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Preface

We are becoming awash in the flood of digital data from scientific research, engineering,
economics, politics, journalism, business, and many other domains. As a result, analyzing,
visualizing, and harnessing data is the occupation of an increasingly large and diverse set
of people. Quantitative skills such as programming, numerical computing, mathematics,
statistics, and data mining, which form the core of data science, are more and more
appreciated in a seemingly endless plethora of fields.

Python, a widely-known programming language, is also one of the leading open platforms

for data science. IPython is a mature Python project that provides scientist-friendly interactive
access to Python. It is part of the broader Project Jupyter, which aims to provide high-quality
environments for interactive computing, data analysis, visualization, and the authoring of
interactive scientific documents. Jupyter is estimated to have several million users today.

The prequel of this book, Learning IPython for Interactive Computing and Data Visualization
Second Edition, Packt Publishing was published in 2015, two years after the first edition. It is
a beginner-level introduction to data science and numerical computing with Python, IPython,
and Jupyter.

This book, the first edition of which was published in 2014, continues that journey by
presenting more than 100 recipes for interactive scientific computing and data science. These
recipes not only cover programming topics such as numerical computing, high-performance
computing, parallel computing, and interactive visualization, but also data analysis topics
such as statistics, data mining, machine learning, signal processing, graph theory, numerical
optimization, and many others.

This second edition is fully compatible with the latest versions of the platform and its libraries.
It includes new recipes to better leverage the latest features of Python 3, and it introduces
promising new projects such as JupyterLab, Altair, and Dask.
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By design, this book privileges breadth over depth. A particularly wide

range of libraries and techniques are covered in this book, but not
comprehensively. We give many references that let you deepen your
knowledge of individual methods. The goal of this book is not to make you
an expert of the subjects covered, but to give you a glimpse of the extremely
diverse set of applications that you can tackle with the platform.

All the recipes in this book, which cover a specific techniques, are available
S online as a Jupyter notebook. This interactive document lets you read,
execute, and modify the code interactively, which makes the learning
process more engaging and dynamic.

Almost all of this book's content is available online on the GitHub platform
(http://ipython-books.github.io/). Updates and corrections will
be regularly published there, so you should make sure you check out the
latest version of the book online.

Who this book is for

This book targets researchers, engineers, data scientists, teachers, students, analysts,
journalists, economists, and hobbyists interested in data analysis and numerical computing.

Readers familiar with the scientific Python ecosystem will find many resources to sharpen
their skills in high-performance interactive computing with IPython and Jupyter.

Readers who need to implement algorithms for domain-specific applications will appreciate
the introductions to a wide variety of topics in data analysis and applied mathematics.

Readers who are new to numerical computing with Python should start with the prequel of
this book, Learning IPython for Interactive Computing and Data Visualization Second Edition,
Packt Publishing published in 2015.

What this book covers

This book is split into two parts:

Part 1 (chapters 1 to 6) covers relatively advanced methods in interactive numerical
computing, high-performance computing, and data visualization.

Part 2 (chapters 7 to 15) introduces standard methods in data science and mathematical
modeling. Many of these methods are applied to real-world data.



http://ipython-books.github.io/
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Part 1 - Interactive Computing with Jupyter

Chapter 1, A Tour of Interactive Computing with Jupyter and IPython, contains a brief
introduction to data analysis and numerical computing with IPython and Jupyter. It not only
covers common packages such as Python, NumPy, pandas, and Matplotlib, but also advanced
IPython/Jupyter topics such as interactive widgets in the Notebook, custom magic commands,
configurable IPython extensions, and custom Jupyter kernels.

Chapter 2, Best Practices in Interactive Computing, details best practices to write
reproducible, high-quality code: task automation, version control with Git, workflows with
IPython and Jupyter, unit testing, continuous integration, debugging, and other related
topics. The importance of these subjects in computational research and data analysis
cannot be overstated.

Chapter 3, Mastering the Jupyter Notebook, covers topics related to the Jupyter Notebook,
notably the Notebook format, notebook conversions, and interactive widgets.

Chapter 4, Profiling and Optimization, covers methods to make your code faster and more
efficient: CPU and memory profiling in Python, advanced optimization techniques with NumPy
(including large array manipulations), and memory mapping of huge arrays. These techniques
are essential for big data analysis.

Chapter 5, High-Performance Computing, covers techniques to make your code much faster:
code acceleration with Numba and Cython, wrapping C libraries in Python with ctypes, parallel
computing with IPython and Dask, OpenMP, and General-Purpose Computing on Graphics
Processing Units (GPGPU) with CUDA. The chapter ends with an introduction to the Julia
language, a high-performance numerical computing programming language that can be

used in the Jupyter Notebook.

Chapter 6, Data Visualization, introduces several visualization or interactive visualization
libraries, such as matplotlib, seaborn, bokeh, D3, Altair, and others.

Part 2 - Standard Methods in Data Science and Applied
Mathematics

Chapter 7, Statistical Data Analysis, covers methods for getting insights into data. It
introduces classic frequentist and Bayesian methods for hypothesis testing, parametric and
nonparametric estimation, and model inference. The chapter leverages Python libraries such
as pandas, SciPy, statsmodels, and PyMC. The last recipe introduces the statistical
language R, which can be easily used in the Jupyter Notebook.

Chapter 8, Machine Learning, covers methods to learn and make predictions from data. Using
the scikit-1learn Python package, this chapter illustrates fundamental data mining and
machine learning concepts such as supervised and unsupervised learning, classification,
regression, feature selection, feature extraction, overfitting, regularization, cross-validation,
and grid search. Algorithms addressed in this chapter include logistic regression, Naive Bayes,
K-nearest neighbors, support vector machines, random forests, and others. These methods
are applied to various types of datasets: numerical data, images, and text.

[ix |-
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Chapter 9, Numerical Optimization, covers minimizing and maximizing mathematical
functions. This topic is pervasive in data science, notably in statistics, machine learning,
and signal processing. This chapter illustrates a few root-finding, minimization, and curve-
fitting routines with SciPy.

Chapter 10, Signal Processing, covers extracting relevant information from complex and
noisy data. These steps are sometimes required prior to running statistical and data mining
algorithms. This chapter introduces basic signal processing methods such as Fourier
transforms and digital filters.

Chapter 11, Image and Audio Processing, covers signal processing methods for images and
sounds. It introduces image filtering, segmentation, computer vision, and face detection with
scikit-image and OpenCV. It also presents methods for audio processing and synthesis.

Chapter 12, Deterministic Dynamical Systems, describes the dynamical processes underlying
particular types of data. It illustrates simulation techniques for discrete-time dynamical
systems, as well as for ordinary differential equations and partial differential equations.

Chapter 13, Stochastic Dynamical Systems, describes the dynamical random processes
underlying particular types of data. It illustrates simulation techniques for discrete-time
Markov chains, point processes, and stochastic differential equations.

Chapter 14, Graphs, Geometry, and Geographic Information Systems, covers analysis and
visualization methods for graphs, flight networks, road networks, maps, and geographic data.

Chapter 15, Symbolic and Numerical Mathematics, introduces SymPy, a computer algebra
system that brings symbolic computing to Python. The chapter ends with an introduction to
Sage, another Python-based system for computational mathematics.

To get the most out of this book

This book is accessible to beginners. However, it may be easier for you if you are familiar

with the contents of Learning IPython for Interactive Computing and Data Visualization,
Second Edition, Packt Publishing (also called the "IPython minibook"), the prequel of this book.
The minibook introduces Python programming, the IPython console, the Jupyter Notebook,
numerical computing with NumPy, basic data analysis with pandas, and plotting with
Matplotlib. This book tackles scientific programming topics that rely on all of

these tools.

Part 2 is a bit more theoretical. It is easier to read if you know the basics of calculus, linear
algebra, and probability theory (real-valued functions, integrals and derivatives, differential
equations, matrices, vector spaces, probabilities, random variables, and so on). These
chapters introduce different topics in data science and applied mathematics, and how

to apply them with Python: statistics, machine learning, numerical optimization, signal
processing, dynamical systems, graph theory, and others.

]
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Installing Python

This book uses the free Anaconda distribution (https://www.anaconda.com/
download/). It includes Python 3, IPython, Jupyter, and almost all of the packages that
we will be using in this book. Anaconda also includes a powerful packaging system named
Conda. The introduction of this book's first chapter gives you more details.

The code of this book has been written for Python 3 and is incompatible with older versions of
Python, Python 2 (although minimal to no changes would be required to make it compatible).

GitHub repositories

This book has a website: http://ipython-books.github.io. The text, the code, and
the data from the book are available on several GitHub repositories at https://github.
com/ipython-books/. You can also run the code interactively in your web browser without
installing anything on your computer, thanks to the Binder project.

Be sure to check out http://ipython-books.github. io and the repositories to get the
latest updates and corrections. You can also propose your own corrections and suggestions
on GitHub by opening issues or pull requests.

You can also follow the author online (http://cyrille.rossant.net)and on Twitter
(ecyrillerossant).

Download the example code files

You can download the example code files for this book from your account at http://
www . packtpub . com. If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Login orregisterat http://www.packtpub.com.

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the on-screen instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

» WInRAR / 7-Zip for Windows

» Zipeg/ iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux



https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://ipython-books.github.io
https://github.com/ipython-books/
https://github.com/ipython-books/
http://ipython-books.github.io
http://cyrille.rossant.net
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
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The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/IPython-Interactive-Computing-and-Visualization-
Cookbook-Second-Edition. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/

diagrams used in this book. You can download it here: https://

www . packtpub.com/sites/default/files/downloads/
IPythonInteractiveComputingandVisualizationCookbookSecondEdition
ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an example:
«The new np.block () function lets one define block matrices."

A block of code is set as follows:

>>> print ("Hello world!")
Hello world!

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

>>> print("Hello world!")
Hello world!

Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample
/etc/asterisk/cdr mysql.conf
Bold: Indicates a new term, an important word, or words that you see on the screen,

for example, in menus or dialog boxes, also appear in the text like this. Here is an
example: "Select System info from the Administration panel."
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Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous
section.

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

This section provides helpful links to other useful information for the recipe.
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Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book we would be grateful if you would report
this to us. Please visit, http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit http://authors.
packtpub. com.

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

—iv |
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A Tour of Interactive
Computing with
Jupyter and IPython

In this chapter, we will cover the following topics:

» Introducing IPython and the Jupyter Notebook

» Getting started with exploratory data analysis in the Jupyter Notebook

» Introducing the multidimensional array in NumPy for fast array computations
» Creating an IPython extension with custom magic commands

» Mastering IPython's configuration system

» Creating a simple kernel for Jupyter

Introduction

In this introduction, we will give a broad overview of Python, IPython, Jupyter, and the scientific
Python ecosystem.




A Tour of Interactive Computing with Jupyter and IPython

What is Python?

Python is a high-level, open-source, general-purpose programming language originally
conceived by Guido van Rossum in the late 1980s (the name was inspired by the British
comedy Monty Python's Flying Circus). This easy-to-use language is commonly used by system
administrators as a glue language, linking various system components together. It is also

a robust language for large-scale software development. In addition, Python comes with

an extremely rich standard library (the batteries included philosophy), which covers string
processing, internet protocols, operating system interfaces, and many other domains.

In the last twenty years, Python has been increasingly used for scientific computing and data
analysis as well. Other competing platforms include commercial software such as MATLAB,
Maple, Mathematica, Excel, SPSS, SAS, and others. Competing open-source platforms
include Julia, R, Octave, and Scilab. These tools are dedicated to scientific computing,
whereas Python is a general-purpose programming language that was not initially

designed for scientific computing.

However, a wide ecosystem of tools has been developed to bring Python to the level of these
other scientific computing systems. Today, the main advantage of Python, and one of the
main reasons why it is so popular, is that it brings scientific computing features to a general-
purpose language that is used in many research areas and industries. This makes the
transition from research to production much easier.

What is IPython?

IPython is a Python library that was originally meant to improve the default interactive console
provided by Python, and to make it scientist-friendly. In 2014, ten years after the first release
of IPython, the IPython Notebook was introduced. This web-based interface to IPython
combines code, text, mathematical expressions, inline plots, interactive figures, widgets,
graphical interfaces, and other rich media within a standalone sharable web document. This
platform provides an ideal gateway to interactive scientific computing and data analysis.
IPython has become essential to researchers, engineers, data scientists, and teachers and
their students.

What is Jupyter?

Within a few years, IPython gained an incredible popularity among the scientific and
engineering communities. The Notebook started to support more and more programming
languages beyond Python. In 2014, the IPython developers announced the Jupyter project,
an initiative created to improve the implementation of the Notebook and make it language-
agnostic by design. The name of the project reflects the importance of three of the main
scientific computing languages supported by the Notebook: Julia, Python, and R.

—21
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Today, Jupyter is an ecosystem by itself that comprehends several alternative Notebook
interfaces (JupyterLab, nteract, Hydrogen, and others), interactive visualization libraries, and
authoring tools compatible with notebooks. Jupyter has its own conference named JupyterCon.
The project received funding from several companies as well as the Alfred P. Sloan Foundation
and the Gordon and Betty Moore Foundation.

What is the SciPy ecosystem?

SciPy is the name of a Python package for scientific computing, but it refers also, more
generally, to the collection of all Python tools that have been developed to bring scientific
computing features to Python.

In the late 1990s, Travis Oliphant and others started to build efficient tools to deal with
numerical data in Python: Numeric, Numarray, and finally, NumPy. SciPy, which implements
many numerical computing algorithms, was also created on top of NumPy. In the early 2000s,
John Hunter created Matplotlib to bring scientific graphics to Python. At the same time,
Fernando Perez created IPython to improve interactivity and productivity in Python. In the late
2000s, Wes McKinney created pandas for the manipulation and analysis of numerical tables
and time series. Since then, hundreds of engineers and researchers collaboratively worked on
this platform to make SciPy one of the leading open source platforms for scientific computing
and data science.

. Many of the SciPy tools are supported by NumFOCUS, a nonprofit that was
created as a legal structure to promote the sustainable development of the
s ecosystem. NumFOCUS is supported by several large companies including
Microsoft, IBM, and Intel.

SciPy has its own conferences, too: SciPy (in the US) and EuroSciPy (in Europe) (see
HTTPS://CONFERENCE.SCIPY.ORG/).

What's new in the SciPy ecosystem?

What are some of the main changes in the SciPy ecosystem since the first edition of this book,
published in 2014? We give here a very brief selection.

Q Feel free to skip this section if you are new to the platform.

The last version of IPython at the time of writing is IPython 6.0, released in April 2017. It is the
first version of IPython that is no longer compatible with Python 2. This decision allowed the
developers to make the internal code simpler and to make better use of the new features of
the language.

(3 |-
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IPython now has a web-based Terminal interface that can be used along with notebooks.
Keyboard shortcuts can be edited directly from the Notebook interface. Multiple cells can be
selected and copy/pasted between notebooks. There is a new restart-and-run-all button and
a find-and-replace option in the Notebook. See http://ipython.readthedocs.io/en/
stable/whatsnew/versioné .html for more details.

NumPy, which last version 1.13 was released in June 2017, now supports the @ matrix
multiplication operator between matrices (it was previously accessible via the np . dot ()
function). Operations such as a + b + ¢ use less memory and are faster on some systems
(temporary elision). The new np.block () function lets one define block matrices. The new
np.stack () function joins a sequence of arrays along a new axis. See https://docs.
scipy.org/doc/numpy-1.13.0/release.html for more details.

SciPy 1.0 was released in October 2017. For the developers, the 1.0 version means that
the library has reached some stability and maturity after 16 years of development. See
https://docs.scipy.org/doc/scipy/reference/release.html for more details.

Matplotlib, of which version 2.1 was released in October 2017, has an improved styling and
a much better default color palette with the viridis colormap instead of jet. See https://
github.com/matplotlib/matplotlib/releases for more details.

pandas 0.21 was released in October 2017. pandas now supports categorical data. Several
deprecations were done in the past years, with the deprecation of the . ix syntax and Panels
(which may be replaced via the xarray library). See https://pandas.pydata.org/
pandas-docs/stable/release.html for more details.

How to install Python

In this book, we use the Anaconda distribution, which is available at https: //www.
anaconda .com/download/. Anaconda works on Linux, macOS, and Windows. You should
install the latest version of Anaconda (5.0.1 at the time of writing) with the latest 64-bit
version of Python (3.6 at the time of writing). Python 2.7 is an old version that will be officially
unsupported in 2020.

Anaconda comes with Python, IPython, Jupyter, NumPy, SciPy, pandas, Matplotlib, and almost
all of the other scientific packages we will be using in this book. The list of all packages is
available at https://docs.anaconda.com/anaconda/packages/pkg-docs.

Miniconda is a light version of Anaconda with only Python and a few other

essential packages. You can install only the packages you need one by one
g using the conda package manager of Anaconda.

We won't cover in this book the various other ways of installing a scientific Python distribution.

—4a1]


http://ipython.readthedocs.io/en/stable/whatsnew/version6.html
http://ipython.readthedocs.io/en/stable/whatsnew/version6.html
https://docs.scipy.org/doc/numpy-1.13.0/release.html
https://docs.scipy.org/doc/numpy-1.13.0/release.html
https://docs.scipy.org/doc/scipy/reference/release.html
https://github.com/matplotlib/matplotlib/releases
https://github.com/matplotlib/matplotlib/releases
https://pandas.pydata.org/pandas-docs/stable/release.html
https://pandas.pydata.org/pandas-docs/stable/release.html
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://docs.anaconda.com/anaconda/packages/pkg-docs

Chapter 1

The Anaconda website should give you all the instructions to install Anaconda on your system.
To install new packages, you can use the conda package manager that comes with Anaconda.
For example, to install the ipyparallel package (which is currently not installed by default
in Anaconda), type conda install ipyparallel in a system shell.

1
‘Q A short introduction to system shells is given in the Learning the basics of the

Unix shell section of Chapter 2, Best Practices in Interactive Computing.

Another way of installing packages is with conda-forge, available at https://conda-
forge.org/. This is a community-driven effort to automatically build the latest versions
of packages available on GitHub, and make them available with conda. If a package is not
available with conda install somepackage, one may use instead conda install
--channel conda-forge somepackage if the package is supported by conda-forge.

M GitHub is a commercial service that provides free and paid hosting for
Q software repositories. It is one of the most popular platforms for open source
collaborative development.

pip is the Python system manager. Contrary to conda, pip works with any Python distribution,
not just with Anaconda. Packages installable by pip are stored on the Python Package Index
(PyPlI) available at https://pypi.python.org/pypi.

Almost all Python packages available in conda are also available in pip, but the inverse is not
true. In practice, if a package is not available in conda or conda-forge, it should be available
with pip install somepackage. conda packages typically include binaries compiled for
the most common platforms, whereas that is not necessarily the case with pip packages.

pip packages may contain source code that has to be compiled locally (which requires that a
compatible compiler is installed and configured), but they may also contain compiled binaries.

References

Here are a few references:

» The Python web page at https://www.python.org

» Python on Wikipedia at https://en.wikipedia.org/wiki/
Python %28programming language%29

» Python's standard library at https://docs.python.org/3/library/

» Conversation with Guido van Rossum on the birth of Python available at http://
www.artima.com/intv/pythonP.html

» History of scientific Python available at http://fr.slideshare.net/
shoheihido/sci-pyhistory
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» History of the Jupyter Notebook at http://blog. fperez.org/2012/01/
ipython-notebook-historical.html

» JupyterCon at https://conferences.oreilly.com/jupyter/jup-ny
Here are a few resources on scientific Python:

» Introduction to Python for Computational Science and Engineering, at https://
github.com/fangohr/introduction-to-python-for-computational-
science-and-engineering

» Statistical Computing and Computation, at http://people.duke.edu/~cccl4/
sta-663-2017/

» SciPy 2017 videos at https://www.youtube.com/playlist?1ist=PLYx7XA2n
Y5GfdAFycPLBAUDOUtdQIVoME

Introducing IPython and the Jupyter

Notebook

The Jupyter Notebook is a web-based interactive environment that combines code, rich text,
images, videos, animations, mathematical equations, plots, maps, interactive figures and
widgets, and graphical user interfaces, into a single document. This tool is an ideal gateway
to high-performance numerical computing and data science in Python, R, Julia, or other
languages. In this book, we will mostly use the Python language, although there are recipes
introducing R and Julia.

In this recipe, we give an introduction to IPython and the Jupyter Notebook.

Getting ready

This chapter's introduction gives the instructions to install the Anaconda distribution,
which comes with Jupyter and almost all Python libraries we will be using in this book.

Once Anaconda is installed, download the code from the book's website and open a Terminal
in that folder. In the Terminal, type jupyter notebook. Your default web browser should
open automatically and load the address http://localhost : 8888 (a server that runs on
your computer). You're ready to get started!

How to do it...

1. Let's create a new Jupyter notebook using an IPython kernel. We type the following
command in a cell, and press Shift + Enter to evaluate it:

>>> print ("Hello world!")
Hello world!

.
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Ju pyter my_notebook (uwsaved) ﬂ Logout

Edit View nsert Cell Kemel Widgets Help Trusted Python 3 O
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In [1]: print("Hello world!")
Hello world!

A notebook contains a linear succession of cells and output areas. A cell contains
Python code, in one or multiple lines. The output of the code is shown in the
corresponding output area.

M In this book, the prompt >>> means that you need to type
Q everything that starts after it. The >>> characters themselves
should not be typed.

Now, we do a simple arithmetic operation:

>>> 2 + 2
4

The result of the operation is shown in the output area. More precisely, the output
area not only displays text that is printed by any command in the cell, but it also
displays a text representation of the last returned object. Here, the last returned
objectis the result of 2 + 2, thatis, 4.

In the next cell, we can recover the value of the last returned object with
the _ (underscore) special variable. In practice, it might be more convenient
to assign objects to named variables such as in myresult = 2 + 2.

>>> * 3

12

IPython not only accepts Python code, but also shell commands. These commands
are provided by the operating system. We first type ! in a cell before typing the
shell command. Here, assuming a Linux or macOS system, we get the list of all

the notebooks in the current directory:

>>> lls

my notebook. ipynb

On Windows, one may replace 1s by dir.
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5.

IPython comes with a library of magic commands. These commands are convenient
shortcuts to common actions. They all start with % (the percent character). We can
get the list of all magic commands with $1smagic:

>>> %lsmagic

Available line magics:

%alias %alias _magic %autocall %automagic %autosave %bookmark
$cat %cd %clear %colors %config %connect_info %cp %debug
%dhist %dirs %doctest mode %ed %edit %env %gui %hist
$history %killbgscripts %1ldir %less %1f %1k %11 %load
%load_ext %loadpy %logoff %logon %logstart %logstate
$logstop %1ls $%lsmagic %1x %macro %magic %man S$matplotlib
$mkdir S$more %mv %notebook %page %pastebin %$pdb %$pdef
$pdoc Spfile %$pinfo %pinfo2 %popd %pprint $precision
$profile S%prun %$psearch $%psource %$pushd %$pwd $%pycat %pylab
%gqtconsole %quickref %recall %rehashx %reload ext %rep
$rerun S%reset S3reset_selective 3%rm %rmdir S%run %save %sc
$set_env %store %sx %system %tb %time %timeit %unalias
%unload ext 3%who %who ls 3%whos %xdel %xmode

Available cell magics:

$%! %%HTML $%%SVG %%bash %$%capture %%debug %%file %%html
$%javascript %$%js %%latex %$%markdown $%$%perl S$%prun %%pypy
$%$python %%python2 $%python3 $%$%ruby %$%$script %%sh $%svg
oo

°°

0]
b

c
$%system %%time %%timeit S$%writefile

°

Automagic is ON, % prefix IS NOT needed for line magics.

Cell magics have a %% prefix; they target entire code cells.

For example, the $$writefile cell magic lets us create a text file. This magic
command accepts a filename as an argument. All the remaining lines in the cell
are directly written to this text file. Here, we create a test . txt file and write
Hello world! intoit:

>>> %$%writefile test.txt
Hello world!
Writing test.txt
>>> # Let's check what this file contains.
with open('test.txt', 'r') as f:
print (f.read())
Hello world!

As we can see in the output of $1smagic, there are many magic commands in
IPython. We can find more information about any command by adding ? after it.
For example, to get some help about the $run magic command, we type $run? as
shown here:

>>> %run?
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Docstring
Run the named file inside IPython as a program,
Usage: :

%run [-n -1 -e -G]
[{ -t [-NeN=] | -d [-b<N=] | -p [profile options] )]
{ -mmod | file ) [args]

Parameters after the filename are passed as command-line arguments to
the program (put in sys.argv). Then, control returns to IPython's
prompt.

This is similar to running at a system prompt " “python file args’ ",

The pager (a text area at the bottom of the screen) opens and shows the help of the
$run magic command.

8. We covered the basics of IPython and the Notebook. Let's now turn to the rich display
and interactive features of the Notebook. Until now, we have only created code cells
(containing code). Jupyter supports other types of cells. In the Notebook toolbar, there
is a drop-down menu to select the cell's type. The most common cell type after the
code cell is the Markdown cell.

Markdown cells contain rich text formatted with Markdown, a popular plain text-
formatting syntax. This format supports normal text, headers, bold, italics, hypertext
links, images, mathematical equations in LaTeX (a typesetting system adapted to
mathematics), code, HTML elements, and other features, as shown here:

### New paragraph

This is a *rich* **text** with [linksl(http://jupyter.org), equations:

ss\hat{f}(\xi) = \int_{-\infty}~{+\infty} f(x) \, \exp \left(-2i\pi x \xi \right) dx$%
code with syntax highlighting:

" python

print("hello world!")

and images:

'[This is an image] (http://jupyter.org/assets/nav_logo.svg)

New paragraph

This is a rich text with inks, equations:
. 40
f&) = / Sx) exp(—2inxé)dx
-0
code with syntax highlighting:

print{"hello world!"}

and images:

— Jupyter

Markdown cell
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9.

10.

Running a Markdown cell (by pressing Shift + Enter, for example) displays the output,
as shown in the bottom panel of the preceding screenshot.

By combining code cells and Markdown cells, we create a standalone interactive
document that combines computations (code), text, and graphics.

The Jupyter Notebook also comes with a sophisticated display system that lets us
insert rich web elements in the Notebook. Here, we show how to add HTML, Scalable
Vector Graphics (SVG), and even YouTube videos in a notebook. First, we need to
import some classes:

>>> from IPython.display import HTML, SVG, YouTubeVideo

We create an HTML table dynamically with Python, and we display it in the (HTML-
based) notebook.

>>> HTML ('''
<table style="border: 2px solid black;">
T +
"ojoin(['<tr>' 4+
"' join([£'<td>{row}, {col}</td>"
for col in range(5)]) +
'</tr>' for row in range(5)]) +
L I
</table>
lll)

00 01 02 03 04
10 11 12 13 14
20 21 22 23 24
30 3,1 32 33 34
40 41 42 43 44

11. Similarly, we create an SVG image dynamically:

>>> SVG('''<svg width="600" height="80">'"'"' +
"' Jjoin([f'''<circle
cx="{(30 + 3*i) * (10 - i)}"
cy="30"
r="{3. * float (i) }"
fill="red"

stroke-width="2"
stroke="black">
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</circle>''' for i in range(10)]) +
lll</svg>lll)

12. We display a YouTube video by giving its identifier to YoutubeVvideo:

>>> YouTubeVideo ('VQBZ2MgWBZI ")

IPython and Jupyter in Depth: High
productivity, interactive Python

Matthias Bussonnier, Mike Bright, Min Ragan-Kelley

& pythonzzs,

There's more...

Notebooks are saved as structured text files (JSON format), which makes them easily
shareable. Here are the contents of a simple notebook:

{

"cells": [

{

"cell type": "code",

"execution count": 1,
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"metadata": {},

"outputs": [
"nmame": "stdout",
"output type": "stream",
"text": [

"Hello world!\n"
1
}
1,
"source": [
"print (\"Hello world!\")"
1
}
1,
"metadata": {},
"nbformat": 4,
"nbformat minor": 2

}

Jupyter comes with a special tool, nbconvert, which converts notebooks to other formats such
as HTML and PDF (https://nbconvert.readthedocs.io/en/stable/).

Another online tool, nbviewer (http://nbviewer. jupyter.org), allows us to render a
publicly-available notebook directly in the browser.

We will cover many of these possibilities in subsequent chapters, notably in Chapter 3,
Mastering the Jupyter Notebook.

There are other implementations of Jupyter Notebook frontends that offer different ways of
interacting with the same notebook documents. JupyterLab, an IDE for interactive computing
and data science, is the future of the Jupyter Notebook. It is introduced in Chapter 3,
Mastering the Jupyter Notebook. nteract is a desktop application that lets the user open a
notebook file by double-clicking on it, without using the Terminal and using a web browser.
Hydrogen is a plugin of the Atom text editor that provides rich interactive capabilities when
opening notebook files. Juno is a Jupyter Notebook client for iPad.

Here are a few references about the Notebook:

» Installing Jupyter, available at http://jupyter.org/install.html

» Documentation of the Notebook available at http://jupyter.readthedocs.io/
en/latest/index.html

» Security in Jupyter notebooks, at https://jupyter-notebook.readthedocs.
io/en/stable/security.html#Security-in-notebook-documents
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» User-curated gallery of interesting notebooks available at https://github.com/
jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

» JupyterLab at https://github.com/jupyterlab/jupyterlab

» nteractathttps://nteract.io

» Hydrogen at https://nteract.io/atom

» Junoathttps://juno.sh/

» The Getting started with exploratory data analysis in the Jupyter Notebook recipe
» The Introducing JupyterLab recipe in Chapter 3, Mastering the Jupyter Notebook

Getting started with exploratory data

analysis in the Jupyter Notebook

In this recipe, we will give an introduction to IPython and Jupyter for data analysis. Most of
the subject has been covered in the prequel of this book, Learning IPython for Interactive
Computing and Data Visualization, Second Edition, Packt Publishing, but we will review the
basics here.

We will download and analyze a dataset about attendance on Montreal's bicycle tracks.
This example is largely inspired by a presentation from Julia Evans (available at https://
github.com/jvns/talks/blob/master/2013-04-mtlpy/pistes-cyclables.
ipynb). Specifically, we will introduce the following:

» Data manipulation with pandas

» Data visualization with Matplotlib

» Interactive widgets

How to do it...

1. The very first step is to import the scientific packages we will be using in this recipe,
namely NumPy, pandas, and Matplotlib. We also instruct Matplotlib to render the
figures as inline images in the Notebook:

>>> import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
$matplotlib inline
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We can enable high-resolution Matplotlib figures on Retina display
Q‘Q systems with the following commands:

from IPython.display import set matplotlib formats

set matplotlib formats('retina')

Now, we create a new Python variable called url that contains the address to a
Comma-separated Values (CSV) data file. This standard text-based file format is used
to store tabular data:

>>> url = ("https://raw.githubusercontent.com/"
"ipython-books/cookbook-2nd-data/"
"master/bikes.csv")

pandas defines a read_csv () function that can read any CSV file. Here, we pass
the URL to the file. pandas will automatically download the file, parse it, and return a
DataFrame object. We need to specify a few options to make sure that the dates are
parsed correctly:

>>> df = pd.read csv(url, index col='Date',
parse_dates=True, dayfirst=True)

The df variable contains a DataFrame object, a specific pandas data structure that
contains 2D tabular data. The head (n) method displays the first n rows of this table.
In the Notebook, pandas displays a DataFrame object in an HTML table, as shown in
the following screenshot:

>>> df .head(2)

Date

Unnamed: 1 Berri1 CSC Mais1 Mais2 Parc PierDup Rachell Totem_Laurier

2013-01-01 00:00 0 0 1 0 6 0 1 0
2013-01-02 00:00 69 0 13 0 18 0 2 0

Here, every row contains the number of bicycles on every track of the city, for every
day of the year.

We can get some summary statistics of the table with the describe () method:

>>> df.describe ()
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Berri1 CcsC Mais1 Mais2 Parc PierDup Rachel1l Totem_Laurier
count  261.000000 261.000000 261.000000 261.000000 261.000000 261.000000 261.000000 261.000000
mean 2743.390805 1221.858238 1757.500038 3224.130268 1669.425287 1152.885057 3084.425287 1858.793103
std 2247.957848 1070.037364 1458.793882 2589.514354 1363.738862 1208.848429 2380.255540 1434 899574
min 0.000000 0.000000 1.000000 0.000000 6.000000 0.000000 0.000000 0.000000
25%  392.000000 12.000000  238.000000 516.000000 222.000000 12.000000  451.000000 340.000000
50% 2771.000000 1184.000000 1706.000000 3178.000000 1584.000000 818.000000 3111.000000 2087.000000
75% 4767.000000 2168.000000 3158.000000 5812.000000 3068.000000 2104.000000 5338.000000 3168.000000
max 6803.000000 3330.000000 4716.000000 7684.000000 4103.000000 4841.000000 8555.000000 4293.000000
6. Let's display some figures. We will plot the daily attendance of two tracks. First, we
select the two columns, Berril and PierDup. Then, we call the plot () method:
>>> df [['Berril', 'PierDup']].plot(figsize=(10, 6),
style=['-', '--'],
1lw=2)
7000
—— Berril
-~~~ PierDup
6000
5000
4000
3000
2000 F
1000
D_ -
Jan Jul Aug Sep
2013
7. Now, we move to a slightly more advanced analysis. We will look at the attendance of

all tracks as a function of the weekday. We can get the weekday easily with pandas:
the index attribute of the DataFrame object contains the dates of all rows in the
table. This index has a few date-related attributes, including weekday name:

>>> df.index.weekday name

Index(['Tuesday',

'Saturday',

'Sunday',

'Wednesday',

'Thursday',
'Monday',

'Friday',
'Tuesday"',

]
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'Friday', 'Saturday', 'Sunday',6 'Monday',
'Tuesday', 'Wednesday'l],
dtype='object', name='Date', length=261)

8. To get the attendance as a function of the weekday, we need to group the table
elements by the weekday. The groupby () method lets us do just that. We use
weekday instead of weekday name to keep the weekday order (Monday is 0,
Tuesday is 1, and so on). Once grouped, we can sum all rows in every group:

>>> df week = df.groupby (df.index.weekday) .sum()
>>> df week

Berrit CSC  Mais1 Mais2 Parc PierDup Rachell Totem_Laurier
Date

0 106826 51646 68087 129982 69767 44500 119211 72883
1 117244 54656 76974 141217 74299 40679 123533 76559
2 120434 59604 79033 145860 80437 42564 125173 79501
3 115193 52340 76273 141424 73668 36349 120684 74540
4 105701 44252 71605 127526 64385 36850 118556 71426
5 75754 27226 45947 79743 35544 46149 97143 56438
6 74873 29181 40812 75746 37620 53812 100735 53798

9. We can now display this information in a figure. We create a Matplotlib figure, and we
use the plot () method of DataFrame to create our plot:

>>> fig, ax = plt.subplots(l, 1, figsize=(10, 8))
df week.plot(style='-o', lw=3, ax=ax)
ax.set xlabel ('Weekday')
# We replace the labels 0, 1, 2... by the weekday
# names.
ax.set xticklabels(
('Monday, Tuesday, Wednesday, Thursday, '
'Friday, Saturday, Sunday') .split (', "))
ax.set _ylim(0) # Set the bottom axis to 0.
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10. Finally, let's illustrate the interactive capabilities of the Notebook. We will plot a
smoothed version of the track attendance as a function of time (rolling mean). The
idea is to compute the mean value in the neighborhood of any day. The larger the
neighborhood, the smoother the curve. We will create an interactive slider in the
Notebook to vary this parameter in real time in the plot. All we have to do is add
the einteract decorator above our plotting function:

>>> from ipywidgets import interact

@interact
def plot(n=(1, 30)):
fig, ax = plt.subplots(l, 1, figsize=(10, 8))
df ['Berril'] .rolling (window=n) .mean () .plot (ax=ax)
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ax.set _ylim(0, 7000)
plt.show()

7000
6000
5000
4000
3000
2000

1000

?an Feb Mar Apr May Jun Jul Aug Sep
2013

To create Matplotlib figures, it is good practice to create a Figure (£ig) and one or several
Axes (subplots, ax object) objects with the plt.subplots () command. The figsize
keyword argument lets us specify the size of the figure, in inches. Then, we call plotting
methods directly on the Axes instances. Here, for example, we set the y limits of the axis with
the set_ylim() method. If there are existing plotting commands, like the plot () method
provided by pandas on DataFrame instances, we can pass the relevant Axis instance with the
ax keyword argument.

Date
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There's more...

pandas is the main data wrangling library in Python. Other tools and methods are generally
required for more advanced analyses (signal processing, statistics, and mathematical
modeling). We will cover these steps in the second part of this book, starting with Chapter 7,
Statistical Data Analysis.

Here are some more references about data manipulation with pandas:
» Learning IPython for Interactive Computing and Data Visualization, Second Edition,
Packt Publishing, the prequel of this book

» Python for Data Analysis, O'Reilly Media, by Wes McKinney, the creator of pandas, at
http://shop.oreilly.com/product/0636920023784 .do

» Python Data Science Handbook, O'Reilly Media, by Jake VanderPlas, at http://
shop.oreilly.com/product/0636920034919.do

» The documentation of pandas available at http://pandas.pydata.org/
pandas-docs/stable/

» Usage guide of Matplotlib, at https://matplotlib.org/tutorials/
introductory/usage.html

» The Introducing the multidimensional array in NumPy for fast array
computations recipe

Introducing the multidimensional array in

NumPy for fast array computations

NumPy is the main foundation of the scientific Python ecosystem. This library offers a specific
data structure for high-performance numerical computing: the multidimensional array.

The rationale behind NumPy is the following: Python being a high-level dynamic language,

it is easier to use but slower than a low-level language such as C. NumPy implements the
multidimensional array structure in C and provides a convenient Python interface, thus
bringing together high performance and ease of use. NumPy is used by many Python libraries.
For example, pandas is built on top of NumPy.

In this recipe, we will illustrate the basic concepts of the multidimensional array. A more
comprehensive coverage of the topic can be found in the book, Learning IPython for
Interactive Computing and Data Visualization, Second Edition, Packt Publishing.
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How to do it...

1.

Let's import the built-in random Python module and NumPy:

>>> import random
import numpy as np

We generate two Python lists, x and y, each one containing 1 million random
numbers between O and 1:

>>> n = 1000000

x = [random.random() for _ in range(n)]

y = [random.random() for _ in range(n)]
>>> x[:3], y[:3]
([0.926, 0.722, 0.962], [0.291, 0.339, 0.819])

Let's compute the element-wise sum of all of these numbers: the first element of x
plus the first element of y, and so on. We use a for loop in a list comprehension:

>>> z = [x[i] + y[i] for i in range(n)]
z[:3]
[1.217, 1.061, 1.781]

How long does this computation take? IPython defines a handy $timeit magic
command to quickly evaluate the time taken by a single statement:

>>> %$timeit [x[i] + y[i] for i in range(n)]
101 ms + 5.12 ms per loop (mean + std. dev. of 7 runs,
10 loops each)

Now we will perform the same operation with NumPy. NumPy works on
multidimensional arrays, so we need to convert our lists to arrays. The
np.array () function does just that:

>>> Xa = np.array (x)
ya = np.array(y)
>>> xal[:3]
array ([ 0.926, 0.722, 0.962])

The xa and ya arrays contain the exact same numbers that our original lists, x and

y, contained. Those lists were instances of the list built-in class, while our arrays are
instances of the ndarray NumPy class. These types are implemented very differently
in Python and NumPy. In this example, we will see that using arrays instead of lists
leads to drastic performance improvements.
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To compute the element-wise sum of these arrays, we don't need to do a for loop
anymore. In NumPy, adding two arrays means adding the elements of the arrays
component-by-component. This is the standard mathematical notation in linear
algebra (operations on vectors and matrices):

>>> za = xXa + ya
zal[:3]
array ([ 1.217, 1.061, 1.781])

We see that the z list and the za array contain the same elements (the sum of the
numbers in x and y).

Be careful not to use the + operator between vectors when they are
M represented as Python lists! This operator is valid between lists, so it
Q would not raise an error and it could lead to subtle and silent bugs.
Infact, 1istl + list?2 isthe concatenation of two lists, not the
element-wise addition.

Let's compare the performance of this NumPy operation with the native Python loop:
>>> %$timeit xa + ya
1.09 ms + 37.3 us per loop (mean + std. dev. of 7 runs,

1000 loops each)

With NumPy, we went from 100 ms down to 1 ms to compute one million additions!

Now we will compute something else: the sum of all elements in x or xa. Although
this is not an element-wise operation, NumPy is still highly efficient here. The pure
Python version uses the built-in sum () function on an iterable. The NumPy version
uses the np. sum () function on a NumPy array:

>>> %$timeit sum(x) # pure Python

3.94 ms + 4.44 us per loop (mean + std. dev. of 7 runs
100 loops each)

>>> %$timeit np.sum(xa) # NumPy

298 pus + 4.62 ps per loop (mean + std. dev. of 7 runs,
1000 loops each)

We also observe a significant speedup here.

s
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9. Let's perform one last operation: computing the arithmetic distance between any
pair of numbers in our two lists (we only consider the first 1000 elements to keep
computing times reasonable). First, we implement this in pure Python with two nested
for loops:
>>> d = [abs(x[i] - y[3j])
for i in range(1000)
for j in range(1000)]
>>> d[:3]
[0.635, 0.587, 0.106]

10. Now, we use a NumPy implementation, bringing out two slightly more advanced
notions. First, we consider a two-dimensional array (or matrix). This is how we
deal with the two indices, 1 and j. Second, we use broadcasting to perform an
operation between a 2D array and 1D array. We will give more details in the
How it works... section.

>>> da = np.abs(xa[:1000, np.newaxis] - yal[:1000])

>>> da

array([[ 0.635, 0.587, ..., 0.849, 0.046],
[ 0.431, 0.383, ..., 0.646, 0.158],
[ 0.024, 0.024, ..., 0.238, 0.566],

[ 0.081, 0.033, ..., 0.295, 0.509]1])
>>> %timeit [abs(x[i] - yI[j]) \
for i in range (1000) \
for j in range(1000)]
134 ms + 1.79 ms per loop (mean + std. dev. of 7 runs,
1000 loops each)
>>> %$timeit np.abs(xa[:1000, np.newaxis] - ya[:1000])
1.54 ms + 48.9 us per loop (mean + std. dev. of 7 runs
1000 loops each)

Here again, we observe a significant speedup.

A NumPy array is a homogeneous block of data organized in a multidimensional finite grid.
All elements of the array share the same data type, also called dtype (integer, floating-point
number, and so on). The shape of the array is an n-tuple that gives the size of each axis.

A 1D array is a vector; its shape is just the number of components.

A 2D array is a matrix; its shape is (number of rows, number of columns).

=
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The following diagram illustrates the structure of a 3D (3, 4, 2) array that contains
24 elements:

3@;”1/ Sz 7
axis = 1 /
[A0,0,01 A[0,3,0] Ve
i 3 L
shape = (3, 4, 2)

Al2,0,0] Al2,3,0]

A NumPy array

The slicing syntax in Python translates nicely to array indexing in NumPy. Also, we can add an
extra dimension to an existing array, using np . newaxis in the index.

Element-wise arithmetic operations can be performed on NumPy arrays that have the same
shape. However, broadcasting relaxes this condition by allowing operations on arrays with
different shapes in certain conditions. Notably, when one array has fewer dimensions than
the other, it can be virtually stretched to match the other array's dimension. This is how we
computed the pairwise distance between any pair of elements in xa and ya.

How can array operations be so much faster than Python loops? There are several reasons,
and we will review them in detail in Chapter 4, Profiling and Optimization. We can already say
here that:

» In NumPy, array operations are implemented internally with C loops rather than
Python loops. Python is typically slower than C because of its interpreted and
dynamically-typed nature.

» The data in a NumPy array is stored in a contiguous block of memory in RAM.
This property leads to more efficient use of CPU cycles and cache.

There's obviously much more to say about this subject. The prequel of this book, Learning
IPython for Interactive Computing and Data Visualization, Second Edition, Packt Publishing,
contains more details about basic array operations. We will use the array data structure
routinely throughout this book. Notably, Chapter 4, Profiling and Optimization, covers
advanced techniques of using NumPy arrays.

s
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Here are some more references:
» Introduction to the ndarray on NumPy's documentation available at http://docs.
scipy.org/doc/numpy/reference/arrays.ndarray.html

» Tutorial on the NumPy array available at https://docs.scipy.org/doc/numpy-
dev/user/quickstart.html

» The NumPy array in the SciPy lectures notes, at http://scipy-lectures.
github.io/intro/numpy/array object.html

» NumPy for MATLAB users, at https://docs.scipy.org/doc/numpy-dev/
user/numpy-for-matlab-users.html

» The Getting started with exploratory data analysis in the Jupyter Notebook recipe

» The Understanding the internals of NumPy to avoid unnecessary array copying recipe
in Chapter 4, Profiling and Optimization

Creating an IPython extension with custom

magic commands

Although IPython comes with a wide variety of magic commands, there are cases where we
need to implement custom functionality in new magic commands. In this recipe, we will show
how to create line and magic cells, and how to integrate them in an IPython extension.

How to do it...

1. Let'simport a few functions from the IPython magic system:

>>> from IPython.core.magic import (register line magic,
register_cell_magic)

2. Defining a new line magic is particularly simple. First, we create a function that
accepts the contents of the line (except the initial %-prefixed name). The name of this
function is the name of the magic. Then, we decorate this function with @register
line magic:
>>> @register line magic

def hello(line):
if line == 'french':

=
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print ("Salut tout le monde!")
else:
print ("Hello world!")
>>> %hello
Hello world!
>>> %hello French
Salut tout le monde!

Let's create a slightly more useful $%csv cell magic that parses a CSV string and
returns a pandas DataFrame object. This time, the arguments of the function are the
command's options and the contents of the cell:

>>> import pandas as pd
from io import StringIO

@register cell magic

def csv(line, cell):
# We create a string buffer containing the
# contents of the cell.
sio = StringIO(cell)
# We use Pandas' read_csv function to parse
# the CSV string.
return pd.read csv(sio)

>>> %%Csv

coll,col2,col3

0,1,2

3,4,5

7,8,9

coll col2 col3

=]
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We can access the returned object with _:

>>> df = _
df .describe ()

col1 col2 col3

count 3.000000 3.000000 3.000000
mean 3.333333 4.333333 5.333333
std 3.511885 3.511885 3.511885
min 0.000000 1.000000 2.000000
25% 1.500000 2.500000 3.500000
50% 3.000000 4.000000 5.000000
75% 5.000000 6.000000 7.000000

max 7.000000 8.000000 9.000000

4. The method we described is useful in an interactive session. If we want to use the
same magic in multiple notebooks or if we want to distribute it, then we need to
create an IPython extension that implements our custom magic command. The first
step is to create a Python script (csvmagic.py here) that implements the magic. We
also need to define a special function 1oad_ipython extension (ipython):

)

>>> $%writefile csvmagic.py
import pandas as pd
from io import StringIO

def csv(line, cell):
sio = StringIO(cell)
return pd.read csv(sio)

def load ipython extension (ipython) :

"wnThis function is called when the extension is
loaded. It accepts an IPython InteractiveShell
instance. We can register the magic with the
“register magic function® method of the shell
instance."""
ipython.register magic_ function(csv, 'cell')

Writing csvmagic.py
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5. Once the extension module is created, we need to import it into the IPython session.
We can do this with the $1oad_ext magic command. Here, loading our extension
immediately registers our $%csv magic function in the interactive shell:

>>> %load_ext csvmagic
>>> %¥%Csv
coll,col2,col3
0,1,2
3,4,5
7,8,9

coll col2 col3

An IPython extension is a Python module that implements the top-level 1oad ipython
extension (ipython) function. When the $1oad ext magic command is called, the
module is loaded and the 1oad ipython extension (ipython) function is called. This
function is passed the current InteractiveShell instance as an argument. This object
implements several methods we can use to interact with the current IPython session.

The InteractiveShell class

An interactive IPython session is represented by a (singleton) instance of the
InteractiveShell class. This object handles the history, interactive namespace,
and most features available in the session.

Within an interactive shell, we can get the current InteractiveShell instance with the
get_ipython () function.
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The list of all methods of InteractiveShell can be found in the reference API (see the
reference at the end of this recipe). The following are the most important attributes
and methods:

» user_ns: The user namespace (a dictionary).

» push (): Push (or inject) Python variables in the interactive namespace.

» ev (): Evaluate a Python expression in the user namespace.

» ex(): Execute a Python statement in the user namespace.

» run cell():Runa cell (given as a string), possibly containing IPython magic
commands.

» safe execfile (): Safely execute a Python script.

» system(): Execute a system command.

» write (): Write a string to the default output.

» write err ():Write a string to the default error output.

» register magic function (): Register a standalone function as an IPython
magic function. We used this method in this recipe.

Loading an extension
The Python extension module needs to be importable when using $1oad_ext. Here, our

module is in the current directory. In other situations, it has to be in the Python path. It can
also be stored in ~/ . ipython/extensions, which is automatically put in the Python path.

To ensure that our magic is automatically defined in our IPython profile, we can instruct
IPython to load our extension automatically when a new interactive shell is launched. To do
this, we have to open the ~/ . ipython/profile default/ipython config.py file

and put 'csvmagic' inthe ¢.InteractiveShellApp.extensions list. The csvmagic
module needs to be importable. It is common to create a Python package that implements an
IPython extension, which itself defines custom magic commands.

There's more...

Many third-party extensions and magic commands exist, for example the $%$cython magic
that allows one to write Cython code directly in a notebook.

Here are a few references:

» Documentation of IPython's extension system available at http://ipython.
readthedocs.io/en/stable/config/extensions/index.html

» Defining new magic commands explained at http://ipython.readthedocs.io/
en/stable/config/custommagics.html

=]
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» Index of IPython extensions at https://github.com/ipython/ipython/wiki/
Extensions-Index

» APl reference of InteractiveShell available at http://ipython.
readthedocs.io/en/stable/api/generated/IPython.core.
interactiveshell .html

» The Mastering IPython's configuration system recipe

Mastering IPython's configuration system

The traitlets package (https://traitlets.readthedocs.io/en/stable/),
originated from IPython, implements a powerful configuration system. This system is used
throughout the project, but it can also be used by IPython extensions. It could even be used in
entirely new applications.

In this recipe, we show how to use this system to write a configurable IPython extension.
We will create a simple magic command that displays random numbers. This magic
command comes with configurable parameters that can be set by the user in their
IPython configuration file.

How to do it...

1. We create an IPython extension in a random_magics.py file. Let's start by importing
a few objects:

°

>>> %%writefile random magics.py

from traitlets import Int, Float, Unicode, Bool
from IPython.core.magic import (Magics, magics_class,
line magic)
import numpy as np
Writing random magics.py

2. We create a RandomMagics class deriving from Magics. This class contains a few
configurable parameters:
>>> %$%writefile random magics.py -a
@magics_class
class RandomMagics (Magics) :

text = Unicode (u'{n}', config=True)
max = Int (1000, config=True)
seed = Int (0, config=True)

Appending to random magics.py
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3. We need to call the parent's constructor. Then, we initialize a random number
generator with a seed:

>>> %%writefile random magics.py -a

def  init_ (self, shell):
super (RandomMagics, self)._ init__ (shell)
self._rng = np.random.RandomState (
self.seed or None)
Appending to random magics.py

4. We create a $random line magic that displays a random number:

>>> %%writefile random magics.py -a

@line_magic
def random(self, line):
return self.text.format (
n=self. rng.randint (self.max))
Appending to random magics.py

5. Finally, we register that magic when the extension is loaded:

)

>>> %%writefile random magics.py -a

def load ipython extension (ipython) :
ipython.register magics (RandomMagics)
Appending to random magics.py

6. Let's test our extension in the Notebook:

>>> %load_ext random magics
>>> %random

'430"

>>> %random

'305"

7. Our magic command has a few configurable parameters. These variables are meant
to be configured by the user in the IPython configuration file or in the console when
starting IPython. To configure these variables in the Terminal, we can type the
following command in a system shell:

ipython --RandomMagics.text='Your number is {n}.' \
--RandomMagics.max=10 \
--RandomMagics.seed=1

In that session, $random displays a string like ' Your number is 5.°'.
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8. To configure the variables in the IPython configuration file, we open the
~/.ipython/profile default/ipython config.py file and add
the following line:

c.RandomMagics.text = 'random {n}'

After launching IPython, $random prints a string like random 652.

IPython's configuration system defines several concepts:

» An user profile is a set of parameters, logs, and command history, which are specific
to a user. A user can have different profiles when working on different projects.
An xxx profile is stored in ~/ . ipython/profile xxx, where ~ is the user's
home directory.

o On Linux, the path should be /home/yourname/ . ipython/profile xxx

o On macOS, the path should be /Users/yourname/.ipython/profile
XXX

o On Windows, the path should be C:\Users\YourName\ .ipython\
profile xxx

» A configuration object, or Config, is a special Python dictionary that contains key-
value pairs. The Config class derives from Python's dict.

» The HasTraits class is a class that can have special trait attributes. Traits are
sophisticated Python attributes that have a specific type and a default value.
Additionally, when a trait's value changes, a callback function is automatically and
transparently called. This mechanism allows a class to be notified whenever a trait
attribute is changed.

» AcConfigurable class is the base class of all classes that want to benefit from
the configuration system. A Configurable class can have configurable attributes.
These attributes have default values specified directly in the class definition. The
main feature of Configurable classes is that the default values of the traits can
be overridden by configuration files on a class-by-class basis. Then, instances of the
Configurable classes can change these values at leisure.

» A configuration file is a Python or JSON file that contains the parameters of the
Configurable classes.

The Configurable classes and configuration files support an inheritance model.
A Configurable class can derive from another Configurable class and override
its parameters. Similarly, a configuration file can be included in another file.

Es
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Configurables
Here is a simple example of a Configurable class:

from traitlets.config import Configurable
from traitlets import Float

class MyConfigurable (Configurable) :
myvariable = Float(100.0, config=True)

By default, an instance of the MyConfigurable class will have its myvariable
attribute equal to 100. 0. Now, let's assume that our IPython configuration file contains
the following lines:

c = get_config()
c.MyConfigurable.myvariable = 123.

Then, the myvariable attribute will default to 123. Instances are free to change this default
value after they are instantiated.

The get_config () function is a special function that is available in any configuration file.

Additionally, Cconfigurable parameters can be specified in the command-line interface,
as we saw in this recipe.

This configuration system is used by all IPython applications (notably console, Qt console,
and notebook). These applications have many configurable attributes. You will find the list
of these attributes in your profile's configuration files.

Magics

The Magics class derives from Configurable and can contain configurable attributes.
Moreover, magic commands can be defined by methods decorated by @1line magic or
@cell magic. The advantage of defining class magics instead of function magics (as in the

preceding recipe) is that we can keep a state between multiple magic calls (because we are
using a class instead of a function).

There's more...

Here are a few references:
» Configuring and customizing IPython, at http://ipython.readthedocs.io/en/
stable/config/

» Defining custom magics, available at http://ipython.readthedocs.io/en/
stable/config/custommagics.html

» Detailed overview of the configuration system, at https://traitlets.
readthedocs.io/en/stable/config.html
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See also

» The Creating an IPython extension with custom magic commands recipe

Creating a simple kernel for Jupyter

The architecture of Jupyter is language independent. The decoupling between the client and
kernel makes it possible to write kernels in any language. The client communicates with the
kernel via socket-based messaging protocols.

However, the messaging protocols are complex. Writing a new kernel from scratch is not
straightforward. Fortunately, Jupyter brings a lightweight interface for kernel languages that
can be wrapped in Python.

This interface can also be used to create an entirely customized experience in the Jupyter
Notebook (or another client application, such as the console). Normally, Python code has to
be written in every code cell; however, we can write a kernel for any domain-specific language.
We just have to write a Python function that accepts a code string as input (the contents

of the code cell), and sends text or rich data as output. We can also easily implement code
completion and code inspection.

We can imagine many interesting interactive applications that go far beyond the original use
cases of Jupyter. These applications might be particularly useful to nonprogrammer end users
such as high school students.

In this recipe, we will create a simple graphing calculator. The calculator is transparently
backed by NumPy and Matplotlib. We just have to write functionsasy = £ (x) inacode
cell to get a graph of these functions.

How to do it...

1. First, we create a plotkernel . py file. This file will contain the implementation of
our custom kernel. Let's import a few modules:

>>> %$%writefile plotkernel.py

from ipykernel.kernelbase import Kernel
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import urllib, base64
Writing plotkernel.py

s
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2. We write a function that returns a base64-encoded PNG representation of a
Matplotlib figure:

>>> %$%writefile plotkernel.py -a

def to png(fig):

"""Return a base64-encoded PNG from a

matplotlib figure."""

imgdata = BytesIO()

fig.savefig(imgdata, format='png')

imgdata.seek (0)

return urllib.parse.quote (

base64 .bb64encode (imgdata.getvalue()))

Appending to plotkernel.py

3. Now, we write a function that parses a code string, which has the form y=f (x), and
returns a NumPy function. Here, £ is an arbitrary Python expression that can use
NumPy functions:

°

>>> %$%writefile plotkernel.py -a

_numpy namespace = {n: getattr(np, n)
for n in dir(np)}
def parse function(code) :
""rReturn a NumPy function from a
string 'y=f(x)'."m""
return lambda x: eval (code.split('="') [1] .strip(),
_numpy_namespace, {'x': x})
Appending to plotkernel.py

4. For our new wrapper kernel, we create a class that derives from Kernel. There are a
few metadata fields we need to provide:

)

>>> %$%writefile plotkernel.py -a

class PlotKernel (Kernel) :

implementation = 'Plot'
implementation_version = '1.0'
language = 'python' # will be used for
# syntax highlighting
language version = '3.6"'
language info = {'name': 'plotter',
'mimetype': 'text/plain',
'extension': '.py'}
banner = "Simple plotting"

Appending to plotkernel.py

S E
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In this class, we implement a do_execute () method that takes code as input and
sends responses to the client:

>>> %$%writefile plotkernel.py -a

def do_execute(self, code, silent,
store_history=True,
user_ expressions=None,
allow_stdin=False) :

# We create the plot with matplotlib.
fig, ax = plt.subplots(l, 1, figsize=(6,4),
dpi=100)
X = np.linspace(-5., 5., 200)
functions = code.split('\n')
for fun in functions:
f = parse function(fun)
y = f(x)
ax.plot(x, vy)
ax.set xlim(-5, 5)

# We create a PNG out of this plot.
png = _to png(fig)

if not silent:
# We send the standard output to the
# client.
self.send response (
self.iopub socket,

'stream', {
'name': 'stdout',
'data': ('Plotting {n} '

'function(s) ') . \
format (n=len (functions)) })

# We prepare the response with our rich
# data (the plot).
content = {

'source': 'kernel',

# This dictionary may contain
# different MIME representations of
# the output.
'data': {
'image/png': png
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# We can specify the image size
# in the metadata field.
'metadata' : {
"image/png' : {
'width': 600,
'height': 400

# We send the display data message with

# the contents.

self.send response(self.iopub_ socket,
'display data', content)

# We return the exection results.
return {'status': 'ok',
'execution count':
self.execution count,
'payload': [],
'user_ expressions': {},
}

Appending to plotkernel.py

6. Finally, we add the following lines at the end of the file:

>>> %$%writefile plotkernel.py -a

if name == ' main ':
from ipykernel.kernelapp import IPKernelApp
IPKernelApp.launch instance (
kernel class=PlotKernel)
Appending to plotkernel.py

7. Our kernel is ready! The next step is to indicate to Jupyter that this new kernel
is available. To do this, we need to create a kernel spec kernel.jsonfileina
subdirectory as follows:

>>> $mkdir -p plotter/
>>> $%writefile plotter/kernel.json
{
"argv": ["python", "-m",
"plotkernel", "-£f",
"{connection file}"],

NEQ
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10.

"display name": "Plotter",
"nmame": "Plotter",
"language": "python"

}

Writing plotter/kernel.json

We install the kernel:

>>> !jupyter kernelspec install --user plotter
[InstallKernelSpec] Installed kernelspec plotter in
~/.local/share/jupyter/kernels/plotter

The plotter kernel now appears in the list of kernels:

>>> !jupyter kernelspec list
Available kernels:

bash ~/.local/share/jupyter/kernels/bash

ir ~/.local/share/jupyter/kernels/ir
plotter ~/.local/share/jupyter/kernels/plotter
sagemath ~/.local/share/jupyter/kernels/sagemath

The plotkernel .py file needs to be importable by Python. For example, we could
simply put it in the current directory.

Now, if we refresh the main Jupyter Notebook page (or after a restart of the
Jupyter Notebook server if needed), we see that our Plotter kernel appears in
the list of kernels:

Upload ' Neww &
Notebook:
4
Bash
Julia 0.6.0 jo
Plotter J0
Python 3
jo
R
SageMath 7.5.1 10
Kernel list
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11. Let's create a new notebook with the Plotter kernel. There, we can simply write

mathematical equations under the form y=£f (x) . The corresponding graph
appears in the output area. Here is an example:

In [1): y=sin(3*x)

y=sin{3*x+1

1.00 o
0.75 4
0.50
0.25 4
0.00 4
—-0.25 A
-0.501 |

-0.75 4

-1.00 A

-4 -2 0 2 4

Wrapper kernel

The kernel and client live in different processes. They communicate via messaging protocols
implemented on top of network sockets. Currently, these messages are encoded in JSON, a
structured, text-based document format.

Our kernel receives code from the client (the notebook, for example). The do_execute ()
function is called whenever the user sends a cell's code.

The kernel can send messages back to the client with the self.send response () method:

>

>

The first argument is the socket—here, the IOPub socket

The second argument is the message type—here, stream to send back standard
output or a standard error, or display data to send back rich data

The third argument is the contents of the message, represented as a
Python dictionary

NED
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The data can contain multiple MIME representations: text, HTML, SVG, images, and others.
It is up to the client to handle these data types. In particular, the Notebook client knows how
to represent all these types in the browser.

The function returns execution results in a dictionary.

In this toy example, we always return an ok status. In production code, it would be a good
idea to detect errors (syntax errors in the function definitions, for example) and return an
error status instead.

All messaging protocol details can be found in the following section.

Wrapper kernels can implement optional methods, notably for code completion and
code inspection. For example, to implement code completion, we need to write the
following method:

def do_complete(self, code, cursor pos):
return {'status': 'ok',
'cursor_start': ...,
'cursor_end': ...,
'matches': [...]}

This method is called whenever the user requests code completion when the cursor is at a
given cursor_pos location in the code cell. In the method's response, the cursor start
and cursor_end fields represent the interval that code completion should overwrite in the
output. The matches field contains the list of suggestions.

Here are a few references:

» Wrapper kernel example https://github.com/jupyter/echo kernel

» Wrapper kernels, available at http://jupyter-client.readthedocs.io/en/
latest/wrapperkernels.html

» Messaging protocol in Jupyter, at https://jupyter-client.readthedocs.io/
en/latest/messaging.html#execution-results

» Making kernels for Jupyter, at http://jupyter-client.readthedocs.io/en/
latest/kernels.html

» Using C++ in Jupyter, at https://blog. jupyter.org/interactive-
workflows-for-c-with-jupyter-£e9b54227d92
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Best Practices in
Interactive Computing

In this chapter, we will cover the following topics:

» Learning the basics of the Unix shell

» Using the latest features of Python 3

» Learning the basics of the distributed version control system Git

» Atypical workflow with Git branching

» Efficient interactive computing workflows with IPython

» Ten tips for conducting reproducible interactive computing experiments
»  Writing high-quality Python code

»  Writing unit tests with pytest

» Debugging code with IPython

Introduction

This is a special chapter about good practices in interactive computing. It describes how to
work efficiently and properly with the tools this book is about. We will introduce common tools
such as the Unix shell, the latest features of Python 3, and Git, before tackling reproducible
computing experiments (notably with the Jupyter Notebook).

We will also cover more general topics in software development, such as code quality,
debugging, and testing. Attention to these subjects can greatly improve the quality of our end
products (for example, software, research, and publications). We will only scratch the surface
here, but you will find many references to learn more about these important topics.

@l



Best Practices in Interactive Computing

Learning the basics of the Unix shell

Learning how to interact with the operating system using a command-line interface

(or Terminal) is a required skill in interactive computing and data analysis. We will use a
command-line interface in most of the recipes in this book. IPython and the Jupyter Notebook
are typically launched from a Terminal. Installing Python packages is typically done from

a Terminal.

In this recipe, we will show the very basics of the Unix shell, which is natively available in
Linux distributions (such as Debian, Ubuntu, and so on) and macOS. On Windows 10, one
can install the Windows Subsystem for Linux, a command-line interface to a Unix subsystem
integrated with the Windows operating system (see https://docs.microsoft.com/
windows/wsl/about).

Getting ready

Here are the instructions to open a Unix shell on macOS, Linux, and Windows. Bash is the
most common Unix shell and this is what we will use in this recipe.

On macO0S, bring up the Spotlight Search, type terminal, and press Enter.

On Windows, follow the instructions at https://docs.microsoft.com/en-us/windows/
wsl/install-winl0. Then, open the Windows menu, type bash, and press Enter.

On Ubuntu, open the Dash by clicking on the top-left icon on the desktop, type terminal,
and open the Terminal application.

If you want to run this notebook in Jupyter, you need to install bash kernel, available
athttps://github.com/takluyver/bash kernel. Open a Terminal and type pip
install bash _kernel && python -m bash kernel.install.

This will install a bash kernel in Jupyter, and it will allow you to run this recipe's code directly in
the Notebook.

How to do it...

The Unix shell comes with hundreds of commands. We will see the most common ones
in this recipe:

1. The Terminal lets us write text commands with the keyboard. We execute them
by pressing Enter, and the output is displayed below the command. The working
directory is the directory of our filesystem that is currently active in the Terminal.
We can get the absolute path of the working directory as follows:

$ pwd
~/git/cookbook-2nd/chapter02 best practices

=


https://docs.microsoft.com/windows/wsl/about
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We can list all files and subdirectories in the working directory as follows:

$ 1ls

00 intro.md
01 shell.md
02 py3

02 py3.md

$ 1s -1
total 100
-rw-rw-r-- 1

-rw-rw-r-- 1

-rw-rw-r-- 1
-rw-rw-r-- 1

drwxrwxr-x 2

The -1 option displays the directory contents as a detailed list, showing the

The dollar $ sign must not be typed: it is typically used by
the shell to indicate where the user can start typing. The
information written before it may show the username,
the computer name, and part of the working directory.
Here, only the three characters pwd should be typed
before pressing Enter.

03 git.md 07 high quality.md
04 git advanced.md 08 test.md

05 workflows.md 09 debugging.md

06 tips.md images

owner 769 Dec 12 10:23 00 intro.md
owner 2473 Dec 12 14:21 01 shell.md

owner 9390 Dec 12 11:46 08 test.md
owner 5032 Dec 12 10:23 09 debugging.md
owner 4096 Aug 1 16:49 images

Chapter 2

permissions and owner of the files, the file sizes, and the last modified dates. Most
shell commands come with many options that alter their behavior and that can be
arbitrarily combined.

We use the cd command to navigate between subdirectories. The current directory is

named . (single dot), and the parent directory is named . . (double dot):

$ cd images
$ pwd
~/git/cookbo
$ 1ls
folder.png

$ cd ..

$ pwd
~/git/cookbo

ok-2nd/chapter02 best practices/images

github new.png

ok-2nd/chapter02 best practices

&1
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4.

which automatically completes the first characters of a command or a file.
A

Paths can be specified as relative (depending on a reference directory, generally the
working directory) or absolute. The home directory, specified as ~, contains the user's
personal files. Configuration files are often stored in a directory such as ~/ .program _
name. For example, ~/ . ipython contains configuration files of IPython:

$ ls -la ~/.ipython

total 20

drwxr-xr-x 5 cyrille 4096 Nov 14 16:16

drwxr-xr-x 93 cyrille 4096 Dec 12 10:50

drwxr-xr-x 2 cyrille 4096 Nov 14 16:16 extensions
drwxr-xr-x 2 cyrille 4096 Nov 14 16:16 nbextensions

drwxr-xr-x 7 cyrille 4096 Dec 12 14:18 profile default

In most terminals, we can use the arrow keys on the keyboard to navigate
in the history of past commands. Also, the Tab key enables tab completion,

For example, typing 1s -1la ~/.ipy and pressing Tab would automatically
completeto 1s -la ~/.ipython, orit would present the list of possible
options if there are several files or directories that begin with ~/ . ipy.

We can create, move, rename, copy, and delete files and directories from the Terminal:
$ # We create an empty directory:
$ mkdir md files
$ # We copy all Markdown files into the new directory:
$ cp *.md md files
$ # We rename the directory:
$ mv md files markdown files
$ 1ls markdown files
00_intro.md 05_workflows.md
01l shell.md 06_tips.md
02 py3.md 07 _high quality.md
03_git.md 08_test.md
04 git advanced.md 09 debugging.md
$ rmdir markdown files
rmdir: failed to remove 'markdown files':
Directory not empty
$ rm markdown files/*

$ rmdir markdown files

=
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The rm command lets us delete files and directories. The rm -rf path

command deletes the given path recursively, even if subdirectories are not
empty. It is an extremely dangerous command as it cannot be undone: the
files are immediately and permanently deleted, they do not go into a trash
directory first. See https://github.com/sindresorhus/guides/
blob/master/how-not-to-rm-yourself .md for more details.

6. There are several useful commands to deal with text files:
$ # Show the first three lines of a text file:
$ head -n 3 01_shell.md
# Learning the basics of the Unix shell
Learning how to interact with the operating system (...)
$ # Show the last line of a text file:
$ tail -n 1 00 intro.md
We will also cover more general topics (...)
$ # We display some text:
$ echo "Hello world!"
Hello world!
$ # We redirect the output of a command to
$ # a text file with '>':
$ echo "Hello world!" > myfile.txt
$ # We display the entire contents of the file:
$ cat myfile.txt
Hello world!

Several command-line text editors are available, such as pico, nano, or vi. Learning
these text editors requires time and effort, especially vi.

7. The grep command lets us search substrings in text. In the following example,
we find all instances of Unix followed by a word (using regular expressions):

$ grep -Eo "Unix \w+" 01 shell.md
Unix shell

Unix shell

Unix subsystem

Unix shell

(...)

Unix shell

Unix shell
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8. A major strength of the Unix shell is that commands can be combined with pipes: the
output of one command can be directly transferred to the input of another command:
$ echo "This is a Unix shell" | grep -Eo "Unix \w+"

Unix shell

There's more...

We only scratched the surface of the Unix shell in this recipe. There are many other
commands that can be combined in an infinite number of ways. Many repetitive tasks that
would take hours of manual work can be done in a few minutes by writing the appropriate
commands. Mastering the Unix shell may take a lot of effort, but it leads to dramatic time
gains in the long term.

Here are a few references:

» Linux Tutorial at https://ryanstutorials.net/linuxtutorial/

» Bash commands at https://ss64.com/bash/

» Learn Bash inY minutes, at https://learnxinyminutes.com/docs/bash/
» Learn the shell interactively, at http://www.learnshell.org/

» Thefish shell, at https://fishshell.com/

» xonsh, a Python-powered shell, at http://xon.sh/

» Windows Subsystem for Linux, at https://docs.microsoft.com/windows/
wsl/about

» The Ten tips for conducting reproducible interactive computing experiments recipe

Using the latest features of Python 3

The latest version of the Python 2.x branch, Python 2.7, was released in 2010. It will reach its
end of life in 2020. On the other hand, the first version of the Python 3.x branch, Python 3.0,
was released in 2008. The decade-long transition period between Python 2 and Python 3,
which are slightly incompatible, has been somewhat chaotic.
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Choosing between Python 2 (also known as Legacy Python) and Python 3 used to be tricky
since many Python users had not transitioned to Python 3 yet, and many libraries were only
compatible with Python 2. Those times are gone and it is now safe to stick with Python 3

in virtually all cases. The only exceptions are when you have to support old unmaintained
libraries, or when your users cannot transition to Python 3 for whatever reason.

In addition to fixing the bugs and annoyances of Python 2 (for example, related to Unicode
support), Python 3 brings many interesting features in terms of syntax, capabilities of the
language, and new built-in libraries.

1
‘\Q We use the latest stable version of Python in this

recipe, which is Python 3.6.

How to do it...

1.

In Python 3, print () is a function, whereas it was a statement in Python 2 (it was
a historical oddity). This function may accept multiple arguments as well as a few
options. Let's create a list:

>>> my list = list (range(10))

We can print the my 1ist object:

>>> print (my list)
o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

But we can also print the ten numbers in the list:

>>> print (*my list)
01234567829

Finally we can customize the separator and the end of the string to print:

>>> print (*my list, sep=" + ", end=" = %d" % sum(my list))
0O0+1+2+3 +4+5+ 6+ 7+ 8+ 9 =45

Python 3 supports more advanced variable unpacking features:

>>> first, second, *rest, last = my list
>>> print (first, second, last)

0109

>>> rest

[2, 3, 4, 5, 6, 7, 8]
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3. In Python 3, variable names can contain Unicode characters. This technique may be
useful when writing mathematical code. To type mathematical symbols in the Jupyter
Notebook, write LaTeX code and press Tab. For example, to create a variable T, type
\pi and then Tab:

>>> from math import pi, cos

o = 2

o = pi

cos (o * 1)
1.000

4. Python 3.6 brings new string literals called f-strings. They offer a convenient syntax to
define strings depending on existing variables:

>>> a, b =1, 2
f"The sum of {a} and {b} is {a + b}"
'The sum of 1 and 2 is 3!

5.  We can add custom annotations to function arguments and output. These
function annotations convey no semantics, but they can be used in the code
as we like. Here is an example coming from https://stackoverflow.
com/a/7811344/1595060:

>>> def kinetic_ energy(mass: 'kg',
velocity: 'm/s') -> 'J':
"""The annotations serve here as documentation."""
return .5 * mass * velocity ** 2

These annotations are stored in the __annotations _ attribute of the function,
and they can be used as follows:

>>> annotations = kinetic_energy. annotations_
print (* (£"{key} is in {value}"
for key, value in annotations.items()),
sep:", n)
mass is in kg, velocity is in m/s, return is in J

The typing module, which has been included in Python 3.5 on a provisional
basis, implements several annotations that can be used to specify typing
information in functions.

6. Python 3.5 brings a new operator @ for matrix multiplication. It is supported by
NumPy 1.10 and later:
>>> import numpy as np
M = np.array([[0, 1], [1, 011])



https://stackoverflow.com/a/7811344/1595060
https://stackoverflow.com/a/7811344/1595060

Chapter 2

The * operator is the element-wise multiplication:

>>> M * M
array ([[0, 17,
[1, 011)

Previously, matrix multiplication could be performed with np.dot (). The new syntax
is clearer:

>>> M @ M
array([[1, 0],
(o, 111)

Python 3.3 brings the new yield from syntax that allows you, among other things,
to compose multiple generators. For example, the two following functions are
equivalent:

>>> def genl():
for i in range(5):
for j in range (i) :
yield j
>>> def gen2():
for i in range(5):
yield from range (i)
>>> list (genl())
(o, o, 1, o, 1, 2, 0, 1, 2, 3]
>>> list (gen2())
(o, o, 1, o, 1, 2, 0, 1, 2, 3]

The functools library provides a @L.ru_cache decorator to implement a simple
in-memory caching system for Python functions:

>>> import time

def £1(x):
time.sleep (1)
return x
>>> %$timeit -nl -rl £1(0)
1 s + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)
>>> %$timeit -nl -rl £1(0)
1 s + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)

Here, the two successive identical calls to £1 (0) take one second. Now, let's define a
cached version of this function:

>>> from functools import lru cache

@]
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@lru_ cache (maxsize=32) # keep the latest 32 calls
def f2(x):
time.sleep(1)
return x
>>> $timeit -nl -rl £2(0)
1 s + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)
>>> %$timeit -nl -rl £2(0)
6.14 ps + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)

The first call takes one second, whereas the next one returns immediately. In the
second case, the function is not called but the output corresponding to the argument
of 0 was cached and returned.

The new pathlib module offers filesystem facilities that are more convenient to use
than the Python 2 os . path methods. The main class is Path:

>>> from pathlib import Path

We instantiate a Path object representing the current directory:
>>> p = Path('.")

Let's list all Markdown files in the directory:

>>> sorted(p.glob('*.md'))
[PosixPath('00_intro.md'),
PosixPath('01l py3.md'),
PosixPath('02 workflows.md'),
PosixPath('03 git.md'),
PosixPath('04 git advanced.md'),
PosixPath('05 tips.md'),
PosixPath('06_high quality.md'),
PosixPath('07 test.md'),
PosixPath('08_ debugging.md')]

We can easily get the contents of a text file:

>>> [0] .read text()
'# Introduction\n\n...\n'

Let's obtain the list of subdirectories:

>>> [d for d in p.iterdir() if d.is dir()]
[PosixPath('images'),

PosixPath('.ipynb checkpoints'),
PosixPath(' pycache '),
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Finally, we list all files in the images subfolder (note the slash / operator on Path
instances):

>>> list((p / 'images') .iterdir())
[PosixPath('images/github new.png'),
PosixPath('images/folder.png')]

10. Python 3.4 provides a new statistics module which implements basic statistical
routines. This module may be useful when depending on NumPy or SciPy is not
desirable. Let's import the module:

>>> import random as r
import statistics as st
We create a list of normally-distributed random variables:
>>> my list = [r.normalvariate (0, 1)
for _ in range(100000)]
We compute the mean, median, and standard deviation:

>>> print (st.mean(my list),
st.median (my list),
st.stdev(my_ list),
)

0.00073 -0.00052 1.00050

Other interesting features of Python 3 include coroutines with the asyncio module and
asynchronous operations with the new await and async keywords.

Here are a few references:
» What's New In Python 3.6? at https://docs.python.org/3/
whatsnew/3.6.html

» f-strings, at https://docs.python.org/3/reference/lexical analysis.
html#f-strings

» Theyield fromsyntax, at https://docs.python.org/3/
whatsnew/3.3.html#pep-380

» functools, at https://docs.python.org/3/library/functools.html
» pathlib, at https://docs.python.org/3/library/pathlib.html
» statistics, at https://docs.python.org/3/library/statistics.html

» 10 awesome features of Python that you can't use because you refuse to upgrade to
Python 3, at http://www.asmeurer.com/python3-presentation/slides.
html

i
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» Python 3 for Scientists, at http://python-3-for-scientists.readthedocs.
io/en/latest/

» Cool New Features in Python 3.6, at https://www.youtube.com/
watch?v=k1lKdMxjDaa0

» Python Cookbook, 3rd Edition, Brian Jones and David Beazley, O'Reilly Media,
athttp://shop.oreilly.com/product/0636920027072.do

» Find the best Python books, at http://pythonbooks.org/

» Buggy Python Code: The 10 Most Common Mistakes That Python Developers Make,
athttps://www.toptal.com/python/top-10-mistakes-that-python-
programmers-make

» Python 3 statement, to promote the deprecation of Python 2 support by 2020,
athttp://www.python3statement.org

Learning the basics of the distributed

version control system Git

Using a version control system is an absolute requirement in programming and research.
This is the tool that makes it just about impossible to lose one's work. In this recipe, we will
cover the basics of Git.

Getting ready

Notable distributed version control systems include Git, Mercurial, and Bazaar, among
others. In this chapter, we will use the popular Git system. You can download the Git program
and Git GUI clients from http://git-scm.com.

Distributed systems tend to be more popular than centralized systems such
as SVN or CVS. Distributed systems allow local (offline) changes and offer
’ more flexible collaboration systems.

An online provider allows you to host your code in the cloud. You can use it as a backup

of your work and as a platform to share your code with your colleagues. These services
include GitHub (https://github.com), GitLab (https://gitlab.com), and Bitbucket
(https://bitbucket.org). All of these websites offer free and paid plans with unlimited
public and/or private repositories.

GitHub offers desktop applications for Windows and macOS at https://desktop.github.
com/.

This book's code is stored on GitHub. Most Python libraries are also developed on GitHub.
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How to do it...

1.

The very first thing to do when starting a new project or computing experiment is
create a new folder locally:

$ mkdir myproject
$ cd myproject

We initialize a Git repository:
$ git init
Initialized empty Git repository in
~/git/cookbook-2nd/chapter02/myproject/.git/
$ pwd
~/git/cookbook-2nd/chapter02/myproject
$ 1ls -a
.git
Git created a . git subdirectory that contains all the parameters and history of
the repository.
Let's set our name and email address globally:
$ git config --global user.name "My Name"

$ git config --global user.email "me@home.com"

We create a new file, and we tell Git to track it:
$ echo "Hello world" > file.txt
$ git add file.txt

Let's create our first commit:

$ git commit -m "Initial commit"

[master (root-commit) 02971c0] Initial commit
1 file changed, 1 insertion(+)

create mode 100644 file.txt

We can check the list of commits:

$ git log

commit 02971c0O0ell76cd26ec33900e359b192a27d£2821
Author: My Name <me@home.com>

Date: Tue Dec 12 10:50:37 2017 +0100

Initial commit

-
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7. Next, we edit the file by appending an exclamation mark:
$ echo "Hello world!" > file.txt
$ cat file.txt

Hello world!

8. We can see the differences between the current state of our repository, and the state
in the last commit:

$ git diff

diff --git a/file.txt b/file.txt
index 802992c..cd08755 100644
--- a/file.txt

+++ b/file.txt

ee -1 +1 ee@

-Hello world

+Hello world!

The output of git diff shows that the contents of £ile. txt were changed from
Hello worldtoHello world!. Git compares the states of all tracked files and
computes the differences between the files.

9. We can also get a summary of the changes as follows:
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will

be committed)

modified: file.txt

no changes added to commit (use "git add")
$ git diff --stat
file.txt | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

=
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10.

The git status command gives a summary of all changes since the last commit.
Thegit diff --stat command shows, for each modified text file, the number of
changed lines.

Finally, we commit our change with a shortcut that automatically adds all changes in
the tracked files (-a option):
$ git commit -am "Add exclamation mark to file.txt"
[master 045df6a]l Add exclamation mark to file.txt
1 file changed, 1 insertion(+), 1 deletion(-)
$ git log
commit 045df6a6f8a62b19£f45025d15168d6d7382a8429
Author: My Name <me@home.com>

Date: Tue Dec 12 10:59:39 2017 +0100

Add exclamation mark to file.txt
commit 02971c0ell76cd26ec33900e359b192a27d£2821
Author: My Name <me@home.com>

Date: Tue Dec 12 10:50:37 2017 +0100

Initial commit

a1

When you start a new project or a new computing experiment, create a new folder on your
computer. You will eventually add code, text files, datasets, and other resources in this folder.
The distributed version control system keeps track of the changes you make to your files as
your project evolves. It is more than a simple backup, as every change you make on any file
can be saved along with the corresponding timestamp. You can even revert to a previous state
at any time; never be afraid of breaking your code anymore!

Git works best with text files. It can handle binary files but with limitations. It

Q is better to use a separate system such as Git Large File Storage, or Git LFS

(see https://git-1fs.github.com/).

s
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Specifically, you can take a snapshot of your project at any time by doing a commit. The
snapshot includes all staged (or tracked) files. You are in total control of which files and
changes will be tracked. With Git, you specify a file as staged for your next commit with git
add, before committing your changes with git commit.The git commit -a command
allows you to commit all changes in the files that are already being tracked.

When committing, you should provide a clear and short message describing the changes you
made. This makes the repository's history considerably more informative than just writing
work in progress. If the commit message is long, write a short title (less than 50 characters),
insert two line breaks, and write a longer description.

How often should you commit?

\\l The answer is very often. Git only takes responsibility for your work when you
commit changes. What happens between two commits may be lost, so it's
Q better to commit very regularly. Besides, commits are quick and cheap as
they are local; that is, they do not involve any remote communication with an
external server.

Git is a distributed version control system; your local repository does not need to synchronize
with an external server. However, you should synchronize if you need to work on several
computers, or if you prefer to have a remote backup. Synchronization with a remote repository
can be done with git push (send your local commits on the remote server), git fetch
(download remote branches and objects), and git pull (synchronize the remote changes
on your local repository), after you've set up remotes.

There's more...

We can also create a new repository on an online Git provider such as GitHub:

5]
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Pull requests Issues Marketplace Gist

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
B8 ipython-books v/  myproject =
Great repository names are short and memorable. Need inspiration? How about psychic-dollop.

Description (optional)

e . | Public
#— Anyone can see this repository, You choose who can commil
Private
You choose who can see and commit to this reposilory

Initialize this repository with a README

y 1o your computer. Skip this step if you're importing an existing repository

This will let you immediat tor

Add .gitignore: None Add a license: None > | (@)

Create repository

New project on GitHub

On the main web page of the newly created project, click on the Clone or download button to
get the repository URL and type in a Terminal:

$ git clone https://github.com/mylogin/myproject.git

If the local repository already exists, do not tick the Initialize this repository with a README
box on the GitHub page, and add the remote with git remote add origin https://
github.com/yourlogin/myproject.git.See https://help.github.com/
articles/adding-a-remote/ for more details.

7}
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The simplistic workflow shown in this recipe is linear. In practice, though, workflows with Git
are typically nonlinear; this is the concept of branching. We will describe this idea in the next
recipe, A typical workflow with Git branching.

Here are some references on Git:

» Hands-on tutorial, available at https://try.github.io

» Git, a simple guide by Roger Dudler, available at http://rogerdudler.github.
io/git-guide/

» Git Immersion, a guided tour, at http://gitimmersion.com

» Atlassian Git tutorial, available at http://www.atlassian.com/git

» Online Git course, available at http://www.codeschool.com/courses/try-
git

» Git tutorial by Lars Vogel, available at http://www.vogella.com/tutorials/
Git/article.html

» GitHub and Git tutorial, available at http://git-lectures.github.io

» Intro to Git for scientists, available at http://karthik.github.io/git_intro/

» GitHub help, available at https://help.github.com

» The A typical workflow with Git branching recipe

A typical workflow with Git branching

A distributed version control system such as Git is designed for the complex and nonlinear
workflows that are typical in interactive computing and exploratory research. A central concept
is branching, which we will discuss in this recipe.

Getting ready

You need to work in a local Git repository for this recipe (see the previous recipe, Learning the
basics of the distributed version control system Git).

How to do it...

1. We go to the myproject repository and we create a new branch named newidea:
$ pwd
/home/cyrille/git/cookbook-2nd/chapter02
$ cd myproject
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$ git branch newidea
$ git branch
* master

newidea

As indicated by the star *, we are still on the master branch.
We switch to the newly-created newidea branch:
$ git checkout newidea
Switched to branch 'newidea'
$ git branch
Master

* newidea

We make changes to the code, for instance, by creating a new file:
$ echo "print('new')" > newfile.py
$ cat newfile.py

print ('new')

We add this file to the staging area and we commit our changes:
$ git add newfile.py
$ git commit -m "Testing new idea"
[newidea 8ebee32] Testing new idea
1 file changed, 1 insertion(+)
create mode 100644 newfile.py
$ 1s
file.txt newfile.py

If we are happy with the changes, we merge the branch to the master branch
(the default):

$ git checkout master

Switched to branch 'master'

On the master branch, our new file is not there:
$ 1s
file.txt

If we merge the new branch into the master branch, the file appears:
$ git merge newidea
Updating 045df6a..8ebee32

Fast-forward

s
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newfile.py | 1 +

1 file changed, 1 insertion(+)
create mode 100644 newfile.py
$ 1s

file.txt newfile.py

If we are not happy with the changes, we can just delete the branch, and the new
file will be deleted. Here, since we have just merged the branch, we need to undo the
last commit:

$ git reset --hard HEAD-~1
HEAD is now at 045df6 Add exclamation mark to file.txt

We are still on the master branch, but before we merged the newidea branch:
$ git branch
* master

newidea

We can delete the branch as follows:
$ git branch -D newidea

Deleted branch newidea (was 8ebee32).

The Python file is gone:
$ 1s
file.txt

It may happen that while we are halfway through some work, we need to make some
other change in another commit or another branch. We could commit our half-done
work, but this is not ideal. A better idea is to stash our working copy in a secure
location so that we can recover all of our uncommitted changes later. We save our
uncommitted changes with the following command:

$ echo "nmew line" >> file.txt

$ cat file.txt

Hello world!

new line

$ git stash

Saved working directory and index state WIP on master:
045df6a Add exclamation mark to file.txt

HEAD is now at 045df6 Add exclamation mark to file.txt
$ cat file.txt

Hello world!
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We can do anything we want with the repository: checkout a branch, commit changes,
pull or push from a remote repository, and so on. When we want to recover our
uncommitted changes, we type the following command:

$ git stash pop
On branch master

Changes not staged for commit:
modified: file.txt

no changes added to commit
(use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (c9071a)
$ cat file.txt
Hello world!

new line

We can have several stashed states in the repository. More information about
stashing can be found with git stash --help.

Let's imagine that in order to test a new idea, you need to make non-trivial changes to your
code in multiple files. You create a new branch, test your idea, and end up with a modified
version of your code. If this idea was a dead end, you switch back to the original branch of
your code. However, if you are happy with the changes, you merge it into the main branch.

The strength of this workflow is that the main branch can evolve independently from the
branch with the new idea. This is particularly useful when multiple collaborators are
working on the same repository. However, it is also a good habit to have, even when
there is a single contributor.

Merging is not always a trivial operation, as it can involve two divergent branches
with potential conflicts. Git tries to resolve conflicts automatically, but it is not always
successful. In this case, you need to resolve the conflicts manually.

An alternative to merging is rebasing, which is useful when the main branch has changed
while you were working on your branch. Rebasing your branch on the main branch allows
you to move your branching point to a more recent point. This process may require you to
resolve conflicts.

[ei-
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Git branches are lightweight objects. Creating and manipulating them is cheap. They are
meant to be used frequently. It is important to perfectly grasp all related notions and

Git commands (notably checkout, merge, and rebase). The previous recipe contains
many references.

There's more...

Many people have thought about effective workflows. For example, a common but complex
workflow, called git-flow, is described at http://nvie.com/posts/a-successful-git-
branching-model/. However, it may be preferable to use a simpler workflow in small and
mid-size projects, such as the one described at http://scottchacon.com/2011/08/31/
github-flow.html. The latter workflow elaborates on the simplistic example shown in

this recipe.

A related notion to branching is forking. There can be multiple copies of the same repository
on different servers. Imagine that you want to contribute to IPython's code stored on GitHub.
You probably don't have the permission to modify their repository, but you can make a copy
into your personal account—this is called forking. In this copy, you can create a branch and
propose a new feature or a bug fix. Then, you can propose the IPython developers to merge
your branch into their master branch with a pull request. They can review your changes,
propose suggestions, and eventually merge your work (or not). GitHub is built around this
idea and thereby offers a clean way to collaborate on open source projects.

Performing code reviews before merging pull requests leads to higher code quality in a
collaborative project. When at least two people review any piece of code, the probability of
merging bad or wrong code is reduced.

There is, of course, much more to say about Git. Version control systems are complex
and quite powerful in general, and Git is no exception. Mastering Git requires time and
experimentation. The previous recipe contains many excellent references.

Here are a few further references about branches and workflows:

» Git workflows, available at http://www.atlassian.com/git/workflows
» Learn Git Branching, at http://pcottle.github.io/learnGitBranching/

» The Git workflow recommended on the NumPy project (and others), described
athttp://docs.scipy.org/doc/numpy/dev/gitwash/development
workflow.html

» A post on the IPython mailing list about an efficient Git workflow, by Fernando Perez,
available at http://mail.scipy.org/pipermail/ipython-dev/2010-
October/006746 .html
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» The Learning the basics of the distributed version control system Git recipe

Efficient interactive computing workflows

with IPython

There are multiple ways of using IPython for interactive computing. Some of them are better in
terms of flexibility, modularity, reusability, and reproducibility. We will review and discuss them
in this recipe.

Any interactive computing workflow is based on the following cycle:

1. Write some code

2. Executeit

3. Interpret the results
4. Repeat

This fundamental loop (also known as Read-Eval-Print Loop (REPL)) is particularly useful
when doing exploratory research on data or model simulations, or when building a complex
algorithm step by step. A more classical workflow (the edit-compile-run-debug loop) would
consist of writing a full-blown program, and then performing a complete analysis. This is
generally more tedious. It is more common to build an algorithmic solution iteratively, by doing
small-scale experiments and tweaking the parameters, and this is precisely what interactive
computing is about.

Integrated Development Environments (IDEs), providing comprehensive facilities for
software development (such as a source code editor, compiler, and debugger), are widely
used for classical workflows. However, when it comes to interactive computing, alternatives to
IDEs exist. We will review them here.

How to do it...

Here are a few possible workflows for interactive computing, by increasing order of complexity.
Of course, IPython is at the core of all of these methods.




Best Practices in Interactive Computing

The IPython terminal

IPython is the de facto standard for interactive computing in Python. The IPython Terminal
(the ipython command) offers a command-line interface specifically designed for REPLs. It
is a much more powerful tool than the native Python interpreter (the python command). The
IPython Terminal is a convenient tool for quick experiments, simple shell interactions, and to
find help. Forgot the input arguments of NumPy's savetxt function? Just type in numpy .
savetxt? in IPython (you will first need to use import numpy, of course). Some people
even use the IPython Terminal as a (sophisticated) calculator!

However, the Terminal quickly becomes limited when it is used alone. The main issue is that
the Terminal is not a code editor, and thus entering more than a few lines of code can be
inconvenient. Fortunately, there are various ways of solving this problem, as detailed in the
following sections.

IPython and text editor

The simplest solution to the not-a-text-editor problem is to use IPython along with a text editor.
The $run magic command then becomes the central tool in this workflow:

1. Write some code in your favorite text editor and save it in a myscript . py Python
script file.

2. InIPython, assuming you are in the right directory, type in $run myscript.py.

The script is executed. The standard output is displayed in real time in the IPython
Terminal along with possible errors. Top-level variables defined in the script are
accessible in the IPython Terminal at the end of the script's execution.

4. If code changes are required in the script, repeat the process.

With a good text editor, this workflow can be quite efficient. As the script is reloaded when
you execute $run, your changes will be taken into account automatically. Things become
more complicated when your script imports other Python modules that you modify, as these
won't be reloaded with $run. To overcome this problem, you can use the autoreload IPython
extension as described at http://ipython.readthedocs.io/en/stable/config/
extensions/autoreload.html.

The Jupyter Notebook

The Jupyter Notebook plays a central role in efficient interactive workflows. It is a well-
designed mix between a code editor and a Terminal, bringing the best of both worlds within a
unified environment.

You can start writing all your code in your notebook's cells. You write, execute, and test your
code in the same place, thereby improving your productivity. You can put long comments in
Markdown cells and structure your notebook with Markdown headers.
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Once portions of your code become mature enough and do not require further changes,

you refactor them into reusable Python components (functions, classes, and modules). In
practice, you copy and paste the code into Python scripts (files with the . py extension).
Jupyter notebooks are currently not easily reusable by third-party code. They are designed for
preliminary analyses and exploratory research, not for production-ready code.

A major advantage of notebooks is that they give you documents retracing everything you
did with your code, which is particularly useful for reproducible research. Since notebooks
are saved in human-readable JSON documents, they don't work that well with version control
systems such as Git.

The ipymd module, available at https://github.com/rossant/ipymd/, and the more
recent podoc module, available at https://github.com/podoc/podoc, allow you to use
Markdown instead of JSON for notebooks. In podoc, images are saved in external files instead
of being embedded in the JSON notebook, which is more convenient when working with a
version control system.

JupyterLab, the next generation of the Jupyter Notebook, bridges the gap between the Jupyter
Notebook and IDEs. It is covered in the Introducing JupyterLab recipe of Chapter 3, Mastering
the Jupyter Notebook.

Integrated Development Environments

IDEs are particularly well-adapted for classic software development, but they can also be used
for interactive computing. A good Python IDE combines a powerful text editor (for example,
one that includes features such as syntax highlighting and tab completion), an IPython
terminal, and a debugger within a unified environment.

There are multiple open-source and commercial IDEs. Rodeo is an IDE for data analysis made
by yhat. Spyder is another open source IDE with good integration of IPython and Matplotlib.
Eclipse/PyDev is a popular (although slightly heavy) open source cross-platform environment.

PyCharm is one of many commercial environments that support IPython.

Microsoft's IDE for Windows, Visual Studio, has an open source plugin named Python Tools
for Visual Studio (PTVS). This tool brings Python support to Visual Studio. PTVS natively
supports IPython. You don't necessarily need a paid version of Visual Studio; you can
download a free package bundling PTVS with Visual Studio.

There's more...

Here are a few links to various IDEs for Python:

» Rodeo, athttps://www.yhat.com/products/rodeo
» Spyder, at https://github.com/spyder-ide/spyder
» PyDev, athttp://pydev.org
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» PyCharm, athttp://www.jetbrains.com/pycharm/
» PyTools for Microsoft Visual Studio, at https://microsoft.github.io/PTVS/

» The Learning the basics of the distributed version control system Git recipe
» The Debugging code with IPython recipe

Ten tips for conducting reproducible

interactive computing experiments

In this recipe, we present ten tips that can help you conduct efficient and reproducible
interactive computing experiments. These are more guidelines than absolute rules.

First, we will show how you can improve your productivity by minimizing the time spent doing
repetitive tasks and maximizing the time spent thinking about your core work.

Second, we will demonstrate how you can achieve more reproducibility in your computing
work. Notably, academic research requires experiments to be reproducible so that any
result or conclusion can be verified independently by other researchers. It is not uncommon
for errors or manipulations in methods to result in erroneous conclusions that can have
damaging consequences. For example, in the 2010 research paper in economics Growth in
a Time of Debt, by Carmen Reinhart and Kenneth Rogoff, computational errors were partly
responsible for a flawed study with global ramifications for policy makers (see https://
en.wikipedia.org/wiki/Growth in a Time of Debt).

How to do it...

1. Organize your directory structure carefully and coherently. The specific structure does
not matter. What matters is to be consistent throughout your projects regarding file-
naming conventions, folders, subfolders, and so on. Here is a simple example:
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'h..‘ my_project
™ | code
common.py
ideal.ipynb
idea2.ipynb

'l data
bd figures
'h_‘ notes

README.md

File structure

Write notes in text files using a lightweight markup language such as Markdown
(http://daringfireball .net/projects/markdown/), CommonMark
(http://commonmark.org/), or reStructuredText (reST). All meta-information
related to your project, files, datasets, code, figures, lab notebooks, and so on,
should be written down in text files.

Relatedly, document everything non-trivial in your code with comments, docstrings,
and so on. You can use a documentation tool such as Sphinx (http://sphinx-
doc.org). However, do not spend too much time documenting unstable and
bleeding-edge code while you are working on it; it might change frequently and

your documentation may soon be out of date. Write your code in such a way that

it's easily understandable without comments (name your variables and functions
well, use Pythonic patterns, and so on). See also the next recipe, Writing high-quality
Python code.

Use a version control system such as Git for all text-based files, but not binary files
(except maybe for very small ones when you really need to). You should use one
repository per project. Synchronize the repositories on a remote server, using a free
or paid hosting provider (such as GitHub, GitLab, or Bitbucket), or your own server
(your host institution might be able to set up one for you). Use a specific system to
store and share binary data files, such as http://figshare.comor http://
datadryad.org.
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5. Write all your interactive computing code in Jupyter notebooks first and refactor it into
standalone Python components only when it is sufficiently mature and stable.

6. Make sure that you record the exact versions of all components in your entire
software stack (operating system, Python distribution, modules, and so on). A
possibility is to use virtual environments with virtualenv or conda. Another possibility
is to use Docker (https://www.docker.com).

7. Cache long-to-compute intermediary results using Python's native pickle module,
dill (https://github.com/ugfoundation/dill), or Joblib (http://
pythonhosted.org/joblib/). Joblib notably implements a NumPy-aware
memoize pattern (not to be confused with memorize), which allows you to cache the
results of computationally intensive functions.

How to save persistent data in Python? For purely internal purposes,
you can use Joblib, NumPy's save () and savez () functions for

a1 arrays, and pickle for any other Python object (prefer native types

~ such as lists and dictionaries rather than custom classes). For sharing

Q purposes, prefer text files for small datasets (less than 10,000 points);
for example, CSV for arrays, and JSON or YAML for highly structured
data. For larger datasets, you can use HDF5 (see the Manipulating large
arrays with HDF5 recipe of Chapter 4, Profiling and Optimization).

8. When developing and trying out algorithms on large datasets, run them and compare
them on small portions of your data first, before moving to the full sets.

9. When running jobs in a batch, use parallel computing to take advantage of your
multicore processing units—for example, with ipyparallel, Joblib, Dask (https://
dask.pydata.org/en/latest/), Python's multiprocessing package, or any other
parallel computing library.

10. Automate your work as much as possible with Python functions or scripts. Use
command-line arguments for user-exposed scripts, but choose Python functions over
scripts when possible. On Unix systems, learn Terminal commands to improve your
productivity. For repetitive tasks on Windows or GUI-based systems, use automation
tools such as AutoHotKey (http://www.autohotkey.com). Learn keyboard
shortcuts in the programs you use a lot, or create your own shortcuts. Automatic
steps are reproducible; manual steps are not.

The tips given in this recipe ultimately aim to optimize your workflows, in terms of human time,
computer time, and quality. Using coherent conventions and structure for your code makes it
easier for you to organize your work. Documenting everything saves everyone's time, including
(eventually) yours!
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Using a distributed version control system with an online hosting service makes it easy for
you to work on the same code base from multiple locations, without ever worrying

about backups. As you can go back in time in your code, you have very little chance of
unintentionally breaking it.

The Jupyter Notebook is an excellent tool for reproducible interactive computing. It lets you
keep a detailed record of your work. Also, the ease of using the Jupyter Notebook is that you
don't have to worry about reproducibility; just do all of your interactive work in notebooks,
put them under version control, and commit regularly. Don't forget to refactor your code into
independent reusable components.

Be sure to optimize the time you spend in front of your computer. When working on an
algorithm, this cycle frequently happens: you do a slight modification, you launch the code,
get the results, make another change, and so on and so forth. If you need to try out a lot

of changes, you should ensure that the execution time is fast enough (no more than a few
seconds). Using advanced optimization techniques is not necessarily the best option at this
stage of experimentation. You should cache your results, try out your algorithms on data
subsets, and run your simulations with shorter durations. You can also launch batch jobs in
parallel when you want to test different parameter values.

Finally, desperately try to avoid doing repetitive tasks. It is worth spending time automating
such tasks when they occur frequently in your day-to-day work. It is more difficult to automate
tasks that involve GUIs, but it is feasible thanks to free tools such as AutoHotKey.

There's more...

Here are a few references:

» Barbagroup reproducibility syllabus, at http://lorenabarba.com/blog/
barbagroup-reproducibility-syllabus/.

» An efficient workflow for reproducible science, a talk by Trevor Bekolay, available at
http://bekolay.org/scipy2013-workflow/.

» Ten Simple Rules for Reproducible Computational Research, Sandve and others,
PLoS Computational Biology, 2013, available at http://dx.doi.org/10.1371/
journal.pcbi.1003285.

» Software Carpentry, a volunteer organization running workshops for scientists; the
workshops cover scientific programming, interactive computing, version control,
testing, reproducibility, and task automation. You can find more information at
http://software-carpentry.org.

» Reproducible Science, at https://reproduciblescience.org/.
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See also

» The Learning the basics of the Unix shell recipe

» The Efficient interactive computing workflows with IPython recipe
» The Writing high-quality Python code recipe

Writing high-quality Python code

Writing code is easy. Writing high-quality code is much harder. Quality is to be understood both
in terms of actual code (variable names, comments, docstrings, and so on) and architecture
(functions, modules, and classes). In general, coming up with a well-designed code
architecture is much more challenging than the implementation itself.

In this recipe, we will give a few tips about how to write high-quality code. This is a particularly
important topic in academia, as more and more scientists without prior experience in software
development need to code.

How to do it...

1. Take the time to learn the Python language seriously. Review the list of all modules in
the standard library—you may discover that functions you implemented already exist.
Learn to write Pythonic code, and do not translate programming idioms from other
languages such as Java or C++ to Python.

2. Learn common design patterns; these are general reusable solutions to commonly
occurring problems in software engineering.

3. Use assertions throughout your code (the assert keyword) to prevent future bugs
(defensive programming).

4. Start writing your code with a bottom-up approach; write independent Python
functions that implement focused tasks.

5. Do not hesitate to refactor your code regularly. If your code is becoming too
complicated, think about how you can simplify it.

6. Avoid classes when you can. If you can use a function instead of a class, choose
the function. A class is only useful when you need to store persistent state between
function calls. Make your functions as pure as possible (no side effects).

7. In general, choose Python native types (lists, tuples, dictionaries, and types from
Python's collections module) over custom types (classes). Native types lead to
more efficient, readable, and portable code.

8. Choose keyword arguments over positional arguments in your functions. Argument
names are easier to remember than argument ordering. They make your functions
self-documenting.

[
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10.

11.

12.

13.

14.

Name your variables carefully. Names of functions and methods should start with a
verb. A variable name should describe what it is. A function name should describe
what it does. The importance of naming things well cannot be overstated.

Every function should have a docstring describing its purpose, arguments, and return
values, as shown in the following example. You can also look at the conventions
chosen in popular libraries such as NumPy. The exact convention does not matter;
the point is to be consistent within your code. You can use a markup language such
as Markdown or reST:

>>> def power(x, n):
"""Compute the power of a number.

Arguments:
* X: a number
* n: the exponent

Returns:
* c: the number x to the power of n

nnn

return x ** n

Follow (at least partly) Guido van Rossum's Style Guide for Python Code, also known
as Python Enhancement Proposal number 8 (PEP8), available at http://www.
python.org/dev/peps/pep-0008/. Itis a long read, but it will help you write well-
readable Python code. It covers many little things such as spacing between operators,
naming conventions, comments, and docstrings. For instance, you will learn that it is
considered a good practice to limit any line of your code to 79 or 99 characters. This
way, your code can be correctly displayed in most situations (such as in a command-
line interface or on a mobile device) or side by side with another file. Alternatively,

you can decide to ignore certain rules. In general, following common guidelines is
beneficial on projects involving many developers.

You can check your code automatically against most of the style conventions in
PEPS8 with the pycodestyle Python package (https://github.com/PyCQA/
pycodestyle). You can also automatically make your code PEP8-compatible with
the autopep8 package (https://github.com/hhatto/autopep8s).

Use a tool for static code analysis such as Flake8 (http://flake8.pycga.org/
en/latest/)or Pylint (https://www.pylint.org). It lets you find potential
errors or low-quality code statically—that is, without running your code.

Use blank lines to avoid cluttering your code (see PEPS8). You can also demarcate
sections in a long Python module with salient comments such as this:

>>> # Imports

7}



http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://github.com/hhatto/autopep8
http://flake8.pycqa.org/en/latest/
http://flake8.pycqa.org/en/latest/
https://www.pylint.org

Best Practices in Interactive Computing

import numpy

# Utility functions

def fun():
pass

15. A Python module should not contain more than a few hundred lines of code.
Having too many lines of code in a module may be a sign that you need to split
it into several modules.

16. Organize important projects (with tens of modules) into subpackages (subdirectories).

17. Take a look at how major Python projects are organized. For example, the code of
IPython is well-organized into a hierarchy of subpackages with focused roles. Reading
the code itself is also quite instructive.

18. Learn best practices to create and distribute a new Python package. Make sure that
you know setuptools, pip, wheels, virtualenv, PyPl, and so on. Also, you are highly
encouraged to take a serious look at conda (http://conda.pydata.org), a
powerful and generic packaging system created by Anaconda. Packaging has long
been a rapidly evolving topic in Python, so read only the most recent references.
There are a few references in the There's more... section.

Writing readable code means that other people (or you, in a few months or years) will
understand it quicker and will be more willing to use it. It also facilitates bug tracking.

Modular code is also easier to understand and to reuse. Implementing your program's
functionality in independent functions that are organized as a hierarchy of packages and
modules is an excellent way of achieving high code quality.

It is easier to keep your code loosely coupled when you use functions instead of classes.
Spaghetti code is really hard to understand, debug, and reuse.

Iterate between bottom-up and top-down approaches while working on a new project. Starting
with a bottom-up approach lets you gain experience with the code before you start thinking
about the overall architecture of your program. Still, make sure you know where you're going
by thinking about how your components will work together.

=
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There's more...

Much has been written on how to write beautiful code—see the following references. You can
find many books on the subject. In the next recipe, we will cover standard techniques to make
sure that our code not only looks nice but also works as expected: unit testing, code coverage,
and continuous integration.

Here are a few references:

>

Python Cookbook, 3rd Edition, David Beazley and Brian K. Jones, O'Reilly Media
with many Python advanced recipes, available at http://shop.oreilly.com/
product/0636920027072.do

The Hitchhiker's Guide to Python!, available at http://docs.python-guide.
org/en/latest/

Design patterns on Wikipedia, available at https://en.wikipedia.org/wiki/
Software design pattern

Design patterns in Python, described at https://github.com/faif/python-
patterns

Coding standards of Tahoe-LAFS, available at https://tahoe-lafs.org/trac/
tahoe-lafs/wiki/CodingStandards

How to be a great software developer, by Peter Nixey, available at http://
peternixey.com/post/83510597580/how-to-be-a-great-software-
developer

Why you should write buggy software with as few features as possible, a talk by Brian
Granger, available at http://www.youtube.com/watch?v=0rpPDkZef51I

Python Packaging User Guide, available at https://packaging.python.org/

A list of antonyms commonly used in programming, available at https://github.
com/rossant/programming-yin-yang

>

>

>

The Ten tips for conducting reproducible interactive computing experiments recipe
The Writing unit tests with pytest recipe

A list of antonyms commonly used in programming, available at https://github.
com/rossant/programming-yin-yang

Writing unit tests with pytest

Untested code is broken code. Manual testing is essential to ensuring that our software works
as expected and does not contain critical bugs. However, manual testing is severely limited
because bugs may be introduced at any time in the code.
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Nowadays, automated testing is a standard practice in software engineering. In this recipe, we
will briefly cover important aspects of automated testing: unit tests, test-driven development,
test coverage, and continuous integration. Following these practices is fundamental in order
to produce high-quality software.

Getting ready

Python has a native unit testing module that you can readily use (unittest). Other third-
party unit testing packages exist. In this recipe, we will use pytest. It is installed by default in
Anaconda, but you can also install it manually with conda install pytest.

How to do it...

1.

Let's write in a £irst . py file a simple function that returns the first element of a list:

°

>>> %$%writefile first.py
def first(l):
return 1[0]
Overwriting first.py

To test this function, we write another function, the unit test, that checks our first
function using an example and an assertion:

>>> %%writefile -a first.py

# This is appended to the file.
def test first():
assert first([1, 2, 3]) == 1
Appending to first.py
>>> %cat first.py
def first(l):
return 1[0]

# This is appended to the file.
def test first():
assert first([1, 2, 3]) == 1

To run the unit test, we use the pytest executable (the ! means that we're calling an
external program from [Python):

>>> lpytest first.py

============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02 best practices:
plugins: cov-2.5.1




Chapter 2

collecting 0 items
collecting 1 item
collected 1 item

first.py

=========== 1 passed in 0.00 seconds ===========

Our test passes! Let's add another example with an empty list. We want our function
to return None in this case:

>>> $%writefile first.py
def first(l):
return 1[0]

def test first():

assert first([1, 2, 3]) == 1

assert first([]) is None
Overwriting first.py
>>> lIpytest first.py
============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02 best practices:
plugins: cov-2.5.1

collecting 0 items
collecting 1 item
collected 1 item

first.py F
—================== FAILURES ==—====—c==—========
test first
def test first():
assert first([1, 2, 3]) == 1
> assert first([]) is None

first.py:6:

def first(l):

(7]
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> return 1[0]
E IndexError: list index out of range

first.py:2: IndexError
—========== 1 failed in 0.02 secondsS ===========

5. This time, our test fails. Let's fix it by modifying the first () function:

)

>>> $%writefile first.py
def first(l):
return 1[0] if 1 else None

def test first():

assert first([1, 2, 3]) == 1

assert first([]) is None
Overwriting first.py
>>> lIpytest first.py
============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02 best practices:
plugins: cov-2.5.1

collecting 0 items
collecting 1 item
collected 1 item

first.py

=========== 1 passed in 0.00 seconds ===========

The test passes again!

By definition, a unit test must focus on one specific functionality. All unit tests should be
completely independent. Writing a program as a collection of well-tested, mostly decoupled

units forces you to write modular code that is more easily maintainable.

In a Python package, a test_xxx.py module should accompany every Python module
named xxx . py. This testing module contains unit tests that test functionality implemented

in the xxx . py module.

7@
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Sometimes, your module's functions require preliminary work to run (for example, setting up
the environment, creating data files, or setting up a web server). The unit testing framework
can handle this via fixtures. The state of the system environment should be exactly the same
before and after a testing module runs. If your tests affect the filesystem, they should do so in
a temporary directory that is automatically deleted at the end of the tests. Testing frameworks
such as pytest provide convenient facilities for this use case.

Tests typically involve many assertions. With pytest, you can simply use the built-in assert
keyword. Further convenient assertion functions are provided by NumPy (see http://docs.
scipy.org/doc/numpy/reference/routines.testing.html). They are especially
useful when working with arrays. For example, np . testing.assert _allclose (x, V)
asserts that the x and y arrays are almost equal, up to a given precision that can be specified.

Writing a full testing suite takes time. It imposes strong (but good) constraints on your code's
architecture. It is a real investment, but it is always profitable in the long run. Also, knowing
that your project is backed by a full testing suite is a real load off your mind.

First, thinking about unit tests from the beginning forces you to think about a modular
architecture. It is really difficult to write unit tests for a monolithic program full of
interdependencies.

Second, unit tests make it easier for you to find and fix bugs. If a unit test fails after
introducing a change in the program, isolating and reproducing the bugs becomes trivial.

Third, unit tests help you avoid regressions—that is, fixed bugs that silently reappear in a later
version. When you discover a new bug, you should write a specific failing unit test for it. To

fix it, make this test pass. Now, if the bug reappears later, this unit test will fail and you will
immediately be able to address it.

When you write a complex program based on interdependent APIs, having a good test
coverage for one module means that you can safely rely on it in other modules, without
worrying about its behavior not conforming to its specification.

Unit tests are just one type of automated tests. Other important types of tests include
integration tests (making sure that different parts of the program work together) and
functional tests (testing typical use cases).

There's more...

Automated testing is a wide topic, and we only scratched the surface in this recipe. We give
some further information here.
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Test coverage

Using unit tests is good. However, measuring test coverage is even better: it quantifies
how much of our code is being covered by your testing suite. The coverage . py module
(https://coverage.readthedocs.io/) does precisely this. It integrates well with pytest.

The coveralls.io service brings test-coverage features to a continuous integration server (refer
to the Unit testing and continuous integration section). It works seamlessly with GitHub.

Workflows with unit testing

Note the particular workflow we have used in this example. After writing our function,

we created a first unit test that passed. Then we created a second test, which failed. We
investigated the issue and fixed the function. The second test passed. We could continue
writing more and more complex unit tests, until we are confident that the function works as
expected in most situations.

Run pytest --pdb to drop into the Python debugger on failures. This is
i quite convenient to find out quickly why a unit test fails.

We could even write the tests before the function itself. This is Test-driven development
(TDD), which consists of writing unit tests before writing the actual code. This workflow forces
us to think about what our code does and how one uses it, instead of how it is implemented.

Unit testing and continuous integration

A good habit to get into is running the full testing suite of our project at every commit. In fact,
it is even possible to do this completely transparently and automatically through continuous
integration. We can set up a server that automatically runs our testing suite in the cloud at
every commit. If a test fails, we get an automatic email telling us what the problem is so that
we can fix it.

There are many continuous integration systems and services: Jenkins/Hudson, Travis CI
(https://travis-ci.org), Codeship (http://codeship.com/), and others. Some

of them play well with GitHub. For example, to use Travis Cl with a GitHub project, create an
account on Travis Cl, link your GitHub project to this account, and then add a .travis.yml
file with various settings in your repository (see the additional details in the references below).

In conclusion, unit testing, code coverage, and continuous integration are standard practices
that should be used in all significant projects.
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Here are a few references:

» Test-driven development, at https://en.wikipedia.org/wiki/Test-driven
development

» Documentation of Travis Cl in Python, at http://about.travis-ci.org/docs/
user/languages/python/

Debugging code with IPython

Debugging is an integral part of software development and interactive computing. A
widespread debugging technique consists of placing the print () functions in various places
in the code. Who hasn't done this? It is probably the simplest solution, but it is certainly not
the most efficient (it is the poor man's debugger).

IPython is perfectly adapted for debugging, and the integrated debugger is quite easy to

use (actually, IPython merely offers a nice interface to the native Python debugger pdb). In
particular, tab completion works in the IPython debugger. This recipe describes how to debug
code with IPython.

How to do it...

There are two not-mutually exclusive ways of debugging code in Python. In the post-mortem
mode, the debugger steps into the code as soon as an exception is raised, so that we

can investigate what caused it. In the step-by-step mode, we can stop the interpreter at a
breakpoint and resume its execution step by step. This process allows us to check carefully
the state of our variables as our code is executed.

Both methods can actually be used simultaneously; we can do step-by-step debugging in the
post-mortem mode.

The post-mortem mode

When an exception is raised within IPython, execute the $debug magic command to launch
the debugger and step into the code. Also, the $pdb on command tells IPython to launch the
debugger automatically as soon as an exception is raised.

Once you are in the debugger, you have access to several special commands, the most
important ones being listed here:

» p varname prints the value of a variable

» wshows your current location within the stack

» ugoes up in the stack
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» dgoes down in the stack

» 1 shows the lines of code around your current location

» ashows the arguments of the current function
The call stack contains the list of all active functions at a given location in the code's
execution. You can easily navigate up and down the stack to inspect the values of the function

arguments. Although quite simple to use, this mode should let you resolve most of your bugs.
For more complex problems, you may need to do step-by-step debugging.

Step-by-step debugging
You have several options to start the step-by-step debugging mode. First, in order to put a
breakpoint somewhere in your code, insert the following command:

import pdb
pdb.set_trace()

Second, you can run a script from IPython with the following command:
$run -d -b extscript.py:20 script

This command runs the script . py file under the control of the debugger with a breakpoint
on line 20 in extscript.py (which is imported by script.py). Finally, you can do step-by-
step debugging as soon as you are in the debugger.

Step-by-step debugging consists of precisely controlling the course of the interpreter. Starting
from the beginning of a script or from a breakpoint, you can resume the execution of the
interpreter with the following commands:

» s executes the current line and stops as soon as possible afterwards (step-by-step
debugging—that is, the most fine-grained execution pattern)

» n continues the execution until the next line in the current function is reached

» r continues the execution until the current function returns

» c continues the execution until the next breakpoint is reached

» J 30 brings you to line 30 in the current file
You can add breakpoints dynamically from within the debugger using the b command or with
tbreak (temporary breakpoint). You can also clear all or some of the breakpoints, enable

or disable them, and so on. You can find the full details of the debugger at https://docs.
python.org/3/library/pdb.html.

(&)
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There's more...

To debug your code with IPython, you typically need to execute it first with IPython—for
example, with $run. However, you may not always have an easy way of doing this. For
instance, your program may run with a custom command-line Python script, it may be
launched by a complex bash script, or it may be integrated within a GUI. In these cases, you
can embed an IPython interpreter at any point in your code (launched by Python), instead of
running your whole program with IPython (which may be overkill if you just need to debug a
small portion of your code).

To embed IPython within your program, simply insert the following commands somewhere in
your code:

from IPython import embed
embed ()

When your Python program reaches this code, it will pause and launch an interactive IPython
terminal at this specific point. You will then be able to inspect all local variables, run any code
you want, and possibly debug your code before resuming normal execution.

Most Python IDEs offer graphical debugging features (see the Efficient interactive computing
workflows with IPython recipe). A GUI can sometimes be more convenient than a command-
line debugger. A list of Python debuggers is available at https://wiki.python.org/
moin/PythonDebuggingTools.
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Mastering the
Jupyter Notebook

In this chapter, we will cover the following topics:

» Teaching programming in the Notebook with IPython Blocks

» Converting a Jupyter notebook to other formats with nbconvert

» Mastering widgets in the Jupyter Notebook

» Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript
» Configuring the Jupyter Notebook

» Introducing JupyterLab

Introduction

In this chapter, we will explore several advanced features and usage examples of the Jupyter
Notebook. As we have only seen basic features in the previous chapters, we will dive deeper
into the architecture of the Notebook here.

The Notebook ecosystem

Jupyter notebooks are represented as JavaScript Object Notation (JSON) documents. JSON
is a language-independent, text-based file format for representing structured documents. As
such, notebooks can be processed by any programming language, and they can be converted
to other formats such as Markdown, HTML, LaTeX/PDF, and others.
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There is an ecosystem of tools around Jupyter Notebook. Notebooks are being used to create
slides, teaching materials, blog posts, research papers, and even books. In fact, this very
book is entirely written in the Notebook using the Markdown format and a custom-made
Python tool.

JupyterLab is the next generation of the Jupyter Notebook. It is still in an early stage of
development at the time of writing. We cover it in the last recipe of this chapter.

Architecture of the Jupyter Notebook

Jupyter implements a two-process model, with a kernel and a client. The client is the
interface offering the user the ability to send code to the kernel. The kernel executes the
code and returns the result to the client for display. In the Read-Evaluate-Print Loop (REPL)
terminology, the kernel implements the Evaluate, whereas the client implements the Read
and the Print of the process.

The client can be a Qt widget if we run the Qt console, or a browser if we run the Jupyter
Notebook. In the Jupyter Notebook, the kernel receives entire cells at once, so it has no notion
of a notebook. There is a strong decoupling between the linear document containing the
notebook, and the underlying kernel.

All communication procedures between the different processes are implemented on top of the
ZeroMQ (ZMQ) messaging protocol (http://zeromqg.org). The Notebook communicates
with the underlying kernel using WebSocket, a TCP-based protocol implemented in modern
web browsers.

Connecting multiple clients to one kernel

In a notebook, typing $connect info in a cell gives the information we need to connect a
new client (such as a Qt console) to the underlying kernel:

>>> %connect_info

{
"shell port": 58645,
"iopub_port": 47422,
"stdin port": 60550,
"control port": 39092,
"hb _port": 494009,

"ip": "127.0.0.1",

"key": "2298£955-7020b0ce534e7a8d81053d43",
"transport": "tcp",

"signature_scheme": "hmac-sha256",

"kernel name": ""

=
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Paste the above JSON into a file, and connect with:
$> jupyter <app> --existing <files
or, if you are local, you can connect with just:
$> jupyter <app> --existing kernel-4342f625-a8...
or even just:
$> jupyter <app> --existing
if this is the most recent Jupyter kernel you
have started.

Here, <app> is console, gtconsole, Or notebook.

JupyterHub

JupyterHub, available at https://jupyterhub.readthedocs.io/en/latest/,isa
Python library that can be used to serve notebooks to a set of end-users, for example students
of a particular class, or lab members in a research group. It handles user authentication and
other low-level details.

Security in notebooks

It is possible for an attacker to put malicious code in a Jupyter notebook. Since notebooks
may contain hidden JavaScript code in a cell output, it is theoretically possible for malicious
code to execute surreptitiously when the user opens a notebook.

For this reason, Jupyter has a security model where HTML and JavaScript code in a notebook
can be either trusted or untrusted. Outputs generated by the user are always trusted.
However, outputs that were already there when the user first opened an existing notebook
are untrusted.

The security model is based on a cryptographic signature present in every notebook.
This signature is generated using a secret key owned by every user.

References

The following are some references about the Notebook architecture:

» Overview of IPython at http://ipython.readthedocs.io/en/stable/
overview.html

» Documentation for the Jupyter Notebook, available at https://jupyter.
readthedocs.io/en/latest/

» Security in the Notebook, described at http://jupyter-notebook.
readthedocs.io/en/stable/security.html
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» The Jupyter messaging protocol, at http://jupyter-client.readthedocs.io/
en/latest/messaging.html
» Wrapper kernels at http://jupyter-client.readthedocs.io/en/latest/
wrapperkernels.html

Here are a few kernels in non-Python languages for the Notebook:

» lJulia, available at https://github.com/Julialang/IJulia.jl
» IRkernel, available at https://github.com/IRkernel/IRkernel
» |Haskell, available at https://github.com/gibiansky/IHaskell

» Dozens of kernels are referenced at https://github.com/jupyter/jupyter/
wiki/Jupyter-kernels

Teaching programming in the Notebook with

IPython Blocks

The Jupyter Notebook is not only a tool for scientific research and data analysis but also a
great tool for teaching. In this recipe, we show a simple and fun Python library for teaching
programming notions: IPython Blocks (available at http://ipythonblocks.org). This
library allows you or your students to create grids of colorful blocks. You can change the color
and size of individual blocks, and you can even animate your grids. There are many basic
technical notions you can illustrate with this tool. The visual aspect of this tool makes the
learning process more effective and engaging.

In this recipe, we will notably perform the following tasks:

» lllustrate matrix multiplication with an animation

» Display an image as a block grid

Getting ready

To install IPython Blocks, type pip install ipythonblocks ina Terminal.

How to do it...

1. First, we import some modules as follows:
>>> import time
from IPython.display import clear output
from ipythonblocks import BlockGrid, colors
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2. Now, we create a block grid with five columns and five rows, and we fill each block
with purple:
>>> grid = BlockGrid(width=5, height=5,
fill=colors['Purple'])
grid.show ()

3. We can access individual blocks with 2D indexing. This illustrates the indexing syntax
in Python. We can also access an entire row or line with a : (colon). Each block is
represented by an RGB color. The library comes with a handy dictionary of colors,
assigning RGB tuples to standard color names as follows:

>>> grid [0, 0] = colors['Lime']
grid[-1, 0] = colors['Lime']
grid[:, -1] = colors['Lime']

grid.show ()

7}
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4.

Now, we are going to illustrate matrix multiplication. We will represent two (n, n)
matrices, A (in cyan) and B (lime), aligned with C = A B (yellow). To do this, we use a
small trick: creating a big white grid of size (2n+1, 2n+1). The matrices A, B, and C
are just views on parts of the grid.

>>>n = 5

grid = BlockGrid(width=2 * n + 1,
height=2 * n + 1,
fill=colors['White'])

A = grid[n + 1:, :n]

B = grid[:n, n + 1:]

C = grid[n + 1:, n + 1:]

Al:, :] = colors['Cyan']

B[:, :] = colors['Lime']

Cl:, :]

grid.show ()

colors['Yellow']

(e
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Let's turn to matrix multiplication itself. We perform a loop over all rows and columns,
and we highlight the corresponding rows and columns in A and B that are multiplied
together during the matrix product. We combine IPython's clear output ()
method with grid.show () and time.sleep () (pause) to implement the
animation as follows:
>>> for i in range(n) :

for j in range(n):

# We reset the matrix colors.

A[:, :] = colors['Cyan']
B[:, :] = colors['Lime']
C[:, :] = colors['Yellow']

# We highlight the adequate rows
# and columns in red.

Afli, :] = colors['Red']

Bl:, jl colors['Red']

C[i, j] = colors['Red']

# We animate the grid in the loop.
clear output ()

grid.show ()

time.sleep(.25)

]
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6. Finally, we display an image with IPython Blocks. We download and import a PNG
image with Matplotlib and we retrieve the data as follows:

>>> # We downsample the image by a factor of 4 for
# performance reasons.
img = plt.imread('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"’
'beach.png?raw=true') [::4, ::4, :]
>>> rgb = [img[..., i].ravel() for i in range(3)]

7. Now, we create a BlockGrid instance with the appropriate number of rows and
columns, and we set each block's color to the corresponding pixel's color in the image
(multiplying by 255 to convert from a floating-point number in [0, 1] into an 8-bit
integer). We use a small block size, and we remove the lines between the blocks as
follows:

>>> height, width = img.shapel[:2]
grid = BlockGrid(width=width, height=height,
block size=2, lines_on=False)
for block, r, g, b in zip(grid, *rgb):
block.rgb = (r * 255, g * 255, b * 255)
grid.show ()
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Converting a Jupyter notebook to other

formats with nbconvert

A Jupyter notebook is saved in a JSON text file. This file contains the entire contents of the
notebook: text, code, and outputs. The Matplotlib figures are encoded as base64 strings
within the notebooks, resulting in standalone, but sometimes big, notebook files.

JSON is a human-readable, text-based, open standard format that
can represent structured data. Although derived from JavaScript, it is

language-independent. Its syntax bears some resemblance to Python
NS .- . . . . .
dictionaries. JSON can be parsed in many languages including JavaScript
and Python (using the j son module in Python's standard library).

nbconvert (https://nbconvert.readthedocs.io/en/stable/) is atool that can
convert notebooks to other formats: raw text, Markdown, HTML, LaTeX/PDF, and even slides
with the reveal.js library. You will find more information about the different supported formats
on the nbconvert documentation.

One typically uses the nbformat (https://nbformat.readthedocs.io/en/latest/)
library to manipulate a notebook. However, in this recipe, we will see how to manipulate the
contents of a notebook (which is just a plain-text JSON file) directly with Python, and how to
convert it to other formats with nbconvert.

Getting ready

You need to install pandoc, available at http://pandoc.org. This tool is used to convert
markup files to various formats. On Ubuntu, type sudo apt-get install pandoc
in a Terminal.

To convert a notebook to PDF, you need a LaTeX distribution, which you can download and
install at http://latex-project.org/ftp.html.

How to do it...

1. Let's download and open the test notebook. A notebook is just a plain-text file (JSON):

>>> import io
import requests
>>> url = ('https://github.com/ipython-books/"
'cookbook-2nd-data/blob/master/"
'test.ipynb?raw=true')
>>> contents = requests.get (url) .text
print (len(contents))
3857

i
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2. Here is an excerpt of the test . ipynb file:

>>> print (contents[:345] + '...' + contents([-33:])
{
"cells": [
{
"cell type": "markdown",
"metadata": {},
"source": [

"# First chapter"
]
b
{

"cell type": "markdown",
"metadata": {
"my field": [
"valuel",
"2405"
1
b
"source": [
"Let's write some *rich* **text** with
[links] (http://www.ipython.org) and lists:\n",
"\n",
"* iteml...rmat": 4,
"nbformat_minor": 4

}

3. Now that we have loaded the notebook in a string, let's parse it with the json module
as follows:

>>> import json
nb = json.loads (contents)

4. Let's have a look at the keys in the notebook dictionary:

>>> print (nb.keys())
print ('nbformat %d.%d' % (nb['nbformat'l],
nb [ 'nbformat minor']))
dict_keys(['cells', 'metadata',
'nbformat', 'nbformat minor'])

nbformat 4.4

[
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5. Each cell has a type, optional metadata, some contents (text or code), possibly one or
several outputs, and other information. Let's look at a Markdown cell and a code cell:

>>> nb['cells'] [1]

{'cell type': 'markdown',
'metadata': {'my field': ['valuel', '2405']},
'source': ["Let's write some *rich* **text** with

[links] (http://www.ipython.org) and lists:\n",
"\n',
'* iteml\n',
"% item2\n',
! 1. subitem\n',
! 2. subitem\n',
"% item3']}
>>> nb['cells'] [2]
{'cell type': 'code',
'execution count': 1,
'metadata': {},
'outputs': [{'data': {'image/png': 'iVBOR...QmCC\n',
'text/plain': ['<matplotlib Figure at ...>'l},
'metadata': {},
'output type': 'display data'}],
'source': ['import numpy as np\n',
'import matplotlib.pyplot as plt\n',
'$matplotlib inline\n',
'plt.figure(figsize=(2,2));\n',
"plt.imshow (np.random.rand(10,10),
interpolation='none') ;\n",
"plt.axis('off') ;\n",
'plt.tight layout ();']}

6. Once parsed, the notebook is represented as a Python dictionary. Manipulating it is
therefore quite convenient in Python. Here, we count the number of Markdown and
code cells as follows:

>>> cells = nb['cells']
nm = len([cell for cell in cells

if cell['cell type']l == 'markdown'])
nc = len([cell for cell in cells
if cell['cell type']l == 'code'])

print ( (£"There are {nm} Markdown cells and "
f"{nc} code cells."))
There are 2 Markdown cells and 1 code cells.
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7.

Let's have a closer look at the image output of the cell with the Matplotlib figure:

>>> cells[2] ['outputs'] [0] ['data']
{'image/png': 'iVBOR...QmCC\n',
'text/plain': ['<matplotlib.figure.Figure at ...>']}

In general, there can be zero, one, or multiple outputs. Additionally, each output can
have multiple representations. Here, the Matplotlib figure has a PNG representation
(the base64-encoded image) and a text representation (the internal representation of
the figure).

Now, we convert our text notebook to HTML using nbconvert:

>>> # We write the notebook to a file on disk.
with open('test.ipynb', 'w') as f:
f.write (contents)
>>> !jupyter nbconvert --to html test.ipynb
[NbConvertApp] Converting notebook test.ipynb to html
[NbConvertApp] Writing 253784 bytes to test.html

Let's display this document in an <iframe> (a small window showing an external
HTML document within the notebook):

>>> from IPython.display import Iframe
IFrame ('test.html', 600, 200)

First chapter

Let's write some rich text with |inks and lists:

« item1
* item2
1. subitem
2. subitem
= item3

In [1]: dimport numpy as np
import matplotlib.pyplot as plt
smatplotlib inline
plt.figure(figsize=(2,2));
plt.imshow(np.random.rand(10,10), interpolation='none');
plt.axis( 'off’);
plt.tight layout();
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10. We can also convert the notebook to LaTeX and PDF. In order to specify the title and
author of the document, we need to extend the default LaTeX template. First, we
create a file called temp . tplx that extends the default article.tplx template
provided by nbconvert. We specify the contents of the author and title blocks
as follows:

>>> %$%writefile temp.tplx
((*- extends 'article.tplx' -*))

((* block author *))
\author{Cyrille Rossant}
((* endblock author *))

((* block title *))

\title{My document}

((* endblock title *))
Writing temp.tplx

11. Then we can run nbconvert by specifying our custom template as follows:

>>> %%bash

jupyter nbconvert --to pdf --template temp test.ipynb
[NbConvertApp] Converting notebook test.ipynb to pdf
[NbConvertApp] Support files will be in test files/
[NbConvertApp] Making directory test files
[NbConvertApp] Writing 16695 bytes to notebook.tex
[NbConvertApp] Building PDF
[NbConvertApp] Running xelatex 3 times:

['xelatex', 'notebook.tex']
[NbConvertApp] Running bibtex 1 time:
['bibtex', 'notebook']

[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 16147 bytes to test.pdf

[55]-
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We used nbconvert to convert the notebook to LaTeX, and pdflatex (from our LaTeX
distribution) to compile the LaTeX document to PDF. The following screenshot shows
the PDF version of the notebook:

My document

Cyrille Rossant

August 4, 2017

1 First chapter
Let's write some rich text with links and lists:

* iteml
* item2

1. subitem
2. subitem

* item3

In [1]: import numpy as np
import matplotlib.pyplot as plt
Jmatplotlib inline
plt. figure(figsize=(2,2));
plt.imshow(np. random.rand(10,10), interpolation='none');
plt.axis('off');
plt.tight_layout();

PDF output

5]
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As we have seen in this recipe, an . ipynb file contains a structured representation of

the notebook. This JSON file can be easily parsed and manipulated in Python and other
languages. However, it is better practice to use the nbformat package to manipulate a
notebook. The internal JSON format may change, whereas the nbformat API is not expected
to change.

nbconvert is a tool for converting a notebook to another format. The conversion can be
customized in several ways. Here, we extended an existing template using Jinja2,
a templating package (see http://jinja.pocoo.org/docs/).

There's more...

There is a free online service, nbviewer, that lets us render Jupyter notebooks in HTML
dynamically in the cloud. The idea is that we provide nbviewer a URL to with a raw notebook
(in JSON), and we get a rendered HTML output. The main page of nbviewer (http://
nbviewer.jupyter.org/) contains a few examples. This service is maintained by the
Jupyter developers and is hosted on Rackspace (https://www.rackspace.com).

GitHub automatically renders Jupyter notebooks stored in repositories.

binder, available at https: //mybinder.org, allows one to turn a GitHub repository into
a collection of interactive notebooks in the cloud. The service is free and the code is open
source, so that anyone can provide their own binder service.

Here are some more references:
» Documentation for nbconvert, at https://nbconvert.readthedocs.io/en/
stable/

» RISE, to create interactive slideshows out of Jupyter notebooks, at https://
damianavila.github.io/RISE/

Mastering widgets in the Jupyter Notebook

The ipywidgets package provides many common user interface controls for exploring code
and data interactively. These controls can be assembled and customized to create complex
graphical user interfaces. In this recipe, we introduce the various ways we can create user
interfaces with ipywidgets.

Getting ready

The ipywidgets package should be installed by default in Anaconda, but you can also install it
manually with conda install ipywidgets.

o7}
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Alternatively, you can install ipywidgets with pip install ipywidgets, butthen you also
need to type the following command in order to enable the extension in the Jupyter Notebook:

jupyter nbextension enable --py --sys-prefix widgetsnbextension

How to do it...

1. Let's import the packages:

>>> import ipywidgets as widgets
from ipywidgets import HBox, VBox
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
$matplotlib inline

2. The einteract decorator shows a widget for controlling the arguments of a
function. Here, the function £ () accepts an integer as an argument. By default, the
@interact decorator displays a slider to control the value passed to the function:

>>> @widgets.interact
def f(x=5):
print (x)

The function £ () is called whenever the slider value changes.
3. We can customize the slider parameters. Here, we specify a minimum and maximum
integer range for the slider:

>>> @widgets.interact (x=(0, 5))
def f (x=5):
print (x)
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There is also an @interact manual decorator that provides a button to call the
function manually. This is useful with long-lasting computations that should not

run every time a widget value changes. Here, we create a simple user interface for
controlling four parameters of a function that displays a plot. There are two floating-
point sliders, a drop-down menu for choosing a value among a few predefined
options, and a checkbox for Boolean values:

>>> @widgets.interact manual (

color=['blue', 'red', 'green']l, lw=(1., 10.))

def plot (freg=1., color='blue', 1lw=2, grid=True):
t = np.linspace(-1., +1., 1000)
fig, ax = plt.subplots(l, 1, figsize=(8, 6))
ax.plot(t, np.sin(2 * np.pi * freq * t),

lw=1lw, color=color)

ax.grid(grid)

freq 2.50
color | green hd
Iw 570
grid
Run Interact

- N NN NS

0.50

0.25

|
K
~V vV vV V.V

-1.00 =0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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5. In addition to the @interact and @interact manual decorators, ipywidgets

provides a simple API to create individual widgets. Here, we create a floating-point
slider:

>>> freqg_slider = widgets.FloatSlider (
value=2.,
min=1.,
max=10.0,
step=0.1,
description='Frequency:"',
readout format='.1f',

)

freg_slider

Frequency: 6.0

6. Here is an example of a slider for selecting pairs of numbers, such as intervals
and ranges:

>>> range slider = widgets.FloatRangeSlider (
value=[-1., +1.],
min=-5., max=+5., step=0.1,
description='xlim:"',
readout format='.1lf',
)

range_slider

xlim: o - 22-37

7. The toggle button can control a Boolean value:

>>> grid button = widgets.ToggleButton (
value=False,
description='Grid',
icon="'check'
)
grid button

 Grid

100
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8. Drop-down menus and toggle buttons are useful when selecting a value among a
predefined set of options:

>>> color buttons = widgets.ToggleButtons (
options=['blue', 'red', 'green'],
description="'Color:"',
)

color buttons

Color: blue red green

9. The text widget allows the user to write a string:
>>> title_textbox = widgets.Text (
value='Hello World',
description='Title:"',
)
title textbox

Title: | Hello World

10. We can let the user choose a color using the built-in system color picker:

>>> color_picker = widgets.ColorPicker (
concise=True,
description="'Background color:',
value="'#efefef’,
)

color picker

@ Choisir une couleur

Teinte: 0 | T Rouge: 239 - +
Saturation : 0 o I Vert: 7.5 1 I el i
Valeur: 94 -+ Bleu: 239 -  +

Nom de la couleur: | #EFEFEF

Annuler Sélectionner
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11. We can also simply create a button:

>>> button = widgets.Button/(
description='Plot',
)
button

Plot

12. Now, we will see how to combine these widgets into a complex Graphical User

13.

14.

102

Interface, and how to react to user interactions with these controls. We create a
function that will display a plot as defined by the created controls. We can access the
control value with the value property of the widgets:

>>> def plot2 (b=None) :
xlim = range_slider.value
freqg freq slider.value
grid grid button.value
color = color_buttons.value
title = title textbox.value
bgcolor = color picker.value

t = np.linspace(x1lim[0], x1lim[1], 1000)

f, ax = plt.subplots(l, 1, figsize=(8, 6))

ax.plot(t, np.sin(2 * np.pi * freq * t),
color=color)

ax.grid(grid)

The on_click decorator of a button widget lets us react to click events. Here, we
simply declare that the plotting function should be called when the button is pressed:

>>> @button.on_click
def plot _on click(b):
plot2()

To display all of our widgets in a unified graphical interface, we define a layout with
two tabs. The first tab shows widgets related to the plot itself, whereas the second
tab shows widgets related to the styling of the plot. Each tab contains a vertical stack
of widgets defined with the VBox class:

>>> tabl = VBox(children=[freq slider,
range_ slider,
1)
tab2 = VBox(children=[color buttons,
HBox (children=[title textbox,
color picker,
grid button]),

1)
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15. Finally, we create the Tab instance with our two tabs, we set the titles of the tabs,
and we add the plot button below the tabs:

>>> tab = widgets.Tab(children=[tabl, tab2])
tab.set_title(0, 'plot')
tab.set_title(1l, 'styling')
VBox (children=[tab, button])

plot styling
Frequency: ~( ) 2.0
xlim: COm) -1.0-1.0
Plot
plot styling
Color: blue red green
Title: | Hello World Backgroun... ||| v Grid
Plot

There's more...

The documentation for ipywidgets demonstrates many other features of the package. Styling the
widgets can be customized. New widgets can be created by writing Python and JavaScript code
(see the Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript recipe).
Widgets can also remain at least partly functional in a static notebook export.

Here are a few references:
» ipywidgets user guide at https://ipywidgets.readthedocs.io/en/stable/
user guide.html

» Building a custom widget at https://ipywidgets.readthedocs.io/en/
stable/examples/Widget%20Custom.html

See also

» The Creating custom Jupyter Notebook widgets in Python, HTML,
and JavaScript recipe
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Creating custom Jupyter Notebook widgets

in Python, HTML, and JavaScript

The ipywidgets packages provides many built-in control widgets to interact with code and data
in the Jupyter Notebook. In this recipe, we show how to build a custom interactive widget from
scratch, using Python on the kernel side, and HTML/JavaScript on the client side (frontend).
The widget just displays two buttons to increase and decrease a number. The number can be
accessed and updated either from the kernel (Python code) or the client (browser).

How to do it...

1. Let's import the packages:

>>> import ipywidgets as widgets
from traitlets import Unicode, Int, validate

2. We create a CounterWidget class deriving from DOMWidget:

>>> class CounterWidget (widgets.DOMWidget) :
_view name = Unicode ('CounterView') .tag(sync=True)
_view module = Unicode('counter').tag(sync=True)
value = Int(0).tag(sync=True)

This class represents the Python part of the widget. The view name and view
module attributes refer to the name and module of the JavaScript part. We use
the traitlets package to specify the type of the variables. The value attribute
is the counter value, an integer initialized at 0. All of these attributes' values are
synchronized between Python and JavaScript, hence the sync=True option.

3.  We now turn to the JavaScript side of the widget. We can write the code directly in
the notebook using the $%javascript cell magic. The widget framework relies
on several JavaScript libraries: jQuery (represented as the $ variable), RequireJS
(modules and dependencies), and Backbone.js (a model view controller framework):

)

>>> %$%javascript
// We make sure the 'counter' module is defined
// only once.
require.undef ('counter') ;

// We define the 'counter' module depending on the

// Jupyter widgets framework.

define ('counter', ["@jupyter-widgets/base"],
function (widgets) {

// We create the CounterView frontend class,
// deriving from DOMWidgetView.
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var CounterView = widgets.DOMWidgetView.extend ({

// This method creates the HTML widget.
render: function()
// The value changed() method should be
// called when the model's value changes
// on the kernel side.
this.value changed() ;
this.model.on ('change:value',
this.value changed, this);

var model = this.model;
var that = this;

// We create the plus and minus buttons.

this.bm = $('<button/>")

.text ('-1")

.click (function() {
// When the button is clicked,
// the model's value is updated.
var x = model.get ('value');
model .set ('value', x - 1);
that.touch() ;

3N

this.bp = $('<button/>"')

.text ('+")

.click (function() {
var x = model.get ('value');
model.set ('value', x + 1);
that.touch() ;

3N

// This element displays the current

// value of the counter.

this.span = $('<span />"')

.text ('0")

.css ({marginLeft: '10px',
marginRight: '10px'});

// this.el represents the widget's DOM

// element. We add the minus button,

// the span element, and the plus button.
$(this.el)
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.append (this.bm)
.append (this.span)
.append (this.bp) ;

b

value changed: function()
// Update the displayed number when the
// counter's value changes.
var x = this.model.get('value');
S(S(this.el) .children() [1]) .text (X) ;
I
1)

return {
CounterView : CounterView
3N

4. Let's display the widget:

>>> w = CounterWidget ()
w

In [4]: w = CounterWidget()
w

-0 +

5. Pressing the buttons updates the value immediately.

In [4]: = CounterWidget()

W
W

- 3‘%

Custom widget

6. The counter's value is automatically updated on the kernel side:

>>> print (w.value)
4

7. Conversely, we can update the value from Python, and it is updated in the frontend:

>>> w.value = 5

106




Chapter 3

w = CounterWidget()
W

There's more...

1
w
+

Here are a few references:

» Custom widget tutorial at https://ipywidgets.readthedocs.io/en/stable/
examples/Widget%20Custom.html
» RequirelS library at http://requirejs.org/

» Backbone.js library at http://backbonejs.org/

See also

» The Mastering widgets in the Jupyter Notebook recipe

Configuring the Jupyter Notebook

Many aspects of the Jupyter Notebook can be configured. We covered the configuration of the
IPython kernel in the Mastering IPython's configuration system recipe in Chapter 1, A Tour of
Interactive Computing with Jupyter and IPython. In this recipe, we show how to configure the
Jupyter application and the Jupyter Notebook frontend.

How to do it...

1. Let's check whether the Jupyter Notebook configuration file already exists:

>>> %1ls ~/.jupyter/jupyter notebook config.py
~/.jupyter/jupyter notebook config.py

If it does not, type ! jupyter notebook --generate-config -y inthe
notebook. If the file already exists, this command will delete its contents and
replace it with the default file.

. AlJupyter configuration file may exist in Python or in JSON (the
% same location and filename, but different file extension). JSON
L files have a higher priority. Unlike Python files, JSON files may be
edited programmatically.



https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
http://requirejs.org/
http://backbonejs.org/
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2. We can inspect the contents of the file with the following command:

>>> %cat ~/.jupyter/jupyter notebook config.py
# Configuration file for jupyter-notebook.

# Application(SingletonConfigurable) configuration

## This is an application.

## The date format used by logging formatters

#c.Application.log datefmt = '%Y-%m-%d %H:3%M:%S'

[...]

# _______________________________________________________
# JupyterApp (Application) configuration

# _______________________________________________________

## Base class for Jupyter applications

## Answer yes to any prompts.
#c.JupyterApp.answer yes = False

## Full path of a config file.
#c.JupyterApp.config file = '

For example, to change the default name of a new notebook, we can add the
following line to this file:

c.ContentsManager.untitled notebook = 'MyNotebook'
3.  We now turn to the configuration of the Jupyter Notebook frontend. The configuration
files are in the following folder:
>>> %1ls ~/.jupyter/nbconfig/
notebook.json tree.json
4. Let's inspect the contents of the notebook configuration file (in JSON):

>>> %cat ~/.jupyter/nbconfig/notebook.json

{
ncellm: {
"em_config": {
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"lineNumbers": false
}
I
"Notebook": {
"Header": false,
"Toolbar": false
}

}

5. There are several ways to configure the Notebook frontend. We can directly edit this
JSON file and reload the notebook. We can also do it in the client using JavaScript. For
example, here is how we can disable the auto-closing brackets option in code cells:

)

>>> %$%javascript
var cell = Jupyter.notebook.get selected cell() ;
var config = cell.config;
var patch = {
CodeCell:{

cm_config: {autoCloseBrackets: false}

}
}

config.update (patch)

If we reload the notebook, this option will be permanently turned off.

In [ ]: x = |

autoCloseBrackets: True

In [ J: x ="

autoCloseBrackets: False

Auto-close brackets

6. Infact, this command automatically updates the JSON file:

>>> %$cat ~/.jupyter/nbconfig/notebook.json

{

"Ccelln: {
"em config": {
"lineNumbers": false

}

b

"Notebook": {
"Header": false,
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"Toolbar": false

¥
"CodeCell": {
"em_config": {
"autoCloseBrackets": false

}

7. We can also get and change the frontend options from Python:

>>> from notebook.services.config import ConfigManager
¢ = ConfigManager ()
c.get ('notebook') .get ('CodeCell')
{'cm config': {'autoCloseBrackets': False}}
>>> c.update ('notebook', {"CodeCell":
{"cm config": {"autoCloseBrackets": True}}})
{rcell': {'cm config': {'lineNumbers': False}},
'CodeCell': {'cm config': {'autoCloseBrackets': True}},
'Notebook': {'Header': False, 'Toolbar': False}}
>>> %cat ~/.jupyter/nbconfig/notebook.json

{

ncellm: |
"em_config": {
"lineNumbers": false

}
I
"Notebook": {
"Header": false,
"Toolbar": false
I
"CodeCell": {
"em_config": {
"autoCloseBrackets": true
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There's more...

The code cell editor used in the Notebook is handled by the CodeMirror JavaScript library.
All options are detailed in the CodeMirror documentation.

Here are a few references:

» Notebook configuration at http://jupyter-notebook.readthedocs.io/en/
stable/config.html

» Notebook frontend configuration at https://jupyter-notebook.readthedocs.
io/en/stable/frontend config.html

» CodeMirror options at https://codemirror.net/doc/manual .html#option
indentUnit

See also

» The Mastering IPython's configuration system recipe in Chapter 1, A Tour of
Interactive Computing with Jupyter and IPython

Introducing JupyterLab

JupyterLab is the next generation of the Jupyter Notebook. It aims at fixing many Notebook
usability issues and it greatly expands its scope. JupyterLab offers a general framework for
interactive computing and data science in the browser, using Python, Julia, R, or one of many
other languages.

In addition to providing an improved interface to existing notebooks, JupyterLab also brings,
within the same interface, a file browser, consoles, terminals, text editors, Markdown editors,
CSV editors, JSON editors, interactive maps, widgets, and so on. The architecture is completely
extensible and open to developers. In a word, JupyterLab is a web-based, hackable IDE for
data science and interactive computing.

JupyterLab uses the exact same Notebook server and file format as the classic Jupyter
Notebook, so that it is fully compatible with existing notebooks and kernels. Notebook and
JupyterLab can run side to side on the same computer. You can easily switch between the
two interfaces.

At the time of writing, JupyterLab is still in an early stage of
»  development. However, it is already fairly usable. The interface
may change until the production release. The developer API
g used to customize JupyterLab is still not stable. There is no user
documentation yet.



http://jupyter-notebook.readthedocs.io/en/stable/config.html
http://jupyter-notebook.readthedocs.io/en/stable/config.html
https://codemirror.net/doc/manual.html#option_indentUnit 
https://codemirror.net/doc/manual.html#option_indentUnit 
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Getting ready

To install JupyterLab, type conda install -c¢ conda-forge jupyterlab in a Terminal.

To be able to render GeoJSON files in an interactive map, install the GeoJSON JupyterLab
extension with: jupyter labextension install @jupyterlab/geojson-
extension.

How to do it...

1. We can launch JupyterLab by typing jupyter 1lab in a Terminal. Then we go to
http://localhost:8888/1ab in the web browser.

2. The dashboard shows, on the left, a list of files and subdirectories in the current
working directory. On the right, the launcher lets us create notebooks and text files,
or open a Jupyter console or a Terminal. Available Jupyter kernels are automatically
displayed (here, IPython, but also IR and lJulia).

. File MNolebook Eddor Terminal Console Halp

F + -] : 4 (<] I Launcher *
T
A > jupyteab

o | Name - Last Modified

2 .

€ [ testipynb 7 cays ago m Notebook

2

; - @ P R A

]

| [ e) -

& Python 3 Julia 0.6.0 Flotier R SageMath 7 5.1

@

g Console

I
ﬁ @ ) (N

®0

Pythan 3 Julla 0.6.0 Platter R SageMath 7.5 1

Other

B B

JupyterLab home
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3. On the left panel, we can also see a list of open tabs, a list of running sessions, or a

list of available commands:

C
TERMINAL SESSIONS
B terminals/1
KERNEL SESSIONS
[J testipynb
Console 1

Console 2
[ Untitled.ipynb

SHUTDOWN

SHUTDOWN
SHUTDOWN
SHUTDOWN

SHUTDOWN

Running sessions
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CONSOLE

Start New Console

EDITOR

FILE OPERATIONS
Close Ctrl+Q
Close All

New View into File

Revert to Checkpoint

Available commands

4. If we open a Jupyter notebook, we get an interface that closely resembles the classic
Notebook interface:
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File MNowoook Editer Termiral Congole  Help

+ n % c LI test.ipynb *
& " 3 jupyieiab B+ ¥ B O » = C  Makdown ~ P
o Name o Last Mogified | A ivbtatio
£ import matplotlib.pyplot as plt
import numpy as np
g smatplotlib inline
E
§ plt.ploting. random, rand(18));
3 o
- 7
A notebook
There are a few improvements compared to the classic Notebook. For example,
we can drag and drop one or several cells:
L testipynb *x

B + X O 0O » = C Code v

A notebook...

Python 3

O

import matplotlib.pvolot as plt
In [7]: lotl

plt.plot{np.random.rand(18));

08
06
04

02

Drag and drop in the notebook

We can also collapse cells.
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5. If we right-click in the notebook, a contextual menu appears:

Clear Output(s)

Split Cell Ctrl+Shift+-
Undo Cell Operation z
Redo Cell Operation Shift+Z

Create Console for Notebook
Clear All Outputs

Open Inspector Ctrl+l

Contextual menu in the notebook

If we click on Create Console for Notebook, a new tab appears with a standard
IPython console. We can drag and drop the tab anywhere in the screen, for example

below the notebook panel:

[ testipynb x
B + ¥ 00 » = C Code v

A notebook...
%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np

In [18]: x = 18

& test.ipynb X

Python 3.6.2 |Anaconda custom (64-bit)| (default, Jul 20 2017, 13:51:32)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.8 -- An enhanced Interactive Python. Type '?' for help.

Python3 O

Notebook and console
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The IPython console is connected to the same kernel as the Notebook, so they share
the same namespace. We can also open a new IPython console from the launcher,
running in a separate kernel.

6. We can also open a system shell directly in the browser, using the term.js library:

test.ipynb X
B + X O » = C Code v Python3 O
A notebook...

wmatplotlib inline

import matplotlib.pyplot as plt
import numpy as np

B Terminal 2 X

cyrille@scan:- d/chapter®3_notebook % 1s
081 _bloc bformat.md jupyterlab x1_jupyterlab.md
Untitled.ipynb
i

02_nbformat_fil

it/cookb d/chapterd3_notebook

Notebook and shell
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7. JupyterLab includes a text editor. We can create a new text file from the launcher,

rename it by giving it the . md extension, and edit it:

# Title

Here is some code:
python

x 18

Another code block:

python

Markdown document

Let's right-click on the Markdown file. A contextual menu appears:

Create Console for Editor

Show Markdown Preview

Contextual menu in a Markdown file

We can add a new panel that renders the Markdown file in real time:
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I test.ipynb * | B untitted.md ® M untitied.md *®

# Title
Here is some code: Tlﬂe

** python Here is some code:
® 18

x =18
Another code block: Ancther coda block:
python x*2
= 2

Markdown rendered

We can also attach an IPython console to our Markdown file. By clicking within a code

block and pressing Shift + Enter, we send the code directly to the console:

& testipynb ® | B untitledmd % ¥ untited.md X
# Title
Here is some code: Title
python Here is some code:
% =10
x =18
Another code block: Another code block:
python X *2
| SRS
@ Console 1 x
I ]: = =18
In [2 x 2
itf2]: 28

Markdown and console
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8. We can also create and open CSV files in JupyterLab:

import numpy as np

M = np.random. rand(10000, 10)

np.savetxt('file.csv', M, delimiter=",", fmt='%.3f',
header=','.join{'col%d' % 1 for i in range(10)),
comments="")

'head file.csv

col@,coll,col2, col3, cold,col5,colb,col7,cold, col9

©.912,0.673,0.826,0.587,0.035,0.030,0.884,0.103,0.610,0.645,0.857,0.816,0.620,0.863,0.735,0.141
,0.889,0.534,0.232,0.614,0.774,0.428,0.452,0.994,0.402,0.790,0.825,0.531,0.669,0.659,0.248,0.01
2,0.943,0.194,0.826,0.013,0.678,0.048,0.436,0.658,0.361,0.744,0.916,0.361,0.726,0.091,0.605,0.8
99,0.978,0.549,0.526,0.967,0.340,0.761,0.297,0.382,0.483,0.514,0.922,0.963,0.926,0.024,0.396,0.
128,0.285,0.375,0.208,0.671,0.674,0.999,0.409,0.141,0.292,0,.353,0.368,0.187,0.708,0.082,0.826,0
.798,0.114,0.468,0.037,0.022,0.409,0.122,0.979,0.013,0.528,0.891,0.243,0.344,0.940,0.813,0.774,
0.976,0.494,0.170,0.895,0.806,0.764,0.814,0.707,0.653,0.714,0.617,0.573,0.392,0.855,0.818,0.379
,0.678,0.868,0.050,0.743,0.337,0.479,0.731,0.284,0.273,0.871,0.728,0.960,0.841,0.159,0.525,0.58
3,0.082,0.894,0.816,0.688,0.076,0.102,0.043,0.715,0.051,0.864,0.922,0.536,0.557,0.007,0.228,0.5
€0,0.069,0.826,0.376,0.834,0.452,0.521,0.417,0.347,0.600,0.235,0.455,0.698,0.654,0.455,0.848,0.
641,0.188,0.267,0.586,0.422,0.127,0.393,0.873,0.866,0.113,0.686,0.844,0.314,0.537,0.668,0.239,0
.139,0.241,0.142,0.900,0.681,0.080,0.948,0.022,0.236,0.499,0.880,0.469,0.413,0.552,0.430,0.114,
©.499,0.066,0.875,0.769,0.737,0.941,0.336,0.641,0.097,0.736,0.348,0.791,0.902,0.829,0.476,0.877
,0.947,0.538,0.478,0.845,0.619,0.973,0.762,0.579,0.033,0.054,0.971,0.378,0.435,0.856,0.436,0.11
6,0.777,0.905,0.023,0.878,0.191,0.595,0.239,0.270,0.660,0.676,0.578,0.679,0.437,0.107,0.712,0.1
21,0.982,0.931,0.534,0.173,0.018,0.777,0.461,0.212,0.573,0.391,0.882,0.678,0.706,0.408,0.488,0.
627,0.305,0.434,0.024,0.521,0.964,0.0685,0.059,0.998,0.823,0.428,0.386,0.600,0.261,0.359,0.169,0
.B52,0.268,0.363,0.542,0.372,0.842,0.371,0.727,0.617,0.030,0.934,0.402,0.811,0.730,0.892,0.920,
0.682,0.800,0.556,0.442,0.475,0.033,0.578,0.272,0.581,0.581,0.335,0.302,0.594,0.143,0.681,0.422

120
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The CSV viewer is highly efficient. It can smoothly display huge tables with millions or

even billions of values:

~

coll col2 col3 cold cols colé col? col8 col9

0.851 0.176 0.045 0.917 0.357 0.659 0.162 0.033 0.683
0.818 0.647 0.209 0.752 0.921 0.068 0.850 0.813 0.211
0.959 0.914 0.211 0.874 0.379 0.558 0.778 0.714 0.930
0.347 0.130 0.607 0.113 0.760 0.347 0.124 0.809 0.028
0.371 0.820 0.096 0.871 0.990 0.774 0.310 0.892 0.655
0.694 0.340 0.334 0.759 0.454 0.385 0.301 0.765 0.699
0.693 0.484 0.971 0.519 0.502 0.304 0.643 0.844 0.309
0.606 0.210 0.186 0.405 0.948 0.481 0.108 0.216 0.640
0.519 0.782 0.488 0.485 0.956 0.905 0.679 0.044 0.672
0.816 0.400 0.435 0.096 0.801 0.155 0.934 0.889 0.181
0.480 0.420 0.889 0.660 0.919 0.025 0.752 0.547 0.137
0.919 0.720 0.413 0.883 0.394 0.547 0.329 0.290 0.241
0.758 0.583 0.054 0.378 0.620 0.650 0.210 0.830 0.535
0.593 0.297 0.020 0.699 0.408 0.275 0.659 0.762 0.506
0.697 0.853 0.979 0.198 0.984 0.542 0.224 0.602 0.108
0.177 0.989 0.811 0.101 0.586 0.874 0.441 0.391 0.267
0.311 0.082 0.030 0.147 0.975 0.212 0.729 0.361 0.071
0.064 0.274 0.750 0.576 0.336 0.316 0.044 0.106 0.577
0.586 0.417 0.807 0.547 0.293 0.108 0.334 0.245 0.321
0.252 0.794 0.729 0.015 0.371 0.869 0.946 0.063 0.286
0.279 0.008 0.511 0.838 0.663 0.805 0.799 0.737 0.989
0.967 0.751 0.782 0.495 0.103 0.117 0.926 0.718 0.423
0.954 0.966 0.828 0.934 0.495 0.861 0.863 0.736 0.153
0.809 0.733 0.066 0.518 0.515 0.148 0.377 0.368 0.643

Viewing a CSV file
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9. GeoJSON files (files that contain geographic information) can also be edited or viewed
with the Leaflet mapping library:

T

“type": "FeatureCollection”,
“features™: [

2
3

"type": “Feature",
“properties": {},
“geometry”: {

"type": "Point",
"coordinates®: [
-77.6953125,

39.,095962936305476
]
}
h

“type": "Feature",

"properties": {},

“geometry”: {
"type": "Point",
"coordinates": [

[ ke 8 i el o
@00 o U o B @D 00~ O B R

21 -78.486328125,
22 35.60371874069731
23 1

24 }

25 H

26 {

27 "type": "Feature",
28 “properties": {},
29 “geometry”: {

38 “type": "Point",
31 "coordinates”: [
3z -84.638671875,

A1 JASTASRIN)AT50,

LT —

United States:
‘. of America
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JupyterLab is fully extendable. In fact, its philosophy is that all existing features are
implemented as plugins.

It is possible to work collaboratively on a notebook, as with Google Docs. This feature is still in
active development at the time of writing.

Here are a few references:

>

>

>

JupyterLab GitHub project at https://github.com/jupyterlab/jupyterlab
Jupyter renderers at https://github.com/jupyterlab/jupyter-renderers

Talk at PyData 2017, available at https://channel9.msdn.com/Events/
PyData/Seattle2017/BRK11

Talk at PLOTCON 2017, available at https://www.youtube.com/
watch?v=p7Hr54VhOpO0

Talk at ESIP Tech, available at https: //www.youtube.com/
watch?v=K1lAsGeak51A

JupyterLab screencast at https://www.youtube.com/watch?v=sf8PuLcijul

Realtime collaboration and cloud storage for JupyterLab through Google Drive, at
https://github.com/jupyterlab/jupyterlab-google-drive

>

The Introducing IPython and the Jupyter Notebook recipe in Chapter 1, A Tour of
Interactive Computing with Jupyter and IPython



https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyter-renderers
https://channel9.msdn.com/Events/PyData/Seattle2017/BRK11
https://channel9.msdn.com/Events/PyData/Seattle2017/BRK11
https://www.youtube.com/watch?v=p7Hr54VhOp0
https://www.youtube.com/watch?v=p7Hr54VhOp0
https://www.youtube.com/watch?v=K1AsGeak51A
https://www.youtube.com/watch?v=K1AsGeak51A
https://www.youtube.com/watch?v=sf8PuLcijuA
https://github.com/jupyterlab/jupyterlab-google-drive




Profiling and
Optimization

In this chapter, we will cover the following topics:

» Evaluating the time taken by a command in IPython

» Profiling your code easily with cProfile and IPython

» Profiling your code line-by-line with line_profiler

» Profiling the memory usage of your code with memory_profiler

» Understanding the internals of NumPy to avoid unnecessary array copying
» Using stride tricks with NumPy

» Implementing an efficient rolling average algorithm with stride tricks

» Processing large NumPy arrays with memory mapping

» Manipulating large arrays with HDF5

Introduction

Although Python is not generally considered one of the fastest language (which is somewhat
unfair), it is possible to achieve excellent performance with the appropriate methods. This is
the objective of this chapter and the next. This chapter describes how to evaluate (profile)
what makes a program slow, and how this information can be used to optimize the code
and make it more efficient. The next chapter will deal with more advanced high-performance
computing methods that should only be tackled when the methods described here are

not sufficient.




Profiling and Optimization

The recipes of this chapter are organized into three parts:

» Time and memory profiling: Evaluating the performance of your code
» NumPy optimization: Using NumPy more efficiently, particularly with large arrays

» Memory mapping with arrays: Implementing memory mapping techniques for
out-of-core computations on huge arrays

Evaluating the time taken by a command in

IPython

The $timeit magic and the $%timeit cell magic (which applies to an entire code cell) allow
us to quickly evaluate the time taken by one or several Python statements. The next recipes in
this chapter will show methods for more extensive profiling.

How to do it...

We are going to estimate the time taken to calculate the sum of the inverse squares of all
positive integer numbers up to a given n.

1. Let's define n:
>>> n = 100000

2. Let's time this computation in pure Python:

>>> $timeit sum([1. / i**2 for i in range(l, n)l)
21.6 ms + 343 ps per loop (mean + std. dev. of 7 runs,

10 loops each)

3. Now, let's use the $3timeit cell magic to time the same computation written
on two lines:
>>> %%timeit s = 0.
for i in range(1l, n):
S 4= 1. / i**2
22 ms + 522 us per loop (mean + std. dev. of 7 runs,
10 loops each)

4. Finally, let's time the NumPy version of this computation:

>>> import numpy as np

>>> %timeit np.sum(l. / np.arange(l., n) ** 2)

160 ps + 959 ns per loop (mean + std. dev. of 7 runs,
10000 loops each)

Here, the NumPy vectorized version is 137x faster than the pure Python version.
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The $timeit command accepts several optional parameters. One such parameter is the
number of statement evaluations. By default, this number is chosen automatically so that
the $timeit command returns within a few seconds in most cases. However, this number
can be specified directly with the -r and -n parameters. Type $timeit? in IPython to get
more information.

The $%timeit cell magic also accepts an optional setup statement in the first line (on
the same line as $%timeit), which is executed but not timed. All variables created in this
statement are available inside the cell.

There's more...

If you are not in an IPython interactive session or in a Jupyter Notebook, you can use import
timeit; timeit.timeit (). This function benchmarks a Python statement stored in a
string. IPython's $timeit magic command is a convenient wrapper around timeit (),
useful in an interactive session. For more information on the timeit module, refer to
https://docs.python.org/3/library/timeit.html.

See also

» The Profiling your code easily with cProfile and IPython recipe

» The Profiling your code line-by-line with line_profiler recipe

Profiling your code easily with cProfile

and IPython

The $timeit magic command is often helpful, yet a bit limited when we need detailed
information about what takes up most of the execution time. This magic command is meant
for benchmarking (comparing the execution times of different versions of a function) rather
than profiling (getting a detailed report of the execution time, function by function).

Python includes a profiler named cProfile that breaks down the execution time into the
contributions of all called functions. IPython provides convenient ways to leverage this tool in
an interactive session.



https://docs.python.org/3/library/timeit.html
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How to do it...

IPython offers the $prun line magic and the $%prun cell magic to easily profile one or
multiple lines of code. The $run magic command also accepts a -p flag to run a Python script
under the control of the profiler. These commands accept a lot of options as can be seen with
$prun? and $run-?.

In this example, we will profile a numerical simulation of random walks. We will cover these
kinds of simulation in more detail in Chapter 13, Stochastic Dynamical Systems.

1.
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Let's import NumPy:

>>> import numpy as np

Let's create a function generating random +1 and -1 values in an array:

>>> def step (*shape) :
# Create a random n-vector with +1 or -1 values.
return 2 * (np.random.random sample (shape)<.5) - 1

Now, we write simulation code in a cell starting with $%prun in order to profile the
entire simulation. The various options allow us to save the report in a file and to sort
the first 10 results by cumulative time. We will explain these options in more detail in
the How it works... section.
>>> %$%prun -s cumulative -gq -1 10 -T prunO

# We profile the cell, sort the report by "cumulative

# time", limit it to 10 lines, and save it to a file

# named "prunO".

n = 10000
iterations = 50
X = np.cumsum(step(iterations, n), axis=0)
bins = np.arange(-30, 30, 1)
y = np.vstack([np.histogram(x[i,:], bins) [0]
for 1 in range(iterations)])
*x* Profile printout saved to text file 'prunO'.

The profiling report has been saved in a text file named pruno. Let's display it (the
following output is a stripped down version that fits on this page):

>>> print (open('prun0', 'r').read())
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3914 function calls in ©.027 seconds

Ordered by: cumulative time
List reduced from 49 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.027 0.027 {built-in method builtins.exec}
1 0.000 0.000 0.027 0.027 =<string=:7(<module=)
1 0.000 0.000 0.016 B.016 =string>:11({<listcomp=>)
50 0.002 0.000 0.016 0.000 function base.py:431(histogram)
50 0.000 0.000 0.01@ 0.008 fromnumeric.py:709(sort)
50 6.009 6.000 B.009 B.000 {method 'sort' of 'numpy.ndarray' objects}
1 8.002 8.002 0.008 B.888 <ipython-input-8-7b2aaf313928=:1(step)
1 0.006 0.006 0.006 B.0086 {method 'random sample' of 'mtrand.RandomState' objects}
1 6.000 6.000 B.002 0.0802 fromnumeric.py:2033(cumsum)
1 0.000 0.000 0.002 B.802 fromnumeric.py:55( wrapfunc)

Here, we observe the time taken by the different functions involved, directly or
indirectly, in our code.

Python's profiler creates a detailed report of the execution time of our code, function by
function. Here, we can observe the number of calls of the histogram (), cumsum(),

step (), sort (), and rand () functions, and the total time spent by those functions during
the code's execution. Internal functions are also profiled. For each function, we get the total
number of calls, the total and cumulative times, and their per-call counterparts (division

by ncalls). The total time represents how long the interpreter stays in a given function,
excluding the time spent in calls to subfunctions. The cumulative time is similar but includes
the time spent in calls to subfunctions. The filename, function name, and line number are
displayed in the last column.

The $prun and $%prun magic commands accept multiple optional options (type $prun? for
more details). In the example, - s allows us to sort the report by a particular column, -g to
suppress (quell) the pager output (which is useful when we want to integrate the output in a
notebook), -1 to limit the number of lines displayed or to filter the results by function name
(which is useful when we are interested in a particular function), and -T to save the report

in a text file. In addition, we can choose to save (dump) the binary report in a file with -D, or
to return it in IPython with -r. This database-like object contains all information about the
profiling and can be analyzed through Python's pstats module.

| Every profiler brings its own overhead that can bias the profiling
% results (probe effect). In other words, a profiled program may run
i significantly slower than a non-profiled program. That's a point to
keep in mind.

"Premature optimization is the root of all evil"
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As Donald Knuth's well-known quote suggests, optimizing code prematurely is generally
considered a bad practice. Code optimization should only be conducted when it's really
needed, that is, when the code is really too slow in hormal situations. Additionally, we should
know exactly where we need to optimize our code; typically, the vast majority of the execution
time comprises a relatively small part of the code. The only way to find out is by profiling your
code; optimization should never be done without preliminary profiling.

| was once dealing with some fairly complicated code that was slower
than expected. | thought | had a pretty good idea of what was causing
the problem and how | could resolve it. The solution would involve
significant changes in the code. By profiling my code first, | discovered
~ that my diagnosis was wrong; | had written somewhere max (x)

Q instead of np .max (x) by mistake, where x was a huge vector. It was
Python's built-in function that was called, instead of NumPy's heavily
optimized routine for arrays. If | hadn't profiled my code, | would
probably have missed this mistake forever. The program was working
perfectly fine, only 150 times slower!

For more general advice on programming optimization, see https://en.wikipedia.org/
wiki/Program optimization.

There's more...

Profiling code in IPython is particularly simple (especially in the Notebook), as we have seen
in this recipe. However, it may be undesirable or difficult to execute the code that we need
to profile from IPython (GUIs, for example). In this case, we can use cProfile directly. Itis
slightly less straightforward than with IPython.

1. First, we call the following command:

$ python -m cProfile -o profresults myscript.py

The file profresults will contain the dump of the profiling results of
myscript.py.

2. Then, we execute the following code from Python or IPython to display the profiling
results in a human-readable form:

import pstats
p = pstats.Stats('profresults')
p.strip dirs() .sort_stats("cumulative") .print stats()

Explore the documentation for the cProfile and pstats modules to discover all of
the analyses that you can perform on profiling reports.
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There are a few GUI tools for exploring and visualizing the output of a profiling session.
For example, SnakeViz allows you to view profile dumps in a GUI program.

Here are a few references:
» Documentation of cProfile and pstats, available at https://docs.python.
org/3/library/profile.html
» SnakeViz, available at https://jiffyclub.github.io/snakeviz/

» Heat, a magic command to profile and view Python code as a heat map, at https://
github.com/csurfer/pyheatmagic

» Python profiling tools, available at http://blog.ionelmc.ro/2013/06/08/
python-profiling-tools/

» accelerate.profilingathttps://docs.anaconda.com/accelerate/
profiling

» The Profiling your code line-by-line with line_profiler recipe

Profiling your code line-by-line with

line_profiler

Python's native cProfile module and the corresponding $prun magic break down the
execution time of code function by function. Sometimes, we may need an even more fine-
grained analysis of code performance with a line-by-line report. Such reports can be easier to
read than reports from cProfile.

To profile code line-by-line, we need an external Python module named 1ine profiler.In
this recipe, we will demonstrate how to use this module within IPython.

Getting ready

Toinstall 1ine profiler, type conda install line profiler ina Terminal.



https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://jiffyclub.github.io/snakeviz/
https://github.com/csurfer/pyheatmagic
https://github.com/csurfer/pyheatmagic
http://blog.ionelmc.ro/2013/06/08/python-profiling-tools/
http://blog.ionelmc.ro/2013/06/08/python-profiling-tools/
https://docs.anaconda.com/accelerate/profiling
https://docs.anaconda.com/accelerate/profiling
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How do to it...

We will profile the same simulation code as in the previous recipe, line-by-line.

1. First, let's import NumPy and the 1ine profiler IPython extension module that
comes with the package:

>>> import numpy as np
%$load _ext line profiler

2. This IPython extension module provides an $1prun magic command to profile a
Python function line-by-line. It works best when the function is defined in a file and
not in the interactive namespace or in the Notebook. Therefore, here we write our
code in a Python script using the $%writefile cell magic:

)

>>> $%writefile simulation.py
import numpy as np

def step (*shape) :
# Create a random n-vector with +1 or -1 values.
return 2 * (np.random.random sample (shape)<.5) - 1

def simulate(iterations, n=10000) :
s = step(iterations, n)
X = np.cumsum(s, axis=0)
bins = np.arange(-30, 30, 1)
y = np.vstack([np.histogram(x[i,:], bins) [0]
for 1 in range(iterations)])
return y

3. Now, let's import this script into the interactive namespace so that we can execute
and profile our code:
>>> from simulation import simulate

4. We execute the function under the control of the line profiler. The functions to be

profiled need to be explicitly specified in the $1prun magic command. We also save
the report in a file named 1profo:

>>> %lprun -T lprof0 -f simulate simulate (50)
*x* Profile printout saved to text file 'lprofO'.

5. Let's display the report:

>>> print (open('lprof0', 'r').read())
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Timer unit: le-06 s

Total time: ©.851297 s
Function: simulate at line 7

Line # Hits Time Per Hit % Time Line Contents
7 def simulate(iterations, n=10000):
8 1 25393 25393.0 49.5 s = step(iterations, n)
9 1 1914 1914.0 3.7 X = np.cumsum(s, axis=0)
10 1 22 22.0 6.0 bins = np.arange(-30, 30, 1)
11 1 4 4.0 0.0 y = np.vstack([np.histogram(x[i,:], bins)[0]
12 1 23962 23962.0 46.7 for i in range(iterations)])
13 1 2 2.0 0.0 return y

The $1prun command accepts a Python statement as its main argument. The functions to
profile need to be explicitly specified with - £. Other optional arguments include -D, -T, and
-r, and they work in a similar way to their $prun magic command counterparts.

The 1ine profiler module displays the time spent on each line of the profiled functions,
either in timer units or as a fraction of the total execution time. These details are essential
when we are looking for hotspots in our code.

There's more...

Tracing is a related method. Python's trace module allows us to trace program execution

of Python code. That's particularly useful during in-depth debugging and profiling sessions.
We can follow the entire sequence of instructions executed by the Python interpreter. More
information on the trace module is available at https://docs.python.org/3/library/
trace.html.

In addition, the Online Python Tutor is an online interactive educational tool that can help
us understand what the Python interpreter is doing step-by-step as it executes a program's
source code. The Online Python Tutor is available at http: //pythontutor. com/.

Here are a few references:

» Theline profiler repository at https://github.com/rkern/line
profiler

See also

» The Profiling your code easily with cProfile and IPython recipe

» The Profiling the memory usage of your code with memory_profiler recipe



https://docs.python.org/3/library/trace.html
https://docs.python.org/3/library/trace.html
http://pythontutor.com/
https://github.com/rkern/line_profiler
https://github.com/rkern/line_profiler
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Profiling the memory usage of your code

with memory_profiler

The methods described in the previous recipe were about CPU time profiling. That may be the
most obvious factor when it comes to code profiling. However, memory is also a critical factor.
Writing memory-optimized code is not trivial and can really make your program faster. This is
particularly important when dealing with large NumPy arrays, as we will see later in this chapter.

In this recipe, we will look at a simple memory profiler unsurprisingly named
memory profiler. Its usage is very similarto 1ine profiler, and it can be
conveniently used from IPython.

Getting ready

You can install memory profiler with conda install memory profiler

How to do it...

1. We load the memory profiler IPython extension:

>>> %load ext memory profiler

2. We define a function that allocates big objects:
>>> $%writefile memscript.py
def my func() :
a = [1] * 1000000
b = [2] * 9000000
del b
return a

3. Now, let's run the code under the control of the memory profiler:

>>> from memscript import my func
smprun -T mprof0 -f my func my func()
*x* Profile printout saved to text file mprofo.

4. Let's show the results:

>>> print (open('mprof0', 'r').read())

Line # Mem usage Increment Line Contents
1 93.4 MiB 0.0 MiB def my func() :
2 100.9 MiB 7.5 MiB a = [1] * 1000000
3 169.7 MiB 68.8 MiB b = [2] * 9000000
4 101.1 MiB -68.6 MiB del b
5 101.1 MiB 0.0 MiB return a

We can observe line after line the allocation and deallocation of objects.
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The memory profiler package checks the memory usage of the interpreter at every line.
The increment column allows us to spot those places in the code where large amounts of
memory are allocated. This is especially important when working with arrays. Unnecessary
array creations and copies can considerably slow down a program. We will tackle this issue in
the next few recipes.

There's more...

The memory profiler IPython extension also comes with a $memit magic command that
lets us benchmark the memory used by a single Python statement. Here is a simple example:

>>> $%memit import numpy as np
np.random.randn (1000000)
peak memory: 101.20 MiB, increment: 7.77 MiB

The memory profiler package offers other ways to profile the memory usage of a Python
program, including plotting the memory usage as a function of time. For more details, refer to
the documentation at https://github.com/pythonprofilers/memory profiler.

» The Profiling your code line-by-line with line_profiler recipe

» The Understanding the internals of NumPy to avoid unnecessary array copying recipe

Understanding the internals of NumPy to

avoid unnecessary array copying

We can achieve significant performance speed enhancement with NumPy over native Python
code, particularly when our computations follow the Single Instruction, Multiple Data (SIMD)
paradigm. However, it is also possible to unintentionally write non-optimized code with NumPy.

In the next few recipes, we will see some tricks that can help us write optimized NumPy code.
In this recipe, we will see how to avoid unnecessary array copies in order to save memory. In
that respect, we will need to dig into the internals of NumPy.



https://github.com/pythonprofilers/memory_profiler
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Getting ready

First, we need a way to check whether two arrays share the same underlying data buffer in
memory. Let's define a function aid () that returns the memory location of the underlying
data buffer:

>>> import numpy as np
>>> def aid(x):
# This function returns the memory
# block address of an array.
return x. array interface ['data'] [0]

Two arrays with the same data location (as returned by aid () ) share the same underlying
data buffer. However, the opposite is true only if the arrays have the same offset (meaning
that they have the same first element). Two shared arrays with different offsets will have
slightly different memory locations, as shown in the following example:

>>> a = np.zeros(3)
aid(a), aid(all:])
(21535472, 21535480)

In the next few recipes, we'll make sure to use this method with arrays that have the same
offset. Here is a more general and reliable solution for finding out whether two arrays share
the same data:

>>> def get data base(arr):
"""For a given NumPy array, find the base array
that owns the actual data."""
base = arr
while isinstance (base.base, np.ndarray) :
base = base.base
return base

def arrays share data(x, y):
return get data base(x) is get data base(y)
>>> print (arrays_share data(a, a.copy()))
False
>>> print (arrays_share data(a, al:1]))
True

Thanks to Michael Droettboom for pointing this out and proposing this alternative solution.
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How to do it...

Computations with NumPy arrays may involve internal copies between blocks of memory.
These copies are not always necessary, in which case they should be avoided, as we will see
in the following tips.

1.

We may sometimes need to make a copy of an array; for instance, if we need to
manipulate an array while keeping an original copy in memory:

>>> import numpy as np
a = np.zeros(10)
ax = aid(a)
ax

32250112

>>> b = a.copy()
aid(b) == ax

False

Array computations can involve in-place operations (the first example in the following
code: the array is modified) or implicit-copy operations (the second example: a new
array is created):

>>> a *= 2

aid(a) == ax
True
>>> Cc = a * 2
aid(c) == ax
False

Implicit-copy operations are slower, as shown here:
>>> %$%timeit a = np.zeros(10000000)

a *= 2
4.85 ms + 24 ps per loop (mean + std. dev. of 7 runs,
100 loops each)
>>> %$%timeit a = np.zeros(10000000)

b=a=*2
7.7 ms + 105 ps per loop (mean + std. dev. of 7 runs,

100 loops each)

Reshaping an array may or may not involve a copy. The reasons will be explained in
the How it works... section of this recipe. For instance, reshaping a 2D matrix does
not involve a copy, unless it is transposed (or more generally, non-contiguous):

>>> a = np.zeros ((100, 100))
ax = aid(a)

>>> b = a.reshape((1, -1))
aid(b) == ax

True
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>>> ¢ = a.T.reshape((1, -1))
aid(c) == ax
False

Therefore, the latter instruction is significantly slower than the former:

>>> %$timeit b = a.reshape( (1, -1))

330 ns + 0.517 ns per loop (mean + std. dev. of 7 runs
1000000 loops each)

>>> %$timeit a.T.reshape((1, -1))

5 us + 5.68 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

Both the flatten () and the ravel () methods of an array reshape it into a 1D
vector (a flattened array). However, the flatten () method always returns a copy,
and the ravel () method returns a copy only if necessary (thus it's faster, especially
with large arrays).

>>> d = a.flatten()

aid(d) == ax
False
>>> e = a.ravel ()
aid(e) == ax

True

>>> %$timeit a.flatten()

2.3 ps + 18.1 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

>>> %$timeit a.ravel ()

199 ns + 5.02 ns per loop (mean + std. dev. of 7 runs,
10000000 loops each)

Broadcasting rules allow us to make computations on arrays with different but
compatible shapes. In other words, we don't always need to reshape or tile our arrays
to make their shapes match. The following example illustrates two ways of doing an
outer product between two vectors: the first method involves array tiling, the second
one (faster) involves broadcasting:

>>> n = 1000
>>> a = np.arange (n)

ac = al:, np.newaxis] # column vector
ar = alnp.newaxis, :] # row vector
>>> %$timeit np.tile(ac, (1, n)) * np.tile(ar, (n, 1))

5.7 ms + 42.6 us per loop (mean + std. dev. of 7 runs,
100 loops each)

>>> %$timeit ar * ac

784 ps + 2.39 us per loop (mean + std. dev. of 7 runs,
1000 loops each)
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In this section, we will see what happens under-the-hood when using NumPy, and how this
knowledge allows us to understand the tricks given in this recipe.

Why are NumPy arrays efficient?

A NumPy array is basically described by metadata (notably the number of dimensions, the shape,
and the data type) and the actual data. The data is stored in a homogeneous and contiguous
block of memory, at a particular address in system memory (Random Access Memory (RAM)).
This block of memory is called the data buffer. This is the main difference between an array and
a pure Python structure, such as a list, where the items are scattered across the system memory.
This aspect is the critical feature that makes NumPy arrays so efficient.

Why is this so important? Here are the main reasons:

>

Computations on arrays can be written very efficiently in a low-level language such
as C (and a large part of NumPy is actually written in C). Knowing the address of the
memory block and the data type, it is just simple arithmetic to loop over all items, for
example. There would be a significant overhead if we did that in Python with a list.

Spatial locality in memory access patterns results in performance gains notably
due to the CPU cache. Indeed, the cache loads bytes in chunks from the RAM to the
CPU registers. Adjacent items are then loaded very efficiently (sequential locality, or
locality of reference).

Finally, the fact that items are stored contiguously in memory allows NumPy to take
advantage of vectorized instructions of modern CPUs, such as Intel's SSE and AVX,
AMD's XOP, and so on. For example, multiple consecutive floating point numbers can
be loaded in 128-, 256-, or 512-bit registers for vectorized arithmetical computations
implemented as CPU instructions.

Additionally, NumPy can be linked to highly optimized linear algebra
4 libraries such as BLAS and LAPACK through ATLAS or the Intel
Math Kernel Library (MKL). A few specific matrix computations may
S . )
also be multithreaded, taking advantage of the power of modern
multicore processors.

In conclusion, storing data in a contiguous block of memory ensures that the architecture
of modern CPUs is used optimally, in terms of memory access patterns, CPU cache, and
vectorized instructions.
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What is the difference between in-place and implicit-copy
operations?

Let's explain the example in step 2. An expression such as a *= 2 corresponds to an in-place
operation, where all values of the array are multiplied by two. By contrast, a = a*2 means
that a new array containing the values of a*2 is created, and the variable a now points to this
new array. The old array becomes unreferenced and will be deleted by the garbage collector.
No memory allocation happens in the first case, unlike the second case.

More generally, expressions such as a [1:j] are views to parts of an array; they point to the
memory buffer containing the data. Modifying them with in-place operations changes the
original array.

Knowing this subtlety of NumPy can help you fix some bugs (where an array is implicitly and
unintentionally modified because of an operation on a view), and optimize the speed and
memory consumption of your code by reducing the number of unnecessary copies.

Why can't some arrays be reshaped without a copy?

We explain the example in step 3 here, where a transposed 2D matrix cannot be flattened
without a copy. A 2D matrix contains items indexed by two numbers (row and column), but

it is stored internally as a 1D contiguous block of memory, accessible with a single number.
There is more than one way of storing matrix items in a 1D block of memory: we can put the
elements of the first row first, then the second row, and so on, or the elements of the first
column first, then the second column, and so on. The first method is called row-major order,
whereas the latter is called column-major order. Choosing between the two methods is only a
matter of internal convention: NumPy uses row-major order, like C, but unlike FORTRAN.

How the array is represented in Numpy How the array is stored in memory

Row Major R ‘
Order (C)

(default in NumPy)

Column Major —_—
Order (Fortran)

Internal array layouts: row-major and column-major orders

More generally, NumPy uses the notion of strides to convert between a multidimensional
index and the memory location of the underlying (1D) sequence of elements. The specific
mapping between array [1i1, i2] and the relevant byte address of the internal data is
given by:

offset = array.strides[0] * il + array.strides[1l] * i2

140



Chapter 4

When reshaping an array, NumPy avoids copies when possible by modifying the strides
attribute. For example, when transposing a matrix, the order of strides is reversed, but
the underlying data remains identical. However, flattening a transposed array cannot be
accomplished simply by modifying strides, so a copy is needed.

Internal array layout can also explain some unexpected performance discrepancies
between very similar NumPy operations. As a small exercise, can you explain the
following benchmarks?

>>> a = np.random.rand (5000, 5000)

>>> %$timeit a0, :].sum()

2.91 ps + 20 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

>>> %$timeit afl:, 0] .sum()

33.7 ps + 22.7 ns per loop (mean + std. dev. of 7 runs
10000 loops each)

What are NumPy broadcasting rules?

Broadcasting rules describe how arrays with different dimensions and/or shapes can be
used for computations. The general rule is that two dimensions are compatible when they
are equal, or when one of them is 1. NumPy uses this rule to compare the shapes of the two
arrays element-wise, starting with the trailing dimensions and working its way forward. The
smallest dimension is internally stretched to match the other dimension, but this operation
does not involve any memory copy.

Here are a few references:
» Broadcasting rules and examples, available at http://docs.scipy.org/doc/
numpy/user/basics.broadcasting.html

» Array interface in NumPy, at http://docs.scipy.org/doc/numpy/reference/
arrays.interface.html

» Locality of reference, at https://en.wikipedia.org/wiki/Locality of
reference

» Internals of NumPy in the SciPy lectures notes, available at http://scipy-
lectures.github.io/advanced/advanced numpy/

» 100 NumPy exercises by Nicolas Rougier, available at http://www.loria.
fr/~rougier/teaching/numpy.100/index.html

» The Using stride tricks with NumPy recipe
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Using stride tricks with NumPy

In this recipe, we will dig deeper into the internals of NumPy arrays, by generalizing the notion
of row-major and column-major orders to multidimensional arrays. The general notion is that
of strides, which describe how the items of a multidimensional array are organized within a
one-dimensional data buffer. Strides are mostly an implementation detail, but they can also
be used in specific situations to optimize some algorithms.

Getting ready

We suppose that NumPy has been imported and that the aid () function has been defined
(refer to the Understanding the internals of NumPy to avoid unnecessary array copying recipe).

>>> import numpy as np

>>> def aid(x):

# This function returns the memory
# block address of an array.
return x. array interface ['data'] [0]

How to do it...
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Strides are integer numbers describing the byte step in the contiguous block of
memory for each dimension.

>>> X = np.zeros(10)

x.strides
(8,)

This vector x contains double-precision floating point numbers (f1loat64, 8 bytes);
you need to go 8 bytes forward to go from one item to the next.

Now, let's look at the strides of a 2D array:

>>> y = np.zeros((10, 10))
y.strides
(80, 8)

In the first dimension (vertical), you need to go 80 bytes (10 f1loat64 items) forward
to go from one item to the next, because the items are internally stored in row-major
order. In the second dimension (horizontal), you need to go 8 bytes forward to go from
one item to the next.

Let's show how we can revisit the broadcasting rules from the previous recipe
using strides:

>>> n = 1000

a = np.arange (n)
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We will create a new array, b, pointing to the same memory block as a, but with a
different shape and different strides. This new array will look like a vertically-tiled
version of a. We use a special function in NumPy to change the strides of an array:

>>> b = np.lib.stride tricks.as_strided(a, (n, n), (0, 8))

>>> b

array([[ O, 1, 2, , 997, 998, 999],
[ o0, 1, 2, ..., 997, 998, 9991,
[ o0, 1, 2, ..., 997, 998, 9991,
[ o0, 1, 2, ..., 997, 998, 9991,
[ o0, 1, 2, ..., 997, 998, 9991,
[ o0, 1, 2, ..., 997, 998, 99911)

>>> b.size, b.shape, b.nbytes
(1000000, (1000, 1000), 8000000)

NumPy believes that this array contains one million different elements, whereas the
data buffer actually contains the same 1,000 elements as a.

4. We can now perform an efficient outer product using the same principle as with
broadcasting rules:

>>> %$timeit b * b.T
766 pus + 2.59 ps per loop (mean + std. dev. of 7 runs,
1000 loops each)
>>> %$%timeit

np.tile(a, (n, 1)) * np.tile(al:, np.newaxis], (1, n))
5.55 ms + 9.1 ps per loop (mean + std. dev. of 7 runs,

100 loops each)

Every array has a number of dimensions, a shape, a data type, and strides. Strides describe
how the items of a multidimensional array are organized in the data buffer. There are many
different schemes for arranging the items of a multidimensional array in a one-dimensional
block. NumPy implements a strided indexing scheme, where the position of any element is

a linear combination of the dimensions, the coefficients being the strides. In other words,
strides describe, in any dimension, how many bytes we need to jump over in the data buffer to
go from one item to the next.
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The position of any element in a multidimensional array is given by a linear combination of its
indices, as follows:

an array oneitem
ndim = N indices = (i, ....iny_1)
shape = (dg, . ... dx—1) N-1
strides = (sg,..., sv—1) position = Z Sk
itemsize = a fe=00
examples: column-major and row-major orders

k—1 N—-1

Hi‘ullmm _ H n'”l'j- HLO\" — H (\(!’_—;‘

=0 j=k+1

Strides

Artificially changing the strides allows us to make some array operations more efficient than
with standard methods, which may involve array copies. Internally, that's how broadcasting
works in NumPy.

The as_strided () method takes an array, a shape, and strides as arguments. It creates a
new array, but uses the same data buffer as the original array. The only thing that changes

is the metadata. This trick lets us manipulate NumPy arrays as usual, except that they may
take much less memory than what NumPy thinks. Here, using O in the strides implies that any
array item can be addressed by many multidimensional indices, resulting in memory savings.

Be very careful with strided arrays! The as_strided () function does
. not check whether you stay inside the memory block bounds. This
~> means that you need to handle edge effects manually; otherwise, you
Q may end up with garbage values in your arrays. The documentation
says: "This function has to be used with extreme care, see notes. (...) It
is advisable to avoid as_strided () when possible."

We will see a more useful application of stride tricks in the next recipe.

» The Implementing an efficient rolling average algorithm with stride tricks recipe
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Implementing an efficient rolling average

algorithm with stride tricks

Stride tricks can be useful for local computations on arrays, when the computed value at a
given position depends on the neighboring values. Examples include dynamical systems,
digital filters, and cellular automata.

In this recipe, we will implement an efficient rolling average algorithm (a particular type
of convolution-based linear filter) with NumPy stride tricks. A rolling average of a 1D vector
contains, at each position, the average of the elements around this position in the original
vector. Roughly speaking, this process filters out the noisy components of a signal so as to
keep only the slower components.

How to do it...

The idea is to start from a 1D vector, and make a virtual 2D array where each line is a shifted
version of the previous line. When using stride tricks, this process is very efficient as it does
not involve any copy.

1.

Let's generate a 1D vector:

>>> import numpy as np
from numpy.lib.stride tricks import as_ strided
>>> def aid(x) :
# This function returns the memory
# block address of an array.

return x. array interface ['data'] [0]
>>>n =5
k =2

a = np.linspace(1l, n, n)
ax = aid(a)

Let's change the strides of a to add shifted rows:

>>> as_strided(a, (k, n), (8, 8))
array([[ 1e+000, 2e+000, 3e+000, 4e+000, 5e+000],
[ 2e+000, 3e+000, 4e+000, 5e+000, 9e-32111)

The last value indicates an out-of-bounds problem: stride tricks can be dangerous as
memory access is not checked. Here, we should take edge effects into account by
limiting the shape of the array.
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Now, let's implement the computation of the rolling average. The first version
(standard method) involves explicit array copies, whereas the second version uses
stride tricks:
>>> def shiftl(x, k):
return np.vstack([x[i:n - k + 1 + 1]
for i in range(k)1])
>>> def shift2(x, k):
return as_strided(x, (k, n - k + 1),
(x.ltemsize, x.itemsize))

These two functions return the same result, except that the array returned by the
second function refers to the original data buffer:

>>> b = shiftl(a, k)

>>> b
array([[ 1., 2., 3., 4.]
[ 2., 3., 4., 5.11)
>>> aid(b) == ax
False

And now with the second function:
>>> ¢ = shift2(a, k)

>>> C
array([[ 1., 2., 3., 4.]
[ 2., 3., 4., 5.11)
>>> aid(c) == ax
True

Let's generate a signal:
>>> n, k = 1000, 10
t = np.linspace(0., 1., n)
X =t + .1 * np.random.randn (n)

We compute the signal rolling average by creating the shifted version of the signal,
and averaging along the vertical dimension:
>>> y = shift2(x, k)

X_avg = y.mean(axis=0)

Let's plot these arrays:

>>> import matplotlib.pyplot as plt
$matplotlib inline

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot(x[:-k + 1], '-k', lw=1, alpha=.5)
ax.plot (x avg, '-k', 1lw=2)
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Let's evaluate the time taken by the first method:

>>> %timeit shiftl (x, k)

15.4 ps + 302 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

>>> $%timeit y = shiftl(x, k)
z = y.mean(axis=0)

10.3 pus + 123 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

Here, most of the total time is spent in the array copy (the shift1 () function).
Let's benchmark the second method:

>>> %timeit shift2 (x, k)

4.77 pus + 70.3 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

>>> $%timeit y = shift2(x, k)
z = y.mean(axis=0)

9 us + 179 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

This time, thanks to the stride tricks, most of the time is instead spent in the
computation of the average.

>

The Using stride tricks with NumPy recipe
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Processing large NumPy arrays with

memory mapping

Sometimes, we need to deal with NumPy arrays that are too big to fit in the system memory.
A common solution is to use memory mapping and implement out-of-core computations.
The array is stored in a file on the hard drive, and we create a memory-mapped object to this
file that can be used as a regular NumPy array. Accessing a portion of the array results in
the corresponding data being automatically fetched from the hard drive. Therefore, we only
consume what we use.

How to do it...

1. Let's create a memory-mapped array in write mode:

>>> import numpy as np

>>> nrows, ncols = 1000000, 100

>>> f = np.memmap ('memmapped.dat', dtype=np.float32,
mode="'w+"', shape=(nrows, ncols))

2. Let's feed the array with random values, one column at a time because our system's
memory is limited!
>>> for i in range(ncols):
f[:, i] = np.random.rand (nrows)
We save the last column of the array:

>>> x = f£[:, -1]

3. Now, we flush memory changes to disk by deleting the object:
>>> del £

4. Reading a memory-mapped array from disk involves the same memmap () function.
The data type and the shape need to be specified again, as this information is not
stored in the file:

>>> f = np.memmap ('memmapped.dat', dtype=np.float32,
shape=(nrows, ncols))

>>> np.array equal (f[:, -1]1, x)
True
>>> del f
sl This method is not adapted for long-term storage of data and data

Q sharing. The following recipe in this chapter will show a better way
based on the HDF5 file format.
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Memory mapping lets you work with huge arrays almost as if they were regular arrays. Python
code that accepts a NumPy array as input will also accept a memmap array. However, we

need to ensure that the array is used efficiently. That is, the array is never loaded as a whole
(otherwise, it would waste system memory and would obviate any advantage of the technique).

Memory mapping is also useful when you have a huge file containing raw data in a
homogeneous binary format with a known data type and shape. In this case, an alternative
solution is to use NumPy's fromfile () function with a file handle created with Python's
native open () function. Using £ . seek () lets you position the cursor at any location and load
a given number of bytes into a NumPy array.

There's more...

Another way of dealing with huge NumPy matrices is to use sparse matrices through SciPy's
sparse subpackage. It is adapted to when matrices contain mostly zeros, as is often the
case with simulations of partial differential equations, graph algorithms, or specific machine
learning applications. Representing matrices as dense structures can be a waste of memory,
and sparse matrices offer a more efficient compressed representation.

Using sparse matrices in SciPy is not straightforward as multiple implementations exist. Each
implementation is best for a particular kind of application. Here are a few references:

» SciPy lecture notes about sparse matrices, available at http://scipy-lectures.
github.io/advanced/scipy sparse/index.html

» Reference documentation on sparse matrices, at http://docs.scipy.org/doc/
scipy/reference/sparse.html

» Documentation of memmap, at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.memmap .html

See also

» The Manipulating large arrays with HDF5 recipe

» The Performing out-of-core computations on large arrays with Dask recipe in Chapter
5, High-Performance Computing
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Manipulating large arrays with HDF5

NumPy arrays can be persistently saved on disk using built-in functions in NumPy such as
np.savetxt (), np.save (), ornp.savez (), and loaded in memory using analogous
functions. Common file formats for data arrays include raw binary files as in the previous
recipe, the NPY file format implemented by NumPy (raw binary files with a header containing
the metadata), and Hierarchical Data Format (HDF5).

An HDF5 file contains one or several datasets (arrays or heterogeneous tables) organized into
a POSIX-like hierarchy. Datasets may be accessed lazily with memory mapping. In this recipe,
we will use h5py, a Python package designed to deal with HDF5 files with a NumPy-like
programming interface.

Getting ready

You need h5py for this recipe and the next one. It should be included with Anaconda, but you
can also install it with conda install h5py.

How to do it...

1. First, we need to import NumPy and h5py:
>>> import numpy as np
import h5py
2. Let's create a new empty HDF5 file in write mode:
>>> £ = hb5py.File('myfile.h5', 'w')
3. We create a new top-level group named experiment1:
>>> f.create group('/experimentl')

<HDF5 group "/experimentl" (0 members) >

4. Let's also add some metadata to this group:
>>> f['/experimentl'].attrs['date'] = '2018-01-01"

5. Inthis group, we create a 1000 * 1000 array hnamed arrayl:

>>> X = np.random.rand (1000, 1000)
f['/experimentl'] .create dataset ('arrayl', data=x)
<HDF5 dataset "arrayl": shape (1000, 1000), type "<f8">

6. Finally, we need to close the file to commit the changes to disk:

>>> f.close()
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7. Now, let's open this file in read mode. We could have done this in another Python
session since the array has been saved in the HDF5 file.

>>> f = h5py.File('myfile.h5', 'r')

8. We can retrieve an attribute by giving the group path and the attribute name:

>>> f['/experimentl'].attrs['date']
'2018-01-01"

9. Let's access our array:
>>> y = f['/experimentl/arrayl']

type (y)
h5py. _hl.dataset.Dataset

10. The array can be used as a NumPy array, but an important distinction is that it is
stored on disk instead of system memory. Performing a computation on this array
automatically loads the requested section of the array into memory, thus it is more
efficient to access only the array's views.

>>> np.array equal(x[0, :], yl[0, :1)
True

11. We're done for this recipe, so let's do some clean-up:

>>> f.close()
>>> import os
os.remove ('myfile.h5"')

In this recipe, we stored a single array in the file, but HDF5 is especially useful when many
arrays need to be saved in a single file. HDF5 is generally used in big projects, when large
arrays have to be organized within a hierarchical structure. For example, it is largely used at
NASA and other scientific institutions. Researchers can store recorded data across multiple
devices, multiple trials, and multiple experiments.

In HDF5, the data is organized within a tree. Nodes are either groups (analogous to folders in
a file system) or datasets (analogous to files). A group can contain subgroups and datasets,
whereas datasets only contain data. Both groups and datasets can contain attributes
(metadata) that have a basic data type (integer or floating point number, string, and so on).

HDF?5 files created with h5py can be accessed in other languages such as C, FORTRAN,
MATLAB, and others.
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In HDF5, a dataset may be stored in a contiguous block of memory, or in chunks. Chunks
are atomic objects and HDF5 can only read and write entire chunks. Chunks are internally
organized within a tree data structure called a B-tree. When we create a new array or table,
we can specify the chunk shape. It is an internal detail, but it can greatly affect performance
when writing and reading parts of the dataset.

The optimal chunk shape depends on how we plan to access the data. There is a trade-off
between many small chunks (large overhead due to managing lots of chunks) and a few large
chunks (inefficient disk I/0). In general, the chunk size is recommended to be smaller than

1 MB. The chunk cache is also an important parameter that may affect performance.

Another HDF5 library in Python is PyTables. There is work in progress
to make the two libraries share more code and reduce the duplication
e of development efforts.

Here are a few references:
» NPY file format at https://docs.scipy.org/doc/numpy-dev/neps/npy-
format.html
» hSpyathttp://www.h5py.org/

» HDF5 chunking, at http://www.hdfgroup.org/HDF5/doc/Advanced/
Chunking/

» Python and HDF5, a vision, https://www.hdfgroup.org/2015/09/python-
hdf5-a-vision/

» PyTables optimization guide, available at http://pytables.github.io/
usersguide/optimization.html

» Difference between PyTables and h5py, from the perspective of hspy, at https://
github.com/hS5py/h5py/wiki/FAQ#whats-the-difference-between-
hS5py-and-pytables

» A personal piece about the limitations of HDF5, at http://cyrille.rossant.
net/moving-away-hdfs/

» Processing huge NumPy arrays with memory mapping
» Manipulating large heterogeneous tables with HDF5

» The Ten tips for conducting reproducible interactive computing experiments recipe
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High-Performance
Computing

In this chapter, we will cover the following topics:

» Using Python to write faster code

» Accelerating pure Python code with Numba and Just-In-Time compilation
» Accelerating array computations with NumExpr

» Wrapping a C library in Python with ctypes

» Accelerating Python code with Cython

» Optimizing Cython code by writing less Python and more C

» Releasing the GIL to take advantage of multi-core processors with Cython
and OpenMP

»  Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA
» Distributing Python code across multiple cores with IPython

» Interacting with asynchronous parallel tasks in IPython

» Performing out-of-core computations on large arrays with Dask

» Trying the Julia programming language in the Jupyter Notebook

Introduction

The previous chapter presented techniques for code optimization. Sometimes, these
methods are not sufficient, and we need to resort to advanced high-performance
computing techniques.
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In this chapter, we will see three broad, but not mutually exclusive, categories of methods:

» Just-In-Time (JIT) compilation of Python code
» Resorting to a lower-level language, such as C, from Python
» Dispatching tasks across multiple computing units using parallel computing

With JIT compilation, Python code is dynamically compiled into a lower-level language.
Compilation occurs at runtime rather than ahead of execution. The translated code runs faster
since it is compiled rather than interpreted. JIT compilation is a popular technique as it can
lead to fast and high-level languages, whereas these two characteristics used to be mutually
exclusive in general.

JIT compilation techniques are implemented in packages such as Numba or NumExpr,
which we will cover in this chapter.

We will also use Julia, a programming language that uses JIT compilation to achieve high
performance. This language can be used effectively in the Jupyter Notebook, thanks to the
lJulia package.

PyPy (http://pypy .org), successor to Psyco, is another related project.
This alternative implementation of Python (the reference implementation
4 being CPython) integrates a JIT compiler. Thus, it is typically faster than
% CPython. Since October 2017, PyPy supports NumPy and Pandas (but
’ with Legacy Python rather than Python 3). See https://morepypy .
blogspot.fr/2017/10/pypy-v59-released-now-supports-
pandas.html for more details.

Resorting to a lower-level language such as C is another interesting method. Popular libraries
include ctypes and Cython. Using ctypes requires writing C code and having accesstoa C
compiler, or using a compiled C library. By contrast, Cython lets us write code in a superset
of Python, which is translated to C with various performance results. In this chapter, we will
cover ctypes and Cython, and we will see how to achieve interesting speed enhancement on
relatively complex examples.

Finally, we will cover two classes of parallel computing techniques: using multiple CPU
cores with IPython and using massively parallel architectures such as Graphics Processing
Units (GPUs).
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Here are a few references:

» Interfacing Python with C, a tutorial in the scikit-learn lectures notes available at
http://scipy-lectures.github.io/advanced/interfacing with c/
interfacing with c.html

» Extending Python with C or C++, at https://docs.python.org/3.6/
extending/extending.html

» xtensor, a NumPy-like library in C++ at http://quantstack.net/xtensor

CPython and concurrent programming

The mainstream implementation of the Python language is CPython, written in C. CPython
integrates a mechanism called Global Interpreter Lock (GIL). This is discussed at
http://wiki.python.org/moin/GlobalInterpreterLock:

"The GIL facilitates memory management by preventing multiple native threads
from executing Python bytecodes at once."

In other words, by disabling concurrent threads within one Python process, the GIL
considerably simplifies the memory management system. Memory management is
therefore not thread-safe in CPython.

An important implication is that CPython makes it non trivial to leverage multiple CPUs in a
single Python process. This is an important issue as modern processors contain more and
more cores.

What possible solutions do we have in order to take advantage of multi-core processors?

» Removing the GIL in CPython. This solution has been tried but has never made it into
CPython. It would bring too much complexity in the implementation of CPython, and it
would degrade the performance of single-threaded programs.

» Using multiple processes instead of multiple threads. This is a popular solution; it can
be done with the native multiprocessing module or with IPython. We will cover this
latter in this chapter.

» Rewriting specific portions of your code in Cython and replacing all Python variables
with C variables. This allows you to remove the GIL temporarily in a loop, thereby
enabling use of multi-core processors. We will cover this solution in the Releasing
the GIL to take advantage of multi-core processors with Cython and OpenMP recipe.

» Implementing a specific portion of your code in a language that offers better support
for multi-core processors and calling it from your Python program.

» Making your code use the NumPy functions that benefit from multi-core
processors, such as numpy . dot (). NumPy needs to be compiled with
BLAS/LAPACK/ATLAS/MKL.
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A must-read reference on the GIL can be found at http://www.dabeaz.com/GIL/.

Compiler-related installation instructions

In this section, we will give a few instructions on using compilers with Python. Use cases
include using ctypes, using Cython, and building C extensions for Python.

On Linux, you should install GCC. For example, on Ubuntu type sudo apt-get install
build-essential in a Terminal.

On macO0S, install Xcode or the Xcode Command Line Tools. Alternatively, type gcc in a
Terminal. If it is not installed, macOS should provide you with some options to install it.

On Windows, install a version of Microsoft Visual Studio, Visual C++, or the Visual C++ Build
Tools that corresponds to your version of Python. If you use Python 3.6 (which is the latest
stable version of Python at the time of writing), the corresponding version of the Microsoft
compiler is 2017. All of these programs are free or have a free version that is sufficient

for Python.

Here are a few references:
» Documentation for Installing Cython at http://cython.readthedocs.io/en/
latest/src/quickstart/install . html

» Windows compilers for Python, at https://wiki.python.org/moin/
WindowsCompilers

» Microsoft Visual Studio downloads at https://www.visualstudio.com/
downloads/

Using Python to write faster code

The first way to make Python code run faster is to know all features of the language. Python
brings many syntax features and modules in the standard library that run much faster than
anything you could write by hand. Moreover, although Python may be slow if you write in
Python like you would write in C or Java, it is often fast enough when you write Pythonic code.

In this section, we show how badly-written Python code can be significantly improved when
using all the features of the language.
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Leveraging NumPy for efficient array operations is of course another
possibility that we explored in the Introducing the multidimensional array in
. NumpPy for fast array computations recipe in Chapter 1, A Tour of Interactive
% Computing with Jupyter and IPython. This recipe focuses on cases where,

s for one reason or another, depending on and using NumPy is not a possible
or desirable option. For example, operations on dictionaries, graphs, or text
may be easier to write in Python than in NumPy. In these cases, Python
brings many features that can still let you make your code faster.

How to do it...

1. Let's define a list of normally-distributed random variables, using the random built-in
module instead of NumPy.

>>> import random
1 = [random.normalvariate(0,1) for i in range(100000)]

2. Let's write a function that computes the sum of all numbers in that list. Someone
inexperienced with Python may write in Python as if it was C, which would give the
following function:

>>> def suml() :
# BAD: not Pythonic and slow
res = 0
for i in range(len(l)):
res = res + 1[i]
return res
>>> suml ()
319.346
>>> %$timeit suml ()
6.64 ms + 69.1 pus per loop (mean + std. dev. of 7 runs,

100 loops each)

Six milliseconds to compute the sum of only 100,000 numbers is slow, which may
lead some to say rather unfairly that Python is slow.

3. Now, let's write a slightly improved version of this code, taking into account the fact
that we can enumerate the elements of a list using for x in 1 instead of iterating
with an index:

>>> def sum2 () :
# STILL BAD
res = 0
for x in 1:
res = res + X
return res
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>>> sum2 ()

319.346

>>> %$timeit sum2 ()

3.3 ms + 54.7 ps per loop (mean + std. dev. of 7 runs,
100 loops each)

This slight modification gave us a two-fold speed improvement.

4. Finally, we realize that Python brings a built-in function to compute the sum of all
elements in a list:

>>> def sum3 () :
# GOOD
return sum(1l)
>>> sum3 ()
319.346
>>> %$timeit sum3 ()
391 ps + 840 ns per loop (mean + std. dev. of 7 runs,
1000 loops each)

This version is 17 times faster than the first version, and we only wrote pure
Python code!

5. Let's move to another example involving strings. We'll create a list of strings
representing all numbers in our previous list:

>>> strings = ['%$.3f' % x for x in 1]
>>> strings[:3]
['-0.056', '-0.417', '-0.357']

6. We define a function concatenating all strings in that list. Again, an inexperienced
Python programmer could write code such as the following:

>>> def concatl():
# BAD: not Pythonic
cat = strings|[0]
for s in strings([1l:]:
cat = cat + ', ' + s
return cat
>>> concatl () [:24]
'-0.056, -0.417, -0.357, !
>>> %$timeit concatl ()
1.31 s + 12.1 ms per loop (mean + std. dev. of 7 runs,
1 loop each)

This function is very slow because a large number of tiny strings are allocated.
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Next, we realize that Python offers the option to easily concatenate several strings:

>>> def concat2() :
# GOOD
return ', '.join(strings)
>>> concat2 () [:24]
'-0.056, -0.417, -0.357, '
>>> %$timeit concat2 ()
797 ps + 13.7 pus per loop (mean + std. dev. of 7 runs,
1000 loops each)

This function is 1640 times faster!

Finally, we want to count the number of occurrences of all numbers between O and
99 in a list containing 100,000 integers between O and 99:

>>> 1 = [random.randint (0, 100) for _ in range(100000)]

The naive way would be to iterate over all elements in the list and construct the
histogram using a dictionary:

>>> def histl():
# BAD
count = {}
for x in 1:
# We need to initialize every number
# the first time it appears in the list.
if x not in count:
count [x] = 0
count [x] += 1
return count
>>> histl ()
{o: 979,
1: 971,
2: 990,

99: 995,

100: 1009}

>>> %$timeit histl ()

8.7 ms + 27.6 us per loop (mean + std. dev. of 7 runs,

100 loops each)

. Next, we realize that Python offers a defaultdict structure that handles the
automatic creation of dictionary keys:

>>> from collections import defaultdict
>>> def hist2():
# BETTER
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count = defaultdict (int)
for x in 1:
# The key is created and the value
# initialized at 0 when needed.
count [x] += 1
return count
>>> hist2()
defaultdict (int,

{o: 979,
1: 971,
99: 995,

100: 1009})
>>> %$timeit hist2()
6.82 ms + 217 us per loop (mean + std. dev. of 7 runs,
100 loops each)

This version is slightly faster.

Finally, we realize that the built-in collections module offers a Counter class that
does exactly what we need:

>>> from collections import Counter
>>> def hist3():
# GOOD
return Counter (1)
>>> hist3()
Counter ({0: 979,

1: 971,
99: 995,
100: 1009})

>>> %$timeit hist3()
3.69 ms + 105 ps per loop (mean + std. dev. of 7 runs,
100 loops each)

This version is twice as fast as the first one.

There's more...

When your code is too slow, the first step is to make sure you're not reinventing the wheel and
that you're making good use of all the features of the language.
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You can have an overview of all the syntax features and built-in modules of Python by reading
the documentation and other references:

» Documentation for Python 3 at https://docs.python.org/3/library/index.
html

» Python Cookbook, 3rd Edition, Brian Jones and David Beazley, O'Reilly Media at
http://shop.oreilly.com/product/0636920027072.do

» The Using the latest features of Python 3 recipe, in Chapter 2, Best Practices in
Interactive Computing

Accelerating pure Python code with Numba

and Just-In-Time compilation

Numba (http://numba.pydata.org) is a package created by Anaconda, Inc (http://
www . anaconda . com). Numba takes pure Python code and translates it automatically (JIT)
into optimized machine code. In practice, this means that we can write a non-vectorized
function in pure Python, using for loops, and have this function vectorized automatically by
using a single decorator. Performance speedups when compared to pure Python code can
reach several orders of magnitude and may even outmatch manually-vectorized NumPy code.

In this section, we will show you how to accelerate pure Python code generating a
Mandelbrot fractal.

Getting ready

Numba should already be installed in Anaconda, but you can also install it manually with
conda install numba

How to do it...

1. Let'simport NumPy and define a few variables:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

>>> size = 400
iterations = 100



https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://shop.oreilly.com/product/0636920027072.do
http://numba.pydata.org
http://www.anaconda.com
http://www.anaconda.com
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2. The following function generates a fractal in pure Python. It accepts an empty array m
as argument.

>>> def mandelbrot python(size, iteratiomns):
m = np.zeros((size, size))
for i in range(size):
for j in range(size):

c (-2 + 3. / size * J +

1j * (1.5 - 3. / size * 1))
z =0

for n in range(iterations) :

if np.abs(z) <= 10:

Z =2 * Z + C

m[i, j] = n
else:

break

return m

3. Let's run the simulation and display the fractal:

>>> m = mandelbrot_python(size, iterations)

>>> fig, ax = plt.subplots(1l, 1, figsize=(10, 10))
ax.imshow (np.log(m), cmap=plt.cm.hot)
ax.set_axis_off ()
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4. Now, we evaluate the time taken by this function:

>>> %timeit mandelbrot python(size, iterations)
5.45 s + 18.6 ms per loop (mean + std. dev. of 7 runs,
1 loop each)

5. Let's try to accelerate this function using Numba. First, we import the package:

>>> from numba import jit

6. Next, we add the @j it decorator right above the function definition, without changing
a single line of code in the body of the function:
>>> @jit
def mandelbrot numba (size, iterations):
m = np.zeros((size, size))
for i in range(size):
for j in range(size):
c

(-2 + 3. / size * J +

1j * (1.5 - 3. / size * 1i))
0

for n in range(iterations) :

if np.abs(z) <= 10:

N
1]

Z =2 * Z + C

m[i, j] =n
else:

break

return m

7. This function works just like the pure Python version. How much faster is it?

>>> mandelbrot_numba (size, iterations)

>>> %timeit mandelbrot numba(size, iterations)

34.5 ms + 59.4 ps per loop (mean + std. dev. of 7 runs,
10 loops each)

The Numba version is about 150 times faster than the pure Python version here!

Python bytecode is normally interpreted at runtime by the Python interpreter (most often,
CPython). By contrast, a Numba function is parsed and translated directly to machine code

ahead of execution, using a powerful compiler architecture named Low Level Virtual Machine
(LLVM).
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Numba supports a significant but not exhaustive subset of Python semantics. You can find a
list of supported Python features at http://numba.pydata.org/numba-doc/latest/
reference/pysupported.html. When Numba cannot compile Python code to assembly,
it will automatically fall back to a much slower mode. You can prevent this behavior with @
jit (nopython=True).

Numba generally gives the most impressive speedups on functions that involve tight loops
on NumPy arrays (such as in this recipe). This is because there is an overhead running loops
in Python, and this overhead becomes non-negligible when there are many iterations of a
few cheap operations. In this example, the number of iterations is size * size * iterations =
16,000,000.

There's more...

Let's compare the performance of Numba with manually-vectorized code using NumPy,
which is the standard way of accelerating pure Python code such as the code given in this
recipe. In practice, it means replacing the code inside the two loops over i and j with
array computations. This is relatively easy here as the operations closely follow the Single
Instruction, Multiple Data (SIMD) paradigm:

>>> def initialize(size):
X, Yy = np.meshgrid(np.linspace(-2, 1, size),
np.linspace(-1.5, 1.5, size))
c=x+1j * vy
z = c.copy ()
m = np.zeros((size, size))
return ¢, z, m
>>> def mandelbrot numpy(c, z, m, iteratiomns):
for n in range(iterations) :
indices = np.abs(z) <= 10
z[indices] = z[indices] ** 2 + c[indices]
m[indices] = n
>>> %$%timeit -nl -rl1l0 ¢, z, m = initialize(size)
mandelbrot numpy(c, z, m, iterations)
174 ms + 2.91 ms per loop (mean + std. dev. of 10 runs,

1 loop each)
In this example, Numba still beats NumPy.

Numba supports many other features, such as multiprocessing and GPU computing.



http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
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Here are a few references:

» Documentation for Numba available at http://numba.pydata.org

» Supported Python features in Numba, available at http: //numba.pydata.org/
numba-doc/latest/reference/pysupported.html

» Supported NumPy features in Numba, available at http://numba.pydata.org/
numba-doc/latest/reference/numpysupported.html

» The Accelerating array computations with NumExpr recipe

Accelerating array computations with

NumExpr

NumExpr is a package that can offer some speedup on complex computations on NumPy
arrays. NumExpr evaluates algebraic expressions involving arrays, parses them, compiles
them, and finally executes them, possibly on multiple processors.

This principle is somewhat similar to Numba, in that normal Python code is compiled
dynamically to machine code. However, NumExpr only tackles algebraic array expressions
rather than arbitrary Python code. We will see how that works in this recipe.

Getting ready

NumExpr should already be installed in Anaconda, but you can also install it manually with
conda install numexpr

How to do it...

1. Let'simport NumPy and NumExpr:

>>> import numpy as np
import numexpr as ne

2. Then we generate three large vectors:
>>> X, Yy, 2z = np.random.rand (3, 1000000)

3. Now, we evaluate the time taken by NumPy to calculate a complex algebraic
expression involving our vectors:

>>> $timeit x + (y**2 + (z*x + 1)*3)
6.94 ms + 223 us per loop (mean + std. dev. of 7 runs,

100 loops each)



http://numba.pydata.org
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html
http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html
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4.

Let's perform the same calculation with NumExpr. We need to give the expression as
a string:
>>> %$timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)"')
1.47 ms + 8.07 pus per loop (mean + std. dev. of 7 runs,
1000 loops each)

The following screenshot shows the CPU usage when we ran the code with NumPy
and then with NumExpr, which automatically use multiple CPUs:

30 20 10

166

CPU usage

NumExpr can use multiple cores. Here, we have four physical cores and eight virtual
threads with Intel's Hyper-Threading Technology (HTT). We can specify how many
cores we want NumExpr to use using the set_num_threads () function:

>>> ne.ncores
8
>>> for i in range(1l, 5):
ne.set num threads (i)
$timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)',)
3.53 ms + 12.9 us per loop (mean + std. dev. of 7 runs,
100 loops each)
2.35 ms + 276 ps per loop (mean + std. dev. of 7 runs,
100 loops each)
1.6 ms + 60 pus per loop (mean + std. dev. of 7 runs,
1000 loops each)
1.5 ms + 24.6 pus per loop (mean + std. dev. of 7 runs,
1000 loops each)
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NumExpr analyzes the array expression, parses it, and compiles it into a lower-level language.
NumExpr is aware of CPU-vectorized instructions as well as CPU cache characteristics.
As such, NumExpr can optimize vectorized computations dynamically.

Here are a few references:

» NumExpr on GitHub, at https://github.com/pydata/numexpr

» NumExpr documentation at https://numexpr.readthedocs.io/en/latest/
intro.html

See also

» The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Wrapping a C library in Python with ctypes

Wrapping a C library in Python allows us to leverage existing C code or to implement a critical
part of the code in a fast language such as C.

It is relatively easy to use externally-compiled libraries with Python. The first possibility is to
call a command-line executable with the os. system () command, but this method does not
extend to compiled libraries.

A more powerful method consists of using a native Python module called ctypes. This module
allows us to call functions defined in a compiled library (written in C) from Python. The ctypes
module takes care of data type conversions between C and Python. In addition, the numpy .
ctypeslib module provides facilities to use NumPy arrays wherever data buffers are used in
the external library.

In this example, we will rewrite the code of the Mandelbrot fractal in C, compile it in a shared
library, and call it from Python.

Getting ready

The code in this recipe is written for Unix systems and has been tested on Ubuntu. It can be
adapted to other systems with minor changes.

A C compiler is required. You will find all compiler-related instructions in this chapter's
introduction.



https://github.com/pydata/numexpr
https://numexpr.readthedocs.io/en/latest/intro.html
https://numexpr.readthedocs.io/en/latest/intro.html
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How to do it...

First, we write and compile the Mandelbrot example in C. Then, we access it from Python
using ctypes.

1. Let's write the code for the Mandelbrot fractal in C:

)

>>> %$%writefile mandelbrot.c
#include "stdio.h"
#include "stdlib.h"

void mandelbrot (int size, int iterations, int *col)
{

// Variable declarations.

int i, j, n, index;

double cx, cy;

double z0, zl, z0 tmp, z0 2, zl 2;

// Loop within the grid.

for (i = 0; 1 < size; i++)

{
cy = -1.5 + (double)i / size * 3;
for (j = 0; j < size; j++)
{

// We initialize the loop of the system.
cx = -2.0 + (double)j / size * 3;

index = i * size + j;

// Let's run the system.

z0 = 0.0;

zl = 0.0;

for (n = 0; n < iterations; n++)
{

z0 2 = z0 * z0;
zl 2 = z1 * z1;
if (z0_ 2 + 2zl 2 <= 100)

{
// Update the system.
z0_tmp = z0_ 2 - zl 2 + cXx;
z1l =2 * z0 * z1 + cy;
z0 = zO0_tmp;
col [index] = n;

}
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else

break;

}

Now, let's compile this C source file with gcc into the mandelbrot . so
dynamic library:
>>> llgcc -shared -W1,-soname,mandelbrot \

-0 mandelbrot.so \

-fPIC mandelbrot.c

Let's access the library with ctypes:

>>> import ctypes
>>> 1lib = ctypes.CDLL('mandelbrot.so')
>>> mandelbrot = lib.mandelbrot

NumPy and ctypes allow us to wrap the C function defined in the library:

>>> from numpy.ctypeslib import ndpointer
>>> # Define the types of the output and arguments of
# this function.
mandelbrot.restype = None
mandelbrot.argtypes = [ctypes.c_ int,
ctypes.c_int,
ndpointer (ctypes.c_int),

]

To use this function, we first need to initialize an empty array and pass it as an
argument to the mandelbrot () wrapper function:

>>> import numpy as np
# We initialize an empty array.
size = 400
iterations = 100
col = np.empty((size, size), dtype=np.int32)
# We execute the C function, which will update
# the array.
mandelbrot (size, iterations, col)

Chapter 5
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6.

Let's show the result:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

>>> fig, ax = plt.subplots(l, 1, figsize=(10, 10))
ax.imshow (np.log(col), cmap=plt.cm.hot)
ax.set_axis_off ()

How fast is this function?

>>> %$timeit mandelbrot (size, iterations, col)
28.9 ms + 73.1 us per loop (mean + std. dev. of 7 runs,

10 loops each)

The wrapped C version is slightly faster than the Numba version in the first recipe of
this chapter.

The mandelbrot () function accepts as arguments:

>

170

The size of the col buffer (the col value is the last iteration where the
corresponding point is within a disc around the origin)

The number of iterations
A pointer to the buffer of integers
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The mandelbrot () Cfunction does not return any value; rather, it updates the buffer that
was passed by reference to the function (it is a pointer).

To wrap this function in Python, we need to declare the types of the input arguments.
The ctypes module defines constants for the different data types. In addition, the numpy .
ctypeslib.ndpointer () function lets us use a NumPy array wherever a pointer is
expected in the C function. The data type given as argument to ndpointer () needs to
correspond to the NumPy data type of the array passed to the function.

Once the function has been correctly wrapped, it can be called as if it was a standard Python
function. Here, the initially-empty NumPy array is filled with the Mandelbrot fractal after the
call to mandelbrot ().

There's more...

An alternative to ctypes is cffi (http://cffi.readthedocs.org), which may be a bit
faster and more convenient to use. You can also referto http://eli.thegreenplace.
net/2013/03/09/python-ffi-with-ctypes-and-cffi/.

See also

» The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Accelerating Python code with Cython

Cython is both a language (a superset of Python) and a Python library. With Cython, we start
from a regular Python program and we add annotations about the type of the variables. Then,
Cython translates that code to C and compiles the result into a Python extension module.
Finally, we can use this compiled module in any Python program.

While dynamic typing comes with a performance cost in Python, statically-typed variables in
Cython generally lead to faster code execution.

Performance gains are most significant in CPU-bound programs, notably in tight Python
loops. By contrast, 1/0 bound programs are not expected to benefit much from a Cython
implementation.

In this recipe, we will see how to accelerate the Mandelbrot code example with Cython.

Getting ready

A C compiler is required. You will find all compiler-related instructions in the introduction the
this chapter.



http://cffi.readthedocs.org
http://eli.thegreenplace.net/2013/03/09/python-ffi-with-ctypes-and-cffi/
http://eli.thegreenplace.net/2013/03/09/python-ffi-with-ctypes-and-cffi/
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You will also need Cython, which should be installed by default with Anaconda. If needed,
you can also install it with conda install cython.

How to do it...

1.

172

Let's define some variables:

>>> import numpy as np
>>> gize = 400
iterations = 100

To use Cython in the Jupyter Notebook, we first need to import the Cython
Jupyter extension:

>>> %load_ext cython

As a first try, let's just add the $%cython magic before the definition of the
mandelbrot () function. Internally, this cell magic compiles the cell into a
standalone Cython module, hence the need for all required imports to occur within
the same cell. This cell does not have access to any variable or function defined in
the interactive namespace:
>>> %%cython -a

import numpy as np

def mandelbrot_cython(m, size, iterations):
for i in range(size):
for j in range(size):
c = -2 + 3./size*j + 1j*(1.5-3./size*1)
z =0
for n in range(iterations) :
if np.abs(z) <= 10:

Z = Z*Z + C

m[i, j] =n
else:

break
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Generated by Cython 0.26

Yullow lines hint at Python interaction.

Click on & line that starts with a "+" to see the C code that Cython generated for it.
+01: import numpy as np

+03: def mandelbret_cy ze, iterations):

+04: For i in rar

1051 for j in rar

+0& = e fafl 3 45 ./sizevi)

The -a option tells Cython to annotate lines of code with a background color
indicating how optimized it is. The darker the color, the less optimized the line. The
color depends on the relative number of Python API calls at each line. We can click
on any line to see the generated C code. Here, this version does not appear to be
optimized.

4. How fast is this version?

>>> 8 = (size, size)

>>> $%timeit -nl -rl m = np.zeros(s, dtype=np.int32)
mandelbrot cython(m, size, iterations)

4.52 s + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)

We get virtually no speedup here. We need to specify the type of our Python variables.

5. Let's add type information using typed memory views for NumPy arrays (we explain
these in the How it works... section). We also use a slightly different way to test
whether particles have escaped from the domain (the if test):

)

>>> %%cython -a
import numpy as np

def mandelbrot cython(int[:,::1] m,
int size,
int iterations) :
cdef int i, j, n
cdef complex z, c
for i in range(size):
for j in range(size):
c = -2 + 3./size*j + 1j*(1.5-3./size*1i)
z =0
for n in range(iterations) :
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if z.real**2 + z.imag**2 <= 100:

z = 2*Z + C
m[i, j] =n
else:
break
Generated by Cython 0.286
Yellocw lines hint at Python interaction.
€lick on a line that starks with a "+" to see the C code that Cython generated for it.

1: import numpy as np

def mandelbrot cython(intf:,::1] m,

~feize*i)

6. How fast is this new version?

>>> %$%timeit -nl -rl m = np.zeros(s, dtype=np.int32)
mandelbrot cython(m, size, iterations)

12.7 ms + 0 ns per loop (mean + std. dev. of 1 run,
1 loop each)

This version is almost 350 times faster than the first version!

All we have done is specify the type of the local variables and function arguments, and bypass
NumPy's np . abs () function when computing the absolute value of z. These changes have
helped Cython generate more optimized C code from Python code.

The cdef keyword declares a variable as a statically-typed C variable. C variables lead to
faster code execution because the overhead from Python's dynamic typing is bypassed.
Function arguments can also be declared as statically-typed C variables.

There are two ways of declaring NumPy arrays as C variables with Cython: using array buffers
or using typed memory views. In this recipe, we used typed memory views. We will cover array
buffers in the next recipe.

Typed memory views allow efficient access to data buffers with a NumPy-like indexing syntax.
For example, we can use int [:, : : 1] to declare a C-ordered 2D NumPy array with integer
values, with : : 1 meaning a contiguous layout in this dimension. Typed memory views can be
indexed just like NumPy arrays.
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However, memory views do not implement element-wise operations like NumPy. Thus,
memory views act as convenient data containers within tight for loops. For element-wise
NumPy-like operations, array buffers should be used instead.

We could achieve a significant performance speedup by replacing the call to np . abs ()

with a faster expression. The reason is that np.abs () is a NumPy function with a slight call
overhead. It is designed to work with relatively large arrays, not scalar values. This overhead
results in a significant performance hit in a tight loop such as here. This bottleneck can be
spotted with Cython annotations.

There's more...

Using Cython from Jupyter is very convenient with the $%cython cell magic. However, it is
sometimes necessary to create a reusable C extension module with Cython. This is actually
what the $%cython cell magic does under-the-hood. You will find more information at
http://cython.readthedocs.io/en/latest/src/quickstart/build.html.

Here are a few references:
» Distributing Cython modules, explained at http://docs.cython.org/src/
userguide/source files and compilation.html

» Compilation with Cython, explained at http://docs.cython.org/src/
reference/compilation.html

» Cython and Numpy, at http://cython.readthedocs.io/en/latest/src/
userguide/memoryviews.html

» The Optimizing Cython code by writing less Python and more C recipe

» The Releasing the GIL to take advantage of multi-core processors with Cython and
OpenMP recipe

Optimizing Cython code by writing less

Python and more C

In this recipe, we will consider a more complicated Cython example. Starting from a
slow implementation in pure Python, we will use different Cython features to speed
it up progressively.

We will implement a very simple ray tracing engine. Ray tracing consists of rendering a scene
by simulating the physical properties of light propagation. This rendering method leads to
photorealistic scenes, but it is computationally intensive.



http://cython.readthedocs.io/en/latest/src/quickstart/build.html
http://docs.cython.org/src/userguide/source_files_and_compilation.html
http://docs.cython.org/src/userguide/source_files_and_compilation.html
http://docs.cython.org/src/reference/compilation.html
http://docs.cython.org/src/reference/compilation.html
http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html
http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html
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Here, we will render a single sphere with diffuse and specular lighting. First we'll give the
example's code in pure Python. Then, we will accelerate it incrementally with Cython.

The code is long and contains many functions. We will first give

the full code of the pure Python version. Then, we will just describe
s the changes required to accelerate the code with Cython. The full

scripts are available on the book's website.

How to do it...

1. First, let's implement the pure Python version:

>>> import numpy as np
import matplotlib.pyplot as plt
>>> $matplotlib inline
>>> w, h = 400, 400 # Size of the screen in pixels.

2. We create a normalization function for vectors:

>>> def normalize (x):
# This function normalizes a vector.
x /= np.linalg.norm(x)
return x

3. We create a function that computes the intersection of a ray with a sphere:

>>> def intersect sphere(O, D, S, R):
# Return the distance from O to the intersection

# of the ray (0, D) with the sphere (S, R), or
# +inf if there is no intersection.

# O and S are 3D points, D (direction) is a

# normalized vector, R is a scalar.

a = np.dot (D, D)

0OS =0 - S

b = 2 * np.dot (D, 0S)

c = np.dot(0S, 0S) - R * R

disc = b *b - 4 * a * ¢
if disc > O:
distSgrt = np.sqgrt (disc)

q = (-b - distSgrt) / 2.0 if b < 0 \
else (-b + distSqgrt) / 2.0

to =g/ a

tl =c / g

t0, tl = min(t0, tl1l), max(t0, tl)

176




Chapter 5

if t1 >= 0:
return tl if t0 < 0 else tO
return np.inf

4. The following function traces a ray:

>>> def trace ray (O, D):
# Find first point of intersection with the scene.

t = intersect sphere (O, D, position, radius)
# No intersection?
if t == np.inf:

return

# Find the point of intersection on the object.
M=04+D* ¢t

N = normalize (M - position)

tolL = normalize(L - M)

toO = normalize (O - M)

# Ambient light.

col = ambient
# Lambert shading (diffuse).
col += diffuse * max(np.dot (N, toL), 0) * color

# Blinn-Phong shading (specular) .

col += specular c¢ * color_ light * \
max (np.dot (N, normalize(toL + toO)), 0) \
** gpecular k

return col

5. Finally, the main loop is implemented in the following function:

>>> def run():
img = np.zeros((h, w, 3))
# Loop through all pixels.
for i, x in enumerate(np.linspace(-1, 1, w)):
for j, y in enumerate(np.linspace(-1, 1, h)):
# Position of the pixel.
Qfol, Ql1] = x, ¥y
# Direction of the ray going through
the optical center.
= normalize(Q - O)
Launch the ray and get the color

H #* O #*

of the pixel.
col = trace ray(O, D)
if col is None:
continue
imgfh - j - 1, 1, :]1 = np.clip(col, 0, 1)
return img




High-Performance Computing

6. Now, we initialize the scene and define a few parameters:

>>> # Sphere properties.
position = np.array([0., 0., 1.1)
radius = 1.
color = np.array([0., 0., 1.1)
diffuse = 1.
specular_c = 1.
specular_k = 50

# Light position and color.
L = np.array([5., 5., -10.1)
color light = np.ones(3)

ambient = .05
# Camera.
O = np.array([0., 0., -1.]) # Position.

Q = np.array([0., 0., 0.]) # Pointing to.

7. Let's render the scene:
>>> img = run()
fig, ax = plt.subplots(l, 1, figsize=(10, 10))
ax.imshow (img)

ax.set_axis_off ()

In this screenshot, the left panel shows the result of this recipe's code. The right
panel shows an extended version of the simple ray tracing engine implemented here.
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10.

11.

How slow is this implementation (the rayl example on the book's website)?

>>> %$timeit run()
2.75 8 + 29.9 ms per loop (mean + std. dev. of 7 runs,
1 loop each)

If we just use the $%cython magic with the adequate import numpy as np
and cimport numpy as np commands at the top of the cell, we only get an
approximate 6% speed improvement (the ray2 example).

We could do better by giving information about the type of the variables. Since we
use vectorized computations on NumPy arrays, we cannot easily use memory views.
Rather, we will use array buffers. First, at the very beginning of the Cython module
(or $%cython cell), we declare NumPy data types as follows:

import numpy as np
cimport numpy as np

DBL = np.double ctypedef
np.double t DBL C

Then, we declare a NumPy array with cdef np.ndarray [DBL_C, ndim=1] (in this
example, a 1D array of double precision floating point numbers). There is a difficulty
here because NumPy arrays can only be declared inside functions, not at the top
level. Thus, we need to slightly tweak the overall architecture of the code by passing
some arrays as function arguments instead of using global variables. However,

even by declaring the type of all variables, we gain no speed enhancement at all

(the ray3 example).

In the current implementation, we incur a performance hit because of the large
number of NumPy function calls on tiny arrays (three elements). NumPy is designed
to deal with large arrays, and it does not make much sense to use it for arrays

that small. In this specific situation, we can try to bypass NumPy by rewriting some
functions using the C standard library. We use the cdef keyword to declare a C-style
function. These functions can yield significant performance speedups. Here is the C
function replacing normalize ():

from libc.math cimport sqgrt

cdef normalize (np.ndarray[DBL C, ndim=1] x):
cdef double n
n = sqgrt(x[0]*x[0] + x[1]1*x[1] + x[2]*x[2])

x[0] /= n
x[1] /= n
x[2] /= n
return x

We obtain a 25% speed improvement (the ray4 example).
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12. To get the most interesting speedups, we need to completely bypass NumPy. Where

13.

do we use NumPy precisely?
o Many variables are NumPy arrays (mostly 1D vectors with three elements)
o Element-wise operations yield implicit NumPy API calls
o We also use a few NumPy built-in functions such as np.dot ()

In order to bypass NumPy in our example, we need to reimplement all these features
for our specific needs. The first possibility is to use a native Python type for vectors
(for example, tuples), and write C-style functions that implement operations on tuples
(always assuming they have exactly three elements). For example, the addition
between two tuples can be implemented as follows:

cdef tuple add(tuple x, tuple y):
return (x[0]+y[0], x[11+yI[1], x[2]+y[2])

This time, we get an 18x speed enhancement compared to the pure Python version
(the rayb example)! But we can do even better.

We are going to define a pure C structure instead of using a Python type for our
vectors. In other words, we are not only bypassing NumPy, but we are also bypassing
Python by moving to pure C code. To declare a C structure representing a 3D vector in
Cython, we can use the following code:

cdef struct Vec3:
double x, y, z

To create a new Vec3 variable, we can use the following function:

cdef Vec3 vec3(double x, double y, double z):
cdef Vec3d v

vV.X = X
vV.y =Y
V.Z = Z
return v

As an example, here is the function used to add two vec3 objects:
cdef Vec3 add(Vec3 u, Vec3 v):

return vec3(u.x + V.X, U.y + V.y, U.Z + V.Zz)

The code can be updated to make use of these fast C-style functions. Finally, the image
can be declared as a 3D memory view. With all these changes, the Cython implementation
runs in approximately 8 ms instead of almost a couple of seconds, or 330 times faster
(the ray6 example)!

In summary, we have achieved a very interesting speed enhancement by basically rewriting
the entire implementation in C with an enhanced Python syntax.
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Let's explain briefly how ray tracing works. We model a 3D scene with objects such as planes

and spheres (here, there is only one sphere). There is also a camera and a plane representing
the rendered image:

Image

Camera

_""_T_'.'f:

8 Light Source

_View Ray

~—

Scene Object

Principles of ray tracing (Ray trace diagram by Henrik, Wikimedia Commons)

There is a main loop over all pixels of the image. For each pixel, we launch a ray from the
camera center to the scene through the current pixel and compute the first intersection

point between that ray and an object from the scene. Then, we compute the pixel's color as a
function of the object material's color, the position of the lights, the normal of the object at the
intersection point, and so on. There are several physics-based lighting equations that describe
how the color depends on these parameters. Here, we use the Blinn-Phong shading model
with ambient, diffuse, and specular lighting components:

Ambient + Diffuse + Specular = Blinn-Phong

Blinn-Phong shading model (Phong components, Wikimedia Commons)
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Of course, a full ray tracing engine is far more complex than what we have implemented
in this example. We can model other optic and lighting characteristics such as reflections,
refractions, shadows, depth of field, and others. It is also possible to implement ray
tracing algorithms on the graphics card for real-time photorealistic rendering. Here

are a few references:

» Blinn-Phong shading model on Wikipedia, available at https://en.wikipedia.
org/wiki/Blinn-Phong shading model

» Ray tracing on Wikipedia, available at https://en.wikipedia.org/wiki/Ray
tracing %28graphics%29

There's more...

Although powerful, Cython requires a good understanding of Python, NumPy, and C. The most
interesting performance speedups are achieved when dynamically-typed Python variables are
converted to statically-typed C variables, notably within tight loops.

Here are a few references:

» Cython extension types, available at http://docs.cython.org/src/
userguide/extension types.html

» Extended version of the ray tracing example, available at http://gist.github.
com/rossant /6046463

» The Accelerating Python code with Cython recipe

» The Releasing the GIL to take advantage of multi-core processors with Cython and
OpenMP recipe

Releasing the GIL to take advantage of

multi-core processors with Cython and
OpenMP

As we have seen in this chapter's introduction, CPython's GIL prevents pure Python code from
taking advantage of multi-core processors. With Cython, we have a way to release the GIL
temporarily in a portion of the code in order to enable multi-core computing. This is done with
OpenMP, a multiprocessing API that is supported by most C compilers.

In this recipe, we will see how to parallelize the previous recipe's code on multiple cores.

182


https://en.wikipedia.org/wiki/Blinn-Phong_shading_model
https://en.wikipedia.org/wiki/Blinn-Phong_shading_model
https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
http://docs.cython.org/src/userguide/extension_types.html
http://docs.cython.org/src/userguide/extension_types.html
http://gist.github.com/rossant/6046463
http://gist.github.com/rossant/6046463

Chapter 5

Getting ready

To enable OpenMP in Cython, you just need to specify some options to the compiler. There is
nothing special to install on your computer besides a good C compiler. See the instructions in
this chapter's introduction for more details.

The code in this recipe has been written for GCC on Ubuntu. It can be adapted to other
systems with minor changes to the $%cython options.

How to do it...

Our simple ray tracing engine implementation is embarrassingly parallel (see https://
en.wikipedia.org/wiki/Embarrassingly parallel); there is a main loop over

all pixels, within which the exact same function is called repetitively. There is no crosstalk
between loop iterations. Therefore, it would be theoretically possible to execute all iterations
in parallel.

Here, we will execute one loop (over all columns in the image) in parallel with OpenMP.

You will find the entire code on the book's website (the ray7 example). We will only show the
most important steps here:

1. We use the following magic command:

)

>>> %$%cython --compile-args=-fopenmp --link-args=-fopenmp --force

2. We import the prange () function:

>>> from cython.parallel import prange

3. We add nogil after each function definition in order to remove the GIL. We cannot
use any Python variable or function inside a function annotated with nogil. For
example:
cdef Vec3 add(Vec3 x, Vec3 y) nogil:

return vec3 (x.X + y.X, X.Y + V.Y, X.2 + y.2Z)

4. Torun aloop in parallel over the cores with OpenMP, we use prange () :
with nogil:
for i in prange (w) :

# ...

The GIL needs to be released before using any parallel computing feature such as
prange ().

5. With these changes, we reach a 3x speed enhancement on a quad-core processor
compared to the fastest version of the previous recipe.
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The GIL has been described in the introduction to this chapter. The nogil keyword tells
Cython that a particular function or code section should be executed without the GIL. When
the GIL is released, it is not possible to make any Python API calls, meaning that only C
variables and C functions (declared with cdef) can be used.

» The Accelerating Python code with Cython recipe
» The Optimizing Cython code by writing less Python and more C recipe
» The Distributing Python code across multiple cores with IPython recipe

Writing massively parallel code for NVIDIA

graphics cards (GPUs) with CUDA

Graphics Processing Units (GPUs) are powerful processors specialized for real-time
rendering. We find GPUs in virtually any computer, laptop, video game console, tablet, or
smartphone. Their massively parallel architecture comprises tens to thousands of cores. The
video game industry has been fostering the development of increasingly powerful GPUs over
the last two decades.

Since the mid-2000s, GPUs are no longer limited to graphics processing. We can now
implement scientific algorithms on a GPU. The only condition is that the algorithm follows
the SIMD paradigm, where a sequence of instructions is executed in parallel with multiple
data. This is called General Purpose Programming on Graphics Processing Units (GPGPU).
GPGPU is used in many areas: meteorology, machine learning (most particularly deep
learning), computer vision, image processing, finance, physics, bioinformatics, and many
more. Writing code for GPUs can be challenging as it requires understanding the internal
architecture of the hardware.

CUDA is a proprietary GPGPU framework created in 2007 by NVIDIA Corporation, one of the
main GPU manufacturers. Programs written in CUDA only work on NVIDIA graphics cards.
There is another competing GPGPU framework called OpenCL, an open standard supported
by other major companies. OpenCL programs can work on GPUs and CPUs from most
manufacturers (notably NVIDIA, AMD, and Intel).

CUDA kernels are typically written in a C dialect that runs on the GPU. However, Numba
allows us to CUDA kernels in Python. Numba takes care of compiling the code automatically
for the GPU.

In this recipe, we will implement the embarrassingly parallel computation of the Mandelbrot
fractal in CUDA using Numba.
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Getting ready

You need an NVIDIA GPU installed on your computer. You also need the CUDA toolkit,
which you can install with conda install cudatoolkit.

How to do it...

1.

Let's import the packages:

>>> import math
import numpy as np
from numba import cuda
import matplotlib.pyplot as plt
$matplotlib inline

Let's check whether Numba correctly identified our GPU:

>>> len(cuda.gpus)

1

>>> cuda.gpus [0] .name
b'GeForce GTX 980M'

We write our function in Python. It will be compiled to CUDA code. The object m
represents a pointer to the array stored on the GPU. The function is called on the GPU
in parallel on every pixel of the image. Numba provides a cuda.grid () function that
gives the index of the pixel in the image:

>>> @cuda.jit
def mandelbrot numba (m, iterations):
# Matrix index.
i, j cuda.grid(2)
size = m.shape[0]

# Skip threads outside the matrix.
if 1 >= size or j >= size:

return
# Run the simulation.
c (-2 + 3. / size * j +
13 * (1.5 - 3. / size * 1))
z =0

for n in range(iterations) :
if abs(z) <= 10:

Z =2 * zZ 4+ C

m[i, j] = n
else:

break
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4. We initialize the matrix:
>>> gize = 400
iterations = 100
>>> m = np.zeros((size, size))

5. We initialize the execution grid (see the How it works... section):
>>> # 16x16 threads per block.
bs = 16
# Number of blocks in the grid.
bpg = math.ceil (size / bs)
# We prepare the GPU function.
f = mandelbrot numbal[ (bpg, bpg), (bs, bs)]

6. We execute the GPU function, passing our empty array:

>>> f(m, iterations)

7. Let's display the result:
>>> fig, ax = plt.subplots(1l, 1, figsize=(10, 10))
ax.imshow (np.log(m), cmap=plt.cm.hot)
ax.set_axis_off ()
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8. Now, let's benchmark this function:

>>> %$timeit -nl0 -r100 f£(m, iteratiomns)
2.99 ms + 173 ps per loop (mean + std. dev. of 100 runs,
10 loops each)

That's about 10 times faster than the CPU version obtained with Numba in the first
recipe in this chapter, and 1,800 times faster than the pure Python version! But we
can do even better.

9. Numba takes care of transferring arrays automatically between the host machine
(CPU) and the device (GPU). These data transfers are slow, sometimes even more
than the actual on-device computation. Numba provides facilities to deal with these
transfers manually, which can be interesting in some use cases. Let's estimate the
time of the data transfers and the computation on the GPU.

10. First, we send the NumPy array to the GPU with the cuda.to_device () function:

>>> %timeit -nl0 -rl100 cuda.to device(m)
481 pus + 106 ps per loop (mean + std. dev. of 100 runs,

10 loops each)

11. Second, we run the computation on the GPU:

>>> %%timeit -nl0 -r100 m gpu = cuda.to device (m)
f(m _gpu, iterations)

101 ps + 11.8 us per loop (mean + std. dev. of 100 runs,
10 loops each)

12. Third, we copy the modified array from the GPU to the CPU.

>>> m_gpu = cuda.to_device(m)
>>> %timeit -nl0 -rl100 m_gpu.copy_ to host ()
238 pus + 67.8 pus per loop (mean + std. dev. of 100 runs,

10 loops each)

If we consider only the GPU computation time excluding the data transfer times, we obtain
a version that is 340 times faster than the version compiled on the CPU with Numba, and
54,000 times faster than the pure Python version!

This astronomic speed improvement is explained by the fact that the GPU version is compiled
and runs on 1536 CUDA cores on the NVIDIA GTX 980M, whereas the pure Python version is
interpreted and runs on 1 CPU.
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GPU programming is a rich and highly technical topic, encompassing low-level architectural
details of GPUs. Of course, we only scratched the surface here with the simplest paradigm
possible (an embarrassingly parallel problem). We give further references in a later section.

A CUDA GPU has a number of multiprocessors, and each multiprocessor has multiple stream
processors (also called CUDA cores). Each multiprocessor executes in parallel with the
others. Within a multiprocessor, the stream processors execute the same instruction at the
same time, but on multiple data bits (SIMD paradigm).

Concepts central to the CUDA programming model are kernels, threads, blocks, and grids:

» Akernel is a program written in a C-like language that runs on the GPU
» Athread represents one execution of a kernel on one stream processor
» Ablock contains multiple threads executing on one multiprocessor
» A grid contains a number of blocks
The number of threads per block is limited by the size of the multiprocessors and depends

on the graphics card model (1,024, for example). However, a grid can contain an arbitrary
number of blocks.

Within a block, threads are executed within warps of typically 32 threads. Better performance
is achieved when conditional branching in a kernel is organized into groups of 32 threads.

Threads within a block can synchronize at synchronization barriers using the

CUDA _ syncthreads () function. This feature enables interthread communication
within one block. However, blocks execute independently so that two threads from different
blocks cannot synchronize.

Within a block, threads are organized into a 1D, 2D, or 3D structure, and similarly for blocks
within a grid, as shown in the following figure. This structure is convenient as it matches most
common multidimensional datasets encountered in real-world problems.
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The CUDA programming model (showing threads, blocks, and grids—image by NVIDIA Corporation)

In CUDA, the kernel can retrieve the thread index within the block (threadIdx), as well as
the block index within the grid (blockIdx), to determine which bit of data it should work
on. In this recipe, the 2D image of the fractal is partitioned into 16 x 16 blocks, each block
containing 256 pixels, with one thread per pixel. The kernel computes the color of a

single pixel.

Numba provides the cuda.grid (ndim) function to obtain directly the 1D, 2D, or 3D index of
the thread within the grid. Alternatively, one can use the following code snippet to control the
exact position of the current thread within the block and the grid (code given in the Numba
documentation):

# Thread id in a 1D block

tx = cuda.threadIdx.x

# Block id in a 1D grid

ty = cuda.blockIdx.x

# Block width, i.e. number of threads per block

bw = cuda.blockDim.x

# Compute flattened index inside the array

pos = tx + ty * bw

if pos < an array.size: # Check array boundaries
# One can access 'an array [pos]'
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There are several levels of memory on the GPU, ranging from small, fast, and local memory
shared by a few threads within a block to large, slow, and global memory shared by all blocks.
We need to tweak the memory access patterns in the code to match the hardware constraints
and achieve higher performance. In particular, data access is more efficient when the threads
within a warp access consecutive addresses in the global memory; the hardware coalesces
all memory accesses into a single access to consecutive Dynamic Random Access Memory
(DRAM) locations.

There's more...

Here are a few references:
» Numba CUDA documentation at http://numba.pydata.org/numba-doc/dev/
cuda/index.html

» Official CUDA portal at http://developer.nvidia.com/category/zone/
cuda-zone

» Education and training for CUDA, at http://developer.nvidia.com/cuda-
education-training

» Suggested books about CUDA, at http://developer.nvidia.com/suggested-
reading

» The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Distributing Python code across multiple

cores with IPython

Despite CPython's GIL, it is possible to execute several tasks in parallel on multi-core
computers using multiple processes instead of multiple threads. Python offers a native
multiprocessing module. IPython's parallel extension, called ipyparallel, offers an even
simpler interface that brings powerful parallel computing features in an interactive
environment. We will describe this tool here.

Getting started

You need to install ipyparallel with conda install ipyparallel.

Then, you need to activate the ipyparallel Jupyter extension with ipcluster nbextension
enable --user.
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How to do it...

1. First, we launch four IPython engines in separate processes. We have basically two
options to do this:

o Executing ipcluster start -n 4 in asystem shell

o Using the web interface provided in Jupyter Notebook's main page by clicking
on the IPython Clusters tab and launching four engines

2. Then, we create a client that will act as a proxy to the IPython engines. The client
automatically detects the running engines:

>>> from ipyparallel import Client
rc = Client ()

3. Let's check the number of running engines:

>>> rc.ids
[0, 1, 2, 3]

4. Torun commands in parallel over the engines, we can use the $px line magic or the
$%px cell magic:
>>> $%px
import os
print (£"Process {os.getpid():d}.")
[stdout:0] Process 10784.
[stdout:1] Process 10785.
[stdout:2] Process 10787.
[stdout:3] Process 10791.

5.  We can specify which engines to run the commands on using the --targets or -t
option:

)

>>> %%px -t 1,2
# The os module has already been imported in
# the previous cell.
print (£"Process {os.getpid():d}.")

[stdout:1] Process 10785.

[stdout:2] Process 10787.
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6.

By default, the $px magic executes commands in blocking mode; the cell only
returns when the commands have completed on all engines. It is possible to run
non-blocking commands with the - -noblock or -a option. In this case, the cell
returns immediately, and the task's status and results can be polled asynchronously
from IPython's interactive session:
>>> %$%px -a

import time

time.sleep(5)
<AsyncResult: execute>

The previous command returned an ASyncResult instance that we can use to poll
the task's status:

>>> print(_.elapsed, _.ready())
1.522944 False

The $pxresult blocks until the task finishes:

>>> %pxresult
>>> print(_.elapsed, _.ready())
5.044711 True

ipyparallel provides convenient functions for common use cases, such as a parallel
map () function:

>>> v = rc[:]

res = v.map(lambda x: x * x, range(10))
>>> print (res.get())
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

There are several steps in distributing code across multiple cores:

1.
2.
3.

Launching several IPython engines (there is typically one process per core).
Creating a client that acts as a proxy to these engines.
Using the client to launch tasks on the engines and retrieve the results.

Engines are Python processes that execute code on different computing units. They are very
similar to IPython kernels.

There are two main interfaces for accessing the engines:

>

192

With the direct interface, we access engines directly and explicitly with their
identifiers

With the load-balanced interface, we access engines through an interface that
automatically and dynamically assigns work to appropriate engines
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We can also create custom interfaces for alternative styles of parallelism.

In this recipe, we used the direct interface; we addressed individual engines explicitly by
specifying their identifiers in the $px magic command.

As we have seen in this recipe, tasks can be launched synchronously or asynchronously.
The $px* magic commands are particularly convenient in the Notebook, as they let us work
seamlessly on multiple engines in parallel.

There's more...

The parallel computing capabilities of ipyparallel offer an easy way to launch independent jobs
in parallel over multiple cores. A more advanced use case is when jobs have dependencies.

There are two types of dependency:

» Functional dependency: It determines whether a given task can execute on a
given engine, according to the engine's operating system, the presence or absence
of specific Python modules, or other conditions. ipyparallel provides a erequire
decorator for functions that need specific Python modules to run on the engines.
Another decorator is @depend; it lets us define arbitrary conditions implemented in a
Python function returning True or False.

» Graph dependency: It determines whether a given task can execute at a given time
on a given engine. We may require a task to run only after one or several other tasks
have finished. Additionally, we can impose this condition within any individual engine;
an engine may need to execute a specific set of tasks before executing our task. For
example, here is how to require tasks B and C (with asynchronous results arB and
arC) to finish before task A starts:

with view.temp_ flags(after=[arB, arC]):
arA = view.apply async(f)

ipyparallel provides options to specify whether all or any of the dependencies should be met
for the task to run. Additionally, we can specify whether success- and/or failure-dependent
tasks should be considered as met or not.

When a task's dependency is unmet, the scheduler reassigns it to one engine, then to another
engine, and so on until an appropriate engine is found. If the dependency cannot be met on
any engine, an ImpossibleDependency error is raised for the task.

Passing data between dependent tasks is not particularly easy with ipyparallel. One initial
possibility is to use blocking calls in the interactive session, wait for tasks to finish, retrieve the
results, and send them back to the next tasks. Another possibility is to share data between
engines via the filesystem, but this solution does not work well on multiple computers.

An alternative solution is described at: http://nbviewer. ipython.org/gist/
minrk/11415238.
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References
Here are a few references about ipyparallel:

» Documentation for ipyparallel available at https://ipyparallel.readthedocs.
io/en/latest/

» Dependencies in ipyparallel, explained at https://ipyparallel.readthedocs.
io/en/latest/task.html#dependencies

» DAG dependencies, described at https://ipyparallel.readthedocs.io/en/
latest/dag_dependencies.html

» Using MPI with ipyparallel, at http://ipyparallel.readthedocs.io/en/
latest/mpi.html

Here are some references about alternative parallel computing solutions in Python:

» Dask, available at https://dask.pydata.org/en/latest/
» Joblib, available at http://pythonhosted.org/joblib/parallel.html

» List of parallel computing packages, available at http://wiki.python.org/
moin/ParallelProcessing

» The Interacting with asynchronous parallel tasks in IPython recipe

» The Performing out-of-core computations on large arrays with Dask recipe

Interacting with asynchronous parallel tasks

in IPython

In this recipe, we will show how to interact with asynchronous tasks running in parallel
with ipyparallel.

Getting ready

You need to start the IPython engines (see the previous recipe). The simplest option is to
launch them from the IPython Clusters tab in the Notebook dashboard. In this recipe, we use
four engines.
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How to do it...

1. Let'simport a few modules:
>>> import sys
import time
import ipyparallel
import ipywidgets
from IPython.display import clear output, display

2. We create a client:
>>> rc = ipyparallel.Client ()

3. Now, we create a load-balanced view on the IPython engines:

>>> view = rc.load balanced view()

4. We define a simple function for our parallel tasks:

>>> def f(x):
import time
time.sleep(.1)
return x * x

5.  We will run this function on 100 integer numbers in parallel:

>>> numbers = list (range(100))

6. We execute £ on our list numbers in parallel across all of our engines, using map _
async (). This function immediately returns an AsyncResult object that allows us
to interactively retrieve information about the tasks:

>>> ar = view.map_ async (f, numbers)

7. This object has a metadata attribute: a list of dictionaries for all engines. We can get
the date of submission and completion, the status, the standard output and error,
and other information:

>>> ar.metadata[0]

{rafter': None,
'completed': None,
'data': {},

'submitted': datetime.datetime (2017, ...)}

8. lterating over the AsyncResult instance works normally; the iteration progresses in
real-time while the tasks are being completed:

>>> for i in ar:
print (i, end=', ')
o, 1, 4, ..., 9801,
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9. Now, we create a simple progress bar for our asynchronous tasks. The idea is to
create a loop polling for the tasks' status at every second. An IntProgressWidget
widget is updated in real-time and shows the progress of the tasks:

>>> def progress_bar (ar) :
# We create a progress bar.
w = ipywidgets.IntProgress ()
# The maximum value is the number of tasks.
w.max = len(ar.msg_ ids)
# We display the widget in the output area.
display (w)
# Repeat:
while not ar.ready():
# Update the widget's value with the
# number of tasks that have finished
# so far.
w.value = ar.progress
time.sleep(.1)
w.value = w.max

>>> ar = view.map_async (f, numbers)

The progress bar is shown in the following screenshot:

>>> progress_bar (ar)

progress bar (ar)

AsyncResult instances are returned by asynchronous parallel functions. They implement
several useful attributes and methods, notably:

» elapsed: Elapsed time since submission

» progress: Number of tasks that have competed so far

» serial time: Sum of the computation time of all of the tasks done in parallel
» metadata: Dictionary with further information about the task

» ready (): Returns whether the call has finished

» successful (): Returns whether the call has completed without raising an
exception (an exception is raised if the task has not completed yet)
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» wait (): Blocks until the tasks have completed (there is an optional timeout
argument)

» get (): Blocks until the tasks have completed and returns the result (there is an
optional timeout argument)

There's more...

Here are a few references:

» Documentation for the AsyncResult class available at http://ipyparallel.
readthedocs.io/en/latest/asyncresult.html

» Documenation for the AsyncResult of the native multiprocessing module
athttps://docs.python.org/3/library/multiprocessing.
html#multiprocessing.pool.AsyncResult

» Documentation for the task interface available at http://ipyparallel.
readthedocs.io/en/latest/task.html

» The Distributing Python code across multiple cores with IPython recipe

Performing out-of-core computations on

large arrays with Dask

Dask is a parallel computing library that offers not only a general framework for distributing
complex computations on many nodes, but also a set of convenient high-level APIs to deal
with out-of-core computations on large arrays. Dask provides data structures resembling
NumPy arrays (dask .array) and Pandas DataFrames (dask . dataframe) that efficiently
scale to huge datasets. The core idea of Dask is to split a large array into smaller arrays
(chunks).

In this recipe, we illustrate the basic principles of dask.array.

Getting ready

Dask should already be installed in Anaconda, but you can always install it manually with
conda install dask. You also heed memory profiler, which you can install with
conda install memory profiler.
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How to do it...

1.
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Let's import the libraries:

>>> import numpy as np
import dask.array as da
import memory profiler
>>> %load ext memory profiler

We initialize a large 10,000 x 10,000 array with random values using dask. The array
is chunked into 100 smaller arrays with size 1,000 x 1,000:

>>> Y = da.random.normal (size=(10000, 10000),
chunks= (1000, 1000))
>>> Y
dask.array<da.random.normal, shape=(10000, 10000),
dtype=float64, chunksize=(1000, 1000) >
>>> Y.shape, Y.size, Y.chunks
((10000, 10000),

100000000,
((1000, ..., 1000),
(1000, ..., 1000)))

Memory is not allocated for this huge array. Values will be computed on-the-fly at the
last moment.

Let's say we want to compute the mean of every column:

>>> mu = Y.mean(axis=0)
mu

dask.array<mean agg-aggregate, shape=(10000,),
dtype=float64, chunksize=(1000,) >

This mu object is still a dask array and nothing has been computed yet.

We need to call the compute () method to actually launch the computation. Here,
only part of the array is allocated because Dask is smart enough to compute just
what is necessary for the computation. Here, the 10 chunks containing the first
column of the array are allocated and involved in the computation of mu [0]:

>>> mu[0] .compute ()
0.011

Now, we profile the memory usage and time of the same computation using either
NumPy or dask.array:

>>> def £ numpy () :
X = np.random.normal (size= (10000, 10000))
x = X.mean (axis=0) [0:100]

>>> $%memit
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f numpy ()
peak memory: 916.32 MiB, increment: 763.00 MiB
>>> %$%time
f numpy ()
CPU times: user 3.86 s, sys: 664 ms, total: 4.52 s
Wall time: 4.52 s

NumPy used 763 MB to allocate the entire array, and the entire process (allocation
and computation) took more than 4 seconds. NumPy wasted time generating all
random values and computing the mean of all columns whereas we only requested
the first 100 columns.

Next, we use dask.array to perform the same computation:

>>> def f dask():
Y = da.random.normal (size= (10000, 10000),
chunks= (1000, 1000))
y = Y.mean (axis=0) [0:100] .compute ()
>>> $%memit
f dask()
peak memory: 221.42 MiB, increment: 67.64 MiB
>>> %$%time
f dask()
CPU times: user 492 ms, sys: 12 ms, total: 504 ms
Wall time: 105 ms

This time, Dask used only 67 MB and the computation lasted about 100
milliseconds.

We can do even better by changing the shape of the chunks. Instead of using 100
square chunks, we use 100 rectangular chunks containing 100 full columns each.
The size of the chunks (10,000 elements) remains the same:

>>> def £ dask2():
Y = da.random.normal (size= (10000, 10000),
chunks= (10000, 100))
y = Y.mean (axis=0) [0:100] .compute ()
>>> $%memit
f dask2()
peak memory: 145.60 MiB, increment: 6.93 MiB
>>> %$%time
f dask2()
CPU times: user 48 ms, sys: 8 ms, total: 56 ms
Wall time: 57.4 ms
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This is more efficient when computing per-column quantities, because only a single
chunk is involved in the computation of the mean of the first 100 columns, compared
to 10 chunks in the previous example. The memory usage is therefore 10 times
lower here.

Finally, we illustrate how we can use multiple cores to perform computations on large
arrays. We create a client using dask.distributed, a distributed computing library
that complements dask:

>>> from dask.distributed import Client
>>> client = Client ()
>>> client

The computation represented by the Y. sum () Dask array can be launched locally, or
using the dask.distributed client:

>>> Y.sum() .compute ()

4090.221

>>> future = client.compute (Y.sum())

>>> future

Future: finalize status: finished, (ype: float64, key: finalize-f148208bfc12510be7a62bld0c5cba82

10.
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>>> future.result ()
4090.221

The second method scales to large clusters containing many nodes.

We have seen how dask.array can help us manage larger datasets in less memory.
Now, we show how we can manipulate arrays that would never fit in our computer. For
example, let's compute the average of a large terabyte array:

>>> huge = da.random.uniform
size=(1500000, 100000), chunks=(10000, 10000))
"Size in memory: %.1f GB" % (huge.nbytes / 1024 ** 3)
'Size in memory: 1117.6 GB'
>>> from dask.diagnostics import ProgressBar
# WARNING: this will take a very long time computing
# useless values. This is for pedagogical purposes
# only.
with ProgressBar () :
m = huge.mean () .compute ()
[## ] | 11% Completed | 1min 44.8s
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The way this task is processed, chunk after chunk, can be seen on this graphic
showing CPU and RAM usage as a function of time:

Historique d'utilisation du CPU
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There's more...

The dask.array interface shown here is just one of the many possibilities offered by

the low-level, graph-based distributed computing framework implemented in Dask. With
task scheduling, a large computation is split into many smaller computations that may
have complex dependencies represented by a dependency graph. A scheduler implements
algorithms to execute these computations in parallel by respecting the dependencies.

CPU and RAM usage
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Here are a few references:

» Dask documentation at https://dask.pydata.org/en/latest/index.html

» Integrating Dask with IPython at http://distributed.readthedocs.io/en/
latest/ipython.html

» Dask examples at https://dask.pydata.org/en/latest/examples-
tutorials.html

» Parallelizing Scientific Python with Dask, by James Crist, SciPy 2017, a video tutorial
athttps://www.youtube.com/watch?v=mbfsog3e5DA

» Dask tutorial at https://github.com/dask/dask-tutorial/

» The Distributing Python code across multiple cores with IPython recipe

» The Interacting with asynchronous parallel tasks in IPython recipe

Trying the Julia programming language in

the Jupyter Notebook

Julia (http://julialang.org) is a high-level, dynamic language for high-performance
numerical computing. The first version was released in 2012 after three years of development
at MIT. Julia borrows ideas from Python, R, MATLAB, Ruby, Lisp, C, and other languages.

Its major strength is to combine the expressivity and ease of use of high-level, dynamic
languages with the speed of C (almost). This is achieved via an LLVM-based JIT compiler that
targets machine code for x86-64 architectures.

In this recipe, we will try Julia in the Jupyter Notebook using the lJulia package available at
https://github.com/Julialang/IJulia.jl. We will also show how to use Python
packages (such as NumPy and Matplotlib) from Julia. Specifically, we will compute and display
a Julia set.

This recipe is inspired by a Julia tutorial given by David P. Sanders at the SciPy 2014
conference, available at the following:

http://nbviewer.ipython.org/github/dpsanders/scipy 2014 julia/tree/
master/

Getting ready

You first need to install Julia. You will find packages for Windows, macQS, and Linux on Julia's
website at http://julialang.org/downloads/.
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Open a Julia Terminal with the julia command, and install Julia by typing Pkg.
add ("IJulia") inthe Julia Terminal. Then, quit Julia with exit () and launch the Jupyter
Notebook as usual with jupyter notebook. The lJulia kernel is now available in Jupyter.

How to do it...

1.

We can't avoid the customary Hello World example. The print1n () function displays
a string and adds a line break at the end:

println("Hello world!")
Hello world!

We create a polymorphic function, £, that computes the expression z*z + c.
We will evaluate this function on arrays, so we use element-wise operators with
a dot (.) prefix:

f(z, ¢) = z.*z .+ ¢
f (generic function with 1 method)

Let's evaluate £ on scalar complex numbers (the imaginary number Bis1. 0im):

£(2.0 + 1.0im, 1.0)
4.0 + 4.0im

Now, we create a (2, 2) matrix. Components are separated by a space and rows are
separated by a semicolon (;). The type of this array is automatically inferred from its
components. The Array type is a built-in data type in Julia, similar, but not identical,
to NumPy's ndarray type:
z = [-1.0 - 1.0im 1.0 - 1.0im;
-1.0 + 1.0im 1.0 + 1.0im]

2x2 Array{Complex{Float64},2}:

-1.0-1.0im 1.0-1.04im

-1.0+1.0im 1.0+1.0im

We can index arrays with brackets []. A notable difference from Python is that
indexing starts from 1 instead of 0. MATLAB has the same convention. Furthermore,
the keyword end refers to the last item in that dimension:

z[1,end]

1.0 - 1.0im

We can evaluate £ on the matrix z and a scalar ¢ (polymorphism):

£(z, 0)

2x2 Array{Complex{Floaté4},2}:
0.0+42.0im 0.0-2.0im
0.0-2.0im 0.0+2.0im
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7.

10.

Now, we create a function, julia, that computes a Julia set. Optional named
arguments are separated from positional arguments by a semicolon (;). Julia's
syntax for flow control is close to that of Python's, except that colons are dropped,
indentation doesn't count, and block end keywords are mandatory:

function julia(z, c¢; maxiter=200)
for n = l:maxiter
if abs2(z) > 4.0
return n-1
end
z = £(z, <)
end
return maxiter
end
julia (generic function with 1 method)

We can use Python packages from Julia. First, we have to install the PyCall package

by using Julia's built-in package manager (Pkg). Once the package is installed, we
can use it in the interactive session with using PyCall:

Pkg.add ("PyCall")
using PyCall

We can import Python packages with the epyimport macro (a metaprogramming
feature in Julia). This macro is the equivalent of Python's import command:

@pyimport numpy as np

The np namespace is now available in the Julia interactive session. NumPy
arrays are automatically converted to Julia Array objects:

z = np.linspace(-1., 1., 100)
100-element Array{Floaté4,1}:
-1.0
-0.979798
-0.959596

0.959596
0.979798
1.0
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11. We can use list comprehensions to evaluate the function julia on many arguments:

m = [julia(z[i], 0.5) for i=1:100]
100-element Array{Inté4,1}:

2

2

2
2
12. Let's try the Gadf 1y plotting package. This library offers a high-level plotting interface

inspired by Dr. Leland Wilkinson's textbook The Grammar of Graphics, Springer. In
the Notebook, plots are interactive thanks to the D3.js library:

Pkg.add ("Gadfly")
using Gadfly
plot (x=1:100, y=m, Geom.point, Geom.line)
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13. Now, we compute a Julia set by using two nested loops. In general, and unlike Python,
there is no significant performance penalty in using for loops instead of vectorized
operations. High-performance code can be written either with vectorized operations
or for loops:

@time m = [julia(complex(r, i), complex(-0.06, 0.67))
for i = 1:-.001:-1,
r = -1.5:.001:1.5];
1.99 seconds (12.1 M allocations: 415.8 MiB)

14. Finally, we use the PyPlot package to draw Matplotlib figures in Julia:

Pkg.add ("PyPlot")

using PyPlot

imshow (m, cmap="RdGy",
extent=[-1.5, 1.5, -1, 1]);

1.00

0.75

0.50
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0.00

—-0.25

—0.50

-0.75

-1.00 T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

Languages used to be either low-level, difficult to use but fast (such as C); or high-level, easy
to use but slow (such as Python). In Python, solutions to this problem include NumPy and
Cython, among others.

Julia developers chose to create a new high-level but fast language, bringing the best of both
worlds together. This is essentially achieved through JIT compilation techniques implemented
with LLVM.
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Julia dynamically parses code and generates low-level code in the LLVM intermediate
representation (IR). This representation features a language-independent instruction set
that is then compiled to machine code. Code written with explicit loops is directly compiled to
machine code. This explains why performance-motivated vectorization of code is generally not
required with Julia.

There's more...

Strengths of Julia include:
» A powerful and flexible dynamic type system based on multiple dispatch for
parametric polymorphism
» Facilities for metaprogramming
» Asimple interface for calling C, FORTRAN, or Python code from Julia
» Built-in support for fine-grained parallel and distributed computing
» A built-in multidimensional array data type and numerical computing library
» A built-in package manager based on Git

» External packages for data analysis such as DataFrames (equivalent of Pandas) and
Gadfly (a statistical plotting library)

» Integration in the Jupyter Notebook

The main strengths of Python as opposed to Julia are its wide community, ecosystem, and the
fact that it is a general-purpose language. It is easy to bring numerical computing code written
in Python to a Python-based production environment.

Fortunately, one may not have to choose because both Python and Julia can be used in the
Jupyter Notebook, and there are ways to make both languages talk to each other via PyCall
and pyjulia.

We have only scratched the surface of the Julia language in this recipe. Topics of interest we
couldn't cover in details here include Julia's type system, its metaprogramming features, the
support for parallel computing, and the package manager, among others.

Here are some references:
» The Julia language on Wikipedia available at https://en.wikipedia.org/wiki/
Julia_ %28programming language%29

» Official documentation for Julia available at http://docs.julialang.org/en/
latest/

» PyCall.jl for calling Python from Julia available at https://github.com/
stevengj/PyCall.jl

» pyjulia for calling Julia from Python available at https://github.com/JuliaPy/
pyjulia
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PyPlot.jl for using Matplotlib in Julia available at https://github.com/
stevengj/PyPlot.jl

Gadfly.jl, a Julia plotting library, available at http://gadflyjl.org/stable/

DataFrames.jl, an equivalent of Pandas for Julia, available at https://github.
com/JuliaStats/DataFrames.jl

Juno, an IDE for Julia, available at http://junolab.org/
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Data Visualization

In this chapter, we will cover the following topics:

» Using Matplotlib styles

» Creating statistical plots easily with seaborn

» Creating interactive web visualizations with Bokeh and HoloViews
» Visualizing a NetworkX graph in the Notebook with D3.js

» Discovering interactive visualization libraries in the Notebook

» Creating plots with Altair and the Vega-Lite specification

Introduction

While Matplotlib is the main visualization library in Python, it is not the only one. In this
chapter, we will introduce some of the many other visualization libraries that cover more
domain-specific use cases, or that offer specific interactivity features in the Jupyter Note

book.

Using Matplotlib styles

Recent versions of Matplotlib have significantly improved the default style of its figures. Today,
Matplotlib comes with a set of high-quality predefined styles along with a styling system that

lets one customize all aspects of these styles.
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How to do it...

1. Let's import the libraries:

>>> import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
$matplotlib inline

2. Let's see a list of all available styles:

>>> sorted (mpl.style.available)
['bmh',

'classic!',

'dark_background',

'fivethirtyeight',

'ggplot',

'grayscale',

'mycustomstyle',

'seaborn',

'seaborn-whitegrid!']

3. We create a plot:

>>> def doplot () :
fig, ax = plt.subplots(l, 1, figsize=(5,

t = np.linspace(-2 * np.pi, 2 * np.pi, 1000)

X = np.linspace (0, 14, 100)
for i in range(1l, 7):

ax.plot(x, np.sin(x + 1 * .5) * (7 -
return ax

4. We can set a style with mpl.style.use (). All subsequent plots will use this style:

>>> mpl.style.use('fivethirtyeight')
doplot ()
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5.  We can temporarily change the style for a given plot using the context
manager syntax:

>>> # Set the default style.
mpl.style.use('default')
# Temporarily switch to the ggplot style.
with mpl.style.context ('ggplot') :
ax = doplot ()
ax.set title('ggplot style')
# Back to the default style.
ax = doplot ()
ax.set title('default style')

ggplot style

Chapter 6
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default style

6. Now, we will customize the ggplot style by creating a new custom style to be applied
in addition to ggplot. First, we specify the path to the custom style file, which
should be inmpl configdir/stylelib/mycustomstyle.mpltstyle, where
mpl configdir is the Matplotlib config directory. Let's get this config directory:

>>> cfgdir = matplotlib.get configdir()
cfgdir
' /home/cyrille/.config/matplotlib’

7. We get the path to the file using the pathlib module:

>>> from pathlib import Path
p = Path(cfgdir)
stylelib = (p / 'stylelib')
stylelib.mkdir (exist ok=True)
path = stylelib / 'mycustomstyle.mplstyle'

8. Inthis file, we specify a few parameters:

>>> path.write text('''
axes.facecolor : f0£f0fO0
font.family : serif
lines.linewidth : 5
xtick.labelsize : 24
ytick.labelsize : 24
re)
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10.

We need to reload the library after we add or change a style:
>>> mpl.style.reload library ()

Here is the result of the new style (we first apply the ggplot style, then we customize
it by applying the options of our new style):

>>> with mpl.style.context (['ggplot', 'mycustomstyle'l):
doplot ()
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There's more...

Here are a few references:

>

Customizing matplotlib, at http://matplotlib.org/users/customizing.
html

Matplotlib Style Gallery, at https://tonysyu.github.io/raw_content/
matplotlib-style-gallery/gallery.html

Matplotlib: beautiful plots with style, at http://www. futurile.
net/2016/02/27/matplotlib-beautiful-plots-with-style/

See also

>

The Creating statistical plots easily with seaborn recipe
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Creating statistical plots easily with

seaborn

seaborn is a library that builds on top of Matplotlib and Pandas to provide easy-to-use
statistical plotting routines. In this recipe, we give a few examples, adapted from the official
documentation, of the types of statistical plot that can be created with seaborn.

How to do it...

1. Let's import NumPy, Matplotlib, and seaborn:

>>> import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
$matplotlib inline

2. seaborn comes with built-in datasets, which are useful when making demos.
The tips dataset contains bills and tips for taxi journeys:

>>> tips = sns.load dataset('tips"')
tips

total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2

1 10.34 1.66 Male No Sun Dinner 3

2 21.01 3.50 Male No Sun Dinner 3

3 23.68 3.31 Male No  Sun Dinner 2

4 2459 3.61 Female No Sun Dinner 4

239 29.03 5.92 Male No Sat Dinner 3

240 27.18 2.00 Female Yes Sat Dinner 2

241 2267 2.00 Male Yes Sat Dinner 2

242 17.82 1.75 Male No Sat Dinner 2

243 18.78 3.00 Female No Thur Dinner 2

244 rows x 7 columns
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seaborn implements easy-to-use functions to visualize the distribution of datasets.
Here, we plot the histogram, Kernel Density Estimation (KDE), and a gamma
distribution fit for our dataset:

>>> # We create two subplots sharing the same y axis.
f, (axl, ax2) = plt.subplots(l, 2,
figsize=(12, 5),
sharey=True)

# Left subplot.
# Histogram and KDE (active by default).
sns.distplot (tips.total bill,

ax=axl,

hist=True)

# Right subplot.
# "Rugplot", KDE, and gamma fit.
sns.distplot (tips.total bill,

ax=ax2,

hist=False,

kde=True,

rug=True,

fit=stats.gamma,

fit kws=dict (label='gamma'),

kde_kws=dict (label='kde"'))
ax2.legend()
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4. We can make a quick linear regression to visualize the correlation between

two variables:

>>> sns.regplot (x="total bill", y="tip", data=tips)
10 ©
®
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6 o *,°
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total_bill

40 50

5. We can also visualize the distribution of categorical data with different types of plot.
Here, we display a bar plot, a violin plot, and a swarm plot that show an increasing

amount of details:

>>> £, (axl, ax2, ax3) = plt.subplots(

1, 3, figsize=(12, 4), sharey=True)
sns.barplot (x='sex', y='tip', data=tips, ax=axl)
sns.violinplot (x='sex', y='tip', data=tips, ax=ax2)
sns.swarmplot (x='sex', y='tip', data=tips, ax=ax3)
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The bar plot shows the mean and standard deviation of the tip, for males and
females. The violin plot shows an estimation of the distribution in a more informative
way than the bar plot, especially with non-Gaussian or multimodal distributions.

The swarm plot displays all points, using the non-informative x axis to make them

non-overlapping.
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FacetGrid lets us explore a multidimensional dataset with several subplots
organized within a grid. Here, we plot the tip as a function of the bill, with a linear
regression, for every combination of smoker (Yes/No) and sex (Male/Female):

>>> g = sns.FacetGrid(tips, col='smoker', row='sex')
g.map (sns.regplot, 'total bill', 'tip')

sex = Male | smoker = Yes sex = Male | smoker = No
10 ]

sex = Female | smoker = No

10 20 20 40 50 10 20 30 40 50

total_bill total_bill

Besides seaborn, there are other high-level plotting interfaces:

>

>

Grammar of Graphics: The Grammar of Graphics, Springer is a book by Dr. Leland
Wilkinson that has influenced many high-level plotting interfaces such as R's ggplot2,
Python's ggplot by yhat, and others.

Vega, by Trifacta, is a declarative visualization grammar that can be translated to
D3.js (a JavaScript visualization library). Altair provides a Python API for the Vega-Lite
specification (a higher-level specification that compiles to Vega).

Here are some more references:

>

>

>

seaborn tutorial at https://seaborn.pydata.org/tutorial .html
seaborn gallery at https://seaborn.pydata.org/examples/index.html
Altair, available at https://altair-viz.github.io
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» plotnine, a Grammar of Graphics implementation in Python, at https://
plotnine.readthedocs.io/en/stable/
» ggplot for Python available at http://ggplot.yhathg.com/
» ggplot2 for the R programming language, available at http://ggplot2.org/
» Python Plotting for Exploratory Data Analysis at http://pythonplot.com/

» The Using Matplotlib styles recipe
» The Discovering interactive visualization libraries in the Notebook recipe
» The Creating plots with Altair and the Vega-Lite specification recipe

Creating interactive web visualizations with

Bokeh and HoloViews

Bokeh (http://bokeh.pydata.org/en/latest/)is a library for creating rich
interactive visualizations in a browser. Plots are designed in Python, and they are
rendered in the browser.

In this recipe, we will give a few short examples of interactive Bokeh figures in the Jupyter
Notebook. We will also introduce HoloViews, which provides a high-level API for Bokeh and
other plotting libraries.

Getting ready

Bokeh should be installed by default in Anaconda, but you can also install it manually by
typing conda install bokeh in a Terminal.

To install HoloViews, type conda install -c¢ ioam holoviews.

How to do it...

1. Let's import NumPy and Bokeh. We need to call output notebook () to tell Bokeh
to render plots in the Jupyter Notebook.

>>> import numpy as np
import pandas as pd
import bokeh
import bokeh.plotting as bkh
bkh.output notebook ()
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Let's create a scatter plot of random data:

>>> £ = bkh.figure(width=600, height=400)
f.circle (np.random.randn(1000),
np.random.randn(1000),
gsize=np.random.uniform(2, 10, 1000),
alpha=.5)
bkh.show (f)
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An interactive plot is rendered in the notebook. We can pan and zoom by clicking on
the toolbar buttons on the right.
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3. Let'sload a sample dataset, sea_surface temperature:

>>> from bokeh.sampledata import sea_ surface temperature

data = sea_surface_ temperature.sea surface_ temperature
data
temperature

time
2016-02-15 00:00:00 4.929
2016-02-15 00:30:00 4.887
2016-02-15 01:00:00 4.821
2016-02-15 01:30:00 4.837
2016-02-15 02:00:00 4.830
2017-03-21 22:00:00 4.000
2017-03-21 22:30:00 3.975
2017-03-21 23:00:00 4.017
2017-03-21 23:30:00 4121
2017-03-22 00:00:00 4.316
19226 rows x 1 columns

4. Now, we plot the evolution of the temperature as a function of time:
>>> £ = bkh.figure(x axis type="datetime",
title="Sea surface temperature",
width=600, height=400)
f.line(data.index, data.temperature)

f.xaxis.axis label = "Date"
f.yaxis.axis_label = "Temperature"
bkh.show (£f)
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Sea surface temperature
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5. We use Pandas to plot the hourly average temperature:

>>> months = (6, 7, 8)
data_list = [data[data.index.month == m]
for m in months]
>>> # We group by the hour of the measure:
data_avg = [d.groupby(d.index.hour).mean()
for d in data_list]
>>> f = bkh.figure(width=600, height=400,

title="Hourly average sea temperature")

for d, c, m in zip(data_avg,
bokeh.palettes.Inferno[3],
("June', "July', "August')):
f.line(d.index, d.temperature,

line_width=5,

line_color=c,

legend=m,

)

f.xaxis.axis_label = "Hour"
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f.yaxis.axis_label = "Average temperature"
f.legend.location = 'center_right'
bkh.show (f)

Hourly average sea temperature
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6. Let's move on to HoloViews:

>>> import holoviews as hv
hv.extension ('bokeh!')

7. We create a 3D array that could represent a time-dependent 2D image:

>>> data = np.random.rand (100, 100, 10)

>>> ds = hv.Dataset ((np.arange(10),
np.linspace (0., 1., 100),
np.linspace (0., 1., 100),

data),
kdims=['time', 'y', 'x'],
vdims=['z"'])
>>> ds
:Dataset [time, vy, x] (z)
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The ds object is a Dataset instance representing our time-dependent data. The
kdims are the key dimensions (time and space) whereas the vdims are the quantities
of interest (here, a scalar z). In other words, the kdims represent the axes of the 3D
array data, whereas the vdims represent the values stored in the array.

We can easily display a 2D image with a slider to change the time, and a histogram of
z as a function of time:
>>> %opts Image (cmap='viridis')

ds.to(hv.Image, ['x', 'y'l).hist()

time: 3
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There's more...

Bokeh figures in the Notebook are interactive even in the absence of a Python server. For
example, our figures can be interactive in nbviewer. Bokeh can also generate standalone
HTML/JavaScript documents from our plots. More examples can be found in the gallery.

The xarray library (see http://xarray.pydata.org/en/stable/) provides a way to
represent multidimensional arrays with axes. HoloViews can work with xarray objects.

Plotly is a company specializing in interactive visualization. It provides an open-source Python
visualization library (see https://plot.ly/python/). It also proposes tools for building
dashboard-style web-based interfaces (see https://plot.ly/products/dash/).

Datashader (http://datashader.readthedocs.io/en/latest/)and vaex (http://
vaex.astro.rug.nl/) are two visualization libraries that target very large datasets.

Here are a few references:
» Bokeh user guide at http://bokeh.pydata.org/en/latest/docs/user

guide.html

» Bokeh gallery at http://bokeh.pydata.org/en/latest/docs/gallery.
html

» Using Bokeh in the Notebook, available at http://bokeh.pydata.org/en/
latest/docs/user guide/notebook.html

» HoloViews at http://holoviews.org
» HoloViews gallery at http://holoviews.org/gallery/index.html

» HoloViews tutorial at https://github.com/icam/jupytercon2017-
holoviews-tutorial

Visualizing a NetworkX graph in the

Notebook with D3.js

D3.js (http://d3js.org) is a popular interactive visualization framework for the web.
Written in JavaScript, it allows us to create data-driven visualizations based on web
technologies such as HTML, SVG, and CSS. The official gallery contains many examples
(https://github.com/d3/d3/wiki/gallery). There are many other JavaScript
visualization and charting libraries, but we will focus on D3.js in this recipe.

Being a pure JavaScript library, D3.js has in principle nothing to do with Python. However, the
HTML:-based Jupyter Notebook can integrate D3.js visualizations seamlessly.

In this recipe, we will create a graph in Python with NetworkX and visualize it in the Jupyter
Notebook with D3.js.
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Getting ready

You need to know the basics of HTML, JavaScript, and D3.js for this recipe.

How to do it...

1. Let's import the packages:

>>> import json
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
$matplotlib inline

2. We load a famous social graph published in 1977 called Zachary's Karate Club
graph. This graph represents the friendships between members of a karate club. The
club's president and the instructor were involved in a dispute, resulting in a schism in
this group. Here, we simply display the graph with Matplotlib (using the networkx.
draw () function):

>>> g = nx.karate club graph()
fig, ax = plt.subplots(l, 1, figsize=(8, 6));
nx.draw_networkx (g, ax=ax)
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3.

226

Now, we're going to display this graph in the Notebook with D3.js. The first step is to
bring this graph to JavaScript. Here, we choose to export the graph to JSON. D3.js
generally expects each edge to be an object with a source and target. Also, we specify
which side each member has taken (the club attribute):

>>> nodes = [{'name': str(i), 'club': g.node[i] ['club']}
for i in g.nodes()]
links = [{'source': u[0], 'target': ull]}
for u in g.edges()]
with open('graph.json', 'w') as f:

json.dump ({ 'nodes': nodes, 'links': links},
f, indent=4,)

The next step is to create an HTML object that will contain the visualization. Here, we
create a <div> element in the notebook. We also specify a few CSS styles for nodes
and links (also called edges):

>>> %%html
<div id="d3-example"></div>
<style>
.node {stroke: #fff; stroke-width: 1.5px;}
.link {stroke: #999; stroke-opacity: .6;}
</style>

The last step is trickier. We write the JavaScript code to load the graph from the JSON
file and display it with D3.js. Knowing the basics of D3.js is required here (see the
documentation of D3.js):

o

>>> %$%javascript
// We load the d3.js library from the Web.
require.config ({paths:
{d3: "http://d3js.org/d3.v3.min"}});
require(["d3"], function(d3) ({
// The code in this block is executed when the
// d3.js library has been loaded.

// First, we specify the size of the canvas
// containing the visualization (size of the
// <div> element) .

var width = 300, height = 300;

// We create a color scale.
var color = d3.scale.categorylO() ;

// We create a force-directed dynamic graph layout.
var force = d3.layout.force()




.charge (-120)
.linkDistance (30)
.size([width, heightl]) ;

// In the <div> element, we create a <svg> graphic
// that will contain our interactive visualization.
var svg = d3.select ("#d3-example") .select ("svg")
if (svg.empty()) {
svg = d3.select ("#d3-example") .append ("svg")
.attr ("width", width)
.attr("height", height);

// We load the JSON file.

d3.json("graph.json", function(error, graph) {
// In this block, the file has been loaded
// and the 'graph' object contains our graph.

// We load the nodes and links in the
// force-directed graph.
force.nodes (graph.nodes)

.links (graph.links)

.start () ;

// We create a <line> SVG element for each link
// in the graph.
var link = svg.selectAll(".link")

.data (graph.links)

.enter () .append("line")

.attr("class", "link");

// We create a <circle> SVG element for each node
// in the graph, and we specify a few attributes.
var node = svg.selectAll (".node")
.data (graph.nodes)
.enter () .append ("circle")
.attr("class", "node")
.attr("r", 5) // radius
.style("£i11l", function(d) {
// The node color depends on the club.
return color (d.club) ;

3]
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.call (force.drag) ;

// The name of each node is the node number.
node.append ("title")
.text (function(d) { return d.name; });

// We bind the positions of the SVG elements

// to the positions of the dynamic force-directed
// graph, at each time step.
force.on("tick", function/()

{
link.attr("x1", function(d){return d.source.x})
.attr("yl", function(d){return d.source.y})
.attr("x2", function(d) {return d.target.x})
.attr("y2", function(d) {return d.target.y});

node.attr ("cx", function(d){return d.x})
.attr("cy", function(d) {return d.y});

When we execute this cell, the HTML object created in the previous cell is updated.
The graph is animated and interactive; we can click on nodes, see their labels, and
move them within the canvas:

: ' ®

An interactive plot in the Notebook with D3.js
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There's more...

NetworkX implements routines to import/export graphs from/into files in different formats.
Here are a few references:

» Reading and writing graphs with NetworkX, at https://networkx.github.io/
documentation/stable/reference/readwrite/index.html

» NetworkX and JSON, at https://networkx.github.io/documentation/
stable/reference/readwrite/json graph.html

See also

» The Creating interactive web visualizations with Bokeh and HoloViews recipe

Discovering interactive visualization

libraries in the Notebook

Several libraries provide interactive visualization of 2D or 3D data in the Notebook, using the
capabilities of Jupyter widgets. We give basic examples using four of these libraries: ipyleaflet,
bgplot, pythreejs, and ipyvolume.

Getting started

To install the libraries, type conda install -c¢ conda-forge ipyleaflet bgplot
pythreejs ipyvolume in a Terminal.

How to do it...

1. First, we show a simple example of ipyleaflet, which offers a Python interface to
use the Leaflet.js interactive mapping library (similar to Google Maps, but based on
the open source project OpenStreetMaps):

>>> from ipyleaflet import Map, Marker

2. We create a map around a given position specified in GPS coordinates:

>>> pos = [34.62, -77.34]
m = Map (center=pos, zoom=10)
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3. We also add a marker at that position:

>>> marker = Marker (location=pos,
rise_on_hover=True,
title="Here I am!",

)

>>> m += marker

4. We display the map in the notebook:

>>> m

Leaflel | Map data (¢) OpanStreetMap contributors

5. Let's move to the bgplot interactive plotting library, which implements an API
inspired by Grammar of Graphics:

>>> import numpy as np

import bgplot.pyplot as plt

6. We display an interactive plot using an API that should be familiar to any
Matplotlib user:

>>> plt.figure(title='Scatter plot with colors')

t = np.linspace(-3, 3, 100)

X = np.sin(t)

y = np.sin(t) + .1 * np.random.randn(100)

plt.plot(t, x)

plt.scatter(t, vy,
size=np.random.uniform(15, 50, 100),
color=np.random.randn (100))

plt.show ()
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Scatter plot with colors

Next, we show an example of pythreejs, a Python bridge to the three.js 3D library
in JavaScript. This library uses WebGL, an API that leverages the GPU for fast
real-time rendering in the browser:

>>> from pythreejs import *

We will display a parametric surface plot. We define the function as a string
containing JavaScript code:

>>> £ = nmun
function f(x, y) {
x =2 * (x - .5);
y=2%*(y - .5);

r2 = x * x +y *vy;

var z = Math.exp(-2 * r2) * (
Math.cos (12*x) * Math.sin(12*y)) ;

return new THREE.Vector3(x, y, 2z)

}

We also create a texture for the surface:

>>> texture = np.random.uniform(.5, .9, (20, 20))
material = LambertMaterial (
map=height texture (texture))
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10. We create ambient and directional lights:

>>> alight = AmbientLight (color='#777777")
dlight = DirectionalLight (color='white',
position=([3, 5, 1],
intensity=0.6)

11. We create the surface mesh:

>>> surf g = ParametricGeometry (func=f)
surf = Mesh(geometry=surf g,
material=material)

12. Finally, we initialize the scene and the camera, and we display the plot:

>>> scene = Scene(children=[surf, alight])
¢ = PerspectiveCamera (position=[2.5, 2.5, 2.5],
up=[0, 0, 1],
children=[dlight])
Renderer (camera=c, scene=scene,
controls=[OrbitControls (controlling=c)])
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13. The last library is ipyvolume, a 3D plotting library in Python that also uses WebGL in

the Notebook:

>>> import ipyvolume

14. This library provides volume rendering features, where a volumetric dataset
represented as a 3D array is visualized using ray tracing techniques:

>>> ds = ipyvolume.datasets.aquariusA2.fetch()
ipyvolume.quickvolshow (ds.data, lighting=True)

levels: (L 0.11

opacities: > 0.m

X o[l c

ambient b 0.50 diffuse | 0.80

specular 9, 0.50 specular exp O 5.00

There's more

Here are several references:

» Jupyter widgets at http://jupyter.org/widgets.html

» ipyleafletat https://github.com/ellisonbg/ipyleaflet
» bqgplotathttps://bgplot.readthedocs.io/en/stable/
» pythreejs athttps://github.com/jovyan/pythreejs

» threejsathttps://threejs.org/

233


http://jupyter.org/widgets.html
https://github.com/ellisonbg/ipyleaflet
https://bqplot.readthedocs.io/en/stable/
https://github.com/jovyan/pythreejs
https://threejs.org/

Data Visualization

» ipyvolume at https://github.com/maartenbreddels/ipyvolume

» Jupyter Google Maps at http://jupyter-gmaps.readthedocs.io/en/
latest/

» Aninteractive 3D molecular viewer for Jupyter, based on NGL, at http://
nglviewer.org/nglview/latest/

Creating plots with Altair and the Vega-Lite

specification

Vega is a declarative format for designing static and interactive visualizations. It provides a
JSON-based visualization grammar that focuses on the what instead of the how. Vega-Lite is
a higher-level specification that is easier to use than Vega, and that compiles directly to Vega.

Altair is a Python library that provides a simple API to define and display Vega-Lite
visualizations. It works in the Jupyter Notebook, JupyterLab, and nteract.

might change in future versions.

Getting started...

Install Altair with conda install -c¢ conda-forge altair.

How to do it...

1. Let's import Altair:

[ Altair is under active development and some details of the API ]
2

>>> import altair as alt

2. Altair provides several example datasets:

>>> alt.list datasets()
['airports',

'driving',
'flare',
'flights-10k',
'flights-20k',
'flights-2k',
'flights-3m',
'flights-5k',
'flights-airport',
'gapminder',
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'wheat',
'world-110m']

We load the £1ights-5k dataset:
>>> df = alt.load dataset('flights-5k"')

The load dataset () function returns a Pandas DataFrame.
>>> df .head (3)

date delay destination distance origin

0 2001-01-10 18:2... 25 HOU 192 SAT
1 2001-01-3116:4... 17 OAK 371 SNA
2 2001-02-16 12:0... 21 SAN 417  SJC

This dataset provides the date, origin, destination, flight distance, and delay for
many flights.

Let's create a scatter plot showing the delay as a function of the date, with the
marker size depending on the flight distance:

>>> alt.Chart (df) .mark point () .encode (
x="'date"',
y="'delay',
size='distance',
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Export as PNG View Source Open in Vega Editor

235



Data Visualization

The mark point () method specifies that we're creating a scatter plot. The
encode () function allows us to link parameters of the plot (the x and y coordinates
and the point size) to specific columns in our DataFrame.

5. Next, we create a bar plot with the average delay of all flights departing from Los
Angeles, as a function of time:

>>> df _la = df [df['origin'] == 'LAX']

x = alt.X('date', bin=True)
y = 'average (delay)'

alt.Chart (df_la) .mark bar () .encode (
X=X,

Y=Y,

AVERAGE(delay)

Jan 14, 2001
Jan 21, 2001
Jan 28, 2001
Feb 18, 2001
Feb 25, 2001
Mar 04, 2001
Mar 11, 2001
Mar 18, 2001

o -
s ]
3] ]
- P~
L] o
g 5
o =

Export as PNG View Source Open in Veqga Editor

We select all flights departing from the LAX airport using Pandas. For the x
coordinate, we use the alt .X class to specify that we want a histogram (bin=True).
For the y coordinate, we specify the average of all delays for every bin.
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6. Now, we create a histogram of the average delay of every origin airport. We use the
sort option of the X class to specify that we want to order the x axis (origin) as a
function of the average delay, in descending order:

>>> sort_delay = alt.SortField(
'delay', op='average',6 order='descending')

x = alt.X('origin', sort=sort_delay)
y = 'average (delay)'

alt.Chart (df) .mark bar () .encode (
X=X,

Y=Y,

AVERAGE{delay]

BFYHi3dfFd aiEEsed U553 6552 95309 a8 o833553322838353
origin
Export as PNG View Sourge Ops ega Edips

Altair provides a Python API to generate a Vega-Lite specification in JSON. The to_json ()
method of an Altair chart can be used to inspect the JSON created by Altair. For example, here
is the JSON for the last chart example:

{
"$schema": "https://vega.github.io/schema/vega-lite/v1.2.1.json",
"data": {
"values": [
{
"date": "2001-01-10 18:20:00",
"delay": 25,
"destination": "HOU",
"distance": 192,
"origin": "SAT"

b
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.
b

"encoding": {
g |
"field": "origin",
"sort": {
"field": "delay",
"op": "average",
"order": "descending"
b
"type": "nominal"
I
"y o
"aggregate": "average",
"field": "delay",
"type": "quantitative"
}
b
"mark": "bar"

}

The JSON may contain the data itself, like here, or a URL to a data file. It also defines the
encoding channels that link the chart parameters to the data.

In the Jupyter Notebook, Altair leverages the Vega-Lite library to create a Canvas or SVG figure
with the requested plot.

There's more...

Altair and Vega-Lite support much more complex charts, as can be seen in the galleries for
these projects.

Vega-Lite supports interactive plots. The following example from the Vega-Lite gallery
illustrates linked brushing between subplots, where a rectangular selection can be
drawn with the mouse in any subplot:
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Linked brushing

There is also an online editor on the Vega-Lite website that can be used to create plots directly
in the browser without installing anything.

Here are a few references:

» Altair documentation at https://altair-viz.github.io/

» Altair gallery at https://altair-viz.github.io/gallery/index.html
» Vega-Lite documentation at https://vega.github.io/vega-lite/

» Vega-Lite gallery at https://vega.github.io/vega-lite/examples/

» Vega-Lite online editor at https://vega.github.io/editor/#/custom/vega-
lite
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See also

» The Creating statistical plots easily with seaborn recipe
» The Discovering interactive visualization libraries in the Notebook recipe
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Statistical Data
Analysis

In this chapter, we will cover the following topics:

» Exploring a dataset with pandas and Matplotlib
» Getting started with statistical hypothesis testing - a simple z-test
» Getting started with Bayesian methods

» Estimating the correlation between two variables with a contingency table
and a chi-squared test

» Fitting a probability distribution to data with the maximum likelihood method

» Estimating a probability distribution nonparametrically with a kernel
density estimation

» Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method

» Analyzing data with the R programming language in the Jupyter Notebook

Introduction

In the previous chapters, we reviewed technical aspects of high-performance interactive
computing in Python. We now begin the second part of this book by illustrating a variety of
scientific questions that can be tackled with Python.

In this chapter, we introduce statistical methods for data analysis. In addition to covering
statistical packages such as pandas, statsmodels, and PyMC3, we will explain the basics of
the underlying mathematical principles. Therefore, this chapter will be most profitable if you
have basic experience with probability theory and calculus.
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The next chapter, Chapter 8, Machine Learning, is closely related; the underlying mathematics
is very similar, but the goals are slightly different. In this chapter, we show how to gain insight
into real-world data and how to make informed decisions in the presence of uncertainty. In
the next chapter, the goal is to learn from data—that is, to generalize and to predict outcomes
from partial observations.

In this introduction, we will give a broad, high-level overview of the methods we will see in
this chapter.

What is statistical data analysis?

The goal of statistical data analysis is to understand a complex, real-world phenomenon

from partial and uncertain observations. The uncertainty in the data results in uncertainty
in the knowledge we get about the phenomenon. A major goal of the theory is to quantify

this uncertainty.

It is important to make the distinction between the mathematical theory underlying statistical
data analysis, and the decisions made after conducting an analysis. The former is perfectly
rigorous; perhaps surprisingly, mathematicians were able to build an exact mathematical
framework to deal with uncertainty. Nevertheless, there is a subjective part in the way
statistical analysis yields actual human decisions. Understanding the risk and the
uncertainty behind statistical results is critical in the decision-making process.

In this chapter, we will see the basic notions, principles, and theories behind statistical data
analysis, covering in particular how to make decisions with a quantified risk. Of course,
we will always show how to implement these methods with Python.

A bit of vocabulary

There are many terms that need introduction before we get started with the recipes.
These notions allow us to classify statistical techniques within multiple dimensions.

Exploration, inference, decision, prediction

Exploratory methods allow us to get a preliminary look at a dataset through basic statistical
aggregates and interactive visualization. We covered these basic methods in the first chapter
of this book and in the prequel book Learning IPython for Interactive Computing and Data
Visualization, Second Edition, Packt Publishing. The first recipe of this chapter, Exploring a
dataset with pandas and Matplotlib, shows another example.
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Statistical inference consists of getting information about an unknown process through
partial and uncertain observations. In particular, estimation entails obtaining approximate
guantities for the mathematical variables describing this process. Three recipes in this
chapter deal with statistical inference:

» The Fitting a probability distribution to data with the maximum likelihood
method recipe

» The Estimating a probability distribution nonparametrically with a kernel density
estimation recipe

» The Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method recipe

Decision theory allows us to make decisions about an unknown process from random
observations, with a controlled risk. The following two recipes show how to make
statistical decisions:

» The Getting started with statistical hypothesis testing — a simple z-test recipe

» The Estimating the correlation between two variables with a contingency table and a
chi-squared test recipe

Prediction consists of learning from data—that is, predicting the outcomes of a random
process based on a limited number of observations. This is the topic of the next chapter,
Chapter 8, Machine Learning.

Univariate and multivariate methods
In most cases, you can consider two dimensions in your data:

» Observations (or samples, for machine learning people)
» Variables (or features)

Typically, observations are independent realizations of the same random process. Each
observation is made of one or several variables. Most of the time, variables are either
numbers, or elements belonging to a finite set (that is, taking a finite number of values).
The first step in an analysis is to understand what your observations and variables are.

Your problem is univariate if you have one variable. It is bivariate if you have two variables
and multivariate if you have at least two variables. Univariate methods are typically simpler.
That being said, univariate methods may be used on multivariate data, using one dimension
at a time. Although interactions between variables cannot be explored in that case, it is often
an interesting first approach.
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Frequentist and Bayesian methods

There are at least two different ways of considering uncertainty, resulting in two different
classes of methods for inference, decision, and other statistical questions. These are called
frequentist and Bayesian methods. Some people prefer frequentist methods, while others
prefer Bayesian methods.

Frequentists interpret a probability as a statistical average across many independent
realizations (law of large numbers). Bayesians interpret it as a degree of belief (no need

for many realizations). The Bayesian interpretation is very useful when only a single trial is
considered. In addition, Bayesian theory takes into account our prior knowledge about a
random process. This prior probability distribution is updated into a posterior distribution as
we get more and more data.

Both frequentist and Bayesian methods have their advantages and disadvantages. For
instance, one could say that frequentist methods might be easier to apply than Bayesian
methods, but more difficult to interpret. For classic misuses of frequentist methods, see
http://www.refsmmat.com/statistics/.

In any case, if you are a beginner in statistical data analysis, you probably want to learn the
basics of both approaches before choosing sides. This chapter introduces you to both types
of methods.

The following recipes are exclusively Bayesian:

» The Getting started with Bayesian methods recipe

» The Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method recipe

Jake VanderPlas has written several blog posts about frequentism and Bayesianism, with
examples in Python. The first post of the series is available at http://jakevdp.github.
io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/.

Parametric and nonparametric inference methods

In many cases, you base your analysis on a probabilistic model. This model describes how
your data is generated. A probabilistic model has no reality; it is only a mathematical object
that guides you in your analysis. A good model can be helpful, whereas a bad model may
misguide you.

With a parametric method, you assume that your model belongs to a known family of
probability distributions. The model has one or multiple numerical parameters that you
can estimate.



http://www.refsmmat.com/statistics/
http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro
http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro

Chapter 7

With a nonparametric model, you do not make such an assumption in your model. This gives
you more flexibility. However, these methods are typically more complicated to implement and
to interpret.

The following recipes are parametric and nonparametric, respectively:
» The Fitting a probability distribution to data with the maximum likelihood
method recipe
» The Estimating a probability distribution nonparametrically with a kernel density

estimation recipe

This chapter only gives you an idea of the wide range of possibilities that Python offers for
statistical data analysis. You can find many books and online courses that cover statistical
methods in much greater detail, such as:

» Statistics resources on Awesome Math, available at https://github.com/
rossant/awesome-math#statistics
» Statistics on WikiBooks at http://en.wikibooks.org/wiki/Statistics

» Free statistical textbooks available at http://stats.stackexchange.com/
questions/170/free-statistical-textbooks

Exploring a dataset with pandas and

Matplotlib

In this first recipe, we will show how to conduct a preliminary analysis of a dataset with
pandas. This is typically the first step after getting access to the data. pandas lets us
load the data very easily, explore the variables, and make basic plots with Matplotlib.

We will take a look at a dataset containing all ATP matches played by the Swiss tennis player
Roger Federer until 2012.

How to do it...

1. We import NumPy, pandas, and Matplotlib:

>>> from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
$matplotlib inline
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2. The dataset is a CSV file—that is, a text file with comma-separated values. pandas lets
us load this file with a single function:
>>> player = 'Roger Federer'
df = pd.read csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'federer.csv?raw=true',
parse_dates=['start date'],
dayfirst=True)
We can have a first look at this dataset by just displaying it in the Jupyter Notebook:
>>> df.head (3)
year tournament  start date type surface .. player2 total se... player2 total ret... player2 total ret... player2 total po... player2 fotal pe...
0 1998 Basel Switzerland 1998-10-05 WS Indoor Hard .. 50.0 26.0 53.0 62.0 103.0
1 1998 Toulouse, France 1998-09-28 WS Indoor: Hard ... B5.0 B8O 41.0 4.0 106.0
2 1998 Toulouse, France 1998-09-28 WS Indoor Hard ... 75.0 230 730 69.0 148.0

3 rows = 70 columns
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There are many columns. Each row corresponds to a match played by Roger Federer.
Let's add a Boolean variable indicating whether he has won the match or not.
The tail () method displays the last rows of the column:

>>> df ['win'] = df['winner'] == player
df ['win'] .tail ()

1174 False

1175 True

1176 True

1177 True

1178 False

Name: win, dtype: bool

df ['win'] is a Series object. It is very similar to a NumPy array, except that each
value has an index (here, the match index). This object has a few standard statistical
functions. For example, let's look at the proportion of matches won:

>>> won = 100 * df['win'] .mean/()
print (f"{player} has won {won:.0f}% of his matches.")
Roger Federer has won 82% of his matches.

Now, we are going to look at the evolution of some variables across time.
The df ['start date'] field contains the start date of the tournament:

>>> date = df ['start date']
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We are now looking at the proportion of double faults in each match (taking into
account that there are logically more double faults in longer matches!). This number
is an indicator of the player's state of mind, his level of self-confidence, his willingness
to take risks while serving, and other parameters.

>>> df ['dblfaults'] = (df['playerl double faults'] /
df ['playerl total points total'l)

We can use the head () and tail () methods to take a look at the beginning and
the end of the column, and describe () to get summary statistics. In particular,
let's note that some rows have NaN values (that is, the number of double faults is
not available for all matches).

>>> df ['dblfaults'] .tail()

1174 0.018116
1175 0.000000
1176 0.000000
1177 0.011561
1178 NaN

Name: dblfaults, dtype: floaté64
>>> df ['dblfaults'] .describe ()

count 1027.000000
mean 0.012129
std 0.010797
min 0.000000
25% 0.004444
50% 0.010000
75% 0.018108
max 0.060606

Name: dblfaults, dtype: floaté64

A very powerful feature in pandas is groupby () . This function allows us to group
together rows that have the same value in a particular column. Then, we can
aggregate this group by value to compute statistics in each group. For instance, here
is how we can get the proportion of wins as a function of the tournament's surface:

>>> df .groupby ('surface') ['win'] .mean ()

Surface

Indoor: Carpet 0.736842
Indoor: Clay 0.833333
Indoor: Hard 0.836283
Outdoor: Clay 0.779116
Outdoor: Grass 0.871429
Outdoor: Hard 0.842324
Name: win, dtype: floaté64
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9.

10.

Now, we are going to display the proportion of double faults as a function of the
tournament date, as well as the yearly average. To do this, we also use groupby () :

>>> gb = df.groupby('year')

gb is a GroupBy instance. It is similar to a DataFrame object, but there are multiple
rows per group (all matches played in each year). We can aggregate these rows using
the mean () operation. We use the matplotlib plot date () function because
the x axis contains dates:

>>> fig, ax = plt.subplots(1l, 1)

ax.plot date(date.astype(datetime), df['dblfaults'],
alpha=.25, 1lw=0)

ax.plot_date(gb['start date'] .max() .astype(datetime),
gb['dblfaults'] .mean(), '-', 1lw=3)

ax.set xlabel ('Year')

ax.set_ylabel ('Double faults per match')

ax.set_ylim(0)

0.06

0.05

0.04

0.03

0.02

0.01

Double faults per match

009998 2000 2002 2004 2006 2008 2010 2012

Year

pandas is an excellent tool for data wrangling and exploratory analysis. pandas accepts all
sorts of formats (text-based, and binary files) and it lets us manipulate tables in many ways.
In particular, the groupby () function is particularly powerful.

What we covered here is only the first step in a data-analysis process. We need more
advanced statistical methods to obtain reliable information about the underlying phenomena,
make decisions and predictions, and so on. This is the topic of the following recipes.

In addition, more complex datasets demand more sophisticated analysis methods. For
example, digital recordings, images, sounds, and videos require specific signal processing
treatments before we can apply statistical techniques. These questions will be covered in
subsequent chapters.
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Here are a few references about pandas:

» pandas website at https://pandas.pydata.org/

» pandas tutorial at http://pandas.pydata.org/pandas-docs/
stable/10min.html

» Python for Data Analysis, 2nd Edition, Wes McKinney, O'Reilly Media,
athttp://shop.oreilly.com/product/0636920050896.do

Getting started with statistical hypothesis

testing — a simple z-test

Statistical hypothesis testing allows us to make decisions in the presence of incomplete
data. By definition, these decisions are uncertain. Statisticians have developed rigorous
methods to evaluate this risk. Nevertheless, some subjectivity is always involved in the
decision-making process. The theory is just a tool that helps us make decisions in an
uncertain world.

Here, we introduce the most basic ideas behind statistical hypothesis testing. We will follow

a particularly simple example: coin tossing. More precisely, we will show how to perform a
z-test, and we will briefly explain the mathematical ideas underlying it. This kind of method
(also called the frequentist method), although widely used in science, is not without flaws and
interpretation difficulties. We will show another approach based on Bayesian theory later in
this chapter. It is very helpful to understand both approaches.

Getting ready

You need to have a basic knowledge of probability theory for this recipe (random variables,
distributions, expectancy, variance, central limit theorem, and so on).

How to do it...

Many frequentist methods for hypothesis testing roughly involve the following steps:
1. Writing down the hypotheses, notably the null hypothesis, which is the opposite of
the hypothesis we want to prove (with a certain degree of confidence).

2. Computing a test statistic, a mathematical formula depending on the test type, the
model, the hypotheses, and the data.

3. Using the computed value to reject the hypothesis with a given level of uncertainty,
or fail to conclude (and, consequently, accept the hypothesis until future studies
reject it).
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For example, to test the efficacy of a new drug, doctors may consider, as a null hypothesis,
that the drug has no statistically significant effect on a group of patients compared to a
control group of patients who do not take the drug. If studies reject the null hypothesis,

it is an argument in favor of the efficacy of the drug (but it is not a definite proof).

Here, we flip a coin n times and we observe h heads. We want to know whether the coin is fair
(null hypothesis). This example is particularly simple yet quite useful for pedagogical purposes.
Besides, it is the basis of many more complex methods.

We denote the Bernoulli distribution by B(q) with the unknown parameter q. You can refer to
https://en.wikipedia.org/wiki/Bernoulli distribution for more information.

A Bernoulli variable is:

» O (tail) with probability 1 — ¢
» 1 (head) with probability ¢

Here are the steps required to conduct a simple statistical z-test:

1. Let's suppose that after n = 100 flips, we get h = 61 heads. We choose a significance
level of 0.05: is the coin fair or not? Our null hypothesis is: the coin is fair (¢ = 1/2).
We set these variables:

>>> import numpy as np
import scipy.stats as st
import scipy.special as sp
>>> n = 100 # number of coin flips
h = 61 # number of heads
g = .5 # null-hypothesis of fair coin

2. Let's compute the z-score, which is defined by the following formula (xbar is the
estimated average of the distribution). We will explain this formula in the next
section, How it works....
>>> xbar = float(h) / n
z = (xbar - q) * np.sgrt(n / (g * (L - g)))
# We don't want to display more than 4 decimals.
Z

2.2000

3. Now, from the z-score, we can compute the p-value as follows:

>>> pval = 2 * (1 - st.norm.cdf(z))
pval
0.0278
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4. This p-value is less than 0.05, so we reject the null hypothesis and conclude that the
coin is probably not fair.

The coin tossing experiment is modeled as a sequence of n independent random variables
x; € {0, 1} following the Bernoulli distribution B(q). Each z; represents one coin flip. After
our experiment, we get actual values (samples) for these variables. A different notation is
sometimes used to distinguish between the random variables (probabilistic objects) and the
actual values (samples).

The following formula gives the sample mean (proportion of heads here):
_ 1
xr = g Z €T
K3

Knowing the expectancy 1 = ¢ and variance 02 = ¢(1 — q) of the distribution B(q),
we compute:

The z-test is the normalized version of © (we remove its mean, and divide by the standard
deviation, thus we get a variable with mean O and standard deviation 1):

Z:LEF]:@‘(D P

Under the null hypothesis, what is the probability of obtaining a z-test higher (in absolute
value) than some quantity z,? This probability is called the (two-sided) p-value. According to
the central limit theorem, the z-test approximately follows a standard Gaussian distribution
N(0, 1) for large n, so we get:

p = Pl|z] > 20] = 2P[z > 20] ~ 2(1 — ®(20))
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The following diagram illustrates the z-score and the p-value:

95%
5%
p-value
Distribution of the z-test observed z-test
under the null hypothesis

Illustration of the z-score and the p-value.

In this formula, ® is the cumulative distribution function of a standard normal distribution. In
SciPy, we can get it with scipy.stats.norm. cdf. So, given the z-test computed from the
data, we compute the p-value: the probability of observing a z-test more extreme than the
observed test, under the null hypothesis.

If the p-value is less than five percent (a frequently-chosen significance level, for arbitrary and
historical reasons), we conclude that either:

» The null hypothesis is false, thus we conclude that the coin is unfair.

» The null hypothesis is true, and it's just bad luck if we obtained these values.
We cannot make a conclusion.

We cannot disambiguate between these two options in this framework, but typically the first
option is chosen. We hit the limits of frequentist statistics, although there are ways to mitigate
this problem (for example, by conducting several independent studies and looking at all of
their conclusions).

There's more...

There are many statistical tests that follow this pattern. Reviewing all those tests is
largely beyond the scope of this book, but you can take a look at the reference at
https://en.wikipedia.org/wiki/Statistical hypothesis testing.

As a p-value is not easy to interpret, it can lead to wrong conclusions, even in peer-reviewed
scientific publications. For an in-depth treatment of the subject, see http://www.
refsmmat.com/statistics/.
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See also

» The Getting started with Bayesian methods recipe

Getting started with Bayesian methods

In the last recipe, we used a frequentist method to test a hypothesis on incomplete data.
Here, we will see an alternative approach based on Bayesian theory. The main idea is to
consider that unknown parameters are random variables, just like the variables describing
the experiment. Prior knowledge about the parameters is integrated into the model. This
knowledge is updated as more and more data is observed.

Frequentists and Bayesians interpret probabilities differently. Frequentists interpret a
probability as a limit of frequencies when the number of samples tends to infinity. Bayesians
interpret it as a belief; this belief is updated as more and more data is observed.

Here, we revisit the previous coin flipping example with a Bayesian approach. This example
is sufficiently simple to permit an analytical treatment. In general, as we will see later in this
chapter, analytical results cannot be obtained and numerical methods become essential.

Getting ready

This is a math-heavy recipe. Knowledge of basic probability theory (random variables,
distributions, Bayes formula) and calculus (derivatives, integrals) is recommended.
We use the same notations as in the previous recipe.

How to do it...

Let ¢ be the probability of obtaining a head. Whereas ¢ was just a fixed number in the
previous recipe, we consider here that it is a random variable. Initially, this variable follows
a distribution called the prior probability distribution. It represents our knowledge about ¢
before we start flipping the coin. We will update this distribution after each trial (posterior
distribution).

1. First, we assume that ¢ is a uniform random variable on the interval [0, 1]. That's our
prior distribution: for all ¢, P(g¢) = 1.

2. Then, we flip our coin n times. We note x; the outcome of the ith flip (0 for tail,
1 for head).
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3.

What is the probability distribution of ¢ knowing the observations x;? Bayes' theorem
allows us to compute the posterior distribution analytically (see the next section for
the mathematical details):

Plal o)) = - H DD gy (g - g
| Py 1o P@a

We define the posterior distribution according to the preceding mathematical formula.
We remark that this expression is (n + 1) times the Probability Mass Function (PMF)
of the binomial distribution, which is directly available in scipy.stats. (For more
information on binomial distribution, refer to https://en.wikipedia.org/wiki/
Binomial distribution.)

>>> import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
$matplotlib inline
>>> def posterior(n, h, qg):
return (n + 1) * st.binom(n, q).pmf (h)

Let's plot this distribution for an observation of h = 61 heads and n = 100 total flips:

>>> n = 100
h = 61
g = np.linspace(0., 1., 1000)
d = posterior(n, h, q)
>>> fig, ax = plt.subplots(1l, 1)
ax.plot(g, d, '-k')
ax.set xlabel ('qg parameter')
ax.set ylabel ('Posterior distribution')
ax.set_ylim(0, d.max() + 1)

£ ()] (s2]

Posterior distribution
;8]

0.0 0.2 0.4 0.6 0.8 1.0
q parameter
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This curve represents our belief about the parameter ¢ after we have observed 61 heads.

In this section, we explain Bayes' theorem, and we give the mathematical details underlying
this example.

Bayes' theorem

There is a very general idea in data science that consists of explaining data with a
mathematical model. This is formalized with a one-way process, model — data.

Once this process is formalized, the task of the data scientist is to exploit the data to recover
information about the model. In other words, we want to invert the original process and get
data — model.

In a probabilistic setting, the direct process is represented as a conditional probability
distribution P(data | model). This is the probability of observing the data when the
model is entirely specified.

Similarly, the inverse process is P(model | data). It gives us information about the model
(what we're looking for), knowing the observations (what we have).

Bayes' theorem is at the core of a general framework for inverting a probabilistic process of
model — data. It can be stated as follows:

P(data | model) P(model)

P(model | data) = P (data)

This equation gives us information about our model, knowing the observed data. Bayes'
equation is widely used in signal processing, statistics, machine learning, inverse problems,
and in many other scientific applications.

In Bayes' equation, P(model) reflects our prior knowledge about the model. Also,
P(data) is the distribution of the data. It is generally expressed as an integral of
P(data | model) P(model).

In conclusion, Bayes' equation gives us a general roadmap for data inference:

1. Specify a mathematical model for the direct process model — data
(the P(data | model)term).
2. Specify a prior probability distribution for the model (P(model) term).

3. Perform analytical or numerical calculations to solve this equation.
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Computation of the posterior distribution

In this recipe's example, we found the posterior distribution with the following equation
(deriving directly from Bayes' theorem):

IP({%‘} | q) P(g)

Pl | {:}) =
APW@MW@@

Knowing that the x; are independent, we get (h being the number of heads):

n

P({zi} [ q) = HP(xi lq) =¢"(1—g)" "

i=1

In addition, we can compute analytically the following integral (using an integration by parts
and an induction):

1

1 4 _1h7"*h—7
| P iop@an= [ da-g) Y )

Finally, we get:

Pla] (o)) = < HDPE o ()1 =g
| Pty 10 Pl dn

Maximum a posteriori estimation

We can get a point estimate from the posterior distribution. For example, the Maximum

a posteriori (MAP) estimation consists of considering the maximum of the posterior
distribution as an estimate for q. We can find this maximum analytically or numerically. For
more information on MAP, refer to https://en.wikipedia.org/wiki/Maximum a
posteriori estimation.

Here, we can get this estimate analytically by deriving the posterior distribution with respect to
q. We get (assumingl < h <n — 1):

dP(q | {z:}) n! h—1 —h h —h—1
—_— = 1)———— (h 1—¢)" " —(n—1 1—¢g)"

i (n+ )(n_h)!h! (hg"'(1 —q) (n—h)q"(1—q) )
This expression is equal to zero when ¢ = h/n. This is the MAP estimate of the parameter q.
This value happens to be the proportion of heads obtained in the experiment.
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There's more...

In this recipe, we showed a few basic notions in Bayesian theory. We illustrated them with a
simple example. The fact that we were able to derive the posterior distribution analytically is
not very common in real-world applications. This example is nevertheless informative because
it explains the core mathematical ideas behind the complex numerical methods we will

see later.

Credible interval

The posterior distribution indicates the plausible values for ¢ given the observations. We could
use it to derive a credible interval, likely to contain the actual value. Credible intervals are
the Bayesian analog to confidence intervals in frequentist statistics. For more information on
credible intervals, refer to https://en.wikipedia.org/wiki/Credible interval.

Conjugate distributions

In this recipe, the prior and posterior distributions are conjugate, meaning that they belong to
the same family (the beta distribution). For this reason, we were able to compute the posterior
distribution analytically. You will find more details about conjugate distributions at https://
en.wikipedia.org/wiki/Conjugate prior

Non-informative (objective) prior distributions

We chose a uniform distribution as prior distribution for the unknown parameter ¢. It is a
simple choice and it leads to tractable computations. It reflects the intuitive fact that we

do not favor any particular value a priori. However, there are rigorous ways of choosing
completely uninformative priors (see https://en.wikipedia.org/wiki/Prior
probability#Uninformative priors). An example is the Jeffreys prior, based on the
idea that the prior distribution should not depend on the parameterization of the parameters.
For more information on Jeffreys prior, referto https://en.wikipedia.org/wiki/
Jeffreys prior.In our example, the Jeffreys prior is:

1

Pla) = q(1—q)

» The Fitting a Bayesian model by sampling from a posterior distribution with a Markov
chain Monte Carlo method recipe
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Estimating the correlation between two

variables with a contingency table and a
chi-squared test

Whereas univariate methods deal with single-variable observations, multivariate methods
consider observations with several features. Multivariate datasets allow the study of relations
between variables, more particularly their correlation, or lack thereof (that is, independence).

In this recipe, we will take a look at the same tennis dataset as in the first recipe of this
chapter. Following a frequentist approach, we will estimate the correlation between the
number of aces and the proportion of points won by a tennis player.

How to do it...

1. Let's import NumPy, pandas, SciPy.stats, and Matplotlib:

>>> import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
$matplotlib inline

2. We download and load the dataset:

>>> player = 'Roger Federer'
df = pd.read csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"’
'federer.csv?raw=true',
parse_dates=['start date'],
dayfirst=True)

3. Each row corresponds to a match, and the 70 columns contain many player
characteristics during that match:
>>> print (£"Number of columns: {len(df.columns)}")
df [df .columns[:4]] .tail ()
Number of columns: 70

year tournament  start date type

1174 2012 Awstralian Open... 2012-01-16 GS

1175 2012 Dcha, Qatar 2012-01-02 250
1176 2012 Doha, Qatar 2012-01-02 250
1177 2012 Doha, Qatar 2012-01-02 250
1178 2012 Doha, Qatar 2012-01-02 250
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4. Here, we only look at the proportion of points won, and the (relative) number of aces:

>>> npoints = df['playerl total points total']
points = df['playerl total points won'] / npoints
aces = df['playerl aces'] / npoints
>>> fig, ax = plt.subplots(1l, 1)
ax.plot (points, aces, '.')
ax.set xlabel('% of points won')
ax.set _ylabel ('% of aces')
ax.set _x1im(0., 1.)
ax.set_ylim(0.)
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If the two variables were independent, we would not see any trend in the cloud of
points. On this plot, it is a bit hard to tell. Let's use pandas to compute a coefficient
correlation.

5. For simplicity, we create a new DataFrame object with only these fields. We also
remove the rows where one field is missing (using dropna () ):

>>> df bis = pd.DataFrame ({'points': points,

'aces': aces}) .dropna ()
df bis.tail()

aces points

1173 0.024390 0.585366
1174 0.039855 0.471014
1175 0.046512 0.639535
1176 0.020202 0.606061
1177 0.069364 0.531792
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6. Let's compute the Pearson's correlation coefficient between the relative number of
aces in the match, and the number of points won:

>>> df bis.corr()

manyaces False True

result

False 300 214
True 214 299

A correlation of ~0.26 seems to indicate a positive correlation between our two
variables. In other words, the more aces in a match, the more points the player
wins (which is not very surprising}).

7. Now, to determine if there is a statistically significant correlation between the
variables, we use a chi-squared test of the independence of variables in a
contingency table.

8. First, we binarize our variables. Here, the value corresponding to the number
of aces is True if the player is serving more aces than usual in a match,
and False otherwise:

>>> df bis['result'] = (df bis['points'] >
df bis['points'].median())
df bis['manyaces'] = (df bis['aces'] >

df bis['aces'] .median())

9. Then, we create a contingency table, with the frequencies of all four possibilities
(True and True, True and False, and so on):

>>> pd.crosstab (df bis['result'], df bis['manyaces'])

manyaces False True

result

False 300 214
True 214 299

10. Finally, we compute the chi-squared test statistic and the associated p-value. The
null hypothesis is the independence between the variables. SciPy implements this
testin scipy.stats.chi2 contingency (), which returns several objects. We're
interested in the second result, which is the p-value:

>>> st.chi2 contingency( )
(2.780e+01, 1.338e-07, 1,
array([[ 257.250, 256.749],
[ 256.749, 256.25011))
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The p-value is much lower than 0.05, so we reject the null hypothesis and conclude that there
is a statistically significant correlation between the proportion of aces and the proportion of
points won in a match in this dataset.

Correlation does not imply causation. Here, it is likely that external factors

influence both variables. See https://en.wikipedia.org/wiki/

Correlation does not imply causation for more details.

We give here a few details about the statistical concepts used in this recipe.

Pearson's correlation coefficient

Pearson's correlation coefficient measures the linear correlation between two random
variables, X and Y. It is a normalized version of the covariance:

cov(X,Y) E((X_E(X))(Y_E(Y))>

var(X)var(Y) var(X)var(Y)

It can be estimated by substituting, in this formula, the expectancy with the sample mean,
and the variance with the sample variance. More details about its inference can be found
athttps://en.wikipedia.org/wiki/Pearson product-moment correlation
coefficient.

Contingency table and chi-squared test

The contingency table contains the frequencies O;; of all combinations of outcomes, when
there are multiple random variables that can take a finite number of values. Under the null
hypothesis of independence, we can compute the expected frequencies E;;, based on the
marginal sums (sums in each row). The chi-squared statistic, by definition, is:

2

(045 = Eyj)
x=2 Ey
,]

When there are sufficient observations, this variable approximately follows a chi-squared
distribution (the distribution of the sum of normal variables squared). Once we get the p-value,
as explained in the Getting started with statistical hypothesis testing - a simple z-test recipe,
we can reject or accept the null hypothesis of independence. Then, we can conclude (or not)
that there exists a significant correlation between the variables.
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There's more...

There are many other sorts of chi-squared tests—that is, tests where the test statistic follows
a chi-squared distribution. These tests are widely used for testing the goodness-of-fit of a
distribution, or testing the independence of variables. More information can be found in the
following pages:

» Chi-square test in SciPy documentation available at http://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.chi2 contingency.html

» Contingency table introduced at https://en.wikipedia.org/wiki/
Contingency table

» Chi-squared test introduced at https://en.wikipedia.org/wiki/Pearson's
chi-squared test

See also

» The Getting started with statistical hypothesis testing - a simple z-test recipe

Fitting a probability distribution to data with

the maximum likelihood method

A good way to explain a dataset is to apply a probabilistic model to it. Finding an adequate
model can be a job on its own. Once a model is chosen, it is necessary to compare it to

the data. This is what statistical estimation is about. In this recipe, we apply the maximum
likelihood method on a dataset of survival times after heart transplant (1967-1974 study).

Getting ready

As usual in this chapter, a background in probability theory and real analysis is
recommended. In addition, you need the statsmodels package to retrieve the
test dataset. It should be included in Anaconda, but you can always install it with
the conda install statsmodels command.

262



http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test

Chapter 7

How to do it...

1.

statsmodels is a Python package for conducting statistical data analyses. It also
contains real-world datasets that we can use when experimenting with new methods.
Here, we load the heart dataset:

>>> import numpy as np
import scipy.stats as st
import statsmodels.datasets
import matplotlib.pyplot as plt
$matplotlib inline
>>> data = statsmodels.datasets.heart.load pandas() .data

Let's take a look at this DataFrame.
>>> data.tail ()

survival censors age
64 14.0 1.0 403
65 167.0 00 267
66 110.0 0.0 237
67 13.0 0.0 28.9
68 1.0 0.0 352

This dataset contains censored and uncensored data: a censor of O means that the
patient was alive at the end of the study, and thus we don't know the exact survival
time. We only know that the patient survived at least the indicated number of days.
For simplicity here, we only keep uncensored data (we thereby introduce a bias
toward patients that did not survive very long after their transplant):

>>> data = data[data.censors == 1]
survival = data.survival

Let's take a look at the data graphically, by plotting the raw survival data and
the histogram:

>>> fig, (axl, ax2) = plt.subplots(l, 2, figsize=(10, 4))
axl.plot (sorted(survival) [::-1], 'o'")

axl.set xlabel ('Patient')
axl.set ylabel ('Survival time (days)')
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ax2.hist (survival, bins=15)
ax2.set xlabel ('Survival time (days)')
ax2.set ylabel ('Number of patients')
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4. We observe that the histogram is decreasing very rapidly. Fortunately, the survival

26

rates today are much higher (~70 percent after 5 years). Let's try to fit an exponential
distribution (more information on the exponential distribution is available at
https://en.wikipedia.org/wiki/Exponential distribution)to the
data. According to this model, S (number of days of survival) is an exponential
random variable with the parameter )\, and the observations s: are sampled

from this distribution. Let the sample mean be:

EZ%ZSZ‘

The likelihood function of an exponential distribution is as follows, by definition
(see proof in the next section):

LA A{si}) = P({si} | A) = A" exp (—An3)

The maximum likelihood estimate for the rate parameter is, by definition, the value
A that maximizes the likelihood function. In other words, it is the parameter that
maximizes the probability of observing the data, assuming that the observations are
sampled from an exponential distribution.

Here, it can be shown that the likelihood function has a maximum value when
A = 1/s, which is the maximum likelihood estimate for the rate parameter. Let's
compute this parameter numerically:

>>> smean = survival.mean()

rate = 1. / smean
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To compare the fitted exponential distribution to the data, we first need to generate
linearly spaced values for the x axis (days):

>>> smax = survival.max()
days = np.linspace (0., smax, 1000)
# bin size: interval between two
# consecutive values in “days"
dt = smax / 999.

We can obtain the probability density function of the exponential distribution with
SciPy. The parameter is the scale, the inverse of the estimated rate.

>>> dist_exp = st.expon.pdf (days, scale=1. / rate)

Now, let's plot the histogram and the obtained distribution. We need to rescale the
theoretical distribution to the histogram (depending on the bin size and the total
number of data points):
>>> nbins = 30

fig, ax = plt.subplots(l, 1, figsize=(6, 4))

ax.hist (survival, nbins)

ax.plot (days, dist_exp * len(survival) * smax / nbins,

'-r', 1lw=3)
ax.set xlabel ("Survival time (days)")
ax.set ylabel ("Number of patients")
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The fit is far from perfect. We were able to find an analytical formula for the maximum
likelihood estimate here. In more complex situations, that is not always possible. Thus
we may need to resort to numerical methods. SciPy actually integrates numerical
maximum likelihood routines for a large number of distributions. Here, we use this
other method to estimate the parameter of the exponential distribution.
>>> dist = st.expon

args = dist.fit(survival)

args
(1.000, 222.289)
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7.

266

We can use these parameters to perform a Kolmogorov-Smirnov test, which
assesses the goodness of fit of the distribution with respect to the data. This test is
based on a distance between the empirical distribution function of the data and the
Cumulative Distribution Function (CDF) of the reference distribution.

>>> st.kstest (survival, dist.cdf, args)
KstestResult (statistic=0.362, pvalue=8.647e-06)

Here, the p-value is very low: the null hypothesis (stating that the observed

data stems from an exponential distribution with a maximum likelihood rate
parameter) can be rejected with high confidence. Let's try another distribution,
the Birnbaum-Sanders distribution, which is typically used to model failure times.
(More information on the Birnbaum-Sanders distribution is available at https://
en.wikipedia.org/wiki/Birnbaum-Saunders distribution.)

>>> dist = st.fatiguelife

args = dist.fit(survival)

st.kstest (survival, dist.cdf, args)
KstestResult (statistic=0.188, pvalue=0.073)

This time, the p-value is about 0. 073, so that we would not reject the null hypothesis
with a five percent confidence level. When plotting the resulting distribution,
we observe a better fit than with the exponential distribution:

>>> dist fl =

nbins = 30

fig, ax = plt.subplots(l, 1, figsize=(6, 4))

ax.hist (survival, nbins)

ax.plot (days, dist_exp * len(survival) * smax / nbins,
'-r', lw=3, label='exp')

ax.plot (days, dist fl * len(survival) * smax / nbins,
'--g', lw=3, label='BS'")

ax.set xlabel ("Survival time (days)")

ax.set ylabel ("Number of patients")

ax.legend()

dist.pdf (days, *args)
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Here, we give the calculations leading to the maximum likelihood estimation of the rate
parameter for an exponential distribution:

LZ()\, {Sz}) = P({Sz} | )\)

= H P(s; | \) (by independence of the s;)
i=1
n
= H Aexp(—As;)
i=1

= A" exp (—)\ i si>
i=1

= A" exp (—An3)

Here, s is the sample mean. In more complex situations, we would require numerical
optimization methods in which the principle is to maximize the likelihood function using a
standard numerical optimization algorithm (see Chapter 9, Numerical Optimization).

To find the maximum of this function, let's compute its derivative function with respect to A:

dL(A {si})

o = A""lexp (—An3) (n — nAs)

The root of this derivative is therefore A = 1/3.

There's more...

Here are a few references:
» Maximum likelihood on Wikipedia, available at https://en.wikipedia.org/
wiki/Maximum likelihood

» Kolmogorov-Smirnov test on Wikipedia, available at https://en.wikipedia.org/
wiki/Kolmogorov-Smirnov_ test

» Goodness of fitat https://en.wikipedia.org/wiki/Goodness of fit

The maximum likelihood method is parametric: the model belongs to a prespecified
parametric family of distributions. In the next recipe, we will see a nonparametric
kernel-based method.
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» The Estimating a probability distribution nonparametrically with a kernel density
estimation recipe

Estimating a probability distribution

nonparametrically with a kernel density
estimation

In the previous recipe, we applied a parametric estimation method. We had a statistical
model (the exponential distribution) describing our data, and we estimated a single
parameter (the rate of the distribution). Nonparametric estimation deals with statistical
models that do not belong to a known family of distributions. The parameter space is then
infinite-dimensional instead of finite-dimensional (that is, we estimate functions rather
than numbers).

Here, we use a Kernel Density Estimation (KDE) to estimate the density of probability of a
spatial distribution. We look at the geographical locations of tropical cyclones from 1848
to 2013, based on data provided by the NOAA, the US' National Oceanic and Atmospheric
Administration.

Getting ready

You need Cartopy, available at http://scitools.org.uk/cartopy/. You can install it
with conda install -c¢ conda-forge cartopy.

How to do it...

1. Let's import the usual packages. The kernel density estimation with a Gaussian
kernel is implemented in scipy.stats:

>>> import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import cartopy.crs as ccrs
$matplotlib inline
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Let's open the data with pandas:
>>> # www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data
df = pd.read csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'Allstorms.ibtracs wmo.v03r05.csv?'
'raw=true')

The dataset contains information about most storms since 1848. A single storm may
appear multiple times across several consecutive days.

>>> df [df .columns[[0, 1, 3, 8, 911].head()

Serial_Num Season Basin Latitude Longitude
0 1848011508080 1848 Si -8.6 79.8
1 1848011509080 1848 Sl -9.0 78.9
2 1848011509080 1848 Sl -104 73.2
3 1848011509080 1848 Sl -12.8 69.9
4 1848011509080 1848 Sl -139 68.9

We use pandas' groupby () function to obtain the average location of every storm:

>>> dfs = df.groupby('Serial Num')
pos = dfs[['Latitude', 'Longitude']] .mean/()
x = pos.Longitude.values
y = pos.Latitude.values
pos.head ()

Latitude Longitude

Serial_Num

1848011S09080 -15.918182 71.854545
1848011515057 -24.116667 52.016667
1848061512075 -20.528571 65.342857
1851080S15063 -17.325000 55.400000
1851080521060 -23.633333 60.200000
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5.
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We display the storms on a map with Cartopy. This toolkit allows us to easily project
the geographical coordinates on the map.

>>> # We use a simple equirectangular projection,
# also called Plate Carree.
crs = ccrs.PlateCarree()
# We create the map plot.
ax = plt.axes (projection=crs)
# We display the world map picture.
ax.stock img()
# We display the storm locations.
ax.scatter (x, y, color='r', s=.5, alpha=.25)

Before performing the kernel density estimation, we transform the storms' positions
from the geodetic coordinate system (longitude and latitude) into the map's
coordinate system, called plate carrée.

>>> geo = ccrs.Geodetic()
h = geo.transform points(crs, x, y)[:, :2].T
h.shape

(2, 6940)

Now, we perform the kernel density estimation on our (2, N) array.

>>> kde = st.gaussian kde (h)

The gaussian_kde () routine returned a Python function. To see the results
on a map, we need to evaluate this function on a 2D grid spanning the entire
map. We create this grid with meshgrid (), and we pass the x and y values
to the kde () function:

>>> k = 100
# Coordinates of the four corners of the map.
x0, x1, y0, yl = ax.get_extent ()
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10.

# We create the grid.

tx, ty = np.meshgrid(np.linspace(x0, x1, 2 * k),
np.linspace(y0, yl, k))

# We reshape the grid for the kde() function.

mesh = np.vstack((tx.ravel(), ty.ravel()))

# We evaluate the kde() function on the grid.

v = kde (mesh) .reshape((k, 2 * k))

Before displaying the KDE heatmap on the map, we need to use a special colormap
with a transparent channel. This will allow us to superimpose the heatmap on the
stock image:

>>> # https://stackoverflow.com/a/37334212/1595060
cmap = plt.get cmap('Reds')
my cmap = cmap (np.arange (cmap.N))
my cmap[:, -1] = np.linspace(0, 1, cmap.N)
my cmap = ListedColormap (my cmap)

Finally, we display the estimated density with imshow () :

>>> ax = plt.axes(projection=crs)
ax.stock _img()
ax.imshow (v, origin='lower',
extent=[x0, x1, yO0, y1l,
interpolation='bilinear’',
cmap=my cmap)
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The kernel density estimator of a set of n points {z; } is given as:

m:%if«(ﬁ%)

Here, h > 0 is a scaling parameter (the bandwidth) and K (u) is the kernel, a symmetric
function that integrates to 1. This estimator is to be compared with a classical histogram,
where the kernel would be a top-hat function (a rectangle function taking its values in
{0,1}), but the blocks would be located on a regular grid instead of the data points. For
more information on kernel density estimator, refer to https://en.wikipedia.org/
wiki/Kernel density estimation.

Multiple kernels can be chosen. Here, we chose a Gaussian kernel, so that the KDE is the
superposition of Gaussian functions centered on all the data points. It is an estimation of
the density.

The choice of the bandwidth is not trivial; there is a tradeoff between a too low value (small
bias, high variance: overfitting) and a too high value (high bias, small variance: underfitting).
We will return to this important concept of bias-variance tradeoff in the next chapter. For
more information on the bias-variance tradeoff, refer to https://en.wikipedia.org/
wiki/Bias-variance dilemma.

There are several methods to automatically choose a sensible bandwidth. SciPy uses a rule of
thumb called Scott's Rule: h = n**(-1. / (d + 4)). You will find more information at http://
scipy.github.io/devdocs/generated/scipy.stats.gaussian kde.html.

The following figure illustrates the KDE. The sample dataset contains four points in [0, 1]
(black lines). The estimated density is a smooth curve, represented here with different
bandwidth values.

Kernel density estimation
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M There are other implementations of KDE in statsmodels and scikit-learn.
Q You can find more information here: http://jakevdp.github.io/
blog/2013/12/01/kernel-density-estimation/

» The Fitting a probability distribution to data with the maximum likelihood
method recipe

Fitting a Bayesian model by sampling from

a posterior distribution with a Markov chain
Monte Carlo method

In this recipe, we illustrate a very common and useful method for characterizing a posterior
distribution in a Bayesian model. Imagine that you have some data and you want to obtain
information about the underlying random phenomenon. In a frequentist approach, you could
try to fit a probability distribution within a given family of distributions, using a parametric
method such as the maximum likelihood method. The optimization procedure would yield
parameters that maximize the probability of observing the data if given the null hypothesis.

In a Bayesian approach, you consider the parameters themselves as random variables.
Their prior distributions reflect your initial knowledge about these parameters. After the
observations, your knowledge is updated, and this is reflected in the posterior distributions
of the parameters.

A typical goal for Bayesian inference is to characterize the posterior distributions. Bayes'
theorem gives an analytical way to do this, but it is often impractical in real-world problems
due to the complexity of the models and the number of dimensions. A Markov chain Monte
Carlo (MCMC) method, such as the Metropolis-Hastings algorithm, gives a numerical
method to approximate a posterior distribution.

Here, we introduce the PyMC3 package, which gives an effective and natural interface for
fitting a probabilistic model to data in a Bayesian framework. We will look at the annual
frequency of storms in the northern Atlantic Ocean since the 1850s using data from NOAA,
the US' National Oceanic and Atmospheric Administration. This example is largely inspired
by the tutorial available in the official PyMC3 documentation at http://docs.pymc.io/
notebooks/getting started.html#Case-study-2:-Coal-mining-disasters

273



http://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
http://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
http://docs.pymc.io/notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters
http://docs.pymc.io/notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters

Statistical Data Analysis

Getting ready

You need PyMC3, available at http://docs.pymc. io. You can install it with conda
install -c conda-forge pymc3.

How to do it...

1.

274

Let's import the standard packages and PyMC3:

>>> import numpy as np
import pandas as pd
import pymc3 as pm
import matplotlib.pyplot as plt
$matplotlib inline

Let's import the data with pandas:

>>> # www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data
df = pd.read csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'Allstorms.ibtracs wmo.v03r05.csv?'
'raw=true',
delim whitespace=False)

With pandas, it only takes a single line of code to get the annual number of storms
in the North Atlantic Ocean. We first select the storms in that basin (Na), then we
group the rows by year (Season), and finally we take the number of unique storms
(Serial_ Num), as each storm can span several days (the nunique () method):

>>> cnt = df [df['Basin'] == ' NA'].groupby (
'Season') ['Serial Num'] .nunique ()
# The years from 1851 to 2012.
years = cnt.index

y0, yl = years[0], years[-1]
arr = cnt.values
>>> # Plot the annual number of storms.
fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot (years, arr, '-o')
ax.set xlim(y0, y1)
ax.set xlabel ("Year")
ax.set ylabel ("Number of storms")
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Now we define our probabilistic model. We assume that storms arise following a
time-dependent Poisson process with a deterministic rate. We assume that this rate
is a piecewise-constant function that takes a first value early mean before a switch
point switchpoint, and a second value late mean after that point. These three
unknown parameters are treated as random variables (we will describe them more
in the How it works... section). In the model, the annual number of storms per year

follows a Poisson distribution (this is a property of Poisson processes).

Al

Q

A Poisson process (https://en.wikipedia.org/wiki/

Poisson process)is a particular point process—that is,
a stochastic process describing the random occurrence of
instantaneous events. The Poisson process is fully random:
the events occur independently at a given rate. See also
Chapter 13, Stochastic Dynamical Systems.

>>> # We define our model.

with pm.Model ()

as model:
# We define our three variables.
switchpoint = pm.DiscreteUniform/(

'switchpoint', lower=y0, upper=yl)
early rate = pm.Exponential ('early rate', 1)
late rate = pm.Exponential ('late rate', 1)

# The rate of the Poisson process is a piecewise

# constant function.

rate = pm.math.switch(switchpoint >= years,
early rate, late rate)

# The annual number of storms per year follows

# a Poisson distribution.

storms = pm.Poisson('storms', rate,

observed=arr)
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Now, we sample from the posterior distribution given the observed data. The
sample (10000) method launches the fitting iterative procedure with 10000
iterations, which may take a few seconds:

>>> with model:
trace pm.sample (10000)
Assigned Metropolis to switchpoint
Assigned NUTS to early rate log
Assigned NUTS to late rate log
100% || 10500/10500 [00:05<00:00, 1757.23it/s]

Once the sampling has finished, we can plot the distribution and paths of the
Markov chains:

>>> pm.traceplot (trace)
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Each row represents a variable. The left plot is a histogram of the corresponding
Markov chain, which gives the posterior distribution of the variable. The right plot is
an arbitrarily-chosen path of a Markov chain, showing the evolution of the variable
during the fitting procedure.

Taking the sample mean of these distributions, we get posterior estimates for

the three unknown parameters, including the year where the frequency of storms
suddenly increased:

trace['switchpoint'] .mean ()

>>> S =
em = trace['early rate'] .mean()
Im = trace['late rate'] .mean()
s, em, 1lm

(1930.171, 7.316, 14.085)
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8. Finally, we can plot the estimated rate on top of the observations:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))

ax.plot (years, arr, '-o')
ax.axvline (s, color='k', 1ls='--"')
ax.plot ([y0, s], [em, em], '-', 1lw=3)
ax.plot([s, y1], [1m, 1m], '-', 1lw=3)

ax.set _xlim(y0, y1)
ax.set xlabel ("Year")
ax.set_ylabel ("Number of storms")
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The general idea is to define a Bayesian probabilistic model and to fit it to the data. This
model may be the starting point of an estimation or decision task. The model is essentially
described by stochastic or deterministic variables linked together within a Directed Acyclic
Graph (DAG). A is linked to B if B is entirely or partially determined by A. The following figure
shows the graph of the model used in this recipe:

Dependency graph of the variables
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Stochastic variables follow distributions that can be parameterized by fixed numbers or
other variables in the model. Parameters may be random variables themselves, reflecting
knowledge prior to the observations. This is the core of Bayesian modeling.

The goal of the analysis is to include the observations into the model in order to update our
knowledge as more and more data is available. Although Bayes' theorem gives us an exact
way to compute those posterior distributions, it is rarely practical in real-world problems. This
is notably due to the complexity of the models. Alternatively, numerical methods have been
developed in order to tackle this problem.

The MCMC method used here allows us to sample from a complex distribution by
simulating a Markov chain that has the desired distribution as its equilibrium distribution.
The Metropolis-Hastings algorithm is a particular application of this method to our
current example.

There's more...

Here are a few references:

» Afree e-book on the subject, by Cameron Davidson-Pilon, entirely written in the
Jupyter Notebook, available at http://camdavidsonpilon.github.io/
Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/

» The MCMC method introduced at https://en.wikipedia.org/wiki/Markov
chain Monte_ Carlo

» The Metropolis-Hastings algorithm introduced at https://en.wikipedia.org/
wiki/Metropolis-Hastings algorithm

» The Getting started with Bayesian methods recipe

Analyzing data with the R programming

language in the Jupyter Notebook

R (http://www.r-project.org) is an open-source domain-specific programming
language for statistics. Its syntax is well-adapted to statistical modeling and data analysis.

By contrast, Python's syntax is typically more convenient for general-purpose programming.
Luckily, Jupyter allows us to have the best of both worlds. For example, we can insert R code
snippets anywhere in a normal Jupyter notebook. We can continue using Python and pandas
for data loading and wrangling, and switch to R to design and fit statistical models. Using R
instead of Python for these tasks is more than a matter of programming syntax; R comes with
an impressive statistical toolbox.
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In this recipe, we will show how to interface R with Python in the Jupyter Notebook, and we will
illustrate the most basic capabilities of R with a simple data analysis example.

\ There is another way of using R in the Jupyter Notebook, which is to install
S IRkernel, the R kernel for Jupyter. Using this method, all of the code of an
Q IRkernel notebook is written in R, not in Python. You will find more information
athttps://irkernel.github.io/installation/.

Getting ready

You need the statsmodels package for this recipe. It should be installed by default with
Anaconda, but you can always install it with conda install statsmodels.

You also need R and rpy2 (https://rpy2.readthedocs.io/). There are three steps to
use R with Python:

1. Download R from https://cran.r-project.org/ and install it.
2. |Install rpy2 with conda install rpy?2.
3. Runthe $load _ext rpy2.ipython command in a Jupyter notebook.

1
‘\Q rpy2 does not appear to work well on Windows. We recommend

using Linux or macOS.

How to do it...

Here, we will use the following workflow: first, we load data from Python. Then, we use R to
design and fit a model, and to make some plots in the Jupyter Notebook. We could also use R
only for the entire recipe, or Python only. The goal of this recipe is precisely to show how to use
both languages in the same Jupyter notebook.

1. Let'sload the 1longley dataset with the statsmodels package. This dataset
contains a few economic indicators in the US from 1947 to 1962. We also load the
IPython R extension:

>>> import statsmodels.datasets as sd
>>> data = sd.longley.load pandas ()
>>> %load ext rpy2.ipython
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We define x and y as the exogeneous (independent) and endogenous (dependent)
variables, respectively. The endogenous variable quantifies the total employment in
the country.

>>> data.endog_name, data.exog name
('TOTEMP', ['GNPDEFL', 'GNP', 'UNEMP',
'ARMED', 'POP', 'YEAR'])

>>> y, x = data.endog, data.exog

For convenience, we add the endogenous variable to the x DataFrame:
>>> x['TOTEMP'] =y

>>> X

GNPDEFL GNP UNEMP ARMED POP YEAR TOTEMP
0 830 234280.0 23560 1590.0 107608.0 1947.0 60323.0
1 88,5 250426.0 23250 1456.0 1086320 19480 611220
2 88.2 258054.0 36820 1616.0 109773.0 19490 60171.0
3 895 2845000 33510 1650.0 110929.0 19500 61187.0
4 962 3289750 2099.0 3099.0 1120750 1951.0 63221.0
1 110.8 4445460 46810 2637.0 1219500 19580 66513.0
12 1126 4827040 3813.0 2552.0 123366.0 1959.0 68655.0
13 1142 502601.0 3931.0 2514.0 125368.0 1960.0 69564.0
14 1157 5181730 48060 25720 127852.0 1961.0 69331.0
15 1169 554804.0 4007.0 2827.0 130081.0 1962.0 70551.0
16 rows * 7 columns

We will make a simple plot in R. First, we need to pass Python variables to R. We use
the $R -1 wvarl,var2 magic. Then, we call R's plot () command:
>>> gnp = x['GNP']
totemp = x['TOTEMP']
>>> %R -1 totemp,gnp plot (gnp, totemp)
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Now that the data has been passed to R, we can fit a linear model to the data. In
R, the 1m () function lets us perform a linear regression. Here, we want to express
totemp (total employment) as a function of the country's GNP. We use the $%R cell
magic to write several lines of R code in a cell:
>>> %3%R

# Least-squares regression

fit <- lm(totemp ~ gnp)

# Display the coefficients of the fit.

print (fitS$Scoefficients)

# Plot the data points.
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plot (gnp, totemp)
# And plot the linear regression.
abline (fit)

totemp
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The -1i and -o options of the $%R magic allow us to pass variables back and forth between
IPython and R. The variable names need to be separated by commas. You can find more
information about the $R magic in the documentation available at https://rpy2.
readthedocs.io/.

In R, the tilde (~) expresses the dependence of a dependent variable upon one or several
independent variables. The 1m () function allows us to fit a simple linear regression model
to the data. Here, totemp is expressed as a function of gnp:

totemp = a X gnp + b

Here, b (intercept) and a are the coefficients of the linear regression model. These two values
are returned by fitScoefficients in R, where £it is the fitted model.
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Our data points do not satisfy this relation exactly, but the coefficients are chosen so as to
minimize the error between this linear prediction and the actual values. This is typically done
by minimizing the following least squares error:

n

r(a,b) = Z(totempi — (a x gnp; +b))?

i=1

The data points are (gnp;, totemp;) here. The coefficients a and b that are returned by 1m ()
make this sum minimal: they fit the data best.

Regression is an important statistical concept that we will see in greater detail in the next
chapter. Here are a few references:

» Regression analysis on Wikipedia, available at https://en.wikipedia.org/
wiki/Regression analysis

» Least squares method on Wikipedia, available at https://en.wikipedia.org/
wiki/Linear least squares %28mathematics%29

Here are a few references about R:

» Introduction to R available at http://cran.r-project.org/doc/manuals/R-
intro.html

» Rtutorial available at http://www.cyclismo.org/tutorial/R/

» CRAN, or Comprehensive R Archive Network, containing many packages for R,
available at http://cran.r-project.org

» The Exploring a dataset with pandas and Matplotlib recipe
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Machine Learning

In this chapter, we will cover the following topics:

» Getting started with scikit-learn

» Predicting who will survive on the Titanic with logistic regression

» Learning to recognize handwritten digits with a K-nearest neighbors classifier
» Learning from text - Naive Bayes for Natural Language Processing

» Using support vector machines for classification tasks

» Using a random forest to select important features for regression

» Reducing the dimensionality of a dataset with a principal component analysis

» Detecting hidden structures in a dataset with clustering

Introduction

In the previous chapter, we were interested in getting insight into data, understanding complex
phenomena through partial observations, and making informed decisions in the presence

of uncertainty. Here, we are still interested in analyzing and processing data using statistical
tools. However, the goal is not necessarily to understand the data, but to learn from it.

Learning from data is close to what we do as humans. From our experience, we intuitively
learn general facts and relations about the world, even if we don't fully understand their
complexity. The increasing computational power of computers makes them able to learn
from data too. That's the heart of machine learning, a branch of artificial intelligence at
the intersection of computer science, statistics, and applied mathematics.

This chapter is a hands-on introduction to some of the most basic methods in machine
learning. These methods are routinely used by data scientists. We will use these methods
with scikit-learn, a popular and user-friendly Python package for machine learning.
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A bit of vocabulary

In this introduction, we will explain the fundamental definitions and concepts of
machine learning.

Learning from data

In machine learning, most data can be represented as a table of numerical values. Every
row is called an observation, a sample, or a data point. Every column is called a feature
or a variable.

Let's call IV the number of rows (or the number of points) and D the number of columns (or
number of features). The number D is also called the dimensionality of the data. The reason
is that we can view this table as a set E' of vectors in a space with D dimensions (or vector
space). Here, a vector x contains D numbers (z1, ..., p), also called components. This
mathematical point of view is very useful and we will use it throughout this chapter.

We make the distinction between supervised learning and unsupervised learning;:

» Supervised learning is when we have a label y associated with a data point z. The
goal is to learn the mapping from z to y from our data. The data gives us this mapping
for a finite set of points, but what we want is to generalize this mapping to the full set
FE, or at least to a larger set of points.

» Unsupervised learning is when we don't have any labels. What we want to do is
discover some form of hidden structure in the data.

Supervised learning

Mathematically, supervised learning consists of finding a function f that maps the set of
points E to a set of labels I, knowing a finite set of associations (x, y), which is given by our
data. This is what generalization is about: after observing the pairs (2;, y;), given a new z, we
are able to find the corresponding y by applying the function f to z.

It is a common practice to split the set of data points into two subsets: the training set and
the test set. We learn the function f on the training set and test it on the test set. This is
essential when assessing the predictive power of a model. By training and testing a model on
the same set, our model might not be able to generalize well. This is the fundamental concept
of overfitting, which we will detail later in this chapter.

We generally make the distinction between classification and regression, two particular
instances of supervised learning.
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Classification is when our labels y can only take a finite set of values (categories).
Examples include:

» Handwritten digit recognition: x is an image with a handwritten digit; y is a digit
between 0 and 9

» Spam filtering: = is an email and y is 1 or O, depending on whether that email is
spam or not

Regression is when our labels y can take any real (continuous) value. Examples include:

» Predicting stock market data

» Predicting sales

» Detecting the age of a person from a picture
A classification task yields a division of our space F in different regions (also called
partitions), each region being associated to one particular value of the label y. A regression

task yields a mathematical model that associates a real number to any point x in the space E.
This difference is illustrated in the following figure:

Classification Regression
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Difference between classification and regression

Classification and regression can be combined. For example, in the probit model, although
the dependent variable is binary (classification), the probability that this variable belongs
to one category can also be modeled (regression). We will see an example in the recipe
about logistic regression. For more information on the probit model, refer to https://
en.wikipedia.org/wiki/Probit model.

Unsupervised learning

Broadly speaking, unsupervised learning helps us discover systemic structures in our data.
This is harder to grasp than supervised learning, in that there is generally no precise question
and answer.
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Here are a few important tasks related to unsupervised learning;:

» Clustering: Grouping similar points together within clusters

» Density estimation: Estimating a probability density function that can explain the
distribution of the data points

» Dimension reduction: Getting a simple representation of high-dimensional
data points by projecting them onto a lower-dimensional space (notably for
data visualization)

» Manifold learning: Finding a low-dimensional manifold containing the data points
(also known as nonlinear dimension reduction)

Feature selection and feature extraction

In a supervised learning context, when our data contains many features, it is sometimes
necessary to choose a subset of them. The features we want to keep are those that are most
relevant to our question. This is the problem of feature selection.

Additionally, we might want to extract new features by applying complex transformations on
our original dataset. This is feature extraction. For example, in computer vision, training a
classifier directly on the pixels is not the most efficient method in general. We might want to
extract the relevant points of interest or make appropriate mathematical transformations.
These steps depend on our dataset and on the questions we want to answer.

For example, it is often necessary to preprocess the data before learning models. Feature
scaling (or data normalization) is a common preprocessing step where features are linearly
rescaled to fit in the range [—1, 1] or [0, 1].

Feature extraction and feature selection involve a balanced combination of domain expertise,
intuition, and mathematical methods. These early steps are crucial, and they might be even
more important than the learning steps themselves. The reason is that the few dimensions
that are relevant to our problem are generally hidden in the high dimensionality of our
dataset. We need to uncover the low-dimensional structure of interest to improve the
efficiency of the learning models.

We will see a few feature selection and feature extraction methods in this chapter. Methods
that are specific to signals, images, or sounds will be covered in Chapter 10, Signal
Processing, and Chapter 11, Image and Audio Processing.

Deep learning has profoundly revolutionized machine learning in the last few years. A major
characteristic of this range of methods is that feature selection and extraction are often
included in the model itself. The most relevant features are automatically selected by the
algorithm. This method works particularly well on images, sounds, and videos. Typically,
however, deep learning requires a huge amount of training data and computational power.
Covering deep learning methods in Python is beyond the scope of this book, but we give a few
references at the end of this introduction.
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Here are a few further references:

» Feature selection in scikit-learn, documented at http://scikit-learn.org/
stable/modules/feature selection.html

» Feature selection on Wikipedia at https://en.wikipedia.org/wiki/Feature
selection

Overfitting, underfitting, and the bias-variance tradeoff

A central notion in machine learning is the trade-off between overfitting and underfitting.

A model may be able to represent our data accurately. However, if it is too accurate, it might
not generalize well to unobserved data. For example, in facial recognition, a too-accurate
model would be unable to identify someone who styled their hair differently that day. The
reason is that our model might learn irrelevant features in the training data. On the contrary,
an insufficiently trained model would not generalize well either. For example, it would be
unable to correctly recognize twins. For more information on overfitting, refer to https://
en.wikipedia.org/wiki/Overfitting.

A popular solution to reduce overfitting consists of adding structure to the model—for example,
with regularization. This method favors simpler models during training (Occam's razor). You
will find more information at https://en.wikipedia.org/wiki/Regularization %28
mathematics%29.

The bias-variance dilemma is closely related to the issue of overfitting and underfitting. The
bias of a model quantifies how precise it is across training sets. The variance quantifies
how sensitive the model is to small changes in the training set. A robust model is not overly
sensitive to small changes. The dilemma involves minimizing both bias and variance; we
want a precise and robust model. Simpler models tend to be less accurate but more robust.
Complex models tend to be more accurate but less robust. For more information on the
bias-variance dilemma, refer to https://en.wikipedia.org/wiki/Bias-variance
dilemma.

The importance of this trade-off cannot be overstated. This question pervades the entire
discipline of machine learning. We will see concrete examples in this chapter.

Model selection

As we will see in this chapter, there are many supervised and unsupervised algorithms. For
example, well-known classifiers that we will cover in this chapter include logistic regression,
nearest-neighbors, Naive Bayes, and support vector machines. There are many other
algorithms that we can't cover here.

No model performs uniformly better than the others. One model may perform well on one
dataset and badly on another. This is the question of model selection.
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We will see systematic methods to assess the quality of a model on a particular dataset
(notably cross-validation). In practice, machine learning is not an exact science in that it
frequently involves trial and error. We need to try different models and empirically choose the
one that performs best.

That being said, understanding the details of the learning models allows us to gain intuition
about which model is best adapted to our current problem.

Here are a few references on this question:
» Model selection on Wikipedia, available at https://en.wikipedia.org/wiki/
Model selection

» Model evaluation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/model evaluation.html

» Blog post on how to choose a classifier, available at http://blog.echen.
me/2011/04/27/choosing-a-machine-learning-classifier/

Machine learning references
Here are a few excellent, math-heavy textbooks on machine learning:

» Pattern Recognition and Machine Learning, Christopher M. Bishop, (2006), Springer

» Machine Learning - A Probabilistic Perspective, Kevin P. Murphy, (2012), MIT Press

» The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome
Friedman, (2009), Springer

Here are a few books more oriented toward programmers without a strong mathematical
background:

» Machine Learning for Hackers, Drew Conway, John Myles White, (2012),
O'Reilly Media

» Machine Learning in Action, Peter Harrington, (2012), Manning Publications Co.

» Python Machine Learning, Sebastian Raschka (2015), Packt Publishing

Further references can be found here:

» Awesome Machine Learning resources, at https://github.com/josephmisiti/
awesome-machine-learning

» Statistical Learning lectures on Awesome Math, at https://github.com/

rossant/awesome-math/#statistical-learning

Important classes of machine learning methods that we couldn't cover in this chapter include
neural networks and deep learning. Deep learning is the subject of very active research

in machine learning. Many state-of-the-art results are currently achieved by using deep
learning methods.
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Here are few references on deep learning;:
» Awesome Deep Learning resources, at https://github.com/
ChristosChristofidis/awesome-deep-learning

» Coursera Deep Learning Specialization course, at https://www.coursera.org/
specializations/deep-learning

» Udacity Deep Learning course, at https://www.udacity.com/course/deep-
learning--ud730

» Keras Tutorial: Deep Learning in Python, at https://www.datacamp.com/
community/tutorials/deep-learning-python

» Deep Learning with Python, a book by Francgois Chollet, Manning Publications, at
https://www.manning.com/books/deep-learning-with-python
Finally, here are a few lists of public datasets that can be used for data science projects:
» List of datasets for machine learning research, at https://en.wikipedia.org/
wiki/List of datasets for machine learning research

» Awesome Public Datasets, at https://github.com/caesar0301/awesome-
public-datasets

» Datasets for Data Science and Machine Learning, at https://
elitedatascience.com/datasets

» Kaggle Datasets, at https://www.kaggle.com/datasets

Getting started with scikit-learn

In this recipe, we introduce the basics of the machine learning scikit-learn package (http://
scikit-learn.org). This package is the main tool we will use throughout this chapter. Its
clean APl makes it easy to define, train, and test models.

We will show here a basic example of linear regression in the context of curve fitting. This toy
example will allow us to illustrate key concepts such as linear models, overfitting, underfitting,
regularization, and cross-validation.

Getting ready

You can find all instructions to install scikit-learn in the main documentation. For more
information, referto http://scikit-learn.org/stable/install.html. Anaconda
comes with scikit-learn by default, but, if needed, you can install it manually by typing conda
install scikit-learnina Terminal.
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How to do it...

We will generate a one-dimensional dataset with a simple model (including some noise), and
we will try to fit a function to this data. With this function, we can predict values on new data
points. This is a curve fitting regression problem.

1. First, let's make all the necessary imports:

>>> import numpy as np
import scipy.stats as st
import sklearn.linear model as 1m
import matplotlib.pyplot as plt
$matplotlib inline

2. We now define a deterministic nonlinear function underlying our generative model:

>>> def f(x):
return np.exp(3 * x)

3. We generate the values along the curve on [0, 2}:

>>> X tr = np.linspace(0., 2, 200)
y tr = £(x_tr)

4. Now, let's generate data points within [0, 1. We use the function f and we add some
Gaussian noise:

>>> X = np.array([0, .1, .2, .5, .8, .9, 11)
y = £(x) + 2 * np.random.randn (len(x))

5. Let's plot our data points on [0, 1]:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.plot(x tr, y tr, '--k')
ax.plot(x, y, 'ok', ms=10)
ax.set x1im(0, 1.5)
ax.set ylim(-10, 80)
ax.set title('Generative model')

Generative model
80
,I
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In the image, the dotted curve represents the generative model.
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Now, we use scikit-learn to fit a linear model to the data. There are three steps. First,
we create the model (an instance of the LinearRegression class). Then, we fit the
model to our data. Finally, we predict values from our trained model.

>>> # We create the model.
lr = 1lm.LinearRegression ()
# We train the model on our training dataset.
lr.fit(x[:, np.newaxis], vy)
# Now, we predict points with our trained model.
y_1lr = lr.predict(x_tr[:, np.newaxis])

We need to convert x and x_tr to column vectors, as it is a general convention in
scikit-learn that observations are rows, while features are columns. Here, we have
seven observations with one feature.

We now plot the result of the trained linear model. We obtain a regression line in
green here:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.plot(x tr, y tr, '--k')
ax.plot(x tr, y 1r, 'g')
ax.plot(x, y, 'ok', ms=10)
ax.set _x1im(0, 1.5)
ax.set_ylim(-10, 80)
ax.set_title("Linear regression")

Linear regression
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The linear fit is not well-adapted here, as the data points are generated according to a
nonlinear model (an exponential curve). Therefore, we are now going to fit a nonlinear
model. More precisely, we will fit a polynomial function to our data points. We can still
use linear regression for this, by precomputing the exponents of our data points. This
is done by generating a Vandermonde matrix, using the np . vander () function. We
will explain this trick in How it works.... In the following code, we perform and plot

the fit:

>>> lrp = 1lm.LinearRegression/()
fig, ax = plt.subplots(l, 1, figsize=(6, 3))
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ax.plot(x tr, y tr, '--k')

for deg, s in zip([2, 51, ['-', '.']):
lrp.fit (np.vander(x, deg + 1), y)
y lrp = lrp.predict (np.vander(x tr, deg + 1))
ax.plot(x tr, y lrp, s,
label=f'degree {deg}')
ax.legend(loc=2)
ax.set x1im(0, 1.5)
ax.set ylim(-10, 80)
# Print the model's coefficients.
print (f'Coefficients, degree {deg}:\n\t',
" '.join(f'{c:.2f}' for ¢ in lrp.coef ))
ax.plot(x, y, 'ok', ms=10)
ax.set title("Linear regression")
Coefficients, degree 2: 36.95 -18.92 0.00
Coefficients, degree 5: 903.98 -2245.99 1972.43 -686.45 78.64 0.00

80 Linear regression

— degree 2 5
60 + degree5 = 7

40

20

We have fitted two polynomial models of degree 2 and 5. The degree 2 polynomial
appears to fit the data points less precisely than the degree 5 polynomial. However,
it seems more robust; the degree 5 polynomial seems really bad at predicting values
outside the data points (look for example at the > 1 portion). This is what we

call overfitting; by using a too-complex model, we obtain a better fit on the trained
dataset, but a less robust model outside this set.

We will now use a different learning model called ridge regression. It works like
linear regression except that it prevents the polynomial's coefficients from becoming
too big. This is what happened in the previous example. By adding a regularization
term in the loss function, ridge regression imposes some structure on the underlying
model. We will see more details in the next section.
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The ridge regression model has a meta-parameter, which represents the weight of
the regularization term. We could try different values with trial and error using the
Ridge class. However, scikit-learn provides another model called RidgeCV, which
includes a parameter search with cross-validation. In practice, this means that

we don't have to tweak this parameter by hand—scikit-learn does it for us. As the
models of scikit-learn always follow the fit-predict API, all we have to do is replace
lm.LinearRegression () with 1m.RidgeCV () in the previous code. We will give
more details in the next section.

>>> ridge = lm.RidgeCV()

fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.plot(x tr, y tr, '--k')

for deg, s in zip([2, 51, ['-', '.']):
ridge.fit (np.vander(x, deg + 1), Vy)
y_ridge = ridge.predict (np.vander(x_tr, deg + 1))
ax.plot (x tr, y ridge, s,
label='degree ' + str(deg))
ax.legend(loc=2)
ax.set _x1im(0, 1.5)
ax.set_ylim(-10, 80)
# Print the model's coefficients.
print (f£'Coefficients, degree {deg}:',
" t.join(f£'{c:.2f}' for ¢ in ridge.coef ))

ax.plot(x, y, 'ok', ms=10)
ax.set title("Ridge regression")
Coefficients, degree 2: 14.43 3.27 0.00
Coefficients, degree 5: 7.07 5.88 4.37 2.37 0.40 0.00

&0 Ridge regression
= degree 2 ,’
60 + degree5 _,.-‘
/7
40 ’
20
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This time, the degree 5 polynomial seems more precise than the simpler degree
2 polynomial (which now causes underfitting). Ridge regression mitigates the
overfitting issue here. Observe how the degree 5 polynomial's coefficients are
much smaller than in the previous example.

295



Machine Learning

In this section, we explain all the aspects covered in this recipe.

scikit-learn API

scikit-learn implements a clean and coherent API for supervised and unsupervised
learning. Our data points should be stored in an (N, D) matrix X, where N is the number of
observations and D is the number of features. In other words, each row is an observation.
The first step in a machine learning task is to define what the matrix X is exactly.

In a supervised learning setup, we also have a target, an N-long vector y with a scalar value for
each observation. This value is either continuous or discrete, depending on whether we have
a regression or classification problem, respectively.

In scikit-learn, models are implemented in classes that have the £it () and predict ()
methods. The £it () method accepts the data matrix X as input, and y as well for supervised
learning models. This method trains the model on the given data.

The predict () method also takes data points as input (as an (M, D) matrix). It returns the
labels or transformed points as predicted by the trained model.

Ordinary Least Squares regression

Ordinary Least Squares (OLS) regression is one of the simplest regression methods. It
consists of approaching the output values ¥i with a linear combination of X j:

D
vie{l,...,N}, @ = ijXij, or, in matrix form: ¥y = Xw.
j=1

Here, w = (w1, ..., wp) is the (unknown) parameter vector. Also, j represents the

model's output. We want this vector to match the data points ¥ as closely as possible. Of
course, the exact equality § = y cannot hold in general (there is always some noise and
uncertainty—models are idealizations of reality). Therefore, we want to minimize the difference
between these two vectors. The OLS regression method consists of minimizing the following
loss function:

N
. 2 . ~\2
min y — Xwl = min (z 50 )
=1
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This sum of the components squared is called the L2 norm. It is convenient because it leads
to differentiable loss functions so that gradients can be computed and common optimization
procedures can be performed.

Polynomial interpolation with linear regression

OLS regression fits a linear model to the data. The model is linear both in the data points X;
and in the parameters w;. In our example, we obtain a poor fit because the data points were
generated according to a nonlinear generative model (an exponential function).

However, we can still use the linear regression method with a model that is linear in w; but

nonlinear in x;. To do this, we need to increase the number of dimensions in our dataset by

using a basis of polynomial functions. In other words, we consider the following data points:
Xi,XZZ, e ’Xz!)

Here, D is the maximum degree. The input matrix X is therefore the Vandermonde matrix

associated to the original data points Zi. For more information on the Vandermonde matrix,

referto https://en.wikipedia.org/wiki/Vandermonde matrix.

Training a linear model on these new data points is equivalent to training a polynomial model
on the original data points.

Ridge regression

Polynomial interpolation with linear regression can lead to overfitting if the degree of the
polynomials is too large. By capturing the random fluctuations (noise) instead of the general
trend of the data, the model loses some of its predictive power. This corresponds to a
divergence of the polynomial's coefficients w;.

A solution to this problem is to prevent these coefficients from growing unboundedly.

With ridge regression (also known as Tikhonov regularization), this is done by adding a
regularization term to the loss function. For more details on Tikhonov regularization, refer to
https://en.wikipedia.org/wiki/Tikhonov_regularization.

min [y — Xw|[3 + aflw|f3

By minimizing this loss function, we not only minimize the error between the model and the
data (first term, related to the bias), but also the size of the model's coefficients (second term,
related to the variance). The bias-variance trade-off is quantified by the hyperparameter «,
which specifies the relative weight between the two terms in the loss function.

Here, ridge regression led to a polynomial with smaller coefficients, and thus a better fit.
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Cross-validation and grid search

A drawback of the ridge regression model compared to the ordinary least squares model is
the presence of an extra hyperparameter a. The quality of the prediction depends on the
choice of this parameter. One possibility would be to fine-tune this parameter manually,
but this procedure can be tedious and can also lead to overfitting problems.

To solve this problem, we can use a grid search; we loop over many possible values for «,
and we evaluate the performance of the model for each possible value. Then, we choose
the parameter that yields the best performance.

How can we assess the performance of a model with a given a value? A common solution
is to use cross-validation. This procedure consists of splitting the dataset into a training set
and a test set. We fit the model on the train set, and we test its predictive performance on
the test set. By testing the model on a different dataset than the one used for training,

we reduce overfitting,

There are many ways to split the initial dataset into two parts like this. One possibility is
to remove one sample to form the train set and to put this one sample into the test set.
This is called Leave-one-out cross-validation (LOOCV). With V samples, we obtain N sets
of train and test sets. The cross-validated performance is the average performance on all
these set decompositions.

As we will see later, scikit-learn implements several easy-to-use functions to do cross-
validation and grid search. In this recipe, we used a special estimator called RidgeCV
that implements a cross-validation and grid search procedure that is specific to the ridge
regression model. Using this class ensures that the best hyperparameter « is found
automatically for us.

There's more...

Here are a few references about least squares:

» Ordinary least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Ordinary least squares

» Linear least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Linear least squares_%28mathematics%29

Here are a few references about cross-validation and grid search:

» Cross-validation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/cross_validation.html
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» Grid search in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/grid search.html

» Cross-validation on Wikipedia, available at https://en.wikipedia.org/wiki/
Cross-validation %28statistics%29

Here are a few references about scikit-learn:

» scikit-learn basic tutorial available at http://scikit-learn.org/stable/
tutorial/basic/tutorial.html

» scikit-learn tutorial given at the SciPy 2017 conference, available at https://www.
youtube.com/watch?v=2kT6Q0VSgSg

Predicting who will survive on the Titanic

with logistic regression

In this recipe, we will introduce logistic regression, a basic classifier. We will apply these
technigues on a Kaggle dataset where the goal is to predict survival on the Titanic based
on real data (see http://www.kaggle.com/c/titanic).

M Kaggle (http://www.kaggle.com/competitions) hosts machine
Q learning competitions where anyone can download a dataset, train a model,
and test the predictions on the website.

How to do it...

1. We import the standard packages:

>>> import
import
import
import
import
import

numpy as np
pandas as pd

sklearn

sklearn.linear model as 1lm
sklearn.model_ selection as ms
matplotlib.pyplot as plt

$matplotlib inline
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2. We load the training and test datasets with pandas:

>>> train = pd.read csv('https://github.com/ipython-books'
' /cookbook-2nd-data/blob/master/"'
'titanic_train.csv?raw=true')
test = pd.read csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'titanic_test.csv?raw=true')
>>> train[train.columns[[2, 4, 5, 11]].head()

Pclass Sex Age Survived
0 3 male 22.0 0
1 1 female 38.0 1
2 3 female 26.0 1
3 1 female 35.0 1
4 3  male 350 0

3. Let's keep only a few fields for this example, and also convert the Sex field to a
binary variable so that it can be handled correctly by NumPy and scikit-learn.
Finally, we remove the rows that contain NaN values:

>>> data = train[['Age',6 'Pclass', 'Survived']]
# Add a 'Female' column.

data = data.assign(Female=train['Sex'] == 'female')
# Reorder the columns.
data = datal[['Female', 'Age', 'Pclass', 'Survived'l]]
data = data.dropna ()
data.head ()
Female Age Pclass Survived

0 False 22.0 3 0

1 True 38.0 1 1

2 True 26.0 3 1

3 True 35.0 1 1

4 False 35.0 3 0
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Now, we convert this DataFrame object to a NumPy array so that we can pass it to
scikit-learn:

>>> data np = data.astype(np.int32) .values
X = data npl[:, :-1]
y = data np[:, -1]

Let's have a look at the survival of male and female passengers as a function
of their age:

>>> # We define a few boolean vectors.
# The first column is 'Female'.
female = X[:, 0] == 1

# The last column is 'Survived'.
survived = y == 1

# This vector contains the age of the passengers.
age = X[:, 1]

# We compute a few histograms.
bins_ = np.arange (0, 81, 5)
S = {'male': np.histogram(age[survived & ~femalel],
bins=bins ) [0],
'female': np.histogram(age[survived & female],
bins=bins ) [0]}
D = {'male': np.histogram(age[~survived & ~female],
bins=bins ) [0],
'female': np.histogram(age[~survived & female],
bins=bins ) [0]}
>>> # We now plot the data.
bins = bins_[:-1]
fig, axes = plt.subplots(l, 2, figsize=(10, 3),
sharey=True)
for ax, sex, color in zip(axes, ('male', 'female'),
('#3345d0', '#cc3dc0')):
ax.bar (bins, S[sex], bottom=D[sex], color=color,
width=5, label='survived')
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ax.bar (bins, D[sex], color='k',
width=5, label='died')

ax.set x1im(0, 80)

ax.set xlabel ("Age (years)")

ax.set title(sex + " survival")

ax.grid (None)

ax.legend()

male survival female survival
Bl survived mm survived
60 . died mm died
40
20
00 20 40 60 80 0 20 40 60 80
Age (years) Age (years)

6. Let'strytotrain a LogisticRegression classifier in order to predict the survival
of people based on their gender, age, and class. We first need to create a train and a
test dataset:

>>> # We split X and y into train and test datasets.
(X _train, X test, y train, y test) =\
ms.train test split (X, y, test size=.05)
>>> # We instantiate the classifier.

logreg = lm.LogisticRegression/()

7. We train the model and we get the predicted values on the test set:

>>> logreg.fit (X train, y train)
y_predicted = logreg.predict (X test)

The following figure shows the actual and predicted results:

plt.subplots (1, 1, 3))
ax.imshow (np.vstack((y_test, y predicted)),
interpolation='none',

>>> fig, ax = figsize=(8,
cmap="'bone")

ax.set axis off ()

ax.set title("Actual and predicted survival outcomes "

"on the test set")

Actual and predicted survival outcomes on the test set
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To get an estimation of the model's performance, we compute the cross-validation
score with the cross_val score () function. This function uses a three-fold
stratified cross-validation procedure by default, but this can be changed with the
cv keyword argument:

>>> ms.cross_val score(logreg, X, y)
array ([ 0.78661088, 0.78991597, 0.78059072])

This function returns, for each pair of train and test set, a prediction score (we give
more details in How it works...).

The LogisticRegression class accepts a C hyperparameter as an argument.

This parameter quantifies the regularization strength. To find a good value, we can
perform a grid search with the generic GridSearchcCV class. It takes an estimator as
input and a dictionary of parameter values. We can also specify the number of cores
to use on a multicore processor with the n_jobs argument. This new estimator uses
cross-validation to select the best parameter:

>>> grid = ms.GridSearchCV (
logreg, {'C': np.logspace(-5, 5, 200)}, n jobs=4)
grid.fit (X train, y_train)
grid.best _params_
{rcr: 0.042}

Here is the performance of the best estimator:

>>> ms.cross_val score(grid.best estimator , X, y)
array ([ 0.77405858, 0.80672269, 0.78902954])

Logistic regression is not a regression model, it is a classification model. However, it is closely
related to linear regression. This model predicts the probability that a binary variable is 1, by
applying a sigmoid function (more precisely, a logistic function) to a linear combination of the
variables. The equation of the sigmoid is:

1

vie{l,....N}, ¥i=f(x;w) where f(z)= m
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The following figure shows a logistic function:

LA Logistic function

A logistic function
If a binary variable has to be obtained, we can round the value to the closest integer.

The parameter w is obtained with an optimization procedure during the learning step.

There's more...

Here are a few references:
» Logistic regression in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/linear model.html#logistic-regression

» Logistic regression on Wikipedia, available at https://en.wikipedia.org/
wiki/Logistic_ regression

See also

» The Getting started with scikit-learn recipe

» The Learning to recognize handwritten digits with a K-nearest neighbors
classifier recipe

» The Using support vector machines for classification tasks recipe
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Learning to recognize handwritten digits

with a K-nearest neighbors classifier

In this recipe, we will see how to recognize handwritten digits with a K-nearest neighbors
(K-NN) classifier. This classifier is a simple but powerful model, well-adapted to complex,
highly nonlinear datasets such as images. We will explain how it works later in this recipe.

How to do it...

1. We import the modules:

>>> import numpy as np
import sklearn
import sklearn.datasets as ds
import sklearn.model selection as ms
import sklearn.neighbors as nb
import matplotlib.pyplot as plt
$matplotlib inline

2. Let'sload the digits dataset, part of the datasets module of scikit-learn.
This dataset contains handwritten digits that have been manually labeled:
>>> digits = ds.load digits{()

X = digits.data
y = digits.target

print ((X.min(), X.max()))
print (X.shape)

(0.0, 16.0)

(1797, 64)

In the matrix X, each row contains 8 *8=64 pixels (in grayscale, values between O
and 16). The row-major ordering is used.
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3. Let's display some of the images along with their labels:

>>> nrows, ncols = 2, 5
fig, axes = plt.subplots(nrows, ncols,
figsize=(6, 3))
for i in range (nrows) :
for j in range (ncols):
# Image index
k =3j + i * ncols
ax = axes[i, j]
ax.matshow(digits.images[k, ...1,
cmap=plt.cm.gray)

ax.set_axis_off ()
ax.set_title(digits.target [k])

IR TEIRIEN
M4

4. Now, let's fit a K-NN classifier on the data:

>>> (X train, X test, y train, y test) =\
ms.train test split (X, y, test size=.25)

>>> knc = nb.KNeighborsClassifier()

>>> knc.fit (X train, y train)

5. Let's evaluate the score of the trained classifier on the test dataset:

>>> knc.score (X _test, y test)
0.987
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6. Now, let's see if our classifier can recognize a handwritten digit:

>>> # Let's draw a 1.
one = np.zeros((8, 8))
onef[l:-1, 4] = 16 # The image values are in [0, 16].
onel[2, 3] = 16
>>> fig, ax = plt.subplots(l, 1, figsize=(2, 2))
ax.imshow (one, interpolation='none',
cmap=plt.cm.gray)
ax.grid(False)
ax.set_axis_off ()
ax.set_title("One")

One

>>> # We need to pass a (1, D) array.
knc.predict (one.reshape((1, -1)))
array ([1])

Good job!

This example illustrates how to deal with images in scikit-learn. An image is a 2D (N, M)
matrix, which has N M features. This matrix needs to be flattened when composing the data
matrix; each row is a full image.

The idea of K-NN is as follows: given a new point in the feature space, find the K closest points
from the training set and assign the label of the majority of those points.

The distance is generally the Euclidean distance, but other distances can be used too.
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The following plot, obtained from the scikit-learn documentation at http://scikit-learn.
org/stable/modules/neighbors.html, shows the space partition obtained with a
15-nearest-neighbors classifier on a toy dataset (with three labels):
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K-nearest neighbors example

The number K is a hyperparameter of the model. If it is too small, the model will not
generalize well (high variance). In particular, it will be highly sensitive to outliers. By contrast,
the precision of the model will worsen if K is too large. At the extreme, if K is equal to the
total number of points, the model will always predict the exact same value disregarding the
input (high bias). There are heuristics to choose this hyperparameter.

It should be noted that no model is learned by a K-NN algorithm; the classifier just stores
all data points and compares any new target points with them. This is an example of
instance-based learning. It is in contrast to other classifiers such as the logistic regression
model, which explicitly learns a simple mathematical model on the training data.

The K-NN method works well on complex classification problems that have irregular decision
boundaries. However, it might be computationally intensive with large training datasets
because a large number of distances have to be computed for testing. Dedicated tree-based
data structures such as K-D trees or ball trees can be used to accelerate the search of
nearest neighbors.

The K-NN method can be used for classification, like here, and also for regression problems.
The model assigns the average of the target value of the nearest neighbors. In both cases,
different weighting strategies can be used.
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There's more...

Here are a few references:

» The K-NN algorithm in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/neighbors.html

» The K-NN algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/K-nearest neighbors algorithm

» Blog post about how to choose the K hyperparameter, available at http://
datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-
means-clustering/

» Instance-based learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Instance-based learning

» The Predicting who will survive on the Titanic with logistic regression recipe

» The Using support vector machines for classification tasks recipe

Learning from text - Naive Bayes for Natural

Language Processing

In this recipe, we show how to handle text data with scikit-learn. Working with text requires
careful preprocessing and feature extraction. It is also quite common to deal with highly
sparse matrices.

We will learn to recognize whether a comment posted during a public discussion is considered
insulting to one of the participants. We will use a labeled dataset from Impermium, released
during a Kaggle competition (see http://www.kaggle.com/c/detecting-insults-
in-social-commentary).

How to do it...

1. Let'simport our libraries:

>>> import numpy as np
import pandas as pd
import sklearn
import sklearn.model selection as ms
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import sklearn.feature extraction.text as text
import sklearn.naive bayes as nb

import matplotlib.pyplot as plt

$matplotlib inline

2. Let's open the CSV file with pandas:

>>> df = pd.read_csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'troll.csv?raw=true')

3. Each row is a comment. We will consider two columns: whether the comment is
insulting (1) or not (0) and the Unicode-encoded contents of the comment:

>>> df[['Insult', 'Comment']].tail()
Insult Comment
3942 1 "you are both mo...
3943 0 "Many toolbars in...
3944 0 "@LambeauOrWw...
3945 0 "How about Felix...
3946 0 "You're all upset...

4. Now, we are going to define the feature matrix X and the labels y:
>>> y = df ['Insult']

Obtaining the feature matrix from the text is not trivial. scikit-learn can only work with
numerical matrices. So how do we convert text into a matrix of numbers? A classical
solution is to first extract a vocabulary, a list of words used throughout the corpus.
Then, we count, for each sample, the frequency of each word. We end up with a
sparse matrix, a huge matrix containing mostly zeros. Here, we do this in two lines.
We will give more details in How it works....

The general rule here is that whenever one of our features is categorical (that
N is, the presence of a word, a color belonging to a fixed set of n colors, and
~ so on), we should vectorize it by considering one binary feature per item in
Q the class. For example, instead of a feature color being red, green, or blue,
we should consider three binary features color red, color_ green, and
color_blue. We give further references in the There's more... section.
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10.

>>> tf = text.TfidfVectorizer()
X = tf.fit transform(df['Comment'])
print (X.shape)

(3947, 16469)

There are 3947 comments and 16469 different words. Let's estimate the sparsity of
this feature matrix:

>>> p = 100 * X.nnz / float (X.shape[0] * X.shapel[l]l)
print (f"Each sample has ~{p:.2f}% non-zero features.")
Each sample has ~0.15% non-zero features.

Now, we are going to train a classifier as usual. We first split the data into a train and
test set:

>>> (X train, X test, y train, y test) =\
ms.train test split (X, y, test size=.2)

We use a Bernoulli Naive Bayes classifier with a grid search on the o« parameter:

>>> bnb = ms.GridSearchCV (
nb.BernoulliNB (),
param grid={'alpha': np.logspace(-2., 2., 50)})
bnb.fit (X train, y train)

Let's check the performance of this classifier on the test dataset:

>>> bnb.score (X test, y test)
0.761

Let's take a look at the words corresponding to the largest coefficients (the words we
find frequently in insulting comments):

>>> # We first get the words corresponding to each feature

names = np.asarray(tf.get feature names())

# Next, we display the 50 words with the largest

# coefficients.

print (', '.join (names [np.argsort (

bnb.best estimator .coef [0, :])[::-1]1[:50]1))

you, are,your, to, the,and, of,that,is,in,it, like, have, on,not, for, just
,re,with,be,an, so,this,xa0,all,idiot,what,get,up,go, **** don, stupi
d,no,as,do,can, ***,or,but, if, know, who, about,dumb, **** me, ****x** be
cause, back

Finally, let's test our estimator on a few test sentences:

>>> print (bnb.predict (tf.transform([
"I totally agree with you.",
"You are so stupid."
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scikit-learn implements several utility functions to obtain a sparse feature matrix from
text data. A vectorizer such as CountVectorizer () extracts a vocabulary from a corpus
(fit ()) and constructs a sparse representation of the corpus based on this vocabulary
(transform () ). Each sample is represented by the vocabulary's word frequencies. The
trained instance also contains attributes and methods to map feature indices to the
corresponding words (get feature names ()) and conversely (vocabulary ).

N-grams can also be extracted: those are pairs or tuples of words occurring successively
(ngram_range keyword).

The frequency of the words can be weighted in different ways. Here, we have used tf-idf, or
term frequency-inverse document frequency. This quantity reflects how important a word

is to a corpus. Frequent words in comments have a high weight except if they appear in most
comments (which means that they are common terms, for example, "the" and "and" would be
filtered out using this technique).

Naive Bayes algorithms are Bayesian methods based on the naive assumption of
independence between the features. This strong assumption drastically simplifies the
computations and leads to very fast yet decent classifiers.

There's more...

Here are a few references:

» Text feature extraction in scikit-learn's documentation, available at http://
scikit-learn.org/stable/modules/feature extraction.html#text-
feature-extraction

» Term frequency-inverse document-frequency on Wikipedia, available at https://
en.wikipedia.org/wiki/tf-idf

» Vectorizer in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/generated/sklearn. feature extraction.
DictVectorizer.html

» Naive Bayes classifier on Wikipedia, at https://en.wikipedia.org/wiki/
Naive Bayes classifier

» Naive Bayes in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/naive bayes.html

» Document classification example in scikit-learn's documentation, at http://
scikit-learn.org/stable/datasets/twenty newsgroups.html
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Here are other natural language processing libraries in Python:

» NLTK available at http://www.nltk.org
» spaCy available at https://spacy.io/
» textacy available at http://textacy.readthedocs.io/en/stable/

» The Predicting who will survive on the Titanic with logistic regression recipe

» The Learning to recognize handwritten digits with a K-nearest neighbors
classifier recipe

» The Using support vector machines for classification tasks recipe

Using support vector machines for

classification tasks

In this recipe, we introduce support vector machines, or SVMs. These models can be used
for classification and regression. Here, we illustrate how to use linear and nonlinear SVMs

on a simple classification task. This recipe is inspired by an example in the scikit-learn
documentation (see http://scikit-learn.org/stable/auto_examples/svm/plot
svm_nonlinear.html).

How to do it...

1. Let's import the packages:

>>> import numpy as np
import pandas as pd
import sklearn
import sklearn.datasets as ds
import sklearn.model selection as ms
import sklearn.svm as svm
import matplotlib.pyplot as plt
$matplotlib inline

2. We generate 2D points and assign a binary label according to a linear operation on
the coordinates:

>>> X = np.random.randn (200, 2)
y = X[:, 0] + X[:, 1] > 1
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3.

We now fit a linear Support Vector Classifier (SVC). This classifier tries to separate
the two groups of points with a linear boundary (a line here, but more generally
a hyperplane):
>>> # We train the classifier.
est = svm.LinearSVC()
est.fit (X, vy)

We define a function that displays the boundaries and decision function of a
trained classifier:
>>> # We generate a grid in the square [-3,3 ]%2.
XX, yy = np.meshgrid(np.linspace (-3, 3, 500),
np.linspace (-3, 3, 500))

# This function takes a SVM estimator as input.

def plot decision_ function(est, title):
# We evaluate the decision function on the grid.
Z = est.decision function(np.c_[xx.ravel(),
yy.ravel()])
Z
cmap = plt.cm.Blues

Z.reshape (xx.shape)

# We display the decision function on the grid.
fig, ax = plt.subplots(l, 1, figsize=(5, 5))
ax.imshow (Z,

extent=(xx.min (), xx.max(),

yy.min(), yy.max()),

aspect='auto',

origin="'lower"',

cmap=cmap)

# We display the boundaries.

ax.contour (xx, vy, Z, levels=[0],
linewidths=2,
colors="k')

# We display the points with their true labels.
ax.scatter(X[:, 0], X[:, 1],

s=50, ¢c=.5 + .5 * vy,

edgecolors='k',

lw=1, cmap=cmap,

vmin=0, vmax=1)
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ax.axhline (0, color='k', 1ls='--")
ax.axvline (0, color='k', 1ls='--")
ax.axis([-3, 3, -3, 31)
ax.set axis off ()

ax.set title(title)

5. Let's take a look at the classification results with the linear SVC:

>>> ax = plot decision function(
est, "Linearly separable, linear SVC")

Linearly separable, linear SVC

The linear SVC tried to separate the points with a line and it did a pretty good
job here.

6. We now modify the labels with an XOR function. A point's label is 1 if the coordinates
have different signs. This classification is not linearly separable. Therefore, a linear
SVC fails completely:

>>> y = np.logical xor(X[:, 0] > 0, X[:, 1] > 0)
# We train the classifier.
est = ms.GridSearchCV (svm.LinearSVcC(),
{rc': np.logspace(-3., 3., 10)})
est.fit (X, vy)
print ("Score: {0:.1f}".format (
ms.cross_val score(est, X, y).mean()))
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# We plot the decision function.
ax = plot decision function(
est, "XOR, linear SVC")
Score: 0.5

XOR, linear SVC

7. Fortunately, it is possible to use nonlinear SVCs by using nonlinear kernels. Kernels
specify a nonlinear transformation of the points into a higher dimensional space.
Transformed points in this space are assumed to be more linearly separable. By
default, the SVC classifier in scikit-learn uses the Radial Basis Function (RBF) kernel:

>>> y = np.logical _xor(X[:, 0] > 0, X[:, 1] > 0)

est = ms.GridSearchCV (
svm.SVC(), {'C': np.logspace(-3., 3., 10),
'gamma': np.logspace(-3., 3., 10)})
est.fit (X, y)
print ("Score: {0:.3f}".format (
ms.cross_val score(est, X, y).mean()))

plot_decision_ function/(
est.best_estimator , "XOR, non-linear SVC")
Score: 0.955
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XOR, non-linear SVC

This time, the nonlinear SVC successfully managed to classify these nonlinearly
separable points.

A two-class linear SVC tries to find a hyperplane (defined as a linear equation) that best
separates the two sets of points (grouped according to their labels). There is also the
constraint that this separating hyperplane needs to be as far as possible from the points.
This method works best when such a hyperplane exists. Otherwise, this method can

fail completely, as we saw in the XOR example. XOR is known as being a nonlinearly
separable operation.

The SVM classes in scikit-learn have a C hyperparameter. This hyperparameter trades off
misclassification of training examples against simplicity of the decision surface. A low C
value makes the decision surface smooth, while a high C value aims at classifying all training
examples correctly. This is another example where a hyperparameter quantifies the bias-
variance trade-off. This hyperparameter can be chosen with cross-validation and grid search.

The linear SVC can also be extended to multiclass problems. The multiclass SVC is directly
implemented in scikit-learn.
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The nonlinear SVC works by considering a nonlinear transformation ¢(x) from the original
space into a higher dimensional space. This nonlinear transformation can increase

the linear separability of the classes. In practice, all dot products are replaced by the
k(z,z") = ¢(z) - $(2') kernel.

L]
P o s
5
o o o o} S
o .
s} - o ©
o
o o
o .
.
o o] . o
o
o (lj o]
o ¢
o
i
sH
o ‘e 8]
o .- TG []
07 5 o a .
o o o &
0
© o
o o
o]
o

Non-linear SVC

There are several widely-used nonlinear kernels. By default, SVC uses Gaussian radial
basis functions:

k(x,x') = exp (—|lx — x'||?)

Here, 7 is a hyperparameter of the model that can be chosen with grid search and
cross-validation.

The ¢ function does not need to be computed explicitly. This is the kernel trick; it suffices to
know the kernel k(x, z’). The existence of a function ¢ corresponding to a given kernel k(z, z’)
is guaranteed by a mathematical theorem in functional analysis (Mercer's theorem).

Here are a few references about support vector machines:

» Exclusive OR on Wikipedia, available at https://en.wikipedia.org/wiki/
Exclusive or

» Support vector machines on Wikipedia, available at https://en.wikipedia.
org/wiki/Support vector machine

» SVMs in scikit-learn's documentation, available at http: //scikit-learn.org/
stable/modules/svm.html
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» Kernel trick on Wikipedia, available at https://en.wikipedia.org/wiki/
Kernel method

» Notes about the kernel trick, available at http://www.eric-kim.net/eric-
kim-net/posts/1l/kernel trick.html

» The Predicting who will survive on the Titanic with logistic regression recipe

» The Learning to recognize handwritten digits with a K-nearest neighbors
classifier recipe

Using a random forest to select important

features for regression

Decision trees are frequently used to represent workflows or algorithms. They also form a
method for nonparametric supervised learning. A tree mapping observations to target values
is learned on a training set and gives the outcomes of new observations.

Random forests are ensembles of decision trees. Multiple decision trees are trained and
aggregated to form a model that is more performant than any of the individual trees. This
general idea is the purpose of ensemble learning.

There are many types of ensemble methods. Random forests are an instance of bootstrap
aggregating, also called bagging, where models are trained on randomly drawn subsets of
the training set.

Random forests yield information about the importance of each feature for the classification
or regression task. In this recipe, we will find the most influential features of Boston house
prices using a classic dataset that contains a range of diverse indicators about the houses'
neighborhood.

How to do it...

1. We import the packages:

>>> import numpy as np
import sklearn as sk
import sklearn.datasets as skd
import sklearn.ensemble as ske
import matplotlib.pyplot as plt
$matplotlib inline
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2. We load the Boston dataset:
>>> data = skd.load boston()
The details of this dataset can be found in data ['DESCR']. Here is the description
of some features:
o CRIM: Per capita crime rate by town
o NoX: Nitric oxide concentration (parts per 10 million)
o RM: Average number of rooms per dwelling
o AGE: Proportion of owner-occupied units built prior to 1940
o DIS: Weighted distances to five Boston employment centres
o PTRATIO: Pupil-teacher ratio by town
o LSTAT: Percentage of lower status of the population
o MEDV: Median value of owner-occupied homes in $1000s

The target value is MEDV.

3. We create a RandomForestRegressor model:

>>> reg = ske.RandomForestRegressor ()

4. We get the samples and the target values from this dataset:
>>> X = data['data'l]
y = datal['target']
5. Let's fit the model:
>>> reg.fit (X, y)

6. The importance of our features can be found in reg. feature importances .
We sort them by decreasing order of importance:

>>> fet _ind = np.argsort (reg.feature importances ) [::-1]
fet imp = reg.feature importances [fet ind]

7. Finally, we plot a histogram of the features' importance by creating a pandas Series:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 3))
labels = data['feature names'] [fet ind]
pd.Series(fet_imp, index=labels) .plot('bar', ax=ax)
ax.set title('Features importance')
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Features importance
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8. We find that RM (number of rooms per dwelling) and LSTAT (proportion of lower
status of the population) are the most important features determining the price of a
house. As an illustration, here is a scatter plot of the price as a function of LSTAT:

>>> fig, ax = plt.subplots(1l, 1)
ax.scatter (X[:, -11, vy)
ax.set xlabel ('LSTAT indicator')
ax.set _ylabel ('Value of houses (k$)')

Value of houses (k$)

0 5 10 15 20 25 30 35
LSTAT indicator

9. Optionally, we can display a graphic representation of the trees, using the Graphviz
package (available at http://www.graphviz.org):

>>> from sklearn import tree
tree.export graphviz(reg.estimators [0],
'"tree.dot')
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This command exports the first estimator of the random forest into a . dot file. We
can convert this file into an image with the dot command-line executable (available in
the graphviz package). The following image shows a small part of the image, which
is otherwise too large to display:

Tree

The following image shows a close-up of the tree:
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Zoom-out tree

The intermediary nodes contain decisions of the form feature <= value. Every input point
starts from the roof and ends up in a leaf node, depending on which conditions are satisfied.
The leaf node's value gives the estimated target value for the input point. When using a
random forest, an average of the values across trees is computed.

Several algorithms can be used to train a decision tree. scikit-learn uses the CART, or
Classification and Regression Trees algorithm. This algorithm constructs binary trees using
the feature and threshold that yield the largest information gain at each node. Terminal nodes
give the outcomes of input values.
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Decision trees are simple to understand. They can also be visualized with pydet, a Python
package for drawing graphs and trees. This is useful when we want to understand what a tree
has learned exactly (white box model); the conditions that apply on the observations at each
node can be expressed easily with Boolean logic.

However, decision trees may suffer from overfitting, notably when they are too deep, and
they might be unstable. Additionally, global convergence toward an optimal model is not
guaranteed, particularly when greedy algorithms are used for training. These problems
can be mitigated by using ensembles of decision trees, notably random forests.

In a random forest, multiple decision trees are trained on bootstrap samples of the training
dataset (randomly sampled with replacement). Predictions are made with the averages of
individual trees' predictions (bootstrap aggregating or bagging). Additionally, random subsets
of the features are chosen at each node (random subspace method). These methods lead to
an overall better model than the individual trees.

There's more...

Here are a few references:

» Ensemble learning in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/ensemble.html

» APl reference of RandomForestRegressor available at http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

» Random forests on Wikipedia, available at https://en.wikipedia.org/wiki/
Random_forest

» Decision tree learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Decision tree learning

» Bootstrap aggregating on Wikipedia, available at https://en.wikipedia.org/
wiki/Bootstrap aggregating

» Random subspace method on Wikipedia, available at https://en.wikipedia.

org/wiki/Random subspace method

» Ensemble learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Ensemble learning
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» The Using support vector machines for classification tasks recipe

Reducing the dimensionality of a dataset

with a principal component analysis

In the previous recipes, we presented supervised learning methods; our data points came
with discrete or continuous labels, and the algorithms were able to learn the mapping from
the points to the labels.

Starting with this recipe, we will present unsupervised learning methods. These methods
might be helpful prior to running a supervised learning algorithm. They can give a first insight
into the data.

Let's assume that our data consists of points i without any labels. The goal is to discover
some form of hidden structure in this set of points. Frequently, data points have intrinsic low
dimensionality: a small number of features suffice to accurately describe the data. However,
these features might be hidden among many other features not relevant to the problem.
Dimension reduction can help us find these structures. This knowledge can considerably
improve the performance of subsequent supervised learning algorithms.

Another useful application of unsupervised learning is data visualization; high-dimensional
datasets are hard to visualize in 2D or 3D. Projecting the data points on a subspace or
submanifold yields more interesting visualizations.

In this recipe, we will illustrate a basic unsupervised linear method, Principal Component
Analysis (PCA). This algorithm lets us project data points linearly on a low-dimensional
subspace. Along the principal components, which are vectors forming a basis of this low-
dimensional subspace, the variance of the data points is maximum.

We will use the classic Iris flower dataset as an example. This dataset contains the width
and length of the petal and sepal of 150 iris flowers. These flowers belong to one of three
categories: Iris-setosa, Iris-virginica, and Iris-versicolor. We have access to
the category in this dataset (labeled data). However, because we are interested in illustrating
an unsupervised learning method, we will only use the data matrix without the labels.

How to do it...

1. We import NumPy, Matplotlib, and scikit-learn:

>>> import numpy as np
import sklearn
import sklearn.decomposition as dec

324




import sklearn.datasets as ds
import matplotlib.pyplot as plt
$matplotlib inline

The Iris flower dataset is available in the datasets module of scikit-learn:

>>> iris = ds.load iris()
X = iris.data
y = iris.target
print (X.shape)

(150, 4)

Each row contains four parameters related to the morphology of the flower.
Let's display the first two dimensions. The color reflects the iris variety of the
flower (the label, between 0 and 2):

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.scatter(X[:, 0], X[:, 11, c=v,
s=30, cmap=plt.cm.rainbow)
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Q able to distinguish the colors. You will find the colored images on
the book's website.

We now apply PCA on the dataset to get the transformed matrix. This operati
be done in a single line with scikit-learn: we instantiate a PCA model and call
fit transform() method. This function computes the principal compone
projects the data on them:

>>> X bis = dec.PCA() .fit transform(X)
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5. We now display the same dataset, but in a new coordinate system (or equivalently,
a linearly transformed version of the initial dataset):
>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.scatter(X bis[:, 0], X bis[:, 1], c=y,
s=30, cmap=plt.cm.rainbow)
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Points belonging to the same classes are now grouped together, even though the PCA
estimator did not use the labels. The PCA was able to find a projection maximizing
the variance, which corresponds here to a projection where the classes are

well separated.

6. The sklearn.decomposition module contains several variants of the classic PCA
estimator: ProbabilisticPCA, SparsePCA, RandomizedPCA, KernelPCA, and
others. As an example, let's take a look at KernelPCAa, a nonlinear version of PCA:

>>> X ter = dec.KernelPCA(kernel='rbf').fit transform(X)
fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.scatter (X ter[:, 0], X ter[:, 1], c=y, s=30,
cmap=plt.cm.rainbow)
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Let's look at the mathematical ideas behind PCA. This method is based on a matrix
decomposition called Singular Value Decomposition (SVD):

X =Uxv7T

Here, X is the (N, D) data matrix, U and V are orthogonal matrices, and X is an (N, D)
diagonal matrix.

PCA transforms X into X’ defined by:
X' =XV=UZ%

The diagonal elements of X are the singular values of X. By convention, they are generally
sorted in descending order. The columns of U are orthonormal vectors called the left singular
vectors of X. Therefore, the columns of X’ are the left singular vectors multiplied by the
singular values.

In the end, PCA converts the initial set of observations, which are made of possibly correlated
variables, into vectors of linearly uncorrelated variables called principal components.

The first new feature (or first component) is a transformation of all original features such that
the dispersion (variance) of the data points is the highest in that direction. In the subsequent
principal components, the variance is decreasing. In other words, PCA gives us an alternative
representation of our data where the new features are sorted according to how much they
account for the variability of the points.

Here are a few further references:

» lIris flower dataset on Wikipedia, available at https://en.wikipedia.org/wiki/
Iris_flower data_set

» PCA on Wikipedia, available at https://en.wikipedia.org/wiki/Principal
component analysis

» SVD decomposition on Wikipedia, available at https://en.wikipedia.org/
wiki/Singular value decomposition

» Iris dataset example available at http://scikit-learn.org/stable/auto
examples/datasets/plot_iris dataset.html

» Decompositions in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/decomposition.html
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» Unsupervised learning tutorial with scikit-learn, available at http://scikit-
learn.org/dev/tutorial/statistical inference/unsupervised
learning.html

» The Detecting hidden structures in a dataset with clustering recipe

Detecting hidden structures in a dataset

with clustering

A large part of unsupervised learning is devoted to the clustering problem. The goal is to
group similar points together in a totally unsupervised way. Clustering is a hard problem, as
the very definition of clusters (or groups) is not necessarily well posed. In most datasets,
stating that two points should belong to the same cluster may be context-dependent or
even subjective.

There are many clustering algorithms. We will see a few of them in this recipe, applied to a
toy example.

How to do it...

1. Let's import the libraries:

>>> from itertools import permutations
import numpy as np
import sklearn
import sklearn.decomposition as dec
import sklearn.cluster as clu
import sklearn.datasets as ds
import sklearn.model selection as ms
import matplotlib.pyplot as plt
$matplotlib inline

2. Let's generate a random dataset with three clusters:

>>> X, y = ds.make blobs(n_samples=200,
n features=2,
centers=3,
cluster std=1.5,
)
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3. We need a couple of functions to relabel and display the results of the
clustering algorithms:

>>> def

>>> def

relabel (cl) :
""nRelabel a clustering with three clusters
to match the original classes."""
if np.max(cl) != 2:
return cl
perms = np.array(list (permutations((0, 1, 2))))
i = np.argmin([np.sum(np.abs (perm[cl] - y))
for perm in perms])

o) perms [1]

return plcl]

display clustering(labels, title):
"mnplot the data points with the cluster

colorg."""

# We relabel the classes when there are 3 clusters
labels = relabel (labels)
fig, axes = plt.subplots(l, 2, figsize=(8, 3),
sharey=True)
# Display the points with the true labels on the
# left, and with the clustering labels on the
# right.
for ax, c, title in zip(
axes,
[y, labels],
["True labels", titlel):
ax.scatter (X[:, 0], X[:, 1], c=c, s=30,
linewidths=0, cmap=plt.cm.rainbow)
ax.set_title(title)
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4. Now, we cluster the dataset with the K-means algorithm, a classic and simple
clustering algorithm:

>>> km = clu.KMeans ()
km.fit (X)

display clustering(km.labels , "KMeans")
True labels KMeans
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5. This algorithm needs to know the number of clusters at initialization time. In general,
however, we do not necessarily know the number of clusters in the dataset. Here,

let's try with n_clusters=3 (that's cheating, because we happen to know that there
are three clusters):

If you're reading the printed version of this book, you might not be
able to distinguish the colors. You will find the colored images on
the book's website.

>>> km = clu.KMeans(n clusters=3)
km.fit (X)

display clustering(km.labels , "KMeans(3)")

True labels KMeans(3)
10
5 .
'f. .
'..- - s
=5 -: ..:':‘E‘ .
0 5 10 0

6. Let's try a few other clustering algorithms implemented in scikit-learn. The simplicity
of the APl makes it really easy to try different methods; it is just a matter of changing
the name of the class:

>>> fig, axes = plt.subplots(2, 3,

figsize=(10, 7),
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axes [0,

axes|[O0,

for ax,

clu.

clu

clu.
clu.
clu.

est

CcC =

sharex=True,
sharey=True)

0] .scatter(x[:, 0], X[:, 11,
c=y, s=30,
linewidths=0,
cmap=plt.cm.rainbow)

0] .set_title("True labels")

est in zip(axes.flat[1:], [
SpectralClustering(3),

.AgglomerativeClustering(3),

MeanShift (),
AffinityPropagation(),
DBSCAN() ,

it (X)

relabel (est.labels )

ax.scatter(X[:, 0], X[:, 1], c=c, s=30,
linewidths=0, cmap=plt.cm.rainbow)
ax.set title(est. class . name )

# Fix the spacing between subplots.
fig.tight layout ()
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The first two algorithms required the number of clusters as input. The next one did not, but it
was able to find the right number. The last two failed at finding the correct number of clusters

(this is overclustering—too many clusters have been found).
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The K-means clustering algorithm consists of partitioning the data points z; into K clusters S;
so as to minimize the within-cluster sum of squares:

k
argéninz > lxs — il

i=1x;€85;

Here, u; is the center of the cluster i (average of all points in .S;).

Although it is very hard to solve this problem exactly, approximation algorithms exist. A
popular one is Lloyd's algorithm. It consists of starting from an initial set of K means u; and
alternating between two steps:

» Inthe assignment step, the points are assigned to the cluster associated to the
closest mean

» Inthe update step, the means are recomputed from the last assignments
The algorithm converges to a solution that is not guaranteed to be optimal.

The expectation-maximization algorithm can be seen as a probabilistic version of the
K-means algorithm. It is implemented in the mixture module of scikit-learn.

The other clustering algorithms used in this recipe are explained in the scikit-learn
documentation. There is no clustering algorithm that works uniformly better than all the
others, and every algorithm has its strengths and weaknesses. You will find more details
in the references in the next section.

There's more...

Here are a few references:

» The K-means clustering algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/K-means clustering

» The expectation-maximization algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/Expectation-maximization algorithm

» Clustering in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/clustering.html

» t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering method, at
https://lvdmaaten.github.io/tsne/
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» scikit-learn t-SNE implementation, at http://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE.html

» Uniform Manifold Approximation and Projection (UMAP), a t-SNE alternative,
athttps://github.com/lmcinnes/umap

See also

» The Reducing the dimensionality of a dataset with a principal component
analysis recipe
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Numerical Optimization

In this chapter, we will cover the following topics:

» Finding the root of a mathematical function
» Minimizing a mathematical function
» Fitting a function to data with nonlinear least squares

» Finding the equilibrium state of a physical system by minimizing its potential energy

Introduction

Mathematical optimization is a wide area of applied mathematics. It consists of finding

the best solution to a given problem. Many real-world problems can be expressed in an
optimization framework. What is the shortest path on the road from point A to point B?

What is the best strategy to solve a puzzle? What is the most energy-efficient shape of a car
(automotive aerodynamics)? Mathematical optimization is relevant in many domains including
engineering, economics, finance, operations research, image processing, data analysis,

and others.

Mathematically, an optimization problem consists of finding the maximum or minimum
value of a function. We sometimes use the terms continuous optimization or discrete
optimization, according to whether the function variable is real-valued or discrete.

In this chapter, we will focus on numerical methods for solving continuous optimization
problems. Many optimization algorithms are implemented in the scipy.optimize module.
We will come across other instances of optimization problems in several other chapters of
this book. For example, we will see discrete optimization problems in Chapter 14, Graphs,
Geometry, and Geographic Information Systems.

In this introduction, we give a few important definitions and key concepts related to
mathematical optimization.
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The objective function

We will study methods to find a root or an extremum of a real-valued function f called the
objective function. An extremum is either a maximum or a minimum of a function. It can
accept one or several variables, it can be continuous or not, and so on. The more assumptions
we have about the function, the easier it can be optimized.

. Amaximum of f is a minimum of -f, so any minimization algorithm can be
% used to maximize a function by considering the opposite of that function.
S Therefore, from now on, when we talk about minimization, we will really mean
minimization or maximization.

Convex functions are easier to optimize than non-convex functions, as they satisfy certain
useful properties. For example, any local minimum is necessarily a global minimum. The field
of convex optimization deals with algorithms that are specifically adapted to the optimization
of convex functions on convex domains. Convex optimization is an advanced topic, and we
can't cover much of it here.

Differentiable functions have gradients, and these gradients can be particularly useful in
optimization algorithms. Similarly, continuous functions are typically easier to optimize than
non-continuous functions.

Also, functions with a single variable are easier to optimize than functions with
multiple variables.

The choice of the most adequate optimization algorithm depends on the properties satisfied
by the objective function.

Local and global minima

A minimum of a function f is a point xg such that f(z) > f(xo), for a particular set of points
in E. When this inequality is satisfied on the whole set E, we refer to xg as a global minimum.
When it is only satisfied locally (around the point xg), we say that x is a local minimum.

A maximum is defined similarly.

If fis differentiable, an extremum xo satisfies:
f'(x0) =0

Therefore, finding the extrema of an objective function is closely related to finding the roots of
the derivative. However, a point z satisfying this property is not necessarily an extremum.
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It is more difficult to find global minima than to find local minima. In general, when an
algorithm finds a local minimum, there is no guarantee that it is also a global minimum.
Frequently, an algorithm seeking a global minimum stays stuck in a local minimum. This
problem needs to be accounted for, specifically in global minimization algorithms. However,
things are simpler with convex functions since these do not have strictly local minima.
Moreover, there are many cases where finding a local minimum is good enough (for example,
when looking for a good solution to a problem rather than the absolute best solution).

Finally, let's note that a global minimum or maximum does not necessarily exist (the function
can go to infinity). In that case, it may be necessary to constrain the space search; this is the
subject of constrained optimization.

global maximum

local maximum

local minimum

global minimum

Local and global extrema (from https://en.wikipedia.org/wiki/Maxima and minima#/media/
File:Extrema example original.svg)

Constrained and unconstrained optimization

» Unconstrained optimization: Finding the minimum of a function f on the full set £
where f is defined

» Constrained optimization: Finding the minimum of a function f on a subset E’ of E;
this set is generally described by equalities and inequalities:

X € EI <~ Vi,j, gi(x) = C;, hj(X) < dj
Here, the g; and h; are arbitrary functions defining the constraints.

For example, optimizing the aerodynamic shape of a car requires constraints on parameters
such as the volume and mass of the car, the cost of the production process, and others.

337



https://en.wikipedia.org/wiki/Maxima_and_minima#/media/File:Extrema_example_original.svg
https://en.wikipedia.org/wiki/Maxima_and_minima#/media/File:Extrema_example_original.svg

Numerical Optimization

Deterministic and stochastic algorithms

Some global optimization algorithms are deterministic, others are stochastic. Stochastic
methods are useful when dealing with the highly irregular and noisy functions that are typical
of real-world data. Deterministic algorithms may be stuck in local minima, particularly if there
are many non-global local minima. By spending some time exploring the space F, stochastic
algorithms may have a chance of finding a global minimum.

References

» The SciPy lecture notes are an excellent reference on mathematical optimization
with SciPy, and they are available at http://scipy-lectures.github.io/
advanced/mathematical optimization/index.html

» Reference manual of scipy.optimize available at http://docs.scipy.org/
doc/scipy/reference/optimize.html

» Numerical Analysis on Awesome Math, at https://github.com/rossant/
awesome-math/#numerical-analysis

» Overview of mathematical optimization on Wikipedia, available at https://
en.wikipedia.org/wiki/Mathematical optimization

» Extrema, minima, and maxima on Wikipedia, available at https://
en.wikipedia.org/wiki/Maxima and minima

» Convex optimization on Wikipedia, available at https://en.wikipedia.org/
wiki/Convex optimization

Finding the root of a mathematical function

In this short recipe, we will see how to use SciPy to find the root of a simple mathematical
function of a single real variable.
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How to do it...

1.

Let's import NumPy, SciPy, scipy.optimize, and matplotlib:

>>> import numpy as np
import scipy as sp
import scipy.optimize as opt
import matplotlib.pyplot as plt
$matplotlib inline

We define the mathematical function f(z) = cos(z) — x in Python. We will try to find
a root of this function numerically. Here, a root corresponds to a fixed point of the
cosine function:

>>> def f(x):
return np.cos(x) - X

Let's plot this function on the interval [—5, 5] (using 1000 samples):

>>> X = np.linspace(-5, 5, 1000)
y = £(x)
fig, ax = plt.subplots(l, 1, figsize=(5, 3))
ax.axhline (0, color='k')
ax.plot (x, y)
ax.set xlim(-5, 5)

We see that this function has a unique root on this interval (this is because the
function's sign changes on this interval). The scipy.optimize module contains
a few root-finding functions that are adapted here. For example, the bisect ()
function implements the bisection method (also called the dichotomy method).
It takes as input the function and the interval to find the root in:

>>> opt.bisect (£, -5, 5)
0.739
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Let's visualize the root on the plot:

>>> fig, ax = plt.subplots(l, 1, figsize=(5, 3))
ax.axhline (0, color='k')
ax.plot (x, y)
# The zorder argument is used to put
# the dot on top of the other elements.
ax.scatter([_], [0], c='r', s=100,

zorder=10)

ax.set xlim(-5, 5)

-4 -2 0 2 4

5. Afaster and more powerful method is brentg () (Brent's method). This algorithm
also requires £ to be continuous and £ (a) and £ (b) to have different signs:

>>> opt.brentqg(f, -5, 5)
0.739

The brentg () method is faster than bisect (). If the conditions are satisfied, it is a
good idea to try Brent's method first:

>>> %$timeit opt.bisect (f, -5, 5)
$timeit opt.brentqg(f, -5, 5)
34.5 ps + 855 ns per loop (mean + std. dev. of 7 runs,
10000 loops each)
7.71 pus + 170 ns per loop (mean + std. dev. of 7 runs,
100000 loops each)

The bisection method consists of iteratively cutting an interval in half and selecting a
subinterval that necessarily contains a root. This method is based on the fact that, if f is a
continuous function of a single real variable, f(a) > 0, and f(b) < 0, then f has a root in (a, b)
(intermediate value theorem).
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Brent's method is a popular hybrid algorithm combining root bracketing, interval bisection,
and inverse quadratic interpolation. It is a default method that works in many cases.

Let's also mention Newton's method. The idea is to approximate f(z) by its tangent (found
with f’(z)) and find the intersection with the y = 0 line. If f is regular enough, the intersection
point will be closer to the actual root of f. By iterating this operation, the algorithm may
converge to the sought solution.

There's more...

Here are a few references:
» Documentation of scipy.optimize, available at http://docs.scipy.org/
doc/scipy/reference/optimize.html#froot-£finding

» A course on root finding with SciPy, available at http://quant-econ.net/scipy.
htmlf#roots-and-fixed-points

» The bisection method on Wikipedia, available at https://en.wikipedia.org/
wiki/Bisection method

» The intermediate value theorem on Wikipedia, available at https://
en.wikipedia.org/wiki/Intermediate value_ theorem

» Brent's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Brent%27s_method

» Newton's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Newton%27s_method

» The Minimizing a mathematical function recipe

Minimizing a mathematical function

Mathematical optimization deals mainly with the problem of finding a minimum or a maximum
of a mathematical function. Frequently, a real-world numerical problem can be expressed as a
function minimization problem. Such examples can be found in statistical inference, machine

learning, graph theory, and other areas.

Although there are many function minimization algorithms, a generic and universal method
does not exist. Therefore, it is important to understand the differences between existing
classes of algorithms, their specificities, and their respective use cases. We should also
have a good understanding of our problem and our objective function; is it continuous,
differentiable, convex, multidimensional, regular, or noisy? Is our problem constrained or
unconstrained? Are we seeking local or global minima?
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In this recipe, we will demonstrate a few usage examples of the function minimization
algorithms implemented in SciPy.

How to do it...

1.

342

We import the libraries:

>>> import numpy as np
import scipy as sp
import scipy.optimize as opt
import matplotlib.pyplot as plt
$matplotlib inline

First, let's define a simple mathematical function (the opposite of the cardinal
sine). This function has many local minima but a single global minimum
(https://en.wikipedia.org/wiki/Sinc_ function):
>>> def f(x):

return 1 - np.sin(x) / x

Let's plot this function on the interval [—20, 20] (with 1000 samples):

>>> X = np.linspace(-20., 20., 1000)
y = f(x)

>>> fig, ax = plt.subplots(l, 1, figsize=(5, 5))
ax.plot (x, y)
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The scipy.optimize module comes with many function minimization routines. The
minimize () function offers a unified interface to many algorithms. The Broyden-
Fletcher-Goldfarb—Shanno (BFGS) algorithm (the default algorithm in minimize ())
gives good results in general. The minimize () function requires an initial point as
argument. For scalar univariate functions, we can also use minimize scalar():

>>> x0 = 3

xmin = opt.minimize (f, x0).x

Starting from x¢ = 3, the algorithm was able to find the actual global minimum, as
shown in the following figure:

>>> fig, ax = plt.subplots(l, 1, figsize=(5, 5))
ax.plot(x, vy)
ax.scatter (x0, f(x0), marker='o', s=300)
ax.scatter (xmin, f (xmin), marker='v', s=300,
zorder=20)
ax.set xlim(-20, 20)
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5. Now, if we start from an initial point that is further away from the actual global
minimum, the algorithm converges towards a local minimum only:

>>> x0 = 10
xmin = opt.minimize (f, x0).x
>>> fig, ax = plt.subplots(1l, 1, figsize=(5, 5))
ax.plot(x, vy)
ax.scatter (x0, f£(x0), marker='o', s=300)
ax.scatter (xmin, f (xmin), marker='v', s=300,
zorder=20)
ax.set x1lim(-20, 20)
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6. Like most function minimization algorithms, the BFGS algorithm is efficient at finding
local minima, but not necessarily global minima, especially on complicated or noisy
objective functions. A general strategy to overcome this problem is to combine such
algorithms with an exploratory grid search on the initial points. Another option is to
use a different class of algorithms based on heuristics and stochastic methods. An
example is the basin-hopping algorithm:

>>> # We use 1000 iterations.

xmin = opt.basinhopping(f, x0, 1000) .x

>>> fig, ax = plt.subplots(1l, 1, figsize=(5, 5))
ax.plot (x, vy)
ax.scatter (x0, f£(x0), marker='o', s=300)
ax.scatter (xmin, f (xmin), marker='v', s=300,

zorder=20)

ax.set xlim(-20,

20)
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This time, the algorithm was able to find the global minimum.

Now, let's define a new function, in two dimensions this time, called the
Lévi function:

f(z,y) = sin® 37z) + (v — 1)2 (1 + sin? (37ry)) + (y— 1)2 (1 + sin? (27ry))

This function is very irregular and may be difficult to minimize in general. The
expected global minimum is (1, 1). The Lévi function is one of the many test
functions for optimization that researchers have developed to study and
benchmark optimization algorithms (https://en.wikipedia.org/wiki/Test
functions for optimization):

>>> def g(X):
# X is a 2*N matrix, each column contains
# x and y coordinates.
x, v =X
return (np.sin(3 * np.pi * x)**2 +
(x - 1)**2 * (1 + np.sin(3 * np.pi * y)**2) +
(y - 1)**2 * (1 + np.sin(2 * np.pi * y)**2))
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8. Let's display this function with imshow (), on the square [—10, 10]2:

>>> n = 500

k = 10
X, Y = np.mgrid[-k:k:n * 17,
-k:k:in * 17]
>>> Z = g(np.vstack((X.ravel(), Y.ravel()))) .reshape(n,

>>> fig, ax = plt.subplots(l, 1, figsize=(3, 3))
# We use a logarithmic scale for the color here.
ax.imshow(np.log(Z), cmap=plt.cm.hot r,
extent=(-k, k, -k, k), origin=0)
ax.set _axis off ()

9. Theminimize () function also works in multiple dimensions:

>>> # We use the Powell method.
x0, y0 = opt.minimize(g, (8, 3),
method="'Powell') .x
x0, yoO
(1.000, 1.000)

>>> fig, ax = plt.subplots(1l, 1, figsize=(3, 3))
ax.imshow(np.log(Z), cmap=plt.cm.hot r,
extent=(-k, k, -k, k), origin=0)
ax.scatter (x0, y0, s=100)
ax.set axis off ()
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Many function minimization algorithms are based on the fundamental idea of gradient
descent. If a function f is differentiable, then at every point, the opposite of its gradient
points to the direction of the greatest decrease rate of the function. By following this direction,
we can expect to find a local minimum.

This operation is generally done iteratively, by following the direction of the gradient with a
small step. The way this step is computed depends on the optimization method.

Newton's method can also be used in this context of function minimization. The idea is to find
a root of f” with Newton's method, thereby making use of the second derivative f”. In other
words, we approximate f with a quadratic function instead of a linear function. In multiple
dimensions, this is done by computing the Hessian (second derivatives) of f. By performing
this operation iteratively, we can expect the algorithm to converge towards a local minimum.

When the computation of the Hessian is too costly, we can compute an approximation of the
Hessian. Such methods are called Quasi-Newton methods. The BFGS algorithm belongs to
this class of algorithms.

These algorithms make use of the objective function's gradient. If we can compute an
analytical expression of the gradient, we should provide it to the minimization routine.
Otherwise, the algorithm will compute an approximation of the gradient that may

not be reliable.

The basin-hopping algorithm is a stochastic algorithm that seeks a global minimum by
combining random perturbation of the positions and local minimization.
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There are many stochastic global optimization methods based on metaheuristics. They are
generally less well-theoretically grounded than the deterministic optimization algorithms
previously described, and convergence is not always guaranteed. However, they may be useful
in situations where the objective function is very irregular and noisy, with many local minima.
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a metaheuristic
that performs well in many situations. It is currently not implemented in SciPy, but there's a
Python implementation in one of the references given later.

SciPy's minimize () function accepts a method keyword argument to specify the
minimization algorithm to use. This function returns an object containing the results
of the optimization. The x attribute is the point reaching the minimum.

Here are a few further references:
» The scipy.optimize reference documentation, available at http://docs.
scipy.org/doc/scipy/reference/optimize.html

» Documentation of the basin-hopping algorithm, available at http://scipy.
github.io/devdocs/generated/scipy.optimize.bagsinhopping.html

» Alecture on mathematical optimization with SciPy, available at http://scipy-
lectures.github.io/advanced/mathematical optimization/

» Definition of the gradient on Wikipedia, available at https://en.wikipedia.org/
wiki/Gradient

» Newton's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Newton%27s_method in optimization

» Quasi-Newton methods on Wikipedia, available at https://en.wikipedia.org/
wiki/Quasi-Newton method

» Metaheuristics for function minimization on Wikipedia, available at https://
en.wikipedia.org/wiki/Metaheuristic

» The CMA-ES algorithm described at https://en.wikipedia.org/wiki/CMA-ES

» A Python implementation of CMA-ES, available at http://www.lri.fr/~hansen/
cmaes_inmatlab.html#python

» The Finding the root of a mathematical function recipe
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Fitting a function to data with nonlinear

least squares

In this recipe, we will show an application of numerical optimization to nonlinear least
squares curve fitting. The goal is to fit a function, depending on several parameters, to data
points. In contrast to the linear least squares method, this function does not have to be linear
in those parameters.

We will illustrate this method on artificial data.

How to do it...

1. Let's import the usual libraries:

>>> import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
$matplotlib inline

2. We define a logistic function with four parameters:

1+ exp (—c(z — d))

fa,b,c,d(w) +0b

>>> def f(x, a, b, ¢, d):
return a / (1. + np.exp(-c * (x - d))) + b

3. Let's define four random parameters:

>>> a, ¢ = np.random.exponential (size=2)
b, d = np.random.randn(2)

4. Now, we generate random data points by using the sigmoid function and adding a bit
of noise:

>>> n = 100
X = np.linspace(-10., 10., n)
y model = f£(x, a, b, c, d)
y = y model + a * .2 * np.random.randn (n)
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5. The following is a plot of the data points, with the particular sigmoid used for their

350

generation (in dashed black):

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
ax.plot (x, y model, '--k')
ax.plot(x, y, 'o')
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We now assume that we only have access to the data points and not the underlying
generative function. These points could have been obtained during an experiment.
By looking at the data, the points appear to approximately follow a sigmoid, so we
may want to try to fit such a curve to the points. That's what curve fitting is about.
SciPy's curve fit () function allows us to fit a curve defined by an arbitrary Python
function to the data:

>>> (a_, b , ¢, d), = opt.curve fit(f, x, y)
Now, let's take a look at the fitted sigmoid curve:

>>> y fit = £(x, a , b , ¢, d)

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
ax.plot(x, y model, '--k')
ax.plot(x, y, 'o')
ax.plot(x, y fit, '-'")
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The fitted sigmoid appears to be reasonably close to the original sigmoid used for
data generation.

In SciPy, nonlinear least squares curve fitting works by minimizing the following cost function:

n

S(B) = (yi — fa(:))?

i=1

Here, § is the vector of parameters (in our example, 8 = (a, b, ¢, d)).

Nonlinear least squares is really similar to linear least squares for linear regression. Whereas

the function f is linear in the parameters with the linear least squares method, it is not linear
here. Therefore, the minimization of S(8) cannot be done analytically by solving the derivative
of S with respect to /3. SciPy implements an iterative method called the Levenberg-Marquardt
algorithm (an extension of the Gauss-Newton algorithm).

Here are further references:
» Reference documentation of curvefit, available at http://docs.scipy.org/doc/

scipy/reference/generated/scipy.optimize.curve fit.html

» Nonlinear least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Non-linear least squares

» The Levenberg-Marquardt algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/Levenberg$E2%$80%93Marquardt algorithm
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See also

» The Minimizing a mathematical function recipe

Finding the equilibrium state of a physical

system by minimizing its potential energy

In this recipe, we will give an application example of the function minimization algorithms
described earlier. We will try to numerically find the equilibrium state of a physical system by
minimizing its potential energy.

More specifically, we'll consider a structure made of masses and springs, attached to a
vertical wall and subject to gravity. Starting from an initial position, we'll search for the
equilibrium configuration where the gravity and elastic forces compensate.

How to do it...

1. Let's import NumPy, SciPy, and matplotlib:

>>> import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
$matplotlib inline

2. We define a few constants in the International System of Units:

>>> g = 9.81 # gravity of Earth
m= .1 # mass, in kg
20 # number of masses

.1 # initial distance between the masses
e # relaxed length of the springs

A H 0B
I

10000 # spring stiffness

3. We define the initial positions of the masses. They are arranged on a two-dimensional
grid with two lines and n/2 columns:

>>> P0 = np.zeros((n, 2))
PO[:, 0] = np.repeat(e * np.arange(n // 2), 2)
PO[:, 1] = np.tile((0, -e), n // 2)
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4. Now, let's define the connectivity matrix between the masses. Coefficient (¢, j) is 1 if
masses j and j are connected by a spring, O otherwise:

>>> A = np.eye(n, n, 1) + np.eye(n, n, 2)
# We display a graphic representation of
# the matrix.
f, ax = plt.subplots(1l, 1)
ax.imshow (A)
ax.set axis off ()

5. We also specify the spring stiffness of each spring. It is [, except for diagonal springs
where it is [v/2:

>>> L =1 * (np.eye(n, n, 1) + np.eye(n, n, 2))
for i in range(n // 2 - 1):
L2 *1 + 1, 2 * 1 + 2] *= np.sqgrt(2)

6. We get the indices of the spring connections:
>>> I, J = np.nonzero(A)

7. Thisdist () function computes the distance matrix (the distance between any pair
of masses):
>>> def dist (P):

return np.sqrt((P[:, 0] - P[:, 0][:, np.newaxis])**2 +
(P[:, 11 - P[:, 1]1[:, np.newaxis])**2)
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8. We define a function that displays the system. The springs are colored according to
their tension:

>>> def show bar(P):
fig, ax = plt.subplots(l, 1, figsize=(5, 4))

# Wall.
ax.axvline (0, color='k', 1lw=3)

# Distance matrix.
D = dist(P)

# Get normalized elongation in [-1, 1].
elong = np.array([D[i, j] - LI[i, 3]

for i, j in zip(I, J)])
elong max = np.abs (elong) .max ()

# The color depends on the spring tension, which
# is proportional to the spring elongation.
colors = np.zeros((len(elong), 4))

colors[:, -1] = 1 # alpha channel is 1

# Use two different sequentials colormaps for
# positive and negative elongations, to show
# compression and extension in different colors.
if elong max > le-10:
# We don't use colors if all elongations are
# zero.
elong /= elong max
pos, neg = elong > 0, elong < 0
colors [pos] = plt.cm.copper (elong[pos])
colors[neg] = plt.cm.bone(-elongl[neg])

# We plot the springs.
for i, j, ¢ in zip(I, J, colors):
ax.plot (P[[i, 31, 0],
PL[1, J1, 11,
lw=2,
color=c,

)

# We plot the masses.
ax.plot(p[[I, J1, 0], PI[[TI, J1, 1], 'ok',)
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# We configure the axes.

ax.axis('equal')

ax.set _x1lim(P[:, 0] .min() - e / 2,
P[:, 0].max() + e / 2)
ax.set_ylim(P[:, 1] .min() - e / 2,
Pl[:, 1] .max() + e / 2)

ax.set axis off ()

return ax

9. Here is the system in its initial configuration:

>>> aXx =

show_bar (P0)

ax.set title("Initial configuration")

Initial configuration

10. To find the equilibrium state, we need to minimize the total potential energy of the
system. The following function computes the energy of the system given the positions
of the masses. This function is explained in the How it works... section of this recipe:

>>> def energy (P):

#

H #F U #F 0O H*

The argument P is a vector (flattened matrix).
We convert it to a matrix here.

= P.reshape((-1, 2))

We compute the distance matrix.

= dist (P)

The potential energy is the sum of the
gravitational and elastic potential energies.

return (g * m * P[:, 1].sum() +

.5 * (k. * A * (D - L)**2) .sum())
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11.

12.

13.

356

Let's compute the potential energy of the initial configuration:

>>> energy (P0.ravel ())
-0.981

Now, let's minimize the potential energy with a function minimization method. We
need a constrained optimization algorithm, because we make the assumption that
the first two masses are fixed to the wall. Therefore, their positions cannot change.
The L-BFGS-B algorithm, a variant of the BFGS algorithm, accepts bound constraints.
Here, we force the first two points to stay at their initial positions, whereas there are
no constraints on the other points. The minimize () function accepts a bounds list
containing, for each dimension, a pair of [min, max] values:
>>> bounds = np.c_[PO[:2, :].ravel(),
PO[:2, :].ravel()].tolist() + \
[ [None, Nonell * (2 * (n - 2))

>>> Pl = opt.minimize (energy, PO.ravel(),

method='L-BFGS-B',

bounds=bounds) .x.reshape ((-1, 2))

Let's display the stable configuration:

>>> ax = show bar (P1)
ax.set _title("Equilibrium configuration")

Equilibrium configuration

The springs near the wall are maximally extended (top) or compressed (bottom).
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This example is conceptually simple. The state of the system is only described by the positions
of the masses. If we can write a Python function that returns the total energy of the system,
finding the equilibrium is just a matter of minimizing this function. This is the principle of
minimum total potential energy, due to the second law of thermodynamics.

Here, we give an expression of the total energy of the system. Since we are only interested
in the equilibrium, we omit any kinetic aspect and we only consider potential energy due to
gravity (gravitational force) and spring forces (elastic potential energy).

Letting U be the total potential energy of the system, [/ can be expressed as the sum of
the gravitational potential energies of the masses and the elastic potential energies of the
springs. Therefore:

n n
1
U:E mgyi + 5 E kay; (|[pi — pyl| — lij)?
=1

7,j=1

Here:

» misthe mass

» g isthe gravity of Earth

» kis the stiffness of the springs

» i = (74, i) is the position of mass i,

» ayis 1if massesiand J are attached by a spring, 0 otherwise

» l;;is the relaxed length of spring (i, 5), or 0 if masses j and J are not attached

The energy () function implements this formula using vectorized computations on
NumPy arrays.

The following references contain details about the physics behind this formula:
» Potential energy on Wikipedia, available at https://en.wikipedia.org/wiki/
Potential energy

» Elastic potential energy on Wikipedia, available at https://en.wikipedia.org/
wiki/Elastic_potential energy
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» Hooke's law, which is the linear approximation of the springs' response, described at
https://en.wikipedia.org/wiki/Hooke%27s_ law

» The principle of minimum energy on Wikipedia, available at https://
en.wikipedia.org/wiki/Minimum total potential energy principle

Here is a reference about the optimization algorithm:

» The L-BFGS-B algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/Limited-memory BFGS#L-BFGS-B

See also

» The Minimizing a mathematical function recipe
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Signal Processing

In this chapter, we will cover the following topics:

» Analyzing the frequency components of a signal with a Fast Fourier Transform
» Applying a linear filter to a digital signal

» Computing the autocorrelation of a time series

Introduction

Signals are mathematical functions that describe the variation of a quantity across time or
space. Time-dependent signals are often called time series. Examples of time series include
share prices, which are typically presented as successive points in time spaced at uniform
time intervals. In physics or biology, experimental devices record the evolution of variables
such as electromagnetic waves or biological processes.

In signal processing, a general objective consists of extracting meaningful and relevant
information from raw, noisy measurements. Signal processing topics include signal
acquisition, transformation, compression, filtering, and feature extraction, among others.
When dealing with a complex dataset, it can be beneficial to clean it before applying more
advanced mathematical analysis methods (such as machine learning, for instance).

In this concise chapter, we will illustrate and explain the main foundations of signal
processing. In the next chapter, Chapter 11, Image and Audio Processing, we will see
particular signal processing methods adapted to images and sounds.

First, we will give some important definitions in this introduction.
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Analog and digital signals

Signals can be time-dependent or space-dependent. In this chapter, we will focus on time-
dependent signals.

Let x(¢) be a time-varying signal. We say that:

» This signal is analog if ¢ is a continuous variable and x(t) is a real number
» This signal is digital if ¢ is a discrete variable (discrete-time signal) and z(¢) can only
take a finite number of values (quantified signal)

The following figure shows the difference between an analog signal (the continuous curve)
and a digital signal (dots):
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Analog and digital signals (https://en.wikipedia.org/wiki/Digital signal#/media/
File:Digital.signal.discret.svg)

Analog signals are found in mathematics and in most physical systems such as electric
circuits. Yet, computers being discrete machines, they can only understand digital signals.
This is why computational science especially deals with digital signals.

A digital signal recorded by an experimental device is typically characterized by two
important quantities:

» The sampling rate: The number of values (or samples) recorded every second
(in Hertz)

» The resolution: The precision of the quantization, usually in bits per sample
(also known as bit depth)

Digital signals with high sampling rates and bit depths are more accurate, but they require
more memory and processing power. These two parameters are limited by the experimental
devices that record the signals.
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The Nyquist-Shannon sampling theorem

Let's consider a continuous (analog) time-varying signal x(t). We record this physical signal
with an experimental device, and we obtain a digital signal with a sampling rate of f,. The
original analog signal has an infinite precision, whereas the recorded signal has a finite
precision. Therefore, we expect to lose information in the analog-to-digital process.

The Nyquist-Shannon sampling theorem states that under certain conditions on the analog
signal and the sampling rate, it is possible not to lose any information in the process. In other
words, under these conditions, we can recover the exact original continuous signal from the
sampled digital signal. For more details, refer to https://en.wikipedia.org/wiki/
Nyquist%E2%80%93Shannon_sampling theorem.

Let's define these conditions. The Fourier transform & (f) of x(t) is defined by:

+o0o
i(f) = / z(t)e 2t dt

— 00

Here, the Fourier transform is a representation of a time-dependent signal in the frequency
domain. The Nyquist criterion states that:

there exists B < fs/2 such that, for all |f| > B, Z(f)=0.

In other words, the signal must be bandlimited, meaning that it must not contain any
frequency higher than a certain cutoff frequency B. Additionally, the sampling rate fs needs to
be at least twice as large as this frequency B. Here are a couple of definitions:

» The Nyquist rate is 2B. For a given bandlimited analog signal, it is the minimal
sampling rate required to sample the signal without loss.

» The Nyquist frequency is fs/2. For a given sampling rate, it is the maximal frequency
that the signal can contain in order to be sampled without loss.

Under these conditions, we can theoretically reconstruct the original analog signal from the
sampled digital signal.

Compressed sensing

Compressed sensing is a recent and important approach to signal processing. It
acknowledges that many real-world signals are intrinsically low dimensional. For example,
speech signals have a very specific structure depending on the general physical constraints of
the human vocal tract.
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Even if a speech signal has many frequencies in the Fourier domain, it may be well
approximated by a sparse decomposition on an adequate basis (dictionary). By definition, a
decomposition is sparse if most of the coefficients are zero. If the dictionary is chosen well,
every signal is a combination of a small number of the basis signals.

This dictionary contains elementary signals that are specific to the signals considered in a
given problem. This is different from the Fourier transform that decomposes a signal on a
universal basis of sine functions. In other words, with sparse representations, the Nyquist
condition can be circumvented. We can precisely reconstruct a continuous signal from a
sparse representation containing fewer samples than what the Nyquist condition requires.

Sparse decompositions can be found with sophisticated algorithms. In particular, these
problems may be turned into convex optimization problems that can be tackled with specific
numerical optimization methods.

Compressed sensing has many applications in signal compression, image processing,
computer vision, biomedical imaging, and many other scientific and engineering areas.

Here are further references about compressed sensing:

» https://en.wikipedia.org/wiki/Compressed_sensing
» https://en.wikipedia.org/wiki/Sparse approximation

» Compressed sensing in Python at http://www.pyrunner.com/
weblog/2016/05/26/compressed-sensing-python/

References

Here are a few references:

» Understanding Digital Signal Processing, Richard G. Lyons,
Pearson Education, (2010).

» For good coverage of compressed sensing, refer to the book A Wavelet Tour of Signal
Processing: The Sparse Way, Mallat Stéphane, Academic Press, (2008).

» Harmonic Analysis Lectures on Awesome Math, at https://github.com/
rossant/awesome-math/#harmonic-analysis

» The book Python for Signal Processing, Jose Unpingco, Springer International
Publishing contains many more details than what we can cover in this chapter. The
code is available as Jupyter notebooks on GitHub (http://python-for-signal-
processing.blogspot.com).
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» Digital Signal Processing on WikiBooks available at http://en.wikibooks.org/
wiki/Digital Signal Processing.

» Numerical Tours in Python, available at http://www.numerical -tours.com/
python/

Analyzing the frequency components of a

signal with a Fast Fourier Transform

In this recipe, we will show how to use a Fast Fourier Transform (FFT) to compute the spectral
density of a signal. The spectrum represents the energy associated to frequencies (encoding
periodic fluctuations in a signal). It is obtained with a Fourier transform, which is a frequency
representation of a time-dependent signal. A signal can be transformed back and forth from
one representation to the other with no information loss.

In this recipe, we will illustrate several aspects of the Fourier transform. We will apply this
tool to weather data spanning 20 years in France obtained from the US National Climatic
Data Center.

How to do it...

1. Let's import the packages, including scipy. fftpack, which includes many
FFT- related routines:

>>> import datetime
import numpy as np
import scipy as sp
import scipy.fftpack
import pandas as pd
import matplotlib.pyplot as plt
$matplotlib inline

2. We import the data from the CSV file (it has been obtained at http://www.ncdc.
noaa.gov/cdo-web/dataset s#GHCND). The number -9999 is used for N/A
values. The pandas can easily handle this. In addition, we tell pandas to parse
dates contained in the DATE column:

>>> df0 = pd.read csv('https://github.com/ipython-books/"'
' cookbook-2nd-data/blob/master/"
'weather.csv?raw=true',
na values=(-9999),
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parse dates=['DATE'])
>>> df = dfO0[dfO['DATE'] >= '19940101']
>>> df .head ()

STATION DATE PRCP TMAX TMIN
365 GHCND:FR0130... 1994-01-01 0.0 104.0 72.0
366 GHCND:FR0130... 1994-01-02 40 1280 490

367 GHCND:FR0130... 1994-01-03 0.0 160.0 87.0
368 GHCND:FRO0130... 1994-01-04 0.0 118.0 83.0
369 GHCND:FR0130... 1994-01-05 34.0 133.0 55.0

3. Each row contains the precipitation and extreme temperatures recorded each day by
one weather station in France. For every date in the calendar, we want to get a single
average temperature for the whole country. The groupby () method provided by
pandas lets us do this easily. We also remove any N/A value with dropna () :

>>> df avg = df.dropna() .groupby ('DATE') .mean ()
>>> df avg.head()

PRCP TMAX TMIN
DATE

1994-01-01 178.666667 127.388889 70.333333
1994-01-02 122.000000 152.421053 81.736842
1994-01-03 277.333333 157.666667 95.555556
1994-01-04 177.105263 142.210526 95.684211
1994-01-05 117.944444 130.222222 75.444444

4. Now, we get the list of dates and the list of corresponding temperatures. The unit is in
tenths of a degree, and we get the average value between the minimal and maximal
temperature, which explains why we divide by 20.

>>> date = df avg.index.to_datetime()
temp = (df _avg['TMAX'] + df avg['TMIN']) / 20.
N = len(temp)
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5. Let's take a look at the evolution of the temperature:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
temp.plot (ax=ax, lw=.5)
ax.set_ylim(-10, 40)
ax.set xlabel ('Date')
ax.set_ylabel ('Mean temperature')
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6. We now compute the Fourier transform and the spectral density of the signal.
The first step is to compute the FFT of the signal using the ££t () function:

>>> temp fft = sp.fftpack.fft (temp)

7. Once the FFT has been obtained, we need to take the square of its absolute value in
order to get the Power Spectral Density (PSD):

>>> temp psd = np.abs(temp fft) ** 2

8. The next step is to get the frequencies corresponding to the values of the PSD. The
fftfreq() utility function does just that. It takes the length of the PSD vector as
input as well as the frequency unit. Here, we choose an annual unit: a frequency of 1
corresponds to 1 year (365 days). We provide 1/365 because the original unit is
in days:

>>> fftfreq = sp.fftpack.fftfreqg(len(temp psd), 1. / 365)

9. The fftfreqg() function returns positive and negative frequencies. We are only
interested in positive frequencies here, as we have a real signal:

>>> i = fftfreq > 0
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10. We now plot the PSD of our signal, as a function of the frequency (in unit of 1/year).
We choose a logarithmic scale for the y axis (decibels):

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot (fftfregfi], 10 * np.loglO(temp psd[i]))
ax.set _x1im(0, 5)
ax.set xlabel ('Frequency (1l/year)"')
ax.set_ylabel ('PSD (dB)')
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Because the fundamental frequency of the signal is the yearly variation of the
temperature, we observe a peak for £=1.

11. Now, we cut out frequencies higher than the fundamental frequency:

>>> temp fft bis = temp fft.copy()
temp fft bis[np.abs(fftfreq) > 1.1] = 0

12. Next, we perform an inverse FFT to convert the modified Fourier transform back
to the temporal domain. This way, we recover a signal that mainly contains the
fundamental frequency, as shown in the following figure:

>>> temp slow = np.real(sp.fftpack.ifft (temp fft bis))
>>> fig, ax = plt.subplots(l, 1, figsize=(6, 3))
temp.plot (ax=ax, lw=.5)
ax.plot date(date, temp slow, '-')
ax.set xlim(datetime.date (1994, , 1),
datetime.date (2000, , 1))
ax.set _ylim(-10, 40)

1
1

ax.set_xlabel ('Date')
ax.set_ylabel ('Mean temperature')

366



Chapter 10
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We get a smoothed version of the signal, because the fast variations have been lost when we
have removed the high frequencies in the Fourier transform.

Broadly speaking, the Fourier transform is an alternative representation of a signal as a
superposition of periodic components. It is an important mathematical result that any
well-behaved function can be represented under this form. Whereas a time-varying signal
is most naturally considered as a function of time, the Fourier transform represents it as
a function of the frequency. A magnitude and a phase, which are both encoded in a single
complex number, are associated to each frequency.

The discrete Fourier transform

Let's consider a digital signal = represented by a vector (2o, ..., zy—1). We assume that this
signal is regularly sampled. The Discrete Fourier Transform (DFT) of z is X = (X, ..., Xn—_1)
defined as:

N-1
Vk e {0,...,N -1}, Xj= Z e 2imkn/N
n=0

The DFT can be computed efficiently with the FFT, an algorithm that exploits symmetries and
redundancies in this definition to considerably speed up the computation. The complexity

of the FFT is O(N log N) instead of O(IN?) for the naive DFT. The FFT is one of the most
important algorithms of the digital universe.

Here is an intuitive explanation of what the DFT describes. Instead of representing our signal
on a real line, let's represent it on a circle. We can play the whole signal by making 1, 2, or any
number k of laps on the circle. Therefore, when k is fixed, we represent each value z,, of the
signal with an angle 2rkn /N and a distance from the original equal to x,.
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In the following figure, the signal is a sine wave at the frequency f = 3H z. The points of this
signal are in blue, positioned at an angle 2kn/N. Their algebraic sum in the complex plane is
in red. These vectors represent the different coefficients of the signal's DFT.

f=1Hz f=2Hz f=3Hz

f=4Hz f=5Hz f=6Hz f=7Hz

o

f=8Hz f=9Hz f=10Hz f=11Hz

4 )
* .

f=12Hz f=13 Hz f=14 Hz f=15Hz

Illustration of the DFT.

The next figure represents the previous signal's PSD:

PSD

The PSD of the signal in the previous example.
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Inverse Fourier transform

By considering all possible frequencies, we have an exact representation of our digital signal
in the frequency domain. We can recover the initial signal with an Inverse Fast Fourier
Transform that computes an Inverse Discrete Fourier Transform. The formula is very similar
to the DFT:

1 )
VkE{O,...,N—l}, T = — ZXRGZWkn/N.

The DFT is useful when periodic patterns are to be found. However, generally speaking, the
Fourier transform cannot detect transient changes at specific frequencies. Local spectral
methods are required, such as the wavelet transform.

There's more...

The following links contain more details about Fourier transforms:

» Introduction to the FFT with SciPy, available at http://scipy-lectures.
github.io/intro/scipy.html#fast-fourier-transforms-scipy-
fftpack

» Reference documentation for the £ ftpack in SciPy, available at http://docs.
scipy.org/doc/scipy/reference/fftpack.html

» Fourier transform on Wikipedia, available at https://en.wikipedia.org/wiki/
Fourier transform

» DFT on Wikipedia, available at https://en.wikipedia.org/wiki/Discrete
Fourier transform

» FFT on Wikipedia, available at https://en.wikipedia.org/wiki/Fast
Fourier transform

» Decibel on Wikipedia, available at https://en.wikipedia.org/wiki/Decibel

» The Applying a linear filter to a digital signal recipe
» The Computing the autocorrelation of a time series recipe
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Applying a linear filter to a digital signal

Linear filters play a fundamental role in signal processing. With a linear filter, one can extract
meaningful information from a digital signal.

In this recipe, we will show two examples using stock market data (the NASDAQ stock
exchange). First, we will smooth out a very noisy signal with a low-pass filter to extract its
slow variations. We will also apply a high-pass filter to the original time series to extract the
fast variations. These are just two common examples among a wide variety of applications of
linear filters.

How to do it...

1. Let's import the packages:

>>> import numpy as np
import scipy as sp
import scipy.signal as sg
import pandas as pd
import matplotlib.pyplot as plt
$matplotlib inline

2. We load the NASDAQ data (obtained from https://finance.yahoo.com/
quote/%5EIXIC/history?periodl=631148400&period2=1510786800&inte
rval=1d&filter=history&frequency=1d) with pandas:

>>> nasdag_df = pd.read csv(
'https://github.com/ipython-books/"'
' cookbook-2nd-data/blob/master/"
'nasdaq.csv?raw=true',
index col='Date',
parse dates=['Date'])

>>> nasdaqg_df.head()
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Open High Low Close AdjClose Volume
Date

1990-01-02 452.899994 459299988 452.700012 459.299988 459.299988 110720000
1990-01-03 461.100006 461.600006 460.000000 460.899994 460.899994 152660000
1990-01-04 460.399994 460.799988 456.809994 459.399994 459.399994 147950000
1990-01-05 457.899994 459399994 457799988 458200012 458.200012 137230000
1990-01-08 457.100006 458700012 456.500000 458.700012 458.700012 115500000

Let's extract two columns: the date and the daily closing value:
>>> date = nasdaqg_df.index

nasdag = nasdaq df['Close']
Let's take a look at the raw signal:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
nasdaqg.plot (ax=ax, 1lw=1)
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Now, we will follow the first approach to get the slow variations of the signal. We will
convolve the signal with a triangular window, which corresponds to a FIR filter. We
will explain the idea behind this method in the How it works... section of this recipe.
For now, let's just say that we replace each value with a weighted mean of the signal
around this value:

>>> # We get a triangular window with 60 samples.
h = sg.get window('triang', 60)
# We convolve the signal with this window.
fil = sg.convolve (nasdag, h / h.sum())
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>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
# We plot the original signal...
nasdaqg.plot (ax=ax, lw=3)

# ... and the filtered signal.
ax.plot date(date, fil[:len(nasdaq)],
T-w', 1lw=2)
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6. Now, let's use another method. We create an IIR Butterworth low-pass filter to extract
the slow variations of the signal. The £i1tfilt () method allows us to apply a filter
forward and backward in order to avoid phase delays:
>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))

nasdaqg.plot (ax=ax, lw=3)
# We create a 4-th order Butterworth low-pass filter.
b, a = sg.butter(4, 2. / 365)
# We apply this filter to the signal.
ax.plot date(date, sg.filtfilt (b, a, nasdaq),
Yew', 1lw=2)

6000 )
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7. Finally, we use the same method to create a high-pass filter and extract the fast
variations of the signal:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
nasdaqg.plot (ax=ax, lw=1)
b, a = sg.butter(4, 2 * 5. / 365, btype='high')
ax.plot date(date, sg.filtfilt(b, a, nasdaq),
t-r, 1lw=1)
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The fast variations around 2000 correspond to the dot-com bubble burst, reflecting the high-
market volatility and the fast fluctuations of the stock market indices at that time. For more
details, refer to https://en.wikipedia.org/wiki/Dot-com_bubble.

In this section, we explain the very basics of linear filters in the context of digital signals.

A digital signal is a discrete sequence (z,,) indexed by n > 0. Although we often assume
infinite sequences, in practice, a signal is represented by a vector of the finite size .

In the continuous case, we would rather manipulate time-dependent functions f(t). Loosely
stated, we can go from continuous signals to discrete signals by discretizing time and
transforming integrals into sums.

What are linear filters?

Alinear filter F transforms an input signal « = (x,,) to an output signal y¥ = (y»,). This
transformation is linear—the transformation of the sum of two signals is the sum of the
transformed signals: F'(z +y) = F(z) + F(y).

In addition to this, multiplying the input signal by a constant yields the same output as
multiplying the original output signal by the same constant: F'(Az) = AF(x).
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A Linear Time-Invariant (LTI) filter has an additional property: if the signal (x.,) is transformed
to (yn), then the shifted signal (x,,—) is transformed to (y.—&), for any fixed k. In other words,
the system is time-invariant because the output does not depend on the particular time the
input is applied.

[ From now on, we will only consider LTI filters. ]

Linear filters and convolutions

A very important result in the LTI system theory is that LTI filters can be described by a single
signal: the impulse response h. This is the output of the filter in response to an impulse signal.
For digital filters, the impulse signal is (1,0, 0,0, ...).

It can be shown that x = (z,,) is transformed to y = (y. ) defined by the convelution of the
impulse response h with the signal x:

n
y=hxx, or y,= E hin—k
k=0

The convolution is a fundamental mathematical operation in signal processing. Intuitively,
and considering a convolution function peaking around zero, the convolution is equivalent to
taking a local average of the signal (z here), weighted by a given window (A here).

It is implied, by our notations, that we restrict ourselves to causal filters (h,, = 0 forn < 0).
This property means that the output of the signal only depends on the present and the past of
the input, not the future. This is a natural property in many situations.

The FIR and IIR filters

The support of a signal (h,,) is the set of n such that h,, # 0. LTl filters can be classified into
two categories:

» A Finite Impulse Response (FIR) filter has an impulse response with finite support
» Alnfinite Impulse Response (lIR) filter has an impulse response with infinite support

A FIR filter can be described by a finite impulse response of size N (a vector). It works by
convolving a signal with its impulse response. Let's define b,, = h,,forn < N.Then, y, is a
linear combination of the last N + 1 values of the input signal:

N
Yn = Z brrn—k
k=0
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On the other hand, an IIR filter is described by an infinite impulse response that cannot
be represented exactly under this form. For this reason, we often use an alternative
representation:

A M
Yn = w0 (kzo brxn—1 — lz;alynl>

This difference equation expresses ¥, as a linear combination of the last N + 1 values of

the input signal (the feedforward term, like for a FIR filter) and a linear combination of the
last M values of the output signal (feedback term). The feedback term makes the IIR filter
more complex than a FIR filter in that the output depends not only on the input but also on the
previous values of the output (dynamics).

Filters in the frequency domain

We only described filters in the temporal domain. Alternate representations in other domains
exist such as Laplace transforms, Z-transforms, and Fourier transforms.

In particular, the Fourier transform has a very convenient property: it transforms convolutions
into multiplications in the frequency domain. In other words, in the frequency domain, an

LTI filter multiplies the Fourier transform of the input signal by the Fourier transform of the
impulse response.

The low-, high-, and band-pass filters

Filters can be characterized by their effects on the amplitude of the input signal's frequencies.
They are as follows:

» Alow-pass filter attenuates the components of the signal at frequencies higher than
a cutoff frequency

» A high-pass filter attenuates the components of the signal at frequencies lower than
a cutoff frequency

» A band-pass filter passes the components of the signal at frequencies within a
certain range and attenuates those outside

In this recipe, we first convolved the input signal with a triangular window (with finite support).
It can be shown that this operation corresponds to a low-pass FIR filter. It is a particular case
of the moving average method, which computes a local weighted average of every value in
order to smooth out the signal.

Then, we applied two instances of the Butterworth filter, a particular kind of IR filter that can
act as a low-pass, high-pass, or band-pass filter. In this recipe, we first used it as a low-pass
filter to smooth out the signal, before using it as a high-pass filter to extract fast variations of
the signal.
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There's more...

Here are some general references about digital signal processing and linear filters:
» Digital signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Digital signal processing

» Linear filters on Wikipedia, available at https://en.wikipedia.org/wiki/
Linear filter

» LTl filters on Wikipedia, available at https://en.wikipedia.org/wiki/LTI
system theory

See also

» The Analyzing the frequency components of a signal with a Fast Fourier
Transform recipe

Computing the autocorrelation of a time

series

The autocorrelation of a time series can inform us about repeating patterns or serial
correlation. The latter refers to the correlation between the signal at a given time and at a
later time. The analysis of the autocorrelation can thereby inform us about the timescale
of the fluctuations. Here, we use this tool to analyze the evolution of baby names in the US,
based on data provided by the United States Social Security Administration.

How to do it...

1. We import the following packages:

>>> import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
$matplotlib inline

2. We download the Babies dataset (available on the GitHub data repository of the
book) using the requests third-party package. The dataset was obtained initially from
the data.gov website (https://catalog.data.gov/dataset/baby-names-
from-social-security-card-applications-national-level-data). We
extract the archive locally in the babies subdirectory. There is one CSV file per year.
Each file contains all baby names given that year with the respective frequencies.
>>> import io

import requests
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>>>

>>>

import zipfile

url = ('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'babies.zip?raw=true')

r = io.BytesIO(requests.get (url) .content)

zipfile.ZipFile (r) .extractall ('babies"')

%1ls babies

yob1l902. txt
yob1903.txt
yob1904.txt

yob2014.txt
yob2015. txt
yob2016.txt

We read the data with pandas. We load the data in a dictionary, containing one
DataFrame per year:

>>>

>>>

>>>

>>>

files = [file for file in os.listdir('babies')
if file.startswith('yob')]
years = np.array (sorted([int (file[3:7])
for file in files]))
data = {year:
pd.read csv('babies/yob%d.txt' % year,
index col=0, header=None,
names=['First name',
'Gender',
'Number'])
for year in years}
data[2016] .head ()

Gender Number

First name
Emma F 19414
Olivia F 19246
Ava F 16237
Sophia F 16070
Isabella F 14722
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4. We write functions to retrieve the frequencies of baby names as a function of the
name, gender, and birth year:

>>> def get value(name, gender, year):
""r"Return the number of babies born a given year,
with a given gender and a given name."""
dy = datalyear]
try:
return dy[dy['Gender'] ==
gender] [ 'Number'] [name]
except KeyError:
return 0
>>> def get_evolution(name, gender) :
"""Return the evolution of a baby name over
the years."""
return np.array([get_value(name, gender, year)
for year in years])

5. Let's define a function that computes the autocorrelation of a signal. This function is
essentially based on NumPy's correlate () function.

>>> def autocorr(x):
result = np.correlate(x, x, mode='full'")
return result[result.size // 2:1]

6. Now, we create a function that displays the evolution of a baby name as well as its
(normalized) autocorrelation:

>>> def autocorr_name (name, gender, color, axes=None):
x = get_evolution(name, gender)
Zz = autocorr (x)

# Evolution of the name.

axes [0] .plot (years, x, '-o' + color,
label=name)

axes [0] .set_title("Baby names")

axes [0] .legend ()

# Autocorrelation.
axes[1l] .plot(z / float(z.max()),
'-' + color, label=name)
axes[1l] .legend ()
axes[1] .set_title("Autocorrelation")

7. Let's take a look at two female names:

>>> fig, axes = plt.subplots(l, 2, figsize=(12, 4))
autocorr_name ('Olivia', 'F', 'k', axes=axes)
autocorr_name('Maria', 'F', 'y',6 axes=axes)
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The autocorrelation of Olivia is decaying much faster than Maria's. This is mainly because of
the steep increase of the name Olivia at the end of the twentieth century. By contrast, the
name Maria is varying more slowly globally, and its autocorrelation is decaying slower.

A time series is a sequence indexed by time. Important applications include stock markets,
product sales, weather forecasting, biological signals, and many others. Time series analysis
is an important part of statistical data analysis, signal processing, and machine learning.

There are various definitions of the autocorrelation. Here, we define the autocorrelation of a
time series (z,,) as:

1
R(k) = N Xn:xnﬂfn_»,_k

In the previous plot, we normalized the autocorrelation by its maximum so as to compare the
autocorrelation of two signals. The autocorrelation quantifies the average similarity between
the signal and a shifted version of the same signal, as a function of the delay between the
two. In other words, the autocorrelation can give us information about repeating patterns as
well as the timescale of the signal's fluctuations. The faster the autocorrelation decays to zero,
the faster the signal varies.

Here are a few references:
» NumPy's correlation function documentation, available at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.correlate.html

» Autocorrelation function in statsmodels, documented at http://statsmodels.
sourceforge.net/stable/tsa.html
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Signal Processing
» Time series on Wikipedia, available at https://en.wikipedia.org/wiki/
Time_ series

» Serial dependence on Wikipedia, available at https://en.wikipedia.org/
wiki/Serial dependence

» Autocorrelation on Wikipedia, available at https://en.wikipedia.org/wiki/
Autocorrelation

See also

» The Analyzing the frequency components of a signal with a Fast Fourier
Transform recipe
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Image and Audio
Processing

In this chapter, we will cover the following topics:

» Manipulating the exposure of an image

» Applying filters on an image

» Segmenting an image

» Finding points of interest in an image

» Detecting faces in an image with OpenCV
» Applying digital filters to speech sounds

» Creating a sound synthesizer in the Notebook

Introduction

In the previous chapter, we covered signal processing techniques for one-dimensional,
time-dependent signals. In this chapter, we will see signal processing techniques for
images and sounds.

Generic signal processing techniques can be applied to images and sounds, but many image
or audio processing tasks require specialized algorithms. For example, we will see algorithms
for segmenting images, detecting points of interest in an image, or detecting faces. We will
also hear the effect of linear filters on speech sounds.

The scikit-image package is one of the main image processing packages in Python. We
will use it in most of the image processing recipes in this chapter. For more on scikit-image,
referto http://scikit-image.org.
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We will also use OpenCV (http://opencv.org), a computer vision library in C++ that has a
Python wrapper.

In this introduction, we will discuss the particularities of images and sounds from a signal
processing point of view.

A grayscale image is a bidimensional signal represented by a function, f, that maps each
pixel to an intensity. For example, the intensity could be a real value between O (dark) and 1
(light). In a colored image, this function maps each pixel to a triplet of intensities—generally,
the red, green, and blue (RGB) components.

On a computer, images are digitally sampled. The intensities are not real values, but integers
or floating point numbers. On one hand, the mathematical formulation of continuous
functions allows us to apply analytical tools such as derivatives and integrals. On the other
hand, we need to take into account the digital nature of the images we deal with.

From a signal processing perspective, a sound is a time-dependent signal that has sufficient
power in the hearing frequency range (about 20 Hz to 20 kHz). Then, according to the Nyquist-
Shannon theorem (introduced in Chapter 10, Signal Processing), the sampling rate of a digital
sound signal needs to be at least 40 kHz. A sampling rate of 44100 Hz is frequently chosen.

References

Here are a few references:
» Image processing on Wikipedia, available at https://en.wikipedia.org/wiki/
Image_processing

» Numerical Tours, advanced image processing algorithms available at http: //www.
numerical-tours.com/python/

» Audio signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Audio signal processing

» Particularities of the 44100 Hz sampling rate explained at https://
en.wikipedia.org/wiki/44,100_ Hz
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Manipulating the exposure of an image

The exposure of an image tells us whether the image is too dark, too light, or balanced. It can
be measured with a histogram of the intensity values of all pixels. Improving the exposure of
an image is a basic image-editing operation. As we will see in this recipe, it can be done easily
with scikit-image.

Getting ready

The scikit-image command should be included by default in Anaconda. Otherwise, you
can always install it manually with conda install scikit-image.

How to do it...

1.

Let's import the packages:

>>> import numpy as np
import matplotlib.pyplot as plt
import skimage.exposure as skie

$matplotlib inline

We open an image with Matplotlib. We only take a single RGB component to have a
grayscale image (it is a very crude way of doing it, we give much better ways at the
end of this recipe):

>>> img = plt.imread('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'beach.png?raw=true') [..., 0]

We create a function that displays the image along with its histogram of the intensity
values (that is, the exposure):

>>> def show(img) :
# Display the image.
fig, (axl, ax2) = plt.subplots(l, 2,
figsize=(12, 3))

axl.imshow(img, cmap=plt.cm.gray)
axl.set_axis_off ()

# Display the histogram.

ax2.hist (img.ravel (), lw=0, bins=256)
ax2.set x1im(0, img.max())
ax2.set_yticks([])

plt.show ()
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4. Let's display the image along with its histogram:

>>> show (img)

0.0 0.2 0.4 0.6 0.8 1.0

The histogram is unbalanced and the image appears overexposed (many pixels are
too bright).

5. Now, we rescale the intensity of the image using scikit-image's rescale
intensity function. The in_range and out_range parameters define a linear
mapping from the original image to the modified image. The pixels that are outside
in range are clipped to the extremal values of out _range. Here, the darkest pixels
(intensity less than 100) become completely black (0), whereas the brightest pixels
(>240) become completely white (255):

>>> show(skie.rescale intensity(

img, in_range=(0.4, .95), out_range=(0, 1)))

,_...............mulilnIIFI|||||||||I|||||!|||||||||||||||||I1I|i||||||um||||||"|‘|”|h||m“|..
0 0.2 0.4 0.6 0.8 1.0

Many intensity values seem to be missing in the histogram, which reflects the poor
quality of this crude exposure correction technique.

6. We now use a more advanced exposure correction technique called Contrast Limited
Adaptive Histogram Equalization (CLAHE):

>>> show(skie.equalize adapthist (img))
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0.0 0.2 0.4 0.6 0.8 1.0

The histogram seems more balanced, and the image now appears more contrasted.

An image's histogram represents the distribution of the pixels' intensity values. It is a central
tool in image editing, image processing, and computer vision.

The rescale intensity () function stretches or shrinks the intensity levels of the image.
One use case is to ensure that the whole range of values allowed by the data type is used by
the image.

The equalize adapthist () function works by splitting the image into rectangular sections
and computing the histogram for each section. Then, the intensity values of the pixels are
redistributed to improve the contrast and enhance the details.

The skimage.color.rgb2gray () function converts a colored image to a grayscale image
using a special weighting of the color channels that preserves luminance.

There's more...

Here are some references:

» Transforming image data in the scikit-image documentation, at http://scikit-
image.org/docs/dev/user guide/transforming image data.html

» Histogram equalization in the scikit-image documentation, at http://scikit-
image.org/docs/dev/auto _examples/color exposure/plot equalize.
html

» Image histogram on Wikipedia, available at https://en.wikipedia.org/wiki/
Image histogram

» Histogram equalization on Wikipedia, available at https://en.wikipedia.org/
wiki/Histogram equalization
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» Adaptive histogram equalization on Wikipedia, available at https://
en.wikipedia.org/wiki/Adaptive histogram equalization

» Contrast on Wikipedia, available at https://en.wikipedia.org/
wiki/Contrast (vision)

» The Applying filters on an image recipe

Applying filters on an image

In this recipe, we apply filters on an image for various purposes: blurring, denoising, and
edge detection.

1. Let's import the packages:

>>> import numpy as np
import matplotlib.pyplot as plt
import skimage
import skimage.color as skic
import skimage.filters as skif
import skimage.data as skid
import skimage.util as sku
$matplotlib inline

2. We create a function that displays a grayscale image:

>>> def show(img) :
fig, ax = plt.subplots(l, 1, figsize=(8, 8))
ax.imshow(img, cmap=plt.cm.gray)
ax.set_axis_off ()
plt.show ()

3. Now, we load the Astronaut image (bundled in scikit-image). We convert it to a
grayscale image with the rgb2gray () function:

>>> img = skic.rgb2gray(skid.astronaut())
>>> show (img)
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4. Let's apply a blurring Gaussian filter to the image:

>>> show(skif.gaussian(img, 5.))
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5. We now apply a Sobel filter that enhances the edges in the image:

>>> sobimg = skif.sobel (img)
show (sobimg)

6. We can threshold the filtered image to get a sketch effect. We obtain a binary
image that only contains the edges. We use a notebook widget to find an adequate
thresholding value; by adding the @einteract decorator, we display a slider on top of
the image. This widget lets us control the threshold dynamically.

>>> from ipywidgets import widgets

@widgets.interact (x=(0.01, .2, .005))
def edge (%) :

show (gsobimg < x)

X 0.06
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7. Finally, we add some noise to the image to illustrate the effect of a denoising filter:

>>> img = skimage.img as float (skid.astronaut ())

# We take a portion of the image to show the details.
img = img[50:200, 150:300]

# We add Gaussian noise.
img n = sku.random noise (img)
show (img n)

The denoise tv_bregman () function implements total-variation denoising using
the Split Bregman method:

>>> img r = skimage.restoration.denoise tv bregman (
img n, 5.)

fig, (axl, ax2, ax3) = plt.subplots(
1, 3, figsize=(12, 8))

axl.imshow (img n)
axl.set title('With noise')
axl.set axis off ()

ax2.imshow (img r)

ax2.set title('Denoised')
ax2.set axis off ()
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ax3.imshow (img)
ax3.set title('Original')
ax3.set axis off()

With noise Denoised Original

Ry

Many filters used in image processing are linear filters. These filters are very similar to those
seen in Chapter 10, Signal Processing; the only difference is that they work in two dimensions.
Applying a linear filter to an image amounts to performing a discrete convolution of the image
with a particular function. The Gaussian filter applies a convolution with a Gaussian function
to blur the image.

The Sobel filter computes an approximation of the gradient of the image. Therefore, it can
detect fast-varying spatial changes in the image, which generally correspond to edges.

Image denoising refers to the process of removing noise from an image. Total variation
denoising works by finding a regular image close to the original (noisy) image. Regularity is
quantified by the total variation of the image:

V(i)=Y \/|$i+1,j = i+ |wija1 — i)
i

The Split Bregman method is a variant based on the L1 norm. It is an instance of
compressed sensing, which aims to find regular and sparse approximations of
real-world noisy measurements.

Here are a few references:

» APl reference of the skimage.filter module available at http://scikit-
image.org/docs/dev/api/skimage.filters.html

» Noise reduction on Wikipedia, available at https://en.wikipedia.org/wiki/
Noise reduction
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» Gaussian filter on Wikipedia, available at https://en.wikipedia.org/wiki/
Gaussian filter

» Sobel filter on Wikipedia, available at https://en.wikipedia.org/wiki/
Sobel operator

» The Split Bregman algorithm explained at http://www.ece.rice.edu/~tag7/
Tom_Goldstein/Split Bregman.html

» The Manipulating the exposure of an image recipe

Segmenting an image

Image segmentation consists of partitioning an image into different regions that share
certain characteristics. This is a fundamental task in computer vision, facial recognition, and
medical imaging. For example, an image segmentation algorithm can automatically detect the
contours of an organ in a medical image.

The scikit-image provides several segmentation methods. In this recipe, we will demonstrate
how to segment an image containing different objects. This recipe is inspired by a scikit-image
example available at http://scikit-image.org/docs/dev/user guide/tutorial
segmentation.html

How to do it...

1. Let's import the packages:

>>> import numpy as np
import matplotlib.pyplot as plt
from skimage.data import coins
from skimage.filters import threshold otsu
from skimage.segmentation import clear border
from skimage.morphology import label, closing, square
from skimage.measure import regionprops
from skimage.color import lab2rgb
$matplotlib inline

2. We create a function that displays a grayscale image:

>>> def show(img, cmap=None) :
cmap = cmap or plt.cm.gray
fig, ax = plt.subplots(l, 1, figsize=(8, 6))
ax.imshow (img, cmap=cmap)
ax.set_axis_off ()
plt.show ()
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3. We get a test image bundled in scikit-image, showing various coins on a plain
background:

>>> img = coins|()
>>> show (img)

The first step to segment the image is finding an intensity threshold separating the

(bright) coins from the (dark) background. Otsu's method defines a simple algorithm
to automatically find such a threshold.

>>> threshold otsu(img)

107

>>> show(img > 107)
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5. There appears to be a problem in the top-left corner of the image, with part of the
background being too bright. Let's use a Notebook widget to find a better threshold:

>>> from ipywidgets import widgets

@widgets.interact (t=(50, 240))
def threshold(t):
show (img > t)

t ® 120

000980
XYYY X X

The threshold 120 looks better. The next step consists of cleaning the binary image

by smoothing the coins and removing the border. The scikit-image library
contains a few functions for these purposes.

>>> img bin = clear border(closing(img > 120,

square(5)))
show (img bin)
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7.

Next, we perform the segmentation task itself with the 1abel () function. This
function detects the connected components in the image and attributes a unique
label to every component. Here, we color code the labels in the binary image:

>>> labels = label (img bin)
show (labels, cmap=plt.cm.rainbow)

Small artifacts in the image result in spurious labels that do not correspond
to coins. Therefore, we only keep components with more than 100 pixels.
The regionprops () function allows us to retrieve specific properties of the
components (here, the area and the bounding box):

>>> regions = regionprops (labels)
boxes = np.array([label['BoundingBox']
for label in regions
if label['Area'] > 100])
print (f"There are {len(boxes)} coins.")
There are 24 coins.

Finally, we show the label number on top of each component in the original image:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 6))
ax.imshow(img, cmap=plt.cm.gray)
ax.set axis off ()

# Get the coordinates of the boxes.
pids] boxes[:, [1, 3]].mean(axis=1)

Ve

boxes[:, [0, 2]].mean(axis=1)
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# We reorder the boxes by increasing
# column first, and row second.

for

row in range (4) :

# We select the coins in each of the four rows.
if row < 3:

ind = ((ys[6 * row] <= ys) &
(ys < ys[6 * row + 6]1))
else:
ind = (ysl[6 * row] <= ys)

# We reorder by increasing x coordinate.
ind = np.nonzero (ind) [0]

reordered = ind[np.argsort (xs[ind])]
Xs_row = xs[reordered]

ys_row = ys|[reordered]

# We display the coin number.

for col in range(6) :

n =6 * row + col
ax.text (xs_row[col] - 5, ys row[col] + 5,
str(n),

fontsize=20)

To clean up the coins in the thresholded image, we used mathematical morphology
techniques. These methods, based on set theory, geometry, and topology, allow us to

manipulate shapes.
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For example, let's explain dilation and erosion. First, if A is a set of pixels in an image, and b
is a 2D vector, we denote Ab the set A translated by b as:

Ay={a+b|ac A}

Let B be a set of vectors with integer components. We call B the structuring element (here,
we used a square). This set represents the neighborhood of a pixel. The dilation of A by B is:

AeB=J 4

beB

The erosion of A by B is:

AcB={:cE|B,CA}

A dilation extends a set by adding pixels close to its boundaries. An erosion removes the pixels
of the set that are too close to the boundaries. The closing of a set is a dilation followed by an
erosion. This operation can remove small dark spots and connect small bright cracks. In this
recipe, we used a square structuring element.

Here are a few references:

» SciPy lecture notes on image processing available at http://scipy-lectures.
github.io/packages/scikit-image/

» Image segmentation on Wikipedia, available at https://en.wikipedia.org/
wiki/Image segmentation

» Otsu's method to find a threshold explained at https://en.wikipedia.org/
wiki/Otsu's_method

» Segmentation tutorial with scikit-image (which inspired this recipe) available
athttp://scikit-image.org/docs/dev/user guide/tutorial
segmentation.html

» Mathematical morphology on Wikipedia, available at https://en.wikipedia.
org/wiki/Mathematical morphology
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» APl reference of the skimage .morphology module available at http://scikit-
image.org/docs/dev/api/skimage.morphology.html

» The Computing connected components in an image recipe, in Chapter 14, Graphs,
Geometry, and Geographic Information Systems.

Finding points of interest in an image

In an image, points of interest are positions where there might be edges, corners, or
interesting objects. For example, in a landscape picture, points of interest can be located near
a house or a person. Detecting points of interest is useful in image recognition, computer
vision, or medical imaging.

In this recipe, we will find points of interest in an image with scikit-image. This will allow us to
crop an image around the subject of the picture, even when this subject is not in the center of
the image.

How to do it...

1. Let's import the packages:

>>> import numpy as np
import matplotlib.pyplot as plt
import skimage
import skimage.feature as sf
$matplotlib inline

2. We create a function to display a colored or grayscale image:

>>> def show(img, cmap=None) :
cmap = cmap or plt.cm.gray
fig, ax = plt.subplots(l, 1, figsize=(8, 6))
ax.imshow (img, cmap=cmap)
ax.set_axis_off ()
return ax
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3. We load an image:

>>> img = plt.imread('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'child.png?raw=true')

>>> show (img)

4. Let's find salient points in the image with the Harris corner method. The first
step consists of computing the Harris corner measure response image with the
corner harris () function (we will explain this measure in the How it works...
section of this recipe). This function requires a grayscale image, thus we select
the first RGB component:

>>> corners = sf.corner harris(img[:, :, 0])
>>> show (corners)

We see that the patterns in the child's coat are well detected by this algorithm.
5. The next step is to detect corners from this measure image, using the
corner peaks () function

>>> peaks = sf.corner peaks (corners)
>>> ax = show(img)

ax.plot (peaks[:, 1], peaks[:, 0], 'or', ms=4)
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6. Finally, we create a box around the median position of the corner points to define our
region of interest:

>>> # The median defines the approximate position of
# the corner points.
ym, xm = np.median(peaks, axis=0)
# The standard deviation gives an estimation
# of the spread of the corner points.
ys, xs = 2 * peaks.std(axis=0)
xm, ym = int(xm), int (ym)
xs, ys = int(xs), int(ys)
show (img[ym - ys:ym + ys, xm - xs:xm + xs])
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Let's explain the method used in this recipe. The first step consists of computing the structure
tensor (or Harris matrix) of the image:

Here, I(z,y) is the image, I, and I are the partial derivatives, and the brackets denote the
local spatial average around neighboring values.

This tensor associates a (2, 2) positive symmetric matrix at each point. This matrix is used to
calculate a sort of autocorrelation of the image at each point.

Let A and # be the two eigenvalues of this matrix (the matrix is diagonalizable because

it is real and symmetric). Roughly, a corner is characterized by a large variation of the
autocorrelation in all directions, or in large positive eigenvalues A and p. The corner measure
image is defined as:

M =det(A) — k x trace(A)* = A\ — k(A + p)?

Here, k is a tunable parameter. M is large when there is a corner. Finally, corner_ peaks ()
finds corner points by looking at local maxima in the corner measure image.

Here are a few references:

» A corner detection example with scikit-image available at http://scikit-image.
org/docs/dev/auto_examples/features detection/plot corner.html

» Animage processing tutorial with scikit-image available at http://blog.vhathg.
com/posts/image-processing-with-scikit-image.html

» Corner detection on Wikipedia, available at https://en.wikipedia.org/wiki/
Corner_ detection

» Structure tensor on Wikipedia, available at https://en.wikipedia.org/wiki/
Structure_ tensor

» APl reference of the skimage . feature module available at http://scikit-
image.org/docs/dev/api/skimage.feature.html
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Detecting faces in an image with OpenCV

OpenCV (Open Computer Vision) is an open source C++ library for computer vision.
It features algorithms for image segmentation, object recognition, augmented reality,
face detection, and other computer vision tasks.

In this recipe, we will use OpenCV in Python to detect faces in a picture.

Getting ready

You need OpenCV and the Python wrapper. You can install them with the following command:

conda install -c conda-forge opencv

How to do it...

1. First, we import the packages:

>>> import io
import zipfile
import requests
import numpy as np
import cv2
import matplotlib.pyplot as plt
$matplotlib inline

2. We download and extract the dataset in the data/ subfolder:

>>> url = ('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"’
'family.zip?raw=true')
r = io0.BytesIO(requests.get (url) .content)
zipfile.ZipFile(r) .extractall('data')

3. We open the JPG image with OpenCV:
>>> img = cv2.imread('data/family.jpg"')

4. Then, we convert it to a grayscale image using OpenCV's cvtColor () function. For
face detection, it is sufficient and faster to use grayscale images.

>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
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5. To detect faces, we will use the Viola-Jones object detection framework. A cascade
of Haar-like classifiers has been trained on many images to detect faces (more details
are given in the next section). The result of the training is stored in an XML file that
is part of the archive that was downloaded in step 2. We load this cascade from this
XML file with OpenCV's CascadeClassifier class:

>>> path = 'data/haarcascade frontalface default.xml'

face cascade = cv2.CascadeClassifier (path)

6. Finally, the detectMultiScale () method of the classifier detects the objects on a
grayscale image and returns a list of rectangles around these objects:

>>> for x, y, w, h in face cascade.detectMultiScale (
gray, 1.3):
cv2.rectangle (
gray, (x, y), (x + w, y + h), (255, 0, 0), 2)
fig, ax = plt.subplots(l, 1, figsize=(8, 6))
ax.imshow (gray, cmap=plt.cm.gray)
ax.set_axis_off ()

We see that, although all detected objects are indeed faces, one face out of four is
not detected. This is probably due to the fact that this face is not perfectly facing the
camera, whereas the faces in the training set were. This shows that the efficacy of
this method is limited by the quality and generality of the training set.

The Viola-Jones object detection framework works by training a cascade of boosted classifiers
with Haar-like features. First, we consider a set of features:
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Haar-like features

D

A feature is positioned at a particular location and size in the image. It covers a small
window in the image (for example, 24 x 24 pixels). The sum of all pixels in the black area is
subtracted to the sum of the pixels in the white area. This operation can be done efficiently
with integral images.

Then, the set of all classifiers is trained with a boosting technique; only the best features are
kept for the next stage during training. The training set contains positive and negative images
(with and without faces). Although the classifiers yield poor performance individually, the
cascade of boosted classifiers is both efficient and fast. This method is therefore well-adapted
to real-time processing.

The XML file has been obtained in OpenCV's package. There are multiple files corresponding
to different training sets. You can also train your own cascade with your own training set.

Here are a few references:

» A cascade tutorial with OpenCV (C++) available at http://docs.opencv.org/
doc/tutorials/objdetect/cascade classifier/cascade classifier.
html

» Documentation to train a cascade, available at http://docs.opencv.org/doc/
user guide/ug traincascade.html

» Haar cascades library, available at https://github.com/Itseez/opencv/
tree/master/data/haarcascades
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» OpenCV's cascade classification API reference available at http://docs.opencv.
org/modules/objdetect/doc/cascade classification.html

» The Viola-Jones object detection framework on Wikipedia, available at https://
en.wikipedia.org/wiki/Viola%E2%80%93Jones object detection
framework

» Boosting, or how to create one strong classifier from many weak classifiers, explained
athttps://en.wikipedia.org/wiki/Boosting %28machine learning%29

Applying digital filters to speech sounds

In this recipe, we will show how to play sounds in the Notebook. We will also illustrate the
effect of simple digital filters on speech sounds.

Getting ready

You need the pydub package. You can install it with pip install pydub or download it
from https://github.com/jiaaro/pydub/.

This package requires the open source multimedia library FFmpeg for the decompression of
MP3 files, available at http://www. ffmpeg.org

How to do it

1. Let's import the packages:

>>> from io import BytesIO
import tempfile
import requests
import numpy as np
import scipy.signal as sg
import pydub
import matplotlib.pyplot as plt
from IPython.display import Audio, display
$matplotlib inline

2. We create a Python function that loads an MP3 sound and returns a NumPy array
with the raw sound data:

>>> def speak(data) :
# We convert the mp3 bytes to wav.
audio = pydub.AudioSegment.from mp3 (BytesIO(data))
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with tempfile.TemporaryFile() as fn:
wavef = audio.export (fn, format='wav')
wavef .seek (0)
wave = wavef.read()
# We get the raw data by removing the 24 first
# bytes of the header.
X = np.frombuffer (wave, np.intlé6) [24:] / 2.**15
return x, audio.frame rate

We create a function that plays a sound (represented by a NumPy vector) in the
Notebook, using IPython's Audio class:

>>> def play(x, fr, autoplay=False):
display (Audio(x, rate=fr, autoplay=autoplay))

Let's play a sound that had been obtained from http://www. fromtexttospeech.
com:

>>> url = ('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'voice.mp3?raw=true')
voice = requests.get (url) .content
>>> x, fr = speak(voice)
play(x, fr)
fig, ax = plt.subplots(l, 1, figsize=(8, 4))
t = np.linspace (0., len(x) / fr, len(x))
ax.plot(t, x, lw=1)

0.4

0.2

0.0

0.0
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5. Now, we will hear the effect of a Butterworth low-pass filter applied to this sound
(500 Hz cutoff frequency):

>>> b, a = sg.butter(4, 500. / (fr / 2.), 'low')
x _fil = sg.filtfilt (b, a, x)

>>> play(x fil, fr)
fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot (t, x, lw=1)
ax.plot (t, x fil, 1lw=1)

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

We hear a muffled voice.

6. Now, with a high-pass filter (1000 Hz cutoff frequency):

>>> b, a = sg.butter(4, 1000. / (fr / 2.), 'high')
x fil = sg.filtfilt (b, a, x)

>>> play(x fil, fr)
fig, ax = plt.subplots(l, 1, figsize=(6, 3))
ax.plot(t, x, lw=1)
ax.plot(t, x fil, 1lw=1)

It sounds like a phone call.
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7. Finally, we can create a simple widget to quickly test the effect of a high-pass filter
with an arbitrary cutoff frequency: we get a slider that lets us change the cutoff
frequency and hear the effect in real-time.

>>> from ipywidgets import widgets

@widgets.interact (t=(100., 5000., 100.))

def highpass(t) :
b, a = sg.butter(4, t / (fr / 2.), 'high')
x_fil = sg.filtfilt (b, a, x)
play(x fil, fr, autoplay=True)

t Q. 1700.00

Ry
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The human ear can hear frequencies up to 20 kHz. The human voice frequency band ranges
from approximately 300 Hz to 3,000 Hz.

Digital filters were described in Chapter 10, Signal Processing. The example given here allows
us to hear the effect of low- and high-pass filters on sounds.

There's more...

Here are a few references:
» Audio signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Audio signal processing

» Audio filters on Wikipedia, available at https://en.wikipedia.org/wiki/
Audio filter

» Voice frequency on Wikipedia, available at https://en.wikipedia.org/wiki/
Voice frequency

» PyAudio, an audio Python package that uses the PortAudio library, available at
http://people.csail.mit.edu/hubert/pyaudio/

See also

» The Creating a sound synthesizer in the Notebook recipe
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Creating a sound synthesizer in the

Notebook

In this recipe, we will create a small electronic piano in the Notebook. We will synthesize
sinusoidal sounds with NumPy instead of using recorded tones.

How to do it...

1.

408

We import the modules:

>>> import numpy as np
import matplotlib.pyplot as plt
from IPython.display import (
Audio, display, clear output)
from ipywidgets import widgets
from functools import partial
$matplotlib inline

We define the sampling rate and the duration of the notes:

>>> rate = 16000.
duration = .25
t = np.linspace(
0., duration, int(rate * duration))

We create a function that generates and plays the sound of a note (sine function) at a
given frequency, using NumPy and IPython's audio class:

>>> def synth(f) :
X = np.sin(f * 2. * np.pi * t)
display(Audio(x, rate=rate, autoplay=True))
Here is the fundamental 440 Hz note:
>>> synth (440)

» 000/000 —@ ) —O ¥

Now, we generate the note frequencies of our piano. The chromatic scale is obtained
by a geometric progression with the common ratio 21/12:
>>> notes = 'C,C#,D,D#,E,F,F#,G,G#,A,A#,B,C' .split(',")

freqgs = 440. * 2**(np.arange(3, 3 + len(notes)) / 12.)

notes = list (zip (notes, freqgs))
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6. Finally, we create the piano with the Notebook widgets. Each note is a button, and
all buttons are contained in a horizontal box container. Clicking on one note plays a
sound at the corresponding frequency.

>>> layout = widgets.Layout (
width="'30px', height='60px',
border="'1px solid black')

buttons = []
for note, f in notes:
button = widgets.Button (
description=note, layout=layout)

def on button clicked(f, b):
# When a button is clicked, we play the sound
# in a dedicated Output widget.
with widgets.Output () :
synth (f)

button.on click(partial (on_button clicked, £f))
buttons.append (button)

# We place all buttons horizontally.
widgets.Box (children=buttons)

» 000/000 —@ ) —0 ¥

A pure tone is a tone with a sinusoidal waveform. It is the simplest way of representing a
musical note. A note generated by a musical instrument is typically much more complex.
Although the sound contains many frequencies, we generally perceive a musical tone
(fundamental frequency).

By generating another periodic function instead of a sinusoidal waveform, we would hear the
same tone, but a different timbre. Electronic music synthesizers are based on this idea.
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There's more...

Here are a few references:
» Synthesizer on Wikipedia, available at https://en.wikipedia.org/wiki/
Synthesizer

» Equal temperament on Wikipedia, available at https://en.wikipedia.org/
wiki/Equal temperament

» Chromatic scale on Wikipedia, available at https://en.wikipedia.org/wiki/
Chromatic_scale

See also

» The Applying digital filters to speech sounds recipe
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Deterministic
Dynamical Systems

In this chapter, we will cover the following topics:

» Plotting the bifurcation diagram of a chaotic dynamical system
» Simulating an elementary cellular automaton
» Simulating an ordinary differential equation with SciPy

» Simulating a partial differential equation — reaction-diffusion systems
and Turing patterns

Introduction

The previous chapters dealt with classical approaches in data science: statistics, machine
learning, and signal processing. In this chapter and the next chapter, we will cover a different
type of approach. Instead of analyzing data directly, we will simulate mathematical models
that represent how our data was generated. A representative model gives us an explanation
of the real-world processes underlying our data.

Specifically, we will cover a few examples of dynamical systems. These mathematical
equations describe the evolution of quantities over time and space. They can represent a wide
variety of real-world phenomena in physics, chemistry, biology, economics, social sciences,
computer science, engineering, and other disciplines.

In this chapter, we will consider deterministic dynamical systems. This term is used in contrast
to stochastic systems, which incorporate randomness in their rules. We will cover stochastic
systems in the next chapter.



Deterministic Dynamical Systems

Types of dynamical systems

The types of deterministic dynamical systems we will consider here are:

» Discrete-time dynamical systems (iterated functions)
» Cellular automata

» Ordinary Differential Equations (ODEs)

» Partial Differential Equations (PDEs)

In these models, the quantities of interest depend on one or several independent variables.
Often, these variables include time and/or space. The independent variables can be
discrete or continuous, resulting in different types of models and different analysis

and simulation techniques.

A discrete-time dynamical system is described by the iterative application of a function on an
initial point: f(x), f(f(x)), f(f(f(x))), and so on. This type of system can lead to complex and
chaotic behaviors.

A cellular automaton is represented by a discrete grid of cells that can be in a finite number
of states. Rules describe how the state of a cell evolves according to the states of the
neighboring cells. These simple models can lead to highly sophisticated behaviors.

An ODE describes the dependence of a continuous function on its derivative with respect
to the independent variable. In differential equations, the unknown variable is a function
instead of a number. ODEs notably arise when the rate of change of a quantity depends on
the current value of this quantity. For example, in classical mechanics, the laws of motion
(including the movements of planets and satellites) can be described by ODEs.

PDEs are similar to ODEs, but they involve several independent variables (for example, time
and space). These equations contain partial derivatives of the function with respect to

the different independent variables. For example, PDEs describe the propagation of waves
(acoustic, electromagnetic, or mechanical waves) and fluids (fluid dynamics). They are also
important in quantum mechanics.

Differential equations

ODEs and PDEs can be one-dimensional or multidimensional, depending on the
dimensionality of the target space. Systems of multiple differential equations can
be seen as multidimensional equations.

The order of an ODE or a PDE refers to the maximal derivative order in the equation.
For example, a first-order equation only involves simple derivatives, a second-order equation
also involves second-order derivatives (the derivatives of the derivatives), and so on.
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Ordinary or partial differential equations come with additional rules: initial and boundary
conditions. These formulas describe the behavior of the sought functions on the spatial
and temporal domain boundaries. For example, in classical mechanics, boundary conditions
include the initial position and initial speed of a physical body subject to forces.

Dynamical systems are often classified between linear and nonlinear systems, depending
on whether the rules are linear or not (with respect to the unknown function). Nonlinear
equations are typically much harder to study mathematically and numerically than linear
equations. They can lead to extremely complex behaviors.

For example, the Navier-Stokes equations, a set of nonlinear PDEs that describe the motion
of fluid substances, can lead to turbulence, a highly chaotic behavior seen in many fluid
flows. Despite their high importance in meteorology, medicine, and engineering, fundamental
properties of the Navier-Stokes equations remain unknown at this time. For example, the
existence and smoothness problem in three dimensions is one of the seven Clay Mathematics
Institute's Millennium Prize Problems. One million dollars is offered to anyone who comes up
with a solution.

Here are a few references:
» Overview of dynamical systems on Wikipedia, available at https://
en.wikipedia.org/wiki/Dynamical system

» Mathematical definition of dynamical systems available at https://
en.wikipedia.org/wiki/Dynamical system %28definition%29

» List of dynamical systems topics available at https://en.wikipedia.org/wiki/
List of dynamical systems_and differential equations_ topics

» Navier-Stokes equations on Wikipedia, available at https://en.wikipedia.org/
wiki/Navier%$E2%80%93Stokes equations

» A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the
Jupyter Notebook, available at https://github.com/barbagroup/CFDPython

» Pynamical, a Python package for modeling and visualizing discrete dynamical
systems, available at https://pynamical .readthedocs.io/en/latest/

Plotting the bifurcation diagram of a chaotic

dynamical system

A chaotic dynamical system is highly sensitive to initial conditions; small perturbations at any
given time yield completely different trajectories. The trajectories of a chaotic system tend to
have complex and unpredictable behaviors.



https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system_%28definition%29
https://en.wikipedia.org/wiki/Dynamical_system_%28definition%29
https://en.wikipedia.org/wiki/List_of_dynamical_systems_and_differential_equations_topics
https://en.wikipedia.org/wiki/List_of_dynamical_systems_and_differential_equations_topics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://github.com/barbagroup/CFDPython
https://pynamical.readthedocs.io/en/latest/

Deterministic Dynamical Systems

Many real-world phenomena are chaotic, particularly those that involve nonlinear interactions
among many agents (complex systems). Examples can be found in meteorology, economics,
biology, and other disciplines.

In this recipe, we will simulate a famous chaotic system: the logistic map. This is an
archetypal example of how chaos can arise from a very simple nonlinear equation. The
logistic map models the evolution of a population, taking into account both reproduction
and density-dependent mortality (starvation).

We will draw the system's bifurcation diagram, which shows the possible long-term behaviors
(equilibria, fixed points, periodic orbits, and chaotic trajectories) as a function of the system's
parameter. We will also compute an approximation of the system's Lyapunov exponent,
characterizing the model's sensitivity to initial conditions.

How to do it...

1. Let's import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

2. We define the logistic function by:
fr(x) =rz(l —x)

Here is the implementation of this function in Python:

>>> def logistic(r, x):
return r * x * (1 - X)
3. Here is a graphic representation of this function

>>> X = np.linspace (0, 1)
fig, ax = plt.subplots(1l, 1)
ax.plot(x, logistic(2, x), 'k')
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Our discrete dynamical system is defined by the recursive application of the
logistic function:

20 = fr@D) = reD (1 - 2()

n

Let's simulate a few iterations of this system with two different values of r:

>>> def plot system(r, x0, n, ax=None) :
# Plot the function and the
# y=x diagonal line.
t = np.linspace(0, 1)
ax.plot(t, logistic(r, t), 'k', 1lw=2)
ax.plot ([0, 11, [0, 11, 'k', 1lw=2)

Recursively apply y=f (x) and plot two lines:

#
# (x, x) -> (x, Y)
# (x, y) -> (y, v)
x = x0
for i in range(n):
y = logistic(r, x)
# Plot the two lines.
ax.plot([x, x], [x, yvl, 'k', 1lw=1)
ax.plot ([x, yl, [y, yl, 'k', lw=1)
# Plot the positions with increasing
# opacity.
ax.plot([x], [y], 'ok', ms=10,
alpha=(i + 1) / n)
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ax.set xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_title(f"$r={r:.1£}, \, x 0={x0:.1£}%")

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(12, 6),
sharey=True)

plot system(2.5, .1, 10, ax=axl)

plot system(3.5, .1, 10, ax=ax2)

0@ r=2.5, x;=0.1 r=3.5,x=0.1

0.8

0.6

0.4

990 02 0.4 06 0.8 1.0 0.0 0.2 0.4 06 08 1.0

On the left panel, we can see that our system converges to the intersection point
of the curve and the diagonal line (fixed point). On the right panel, however, using a
different value for r, we observe a seemingly chaotic behavior of the system.

5. Now, we simulate this system for 10000 values of r linearly spaced between 2.5 and
4, and vectorize the simulation with NumPy by considering a vector of independent
systems (one dynamical system per parameter value):

>>> n = 10000
r = np.linspace(2.5, 4.0, n)
6. We use 1000 iterations of the logistic map and keep the last 100 iterations to display
the bifurcation diagram:
>>> iterations = 1000
last = 100
7.  We initialize our system with the same initial condition zg = 0.00001:

>>> x = le-5 * np.ones(n)
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We also compute an approximation of the Lyapunov exponent for every value of r.
The Lyapunov exponent is defined by:

n—1
A= Jim 3o 51 (+7)
0

We first initialize the Lyapunov vector:
>>> lyapunov = np.zeros (n)

Now, we simulate the system and plot the bifurcation diagram. The simulation only
involves the iterative evaluation of the logistic () function on our vector x. Then,
to display the bifurcation diagram, we draw one pixel per point .r£:> during the last
100 iterations:

>>> fig, (axl, ax2) = plt.subplots(2, 1, figsize=(8, 9),
sharex=True)

for i in range(iterations) :

x = logistic(r, x)

# We compute the partial sum of the

# Lyapunov exponent.

lyapunov += np.logf(abs(r - 2 * r * x))

# We display the bifurcation diagram.

if 1 >= (iterations - last):

axl.plot(r, x, ',k', alpha=.25)

axl.set_x1im(2.5, 4)
axl.set_title("Bifurcation diagram")

# We display the Lyapunov exponent.

# Horizontal line.

ax2.axhline (0, color='k', lw=.5, alpha=.5)

# Negative Lyapunov exponent.

ax2.plot (r[lyapunov < 0],
lyapunov [lyapunov < 0] / iterations,
'.k', alpha=.5, ms=.5)

# Positive Lyapunov exponent.

ax2.plot (r[lyapunov >= 0],
lyapunov [lyapunov >= 0] / iterations,
'.r', alpha=.5, ms=.5)

ax2.set_x1im(2.5, 4)
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ax2.set_ylim(-2, 1)
ax2.set title("Lyapunov exponent")
plt.tight layout ()
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The bifurcation diagram brings out the existence of a fixed point for r < 3, then two and four
equilibria, and a chaotic behavior when r belongs to certain areas of the parameter space.

We observe an important property of the Lyapunov exponent: it is positive when the system is
chaotic (in red as shown in the preceding diagram).

Here are some references:
» Chaos theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Chaos_theory

» Complex systems on Wikipedia, available at https://en.wikipedia.org/wiki/
Complex system

» The logistic map on Wikipedia, available at https://en.wikipedia.org/wiki/
Logistic_map

» Iterated functions (discrete dynamical systems) on Wikipedia, available at https://
en.wikipedia.org/wiki/Iterated function

» Bifurcation diagrams on Wikipedia, available at https://en.wikipedia.org/
wiki/Bifurcation diagram
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» Lyapunov exponent on Wikipedia, available at https://en.wikipedia.org/
wiki/Lyapunov_exponent

» The Simulating an ordinary differential equation with SciPy recipe

Simulating an elementary cellular
automaton

Cellular automata are discrete dynamical systems evolving on a grid of cells. These cells can
be in a finite number of states (for example, on/off). The evolution of a cellular automaton is
governed by a set of rules, describing how the state of a cell changes according to the state of
its neighbors.

Although extremely simple, these models can initiate highly complex and chaotic behaviors.
Cellular automata can model real-world phenomena such as car traffic, chemical reactions,
propagation of fire in a forest, epidemic propagations, and much more. Cellular automata are
also found in nature. For example, the patterns of some seashells are generated by natural
cellular automata.

e
P
AL

By Richard Ling (wikipedia@rling. com)- Own work; Location: Cod Hole, Great Barrier Reef, Australia, CC
BY-SA3.0, https://commons.wikimedia.org/w/index.php?curid=293495

An elementary cellular automaton is a binary, one-dimensional automaton, where the rules
concern the immediate left and right neighbors of every cell.

In this recipe, we will simulate elementary cellular automata with NumPy using their
Wolfram code.
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How to do it...

1.
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We import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

We will use the following vector to obtain numbers written in binary representation:
>>> u = np.array([[4], [2], [11])

Let's write a function that performs an iteration on the grid, updating all cells at

once according to the given rule in binary representation (we will give all explanations
in the How it works... section of this recipe). The first step consists of stacking
circularly-shifted versions of the grid to get the LCR (left, center, right) triplets

of each cell (y). Then, we convert these triplets into 3-bit numbers (z). Finally,

we compute the next state of every cell using the specified rule:

>>> def step(x, rule b):
""rCompute a single stet of an elementary cellular
automaton."""
# The columns contains the L, C, R values
# of all cells.
y = np.vstack((np.roll(x, 1), x,
np.roll(x, -1))).astype(np.int8)
# We get the LCR pattern numbers between 0 and 7.
z = np.sum(y * u, axis=0) .astype (np.int8)
# We get the patterns given by the rule.
return rule b[7 - z]

We now write a function that simulates any elementary cellular automaton. First, we
compute the binary representation of the rule (Wolfram Code). Then, we initialize
the first row of the grid with random values. Finally, we apply the function step ()
iteratively on the grid:

>>> def generate(rule, size=100, steps=100):

""rgimulate an elementary cellular automaton given

its rule (number between 0 and 255)."""

# Compute the binary representation of the rule.

rule b = np.array(
[int( ) for _ in np.binary repr(rule, 8)1],
dtype=np.int8)

X = np.zeros((steps, size), dtype=np.int8)

# Random initial state.

x[0, :] = np.random.rand(size) < .5

# Apply the step function iteratively.
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for i in range(steps - 1):
x[i + 1, :1 = step(x[i, :]1, rule b)
return x

5. Now, we simulate and display nine different automata:

>>> fig, axes = plt.subplots(3, 3, figsize=(8, 8))
rules = [3, 18, 30,
90, 106, 110,
158, 154, 184]
for ax, rule in zip(axes.flat, rules):
X = generate (rule)
ax.imshow(x, interpolation='none',
cmap=plt.cm.binary)
ax.set axis off ()
ax.set title(str(rule))

Let's consider an elementary cellular automaton in one dimension. Every cell C' has two
neighbors (L and R), and it can be either off (O) or on (1). Therefore, the future state of a
cell depends on the current state of L, C, and R. This triplet can be encoded as a number
between 0 and 7 (three digits in binary representation).

A particular elementary cellular automaton is entirely determined by the outcome of each of
these eight configurations. Therefore, there are 256 different elementary cellular automata
(28). Each of these automata is identified by a number between 0 and 255.
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We consider all eight LCR states in order: 111, 110, 101, ..., 001, 000. Each of the eight digits
in the binary representation of the automaton's number corresponds to a LCR state (using the
same order). For example, in the Rule 110 automaton (01101110 in binary representation),
the state 111 yields a new state of O for the center cell, 110 yields 1, 101 yields 1, and so

on. It has been shown that this particular automaton is Turing complete (or universal); it can
theoretically simulate any computer program.

There's more...

Other types of cellular automata include Conway's Game of Life, in two dimensions.
This famous system yields various dynamic patterns. It is also Turing complete.

Here are a few references:
» Cellular automata on Wikipedia, available at https://en.wikipedia.org/wiki/
Cellular automaton

» Elementary cellular automata on Wikipedia, available at https://en.wikipedia.
org/wiki/Elementary cellular automaton

» Rule 110, described at https://en.wikipedia.org/wiki/Rule 110

» The Wolfram code, explained at https://en.wikipedia.org/wiki/Wolfram
code, assigns a 1D elementary cellular automaton to any number between 0 and
255

» Conway's Game of Life on Wikipedia, available at https://en.wikipedia.org/
wiki/Conway's Game of Life

» A computer implemented in Conway's Game of Life, at https://codegolf.
stackexchange.com/questions/11880/build-a-working-game-of-
tetris-in-conways-game-of-1life

Simulating an ordinary differential equation

with SciPy

Ordinary Differential Equations (ODEs) describe the evolution of a system subject to
internal and external dynamics. Specifically, an ODE links a quantity depending on a single
independent variable (time, for example) to its derivatives. In addition, the system can be
under the influence of external factors. A first-order ODE can typically be written as:

y'(t) = ft,y(t))
More generally, an n-th order ODE involves successive derivatives of y until the order n.

The ODE is said to be linear or nonlinear depending on whether f is linear in y or not.
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ODEs naturally appear when the rate of change of a quantity depends on its value. Therefore,
ODEs are found in many scientific disciplines such as mechanics (evolution of a body subject
to dynamic forces), chemistry (concentration of reacting products), biology (spread of an
epidemic), ecology (growth of a population), economics, and finance, among others.

Whereas simple ODEs can be solved analytically, many ODEs require a numerical treatment.
In this recipe, we will simulate a simple linear second-order autonomous ODE, describing
the evolution of a particle in the air subject to gravity and viscous resistance. Although this
equation could be solved analytically, here we will use SciPy to simulate it numerically.

How to do it...

1. Let's import NumPy, SciPy (the integrate package), and Matplotlib:

>>> import numpy as np
import scipy.integrate as spi
import matplotlib.pyplot as plt
$matplotlib inline

2. We define a few parameters appearing in our model:

>>>m = 1. # particle's mass
k = 1. # drag coefficient
g 9.81 # gravity acceleration

3. We have two variables: z and y (two dimensions). We note u = (z, y). The ODE that
we are going to simulate is:

4

ko
=——u +g
m

Here, g is the gravity acceleration vector.

In order to simulate this second-order ODE with SciPy, we can convert it to a first-
order ODE (another option would be to solve v’ first before integrating the solution).
To do this, we consider two 2D variables: v and «’. We note v = (u, u’). We can
express v’ as a function of v. Now, we create the initial vector v at time ¢ = 0: it has
four components.

>>> # The initial position is (0, 0).
v0 = np.zeros(4)
# The initial speed vector is oriented
# to the top right.
v0[2]
v0 [3]

10.
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4. Let's create a Python function f that takes the current vector v(¢9) and a time to as
arguments (with optional parameters) and that returns the derivative v’ (to):

>>> def f(v, t0, k):
# v has four components: v=[u, u'l].
u, udot = v[:2], vI[2:]
# We compute the second derivative u'' of u.
udotdot = -k / m * udot
udotdot [1] -= g
# We return v'=[u', u''l.
return np.r_ [udot, udotdot]

5. Now, we simulate the system for different values of k. We use the SciPy odeint ()
function, defined in the scipy. integrate package.

Starting with SciPy 1.0, the generic scipy.integrate.

solve_ivp () function can be used instead of the old

function odeint ()
>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))

# We want to evaluate the system on 30 linearly
# spaced times between t=0 and t=3.
t = np.linspace(0., 3., 30)

# We simulate the system for different values of k.
for k in np.linspace(0., 1., 5):
# We simulate the system and evaluate $v$ on the
# given times.
v = spi.odeint(f, vO0, t, args=(k,))

# We plot the particle's trajectory.
ax.plot(v[:, 0], v[:, 1], 'o-', mew=l, ms=8,
mec='w', label=f'k={k:.1f}")

ax.legend()
ax.set xlim(0, 12)
ax.set_ylim(0, 6)
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In the preceding figure, the most outward trajectory (blue) corresponds to drag-free motion
(without air resistance). It is a parabola. In the other trajectories, we can observe the
increasing effect of air resistance, parameterized with k.

Let's explain how we obtained the differential equation from our model. Let u = (z, y) encode
the 2D position of our particle with mass m. This particle is subject to two forces: gravity

mg = (0,—9.81 - m)and air drag F' = —k«/. This last term depends on the particle's

speed and is only valid at low speed. With higher speeds, we need to use more complex
nonlinear expressions.

Now, we use Newton's second law of motion in classical mechanics. This law states that, in
an inertial reference frame, the mass multiplied by the acceleration of the particle is equal to
the sum of all forces applied to that particle. Here, we obtain:

m-u’" = F+mg
We immediately obtain our second-order ODE:
u” = fﬁu' +g
m
We transform it into a single-order system of ODEs, with v = (u, u/):

k
,——u' +g)
m

The last term can be expressed as a function of v only.
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The SciPy odeint () function is a black-box solver; we simply specify the function that
describes the system, and SciPy solves it automatically. This function leverages the Fortran
library ODEPACK, which contains well-tested code that has been used for decades by many
scientists and engineers.

The newer solve ivb () function offers a common API for Python implementations of
various ODE solvers.

An example of a simple numerical solver is the Euler method. To numerically solve the
autonomous ODE ¥’ = f(y), the method consists of discretizing time with a time step dt and
replacing 3’ with a first-order approximation:

1oy o Y+ dt) —y(t)
y) = =

Then, starting from an initial condition yo = y(%o), the method evaluates y successively with
the following recurrence relation:

Yn+1 = Yn + dt - f(yn) with t=n-dt, y,=y(n-dt)

There's more...

Here are a few references:

» The documentation of the integrate package in SciPy available at http://docs.
scipy.org/doc/scipy/reference/integrate.html

» The new solve ivp () function, available in SciPy 1.0 and later, at https://
docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
solve_ivp.html

» ODEs on Wikipedia, available at https://en.wikipedia.org/wiki/Ordinary
differential equation

» ODEs lectures on Awesome Math, at https://github.com/rossant/awesome-
math/#ordinary-differential-equations

» Newton's laws of motion on Wikipedia, available at https://en.wikipedia.org/
wiki/Newton's laws of motion

» Air resistance on Wikipedia, available at https://en.wikipedia.org/wiki/
Drag_%28physics%29

» Some numerical methods for ODEs described at https://en.wikipedia.org/
wiki/Numerical methods for ordinary differential equations

» The Euler method on Wikipedia, available at https://en.wikipedia.org/wiki/
Euler method
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» Documentation of the ODEPACK package in Fortran available at http://www.
netlib.org/odepack/opks-sum

» The Plotting the bifurcation diagram of a chaotic dynamical system recipe

Simulating a partial differential equation

— reaction-diffusion systems and Turing
patterns

Partial Differential Equations (PDEs) describe the evolution of dynamical systems involving
both time and space. Examples in physics include sound, heat, electromagnetism, fluid flow,
and elasticity, among others. Examples in biology include tumor growth, population dynamics,
and epidemic propagations.

PDEs are hard to solve analytically. Therefore, PDEs are often studied via numerical
simulations.

In this recipe, we will illustrate how to simulate a reaction-diffusion system described by a
PDE called the FitzHugh-Nagumo equation. A reaction-diffusion system models the evolution
of one or several variables subject to two processes: reaction (transformation of the variables
into each other) and diffusion (spreading across a spatial region). Some chemical reactions
can be described by this type of model, but there are other applications in physics, biology,
ecology, and other disciplines.

Here, we simulate a system that has been proposed by Alan Turing as a model of animal coat
pattern formation. Two chemical substances influencing skin pigmentation interact according
to a reaction-diffusion model. This system is responsible for the formation of patterns that are
reminiscent of the pelage of zebras, jaguars, and giraffes.

We will simulate this system with the finite difference method. This method consists of
discretizing time and space and replacing the derivatives with their discrete equivalents.

How to do it...

1. Let's import the packages:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline
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We will simulate the following system of partial differential equations on the domain
E=[-1,1%

0
a—?zaAu—!—u—ug—v—Fk
T%%zszm—%u—fv

The variable u represents the concentration of a substance favoring skin
pigmentation, whereas v represents another substance that reacts with the
first and impedes pigmentation.

At initialization time, we assume that u and v contain independent random numbers
on every grid point. We also take Neumann boundary conditions: we require the
spatial derivatives of the variables with respect to the normal vectors to be null on
the domain's boundaries.

Let's define the four parameters of the model:

>>> a = 2.8e-4
b = 5e-3
tau = .1
k = -.005

We discretize time and space. The time step dt must be small enough to ensure the
stability of the numerical simulation:

>>> size = 100 # size of the 2D grid
dx = 2. / size # space step
>>> T = 9.0 # total time
dt = .001 # time step
n = int(T / dt) # number of iterations

We initialize the variables u and v. The matrices U and V contain the values of these
variables on the vertices of the 2D grid. These variables are initialized with a uniform

noise between O and 1:

>>> U =
vV =

np.random.rand (size, size)

np.random.rand (size, size)

Now, we define a function that computes the discrete Laplace operator of a 2D
variable on the grid, using a five-point stencil finite difference method. This operator
is defined by:

u(z+h,y) +ulz —hy) +ulz,y+h) +uy—h) —du(z,y)
da?

Au(z,y) ~
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We can compute the values of this operator on the grid using vectorized matrix
operations. Because of side effects on the edges of the matrix, we need to remove
the borders of the grid in the computation:

>>> def laplacian(Z):
Ztop = Z[0:-2, 1:-1]
Zleft = Z[1:-1, 0:-2]
Zbottom = Z[2:, 1:-1]
Zright = Z[1:-1, 2:]
Zcenter = Z[1:-1, 1:-1]
return (Ztop + Zleft + Zbottom + Zright -
4 * Zcenter) / dx**2

We define a function that displays the matrix:

>>> def show_patterns (U, ax=None) :
ax.imshow (U, cmap=plt.cm.copper,
interpolation='bilinear’',
extent=[-1, 1, -1, 1])
ax.set_axis_off ()

Now, we simulate the system of equations using the finite difference method.

At each time step, we compute the right-hand sides of the two equations on the
grid using discrete spatial derivatives (Laplacians). Then, we update the variables
using a discrete time derivative. We also show the evolution of the system at

9 different steps:

>>> fig, axes = plt.subplots (3, 3, figsize=(8, 8))
step plot =n // 9
# We simulate the PDE with the finite difference
# method.
for i in range(n):
# We compute the Laplacian of u and v.
deltaU = laplacian (U)
deltaV = laplacian (V)
# We take the wvalues of u and v inside the grid.
Uc = U[1:-1, 1:-1]
Ve = V[1:-1, 1:-1]
# We update the variables.
Ufi:-1, 1:-1]1, VvI[1:-1, 1:-1] =\
Uc + dt * (a * deltaU + Uc - Uc**3 - Vc + k), \
Ve + dt * (b * deltaVv + Uc - Vc) / tau
# Neumann conditions: derivatives at the edges
# are null.
for z in (U, V):
zZ[0, :1 = Z2[1, :]
Z[-1, :1 = Z[-2, :]
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Z[:, 0] = 2Z2[:, 1]
Zl:, -11 = Z2[:, -21]

# We plot the state of the system at

# 9 different times.

if 1 % step plot == 0 and i < 9 * step plot:
ax = axes.flat[i // step plot]
show patterns (U, ax=ax)

ax.set_title(f'st={i * dt:.2£f}s$")

9. Finally, we show the state of the system at the end of the simulation:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
show _patterns (U, ax=ax)

Whereas the variables were completely random at initialization time, we observe the
formation of patterns after a sufficiently long simulation time.

430



Chapter 12

Let's explain how the finite difference method allowed us to implement the update step.
We start from the following system of equations:

ou

ot
ov
Tg(t; r,y) = bAv(t;2,y) +ult;z,y) — v(t;z,y)

(t;z,y) = aAu(t;z,y) + ut; 2, y) —ult; 2, y)* —v(t;z,y) + k

We first use the following scheme for the discrete Laplace operator:

u(z + h,y) +ulx — h,y) +u(z,y +h) +u(z,y — h) — du(z,y)
dx?

Au(z,y) ~

We also use this scheme for the time derivative of u and v:

u(t +dt;z,y) — ult;z,y)
dt

du

ot

(t;x,y) ~

We end up with the following iterative update step:
u(t + dt; x,y) = ut; 2, y) + dt (alu(t; z,y) + u(t; 2,y) — u(t; 2,9)° —o(t;2,9) + k)
o+ dtn,y) = vltsa,y) + O (08wt y) s z,y) — olts,0)
Here, our Neumann boundary conditions state that the spatial derivatives with respect to the
normal vectors are null on the boundaries of the domain E:
Vw € {u,v}, V¥t >0, Yo,y € OF :

ow ow
= 1,y =

8ac(’ ') 5

ow

Jy

_ow

tix,—1
( ,IIZ, ) ay

(t;x2,1) =0

We implement these boundary conditions by duplicating values in matrices U and V' on the
edges (see the preceding code).

Here are further references on partial differential equations, reaction-diffusion systems,
and numerical simulations of those systems:

» Partial differential equations on Wikipedia, available at https://en.wikipedia.
org/wiki/Partial differential equation



https://en.wikipedia.org/wiki/Partial_differential_equation 
https://en.wikipedia.org/wiki/Partial_differential_equation 
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Partial differential equations lectures on Awesome Math, at https://github.
com/rossant/awesome-math/#partial-differential-equations

Reaction-diffusion systems on Wikipedia, available at https://en.wikipedia.
org/wiki/Reaction%E2%80%93diffusion system

FitzHugh-Nagumo system on Wikipedia, available at https://en.wikipedia.
org/wiki/FitzHugh%E2%80%93Nagumo_equation

Neumann boundary conditions on Wikipedia, available at https://
en.wikipedia.org/wiki/Neumann boundary condition

A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the
Jupyter Notebook, available at https://github.com/barbagroup/CFDPython
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Stochastic Dynamical
Systems

In this chapter, we will cover the following topics:

» Simulating a discrete-time Markov chain
» Simulating a Poisson process
» Simulating a Brownian motion

» Simulating a stochastic differential equation

Introduction

Stochastic dynamical systems are dynamical systems subjected to the effect of noise. The
randomness brought by the noise takes into account the variability observed in real-world
phenomena. For example, the evolution of a share price typically exhibits long-term behaviors
along with faster, smaller-amplitude oscillations, reflecting day-to-day or hour-to-hour
variations.

Applications of stochastic systems to data science include methods for statistical
inference (such as Markov chain Monte Carlo) and stochastic modeling for time
series or geospatial data.

Stochastic discrete-time systems include discrete-time Markov chains. The Markov property
means that the state of a system at time n + 1 only depends on its state at time n. Stochastic
cellular automata, which are stochastic extensions of cellular automata, are particular
Markov chains.
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As far as continuous-time systems are concerned, Ordinary Differential Equations with noise
yield Stochastic Differential Equations (SDEs). Partial Differential Equations with noise yield
Stochastic Partial Differential Equations (SPDEs).

Point processes are another type of stochastic process. These processes model the random
occurrence of instantaneous events over time (arrival of customers in a queue or action
potentials in the nervous system) or space (locations of trees in a forest, cities in a territory,
or stars in the sky).

Mathematically, the theory of stochastic dynamical systems is based on probability theory
and measure theory. The study of continuous-time stochastic systems builds upon stochastic
calculus, an extension of infinitesimal calculus (including derivatives and integrals) to
stochastic processes.

In this chapter, we will see how to simulate different kinds of stochastic systems with Python.

References

Here are a few references on the subject:
» An overview of stochastic dynamical systems, available at http://www.
scholarpedia.org/article/Stochastic _dynamical systems

» The Markov property on Wikipedia, available at https://en.wikipedia.org/
wiki/Markov property

» Stochastic processes on awesome Math, at https://github.com/rossant/
awesome-math/#stochastic-processes

Simulating a discrete-time Markov chain

Discrete-time Markov chains are stochastic processes that undergo transitions from one
state to another in a state space. Transitions occur at every time step. Markov chains are
characterized by their lack of memory in that the probability to undergo a transition from the
current state to the next depends only on the current state, not the previous ones. These
models are widely used in scientific and engineering applications.

Continuous-time Markov processes also exist and we will cover particular instances later in
this chapter.
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Markov chains are relatively easy to study mathematically and to simulate numerically. In this
recipe, we will simulate a simple Markov chain modeling the evolution of a population.

How to do it...

1. Let's import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

2. We consider a population that cannot comprise more than N = 100 individuals, and
define the birth and death rates:

>>> N = 100 # maximum population size
a = .5/ N # birth rate
b = .5/ N # death rate

3. We simulate a Markov chain on the finite space 0, 1, ..., N. Each state represents a
population size. The x vector will contain the population size at each time step. We
set the initial state to x¢p = 25 (that is, there are 25 individuals in the population at
initialization time):
>>> nsteps = 1000

X = np.zeros (nsteps)
x[0] = 25

4. Now we simulate our chain. At each time step ¢, there is a new birth with probability
azxyt, and independently, there is a new death with probability bz,. These probabilities
are proportional to the size of the population at that time. If the population size
reaches 0 or N, the evolution stops:

>>> for t in range(nsteps - 1):

if 0 < x[t] < N - 1:

# Is there a birth?

birth = np.random.rand() <= a * x[t]

# Is there a death?

death = np.random.rand() <= b * x[t]

# We update the population size.

x[t + 1] = x[t] + 1 * birth - 1 * death
# The evolution stops if we reach $0$ or $NS.
else:

x[t + 1] = x[t]
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Let's look at the evolution of the population size:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot (x, lw=2)
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We see that, at every time step, the population size can stay stable, increase,
or decrease by 1.

Now, we will simulate many independent trials of this Markov chain. We could run
the previous simulation with a loop, but it would be very slow (two nested for
loops). Instead, we vectorize the simulation by considering all independent trials

at once. There is a single loop over time. At every time step, we update all trials
simultaneously with vectorized operations on vectors. The x vector now contains the
population size of all trials, at a particular time. At initialization time, the population
sizes are set to random numbers between O and N:

>>> ntrials = 100
X = np.random.randint (size=ntrials,
low=0, high=N)

We define a function that performs the simulation. At every time step, we find the
trials that undergo births and deaths by generating random vectors, and we update
the population sizes with vector operations:

>>> def simulate(x, nsteps):
""r"Run the simulation."""

for in range(nsteps - 1):
# Which trials to update?
upd = (0 < x) & (x < N - 1)

# In which trials do births occur?

birth = 1 * (np.random.rand(ntrials) <= a * x)
# In which trials do deaths occur?

death = 1 * (np.random.rand(ntrials) <= b * x)
# We update the population size for all trials
x [upd] += birth[upd] - death[upd]
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8. Now, let's look at the histograms of the population size at different times. These
histograms represent the probability distribution of the Markov chain, estimated
with independent trials (the Monte Carlo method):

>>> bins = np.linspace (0, N, 25)
>>> nsteps_list = [10, 1000, 10000]
fig, axes = plt.subplots(l, len(nsteps_list),
figsize=(12, 3),
sharey=True)
for i, nsteps in enumerate (nsteps list):
ax = axes[i]
simulate (x, nsteps)
ax.hist (x, bins=bins)
ax.set xlabel ("Population size")
if 1 ==
ax.set _ylabel ("Histogram")
ax.set_title(f"{nsteps} time steps")
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Whereas, initially, the population sizes look uniformly distributed between 0 and

N, they appear to converge to O or N after a sufficiently long time. This is because
the states 0 and N are absorbing; once reached, the chain cannot leave these states.
Furthermore, these states can be reached from any other state.

Mathematically, a discrete-time Markov chain on a space F is a sequence of random
variables X1, X5, ... that satisfy the Markov property:

VTLZL P(XnJrl |X1,X2,...,Xn):P(Xn+1 |Xn)

A (stationary) Markov chain is characterized by the probability of transitions P(X; | X;). These
values form a matrix called the transition matrix. This matrix is the adjacency matrix of a
directed graph called the state diagram. Every node is a state, and the node i is connected to
the node J if the chain has a non-zero probability of transition between these nodes.
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There's more...

Simulating a single Markov chain in Python is not particularly efficient because we need a for
loop. However, simulating many independent chains following the same process can be made
efficient with vectorization and parallelization (all tasks are independent, thus the problem is
embarrassingly parallel). This is useful when we are interested in statistical properties of the
chain (example of the Monte Carlo method).

There is vast literature on Markov chains. Many theoretical results can be established with
linear algebra and probability theory.

Many generalizations of discrete-time Markov chains exist. Markov chains can be defined on
infinite state spaces, or with a continuous time. Also, the Markov property is importantin a
broad class of stochastic processes.

Here are a few references:
» Markov chains on Wikipedia, available at https://en.wikipedia.org/wiki/
Markov_ chain

» Absorbing Markov chains on Wikipedia, available at https://en.wikipedia.
org/wiki/Absorbing Markov chain

» Monte Carlo methods on Wikipedia, available at https://en.wikipedia.org/
wiki/Monte Carlo method

See also

» The Simulating a Brownian motion recipe

Simulating a Poisson process

A Poisson process is a particular type of point process, a stochastic model that represents
random occurrences of instantaneous events. Roughly speaking, the Poisson process is the
least structured, or the most random, point process.

The Poisson process is a particular continuous-time Markov process.

Point processes, and notably Poisson processes, can model random instantaneous
events such as the arrival of clients in a queue or on a server, telephone calls, radioactive
disintegrations, action potentials of nerve cells, and many other phenomena.

In this recipe, we will show different methods to simulate a homogeneous stationary
Poisson process.
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How to do it...

1.

Let's import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

Let's specify the rate value, that is, the average number of events per second:

>>> rate = 20. # average number of events per second

First, we will simulate the process using small time bins of 1 millisecond:

>>> dt = .001 # time step
n = int (1. / dt) # number of time steps

On every time bin, the probability that an event occurs is about rate * dt if dt is
small enough. Besides, as the Poisson process has no memory, the occurrence of

an event is independent from one bin to another. Therefore, we can sample Bernoulli
random variables (either 1 or O, respectively representing an experiment's success or
failure) in a vectorized way in order to simulate our process:

>>> X = np.zeros(n)
X [np.random.rand (n) <= rate * dt] =1

The x vector contains zeros and ones on all time bins, 1 corresponding to the
occurrence of an event:

>>> x[:10]
array ([ 1., 0., ey 0., 0.])
Let's display the simulated process. We draw a vertical line for each event:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 2))
ax.vlines (np.nonzero(x) [0], 0, 1)
ax.set axis off ()
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6.
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Another way of representing that same object is by considering the associated
counting process N (¢),which is the number of events that have occurred until time ¢.
Here, we can display this process using the cumsum () function:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 4))
ax.plot (np.linspace(0., 1., n),
np.cumsum(x) , lw=2)
ax.set xlabel ("Time")
ax.set_ylabel ("Counting process")
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The other (and more efficient) way of simulating the homogeneous Poisson process

is to use the property that the time intervals between two successive events follow an
exponential distribution. Furthermore, these intervals are independent. Thus, we can
sample them in a vectorized way. Finally, we get our process by cumulatively summing
all of these intervals:

>>> y = np.cumsum(np.random.exponential (1. / rate,

size=1int (rate)))

The y vector contains another realization of our Poisson process, but the data
structure is different. Every component of the vector is an event time:

>>> y[:10]
array ([ 0.021, 0.072, 0.087, 0.189, 0.224,
0.365, 0.382, 0.392, 0.458, 0.489])

Finally, let's display the simulated process:

>>> fig, ax = plt.subplots(1l, 1,

ax.vlines(y, 0, 1)

figsize=(8, 3))

ax.set axis off ()
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For a Poisson process with rate A, the number of events in a time window of length 7 follows a
Poisson distribution:

Vk>0, P[N(t+7)—N(t) =k = e—”(%)k

When 7 = dt is small, we can show that, at first order, this probability is about M.

Also, the holding times (delays between two consecutive events) are independent and follow
an exponential distribution. The Poisson process satisfies other useful properties, such as the
independent and stationary increments. This property justifies the first simulation method
used in this recipe.

In this recipe, we only considered homogeneous time-dependent Poisson processes. Other
types of Poisson processes include inhomogeneous (or non-homogeneous) processes that
are characterized by a time-varying rate, and multidimensional spatial Poisson processes.

Here are further references:
» The Poisson process on Wikipedia, available at https://en.wikipedia.org/
wiki/Poisson process

» Point processes on Wikipedia, available at https://en.wikipedia.org/wiki/
Point_process

» Renewal theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Renewal_ theory

» Spatial Poisson processes on Wikipedia, available at https://en.wikipedia.
org/wiki/Spatial Poisson_process
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See also

» The Simulating a discrete-time Markov chain recipe

Simulating a Brownian motion

The Brownian motion (or Wiener process) is a fundamental object in mathematics, physics,
and many other scientific and engineering disciplines. This model describes the movement of
a particle suspended in a fluid resulting from random collisions with the quick molecules in
the fluid (diffusion). More generally, the Brownian motion models a continuous-time random
walk, where a particle evolves in space by making independent random steps in all directions.

Mathematically, the Brownian motion is a particular Markov continuous stochastic process.
The Brownian motion is at the core of mathematical domains such as stochastic calculus and
the theory of stochastic processes, but it is also central in applied fields such as quantitative
finance, ecology, and neuroscience.

In this recipe, we will show how to simulate and plot a Brownian motion in two dimensions.

How to do it...

1. Let's import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

2. We simulate Brownian motions with 5000 time steps:
>>>n = 5000

3. We simulate two independent one-dimensional Brownian processes to form a
single two-dimensional Brownian process. The (discrete) Brownian motion makes
independent Gaussian jumps at each time step. Therefore, we merely have to
compute the cumulative sum of independent normal random variables (one for
each time step):

>>> X = np.cumsum(np.random.randn (n))
y = np.cumsum(np.random.randn (n))

4. Now, to display the Brownian motion, we could just use plot (x, vy).However, the
result would be monochromatic and a bit boring. We would like to use a gradient of
color to illustrate the progression of the motion in time (the hue is a function of time).
matplotlib does not support this feature natively, so instead we use scatter (). This
function allows us to assign a different color to each point at the expense of dropping
out line segments between points. To work around this issue, we linearly interpolate
the process to give the illusion of a continuous line:
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>>> # We add 10 intermediary points between two
# successive points. We interpolate x and y.
k = 10
X2 = np.interp(np.arange(n * k), np.arange(n) * k, x)
y2 = np.interp(np.arange(n * k), np.arange(n) * k, y)
>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
# Now, we draw our points with a gradient of colors.
ax.scatter (x2, y2, c=range(n * k), linewidths=0,
marker='o', s=3, cmap=plt.cm.jet,)
ax.axis('equal')
ax.set axis off ()

The Brownian motion W (¢) has several important properties. First, it gives rise (almost
surely) to continuous trajectories. Second, its increments W (¢ + 7) — W (t) are independent
on non-overlapping intervals. Third, these increments are Gaussian random variables.

More precisely:

Vi, >0, W(E+T1)—W(t)~NO,7)

In particular, the density of W (t) is a normal distribution with variance t.
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Additionally, the Brownian motion, and stochastic processes in general, have deep
connections with partial differential equations. Here, the density of W/ (¢) is a solution

of the heat equation, a particular diffusion equation. More generally, the Fokker-Planck
equation is a partial differential equation satisfied by the density of solutions of a stochastic
differential equation.

There's more...

The Brownian motion is a limit of a random walk with an infinitesimal step size. We used this
property here to simulate the process.

Here are a few references:
» The Brownian motion (physical phenomenon) described at https://
en.wikipedia.org/wiki/Brownian motion

» The Wiener process (mathematical object) explained at https://en.wikipedia.
org/wiki/Wiener process

» The Brownian motion is a particular type of the Lévy process; refer to https://
en.wikipedia.org/wiki/L$C3%A9vy process

» The Fokker-Planck equation links stochastic processes to partial
differential equations; refer to https://en.wikipedia.org/wiki/
Fokker%E2%80%93Planck equation

» The Simulating a stochastic differential equation recipe

Simulating a stochastic differential equation

Stochastic Differential Equations (SDEs) model dynamical systems that are subject to noise.
They are widely used in physics, biology, finance, and other disciplines.

In this recipe, we simulate an Ornstein-Uhlenbeck process, which is a solution of the
Langevin equation. This model describes the stochastic evolution of a particle in a fluid under
the influence of friction. The particle's movement is due to collisions with the molecules of the
fluid (diffusion). The difference with the Brownian motion is the presence of friction.
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The Ornstein-Uhlenbeck process is stationary, Gaussian, and Markov, which makes it a good
candidate to represent stationary random noise.

We will simulate this process with a numerical method called the Euler-Maruyama method.
It is a simple generalization to SDEs of the Euler method for ODEs.

How to do it...

1.

Let's import NumPy and Matplotlib:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

We define a few parameters for our model:

>>> sigma = 1. # Standard deviation.
mu = 10. # Mean.
tau = .05 # Time constant.

Let's define a few simulation parameters:

>>> dt = .001 # Time step.
T = 1. # Total time.
n = int(T / dt) # Number of time steps.

t = np.linspace(0., T, n) # Vector of times.

We also define renormalized variables (to avoid recomputing these constants at every
time step):
>>> sigma _bis = sigma * np.sqgrt (2. / tau)

sgrtdt = np.sqgrt (dt)

We create a vector that will contain all successive values of our process during
the simulation:

>>> X = np.zeros(n)

Now, let's simulate the process with the Euler-Maruyama method. It is really like the
standard Euler method for ODEs, but with an extra stochastic term (which is just a
scaled normal random variable). We will give the equation of the process along with
the details of this method in the How it works... section of this recipe:

>>> for i in range(n - 1):
x[1 + 1] = x[1] + dt * (-(x[1] - mu) / tau) + \
sigma bis * sgrtdt * np.random.randn/()
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7. Let's display the evolution of the process:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 4))
ax.plot (t, x, lw=2)
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8. Now, we are going to take a look at the time evolution of the distribution of the
process. To do this, we will simulate many independent realizations of the same
process in a vectorized way. We define a vector X that will contain all realizations
of the process at a given time (that is, we do not keep all realizations at all times
in memory). This vector will be overwritten at every time step. We will show the
estimated distribution (histograms) at several points in time:

>>> ntrials = 10000
X = np.zeros(ntrials)
>>> # We create bins for the histograms.
bins = np.linspace(-2., 14., 100)
fig, ax = plt.subplots(l, 1, figsize=(8, 4))
for i in range(n):
# We update the process independently for
# all trials
X +=dt * (-(X - mu) / tau) + \
sigma bis * sgrtdt * np.random.randn(ntrials)
# We display the histogram for a few points in

# time

if i in (5, 50, 900):
hist, _ = np.histogram(X, bins=bins)
ax.plot ((bins[1:] + bins([:-1]1) / 2, hist,

{5: '-v, 50: '.v, 900: '-.', }I[i],
label=f"t={i * dt:.2f}")
ax.legend ()
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The distribution of the process tends to a Gaussian distribution with mean = 10

and standard deviation o = 1. The process would be stationary if the initial

distribution was also a Gaussian with the adequate parameters.

The Langevin equation that we use in this recipe is the following stochastic

differential equation:

gy = &= 1)

T

dt + 0\/§dW
T

Here, x(t) is our stochastic process, dz is the infinitesimal increment, 1 is the mean, ¢ is the
standard deviation, and 7 is the time constant. Also, W is a Brownian motion (or the Wiener

process) that underlies our SDE.

The first term on the right-hand side is the deterministic term (in dt), while the second

term is the stochastic term. Without that last term, the equation would be a regular

deterministic ODE.

The infinitesimal step of a Brownian motion is a Gaussian random variable. Specifically,
the derivative (in a certain sense) of a Brownian motion is a white noise, a sequence of

independent Gaussian random variables.

The Euler-Maruyama method involves discretizing time and adding infinitesimal steps to the
process at every time step. This method involves a deterministic term (like in the standard
Euler method for ODEs) and a stochastic term (random Gaussian variable). Specifically,

for an equation:

dx = a(t,x)dt + b(t, z)dW
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The numerical scheme is (with ¢t = n * dt):
Tng1 = Tn + do = 2 + alt, 2 )dt + b(t, 2,)VdtE, € ~ N(0,1)

Here, £ is a random Gaussian variable with variance 1 (independent at each time step). The
normalization factor v/dt comes from the fact that the infinitesimal step for a Brownian motion
has the standard deviation v/dt.

The mathematics of SDEs comprises the theory of stochastic calculus, 1t0 calculus,
martingales, and other topics. Although these theories are quite involved, simulating
stochastic processes numerically can be relatively straightforward, as we have seen in
this recipe.

The error of the Euler-Maruyama method is of order V/dt. The Milstein method is a more
precise numerical scheme, of order dt.

Here are a few references on these topics:
» Stochastic differential equations on Wikipedia, available at https://
en.wikipedia.org/wiki/Stochastic differential equation
» White noise, described at https://en.wikipedia.org/wiki/White noise

» The Langevin equation on Wikipedia, available at https://en.wikipedia.org/
wiki/Langevin equation

» The Ornstein-Uhlenbeck process described at https://en.wikipedia.org/
wiki/Ornstein%E2%80%93Uhlenbeck process

» [Ito calculus, described at https://en.wikipedia.org/wiki/It%$C5%8D
calculus

» The Euler-Maruyama method, explained at https://en.wikipedia.org/wiki/
Euler$%E2%80%93Maruyama_method

» The Milstein method on Wikipedia, available at https://en.wikipedia.org/
wiki/Milstein method

» The Simulating a Brownian motion recipe
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Graphs, Geometry, and
Geographic Information
Systems

In this chapter, we will cover the following topics:

» Manipulating and visualizing graphs with NetworkX

» Drawing flight routes with NetworkX

» Resolving dependencies in a directed acyclic graph with a topological sort
» Computing connected components in an image

» Computing the Voronoi diagram of a set of points

» Manipulating geospatial data with Cartopy

» Creating a route planner for a road network

Introduction

In this chapter, we will cover Python's capabilities in graph theory, geometry, and geography.

Graphs are mathematical objects describing relations between items. They are ubiquitous in
science and engineering, as they can represent many kinds of real-world relations: friends in
a social network, atoms in a molecule, website links, cells in a neural network, neighboring
pixels in an image, and so on. Graphs are also classical data structures in computer science.
Finally, many domain-specific problems may be re-expressed as graph problems, and then
solved with well-known algorithms.
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We will also see a few recipes related to geometry and Geographic Information Systems
(GIS), which refers to the processing and analysis of any kind of spatial, geographical,
or topographical data.

In this introduction, we will give a brief overview of these topics.

Mathematically, a graph G = (V, F) is defined by a set V' of vertices or nodes, and a set £ of
edges (two-element subsets of V). Two nodes v and v’ are said to be connected if (v, v’)is an
edge (element of E).

» If the edges are unordered (meaning that (v, v") = (v/,v)), the graph is said
to be undirected

» If the edges are ordered (meaning that (v, v) # (v/, v)), the graph is said
to be directed

An edge in an undirected graph is represented by a line segment between the two nodes.
In a directed graph, it is represented by an arrow.

Undirected graph Directed graph

Undirected and directed graphs

A graph can be represented by different data structures, such as an adjacency list
(for each vertex, a list of adjacent vertices) or an adjacency matrix (matrix of
connections between vertices).

Problems in graph theory
Here are a few examples of classical graph problems:
» Graph traversal: How to walk through a graph, discussed at
https://en.wikipedia.org/wiki/Graph traversal

» Graph coloring: How to color nodes in a graph such that no two adjacent vertices
share the same color, discussed at https://en.wikipedia.org/wiki/Graph
coloring
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» Connected components: How to find connected components in a graph, explained
athttps://en.wikipedia.org/wiki/Connected component %28graph
theory%29

» Shortest paths: What is the shortest path from one node to another in a given
graph?, discussed at https://en.wikipedia.org/wiki/Shortest path
problem

» Hamiltonian paths: Does a graph include a Hamiltonian path, visiting every vertex
exactly once?, explained at https://en.wikipedia.org/wiki/Hamiltonian
path

» Eulerian paths: Does a graph include an Eulerian path, visiting every edge exactly
once?, discussed at https://en.wikipedia.org/wiki/Eulerian path

» Traveling salesman problem: What is the shortest route visiting every node exactly
once (Hamiltonian path)?, explained at https://en.wikipedia.org/wiki/
Traveling salesman problem

Random graphs

Random graphs are particular kinds of graphs defined with probabilistic rules. They are useful
for understanding the structure of large real-world graphs such as social graphs.

In particular, small-world networks have sparse connections, but most nodes can be reached
from every other node in a small number of steps. This property is due to the existence of a
small number of hubs that have a high number of connections.

Graphs in Python

Although graphs can be manipulated with native Python structures, it is more convenient to
use a dedicated library implementing specific data structures and manipulation routines. In
this chapter, we will use NetworkX, a pure Python library. An alternative library is graph-tool,
largely written in C++.

NetworkX implements a flexible data structure for graphs, and it contains many algorithms.
NetworkX also lets us draw graphs easily with matplotlib.

Geometry in Python

Shapely is a Python library used to manipulate 2D geometrical shapes such as points, lines,
and polygons. It is most notably useful in geographic information systems.
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Geographical information systems in Python

There are several Python modules used to manipulate geographical data and plotting maps.
In this chapter, we will use Cartopy and Shapely to handle GIS files.

The ESRI shapefile is a popular geospatial vector data format. It can be read by Cartopy
and NetworkX.

Cartopy is a Python library that provides cartographic tools for Python. We can use it to
perform map projections and draw maps with matplotlib. It relies on Shapely.

The geoplot is a young high-level geospatial data visualization library in Python that builds
on top of Cartopy and matplotlib.

We will also use the OpenStreetMap service, a free, open source, collaborative service
providing maps of the world.

Other GIS/mapping systems in Python that we couldn't cover in this chapter include
GeoPandas and Kartograph.

References

Here are a few references about graphs:
» Graph theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Graph_ theory

» Graph theory lectures on AwesomeMath, available at https://github.com/
rossant/awesome-math/#graph-theory

» Data structures for graphs, described at https://en.wikipedia.org/wiki/
Graph %28abstract data type%29

» Random graphs on Wikipedia, available at https://en.wikipedia.org/wiki/
Random_graph

» Small-world graphs on Wikipedia, available at https://en.wikipedia.org/
wiki/Small-world network

» NetworkX package, available at http://networkx.github.io
» The graph-tool package, available at http://graph-tool.skewed.de

Here are a few references about geometry and maps in Python:

» Cartopyathttp://scitools.org.uk/cartopy/
» Shapelyathttps://github.com/Toblerity/Shapely
» Shapefileathttps://en.wikipedia.org/wiki/Shapefile
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» geoplotathttps://github.com/ResidentMario/geoplot
» Foliumathttps://github.com/wrobstory/folium

» GeoPandas at http://geopandas.org

» Kartograph at http://kartograph.org

» OpenStreetMap at http://www.openstreetmap.org

Manipulating and visualizing graphs with

NetworkX

In this recipe, we will show how to create, manipulate, and visualize graphs with NetworkX.

Getting ready

NetworkX is installed by default in Anaconda. If needed, you can also install it manually with
conda install networkx.

How to do it...

1. Let's import NumPy, NetworkX, and matplotlib:

>>> import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
$matplotlib inline

2. There are many ways of creating a graph. Here, we create a list of edges (pairs of
node indices):

>>> n = 10 # Number of nodes in the graph.
# Each node is connected to the two next nodes,
# in a circular fashion.
adj = [(i, (i + 1) % n) for i in range(n)]
adj += [(1i, (1 + 2) % n) for i in range(n)]
3. We instantiate a Graph object with our list of edges:
>>> g = nx.Graph(adj)

4. Let's check the list of nodes and edges of the graph, and its adjacency matrix:
>>> print (g.nodes())
[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print (g.edges())
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https://github.com/wrobstory/folium
http://geopandas.org
http://kartograph.org
http://www.openstreetmap.org
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(o, 1), (o, 9), (o, 2), (o, 8), (1, 2), ...,
(6, 8), (7, 8), (7, 9), (8, 9)]

>>> print (nx.adjacency matrix(g))

(0, 1) 1
(0, 2) 1
(0, 8) 1
(0, 9) 1
(1, 0) 1
(8, 9) 1
(9, 0) 1
(9, 1) 1
(9, 7) 1
(9, 8) 1

Let's display this graph. NetworkX comes with a variety of drawing functions. We
can either specify the nodes' positions explicitly, or we can use an algorithm to
automatically compute an interesting layout. Here, we use the draw_circular ()
function that simply positions nodes linearly on a circle:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 6))
nx.draw_circular(g, ax=ax)

Graphs can be modified easily. Here, we add a new node connected to all existing
nodes. We also specify a color attribute to this node. In NetworkX, every node and
edge comes with a Python dictionary containing arbitrary attributes.

>>> g.add node(n, color='#fcff00')
# We add an edge from every existing
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# node to the new node.
for i in range(n):
g.add_edge (i, n)

7. Now, let's draw the modified graph again. This time, we specify the nodes' positions
and colors explicitly:

>>> # We define custom node positions on a circle
# except the last node which is at the center.
t = np.linspace(0., 2 * np.pi, n)
pos = np.zeros((n + 1, 2))
posl[:n, 0] = np.cos(t)
posl[:n, 1] = np.sin(t)
# A node's color is specified by its 'color'
# attribute, or a default color if this attribute
# doesn't exist.
color = [g.node[i] .get('color', '#88b0f3')
for i in range(n + 1)]

# We now draw the graph with matplotlib.

fig, ax = plt.subplots(l, 1, figsize=(6, 6))
nx.draw_networkx (g, pos=pos, node color=color, ax=ax)
ax.set axis off ()
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8. Let's also use an automatic layout algorithm:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 6))
nx.draw_spectral (g, node_ color=color, ax=ax)
ax.set_axis_off ()

NN

There's more...

In NetworkX, nodes are not necessarily integers. They can be numbers, strings, tuples,
or instances of any hashable Python class.

In addition, every node and edge comes with optional attributes (which form a dictionary).

A few layout algorithms are implemented in NetworkX. The draw_spectral () function uses
the eigenvectors of the graph's Laplacian matrix.

The draw_spring () function implements the Fruchterman-Reingold force-directed
algorithm. Nodes are considered as masses subject to edge-dependent forces.

A force-directed graph drawing algorithm minimizes the system's energy so as to

find an equilibrium configuration. This results in an aesthetically appealing layout

with as few crossing edges as possible.
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Here are a few references:
» Graph drawing, described at https://en.wikipedia.org/wiki/Graph
drawing

» Laplacian matrix on Wikipedia, available at https://en.wikipedia.org/wiki/
Laplacian matrix

» Force-directed graph drawing, described at https://en.wikipedia.org/wiki/
Force-directed graph drawing

» The Drawing flight routes with NetworkX recipe

Drawing flight routes with NetworkX

In this recipe, we load and visualize a dataset containing many flight routes and airports
around the world (obtained from the OpenFlights website at https://openflights.org/
data.html).

Getting ready

To draw the graph on a map, you need Cartopy, available at http://scitools.org.uk/
cartopy/. You can install it with conda install -c¢ conda-forge cartopy.

How to do it...

1. Let'simport a few packages:

>>> import math
import json
import numpy as np
import pandas as pd
import networkx as nx
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from IPython.display import Image
$matplotlib inline



https://en.wikipedia.org/wiki/Graph_drawing
https://en.wikipedia.org/wiki/Graph_drawing
https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Force-directed_graph_drawing 
https://en.wikipedia.org/wiki/Force-directed_graph_drawing 
https://openflights.org/data.html
https://openflights.org/data.html
http://scitools.org.uk/cartopy/
http://scitools.org.uk/cartopy/
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2. We load the first dataset containing many flight routes:

>>> names = ('airline,airline_id,'
'source, source_id, '

'dest,dest_id, "'
'codeshare, stops, equipment ') .split (', ")

>>> routes = pd.read csv(
'https://github.com/ipython-books/"'

' cookbook-2nd-data/blob/master/"
'routes.dat?raw=true',

names=names,
header=None)

routes

airline airline_id source source_id dest dest_id codeshare stops equipment

0 2B 410 AER 2965 KZN 2990 MNaM 0 CR2

1 2B 410 ASF 2966 KZN 2990 MNaM 0 CR2

2 2B 410 ASF 2966 MRV 2962 MNaM 0 CR2

3 2B 410 CEK 2968 KZN 2990 MNaN 0 CR2

4 2B 410 CEK 2968 OVB 4078 MNaN 0 CR2
67658 ZL 4178 WYA 6334 ADL 3341 NaN ] SF3
67659 ZM 19016 DME 4029 FRU 2912 NaN ] 734
67660 ZM 19016 FRU 2912 DME 4029 NaN 1] 734
67661 ZM 19016 FRU 2912 0ss 2913 NaN 0 734
67662 ZM 19016 0SS 2913 FRU 2912 NaN ] 734

67663 rows x 9 columns

3. We load the second dataset with details about the airports, and we only keep the
airports from the United States:

>>> names = ('id,name,city,country,iata,icao,lat,lon,"'

'alt,timezone,dst,tz, type, source') .split (', ")

>>> airports =

'airports.dat?raw=true’',
header=None,
names=names,
index col=4,

pd.read _csv(
'https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"

na values='\\N"')

airports_us

airports_us
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= airports[airports['country']
'United States']




Chapter 14

id name city country icao ... timezone dst tz  type source

iata
BTl 3411 Barerisland LR... BarterIsland United States PABA ... -9.0 A AmericalAnchora... airport QurAirports
LUR 3413 Cape Lisburne L... Cape Lisburne Uniled States PALU ... -9.0 A AmericalAnchora... airport  QurAirporis
PIZ 3414 PointLayLRRS ... Point Lay United States PPIZ ... -9.0 A AmericalAnchora... airport QurAirports
ITO 3415 Hilo Internationa... Hilo United States PHTO ... -10.0 N Pacific/Honolulu  airport  QurAirports
ORL 3416 Orlando Executiv... Orando United States KORL .. -5.0 A AmericalNew_Y... airport OQurAirports
XMR 11866 Cape Canaveral... CocoaBeach United States KXMR .. NaN  NaN NaN airport QurAirports
NaN 11867 Homey (Area 51... Groom Lake United States KXTA .. MNaMN  MNaN NaN airport  OurAirports
ZZV 11868 Zanesville Munic... Zanesville United States KZZV ... MaMN  NaM NaN airport QurAirports
ENN 11918 Nenana Municip... Menana United States PANN ... MNaMN  MNaN NaN airport  OurAirports
WWA 11919 Wasilla Airport Wasilla United States PAWS .. NaN  NaN NaN airport QurAirports

1435 rows * 13 columns

The DataFrame index is the IATA code, a 3-character code identifying the airports.

4. Let's keep all national US flight routes—that is, those for which the source and the
destination airports belong to the list of US airports:

>>> routes_us = routes|
routes['source'] .isin(airports_us.index) &
routes['dest'] .isin(airports_us.index) ]
routes_us

airline airline_id source source_id dest dest_id codeshare stops equipment

172 20 146 ADQ 3531  KLN 7162 NaN 0 BNI
177 20 146 KLN 7162 KYK 7161 NaN 0 BNI
260 3E 10739 BRL 5726 ORD 3830 NaN 0 CNC
261 3E 10739 BRL 5726 STL 3678 NaN 0 CNC
262 3E 10739 DEC 4042 ORD 3830 NaN 0 CNC
67565 ZK 2607 SHR 5769 DEN 3751 NaN ] EM2
67566 ZK 2607 sow 7078 FMN 3743 NaM ] BE1
67567 ZK 2607  SOW 7078 PHX 3462 NaN 0 BE1
67569 ZK 2607 VIS 7121 LAX 3484 NaM 0 BE1
67570 ZK 2607  WRL 5777 C¥YS 3804 NaN 0 BEHBE1

10507 rows * 9 columns
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5. We construct the list of edges representing our graph, where nodes are airports, and
two airports are connected if there exists a route between them (flight network):

>>> edges = routes_us|[['source',6 'dest']].values
edges
array ([['ADQ', 'KLN'],
['KLN', 'KYK'],
['BRL', 'ORD'],
['SOow', 'PHX'],
['VIS', 'LAX'],
['"WRL', 'CYS']], dtype=object)

6. We create the networkX graph from the edges array:

>>> g = nx.from edgelist (edges)

7. Let's take a look at the graph's statistics:

>>> len(g.nodes()), len(g.edges())
(546, 2781)

There are 546 US airports and 2781 routes in the dataset.

8. Let's plot the graph:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 6))
nx.draw_networkx (g, ax=ax, node_size=5,
font size=6, alpha=.5,
width=.5)
ax.set_axis_off ()

460




Chapter 14

10.

11.

12.

There are a few airports that are not connected to the rest of the airports. We keep
the largest connected component of the graph as follows (the subgraphs returned by
connected component subgraphs () are sorted by decreasing size):

>>> sg = next (nx.connected component subgraphs (g))

Now, we plot the largest connected component subgraph:

>>> fig, ax = plt.subplots(l, 1, figsize=(6, 6))
nx.draw_networkx(sg, ax=ax, with labels=False,
node_size=5, width=.5)
ax.set_axis_off ()

The graph encodes only the topology (connections between the airports) and not the
geometry (actual positions of the airports on a map). Airports at the center of the
graph are the largest US airports.

We're going to draw the graph on a map, using the geographical coordinates of the
airports. First, we need to create a dictionary where the keys are the airports IATA
codes, and the values are the coordinates:

>>> pos = {airport: (v['lon'], v['lat'])
for airport, v in
airports us.to dict('index').items() }

The node sizes will depend on the degree of the nodes—that is, the number of
airports connected to every node:

>>> deg = nx.degree (sg)
sizes = [5 * degliatal for iata in sg.nodes]
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13. We will also show the airport altitude as the node color:

>>> altitude = airports us['alt']
altitude

[altitude[iatal for iata in sg.nodes]

14. We will display the labels of the largest airports only (at least 20 connections to other

US airports):

>>> labels = {iata: iata if deg[iatal >= 20 else "'
for iata in sg.nodes}

15. Finally, we use Cartopy to project the points on the map:

>>> # Map projection
crs = ccrs.PlateCarree ()
fig, ax = plt.subplots(
1, 1, figsize=(12, 8),
subplot kw=dict (projection=crs))
ax.coastlines ()
# Extent of continental US.
ax.set extent ([-128, -62, 20, 50])
nx.draw_networkx(sg, ax=ax,
font_size=16,
alpha=.5,
width=.075,
node_size=sizes,
labels=labels,
pos=pos,
node_color=altitude,
cmap=plt.cm.autumn)
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See also

» The Manipulating and visualizing graphs with NetworkX recipe
» The Manipulating geospatial data with Cartopy recipe

Resolving dependencies in a directed

acyclic graph with a topological sort

In this recipe, we will show an application of a well-known graph algorithm: topological
sorting. Let's consider a directed graph describing dependencies between items.

For example, in a package manager, before we can install a given package P,

we may need to install dependent packages.

The set of dependencies forms a directed graph. With topological sorting, the package
manager can resolve the dependencies and find the right installation order of the packages.

Topological sorting has many other applications. Here, we will illustrate this notion on real
data from the JavaScript package manager npm. We will find the installation order of the
required packages for the react JavaScript package.

How to do it...

1. We import a few packages:

>>> import io
import json
import requests
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
$matplotlib inline

2. We download the dataset (a GraphML file stored on GitHub, that we created using a
scriptat https://github.com/graphcommons/npm-dependency-network)
and we load it with the NetworkX function read graphml ():

>>> url = ('https://github.com/ipython-books/"
'cookbook-2nd-data/blob/master/"
'react.graphml?raw=true')
f = io.BytesIO(requests.get (url) .content)
graph = nx.read graphml (f)



https://github.com/graphcommons/npm-dependency-network
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3.

464

The graph is a directed graph (DiGraph) with few nodes and edges:
>>> graph
<networkx.classes.digraph.DiGraph at 0x7f69%9ac6dfdd8s

>>> len(graph.nodes), len(graph.edges)
(16, 20)

Let's draw this graph:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
nx.draw_networkx (graph, ax=ax, font size=10)
ax.set_axis_off ()

A topological sort only exists when the graph is a Directed Acyclic Graph (DAG).
This means that there is no cycle in the graph—that is, no circular dependency.
Is our graph a DAG? Let's see:

>>> nx.is directed acyclic_graph(graph)
True

We can perform the topological sort, thereby obtaining a linear installation order
satisfying all dependencies:
>>> ts = list (nx.topological sort(graph))
ts
['react',
'prop-types',
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'fbis',
'ua-parser-js',
'setimmediate’,
'promise',
'asap',
'object-assign’',
'loose-envify',
'js-tokens',
'isomorphic-fetch',
'whatwg-fetch',
'node-fetch',
'is-stream',
'encoding',
'core-js']

Since we used the convention that A directs to B if B needs to be installed before A
(A depends on B), the installation order is the reversed order here.

Finally, we draw our graph with a shell layout algorithm, and we display the
dependence order using the node colors (darker nodes need to be installed
before lighter ones):

>>> # Each node's color is the index of the node in the
# topological sort.
colors = [ts.index(node) for node in graph.nodes]
>>> nx.draw_shell (graph,
node_ color=colors,
cmap=plt.cm.Blues,
font size=8,
width=.5
)

— . "5 -fetch

object-a: ua-parser-js

promise____ setimmediate
T =asap
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We used the following code (adapted from https://github.com/graphcommons/npm-
dependency-network) to obtain the dependency graph of the react npm package:

>>> from lxml.html import fromstring
import cssselect # Need to do: pip install cssselect

from requests.packages import urllib3

urllib3.disable warnings ()
fetched packages = set()

def import package dependencies(graph, pkg name,
max depth=3, depth=0):
if pkg name in fetched packages:
return
if depth > max depth:
return
fetched packages.add(pkg name)
url = f'https://www.npmjs.com/package/{pkg name}'
response = requests.get (url, verify=False)
doc = fromstring(response.content)
graph.add node (pkg name)
for h3 in doc.cssselect('h3'):
content = h3.text content ()
if content.startswith ('Dependencies'):
for dep in h3.getnext () .cssselect('a'):
dep name = dep.text content ()
print ('-' * depth * 2, dep name)
graph.add node (dep name)
graph.add edge (pkg name, dep name)
import package dependencies (
graph,
dep name,
depth=depth + 1

graph = nx.DiGraph ()
import package dependencies(graph, 'react')
nx.write graphml (graph, 'react.graphml')

You can use that code to obtain the dependency graph of any other npm package.
The script may take a few minutes to complete.
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There's more...

Directed acyclic graphs are found in many applications. They can represent causal relations,
influence diagrams, dependencies, and other concepts. For example, the version history of a
distributed revision control system such as Git is described with a DAG.

Topological sorting is useful in any scheduling task in general (project management and
instruction scheduling).

Here are a few references:
» Directed acyclic graphs on NetworkX, at https://networkx.github.io/

documentation/latest/reference/algorithms/dag.html

» Topological sort documentation on NetworkX, available at https://networkx.
github.io/documentation/latest/reference/algorithms/generated/
networkx.algorithms.dag.topological sort.html

» Topological sorting on Wikipedia, available at https://en.wikipedia.org/
wiki/Topological sorting

» Directed acyclic graphs, described at https://en.wikipedia.org/wiki/
Directed acyclic_graph

Computing connected components in an

image

In this recipe, we will show an application of graph theory in image processing. We will
compute connected components in an image. This method will allow us to label contiguous
regions of an image, similar to the bucket fill tool of paint programs.

Finding connected components is also useful in many puzzle video games such as
Minesweeper, bubble shooters, and others. In these games, contiguous sets of items
with the same color need to be automatically detected.

How to do it...

1. Let's import the packages:

>>> import itertools
import numpy as np
import networkx as nx
import matplotlib.colors as col
import matplotlib.pyplot as plt
$matplotlib inline



https://networkx.github.io/documentation/latest/reference/algorithms/dag.html
https://networkx.github.io/documentation/latest/reference/algorithms/dag.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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2.

5.
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We create a 10 x 10 image where each pixel can take one of three possible
labels (or colors):

>>>n = 10
>>> img = np.random.randint (size=(n, n),
low=0, high=3)

Now, we create the underlying 2D grid graph encoding the structure of the image.
Each node is a pixel, and a node is connected to its nearest neighbors. NetworkX
defines a grid_2d_graph () function to generate this graph:

>>> g = nx.grid 2d graph(n, n)

Let's create two functions to display the image and the corresponding graph:

>>> def show_image (img, ax=None, **kwargs) :
ax.imshow(img, origin='lower',
interpolation='none',
**kwargs)
ax.set_axis_off ()
>>> def show _graph(g, ax=None, **kwargs):
pos = {(i, 3): (3, i) for (i, j) in g.nodes()}
node_color = [img[i, j] for (i, J) in g.nodes()]
nx.draw_networkx (g,
ax=ax,
pos=pos,
node_color='w',
linewidths=3,
width=2,
edge_color='w',
with labels=False,
node_size=50,
**kwargs)
>>> cmap = plt.cm.Blues

Here is the original image superimposed with the underlying graph:

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
show_image (img, ax=ax, cmap=cmap, vmin=-1)
show_graph(g, ax=ax, cmap=cmap, vmin=-1)
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Now, we are going to find all contiguous dark blue regions containing more than three

pixels. First, we consider the subgraph corresponding to all dark blue pixels:

>>> g2 = g.subgraph(zip (*np.nonzero(img == 2)))

>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
show_image (img, ax=ax, cmap=cmap, vmin=-1)
show_graph (g2, ax=ax, cmap=cmap, vmin=-1)
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7. The requested contiguous regions correspond to the connected components
containing more than three nodes in the subgraph. We can use the connected
components () function of NetworkX to find those components:

>>> components = [np.array(list (comp))
for comp in nx.connected components (g2)
if len(comp) >= 3]
len (components)
4

8. Finally, we assign a new color to each of these components, and we display
the new image:

>>> # We copy the image, and assign a new label
# to each found component.
img bis = img.copy ()
for i, comp in enumerate (components) :
img bis[comp[:, 0], comp[:, 1]] =1 + 3
>>> # We create a new discrete color map extending
# the previous map with new colors.

colors = [cmap(.5), cmap(.75), cmap(l.),
"#£f4£235", '#f4a535', '#f£44b35',
'#821d10']

cmap2 = col.ListedColormap (colors, 'indexed')
>>> fig, ax = plt.subplots(l, 1, figsize=(8, 8))
show image (img bis, ax=ax, cmap=cmap2)
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The problem we solved is called connected-component labeling. It is also closely related to
the flood-fill algorithm.

The idea to associate a grid graph to an image is quite common in image processing. Here,
contiguous color regions correspond to connected components of subgraphs. A connected
component can be defined as an equivalence class of the reachability relation. Two nodes
are connected in the graph if there is a path from one node to the other. An equivalence class
contains nodes that can be reached from one another.

Finally, the simple approach described here is only adapted to basic tasks on small images.
More advanced algorithms are covered in Chapter 11, Image and Audio Processing.

There's more...

Here are a few references:

» Connected components on Wikipedia, available at https://en.wikipedia.org/
wiki/Connected component %28graph theory%29

» Connected-component labeling on Wikipedia, at https://en.wikipedia.org/
wiki/Connected-component labeling

» Flood-fill algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/Flood fill

Computing the Voronoi diagram of a set of

points

The Voronoi diagram of a set of seed points divides space into several regions. Each region
contains all points closer to one seed point than to any other seed point.

The Voronoi diagram is a fundamental structure in computational geometry. It is widely used
in computer science, robotics, geography, and other disciplines. For example, the Voronoi
diagram of a set of metro stations gives us the closest station from any point in the city.

In this recipe, we compute the Voronoi diagram of the set of metro stations in Paris
using SciPy.

Getting ready

You need the Smopy module to display the OpenStreetMap map of Paris. You can install this
package with pip install git+https://github.com/rossant/smopy.git.
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How to do it...

1. Let's import the packages:

>>> import numpy as np
import pandas as pd
import scipy.spatial as spatial
import matplotlib.pyplot as plt
import matplotlib.path as path
import matplotlib as mpl
import smopy
$matplotlib inline

2. Let's load the dataset with pandas (which had been obtained on the RATP open data
website, the public transport operator in Paris, at http://data.ratp. fr):

>>> df = pd.read _csv('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'ratp.csv?raw=true',
sep='#"', header=None)

>>> df [df.columns [1:]] .tail(3)

1 2 3 4 5
11608 2.350173 48.937238 THEATRE GERA... SAINT-DENIS tram
11609 2.301197 48.933118 TIMBAUD GENNEVILLIERS tram
11610 2.230144 48.913708  VICTOR BASCH COLOMBES tram

3. The DataFrame object contains the coordinates, name, city, district, and type of
station. Let's select all metro stations:

>>> metro = df [(df [5] == 'metro')]
>>> metro[metro.columns[1:]].tail(3)

1 2 3 4 5

305 2.308041 48.841697 Volontaires PARIS-15EME  metro
306 2.379884 48.857876 \Voltaire (LéonB... PARIS-11EME metro
307 2.304651 48.883874 Wagram PARIS-17EME metro

4. We are going to extract the district number of Paris' stations. With pandas, we can
use vectorized string operations using the str attribute of the corresponding column.
>>> # We only extract the district from stations in Paris.

paris = metro[4].str.startswith('PARIS') .values
>>> # We create a vector of integers with the district
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# number of the corresponding station, or 0 if the

# station is not in Paris.

districts = np.zeros(len(paris), dtype=np.int32)

districts[paris] = metrol[4] [paris] .str.slice(6, 8) \
.astype (np.int32)

districts[~paris] = 0

ndistricts = districts.max() + 1

5. We also extract the coordinates of all metro stations:

>>> lon = metrol[l]
lat = metrol2]

6. Now, let's retrieve Paris' map with OpenStreetMap. We specify the map's boundaries
with the extreme latitude and longitude coordinates of all our metro stations. We use
Smopy to generate the map:
>>> box = (lat[paris] .min(), lonl[paris] .min(),

lat [paris] .max (), lon[paris] .max())
m = smopy.Map (box, z=12)
m.show ipython ()
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7.  We now compute the Voronoi diagram of the stations using SciPy. A Voronoi
object is created with the points coordinates. It contains several attributes we
will use for display:

>>> vor = spatial.Voronoi(np.c_[lat, lon])

8. We create a generic function to display a Voronoi diagram. SciPy already implements
such a function, but this function does not take infinite points into account.
The implementation we will use is available at http://stackoverflow.
com/a/20678647/1595060:

>>> def voronoi_finite_polygons_2d(vor, radius=None) :
"""Reconstruct infinite Voronoi regions in a
2D diagram to finite regiomns.
Source:
https://stackoverflow.com/a/20678647/1595060
wn
if vor.points.shape[l] != 2:
raise ValueError ("Requires 2D input")
new_regions = []
new_vertices = vor.vertices.tolist()
center = vor.points.mean (axis=0)
if radius is None:
radius = vor.points.ptp() .max()
# Construct a map containing all ridges for a
# given point
all ridges = {}
for (p1, p2), (vl, v2) in zip(vor.ridge points,
vor.ridge vertices):
all_ridges.setdefault(
pl, [1).append((p2, vl1, v2))
all_ridges.setdefault(
p2, [1).append((pl, v1l, v2))
# Reconstruct infinite regions
for pl, region in enumerate (vor.point region) :
vertices = vor.regions [region]
if all(v >= 0 for v in vertices):
# finite region
new_regions.append (vertices)
continue
# reconstruct a non-finite region
ridges = all ridges|[p1l]

new_region = [v for v in vertices if v >= 0]
for p2, vl, v2 in ridges:
if v2 < 0:
vl, v2 = v2, vl
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if vl >= 0:
# finite ridge: already in the region
continue
# Compute the missing endpoint of an
# infinite ridge
t = vor.points[p2] - \
vor.points[pl] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[[pl, p2]1]. \
mean (axis=0)
direction = np.sign(
np.dot (midpoint - center, n)) * n
far point = vor.vertices[v2] + \
direction * radius
new region.append(len(new vertices))
new vertices.append(far point.tolist())
# Sort region counterclockwise.
vs = np.asarray([new vertices[v]
for v in new region])
c = vs.mean (axis=0)
angles = np.arctan2 (
vs[:, 1] - c[1], vs[:, 0] - c[0])
new region = np.array(new region) [
np.argsort (angles) ]
new regions.append(new region.tolist())
return new regions, np.asarray(new vertices)

The voronoi_ finite polygons 2d() function returns a list of regions and

a list of vertices. Every region is a list of vertex indices. The coordinates of all
vertices are stored in vertices. From these structures, we can create a list of cells.
Every cell represents a polygon as an array of vertex coordinates. We also use the
to pixels () method of the smopy .Map instance. This function converts latitude
and longitude geographical coordinates to pixels in the image.

>>> regions, vertices = voronoi finite polygons_ 2d(vor)
>>> cells = [m.to pixels(vertices[region])
for region in regions]

Now, we compute the color of every polygon:

>>> cmap = plt.cm.Set3
# We generate colors for districts using a color map.
colors districts = cmap(
np.linspace (0., 1., ndistricts)) [:, :3]
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# The color of every polygon, grey by default.
colors = .25 * np.ones((len(districts), 3))

# We give each polygon in Paris the color of

# its district.

colors [paris] = colors districts[districts([paris]]

11. Finally, we display the map with the Voronoi diagram, using the show_mp1 () method
of the Map instance:

>>> ax = m.show mpl (figsize=(12, 8))
ax.add collection(
mpl.collections.PolyCollection (
cells, facecolors=colors,
edgecolors='k', alpha=.35))
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Let's give the mathematical definition of the Voronoi diagram in a Euclidean space. If (z;) is
a set of points, the Voronoi diagram of this set of points is the collection of subsets V; (called
cells or regions) defined by:

Vi={xeR|Vj#i [x—x| <lx—xl}

The dual graph of the Voronoi diagram is the Delaunay triangulation. This geometrical object
covers the convex hull of the set of points with triangles.

SciPy computes Voronoi diagrams with ghull, a computational geometry library in C++.

Here are further references:
» Voronoi diagram on Wikipedia, available at https://en.wikipedia.org/wiki/
Voronoi_diagram

» Delaunay triangulation on Wikipedia, available at https://en.wikipedia.org/
wiki/Delaunay triangulation

» The documentation of scipy.spatial.voronoi available at http://docs.
scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.
Voronoi.html

» The Qhull library available at http://www.ghull.org

o The Manipulating geospatial data with Cartopy recipe

Manipulating geospatial data with Cartopy

In this recipe, we will show how to load and display geographical data in the Shapefile format.
Specifically, we will use data from Natural Earth (http://www.naturalearthdata.com)
to display the countries of Africa, color coded with their population and Gross Domestic
Product (GDP). This type of graph is called a choropleth map.

Shapefile (https://en.wikipedia.org/wiki/Shapefile)is a popular geospatial
vector data format for GIS software. It can be read by Cartopy, a GIS package in Python.
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Getting ready

You need Cartopy, available at http://scitools.org.uk/cartopy/. You can install it
with conda install -c¢ conda-forge cartopy.

How to do it...

1. Let's import the packages:

>>> import io
import requests
import zipfile
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.collections as col
from matplotlib.colors import Normalize
import cartopy.crs as ccrs
from cartopy.feature import ShapelyFeature
import cartopy.io.shapereader as shpreader
$matplotlib inline

2. We download and load the Shapefile that contains geometric and administrative
information about all countries in the world (it had been obtained from Natural
Earth's website at http://www.naturalearthdata.com/downloads/10m-
cultural-vectors/10m-admin-0-countries/):

>>> url = ('https://github.com/ipython-books/"
'cookbook-2nd-data/blob/master/"
'africa.zip?raw=true')
r = io.BytesIO(requests.get (url) .content)
zipfile.ZipFile (r) .extractall ('data')
countries = shpreader.Reader (
'data/ne_10m_admin 0 countries.shp')

3. We keep the African countries:

>>> africa = [c for ¢ in countries.records()
if c.attributes['CONTINENT'] == 'Africa'l

4. Let's write a function that draws the borders of Africa:

>>> crs = ccrs.PlateCarree ()
extent = [-23.03, 55.20, -37.72, 40.58]
>>> def draw_africa(ax):
ax.set extent (extent)
ax.coastlines()

478



http://scitools.org.uk/cartopy/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/

>>> fig,

ax = plt.subplots(
1, 1, figsize=(6, 8),
subplot kw=dict (projection=crs))

draw_africa (ax)
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5. Now, we write a function that displays the countries of Africa with a color that
depends on a specific attribute, like the population or GDP:

>>> def choropleth(ax, attr, cmap name):
# We need to normalize the values before we can

# use the colormap.

valu
norm

cmap
for

es = [c.attributes
= Normalize (
vmin=min (values) ,

[attr] for c¢ in africal

vmax=max (values))

= plt.cm.get cmap(cmap name)

crs,

c in africa:
v = c.attributes[attr]
sp =

ax.add feature (sp)

ShapelyFeature (c.geometry,

edgecolor="'k!',
facecolor=cmap (norm(v)))
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6. Finally, we display two choropleth maps with the population and GDP of all
African countries:

>>> fig, (axl, ax2) = plt.subplots(
1, 2, figsize=(10, 16),
subplot kw=dict (projection=crs))
draw_africa(axl)
choropleth(axl, 'POP_EST', 'Reds')
axl.set_title('Population')

draw_africa(ax2)
choropleth(ax2, 'GDP_MD EST', 'Blues')
ax2.set_title('GDP')

Population

There's more...

The geoplot package, available at https://github.com/ResidentMario/geoplot
provides high-level tools to draw choropleth maps and other geospatial figures.

See also

» The Creating a route planner for a road network recipe
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Creating a route planner for a road network

In this recipe, we build upon several techniques described in the previous recipes in order to
create a simple GPS-like route planner in Python. We will retrieve California's road network
data from the United States Census Bureau in order to find shortest paths in the road network
graph. This will allow us to display road itineraries between any two locations in California.

Getting ready

You need Smopy for this recipe. You can install it with pip install git+https://
github.com/rossant/smopy. In order for NetworkX to read Shapefile datasets,
you also need GDAL/OGR. You can install it with conda install gdal.

At the time of this writing, gdal does not appear to work well with conda

and Python 3.6. You may need to downgrade Python to Python 3.5 with
t conda install python=3.5.

How to do it...

1. Let's import the packages:

>>> import
import
import
import
import
import
import
import
import

io

zipfile

requests

networkx as nx

numpy as np

pandas as pd

json

smopy

matplotlib.pyplot as plt

$matplotlib inline

2. We load the data (a Shapefile dataset) with NetworkX. This dataset contains detailed
information about the primary roads in California. NetworkX's read_shp () function
returns a graph, where each node is a geographical position, and each edge contains
information about the road linking the two nodes. The data comes from the United
States Census Bureau website at http://www.census.gov/geo/maps-data/
data/tiger.html.

>>> url = ('https://github.com/ipython-books/"'
'cookbook-2nd-data/blob/master/"
'road.zip?raw=true')
r = 1i0.BytesIO(requests.get (url) .content)

zipfile.ZipFile(r) .extractall ('data')
g = nx.read_shp('data/tl 2013 06 prisecroads.shp')



http://www.census.gov/geo/maps-data/data/tiger.html
http://www.census.gov/geo/maps-data/data/tiger.html

Graphs, Geometry, and Geographic Information Systems

3. This graph is not necessarily connected, but we need a connected graph in order to
compute shortest paths. Here, we take the largest connected subgraph using the
connected_component subgraphs () function:

>>> sgs = list (nx.connected component subgraphs (
g.to_undirected()))
i = np.argmax([len(sg) for sg in sgs])
sg = sgs[i]
len(sg)
464

4. We define two positions (with the latitude and longitude) and find the shortest path
between these two positions:

>>> pos0 = (36.6026, -121.9026)
posl = (34.0569, -118.2427)

5. Each edge in the graph contains information about the road, including a list of points
along this road. We first create a function that returns this array of coordinates, for
any edge in the graph:
>>> def get path(n0, nl):

""nTf nO0 and nl are connected nodes in the graph,

this function returns an array of point

coordinates along the road linking these two

nodes. """

return np.array(json.loads (sg[n0] [n1] ['Json'])
['coordinates'])

6. We can notably use the road path to compute its length. We first need to
define a function that computes the distance between any two points in
geographical coordinates:

>>> # from https://stackoverflow.com/a/8859667/1595060
EARTH R = 6372.8

def geocalc(lat0, lon0O, latl, lonl):

"""Return the distance (in km) between two points

in geographical coordinates."""

lat0 = np.radians(lato0)

lon0 = np.radians(lono0)

latl = np.radians(latl)

lonl = np.radians(lonl)

dlon = lon0 - lonl

y = np.sqgrt((np.cos(latl) * np.sin(dlon)) ** 2 +
(np.cos(lat0) * np.sin(latl) - np.sin(lat0) *
np.cos(latl) * np.cos(dlon)) ** 2)

X = np.sin(lat0) * np.sin(latl) + \

482



Chapter 14

10.

11.

np.cos(lat0) * np.cos(latl) * np.cos(dlon)
c = np.arctan2(y, Xx)
return EARTH R * c

Now, we define a function computing a path's length:

>>> def get path length(path):
return np.sum(geocalc(path[l:, 1], path[1l:, 0],
pathl[:-1, 11, path[:-1, 0]))

We update our graph by computing the distance between any two connected nodes.
We add this information with the distance attribute of the edges:

>>> # Compute the length of the road segments.
for n0, nl in sg.edges:
path = get path(n0, nl)
distance = get path length(path)
sg.edges [n0, nl] ['distance'] = distance

The last step before we can find the shortest path in the graph is to find the two
nodes in the graph that are closest to the two requested positions:

>>> nodes = np.array(sg.nodes () )
# Get the closest nodes in the graph.
pos0_i = np.argmin (
np.sum( (nodes[:, ::-1] - pos0)**2, axis=1))
posl i = np.argmin(
np.sum( (nodes([:, ::-1] - posl)**2, axis=1))

Now, we use NetworkX's shortest path () function to compute the shortest path
between our two positions. We specify that the weight of every edge is the length of
the road between them:

>>> # Compute the shortest path.
path = nx.shortest path(
sg,
source=tuple (nodes [pos0_1i]),
target=tuple (nodes [posl il),
weight='distance"')
len (path)
19

The itinerary has been computed. The path variable contains the list of edges that
form the shortest path between our two positions. Now we can get information about
the itinerary with pandas. The dataset has a few fields of interest, including the name
and type (State, Interstate, and so on) of the roads:

>>> roads = pd.DataFrame (
[sg.edges [path[i], path[i + 11]
for i in range(len(path) - 1)1,
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columns=['FULLNAME', 'MTFCC',
'RTTYP', 'distance'])
roads

FULLNAME MTFCC RTTYP distance

0 State Rte 1 S$1200 S 100.658130

1 State Rte 1 $1200 S 33.419556

2 Cabrillo Hwy ~ S$1200 M 4.399051

3 State Rte 1 $1200 S 12.400382

4 Cabrillo Hwy ~ S1200 M  36.693272

13 US Hwy 101 S1200 U  75.852281

14 Ventura Fwy  S$1200 M 49.045475

15 Hollywood Fwy  S$1200 M 0.885826

16 Hollywood Fwy  S1200 M 14.087603

17 Hollywood Fwy  S$1200 M 0.010107

18 rows x 4 columns

12.

13.

Here is the total length of this itinerary:

>>> roads['distance'] .sum()
508.664

Finally, let's display the itinerary on the map. We first retrieve the map with Smopy:

>>> m = smopy.Map(pos0, posl, z=7, margin=.1)

Our path contains connected nodes in the graph. Every edge between two nodes is
characterized by a list of points (constituting a part of the road). Therefore, we need
to define a function that concatenates the positions along every edge in the path. We
have to concatenate the positions in the right order along our path. We choose the
order based on the fact that the last point in an edge needs to be close to the first
point in the next edge:

>>> def get full path(path):
""r"Return the positions along a path."""
p_list = []
curp = None
for i in range(len(path) - 1):
p = get _path(path[i], path[i + 1])
if curp is None:
curp = p
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if (np.sum((p[0] - curp) ** 2) >
np.sum((p[-1] - curp) ** 2)):
p =pl::-1, :]
p_list.append(p)
curp = pl-1]
return np.vstack(p_list)

14. We convert the path into pixels in order to display it on the Smopy map:

>>> linepath = get full path(path)
X, Yy = m.to pixels(linepath[:, 1], linepath[:, 0])

15. Finally, let's display the map, with our two positions and the computed itinerary
between them:

>>> ax = m.show mpl (figsize=(8, 8))
# Plot the itinerary.
ax.plot(x, vy, '-k', 1lw=3)
# Mark our two positions.
ax.plot (x[0], y[0], 'ob', ms=20)
ax.plot(x[-1], y[-1], 'or', ms=20)

San Francisco

Hayward

Sanjosé

Fresne
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We computed the shortest path with NetworkX's shortest _path () function. Here, this
function used Dijkstra's algorithm. This algorithm has a wide variety of applications, for
example in network routing protocols.

There are different ways to compute the geographical distance between two points. Here,
we used a relatively precise formula: the orthodromic distance (also called great-circle
distance), which assumes that the Earth is a perfect sphere. We could also have used a
simpler formula since the distance between two successive points on a road is small.

There's more...

You can find more information about shortest path problems and Dijkstra's algorithm in the
following references:

» Shortest paths in the NetworkX documentation, https://networkx.github.io/
documentation/stable/reference/algorithms/shortest paths.html

» What algorithms compute directions from point A to point B on a map? on
StackOverflow, at https://stackoverflow.com/q/430142/1595060

» Shortest paths on Wikipedia, available at https://en.wikipedia.org/wiki/
Shortest path problem

» Dijkstra's algorithm, described at https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm
Here are a few references about geographical distances:
» Geographical distance on Wikipedia, at https://en.wikipedia.org/wiki/
Geographical distance

» Great circles on Wikipedia, at https://en.wikipedia.org/wiki/Great
circle

» Great-circle distance on Wikipedia, at https://en.wikipedia.org/wiki/
Great-circle distance
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Symbolic and
Numerical Mathematics

In this chapter, we will cover the following topics:

» Diving into symbolic computing with SymPy

» Solving equations and inequalities

» Analyzing real-valued functions

» Computing exact probabilities and manipulating random variables

» A bit of number theory with SymPy

» Finding a Boolean propositional formula from a truth table

» Analyzing a nonlinear differential system — Lotka-Volterra (predator-prey) equations
» Getting started with Sage

Introduction

In this chapter, we will introduce SymPy, a Python library for symbolic mathematics. Whereas
most of the book deals with numerical methods, we will see examples here where symbolic
computations are more suitable.

SymPy is to symbolic computing what NumPy is to numerical computing. For example,
SymPy can help us analyze a mathematical model before we run a simulation.




Symbolic and Numerical Mathematics

Although quite powerful, SymPy may be slower than other computer algebra systems. The
main reason is that SymPy is written in pure Python. A faster and more complete mathematics
system is Sage (see also the Getting started with Sage recipe in this chapter). Sage is a heavy
standalone program that has many dependencies (including SymPy), and it uses only

Python 2 at the time of writing. It is essentially meant for interactive use. Sage can be

used with the Jupyter Notebook.

LaTeX is a document markup language widely used to write publication-quality mathematical
equations. Equations written in LaTeX can be displayed in the browser with the MathJax
JavaScript library. SymPy uses this system to display equations in the Jupyter Notebook.

LaTeX equations can also be used in matplotlib. In this case, it is recommended to have a
LaTeX installation on your local computer.

Here are a few references:

» LaTeX on Wikipedia, at https://en.wikipedia.org/wiki/LaTeX

» LaTeX in matplotlib, described at http://matplotlib.org/users/usetex.
html

» Documentation for displaying equations with SymPy, available at http://docs.
sympy.org/latest/tutorial/printing.html

» To install LaTeX on your computer, refer to http://latex-project.org/
ftp.html

Diving into symbolic computing with SymPy

In this recipe, we will give a brief introduction to symbolic computing with SymPy. We will see
more advanced features of SymPy in the next recipes.

Getting ready

Anaconda should come with SymPy by default, but you can always install it with conda
install sympy.

How to do it...

SymPy can be used from a Python module, or interactively in Jupyter/IPython. In the
Notebook, all mathematical expressions are displayed with LaTeX, thanks to the MathJax
JavaScript library.
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Here is an introduction to SymPy:

1. First, we import SymPy and enable LaTeX printing in the Jupyter Notebook:
>>> from sympy import *

init_printing()

2. To deal with symbolic variables, we first need to declare them:

>>> var('x y')
(z, v)

3. The var () function creates symbols and injects them into the namespace.
This function should only be used in the interactive mode. In a Python module,
it is better to use the symbols () function that returns the symbols:

>>> X, y = symbols('x y'")

4. We can create mathematical expressions with these symbols:

>>> exprl = (x + 1) ** 2
expr2 = x**2 + 2 * x + 1

5. Are these expressions equal?

>>> exprl == expr2
False

6. These expressions are mathematically equal, but not syntactically identical.
To test whether they are mathematically equal, we can ask SymPy to simplify
the difference algebraically:

>>> simplify (exprl - expr2)

7. A very common operation with symbolic expressions is the substitution of a
symbol by another symbol, expression, or a number, using the subs () method
of a symbolic expression:

>>> exprl.subs(x, exprl)
9 2
((az—|—1) +1)

>>> exprl.subs(x, pi)

(1+7)°
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8.

10.

A rational number cannot be written simply as 1/2 as this Python expression
evaluates to 0.5. A possibility is to convert the number 1 into a SymPy integer
object, for example by using the s () function:

>>> exprl.subs(x, S(1) / 2)

9

4

Exactly represented numbers can be evaluated numerically with evalf ():

>>> .evalf ()

2.25

We can easily create a Python function from a SymPy symbolic expression using the
lambdify () function. The resulting function can notably be evaluated on NumPy
arrays. This is quite convenient when we need to go from the symbolic world to the
numerical world:

>>> £ = lambdify(x, exprl)

>>> import numpy as np
f(np.linspace(-2., 2., 5))

array([ 1., 0., 1., 4., 9.1)

A core idea in SymPy is to use the standard Python syntax to manipulate exact expressions.
Although this is very convenient and natural, there are a few caveats. Symbols such as x,
which represent mathematical variables, cannot be used in Python before being instantiated
(otherwise, a NameError exception is thrown by the interpreter). This is in contrast to most
other computer algebra systems. For this reason, SymPy offers ways to declare symbolic
variables beforehand.

Another example is integer division; as 1/2 evaluates to 0.5 (or O in Python 2), SymPy has
no way to know that the user intended to write a fraction instead. We need to convert the
numerical integer 1 to the symbolic integer 1 before dividing it by 2.

Also, the Python equality refers to the equality between syntax trees rather than between
mathematical expressions.
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See also

» Solving equations and inequalities
» Getting started with Sage

Solving equations and inequalities

SymPy offers several ways to solve linear and nonlinear equations and systems of equations.
Of course, these functions do not always succeed in finding closed-form exact solutions.
In this case, we can fall back to numerical solvers and obtain approximate solutions.

How to do it...

1. Let's define a few symbols:

>>> from sympy import *
init printing()
>>> var('x y z a')

(‘/E7 y’ Z’ a)

2. We use the solve () function to solve equations (the right-hand side is O by default):

>>> solve (x**2 - a, x)
[—Va, Va]

3. We can also solve inequalities. Here, we need to use the solve univariate
inequality () function to solve this univariate inequality in the real domain:

>>> X = Symbol ('x"')
solve univariate inequality(x**2 > 4, x)

(—o<zAz<-2)V2<zAz <)

4. The solve () function also accepts systems of equations (here, a linear system):

>>> solve([x + 2*y + 1, x - 3*y - 2], x, V)

N
o
-
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5. Nonlinear systems are also handled:
>>> solve ([x**2 + y**2 - 1, x**2 - y**2 - g(1) / 21, x, V)

(32 (5 2) (5 ) (5 9)

6. Singular linear systems can also be solved (here, there is an infinite number of
solutions because the two equations are collinear):

>>> solve([x + 2*y + 1, -x - 2*y - 1], x, V)
{z:—2y—1}

7. Now, let's solve a linear system using matrices containing symbolic variables:

>>> var('a b cduv'")

8. We create the augmented matrix, which is the horizontal concatenation of the
system's matrix with the linear coefficients and the right-hand side vector. This
matrix corresponds to the following system in x, y: ax + by = u, cx + dy = v:
>>> M = Matrix([[a, b, ul, [c, 4, vI])

M

>>> solve linear system(M, x, y)
—bv + du av — cu
xX . .
ad—be " U ad—be
9. This system needs to be nonsingular in order to have a unique solution, which is

equivalent to saying that the determinant of the system's matrix needs to be nonzero
(otherwise the denominators in the preceding fractions are equal to zero):

>>> det (M[:2, :21)

ad — be

492




Chapter 15

There's more...

Matrix support in SymPy is quite rich; we can perform a large number of operations and
decompositions (see the reference guide at http://docs.sympy.org/latest/modules/
matrices/matrices.html).

Here are more references about linear algebra:
» Linear algebra on Wikipedia, at https://en.wikipedia.org/wiki/Linear
algebra#fFurther reading

» Linear algebra on Wikibooks, at http://en.wikibooks.org/wiki/Linear
Algebra

» Linear algebra lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#linear-algebra

Analyzing real-valued functions

SymPy contains a rich calculus toolbox to analyze real-valued functions: limits, power series,
derivatives, integrals, Fourier transforms, and so on. In this recipe, we will show the very
basics of these capabilities.

How to do it...

1. Let's define a few symbols and a function (which is just an expression depending
on x):
>>> from sympy import *
init printing()
>>> var('x z')

(z, 2)
>>> £ =1 / (1 + x**2)
2. Let's evaluate this function at 1:
>>> f.subs(x, 1)
1
2

N
©
(2]
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3.  We can compute the derivative of this function:
>>> diff (£, x)

2x
(22 + 1)?

4. Whatis f's limit to infinity? (Note the double o (oo) for the infinity symbol):

>>> limit (f, x, oo0)

5. Here's how to compute a Taylor series (here, around O, of order 9). The Big O can be
removed with the removeO () method.

>>> series(f, x0=0, n=9)
1—x2+x4—x6+x8—|—(’)(x9)
6. We can compute definite integrals (here, over the entire real line):
>>> integrate(f, (x, -oo, o00))

™

7. SymPy can also compute indefinite integrals:

>>> integrate(f, x)

atan (x)

8. Finally, let's compute f's Fourier transforms:

>>> fourier transform(f, x, z)

7T6727TZ

SymPy includes a large number of other integral transforms besides the Fourier transform
(http://docs.sympy.org/latest/modules/integrals/integrals.html).
However, SymPy will not always be able to find closed-form solutions.
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Here are a few general references about real analysis and calculus:

>

Real analysis on Wikipedia, at https://en.wikipedia.org/wiki/Real
analysis#Bibliography

Calculus on Wikibooks, at http://en.wikibooks.org/wiki/Calculus

Real analysis on Awesome Math, at https://github.com/rossant/awesome-
math/#real-analysis

Computing exact probabilities and

manipulating random variables

SymPy includes a module named stats that lets us create and manipulate random variables.
This is useful when we work with probabilistic or statistical models; we can compute symbolic
expectancies, variances, probabilities, and densities of random variables.

How to do it...

1.

Let's import SymPy and the stats module:
>>> from sympy import *
from sympy.stats import *
init_printing()
Let's roll two dice, X and Y, with six faces each:
>>> X, Y = Die('X', 6), Die('Y', 6)
We can compute probabilities defined by equalities (with the Eq operator)
or inequalities:
>>> P(Eq(X, 3))

>>> P(X > 3)

N =

N
©
(3]
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4.

496

Conditions can also involve multiple random variables:
>>> P(X > Y)

5

12

We can compute conditional probabilities:

>>> P(X + Y > 6, X < 5)

)

12

We can also work with arbitrary discrete or continuous random variables:

>>> Z = Normal('Z', 0, 1) # Gaussian variable
>>> P(Z > pi)

PR Rl W NG

B (g (42) )

We can compute expectancies and variances:

>>> E(Z**2), variance (Z**2)

(1, 2)
We can also compute densities:
>>> £ = density(Z2)
>>> var('x"'")
f(x)
w2
V2e T
2\/m
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9. We can plot these densities:

>>> %matplotlib inline
plot (f(x), (x, -6, 6))

SymPy's stats module contains many functions to define random variables with classical laws
(binomial, exponential, and so on), discrete or continuous. It works by leveraging SymPy's
powerful integration algorithms to compute exact probabilistic quantities as integrals of
probability distributions. For example, P(Z > 7)is:

>>> Eq(Integral (f(x), (x, pi, o0o0)),
simplify(integrate(f(x), (x, pi, ©0))))

e 1 Var) 1
et ° — _Coerf | X2 -
/Tr N dz 5 €T 5 +2

Note that the equality condition is written using the Eq operator rather than the more
standard == Python syntax. This is a general feature in SymPy; == means equality between
Python variables, whereas Eq is the mathematical operation between symbolic expressions.

Here are a few references:
» SymPy stats module documentation at http://docs.sympy.org/latest/
modules/stats.html

» Probability lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#probability-theory

N
©
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» Statistics lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#statistics

A bit of number theory with SymPy

SymPy contains many number-theory-related routines: obtaining prime numbers, integer
decompositions, and much more. We will show a few examples here.

Getting ready

To display legends using LaTeX in matplotlib, you will need an installation of LaTeX on your
computer (see this chapter's introduction).

How to do it...

1. Let'simport SymPy and the number theory package:

>>> from sympy import *
import sympy.ntheory as nt
init_printing()

2. We can test whether a number is prime:

>>> nt.isprime (2017)
True

3. We can find the next prime after a given number:

>>> nt.nextprime (2017)

2027

4. What is the 1000th prime number?
>>> nt.prime(1000)

7919

5. How many primes less than 2017 are there?
>>> nt.primepi (2017)

306
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6. We can plot 77(z), the prime-counting function (the number of prime numbers
less than or equal to some number z). The prime number theorem states that this
function is asymptotically equivalent to / log(z). This expression approximately
quantifies the distribution of prime numbers among all integers:

>>> import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline
X = np.arange (2, 10000)
fig, ax = plt.subplots(l, 1, figsize=(6, 4))

ax.plot (x, list (map(nt.primepi, x)), '-k',
label="$\pi(x)$")
ax.plot(x, x / np.log(x), '--k',

label="%$x/\1log(x)$")
ax.legend(loc=2)

1200 === 71(x)

== x/log(x) '
1000
800
600

400

200

] 2000 4000 6000 8000 10000

7. Let's compute the integer factorization of a number:

>>> nt.factorint (1998)
{2:1, 3:3, 37:1}
>>> 2 % 3*%*%3 * 37

1998

N
©
©



Symbolic and Numerical Mathematics

8. Finally, a small problem. A lazy mathematician is counting his marbles. When they are
arranged in three rows, the last column contains one marble. When they form four
rows, there are two marbles in the last column, and there are three with five rows.
How many marbles are there? (Hint: The lazy mathematician has fewer than
100 marbles.)

Marbles
The Chinese Remainder Theorem gives us the answer:

>>> from sympy.ntheory.modular import solve congruence
solve congruence((1, 3), (2, 4), (3, 5))

(58, 60)

There are infinitely many solutions: 58 plus any multiple of 60. Since there are less than
100 marbles, 58 is the right answer.

SymPy contains many number-theory-related functions. Here, we used the Chinese
Remainder Theorem to find the solutions of the following system of arithmetic equations:

n=a; modmy

n=ar mod my

500




Chapter 15

The triple bar is the symbol for modular congruence. Here, it means that m,; divides

a; — n- In other words, n and a; are equal up to a multiple of m;. Reasoning with congruences
is very convenient when periodic scales are involved. For example, operations involving
12-hour clocks are done modulo 12. The numbers 11 and 23 are equivalent modulo 12
(they represent the same hour on the clock) because their difference is a multiple of 12.

In this recipe's example, three congruences have to be satisfied: the remainder of the number
of marbles in the division with 3 is 1 (there's one extra marble in that arrangement), itis 2 in
the division with 4, and 3 in the division with 5. With SymPy, we simply specify these values in
the solve congruence () function to get the solutions.

The theorem states that solutions exist as soon as the m; are pairwise co-prime (any two
distinct numbers among them are co-prime). All solutions are congruent modulo the product
of the m;. This fundamental theorem in number theory has several applications, notably

in cryptography.

There's more...

Here are a few textbooks about number theory:

» Undergraduate level: Elementary Number Theory, Gareth A. Jones, Josephine M.
Jones, Springer, (1998)

» Graduate level: A Classical Introduction to Modern Number Theory, Kenneth Ireland,
Michael Rosen, Springer, (1982)

Here are a few references:

» Documentation on SymPy's number-theory module, available at http://docs.
sympy.org/latest/modules/ntheory.html

» The Chinese Remainder Theorem on Wikipedia, at https://en.wikipedia.org/
wiki/Chinese remainder theorem

» Applications of the Chinese Remainder Theorem, given at http://mathoverflow.
net/questions/10014/applications-of-the-chinese-remainder-
theorem

» Number theory lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#number-theory

Finding a Boolean propositional formula

from a truth table

The logic module in SymPy lets us manipulate complex Boolean expressions, also known as
propositional formulas.
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This recipe will show an example where this module can be useful. Let's suppose that, in a
program, we need to write a complex i f statement depending on three Boolean variables. We
can think about each of the eight possible cases (true, true and false, and so on) and evaluate
what the outcome should be. SymPy offers a function to generate a compact logic expression
that satisfies our truth table.

How to do it...

1. Let's import SymPy:

>>> from sympy import *
init_printing()

2. Let's define a few symbols:

>>> var('x y z')
(z, y, 2)

3. We can define propositional formulas with symbols and a few operators:

>>> P = x & (y | ~2)
P

zA(yV-z)

4. We can use subs () to evaluate a formula on actual Boolean values:

>>> P.subs ({x: True, y: False, z: True})

False

5. Now, we want to find a propositional formula depending on x, y, and z, with the
following truth table:

MM MAAAAX
T T A<
MM —AT4T—N
S 0

A truth table
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6. Let's write down all combinations that we want to evaluate to True, and those for
which the outcome does not matter:
>>> minterms = [[1, 0, 1], [1, O, 0], [0, O, O]]
dontcare = [[1, 1, 1], [1, 1, 0]]
7. Now, we use the soPform () function to derive an adequate formula:

>>> Q = SOPform(['x', 'y', 'z']l, minterms, dontcare)
Q

xV (—y A-z)

8. Let's test that this proposition works:

>>> Q.subs ({x: True, y: False, z: False}), Q.subs(
{x: False, y: True, z: True})

(True, False)

The soPform () function generates a full expression corresponding to a truth table and
simplifies it using the Quine-McCluskey algorithm. It returns the smallest Sum of Products
form (or disjunction of conjunctions). Similarly, the POSform () function returns a Product
of Sums.

The given truth table can occur in this case: suppose that we want to write a file if it doesn't
already exist (z), or if the user wants to force the writing (x). In addition, the user can prevent
the writing (y). The expression evaluates to True if the file is to be written. The resulting

SOP formula works if we explicitly forbid x and y in the first place (forcing and preventing the
writing at the same time is forbidden).

Here are a few references:
» SymPy logic module documentation at http://docs.sympy.org/latest/
modules/logic.html

» The propositional formula on Wikipedia, at https://en.wikipedia.org/wiki/
Propositional formula

» Sum of Products on Wikipedia, at https://en.wikipedia.org/wiki/
Canonical normal_ form
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» The Quine-McCluskey algorithm on Wikipedia, at https://en.wikipedia.org/
wiki/Quine%E2%80%93McCluskey algorithm

» Logic lectures on Awesome Math, at https://github.com/rossant/awesome-
math/#logic

Analyzing a nonlinear differential system —

Lotka-Volterra (predator-prey) equations

Here, we will conduct a brief analytical study of a famous nonlinear differential system: the
Lotka-Volterra equations, also known as predator-prey equations. These equations are
first-order differential equations that describe the evolution of two interacting populations
(for example, sharks and sardines), where the predators eat the prey. This example illustrates
how to obtain exact expressions and results about fixed points and their stability with SymPy.

Getting ready

For this recipe, knowing the basics of linear and nonlinear systems of differential equations
is recommended.

How to do it...

1. Let's create some symbols:

>>> from sympy import *
init printing(pretty print=True)

var('x y')
var('a b ¢ d', positive=True)

2. The variables x and ¥ represent the populations of the prey and predators,
respectively. The parameters a, b, ¢, and d are strictly positive parameters (described
more precisely in the How it works... section of this recipe). The equations are:

B @) = 2la—by) 1)
W = g(e) = ~yle—da) ¢l

>>> £ = x * (a - b * y)
g=-y * (c - d* x)
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Let's find the fixed points of the system (solving f(z,y) = g(z, y) = 0). We call them
(0, y0) and (z1, y1):
>>> solve([f, 9], (x, y))

0 0. (oY)

>>> (x0, y0), (x1, y1l) = _

Let's write the 2D vector with the two equations:

>>> M = Matrix((f, g))
M

[—x;?c_—bgﬂz)}

Now, we can compute the Jacobian of the system, as a function of (z, y):

>>> J = M.jacobian((x, vy))
J

a—by —bx
dy —c+dx

Let's study the stability of the first fixed point by looking at the eigenvalues of the
Jacobian at this point. The first fixed point corresponds to extinct populations:

>>> MO = J.subs(x, x0).subs(y, y0)
MO

>>> MO.eigenvals ()

{a:1, —c:1}
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The parameters a and c are strictly positive, so the eigenvalues are real and of
opposite signs, and this fixed point is a saddle point. As this point is unstable, the
extinction of both populations is unlikely in this model.

7. Let's consider the second fixed point now:

>>> M1 = J.subs(x, x1).subs(y, y1l)
M1

>>> Ml.eigenvals ()
{-ivavec:1, ivaye:1}

The eigenvalues are purely imaginary: thus, this fixed point is not hyperbolic. Therefore, we
cannot draw conclusions from this linear analysis about the qualitative behavior of the system
around this fixed point. However, we could show with other methods that oscillations occur
around this point.

The Lotka-Volterra equations model the growth of the predator and prey populations, taking
into account their interactions. In the first equation, the ax term represents the exponential
growth of the prey, and —bzy represents death by predators. Similarly, in the second equation,
—yc represents the natural death of the predators, and dzy represents their growth as they
eat more and more prey.

To find the equilibrium points of the system, we need to find the values z, ¥ such that
dx/dt = dy/dt = 0, that'is, f(x,y) = g(z,y) = 0, so that the variables do not evolve
anymore. Here, we were able to obtain analytical values for these equilibrium points
with the solve () function.

To analyze their stability, we need to perform a linear analysis of the nonlinear equations, by
taking the Jacobian matrix at these equilibrium points. This matrix represents the linearized
system, and its eigenvalues tell us about the stability of the system near the equilibrium point.
The Hartman-Grobman theorem states that the behavior of the original system qualitatively
matches the behavior of the linearized system around an equilibrium point if this point is
hyperbolic (meaning that no eigenvalues of the matrix have a real part equal to 0). Here, the
first equilibrium point is hyperbolic as @, ¢ > 0, but the second is not.
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Here, we were able to compute symbolic expressions for the Jacobian matrix and its
eigenvalues at the equilibrium points.

There's more...

Even when a differential system is not solvable analytically (as is the case here), a
mathematical analysis can still give us qualitative information about the behavior of the
system's solutions. A purely numerical analysis is not always relevant when we are interested
in qualitative results, as numerical errors and approximations can lead to wrong conclusions
about the system's behavior.

Here are a few references:
» Matrix documentation in SymPy, available at http://docs.sympy.org/latest/
modules/matrices/matrices.html

» Dynamical systems on Wikipedia, at https://en.wikipedia.org/wiki/
Dynamical system

» Equilibrium points on Scholarpedia, at http://www.scholarpedia.org/
article/Equilibrium

» Bifurcation theory on Wikipedia, at https://en.wikipedia.org/wiki/
Bifurcation theory

» Chaos theory on Wikipedia, at https://en.wikipedia.org/wiki/Chaos
theory

» Further reading on dynamical systems, at https://en.wikipedia.org/wiki/
Dynamical system#fFurther reading

» Lectures on ordinary differential equations on Awesome Math, at https://github.
com/rossant/awesome-math/#ordinary-differential-equations

Getting started with Sage

Sage (http://www.sagemath.org) is a standalone mathematics software based on
Python. It is an open source alternative to commercial products such as Mathematica, Maple,
or MATLAB. Sage provides a unified interface to many open source mathematical libraries.
These libraries include SciPy, SymPy, NetworkX, and other Python scientific packages, but also
non-Python libraries such as ATLAS, BLAS, GSL, LAPACK, Singular, and many others.

In this recipe, we will give a brief introduction to Sage.
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Getting ready

You can either:

» Install Sage on your local computer (http://www.sagemath.org/doc/
installation/)

» Create Sage notebooks remotely in the cloud (https://cloud.sagemath.com/)

Being based on so many libraries, Sage is heavy and hard to compile from source. On Ubuntu,
you can use the system's package manager (see http://www.sagemath.org/download-
linux.html). Binaries exist for most systems except Windows, where you generally have to
use VirtualBox (a virtualization solution: http://www.virtualbox.org).

Alternatively, you can use Sage in a browser with a Jupyter notebook running in the cloud.

Once Sage is installed, you can use it with Jupyter by typing the following command in a
Terminal: sage -n jupyter.

How to do it...

Here, we will create a new Sage notebook and introduce the most basic features:

1. Sage accepts mathematical expressions as we would expect:

>>> 3 * 4

12

2. Being based on Python, Sage's syntax is almost Python, but there are a few
differences. For example, the power exponent is the more classical * symbol:

>>> 2 ~ 3

8

3. Like in SymPy, symbolic variables need to be declared beforehand with the var ()
function. However, the x variable is always predefined. Here, we define a new
mathematical function:

>>> £ = 1 - sin(x) * 2

4. Let's simplify the expression of f:

>>> f.simplify trig()
cos (x) "2
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Let's evaluate £ on a given point:

>>> f (x=pi)
1

Functions can be differentiated and integrated:

>>> £.diff (x)
-2*cos (x) *sin(x)

>>> f.integrate (x)
1/2*x + 1/4*sin(2*x)

Sage also supports numerical computations in addition to symbolic computations:
>>> find root(f - x, 0, 2)

0.6417143708729726

Sage also comes with rich plotting capabilities (including interactive plotting widgets):
>>> f.plot((x, -2 * pi, 2 * pi))

509



Symbolic and Numerical Mathematics

>>> X, y = var('x,y")
plot3d(sin(x * 2 +y * 2) / (x * 2 +y * 2),
(x, -5, 5), (y, -5, 5))

1.00
0.39

-0.22
-5.0

5.0

5.0 -5.0

There's more...

This (too) short recipe cannot do justice to the huge list of possibilities offered by Sage.
Many aspects of mathematics are covered: algebra, combinatorics, numerical mathematics,
number theory, calculus, geometry, graph theory, and many others. Here are a few references:

» Anin-depth tutorial on Sage, available at http://doc.sagemath.org/html/en/
tutorial/index.html

» The Sage reference manual, available at http://doc.sagemath.org/html/en/
reference/index.html

Videos on Sage, available at http://www.sagemath.org/help-video.html

See also

» The Diving into symbolic computing with SymPy recipe
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Another Book
You May Enjoy

If you enjoyed this book, you may be interested in another book by Packt

Hands-On
Data Science
and Python

Machine Learning

Hands-On Data Science and Python Machine Learning

Frank Kane

ISBN: 978-1-78728-074-8

>

>

Learn how to clean your data and ready it for analysis

Implement the popular clustering and regression methods in Python

Train efficient machine learning models using decision trees and random forests
Visualize the results of your analysis using Python's Matplotlib library

Use Apache Spark's MLIib package to perform machine learning on large datasets
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Another Book You May Enjoy

Leave a review — let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review on
this book's Amazon page. This is vital so that other potential readers can see and use your
unbiased opinion to make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!
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MCMC 273-278
Bayes' theorem 255
benchmarking 127
Bernoulli distribution
URL 250
Bernoulli Naive Bayes classifier 311
bias-variance dilemma
URL 289
bias-variance tradeoff
URL 272
bifurcation diagram
plotting, of chaotic dynamical
system 414-418
URL 418
Bifurcation theory
URL 507
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Big 0 494
binder
URL 97
binomial distribution 254
Birnbaum-Sanders distribution
about 266
URL 266
bisection method
reference 341
Bitbucket
URL 52
bivariate method 243
Blinn-Phong shading model
URL 182
block 188
blocking mode 192
Bokeh
interactive web visualizations,
creating 218-224
URL 218
Boolean propositional formula
searching, from truth table 502, 503
URL 503
bootstrap aggregating
URL 323
boundary conditions 413
bgplot 229
branching
references 62
workflow 58-62
Brent's method
reference 341
broadcasting 22
Brownian motion
references 444
simulating 442-444
Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm 343
B-tree 152
Butterworth filter 375

C

calculus
URL 448, 495
Cameron Davidson-Pilon
URL 278

o

cardinal sine
URL 342
Cartopy
geospatial data, manipulating 478-480
URL 478
cascade
references 403
cascade classification API
URL 404
causal filters 374
cells 477
cellular automaton 412
Chaos theory
URL 418, 507
chaotic dynamical system
about 413
bifurcation diagram, plotting 414-418
Chinese Remainder Theorem
about 500
references 501
chi-squared test
about 261
references 262
used, for estimating correlation between two
variables 258-261
choropleth map 477
chromatic scale
URL 410
chunks 152
classification 287
Classification and Regression Trees (CART)
algorithm 322
C library
wrapping, in Python with ctypes 167-171
client 84
clustering
hidden structures, detecting
in dataset 328-332
URL 332
clusters 328
CMA-ES algorithm
URL 348
Codeship
URL 78
column-major order 140
Comma-separated Values (CSV) 14




CommonMark
URL 67
complex systems
URL 418
components 286
Comprehensive R Archive Network (CRAN)
URL 283
compressed sensing
about 361, 362
references 362
Computational Fluid Dynamics
URL 413
concurrent programming 155
conda
URL 72
conditional probability distribution 255
connected-component labeling
URL 471
connected components
computing, in image 467-471
URL 451, 471
constrained optimization 337
constrained optimization algorithm 356
contiguous block 152
contingency table
about 261
URL 262
used, for estimating correlation between two
variables 258-261
continuous functions 336
continuous integration 78
continuous optimization 335
contrast
URL 386
Contrast Limited Adaptive Histogram
Equalization (CLAHE) 384
convex functions 336
convex optimization 336
convolution 374
Conway's Game of Life
references 422
corner detection
URL 400
counting process 440
Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) algorithm 348

coverage.py module
URL 78
cProfile
about 127
reference 131
used, for code profiling in IPython 127-130
CPython 155
credible intervals
about 257
URL 257
cross-validation
references 298
ctypes
C library, wrapping in Python 167-171
URL 171
CUDA
massively parallel code, writing for NVIDIA
graphics cards 184-190
references 190
CUDA cores 188
Cumulative Distribution Function (CDF) 266
curve fitting 350
custom Jupyter Notebook widgets
creating, in HTML 104-106
creating, in JavaScript 104-106
creating, in Python 104-106
custom magic commands
IPython extension, creating 24-27
custom widget
URK 107
URL 103
Cython
code, optimizing 175-182
Python code, accelerating 171-175
references 175, 182
used, for releasing GIL 182-184

D

D3.js
NetworkX graph, visualizing
in Notebook 224-229
URL 224
Dask
out-of-core computations, performing on large
arrays 197-201
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references 202

URL 68
data buffer 139
data dimensionality

reducing, with principal component

analysis 324-327

data manipulation

references 19
data normalization 288
dataset

about 151

exploring, with Matplotlib 245-248

exploring, with pandas 245-248
Datashader

URL 224
data type (dtype) 22
data visualization 324
decision tree learning

URL 323
decision trees 319
decompositions

URL 327
deep learning

references 291
defensive programming 70
Delaunay triangulation

URL 477
dependencies

functional dependency 193

graph dependency 193
design patterns 70
deterministic algorithm 338
dichotomy method 339
differentiable functions 336
digital filters

applying, to speech sounds 404-407
digital signals

about 360, 373

linear filter, applying 370-373

resolution 360

sampling rate 360
Dijkstra's algorithm

URL 486
dilation 396
dill

URL 68

516

dimensionality 286
Directed Acyclic Graph (DAG)
about 464
references 467
direct interface 192
Discrete Fourier Transform (DFT) 367
discrete optimization 335
discrete-time dynamical system 412
discrete-time Markov chain
simulating 434-437
distributed version control system 52-57
Docker
URL 68
dot-com bubble burst 373
dynamical systems
about 411
differential equations 412, 413
references 413
types 412
URL 507
Dynamic Random Access
Memory (DRAM) 190

Eclipse/PyDev 65
elastic potential energy
about 357
URL 357
elementary cellular automaton
simulating 419-422
embarrassingly parallel
URL 183
empirical distribution function 266
ensemble learning
about 319
URL 323
equal temperament
URL 410
equilibrium points
URL 507
erosion 396
estimation 243
Eulerian paths
URL 451
Euler-Maruyama method
URL 448




Euler method
URL 426
expectation-maximization algorithm
about 332
URL 332
exploratory data analysis
about 18
using, in Jupyter Notebook 13-17
exploratory methods 242

F

Fast Fourier Transform (FFT)
discrete Fourier transform 367, 368
Inverse Fourier Transform 369
references 369
used, for analyzing frequency

components 363-367

feature 286

feature extraction 288

feature scaling 288

feature selection
URL 289

filters
applying, on image 386-390

Finite Impulse Response (FIR) 374

FitzHugh-Nagumo equation 427

FitzHugh-Nagumo system
URL 432

fixtures 77

Flake8
URL 71

flight routes
drawing, with NetworkX 457-461

flood-fill algorithm
URL 471

fluid dynamics 412

Fokker-Planck equation
URL 444

Force-directed graph drawing
URL 457

forking 62

Fourier transform 361

frequentist and Bayesian methods 244

frequentist methods
about 244
URL 244

Fruchterman-Reingold force-directed
algorithm 456

f-strings 48

fundamental frequency 409

G

Gaussian filter
URL 391
Gaussian kernel 272
General Purpose Programming on Graphics
Processing Units (GPGPU) 184
geodetic coordinate system 270
geographical distances
references 486
Geographic Information Systems (GIS)
about 450
using, in Python 452
geometry
references 452
using, in Python 451
geospatial data
manipulating, with Cartopy 477-480
Git
references 58
git-flow
references 62
GitHub
URL 52
GitLab
URL 52
Git Large File Storage (Git LFS)
URL 55
Global Interpreter Lock (GIL)
references 155
global minimum 336
gradient
URL 348
gradient descent 347
graph 450
graph coloring
URL 450
Graph drawing
URL 457
Graphics Processing Units (GPUs) 154, 184
graph, problems
connected components 451
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Eulerian paths 451
graph coloring 450
graph traversal 450
Hamiltonian paths 451
traveling salesman problem 451
graphs
about 449, 450
manipulating, with NetworkX 453-456
random graphs 451
references 452
using, in Python 451
visualizing, with NetworkX 453-456
graph traversal
URL 450
Graphviz
URL 321
gravitational force 357
grayscale image 382
great-circle distance 486
grid 188
grid search
URL 299
Gross Domestic Product (GDP) 477
groups 151, 328

H

hSpy
reference 152
Haar cascades library
URL 403
Hamiltonian paths
URL 451
handwritten digit recognition 287
Hartman-Grobman theorem 506
HDF5 chunking
reference 152
heat equation 444
Hessian 347
Hierarchical Data Format (HDF5)
limitations, reference 152

used, for manipulating large arrays 150-152

high-pass filter 375

histogram equalization
URL 385

holding times 441
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HoloViews
interactive web visualizations,
creating 218-224
Hooke's law
URL 358
hyperbolic 506
Hyper-Threading Technology (HTT) 166

image
about 382
faces, detecting with OpenCV 401-403
filters, applying 386-390
points of interest, searching 397-400
segmenting 391-396
image denoising 390
image exposure
manipulating 383-385
image histogram
URL 385
image processing
URL 382, 400
image segmentation
URL 396
independent variables 412
Infinite Impulse Response (lIR) 374
in-place operation

and implicit-copy operation, differences 140

instance-based learning
URL 309
Integrated Development
Environments (IDEs) 63
Intel Math Kernel Library (MKL) 139
intensity 382
interactive computing
about 41
workflow, with IPython 63
InteractiveShell class 27
interactive visualization libraries
discovering, in Notebook 229-233
references 233
interactive web visualizations
creating, with Bokeh 218-224
creating, with HoloViews 218-224
intermediate value theorem
reference 341




Inverse Discrete Fourier Transform 369
Inverse Fast Fourier Transform 369
ipyleaflet 229
ipymd module
URL 65
ipyparallel
about 68, 190
references 194
IPython
about 2, 6-12
asynchronous parallel tasks,
interacting 194-196
code, debugging 79-81
command time, evaluating 126, 127
cProfile, used for code profiling 127-130
debugging 80
IDEs, references 65
Integrated Development
Environments (IDEs) 65
interactive computing workflows 63
Jupyter Notebook 64, 65
post-mortem mode 79
Python code, distributing across multiple
cores 190-193
Terminal 64
text editor 64
URL 64
IPython Blocks
URL 86
used, as programming tutorial
in Notebook 86-90
IPython configuration system
configurable class 31, 32
configuration file 31
configuration object 31
HasTraits class 31
Magics class 32
references 32
user profile 31
IPython extension
creating, with custom magic
commands 24-27
InteractiveShell class 27
loading 28
references 28
IPython Notebook 2

IPython's configuration system
mastering 29-31
ipyvolume 229
ipywidgets
about 97-103
URL 103
Iris dataset
URL 327
Iris flower dataset
URL 327
IRkernel
URL 279
iterated functions
URL 418

J

Jacobian 505
Jacobian matrix 506
JavaScript Object Notation (JSON) 83
Jeffreys prior
URL 257
Jinja2
URL 97
Joblib
URL 68
Julia
references 207
URL 202
using, in Jupyter Notebook 202-206
Jupyter
about 2
kernel, creating 33-39
JupyterHub
about 85
URL 85
JupyterLab
about 65, 84,111-123
references 123
Jupyter Notebook
about 6-12
architecture 84
clients, connecting to kernel 84
configuring 107-110
converting, with nbconvert 91-97
data, analyzing with R 278-283
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exploratory data analysis 13-18
Julia, using 202-206
JupyterHub 85
programming tutorial,
with IPython Blocks 86-90
references 12, 111
security 85
widgets 97-103
Just-In-Time (JIT) compilation
Python code, accelerating 161-164

K

Kaggle
references 299
URL 309
K-D trees 308
kernel
about 84, 188
clients, connecting 84
creating, for Jupyter 33-39
references 39
Kernel Density Estimation (KDE)
URL 273
K-means clustering algorithm
URL 332
K-nearest neighbors (K-NN) classifier
handwritten digits, recognizing 305-308
K-NN algorithm
references 309
Kolmogorov-Smirnov test
about 266
URL 267

L

L2 norm 297
Langevin equation
about 444
URL 448
Laplacian matrix
about 456
URL 457
large arrays
manipulating, with Hierarchical Data Format
(HDF5) 150-152
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LaTeX
references 488
URL 91
L-BFGS-B algorithm
URL 358
least squares method
references 283
Leave-one-out cross-validation (LOOCV) 298
left singular vectors 327
Levenberg-Marquardt algorithm 351
Lévi function 345
linear algebra
references 493
linear combination 143
linear filter
about 373
applying, to digital signal 370-373
band-pass filter 375
convolution 374
filters, using in frequency domain 375
FIR 374,375
high-pass filter 375
IIR filters 374, 375
low-pass filter 375
references 376
Linear Time-Invariant (LTl) 374
line_profiler
reference 133
used, for line-by-line code profiling 131-133
Lloyd's algorithm 332
load-balanced interface 192
locality of reference 139
local minimum 336
logic lectures
URL 504
logic module
URL 503
logistic map
URL 418
logistic regression
references 304
using, for prediction 299-303
loss function 296
Lotka-Volterra (predator-prey) equations
implementing 504-506




Low Level Virtual Machine (LLVM) 163
low-pass filter 375
Lyapunov exponent

URL 419

machine learning
references 290
maps
references 452
Markov chain Monte Carlo (MCMC)
method 273
Bayesian model, applying from posterior
distribution 273-278
URL 278
Markov chains
references 438
Markov property
URL 434
mathematical function
minimizing 341-347
references, for root finding 341
root, finding 338-341
mathematical morphology
URL 396
mathematical morphology techniques 395
mathematical optimization
about 335
constrained optimization 337
deterministic algorithm 338
global minima 336, 337
local minima 336, 337
objective function 336
references 338
stochastic algorithm 338
unconstrained optimization 337
URL 348
MathJax 488
Matplotlib
about 3
dataset, exploring 245-248
URL 4
Matplotlib styles
references 213
using 209-212

matrix 22
matrix documentation
URL 507
Maximum a posteriori (MAP) 256, 257
maximum likelihood method
data, probability distribution
applying 262-267
URL 267
memory mapping
used, for processing NumPy arrays 148, 149
memory_profiler
reference 135
used, for memory profiling 134, 135
Metaheuristics
URL 348
Metropolis-Hastings algorithm
about 273,278
URL 278
Microsoft Visual Studio
URL 156
Milstein method
URL 448
model evaluation
URL 290
model selection
about 289
URL 290
Monte Carlo methods
URL 438
multidimensional array
using, in NumPy for array
computations 19-23
multiprocessing module 190
multivariate method 243

Naive Bayes
for Natural Language Processing 309
Naive Bayes classifier
references 312
Natural Earth
URL 477
natural language processing
references 313
Navier-Stokes equations
URL 413
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nbconvert
Jupyter notebook, converting 92-97
URL 12,97
nbconvert
Jupyter notebook, converting 91
URL 91
nbformat
URL 91
nbviewer
URL 12,97
NetworkX
flight routes, drawing 457-461
graphs, manipulating 453-456
graphs, visualizing 453-456
NetworkX graph
references 229
visualizing, in Notebook
with D3.js 224-229
Neumann boundary conditions
URL 432
Newton's laws of motion
URL 426
Newton's method
about 341
reference 341
URL 348
nodes 450
noise reduction
URL 390
non-contiguous 137
nonlinear kernels 316
nonlinear least squares
function, fitting to data 349-351
references 351

nonlinear least squares curve fitting 349

nonparametric estimation 268
nonparametric model 245
Notebook

sound synthesizer, creating 408, 409

NPY file format
reference 152
nteract 12
null hypothesis 249
Numba
about 154
Python code, accelerating 161-164
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references 165
URL 161
number-theory module
references 501
Numerical Tours
URL 382
NumExpr
about 154
array computations, accelerating 165-167
references 167
NumPy
about 4
broadcasting rules 141
multidimensional array, using for array
computations 19-23
references 24
stride tricks, using 142-144
unnecessary array copies, avoiding 135-138
URL 4
NumPy arrays
about 149
efficiency 139
processing, with memory mapping 148
reshaping, without copy 140, 141
NumPy broadcasting rules
about 141
references 141
NVIDIA graphics cards (GPUs)
massively parallel code,
writing with CUDA 184-190
Nyquist criterion 361
Nyquist-Shannon sampling theorem 361

0

objective function 336
observation 286
offset 136
Online Python Tutor
reference 133
OpenCL 184
OpenCV (Open Computer Vision)
URL 382
used, for detecting faces in image 401-403
OpenFlights
URL 457




OpenMP

used, for releasing GIL 182-184
ordinary differential equations

URL 507
Ordinary Differential Equations (ODEs)

about 412

references 426

simulating, with SciPy 422-425
Ordinary Least Squares (OLS) regression 296
Ornstein-Uhlenbeck process 444
orthodromic distance 486
Otsu's method

URL 396
outer product 138
out-of-core computations 148
overfitting

about 294

URL 289

P

pandas
about 3
dataset, exploring 245-248
references 249
pandas 0.21
URL 4
pandoc
URL 91
parameter vector 296
parametric estimation method 268
parametric method 244
partial derivatives 412
Partial Differential Equations (PDEs)
about 412
references 431
simulating 427-431
partitions 287
Pearson correlation coefficient
about 261
URL 261
physical system
equilibrium state, finding by potential energy
minimization 352-357
pip 5
pipes 46
plate carrée 270

Plotly
URL 224
podoc module
URL 65
point process 438
points of interest
searching, of image 397-400
Poisson process
about 275
references 441
simulating 438-441
URL 275
polynomial interpolation
with linear regression 297
potential energy
URL 357
Power Spectral Density 365
prediction 243
prime-counting function 499
prime number theorem 499
principal component 327
principal component analysis (PCA)
about 324
data dimensionality, reducing 324-327
principle of minimum energy
URL 358
principle of minimum total
potential energy 357
prior probability distribution 253
probabilistic model 244
probability distribution
applying, to data with maximum likelihood
method 262-267
probability distribution nonparametrically
estimating, with kernel density
estimation 268-273
Probability Mass Function (PMF) 254
probit model
URL 287
profile 125
profiling 127
pstats
reference 131
pull request 62
pure tone 409
PyCall 207
PyCharm 65
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pydot 323
pyjulia 207
Pylint
URL 71
PyMcC3
references 273
PyPy
URL 154
PyTables optimization guide
reference 152
py.test
unit tests, writing 73-77
Python
about 2
C library, wrapping with ctypes 167-171
compilers, using 156
installing 4,5
profiling tools, reference 131
references 5, 155
Python 3
features, using 46-51
references 51, 52
URL 161
Python code
accelerating, with Cython 171-174
accelerating, with Just-In-Time
| compilation 161-164
accelerating, with Numba 161-164
distributing, across multiple cores with
IPython 190-193
improving 156-160
references 73
writing 70-72
Python debuggers
URL 81
Python Enhancement Proposal
number 8 (PEP8)
URL 71
Python Package Index (PyPI)
URL 5
Python Tools for Visual Studio (PTVS) 65
pythreejs 229
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Q

Quasi-Newton methods
about 347
URL 348
Quine-McCluskey algorithm
about 503
URL 504

R
data, analyzing in Jupyter
Notebook 278-283
references 283
URL 278
Rackspace
URL 97
Radial Basis Function (RBF) 316
Random Access Memory (RAM) 139
random forest
about 319
used, for selecting features
for regression 319-322
URL 323
RandomForestRegressor
URL, for APl 323
random graphs 451
random subspace method 323
URL 323
random variable 253
Ray tracing
URL 182
reachability relation 471
reaction-diffusion systems
about 427
references 432
URL 432
Read-Evaluate-Print Loop (REPL) 84
real analysis
references 495
real-valued functions
analyzing 493, 494
rebasing 61




red, green, and blue (RGB) 382
regions 477
regression 287
regression analysis
references 283
regularization
URL 289
regularization term 294
reproducible interactive
computing experiments
conducting 66-69
references 69
RequirelS
URK 107
reStructuredText (reST)
URL 67
ridge regression 294, 297
RISE
URL 97
robust model 289
Rodeo 65
rolling average algorithm
about 145
implementing, with stride tricks 145-147
rolling mean 17
route planner
creating, for road network 481-486
row-major order 140
rpy2
URL 279
Rule
about 110
URL 422
Rule 110 automaton 422
rule of thumb 272

S

Sage
about 488, 507-510
references 508-510
URL 507
sample 286
Scalable Vector Graphics (SVG) 10
scientific Python
references 6

scikit-learn
about 291-296
cross-validation 298
grid search 298
Ordinary Least Squares regression 296
polynomial interpolation,
with linear regression 297
references 299
ridge regression 297
scikit-learn APl 296
text data, handling 309-312
URL 289-308
SciPy
ODEs, simulating 422-425
URL 3
SciPy 1.0
URL 4
SciPy ecosystem 3, 4
Scott's Rule 272
seaborn
references 217, 218
statistical plots, creating 214-217
sequential locality 139
Shapefile
URL 477
shortest paths
in NetworkX, references 486
URL 451
sigmoid function 303
SIMD paradigm 184
Single Instruction, Multiple
Data (SIMD) 135, 164
Singular Value Decomposition (SVD) 327
SnakeViz
reference 131
Sobel filter
URL 391
sounds 382
sound synthesizer
creating, in Notebook 408, 409
spam filtering 287
sparse decomposition 362
sparse matrices
about 149
reference 149
sparse matrix 310
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spatial locality 139
Sphinx
URL 67
Split Bregman algorithm
URL 391
Split Bregman method 390
Spyder 65
state diagram 437
statistical data analysis 242
statistical hypothesis testing
about 249-252
URL 252
statistical inference 243
Statistical Learning
URL 290
statistical plots
creating, with seaborn 214-217
statistics
references 245
stats module
URL 497
Stochastic cellular automata 433
Stochastic Differential Equations (SDEs)
about 434
simulating 444-447
URL 448
stochastic dynamical systems
URL 434
Stochastic Partial Differential
Equations (SPDEs) 434
Stochastic processes
URL 434
stream processors 188
strided indexing scheme 143
strides 140
stride tricks
used, for implementing rolling average
algorithm 145-147
using, in NumPy 142-144
structure tensor
about 400
URL 400
structuring element 396
Sum of Products
URL 503
supervised learning 286
Support Vector Classifier (SVC) 314
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support vector machines (SVM)
references 318
URL 313
using, for classification tasks 313-318
SVD decomposition
URL 327
symbolic computing
exploring, with SymPy 488-491
SymPy
about 487
equations, solving 491, 492
inequalities, solving 491, 492
number theory 498-501
probabilities, computing 495-497
random variables, manipulating 495-497
used, for symbolic computing
exploration 488-491
synthesizer
URL 410

T

t-Distributed Stochastic Neighbor
Embedding (t-SNE)

references 333

term frequency-inverse document

frequency (tf-idf) 312

URL 312

test-driven development (TDD)
about 78
URL 79

test functions for optimization
URL 345

test set 286

test statistic 249

text feature extraction
URL 312

thread 188

Tikhonov regularization
URL 297

timbre 409

time series
about 359, 379
autocorrelation, computing 376-379
references 379, 380

topological sort documentation
URL 467




topological sorting vector 22

dependencies, resolving in directed vectorized instructions 139
acyclic graph 463-467 vectorizer
URL 467 URL 312
total variation 390 Vega 217, 234
total variation denoising 390 Vega-Lite
trace module plots, creating 234-239
reference 133 references 239
training set 286 vertices 450
traitlets package views 140
URL 29 Viola-Jones object detection framework
transition matrix 437 about 402
Travis CI URL 404
URL 78 VirtualBox
two-dimensional array 22 URL 508
vocabulary 310
U voice frequency
URL 407
underfitting 289 Voronoi diagram
Uniform Manifold Approximation computing, of set of points 471-477
and Projection (UMAP) URL 477
URL 332
uninformative priors W
URL 257
unit tests wavelet transform 369
test coverage 78 white box model 323
workflows 78 white noise
writing, with py.test 73-77 URL 448
univariate method 243 Wiener process
Unix shell URL 444
about 42-46 Windows compilers
references 46 URL 156
unsupervised learning Windows operating system
about 286, 287 URL 42
clustering 288 Wolfram code
density estimation 288 URL 422
dimension reduction 288
manifold learning 288 X
methods 324
URL 328 xarray library
URL 224
v Z
Vandermonde matrix
URL 297 Zachary's Karate Club graph 225
variable 286 ZeroMQ (ZMQ)

variance 289 URL 84
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