for a, b in

zip(data, yield chacha20_xor stream(key, iv, position)))

def main() :
#key = os.urandom(32)
key = b'superSecretKey!!'
print ('The key that will be used is {}'.format (key))
print ()
plaintext = b'We all live in a yellow submarine.'
print ('The plaintext is {}'.format (plaintext))

iv = b'SecretIV'

print ()

enc = chacha20_encrypt (plaintext, key, iv)
decode_enc = b64encode (enc) .decode ('utf-8")

print ('The encrypted string is {}. '.format (decode enc))
print ()
dec = chacha20_encrypt (enc,key, iv)
print ('The decrypted string is {}. '.format (dec))
print ()

if name == "_ main_ ":

sys.exit (int (main() or 0)

The preceding code should produce output that looks similar to Figure 5.3.

The key that will be used is b'superSecretkey!!’

The plaintext is b'We all live in a yellow submarine.’

The encrypted string is CMVEnLRZIsVBBeR&9BKObO0sC45TOzE7uaBad/nsdvzBlGE==.
The decrypted string is b'We all live in a yellow submarine.’.

Press any key to continue . . .

Figure 5.3: Python implementation of ChaCha20

If you would like to use a prepackaged implementation, you can install
the chacha20ploy1305 library; you will need to perform a pip install
chacha20poly1350. Once you do, you can implement ChaCha20 using the fol-

lowing code:

import os
from chacha20polyl305 import ChaCha20Polyl1305

Chapter 5 = Stream Ciphers and Block Ciphers

155

generate a random key that has 32 bits
key = os.urandom(32)

print ('The key that will be used is {}'.format (key))
print ()

plaintext = b'Attack the yellow submarine.'

print ('The plaintext is {}'.format (plaintext))
print ()

generate a random IV that has 12 bits
iv = os.urandom(12)
cip = ChaCha20Poly1305 (key)

ciphertext = cip.encrypt(iv, plaintext)
print (ciphertext)
print ()

plaintext = cip.decrypt (iv, ciphertext)
print (plaintext)
print ()

The preceding use of the ChaCha20Poly1305 library should produce output

similar to Figure 5.4.

The key that will be used is b’\x87\xbb\x16\x850:\xc1\xbfA\x8b\x9a\xd8"xe800)xcO\x820Dn\x1f]~\x16F \xe7 \xc 7&\xa9Z\x98 xdc *
he plaintext is b'Attack the yellow submarine.'

pytearray(b* \xba[\x1d\xcd\x@fm~Fxe2\xc3\xc16H\xF8\xde 7\ xde \nf2vik\xbd; T[\xc@\xfa\xfauH\ xac \xF7Q\x1f_m\xfoh\xbfi/ \xcfixder ')
pytearray(b'Attack the yellow submarine.')

press any key to continue . . .

Figure 5.4: ChaCha20Poly1305

An alternative library that you may find helpful as well is the Crypto library.

You can import chacha20 from the crypt.cipher library:

import json

from base64 import bé4encode

from Crypto.Cipher import ChaCha20

from Crypto.Random import get random bytes
plaintext = b'Attack at dawn'

key = get_random bytes(32)

cipher = ChaCha20.new (key=key)

ciphertext = cipher.encrypt (plaintext)

nonce = bé64encode (cipher.nonce) .decode ('utf-8")
ct = bé64encode (ciphertext) .decode ('utf-8")

156 Chapter 5 = Stream Ciphers and Block Ciphers

result = json.dumps ({'nonce':nonce, 'ciphertext':ct})
print (result)

{"nonce": "IzZSczh28fDo=", "ciphertext": "ZatgUlf30WDHriaN8ts="}

Use Block Ciphers

Stream ciphers work by generating pseudorandom bits and XORing them with
your message. Block ciphers take in a fixed-length message, a private key, and
they produce a ciphertext that is the same length as the fixed-length plaintext
message. Now we will examine the construction of block ciphers.

AES and Triple DES are the most common block ciphers in use today. From
the student’s point of view, DES is still interesting to study, but due to its small
56-bit key size, it is considered insecure. In 1999, two partners, Electronic Frontier
Foundation and distributed.net collaborated to publicly break a DES key in 22
hours and 15 minutes. Here, we will use the pycrypto library to demonstrate
how to use DES to encrypt a message. The following recipe is using the ECB
block mode; you will learn about the various modes later in this chapter. To
execute the following recipe, perform a pip install PyCrypto:

from Crypto.Cipher import DES

key = b'shhhhhh!'

origText = b'The US Navy has submarines in Kingsbay!!'
des = DES.new(key, DES.MODE_ECB)

ciphertext = des.encrypt (origText)

plaintext = des.decrypt (ciphertext)

print ('The original text is {}'.format (origText))
print ('The ciphertext is {}'.format (ciphertext))
print ('The plaintext is {}'.format (plaintext))
print ()

This should produce the following output:

The original text is b'The US Navy has submarines in Kingsbay!!'

The ciphertext is b'\xf6\x0bb\xfoL\x15I\xf9\x0f\xe2\xee *“\xdaQx\xely\
xe5\xea\xd3z\xc8y\xee\xd3\x86H\xf0Nn\x83\x93\nOde6H\xd4 "'

The plaintext is b'The US Navy has submarines in Kingsbay!!'

Press any key to continue .

The key was 'shhhhhh!' and the message was 'The US Navy has submarines
in Kingsbay!!'. The ciphertext was 40 bytes long; 40 mod 8 = 0, so there is no

Chapter 5 = Stream Ciphers and Block Ciphers 157

need to pad this example. If you were to implement a block cipher in reality,
you should use a padding function that ensures the block length.

If you are following along in the code, you will note that DES.key size
and DES.block_size are both 8. This outdated scheme takes 64-bit keys (really 56
bits for the key and 8 bits for parity error checking) and 64-bit message blocks and
encrypts them into 64-bit ciphertexts.

There are a few things you need to be aware of when using block ciphers.
First, block ciphers only encrypt a fixed number of bytes at a time. If you played
around with the preceding example, you noticed that the message had to have
a length in multiples of 8; therefore, the message would need to be 8, 16, 24, 32,
and so on. If your message is more than one block length, you would have to
handle it; padding the message, or adding extra bytes to the end, is the most
common option.

Second, block ciphers are considered a cryptographic primitive, or a basic
building block to a more useful cryptographic message system. If you needed
to handle larger blocks of arbitrary length, you would use a block cipher mode
of operation, which describes how to apply a single-block operation to securely
transform data chunks that are larger than blocks. You may have also noted that
the example did not provide a nonce. That is another task of the mode you select.
The block cipher itself has one job only: straight encryption with a single key and
a fixed-length message. It is the cryptographic version of software engineering.

Third, block ciphers are pseudorandom shuffles that can be encrypted and
decrypted; every input has one and only one output. In mathematics, this is called
a function. An invertible function is one that also has a unique input for every
output. Imagine a block cipher with a block length of 512. It takes in a 512-bit
binary string and maps it to another 512-bit binary string. Since you can decrypt
a 512-bit binary ciphertext, the decryption process is considered invertible to the
encryption process. This relationship allows us to conclude that a block cipher
is a permutation. The strength of the cipher is the extent to which its shuffling
is indistinguishable from random shuffling. If a block cipher does its job well,
then specifying a key should be like grabbing a random permutation from the
set of all possible permutations. If we can determine that a particular scheme
has some pattern in it that we can use to distinguish the cipher from genuinely
random permutations, then the block cipher is considered weak. You explore
various modes such as the CTR (counter) and OFB (output feedback) in the next
chapter as they relate to various modes and which ones are recommended for
image encryption. For now, all you need to know is the following:

m CTR style: If the nonce is 6, then get the random stream out of our per-
mutation done in CTR style.

m OFB style: If the IV is 6, then get the random stream out of our permuta-
tion in OFB mode.

158

Chapter 5 = Stream Ciphers and Block Ciphers

Note that the length of the permutation cycles has something to do with the
strength of OFB as a CSPRNG. CTR is more resistant to this issue as a CSPRNG.

Block Modes of Operations

In the cryptography world, a block cipher mode of operation is an algorithm that
uses a block cipher to provide encryption. A block cipher, when used alone, is
only appropriate for the encryption or decryption of one fixed-length group of
bits called a block. A mode of operation describes how to repeatedly apply a
cipher’s single-block operation to securely encrypt or decrypt amounts of data
that are larger than a block.

A block cipher mode of operation uses an IV to ensure distinct ciphertexts even
when the same key and plaintext are used for the encryption. Block ciphers can
operate on more than one block size, though the block size is required to be fixed.
Therefore, any blocks that may be smaller than the required size will require pad-
ding to ensure that the block size is full. (There are, however, modes that do not
require padding because they effectively use a block cipher as a stream cipher.)

The earliest modes of operation include the ECB, CBC, OFB, and CFB, which
were all specified in FIPS 81 (1981), DES Modes of Operation. The US National
Institute of Standards and Technology (NIST) revised the list of approved modes
of operation by including AES as a block cipher and adding the CR mode in
2001 as specified in NIST SP800-38A. In January 2010, NIST added XTS. While
there are other modes of operations, they have not been approved by NIST.

The block cipher modes ECB, CBC, OFB, CFB, CTR, and XTS provide con-
fidentiality, but they fail to protect against malicious tampering or accidental
modification. Tampering or modification can be detected with a digital certif-
icate or using a separate message authentication code such as CBC-MAC. We
will cover CBC-MAC in Chapter 7.

ECB Mode

The ECB mode, formally named Electronic Codebook, divides the message
into blocks and each block is encrypted separately. In Chapter 6, you will see
visual examples of the weakness of encryption using ECB. Hint: you may still
be able to determine what the original image is when using ECB mode even
with strong encryption. ECB mode is typically used as an example of how to
use block ciphers incorrectly. In Figure 5.5, you will see that plaintext enters the
ECB block mode cipher encryption mode, which accepts a key and produces
the encryption. Each block is encrypted the same, thus decreasing the scheme’s
effectiveness.

Chapter 5 = Stream Ciphers and Block Ciphers

159

Plaintext

Plaintext

Plaintext Plaintext Plaintext
[NERERNRNREREN TTTITITTTTT (TTTITITITT1
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
[NERNRNRNREREN TTTITTTITT1 (TTTITTTITTT
Ciphertext Ciphertext Ciphertext
Figure 5.5: ECB mode encryption
Ciphertext Ciphertext Ciphertext
T TTTITITTTT1 (TTTITITTTT1
Ke block cipher Ke block cipher Ke block cipher
v decryption v decryption v decryption
[NERNRNRNREREN TTTITTTITT1 (TTTITTTITTT

Plaintext

Figure 5.6: ECB mode decryption

In Figure 5.6, you will see that ciphertext enters the block cipher decryption
mode, which accepts a key and produces the decryption.

CBC Mode

The CBC mode, formally named Cipher Block Chaining, was created in 1976
by Ehrsam, Meyer, Smith, and Tuchman. When using CBC mode, each block
of plaintext is XOR'd with the previous ciphertext block. This ensures that each
ciphertext block depends on all plaintext blocks processed up to that point. As
shown in Figure 5.4, the IV is used on the initial block and then the produced
ciphertext is used to encrypt the plaintext of the next block. Figure 5.7 shows
the inverse operation.

CBC is the dominant mode of operation. Its major drawback is that encryp-
tion must be performed sequentially as opposed to encrypting in parallel. A
second drawback is that the message must be padded to a multiple of the cipher
block size.

160

Chapter 5 = Stream Ciphers and Block Ciphers

Plaintext Plaintext Plaintext
[ITTTTTTITTT [ITTITTTITTT
Initialization Vector (V)
MO0 ——> @ — ? —>%
Key block cipher Key block cipher Key block cipher
encryption encryption encryption
[(IITTITTITTT ITITTIITTT] T TITIIIT
Ciphertext Ciphertext Ciphertext

Figure 5.7: Cipher Block Chaining (CBC) mode encryption

Decrypting using the CBC mode with an incorrect IV causes the first block
of generated plaintext to be corrupt, but subsequent plaintext blocks will be
corrected. Examine Figure 5.8. Do you see why this is true? You may have noticed
that each block is XOR'd with the ciphertext of the previous block and not the
resulting plaintext. Therefore, a plaintext block can be recovered from two con-
tiguous blocks of ciphertext. Consequently, decrypting with CBC mode can be
performed in parallel. This also means that a one-bit change to the ciphertext in
that particular block causes corruption of the corresponding blocks of plaintext
and inverts the corresponding bit in the subsequent block of plaintext, but the
remaining blocks should remain intact. This may make the CBC mode vulner-
able to different padding oracle attacks such as POODLE.

Ciphertext Ciphertext Ciphertext
IITTTTTITTT [IIITTIT1TIT4 [ITTITTTITTT
block cipher block cipher block cipher
Key decryption Key decryption Key decryption
Initialization Vector (IV)
MMM — @ —> -
IITTTTTITTT [ITTTTTTITTT [ITTITTTITTT
Plaintext Plaintext Plaintext

Figure 5.8: Cipher Block Chaining (CBC) mode decryption

V[AN Incryptography, an oracle is a black box that responds to queries.

CFB Mode

We now explore a close relative to the CBC. The CFB, more formally known
as the Cipher Feedback mode, makes a block cipher into a self-synchronizing
stream cipher. While the CFB encryption and decryption modes are very similar,

Chapter 5 = Stream Ciphers and Block Ciphers

161

some small differences exist. As you examine Figure 5.9, you will notice that an
initialization vector (IV) is only used to encrypt the first block. After the first
block, the encrypted blocks are used in place of the IV; this continues until the
end of the process.

Initialization Vector (V)

ITITIIT1TTM
Key block cipher Key block cipher Key block cipher
encryption encryption encryption
Plaintext Plaintext Plaintext
oo — Yt — Binas?
Ciphertext Ciphertext Ciphertext

Figure 5.9: Cipher Feedback (CFB) mode encryption

Self-synchronizing protects the cipher if part of the ciphertext is lost; this helps
recover data due to transmission errors. If an error occurs, the receiver will only
lose part of the original message and should still be able to continue decrypting
correctly. CFB also allows for operations that do not include a self-synchronizing
process, in which synchronizing will only occur if an entire block of ciphertext
is lost. If only a single bit or byte is lost, the decryption will be corrupt. If you
need to make a self-synchronizing stream cipher that will work for any multiple
of x bits, you will need to initialize a shift register of the size of the block with
the IV; this process will provide an encrypted block cipher with the x bits of
the results XOR'd with x bits of the plaintext to produce x bits of the ciphertext.

Similar to the CBC mode, any changes that propagate from the plaintext will
affect the ciphertext, and encryption cannot be performed in parallel. You can,
however, parallelize the decryption procedure, which is shown in Figure 5.10.

Initialization Vector (IV)

Figure 5.10: CFB mode decryption

[T ITT1T1
Key block cip_her Key block cip_her Key block cip.her
encryption encryption encryption
Ciphertext Ciphertext
-« -« -«
I TTTITT1T1 ITITTITT1T1 [T TIT1TT
Plaintext Plaintext Plaintext

162

Chapter 5 = Stream Ciphers and Block Ciphers

CFB offers two advantages over CBC mode with the stream cipher modes
OFB and CTR: first, the block cipher is only used in the encryption process,
and second, the message does not need to be padded to a multiple of the cipher
block size.

OFB Mode

The OFB mode, formally named Output Feedback, makes a block cipher into
a synchronous stream cipher. OFB mode generates keystream blocks that are
XORd with plaintext blocks to get the ciphertext. See Figure 5.11 for a visual
representation. As with other stream ciphers, modifying a bit in the ciphertext
will result in a flipped bit in the produced plaintext at the same location. This
characteristic allows many error-correcting codes to function normally. The
encryption and decryption methods are the same.

Initialization Vector (V)

ITTTITTTTTTT]
4
Key block mpher Key block mp_her Key block cipher
encryption encryption encryption
Plaintext Plaintext Plaintext
— ¢ MMMMmmn—¢ OOonIaIa—

4
T TTTTTT ITITIITTTTM T ITTITTT
Ciphertext Ciphertext Ciphertext

Figure 5.11: Output Feedback (OFB) mode encryption

As with the CBC mode, the OFB cipher operation depends on the previous
blocks and therefore cannot be performed in parallel. One notable difference
is that because the ciphertext and plaintext are only used for the final XOR,
the block cipher operations may be performed in advance. This property will
allow the final step to be performed in parallel once the cipher or plaintext is
available. See Figure 5.12 for a review of OFB mode decryption.

One thing to note is that you can obtain an OFB mode keystream by using
CBC mode with a constant string of zeros as input. This property can be useful
as it allows the usage of fast hardware implementations of CBC mode for OFB
mode encryption.

Chapter 5 = Stream Ciphers and Block Ciphers

163

Initialization Vector (1V)

[IITTITTTTTTT]
v
Key block cip_her Key block cipher Key block cipher
encryption encryption encryption
Ciphertext Ciphertext Ciphertext
MMM — ¢ MMM n—&¢ OOIOnononi—&
Y
[IITTITTTTTTT] IITIITTITTT] TTTITITITT1]
Plaintext Plaintext Plaintext

Figure 5.12: Output Feedback (OFB) mode decryption

CTR Mode

CTR mode, also known as Integer Counter mode or Segmented Integer Counter
mode, turns a block cipher into a stream cipher. CTR mode was introduced in
1979 by Whitfield Diffie and Martin Hellman. These are two names we will
explore in the following chapters. You will see in Figure 5.13 that the CTR gen-
erates the keystream block by encrypting successive values of a counter that can
be any function that generates a sequence that is guaranteed not to repeat; typ-
ically, the simplest counter is to increment by one, although some critics believe
using the counter is considered a risk. However, CTR mode is widely accepted
and is recommended along with CBC by Niels Ferguson and Bruce Schneier.

Nonce Counter Nonce Counter Nonce Counter
€59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
OTITTTITTTTT] OITTTITTTTTT] OTITTTITTTTT]
Key block cipher Key block cipher Key block cipher
encryption encryption encryption
Plaintext ——> Plaintext ——> Plaintext ——
OTITTTITTTTT] OTTTTITTTTTT] ITTTTITTTTT]
OTITTTITTTTT] OTTTTITTTTTT] OTITTTITTTTT]
Ciphertext Ciphertext Ciphertext

Figure 5.13: Counter (CTR) mode encryption

CTR mode allows a random-access property during the decryption process.
CTR mode is considered well-suited to operate on a multiprocessor computer
where blocks can be encrypted in parallel. If you generate a random 1V, it can

164

Chapter 5 = Stream Ciphers and Block Ciphers

be combined with the counter using any invertible operation (XOR, addition,
or concatenation) to produce a unique counter block for encryption. If the IV
is not random, such as a packet counter, the IV and counter should be concate-
nated. Figure 5.14 illustrates how the counter block is incremented during the
decryption process.

Nonce Counter Nonce Counter Nonce Counter
¢59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
TITITITTITTd (TITITITITTTd TTTITITITTTd
Key block cigher Key block cigher Key block cigher
encryption encryption encryption
Ciphertext —> Ciphertextt —> Ciphertext —>
T TITITTT TIITITITITT TITITITITTTd
I (TITITITITTTd TTTITITITTTd
Plaintext Plaintext Plaintext

Figure 5.14: Counter (CTR) mode decryption

Take caution with how you implement the counter; adding or XORing the
IV and counter into a single value could break the security under a chosen-
plaintext attack; this is due to the attacker being able to manipulate the entire
IV—counter pair to cause a collision. Once an attacker controls the IV-counter
pair and plaintext, XOR of the ciphertext with the known plaintext would yield
a value that, when XOR'd with the ciphertext of the other block sharing the same
IV—counter pair, would decrypt that block. An example using the CTR mode
would look similar to the following:

from Crypto.Util import Counter
Counter.new (128, initial value = int (binascii.hexlify('Not very
random. '), 16))

Tricks with Stream Modes

Notice that both the CTR and OFB modes act like stream ciphers (the “infinite
one-time pad” concept). That is, the block cipher is used to generate a sequence
of pseudorandom blocks that are XOR'd with the message. This ensures that
the message does not impact the random blocks.

These modes have some strengths and some weaknesses:

Strengths:

m The random stream can be precomputed on the encryption side

m We never have to decrypt a block cipher (so any one-way function can do
the job)

Chapter 5 = Stream Ciphers and Block Ciphers

165

m Encryption is decryption (just pass in the IV)

m We don’t have to pad the message, just use the bits we need (saves band-
width on small messages)

m CTR can be efficiently parallelized both for encryption and decryption
Weaknesses:

m OFB might have short permutation cycles (more in a minute on that)
m Using the same IV twice is deadly (not great in CBC but worse here)

m Tampering with the ciphertext can lead to tampered plaintext (and not
just noise)

DIY Block Cipher Using Feistel Networks

In this next section, I want to show you a slick method to use one-way function,
like hashes, to create block ciphers using the Feistel network. A Feistel cipher/
Feistel network implements a series of iterative ciphers on a block of data and
is generally designed for block ciphers that encrypt large quantities of data.
A Feistel network works by splitting the data block into two equal pieces and
applying encryption in multiple rounds.

The input block is split in the middle to create equal-sized sub-blocks. Examine
Figure 5.15; let’s call the initial left-hand side sub-block L;, and the initial
right-hand side sub-block R,,. Let the function F;; be the round function that
uses the i round key, k;. These round keys are generated by the key schedule,
which is unspecified. If we have r rounds, then for 1 <i <.

L;=R;;
Ri=L_;®F ki(Ri—I)

and fori=r

Lr = Rr—l ® Pkr(erl)
Rr = erl

The idea is to split your message into two halves, with one half to make
something that looks like noise. Then XOR the other half with the noise. Finally,
pass the XORd result and the unmodified half. This gives you everything you
need to know to go backward, which is the same exact process. In Figure 5.16
you will see an illustration of how the Feistel network decryption works.

Next, convince yourself that reversing one step of the Feistel network is doable
by hashing the part that passed in the clear, XORing with the other half, and
reversing their spots. Now we want to have our output have the same bit length
as our input, which was not true for a hash function.

Use the super-hash as the one-way function in a Feistel network. Our output
is a 256-bit hexadecimal number. The input should be 512 bits. Eight bits is
enough to encode one ASCII character. The secrets should be 64 characters long.

166 Chapter 5 = Stream Ciphers and Block Ciphers

plaintext
[Lo | Ry |
S (F)
T
S Fy,

A
LR | Ly |
ciphertext

Figure 5.15: Feistel Network encryption

ciphertext
LR | Ly |
4

& ()
A\ ki
Y
L Lo | Ry |
plaintext

Figure 5.16: Feistel Network decryption

To build the encryption scheme, write a function that consumes a length 64
string and a salt that now acts like a key. Have your scheme do four rounds of
a Feistel network and return a hex string of the 512-bit output. For now, you can
use 5,000 iterations per super-hash.

Chapter 5 = Stream Ciphers and Block Ciphers

167

Advanced Encryption Standard (AES)

AES stands for Advanced Encryption Standard, and it is the only public encryp-
tion scheme that the NSA approves for confidential information. We focus on
its use as our main block cipher from now on. AES is the current de facto block
cipher, and it works on 16 bytes at a time. It has three possible key lengths:
16-byte, 24-byte, or 32-byte. We know that a block cipher is effectively a deter-
ministic permutation on binary strings, like a fixed-length reversible hash. Given
a proper-length key and a 16-byte input we should always get the same 16-byte
output. Note that there are typically three ways to work with bytes: plain ASCII,
hex digest, and base64 (we haven't played with this yet but we will). A good
chunk of your bugs come from transferring between hex and raw. You explore
AES in the next chapter as you manipulate images.

Using AES with Python

Earlier in this chapter, you were introduced to PyCrypto as a Python module
that enables block ciphers using DES; it also has methods for encrypting AES.
The PyCrypto module is similar to the Java Cryptography Extension (JCE) that
is used in Java.

The first step we will take in our AES encryption is to generate a strong key.
As you know, the stronger the key, the stronger the encryption. The key we use
for our encryption is oftentimes the weakest link in our encryption chain. The
key we select should not be guessable and should provide sufficient entropy,
which simply means that the key should lack order or predictability. The fol-
lowing Python code will create a random key that is 16 bytes:

import os
import binascii

key = binascii.hexlify(os.urandom(16))
print ('key', [x for x in key])

key [97, 53, 99, 97, 102, 99, 102, 102, 50, 101, 98, 57, 97, 51, 50, 50,
51, 52, 102, 49, 101, 51, 102, 52, 100, 49, 48, 51, 51, 49, 56, 51]

Now that you have generated a key, you will need an initialization vector.
The IV should be generated for each message to ensure a different encrypted
text each time the message is encrypted. The IV adds significant protection in
case the message is intercepted; it should mitigate the use of cryptanalysis to
infer message or key data. The IV is required to be transmitted to the message

168

Chapter 5 = Stream Ciphers and Block Ciphers

receiver to ensure proper decryption, but unlike the message key, the IV does
not need to be kept secret. You can add the IV to process the encrypted text.
The message receiver will need to know where the IV is located inside the mes-
sage. You can create a random IV by using the following snippet; note the use
of random.randint. This method of generating random numbers is less effective
and it has a lower entropy, but in this case we are using it to create the IV that
will be used in the encryption process so there is less concern with the use of
randint here:

iv = ''.join([chr (random.randint (0, OxFF)) for i in range(1l6)]))])

The next step in the process is to create the ciphertext. In this example, we
will use the CBC mode; this links the current block to the previous block in
the stream. See the previous section to review the various AES block modes.

Remember that for this implementation of AES using PyCrypto, you will need
to ensure that you pad the block to guarantee you have enough data in the block:

aes = AES.new(key, AES.MODE_CBC, iv)
data = 'Playing with AES' # <- 16 bytes
encd = aes.encrypt (data)

To decrypt the ciphertext, you will need the key that was used for the encryp-
tion. Transporting the key, inside itself, can be a challenge. You will learn about
key exchange in a later chapter. In addition to the key, you will also need the
IV. The IV can be transmitted over any line of communication as there are no
requirements to encrypt it. You can safely send the IV along with the encrypted
file and embed it in plaintext, as shown here:

from base64 import bé4encode

from Crypto.Cipher import AES

from Crypto.Util.Padding import pad
import binascii, os

import random

data = b"secret"
key = binascii.hexlify(os.urandom(16))

iv = ''.join(chr (random.randint (0, O0xFF)) for i in range(16))
#print ('key: ', [x for x in key])
#print ()

cipher = AES.new(key, AES.MODE_CBC)

ct_bytes = cipher.encrypt (pad(data, AES.block size))
ct = bé64encode (ct_bytes) .decode ('utf-8")

print ('iv: {}'.format (iv))

ciphertext: {}'.format (ct))

(
print ()
print ('
(

print ()

Chapter 5 = Stream Ciphers and Block Ciphers

169

iv: ®hLO&™I2g] >°ma

ciphertext: BDE+z8ME6r0QgkraNXLuuQ==

File Encryption Using AES

Next, you can encrypt a file using AES by implementing the following Python
recipe. The primary difference is opening the file and passing the packs into
blocks:

aes = AES.new(key, AES.MODE_CBC, iv)

filesize = os.path.getsize(infile)

with open (encrypted, ‘w’) as fout:
fout.write(struct.pack('<Q’, filesize))

fout.write (iv)

File Decryption Using AES
To decrypt the previous example, use the following code to reverse the process:

with open(verfile, 'w') as fout:
while True:
data = fin.read(sz)
n = len(data)
if n ==
break
decd = aes.decrypt (data)
n = len(decd)
if fsz > n:
fout.write (decd)
else:
fout.write(decd[:fsz]) # <- remove padding on last block
fsz -=n

Summary

After completing this chapter, you should feel comfortable converting between
hexdigest and plaintext using the binascii library. The binascii module pro-
vides several methods to convert between ASCII-ended binary expressions and
binary. We then took a survey of how both stream ciphers and block ciphers
work. You should understand that a stream cipher is a symmetric key cipher
where plaintext digits are combined with a pseudorandom cipher digit stream.
In a stream cipher, each plaintext digit is encrypted one at a time with the
corresponding digit of the keystream, to give a digit of the ciphertext stream.

170

Chapter 5 = Stream Ciphers and Block Ciphers

While most stream ciphers are used at the hardware layer, you now under-
stand how to both create and use the Salsa20, ChaCha20, and Vernam ciphers.
We then turned our focus on block ciphers and the various modes of opera-
tions. We concluded the block cipher exploration by examining which modes
allow block ciphers to operate like stream ciphers. We also explored how to
create a DIY cipher using a Feistel Network. We finished with an introduction
to the Advanced Encryption Standard (AES) cryptosystem. You will explore
more about block mode operations and AES in the next chapter as you learn
to encrypt images.

Using Cryptography with Images

At this point, you should be feeling confident in your ability to encrypt and
decrypt messages. In this chapter, you will expand on what you know to include
the cryptography of images. Through exercises in this chapter, you will be able
to identify problems with different modes of encryption and learn alternative
ways to get results. To complete our study of image cryptography, we will close
the chapter with steganography. Through this chapter, you will do the following:

m Gain an understanding of image and cryptography libraries

m [earn about AES modes of operations

m Explore various cryptography methods for images

m Hide and read media within an image using Python

Simple Image Cryptography

Before we get into various libraries that can be used for image cryptography, I
wanted to share a simple method that will allow you to encrypt and decrypt a
file. The entire process relies on looping through the bits of an image and then
bitwise exclusive (XOR) them with the bit and the key. To decrypt the image,
we simply reverse the XOR operation.

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

171

172

Chapter 6 = Using Cryptography with Images

In the following example and the subsequent ones in this chapter, we will be
encrypting the original image and then saving it with an e in front of the name.
When we decrypt the image, we save it with a 4 in front of the name. The reason
we're doing this is to be able to compare the original image with the decrypted
image to see if there is any apparent data loss.

Figure 6.1 shows the original image we will use. Feel free to create your own
for this exercise. It is a fairly small file, which is fine until we get to the end of
the chapter. For hiding BLOB data, you may need a much larger file. Time for a

little code.

Figure 6.1: Original ch6_secret_image. jpg file

print ('The program is looking for a file named: ché_secret_ image.jpg')
n rb n)

fo = open("Chapteré6\ché secret_ image.jpg",
image = fo.read()
fo.close()

print ()

print ("The secret key is 42.")
image = bytearray (image)

key = 42

for index, value in enumerate (image) :
image [index] = value’key

print ()

print ('The image has been encrypted. Review e_ché6_secret_image.jpg')
fo = open("Chapteré6\e ché secret image.jpg",

fo.write (image)
fo.close()

image = bytearray (image)

for index, value in enumerate (image) :
image [index] = key”value

"wb n)

Chapter 6 = Using Cryptography with Images

173

print ()

print ('The image has now been decrypted. Review d_ché6_secret_ image.jpg')
fo = open("Chapter6\d ché secret image.jpg", "wb")

fo.write (image)

fo.close()

While the image is now unreadable, it may also throw an error depending
on the software you are using (see Figure 6.2). This isn’t a showstopper, though,
as you can still email the file anywhere and you will not have to worry about
someone decrypting it without the key, which in this case is 42.

Phatos - e.chb_secretimage jpg = o b3

| Addto @ 0] L IO B | (0 Seach 34 Edit&Creste v |5 Share (Sh

Figure 6.2: Error message fore_ché_secret image.jpg

Decrypting will reproduce the image without data loss, as shown in Figure 6.3.
This is important to examine as some modes will have some loss. The image
on the left is the original, while the image on the right has been encrypted and
then decrypted. Later, we will examine various encryption modes that work
well on regular files but fail on images. One such example is the use of the ECB
mode discussed shortly.

In the next section, we will start exploring more complex solutions using
cryptographic libraries.

174

Chapter 6 = Using Cryptography with Images

[—— - o x
R B ¢ % " = o~ - g Add o @, -] © 7 o = - - m

Figure 6.3: Side by side of ch6_secret_image.jpgandd ché secret image.jpg

Images and Cryptography Libraries

Let’s change our focus to implementing libraries that will make our cryptography
lives a little easier. We will revisit the Cryptography library that we introduced
in Chapter 1, and we will introduce the Cryptosteganography library that will
give us the ability to explore steganography using Python later in this chapter.

Understanding the Cryptography Library

Cryptography is the name of a Python package that provides cryptographic
primitives and recipes. The library boasts to be your “cryptographic standard
library,” and it currently supports various versions in Python. To install the
library, perform a pip install cryptography.

The Cryptography library includes both high-level recipes and low-level
interfaces to common cryptographic algorithms such as symmetric ciphers,
message digests, and key derivation functions. The Fernet example shown next
highlights an example of a high-level interface. Check out the following quick
sample code to ensure that you have the Cryptography library installed:

from cryptography.fernet import Fernet

key = Fernet.generate key()

f = Fernet (key)

print ("The key is %s", f)

print ()

ciphertext = f.encrypt (b"This is a secret message.")
print (ciphertext)

print ()

Chapter 6 = Using Cryptography with Images

175

plaintext = f.decrypt (ciphertext)
print (plaintext)

If you have the Cryptography library installed correctly, you should be able
to generate a new key and encrypt and decrypt ‘This is a secret message.’
Your output should look like Figure 6.4, except it will have a unique key.

P \Program Files (xB&\Microsoft Visual Studic\Shared\Python37_64\python.exe - [} o

The loadkey and the key are the same
[The secret message is: %s b'I have a secret I want to share but only if you have the key.'

The encrypted message is: %s b'gAAAAABezo@QXEUsZAS3zybSeheul2dopVaswR02Vdthnl_2CBCOAdRnetQwSIdwimRYoF9dYCV1gIhjGHmec 2Kngt
RZUGRF -QUzbOXhmfkb2YRz159ca_4Zmkp8igZMQrnOpdusTSxvmWTwiLwPCZRALFaxLAyeXw=="

Press any key to continue . . .

Figure 6.4: Cryptography library test

Understanding the Cryptosteganography Library

Steganography is the art of concealing information within different types of media
objects such as images or audio files, in such a way that no one, apart from the
sender and intended recipient, suspects the existence of the message. By itself,
steganography is a type of security through obscurity. In this section, we will
not only explore how to hide unencrypted messages inside an image but also
store encrypted media inside an image. If you choose to hide unencrypted data,
you can find a number of freeware tools that can extract your message, so feel
free to encrypt the data prior to adding it to the image.

The second library that we are going to examine is the Cryptosteganography
library. The module allows you to store messages or files that are protected
using AES-256 inside an image. To take advantage of the library, perform a
pip3 install cryptosteganography inside your project or your working envi-
ronment. The Cryptosteganography library is designed to work in Python 3
and higher.

Image Cryptography

We will explore image cryptography using a variety of formats and tools. We
will first review file cryptography using the Fernet library. This will give you
the basis of using the Fernet library to encrypt and decrypt image files. You will
then explore how the AES block modes of operation affect how your images
are encrypted.

176

Chapter 6 = Using Cryptography with Images

File Cryptography Using Fernet

In this section, we will explore image cryptography using Fernet, which is an
implementation of symmetric authenticated cryptography. Symmetric encryp-
tion, which you may remember is synonymous for “same key,” means that we
use the same key to both encrypt and decrypt. You will begin by generating
a key and then saving it to a file. The generate_key() function will generate a
new Fernet key each time it is called; if you lose this key, you will not be able
to decrypt any data that you encrypted with this key. Therefore, once the key
gets generated, you will save it to disk. Each time you have the system generate
a key for you, you should save it; the alternative is to create your own key.
The Python code to generate the key and store it looks like the following:

key = Fernet.generate key()
with open("ché.key", "wb") as key file:
key file.write (key)

To load the key file once it is stored, you can use the following Python code:

return open("ché.key", "rb").read()

Once you have an encryption system and a key, you should be ready to
encrypt your message. Do not forget to encode your message; this will convert
the string to bytes suitable for encrypting. Your message assignment should
look like the following:

plaintext = "I have a secret I want to share but only if you have the
key.".encode ()

From here, we are ready to start our encryption process:

f = Fernet (key)
ciphertext = f.encrypt(plaintext)
print (ciphertext)

Assuming you are playing along, you should have something similar to
Figure 6.5.

P C/\Frogram Files (x86)\Microsalt Visual Studic\Shared\Python37_64\python exe - a x

The loadkey and the key are the same A
The secret message is: %s b'I have a secret I want to share but only if you have the key.'

The encrypted message is: ¥s b’ gAAAAABedC7TXGzZxzASS45tOCMLIthAIOFeESIipML3HVSojGEZCLIIVGNZRREV vyUrPfypdm-KG1knQ-gnRIB7FK
FIeBdzu6Bimd 7567t IFUXVBqz5ah8W)lAe3paBwSwSDwQc I IW30ZbvURVINT1ATIZ01 cXNWBQ=="

Press any key to continue . . .

Figure 6.5: Python output for Fernet

Chapter 6 = Using Cryptography with Images

177

Next, we will load a file with plaintext data and then encrypt the data using
the encrypt() method. The file is then saved to storage:

filename = “sometextfile.txt”
f = Fernet (key)
with open(filename, "rb") as file:
read all file data
file_data = file.read()
encrypt data
encrypted data = f.encrypt(file data)
write the encrypted file
with open(filename, "wb") as file:
file.write (encrypted _data)

The decryption process is almost identical, but we use the decrypt () function
of the Fernet object:

Sfilename = “sometextfile.txt”
f = Fernet (key)
with open(filename, "rb") as file:
read the encrypted data
encrypted _data = file.read()
decrypt data
decrypted data = f.decrypt (encrypted data)
write the original file
with open(filename, "wb") as file:
file.write (decrypted data)

Now that you have the concepts, you can wrap all these snippets up into
something a little more flexible. The following Python code accepts a key, a file,
and either a decryption or encryption flag:

from cryptography.fernet import Fernet

import os

def

def

def

write key():

Generates a key and save it into a file

key = Fernet.generate_key ()

with open("ché.key", "wb") as key file:
key file.write (key)

load key():
#Loads the key from the current directory named 'ché6.key!'
return open("ché6.key", "rb").read()

encrypt (filename, key):
encrypts the file and writes it using filename and key
f = Fernet (key)
with open(filename, "rb") as file:
read all file data

178 Chapter 6 = Using Cryptography with Images

file data = file.read()
encrypt data
encrypted_data = f.encrypt(file_data)
write the encrypted file
with open(filename, "wb") as file:
file.write (encrypted data)

def decrypt (filename, key):
decrypts the file and writes it using the filename and key
f = Fernet (key)
with open(filename, "rb") as file:
read the encrypted data
encrypted _data = file.read()
decrypt data
decrypted data = f.decrypt (encrypted_data)
write the original file
with open(filename, "wb") as file:
file.write (decrypted data)

if __name_ == "_ _main_ ":
import argparse
parser = argparse.ArgumentParser (description="Simple File Encryptor
Script")
parser.add_argument ("file", help="File to encrypt/decrypt")
parser.add_argument ("-g", "--generate-key", dest="generate_ key",
action="store true",
help="Whether to generate a new key or use
existing")
parser.add_argument("—e", "--encrypt", action:"store_true",
help="Whether to encrypt the file, only -e or -d
can be specified.")
parser.add_argument ("-d", "--decrypt", action="store_ true",
help="Whether to decrypt the file, only -e or -d
can be specified.")

args = parser.parse_args ()

file = args.file
generate_key = args.generate_key

if generate key:
write key ()

load the key

key = load key ()

encrypt = args.encrypt
decrypt = args.decrypt

Chapter 6 = Using Cryptography with Images

179

if encrypt and decrypt
raise TypeError ("Please specify whether you want to encrypt the
file or decrypt it.")
elif encrypt
encrypt (file, key)
elif decrypt
decrypt (file, key)
else:
raise TypeError ("Please specify whether you want to encrypt the
file or decrypt it.m")

Image Cryptography Using Fernet

Using our previous example, you can now write a solution that will allow you
to specify the original image and change the encrypted file to a specific name;
in this case, the ché_secret_image.jpg file will be encrypted as e_cheé_secret_
image.jpg and then 1mmed1ately decrypted to d_ché secret image.jpg. The
image resolution between the original file and the decrypted file is identical
as the Fernet algorithm operates on the file itself and does not alter the pixels
of the image.

In the following example, I removed the reading and writing key since the
encryption and decryption are happening in the same process. The encryption
process here is not specific to just images and can be used on a variety of data
types. The takeaway from this program should be the full encryption at the file
level and not the pixel level:

def encrypt (filename, newfile, key):
W
Given a plain image (str), the new file name, and key (bytes), it
encrypts the file and write it
wun
f = Fernet (key)
with open(filename, "rb") as file:
read all file data
file data = file.read()
encrypt data
encrypted data = f.encrypt(file data)
write the encrypted file
with open(newfile, "wb") as file:
file.write (encrypted data)

def decrypt(filename, newfile, key):

nnn

Given a encrypted file (str), the new file name, and key (bytes), it
decrypts the file and write it

f = Fernet (key)

180 Chapter 6 = Using Cryptography with Images

with open(filename, "rb") as file:
read the encrypted data
encrypted_data = file.read()

decrypt data

decrypted data = f.decrypt (encrypted data)

write the original file

with open(newfile, "wb") as file:
file.write (decrypted data)

key = Fernet.generate key()

enc = encrypt ("ché secret image.jpg", "e ch6 secret_ image.jpg", key)
dec = decrypt("e ché6_secret image.jpg", "d_ché_secret_ image.jpg", key)

AES and Block Modes of Operations

AES stands for Advanced Encryption Standard, and it is the only public encryp-
tion scheme that the NSA approves for confidential information. We focus on
its use as our main block cipher from now on. AES is the current de facto block
cipher, and it works on 16 bytes at a time. It has three possible key lengths: 16
bytes, 24 bytes, or 32 bytes. A number of AES block cipher modes are part of the
AES specification; in this section, we will examine ECB and CBC.

The following code examples will utilize the PyCrypto library that was
discussed in the Advanced Encryption Standard (AES) section of Chapter 5.
To install the library, you will need to perform a pip install PyCrypto;the
library provides us with the following modes we can use:

m MoDE_ECB: Electronic Code Book (ECB)

m MoDE_CBC: Cipher-Block Chaining (CBC)

m MoDE_CFB: Cipher Feedback (CFB)

m MODE_PGP: Pretty Good Privacy (PGP)

m MoDE OFB: Output Feedback (OFB)

m MoDE_CTR: CounTer Mode (CTR)

m MODE_OPENPGP: Open Pretty Good Privacy (OPENPGP)

Each of the block sizes will need to equal 16 bytes, while the key sizes for
each of the supported modes support 16, 24, and 32 bytes. The encryption for
the majority of these modes will be identical to using the CBC mode. If you do
not specify a mode, the Electronic Code Book (ECB) mode will be used. More
recent libraries may require you to specify an encryption mode. Either way, you
should specify a mode so that it is obvious which mode you are using.

The simplest block mode is ECB; the cipher mode processes each 128-bit
block of data. Each block is then then independently encrypted using AES

Chapter 6 = Using Cryptography with Images

181

with the same encryption key. The decryption process is the reverse. When
using the ECB mode process, identical blocks of plaintext will be encrypted
the same and will yield identical blocks of ciphertext or an encrypted image.
While the weaknesses of the cipher mode may not be initially apparent, when
we examine the mode in image cryptography, a major security vulnerability
appears. In Figure 6.6, you will see the difference between the ECB mode
versus the other modes that are available.

Figure 6.6: Image encryption modes

Exploring a Simple ECB Mode Example

For our first example, we will examine how to produce the ECB mode encrypted
image. First, we start out with a bitmap file that has a distinct pattern, as shown
in Figure 6.7.

Figure 6.7: Plane image in BMP format

The first step is to import the library and set a key. For this example, we will
use a 16-byte key, although 24-byte and 32-byte keys are supported:

>>> from Crypto.Cipher import AES
>>> key = b"aaaabbbbccccdddd"
>>> cipher = AES.new(key, AES.MODE ECB)

182

Chapter 6 = Using Cryptography with Images

The next step is to file read the plane.bmp image; we will store the binary file
into a variable named byteblock:

>>> with open("plane.bmp", "rb") as f:
>>> byteblock = f.read()

The byteblock will need to be in multiples of 16 bytes. If not, it will result in
an error that states: Input strings must be a multiple of 16 in length. The byteblock
value will depend on the size of the image. To examine the byteblock, you can
examine the length of the variable:

>>> print (len(byteblock))
261654

Since the input string must be a multiple of 16, we will need to examine how
many bytes are left over when we take the modulo. In this case, it is 6:

>>> print (len(byteblock)%16)
6

Our goal is now to move the bytes that are multiples of 16 into a variable that
we can use to isolate the block while subtracting the overflow. Here, we will
store the value in byteblock trimmed:

byteblock trimmed = byteblock[64:-6]

>>> print (len(byteblock trimmed))
261584

>>> print (len(byteblock trimmed)%16)
0

To ensure that the image can be encrypted and decrypted without a data loss,
you will need to combine the two sets of byte blocks:

byteblock trimmed must not have extra bytes or an error will occur
ciphertext = cipher.encrypt (byteblock trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock[-6:]

Now, all that is needed for the image is to save it using the ciphertext:

with open("plane ecb.jpg", "w") as f:
f.write (ciphertext)

Chapter 6 = Using Cryptography with Images

183

The resulting image will look like Figure 6.8.

Figure 6.8: ECB encrypted plane

Now we will reverse the process. The decryption process will look like the
following;:

with open("plane ecb.bmp", "rb") as f:
byteblock = f.read()

byteblock trimmed = byteblock[64:-6]

plaintext = cipher.decrypt (byteblock trimmed)
plaintext = byteblock[0:64] + plaintext + byteblock[-6:]

with open("dplane ecb.bmp", "wb") as f:
byteblock = f.write(plaintext)

The result, shown in Figure 6.9, will produce a decrypted version that matches
the original version.

Figure 6.9: ECB decrypted plane

Depending on the image you choose, you will have a variable of bytes that
will need to be captured. The following code stores the value in a pad variable.
To simplify the code, I multiplied it by —1 to produce a negative number. The

184 Chapter 6 = Using Cryptography with Images

following code will combine everything you have learned and encrypt our
secret .bmp image:

from Crypto.Cipher import AES
key = b"aaaabbbbccccdddd"

cipher = AES.new(key, AES.MODE_ECB)
encrypt using ECB mode

with open("chapter6/ch6 secret image.bmp", "rb") as f:
byteblock = f.read()

pad = len(byteblock) %16 * -1
byteblock trimmed = byteblock[64:pad]

ciphertext = cipher.encrypt (byteblock trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock[pad:]

with open("e ché secret image.bmp", "wb") as f:
f.write (ciphertext)

decrypt using the reverse process

with open("e ché6_secret_ image.bmp", "rb") as f:
byteblock = f.read()

pad = len(byteblock) %16 * -1

byteblock trimmed = byteblock[64:padl

plaintext = cipher.decrypt (byteblock trimmed)

plaintext = byteblock[0:64] + plaintext + byteblock [pad:]

with open("d ché secret image.bmp", "wb") as f:
byteblock = f.write(plaintext)

print ("done")

One of the critical takeaways I want you to walk away with is to understand
that bitmap files that have large uniform areas will not encrypt the way you
want them to and can potentially expose information you want to hide. You
saw in Figure 6.8 that the outline of the airplane was still visible. This next
example does a little better at obfuscating the image but still provides too much
information. Examine the output for the preceding code recipe in Figure 6.10.
This vulnerability is unique to the ECB mode encryption and, in this case, is
only an issue if the image is a .bmp file. Some image types, such as .jpg files,
are not vulnerable to the same issue.

Chapter 6 = Using Cryptography with Images 185

Phustas - . che, et g vy Fheo« . ch, s e b - a
+ A & D u\ = M- & + wddw a ® LOTE - = F [

Figure 6.10: ECB security issue

Exploring a Simple CBC Mode Example

Now that you understand how to encrypt and decrypt using ECB block mode,
we will examine the CBC mode. One important difference between the two
modes is the use of an initialization vector (IV) and the specification of the block
mode, which in this case is AES.MODE _ CBC:

from Crypto.Cipher import AES

iv = "1111222233334444"

key = "aaaabbbbccccdddd"

cipher = AES.new(key, AES.MODE_CBC, iv)

encrypt using CBC mode

with open("plane.bmp", "rb") as f:
byteblock = f.read()

pad = len(byteblock)%16 * -1
byteblock trimmed = byteblock[64:padl

ciphertext = cipher.encrypt (byteblock trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock [pad:]

with open("plane cbc.bmp", "w") as f:
f.write (ciphertext)

decrypt using the reverse process

186 Chapter 6 = Using Cryptography with Images

with open("plane_ cbc.bmp", "rb") as f:
byteblock = f.read()

pad = len(byteblock)$%1l6 * -1
byteblock trimmed = byteblock[64:pad]
plaintext = cipher.decrypt (byteblock trimmed)
plaintext = byteblock[0:64] + plaintext + byteblock[pad:]
with open("dplane cbc.bmp", "w") as f:
byteblock = f.write(plaintext)

print ("done")

The result, shown in Figure 6.11, will produce an encrypted version that does
not show the same vulnerability as the ECB mode.

Figure 6.11: CBC encrypted plane

Applying the Examples

You have all the tools you need to create a solution that offers a number of AES
block modes. The following code will allow you to specify a filename, key, and
IV; it can be used to test a variety of block modes:

from Crypto.Cipher import AES

def Open_File(filename) :
with open(filename, "rb") as f:
byteblock = f.read()
return byteblock

def Save File(filename, block) :
with open(filename, "wb") as f:
f.write (block)

def Get Padding(block) :
1 = len(block) %16
return (1 * -1)

Chapter 6 = Using Cryptography with Images

187

def Encrypt (cipher,read filename, save filename) :
block = Open_File(read_filename)
pad = Get_Padding (block)
block_trimmed = block[64:pad]
ciphertext = cipher.encrypt (block trimmed)
ciphertext = block[0:64] + ciphertext + block[pad:]
Save File(save_ filename, ciphertext)

def Decrypt (cipher,read filename, save filename) :
block = Open_File(read filename)
pad = Get_ Padding (block)
block trimmed = block[64:pad]
ciphertext = cipher.decrypt (block trimmed)
ciphertext = block[0:64] + ciphertext + block[pad:]
Save_File(save filename, ciphertext)

def Init Cipher (key, mode, iv):
cipher = AES.new(key, mode, iv)
return cipher

set the key and iv values
key = "aaaabbbbccccdddd"

iv = "1111222233334444"

Available AES Block Modes
AES.MODE_ECB = 1

AES.MODE CBC = 2

AES.MODE_CFB = 3

AES.MODE OFB = 5

AES.MODE_CTR = 6

AES.MODE_OPENPGP = 7

mode = AES.MODE_CBC
¢ = Init_ Cipher (key,mode, iv)

Encrypt (¢, "plane.bmp", "eplane.bmp")
Decrypt (c, "eplane.bmp", "dplane.bmp")

Steganography

Steganography, which means “concealed writing” in Greek, is the art of conceal-
ing data within another file, image, video, or message. The first recorded use of
the term was by Johannes Trithemius in his book titled Steganographia in 1499.
While his book was on the topics of cryptography and steganography, it was
masqueraded as a book on magic; the book contains hidden cipher messages.
After almost 500 years these cryptograms have been detected and solved. As a

188

Chapter 6 = Using Cryptography with Images

result, Steganographia can no longer be regarded as one of the main early modern
demonological treatises, but instead stands unambiguously revealed as the first
book-length treatment of cryptography in Europe.

Typically with steganography, the hidden messages appear as images, arti-
cles, lists, or other textual items. Hidden messages may be written between the
lines of letters using invisible ink. The goal of steganography is to not attract
attention to the article itself and for those messages without keys, apply the
concept of security through obscurity. The primary difference between stegan-
ography and cryptography is that the latter focuses on protecting the contents
of a message, whereas steganography is concerned with concealing both the
message and its contents.

Steganography, today, includes the concealment of information or data within
computer files or electronic communications. In this section, we will explore
how to hide data within other electronic media using Python. Earlier in this
chapter, you learned about the cryptosteganography module. We will first start
using this module to conceal data and then explore other methods. Some of the
caveats of using this module is that the output is limited to PNG formatted files
and it does not work if the file is greater than the original input file. You may
need larger images to store big blocks of data.

Storing a Message Inside an Image

Let us turn our attention to storing data inside a digital image. Each image, no
matter the format, is constructed of small digital values called pixels. Pixels
are the equivalent to cells in the human body and are the smallest element that
makes up an image. Each pixel value represents the brightness of a given color
at any specific point. When you examine an image at the pixel level, you will
find that the image is made up of a series of pixels that form rows and columns.
Images that provide the most accurate representation of the original image
require more pixels. In digital images, the color is represented by three or four
component intensities such as cyan, magenta, yellow, and black (CMYK), or red,
green, and blue (RGB). The RGB model is the combination of adding red, green,
and blue in various ways to produce a wide variety of colors. The RGB value is
composed of 3 values (red, green, blue) which are each 8-bit values that range
from 0 to 255. When breaking down an RGB color digitally, you will see the colors
represented with three numbers; an example would be [124, 196, 143], which is
a variance of green. You can examine any number of arrangements by finding
color pickers on the web. Each value in the RGB scale is represented by a binary
code. The binary code is broken down into 8-bit binary digits. The leftmost bit
is the most significant bit. The number 128 is represented by 10000000, whereas
the number 177 is represented by 10110001. On the rightmost side of the digits,
we have the least significant bit. If we change the rightmost value, it will have

Chapter 6 = Using Cryptography with Images

189

less impact on the final value. Small changes to the least significant bit will not
be noticeable to the naked eye. This will come into play when hiding data using
the Least Significant Bit or LSB method of steganography. In an RGB image, an
8-bit image means three 8-bit channels for the RGB data; each color has its own
8-bit channel, which provides one byte for each red, green, and blue color; this
mode is also known as 24-bit color depth. This gives an image a color palette of
16.7 million colors. The LSB method replaces bits in the image, but not all these
bits are needed to show the image. You can also use this same method to hide
data in audio files. Another method of hiding data inside images is to append
extra bytes to the end of the image, while still leaving the image file technically
valid, or encoding the extra bytes in the image metadata fields. This method
will increase the size of the image in most cases. When adding bits to a file,
the secret message could appear in the file header portion, which contains the
information such as file type, color depth, and resolution of the image. Each
type of file also has an explicit end of file so data can be hidden after the end of
the file without modifying the image data and corrupting the image.

Our goal here is to use the cryptosteganography module to take a secret
message and hide it in an image. Let’s jump into some code and we will explore
some tools afterward to help discover hidden data inside our images.

The first thing that you need to do is import the cryptosteganography library:

>>> from cryptosteganography import CryptoSteganography

The next step is to create a key and pass it into the cryptosteganography
object. The key is critical in order to extract the messages you conceal; the key
you select can be a passphrase or any selected password:

>>> key = "1111222233334444!"
>>> crypto_ steganography = CryptoSteganography (key)

Now, create three variables to specify the original image file, the altered
or modified file, and the message you want to hide in the image. Use the
crypto_steganography object to hide the details in the image using the hide ()
method:

>>> origfile = "ché_secret image.jpg"
>>> modfile = "steg ché secret image.png"
>>> message = "This is the secret message."

>>> crypto_steganography.hide (origfile, modfile, message)

Now that we have an image that contains a secret message, use the retrieve()
method to extract the message. Once you have that, you can print it to the screen
to verify that it is correct:

>>> secret = crypto_ steganography.retrieve (modfile)
>>> print (secret)
This is the secret message.

190

Chapter 6 = Using Cryptography with Images

We now examine how the module works when you do not supply the
correct key. Change the key to anything else and then pass the new key into
theCryptoSteganography(ﬂaSS

>>> key = "AnotherKey"
>>> crypto_steganography = CryptoSteganography (key)

You can now use the retrieve() method to attempt to extract the message.
This time, when you print the retrieved value, you will get the value None,
indicating that the key is incorrect:

>>> secret = crypto_steganography.retrieve (modfile)
>>> print (secret)
None

Now that you have seen the components, let's put them all together and show
how hiding information using steganography changes the original file:

from cryptosteganography import CryptoSteganography

key = "1111222233334444!"
crypto_ steganography = CryptoSteganography (key)

print ()

print ('The program is looking for an image named ché_ secret image.png\n')
origfile = "chapter6\steg\ché_secret image.png"

print ('The image with the hidden message will be called steg ché_ secret_
image.png\n')

modfile = "chapteré6\steg\steg ché secret image.png"

secretMsg = ""

messagel = "Sympathy for the favorite nation, facilitating the illusion
of an imaginary common "

message2 = "interest in cases where no real common interest exists, and
infusing into one the "

message3 = "enmities of the other, betrays the former into a
participation in the quarrels and "

message4 = "wars of the latter without adequate inducement or
justification."

secretMsg = secretMsg.join([messagel, message2, message3, message4])

crypto_steganography.hide (origfile, modfile, secretMsg)
secret = crypto_steganography.retrieve (modfile)

print ("The secret that is hidden in the file is:\n")
print (secret)

print ()

Chapter 6 = Using Cryptography with Images

191

print ('Now we will try the wronge secret.\n')

key = "AnotherKey"

crypto_steganography = CryptoSteganography (key)
secret = crypto_steganography.retrieve (modfile)
print ('The secret message is: {} \n'.format (secret))

The preceding code will hide a quote from George Washington in an image
named ché_secret_image.png. I converted the original file for this chapter to
a PNG file so that we could examine the change in file size. The original file in
this case does not need to be in a PNG format, but it makes it easier to compare
the original with the modified version. Many times, when I have hidden data
in pictures, the picture size has increased, but as you will see in Figure 6.12,
the original image was 87 KB and the image with the hidden message is only
75 KB. You are not able to guess which image has the secret hidden inside just
by examining the file sizes.

Pc \Program Files (xB6}\Microsoft Visual Studio\Shared\Python37T_64\python.exe =] x

The program is locking for an image named ché_secret_image.png

The image with the hidden message will be called steg_ché_secret_image.png

The secret that is hidden in the file is:

[sympathy for the favorite nation, facilitating the illusion of an imaginary common interest in cases where no real commo
n interest exists, and infusing inte one the enmities of the other, betrays the former into a participation in the guarr
tels and wars of the latter without adequate inducement or justification.

Plow we will try the wronge secret.

The secret message is: None

Press any key to continue . . .

O Name Size Type

B chb_secret image

W steg chb_secret image

Figure 6.12: Steganography example

Additionally, you will notice that without the proper key, the secret mes-
sage is not revealed. So, the next question is, how can you determine if there is
hidden data inside an image? A number of free tools are available online that
you can use to embed and extract data from images. One tool that I have used
several times is Invisible Secrets. Now, we will explore a more complex setup
with binary data.

192

Chapter 6 = Using Cryptography with Images

Storing a Binary File Inside an Image

For our next example, we will take a media file and hide it in an image. The file I
am using for this example was retrieved from file-examples.com. The file is 747
KB in size. If you would like to use the same file, you can find it here: https://
file-examples.com/index.php/sample-audio-files/sample-mp3-download/.

Our goal here is to use the cryptosteganography module to take a secret mes-
sage and hide it in an image. The first thing that you need to do is reference the
CryptoSteganography library. The larger the media file, the longer it will take
to encrypt and decrypt. In this next example, I will also be using a much larger
image file because the media file I've selected is too large for the secret image I
used in the previous example. As you work through this example, you may be
attempting to store more data than the image will support. In those cases, you
will see an exception that states: The message you want to hide is too long. Here we
will start breaking down the code you need:

>>> from cryptosteganography import CryptoSteganography

The next step is to open the file and assign the binary data to a variable; here
Wwe use 'message':

>>> mediafile = “file example MP3_ 700KB.mp3”
>>> message = None

>>> with open(mediafile, "rb") as f:

>>> message = f.read()

Next, create a key and pass it into the cryptosteganography object. The key
is critical in order to extract the messages you conceal; the key you select can
be a passphrase or any selected password:

>>> key = "1111222233334444!"
>>> crypto_steganography = CryptoSteganography (key)

You can now store the encrypted file inside the image. Assign the original
file and modified file variables:

>>> origfile = "dogs.png"
>>> modfile = "steg audio_dogs.png "
>>> crypto_steganography.hide (origfile, modfile, message)

Now that we have our media hidden, it is time to extract it. You can use the
previous crypto_steganography object, but the code here will instantiate a new
object. This will allow you to change or modify the key if you like. Here, we
will use the same key. In addition, specify the steganography image and the
name of the file you wish to store the MP3 as:

>>> key = "1111222233334444!"
>>> crypto_steganography = CryptoSteganography (key)

Chapter 6 = Using Cryptography with Images 193

>>> modfile = ‘stegaudio_dogs.png’
>>> decrypted = ‘decrypted sample.mp3’

Use the retrieve() method to pull out the media file and write it to a new
file that was specified in the decrypted variable:

>>> secret_bin = crypto steganography.retrieve (modfile)
>>> with open(decrypted, 'wb') as f:
>>> f.write(secret_bin)

Now we will put it together with a working example that will hide a media
file inside an image of dogs named dogs.jpg. There is nothing special about
this image shown in Figure 6.13. It is simply just a photo of my two dogs taken
with my cell phone camera; it is, however, a large enough file in which to hide
a 700 KB MP3 file.

Figure 6.13: High-definition photo of dogs

The following code will take an MP3 file and hide it inside a large JPG file.

from cryptosteganography import CryptoSteganography

open sound file
mediafile = 'chapteré6/steg/file example MP3_ 700KB.mp3'
message = None

with open(mediafile, "rb") as f:
message = f.read()

194 Chapter 6 = Using Cryptography with Images

print ()

print ('The program is looking for an image named dogs.jpg\n')

origfile = "chapteré6\steg\dogs.jpg"

print ('The image with the hidden audio file will be called steg audio_
dogs.png\n"')

modfile = "chapteré6\steg\steg audio dogs.png"

key = "1111222233334444!"
crypto_steganography = CryptoSteganography (key)
crypto_steganography.hide (origfile, modfile, message)

print ('The extracted data will be called decrypted sample2.mp3 \n')
decrypted = 'decrypted sample2.mp3'
secret_bin = crypto_steganography.retrieve (modfile)

Save the data to a new file
with open(decrypted, 'wb') as f:
f.write(secret_bin)

In Figure 6.14, you will see the output from the preceding Python recipe. The
code takes a media file and encrypts it inside the dogs.jpg image. You will see
that the original size of the dogs image is 598 KB. Once you embed the media
file, the outputted file is 4,983 KB. The previous example also extracts the media
file from the image and stores it as decrypted_sample.mp3. You can compare
the two MP3 files; you will find that they are identical.

P CA\Program Files (xB6]\Microsoft Visual Studic\Shared\Python37_64\python.exe - [m] b4

[The program is locking for an image named dogs.jpg
[The image with the hidden audio file will be called steg_audio_dogs.png
[The extracted data will be called decrypted_sample2.mp3

Press any key to continue . . . _

O name s Size

@ decrypted sample
@ file_example_MP3_TOOKE

B chb_secret_image
B dogs

B steg_sudio_dogs

W steg_chb_secret_image

Figure 6.14: Steganography with media

Chapter 6 = Using Cryptography with Images

195

Working with large images

While we are on the topic of images and the ability to hide data inside them,
I want to introduce you to the FITS image type. FITS stand for Flexible Image
Transport System; it is an open standard that defines a digital file format that
is used for the transmission, processing, and storage of data within a single
file. FITS is typically used for digital files produced in astronomical research
or satellite data. The amount of data inside the file can be astronomical, pun
intended. The data inside the file can be represented in several dimensional
formats. The important aspect to understand about how this format works is
that there is human-readable text stored in the header portion of the file format.
The header details may list any parameters that could tell where the image was
taken, which satellite or telescope produced it, and any number of pieces of
metadata that the author wants to include; the only limit to the header metadata
is that the label must be eight characters or less. A FITS file consists of one or
more Header + Data Units; these are known as HDUs. The first HDU that is
created is called the primary HDU or primary array. The primary HDU can
be empty or contain an N-dimensional array of pixels such as a 1-D spectrum,
a 2-D image, or a 3-D data cube. The best way to get an understanding of the
FITS standard is to dive in with some Python code; in order to follow along
with the following code, you will need to include the astropy library. Another
library that you can use is pyFITS. The .io FITS module is identical to PyFITS
except by name. pyFITS was ported into astropy. You can do this by typing pip
install astropy. Let's create a FITS file that stores some random numpy array in
a file named random_array.fits. The output of the file will give you the default
header information along with the contents of the data.

import numpy as np
from astropy.io import fits

file name = "chapter6/fits/random array.fits"

hdu = fits.PrimaryHDU()

hdu.data = np.random.random((128,128))

Note that setting the data automatically populates the header with
basic information:

hdu.writeto(file name, overwrite=True)

data = fits.getdata(file_name)
header = fits.getheader (file name)

print (header)
print ()
print (data)

Now that you understand the components that make up a FITS file, we can
explore FITS for images where you might want to keep some of the header

196

Chapter 6 = Using Cryptography with Images

information confidential. You already know how to encrypt strings, so here, I'll
just assume you've encrypted the data using your favorite algorithm. Since the
labels are restricted to eight characters, the labels do not make great candidates
for encryption but the actual data does. If there was data that you wanted to

keep secret, the following Python code would do the trick.

import matplotlib.pyplot as plt
import numpy as np

from PIL import Image
from astropy.io import fits

from astropy.visualization import astropy mpl style

location_lat = "Encrypted latitude"
location long = "Encrypted longitude"
author = "Encrypted name here"

satellite = "Encrypted satellite name"

load image as pixel array

img_
xsize, ysize =

file =
img file.size

Image.open ('chapter6/fits/ch6_secret image.jpg')

print ("Image size: {} x {}".format (xsize, ysize))

plt.
plt.

style.use (astropy mpl style)
imshow (img file)

split the image into color channels

r, g, b = img file.split ()

r data = np.array(r.getdata())
g data = np.array(g.getdataf())
b_data = np.array(b.getdata())

print (r_data.shape)

r data =
g data =
b data =

red

red.
red.
red.
red.
red.

green =
green.header [
green.header |
green.header ["LONGOBS"]
green.header [
green.writeto

r data.reshape(ysize, xsize)

g data.reshape (ysize, xsize)
b _data.reshape (ysize, xsize)
= fits.PrimaryHDU (data=r_data)
header ["AUTHOR"] = author
header ["LATOBS"] = location lat
header ["LONGOBS"] = location long

["SATNAME"] = satellite

o

('chapter6/fits/red.fits"',

header
writet

fits.PrimaryHDU (data=g data)
"AUTHOR"]
"LATOBS"]

= author
= location lat

"SATNAME"] = satellite

('chapter6/fits/green.fits’,

overwrite=True)

= location long

overwrite=True)

Chapter 6 = Using Cryptography with Images

197

blue = fits.PrimaryHDU(data=b_data)

blue.header ["AUTHOR"] = author
blue.header ["LATOBS"] = location_lat
blue.header ["LONGOBS"] = location_long
blue.header ["SATNAME"] = satellite

blue.writeto('chapter6/fits/blue.fits', overwrite=True)

The output of the previous code takes our secret image from the beginning
of the chapter and creates three unique FITS files using red, green, and blue
channels. You will see in Figure 6.15 that the header for green.fits contains our
secret information. As you might expect, we could easily encrypt the image too.

1| [Hender 03 groensas =)o]

Figure 6.15: FITS Files

Summary

In this chapter, you were introduced to a couple of libraries that perform cryp-
tographic and steganography tasks on images. It is important for you to under-
stand how various AES block modes work and how they apply to image files.
We concluded the chapter by using the cryptosteganography library to hide
various types of files. Hiding messages inside an image could affect the prop-
erties of the image. This was obvious when we hid a 30-second MP3 file inside
an image. The decryption process for each of these examples is dependent on
the use of a secret key; if the recipient of the file does not have the secret key,
your message will remain a secret even if the recipient can see that the visual
properties of the file have changed. Finally, we explored the FITS file format.
While the FITS format may not provide much value on the surface, the amount
of data that can be stored and encrypted is incredible.

Message Integrity

You should be comfortable at this stage with symmetric key cryptography. In
this chapter, you learn to generate message authentication codes to let message
recipients validate that the message they are receiving has not been tampered
with while it was in transit. In the context of message integrity, a hash function
is used to produce a fixed-length message digest from a variable-size message.
The most common message digests range in length from 160 to 512 bits. Any
alteration to the input message produces a dramatically different message digest.
The message digests help detect unauthorized alterations and message forg-
eries. The principles you learn and develop here continue in the next chapter
as you explore public-key cryptography; throughout this chapter, you gain
cryptographic knowledge as you:

m [earn about Message Authentication Codes (MACs)
m Ensure that your signature is not compromised and does not get forged

m Explore how to make forgeries when someone else failed to protect their
signatures

m Explore sending encrypted data over nonsecure channels

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

199

200

Chapter 7 = Message Integrity

Message Authentication Codes

You were first introduced to hash functions and message authentication codes
in Chapter 2. You now dive into those same concepts at a deeper level. Message
Authentication Codes, also called tags, or MACs as they are more commonly
known, play an essential role in ensuring messages are not tampered with while
they are en route to their destination. MACs ensure message integrity in addition
to validating the message authenticity by allowing the parties involved to verify
the message using a shared secret. A MAC involves three separate functions:

m A key-generation function that returns a key k from an input
m A signing function that returns a MAC or tag t when given the key k

m A verifying function that verifies the authenticity of the message (m) given
the value of k and ¢

The formal definition of the MAC is as follows:

A MAC relies on a secret key that both the sender and receiver know; there-
fore, it uses a symmetric key value. The MAC is built by taking the message
(m) and the key (k) and using a defined algorithm where the tag (f) that gets
returned. The recipient gets both the original message (1) and the tag (t). If
the message and key produce the same tag, then the receiver has verified the
message; if the tag cannot be verified, the message may have been altered by a
reprehensible party.

The goal of your adversary is to generate a different message and tag that the
receiver would verify as correct. No authentication at the receiving end could
be achieved if both the message and its hash value are accessible to an adver-
sary wanting to tamper with the message. There are several ways in which one
could incorporate message hashing.

m Concatenate message and MAC: In this scheme, the sender would use
symmetric-key encryption and concatenate the message and its MAC to
form a composite message that is then encrypted and sent to the recipient.
The receiver then decrypts the message using the symmetric key and
separates the message and the MAC. The MAC would then provide the
authentication, and the encryption provides the confidentiality.

m MAC encryption: This scheme is a modification of the previous one
outlined. In this scheme, only the MAC is encrypted. This scheme is effi-
cient to use when confidentiality is not the main concern, but message
authentication is critical. Only the receiver with access to the secret key
knows the real MAG; this ensures that the receiver can verify whether
the message is authentic and remains tamper-free.

m Public-key MAC encryption: This scheme is similar to MAC encryption
and uses public-key encryption to encrypt the MAC with the sender’s

Chapter 7 = Message Integrity

201

private key. This means that anyone who has the sender’s public key can
decrypt the MAC; this method is to ensure authentication. This scheme
is the basic concept behind a digital signature.

m Symmetric public-key confidentiality: This scheme builds on the
public-key MAC encryption where the message is concatenated with the
encrypted public-key MAC, but then the concatenated message is encrypted
again with a symmetric key. The scheme is frequently used when both
authentication and confidentiality are needed.

m Hidden secret: In the next scheme, nothing is encrypted. The sender
appends a secret string S, also known to the receiver, to the message before
computing its MAC; the sender then removes the secret string. Before
checking the MAC of the received message for its authentication, the
receiver appends the same secret string S to the message and computes
the MAC to confirm both matches.

m Symmetric key confidentiality: This scheme is similar to symmetric
public-key confidentiality with the exception that instead of using a public
key to encrypt the MAC, the sender uses a symmetric key. He then con-
catenates the MAC to the message and encrypts the message again.

You might wonder why we do not do something simple like H(K|m) for some
secure hash function H. We do not explore the details of how hash functions
compress large amounts of data down to something fixed length, but they use
something analogous to a block cipher mode for compression, called the Merkle-
Damgard construction. The heart of most hash functions is a “compressor” that
takes in two fixed-length inputs and spits out one output of that length. Then it
concatenates the block compressions into the final hash. Knowing that, we can
forge signatures with an unknown secret key. Next, you will learn how to gen-
erate your first cryptographically secure MAC, which is a clever application of
hashing to generate a difficult-to-forge tag. The system is called the Hash-based
Message Authentication Code, or HMAC.

Hash-based Message Authentication Code

A cryptographically secure MAC is known as a Hash-based Message
Authentication Code (HMAC). For a hash function to be considered crypto-
graphically secure, it must satisfy two properties:

= One-way property: The one-way property refers to a hash function that
makes it computationally infeasible to find a message that corresponds
to a given MAC.

m Strong collision resistance property: The strong collision resistance
property refers to a hash function that makes it computationally infeasible
to find two different messages that hash to the same MAC.

202

Chapter 7 = Message Integrity

It is important to note that hash functions that are not collision resistant can
be vulnerable to the birthday attack; you learn more about this attack shortly.
First, you will explore the HMAC function and learn how to incorporate the
same logic into a standard hash library. Open the Python interpreter and enter
the first two lines of code to verify that you are getting the same tag;:

import hmac, hashlib
print (hmac.new(b"secretkey", b"our secret message", hashlib.sha256) .
hexdigest ())

78c736db86abdl16023a23355f4ad3005e77dec6d8c960d06ealc4a9aba9c449f

SHAZ256 has a 64-byte block length; to build an HMAC by hand, you need to
build K*, ipad, and opad:
import binascii, hashlib

k = b"secretkey"
msg = b"our secret message"

kplus = k + b"\x00"* (64-1len(k))
ipad = b"\x36"*64
opad = b"\x5C"*64

def XOR (rawl, raw2):
return binascii.unhexlify(format (int (binascii.hexlify(rawl), 16)

A

int (binascii.hexlify(raw2), 16), 'x'))

tag = hashlib.sha256 (XOR (kplus, opad) + hashlib.sha256 (XOR (kplus, ipad)
+ msg) .digest ()) .digest ()

print (binascii.hexlify(tag))

Confirm that this manual computation matches the library implementation.
In our next script, we will apply an HMAC digest to a signed message.

Using HMAC to Sign Message

The file that we are creating the message digest for is a simple text file that con-
tains only Hello. When run, the code reads a data file and computes an HMAC
signature for it:

import hmac

myKey = b'this is my secret'
digest _maker = hmac.new (myKey)

with open('test.txt', 'rb') as f:
while True:

Chapter 7 = Message Integrity

203

block = f.read(1024)
if not block:
break
digest maker.update (block)
digest = digest maker.hexdigest ()
print (digest)

The output should produce the following results:

c2b5ac0978608c196£6237ab3983ebd2

Message Digest with SHA

MDS5 is one of the most common algorithms used for hashing, but over the years
MD?5 hashes have proven to have a number of weaknesses such as collisions
and are vulnerable to length extension attacks. The SHA family of algorithms
offer stronger options and should be used instead, but many of these algorithms
are also susceptible to the length extension attack; we will review this later in
the chapter.

The new() function on the hmac object takes three arguments. The first is the
secret passphrase or key; this will be needed by both the sender and receiver.
The second value is an initial message. If the message content that needs to be
authenticated is small, such as a timestamp or HTTP POST, the entire body
of the message can be passed to the function; if not, you will need to use the
update() method. The last argument is the digest module to be used. The default
is hashlib.mds. The following example will create a test.txt file that contains
Hello and then checks if the hash is using SHA256:

import hmac
import hashlib

myKey = b'this_is my_ secret'
digest_maker = hmac.new(myKey, b'', hashlib.sha256,)

with open("chapter7/test.txt", "wb") as hello file:
hello file.write(b'Hello')
hello file.close()

the test.txt file contains the bytes 'Hello'
with open('chapter7/test.txt', 'rb') as f:
while True:
block = f.read(5)
if not block:
break

204 Chapter 7 = Message Integrity

digest_maker.update (block)
digest = digest_maker.hexdigest ()
print (digest)

6833cebacb9495clcccbabl7d4b5f3aefda3dc03£fcb3f8d070d61a09a4084a02

Binary Digests

The previous examples used the hexdigest() method to produce a printable
digest. The hexdigest () is a different representation of the value calculated by
the digest () method, which is a binary value that may include unprintable
characters, including NUL. Some web services such as Amazon S3 and Google
checkout use the Base64-encoded version of the binary digest instead of the
hexdigest (). To see the difference, I am using the same Hello text file from the
previous example:

import baseé64
import hmac
import hashlib

myKey = b'this_is_my secret'
with open('test.txt', 'rb') as f:
body = f.read(5)

hash = hmac.new(myKey, body, hashlib.sha256,)
digest = hash.digest ()
print (base64.encodebytes (digest))

The output generated should resemble the following:

b'aDPOusuUlcHMy6YX1LXzrv2j3AP8s/jQcNYaCaQISgI=\n'

HMAC authentication should be used for any public network service, and
any time data is stored where security is important. For example, when sending
data through a pipe or socket, that data should be signed, and then the signature
should be tested before the data is used. We will explore how to do this later in
this chapter when we explore secure channels.

The first step is to establish a function to calculate a digest for a string, and a
simple class to be instantiated and passed through a communication channel:

import hashlib
import hmac

def make digest (message) :
"Return a digest for the message."
myKey = b'this_is my secret'
hash = hmac.new(myKey, message, hashlib.sha3_256)
return hash.hexdigest () .encode ('utf-8"')

Chapter 7 = Message Integrity

205

You must encode your message before it is hashed.

message = b'This is a test of the emergency broadcast system; it is only
a test.'

rd = make digest (message)

print (rd)

The preceding code listing should produce a digest for our intended message.
Your output should look identical to the output shown in Figure 7.1.

import hashlib
import hmac

-ldef make_digest(message):
"Return a digest for the message.”
myKey = b'this_is_my_secret’
hash = hmac.new(myKey, message, hashlib.sha3_256)
return hash.hexdigest().encode('utf-8")

You must encode your message before it is hashed.
message = b'This is a test of the emergency broadcast system; it is only a test.’
rd = make_digest(message)
print (rd)
| P C\Program Files (xBE)\Microsoft Visual StudichShared\Python37_64\gython.exe — o x

b'9c85c5c76483a0d25990eald37446F6e45211 232934326067 e6807balel68fa "
Press any key to continue . . .

Figure 7.1: Binary digests

NIST Compliance

In the FIPS PUB 180-4 (Federal Information Processing Standards Publication),
the National Institute of Science and Technology (NIST) outlines a secure hash
standard that can be used to generate digests of messages and specifies secure
hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
and SHA-512/256. Any change to a message results in a different message digest.

NIST provides a sample zip file that contains a file named EMAC.rsp. As you
study the inner workings of hashing, you should know about a common prac-
tice with message authentication codes, which is to truncate the tag. In the NIST
example, you may notice the TLen parameter, which is the number of bytes that
the tag truncates. The truncating may benefit some applications that require a
hash function with a message digest length different than those provided by the
hash functions. In cases such as these, a truncated tag or digest should be used,
whereby a hash function with a more considerable tag length is applied to the
data to be hashed, and the resulting message digest is truncated by selecting an
appropriate number of the leftmost bits. To learn more about the guidelines on

206 Chapter 7 = Message Integrity

choosing the length of the truncated message digest and information about its
security implications for the cryptographic application that uses it, see SP 800-107.

import hashlib
hasher = hashlib.md5 ()
from http://csrc.nist.gov/groups/STM/cavp/documents/mac/
hmactestvectors.zip
with open ('hmactestvectors.zip', 'rb') as afile:
buf = afile.read()
hasher.update (buf)
print (hasher.hexdigest ())

The preceding Python should produce the following HMAC:

054d8addf01353605068508266eb2f19

To examine a NIST-supported SHA256 hash, review the following. It has
many similarities, but this example incorporates a BLOCKSIZE:

import hashlib

BLOCKSIZE = 65536
hasher = hashlib.sha256 ()
with open('hmactestvectors.zip', 'rb') as afile:
buf = afile.read(65536)
while len(buf) > 0:
hasher.update (buf)
buf = afile.read (BLOCKSIZE)
print (hasher.hexdigest ())

The second example will produce the following HMAC:

418c3837d38£249d6668146bd0090db24dd3c02d2e6797e3de33860a387ae4bd

CBC-MAC

The cipher block chaining message authentication code (CBC-MAC) is used in
cryptography to construct a MAC from a block cipher. The initial message gets
encrypted with a block cipher algorithm in CBC mode. The CBC mode creates
a chain of blocks such that each block depends on the proper encryption of the
previous block. CBC sets up an interdependence that ensures that a change to
any portion of the plaintext bit causes the last block to be encrypted in a way
that cannot be predicted or counteracted without knowing the key to the block
cipher. The CBC-MAC encryption process is shown in Figure 7.2.

Chapter 7 = Message Integrity

207

® 66 66

MAC

Figure 7.2: CBC-MAC example

There are some security issues related to CBC-MAGC; if the block cipher used
is secure, the CBC-MAC is secure for the fixed-length message. It should be
noted that CBC-MAC by itself is not a secured option for variable-length mes-
sages. A single key must be used for messages of a fixed length; this is because
an attacker who knows the correct message-tag (i.e., CBC-MAC) pairs for two
messages can generate a third message whose CBC-MAC would be the same
as the produced tag. This weakness can be exploited by XORing the first block
of m” with t and then concatenating m with the modified m’". One solution is to
include the length of the message in the first block.

Additionally, encrypting the last block has the advantage of not needing to
know the length of the message until the end of the computation. One standard
error is to reuse the same key k for CBC encryption and CBC-MAC. Reusing the
same key for different purposes is a poor practice in general; in this particular
case, the mistake leads to attacks against the encryption mode.

CBC-MAC is similar to the CBC mode for encryption with a few differences.
The first difference is that the initialization vector (IV) is a fixed value. Secondly,
the CBC-MAC only outputs the last block of the ciphertext. Additionally, CBC-
MAC can support a random IV but requires you to know the IV. If you had a
safe place to store the IV, one could argue your message would be safe there as
well. If nefarious users can change the CBC-MAC 1V, they can also change the
first block of the MAC message to produce a tag that would match the original
hash. The attack can be made because one of the first steps to CBC-MAC is to
XOR the IV with the message.

Birthday Attacks

The birthday attack is based on the observation that finding equal random
values is significantly more manageable when you check all pairs and do not

208

Chapter 7 = Message Integrity

preselect one value. When it comes to exploring hashing and MACs, you end
up with an attack that is more efficient than brute-forcing a target. The con-
text is when someone is randomly selecting values from a range (which is one
way of interpreting encryption, hashing, and authenticating). The attack treats
our birthdays as uniformly distributed values out of 365 days. The following
Python calculates the probability of students” sharing a birthday within a spec-
ified class size:

import random
import decimal
classSize = 23
1000
0

numTrials

dupeCount

for trial in range (numTrials) :

year = [0]*365

foundDupe = False

for i in range(classSize) :
newBDay = random.randrange (365)
year [newBDay] = year [newBDay] + 1
if year[newBDay] > 1:

foundDupe = True

if foundDupe == True:
dupeCount = dupeCount + 1

prob = float (dupeCount / (numTrials * 1.0)
print ('The probability of a shared birthday in a class of', classSize,
'is', prob)

The probability of a shared birthday in a class of 23 is 0.481.

You can import itertools and get a more condensed version. In the following
Python script, you see that 35 students would offer closer to an 80% chance of
a birthday collision:

import itertools
from functools import reduce
def alldifferent (k,n):
''"'The probability that k random selections from n possibilities
are all different.'''
assert (k<=n)
nums = range(n,n-k,-1)
dens = itertools.repeat (n)
fracs = map(lambda x,y: float (x)/y, nums,dens)
return reduce (float. mul , fracs)

def collide(k,n):

Chapter 7 = Message Integrity

209

'"'The probability that, in k random selections from n
possibilities,

at least two selections collide.'!'!'

return 1 - alldifferent (k,n)

print (collide (35,365))

Crafting Forgeries

The biggest failure of a MAC scheme is that a nefarious user can generate a
false message that the recipient accepts as authentic. These failures are made
possible due to the CBC-MAC/birthday paradox.

Given a particular message, how many other messages would you expect to
create message tags for before finding a collision? Imagine that you have found
two messages m1, m2 such that MAC K (ml) = MAC K (m2); then MAC K (m1 +
x) = MAC K (m2 + x). To prove that the vulnerabilities exist, a team at Google
released the first concrete collision attack against SHA-1. The team has produced
two files, shattered-1.pdf and shattered-2.pdf, that produce the same SHA-1
tag. To learn more about the attack, review shattered.io.

The Length Extension Attack

Now that you have a little insight on how collisions happen, let’s examine the
SHA-1 digest in a little more detail and then define a Python forgery for it. The
Secure Hash Algorithms are a family of cryptographic hash functions published
by the National Institute of Standards and Technology (NIST) as a U.S. Federal
Information Processing Standard (FIPS), including SHA-0, SHA-1, SHA-2, and
SHA-3. The SHA-1 is a 160-bit hash function, which is like the MD5 algorithm.
The algorithm was designed by the NSA (National Security Agency) back in the
early 1990s. All hashing algorithms, including SHA-1, produce a fixed-length
message digest. The output for SHA-1 is 20 characters no matter how long the
message was that was hashed.

In general, you should use MACs such as HMAC-SHA-256 over those that
are not cryptographically secure such as MD5 and SHA-1. One of the primary
reasons is that the plain hash functions are susceptible to length extension
attacks. Many common hash functions use the Merkle-Damgard construction,
which are built using a compression function, f, and preserve an internal state,
s, which is initialized to a defined constant. Messages are produced by applying
a compression function to the current block and current state to compute an
updated internal state; the blocks are generated in fixed-sized blocks; i.e.,
Si,1=f(s;, b) One of the consequences of this design, which allows us to exploit
it, is that if you know the hash of an n-block message, you may be able to find
the hash of longer messages by applying the compression function for each

210

Chapter 7 = Message Integrity

block that we want to add (b,,,4, b,,,,, . . .). This type of attack is known as length
extensions and it can be applied to many applications of hash functions.

The hashing process in this case, MD5, produces a message in 512-bit blocks.
This means, internally, the hash function pads the message, m, to a multiple
of that length. The padding consists of the bit 1 followed by as many 0 bits as
needed. The padding is then followed by a 64-bit count of the number of bits
in the unpadded message. If the padding will not fit in the current block, the
system adds an additional block. You can use the function padding(count) in
the pymd5 module to compute the padding that will be added to a count-bit
message.

Some of the code we will use as you explore this attack can be downloaded
in an MD5 Python module known as pymd5. As of this writing, the project is
available at pypi.org/project/pymds/; the module is used by many universities
to help cryptography students play with hashing functions. It was originally
developed in 1991 by RSA Data Security. You can install it using a pip install
pymds, but your experience will be different. The module allows for a more
condensed md5 call and exposes two low-level methods named mds _ com-
press() and padding().

Depending on what you need, you may find the HashPump tool easier for
your research. HashPump is a free tool that can be used to exploit the hash
length extension attack on a number of algorithms including MD5, SHA-1,
SHA-256, and SHA-512. You can install it using the following syntax to set it
up on Debian or Ubuntu Linux distributions:

git clone https://github.com/bwall/HashPump.git
apt-get install g++ libssl-dev

cd HashPump

make

vr r vr r

make install

Setting Up a Secure Channel

So far, you have explored only dealing with MACs in plaintext. Having a secure
channel of communication that is secret and tamper-free would be ideal but
as you are learning, secure communications can be tricky. If you wish to both
encrypt data and authenticate the recipient, you must be careful. There are three
possible ways to achieve this:

Encrypt and Authenticate To encrypt and authenticate, you would com-
pute ¢ = ENC, (M) and t = MAC,, (M) and send (c,t); on the other side of
the conversation, the recipient must compute M = DEC,(c) then check
t == VRFY, (M) once they know M. The problem with this method is that
most MACs are deterministic. There are some flaws with this method.

Chapter 7 = Message Integrity

211

First, when you send the same message many times, any potential eaves-
dropper has the advantage. Additionally, the MAC is not designed for
secrecy; there is no assurance that the upper byte of ¢ isn’t identical to the
first byte of M.

Authenticate Then Decrypt In this world you compute t = MAC(M) then
c = ENC(M| |t). Your receiver computes M| |t = DEC(c), then checks that
t == VRFY(M). This next model is a bit stronger, but there is a bit of debate
on the authenticate-then-decrypt model. Johnathan Katz recommends
against this model while Bruce Schneier recommends it. Katz enjoys proofs
of security and would recommend the next method.

Encrypt Then Authenticate This is the recommended approach. First,
¢ = ENC; (M), then t = MAC,,(c) and send (c,t). On the other side, verify
t == VRFY,, (c) and if that computes, calculate M = DEC,. If the MAC
is cryptographically secure, then we are CCA-secure and unforgeable,
provided the keys are random and independent.

Communication Channels

There are additional attacks that the security practitioner should be aware of,
but they tend to border more on the network security side than cryptography
best practices. In general, you should always encrypt the entire message. Ideally,
you need to set up a channel for encrypted and authenticated messages between
the two parties despite any malicious middlemen. Your crypto system cannot
mitigate threats that are related to someone else controlling the network bet-
ween the communicating parties. These attacks include the replay attack, the
reordering attack, and the reflection attack.

m Replay attack: Occurs when a middleman captures the encrypted mes-
sage and then has the ability to send it at a later time.

m Reordering attack: Occurs when an adversary takes encrypted messages
and sends them out of order.

m Reflection attack: Occurs when a message is sent back to the sender and
not passed along to the recipient.

None of these attacks would lead to a failure, and the messages would be
decrypted correctly. To fight against reflection and replay attacks, you should
include more than just the message in your MACs. In this case, you solve these
problems by including some extra data with the encrypted messages, a message
counter, and a direction bit (0 for A to B and 1 for B to A). Then both parties
can maintain state and reject messages that don’t match up. Our next goal is to
explore opening up a socket using Python in order to deliver a message that
cannot be successfully read from an unauthorized user. This will be the basis
of exploring secured sockets after we examine certificates in the next chapter.

212

Chapter 7 = Message Integrity

Sending Secure Messages Over IP Networks

Sockets are used to send messages across various networks that can be logical,
local, or external. Sockets were introduced back in 1971 with the birth of ARPANET
and then later became the Berkeley sockets, which is an API in the Berkeley
Software Distribution OS that was released in 1983. Network programming
started to boom in the 1990s as the use of the internet increased; the use of
client-server applications of many types became widespread. The socket API
in Python provides an interface to the Berkley sockets.

There are two types of sockets that you can experiment with. The first is a
Transmission Control Protocol (TCP). TCP is used to produce reliability and has
an in-order data delivery system. The second type of socket is the User Data-
gram Protocol (UDP). These sockets lack reliability and their data can be out
of order; in fact, there is no guarantee that your data will reach the destination.
Depending on the type of data you are sending, one type of socket will have
advantages over the other. In the next two code samples provided, you will use
Python to create a server listening for UDP communications and create a client
server that will communicate with it.

Create a Server Socket

The following Python code will allow you to create a server that is listening
on port 13000. Once this code executes, it will launch a command window that
states Waiting to receive message. . . . See Figure 7.3.

ch serverpy & X [RRA

]

Waiting to receive messages...

Received message: Hello World!

Received message: The data is being sent unencrypted!

dy
Enter age to send or type ello World!

Enter age to send or type The data is being sent unencrypted!
Enter message to send or type "exit': _

Figure 7.3: Output of Server.py

Chapter 7

Message Integrity

213

Save as server.py
Message Receiver
import os
from socket import *
host = ""
port = 13000
buf = 1024
addr = (host, port)
UDPSock = socket (AF_INET, SOCK DGRAM)
UDPSock.bind (addr)
print ("Waiting to receive messages...")
while True:
(data, addr) = UDPSock.recvfrom (buf)
print ("Received message: " + str(data,'utf-8'))
if data == "exit":
break
UDPSock.close ()
os._exit(0)

Create a Client Socket

The next Python code will create the client that will send messages to the server
over port 13000. Once the code executes, it will launch a command window
that states Enter message to send or type ‘exit’. Messages entered here will be sent
unencrypted to the server. We will explore how to encrypt and decrypt these
messages using symmetric encryption. Once you complete the following script,
you will be able to send messages from the client to the server, as shown in

Figure 74.

Save as client.py
Message Sender
import os

from socket import *

host = "127.0.0.1" # set to IP address of target computer

port = 13000
addr = (host, port)
UDPSock = socket (AF_INET, SOCK _DGRAM)
while True:
data = input ("Enter message to send or type 'exit':
UDPSock.sendto (data, addr)
if data == "exit":
break
UDPSock.close ()
os._exit(0)

") .encode ()

214 Chapter 7 = Message Integrity

Save as server.py
Message Receiver
import

I CPregram Files (xBS\Micrasolt Visual Studic\Shared\Python3T_64\python.exe o] *
from 500aiting to recelve messages...
host

port
buf = 1
addr =
UDPSock
UDPSock
print (
while T
(da
pri
if

UDPSock
os._exi

Figure 7.4: Messages entered here will be sent unencrypted to the server.

Create a Threaded Server with TCP

You can expand on your socket knowledge by examining the next code listing.
The following script will create a server that you can send messages to via TCP.
This example, just like the previous communications, sends data unencrypted
from one application to another:

import socket
import sys
from _thread import *

host = 'localhost'
5555
print (host, port)

port

s = socket.socket (socket .AF INET, socket.SOCK STREAM)

try:
s.bind((host, port))
except socket.error as e:
print (str(e))

s.listen(5)

def threaded client (conn) :
conn.send (str.encode ('Welcome, type your info\n'))

Chapter 7 = Message Integrity

215

while True:
data = conn.recv(2048)
reply = 'Server output: '+ data.decode('utf-8')
if not data:
break
conn.sendall (str.encode (reply))
conn.close ()

while True:
conn, addr = s.accept()
print ('connected to: ' +addr[0] + ':' + str(addrl[l]))

start_new_thread(threaded client, (conn,))

Adding Symmetric Encryption

There is nothing new here; we are now combining elements we learned in this
chapter to send data from one application to another. Unlike our previous exam-
ples, we will use the Cryptography module’s Fernet implementation:

Save as server.py

Message Receiver

import hashlib

import random

import os

from socket import *

from cryptography.fernet import Fernet

key = Fernet.generate_key ()
f = Fernet (key)

print ("The key is :", str(key, 'utf-8'))
host = nn

port = 8080

buf = 1024

addr = (host, port)

UDPSock = socket (AF_INET, SOCK DGRAM)
UDPSock.bind (addr)
print ("Waiting to receive messages...")

def decrypt (ciphertext) :
try:
msg = f.decrypt (ciphertext)
except:
msg = ciphertext
return msg

216 Chapter 7 = Message Integrity

while True:
(data, addr) = UDPSock.recvfrom(buf)
h = hashlib.md5 (data)

plaintext = decrypt (data)
msg = str(plaintext, 'utf-8')

print ("Received message: " + msg)
if msg == "exit":

break
if msg == 'newkey':

key = Fernet.generate key()
f = Fernet (key)
print ("The key is :", str(key, 'utf-8'))

UDPSock.close ()
os._exit (0)

The preceding code sample should generate a key for the session, as shown
in Figure 7.5.

P Ci\Program Files (x86)\Microsaft Visual Studic\Shared\Python37_64\python.exe - O X

The key is : EiSCuXKRQ2_cWOj-alpSvmOBgnvBMklrCTAHIl4gxos= -
Waiting to receive messages...

Figure 7.5: server.py

The previous implementation will present you with a key. To get both the
client and server communicating with each other, you will need to copy and
paste the provided key to the client window, as shown in Figure 7.5:

Save as client.py

Message Sender

import os

from socket import =*

from cryptography.fernet import Fernet

host = "127.0.0.1" # set to IP address of target computer
port = 8080
addr = (host, port)

UDPSock = socket (AF_INET, SOCK_DGRAM)

Chapter 7 = Message Integrity

217

key = input ("Enter the secret key: ")
f = Fernet (key)

def encrypt (plaintext) :
msg = f.encrypt (plaintext)
return msg

while True:
data = str(input ("Enter message to send or type 'exit': ")) .encode ()
ciphertext = encrypt (data)
UDPSock.sendto (ciphertext, addr)

if data == b'exit':
break
if data == b'newkey':

key = input ("Enter the secret key: ")
f = Fernet (key)

UDPSock.close ()

os._exit(0)

The preceding client code should open up a terminal window, as shown
in Figure 7.6. Once you paste the server key, you will be able to communicate
securely between the two applications.

Enter the secret key: -

Figure7.6: client.py

Once the correct key is entered, messages from the client will be encrypted and
then passed over an unsecured socket; the key is used to encrypt and decrypt
the message and must be the same on both sides. The server will attempt to
decrypt the message. If the key is wrong, the message will remain encrypted.
As a special feature to this code, you can type newkey in the client. This will
allow you to update the encryption key. Once you have the same key, the com-
munications can be recovered, as shown in Figure 7.7.

We now have a system that is more secure even though it is using an insecure
network connection. In the next section, we will concatenate the message and
the MAC to improve our system.

218

Chapter 7 = Message Integrity

P C:\Program Files (x86)\Microsoft Visual Studic\Shared\Python37_64\python.exe = [m] X {

The key is : ghStdqA9YewlLigsDBBNEG7AVye@vwQlPBRvZEhg7418= ~
Waiting to receive messages...

Received message: Hello world!

Received message: This is an encrypted message!

Received message: newkey

The key is : v3TxOhO6_yzmNCggTFMhe30eKztgFILawjORNyNSIBw=

Received message: gAAAAABe®nSy@9BZPS8-MMdh__d2-ksBUCu2qsFN3iHSMeuM9Y96hPysnwIrd5sNKdezMres
ROKTjt4xZ70TNHFonsgHCtVH2Q==

Received message: gAAAAABe®n6E_yUuqzPuASmy-NvdvV{6S8GDOc6koSDIpNIMkBSO8VkzDS5tIBRhhTjBBVS9
zXQmem8wMvesdzPIXUzKo_u9V9cbsVbEDQ1c1DtSuSPibecviB7GxuN6T2sE11AVITQNG

Received message: gAAAAABe@n6IEUYboTi7ZFdDs_uIawMobAzgKouPLzDOHIFM7r2_gDLYaHPy8bx9omhkdLuj
2QFdn-kBPsOooaDtvXYaQeZxeg==

Received message: Did we recover?

Received message: Yes, we are now able to send secure messages.

Enter the secret key: ghStdgA9YewlLigsDBBNEG7AVye@vwQlPBRVZEhg7418= ~
Enter message to send or type ‘exit': Hello world!

Enter message to send or type 'exit': This is an encrypted message!

Enter message to send or type 'exit': newkey

Enter the secret key: ghStdqA9YewliqsDBBNEG7AVye@vwQlPBRvZEhg7418=

Enter message to send or type 'exit': Hello world!

Enter message to send or type 'exit': This message can not be decrypted!

Enter message to send or type ‘exit': newkey

Enter the secret key: v3Tx0h06_yzmNCggTFMhe30eKztgFILawjORNyN5IBw=

Enter message to send or type 'exit': Did we recover?

Enter message to send or type 'exit': Yes, we are now able to send secure messages.
Enter message to send or type 'exit':

Figure 7.7: Secured communications

Concatenate Message and MAC

Now we are ready to incorporate a MAC into our messages to ensure that they
have not been tampered with between the client and the server. We will do
this by modifying the encryption and decryption methods from our previous
examples. In this scheme, the sender would use symmetric-key encryption and
concatenate the message and its MAC to form a composite message that is then
encrypted and sent to the recipient. The receiver then decrypts the message
using the symmetric key and separates the message and the MAC. The MAC
would then provide the authentication, and the encryption provides the confi-
dentiality. This example builds on top of the previous one.

This particular implementation modifies the decrypt() function to decrypt
the original message and message digest and then strips off the message digest; the
next step is to hash the message and compare the message digests to ensure
that the message is both secure and proven not to have been tampered with.
In these two examples, I am using the MD5 hash, but if you feel like adding
HMAG, it will help secure your implementation even further:

Save as server.py
Message Receiver

Chapter 7

Message Integrity

219

import hashlib

import random

import os

from socket import *

from cryptography.fernet import Fernet

key = Fernet.generate_ key()
f = Fernet (key)

print ("The key is :", str(key, 'utf-8'))
host = ""

port = 8080

buf = 1024

addr = (host, port)

UDPSock = socket (AF_INET, SOCK_DGRAM)

UDPSock.bind (addr)
print ("Waiting to receive messages...")
def decrypt (ciphertext) :
try:
mmac = f.decrypt (ciphertext)
mlen = len (mmac)

m = (mmac[0:mlen - 32])
h = (mmac[-32:1)
msg = m,h

except:
msg = ciphertext

return msg

while True:
(data, addr) = UDPSock.recvfrom(buf)

plaintext = decrypt (data)

h = hashlib.md5 (plaintext[0])

msg = str(plaintext[0], 'utf-8'")
hash = str(plaintext[1], 'utf-8')
print ("Received message: " + msg)
print ("Received digest: " + hash)
print ("Calculated digest: " + h.hexdigest())
if msg == "exit":
break
if msg == 'newkey':

key = Fernet.generate key ()
f = Fernet (key)

220 Chapter 7 = Message Integrity

print ("The key is :", str(key, 'utf-8'))

UDPSock.close ()
os._exit (0)

The preceding code should produce a server that will give you a secret key that
can be used in your text client. The difference between the previous examples and
this one is that this program will extract the message hash that is received and
then generate its own hash to confirm message integrity, as shown in Figure 7.8.

> C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\python.exe - O X

The key is : YHC7hxYupFcdakJeQQCgbowWTkIEetdz@9u49vYqABo= ~
Waiting to receive messages...

Received message: Hello World!

Received digest: ed076287532e86365e841e92bfc50d8c
Calculated digest: ed076287532e86365e841e92bfc50d8c
Received message: This message is sending a digest.
Received digest: 9a8dac3d02d2b9977797¢1f9a000a071
Calculated digest: 9a8dac3d02d2b9977797¢1f9a000a071
Received message: This helps ensure message integrity.
Received digest: bd@aa313a3e23deef4abed8c51c97ed7
Calculated digest: bdoaa313a3e23de6f4abe98c51c97ed7

Figure 7.8: Message and MAC server

The client implementation modifies the encrypt function and concatenates the
original message digest to the message. The message hash is then displayed on
the screen so that you can verify that the hash is making it through the system
and is being evaluated correctly:

Save as client.py

Message Sender

import os

import hashlib

from socket import *

from cryptography.fernet import Fernet

host = "127.0.0.1" # set to IP address of target computer
port = 8080

addr = (host, port)

UDPSock = socket (AF_INET, SOCK_DGRAM)

key = input ("Enter the secret key: ")

Chapter 7 = Message Integrity

f = Fernet (key)

def encrypt (plaintext) :
h = hashlib.md5 (plaintext) .hexdigest ()

print ("Message hash: " + h)

mmac = str(str(plaintext,'utf-8') + h).encode ()
msg = f.encrypt (mmac)
return msg

while True:
data = str(input ("Enter message to send or type 'exit': ")) .encode()
ciphertext = encrypt (data)
UDPSock.sendto (ciphertext, addr)

if data == b'exit':
break
if data == b'newkey':

key = input ("Enter the secret key: ")
f = Fernet (key)

UDPSock.close ()

os._exit(0)

The preceding code sample will generate the message digest and send it to
the server so that the server can determine if the received message has been
tampered with. Your result should appear similar to Figure 7.9.

P sclect C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\python.exe - O X

Enter the secret key: YHC7hxYupFcdakJeQQCgbowWTkIEetdz@9u49vYgABo= ~
Enter message to send or type 'exit': Hello World!

essage hash: ed076287532e86365e841e92bfc50d8c

Enter message to send or type 'exit': This message is sending a digest.

essage hash: 9a8dac3d82d2b9977797c11f9a000a071

Enter message to send or type 'exit': This helps ensure message integrity.

essage hash: bd@aa313a3e23d06f4abe98c51c97ed7

Enter message to send or type ‘exit': _

Figure 7.9: Message and MAC client

Summary

In this chapter, we continued our exploration of hashing algorithms using
Python. Hopefully, you understand how to effectively use message digests to
protect the integrity of your messages. Algorithms such as SHA1 and MD5 have
proven to be victims of birthday attacks and the length extension attack. One

222

Chapter 7 = Message Integrity

of the best ways to improve the security of your messages is to concatenate the
message and the message digest in an encrypted form that the recipient can
decrypt and verify the message integrity. The implementations in this chapter
will help improve the successful tamper-free delivery of your message. In the
next chapter, you will gain an understanding of the PKI infrastructure and will
use it to add an additional layer of security beyond the network itself.

References

NIST. Aug. 2015. FIPS PUB 180-4. nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf

Secure Hash Standard (shs) - Nist. (n.d.). Retrieved from nvlpubs.nist
.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Cryptographic
Applications and PKI

Encryption experts are pressed to find ever more effective encryption methods,
measured by their security and performance, because the threats presented
by hackers are increasingly greater. This is partly because the hackers have
become more sophisticated in their attacks, but also because the fallout from
an attack gets more severe as our use of data grows. In the previous chapter, we
learned how to build a system to encrypt data and send it over an unsecured
network. On the other side, a recipient can decrypt the data and verify that the
message was not altered and that it was delivered in a secure manner. We will
now expand our Python code by introducing public-key infrastructure or, as it
is more commonly known, PKIL But what is PKI?

You have a highly classified letter that you need to send to a person on the
other side of the world. You believe that the note can be intercepted, so you
put the letter in a box, and you padlock it shut. Locking the letter in the box is
essentially the same as encrypting the letter; it is another way to protect it. You
can now send the letter on its way, but you still have the key. You also need to
find a way to get the key to the other side of the world without it being compro-
mised. This is known as the key distribution problem, and it is the oldest problem
in cryptography.

As you know, the key is the secret recipe for scrambling and unscrambling
a secret message. By the 1960s, key distribution was costing a fortune; banks,
governments, and big businesses used to pay heavily guarded couriers to travel
around the world to deliver keys in person. By early 1970, it was clear that

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

223

224

Chapter 8 = Cryptographic Applications and PKI

something had to be done, which led to the development of the holy grail of
cryptography. In this chapter, you will learn about a secret code so ingenious
that it would change the way we communicate forever. Through this chapter,
you gain cryptographic knowledge as you:

m Gain an understanding of the importance of PKI

m [earn how to implement a PKI solution in Python

m Gain an understanding of RSA

m [earn how to implement ElGamal

m Gain an understanding of Elliptic Curve Cryptography

m [earn how to implement a key exchange using Diffie-Hellman

The Public-Key Transformation

In 1975, Martin Hellman, Whitfield Diffie, and Ralph Merkle were working in
the electrical engineering department at Stanford University; unlike most cryp-
tographers, they worked outside the classified world of military intelligence. The
team proposed that, instead of the sender being responsible for encryption, the
receiver of the message would be responsible. The proposal asks the receiver for
their padlock to lock up the sender’s message. The system works because the
participants are exchanging padlocks and not the keys themselves. The keys are
always with the receiver; this mitigates the keys falling into the wrong hands.
Since it is not practical to send physical padlocks, the team had to invent a way
to create a mathematical padlock; these are often referred to as trapdoors. The
mathematical padlock had to be easy to lock but difficult to unlock without the
key. Developing the mathematical padlock was not a trivial process since most
operations are easy to do one way and easy to reverse. An example is taking a
number and then doubling it; for this example, if x =20,and y =2 * x, then y =
40. To reverse the process, it is easy to find half of y: x = y/2. This is an example
of two-way operation. To find the perfect mathematical padlock, it is necessary
to find a one-way operation. Multiplication is the perfect tool. If you are given
two four-digit numbers and asked to multiply the two numbers together, you
can easily complete the task. However, if you are given the product and asked
to work backward, that is a much harder problem to solve. To illustrate this
example, let’s assume you start with the number 3,261,611. Can you provide
the two numbers used to produce the number (aka factoring)? Where would
you start?

Multiplying two large integers together creates a mathematical lock, but it is
also a lock without a key. As such, it is an operation that is irreversible unless
you have the mathematical equivalent of a key. Enter Clifford Cocks; Cocks

Chapter 8 = Cryptographic Applications and PKI

225

was a British mathematician and cryptographer. In 1973, while working with
the GCHQ, the United Kingdom’s Government Communication Headquarters,
Cocks invented the algorithm that would later be adopted into the RSA algorithm.
After arriving at GCHQ, Cocks learned of James Ellis’s non-secret encryption
idea, which was published in 1969 but never successfully implemented. While
many other cryptographers attempted to find a one-way function that would
serve as a mathematical lock, Cocks’s background in number theory led him
to a solution. Because he was at home and not in a classified environment, he
was not allowed to write anything down; however, he developed a solution in
his head in about 30 minutes:

C=M*(modN)

The function serves as both a mathematical padlock and a key. To gain an
understanding of how it works, take two integers: x = 11; y = 17. These two
numbers are your secret key. The numbers produce a product of 187, which
you will use in the following equation, substituting 187 for N. This creates a
mathematical padlock that is exclusive to you. You will need to keep the values
11 and 17 secret. They are your key, and you will need them later:

cC=M" (mod 187)

From this point, you can make the details of your mathematical padlock public:

From: You

To: Everyone

Subject: My public key example

Message: Please use this algorithm to send me secret messages:

M"® (mod 187) = C

To continue the example, assume that someone wants to send you a message.

The message is simply the character x, which has an ASCII code of 88. Place 88
into the algorithm in place of M:

88" (mod 187) = C

165=C

You have encrypted the value of x to 165. You would send the 165 to the
message receiver. If the message is intercepted, it is still safe because it was

encrypted with Cocks’s equation. To decrypt the message, you use the two
integers you originally picked. Cocks developed another version of his equation

226

Chapter 8 = Cryptographic Applications and PKI

that uses the two secret numbers, 11 and 17, to unlock the mathematical
padlock:

CYmod (p-1) (g—1) mod N =M
165V mod (11 = 1) (17 - 1) = 88

With your algorithm being public, one could argue that someone can take the
secret key and find the factors used to produce it. Remember, multiplying is a
one-way operation, meaning it is difficult to go backward. Greater difficulty is
introduced as the numbers become larger. It wouldn’t take very long to find that
11 and 17 were the secret numbers when examining 187 since the only numbers
that factor into 187 are 1, 11, 17, and 187.

If you come up with two larger numbers that are 300 digits long, then your
padlock is secure. Factoring large numbers is hugely time-consuming. While
the math can get tough, Cocks invented a super secure encryption system and,
more importantly, he solved the key distribution problem. In the end, the Cocks
equation was the most important breakthrough in the history of secret codes.
The GCHQ was unable to implement the algorithm and classified it top secret,
keeping it closely guarded. In fact, it would remain top secret for another 24
years, even though a similar algorithm was published by Rivest, Shamir, and
Adleman in 1977.

Ron Rivest, Adi Shamir, and Leonard Adleman, researchers at the Massa-
chusetts Institute of Technology (MIT), developed a similar equation to Cocks’s
algorithm four years after Cocks. Their breakthrough was also attributed to
Rivest’s knowledge of number theory. This time, the discovery was in the public
arena. Knowing nothing about the British discovery, the team named their cipher
Rivest, Shamir, Adleman, better known as RSA. RSA has become one of the most
important ciphers ever introduced. Almost every time you transmit credit card
details online, the data is encrypted using RSA, making RSA the cornerstone
of a multi-billion-dollar e-commerce revolution. So, while the Americans were
not the first to invent public-key cryptography, they were the first to bring it
out into the public domain where anyone can use it. You can now communicate
as privately as a nation-state. You can send messages that cannot be cracked
even by the combined efforts of all the world’s secret services. For the first time
ever, you have access to unbreakable code. Cryptography may be the science
of secrecy, but through your continued practice, it is no longer a secret science.

Exploring the Basics of RSA

This first example is a simple implementation of the RSA algorithm that can
encrypt and decrypt a message. Note that the keys here are far too small to be
of practical use since they are still relatively easy to factor:

import random

Chapter 8 = Cryptographic Applications and PKI

227

#Euclid's algorithm - Chapter 4

def gcd(a, b):

while b != 0:
a, b=Db, a%$b
return a

#Euclid's extended algorithm - Chapter 4
def multiplicative_inverse(e, phi):

d=0
x1l =0
x2 =1
vl =1

temp_phi = phi

while e > 0:
templ = temp phi//e
temp2 = temp phi - templ * e
temp phi = e

e = temp2

X = X2- templ* x1
y = d - templ * yl
x2 = x1

xl = X

d =yl

vyl =y

if temp phi ==
return d + phi

Verify the number is prime - Chapter 4
def is_prime (num) :

if num == 2:
return True
if num < 2 or num % 2 == 0:
return False
for n in range (3, int (num**0.5)+2, 2):
if num % n == 0:
return False
return True

def generate keypair(p, qg):

if not (is_prime(p) and is_prime(q)) :

raise ValueError ('Both numbers must be prime.')

elif p ==
raise
#n = pg

n=p*gq

q:
ValueError ('p and g cannot be equal')

228 Chapter 8 = Cryptographic Applications and PKI

#Phi is the totient of n
phi = (p-1) * (g-1)

#Choose an integer e such that e and phi(n) are coprime
e = random.randrange (1, phi)

#Use Euclid's Algorithm to verify copprimes for e and phi (n)
g = gcd(e, phi)
while g != 1:

e = random.randrange (1, phi)

g = gcd(e, phi)

#Use Extended Euclid's Algorithm to generate the private key
d = multiplicative_inverse (e, phi)

#Return public and private keypair
#Public key is (e, n) and private key is (d, n)
return ((e, n), (d, n))

def encrypt (pk, plaintext):
key, n = pk
#Convert each letter in the plaintext to numbers based on the
character using a”b mod m
cipher = [(ord(char) ** key) % n for char in plaintext]
#Return the array of bytes
return cipher

def decrypt (pk, ciphertext):
key, n = pk
#Generate the plaintext based on the ciphertext and key using a”b

mod m
plain = [chr((char ** key) % n) for char in ciphertext]
#Return the array of bytes as a string
return ''.join(plain)

if name_ == '_ main_ ':

print ("Chapter 8 - Understanding RSA\n")

First 20 prime numbers include:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71

p = int (input ("Enter a prime number: "))

g = int (input ("Enter a second distinct prime number:")

print ("\nGenerating your public/private keypairs . . .")

public, private = generate keypair(p, q)

print ("\nYour public key is {} and your private key is {}\n".
format (public, private))

message = input ("Enter a message to encrypt with your public key: ")

encrypted msg = encrypt (public, message)

print ("Your encrypted message is: {}".format(''.join (map(lambda x:
str(x), encrypted msg))))

Chapter 8 = Cryptographic Applications and PKI

229

print ("\nDecrypting message with your personal private key ",
private ," . . .")

print ("\nYour message is: {}\n\n".format (decrypt (private,
encrypted msg)))

To produce the output in Figure 8.1, enter 11 as your first prime and 17 as
your second.

P select C:\Program Files (xB6]\Microscft Visual Studic\Shared\Python37_64\python.exe - a x
Chapter 8 - Understanding RSA -

Enter a prime number: 11
Enter a second distinct prime number:17

Generating your public/private keypairs . . .
Your public key is (33, 187) and your private key is (97, 187)

Enter a message to encrypt with your public key: Hello Werld!
Your encrypted message is: 18611891911113287111979118833

Decrypting message with your personal private key (97, 187)

Your message is: Hello World!

Press any key to continue . . .

Figure 8.1: Understanding RSA

Generating RSA Certificates

For our next example, we will utilize the PyCrypto library and import the RSA
module. In the next code listing, you will generate a new RSA key and then
export the private and public aspects of the key into variables that are then
saved as certificates to disk. The keys here are much larger than used in the
previous example, which makes them much harder to crack. You may notice
that this program is also much slower due to the increased time it takes to find
the coprime key pair as the key size increases:

#ch8_Generate RSA Certs.py
from Crypto.PublicKey import RSA

#Generate a public/private key pair using 4096 bits key length (512
bytes)
new_key = RSA.generate (4096, e=65537)

#The private key in PEM format
private _key = new key.exportKey ("PEM")

230 Chapter 8 = Cryptographic Applications and PKI

#The public key in PEM Format
public_key = new_key.publickey () .exportKey ("PEM")

print (private_key)

fd = open("private key.pem", "wb")
fd.write(private_key)

fd.close()

print (public_key)

fd = open("public_key.pem", "wb")
fd.write (public_key)

fd.close()

To review the output of the generated keys, see Figure 8.2. The key is in a
special encoded RSA file format. You can decode the file using the following
command:

openssl rsa -in private key.pem -text -noout

b'-----BEGIN RSA PRIVATE KEY-----
\nMIIJKAIBAAKCAGEANIVY+KmAB4T3dNs+]]jEumbBMPTtKR3+z111v4/TVLEPmtdT\n20810a0v+IDELYVNg4KWIeUr6vKJ2
®xU/CygRBOkxSAIWEgCowxpPHKx fR+1rAVdug\ndkSgua+xBJPgenWz 6VE rOBBvFoJkrAGrE/ 1 776Txg3qbbeTvuadlCcs5aeimd
DEUEF\nphCVTkZ9VRHCXp6nJYc+KFvHFoBC14 yXy8hui /QkPaZm+muL+bOPm/ k9kskhPwS5\nM1yIBr4ViCuemfCP2H/VONNtS
zWXaGM//DFACQX5SmB 25 IHSdRWMS sxJEoUViuY r\nepSNOLs122VS1iWgdL i Ri9VTCOS 4AoVpmBkuSUALL30+0gAWOgFEdmhi
rt1Hd7a7\n9pdxU4RalukGHSHTBlFTagqDXtoQachb3zghFCt 6gRIZ5HOXgSVEt DuXmZ 9WYFOY2 \nTVImX/0ed FZ30TwE +ROAM
/J0mzyQDHg0z5FisVHvNEIr iPKzMCHALgEMtMgg9UhH\nJy8hPaowoS FIVNWcALxDAY +a23PE 60G0bzT]EN9VuQa4 kOgMk3vE
+vEk7VJIGECD1\nd/nX0Fx1NvN13IsR2vtQcSNI3I0/LH62Cvdol PhdDpmj neGOkeoTVoQhKs0x1i8Wmin/4h1ad4VTjeTLXn2 9b
QD7X9npOmJ 0nmLwr J9QCPEVETKTbI2UFZNeezanG68CAWEA\NAQKCAGBU] jG4ghSsblcToe 5TV /AKBXUC4 Y21 X0mywr 1EHd
bTdxMgNG0Ira3Pah\n2GglodTWZduzyEZe722tgTgsK]j+HWbDG/ PgE6+kBc3P+0HbELB/ g+ix+Duta3r fD\nRQRG1dFxDOhTD]
walUyheL3oREWTxdAXCeG5elLiNRiCuJMAe00WuBCve FpdrMEvI \nbXa+SYXr5cDNHa5Advi TUgrSulRHC3e TML136K1VCY 6
9krgs9y8EZwdUSYgDROoK \ncXj+rtiy/vn50hhZzGXySmamUMsgUNdj5+anu2 / kFkDYxSYUTHunVOpNST4 /BHKh\nSBvHvgOBN
+M4MRFgFIoMVgEgp/pBfb/v4omMZOnvOcQchHl PGRoK4JzB]j 2VtbR32\nr JuTRXKOqwPkXX+£0QylgMP1TNY2i12BjVhnFa0l
0/9Q+EENRgiT3FWOQHJT4Bvb\npi luLFREpSt f0X+oacsrwKMiySDXxz2yo902ig3/ zLa/U+ASdavbel t EBOVmmMMEkx \nvESLg
geil5eCBjp+Ezgmué fskBNbYHZogsPgor 0H2ggakb6Cx9KAUHT kMO ypgKeGinzHuénWx65 f TkLOvIwNCpufBte7V+Re+U12rR
2c6KHRSg90GyTRrEEVIMRUEMczbWZ \n EHhDWQrVirOxVZE39Yj 6adZpdkyodx fEK1UAIn0JQIBSyvTnaQKCAQEAL StKixcY\nt
TtngHArOHjorI/ePK8vCpTV+6x5Jg5IB3xxFEltyYANDSUnhmédGey3ga0W3YTK\nITCy/eeRNonrt PvoKYwi8Tné+19sV1ivM
fDlujBcKOVMa3IYGMVWNTL1J/GZhgEXEVANSJpY /IOZWX18Ys16DCERGXKM1 4308 1clJd6MnVUPLIkvyLdx96DVICG4CTKRFVIA
U\nKIHeC2erU/VmXa8ZyPEKx1Hn51De+viLOOHKPKS+NiljJE+E£3inx5+ekve2FabEBC\nhex30Wk/vWjKmwIdQsSJ/OCbnTerz
oW3LyxTAfzgMe2RzIQp7 2kUprFTaeC08K3JF\nobN4HyuBl 4yl ewKCAQEAIMMNapO0FnfLO3I1mINHh {1 FVXAEXK/Ech8p5SwTI
3spGVANRZVMIRGIWFFHM4 IME1eFjZGkOw3YcBEyci jXi6V4263TqRogtGagiwSeKR T zFlaRvinDw3Dn8UYLEWOJDDS BX0UINQE
8lmvrSaJelbvgqmBCxAyJz61Jbs2I f0gATngAZc3G \nd55sHSNSnqeTBEssbf42REEW4UY9GLY 6bgHj 9sxEROET41ixVgFhh94z
nllR4nCbwinryfjOn8Qj r9EJiynN815E06440mV4EASea2bX00Q5F) SQgpWic0kWEInT rzR2tMyi \nPZ3rrkHiqd TkRjRVEkncu
TG+KEoONmUNetMyvp TBmaXQKCAQEA] 2gnj QPSHmiVgzLt \nReNgOH4WYuehon X 1RKGt 71 9x0we jesNx 0NTbgSS8xnt XEXQoUQz
UszB4B/x1kYNx\nMSoeFDo9V1YxZpR4 yCX8BGenCIME rAUXNg4 3CZPKTZd+b5PL26hmgLkaéWZE4t YW \nzef142YCULT +kJsg
GMWHNF LEmNbnVWu+wSFzVRE6TUYQ6E22 /dM+eKkA388Laeg+HI\nGlassbe20BH3eTHEK J 8 IKJI $DSKLWLFCaDBdvaeM3Qnka 6l
KgeAkNDDsxJW2n/3T\n3z0eK3wiRlygelldKF7ZPnGKZroj Sa¥1lddHMByS3bFty2e/ fCu+LSACYR SNOBmvvs \nOGa0SQKCAQAW
LadTa6LB00RAYZOVSxsMYvlsL+zKtb30mULkap6jgz69gl ywRclBg\ni jdCOuxHOnVxyPwgtt rps6imWf0J TmUmECDQV248£d47
*XEL/bpSNa60IdCcQz2KB7d\nlGZ3TFQ2LpKéwPe LKx9zDcQR6w/ 41e LEPOMSEZDHCO8 Fmnd 9dyEfGSUvLkhB8g5xc\nTAmMBIu/3
vOpHHIT343W73nn8Q0RbrvnF/NIvKPUOBIMPwWGAMBCHNA PydHCy/270W\nT2D9hMTnlESL2s48R1A/ T2CL+ N2 THSd/ DJOeDSp
0Ioui9itKlsJ2N31i1KABdaVEU\nWilOwB04sbBo9DVekjxcmppYFI 9dEWO4hAoIBAG/ KBvzRhXdNVL] /0bdOWhY4j Zbt\nTa2y
K/vtNac3MHgyDM1sX1ZrJ1sE/UMgCsFgESWzTKTH/ pTmvgdt OmDjwrMg8HOV\nv0Z10LGzpebdwouwCoMVxRrdva f ovMwNLum
MLfiN6GW1EBxpLTPdvlazlaQ4wlL9\nbylheRWedGEég4BXnd SHTxVztXQj /uF9tcOhikj+9BErOF/gwilbnWIrSwyEI151TS\n
#91154M1QFMRpQIKxghT6aCPEJsi 20291 VIu2pMdFInTF1KEnkPjguflzPQ3gx6K\nDMhSsF/ DekSXWuBBCM/ posqa0H4 PkSX
PPJsUHZFkOF/c8mDBosOKL3jmpCI=\n-----END RSA PRIVATE KEY----- '

b'-----BEGIN PUBLIC KEY-----
AnMIICIjANBgkghkiGOwOBAQEFAAOCAGEAMIICCGKCAGEANLVY+KmABAT 3dN s+ JJE\numbBMPTtKR3+2111v4/ TVLEPmMtdT2
0810a0v+IDELtYVNgdEWIeUr 6vEJ2xU/CgREB\nOkxSAIwEgCowxpPHEX £R+1rAVdugd kSguat xBEJPgenWz6VE rOBEvFoJkrAGE
Z/17\nJ6Txg3g8bcTvuad3C55aeimIDEUFphCV Tk E 9VRHCxpénJYc+KFvHFoBC1 4yXy&hu\ni /QkPa Zm+muL+b0OPm/ kSkskhF
w55M1yIBrdViCuemfCP2H/VONnt 5zWXaGM/ /DFAANcOX5SmE 23 9HSdRWMS sx JEoUViuYrepSHOLs122VSIiWgdLjRiOVTCQSE
AcVpmBku\n5UALL3o+0gAwCgFEdmhirt1Hd7a79pdxU4AalukGHSHTBLFTagDXtoQachkb3zghF\nCt 6gRIZSHOXgSVkt OuXmz
SWYFOY2TVImY/ 0edFZ30TWE+RQAM/) OnzyQDNg025Fi \naVHVNE I ri PKzMCWA £ g Zm+Mgg9UhHIy8hPsowo B FIVNWeALX DAY +a
23PZ60G0bzTi \nBNIVUDs 4kOgMk3vK+vEKTVIGBCD1d/nX0Fx1INVNL3IsR2vtQeSNI310/LH62Cvdo \n1PhdDpmincGOkeo TV
oChKs0xi8Wm/4hIadVTieTLEm2 95007 X9npOnJOnmLwrJ9Q\nCPEVETKTbI2ZUFZNee 2anGEBCAWEARD==\n~——==] END
PUBLIC KEY====='

Figure 8.2: Generating RSA certs

Chapter 8 = Cryptographic Applications and PKI

231

Constructing Simple Text Encryption and
Decryption with RSA Certificates

In the next code listing, we’ll use the RSA certificates we created in the previous
section to encrypt and decrypt a simple message: To be encrypted. The module
uses the RSA encryption protocol according to PKCS#1 OAEP, and the scheme
is more properly known as RSAES-OAEP. At the receiver side, decryption can

be done using the private part of the RSA key:

from Crypto.Cipher import PKCS1_ OAEP
from Crypto.PublicKey import RSA

message = b'To be encrypted'

key = RSA.importKey (open('public key.pem') .read())
cipher = PKCS1 OAEP.new (key)

ciphertext = cipher.encrypt (message)

print (ciphertext)
key = RSA.importKey (open('private key.pem') .read())
cipher = PKCS1 OAEP.new (key)

plaintext = cipher.decrypt (ciphertext)

print (plaintext)

Figure 8.3 shows the results of the previous code. The message entered is “To
be encrypted.” You will see the RSA encrypted output followed by the decryp-

tion back to plaintext.

b'\x90f\xed\xcb\xce\xffT\xf3Q\x1d\x1c\x9c+\xa3\x81IM\xea\xc3\xac
\xd4\x13\x06\xfb1\x81\x93}\ ' \x93\xaa\xa2\x07\x9%e*)y_ \xf7}|\xel%\xc9a\xf9\xf8n\xef
\XxcOM\xF3\x17\xc9\x9d\x98\x89\x8a\xe8\x06\xd6\x03U\x90\xad \xf8\xfOMX1\xea
\x11\xd27\xd51\x90\xdbz=\xb5K\xf9; \x881Q\x8d\xc3M\x179\xec2C8\x94A\x1bp\xcdmIPS&
\x91h\x87\xe5\xd4\xf2\xd8\x8b\x9e\x89\xd6SB\xcd\x9d\xfbI\xad\xaa\xe0d\x0f]\xbd\xab
\xed\xfF*\xef\xb7\x0c\x0c\x0e\xbfL\x8FfxP\x1le\xa0l\xb5\x8d\xd3\xf6\xaa\x1f\xc71i
\xae\xdf\x8d\xa5\x9d\x0f : \x11\r\x80\x9f\x1f\x10\xea\x11l\xcetT
\x17\xa8\xb1\xdel\xc3\xd9J\x9ay\x92._X\xa2\x15\xbb\xd4\t\x95\xc5\xd1\x1cE#E
\xf4\xeb\xe5\x19\x94\x83\xc8.9\xd0\xe6t\xfOR]\xf5\r\x13?\xc6\xb4\xel\x9c\x90\x08a:
\xa7\xbd\xb3s (e\x92\x1la\xcc"/\xd9\x1bD\x06"\xe8\xde>\x10\x0b (\xd9\x0f
\x04\xb5\x18\xd8\xa4\x1a\x8c\xf5jq\x96\xac\x94\x11\x0b\x18\x95wl\xafd\x1f\xb6R?
\xel(\xdo\xe5\x0c/\xb0 (\xb6YL\x83\x17\xd0g4\x19\xb1\x18\xd3\xc3\xda?@&
\x03\xf5\xa2\xde\xe6\x14b61\xd2@\xa9; v\xaaN\x90\xd9$5\xcc ; r\xe3\x8f

\xe6\xc6” 6\xb1\xf3\xfO\x85\xae>\xa3s\xc8\xe31\xca8\xa2\x0c-\xle\xe9\x9b\x9b\xec
\x8Ff\xba\x82\xb6\xcb\x0b\x99\xcc\xa5\x9fx | \xb2\x90\xac\x83\xb7I\x93\xfO\xdf#

\x97 \xbf~\xb8\xdfN\xc9\x063 | \x12\xf3\xcc\xac\xal?>-\x9fI+)\xbax$\x93k\xea\x9%a
\xe9\x15F\xc7\ ' \\\xbb\xf4\xb7X | \xbe\x08 (\x16i\x17\x8c6\xad\x89\xbc\x91\xf8\xdc
\xd6\x0bA\xccB:\x87:\xb3\x95<X\xcdB\xf9op6~ f\xfOP\xeb\xda5\xa6\xd4#\xb8\xcb~\xcOFD
\x9d7<ZT\xd2\n\x8b\x9d\x00\x897\x96. , \xa9\x92\xdc\x1f_\xd1M&\xfb\x8d\xd4z \xff
\x84\x9awi_q\x9c\xe7\xe6\x12\xf3\xda\xf6\x1d\x01\xdOT\x83\xc2E\x8c\xc8<"

b'To be encrypted’

Figure 8.3: RSA decrypt

232

Chapter 8 = Cryptographic Applications and PKI

If you try to encrypt larger messages, you will get an exception because the
key length limits the maximum message length. In the next section, we will
craft a more robust solution using the same concepts we just applied. Our next
recipe will demonstrate how to encrypt and decrypt a wide variety of data
using the PKI infrastructure.

Constructing BLOB Encryption and
Decryption with RSA Certificates

In the previous section, you were able to encrypt and decrypt data using a PKI
infrastructure, but the size of the message was limited. Examine the following
Python demo, which will take an image and encrypt it using RSA and then
decrypt it. It works with larger amounts of data by encrypting the image in
key-size chunks. The resulting code will produce both an encrypted image and
a decrypted image that should match the original:

#ch8 RSA blob.py

import zlib

import base64

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1 OAEP
from pathlib import Path

Generate new key pair function
def generate new key pair():

Generate a public/private key pair using 4096 bits key length
(512 bytes)

new_key = RSA.generate (4096, e=65537)

The private key in PEM format
private key = new key.exportKey ("PEM")

The public key in PEM Format
public_key = new_key.publickey () .exportKey ("PEM")

private_key path = Path('private.pem')
private_key path.touch (mode=00600)
private key path.write bytes (private key)

public_key path = Path('public.pem')
public_key path.touch(mode=00664)
public_key path.write bytes (public_key)

RSA Encryption Function

def encrypt blob(blob, public key):
#Import the public key and use for encryption using PKCS1_OAEP
rsa_key = RSA.importKey (public_key)
rsa_key = PKCS1_OAEP.new(rsa_key)

Chapter 8 = Cryptographic Applications and PKI

233

#compress the data first
blob = zlib.compress (blob)

#In determining the chunk size, determine the private key length

used in bytes

#and subtract 42 bytes (when using PKCS1 OAEP). The data will be

encrypted
#in chunks
chunk_size = 470
offset = 0
end loop = False
encrypted = bytearray()

while not end loop:
#The chunk

chunk = blob[offset:offset + chunk size]

#If the data chunk is less than the chunk size,

add

#padding with " ". This indicates that we reached the end of the

file
#so we end loop here
if len(chunk) % chunk size != 0:
end loop = True

#chunk += b" " * (chunk size - len(chunk))

chunk += bytes(chunk size - len(chunk))

then we need to

#Append the encrypted chunk to the overall encrypted file

encrypted += rsa_key.encrypt (chunk)

#Increase the offset by chunk size
offset += chunk size

#Base 64 encode the encrypted file
return baseé64.b64encode (encrypted)

RSA Decryption Function

def decrypt blob(encrypted blob, private key):

Import the private key and use for decryption using PKCS1_OAEP

rsakey = RSA.importKey (private key)
rsakey = PKCS1_OAEP.new (rsakey)

Base 64 decode the data

encrypted_blob = base64.b64decode (encrypted blob)

In determining the chunk size, determine the private key length

used in bytes.
The data will be decrypted in chunks
chunk_size = 512
offset = 0
decrypted = bytearray ()

234 Chapter 8 = Cryptographic Applications and PKI

keep loop going as long as we have chunks to decrypt
while offset < len(encrypted blob) :

The chunk

chunk = encrypted blob[offset: offset + chunk sizel

Append the decrypted chunk to the overall decrypted file
decrypted += rsakey.decrypt (chunk)

Increase the offset by chunk size
offset += chunk_size

return the decompressed decrypted data
return zlib.decompress (decrypted)
generate new key pair() # run if you don't already have a key pair
print ("This program is looking for an image named 'cloud.jpg'.")
private_key = open('private key.pem') .read()
print ("The private key has been read.")
public_key = open('public_key.pem') .read()
print ("The public key has been read.")
unencrypted file = Path('cloud.jpg')
encrypted file = unencrypted file.with suffix('.dat')
encrypted blob = encrypt blob (unencrypted file.read bytes(), public key)
print ("The cloud has been encrypted.")
Write the encrypted contents to a file
fd = open("e_cloud.jpg", "wb")
fd.write (encrypted blob)
fd.close()
print ("The encrypted image is named e_cloud.jpg")
Our candidate file to be decrypted
fd = open("e_cloud.jpg", "r")
encrypted blob = fd.read()
fd.close()
print ()
print ("The contents of the encrypted file is too long to print.")

print ()

Write the decrypted contents to a file
fd = open("d_cloud.jpg", "wb")

Chapter 8 = Cryptographic Applications and PKI

235

fd.write (decrypt blob (encrypted blob, private_key))
fd.close ()

Decrypt the encrypted blob
decrypt_blob (encrypted blob, private key)

print ("The cloud has been decrypted. Examine the d_cloud.jpg file.")

Figure 8.4 shows the output for the RSA BLOB program.

I Select C:\Program Files (x86)\Microsoft Visual Studic\Shared\Python37_64\python.exe

This program is looking for an image named ‘cloud.jpg'.
The private key has been read.

The public key has been read.

[The cloud has been encrypted.

The encrypted image is named e_cloud.jpg

The contents of the encrypted file is too long to print.

The cloud has been decrypted. Examine the d_cloud.jpg file.
Press any key to continue . . .

Figure 8.4: Output for the RSA BLOB program

The EI-Gamal Cryptosystem

El-Gamal encryption is a public-key cryptosystem. As with the previous use of
RSA, El-Gamal uses asymmetric key encryption for communicating between
two parties and encrypting the message. This cryptosystem is based on the
difficulty of finding a discrete logarithm in a cyclic group. That is, even if we
know ¢" and g%, it is extremely difficult to compute ¢**. In this section, we will
examine the basic idea of the cryptosystem with an example using cryptogra-
phy’s favorite couple: Alice and Bob.
Suppose Alice wants to communicate to Bob.

m Bob generates a public and a private key:
m Bob chooses a very large number g and a cyclic group F,.

m From the cyclic group F,, he chooses any element ¢ and an element a
such that gcd(a, q) = 1.

m Then he computes h = g“.

236 Chapter 8 = Cryptographic Applications and PKI

m Bob publishes F, i = g% ¢, and g as his public key and retains a as his
private key.

m Alice encrypts data using Bob’s public key:
m Alice selects an element k from cyclic group F such that ged(k, g) = 1.
m Then she computes p = ¢ and s = I* = g,
m She multiplies s with M.
m Then she sends (p, M*s) = (g, M*s).

m Bob decrypts the message:
m Bob calculates s’ = p* = g'~.
m He divides M*s by s’ to obtain M as s = s'.

The following Python code will help you gain an understanding of these

steps. You should notice many of the functions you have already learned about,
but if you need a refresher, see Chapter 4.

Chapter 8 - ElGamal encryption

import random
from math import pow

a = random.randint (2, 10)

Compute the GCD
def gcd(a, b):
if a < b:
return gcd
elif a $ b =
return b;
else:
return gcd(b, a % b)

Generating large random numbers
def gen_key(q) :

key = random.randint (pow (10, 20), q)
while gcd(qg, key) != 1:
key = random.randint (pow (10, 20), q)

return key

Compute the power
def power(a, b, c):
x =1
y = a

while b > 0:
if b $ 2 == 0:

Chapter 8 = Cryptographic Applications and PKI

237

Yy =
b

]
R
B
(e
E;
~ —
N

return x % C

Encrypt the message

def

encrypt (msg, g, h, g):

en _msg = []

gen _key(q)# Private key for sender

0]
1]

power (h, k, q)
power (g, k, Qq)

for i in range (0, len(msg)):
en msg.append (msg[i])

print ("g*k used : ", p)

print ("g”ak used : ", s)

for i in range (0, len(en_msg)):
en msg[i] = s * ord(en msgl[i])

return en_msg, p

Decrypt the message

def

def

decrypt (en_msg, p, key, q):

dr msg = []

h = power(p, key, Qq)

for i in range(0, len(en _msg)):
dr_msg.append (chr (int (en_msg[i] /h)))

return dr_msg

main () :

msg = 'Please do not let the enemy know our position.'
print ("Original Message :", msg)

print ()

g = random.randint (pow (10, 20), pow(1l0, 50))

g = random.randint (2, q)

key = gen key(q)# Private key for receiver
h = power (g, key, q)

print ("g used : ", g)

print ("g®a used : ", h)

en _msg, p = encrypt(msg, g, h, g)
dr msg = decrypt(en msg, p, key, q)

238 Chapter 8 = Cryptographic Applications and PKI

dmsg = ''.join(dr_msg)
print ()
print ("The encrypted message :", en msg)
print ()
print ("Decrypted Message :", dmsg);
print ()
if __name_ == '_main_ ':
main ()

The preceding recipe should take the message “Please do not let the enemy
know our position.” and generate an ElGamal key that is used to encrypt and
decrypt the message. Examine Figure 8.5. The program displays the ¢” and g
that is produced along with the g**.

P Cprogram Files (xB5]\Microsoft Visual StudiohSH ython37_644pytt - o X
Original Message : Please do not let the enemy know our position. -~

g used : 12677776294289538321952116412418443342533326183869

g"a used : 26539733811876374035996526178234693693582557157765
IE"k used : 239587679092938755008709594350123235677979117603351
g"ak used : 344529321596213471863334411869271220234905657400

The encrypted message : [27561625727697077749666752949541697618792452592000, 3720819473239105496124011648188129178536981
@959200, 347955524B1217560658196775598796393243725471397480, 334184711594832706778743437951319308362785848767800, 3961983
6983564549264283457364966198327014150601000, 34796552481217560658196775598796303243725471397400, 11024650291078831099626
701179816679047516951036800, 34452032159621347186333441186927122023490565740000, 382417556971796953768301197174891054468
74527971400, 11024650291078831099626701179816679047516981036800, 37897235375563481964966 19834225839622314600, 382
41755697 179695376830119717489105446074527971400, 399643573051607627361467917768354615472450562568400, 1102465029167863109
9626701179816679847516981036800, 37208194732391054561240116481881291785369810995200, 34796552481217560658196775598796393
243725471397400, 39964357385160762736146791776835461547240056258408, 11024650291078831099626701179816679847516981636800,
35964357305160762736146791776835461547249056258400, 35830113446006201073786776834404206904430188365600, 347965524812175
GB658196775508796393243725471397400, 11024650291078831099626701179616679047516981036880, 3479655248121756065819677559879
6383243725471397400, 37897235375583481904966785305619834225830622314000, 34796552481217560658196775598796393243725471387
488, 37552715053987268433 7 71 , 41 13141 36181817648423584545400, 11024650291
@7EB31099626701179816679047516981036800, 36863674418794841489276782070012020565134905341868, 378972353755834819049667853
@5619834225839622314000, 38241755697179695376830115717489105446074527971400, 40597918269949403151736795012443275208795377
3230600, 11024656291078831899626701179816679647516581036800, 382417556571796953768301197174891054460874527971408, 4830887
7626756976208010126188704732767483961915800, 39275316661968335792420122953896919106779244543600, 11824650291678831899626
7811798166798475169810365808, 3858627681877 541293583766663094 » 382417556971796953768301197174891854468
74527971408, 3961 2834573 98327014152601000, 36174633767602414545650112246273478124665094027008, 395
64357305166762736146791776835461547249056258488, 36174633767602414545650113246273478124665094027000, 3824175565717969537
68301197174851054460745279714008, 37897235375583481904966785365619834225839622314000, 15847934793425819705713382945986476
1388R5668248408]

Decrypted Message : Please do not let the enemy know our position.

Press any key to continue . . .

Figure 8.5: EIGamal key

Elliptic Curve Cryptography

Now that you have a better understanding of how the more traditional algo-
rithms work using Python, we will examine an alternative approach that is
considered a more efficient type of public-key cryptography: elliptic curve
cryptography, or as it is more simply known, ECC. The security of the cryp-
tosystem lies within the difficulty of solving discrete logarithms on the field
defined by specific equations computed over a curve; the group of cryptographic
algorithms were introduced in 1985 and were based on the esoteric branch

Chapter 8 = Cryptographic Applications and PKI

239

of mathematics called elliptic curves. Although the system was introduced in
the mid "80s, it took another twenty years for the cryptosystem to gain wide
acceptance. Several factors are contributing to its increasing popularity. First, the
security of 1024-bit RSA encryption is degrading due to faster computing and
a better understanding and analysis of encryption methods. While brute force
is still unlikely to crack 1024-bit RSA keys, other approaches, including highly
intensive parallel computing in distributed computing arrays, are resulting in
more sophisticated attacks. These attacks have reduced the effectiveness of this
level of security. Even 2,048-bit encryption is estimated by the RSA Security to
be effective only until 2030. A second factor that is contributing to the adop-
tion of ECC is that many government entities have started to accept ECC as an
encryption method. Third, the authentication speed of ECC is faster than RSA
in terms of server authentication. Finally, certificate authorities have started
embedding ECC algorithms into their SSL certificates.

ECC was independently suggested by Neal Koblitz (University of Washington)
and Victor S. Miller (IBM) in 1985. After the introduction of Diffie-Hellman and
RSA, cryptographers started exploring other mathematics-based cryptographic
solutions looking for other algorithms that would offer easy one-way calculations
that were hard to find an inverse for; these types of functions are referred to as
trapdoors. A trapdoor function is a function that is easy to perform one way but
has a secret that is required to perform the inverse calculation efficiently. That is,
if fis a trapdoor function, then y = f(x) is easy to compute, but x = f - 1(y) is hard
to compute without some special knowledge k. Unless you have a mathematical
background, elliptic curves may be new to you; so what exactly is an elliptic
curve and how does the elliptic curve trapdoor function work?

An elliptic curve is the set of points that satisfy a specific mathematical equation.
The equation for an elliptic curve looks something like this:

v =x"+ax+b

That graphs to something that looks like Figure 8.6.

A
1\

Figure 8.6: An elliptic curve

240

Chapter 8 = Cryptographic Applications and PKI

The most important takeaway for this section is that you understand that
ECC produces encryption keys based on using points on a curve to define the
public and private keys. An ECC key is very helpful for the current generation
as more people are moving to the smartphone. As the utilization of smartphones
continues to grow, there is an emerging need for a more flexible encryption for
business to meet with increasing security requirements.

The elliptic curve cryptography certificates allow key size to remain small
while providing a higher level of security. The ECC certificate key creation
method is entirely different from previous algorithms, while relying on the
use of a public key for encryption and a private key for decryption. By starting
small and with a slow growth potential, ECC has a longer potential life span.
Elliptic curves are likely to be the next generation of cryptographic algorithms,
and we are seeing the beginning of their use now.

When you compare ECC with other algorithms like RSA, you will find the
ECC key is significantly smaller yet offers the same level of security. One notable
instance is that a 3,072-bit RSA key takes 768 bytes, whereas the equally strong
NIST P-256 private key only takes 32 bytes (that is, 256 bits). PyCryptodome
offers us an ECC module that provides mechanisms for generating new ECC
keys, exporting and importing them using widely supported formats like PEM
or DER. To install PyCryptodome, execute the following pip command:

pip install pycryptodome

If you're worried about ensuring the highest level of security while maintain-
ing performance, it makes sense to adopt ECC.

Generating ECC Keys

ECC private keys are integers that represent the curve’s field size; the typical
size is 256 bits. A 256-bit private key would look like the following;:

0x51897b64e85c3£714bba707e867914295al1377a7463a9dae8ea6a8b914246319

Generating an ECC key requires generating a random integer within a spec-
ified range.

The public keys in the ECC are EC points—pairs of integer coordinates
{x, y}, lying on the curve. Due to their special properties, EC points can be
compressed to just one coordinate + 1 bit (odd or even). Thus the compressed
public key, corresponding to a 256-bit ECC private key, is a 257-bit integer.
An example of an ECC public key (corresponding to the preceding private
key, encoded in the Ethereum format, as hex with prefix 02 or 03) is 0x02£5
4ba86dclccb5bed0224d23f01ed87e4a443c47fc690d7797a13d41d2340el. In this
format, the public key takes 33 bytes (66 hex digits), which can be optimized
to exactly 257 bits.

Chapter 8 = Cryptographic Applications and PKI

241

The following example demonstrates how to generate a new ECC key, export
it, and reload it back into your program. The code uses the NIST P-256 algorithm,
which is the most-used elliptic curve, and there are no reasons to believe it’s
insecure:

from Crypto.PublicKey import ECC

key = ECC.generate (curve='P-256")

f = open('myprivatekey.pem', 'wt')
f.write (key.export_key(format='PEM'))
f.close()

f = open('myprivatekey.pem','rt")

key = ECC.import key (f.read())

print (key)

The key generated will look similar to the following:

EccKey (curve='NIST P-256"',

point x=8551131792519309159153800555446728338631199151373724862622804721
0045098335773,

point y=6283402795854508034745449155320613311657026087929116481422492859
9382610602892,
d=2063641786698337143130043788498991558397573514836970341582277689437768
1606808)

Key Lengths and Curves

The ECC algorithms have many strengths, including the variety of elliptic curves
that can be used; each curve offers different levels of security, which extends a
variable of cryptographic strength. Each type of curve also presents a variety of
performance and key lengths. The ECC curves that are provided in our libraries
provide the ability to have named curves such as Curve25519 or Secp256k1.

Curve25519 provides 128 bits of security and is designed for use with the
Elliptic Curve Diffie-Hellman key scheme; it is considered one of the fastest
ECC curves and is publicly available. Secp256k1 is an elliptic curve that is used
in Bitcoin’s public-key cryptography and is defined in the Standards of Efficient
Cryptography (SEC). Another benefit to Secp256k1 is that unlike the popular
NIST curves, Secp256k1’s constants were selected in a predictable way, which
significantly reduces the possibility that the curve’s creator inserted any sort
of backdoor into the curve. ECC keys have length, which directly depends on
the underlying curve. Following is a list of common ECC named curves and
their key lengths:

m secpl92rl: 192-bit
m sect233k1: 233-bit
m secp224kl: 224-bit
m secp256k1: 256-bit

242

Chapter 8 = Cryptographic Applications and PKI

m NIST P-256: 256-bit
m Curve25519: 256-bit
m sect283k1: 283-bit
m p384: 384-bit

m secp384rl: 384-bit
m sect409r1: 409-bit

m Curve41417: 414-bit
m Curve448-Goldilocks: 448-bit
m M-511: 511-bit

m P-521: 521-bit

m sect571k1: 571-bit

Diffie-Hellman Key Exchange

The history of cryptography can be split into two eras: the classical era and
the modern era. The turning point between the two occurred in 1977, when
both the RSA algorithm and the Diffie-Hellman key exchange algorithm were
introduced. These new algorithms were revolutionary because they represented
the first viable cryptographic schemes where security was based on the theory
of numbers; they were the first to enable secure communication between two
parties without a shared secret. Cryptography went from being about securely
transporting secret codebooks around the world to being able to have prov-
ably secure communication between any two parties without worrying about
someone listening in on the key exchange.

The Diffie-Hellman algorithm was developed to create secure communi-
cations over a public network using ECC to generate points on the curve and
get the secret key using parameters; for our exploration we will consider four
variables that include P, G, A, B:

P: One prime number; publicly available.

G: A primitive root of P. You may remember that a primitive root of a prime
is an integer such that the modulus has multiplicative order; publicly
available.

A: A user (Alice) picks private values for A and B and use them to generate
a key to exchange publicly with a second user (Bob).

Chapter 8 = Cryptographic Applications and PKI

243

B: The second user (Bob), receives the key from Alice and uses it to generate

a secret key; this gives both users the same secret key to encrypt.

Examine Figure 8.7x to see how the points intersect with the ECC.

This approach uses six tuple {P, a, b, G, n, h}
P = Field that the curve is defined over

G = Generator point

a, b = Values define the curve.

h = co-factor

> N =Prime order of G

A
yZ=x3+ax+b

Figure 8.7: Point intersection of ECC curve

To get a better understanding, review the following five steps:

1.
2.

Alice and Bob get public numbers P =23, G = 9.
Each user selects a private key:

m Alice selected a private key a = 4

m Bob selected a private key b =3

Each user computes public values:

m Alice: x = (94 mod 23) = (6561 mod 23) =6
m Bob: y = (93 mod 23) = (729 mod 23) = 16
Alice and Bob exchange public numbers:

m Alice receives public key y = 16

m Bob receives public key x = 6

Alice and Bob compute symmetric keys:

m Alice: ka = y~a mod p = 65536 mod 23 =9

m Bob: kb = x b mod p =216 mod 23 =9

244 Chapter 8 = Cryptographic Applications and PKI

The completed process generates 9, which is the shared secret. Notice this
value was never shared between the two parties. Review the following code to
see how to implement Diffie-Hellman in Python:

def power(a, b, p):
if (b == 1):
return a;
else:
return pow(a,b,p)

def main() :
P=20; G=0; x=0; a=x;
y = 0; b = 0;

Both the users will be agreed upon the public keys G and P
P = 23; # A prime number P is taken
print ("The value of P:", P);

G = 9; # A primitive root for P, G is taken
print ("The value of G:", G);

Alice will choose the private key a

a = 4; # a is the chosen private key

print ("The private key a for Alice:", a);

x = power (G, a, P); # gets the generated key

Bob will choose the private key b

b = 3; # b is the chosen private key

print ("The private key b for Bob:", b);

y = power (G, b, P); # gets the generated key

Generating the secret key after the exchange of keys
ka = power(y, a, P); # Secret key for Alice
kb = power(x, b, P); # Secret key for Bob

print ("Secret key for the Alice is:", ka);
print ("Secret Key for the Bob is:", kb);
if name == ' main_ ':

main ()

Chapter 8 = Cryptographic Applications and PKI

245

Your results should look like those shown in Figure 8.8.

¥ C:\Program Files (x86)\Microsaft Visual Studio\Shared\Python37_64\python.exe - a x
OH Example for Chapter B

[The walue of P: 23

The value of G: 9

[The private key a for Alice: 4
[The private key b for Bob: 3
[Secret key for the Alice is: 9
[Secret Key for the Bob is: 9

Press any key to continue . . .

Figure 8.8: Diffie-Hellman exchange example

Summary

In this chapter, you were able to expand on your knowledge of working with a
public-key infrastructure using Python. The biggest secrets in our government
and business entities are largely protected by two simple mathematical equations:

m C = M°¢ (mod N)
m Cmod(p-1)(@g-1)mod N=M

These equations provide the basis of creating very large keys that are easy
to generate but difficult to crack, essentially creating mathematical locks or
trapdoors.

After gaining an understanding of how PKI works, we then explored how to
implement ElGamal, which is a cryptosystem based on the difficulty of finding
a discrete logarithm in a cyclic group.

The use of large keys in cryptography could have limitations as the world
moves to smaller mobile devices. You also learned about the elliptic curve cryp-
tography encryption system, which provides an alternative and more efficient
type of public-key cryptography. The use of ECC is critical to how we implement
key exchanges using the Diffie-Hellman algorithms.

In the next chapter, you will create a chat application that will incorporate
many of the recipes and styles you have learned in this book.

Mastering Cryptography
Using Python

The time has come to put all you have learned into action; you should now under-
stand the concepts you need to secure communications between two parties.
The chapter will focus on building an application that can send messages in
plaintext, or encrypted using asymmetric public key infrastructure (PKI) and
using the symmetric key method with an Elliptic Curve Diffie-Hellman key
exchange. Implementing these techniques between two applications over an
insecure UDP connection will help you think through how to send messages
securely and ensure that they have not been tampered with. We will use Wire-
shark, a popular network analyzer, to verify that the messages are encrypted
and cannot be distinguished from random noise. We will highlight using AES
(Advanced Encryption Standard) in Counter (CTR) and Galouis/Counter (GCM)
modes. We covered CTR in Chapter 5, and while the implementation of GCM is
quite similar, it requires some special consideration as we design our encryption
protocol. Our first task will be to build a small working application for plaintext
communications, then adding the other cryptographic components to the mix.
Throughout this chapter, you gain cryptographic experience as you:

m Construct an application that communicates in plaintext
m [nstall Wireshark and examine the communication traffic
m Implement a PKI into the application

m Implement RSA Digital Certificates

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

247

248

Chapter 9 » Mastering Cryptography Using Python

m Encrypt the message using ECC
m Implement the Elliptic Curve Diffie-Hellman exchange

Constructing a Plaintext Communications Application

Our first task is to revisit the construction of a threaded server with unencrypted
traffic, which was introduced in Chapter 7. In addition to building a server and
client Python file, we will create a helper file here that will support the coding
additions we will implement as we are building our Python solution.

The architecture for the application includes a server file (crypto _ server _ a.
py), a client file (crypto _ client _ a.py), and a helper file that will be used by
both the client and server since they share many of the same components. One
side encrypts, and the other one decrypts. For the sake of keeping this example
simple, we will only do one-way communication. The same techniques used in
this chapter can be used between any applications that transmit data over UDP.

Creating a Server

Our first step is to create an application that will use UDP sockets to accept
packets from other programs. For our example we can use the localhost so that
you can use the client application to send plaintext messages to the server. The
server will then display the text as received.

Here’s the Python code:

Message Receiver - crypto_chat_server.py
import hashlib, random, os, time

from binascii import hexlify

from socket import *

import Chapter9.ch9 crypto chat as ct

def get_dh sharedsecret () :
return

def get dh sharedkey() :
return

def decrypt (ciphertext, usePKI, useDH, serverSecret):
#msg = ct.decrypt (ciphertext, usePKI, useDH, serverSecret)
try:
msg = ct.decrypt (ciphertext, usePKI, useDH, serverSecret)
except:
msg = ciphertext
return msg

Chapter 9 » Mastering Cryptography Using Python

249

def main() :
set variables used to determine scheme
useClientPKI = False;
useDHKey = False;
serverSecret = 0

set the variables used for the server components
key = "n

host = ""

port = 8080

buf = 1024 * 2

addr = (host, port)

UDPSock = socket (AF_INET, SOCK_DGRAM)

UDPSock.bind (addr)

welcome to the server message
print ("Waiting to receive messages...")

listening loop

while True:
read the data sent from the client
(data, addr) = UDPSock.recvfrom(buf)

send the data packet for decryption
plaintext = decrypt(data, useClientPKI, useDHKey, serverSecret)

check to see if the user typed a special command such as
addPKI or addDH

result = ct.check server command(plaintext)

if result == 10: # encryption has been disabled so no message
plaintext = b'PKI Encryption disabled!'

elif result == 11: # encryption enabled
plaintext = b'PKI Encryption enabled!'

elif result == 20: # dh enabled

clientKey = plaintext

plaintext = b'Diffie-Hellman disabled!'
elif result == 21: # encryption enabled

plaintext = b'Diffie-Hellman enabled!'

messages are received encoded so you must decode the message
for processing
msg = str(plaintext, 'utf-8'")

process any client special commands
if result == 0:

no encryption

break

250 Chapter 9 » Mastering Cryptography Using Python

if any encryption is used, change the message to 'secure'

message
if useClientPKI == True or useDHKey == True:
print ("Received secured message: " + msg)
else:
print ("Received message: " + msg)

UDPSock.close ()
os._exit (0)

if name == ' main_ ':
main ()
Creating the Client

The client file will largely stay the same as its original counterpart in Chapter 7.
One of the main modifications added here is an encrypt method that is used
to call the helper file.

Here’s the Python code:

Message Sender - crypto chat client.py

import hashlib, random, os, time

from binascii import hexlify

from socket import *

import ch9_crypto_chat as ct

def

def

def

def

get_dh sharedsecret () :
return

get_dh_sharedkey () :
return

encrypt (plaintext, usePKI, useDH, clientSecret):
msg = ct.encrypt (plaintext, usePKI, useDH, clientSecret)
return msg

main () :

host = "127.0.0.1" # set to IP address of target computer
port = 8080

addr = (host, port)

UDPSock = socket (AF_INET, SOCK_DGRAM)

initiate the encryption variables
sendUsingPrivate = False;
sendUsingDH = False;

skipEncryption = False;

Chapter 9 = Mastering Cryptography Using Python 251

no matter what, get the ECC shared key, only use it if the user
enables
clientSecret = get_dh sharedkey ()

print ("Welcome to Crypto-Chat! \n")
print ()

sending loop
while True:

if sendUsingPrivate == True or sendUsingDH == True:
data = str(input ("Enter secure message to send or type
'exit': ")) .encode ()
else:

data = str(input ("Enter message to send or type 'exit': ")).

encode ()
determine if the user initiated a special command
result = ct.check client command (data)
handle any custom commands
if data == b'exit':
break
if result == 0:
break
ciphertext = encrypt (data, sendUsingPrivate, sendUsingDH,
clientSecret)

if skipEncryption:
ciphertext = data;
skipEncryption = False;

send the packet over UDP
UDPSock.sendto (ciphertext, addr)

close UDP connection
UDPSock.close ()
os._exit (0)

if _name == '_main_ ':
main ()

Creating the Helper File

To keep the code as consistent as possible between each step in our design, I
will include various hooks that will be used later but, in this version, will not
be cryptographically functional. The helper file will be the primary focus on
most of our development tasks. Be sure to name this file ch9 _ crypto.py so

252

Chapter 9 » Mastering Cryptography Using Python

that the client and server files created earlier can find it. I will attempt to keep
it as clear and concise as possible, so keep in mind that the code represented
here is intended to be readable as opposed to using some Python shorthand:

Chat Encryption Helper - ch9 crypto chat.py
import os, base64, json

from Crypto.Cipher import PKCS1 OAEP, AES
from Crypto.PublicKey import RSA, ECC

from binascii import hexlify, unhexlify

from baseé64 import bé4encode, bé64decode

encryption method used by all calls
def encrypt (message, usePKI, useDH, dhSecret):
return message

decryption method used by all calls
def decrypt (message, usePKI, useDH, dhSecret):
return message

decrypt using RSA
def decrypt_ rsa(ciphertext):
return ciphertext

encrypt using RSA
def encrypt rsa(message) :
return message

check client commands
def check client command (data) :
return 1

check server commands
def check_server_command (data) :
return 1

Execution

To execute this example, you can run the Python server and client in any order.
This will hold true for the other implementations as well but in this example,
you can start and stop either one and the program will continue to work once
you put the missing component back in service. This will not always be true
in the other examples if you have initiated encryption because the certificates
get regenerated each time the files are executed. Your initial view should look
similar to Figure 9.1.

Chapter 9 » Mastering Cryptography Using Python

253

B C:\Program F ! Visual Studio\Shared\F 37 64\ = =

aiting to receive messages...
Received message: Hello world!

P C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\python.exe
elcome to Crypto-Telnet!

Enter message to send or type ‘"exit': Hello world!
Enter message to send or type 'exit':

Figure 9.1: Plaintext messaging

Installing and Testing Wireshark

Packet capture can provide a security professional or network administrator
with information about individual packets such as transmit time, source, des-
tination, protocol type, and header data. Wireshark is an open-source tool for
analyzing packets and profiling network traffic. These types of tools are often
referred to as a network analyzer, a network protocol analyzer, or a sniffer. We
will be using Wireshark to examine the content that is sent between the client
and server applications; the tool is designed to examine the details of traffic at
a variety of levels, ranging from connection-level information to the bits that
make up a single packet. This information can be useful for evaluating security
events and troubleshooting network security device issues. For our example,
you will ensure that the various modes of the client/server application are
working correctly.

Wireshark will typically display information in three panels (see Figure 9.2).
The top panel lists frames individually with key data on a single line. Any single
frame selected in the top pane is further explained in the tool’s middle panel. In
this section of the display, the tool shows packet details, illustrating how var-
ious aspects of the frame can be understood as belonging to the data link layer,
network layer, transport layer, or application layer. Lastly, Wireshark’s bottom
pane displays the raw frame, with a hexadecimal rendition on the left and the
corresponding ASCII values on the right.

Because Wireshark can also be used for eavesdropping, an organization
using the tool should make sure it has a clearly defined privacy policy that
spells out the rights of individuals using its network, grants permission to sniff
traffic for security and troubleshooting issues, and states the organization’s pol-
icies for obtaining, analyzing, and retaining network traffic samples.

You can download Wireshark for free from www.wireshark.org for Windows
and macOS. Wireshark is also likely available for Linux in your Linux distribution

254

Chapter 9 » Mastering Cryptography Using Python

Fia B0 Vew G0 Coten A Subses Teephory Wowss Toos Melp

dm @ ORE S ETisEaaap

Orerutcn P Langs Bt
182.148.1,298 - 42 Nams query b OHEcRdr
.0.0.351 137 Standard quiry XN STH OO0 -EIE0- 0387540 SMITITIALTD, _ub,_home-sharing.
FT Y 147 Standard query Ex600 PTR _OGHOI-S160- kAT - 4548 O4FIITAAATE, ik, _homs-iharing.

168 ST.04046 2606100 294 2603 {3 56 53T = 443 [AOX] Seqe] ArkedBSSIETIZ) WineS13 Lenwh SLEx] SREs1131

Frams 156: 43 bytes on wire (851 Bita), 69 bybes coptured (353 biEs) on Interface \Device\NPF_(DAJSA30-BCLA-A1-MAdF I THITACMACOR} , 14 8
Etharsat 10, Sec: Sagescos_$9:3a15a (6R:a715619910005a), Daty Microsof G115915e (19:16188161:50:5)
Interat Protocs] Verslen 4, See: 182.168.1.1, Dst: 192368145
» User Dutagram Protocsl, Sec foet: 83, DIt Port: 56636
: 8

package manager. As your installation requirements will be different for each
OS, check out the Wireshark site for any specifics.

Once you have it installed, you can turn on the packet capture. If you have
any web browsers or other network-intensive applications open, you may want
to close them or disable capturing those packets. You can filter traffic to show
only packets to a specific destination IP, from a specific source IP, and even to and
from an entire subnet; as an example, if you want to filter out data except that
which has a source or destination of 192.168.2.11, type ip.addr == 192.168.2.11
in the filter bar. Once you are ready for a test, execute the following steps:

1. Start Wireshark.

Execute the server file.

Execute the client file.

Click the blue shark fin on the command bar to start capture.
In the client command window, type Hello World!

Click the stop button on the command bar to stop capture.

Examine the UDP packet. You should notice that the length of the packet
is 12 bytes. The only time you should see a result that equals 12 is when
the data is being submitted in plaintext.

N G » N

8. Examine the bottom pane; you should see your plaintext message. The
middle frame tells you the protocol (UDP), src port, and destination port
(8080), along with the number of bytes (12).

Chapter 9 » Mastering Cryptography Using Python

255

If you have everything set up correctly, you should see the plaintext message
appear within your Wireshark capture, as shown in Figure 9.3.

M A dapter for loopback traffic capture - [u] *
File Edit WView Go Capture Analyze Statistics Telephony ‘Wireless Tools Help

dm 28 1 DRBAe==FosEEqaan

:»II--- v ™ . od |+
No. Tirme Source Destination Protocel Length Info =

63 5.685897 127.8.8.1 127.8.0.1 une 44 (29134 + E@EE |

64 5.686166 127.0.8.1 127.8.0.1 TCP 67 58884 - 58883 [PSH, ACK] Seg=l Ack=1 Win=18199 Ler

65 5.686214 127.0.98.1 127.8.9.1 TCP 44 58883 -+ 58884 [ACK] Seg=1 Ack=24 Win=18206 Len=8

66 5.686558 127.8.8.1 127.8.0.1 TCFR 181 58884 - 58BA3 [PSH, ACK] Seg=24 Ack=1 Win=1819%9 Le¢

67 5.686574 127.6.8.1 127.8.0.1 TCP 44 58883 - 58BA4 [ACK] Seq=1 Ack=161 Win=18286 Len=@

68 5.686688 127.0.8.1 127.8.0.1 TCF 67 53834 -+ 53833 [PSH, ACK] Seq=161 Ack=1l Win=10199 |—
69 5.686700 127.0.8.1 127.8.9.1 TCP 44 58883 - 5BEE4 [ACK] Seqg=1 Ack=184 Win=18285 Len=@ .
an £ cwsT1a 197 081 P o T T LT T I I EF v T AL e

€ 3

Frame 63: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface ‘\Device\WPF_Loopback, id @
Null/Loopback

Internet Protocol Version 4, Src: 127.9.9.1, Dst: 127.8.9.1

User Datagram Protocol, 5Src Port: 49184, Dst Port: 8838

Data (12 bytes)

pooo TENEEIGCIED 45 00 @0 28 <9 2b 0 0 80 11 00 o0 [PEEE- - (-+
7F 08 08 01 7f 00 00 01 <@ 2a 1f 98 60 14 d@ 19 YTt I
48 65 6c 6c 6f 20 57 6F 72 6c 64 21 Hello Wo rld!

@ 7 mulfLoapback (rull), 4 bytes Packets: 81 - Displayed: 81 (100.0%) - Dropped: 0 (0.0%) || Profile: Defauir

Figure 9.3: Wireshark traffic

Once you have your packet capture working, it is time to encrypt the data so
that you can communicate securely. We will implement a PKI solution in the
next section.

Implementing PKIl in the Application
Using RSA Certificates

You should have a working solution that sends a plaintext message over a port
using the UDP protocol from a client application to a server application. If you
have Wireshark configured, you should be able to confirm that the message
being sent is readable in plaintext. Since we are looking to encrypt the data, we
will now implement public-key infrastructure algorithms to secure the data. As
you will recall, this type of infrastructure requires the use of public and private
keys. Usually the infrastructure in public-key infrastructure implies some sort of
shared key server where clients and servers can share public keys. For the sake

256

Chapter 9 » Mastering Cryptography Using Python

of our example, this will simply be a shared file called client _ public _ key.
pem on the filesystem.

We will be using the PyCrypto library to generate client _ private _ key.
pemand client _ public _ key.pemon the filesystem where both the client and
server can read them directly. As with any PKI arrangement, you will use one
of these files for encryption and one for decryption. You will recall that if the
sender uses a public key and sends it to someone with the private key, this offers
confidentiality. If the sender uses a private key and sends it to someone with
the public key, this offers nonrepudiation (meaning the message could have
only come from the sender). In our example, we will be using the client private
key for encryption and the client public key for decryption. The bulk of this
development will take place in the ch9 _ crypto _ chat.py file. Remember that
these files need to be created before the encryption process begins, so it will
take place early in our process. To get a better understanding of how the PKI
infrastructure works, examine Figure 9.4.

Plamlext Ciphertext Q Plaintext

Sender Encrypt Decrypt Recipient

T

Different keys are used to encrypt and
decrypt message

=9 =9

Recipient’s Recipient’s
Public Private
Key Key
Figure 9.4: PKI overview
Modifying the Server

The primary change to the server file (ch9 _ crypto _ chat _ server.py) will
be in constructing and utilizing the check _ server _ command() method to
examine the plaintext and to modify the command sent with a result message.

Chapter 9 » Mastering Cryptography Using Python

257

The command being used in this example is addPKI:

send the data packet for decryption
plaintext = decrypt(data, useClientPKI, useDHKey, serverSecret)

check to see if the user typed a special command such as addPKI or
addDH
result = ct.check server command(plaintext)

if result == 10: # encryption has been disabled so no message
plaintext = b'PKI Encryption disabled!'

elif result == 11: # encryption enabled
plaintext = b'PKI Encryption enabled!'

messages are received encoded so you must decode the message for
processing
msg = str(plaintext, 'utf-8'")

process any client special commands
if result ==
no encryption
break
if result == 10:
turn off the use of PKI
useClientPKI = False;
if result == 11:
turn on the use of PKI
useClientPKI = True;
let the user know PKI is certs are found
print ("Client certificate found ...")

Modifying the Client

The primary modifications to the client file capture the user commands, such
as addPKI or addDH, and then configure the communications accordingly. Once
we know which encryption method the user wants (plain, PKI, ECC), we pass
the data, the type of encryption, and the required key or client secret. The client
file will pass the heavy lifting over to the helper file:

handle any custom commands
if data == b'exit':

break
if result ==

break
if result == 10:
sendUsingPrivate = False;
if result == 11:

sendUsingPrivate = True;
skipEncryption = True;

258

Chapter 9 » Mastering Cryptography Using Python

Modifying the Helper File

The helper file will be growing quite a bit now. In addition to using it to cre-
ate the private and public key files, we also use it for reading the key files and
performing our encryption and decryption process. You've seen code examples
of this in a number of chapters, but if you would like to review the topic again,
check out Chapter 5.

PyCrypto is being used in this example to expose the PKCS1_OAEP module.
The only difference between the encryption and decryption methods is the use
of specific keys:

Chat Encryption Helper - ch9 crypto_chat.py
import os, base64, json

from Crypto.Cipher import PKCS1 OAEP, AES
from Crypto.PublicKey import RSA, ECC

from binascii import hexlify, unhexlify

from base64 import bé4encode, bé64decode

encryption method used by all calls
def encrypt (message, usePKI, useDH, dhSecret) :
if usePKI == True:
message = encrypt rsa(message)
return message

decryption method used by all calls
def ch9 decrypt (message, usePKI, useDH, dhSecret):
if usePKI == True:
message = ch9 decrypt rsa(message)
return message

generate RSA certs
def gen rsa certs():
#ch8 Generate RSA Certs.py
from Crypto.PublicKey import RSA

#Generate a public/private key pair using 4096 bits key length (512
bytes)
new_key = RSA.generate (4096, e=65537)

#The private key in PEM format
private_key = new key.exportKey ("PEM")

#The public key in PEM Format
public_key = new key.publickey () .exportKey ("PEM")

fd = open("client private key.pem", "wb")
fd.write(private_key)
fd.close()

Chapter 9 » Mastering Cryptography Using Python

259

fd = open("client public_key.pem", "wb")
fd.write (public_key)
fd.close()

decrypt using RSA
def decrypt rsa(ciphertext):
key = RSA.importKey (open('client private key.pem') .read())
cipher = PKCS1_OAEP.new (key)
plaintext = cipher.decrypt (ciphertext)
return plaintext

encrypt using RSA

def encrypt rsa(message) :
key = RSA.importKey (open('client public_key.pem') .read())
cipher = PKCS1_ OAEP.new (key)
ciphertext = cipher.encrypt (message)

plaintext = decrypt rsa(ciphertext)

return ciphertext

check client commands
def check client command (data) :
if data == b'addPKI':
gen_rsa_certs()
return 11
elif data == b'removePKI':
usePKI = False
return 10
return 1

check server commands
def check server command(data) :

if data == b'addPKI':
return 11
if data == b'removePKI':

useDH = False
return 10

return 1

Execution

The execution of the PKI solution will appear to work just as the original version
did. Once you type addpki, the client sends the message to the server unen-
crypted and then modifies the data to state “PKI Encryption enabled!” This
should pop up in the command window for the server, as shown in Figure 9.5.

260

Chapter 9 » Mastering Cryptography Using Python

P
Waiting to receive messages... ~
Received message: Hello world!

Client certificate found ...

Received secured message: PKI Encryption enabled!

Received secured message: Hello world!

d\Python3

] C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\python.exe
Welcome to Crypto-Telnet!

Enter message to send or type 'exit': Hello world!

Enter message to send or type ‘exit': addPKI

Enter secure message to send or type 'exit': Hello world!
Enter secure message to send or type 'exit':

Figure 9.5: PKI Encryption enabled

In addition, Wireshark should encrypt addpkr using the client private key.
This will convert the message to 512 bytes. While you will be able to find the
UDP packet just as you did in the previous section, this time, the data going over
the wire is encrypted; your Wireshark output should look similar to Figure 9.6.

M *Adapter for loopback traffic capture = m] X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

dm 2@ 1 DRBERe=*=Fs 5= aaan

3=
olay filter . <Cirl-/> = -]+
No. Time Source Destination Protcol Length Info -
i 72 160.466338 127.0.0.1 127.0.0.1 TCP 200 54657 + 54656 [PSH, ACK] Seq=606 Ack=1 Win=10199 L
j 73 160.466346 127.0.0.1 127.0.0.1 TCP 44 54656 -+ 54657 [ACK] Seg=1 Ack=762 Win=10282 Len=@
; 74 160.466709 127.0.0.1 127.0.0.1 TCP 67 54657 > 54656 [PSH, ACK] Seq=762 Ack=1 Win=18199 L
i 75 160.466723 127.0.6.1 127.0.6.1 TCP 44 54656 - 54657 [ACK] Seq=1 Ack=785 Win=10282 Len=@
i 76 160.466738 127.0.0.1 127.0.0.1 cp 153 54657 - 54656 [PSH, ACK] Seq=785 Ack=1 Win=10199 L
| 77 160.466746 127.0.0.1 127.0.0.1 TCP 44 54656 » 54657 [ACK] Seg=1 Ack=894 Win=10282 Len=@
78 161.754761 192.168.184.61 239.255.255.250 IGMPV2 36 Membership Report group 239.255.255.250
| 79 163.255068 192.168.184.61 224.0.0.252 1GMPV2 36 Membership Report group 224.8.0.252 -
L 80 174.312009 127.0.8.1 127.0.0.1 uoP 544 (65431 58686 Ten=512
21 174 772812 177 6 a 1 177 o o 1 Tro £7 EAGET7 . CARCE FDCH Ar¥1 Can-Q0A Arb-1 Lin-10100 | v
< >

Frame 80: 544 bytes on wire (4352 bits), 544 bytes captured (4352 bits) on interface \Device\NPF_Loopback, id @
Null/Loopback

Internet Protocol Version 4, Src: 127.8.0.1, Dst: 127.8.8.1

User Datagram Protocol, Src Port: 65421, Dst Port: 8080

Data (512 bytes)

2b 9b 18 83 22 d9 f2 2e 4 38 48 99 ca 14 41 83 +---".., ‘BH---A ~
da 14 fe 52 12 75 25 50 59 a@ f2 9e de 69 59 cl1 R-u%P Y iy

@e 3 04 ed 97 f4 cc ce 06 b2 d6 81 fe bd c8 36 6

@e 3b 9b 12 67 fd 88 a3 dé 1d @e 83 cb f5 e6 95 5

97 1f 35 e4 4b 8f 57 d1 ca d@ 57 5d b0 6e 92 71 5-K-W W]l-n-q

06 66 30 92 ¢6 6f 83 a9 93 f5 22 dd f5 42 59 33 fe--o =..BY3

5 b6 09 7b 31 e8 65 39 @d cl 3d 79 9¢ f7 98 39 {1-¢9 --=y---9

7a 1a 19 c4 8b bf fe 4e @0 c9 a3 47 98 @8 d1 78 z N G- -x

ff 59 22 f4 e5 67 a4 f9 ad 92 9c 24 8¢ 9d 39 df Y'o-g $--9

82 8d 91 b8 8b 6¢c 10 cc 90 bl 73 8f fe a6 14 ce 1 s

6b da bd ce 56 ee 26 b5 6e ff bf b3 e7 f6 d1 1@ k---V-& n
9180 90 13 45 3f 7a 80 cd c9 39 e8 9f 79 1d 2d 10 4b E?z 9-.y---K
8196 de b7 f3 66 6e e c8 7@ c@ bb c@ 3c 45 c1 7b b7 fn.-p <E-{
1a fe 2e 00 dc 68 9a 99 e4 35 c2 3d a9 a6 9f @6 d7 .--h 5=
b e5 ac a3 @3 a5 5e 70 98 81 c9 6f fe de fd 23 9a “p o---#
13 f3 8a 82 e@ 95 99 58 bd 57 4a e@ 15 a4 1b e5 X -WJ
7a 12 f5 1a 6¢ 3e 9b d2 dl a9 c7 8 37 9d 9@ 5¢ z---1» Fsa
5d 9d 95 e3 17 bl f3 57 4c 47 fc el ab d2 18 a3] W LG
d7 d4e c7 1a 37 15 2d ¢d 7c 1f 25 @9 81 66 3f 3a -N--7
al e8 64 df 53 @d 53 @5 2d Bc de 23 2a f4 e8 2 d-s
d9 48 23 b8 f5 14 3c b9 f8 e9 eb 7d ef f9 b8 d3 H#

@ 7 wireshark NPF_Loopback 20200227130308_a28604.pcapng Packets: 100 * Displayed: 100 (100.0%) Profile: Default

Figure 9.6: Wireshark output

Chapter 9 » Mastering Cryptography Using Python

261

The server file will then receive the encrypted message and then decrypt it
using the client public key. If all works according to plan, instead of seeing the
decrypted message of addpkI, you should see the enabled notification. You can
turn off the use of PKI by typing removepki1. This should then produce read-
able traffic in Wireshark again. Play with this a few times to ensure that you
can switch back and forth.

Implementing Diffie-Hellman Key Exchange

In Chapter 7, you learned about the concepts of hashing and how it can be utilized
to ensure message integrity. AES-GCM was designed to preserve the integrity
and the confidentiality of the message. This holds true even if the same nonce is
used for each message. The function used for the encryption utilizes the nonce,
the plaintext message, and optional associated data. If you elect to use the same
nonce, nothing will be revealed except in the case that the same message is
encrypted multiple times with the same nonce. When that happens, an eaves-
dropper (in our case, Wireshark) will be able to observe repeated encryptions
in the message traffic. Beyond that, no further information will be available. In
our example here, we will not use the same nonce for different messages, but
this requires us to also send it over the wire to the server.

One obstacle identified with creating the client/server application that sends
text encryption is that you will need to concatenate the nonce and possibly a
message authentication tag. Because the UDP protocol does not specify anything
regarding message format, one solution is to use Python’s JSON encoder and
decoder to structure our messages. JSON, which stands for JavaScript Object
Notation, is a lightweight data interchange protocol supported by many different
applications and programming languages. We will use the json.dumps method
to build a string that contains the nonce and message for a CTR example, and
the nonce, message, and authentication tag for the GCM example. On the server
side, the json module is used to extract the data using json.loads. Once we
have the message and nonce on the server side, we can convert the data back to
binary and decrypt the message. The use of the json module for both encryp-
tion and decryption is shown in Figure 9.7.

As you examine the helper file content, you will notice that the tag is passed
into the decrypt _ and _ verify() method. This method checks the integrity
of the message as well as the confidentiality. We will examine the data that is
being sent from the client in the “Execution” section.

If you do not need message integrity, you can use the AES_CTR methods.
These methods also use the JSON interchange to pass the nonce and the mes-
sage. The authentication tag would not be required.

262 Chapter 9 = Mastering Cryptography Using Python

server_codetest.py ch®_crypto_telnet_clientpy testserver.py m—T

encrypt using AES-GCM
—ldef encrypt_AES_GCM(msg, secretkKey):
aesCipher = AES.new(secretkey, AES.MODE_GCM)
ct, authTag = aesCipher.encrypt_and_digest(msg)

ct = hexlify(ct)

ct = ct.decode('utf-8")

authTag = hexlify(authTag)
authTag = authTag.decode('utf-8")
noncea = hexlify(aesCipher.nonce)
nonce = noncea.decode('utf-8")

o ciphertext = json.dumps({'nonce’:nonce, 'ciphertext’:

return ciphertext

decrypt using AES-GCM
—ldef decrypt_AES5_GCM(encryptedMsg, secretKey):

® b64 = json.loads(encryptedMsg)
nonce = str(b64['nonce’])

nonce = nonce.encode()
nonce = unhexlify(nonce)

150% = @ Mo issues found 4 ¥

Figure 9.7: json module

Modifying the Server File

Our goal now is to add the functionality we need to implement the Diffie-Hellman
exchange. While it may not be completely obvious at first, the bulk of this is the
creation of the Diffie-Hellman certificates for both the server and client. The
server will call the gen _ server _ DH() method to generate the certificates when
the application starts up. The certificates need to be in place prior to the client
requiring them, which takes place when the user types addpH on the client.

In addition to the Diffie-Hellman certificates that get created, we also need to
implement the Diffie-Hellman methods to examine the client’s public key and
use it to create a shared secret using the server’s private key. The same process
happens on the client.

The new code from this module should look like the following:

serverDH = crypto.gen_server DH()
serverSecret = 0;

def get dh sharedsecret () :
key = int(open('client_public_dh key.pem') .read())
serverDH.generateSharedKey (key)
serverDH.getSharedKey ()

Chapter 9 = Mastering Cryptography Using Python 263

serverDH.generateSharedKey (key)

#serverDH.displayParameters ()
#serverDH.displayShared ()

return (serverDH.sharedSecret)

def get_dh_sharedkey () :
key = int (open('client public_dh key.pem') .read())
serverDH.generateSharedKey (key)
serverDH.getSharedKey ()

serverDH.generateSharedKey (key)

#serverDH.displayParameters ()
#serverDH.displayShared ()

private_key = serverDH.key

return private_key

In the main method, you will also need to update the examination of the
results so that you can set the correct Boolean operators:

check to see if the user typed a special command such as addPKI or
addDH
result = crypto.check_server command(plaintext)

if result == 10: # encryption has been disabled so no message
plaintext = b'PKI Encryption disabled!'
elif result == 11: # encryption enabled
plaintext = b'PKI Encryption enabled!'
elif result == 20: # dh enabled
clientKey = plaintext
plaintext = b'Diffie-Hellman disabled!'
elif result == 21: # encryption enabled
plaintext = b'Diffie-Hellman enabled!'

messages are received encoded so you must decode the message for
processing
msg = str(plaintext, 'utf-8'")

process any client special commands
if result ==
no encryption
break
if result == 10:
turn off the use of PKI
useClientPKI = False;
if result == 11:

264 Chapter 9 = Mastering Cryptography Using Python

turn on the use of PKI
useClientPKI = True;
let the user know PKI certs are found
print ("Client certificate found ...")
if result == 20:
turn off Diffie-Hellman
useDHKey = False;
if result == 21:
turn on Diffie-Hellman
useDHKey = True;
print ("DH Key Exchange ...")
serverSecret = get dh sharedkey ()

if any encryption is used, change the message to 'secure' message

if useClientPKI == True or useDHKey == True:
print ("Received secured message: " + msg)
else:
print ("Received message: " + msg)

Modifying the Client File

The client will call the gen _ client _ DH() method to generate the certificates
when the application starts up. The certificates need to be in place prior to the
client requiring them, which takes place when the user types addps on the client.

In addition to the Diffie-Hellman certificates that get created, we also need to
implement the Diffie-Hellman methods to examine the server’s public key and
use it to create a shared secret using the client’s private key. The same process
happens on the server.

The following code was added to the client file:

import Chapter9.ch9 crypto chat as ct

clientDH = clientDH = ct.gen_client_ DH()
clientSecret = 0;

def get dh sharedsecret () :
key = int (open('server public_dh key.pem') .read())
clientDH.generateSharedKey (key)
clientDH.getSharedKey ()
clientDH.generateSharedKey (key)

shared key = clientDH.sharedSecret

return (shared_key)

Chapter 9 » Mastering Cryptography Using Python

265

def get_dh_sharedkey () :
key = int (open('server public_dh key.pem') .read())
clientDH.generateSharedKey (key)
clientDH.getSharedKey ()
clientDH.generateSharedKey (key)

private_key = clientDH.key

return private key

As with the server file, the client file needs to address the results determined

by the message sent over UDP:

determine if the user initiated a special command
result = ct.check client command (data)

handle any custom commands

if data == b'exit':
break
if result == 0:
break
if result == 10:
sendUsingPrivate = False;
if result == 11:

sendUsingPrivate = True;
skipEncryption = True;

if result == 20:
sendUsingDH = False;
if result == 21:

sendUsingDH = True;
skipEncryption = True;

Prior to going into the loop, you will need to get the client secret by calling

the get _dh _ sharedkey() method:

no matter what, get the ECC shared key, only use it if the user
enables
clientSecret = get dh sharedkey ()

"Welcome to Crypto-Chat! \n")
" Enable PKI: type 'addPKI'")

print (
(
print (" Disable PKI: type 'removePKI'")
(
(
(

print

print (" Enable Diffie-Hellman: type 'addDH'")
print (" Disable Diffie-Hellman: type 'removeDH'")
print ()

We also make a number of changes to the client screen to show the user the
special commands. These are nothing more than just print() calls. The final
version should look similar to Figure 9.8.

266

Chapter 9 » Mastering Cryptography Using Python

| CA\Program Files (x88)\Microsoft Visual Studic\Shared'\Python37_54\python.exe - (m] i
Welcome to Crypto-Telnet! S

Enable PKI: type 'addPKI'

Disable PEI: type 'removePKI®

Enable Diffie-Hellman: type ‘addDH"
Disable Diffie-Hellman: type 'removeDH'

Enter message to send or type "exit': Hello World!
Enter message to send or type ‘exit’: _

Figure 9.8: Final version

Modifying the Helper File

Now that you understand how the Diffie-Hellman protocol works, it is time to
implement the processes into the helper file. Examine the helper file that you
have created and implement the following code:

encryption method used by all calls
def encrypt (message, usePKI, useDH, dhSecret):
if usePKI == True:
message = encrypt rsa(message)
if useDH == True:
message = encrypt_dh(message, dhSecret)
return message

decryption method used by all calls
def decrypt (message, usePKI, useDH, dhSecret):
if useDH == True:
message = decrypt_dh(message, dhSecret)
if usePKI == True:
message = decrypt rsa(message)
return message

delete all generated DH certs
def remove_dh certs():
try:
os.remove ("client private dh key.pem")
os.remove ("client public_dh key.pem")

os.remove ("server private dh key.pem")

(
(
(
(

os.remove ("server_public_dh key.pem")

Chapter 9 = Mastering Cryptography Using Python 267

except:
return 0

generate Diffie-Hellman certificates for client
def gen client DH():
clientDH = dh.DiffieHellman(2,17,1024)

privateKey = str(clientDH.privateKey) .encode ()
fd = open("client private dh key.pem", "wb")
fd.write (privateKey)

fd.close ()

publicKey = str(clientDH.publicKey) .encode ()
fd = open("client public_dh key.pem", "wb")
fd.write (publicKey)

fd.close()

clientDHSet = clientDH
return clientDH

generate Diffie-Hellman certificates for server
def gen server DH():
svrDH = dh.DiffieHellman(2,17,1024)

privateKey = str(svrDH.privateKey) .encode ()
fd = open("server private_dh key.pem", "wb")
fd.write (privateKey)

fd.close()

publicKey = str (svrDH.publicKey) .encode ()
fd = open("server public_dh key.pem", "wb")
fd.write (publicKey)

fd.close ()

key = (open('server public dh key.pem').read())

serverDHSet = svrDH
return svrDH

encrypt using Diffie-Hellman - ECC
def encrypt dh(plaintext, dhSecret):

encrypt using the shared secret from Client (Private) and Server
(Public)

ciphertext = encrypt AES GCM(plaintext,dhSecret)

ciphertext = ciphertext.encode ()

#reverse = decrypt AES GCM(ciphertext, dhSecret)

return ciphertext

268 Chapter 9 = Mastering Cryptography Using Python

decrypt using Diffie-Hellman - ECC
def decrypt dh(ciphertext, dhSecret):

decrypt using the shared secret from Client (Private) and Server
(Public)

ciphertext = ciphertext.decode('utf-8')

plaintext = decrypt AES GCM(ciphertext,dhSecret)

#reverse = encrypt AES_GCM(ciphertext, dhSecret)

return plaintext

generate ECC certs
def gen ecc_certs():
key = ECC.generate (curve='P-256")

f = open('myprivatekey.pem', 'wt')
f.write(key.export_key(format='PEM'))
f.close()

f = open('myprivatekey.pem', 'rt')
key = ECC.import key (f.read())
print (key)

encrypt using AES-GCM

def encrypt AES GCM(msg, secretKey):
aesCipher = AES.new(secretKey, AES.MODE_GCM)
ct, authTag = aesCipher.encrypt and digest (msg)

ct = hexlify(ct)

ct = ct.decode('utf-8")

authTag = hexlify(authTag)
authTag = authTag.decode('utf-8")
noncea = hexlify(aesCipher.nonce)
nonce = noncea.decode ('utf-8"')

ciphertext = json.dumps ({'nonce':nonce, 'ciphertext':ct,
'tag':authTag})

return ciphertext

decrypt using AES-GCM
def decrypt AES GCM(encryptedMsg, secretKey) :

b64 = json.loads (encryptedMsg)
nonce = str(b64['nonce'l])

nonce = nonce.encode ()
nonce = unhexlify (nonce)

ct = str(b64['ciphertext'])
ct = ct.encode ()
ct = unhexlify(ct)

Chapter 9 = Mastering Cryptography Using Python 269

authTag = str(b64['tag'l])
authTag = authTag.encode ()

authTag = unhexlify (authTag)

aesCipher = AES.new(secretKey, AES.MODE_GCM, nonce)
nonce = b64encode (aesCipher.nonce) .decode ('utf-8")
plaintext = aesCipher.decrypt_and verify(ct, authTag)
return plaintext

encrypt using AES-CTR
def encrypt AES CTR(msg, secretKey):
cipher = AES.new(secretKey, AES.MODE CTR)
ct_bytes = cipher.encrypt (msg)
nonce = b64encode (cipher.nonce) .decode ('utf-8")
ct = bé64encode (ct_bytes) .decode ('utf-8')
ciphertext = json.dumps ({'nonce':nonce, 'ciphertext':ct})
return ciphertext

decrypt using AES-CTR
def decrypt AES_CTR(msg, secretKey):
b64 = json.loads (msg)
nonce = bé64decode (b64 ['nonce'])
ct = bé4decode (b64 ['ciphertext'])
cipher = AES.new(secretKey, AES.MODE CTR, nonce=nonce)
plaintext = cipher.decrypt (ct)
return plaintext

check client commands
def check client command (data) :
if data == b'addPKI':
gen_rsa_certs()
return 11
elif data == b'removePKI':
usePKI = False
return 10
elif data == b'addDH':
return 21
elif data == b'removeDH':
usePKI = False
return 20
return 1

check server commands
def check_server_command (data) :
if data == b'addPKI':
return 11
if data == b'removePKI':
useDH = False
return 10
if data == b'addDH':
return 21

270 Chapter 9 = Mastering Cryptography Using Python

if data == b'removeDH':
useDH = False
return 20

return 1

Creating the Diffie-Hellman Class File

There are many cryptographic libraries that will handle the Diffie-Hellman
exchange for you, and the DH primes listed in this section are a bit brutal to
type; the code listed in this section is presented more to help you understand
how the protocol works. This code, like all of the code in this book, is available
on the book’s website. This section is mostly for students who need to under-
stand how to generate the Diffie-Hellman exchange in other languages that
may not have libraries for it or for those of you in academia:

import hashlib
from binascii import hexlify

try:
#Preferably using urandom (more secure)
import os
random_function = os.urandom
random provider = "OS random"

except (AttributeError, ImportError) :
import ssl
random_function = ssl.RAND bytes
random_provider = "Python SSL"

class DiffieHellman() :
wn
Using standard primes from RFC 3526 MODP Groups 17 and 18.
Both are sufficient to generate AES 256 keys with a 540+ bit
exponent.
https://datatracker.ietf.org/doc/rfc3526/

nun

def _ init_ (self, generator = 2, group = 17, keyLength=2048):

nun

Generate the public and private keys

nun

#Length in bits
min_keyLength = 1024
default_keyLength = 2024

default generator = 2
valid generators = [2, 3, 7] #Must be primes

Chapter 9 » Mastering Cryptography Using Python

271

Sanity check for generator
if (generator not in valid generators) :
print ("Error: Invalid generator. Default (2) will be used
instead.")
self.generator = default generator
else:
self.generator = generator

Sanity check for keyLength
if (keyLength < min keyLength) :
print ("Error: keyLength is too small. Setting to minimum
(", min_keyLength,").")
self.keyLength = min_ keyLength
else:
self.keyLength = keyLength

#Getting prime
self.prime = self.getPrime (group)

#Generating Keys
self.privateKey = self.generatePrivateKey (self.keyLength)
self.publicKey = self.generatePublicKey ()

def getPrime(self, group = 17):
nmnn
Returns the correspondent prime.
To explore more primes: https://github.com/
RedHatProductSecurity/Diffie-Hellman-Primes

default_group = 17

primes = {
17:
OXFFFFFFFFFFFFFFFFCO0FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBE
A63B139B22514A08798E3404DDEFS519B3CD3A431B302B0A6DF25F14374FE1356D6D51C2
45E485B576625E7EC6F44C42E9A637ED6BOBFF5CB6F406B7EDEE386BFBSA899FASAEOF24
117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF
5F83655D23DCA3AD961C62F356208552BBO9ED529077096966D670C354E4ABC9804F1746C
08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52
CODE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD3317
0D04507A33A85521ABDF1CBA64ECFB850458DBEFOA8BAEA71575D060C7DB3970F85A6E1E4
C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602
733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB
3143DB5BFCEOFD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327
186AF4E23C1A946834B6150BDA2583E9CA2AD44CESDBBBC2DB04DESEF92E8EFC141FBECA
A6287C59474E6BC05D99B2964FA0S0C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD
762170481CD0069127D5B0O5AA993B4EAS88D8FDDC186FFB7DCO90A6C08F4DF435C9340284
9236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9ES530EESDB38

272

Chapter 9 » Mastering Cryptography Using Python

2F413001AEBO6A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB
1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64BO2ECF032EA
15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1CO9ES9E7CO97FBECT7ES
F323A97A7E36CC88BEOF1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5E
D20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1IFBFFOEB1I9CCB1IA313D5
S5CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F9
1E6DCC4024FFFFFFFFFFFFFFFF,
18:

OXFFFFFFFFFFFFFFFFCOOFDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBE
A63B139B22514A08798E3404DDEFS519B3CD3A431B302B0A6DF25F14374FE1356D6D51C2
45E485B576625E7EC6F44C42E9A637ED6BOBFF5CB6F406B7EDEE386BFB5A899FASAEOF24
117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF
5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C
08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52
CODE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD3317
0D04507A33A85521ABDF1CBA64ECFB850458DBEFOASAEA71575D060C7DB3970F85A6E1E4
C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602
733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB
3143DB5BFCEOFD108E4B82D120A92108011A723C12A787E6D788719A10BDBASB2699C327
186AF4E23C1A946834B6150BDA2583E9CA2AD44CESDBBBC2DB04DESEF92ES8EFC141FBECA
A6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD
762170481CD0069127D5B05AAS93B4EAS88D8FDDC186FFB7DCO90A6C08F4DF435C9340284
9236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9ES530EESDB38
2F413001AEBO6A5S3ED9027D831179727B0865A8918DA3EDBEBCFI9B14ED44CE6CBACED4BB
1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA
15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1CO9ES9E7C97FBECT7ES
F323A97A7E36CC88BEOF1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5E
D20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFFOEB19CCB1A313D5
S5CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F9
1E6DBE115974A3926F12FEESE438777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD3
00741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F5683423B4742BF1C978238F16
CBE39D652DE3FDB8BEFC848AD922222E04A4037C0713EBS57A81A23F0C73473FC646CEA30
6B4BCBC8862F8385DDFA9D4B7FA2C087E879683303EDS5BDD3A062B3CF5B3A278A66D2A13
F83F44F82DDF310EE074AB6A364597E899A0255DC164F31CC50846851DF9AB48195DED7E
A1B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F924009438B481C6CD7889A00
2ED5EE382BC9190DA6FC026E479558E4475677E9AA9E3050E2765694DFC81F56E880B96E
7160C980DD98EDD3DFFFFFFFFFFFFFFFFF

}

if group in primes.keys():
return primes [group]
else:
print ("Error: No prime with group",group, "Using
default,",default_group,".")
return primes[default group]

def generateRandomNumber (self, bits):

nun

Generate a random number with the specified number of bits

Chapter 9 » Mastering Cryptography Using Python

273

(https://en.wikipedia.org/wiki/Cryptographically secure_ pseudorandom
number_generator)

randomNumber = 0
_bytes = bits // 8 + 8

while (randomNumber.bit length() < bits):
randomNumber = int.from bytes (random_ function(_bytes),
byteorder='big"')

return randomNumber

def generatePrivateKey(self, bits):

Generate the private key

return self.generateRandomNumber (bits)

def generatePublicKey (self) :

nun
o

Generate public key with generator ** privateKey % prime

return pow (self.generator, self.privateKey, self.prime)

def testReceiverPublicKey (self, receiverPublicKey) :
W
Checks receiver Public Key to make sure it's valid.
Since a safe prime is used, verify that the Euler's Criterion
for the Legendre Symbol == 1
Not super trustworthy tho, it has its limitations.
(https://en.wikipedia.org/wiki/Legendre symbol)
(https://www.youtube.com/watch?v=0231tWTcEYw)

if (receiverPublicKey > 2 and receiverPublicKey < self.prime - 1):
if (pow (receiverPublicKey, (self.prime - 1)//2, self.prime) == 1):
#if it's a quadratic residue
return True
return False

274 Chapter 9 = Mastering Cryptography Using Python

def

generateSharedSecret (self, privateKey, receiverPublicKey) :

nun

Generates the shared secret after checking if receiverPublicKey

is valid.
nmnn
if (self.testReceiverPublicKey (receiverPublicKey) == True):
sharedSecret = pow (receiverPublicKey, privateKey, self.
prime)
return sharedSecret
else:
raise Exception ("Invalid public key.")
def generateSharedKey (self, receiverPublicKey) :

nun

Gets shared secret, then hash it to obtain the shared key.

nun

self.sharedSecret = self.generateSharedSecret (self.privateKey,

receiverPublicKey)

try:
_sharedSecretBytes = self.sharedSecret.to_bytes(self.

sharedSecret.bit_length() // 8 + 1, byteorder="big")

def

def

prime))

except AttributeError:
_sharedSecretBytes = str(self.sharedSecret)

shared = hashlib.sha256 ()
shared.update (bytes (_sharedSecretBytes)
self.key = shared.digest ()

getSharedKey (self):

nun

Return shared secret Key

nun

return self.key

displayParameters (self):

nun

Display parameters used on the DH agreement.

nun

print (">>>>>>> Parameters:")
print ("Prime[{0}]: {1}\n".format (self.prime.bit length(), self.

print ("Generator:", self.generator, "\n")

Chapter 9 = Mastering Cryptography Using Python 275

print ("Private Key[{0} bits]: {1}\n".format (self.privateKey.bit
length (), self.privateKey))

print ("Public Key[{0} bits]: {1}\n".format (self.publicKey.bit
length(), self.publicKey))

def displayShared (self):

Display the results of the exchange.

print (">>>>>>> Results:")

print ("Shared Secret[{0}]: {1}\n".format (self.sharedSecret.bit
length (), self.sharedSecret))

print ("Shared Key [{0}]: {1}\n".format (len(self.key),
hexlify (self.key)))

Execution

Prior to typing your nonencrypted message, turn on Wireshark so that you can
verify the unencrypted traffic. Once you type addpy, the client sends an unen-
crypted command to the server that will initiate the encryption synchronization
on both sides. Once this is triggered, the server will know that the next message
sent will be using a shared secret that was created using Diffie-Hellman key
exchange. In the real world, these certificates, as with the RSA ones too, should
be on different systems. The certificates are left on the same computer to keep the
concept easy for you to test without having to have multiple computers. With the
changes made to the client file, you should see something similar to Figure 9.9
when you execute the server file and the client file on the same machine.

P C\Proc «86)\Mic ual Studio\S Pyth .ex]
lelcome to Crypto-Telnet! 'S

Enable PKI: type 'addPKI'

Disable PKI: type 'removePKI'

Enable Diffie-Hellman: type 'addDH"
Disable Diffie-Hellman: type 'removeDH'

Enter message to send or type 'exit': Hello world!

Enter message to send or type 'exit': addDH

Enter secure message to send or type 'exit': This message is encrypted.
Enter secure message to send or type 'exit':

| J C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64\python.exe
Waiting to receive messages...

Received message: Hello world!

DH Key Exchange ...

Received secured message: Diffie-Hellman enabled!

Received secured message: This message is encrypted.

Figure 9.9: Diffie-Hellman Exchange chat

276

Chapter 9 » Mastering Cryptography Using Python

The message will be encrypted and passed over UDP along with the nonce
and authentication tag; you will see those data labels in the UDP packet but
will only see the encrypted versions. As you will see in Figure 9.10, the shared
key is not passed over the connection.

A *Adapter for loopback traffic capture = O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am i ® BRE Re>=F IS =EQQQHE
(W Apply a display filter ... <Ctrl-/> -]+
No. Time Source Destination Protocol Length Info L.
31 11.485856 127.e.0.1 127.0.0.1 TCP 153 54657 » 54656 [PSH, ACK] Seq=768 Ack=1 Win=10199 |
32 11.405066 127.e.0.1 127.0.0.1 TCP 44 54656 -» 54657 [ACK] Seq=1 Ack=877 Win=10195 Len=0
L 33 18.079155 127.0.0.1 127.0.0.1 Ubp 162 2'55421 - 8080 Len=130
34 18.084862 127.0.0.1 127.0.0.1 TCP 67 54657 - 54656 [PSH, ACK] Seq=877 Ack=1 Win=10199 I——
35 18.08489%4 127.0.0.1 127.8.0.1 TCP 44 54656 » 54657 [ACK] Seq=1 Ack=900 Win=10195 Len=0 G
< - - - - - - S
Frame 33: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface \Device\NPF_Loopback, id @ ~

Null/Loopback
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

llcar Datagram Pratacnl Sre Part: G8491 DNt Dart: R0R0

0000 02 00 00 00 45 00 00 9e 7 07 00 ©0 80 11 N[E '
7f 00 00 01 7f 00 00 01 ff 8d 1f 90 00 8a 25 b8 %
7b 22 6e 6f 6e 63 65 22 3a 20 22 63 62 33 36 37 {"nonce" : "cb367

62 61 31 66 31 35 63 34 33 65 65 30 35 30 61 34 balfl5c4 3ee@50a4
61 38 3@ 34 37 38 30 66 31 34 31 22 2c 20 22 63 age478ef 141", "c
69 70 68 65 72 74 65 78 74 22 3a 20 22 66 33 35 iphertex t": "f35
63 61 34 63 64 61 38 31 62 32 36 35 64 31 62 66 cadcda8l b265d1bf
65 38 63 33 62 22 2c 20 22 74 61 67 22 3a 20 22 e8c3b", "tag": "
34 64 31 35 37 30 31 35 31 65 66 36 66 38 32 62 4d157015 lef6f82b
62 64 63 62 65 61 62 66 32 33 64 33 33 35 33 32 bdcbeabf 23d33532
22 7d)

O 7 wireshark NPF Loopback_20200227131017_a00032.pcapng Packets: 45 Displayed: 45 (100.0%) Profile: Default

Figure 9.10: Shared key not passed

Wrapping Up

You should now have a working Python application that sends encrypted mes-
sages over an unsecure network. Hopefully, this book has provided you a better
understanding of how cryptographic protocols work at an academic level;
However, I wouldn't suggest trying to roll your own protocols in place of those
that go under great scrutiny and testing. It is important that you still rely on
protocols such as TLS and PKIs for securing your communications and your
applications. With that being said, should laws be passed that allow people in
the middle to be able to read your traffic, you can implement a number of tech-
niques here that will work on top of the public protocols to keep your messages
secret. By now, you can perform end-to-end encryption that will provide both
confidentiality and integrity.

SYMBOLS

\ (backslash), 10

- operator, 12

/ operator, 12

// operator, 12

//= (floor division) assignment operator, 14

_ (binary One Complement) bitwise
operator, 15, 52

| (binary OR) bitwise operator, 15, 52

+ operator, 11, 12

+= (add AND) assignment operator, 14

+K, (notation in cryptographic protocols), 37

/= (divide AND) assignment operator, 14

= (subtract AND) assignment operator, 14

= assignment operator, 14

!= comparison operator, 13

== comparison operator, 13

% operator, 12

%= (modulus AND) assignment operator, 14

& (binary AND) bitwise operator, 15, 52

* operator, 12

** operator, 12

**= (exponent AND) assignment operator, 14

*= (multiply AND) assignment operator, 14

A (binary XOR) bitwise operator, 15, 52

< comparison operator, 13

<< (binary Left Shift) bitwise operator, 15, 52

<= comparison operator, 13

<>= comparison operator, 13

> comparison operator, 13

>= comparison operator, 13

>> (binary Right Shift) bitwise operator, 15,
52

Index

A
A (notation in cryptographic protocols), 37
A — B: m (notation in cryptographic
protocols), 37
A[m] (notation in cryptographic protocols),
37
a+ file operator, 19
addition + operator, 12
Adleman, Leonard (researcher), 34, 226
AES (Advanced Encryption Standard), 36,
156, 167, 180-187
AES-GCM, 261
Affine cipher, 90-93
algorithms
ARX algorithms, 149
asymmetric algorithms, 36
DEC algorithm, 2
deterministic algorithm, 101
ENC algorithm, 2
exploring, 2
GEN algorithm, 2
Mersenne Twister algorithm, 116
published and proprietary encryption,
61-62
RSA algorithm, 104, 226-235, 242
Secure Hash Algorithms (SHAs), 203204,
205, 209
symmetric algorithms, 36
Alice and Bob, as most famous
cryptographic couple, 33-34
analytical attacks, 48
AND, 50-55
and (logical AND), 14

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

277

278

Index = B-C

Append file operator, 19
arbiter, 35
arbitrated authentication, 35-36
ARC4 (ARCFOUR), 147-148
arithmetic operators, 11-13
Artjuhov, M. M., 100
ARX algorithms, 149
ASCII encoding, 70
assignment operator, 10, 14
associativity (as group axiom), 106
asymmetric algorithms, 36
Atbash cipher, 77
attack models, 49-50
attacks
analytical attacks, 48
birthday attack, 59, 207-209
brute-force attacks, 47-48
length extension attack, 209-210
reflection attack, 211
reordering attack, 211
replay attack, 211
side-channel attacks, 48
social engineering, 48
Authenticate Then Decrypt, 211
authentication
arbitrated authentication, 35
data origin authentication, 34-35
direct authentication, 35
entity authentication, 35-36
inter-realm authentication, 40
message authentication codes, 60

B

backslash (\), 10

Base64 encoding text, 70
berypt library, 69
Bernstein, Daniel, 149
bin() function, 52
binary data, 71

binary digests, 204-205
binascii library, 140
birthday attack, 59, 207-209
bitwise operators, 15, 52
blind signatures, 33
block cipher mode, 158
block ciphers

AES (Advanced Encryption Standard), 36,

156, 167

block modes of operation, 158

CBC mode (formerly Cipher Block
Chaining), 159-160

CFB mode (Cipher Feedback mode),
160-162

CTR mode (Integer Counter mode or
Segmented Integer Counter mode),
162-164

DIY block cipher using Feistel networks,
165-166
ECB mode (formerly Electronic Codebook),
158-159
OFB mode (Output Feedback mode),
162-163
overview, 156-158
tricks with stream modes, 164-165
block modes of operation, 180-187
Blowfish, 36
Bob and Alice, as most famous
cryptographic couple, 33-34
Boolean test, 16
break loop, 18
brute-force attacks, 47-48
buffer sequence type, 20, 21
Bundle, Pip as similar to, 5

C
CA-, (notation in cryptographic protocols),
37
CA<<A>> (notation in cryptographic
protocols), 37
Caesar cipher, 74-76
CBC mode (formerly Cipher Block
Chaining), 159-160, 180, 185-186
CBC-MAC (cipher block chaining message
authentication code), 206207
CCA (Chosen-Ciphertext), 50
Cert _cx catK,) (notation in cryptographic
protocols), 37
certificate, self-signed, 45-46
certificate authorities (CAs), 42
certificate chains, 42-44
certificate hierarchy, 42-44
certificate revocation, 44-45
CFB mode (Cipher Feedback mode),
160-162
ChaCha cipher, 151-156
ChaCha20 stream cipher, 145
channels
adding symmetric encryption, 215-218
communication channels, 211
concatenate message and MAC, 218221
creating client socket, 213214
creating server socket, 212-213
creating threaded server with TCP, 214-215
sending secure messages over IP networks,
212-221
setting up secure one, 210-221
chmod command, 3
Choctaw Indian language, as historical
cipher, 73
Chosen-Ciphertext (CCA), 50
Chosen-Plaintext (CPA), 50
Chromebook, installing Python on, 4-5

Index = D-D

279

CIA Triad, 35-36
cipher block chaining message
authentication code (CBC-MAC), 206-207
Cipher Block Chaining (now CBC mode),
159-160
Cipher Feedback mode (CFB), 160-162
cipher space, use of term, 49
ciphers
Affine cipher, 90-93
ARC4 (ARCFOUR), 147-148
Atbash cipher, 77
block ciphers, 156-169
Caesar cipher, 74-76
ChaCha cipher, 151-156
column transposition, 87-90
Hill 2x2, 83-87
historical ones, 72-93
Playfair, 79-82
ROT-13, 76
Salsa20 cipher, 149-151
stream ciphers, 141-156
substitution ones, 73-77
Vernam cipher, 148-149
Vignere cipher, 77-79, 129-137
ciphertext (C)C, 2
Ciphertext Only (COA), 49
classical cryptography
data obfuscation (DO), 69-72
historical ciphers, 72-93
password best practices, 66-69
client
creating one for constructing plaintext
communications application, 250-251
modifying of for implementing PKI in
application using RSA certificates, 257
client file, modifying of in implementing
Diffie-Hellman key exchange, 264-266
client socket, creating, 213-214
clock synchronization, 42
closure (as group axiom), 106
Cocks, Clifford (mathematician and
cryptographer), 224-226
codes
commenting on, 10
message authentication codes, 60
collision resistance, 59
column transposition, 87-90
comments, on code, 10
“Communication Theory and Secrecy
Systems” (Shannon), 50
comparison operators, 13
Composer, Pip as similar to, 5
concatenate message and MAC, for
incorporating message hashing, 200
conditionals, use of, 16-17
continue loop, 18

count () method, 25
CPA (Chosen-Plaintext), 50
cryptanalysis
defined, 47
with Python, 123-137
understanding of, 47-49
cryptographic family, 33-34
cryptographic library, configuring your first,
47
cryptographic one-way hashes, 59-60
cryptographic protocols, 32-33, 46—47. See
also specific protocols
cryptographically secure pseudorandom
number generator (CSPRNG), 115,
141-144, 146
cryptography
history of, 31, 242
origin of term, 32
study of, 32-49
understanding of, 32-47
Cryptography library, 174-175, 189
Cryptography package, installing, 7-8
Cryptosteganography library, 175
cryptosteganography module, 175, 188,
189, 192
CTR (counter) style, 157
CTR mode (Integer Counter mode or
Segmented Integer Counter mode),
162-164
custom functions, 2627

D
data
binary data, 71
obfuscating of, 69-72
data obfuscation (DO), 69-72
data origin authentication, 34-35
De Canniere, Christophe, 145
De Vita Caesarum, Divus Iulis ("The Lives of
the Caesars, the Deified Julius"
commonly known as The Twelve
Caesars), 74-76
DEC algorithm, 2
decode () method, 71
decoding, 71
decryption
Authenticate Then Decrypt, 211
constructing BLOB decryption with RSA
certificates, 232-235
constructing simple text decryption with
RSA certificates, 231-232
of files using AES, 169
def keyword, 26
DES, 36, 156
deterministic algorithm, 101
dictionaries, 25-26

280

Index = E-H

Diffie, Whitfield, 162, 224
Diffie-Hellman class file, creating,
270-275
Diffie-Hellman key exchange
implementing of, 261-276
overview, 242-245
purpose of, 34
as used by TLS, 33
digest() method, 204
dir(),28
direct authentication, 35
division / operator, 12
DO (data obfuscation), 69-72
double quote ("), 11
downloading and installing, Python, 3-8

E
ECB mode (formerly Electronic Codebook),
158-159, 180, 181-185
ECC keys, generating, 240241
Ehrsam, W. E,, 159
Electronic Codebook (now ECB mode),
158-159
electronic money, 33
elements, orders of, 107-109
El-Gamal encryption, 235-238
elliptic curve cryptography (ECC)
generating ECC keys, 240-241
key lengths and curves, 241-242
overview, 238-240
elliptic curves, 238-239
Ellis, James, 225
else loop, 18-19
ENC algorithm, 2
encode () methods, 71
encoding matrix, 117
Encrypt and Authenticate, 210-211
Encrypt Then Authenticate, 211
encryption
constructing BLOB encryption with RSA
certificates, 232-235
constructing simple text encryption with
RSA certificates, 231-232
El-Gamal encryption, 235-238
MAC encryption, 200-201
symmetric encryption, 8, 36, 39, 49, 176,
215-218
encryption key (K), 2
encryption protocols, as another name for
cryptographic protocols, 32
entity authentication, 35
eSTREAM, 145
Euler’s theorem, 100, 111-114
exponent ** operator, 12
extend() method, 24

F
FA (frequency analysis), 48-49, 120-123
FCS (Frame Check Sequence), 58-59
Federal Information Processing Standards
Publication (FIPS PUB 180-4), 205
Feistel cipher/Feistel network, 165-166
Ferguson, Niels, 162
Fermat’s little theorem, 100, 110-111
Fernet
file cryptography using, 175-179
image cryptography using, 179-180
Fernet library, 175
file operations, 19
files
decryption of using AES, 169
downloading using Python, 27-28
encryption of using AES, 169
use of, 19
FIPS PUB 180-4 (Federal Information
Processing Standards Publication),
205
Flexible Image Transport System (FITS), 3,
195-197
floor division// operator, 12
for loop, 17
forgeries, crafting of, 209-210
forward secrecy (FS), 60
Frame Check Sequence (FCS), 58-59
frequency, determination of, 126-129
frequency analysis (FA), 48-49, 120-123
functions, custom functions, 26-27

G
GEN algorithm, 2
greatest common divisor (GCD), 96-97,
111
group axioms, 106
group law, 106
group theory
orders of elements, 107-109
overview, 106-107
groups, concept of, 106

H
hash code, 67
hash function, 58
Hash-based Message Authentication Code
(HMAC)
binary digests, 204-205
CBC-MAC, 206-207
described, 60
message digest with SHA, 203-204
overview, 201-202
using HMAC to sign message, 202-203

Index = I-M

281

hashlib module, 28-29
Header + Data Units (HDUs), 195
Hellman, Martin, 162, 224
helper file
creating one for constructing plaintext
communications application, 251-252
modifying of for implementing PKI in
application using RSA certificates,
258-259
modifying of in implementing Diffie-
Hellman key exchange, 266-270
hexdigest, conversion to plaintext, 140-141
hexdigest () method, 204
hex1ify module, 140
hidden secret, for incorporating message
hashing, 201
Hill 2x2, 83-87
H(m) (notation in cryptographic protocols),
37

|
IDEA, 36
identity (as group axiom), 106
identity operators, 16
IF statement, 16
image cryptography
AES and block modes of operation, 180-187
applying examples, 186
exploring simple CBC mode example,
185-186
exploring simple ECB mode example,
181-185
file cryptography using Fernet, 175-179
overview, 175-176
steganography, 187-197
using Fernet, 179-180
images
cryptography libraries, 174-175
image cryptography, 175-187
simple image cryptography, 171-174
storing binary file inside, 192-194
storing message inside, 188-191
using cryptography with, 171-197
working with large ones, 195-197
immutable, 24
import command, 28
import math call, 28
in membership operator, 15
indentation, misuse of, 10
index() method, 25
indices
negative index, 22
positive index, 22
infinite one-time pad, 164
infrastructure, 255-256

installing

additional packages, 5-8

Chryptography package, 7-8

IPython, 8

Matplotlib, 5-7

Pip, 5-7

Python, 3-8

testing, 9

Wireshark, 253-254
Integer Counter mode, 162-164
integer factorization, 97
inter-realm authentication, 40
inverse (as group axiom), 106
IPython, 8
is identity operator, 16
is not identity operator, 16
is prime() function, 103

K

-K, (notation in cryptographic protocols), 37
K, g (notation in cryptographic protocols), 37
Kerberos protocol, 36, 39-40

Kerckhoffs, Auguste, 61

key distribution problem, 223

key escrow, 33

key exchange, 34

key space, use of term, 49

Known-Plaintext (KPA), 50

Koblitz, Neal, 239

L
lambda functions, 125
length extension attack, 209-210
libraries
berypt library, 69
binascii library, 140
configuring your first cryptographic
library, 47
cryptography libraries, 174-175
Fernet library, 175
linear equations, solving systems of,
117-119
linear-feedback register (LPSR), 146
list() function, 25
list sequence type, 20-21, 24, 25
logical operators, 13-14
loops, use of, 17-19

M

lllll m) (notation in cryptographic
protocols), 37

MAC encryption, for incorporating message
hashing, 200

macOS§, installing Python on, 4

282

Index = N-P

Matplotlib
described, 3,5
installing, 5-7
MD5, 203
MDC (modification digest code), 34-35
membership operators, 15
Merkle, Ralph, 224
Mersenne Twister algorithm, 116
Message Authentication Codes (MACs)
birthday attack, 59, 207-209
cipher block chaining message
authentication code (CBC-MACQ),
206-207
crafting forgeries, 209-210
hash-based ones, 201-205
NIST compliance, 205-206
overview, 200201
message digest, 67
message hashing, 200
message integrity
Message Authentication Codes (MACs),
200-210
setting up secure channel, 210-221
message space, use of term, 49
"A method for obtaining digital signatures
and public key cryptosystems” (Rivest,
Shamir, and Adleman), 34
Meyer, C. H., 159
Miller, Gary L., 100
Miller, Victor S., 239
Miller-Rabin primality test, 100-104
minus - operator, 12
(m)g (notation in cryptographic protocols), 37
modification digest code (MDC), 34-35
modular arithmetic, 96-97
modular inverses
Fermat's little theorem to find inverse, 110-111
overview, 109-110
modules, defined, 28
modulus % operator, 12
multiple-domain Kerberos, 4041
multiplication * operator, 12
mutable, 24

N
names
as case sensitive in Python, 9
examples of, 9
numbers as not starting, 9
National Institute of Science and Technology
(NIST), 205
Needham, Roger (protocol inventor), 36
Needham-Schroeder protocols, 36-38
Network Time Protocol (NTP), 42
NIST compliance, 205-206
not (logical NOT), 14

not in membership operator, 15
NPM, Pip as similar to, 5
NumPy, 3, 5-7, 117

(0]
OFB (output feedback) style, 157
OFB mode (Output Feedback mode), 162-163
one-time pad (OTP), 51, 141
one-time pad (OTP) function, 56-58
one-way hashes
cryptographic one-way hashes, 59-60
overview, 58-59
online word list, use of, 125-126
open method, 27, 28
operators
arithmetic operators, 11-13
bitwise operators, 15, 52
comparison operators, 13
identity operators, 16
logical operators, 13-14
membership operators, 15
relational operators, 13
use of, 11-12
OR, 50-55
or (logical OR), 14
OTP (one-time pad), 51, 141
OTP (one-time pad) function, 56-58
Otway-Rees protocol, 38
Output Feedback mode (OFB mode), 162-163
output feedback (OFB) style, 157

P

passwords
best practices for, 66—69
hashing of, 67
salting of, 67-68
storage of, 66
stretching of, 68
tools for, 68—69
PEM (privacy enhanced electronic mail),
70-71
perfect forward secrecy (PFS), 60-61
perfect secrecy, 51, 56
perfect security, 50-51
Pip, installing, 5-7
PKI (public-key infrastructure)
described, 223-224
implementing of in application using RSA
certificates, 255-261
plaintext
constructing plaintext communications
application, 248-253
conversion of hexdigest to, 140-141
Playfair, 79-82
plus + operator, 11, 12
preimage resistance, 59

Index = Q-S

283

Preneel, Bart, 145
prime factorization, 97
prime number theorem, 98
prime numbers
Fermat’s little theorem, 100
generating large ones, 104-106
Miller-Rabin primality test, 100-104
overview, 97-98
prime number theorem, 98
school primality test, 98-99
Print() function, 13
privacy enhanced electronic mail (PEM),
70-71
protocols
cryptographic protocols, 32-33, 46-47
Kerberos protocol, 36, 39-40
multiple-domain Kerberos, 40-41
Needham-Schroeder protocols, 36-38
Network Time Protocol (NTP), 42
Otway-Rees protocol, 38
public-key protocol, 36-37
symmetric key protocol, 36
Transmission Control Protocol (TCP), 212
User Datagram Protocol (UDP), 212
pseudorandom number generation (PRNG),
115, 141-144
pseudorandomness
breaking C’s rand() function, 116
overview, 115
public key MAC encryption, for
incorporating message hashing, 200-201
public-key certificates, 42
public-key infrastructure (PKI)
described, 223-224
implementing of in application using RSA
certificates, 255-261
public-key protocol
as second protocol of Needham-Schroeder
protocols, 36-37
as similar to protocol proposed by Otway
and Rees, 38
public-key transformation
constructing BLOB encryption and
decryption with, 232-235
constructing simple text decryption with
RSA certificates, 231-232
exploring basics of RSA, 226229
generating RSA certificates, 229-230
overview, 224-226
PyFITS, described, 3
Python
basics of, 9-29
downloading and installing, 3-8
installing additional packages, 5
installing Cryptography package, 7-8
reasons to use, 2-3

upgrading packages, 5
using AES with, 167-169
Python 2, as unsupported, 3

Q

quotes
double quote ("), 11
single quote ('), 11

R
R file operator, 19
r+ file operator, 19
R, (notation in cryptographic protocols), 37
Rabin, Michael, 100
rainbow table, 67
RC4, 147
reflection attack, 211
relational operators, 13
remove () method, 25
reordering attack, 211
replay attack, 211
requests module, 27
reserved words, 9
reverse cipher, creating, 29
reverse () method, 25
reverseCipher function, 29
Rivest, Ron, 34, 226
ROT-13, 76
RSA algorithm, 104, 226-235, 242
RSA certificates
constructing BLOB encryption and
decryption with, 232-235
constructing simple text encryption and
decryption with, 231-232
generating, 229-231
implementing PKI in application using,
255-261
RSAES-OAEP, 231

S

Salsa20 cipher, 149-151

Schneier, Bruce, 162

school primality test, 98

Schroeder, Michael, 36

SEC (Standards of Efficient Cryptography), 241

secondary resistance, 59

secret sharing, 33

secret splitting, 33

Secure Hash Algorithms (SHAs), 203-204,
205, 209

securing elections, 33

security protocols, as another name for
cryptographic protocols, 32

Segmented Integer Counter mode, 162-164

284

Index = T-Z

self-signed certificate, 45-46
semantics, understanding Python semantics,
20
sequence types, 20-26
server
creating one for constructing plaintext
communications application, 248-250
modifying of for implementing PKI in
application using RSA certificates,
256-257
server file, modifying of in implementing
Diffie-Hellman key exchange, 262-264
server socket, creating, 212-213
SHA, 203204
Shamir, Edi, 34, 226
Shannon, Claude (father of information
theory), 31, 50
Shannon’s theorem, 50-51
shared key (SK), 34
side-channel attacks, 48
SIMD (single instruction, multiple data),
151-152
single quote ('), 11
Skipjack, 36
Smith, J. L., 159
social engineering, 48
sort () method, 25
Spartan scytale, 73
Standards of Efficient Cryptography (SEC),
241
Steganographia (Trithemius), 187-188
steganography
overview, 187-188
storing binary file inside image, 192-194
storing message inside image, 188-191
working with large images, 195-197
str sequence type, 20
stream ciphers
ARC4, 147-148
ChaCha cipher, 151-156
overview, 141-147
Salsa20 cipher, 149-151
Vernam cipher, 148-149
stream modes, 164-165
stretching (of passwords), 68
strings
use of, 11
using quotes to define, 21
subtraction - operator, 12
symmetric algorithms, 36
symmetric encryption, 8, 36, 39, 49, 176, 215-218
symmetric key, 35
symmetric key confidentiality, for
incorporating message hashing, 201
symmetric key protocol, 36

symmetric public key confidentiality, for
incorporating message hashing, 201

T

t, (notation in cryptographic protocols),
37

Ticket Granting Servers (TGS), 40

timestamping, 33

Transmission Control Protocol (TCP), 212,
214-215

Transport Layer Security (TLS), 33

Triple DES, 156

Trithemius, Johannes (author),
Steganographia, 187

Trivium, 145

trusted third party (TTP), 35

Tuchman, W. L., 159

tuple() function, 25

tuple sequence type, 20, 21, 24, 25

The Twelve Caesars, 74-76

U

Ubuntu, installing Python on, 4
unhexlify module, 140

Unicode sequence type, 20

User Datagram Protocol (UDP), 212

\'}

validation, formal validation of
cryptographic protocols, 46—47

values, as stored in variables, 10

variables, use of, 10-11

Vernam, Gilbert, 148

Vernam cipher, 148-149

Vignere cipher, 77-79, 129-137

w

W file operator, 19

W+ file operator, 19

while loop, 18

whitespace, as meaningful, 10

Windows, installing Python on, 4
Wireguard, 145

Wireshark, installing and testing, 253254

X

X.509, 41-42

XOR, 50-55

xrange sequence type, 20, 21

z

zero-knowledge proofs, 33

