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Preface
We are becoming awash in the flood of digital data from scientific research, engineering, 
economics, politics, journalism, business, and many other domains. As a result, analyzing, 
visualizing, and harnessing data is the occupation of an increasingly large and diverse set 
of people. Quantitative skills such as programming, numerical computing, mathematics, 
statistics, and data mining, which form the core of data science, are more and more 
appreciated in a seemingly endless plethora of fields.

Python, a widely-known programming language, is also one of the leading open platforms  
for data science. IPython is a mature Python project that provides scientist-friendly interactive 
access to Python. It is part of the broader Project Jupyter, which aims to provide high-quality 
environments for interactive computing, data analysis, visualization, and the authoring of 
interactive scientific documents. Jupyter is estimated to have several million users today.

The prequel of this book, Learning IPython for Interactive Computing and Data Visualization 
Second Edition, Packt Publishing was published in 2015, two years after the first edition. It is 
a beginner-level introduction to data science and numerical computing with Python, IPython, 
and Jupyter.

This book, the first edition of which was published in 2014, continues that journey by 
presenting more than 100 recipes for interactive scientific computing and data science. These 
recipes not only cover programming topics such as numerical computing, high-performance 
computing, parallel computing, and interactive visualization, but also data analysis topics 
such as statistics, data mining, machine learning, signal processing, graph theory, numerical 
optimization, and many others.

This second edition is fully compatible with the latest versions of the platform and its libraries. 
It includes new recipes to better leverage the latest features of Python 3, and it introduces 
promising new projects such as JupyterLab, Altair, and Dask.
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By design, this book privileges breadth over depth. A particularly wide 
range of libraries and techniques are covered in this book, but not 
comprehensively. We give many references that let you deepen your 
knowledge of individual methods. The goal of this book is not to make you 
an expert of the subjects covered, but to give you a glimpse of the extremely 
diverse set of applications that you can tackle with the platform.
All the recipes in this book, which cover a specific techniques, are available 
online as a Jupyter notebook. This interactive document lets you read, 
execute, and modify the code interactively, which makes the learning 
process more engaging and dynamic.
Almost all of this book's content is available online on the GitHub platform 
(http://ipython-books.github.io/). Updates and corrections will 
be regularly published there, so you should make sure you check out the 
latest version of the book online.

Who this book is for
This book targets researchers, engineers, data scientists, teachers, students, analysts, 
journalists, economists, and hobbyists interested in data analysis and numerical computing.

Readers familiar with the scientific Python ecosystem will find many resources to sharpen 
their skills in high-performance interactive computing with IPython and Jupyter.

Readers who need to implement algorithms for domain-specific applications will appreciate 
the introductions to a wide variety of topics in data analysis and applied mathematics.

Readers who are new to numerical computing with Python should start with the prequel of 
this book, Learning IPython for Interactive Computing and Data Visualization Second Edition, 
Packt Publishing published in 2015.

What this book covers
This book is split into two parts:

Part 1 (chapters 1 to 6) covers relatively advanced methods in interactive numerical 
computing, high-performance computing, and data visualization.

Part 2 (chapters 7 to 15) introduces standard methods in data science and mathematical 
modeling. Many of these methods are applied to real-world data.

http://ipython-books.github.io/
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Part 1 – Interactive Computing with Jupyter
Chapter 1, A Tour of Interactive Computing with Jupyter and IPython, contains a brief 
introduction to data analysis and numerical computing with IPython and Jupyter. It not only 
covers common packages such as Python, NumPy, pandas, and Matplotlib, but also advanced 
IPython/Jupyter topics such as interactive widgets in the Notebook, custom magic commands, 
configurable IPython extensions, and custom Jupyter kernels.

Chapter 2, Best Practices in Interactive Computing, details best practices to write 
reproducible, high-quality code: task automation, version control with Git, workflows with 
IPython and Jupyter, unit testing, continuous integration, debugging, and other related  
topics. The importance of these subjects in computational research and data analysis  
cannot be overstated.

Chapter 3, Mastering the Jupyter Notebook, covers topics related to the Jupyter Notebook, 
notably the Notebook format, notebook conversions, and interactive widgets.

Chapter 4, Profiling and Optimization, covers methods to make your code faster and more 
efficient: CPU and memory profiling in Python, advanced optimization techniques with NumPy 
(including large array manipulations), and memory mapping of huge arrays. These techniques 
are essential for big data analysis.

Chapter 5, High-Performance Computing, covers techniques to make your code much faster: 
code acceleration with Numba and Cython, wrapping C libraries in Python with ctypes, parallel 
computing with IPython and Dask, OpenMP, and General-Purpose Computing on Graphics 
Processing Units (GPGPU) with CUDA. The chapter ends with an introduction to the Julia 
language, a high-performance numerical computing programming language that can be  
used in the Jupyter Notebook.

Chapter 6, Data Visualization, introduces several visualization or interactive visualization 
libraries, such as matplotlib, seaborn, bokeh, D3, Altair, and others.

Part 2 – Standard Methods in Data Science and Applied 
Mathematics
Chapter 7, Statistical Data Analysis, covers methods for getting insights into data. It 
introduces classic frequentist and Bayesian methods for hypothesis testing, parametric and 
nonparametric estimation, and model inference. The chapter leverages Python libraries such 
as pandas, SciPy, statsmodels, and PyMC. The last recipe introduces the statistical 
language R, which can be easily used in the Jupyter Notebook.

Chapter 8, Machine Learning, covers methods to learn and make predictions from data. Using 
the scikit-learn Python package, this chapter illustrates fundamental data mining and 
machine learning concepts such as supervised and unsupervised learning, classification, 
regression, feature selection, feature extraction, overfitting, regularization, cross-validation, 
and grid search. Algorithms addressed in this chapter include logistic regression, Naive Bayes, 
K-nearest neighbors, support vector machines, random forests, and others. These methods 
are applied to various types of datasets: numerical data, images, and text.
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Chapter 9, Numerical Optimization, covers minimizing and maximizing mathematical 
functions. This topic is pervasive in data science, notably in statistics, machine learning,  
and signal processing. This chapter illustrates a few root-finding, minimization, and curve-
fitting routines with SciPy.

Chapter 10, Signal Processing, covers extracting relevant information from complex and 
noisy data. These steps are sometimes required prior to running statistical and data mining 
algorithms. This chapter introduces basic signal processing methods such as Fourier 
transforms and digital filters.

Chapter 11, Image and Audio Processing, covers signal processing methods for images and 
sounds. It introduces image filtering, segmentation, computer vision, and face detection with 
scikit-image and OpenCV. It also presents methods for audio processing and synthesis.

Chapter 12, Deterministic Dynamical Systems, describes the dynamical processes underlying 
particular types of data. It illustrates simulation techniques for discrete-time dynamical 
systems, as well as for ordinary differential equations and partial differential equations.

Chapter 13, Stochastic Dynamical Systems, describes the dynamical random processes 
underlying particular types of data. It illustrates simulation techniques for discrete-time 
Markov chains, point processes, and stochastic differential equations.

Chapter 14, Graphs, Geometry, and Geographic Information Systems, covers analysis and 
visualization methods for graphs, flight networks, road networks, maps, and geographic data.

Chapter 15, Symbolic and Numerical Mathematics, introduces SymPy, a computer algebra 
system that brings symbolic computing to Python. The chapter ends with an introduction to 
Sage, another Python-based system for computational mathematics.

To get the most out of this book
This book is accessible to beginners. However, it may be easier for you if you are familiar  
with the contents of Learning IPython for Interactive Computing and Data Visualization, 
Second Edition, Packt Publishing (also called the "IPython minibook"), the prequel of this book. 
The minibook introduces Python programming, the IPython console, the Jupyter Notebook, 
numerical computing with NumPy, basic data analysis with pandas, and plotting with 
Matplotlib. This book tackles scientific programming topics that rely on all of  
these tools.

Part 2 is a bit more theoretical. It is easier to read if you know the basics of calculus, linear 
algebra, and probability theory (real-valued functions, integrals and derivatives, differential 
equations, matrices, vector spaces, probabilities, random variables, and so on). These 
chapters introduce different topics in data science and applied mathematics, and how 
to apply them with Python: statistics, machine learning, numerical optimization, signal 
processing, dynamical systems, graph theory, and others.
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Installing Python
This book uses the free Anaconda distribution (https://www.anaconda.com/
download/). It includes Python 3, IPython, Jupyter, and almost all of the packages that 
we will be using in this book. Anaconda also includes a powerful packaging system named 
Conda. The introduction of this book's first chapter gives you more details.

The code of this book has been written for Python 3 and is incompatible with older versions of 
Python, Python 2 (although minimal to no changes would be required to make it compatible).

GitHub repositories
This book has a website: http://ipython-books.github.io. The text, the code, and 
the data from the book are available on several GitHub repositories at https://github.
com/ipython-books/. You can also run the code interactively in your web browser without 
installing anything on your computer, thanks to the Binder project.

Be sure to check out http://ipython-books.github.io and the repositories to get the 
latest updates and corrections. You can also propose your own corrections and suggestions 
on GitHub by opening issues or pull requests.

You can also follow the author online (http://cyrille.rossant.net) and on Twitter  
(@cyrillerossant).

Download the example code files
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.

2.	 Select the SUPPORT tab.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://ipython-books.github.io
https://github.com/ipython-books/
https://github.com/ipython-books/
http://ipython-books.github.io
http://cyrille.rossant.net
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
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The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/IPython-Interactive-Computing-and-Visualization-
Cookbook-Second-Edition. We also have other code bundles from our rich catalog  
of books and videos available at https://github.com/PacktPublishing/. Check  
them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/
diagrams used in this book. You can download it here: https://
www.packtpub.com/sites/default/files/downloads/
IPythonInteractiveComputingandVisualizationCookbookSecondEdition_
ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, 
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: 
« The new np.block() function lets one define block matrices."

A block of code is set as follows:

>>> print("Hello world!")
Hello world!

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

>>> print("Hello world!")
Hello world!

Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

     /etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. Here is an 
example: "Select System info from the Administration panel."

https://github.com/PacktPublishing/IPython-Interactive-Computing-and-Visualization-Cookbook-Second-Edition
https://github.com/PacktPublishing/IPython-Interactive-Computing-and-Visualization-Cookbook-Second-Edition
https://github.com/PacktPublishing/IPython-Interactive-Computing-and-Visualization-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/IPythonInteractiveComputingandVisualizationCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/IPythonInteractiveComputingandVisualizationCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/IPythonInteractiveComputingandVisualizationCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/IPythonInteractiveComputingandVisualizationCookbookSecondEdition_ColorImages.pdf
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do 
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous 
section.

There's more…
This section consists of additional information about the recipe in order to make you more 
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book's title in the 
subject of your message. If you have questions about any aspect of this book, please email us 
at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book we would be grateful if you would report 
this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, 
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we 
would be grateful if you would provide us with the location address or website name. Please 
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and 
you are interested in either writing or contributing to a book, please visit http://authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about our 
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
packtpub.com
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1
A Tour of Interactive 

Computing with  
Jupyter and IPython

In this chapter, we will cover the following topics:

ff Introducing IPython and the Jupyter Notebook

ff Getting started with exploratory data analysis in the Jupyter Notebook

ff Introducing the multidimensional array in NumPy for fast array computations

ff Creating an IPython extension with custom magic commands

ff Mastering IPython's configuration system

ff Creating a simple kernel for Jupyter

Introduction
In this introduction, we will give a broad overview of Python, IPython, Jupyter, and the scientific 
Python ecosystem.
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What is Python?
Python is a high-level, open-source, general-purpose programming language originally 
conceived by Guido van Rossum in the late 1980s (the name was inspired by the British 
comedy Monty Python's Flying Circus). This easy-to-use language is commonly used by system 
administrators as a glue language, linking various system components together. It is also 
a robust language for large-scale software development. In addition, Python comes with 
an extremely rich standard library (the batteries included philosophy), which covers string 
processing, internet protocols, operating system interfaces, and many other domains.

In the last twenty years, Python has been increasingly used for scientific computing and data 
analysis as well. Other competing platforms include commercial software such as MATLAB, 
Maple, Mathematica, Excel, SPSS, SAS, and others. Competing open-source platforms  
include Julia, R, Octave, and Scilab. These tools are dedicated to scientific computing, 
whereas Python is a general-purpose programming language that was not initially  
designed for scientific computing.

However, a wide ecosystem of tools has been developed to bring Python to the level of these 
other scientific computing systems. Today, the main advantage of Python, and one of the 
main reasons why it is so popular, is that it brings scientific computing features to a general-
purpose language that is used in many research areas and industries. This makes the 
transition from research to production much easier.

What is IPython?
IPython is a Python library that was originally meant to improve the default interactive console 
provided by Python, and to make it scientist-friendly. In 2011, ten years after the first release 
of IPython, the IPython Notebook was introduced. This web-based interface to IPython 
combines code, text, mathematical expressions, inline plots, interactive figures, widgets, 
graphical interfaces, and other rich media within a standalone sharable web document. This 
platform provides an ideal gateway to interactive scientific computing and data analysis. 
IPython has become essential to researchers, engineers, data scientists, and teachers and  
their students.

What is Jupyter?
Within a few years, IPython gained an incredible popularity among the scientific and 
engineering communities. The Notebook started to support more and more programming 
languages beyond Python. In 2014, the IPython developers announced the Jupyter project, 
an initiative created to improve the implementation of the Notebook and make it language-
agnostic by design. The name of the project reflects the importance of three of the main 
scientific computing languages supported by the Notebook: Julia, Python, and R.
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Today, Jupyter is an ecosystem by itself that comprehends several alternative Notebook 
interfaces (JupyterLab, nteract, Hydrogen, and others), interactive visualization libraries, and 
authoring tools compatible with notebooks. Jupyter has its own conference named JupyterCon. 
The project received funding from several companies as well as the Alfred P. Sloan Foundation 
and the Gordon and Betty Moore Foundation.

What is the SciPy ecosystem?
SciPy is the name of a Python package for scientific computing, but it refers also, more 
generally, to the collection of all Python tools that have been developed to bring scientific 
computing features to Python.

In the late 1990s, Travis Oliphant and others started to build efficient tools to deal with 
numerical data in Python: Numeric, Numarray, and finally, NumPy. SciPy, which implements 
many numerical computing algorithms, was also created on top of NumPy. In the early 2000s, 
John Hunter created Matplotlib to bring scientific graphics to Python. At the same time, 
Fernando Perez created IPython to improve interactivity and productivity in Python. In the late 
2000s, Wes McKinney created pandas for the manipulation and analysis of numerical tables 
and time series. Since then, hundreds of engineers and researchers collaboratively worked on 
this platform to make SciPy one of the leading open source platforms for scientific computing 
and data science.

Many of the SciPy tools are supported by NumFOCUS, a nonprofit that was 
created as a legal structure to promote the sustainable development of the 
ecosystem. NumFOCUS is supported by several large companies including 
Microsoft, IBM, and Intel.

SciPy has its own conferences, too: SciPy (in the US) and EuroSciPy (in Europe) (see 
HTTPS://CONFERENCE.SCIPY.ORG/).

What's new in the SciPy ecosystem?
What are some of the main changes in the SciPy ecosystem since the first edition of this book, 
published in 2014? We give here a very brief selection.

Feel free to skip this section if you are new to the platform.

The last version of IPython at the time of writing is IPython 6.0, released in April 2017. It is the 
first version of IPython that is no longer compatible with Python 2. This decision allowed the 
developers to make the internal code simpler and to make better use of the new features of 
the language.

HTTPS://CONFERENCE.SCIPY.ORG/
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IPython now has a web-based Terminal interface that can be used along with notebooks. 
Keyboard shortcuts can be edited directly from the Notebook interface. Multiple cells can be 
selected and copy/pasted between notebooks. There is a new restart-and-run-all button and 
a find-and-replace option in the Notebook. See http://ipython.readthedocs.io/en/
stable/whatsnew/version6.html for more details.

NumPy, which last version 1.13 was released in June 2017, now supports the @ matrix 
multiplication operator between matrices (it was previously accessible via the np.dot() 
function). Operations such as a + b + c use less memory and are faster on some systems 
(temporary elision). The new np.block() function lets one define block matrices. The new 
np.stack() function joins a sequence of arrays along a new axis. See https://docs.
scipy.org/doc/numpy-1.13.0/release.html for more details.

SciPy 1.0 was released in October 2017. For the developers, the 1.0 version means that  
the library has reached some stability and maturity after 16 years of development. See 
https://docs.scipy.org/doc/scipy/reference/release.html for more details.

Matplotlib, of which version 2.1 was released in October 2017, has an improved styling and 
a much better default color palette with the viridis colormap instead of jet. See https://
github.com/matplotlib/matplotlib/releases for more details.

pandas 0.21 was released in October 2017. pandas now supports categorical data. Several 
deprecations were done in the past years, with the deprecation of the .ix syntax and Panels 
(which may be replaced via the xarray library). See https://pandas.pydata.org/
pandas-docs/stable/release.html for more details.

How to install Python
In this book, we use the Anaconda distribution, which is available at https://www.
anaconda.com/download/. Anaconda works on Linux, macOS, and Windows. You should 
install the latest version of Anaconda (5.0.1 at the time of writing) with the latest 64-bit 
version of Python (3.6 at the time of writing). Python 2.7 is an old version that will be officially 
unsupported in 2020.

Anaconda comes with Python, IPython, Jupyter, NumPy, SciPy, pandas, Matplotlib, and almost 
all of the other scientific packages we will be using in this book. The list of all packages is 
available at https://docs.anaconda.com/anaconda/packages/pkg-docs.

Miniconda is a light version of Anaconda with only Python and a few other 
essential packages. You can install only the packages you need one by one 
using the conda package manager of Anaconda.

We won't cover in this book the various other ways of installing a scientific Python distribution.

http://ipython.readthedocs.io/en/stable/whatsnew/version6.html
http://ipython.readthedocs.io/en/stable/whatsnew/version6.html
https://docs.scipy.org/doc/numpy-1.13.0/release.html
https://docs.scipy.org/doc/numpy-1.13.0/release.html
https://docs.scipy.org/doc/scipy/reference/release.html
https://github.com/matplotlib/matplotlib/releases
https://github.com/matplotlib/matplotlib/releases
https://pandas.pydata.org/pandas-docs/stable/release.html
https://pandas.pydata.org/pandas-docs/stable/release.html
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://docs.anaconda.com/anaconda/packages/pkg-docs
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The Anaconda website should give you all the instructions to install Anaconda on your system. 
To install new packages, you can use the conda package manager that comes with Anaconda. 
For example, to install the ipyparallel package (which is currently not installed by default 
in Anaconda), type conda install ipyparallel in a system shell.

A short introduction to system shells is given in the Learning the basics of the 
Unix shell section of Chapter 2, Best Practices in Interactive Computing.

Another way of installing packages is with conda-forge, available at https://conda-
forge.org/. This is a community-driven effort to automatically build the latest versions 
of packages available on GitHub, and make them available with conda. If a package is not 
available with conda install somepackage, one may use instead conda install 
--channel conda-forge somepackage if the package is supported by conda-forge.

GitHub is a commercial service that provides free and paid hosting for 
software repositories. It is one of the most popular platforms for open source 
collaborative development.

pip is the Python system manager. Contrary to conda, pip works with any Python distribution, 
not just with Anaconda. Packages installable by pip are stored on the Python Package Index 
(PyPI) available at https://pypi.python.org/pypi.

Almost all Python packages available in conda are also available in pip, but the inverse is not 
true. In practice, if a package is not available in conda or conda-forge, it should be available 
with pip install somepackage. conda packages typically include binaries compiled for 
the most common platforms, whereas that is not necessarily the case with pip packages. 
pip packages may contain source code that has to be compiled locally (which requires that a 
compatible compiler is installed and configured), but they may also contain compiled binaries.

References
Here are a few references:

ff The Python web page at https://www.python.org

ff Python on Wikipedia at https://en.wikipedia.org/wiki/
Python_%28programming_language%29

ff Python's standard library at https://docs.python.org/3/library/

ff Conversation with Guido van Rossum on the birth of Python available at http://
www.artima.com/intv/pythonP.html

ff History of scientific Python available at http://fr.slideshare.net/
shoheihido/sci-pyhistory

https://conda-forge.org/
https://conda-forge.org/
https://pypi.python.org/pypi
https://www.python.org
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://docs.python.org/3/library/ 
http://www.artima.com/intv/pythonP.html 
http://www.artima.com/intv/pythonP.html 
http://fr.slideshare.net/shoheihido/sci-pyhistory 
http://fr.slideshare.net/shoheihido/sci-pyhistory 
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ff History of the Jupyter Notebook at http://blog.fperez.org/2012/01/
ipython-notebook-historical.html

ff JupyterCon at https://conferences.oreilly.com/jupyter/jup-ny

Here are a few resources on scientific Python:

ff Introduction to Python for Computational Science and Engineering, at https://
github.com/fangohr/introduction-to-python-for-computational-
science-and-engineering

ff Statistical Computing and Computation, at http://people.duke.edu/~ccc14/
sta-663-2017/

ff SciPy 2017 videos at https://www.youtube.com/playlist?list=PLYx7XA2n
Y5GfdAFycPLBdUDOUtdQIVoMf

Introducing IPython and the Jupyter 
Notebook

The Jupyter Notebook is a web-based interactive environment that combines code, rich text, 
images, videos, animations, mathematical equations, plots, maps, interactive figures and 
widgets, and graphical user interfaces, into a single document. This tool is an ideal gateway 
to high-performance numerical computing and data science in Python, R, Julia, or other 
languages. In this book, we will mostly use the Python language, although there are recipes 
introducing R and Julia.

In this recipe, we give an introduction to IPython and the Jupyter Notebook.

Getting ready
This chapter's introduction gives the instructions to install the Anaconda distribution,  
which comes with Jupyter and almost all Python libraries we will be using in this book.

Once Anaconda is installed, download the code from the book's website and open a Terminal 
in that folder. In the Terminal, type jupyter notebook. Your default web browser should 
open automatically and load the address http://localhost:8888 (a server that runs on 
your computer). You're ready to get started!

How to do it...
1.	 Let's create a new Jupyter notebook using an IPython kernel. We type the following 

command in a cell, and press Shift + Enter to evaluate it:
>>> print("Hello world!")
Hello world!

http://blog.fperez.org/2012/01/ipython-notebook-historical.html 
http://blog.fperez.org/2012/01/ipython-notebook-historical.html 
https://conferences.oreilly.com/jupyter/jup-ny 
https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering 
https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering 
https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering 
http://people.duke.edu/~ccc14/sta-663-2017/
http://people.duke.edu/~ccc14/sta-663-2017/
https://www.youtube.com/playlist?list=PLYx7XA2nY5GfdAFycPLBdUDOUtdQIVoMf
https://www.youtube.com/playlist?list=PLYx7XA2nY5GfdAFycPLBdUDOUtdQIVoMf
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A notebook contains a linear succession of cells and output areas. A cell contains 
Python code, in one or multiple lines. The output of the code is shown in the 
corresponding output area.

In this book, the prompt >>> means that you need to type 
everything that starts after it. The >>> characters themselves 
should not be typed.

2.	 Now, we do a simple arithmetic operation:
>>> 2 + 2
4

The result of the operation is shown in the output area. More precisely, the output 
area not only displays text that is printed by any command in the cell, but it also 
displays a text representation of the last returned object. Here, the last returned 
object is the result of 2 + 2, that is, 4.

3.	 In the next cell, we can recover the value of the last returned object with  
the _ (underscore) special variable. In practice, it might be more convenient  
to assign objects to named variables such as in myresult = 2 + 2.
>>> _ * 3
12

4.	 IPython not only accepts Python code, but also shell commands. These commands 
are provided by the operating system. We first type ! in a cell before typing the  
shell command. Here, assuming a Linux or macOS system, we get the list of all  
the notebooks in the current directory:
>>> !ls
my_notebook.ipynb

On Windows, one may replace ls by dir.
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5.	 IPython comes with a library of magic commands. These commands are convenient 
shortcuts to common actions. They all start with % (the percent character). We can 
get the list of all magic commands with %lsmagic:
>>> %lsmagic
Available line magics:
%alias  %alias_magic  %autocall  %automagic  %autosave  %bookmark  
%cat  %cd  %clear  %colors  %config  %connect_info  %cp  %debug  
%dhist  %dirs  %doctest_mode  %ed  %edit  %env  %gui  %hist  
%history  %killbgscripts  %ldir  %less  %lf  %lk  %ll  %load  
%load_ext  %loadpy  %logoff  %logon  %logstart  %logstate  
%logstop  %ls  %lsmagic  %lx  %macro  %magic  %man  %matplotlib  
%mkdir  %more  %mv  %notebook  %page  %pastebin  %pdb  %pdef  
%pdoc  %pfile  %pinfo  %pinfo2  %popd  %pprint  %precision  
%profile  %prun  %psearch  %psource  %pushd  %pwd  %pycat  %pylab  
%qtconsole  %quickref  %recall  %rehashx  %reload_ext  %rep  
%rerun  %reset  %reset_selective  %rm  %rmdir  %run  %save  %sc  
%set_env  %store  %sx  %system  %tb  %time  %timeit  %unalias  
%unload_ext  %who  %who_ls  %whos  %xdel  %xmode
Available cell magics:
%%!  %%HTML  %%SVG  %%bash  %%capture  %%debug  %%file  %%html  
%%javascript  %%js  %%latex  %%markdown  %%perl  %%prun  %%pypy  
%%python  %%python2  %%python3  %%ruby  %%script  %%sh  %%svg  
%%sx  %%system  %%time  %%timeit  %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

Cell magics have a %% prefix; they target entire code cells.

6.	 For example, the %%writefile cell magic lets us create a text file. This magic 
command accepts a filename as an argument. All the remaining lines in the cell  
are directly written to this text file. Here, we create a test.txt file and write  
Hello world! into it:
>>> %%writefile test.txt
    Hello world!
Writing test.txt
>>> # Let's check what this file contains.
    with open('test.txt', 'r') as f:
        print(f.read())
Hello world!

7.	 As we can see in the output of %lsmagic, there are many magic commands in 
IPython. We can find more information about any command by adding ? after it. 
For example, to get some help about the %run magic command, we type %run? as 
shown here:
>>> %run?
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The pager (a text area at the bottom of the screen) opens and shows the help of the 
%run magic command.

8.	 We covered the basics of IPython and the Notebook. Let's now turn to the rich display 
and interactive features of the Notebook. Until now, we have only created code cells 
(containing code). Jupyter supports other types of cells. In the Notebook toolbar, there 
is a drop-down menu to select the cell's type. The most common cell type after the 
code cell is the Markdown cell.

Markdown cells contain rich text formatted with Markdown, a popular plain text- 
formatting syntax. This format supports normal text, headers, bold, italics, hypertext 
links, images, mathematical equations in LaTeX (a typesetting system adapted to 
mathematics), code, HTML elements, and other features, as shown here:

Markdown cell
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Running a Markdown cell (by pressing Shift + Enter, for example) displays the output, 
as shown in the bottom panel of the preceding screenshot.

By combining code cells and Markdown cells, we create a standalone interactive 
document that combines computations (code), text, and graphics.

9.	 The Jupyter Notebook also comes with a sophisticated display system that lets us 
insert rich web elements in the Notebook. Here, we show how to add HTML, Scalable 
Vector Graphics (SVG), and even YouTube videos in a notebook. First, we need to 
import some classes:
>>> from IPython.display import HTML, SVG, YouTubeVideo

10.	 We create an HTML table dynamically with Python, and we display it in the (HTML-
based) notebook.
>>> HTML('''
    <table style="border: 2px solid black;">
    ''' +
         ''.join(['<tr>' +
                  ''.join([f'<td>{row},{col}</td>'
                           for col in range(5)]) +
                  '</tr>' for row in range(5)]) +
         '''
    </table>
    ''')

11.	 Similarly, we create an SVG image dynamically:
>>> SVG('''<svg width="600" height="80">''' +
        ''.join([f'''<circle
                  cx="{(30 + 3*i) * (10 - i)}"
                  cy="30"
                  r="{3. * float(i)}"
                  fill="red"
                  stroke-width="2"
                  stroke="black">
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            </circle>''' for i in range(10)]) +
        '''</svg>''')

12.	 We display a YouTube video by giving its identifier to YoutubeVideo:

>>> YouTubeVideo('VQBZ2MqWBZI')

There's more...
Notebooks are saved as structured text files (JSON format), which makes them easily 
shareable. Here are the contents of a simple notebook:

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
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   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hello world!\n"
     ]
    }
   ],
   "source": [
    "print(\"Hello world!\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}

Jupyter comes with a special tool, nbconvert, which converts notebooks to other formats such 
as HTML and PDF (https://nbconvert.readthedocs.io/en/stable/).

Another online tool, nbviewer (http://nbviewer.jupyter.org), allows us to render a 
publicly-available notebook directly in the browser.

We will cover many of these possibilities in subsequent chapters, notably in Chapter 3, 
Mastering the Jupyter Notebook.

There are other implementations of Jupyter Notebook frontends that offer different ways of 
interacting with the same notebook documents. JupyterLab, an IDE for interactive computing 
and data science, is the future of the Jupyter Notebook. It is introduced in Chapter 3, 
Mastering the Jupyter Notebook. nteract is a desktop application that lets the user open a 
notebook file by double-clicking on it, without using the Terminal and using a web browser. 
Hydrogen is a plugin of the Atom text editor that provides rich interactive capabilities when 
opening notebook files. Juno is a Jupyter Notebook client for iPad.

Here are a few references about the Notebook:

ff Installing Jupyter, available at http://jupyter.org/install.html

ff Documentation of the Notebook available at http://jupyter.readthedocs.io/
en/latest/index.html

ff Security in Jupyter notebooks, at https://jupyter-notebook.readthedocs.
io/en/stable/security.html#Security-in-notebook-documents

https://nbconvert.readthedocs.io/en/stable/
http://nbviewer.jupyter.org
http://jupyter.org/install.html 
http://jupyter.readthedocs.io/en/latest/index.html 
http://jupyter.readthedocs.io/en/latest/index.html 
https://jupyter-notebook.readthedocs.io/en/stable/security.html#Security-in-notebook-documents 
https://jupyter-notebook.readthedocs.io/en/stable/security.html#Security-in-notebook-documents 


Chapter 1

13

ff User-curated gallery of interesting notebooks available at https://github.com/
jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

ff JupyterLab at https://github.com/jupyterlab/jupyterlab

ff nteract at https://nteract.io

ff Hydrogen at https://nteract.io/atom

ff Juno at https://juno.sh/

See also
ff The Getting started with exploratory data analysis in the Jupyter Notebook recipe

ff The Introducing JupyterLab recipe in Chapter 3, Mastering the Jupyter Notebook

Getting started with exploratory data 
analysis in the Jupyter Notebook

In this recipe, we will give an introduction to IPython and Jupyter for data analysis. Most of 
the subject has been covered in the prequel of this book, Learning IPython for Interactive 
Computing and Data Visualization, Second Edition, Packt Publishing, but we will review the 
basics here.

We will download and analyze a dataset about attendance on Montreal's bicycle tracks. 
This example is largely inspired by a presentation from Julia Evans (available at https://
github.com/jvns/talks/blob/master/2013-04-mtlpy/pistes-cyclables.
ipynb). Specifically, we will introduce the following:

ff Data manipulation with pandas

ff Data visualization with Matplotlib

ff Interactive widgets

How to do it...
1.	 The very first step is to import the scientific packages we will be using in this recipe, 

namely NumPy, pandas, and Matplotlib. We also instruct Matplotlib to render the 
figures as inline images in the Notebook:
>>> import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline

https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyterlab/jupyterlab
https://nteract.io
https://nteract.io/atom
https://juno.sh/
https://github.com/jvns/talks/blob/master/2013-04-mtlpy/pistes-cyclables.ipynb
https://github.com/jvns/talks/blob/master/2013-04-mtlpy/pistes-cyclables.ipynb
https://github.com/jvns/talks/blob/master/2013-04-mtlpy/pistes-cyclables.ipynb
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We can enable high-resolution Matplotlib figures on Retina display 
systems with the following commands:
from IPython.display import set_matplotlib_formats

set_matplotlib_formats('retina')

2.	 Now, we create a new Python variable called url that contains the address to a 
Comma-separated Values (CSV) data file. This standard text-based file format is used 
to store tabular data:
>>> url = ("https://raw.githubusercontent.com/"
           "ipython-books/cookbook-2nd-data/"
           "master/bikes.csv")

3.	 pandas defines a read_csv() function that can read any CSV file. Here, we pass 
the URL to the file. pandas will automatically download the file, parse it, and return a 
DataFrame object. We need to specify a few options to make sure that the dates are 
parsed correctly:
>>> df = pd.read_csv(url, index_col='Date',
                     parse_dates=True, dayfirst=True)

4.	 The df variable contains a DataFrame object, a specific pandas data structure that 
contains 2D tabular data. The head(n) method displays the first n rows of this table. 
In the Notebook, pandas displays a DataFrame object in an HTML table, as shown in 
the following screenshot:
>>> df.head(2)

Here, every row contains the number of bicycles on every track of the city, for every 
day of the year.

5.	 We can get some summary statistics of the table with the describe() method:
>>> df.describe()
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6.	 Let's display some figures. We will plot the daily attendance of two tracks. First, we 
select the two columns, Berri1 and PierDup. Then, we call the plot() method:
>>> df[['Berri1', 'PierDup']].plot(figsize=(10, 6),
                                   style=['-', '--'],
                                   lw=2)

7.	 Now, we move to a slightly more advanced analysis. We will look at the attendance of 
all tracks as a function of the weekday. We can get the weekday easily with pandas: 
the index attribute of the DataFrame object contains the dates of all rows in the 
table. This index has a few date-related attributes, including weekday_name:
>>> df.index.weekday_name
Index(['Tuesday', 'Wednesday', 'Thursday', 'Friday',
       'Saturday', 'Sunday', 'Monday', 'Tuesday',
       ...



A Tour of Interactive Computing with Jupyter and IPython

16

       'Friday', 'Saturday', 'Sunday', 'Monday',
       'Tuesday', 'Wednesday'],
      dtype='object', name='Date', length=261)

8.	 To get the attendance as a function of the weekday, we need to group the table 
elements by the weekday. The groupby() method lets us do just that. We use 
weekday instead of weekday_name to keep the weekday order (Monday is 0, 
Tuesday is 1, and so on). Once grouped, we can sum all rows in every group:
>>> df_week = df.groupby(df.index.weekday).sum()
>>> df_week

9.	 We can now display this information in a figure. We create a Matplotlib figure, and we 
use the plot() method of DataFrame to create our plot:
>>> fig, ax = plt.subplots(1, 1, figsize=(10, 8))
    df_week.plot(style='-o', lw=3, ax=ax)
    ax.set_xlabel('Weekday')
    # We replace the labels 0, 1, 2... by the weekday
    # names.
    ax.set_xticklabels(
        ('Monday,Tuesday,Wednesday,Thursday,'
         'Friday,Saturday,Sunday').split(','))
    ax.set_ylim(0)  # Set the bottom axis to 0.



Chapter 1

17

10.	 Finally, let's illustrate the interactive capabilities of the Notebook. We will plot a 
smoothed version of the track attendance as a function of time (rolling mean). The 
idea is to compute the mean value in the neighborhood of any day. The larger the 
neighborhood, the smoother the curve. We will create an interactive slider in the 
Notebook to vary this parameter in real time in the plot. All we have to do is add  
the @interact decorator above our plotting function:
>>> from ipywidgets import interact
    
    @interact
    def plot(n=(1, 30)):
        fig, ax = plt.subplots(1, 1, figsize=(10, 8))
        df['Berri1'].rolling(window=n).mean().plot(ax=ax)
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        ax.set_ylim(0, 7000)
        plt.show()

How it works...
To create Matplotlib figures, it is good practice to create a Figure (fig) and one or several 
Axes (subplots, ax object) objects with the plt.subplots() command. The figsize 
keyword argument lets us specify the size of the figure, in inches. Then, we call plotting 
methods directly on the Axes instances. Here, for example, we set the y limits of the axis with 
the set_ylim() method. If there are existing plotting commands, like the plot() method 
provided by pandas on DataFrame instances, we can pass the relevant Axis instance with the 
ax keyword argument.
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There's more...
pandas is the main data wrangling library in Python. Other tools and methods are generally 
required for more advanced analyses (signal processing, statistics, and mathematical 
modeling). We will cover these steps in the second part of this book, starting with Chapter 7, 
Statistical Data Analysis.

Here are some more references about data manipulation with pandas:

ff Learning IPython for Interactive Computing and Data Visualization, Second Edition, 
Packt Publishing, the prequel of this book

ff Python for Data Analysis, O'Reilly Media, by Wes McKinney, the creator of pandas, at 
http://shop.oreilly.com/product/0636920023784.do

ff Python Data Science Handbook, O'Reilly Media, by Jake VanderPlas, at http://
shop.oreilly.com/product/0636920034919.do

ff The documentation of pandas available at http://pandas.pydata.org/
pandas-docs/stable/

ff Usage guide of Matplotlib, at https://matplotlib.org/tutorials/
introductory/usage.html

See also
ff The Introducing the multidimensional array in NumPy for fast array  

computations recipe

Introducing the multidimensional array in 
NumPy for fast array computations

NumPy is the main foundation of the scientific Python ecosystem. This library offers a specific 
data structure for high-performance numerical computing: the multidimensional array. 
The rationale behind NumPy is the following: Python being a high-level dynamic language, 
it is easier to use but slower than a low-level language such as C. NumPy implements the 
multidimensional array structure in C and provides a convenient Python interface, thus 
bringing together high performance and ease of use. NumPy is used by many Python libraries. 
For example, pandas is built on top of NumPy.

In this recipe, we will illustrate the basic concepts of the multidimensional array. A more 
comprehensive coverage of the topic can be found in the book, Learning IPython for 
Interactive Computing and Data Visualization, Second Edition, Packt Publishing.

http://shop.oreilly.com/product/0636920023784.do 
http://shop.oreilly.com/product/0636920034919.do
http://shop.oreilly.com/product/0636920034919.do
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
https://matplotlib.org/tutorials/introductory/usage.html
https://matplotlib.org/tutorials/introductory/usage.html


A Tour of Interactive Computing with Jupyter and IPython

20

How to do it...
1.	 Let's import the built-in random Python module and NumPy:

>>> import random
    import numpy as np

2.	 We generate two Python lists, x and y, each one containing 1 million random 
numbers between 0 and 1:
>>> n = 1000000
    x = [random.random() for _ in range(n)]
    y = [random.random() for _ in range(n)]
>>> x[:3], y[:3]
([0.926, 0.722, 0.962], [0.291, 0.339, 0.819])

3.	 Let's compute the element-wise sum of all of these numbers: the first element of x 
plus the first element of y, and so on. We use a for loop in a list comprehension:
>>> z = [x[i] + y[i] for i in range(n)]
    z[:3]
[1.217, 1.061, 1.781]

4.	 How long does this computation take? IPython defines a handy %timeit magic 
command to quickly evaluate the time taken by a single statement:
>>> %timeit [x[i] + y[i] for i in range(n)]
101 ms ± 5.12 ms per loop (mean ± std. dev. of 7 runs,
    10 loops each)

5.	 Now we will perform the same operation with NumPy. NumPy works on 
multidimensional arrays, so we need to convert our lists to arrays. The  
np.array() function does just that:
>>> xa = np.array(x)
    ya = np.array(y)
>>> xa[:3]
array([ 0.926,  0.722,  0.962])

The xa and ya arrays contain the exact same numbers that our original lists, x and 
y, contained. Those lists were instances of the list built-in class, while our arrays are 
instances of the ndarray NumPy class. These types are implemented very differently 
in Python and NumPy. In this example, we will see that using arrays instead of lists 
leads to drastic performance improvements.
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6.	 To compute the element-wise sum of these arrays, we don't need to do a for loop 
anymore. In NumPy, adding two arrays means adding the elements of the arrays 
component-by-component. This is the standard mathematical notation in linear 
algebra (operations on vectors and matrices):
>>> za = xa + ya
    za[:3]
array([ 1.217,  1.061,  1.781])

We see that the z list and the za array contain the same elements (the sum of the 
numbers in x and y).

Be careful not to use the + operator between vectors when they are 
represented as Python lists! This operator is valid between lists, so it 
would not raise an error and it could lead to subtle and silent bugs. 
In fact, list1 + list2 is the concatenation of two lists, not the 
element-wise addition.

7.	 Let's compare the performance of this NumPy operation with the native Python loop:
>>> %timeit xa + ya
1.09 ms ± 37.3 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)

With NumPy, we went from 100 ms down to 1 ms to compute one million additions!

8.	 Now we will compute something else: the sum of all elements in x or xa. Although 
this is not an element-wise operation, NumPy is still highly efficient here. The pure 
Python version uses the built-in sum() function on an iterable. The NumPy version 
uses the np.sum() function on a NumPy array:
>>> %timeit sum(x)  # pure Python
3.94 ms ± 4.44 µs per loop (mean ± std. dev. of 7 runs
    100 loops each)
>>> %timeit np.sum(xa)  # NumPy
298 µs ± 4.62 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)

We also observe a significant speedup here.
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9.	 Let's perform one last operation: computing the arithmetic distance between any 
pair of numbers in our two lists (we only consider the first 1000 elements to keep 
computing times reasonable). First, we implement this in pure Python with two nested 
for loops:
>>> d = [abs(x[i] - y[j])
         for i in range(1000)
         for j in range(1000)]
>>> d[:3]
[0.635, 0.587, 0.106]

10.	 Now, we use a NumPy implementation, bringing out two slightly more advanced 
notions. First, we consider a two-dimensional array (or matrix). This is how we  
deal with the two indices, i and j. Second, we use broadcasting to perform an 
operation between a 2D array and 1D array. We will give more details in the  
How it works... section.

>>> da = np.abs(xa[:1000, np.newaxis] - ya[:1000])
>>> da
array([[ 0.635,  0.587,  ...,  0.849,  0.046],
       [ 0.431,  0.383,  ...,  0.646,  0.158],
       ...,
       [ 0.024,  0.024,  ...,  0.238,  0.566],
       [ 0.081,  0.033,  ...,  0.295,  0.509]])
>>> %timeit [abs(x[i] - y[j]) \
             for i in range(1000) \
             for j in range(1000)]
134 ms ± 1.79 ms per loop (mean ± std. dev. of 7 runs,
    1000 loops each)
>>> %timeit np.abs(xa[:1000, np.newaxis] - ya[:1000])
1.54 ms ± 48.9 µs per loop (mean ± std. dev. of 7 runs
    1000 loops each)

Here again, we observe a significant speedup.

How it works...
A NumPy array is a homogeneous block of data organized in a multidimensional finite grid. 
All elements of the array share the same data type, also called dtype (integer, floating-point 
number, and so on). The shape of the array is an n-tuple that gives the size of each axis.

A 1D array is a vector; its shape is just the number of components.

A 2D array is a matrix; its shape is (number of rows, number of columns).
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The following diagram illustrates the structure of a 3D (3, 4, 2) array that contains  
24 elements:

A NumPy array

The slicing syntax in Python translates nicely to array indexing in NumPy. Also, we can add an 
extra dimension to an existing array, using np.newaxis in the index.

Element-wise arithmetic operations can be performed on NumPy arrays that have the same 
shape. However, broadcasting relaxes this condition by allowing operations on arrays with 
different shapes in certain conditions. Notably, when one array has fewer dimensions than 
the other, it can be virtually stretched to match the other array's dimension. This is how we 
computed the pairwise distance between any pair of elements in xa and ya.

How can array operations be so much faster than Python loops? There are several reasons, 
and we will review them in detail in Chapter 4, Profiling and Optimization. We can already say 
here that:

ff In NumPy, array operations are implemented internally with C loops rather than 
Python loops. Python is typically slower than C because of its interpreted and 
dynamically-typed nature.

ff The data in a NumPy array is stored in a contiguous block of memory in RAM.  
This property leads to more efficient use of CPU cycles and cache.

There's more...
There's obviously much more to say about this subject. The prequel of this book, Learning 
IPython for Interactive Computing and Data Visualization, Second Edition, Packt Publishing, 
contains more details about basic array operations. We will use the array data structure 
routinely throughout this book. Notably, Chapter 4, Profiling and Optimization, covers 
advanced techniques of using NumPy arrays.
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Here are some more references:

ff Introduction to the ndarray on NumPy's documentation available at http://docs.
scipy.org/doc/numpy/reference/arrays.ndarray.html

ff Tutorial on the NumPy array available at https://docs.scipy.org/doc/numpy-
dev/user/quickstart.html

ff The NumPy array in the SciPy lectures notes, at http://scipy-lectures.
github.io/intro/numpy/array_object.html

ff NumPy for MATLAB users, at https://docs.scipy.org/doc/numpy-dev/
user/numpy-for-matlab-users.html

See also
ff The Getting started with exploratory data analysis in the Jupyter Notebook recipe

ff The Understanding the internals of NumPy to avoid unnecessary array copying recipe 
in Chapter 4, Profiling and Optimization

Creating an IPython extension with custom 
magic commands

Although IPython comes with a wide variety of magic commands, there are cases where we 
need to implement custom functionality in new magic commands. In this recipe, we will show 
how to create line and magic cells, and how to integrate them in an IPython extension.

How to do it...
1.	 Let's import a few functions from the IPython magic system:

>>> from IPython.core.magic import (register_line_magic,
                                    register_cell_magic)

2.	 Defining a new line magic is particularly simple. First, we create a function that 
accepts the contents of the line (except the initial %-prefixed name). The name of this 
function is the name of the magic. Then, we decorate this function with @register_
line_magic:
>>> @register_line_magic
    def hello(line):
        if line == 'french':

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://scipy-lectures.github.io/intro/numpy/array_object.html
http://scipy-lectures.github.io/intro/numpy/array_object.html
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
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            print("Salut tout le monde!")
        else:
            print("Hello world!")
>>> %hello
Hello world!
>>> %hello French
Salut tout le monde!

3.	 Let's create a slightly more useful %%csv cell magic that parses a CSV string and 
returns a pandas DataFrame object. This time, the arguments of the function are the 
command's options and the contents of the cell:
>>> import pandas as pd
    from io import StringIO
    
    @register_cell_magic
    def csv(line, cell):
        # We create a string buffer containing the
        # contents of the cell.
        sio = StringIO(cell)
        # We use Pandas' read_csv function to parse
        # the CSV string.
        return pd.read_csv(sio)
>>> %%csv
    col1,col2,col3
    0,1,2
    3,4,5
    7,8,9
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We can access the returned object with _:
>>> df = _
    df.describe()

4.	 The method we described is useful in an interactive session. If we want to use the 
same magic in multiple notebooks or if we want to distribute it, then we need to 
create an IPython extension that implements our custom magic command. The first 
step is to create a Python script (csvmagic.py here) that implements the magic. We 
also need to define a special function load_ipython_extension(ipython):
>>> %%writefile csvmagic.py
    import pandas as pd
    from io import StringIO
    
    def csv(line, cell):
        sio = StringIO(cell)
        return pd.read_csv(sio)
    
    def load_ipython_extension(ipython):
        """This function is called when the extension is
        loaded. It accepts an IPython InteractiveShell
        instance. We can register the magic with the
        `register_magic_function` method of the shell
        instance."""
        ipython.register_magic_function(csv, 'cell')
Writing csvmagic.py
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5.	 Once the extension module is created, we need to import it into the IPython session. 
We can do this with the %load_ext magic command. Here, loading our extension 
immediately registers our %%csv magic function in the interactive shell:

>>> %load_ext csvmagic
>>> %%csv
    col1,col2,col3
    0,1,2
    3,4,5
    7,8,9

How it works...
An IPython extension is a Python module that implements the top-level load_ipython_
extension(ipython) function. When the %load_ext magic command is called, the 
module is loaded and the load_ipython_extension(ipython) function is called. This 
function is passed the current InteractiveShell instance as an argument. This object 
implements several methods we can use to interact with the current IPython session.

The InteractiveShell class
An interactive IPython session is represented by a (singleton) instance of the 
InteractiveShell class. This object handles the history, interactive namespace,  
and most features available in the session.

Within an interactive shell, we can get the current InteractiveShell instance with the 
get_ipython() function.
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The list of all methods of InteractiveShell can be found in the reference API (see the 
reference at the end of this recipe). The following are the most important attributes  
and methods:

ff user_ns: The user namespace (a dictionary).

ff push(): Push (or inject) Python variables in the interactive namespace.

ff ev(): Evaluate a Python expression in the user namespace.

ff ex(): Execute a Python statement in the user namespace.

ff run_cell(): Run a cell (given as a string), possibly containing IPython magic 
commands.

ff safe_execfile(): Safely execute a Python script.

ff system(): Execute a system command.

ff write(): Write a string to the default output.

ff write_err(): Write a string to the default error output.

ff register_magic_function(): Register a standalone function as an IPython 
magic function. We used this method in this recipe.

Loading an extension
The Python extension module needs to be importable when using %load_ext. Here, our 
module is in the current directory. In other situations, it has to be in the Python path. It can 
also be stored in ~/.ipython/extensions, which is automatically put in the Python path.

To ensure that our magic is automatically defined in our IPython profile, we can instruct 
IPython to load our extension automatically when a new interactive shell is launched. To do 
this, we have to open the ~/.ipython/profile_default/ipython_config.py file 
and put 'csvmagic' in the c.InteractiveShellApp.extensions list. The csvmagic 
module needs to be importable. It is common to create a Python package that implements an 
IPython extension, which itself defines custom magic commands.

There's more...
Many third-party extensions and magic commands exist, for example the %%cython magic 
that allows one to write Cython code directly in a notebook.

Here are a few references:

ff Documentation of IPython's extension system available at http://ipython.
readthedocs.io/en/stable/config/extensions/index.html

ff Defining new magic commands explained at http://ipython.readthedocs.io/
en/stable/config/custommagics.html

http://ipython.readthedocs.io/en/stable/config/extensions/index.html
http://ipython.readthedocs.io/en/stable/config/extensions/index.html
http://ipython.readthedocs.io/en/stable/config/custommagics.html
http://ipython.readthedocs.io/en/stable/config/custommagics.html
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ff Index of IPython extensions at https://github.com/ipython/ipython/wiki/
Extensions-Index

ff API reference of InteractiveShell available at http://ipython.
readthedocs.io/en/stable/api/generated/IPython.core.
interactiveshell.html

See also
ff The Mastering IPython's configuration system recipe

Mastering IPython's configuration system
The traitlets package (https://traitlets.readthedocs.io/en/stable/), 
originated from IPython, implements a powerful configuration system. This system is used 
throughout the project, but it can also be used by IPython extensions. It could even be used in 
entirely new applications.

In this recipe, we show how to use this system to write a configurable IPython extension.  
We will create a simple magic command that displays random numbers. This magic  
command comes with configurable parameters that can be set by the user in their  
IPython configuration file.

How to do it...
1.	 We create an IPython extension in a random_magics.py file. Let's start by importing 

a few objects:
>>> %%writefile random_magics.py
    
    from traitlets import Int, Float, Unicode, Bool
    from IPython.core.magic import (Magics, magics_class,
                                    line_magic)
    import numpy as np
Writing random_magics.py

2.	 We create a RandomMagics class deriving from Magics. This class contains a few 
configurable parameters:
>>> %%writefile random_magics.py -a
    
    @magics_class
    class RandomMagics(Magics):
        text = Unicode(u'{n}', config=True)
        max = Int(1000, config=True)
        seed = Int(0, config=True)
Appending to random_magics.py

https://github.com/ipython/ipython/wiki/Extensions-Index
https://github.com/ipython/ipython/wiki/Extensions-Index
http://ipython.readthedocs.io/en/stable/api/generated/IPython.core.interactiveshell.html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.core.interactiveshell.html
http://ipython.readthedocs.io/en/stable/api/generated/IPython.core.interactiveshell.html
https://traitlets.readthedocs.io/en/stable/
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3.	 We need to call the parent's constructor. Then, we initialize a random number 
generator with a seed:
>>> %%writefile random_magics.py -a
    
        def __init__(self, shell):
            super(RandomMagics, self).__init__(shell)
            self._rng = np.random.RandomState(
                self.seed or None)
Appending to random_magics.py

4.	 We create a %random line magic that displays a random number:
>>> %%writefile random_magics.py -a
    
        @line_magic
        def random(self, line):
            return self.text.format(
                n=self._rng.randint(self.max))
Appending to random_magics.py

5.	 Finally, we register that magic when the extension is loaded:
>>> %%writefile random_magics.py -a
    
    def load_ipython_extension(ipython):
        ipython.register_magics(RandomMagics)
Appending to random_magics.py

6.	 Let's test our extension in the Notebook:
>>> %load_ext random_magics
>>> %random
'430'
>>> %random
'305'

7.	 Our magic command has a few configurable parameters. These variables are meant 
to be configured by the user in the IPython configuration file or in the console when 
starting IPython. To configure these variables in the Terminal, we can type the 
following command in a system shell:
ipython --RandomMagics.text='Your number is {n}.' \
        --RandomMagics.max=10 \
        --RandomMagics.seed=1

In that session, %random displays a string like 'Your number is 5.'.
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8.	 To configure the variables in the IPython configuration file, we open the 
~/.ipython/profile_default/ipython_config.py file and add  
the following line:

c.RandomMagics.text = 'random {n}'

After launching IPython, %random prints a string like random 652.

How it works...
IPython's configuration system defines several concepts:

ff An user profile is a set of parameters, logs, and command history, which are specific  
to a user. A user can have different profiles when working on different projects.  
An xxx profile is stored in ~/.ipython/profile_xxx, where ~ is the user's  
home directory.

�� On Linux, the path should be /home/yourname/.ipython/profile_xxx

�� On macOS, the path should be /Users/yourname/.ipython/profile_
xxx

�� On Windows, the path should be C:\Users\YourName\.ipython\
profile_xxx

ff A configuration object, or Config, is a special Python dictionary that contains key-
value pairs. The Config class derives from Python's dict.

ff The HasTraits class is a class that can have special trait attributes. Traits are 
sophisticated Python attributes that have a specific type and a default value. 
Additionally, when a trait's value changes, a callback function is automatically and 
transparently called. This mechanism allows a class to be notified whenever a trait 
attribute is changed.

ff A Configurable class is the base class of all classes that want to benefit from 
the configuration system. A Configurable class can have configurable attributes. 
These attributes have default values specified directly in the class definition. The 
main feature of Configurable classes is that the default values of the traits can 
be overridden by configuration files on a class-by-class basis. Then, instances of the 
Configurable classes can change these values at leisure.

ff A configuration file is a Python or JSON file that contains the parameters of the 
Configurable classes.

The Configurable classes and configuration files support an inheritance model.  
A Configurable class can derive from another Configurable class and override  
its parameters. Similarly, a configuration file can be included in another file.
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Configurables
Here is a simple example of a Configurable class:

from traitlets.config import Configurable
from traitlets import Float

class MyConfigurable(Configurable):
    myvariable = Float(100.0, config=True)

By default, an instance of the MyConfigurable class will have its myvariable  
attribute equal to 100.0. Now, let's assume that our IPython configuration file contains  
the following lines:

c = get_config()
c.MyConfigurable.myvariable = 123.

Then, the myvariable attribute will default to 123. Instances are free to change this default 
value after they are instantiated.

The get_config() function is a special function that is available in any configuration file.

Additionally, Configurable parameters can be specified in the command-line interface,  
as we saw in this recipe.

This configuration system is used by all IPython applications (notably console, Qt console,  
and notebook). These applications have many configurable attributes. You will find the list  
of these attributes in your profile's configuration files.

Magics
The Magics class derives from Configurable and can contain configurable attributes. 
Moreover, magic commands can be defined by methods decorated by @line_magic or  
@cell_magic. The advantage of defining class magics instead of function magics (as in the 
preceding recipe) is that we can keep a state between multiple magic calls (because we are 
using a class instead of a function).

There's more...
Here are a few references:

ff Configuring and customizing IPython, at http://ipython.readthedocs.io/en/
stable/config/

ff Defining custom magics, available at http://ipython.readthedocs.io/en/
stable/config/custommagics.html

ff Detailed overview of the configuration system, at https://traitlets.
readthedocs.io/en/stable/config.html

http://ipython.readthedocs.io/en/stable/config/
http://ipython.readthedocs.io/en/stable/config/
http://ipython.readthedocs.io/en/stable/config/custommagics.html
http://ipython.readthedocs.io/en/stable/config/custommagics.html
https://traitlets.readthedocs.io/en/stable/config.html
https://traitlets.readthedocs.io/en/stable/config.html
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See also
ff The Creating an IPython extension with custom magic commands recipe

Creating a simple kernel for Jupyter
The architecture of Jupyter is language independent. The decoupling between the client and 
kernel makes it possible to write kernels in any language. The client communicates with the 
kernel via socket-based messaging protocols.

However, the messaging protocols are complex. Writing a new kernel from scratch is not 
straightforward. Fortunately, Jupyter brings a lightweight interface for kernel languages that 
can be wrapped in Python.

This interface can also be used to create an entirely customized experience in the Jupyter 
Notebook (or another client application, such as the console). Normally, Python code has to 
be written in every code cell; however, we can write a kernel for any domain-specific language. 
We just have to write a Python function that accepts a code string as input (the contents 
of the code cell), and sends text or rich data as output. We can also easily implement code 
completion and code inspection.

We can imagine many interesting interactive applications that go far beyond the original use 
cases of Jupyter. These applications might be particularly useful to nonprogrammer end users 
such as high school students.

In this recipe, we will create a simple graphing calculator. The calculator is transparently 
backed by NumPy and Matplotlib. We just have to write functions as y = f(x) in a code  
cell to get a graph of these functions.

How to do it...
1.	 First, we create a plotkernel.py file. This file will contain the implementation of 

our custom kernel. Let's import a few modules:
>>> %%writefile plotkernel.py
    
    from ipykernel.kernelbase import Kernel
    import numpy as np
    import matplotlib.pyplot as plt
    from io import BytesIO
    import urllib, base64
Writing plotkernel.py
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2.	 We write a function that returns a base64-encoded PNG representation of a 
Matplotlib figure:
>>> %%writefile plotkernel.py -a
    
    def _to_png(fig):
        """Return a base64-encoded PNG from a
        matplotlib figure."""
        imgdata = BytesIO()
        fig.savefig(imgdata, format='png')
        imgdata.seek(0)
        return urllib.parse.quote(
            base64.b64encode(imgdata.getvalue()))
Appending to plotkernel.py

3.	 Now, we write a function that parses a code string, which has the form y=f(x), and 
returns a NumPy function. Here, f is an arbitrary Python expression that can use 
NumPy functions:
>>> %%writefile plotkernel.py -a
    
    _numpy_namespace = {n: getattr(np, n)
                        for n in dir(np)}
    def _parse_function(code):
        """Return a NumPy function from a
        string 'y=f(x)'."""
        return lambda x: eval(code.split('=')[1].strip(),
                              _numpy_namespace, {'x': x})
Appending to plotkernel.py

4.	 For our new wrapper kernel, we create a class that derives from Kernel. There are a 
few metadata fields we need to provide:
>>> %%writefile plotkernel.py -a
    
    class PlotKernel(Kernel):
        implementation = 'Plot'
        implementation_version = '1.0'
        language = 'python'  # will be used for
                             # syntax highlighting
        language_version = '3.6'
        language_info = {'name': 'plotter',
                         'mimetype': 'text/plain',
                         'extension': '.py'}
        banner = "Simple plotting"
Appending to plotkernel.py
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5.	 In this class, we implement a do_execute() method that takes code as input and 
sends responses to the client:
>>> %%writefile plotkernel.py -a
    
        def do_execute(self, code, silent,
                       store_history=True,
                       user_expressions=None,
                       allow_stdin=False):
    
            # We create the plot with matplotlib.
            fig, ax = plt.subplots(1, 1, figsize=(6,4),
                                   dpi=100)
            x = np.linspace(-5., 5., 200)
            functions = code.split('\n')
            for fun in functions:
                f = _parse_function(fun)
                y = f(x)
                ax.plot(x, y)
            ax.set_xlim(-5, 5)
    
            # We create a PNG out of this plot.
            png = _to_png(fig)
    
            if not silent:
                # We send the standard output to the
                # client.
                self.send_response(
                    self.iopub_socket,
                    'stream', {
                        'name': 'stdout',
                        'data': ('Plotting {n} '
                                 'function(s)'). \
                                format(n=len(functions))})
    
                # We prepare the response with our rich
                # data (the plot).
                content = {
                    'source': 'kernel',
    
                    # This dictionary may contain
                    # different MIME representations of
                    # the output.
                    'data': {
                        'image/png': png
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                    },
    
                    # We can specify the image size
                    # in the metadata field.
                    'metadata' : {
                          'image/png' : {
                            'width': 600,
                            'height': 400
                          }
                        }
                }
    
                # We send the display_data message with
                # the contents.
                self.send_response(self.iopub_socket,
                    'display_data', content)
    
            # We return the exection results.
            return {'status': 'ok',
                    'execution_count':
                        self.execution_count,
                    'payload': [],
                    'user_expressions': {},
                   }
Appending to plotkernel.py

6.	 Finally, we add the following lines at the end of the file:
>>> %%writefile plotkernel.py -a
    
    if __name__ == '__main__':
        from ipykernel.kernelapp import IPKernelApp
        IPKernelApp.launch_instance(
            kernel_class=PlotKernel)
Appending to plotkernel.py

7.	 Our kernel is ready! The next step is to indicate to Jupyter that this new kernel 
is available. To do this, we need to create a kernel spec kernel.json file in a 
subdirectory as follows:
>>> %mkdir -p plotter/
>>> %%writefile plotter/kernel.json
    {
     "argv": ["python", "-m",
              "plotkernel", "-f",
              "{connection_file}"],
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     "display_name": "Plotter",
     "name": "Plotter",
     "language": "python"
    }
Writing plotter/kernel.json

8.	 We install the kernel:
>>> !jupyter kernelspec install --user plotter
[InstallKernelSpec] Installed kernelspec plotter in
~/.local/share/jupyter/kernels/plotter

9.	 The plotter kernel now appears in the list of kernels:
>>> !jupyter kernelspec list
Available kernels:
  bash         ~/.local/share/jupyter/kernels/bash
  ir           ~/.local/share/jupyter/kernels/ir
  plotter      ~/.local/share/jupyter/kernels/plotter
  sagemath     ~/.local/share/jupyter/kernels/sagemath
  ...

The plotkernel.py file needs to be importable by Python. For example, we could 
simply put it in the current directory.

10.	 Now, if we refresh the main Jupyter Notebook page (or after a restart of the  
Jupyter Notebook server if needed), we see that our Plotter kernel appears in  
the list of kernels:

Kernel list
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11.	 Let's create a new notebook with the Plotter kernel. There, we can simply write 
mathematical equations under the form y=f(x). The corresponding graph  
appears in the output area. Here is an example:

Wrapper kernel

How it works...
The kernel and client live in different processes. They communicate via messaging protocols 
implemented on top of network sockets. Currently, these messages are encoded in JSON, a 
structured, text-based document format.

Our kernel receives code from the client (the notebook, for example). The do_execute() 
function is called whenever the user sends a cell's code.

The kernel can send messages back to the client with the self.send_response() method:

ff The first argument is the socket—here, the IOPub socket

ff The second argument is the message type—here, stream to send back standard 
output or a standard error, or display_data to send back rich data

ff The third argument is the contents of the message, represented as a  
Python dictionary
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The data can contain multiple MIME representations: text, HTML, SVG, images, and others.  
It is up to the client to handle these data types. In particular, the Notebook client knows how 
to represent all these types in the browser.

The function returns execution results in a dictionary.

In this toy example, we always return an ok status. In production code, it would be a good  
idea to detect errors (syntax errors in the function definitions, for example) and return an  
error status instead.

All messaging protocol details can be found in the following section.

There's more...
Wrapper kernels can implement optional methods, notably for code completion and  
code inspection. For example, to implement code completion, we need to write the  
following method:

def do_complete(self, code, cursor_pos):
    return {'status': 'ok',
            'cursor_start': ...,
            'cursor_end': ...,
            'matches': [...]}

This method is called whenever the user requests code completion when the cursor is at a 
given cursor_pos location in the code cell. In the method's response, the cursor_start 
and cursor_end fields represent the interval that code completion should overwrite in the 
output. The matches field contains the list of suggestions.

Here are a few references:

ff Wrapper kernel example https://github.com/jupyter/echo_kernel

ff Wrapper kernels, available at http://jupyter-client.readthedocs.io/en/
latest/wrapperkernels.html

ff Messaging protocol in Jupyter, at https://jupyter-client.readthedocs.io/
en/latest/messaging.html#execution-results

ff Making kernels for Jupyter, at http://jupyter-client.readthedocs.io/en/
latest/kernels.html

ff Using C++ in Jupyter, at https://blog.jupyter.org/interactive-
workflows-for-c-with-jupyter-fe9b54227d92

https://github.com/jupyter/echo_kernel
https://jupyter-client.readthedocs.io/en/latest/messaging.html#execution-results
https://jupyter-client.readthedocs.io/en/latest/messaging.html#execution-results
http://jupyter-client.readthedocs.io/en/latest/kernels.html
http://jupyter-client.readthedocs.io/en/latest/kernels.html
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
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2
Best Practices in 

Interactive Computing

In this chapter, we will cover the following topics:

ff Learning the basics of the Unix shell

ff Using the latest features of Python 3

ff Learning the basics of the distributed version control system Git

ff A typical workflow with Git branching

ff Efficient interactive computing workflows with IPython

ff Ten tips for conducting reproducible interactive computing experiments

ff Writing high-quality Python code

ff Writing unit tests with pytest

ff Debugging code with IPython

Introduction
This is a special chapter about good practices in interactive computing. It describes how to 
work efficiently and properly with the tools this book is about. We will introduce common tools 
such as the Unix shell, the latest features of Python 3, and Git, before tackling reproducible 
computing experiments (notably with the Jupyter Notebook).

We will also cover more general topics in software development, such as code quality, 
debugging, and testing. Attention to these subjects can greatly improve the quality of our end 
products (for example, software, research, and publications). We will only scratch the surface 
here, but you will find many references to learn more about these important topics.
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Learning the basics of the Unix shell
Learning how to interact with the operating system using a command-line interface  
(or Terminal) is a required skill in interactive computing and data analysis. We will use a 
command-line interface in most of the recipes in this book. IPython and the Jupyter Notebook  
are typically launched from a Terminal. Installing Python packages is typically done from  
a Terminal.

In this recipe, we will show the very basics of the Unix shell, which is natively available in 
Linux distributions (such as Debian, Ubuntu, and so on) and macOS. On Windows 10, one 
can install the Windows Subsystem for Linux, a command-line interface to a Unix subsystem 
integrated with the Windows operating system (see https://docs.microsoft.com/
windows/wsl/about).

Getting ready
Here are the instructions to open a Unix shell on macOS, Linux, and Windows. Bash is the 
most common Unix shell and this is what we will use in this recipe.

On macOS, bring up the Spotlight Search, type terminal, and press Enter.

On Windows, follow the instructions at https://docs.microsoft.com/en-us/windows/
wsl/install-win10. Then, open the Windows menu, type bash, and press Enter.

On Ubuntu, open the Dash by clicking on the top-left icon on the desktop, type terminal, 
and open the Terminal application.

If you want to run this notebook in Jupyter, you need to install bash_kernel, available 
at https://github.com/takluyver/bash_kernel. Open a Terminal and type pip 
install bash_kernel && python -m bash_kernel.install.

This will install a bash kernel in Jupyter, and it will allow you to run this recipe's code directly in 
the Notebook.

How to do it...
The Unix shell comes with hundreds of commands. We will see the most common ones  
in this recipe:

1.	 The Terminal lets us write text commands with the keyboard. We execute them 
by pressing Enter, and the output is displayed below the command. The working 
directory is the directory of our filesystem that is currently active in the Terminal.  
We can get the absolute path of the working directory as follows:
$ pwd

~/git/cookbook-2nd/chapter02_best_practices

https://docs.microsoft.com/windows/wsl/about
https://docs.microsoft.com/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/takluyver/bash_kernel
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The dollar $ sign must not be typed: it is typically used by 
the shell to indicate where the user can start typing. The 
information written before it may show the username, 
the computer name, and part of the working directory. 
Here, only the three characters pwd should be typed 
before pressing Enter.

2.	 We can list all files and subdirectories in the working directory as follows:
$ ls

00_intro.md  03_git.md           07_high_quality.md

01_shell.md  04_git_advanced.md  08_test.md

02_py3       05_workflows.md     09_debugging.md

02_py3.md    06_tips.md          images

$ ls -l

total 100

-rw-rw-r-- 1 owner   769 Dec 12 10:23 00_intro.md

-rw-rw-r-- 1 owner  2473 Dec 12 14:21 01_shell.md

...

-rw-rw-r-- 1 owner  9390 Dec 12 11:46 08_test.md

-rw-rw-r-- 1 owner  5032 Dec 12 10:23 09_debugging.md

drwxrwxr-x 2 owner  4096 Aug  1 16:49 images

The -l option displays the directory contents as a detailed list, showing the 
permissions and owner of the files, the file sizes, and the last modified dates. Most 
shell commands come with many options that alter their behavior and that can be 
arbitrarily combined.

3.	 We use the cd command to navigate between subdirectories. The current directory is 
named . (single dot), and the parent directory is named .. (double dot):
$ cd images

$ pwd

~/git/cookbook-2nd/chapter02_best_practices/images

$ ls

folder.png  github_new.png

$ cd ..

$ pwd

~/git/cookbook-2nd/chapter02_best_practices
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4.	 Paths can be specified as relative (depending on a reference directory, generally the 
working directory) or absolute. The home directory, specified as ~, contains the user's 
personal files. Configuration files are often stored in a directory such as ~/.program_
name. For example, ~/.ipython contains configuration files of IPython:
$ ls -la ~/.ipython

total 20

drwxr-xr-x  5 cyrille 4096 Nov 14 16:16 .

drwxr-xr-x 93 cyrille 4096 Dec 12 10:50 ..

drwxr-xr-x  2 cyrille 4096 Nov 14 16:16 extensions

drwxr-xr-x  2 cyrille 4096 Nov 14 16:16 nbextensions

drwxr-xr-x  7 cyrille 4096 Dec 12 14:18 profile_default

In most terminals, we can use the arrow keys on the keyboard to navigate 
in the history of past commands. Also, the Tab key enables tab completion, 
which automatically completes the first characters of a command or a file. 
For example, typing ls -la ~/.ipy and pressing Tab would automatically 
complete to ls -la ~/.ipython, or it would present the list of possible 
options if there are several files or directories that begin with ~/.ipy.

5.	 We can create, move, rename, copy, and delete files and directories from the Terminal:
$ # We create an empty directory:

$ mkdir md_files

$ # We copy all Markdown files into the new directory:

$ cp *.md md_files

$ # We rename the directory:

$ mv md_files markdown_files

$ ls markdown_files

00_intro.md         05_workflows.md

01_shell.md         06_tips.md

02_py3.md           07_high_quality.md

03_git.md           08_test.md

04_git_advanced.md  09_debugging.md

$ rmdir markdown_files

rmdir: failed to remove 'markdown_files':

    Directory not empty

$ rm markdown_files/*

$ rmdir markdown_files
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The rm command lets us delete files and directories. The rm -rf path 
command deletes the given path recursively, even if subdirectories are not 
empty. It is an extremely dangerous command as it cannot be undone: the 
files are immediately and permanently deleted, they do not go into a trash 
directory first. See https://github.com/sindresorhus/guides/
blob/master/how-not-to-rm-yourself.md for more details.

6.	 There are several useful commands to deal with text files:
$ # Show the first three lines of a text file:

$ head -n 3 01_shell.md

# Learning the basics of the Unix shell

Learning how to interact with the operating system (...)

$ # Show the last line of a text file:

$ tail -n 1 00_intro.md

We will also cover more general topics (...)

$ # We display some text:

$ echo "Hello world!"

Hello world!

$ # We redirect the output of a command to

$ # a text file with '>':

$ echo "Hello world!" > myfile.txt

$ # We display the entire contents of the file:

$ cat myfile.txt

Hello world!

Several command-line text editors are available, such as pico, nano, or vi. Learning 
these text editors requires time and effort, especially vi.

7.	 The grep command lets us search substrings in text. In the following example,  
we find all instances of Unix followed by a word (using regular expressions):
$ grep -Eo "Unix \w+" 01_shell.md

Unix shell

Unix shell

Unix subsystem

Unix shell

(...)

Unix shell

Unix shell

https://github.com/sindresorhus/guides/blob/master/how-not-to-rm-yourself.md
https://github.com/sindresorhus/guides/blob/master/how-not-to-rm-yourself.md
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8.	 A major strength of the Unix shell is that commands can be combined with pipes: the 
output of one command can be directly transferred to the input of another command:

$ echo "This is a Unix shell" | grep -Eo "Unix \w+"

Unix shell

There's more...
We only scratched the surface of the Unix shell in this recipe. There are many other 
commands that can be combined in an infinite number of ways. Many repetitive tasks that 
would take hours of manual work can be done in a few minutes by writing the appropriate 
commands. Mastering the Unix shell may take a lot of effort, but it leads to dramatic time 
gains in the long term.

Here are a few references:

ff Linux Tutorial at https://ryanstutorials.net/linuxtutorial/

ff Bash commands at https://ss64.com/bash/

ff Learn Bash in Y minutes, at https://learnxinyminutes.com/docs/bash/

ff Learn the shell interactively, at http://www.learnshell.org/

ff The fish shell, at https://fishshell.com/

ff xonsh, a Python-powered shell, at http://xon.sh/

ff Windows Subsystem for Linux, at https://docs.microsoft.com/windows/
wsl/about

See also
ff The Ten tips for conducting reproducible interactive computing experiments recipe

Using the latest features of Python 3
The latest version of the Python 2.x branch, Python 2.7, was released in 2010. It will reach its 
end of life in 2020. On the other hand, the first version of the Python 3.x branch, Python 3.0, 
was released in 2008. The decade-long transition period between Python 2 and Python 3, 
which are slightly incompatible, has been somewhat chaotic.

https://ryanstutorials.net/linuxtutorial/
https://ss64.com/bash/
https://learnxinyminutes.com/docs/bash/
http://www.learnshell.org/
https://fishshell.com/
http://xon.sh/
https://docs.microsoft.com/windows/wsl/about
https://docs.microsoft.com/windows/wsl/about
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Choosing between Python 2 (also known as Legacy Python) and Python 3 used to be tricky 
since many Python users had not transitioned to Python 3 yet, and many libraries were only 
compatible with Python 2. Those times are gone and it is now safe to stick with Python 3 
in virtually all cases. The only exceptions are when you have to support old unmaintained 
libraries, or when your users cannot transition to Python 3 for whatever reason.

In addition to fixing the bugs and annoyances of Python 2 (for example, related to Unicode 
support), Python 3 brings many interesting features in terms of syntax, capabilities of the 
language, and new built-in libraries.

We use the latest stable version of Python in this 
recipe, which is Python 3.6.

How to do it...
1.	 In Python 3, print() is a function, whereas it was a statement in Python 2 (it was 

a historical oddity). This function may accept multiple arguments as well as a few 
options. Let's create a list:
>>> my_list = list(range(10))

We can print the my_list object:
>>> print(my_list)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

But we can also print the ten numbers in the list:
>>> print(*my_list)
0 1 2 3 4 5 6 7 8 9

Finally we can customize the separator and the end of the string to print:
>>> print(*my_list, sep=" + ", end=" = %d" % sum(my_list))
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45

2.	 Python 3 supports more advanced variable unpacking features:
>>> first, second, *rest, last = my_list
>>> print(first, second, last)
0 1 9
>>> rest
[2, 3, 4, 5, 6, 7, 8]
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3.	 In Python 3, variable names can contain Unicode characters. This technique may be 
useful when writing mathematical code. To type mathematical symbols in the Jupyter 
Notebook, write LaTeX code and press Tab. For example, to create a variable , type 
\pi and then Tab:
>>> from math import pi, cos
    α = 2
    π = pi
    cos(α * π)
1.000

4.	 Python 3.6 brings new string literals called f-strings. They offer a convenient syntax to 
define strings depending on existing variables:
>>> a, b = 1, 2
    f"The sum of {a} and {b} is {a + b}"
'The sum of 1 and 2 is 3'

5.	 We can add custom annotations to function arguments and output. These 
function annotations convey no semantics, but they can be used in the code 
as we like. Here is an example coming from https://stackoverflow.
com/a/7811344/1595060:
>>> def kinetic_energy(mass: 'kg',
                       velocity: 'm/s') -> 'J':
        """The annotations serve here as documentation."""
        return .5 * mass * velocity ** 2

These annotations are stored in the __annotations__ attribute of the function, 
and they can be used as follows:
>>> annotations = kinetic_energy.__annotations__
    print(*(f"{key} is in {value}"
            for key, value in annotations.items()),
          sep=", ")
mass is in kg, velocity is in m/s, return is in J

The typing module, which has been included in Python 3.5 on a provisional  
basis, implements several annotations that can be used to specify typing  
information in functions.

6.	 Python 3.5 brings a new operator @ for matrix multiplication. It is supported by  
NumPy 1.10 and later:
>>> import numpy as np
    M = np.array([[0, 1], [1, 0]])

https://stackoverflow.com/a/7811344/1595060
https://stackoverflow.com/a/7811344/1595060
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The * operator is the element-wise multiplication:
>>> M * M
array([[0, 1],
       [1, 0]])

Previously, matrix multiplication could be performed with np.dot(). The new syntax 
is clearer:
>>> M @ M
array([[1, 0],
       [0, 1]])

7.	 Python 3.3 brings the new yield from syntax that allows you, among other things, 
to compose multiple generators. For example, the two following functions are 
equivalent:
>>> def gen1():
        for i in range(5):
            for j in range(i):
                yield j
>>> def gen2():
        for i in range(5):
            yield from range(i)
>>> list(gen1())
[0, 0, 1, 0, 1, 2, 0, 1, 2, 3]
>>> list(gen2())
[0, 0, 1, 0, 1, 2, 0, 1, 2, 3]

8.	 The functools library provides a @lru_cache decorator to implement a simple  
in-memory caching system for Python functions:
>>> import time
    
    def f1(x):
        time.sleep(1)
        return x
>>> %timeit -n1 -r1 f1(0)
1 s ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)
>>> %timeit -n1 -r1 f1(0)
1 s ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)

Here, the two successive identical calls to f1(0) take one second. Now, let's define a 
cached version of this function:
>>> from functools import lru_cache
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    @lru_cache(maxsize=32)  # keep the latest 32 calls
    def f2(x):
        time.sleep(1)
        return x
>>> %timeit -n1 -r1 f2(0)
1 s ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)
>>> %timeit -n1 -r1 f2(0)
6.14 µs ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)

The first call takes one second, whereas the next one returns immediately. In the 
second case, the function is not called but the output corresponding to the argument 
of 0 was cached and returned.

9.	 The new pathlib module offers filesystem facilities that are more convenient to use 
than the Python 2 os.path methods. The main class is Path:
>>> from pathlib import Path

We instantiate a Path object representing the current directory:
>>> p = Path('.')

Let's list all Markdown files in the directory:
>>> sorted(p.glob('*.md'))
[PosixPath('00_intro.md'),
 PosixPath('01_py3.md'),
 PosixPath('02_workflows.md'),
 PosixPath('03_git.md'),
 PosixPath('04_git_advanced.md'),
 PosixPath('05_tips.md'),
 PosixPath('06_high_quality.md'),
 PosixPath('07_test.md'),
 PosixPath('08_debugging.md')]

We can easily get the contents of a text file:
>>> _[0].read_text()
'# Introduction\n\n...\n'

Let's obtain the list of subdirectories:
>>> [d for d in p.iterdir() if d.is_dir()]
[PosixPath('images'),
 PosixPath('.ipynb_checkpoints'),
 PosixPath('__pycache__'),
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Finally, we list all files in the images subfolder (note the slash / operator on Path 
instances):
>>> list((p / 'images').iterdir())
[PosixPath('images/github_new.png'),
 PosixPath('images/folder.png')]

10.	 Python 3.4 provides a new statistics module which implements basic statistical 
routines. This module may be useful when depending on NumPy or SciPy is not 
desirable. Let's import the module:
>>> import random as r
    import statistics as st

We create a list of normally-distributed random variables:
>>> my_list = [r.normalvariate(0, 1)
               for _ in range(100000)]

We compute the mean, median, and standard deviation:

>>> print(st.mean(my_list),
          st.median(my_list),
          st.stdev(my_list),
          )
0.00073 -0.00052 1.00050

There's more...
Other interesting features of Python 3 include coroutines with the asyncio module and 
asynchronous operations with the new await and async keywords.

Here are a few references:

ff What's New In Python 3.6? at https://docs.python.org/3/
whatsnew/3.6.html

ff f-strings, at https://docs.python.org/3/reference/lexical_analysis.
html#f-strings

ff The yield from syntax, at https://docs.python.org/3/
whatsnew/3.3.html#pep-380

ff functools, at https://docs.python.org/3/library/functools.html

ff pathlib, at https://docs.python.org/3/library/pathlib.html

ff statistics, at https://docs.python.org/3/library/statistics.html

ff 10 awesome features of Python that you can't use because you refuse to upgrade to 
Python 3, at http://www.asmeurer.com/python3-presentation/slides.
html

https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/whatsnew/3.6.html
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/statistics.html
http://www.asmeurer.com/python3-presentation/slides.html
http://www.asmeurer.com/python3-presentation/slides.html


Best Practices in Interactive Computing

52

ff Python 3 for Scientists, at http://python-3-for-scientists.readthedocs.
io/en/latest/

ff Cool New Features in Python 3.6, at https://www.youtube.com/
watch?v=klKdMxjDaa0

ff Python Cookbook, 3rd Edition, Brian Jones and David Beazley, O'Reilly Media,  
at http://shop.oreilly.com/product/0636920027072.do

ff Find the best Python books, at http://pythonbooks.org/

ff Buggy Python Code: The 10 Most Common Mistakes That Python Developers Make, 
at https://www.toptal.com/python/top-10-mistakes-that-python-
programmers-make

ff Python 3 statement, to promote the deprecation of Python 2 support by 2020,  
at http://www.python3statement.org

Learning the basics of the distributed 
version control system Git

Using a version control system is an absolute requirement in programming and research. 
This is the tool that makes it just about impossible to lose one's work. In this recipe, we will 
cover the basics of Git.

Getting ready
Notable distributed version control systems include Git, Mercurial, and Bazaar, among 
others. In this chapter, we will use the popular Git system. You can download the Git program 
and Git GUI clients from http://git-scm.com.

Distributed systems tend to be more popular than centralized systems such 
as SVN or CVS. Distributed systems allow local (offline) changes and offer 
more flexible collaboration systems.

An online provider allows you to host your code in the cloud. You can use it as a backup 
of your work and as a platform to share your code with your colleagues. These services 
include GitHub (https://github.com), GitLab (https://gitlab.com), and Bitbucket 
(https://bitbucket.org). All of these websites offer free and paid plans with unlimited 
public and/or private repositories.

GitHub offers desktop applications for Windows and macOS at https://desktop.github.
com/.

This book's code is stored on GitHub. Most Python libraries are also developed on GitHub.

http://python-3-for-scientists.readthedocs.io/en/latest/
http://python-3-for-scientists.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=klKdMxjDaa0
https://www.youtube.com/watch?v=klKdMxjDaa0
http://shop.oreilly.com/product/0636920027072.do
http://pythonbooks.org/
https://www.toptal.com/python/top-10-mistakes-that-python-programmers-make
https://www.toptal.com/python/top-10-mistakes-that-python-programmers-make
http://www.python3statement.org
http://git-scm.com
https://github.com
https://gitlab.com
https://bitbucket.org
https://desktop.github.com/
https://desktop.github.com/
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How to do it...
1.	 The very first thing to do when starting a new project or computing experiment is 

create a new folder locally:
$ mkdir myproject

$ cd myproject

2.	 We initialize a Git repository:
$ git init

Initialized empty Git repository in

~/git/cookbook-2nd/chapter02/myproject/.git/

$ pwd

~/git/cookbook-2nd/chapter02/myproject

$ ls -a

.  ..  .git

Git created a .git subdirectory that contains all the parameters and history of  
the repository.

3.	 Let's set our name and email address globally:
$ git config --global user.name "My Name"

$ git config --global user.email "me@home.com"

4.	 We create a new file, and we tell Git to track it:
$ echo "Hello world" > file.txt

$ git add file.txt

5.	 Let's create our first commit:
$ git commit -m "Initial commit"

[master (root-commit) 02971c0] Initial commit

 1 file changed, 1 insertion(+)

 create mode 100644 file.txt

6.	 We can check the list of commits:
$ git log

commit 02971c0e1176cd26ec33900e359b192a27df2821

Author: My Name <me@home.com>

Date:   Tue Dec 12 10:50:37 2017 +0100

    Initial commit
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7.	 Next, we edit the file by appending an exclamation mark:
$ echo "Hello world!" > file.txt

$ cat file.txt

Hello world!

8.	 We can see the differences between the current state of our repository, and the state 
in the last commit:
$ git diff

diff --git a/file.txt b/file.txt

index 802992c..cd08755 100644

--- a/file.txt

+++ b/file.txt

@@ -1 +1 @@

-Hello world

+Hello world!

The output of git diff shows that the contents of file.txt were changed from 
Hello world to Hello world!. Git compares the states of all tracked files and 
computes the differences between the files.

9.	 We can also get a summary of the changes as follows:
$ git status

On branch master

Changes not staged for commit:

  (use "git add <file>..." to update what will

      be committed)

    modified:   file.txt

no changes added to commit (use "git add")

$ git diff --stat

 file.txt | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)
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The git status command gives a summary of all changes since the last commit. 
The git diff --stat command shows, for each modified text file, the number of 
changed lines.

10.	 Finally, we commit our change with a shortcut that automatically adds all changes in 
the tracked files (-a option):

$ git commit -am "Add exclamation mark to file.txt"

[master 045df6a] Add exclamation mark to file.txt

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git log

commit 045df6a6f8a62b19f45025d15168d6d7382a8429

Author: My Name <me@home.com>

Date:   Tue Dec 12 10:59:39 2017 +0100

    Add exclamation mark to file.txt

commit 02971c0e1176cd26ec33900e359b192a27df2821

Author: My Name <me@home.com>

Date:   Tue Dec 12 10:50:37 2017 +0100

    Initial commit

How it works...
When you start a new project or a new computing experiment, create a new folder on your 
computer. You will eventually add code, text files, datasets, and other resources in this folder. 
The distributed version control system keeps track of the changes you make to your files as 
your project evolves. It is more than a simple backup, as every change you make on any file 
can be saved along with the corresponding timestamp. You can even revert to a previous state 
at any time; never be afraid of breaking your code anymore!

Git works best with text files. It can handle binary files but with limitations. It 
is better to use a separate system such as Git Large File Storage, or Git LFS 
(see https://git-lfs.github.com/).

https://git-lfs.github.com/
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Specifically, you can take a snapshot of your project at any time by doing a commit. The 
snapshot includes all staged (or tracked) files. You are in total control of which files and 
changes will be tracked. With Git, you specify a file as staged for your next commit with git 
add, before committing your changes with git commit. The git commit -a command 
allows you to commit all changes in the files that are already being tracked.

When committing, you should provide a clear and short message describing the changes you 
made. This makes the repository's history considerably more informative than just writing 
work in progress. If the commit message is long, write a short title (less than 50 characters), 
insert two line breaks, and write a longer description.

How often should you commit?
The answer is very often. Git only takes responsibility for your work when you 
commit changes. What happens between two commits may be lost, so it's 
better to commit very regularly. Besides, commits are quick and cheap as 
they are local; that is, they do not involve any remote communication with an 
external server.

Git is a distributed version control system; your local repository does not need to synchronize 
with an external server. However, you should synchronize if you need to work on several 
computers, or if you prefer to have a remote backup. Synchronization with a remote repository 
can be done with git push (send your local commits on the remote server), git fetch 
(download remote branches and objects), and git pull (synchronize the remote changes 
on your local repository), after you've set up remotes.

There's more...
We can also create a new repository on an online Git provider such as GitHub:
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New project on GitHub

On the main web page of the newly created project, click on the Clone or download button to 
get the repository URL and type in a Terminal:

$ git clone https://github.com/mylogin/myproject.git

If the local repository already exists, do not tick the Initialize this repository with a README 
box on the GitHub page, and add the remote with git remote add origin https://
github.com/yourlogin/myproject.git. See https://help.github.com/
articles/adding-a-remote/ for more details.

https://help.github.com/articles/adding-a-remote/
https://help.github.com/articles/adding-a-remote/
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The simplistic workflow shown in this recipe is linear. In practice, though, workflows with Git 
are typically nonlinear; this is the concept of branching. We will describe this idea in the next 
recipe, A typical workflow with Git branching.

Here are some references on Git:

ff Hands-on tutorial, available at https://try.github.io

ff Git, a simple guide by Roger Dudler, available at http://rogerdudler.github.
io/git-guide/

ff Git Immersion, a guided tour, at http://gitimmersion.com

ff Atlassian Git tutorial, available at http://www.atlassian.com/git

ff Online Git course, available at http://www.codeschool.com/courses/try-
git

ff Git tutorial by Lars Vogel, available at http://www.vogella.com/tutorials/
Git/article.html

ff GitHub and Git tutorial, available at http://git-lectures.github.io

ff Intro to Git for scientists, available at http://karthik.github.io/git_intro/

ff GitHub help, available at https://help.github.com

See also
ff The A typical workflow with Git branching recipe

A typical workflow with Git branching
A distributed version control system such as Git is designed for the complex and nonlinear 
workflows that are typical in interactive computing and exploratory research. A central concept 
is branching, which we will discuss in this recipe.

Getting ready
You need to work in a local Git repository for this recipe (see the previous recipe, Learning the 
basics of the distributed version control system Git).

How to do it...
1.	 We go to the myproject repository and we create a new branch named newidea:

$ pwd

/home/cyrille/git/cookbook-2nd/chapter02

$ cd myproject

https://try.github.io
http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://gitimmersion.com
http://www.atlassian.com/git
http://www.codeschool.com/courses/try-git
http://www.codeschool.com/courses/try-git
http://www.vogella.com/tutorials/Git/article.html
http://www.vogella.com/tutorials/Git/article.html
http://git-lectures.github.io
http://karthik.github.io/git_intro/
https://help.github.com
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$ git branch newidea

$ git branch

* master

  newidea

As indicated by the star *, we are still on the master branch.

2.	 We switch to the newly-created newidea branch:
$ git checkout newidea

Switched to branch 'newidea'

$ git branch

  Master

* newidea

3.	 We make changes to the code, for instance, by creating a new file:
$ echo "print('new')" > newfile.py

$ cat newfile.py

print('new')

4.	 We add this file to the staging area and we commit our changes:
$ git add newfile.py

$ git commit -m "Testing new idea"

[newidea 8ebee32] Testing new idea

 1 file changed, 1 insertion(+)

 create mode 100644 newfile.py

$ ls

file.txt  newfile.py

5.	 If we are happy with the changes, we merge the branch to the master branch  
(the default):
$ git checkout master

Switched to branch 'master'

On the master branch, our new file is not there:
$ ls

file.txt

If we merge the new branch into the master branch, the file appears:
$ git merge newidea

Updating 045df6a..8ebee32

Fast-forward
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 newfile.py | 1 +

 1 file changed, 1 insertion(+)

 create mode 100644 newfile.py

$ ls

file.txt  newfile.py

6.	 If we are not happy with the changes, we can just delete the branch, and the new  
file will be deleted. Here, since we have just merged the branch, we need to undo the 
last commit:
$ git reset --hard HEAD~1

HEAD is now at 045df6 Add exclamation mark to file.txt

We are still on the master branch, but before we merged the newidea branch:
$ git branch

* master

  newidea

We can delete the branch as follows:
$ git branch -D newidea

Deleted branch newidea (was 8ebee32).

The Python file is gone:
$ ls

file.txt

7.	 It may happen that while we are halfway through some work, we need to make some 
other change in another commit or another branch. We could commit our half-done 
work, but this is not ideal. A better idea is to stash our working copy in a secure 
location so that we can recover all of our uncommitted changes later. We save our 
uncommitted changes with the following command:

$ echo "new line" >> file.txt

$ cat file.txt

Hello world!

new line

$ git stash

Saved working directory and index state WIP on master:

045df6a Add exclamation mark to file.txt

HEAD is now at 045df6 Add exclamation mark to file.txt

$ cat file.txt

Hello world!
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We can do anything we want with the repository: checkout a branch, commit changes, 
pull or push from a remote repository, and so on. When we want to recover our 
uncommitted changes, we type the following command:
$ git stash pop

On branch master

Changes not staged for commit:

    modified:   file.txt

no changes added to commit

    (use "git add" and/or "git commit -a")

Dropped refs/stash@{0} (c9071a)

$ cat file.txt

Hello world!

new line

We can have several stashed states in the repository. More information about 
stashing can be found with git stash --help.

How it works...
Let's imagine that in order to test a new idea, you need to make non-trivial changes to your 
code in multiple files. You create a new branch, test your idea, and end up with a modified 
version of your code. If this idea was a dead end, you switch back to the original branch of 
your code. However, if you are happy with the changes, you merge it into the main branch.

The strength of this workflow is that the main branch can evolve independently from the 
branch with the new idea. This is particularly useful when multiple collaborators are  
working on the same repository. However, it is also a good habit to have, even when  
there is a single contributor.

Merging is not always a trivial operation, as it can involve two divergent branches  
with potential conflicts. Git tries to resolve conflicts automatically, but it is not always 
successful. In this case, you need to resolve the conflicts manually.

An alternative to merging is rebasing, which is useful when the main branch has changed 
while you were working on your branch. Rebasing your branch on the main branch allows  
you to move your branching point to a more recent point. This process may require you to 
resolve conflicts.
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Git branches are lightweight objects. Creating and manipulating them is cheap. They are 
meant to be used frequently. It is important to perfectly grasp all related notions and  
Git commands (notably checkout, merge, and rebase). The previous recipe contains  
many references.

There's more...
Many people have thought about effective workflows. For example, a common but complex 
workflow, called git-flow, is described at http://nvie.com/posts/a-successful-git-
branching-model/. However, it may be preferable to use a simpler workflow in small and 
mid-size projects, such as the one described at http://scottchacon.com/2011/08/31/
github-flow.html. The latter workflow elaborates on the simplistic example shown in  
this recipe.

A related notion to branching is forking. There can be multiple copies of the same repository 
on different servers. Imagine that you want to contribute to IPython's code stored on GitHub. 
You probably don't have the permission to modify their repository, but you can make a copy 
into your personal account—this is called forking. In this copy, you can create a branch and 
propose a new feature or a bug fix. Then, you can propose the IPython developers to merge 
your branch into their master branch with a pull request. They can review your changes, 
propose suggestions, and eventually merge your work (or not). GitHub is built around this  
idea and thereby offers a clean way to collaborate on open source projects.

Performing code reviews before merging pull requests leads to higher code quality in a 
collaborative project. When at least two people review any piece of code, the probability of 
merging bad or wrong code is reduced.

There is, of course, much more to say about Git. Version control systems are complex 
and quite powerful in general, and Git is no exception. Mastering Git requires time and 
experimentation. The previous recipe contains many excellent references.

Here are a few further references about branches and workflows:

ff Git workflows, available at http://www.atlassian.com/git/workflows

ff Learn Git Branching, at http://pcottle.github.io/learnGitBranching/

ff The Git workflow recommended on the NumPy project (and others), described 
at http://docs.scipy.org/doc/numpy/dev/gitwash/development_
workflow.html

ff A post on the IPython mailing list about an efficient Git workflow, by Fernando Perez, 
available at http://mail.scipy.org/pipermail/ipython-dev/2010-
October/006746.html

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
http://www.atlassian.com/git/workflows
http://pcottle.github.io/learnGitBranching/
http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html
http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html
http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html
http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html
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See also
ff The Learning the basics of the distributed version control system Git recipe

Efficient interactive computing workflows 
with IPython

There are multiple ways of using IPython for interactive computing. Some of them are better in 
terms of flexibility, modularity, reusability, and reproducibility. We will review and discuss them 
in this recipe.

Any interactive computing workflow is based on the following cycle:

1.	 Write some code

2.	 Execute it

3.	 Interpret the results

4.	 Repeat

This fundamental loop (also known as Read-Eval-Print Loop (REPL)) is particularly useful 
when doing exploratory research on data or model simulations, or when building a complex 
algorithm step by step. A more classical workflow (the edit-compile-run-debug loop) would 
consist of writing a full-blown program, and then performing a complete analysis. This is 
generally more tedious. It is more common to build an algorithmic solution iteratively, by doing 
small-scale experiments and tweaking the parameters, and this is precisely what interactive 
computing is about.

Integrated Development Environments (IDEs), providing comprehensive facilities for 
software development (such as a source code editor, compiler, and debugger), are widely 
used for classical workflows. However, when it comes to interactive computing, alternatives to 
IDEs exist. We will review them here.

How to do it...
Here are a few possible workflows for interactive computing, by increasing order of complexity. 
Of course, IPython is at the core of all of these methods.
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The IPython terminal
IPython is the de facto standard for interactive computing in Python. The IPython Terminal 
(the ipython command) offers a command-line interface specifically designed for REPLs. It 
is a much more powerful tool than the native Python interpreter (the python command). The 
IPython Terminal is a convenient tool for quick experiments, simple shell interactions, and to 
find help. Forgot the input arguments of NumPy's savetxt function? Just type in numpy.
savetxt? in IPython (you will first need to use import numpy, of course). Some people 
even use the IPython Terminal as a (sophisticated) calculator!

However, the Terminal quickly becomes limited when it is used alone. The main issue is that 
the Terminal is not a code editor, and thus entering more than a few lines of code can be 
inconvenient. Fortunately, there are various ways of solving this problem, as detailed in the 
following sections.

IPython and text editor
The simplest solution to the not-a-text-editor problem is to use IPython along with a text editor. 
The %run magic command then becomes the central tool in this workflow:

1.	 Write some code in your favorite text editor and save it in a myscript.py Python 
script file.

2.	 In IPython, assuming you are in the right directory, type in %run myscript.py.

3.	 The script is executed. The standard output is displayed in real time in the IPython 
Terminal along with possible errors. Top-level variables defined in the script are 
accessible in the IPython Terminal at the end of the script's execution.

4.	 If code changes are required in the script, repeat the process.

With a good text editor, this workflow can be quite efficient. As the script is reloaded when 
you execute %run, your changes will be taken into account automatically. Things become 
more complicated when your script imports other Python modules that you modify, as these 
won't be reloaded with %run. To overcome this problem, you can use the autoreload IPython 
extension as described at http://ipython.readthedocs.io/en/stable/config/
extensions/autoreload.html.

The Jupyter Notebook
The Jupyter Notebook plays a central role in efficient interactive workflows. It is a well-
designed mix between a code editor and a Terminal, bringing the best of both worlds within a 
unified environment.

You can start writing all your code in your notebook's cells. You write, execute, and test your 
code in the same place, thereby improving your productivity. You can put long comments in 
Markdown cells and structure your notebook with Markdown headers.

http://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
http://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
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Once portions of your code become mature enough and do not require further changes, 
you refactor them into reusable Python components (functions, classes, and modules). In 
practice, you copy and paste the code into Python scripts (files with the .py extension). 
Jupyter notebooks are currently not easily reusable by third-party code. They are designed for 
preliminary analyses and exploratory research, not for production-ready code.

A major advantage of notebooks is that they give you documents retracing everything you 
did with your code, which is particularly useful for reproducible research. Since notebooks 
are saved in human-readable JSON documents, they don't work that well with version control 
systems such as Git.

The ipymd module, available at https://github.com/rossant/ipymd/, and the more 
recent podoc module, available at https://github.com/podoc/podoc, allow you to use 
Markdown instead of JSON for notebooks. In podoc, images are saved in external files instead 
of being embedded in the JSON notebook, which is more convenient when working with a 
version control system.

JupyterLab, the next generation of the Jupyter Notebook, bridges the gap between the Jupyter 
Notebook and IDEs. It is covered in the Introducing JupyterLab recipe of Chapter 3, Mastering 
the Jupyter Notebook.

Integrated Development Environments
IDEs are particularly well-adapted for classic software development, but they can also be used 
for interactive computing. A good Python IDE combines a powerful text editor (for example, 
one that includes features such as syntax highlighting and tab completion), an IPython 
terminal, and a debugger within a unified environment.

There are multiple open-source and commercial IDEs. Rodeo is an IDE for data analysis made 
by ŷhat. Spyder is another open source IDE with good integration of IPython and Matplotlib. 
Eclipse/PyDev is a popular (although slightly heavy) open source cross-platform environment.

PyCharm is one of many commercial environments that support IPython.

Microsoft's IDE for Windows, Visual Studio, has an open source plugin named Python Tools 
for Visual Studio (PTVS). This tool brings Python support to Visual Studio. PTVS natively 
supports IPython. You don't necessarily need a paid version of Visual Studio; you can 
download a free package bundling PTVS with Visual Studio.

There's more...
Here are a few links to various IDEs for Python:

ff Rodeo, at https://www.yhat.com/products/rodeo

ff Spyder, at https://github.com/spyder-ide/spyder

ff PyDev, at http://pydev.org

https://github.com/rossant/ipymd/
https://github.com/podoc/podoc
https://www.yhat.com/products/rodeo
https://github.com/spyder-ide/spyder
http://pydev.org
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ff PyCharm, at http://www.jetbrains.com/pycharm/

ff PyTools for Microsoft Visual Studio, at https://microsoft.github.io/PTVS/

See also
ff The Learning the basics of the distributed version control system Git recipe

ff The Debugging code with IPython recipe

Ten tips for conducting reproducible 
interactive computing experiments

In this recipe, we present ten tips that can help you conduct efficient and reproducible 
interactive computing experiments. These are more guidelines than absolute rules.

First, we will show how you can improve your productivity by minimizing the time spent doing 
repetitive tasks and maximizing the time spent thinking about your core work.

Second, we will demonstrate how you can achieve more reproducibility in your computing 
work. Notably, academic research requires experiments to be reproducible so that any 
result or conclusion can be verified independently by other researchers. It is not uncommon 
for errors or manipulations in methods to result in erroneous conclusions that can have 
damaging consequences. For example, in the 2010 research paper in economics Growth in 
a Time of Debt, by Carmen Reinhart and Kenneth Rogoff, computational errors were partly 
responsible for a flawed study with global ramifications for policy makers (see https://
en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt).

How to do it...
1.	 Organize your directory structure carefully and coherently. The specific structure does 

not matter. What matters is to be consistent throughout your projects regarding file-
naming conventions, folders, subfolders, and so on. Here is a simple example:

http://www.jetbrains.com/pycharm/
https://microsoft.github.io/PTVS/
https://en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt
https://en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt
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File structure

2.	 Write notes in text files using a lightweight markup language such as Markdown 
(http://daringfireball.net/projects/markdown/), CommonMark 
(http://commonmark.org/), or reStructuredText (reST). All meta-information 
related to your project, files, datasets, code, figures, lab notebooks, and so on,  
should be written down in text files.

3.	 Relatedly, document everything non-trivial in your code with comments, docstrings, 
and so on. You can use a documentation tool such as Sphinx (http://sphinx-
doc.org). However, do not spend too much time documenting unstable and 
bleeding-edge code while you are working on it; it might change frequently and  
your documentation may soon be out of date. Write your code in such a way that 
it's easily understandable without comments (name your variables and functions 
well, use Pythonic patterns, and so on). See also the next recipe, Writing high-quality 
Python code.

4.	 Use a version control system such as Git for all text-based files, but not binary files 
(except maybe for very small ones when you really need to). You should use one 
repository per project. Synchronize the repositories on a remote server, using a free 
or paid hosting provider (such as GitHub, GitLab, or Bitbucket), or your own server 
(your host institution might be able to set up one for you). Use a specific system to 
store and share binary data files, such as http://figshare.com or http://
datadryad.org.

http://daringfireball.net/projects/markdown/
http://commonmark.org/
http://sphinx-doc.org
http://sphinx-doc.org
http://figshare.com
http://datadryad.org
http://datadryad.org
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5.	 Write all your interactive computing code in Jupyter notebooks first and refactor it into 
standalone Python components only when it is sufficiently mature and stable.

6.	 Make sure that you record the exact versions of all components in your entire 
software stack (operating system, Python distribution, modules, and so on). A 
possibility is to use virtual environments with virtualenv or conda. Another possibility 
is to use Docker (https://www.docker.com).

7.	 Cache long-to-compute intermediary results using Python's native pickle module, 
dill (https://github.com/uqfoundation/dill), or Joblib (http://
pythonhosted.org/joblib/). Joblib notably implements a NumPy-aware 
memoize pattern (not to be confused with memorize), which allows you to cache the 
results of computationally intensive functions.

How to save persistent data in Python? For purely internal purposes, 
you can use Joblib, NumPy's save() and savez() functions for 
arrays, and pickle for any other Python object (prefer native types 
such as lists and dictionaries rather than custom classes). For sharing 
purposes, prefer text files for small datasets (less than 10,000 points); 
for example, CSV for arrays, and JSON or YAML for highly structured 
data. For larger datasets, you can use HDF5 (see the Manipulating large 
arrays with HDF5 recipe of Chapter 4, Profiling and Optimization).

8.	 When developing and trying out algorithms on large datasets, run them and compare 
them on small portions of your data first, before moving to the full sets.

9.	 When running jobs in a batch, use parallel computing to take advantage of your 
multicore processing units—for example, with ipyparallel, Joblib, Dask (https://
dask.pydata.org/en/latest/), Python's multiprocessing package, or any other 
parallel computing library.

10.	 Automate your work as much as possible with Python functions or scripts. Use 
command-line arguments for user-exposed scripts, but choose Python functions over 
scripts when possible. On Unix systems, learn Terminal commands to improve your 
productivity. For repetitive tasks on Windows or GUI-based systems, use automation 
tools such as AutoHotKey (http://www.autohotkey.com). Learn keyboard 
shortcuts in the programs you use a lot, or create your own shortcuts. Automatic 
steps are reproducible; manual steps are not.

How it works...
The tips given in this recipe ultimately aim to optimize your workflows, in terms of human time, 
computer time, and quality. Using coherent conventions and structure for your code makes it 
easier for you to organize your work. Documenting everything saves everyone's time, including 
(eventually) yours!

https://www.docker.com
https://github.com/uqfoundation/dill
http://pythonhosted.org/joblib/
http://pythonhosted.org/joblib/
https://dask.pydata.org/en/latest/
https://dask.pydata.org/en/latest/
http://www.autohotkey.com
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Using a distributed version control system with an online hosting service makes it easy for  
you to work on the same code base from multiple locations, without ever worrying 
about backups. As you can go back in time in your code, you have very little chance of 
unintentionally breaking it.

The Jupyter Notebook is an excellent tool for reproducible interactive computing. It lets you 
keep a detailed record of your work. Also, the ease of using the Jupyter Notebook is that you 
don't have to worry about reproducibility; just do all of your interactive work in notebooks, 
put them under version control, and commit regularly. Don't forget to refactor your code into 
independent reusable components.

Be sure to optimize the time you spend in front of your computer. When working on an 
algorithm, this cycle frequently happens: you do a slight modification, you launch the code, 
get the results, make another change, and so on and so forth. If you need to try out a lot 
of changes, you should ensure that the execution time is fast enough (no more than a few 
seconds). Using advanced optimization techniques is not necessarily the best option at this 
stage of experimentation. You should cache your results, try out your algorithms on data 
subsets, and run your simulations with shorter durations. You can also launch batch jobs in 
parallel when you want to test different parameter values.

Finally, desperately try to avoid doing repetitive tasks. It is worth spending time automating 
such tasks when they occur frequently in your day-to-day work. It is more difficult to automate 
tasks that involve GUIs, but it is feasible thanks to free tools such as AutoHotKey.

There's more...
Here are a few references:

ff Barbagroup reproducibility syllabus, at http://lorenabarba.com/blog/
barbagroup-reproducibility-syllabus/.

ff An efficient workflow for reproducible science, a talk by Trevor Bekolay, available at 
http://bekolay.org/scipy2013-workflow/.

ff Ten Simple Rules for Reproducible Computational Research, Sandve and others, 
PLoS Computational Biology, 2013, available at http://dx.doi.org/10.1371/
journal.pcbi.1003285.

ff Software Carpentry, a volunteer organization running workshops for scientists; the 
workshops cover scientific programming, interactive computing, version control, 
testing, reproducibility, and task automation. You can find more information at 
http://software-carpentry.org.

ff Reproducible Science, at https://reproduciblescience.org/.

http://lorenabarba.com/blog/barbagroup-reproducibility-syllabus/
http://lorenabarba.com/blog/barbagroup-reproducibility-syllabus/
http://bekolay.org/scipy2013-workflow/
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://software-carpentry.org
https://reproduciblescience.org/
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See also
ff The Learning the basics of the Unix shell recipe

ff The Efficient interactive computing workflows with IPython recipe

ff The Writing high-quality Python code recipe

Writing high-quality Python code
Writing code is easy. Writing high-quality code is much harder. Quality is to be understood both 
in terms of actual code (variable names, comments, docstrings, and so on) and architecture 
(functions, modules, and classes). In general, coming up with a well-designed code 
architecture is much more challenging than the implementation itself.

In this recipe, we will give a few tips about how to write high-quality code. This is a particularly 
important topic in academia, as more and more scientists without prior experience in software 
development need to code.

How to do it...
1.	 Take the time to learn the Python language seriously. Review the list of all modules in 

the standard library—you may discover that functions you implemented already exist. 
Learn to write Pythonic code, and do not translate programming idioms from other 
languages such as Java or C++ to Python.

2.	 Learn common design patterns; these are general reusable solutions to commonly 
occurring problems in software engineering.

3.	 Use assertions throughout your code (the assert keyword) to prevent future bugs 
(defensive programming).

4.	 Start writing your code with a bottom-up approach; write independent Python 
functions that implement focused tasks.

5.	 Do not hesitate to refactor your code regularly. If your code is becoming too 
complicated, think about how you can simplify it.

6.	 Avoid classes when you can. If you can use a function instead of a class, choose 
the function. A class is only useful when you need to store persistent state between 
function calls. Make your functions as pure as possible (no side effects).

7.	 In general, choose Python native types (lists, tuples, dictionaries, and types from 
Python's collections module) over custom types (classes). Native types lead to 
more efficient, readable, and portable code.

8.	 Choose keyword arguments over positional arguments in your functions. Argument 
names are easier to remember than argument ordering. They make your functions 
self-documenting.
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9.	 Name your variables carefully. Names of functions and methods should start with a 
verb. A variable name should describe what it is. A function name should describe 
what it does. The importance of naming things well cannot be overstated.

10.	 Every function should have a docstring describing its purpose, arguments, and return 
values, as shown in the following example. You can also look at the conventions 
chosen in popular libraries such as NumPy. The exact convention does not matter; 
the point is to be consistent within your code. You can use a markup language such 
as Markdown or reST:
>>> def power(x, n):
        """Compute the power of a number.
    
        Arguments:
        * x: a number
        * n: the exponent
    
        Returns:
        * c: the number x to the power of n
    
        """
        return x ** n

11.	 Follow (at least partly) Guido van Rossum's Style Guide for Python Code, also known 
as Python Enhancement Proposal number 8 (PEP8), available at http://www.
python.org/dev/peps/pep-0008/. It is a long read, but it will help you write well-
readable Python code. It covers many little things such as spacing between operators, 
naming conventions, comments, and docstrings. For instance, you will learn that it is 
considered a good practice to limit any line of your code to 79 or 99 characters. This 
way, your code can be correctly displayed in most situations (such as in a command-
line interface or on a mobile device) or side by side with another file. Alternatively, 
you can decide to ignore certain rules. In general, following common guidelines is 
beneficial on projects involving many developers.

12.	 You can check your code automatically against most of the style conventions in 
PEP8 with the pycodestyle Python package (https://github.com/PyCQA/
pycodestyle). You can also automatically make your code PEP8-compatible with 
the autopep8 package (https://github.com/hhatto/autopep8).

13.	 Use a tool for static code analysis such as Flake8 (http://flake8.pycqa.org/
en/latest/) or Pylint (https://www.pylint.org). It lets you find potential 
errors or low-quality code statically—that is, without running your code.

14.	 Use blank lines to avoid cluttering your code (see PEP8). You can also demarcate 
sections in a long Python module with salient comments such as this:
>>> # Imports
    # -------

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://github.com/hhatto/autopep8
http://flake8.pycqa.org/en/latest/
http://flake8.pycqa.org/en/latest/
https://www.pylint.org
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    import numpy
    
    # Utility functions
    # -----------------
    
    def fun():
        pass

15.	 A Python module should not contain more than a few hundred lines of code.  
Having too many lines of code in a module may be a sign that you need to split  
it into several modules.

16.	 Organize important projects (with tens of modules) into subpackages (subdirectories).

17.	 Take a look at how major Python projects are organized. For example, the code of 
IPython is well-organized into a hierarchy of subpackages with focused roles. Reading 
the code itself is also quite instructive.

18.	 Learn best practices to create and distribute a new Python package. Make sure that 
you know setuptools, pip, wheels, virtualenv, PyPI, and so on. Also, you are highly 
encouraged to take a serious look at conda (http://conda.pydata.org), a 
powerful and generic packaging system created by Anaconda. Packaging has long 
been a rapidly evolving topic in Python, so read only the most recent references. 
There are a few references in the There's more... section.

How it works...
Writing readable code means that other people (or you, in a few months or years) will 
understand it quicker and will be more willing to use it. It also facilitates bug tracking.

Modular code is also easier to understand and to reuse. Implementing your program's 
functionality in independent functions that are organized as a hierarchy of packages and 
modules is an excellent way of achieving high code quality.

It is easier to keep your code loosely coupled when you use functions instead of classes. 
Spaghetti code is really hard to understand, debug, and reuse.

Iterate between bottom-up and top-down approaches while working on a new project. Starting 
with a bottom-up approach lets you gain experience with the code before you start thinking 
about the overall architecture of your program. Still, make sure you know where you're going 
by thinking about how your components will work together.

http://conda.pydata.org
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There's more...
Much has been written on how to write beautiful code—see the following references. You can 
find many books on the subject. In the next recipe, we will cover standard techniques to make 
sure that our code not only looks nice but also works as expected: unit testing, code coverage, 
and continuous integration.

Here are a few references:

ff Python Cookbook, 3rd Edition, David Beazley and Brian K. Jones, O'Reilly Media 
with many Python advanced recipes, available at http://shop.oreilly.com/
product/0636920027072.do

ff The Hitchhiker's Guide to Python!, available at http://docs.python-guide.
org/en/latest/

ff Design patterns on Wikipedia, available at https://en.wikipedia.org/wiki/
Software_design_pattern

ff Design patterns in Python, described at https://github.com/faif/python-
patterns

ff Coding standards of Tahoe-LAFS, available at https://tahoe-lafs.org/trac/
tahoe-lafs/wiki/CodingStandards

ff How to be a great software developer, by Peter Nixey, available at http://
peternixey.com/post/83510597580/how-to-be-a-great-software-
developer

ff Why you should write buggy software with as few features as possible, a talk by Brian 
Granger, available at http://www.youtube.com/watch?v=OrpPDkZef5I

ff Python Packaging User Guide, available at https://packaging.python.org/
ff A list of antonyms commonly used in programming, available at https://github.

com/rossant/programming-yin-yang

See also
ff The Ten tips for conducting reproducible interactive computing experiments recipe

ff The Writing unit tests with pytest recipe

ff A list of antonyms commonly used in programming, available at https://github.
com/rossant/programming-yin-yang

Writing unit tests with pytest
Untested code is broken code. Manual testing is essential to ensuring that our software works 
as expected and does not contain critical bugs. However, manual testing is severely limited 
because bugs may be introduced at any time in the code.

http://shop.oreilly.com/product/0636920027072.do
http://shop.oreilly.com/product/0636920027072.do
http://docs.python-guide.org/en/latest/
http://docs.python-guide.org/en/latest/
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://github.com/faif/python-patterns
https://github.com/faif/python-patterns
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/CodingStandards
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/CodingStandards
http://peternixey.com/post/83510597580/how-to-be-a-great-software-developer
http://peternixey.com/post/83510597580/how-to-be-a-great-software-developer
http://peternixey.com/post/83510597580/how-to-be-a-great-software-developer
http://www.youtube.com/watch?v=OrpPDkZef5I
https://packaging.python.org/
https://github.com/rossant/programming-yin-yang
https://github.com/rossant/programming-yin-yang
https://github.com/rossant/programming-yin-yang
https://github.com/rossant/programming-yin-yang
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Nowadays, automated testing is a standard practice in software engineering. In this recipe, we 
will briefly cover important aspects of automated testing: unit tests, test-driven development, 
test coverage, and continuous integration. Following these practices is fundamental in order 
to produce high-quality software.

Getting ready
Python has a native unit testing module that you can readily use (unittest). Other third-
party unit testing packages exist. In this recipe, we will use pytest. It is installed by default in 
Anaconda, but you can also install it manually with conda install pytest.

How to do it...
1.	 Let's write in a first.py file a simple function that returns the first element of a list:

>>> %%writefile first.py
    def first(l):
        return l[0]
Overwriting first.py

2.	 To test this function, we write another function, the unit test, that checks our first 
function using an example and an assertion:
>>> %%writefile -a first.py
    
    # This is appended to the file.
    def test_first():
        assert first([1, 2, 3]) == 1
Appending to first.py
>>> %cat first.py
def first(l):
    return l[0]

# This is appended to the file.
def test_first():
    assert first([1, 2, 3]) == 1

3.	 To run the unit test, we use the pytest executable (the ! means that we're calling an 
external program from IPython):
>>> !pytest first.py
============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02_best_practices:
plugins: cov-2.5.1
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collecting 0 items
collecting 1 item
collected 1 item

first.py .

=========== 1 passed in 0.00 seconds ===========

4.	 Our test passes! Let's add another example with an empty list. We want our function 
to return None in this case:
>>> %%writefile first.py
    def first(l):
        return l[0]
    
    def test_first():
        assert first([1, 2, 3]) == 1
        assert first([]) is None
Overwriting first.py
>>> !pytest first.py
============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02_best_practices:
plugins: cov-2.5.1

collecting 0 items
collecting 1 item
collected 1 item

first.py F

=================== FAILURES ===================
__________________ test_first __________________

    def test_first():
        assert first([1, 2, 3]) == 1
>       assert first([]) is None

first.py:6:
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

l = []

    def first(l):
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>       return l[0]
E       IndexError: list index out of range

first.py:2: IndexError
=========== 1 failed in 0.02 seconds ===========

5.	 This time, our test fails. Let's fix it by modifying the first() function:

>>> %%writefile first.py
    def first(l):
        return l[0] if l else None
    
    def test_first():
        assert first([1, 2, 3]) == 1
        assert first([]) is None
Overwriting first.py
>>> !pytest first.py
============= test session starts ==============
platform linux -- Python 3.6.3, pytest-3.2.1, py-1.4.34
rootdir: ~/git/cookbook-2nd/chapter02_best_practices:
plugins: cov-2.5.1

collecting 0 items
collecting 1 item
collected 1 item

first.py .

=========== 1 passed in 0.00 seconds ===========

The test passes again!

How it works...
By definition, a unit test must focus on one specific functionality. All unit tests should be 
completely independent. Writing a program as a collection of well-tested, mostly decoupled 
units forces you to write modular code that is more easily maintainable.

In a Python package, a test_xxx.py module should accompany every Python module 
named xxx.py. This testing module contains unit tests that test functionality implemented  
in the xxx.py module.
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Sometimes, your module's functions require preliminary work to run (for example, setting up 
the environment, creating data files, or setting up a web server). The unit testing framework 
can handle this via fixtures. The state of the system environment should be exactly the same 
before and after a testing module runs. If your tests affect the filesystem, they should do so in 
a temporary directory that is automatically deleted at the end of the tests. Testing frameworks 
such as pytest provide convenient facilities for this use case.

Tests typically involve many assertions. With pytest, you can simply use the built-in assert 
keyword. Further convenient assertion functions are provided by NumPy (see http://docs.
scipy.org/doc/numpy/reference/routines.testing.html). They are especially 
useful when working with arrays. For example, np.testing.assert_allclose(x, y) 
asserts that the x and y arrays are almost equal, up to a given precision that can be specified.

Writing a full testing suite takes time. It imposes strong (but good) constraints on your code's 
architecture. It is a real investment, but it is always profitable in the long run. Also, knowing 
that your project is backed by a full testing suite is a real load off your mind.

First, thinking about unit tests from the beginning forces you to think about a modular 
architecture. It is really difficult to write unit tests for a monolithic program full of 
interdependencies.

Second, unit tests make it easier for you to find and fix bugs. If a unit test fails after 
introducing a change in the program, isolating and reproducing the bugs becomes trivial.

Third, unit tests help you avoid regressions—that is, fixed bugs that silently reappear in a later 
version. When you discover a new bug, you should write a specific failing unit test for it. To 
fix it, make this test pass. Now, if the bug reappears later, this unit test will fail and you will 
immediately be able to address it.

When you write a complex program based on interdependent APIs, having a good test 
coverage for one module means that you can safely rely on it in other modules, without 
worrying about its behavior not conforming to its specification.

Unit tests are just one type of automated tests. Other important types of tests include 
integration tests (making sure that different parts of the program work together) and 
functional tests (testing typical use cases).

There's more...
Automated testing is a wide topic, and we only scratched the surface in this recipe. We give 
some further information here.

http://docs.scipy.org/doc/numpy/reference/routines.testing.html
http://docs.scipy.org/doc/numpy/reference/routines.testing.html
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Test coverage
Using unit tests is good. However, measuring test coverage is even better: it quantifies 
how much of our code is being covered by your testing suite. The coverage.py module 
(https://coverage.readthedocs.io/) does precisely this. It integrates well with pytest.

The coveralls.io service brings test-coverage features to a continuous integration server (refer 
to the Unit testing and continuous integration section). It works seamlessly with GitHub.

Workflows with unit testing
Note the particular workflow we have used in this example. After writing our function, 
we created a first unit test that passed. Then we created a second test, which failed. We 
investigated the issue and fixed the function. The second test passed. We could continue 
writing more and more complex unit tests, until we are confident that the function works as 
expected in most situations.

Run pytest --pdb to drop into the Python debugger on failures. This is 
quite convenient to find out quickly why a unit test fails.

We could even write the tests before the function itself. This is Test-driven development 
(TDD), which consists of writing unit tests before writing the actual code. This workflow forces 
us to think about what our code does and how one uses it, instead of how it is implemented.

Unit testing and continuous integration
A good habit to get into is running the full testing suite of our project at every commit. In fact, 
it is even possible to do this completely transparently and automatically through continuous 
integration. We can set up a server that automatically runs our testing suite in the cloud at 
every commit. If a test fails, we get an automatic email telling us what the problem is so that 
we can fix it.

There are many continuous integration systems and services: Jenkins/Hudson, Travis CI 
(https://travis-ci.org), Codeship (http://codeship.com/), and others. Some 
of them play well with GitHub. For example, to use Travis CI with a GitHub project, create an 
account on Travis CI, link your GitHub project to this account, and then add a .travis.yml 
file with various settings in your repository (see the additional details in the references below).

In conclusion, unit testing, code coverage, and continuous integration are standard practices 
that should be used in all significant projects.

https://coverage.readthedocs.io/
https://travis-ci.org
http://codeship.com/
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Here are a few references:

ff Test-driven development, at https://en.wikipedia.org/wiki/Test-driven_
development

ff Documentation of Travis CI in Python, at http://about.travis-ci.org/docs/
user/languages/python/

Debugging code with IPython
Debugging is an integral part of software development and interactive computing. A 
widespread debugging technique consists of placing the print() functions in various places 
in the code. Who hasn't done this? It is probably the simplest solution, but it is certainly not 
the most efficient (it is the poor man's debugger).

IPython is perfectly adapted for debugging, and the integrated debugger is quite easy to 
use (actually, IPython merely offers a nice interface to the native Python debugger pdb). In 
particular, tab completion works in the IPython debugger. This recipe describes how to debug 
code with IPython.

How to do it...
There are two not-mutually exclusive ways of debugging code in Python. In the post-mortem 
mode, the debugger steps into the code as soon as an exception is raised, so that we 
can investigate what caused it. In the step-by-step mode, we can stop the interpreter at a 
breakpoint and resume its execution step by step. This process allows us to check carefully 
the state of our variables as our code is executed.

Both methods can actually be used simultaneously; we can do step-by-step debugging in the 
post-mortem mode.

The post-mortem mode
When an exception is raised within IPython, execute the %debug magic command to launch 
the debugger and step into the code. Also, the %pdb on command tells IPython to launch the 
debugger automatically as soon as an exception is raised.

Once you are in the debugger, you have access to several special commands, the most 
important ones being listed here:

ff p varname prints the value of a variable

ff w shows your current location within the stack

ff u goes up in the stack

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
http://about.travis-ci.org/docs/user/languages/python/
http://about.travis-ci.org/docs/user/languages/python/
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ff d goes down in the stack

ff l shows the lines of code around your current location

ff a shows the arguments of the current function

The call stack contains the list of all active functions at a given location in the code's 
execution. You can easily navigate up and down the stack to inspect the values of the function 
arguments. Although quite simple to use, this mode should let you resolve most of your bugs. 
For more complex problems, you may need to do step-by-step debugging.

Step-by-step debugging
You have several options to start the step-by-step debugging mode. First, in order to put a 
breakpoint somewhere in your code, insert the following command:

import pdb
pdb.set_trace()

Second, you can run a script from IPython with the following command:

%run -d -b extscript.py:20 script

This command runs the script.py file under the control of the debugger with a breakpoint 
on line 20 in extscript.py (which is imported by script.py). Finally, you can do step-by-
step debugging as soon as you are in the debugger.

Step-by-step debugging consists of precisely controlling the course of the interpreter. Starting 
from the beginning of a script or from a breakpoint, you can resume the execution of the 
interpreter with the following commands:

ff s executes the current line and stops as soon as possible afterwards (step-by-step 
debugging—that is, the most fine-grained execution pattern)

ff n continues the execution until the next line in the current function is reached

ff r continues the execution until the current function returns

ff c continues the execution until the next breakpoint is reached

ff j 30 brings you to line 30 in the current file

You can add breakpoints dynamically from within the debugger using the b command or with 
tbreak (temporary breakpoint). You can also clear all or some of the breakpoints, enable 
or disable them, and so on. You can find the full details of the debugger at https://docs.
python.org/3/library/pdb.html.

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
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There's more...
To debug your code with IPython, you typically need to execute it first with IPython—for 
example, with %run. However, you may not always have an easy way of doing this. For 
instance, your program may run with a custom command-line Python script, it may be 
launched by a complex bash script, or it may be integrated within a GUI. In these cases, you 
can embed an IPython interpreter at any point in your code (launched by Python), instead of 
running your whole program with IPython (which may be overkill if you just need to debug a 
small portion of your code).

To embed IPython within your program, simply insert the following commands somewhere in 
your code:

from IPython import embed
embed()

When your Python program reaches this code, it will pause and launch an interactive IPython 
terminal at this specific point. You will then be able to inspect all local variables, run any code 
you want, and possibly debug your code before resuming normal execution.

Most Python IDEs offer graphical debugging features (see the Efficient interactive computing 
workflows with IPython recipe). A GUI can sometimes be more convenient than a command-
line debugger. A list of Python debuggers is available at https://wiki.python.org/
moin/PythonDebuggingTools.

https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools




83

Mastering the  
Jupyter Notebook

In this chapter, we will cover the following topics:

ff Teaching programming in the Notebook with IPython Blocks

ff Converting a Jupyter notebook to other formats with nbconvert

ff Mastering widgets in the Jupyter Notebook

ff Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript

ff Configuring the Jupyter Notebook

ff Introducing JupyterLab

Introduction
In this chapter, we will explore several advanced features and usage examples of the Jupyter 
Notebook. As we have only seen basic features in the previous chapters, we will dive deeper 
into the architecture of the Notebook here.

The Notebook ecosystem
Jupyter notebooks are represented as JavaScript Object Notation (JSON) documents. JSON 
is a language-independent, text-based file format for representing structured documents. As 
such, notebooks can be processed by any programming language, and they can be converted 
to other formats such as Markdown, HTML, LaTeX/PDF, and others.

3
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There is an ecosystem of tools around Jupyter Notebook. Notebooks are being used to create 
slides, teaching materials, blog posts, research papers, and even books. In fact, this very  
book is entirely written in the Notebook using the Markdown format and a custom-made 
Python tool.

JupyterLab is the next generation of the Jupyter Notebook. It is still in an early stage of 
development at the time of writing. We cover it in the last recipe of this chapter.

Architecture of the Jupyter Notebook
Jupyter implements a two-process model, with a kernel and a client. The client is the 
interface offering the user the ability to send code to the kernel. The kernel executes the 
code and returns the result to the client for display. In the Read-Evaluate-Print Loop (REPL) 
terminology, the kernel implements the Evaluate, whereas the client implements the Read 
and the Print of the process.

The client can be a Qt widget if we run the Qt console, or a browser if we run the Jupyter 
Notebook. In the Jupyter Notebook, the kernel receives entire cells at once, so it has no notion 
of a notebook. There is a strong decoupling between the linear document containing the 
notebook, and the underlying kernel.

All communication procedures between the different processes are implemented on top of the 
ZeroMQ (ZMQ) messaging protocol (http://zeromq.org). The Notebook communicates 
with the underlying kernel using WebSocket, a TCP-based protocol implemented in modern 
web browsers.

Connecting multiple clients to one kernel
In a notebook, typing %connect_info in a cell gives the information we need to connect a 
new client (such as a Qt console) to the underlying kernel:

>>> %connect_info
{
  "shell_port": 58645,
  "iopub_port": 47422,
  "stdin_port": 60550,
  "control_port": 39092,
  "hb_port": 49409,
  "ip": "127.0.0.1",
  "key": "2298f955-7020b0ce534e7a8d81053d43",
  "transport": "tcp",
  "signature_scheme": "hmac-sha256",
  "kernel_name": ""
}

http://zeromq.org
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Paste the above JSON into a file, and connect with:
    $> jupyter <app> --existing <file>
or, if you are local, you can connect with just:
    $> jupyter <app> --existing kernel-4342f625-a8...
or even just:
    $> jupyter <app> --existing
if this is the most recent Jupyter kernel you
    have started.

Here, <app> is console, qtconsole, or notebook.

JupyterHub
JupyterHub, available at https://jupyterhub.readthedocs.io/en/latest/, is a 
Python library that can be used to serve notebooks to a set of end-users, for example students 
of a particular class, or lab members in a research group. It handles user authentication and 
other low-level details.

Security in notebooks
It is possible for an attacker to put malicious code in a Jupyter notebook. Since notebooks 
may contain hidden JavaScript code in a cell output, it is theoretically possible for malicious 
code to execute surreptitiously when the user opens a notebook.

For this reason, Jupyter has a security model where HTML and JavaScript code in a notebook 
can be either trusted or untrusted. Outputs generated by the user are always trusted. 
However, outputs that were already there when the user first opened an existing notebook  
are untrusted.

The security model is based on a cryptographic signature present in every notebook.  
This signature is generated using a secret key owned by every user.

References
The following are some references about the Notebook architecture:

ff Overview of IPython at http://ipython.readthedocs.io/en/stable/
overview.html

ff Documentation for the Jupyter Notebook, available at https://jupyter.
readthedocs.io/en/latest/

ff Security in the Notebook, described at http://jupyter-notebook.
readthedocs.io/en/stable/security.html

https://jupyterhub.readthedocs.io/en/latest/
http://ipython.readthedocs.io/en/stable/overview.html
http://ipython.readthedocs.io/en/stable/overview.html
https://jupyter.readthedocs.io/en/latest/
https://jupyter.readthedocs.io/en/latest/
http://jupyter-notebook.readthedocs.io/en/stable/security.html
http://jupyter-notebook.readthedocs.io/en/stable/security.html
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ff The Jupyter messaging protocol, at http://jupyter-client.readthedocs.io/
en/latest/messaging.html

ff Wrapper kernels at http://jupyter-client.readthedocs.io/en/latest/
wrapperkernels.html

Here are a few kernels in non-Python languages for the Notebook:

ff IJulia, available at https://github.com/JuliaLang/IJulia.jl

ff IRkernel, available at https://github.com/IRkernel/IRkernel

ff IHaskell, available at https://github.com/gibiansky/IHaskell

ff Dozens of kernels are referenced at https://github.com/jupyter/jupyter/
wiki/Jupyter-kernels

Teaching programming in the Notebook with 
IPython Blocks

The Jupyter Notebook is not only a tool for scientific research and data analysis but also a 
great tool for teaching. In this recipe, we show a simple and fun Python library for teaching 
programming notions: IPython Blocks (available at http://ipythonblocks.org). This 
library allows you or your students to create grids of colorful blocks. You can change the color 
and size of individual blocks, and you can even animate your grids. There are many basic 
technical notions you can illustrate with this tool. The visual aspect of this tool makes the 
learning process more effective and engaging.

In this recipe, we will notably perform the following tasks:

ff Illustrate matrix multiplication with an animation

ff Display an image as a block grid

Getting ready
To install IPython Blocks, type pip install ipythonblocks in a Terminal.

How to do it...
1.	 First, we import some modules as follows:

>>> import time
    from IPython.display import clear_output
    from ipythonblocks import BlockGrid, colors

http://jupyter-client.readthedocs.io/en/latest/messaging.html
http://jupyter-client.readthedocs.io/en/latest/messaging.html
http://jupyter-client.readthedocs.io/en/latest/wrapperkernels.html
http://jupyter-client.readthedocs.io/en/latest/wrapperkernels.html
https://github.com/JuliaLang/IJulia.jl
https://github.com/IRkernel/IRkernel
https://github.com/gibiansky/IHaskell
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
http://ipythonblocks.org
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2.	 Now, we create a block grid with five columns and five rows, and we fill each block  
with purple:
>>> grid = BlockGrid(width=5, height=5,
                     fill=colors['Purple'])
    grid.show()

3.	 We can access individual blocks with 2D indexing. This illustrates the indexing syntax 
in Python. We can also access an entire row or line with a : (colon). Each block is 
represented by an RGB color. The library comes with a handy dictionary of colors, 
assigning RGB tuples to standard color names as follows:
>>> grid[0, 0] = colors['Lime']
    grid[-1, 0] = colors['Lime']
    grid[:, -1] = colors['Lime']
    grid.show()
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4.	 Now, we are going to illustrate matrix multiplication. We will represent two (n, n) 
matrices, A (in cyan) and B (lime), aligned with C = A B (yellow). To do this, we use a 
small trick: creating a big white grid of size (2n+1, 2n+1). The matrices A, B, and C 
are just views on parts of the grid.
>>> n = 5
    grid = BlockGrid(width=2 * n + 1,
                     height=2 * n + 1,
                     fill=colors['White'])
    A = grid[n + 1:, :n]
    B = grid[:n, n + 1:]
    C = grid[n + 1:, n + 1:]
    A[:, :] = colors['Cyan']
    B[:, :] = colors['Lime']
    C[:, :] = colors['Yellow']
    grid.show()
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5.	 Let's turn to matrix multiplication itself. We perform a loop over all rows and columns, 
and we highlight the corresponding rows and columns in A and B that are multiplied 
together during the matrix product. We combine IPython's clear_output()  
method with grid.show() and time.sleep() (pause) to implement the 
animation as follows:
>>> for i in range(n):
        for j in range(n):
            # We reset the matrix colors.
            A[:, :] = colors['Cyan']
            B[:, :] = colors['Lime']
            C[:, :] = colors['Yellow']
            # We highlight the adequate rows
            # and columns in red.
            A[i, :] = colors['Red']
            B[:, j] = colors['Red']
            C[i, j] = colors['Red']
            # We animate the grid in the loop.
            clear_output()
            grid.show()
            time.sleep(.25)
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6.	 Finally, we display an image with IPython Blocks. We download and import a PNG 
image with Matplotlib and we retrieve the data as follows:
>>> # We downsample the image by a factor of 4 for
    # performance reasons.
    img = plt.imread('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'beach.png?raw=true')[::4, ::4, :]
>>> rgb = [img[..., i].ravel() for i in range(3)]

7.	 Now, we create a BlockGrid instance with the appropriate number of rows and 
columns, and we set each block's color to the corresponding pixel's color in the image 
(multiplying by 255 to convert from a floating-point number in [0, 1] into an 8-bit 
integer). We use a small block size, and we remove the lines between the blocks as 
follows:
>>> height, width = img.shape[:2]
    grid = BlockGrid(width=width, height=height,
                     block_size=2, lines_on=False)
    for block, r, g, b in zip(grid, *rgb):
        block.rgb = (r * 255, g * 255, b * 255)
    grid.show()
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Converting a Jupyter notebook to other 
formats with nbconvert

A Jupyter notebook is saved in a JSON text file. This file contains the entire contents of the 
notebook: text, code, and outputs. The Matplotlib figures are encoded as base64 strings 
within the notebooks, resulting in standalone, but sometimes big, notebook files.

JSON is a human-readable, text-based, open standard format that 
can represent structured data. Although derived from JavaScript, it is 
language-independent. Its syntax bears some resemblance to Python 
dictionaries. JSON can be parsed in many languages including JavaScript 
and Python (using the json module in Python's standard library).

nbconvert (https://nbconvert.readthedocs.io/en/stable/) is a tool that can 
convert notebooks to other formats: raw text, Markdown, HTML, LaTeX/PDF, and even slides 
with the reveal.js library. You will find more information about the different supported formats 
on the nbconvert documentation.

One typically uses the nbformat (https://nbformat.readthedocs.io/en/latest/) 
library to manipulate a notebook. However, in this recipe, we will see how to manipulate the 
contents of a notebook (which is just a plain-text JSON file) directly with Python, and how to 
convert it to other formats with nbconvert.

Getting ready
You need to install pandoc, available at http://pandoc.org. This tool is used to convert 
markup files to various formats. On Ubuntu, type sudo apt-get install pandoc  
in a Terminal.

To convert a notebook to PDF, you need a LaTeX distribution, which you can download and 
install at http://latex-project.org/ftp.html.

How to do it...
1.	 Let's download and open the test notebook. A notebook is just a plain-text file (JSON):

>>> import io
    import requests
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'test.ipynb?raw=true')
>>> contents = requests.get(url).text
    print(len(contents))
3857

https://nbconvert.readthedocs.io/en/stable/
https://nbformat.readthedocs.io/en/latest/
http://pandoc.org
http://latex-project.org/ftp.html
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2.	 Here is an excerpt of the test.ipynb file:
>>> print(contents[:345] + '...' + contents[-33:])
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# First chapter"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "my_field": [
     "value1",
     "2405"
    ]
   },
   "source": [
    "Let's write some *rich* **text** with
        [links](http://www.ipython.org) and lists:\n",
    "\n",
    "* item1...rmat": 4,
 "nbformat_minor": 4
}

3.	 Now that we have loaded the notebook in a string, let's parse it with the json module 
as follows:
>>> import json
    nb = json.loads(contents)

4.	 Let's have a look at the keys in the notebook dictionary:
>>> print(nb.keys())
    print('nbformat %d.%d' % (nb['nbformat'],
                              nb['nbformat_minor']))
dict_keys(['cells', 'metadata',
           'nbformat', 'nbformat_minor'])
nbformat 4.4
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5.	 Each cell has a type, optional metadata, some contents (text or code), possibly one or 
several outputs, and other information. Let's look at a Markdown cell and a code cell:
>>> nb['cells'][1]
{'cell_type': 'markdown',
 'metadata': {'my_field': ['value1', '2405']},
 'source': ["Let's write some *rich* **text** with
        [links](http://www.ipython.org) and lists:\n",
  '\n',
  '* item1\n',
  '* item2\n',
  '    1. subitem\n',
  '    2. subitem\n',
  '* item3']}
>>> nb['cells'][2]
{'cell_type': 'code',
 'execution_count': 1,
 'metadata': {},
 'outputs': [{'data': {'image/png': 'iVBOR...QmCC\n',
    'text/plain': ['<matplotlib Figure at ...>']},
   'metadata': {},
   'output_type': 'display_data'}],
 'source': ['import numpy as np\n',
  'import matplotlib.pyplot as plt\n',
  '%matplotlib inline\n',
  'plt.figure(figsize=(2,2));\n',
  "plt.imshow(np.random.rand(10,10),
              interpolation='none');\n",
  "plt.axis('off');\n",
  'plt.tight_layout();']}

6.	 Once parsed, the notebook is represented as a Python dictionary. Manipulating it is 
therefore quite convenient in Python. Here, we count the number of Markdown and 
code cells as follows:
>>> cells = nb['cells']
    nm = len([cell for cell in cells
              if cell['cell_type'] == 'markdown'])
    nc = len([cell for cell in cells
              if cell['cell_type'] == 'code'])
    print((f"There are {nm} Markdown cells and "
           f"{nc} code cells."))
There are 2 Markdown cells and 1 code cells.
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7.	 Let's have a closer look at the image output of the cell with the Matplotlib figure:
>>> cells[2]['outputs'][0]['data']
{'image/png': 'iVBOR...QmCC\n',
 'text/plain': ['<matplotlib.figure.Figure at ...>']}

In general, there can be zero, one, or multiple outputs. Additionally, each output can 
have multiple representations. Here, the Matplotlib figure has a PNG representation 
(the base64-encoded image) and a text representation (the internal representation of 
the figure).

8.	 Now, we convert our text notebook to HTML using nbconvert:
>>> # We write the notebook to a file on disk.
    with open('test.ipynb', 'w') as f:
        f.write(contents)
>>> !jupyter nbconvert --to html test.ipynb
[NbConvertApp] Converting notebook test.ipynb to html
[NbConvertApp] Writing 253784 bytes to test.html

9.	 Let's display this document in an <iframe> (a small window showing an external 
HTML document within the notebook):
>>> from IPython.display import Iframe
    IFrame('test.html', 600, 200)
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10.	 We can also convert the notebook to LaTeX and PDF. In order to specify the title and 
author of the document, we need to extend the default LaTeX template. First, we 
create a file called temp.tplx that extends the default article.tplx template 
provided by nbconvert. We specify the contents of the author and title blocks  
as follows:
>>> %%writefile temp.tplx
    ((*- extends 'article.tplx' -*))
    
    ((* block author *))
    \author{Cyrille Rossant}
    ((* endblock author *))
    
    ((* block title *))
    \title{My document}
    ((* endblock title *))
Writing temp.tplx

11.	 Then we can run nbconvert by specifying our custom template as follows:

>>> %%bash
    jupyter nbconvert --to pdf --template temp test.ipynb
[NbConvertApp] Converting notebook test.ipynb to pdf
[NbConvertApp] Support files will be in test_files/
[NbConvertApp] Making directory test_files
[NbConvertApp] Writing 16695 bytes to notebook.tex
[NbConvertApp] Building PDF
[NbConvertApp] Running xelatex 3 times:
    ['xelatex', 'notebook.tex']
[NbConvertApp] Running bibtex 1 time:
    ['bibtex', 'notebook']
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 16147 bytes to test.pdf
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We used nbconvert to convert the notebook to LaTeX, and pdflatex (from our LaTeX 
distribution) to compile the LaTeX document to PDF. The following screenshot shows 
the PDF version of the notebook:

PDF output
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How it works...
As we have seen in this recipe, an .ipynb file contains a structured representation of 
the notebook. This JSON file can be easily parsed and manipulated in Python and other 
languages. However, it is better practice to use the nbformat package to manipulate a 
notebook. The internal JSON format may change, whereas the nbformat API is not expected  
to change.

nbconvert is a tool for converting a notebook to another format. The conversion can be 
customized in several ways. Here, we extended an existing template using Jinja2,  
a templating package (see http://jinja.pocoo.org/docs/).

There's more...
There is a free online service, nbviewer, that lets us render Jupyter notebooks in HTML 
dynamically in the cloud. The idea is that we provide nbviewer a URL to with a raw notebook 
(in JSON), and we get a rendered HTML output. The main page of nbviewer (http://
nbviewer.jupyter.org/) contains a few examples. This service is maintained by the 
Jupyter developers and is hosted on Rackspace (https://www.rackspace.com).

GitHub automatically renders Jupyter notebooks stored in repositories.

binder, available at https://mybinder.org, allows one to turn a GitHub repository into 
a collection of interactive notebooks in the cloud. The service is free and the code is open 
source, so that anyone can provide their own binder service.

Here are some more references:

ff Documentation for nbconvert, at https://nbconvert.readthedocs.io/en/
stable/

ff RISE, to create interactive slideshows out of Jupyter notebooks, at https://
damianavila.github.io/RISE/

Mastering widgets in the Jupyter Notebook
The ipywidgets package provides many common user interface controls for exploring code 
and data interactively. These controls can be assembled and customized to create complex 
graphical user interfaces. In this recipe, we introduce the various ways we can create user 
interfaces with ipywidgets.

Getting ready
The ipywidgets package should be installed by default in Anaconda, but you can also install it 
manually with conda install ipywidgets.

http://jinja.pocoo.org/docs/
http://nbviewer.jupyter.org/
http://nbviewer.jupyter.org/
https://www.rackspace.com
https://mybinder.org
https://nbconvert.readthedocs.io/en/stable/
https://nbconvert.readthedocs.io/en/stable/
https://damianavila.github.io/RISE/
https://damianavila.github.io/RISE/
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Alternatively, you can install ipywidgets with pip install ipywidgets, but then you also 
need to type the following command in order to enable the extension in the Jupyter Notebook:

jupyter nbextension enable --py --sys-prefix widgetsnbextension

How to do it...
1.	 Let's import the packages:

>>> import ipywidgets as widgets
    from ipywidgets import HBox, VBox
    import numpy as np
    import matplotlib.pyplot as plt
    from IPython.display import display
    %matplotlib inline

2.	 The @interact decorator shows a widget for controlling the arguments of a 
function. Here, the function f() accepts an integer as an argument. By default, the  
@interact decorator displays a slider to control the value passed to the function:
>>> @widgets.interact
    def f(x=5):
        print(x)

The function f() is called whenever the slider value changes.

3.	 We can customize the slider parameters. Here, we specify a minimum and maximum 
integer range for the slider:
>>> @widgets.interact(x=(0, 5))
    def f(x=5):
        print(x)
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4.	 There is also an @interact_manual decorator that provides a button to call the 
function manually. This is useful with long-lasting computations that should not 
run every time a widget value changes. Here, we create a simple user interface for 
controlling four parameters of a function that displays a plot. There are two floating-
point sliders, a drop-down menu for choosing a value among a few predefined 
options, and a checkbox for Boolean values:
>>> @widgets.interact_manual(
        color=['blue', 'red', 'green'], lw=(1., 10.))
    def plot(freq=1., color='blue', lw=2, grid=True):
        t = np.linspace(-1., +1., 1000)
        fig, ax = plt.subplots(1, 1, figsize=(8, 6))
        ax.plot(t, np.sin(2 * np.pi * freq * t),
                lw=lw, color=color)
        ax.grid(grid)
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5.	 In addition to the @interact and @interact_manual decorators, ipywidgets 
provides a simple API to create individual widgets. Here, we create a floating-point 
slider:
>>> freq_slider = widgets.FloatSlider(
        value=2.,
        min=1.,
        max=10.0,
        step=0.1,
        description='Frequency:',
        readout_format='.1f',
    )
    freq_slider

6.	 Here is an example of a slider for selecting pairs of numbers, such as intervals  
and ranges:
>>> range_slider = widgets.FloatRangeSlider(
        value=[-1., +1.],
        min=-5., max=+5., step=0.1,
        description='xlim:',
        readout_format='.1f',
    )
    range_slider

7.	 The toggle button can control a Boolean value:
>>> grid_button = widgets.ToggleButton(
        value=False,
        description='Grid',
        icon='check'
    )
    grid_button



Chapter 3

101

8.	 Drop-down menus and toggle buttons are useful when selecting a value among a 
predefined set of options:
>>> color_buttons = widgets.ToggleButtons(
        options=['blue', 'red', 'green'],
        description='Color:',
    )
    color_buttons

9.	 The text widget allows the user to write a string:
>>> title_textbox = widgets.Text(
        value='Hello World',
        description='Title:',
    )
    title_textbox

10.	 We can let the user choose a color using the built-in system color picker:
>>> color_picker = widgets.ColorPicker(
        concise=True,
        description='Background color:',
        value='#efefef',
    )
    color_picker
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11.	 We can also simply create a button:
>>> button = widgets.Button(
        description='Plot',
    )
    button

12.	 Now, we will see how to combine these widgets into a complex Graphical User 
Interface, and how to react to user interactions with these controls. We create a 
function that will display a plot as defined by the created controls. We can access the 
control value with the value property of the widgets:
>>> def plot2(b=None):
        xlim = range_slider.value
        freq = freq_slider.value
        grid = grid_button.value
        color = color_buttons.value
        title = title_textbox.value
        bgcolor = color_picker.value
    
        t = np.linspace(xlim[0], xlim[1], 1000)
        f, ax = plt.subplots(1, 1, figsize=(8, 6))
        ax.plot(t, np.sin(2 * np.pi * freq * t),
                color=color)
        ax.grid(grid)

13.	 The on_click decorator of a button widget lets us react to click events. Here, we 
simply declare that the plotting function should be called when the button is pressed:
>>> @button.on_click
    def plot_on_click(b):
        plot2()

14.	 To display all of our widgets in a unified graphical interface, we define a layout with 
two tabs. The first tab shows widgets related to the plot itself, whereas the second 
tab shows widgets related to the styling of the plot. Each tab contains a vertical stack 
of widgets defined with the VBox class:
>>> tab1 = VBox(children=[freq_slider,
                          range_slider,
                          ])
    tab2 = VBox(children=[color_buttons,
                          HBox(children=[title_textbox,
                                         color_picker,
                                         grid_button]),
                                         ])
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15.	 Finally, we create the Tab instance with our two tabs, we set the titles of the tabs, 
and we add the plot button below the tabs:
>>> tab = widgets.Tab(children=[tab1, tab2])
    tab.set_title(0, 'plot')
    tab.set_title(1, 'styling')
    VBox(children=[tab, button])

There's more...
The documentation for ipywidgets demonstrates many other features of the package. Styling the 
widgets can be customized. New widgets can be created by writing Python and JavaScript code 
(see the Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript recipe). 
Widgets can also remain at least partly functional in a static notebook export.

Here are a few references:

ff ipywidgets user guide at https://ipywidgets.readthedocs.io/en/stable/
user_guide.html

ff Building a custom widget at https://ipywidgets.readthedocs.io/en/
stable/examples/Widget%20Custom.html

See also
ff The Creating custom Jupyter Notebook widgets in Python, HTML,  

and JavaScript recipe

https://ipywidgets.readthedocs.io/en/stable/user_guide.html
https://ipywidgets.readthedocs.io/en/stable/user_guide.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
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Creating custom Jupyter Notebook widgets 
in Python, HTML, and JavaScript

The ipywidgets packages provides many built-in control widgets to interact with code and data 
in the Jupyter Notebook. In this recipe, we show how to build a custom interactive widget from 
scratch, using Python on the kernel side, and HTML/JavaScript on the client side (frontend). 
The widget just displays two buttons to increase and decrease a number. The number can be 
accessed and updated either from the kernel (Python code) or the client (browser).

How to do it...
1.	 Let's import the packages:

>>> import ipywidgets as widgets
    from traitlets import Unicode, Int, validate

2.	 We create a CounterWidget class deriving from DOMWidget:
>>> class CounterWidget(widgets.DOMWidget):
        _view_name = Unicode('CounterView').tag(sync=True)
        _view_module = Unicode('counter').tag(sync=True)
        value = Int(0).tag(sync=True)

This class represents the Python part of the widget. The _view_name and _view_
module attributes refer to the name and module of the JavaScript part. We use 
the traitlets package to specify the type of the variables. The value attribute 
is the counter value, an integer initialized at 0. All of these attributes' values are 
synchronized between Python and JavaScript, hence the sync=True option.

3.	 We now turn to the JavaScript side of the widget. We can write the code directly in 
the notebook using the %%javascript cell magic. The widget framework relies 
on several JavaScript libraries: jQuery (represented as the $ variable), RequireJS 
(modules and dependencies), and Backbone.js (a model view controller framework):
>>> %%javascript
    // We make sure the 'counter' module is defined
    // only once.
    require.undef('counter');
    
    // We define the 'counter' module depending on the
    // Jupyter widgets framework.
    define('counter', ["@jupyter-widgets/base"],
           function(widgets) {
    
        // We create the CounterView frontend class,
        // deriving from DOMWidgetView.
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        var CounterView = widgets.DOMWidgetView.extend({
    
            // This method creates the HTML widget.
            render: function() {
                // The value_changed() method should be
                // called when the model's value changes
                // on the kernel side.
                this.value_changed();
                this.model.on('change:value',
                              this.value_changed, this);
    
                var model = this.model;
                var that = this;
    
                // We create the plus and minus buttons.
                this.bm = $('<button/>')
                .text('-')
                .click(function() {
                    // When the button is clicked,
                    // the model's value is updated.
                    var x = model.get('value');
                    model.set('value', x - 1);
                    that.touch();
                });
    
                this.bp = $('<button/>')
                .text('+')
                .click(function() {
                    var x = model.get('value');
                    model.set('value', x + 1);
                    that.touch();
                });
    
                // This element displays the current
                // value of the counter.
                this.span = $('<span />')
                .text('0')
                .css({marginLeft: '10px',
                      marginRight: '10px'});
    
                // this.el represents the widget's DOM
                // element. We add the minus button,
                // the span element, and the plus button.
                $(this.el)
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                .append(this.bm)
                .append(this.span)
                .append(this.bp);
            },
    
            value_changed: function() {
                // Update the displayed number when the
                // counter's value changes.
                var x = this.model.get('value');
                $($(this.el).children()[1]).text(x);
            },
        });
    
        return {
            CounterView : CounterView
        };
    });

4.	 Let's display the widget:
>>> w = CounterWidget()
    w

5.	 Pressing the buttons updates the value immediately.

Custom widget

6.	 The counter's value is automatically updated on the kernel side:
>>> print(w.value)
4

7.	 Conversely, we can update the value from Python, and it is updated in the frontend:
>>> w.value = 5
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There's more...
Here are a few references:

ff Custom widget tutorial at https://ipywidgets.readthedocs.io/en/stable/
examples/Widget%20Custom.html

ff RequireJS library at http://requirejs.org/

ff Backbone.js library at http://backbonejs.org/

See also
ff The Mastering widgets in the Jupyter Notebook recipe

Configuring the Jupyter Notebook
Many aspects of the Jupyter Notebook can be configured. We covered the configuration of the 
IPython kernel in the Mastering IPython's configuration system recipe in Chapter 1, A Tour of 
Interactive Computing with Jupyter and IPython. In this recipe, we show how to configure the 
Jupyter application and the Jupyter Notebook frontend.

How to do it...
1.	 Let's check whether the Jupyter Notebook configuration file already exists:

>>> %ls ~/.jupyter/jupyter_notebook_config.py
~/.jupyter/jupyter_notebook_config.py

If it does not, type !jupyter notebook --generate-config -y in the 
notebook. If the file already exists, this command will delete its contents and  
replace it with the default file.

A Jupyter configuration file may exist in Python or in JSON (the 
same location and filename, but different file extension). JSON 
files have a higher priority. Unlike Python files, JSON files may be 
edited programmatically.

https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
http://requirejs.org/
http://backbonejs.org/
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2.	 We can inspect the contents of the file with the following command:
>>> %cat ~/.jupyter/jupyter_notebook_config.py
# Configuration file for jupyter-notebook.

#-------------------------------------------------------
# Application(SingletonConfigurable) configuration
#-------------------------------------------------------

## This is an application.

## The date format used by logging formatters
#c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S'

[...]

#-------------------------------------------------------
# JupyterApp(Application) configuration
#-------------------------------------------------------

## Base class for Jupyter applications

## Answer yes to any prompts.
#c.JupyterApp.answer_yes = False

## Full path of a config file.
#c.JupyterApp.config_file = ''

...

For example, to change the default name of a new notebook, we can add the 
following line to this file:
c.ContentsManager.untitled_notebook = 'MyNotebook'

3.	 We now turn to the configuration of the Jupyter Notebook frontend. The configuration 
files are in the following folder:
>>> %ls ~/.jupyter/nbconfig/
notebook.json  tree.json

4.	 Let's inspect the contents of the notebook configuration file (in JSON):
>>> %cat ~/.jupyter/nbconfig/notebook.json
{
  "Cell": {
    "cm_config": {
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      "lineNumbers": false
    }
  },
  "Notebook": {
    "Header": false,
    "Toolbar": false
  }
}

5.	 There are several ways to configure the Notebook frontend. We can directly edit this 
JSON file and reload the notebook. We can also do it in the client using JavaScript. For 
example, here is how we can disable the auto-closing brackets option in code cells:
>>> %%javascript
    var cell = Jupyter.notebook.get_selected_cell();
    var config = cell.config;
    var patch = {
          CodeCell:{
            cm_config: {autoCloseBrackets: false}
          }
        }
    config.update(patch)

If we reload the notebook, this option will be permanently turned off.

Auto-close brackets

6.	 In fact, this command automatically updates the JSON file:
>>> %cat ~/.jupyter/nbconfig/notebook.json
{
  "Cell": {
    "cm_config": {
      "lineNumbers": false
    }
  },
  "Notebook": {
    "Header": false,
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    "Toolbar": false
  },
  "CodeCell": {
    "cm_config": {
      "autoCloseBrackets": false
    }
  }
}

7.	 We can also get and change the frontend options from Python:
>>> from notebook.services.config import ConfigManager
    c = ConfigManager()
    c.get('notebook').get('CodeCell')
{'cm_config': {'autoCloseBrackets': False}}
>>> c.update('notebook', {"CodeCell":
             {"cm_config": {"autoCloseBrackets": True}}})
{'Cell': {'cm_config': {'lineNumbers': False}},
 'CodeCell': {'cm_config': {'autoCloseBrackets': True}},
 'Notebook': {'Header': False, 'Toolbar': False}}
>>> %cat ~/.jupyter/nbconfig/notebook.json
{
  "Cell": {
    "cm_config": {
      "lineNumbers": false
    }
  },
  "Notebook": {
    "Header": false,
    "Toolbar": false
  },
  "CodeCell": {
    "cm_config": {
      "autoCloseBrackets": true
    }
  }
}
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There's more...
The code cell editor used in the Notebook is handled by the CodeMirror JavaScript library.  
All options are detailed in the CodeMirror documentation.

Here are a few references:

ff Notebook configuration at http://jupyter-notebook.readthedocs.io/en/
stable/config.html

ff Notebook frontend configuration at https://jupyter-notebook.readthedocs.
io/en/stable/frontend_config.html

ff CodeMirror options at https://codemirror.net/doc/manual.html#option_
indentUnit

See also
ff The Mastering IPython's configuration system recipe in Chapter 1, A Tour of 

Interactive Computing with Jupyter and IPython

Introducing JupyterLab
JupyterLab is the next generation of the Jupyter Notebook. It aims at fixing many Notebook 
usability issues and it greatly expands its scope. JupyterLab offers a general framework for 
interactive computing and data science in the browser, using Python, Julia, R, or one of many 
other languages.

In addition to providing an improved interface to existing notebooks, JupyterLab also brings, 
within the same interface, a file browser, consoles, terminals, text editors, Markdown editors, 
CSV editors, JSON editors, interactive maps, widgets, and so on. The architecture is completely 
extensible and open to developers. In a word, JupyterLab is a web-based, hackable IDE for 
data science and interactive computing.

JupyterLab uses the exact same Notebook server and file format as the classic Jupyter 
Notebook, so that it is fully compatible with existing notebooks and kernels. Notebook and 
JupyterLab can run side to side on the same computer. You can easily switch between the  
two interfaces.

At the time of writing, JupyterLab is still in an early stage of 
development. However, it is already fairly usable. The interface 
may change until the production release. The developer API 
used to customize JupyterLab is still not stable. There is no user 
documentation yet.

http://jupyter-notebook.readthedocs.io/en/stable/config.html
http://jupyter-notebook.readthedocs.io/en/stable/config.html
https://codemirror.net/doc/manual.html#option_indentUnit 
https://codemirror.net/doc/manual.html#option_indentUnit 
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Getting ready
To install JupyterLab, type conda install -c conda-forge jupyterlab in a Terminal.

To be able to render GeoJSON files in an interactive map, install the GeoJSON JupyterLab 
extension with: jupyter labextension install @jupyterlab/geojson-
extension.

How to do it...
1.	 We can launch JupyterLab by typing jupyter lab in a Terminal. Then we go to 

http://localhost:8888/lab in the web browser.

2.	 The dashboard shows, on the left, a list of files and subdirectories in the current 
working directory. On the right, the launcher lets us create notebooks and text files, 
or open a Jupyter console or a Terminal. Available Jupyter kernels are automatically 
displayed (here, IPython, but also IR and IJulia).

JupyterLab home
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3.	 On the left panel, we can also see a list of open tabs, a list of running sessions, or a 
list of available commands:

Running sessions
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Available commands

4.	 If we open a Jupyter notebook, we get an interface that closely resembles the classic 
Notebook interface:
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A notebook

There are a few improvements compared to the classic Notebook. For example,  
we can drag and drop one or several cells:

Drag and drop in the notebook

We can also collapse cells.
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5.	 If we right-click in the notebook, a contextual menu appears:

Contextual menu in the notebook

If we click on Create Console for Notebook, a new tab appears with a standard 
IPython console. We can drag and drop the tab anywhere in the screen, for example 
below the notebook panel:

Notebook and console
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The IPython console is connected to the same kernel as the Notebook, so they share 
the same namespace. We can also open a new IPython console from the launcher, 
running in a separate kernel.

6.	 We can also open a system shell directly in the browser, using the term.js library:

Notebook and shell
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7.	 JupyterLab includes a text editor. We can create a new text file from the launcher, 
rename it by giving it the .md extension, and edit it:

Markdown document

Let's right-click on the Markdown file. A contextual menu appears:

Contextual menu in a Markdown file

We can add a new panel that renders the Markdown file in real time:
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Markdown rendered

We can also attach an IPython console to our Markdown file. By clicking within a code 
block and pressing Shift + Enter, we send the code directly to the console:

Markdown and console
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8.	 We can also create and open CSV files in JupyterLab:

CSV file
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The CSV viewer is highly efficient. It can smoothly display huge tables with millions or 
even billions of values:

Viewing a CSV file
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9.	 GeoJSON files (files that contain geographic information) can also be edited or viewed 
with the Leaflet mapping library:
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There's more...
JupyterLab is fully extendable. In fact, its philosophy is that all existing features are 
implemented as plugins.

It is possible to work collaboratively on a notebook, as with Google Docs. This feature is still in 
active development at the time of writing.

Here are a few references:

ff JupyterLab GitHub project at https://github.com/jupyterlab/jupyterlab

ff Jupyter renderers at https://github.com/jupyterlab/jupyter-renderers

ff Talk at PyData 2017, available at https://channel9.msdn.com/Events/
PyData/Seattle2017/BRK11

ff Talk at PLOTCON 2017, available at https://www.youtube.com/
watch?v=p7Hr54VhOp0

ff Talk at ESIP Tech, available at https://www.youtube.com/
watch?v=K1AsGeak51A

ff JupyterLab screencast at https://www.youtube.com/watch?v=sf8PuLcijuA

ff Realtime collaboration and cloud storage for JupyterLab through Google Drive, at 
https://github.com/jupyterlab/jupyterlab-google-drive

See also
ff The Introducing IPython and the Jupyter Notebook recipe in Chapter 1, A Tour of 

Interactive Computing with Jupyter and IPython

https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyter-renderers
https://channel9.msdn.com/Events/PyData/Seattle2017/BRK11
https://channel9.msdn.com/Events/PyData/Seattle2017/BRK11
https://www.youtube.com/watch?v=p7Hr54VhOp0
https://www.youtube.com/watch?v=p7Hr54VhOp0
https://www.youtube.com/watch?v=K1AsGeak51A
https://www.youtube.com/watch?v=K1AsGeak51A
https://www.youtube.com/watch?v=sf8PuLcijuA
https://github.com/jupyterlab/jupyterlab-google-drive
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Profiling and 
Optimization

In this chapter, we will cover the following topics:

ff Evaluating the time taken by a command in IPython

ff Profiling your code easily with cProfile and IPython

ff Profiling your code line-by-line with line_profiler

ff Profiling the memory usage of your code with memory_profiler

ff Understanding the internals of NumPy to avoid unnecessary array copying

ff Using stride tricks with NumPy

ff Implementing an efficient rolling average algorithm with stride tricks

ff Processing large NumPy arrays with memory mapping

ff Manipulating large arrays with HDF5

Introduction
Although Python is not generally considered one of the fastest language (which is somewhat 
unfair), it is possible to achieve excellent performance with the appropriate methods. This is 
the objective of this chapter and the next. This chapter describes how to evaluate (profile) 
what makes a program slow, and how this information can be used to optimize the code 
and make it more efficient. The next chapter will deal with more advanced high-performance 
computing methods that should only be tackled when the methods described here are  
not sufficient.

4
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The recipes of this chapter are organized into three parts:

ff Time and memory profiling: Evaluating the performance of your code

ff NumPy optimization: Using NumPy more efficiently, particularly with large arrays

ff Memory mapping with arrays: Implementing memory mapping techniques for  
out-of-core computations on huge arrays

Evaluating the time taken by a command in 
IPython

The %timeit magic and the %%timeit cell magic (which applies to an entire code cell) allow 
us to quickly evaluate the time taken by one or several Python statements. The next recipes in 
this chapter will show methods for more extensive profiling.

How to do it...
We are going to estimate the time taken to calculate the sum of the inverse squares of all 
positive integer numbers up to a given n.

1.	 Let's define n:
>>> n = 100000

2.	 Let's time this computation in pure Python:
>>> %timeit sum([1. / i**2 for i in range(1, n)])
21.6 ms ± 343 µs per loop (mean ± std. dev. of 7 runs,
    10 loops each)

3.	 Now, let's use the %%timeit cell magic to time the same computation written  
on two lines:
>>> %%timeit s = 0.
    for i in range(1, n):
        s += 1. / i**2
22 ms ± 522 µs per loop (mean ± std. dev. of 7 runs,
    10 loops each)

4.	 Finally, let's time the NumPy version of this computation:
>>> import numpy as np
>>> %timeit np.sum(1. / np.arange(1., n) ** 2)
160 µs ± 959 ns per loop (mean ± std. dev. of 7 runs,
    10000 loops each)

Here, the NumPy vectorized version is 137x faster than the pure Python version.
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How it works...
The %timeit command accepts several optional parameters. One such parameter is the 
number of statement evaluations. By default, this number is chosen automatically so that  
the %timeit command returns within a few seconds in most cases. However, this number 
can be specified directly with the -r and -n parameters. Type %timeit? in IPython to get 
more information.

The %%timeit cell magic also accepts an optional setup statement in the first line (on 
the same line as %%timeit), which is executed but not timed. All variables created in this 
statement are available inside the cell.

There's more...
If you are not in an IPython interactive session or in a Jupyter Notebook, you can use import 
timeit; timeit.timeit(). This function benchmarks a Python statement stored in a 
string. IPython's %timeit magic command is a convenient wrapper around timeit(),  
useful in an interactive session. For more information on the timeit module, refer to  
https://docs.python.org/3/library/timeit.html.

See also
ff The Profiling your code easily with cProfile and IPython recipe

ff The Profiling your code line-by-line with line_profiler recipe

Profiling your code easily with cProfile  
and IPython

The %timeit magic command is often helpful, yet a bit limited when we need detailed 
information about what takes up most of the execution time. This magic command is meant 
for benchmarking (comparing the execution times of different versions of a function) rather 
than profiling (getting a detailed report of the execution time, function by function).

Python includes a profiler named cProfile that breaks down the execution time into the 
contributions of all called functions. IPython provides convenient ways to leverage this tool in 
an interactive session.

https://docs.python.org/3/library/timeit.html
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How to do it...
IPython offers the %prun line magic and the %%prun cell magic to easily profile one or 
multiple lines of code. The %run magic command also accepts a -p flag to run a Python script 
under the control of the profiler. These commands accept a lot of options as can be seen with 
%prun? and %run?.

In this example, we will profile a numerical simulation of random walks. We will cover these 
kinds of simulation in more detail in Chapter 13, Stochastic Dynamical Systems.

1.	 Let's import NumPy:
>>> import numpy as np

2.	 Let's create a function generating random +1 and -1 values in an array:
>>> def step(*shape):
        # Create a random n-vector with +1 or -1 values.
        return 2 * (np.random.random_sample(shape)<.5) - 1

3.	 Now, we write simulation code in a cell starting with %%prun in order to profile the 
entire simulation. The various options allow us to save the report in a file and to sort 
the first 10 results by cumulative time. We will explain these options in more detail in 
the How it works... section.
>>> %%prun -s cumulative -q -l 10 -T prun0
    # We profile the cell, sort the report by "cumulative
    # time", limit it to 10 lines, and save it to a file
    # named "prun0".
    
    n = 10000
    iterations = 50
    x = np.cumsum(step(iterations, n), axis=0)
    bins = np.arange(-30, 30, 1)
    y = np.vstack([np.histogram(x[i,:], bins)[0]
                   for i in range(iterations)])
*** Profile printout saved to text file 'prun0'.

4.	 The profiling report has been saved in a text file named prun0. Let's display it (the 
following output is a stripped down version that fits on this page):
>>> print(open('prun0', 'r').read())
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Here, we observe the time taken by the different functions involved, directly or 
indirectly, in our code.

How it works...
Python's profiler creates a detailed report of the execution time of our code, function by 
function. Here, we can observe the number of calls of the histogram(), cumsum(), 
step(), sort(), and rand() functions, and the total time spent by those functions during 
the code's execution. Internal functions are also profiled. For each function, we get the total 
number of calls, the total and cumulative times, and their per-call counterparts (division 
by ncalls). The total time represents how long the interpreter stays in a given function, 
excluding the time spent in calls to subfunctions. The cumulative time is similar but includes 
the time spent in calls to subfunctions. The filename, function name, and line number are 
displayed in the last column.

The %prun and %%prun magic commands accept multiple optional options (type %prun? for 
more details). In the example, -s allows us to sort the report by a particular column, -q to 
suppress (quell) the pager output (which is useful when we want to integrate the output in a 
notebook), -l to limit the number of lines displayed or to filter the results by function name 
(which is useful when we are interested in a particular function), and -T to save the report 
in a text file. In addition, we can choose to save (dump) the binary report in a file with -D, or 
to return it in IPython with -r. This database-like object contains all information about the 
profiling and can be analyzed through Python's pstats module.

Every profiler brings its own overhead that can bias the profiling 
results (probe effect). In other words, a profiled program may run 
significantly slower than a non-profiled program. That's a point to 
keep in mind.

"Premature optimization is the root of all evil"
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As Donald Knuth's well-known quote suggests, optimizing code prematurely is generally 
considered a bad practice. Code optimization should only be conducted when it's really 
needed, that is, when the code is really too slow in normal situations. Additionally, we should 
know exactly where we need to optimize our code; typically, the vast majority of the execution 
time comprises a relatively small part of the code. The only way to find out is by profiling your 
code; optimization should never be done without preliminary profiling.

I was once dealing with some fairly complicated code that was slower 
than expected. I thought I had a pretty good idea of what was causing 
the problem and how I could resolve it. The solution would involve 
significant changes in the code. By profiling my code first, I discovered 
that my diagnosis was wrong; I had written somewhere max(x) 
instead of np.max(x) by mistake, where x was a huge vector. It was 
Python's built-in function that was called, instead of NumPy's heavily 
optimized routine for arrays. If I hadn't profiled my code, I would 
probably have missed this mistake forever. The program was working 
perfectly fine, only 150 times slower!

For more general advice on programming optimization, see https://en.wikipedia.org/
wiki/Program_optimization.

There's more...
Profiling code in IPython is particularly simple (especially in the Notebook), as we have seen 
in this recipe. However, it may be undesirable or difficult to execute the code that we need 
to profile from IPython (GUIs, for example). In this case, we can use cProfile directly. It is 
slightly less straightforward than with IPython.

1.	 First, we call the following command:
$ python -m cProfile -o profresults myscript.py

The file profresults will contain the dump of the profiling results of  
myscript.py.

2.	 Then, we execute the following code from Python or IPython to display the profiling 
results in a human-readable form:
import pstats
p = pstats.Stats('profresults')
p.strip_dirs().sort_stats("cumulative").print_stats()

Explore the documentation for the cProfile and pstats modules to discover all of 
the analyses that you can perform on profiling reports.

https://en.wikipedia.org/wiki/Program_optimization
https://en.wikipedia.org/wiki/Program_optimization
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There are a few GUI tools for exploring and visualizing the output of a profiling session.  
For example, SnakeViz allows you to view profile dumps in a GUI program.

Here are a few references:

ff Documentation of cProfile and pstats, available at https://docs.python.
org/3/library/profile.html

ff SnakeViz, available at https://jiffyclub.github.io/snakeviz/

ff Heat, a magic command to profile and view Python code as a heat map, at https://
github.com/csurfer/pyheatmagic

ff Python profiling tools, available at http://blog.ionelmc.ro/2013/06/08/
python-profiling-tools/

ff accelerate.profiling at https://docs.anaconda.com/accelerate/
profiling

See also
ff The Profiling your code line-by-line with line_profiler recipe

Profiling your code line-by-line with  
line_profiler

Python's native cProfile module and the corresponding %prun magic break down the 
execution time of code function by function. Sometimes, we may need an even more fine-
grained analysis of code performance with a line-by-line report. Such reports can be easier to 
read than reports from cProfile.

To profile code line-by-line, we need an external Python module named line_profiler. In 
this recipe, we will demonstrate how to use this module within IPython.

Getting ready
To install line_profiler, type conda install line_profiler in a Terminal.

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://jiffyclub.github.io/snakeviz/
https://github.com/csurfer/pyheatmagic
https://github.com/csurfer/pyheatmagic
http://blog.ionelmc.ro/2013/06/08/python-profiling-tools/
http://blog.ionelmc.ro/2013/06/08/python-profiling-tools/
https://docs.anaconda.com/accelerate/profiling
https://docs.anaconda.com/accelerate/profiling
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How do to it...
We will profile the same simulation code as in the previous recipe, line-by-line.

1.	 First, let's import NumPy and the line_profiler IPython extension module that 
comes with the package:
>>> import numpy as np
    %load_ext line_profiler

2.	 This IPython extension module provides an %lprun magic command to profile a 
Python function line-by-line. It works best when the function is defined in a file and 
not in the interactive namespace or in the Notebook. Therefore, here we write our 
code in a Python script using the %%writefile cell magic:
>>> %%writefile simulation.py
    import numpy as np
    
    def step(*shape):
        # Create a random n-vector with +1 or -1 values.
        return 2 * (np.random.random_sample(shape)<.5) - 1
    
    def simulate(iterations, n=10000):
        s = step(iterations, n)
        x = np.cumsum(s, axis=0)
        bins = np.arange(-30, 30, 1)
        y = np.vstack([np.histogram(x[i,:], bins)[0]
                       for i in range(iterations)])
        return y

3.	 Now, let's import this script into the interactive namespace so that we can execute 
and profile our code:
>>> from simulation import simulate

4.	 We execute the function under the control of the line profiler. The functions to be 
profiled need to be explicitly specified in the %lprun magic command. We also save 
the report in a file named lprof0:
>>> %lprun -T lprof0 -f simulate simulate(50)
*** Profile printout saved to text file 'lprof0'.

5.	 Let's display the report:
>>> print(open('lprof0', 'r').read())
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How it works...
The %lprun command accepts a Python statement as its main argument. The functions to 
profile need to be explicitly specified with -f. Other optional arguments include -D, -T, and 
-r, and they work in a similar way to their %prun magic command counterparts.

The line_profiler module displays the time spent on each line of the profiled functions, 
either in timer units or as a fraction of the total execution time. These details are essential 
when we are looking for hotspots in our code.

There's more...
Tracing is a related method. Python's trace module allows us to trace program execution 
of Python code. That's particularly useful during in-depth debugging and profiling sessions. 
We can follow the entire sequence of instructions executed by the Python interpreter. More 
information on the trace module is available at https://docs.python.org/3/library/
trace.html.

In addition, the Online Python Tutor is an online interactive educational tool that can help 
us understand what the Python interpreter is doing step-by-step as it executes a program's 
source code. The Online Python Tutor is available at http://pythontutor.com/.

Here are a few references:

ff The line_profiler repository at https://github.com/rkern/line_
profiler

See also
ff The Profiling your code easily with cProfile and IPython recipe

ff The Profiling the memory usage of your code with memory_profiler recipe

https://docs.python.org/3/library/trace.html
https://docs.python.org/3/library/trace.html
http://pythontutor.com/
https://github.com/rkern/line_profiler
https://github.com/rkern/line_profiler
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Profiling the memory usage of your code 
with memory_profiler

The methods described in the previous recipe were about CPU time profiling. That may be the 
most obvious factor when it comes to code profiling. However, memory is also a critical factor. 
Writing memory-optimized code is not trivial and can really make your program faster. This is 
particularly important when dealing with large NumPy arrays, as we will see later in this chapter.

In this recipe, we will look at a simple memory profiler unsurprisingly named  
memory_profiler. Its usage is very similar to line_profiler, and it can be  
conveniently used from IPython.

Getting ready
You can install memory_profiler with conda install memory_profiler.

How to do it...
1.	 We load the memory_profiler IPython extension:

>>> %load_ext memory_profiler

2.	 We define a function that allocates big objects:
>>> %%writefile memscript.py
    def my_func():
        a = [1] * 1000000
        b = [2] * 9000000
        del b
        return a

3.	 Now, let's run the code under the control of the memory profiler:
>>> from memscript import my_func
    %mprun -T mprof0 -f my_func my_func()
*** Profile printout saved to text file mprof0.

4.	 Let's show the results:
>>> print(open('mprof0', 'r').read())
Line #  Mem usage    Increment   Line Contents
================================================
   1     93.4 MiB      0.0 MiB   def my_func():
   2    100.9 MiB      7.5 MiB       a = [1] * 1000000
   3    169.7 MiB     68.8 MiB       b = [2] * 9000000
   4    101.1 MiB    -68.6 MiB       del b
   5    101.1 MiB      0.0 MiB       return a

We can observe line after line the allocation and deallocation of objects.
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How it works...
The memory_profiler package checks the memory usage of the interpreter at every line. 
The increment column allows us to spot those places in the code where large amounts of 
memory are allocated. This is especially important when working with arrays. Unnecessary 
array creations and copies can considerably slow down a program. We will tackle this issue in 
the next few recipes.

There's more...
The memory_profiler IPython extension also comes with a %memit magic command that 
lets us benchmark the memory used by a single Python statement. Here is a simple example:

>>> %%memit import numpy as np
    np.random.randn(1000000)
peak memory: 101.20 MiB, increment: 7.77 MiB

The memory_profiler package offers other ways to profile the memory usage of a Python 
program, including plotting the memory usage as a function of time. For more details, refer to 
the documentation at https://github.com/pythonprofilers/memory_profiler.

See also
ff The Profiling your code line-by-line with line_profiler recipe

ff The Understanding the internals of NumPy to avoid unnecessary array copying recipe

Understanding the internals of NumPy to 
avoid unnecessary array copying

We can achieve significant performance speed enhancement with NumPy over native Python 
code, particularly when our computations follow the Single Instruction, Multiple Data (SIMD) 
paradigm. However, it is also possible to unintentionally write non-optimized code with NumPy.

In the next few recipes, we will see some tricks that can help us write optimized NumPy code. 
In this recipe, we will see how to avoid unnecessary array copies in order to save memory. In 
that respect, we will need to dig into the internals of NumPy.

https://github.com/pythonprofilers/memory_profiler
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Getting ready
First, we need a way to check whether two arrays share the same underlying data buffer in 
memory. Let's define a function aid() that returns the memory location of the underlying 
data buffer:

>>> import numpy as np
>>> def aid(x):
        # This function returns the memory
        # block address of an array.
        return x.__array_interface__['data'][0]

Two arrays with the same data location (as returned by aid()) share the same underlying 
data buffer. However, the opposite is true only if the arrays have the same offset (meaning 
that they have the same first element). Two shared arrays with different offsets will have 
slightly different memory locations, as shown in the following example:

>>> a = np.zeros(3)
    aid(a), aid(a[1:])
(21535472, 21535480)

In the next few recipes, we'll make sure to use this method with arrays that have the same 
offset. Here is a more general and reliable solution for finding out whether two arrays share 
the same data:

>>> def get_data_base(arr):
        """For a given NumPy array, find the base array
        that owns the actual data."""
        base = arr
        while isinstance(base.base, np.ndarray):
            base = base.base
        return base
    
    
    def arrays_share_data(x, y):
        return get_data_base(x) is get_data_base(y)
>>> print(arrays_share_data(a, a.copy()))
False
>>> print(arrays_share_data(a, a[:1]))
True

Thanks to Michael Droettboom for pointing this out and proposing this alternative solution.
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How to do it...
Computations with NumPy arrays may involve internal copies between blocks of memory. 
These copies are not always necessary, in which case they should be avoided, as we will see 
in the following tips.

1.	 We may sometimes need to make a copy of an array; for instance, if we need to 
manipulate an array while keeping an original copy in memory:
>>> import numpy as np
    a = np.zeros(10)
    ax = aid(a)
    ax
32250112
>>> b = a.copy()
    aid(b) == ax
False

2.	 Array computations can involve in-place operations (the first example in the following 
code: the array is modified) or implicit-copy operations (the second example: a new 
array is created):
>>> a *= 2
    aid(a) == ax
True
>>> c = a * 2
    aid(c) == ax
False
Implicit-copy operations are slower, as shown here:
>>> %%timeit a = np.zeros(10000000)
    a *= 2
4.85 ms ± 24 µs per loop (mean ± std. dev. of 7 runs,
100 loops each)
>>> %%timeit a = np.zeros(10000000)
    b = a * 2
7.7 ms ± 105 µs per loop (mean ± std. dev. of 7 runs,
100 loops each)

3.	 Reshaping an array may or may not involve a copy. The reasons will be explained in 
the How it works... section of this recipe. For instance, reshaping a 2D matrix does 
not involve a copy, unless it is transposed (or more generally, non-contiguous):
>>> a = np.zeros((100, 100))
    ax = aid(a)
>>> b = a.reshape((1, -1))
    aid(b) == ax
True
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>>> c = a.T.reshape((1, -1))
    aid(c) == ax
False

Therefore, the latter instruction is significantly slower than the former:

>>> %timeit b = a.reshape((1, -1))
330 ns ± 0.517 ns per loop (mean ± std. dev. of 7 runs
    1000000 loops each)
>>> %timeit a.T.reshape((1, -1))
5 µs ± 5.68 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)

4.	 Both the flatten() and the ravel() methods of an array reshape it into a 1D 
vector (a flattened array). However, the flatten() method always returns a copy, 
and the ravel() method returns a copy only if necessary (thus it's faster, especially 
with large arrays).
>>> d = a.flatten()
    aid(d) == ax
False
>>> e = a.ravel()
    aid(e) == ax
True
>>> %timeit a.flatten()
2.3 µs ± 18.1 ns per loop (mean ± std. dev. of 7 runs,
100000 loops each)
>>> %timeit a.ravel()
199 ns ± 5.02 ns per loop (mean ± std. dev. of 7 runs,
10000000 loops each)

5.	 Broadcasting rules allow us to make computations on arrays with different but 
compatible shapes. In other words, we don't always need to reshape or tile our arrays 
to make their shapes match. The following example illustrates two ways of doing an 
outer product between two vectors: the first method involves array tiling, the second 
one (faster) involves broadcasting:
>>> n = 1000
>>> a = np.arange(n)
    ac = a[:, np.newaxis]  # column vector
    ar = a[np.newaxis, :]  # row vector
>>> %timeit np.tile(ac, (1, n)) * np.tile(ar, (n, 1))
5.7 ms ± 42.6 µs per loop (mean ± std. dev. of 7 runs,
100 loops each)
>>> %timeit ar * ac
784 µs ± 2.39 µs per loop (mean ± std. dev. of 7 runs,
1000 loops each)
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How it works...
In this section, we will see what happens under-the-hood when using NumPy, and how this 
knowledge allows us to understand the tricks given in this recipe.

Why are NumPy arrays efficient?
A NumPy array is basically described by metadata (notably the number of dimensions, the shape, 
and the data type) and the actual data. The data is stored in a homogeneous and contiguous 
block of memory, at a particular address in system memory (Random Access Memory (RAM)). 
This block of memory is called the data buffer. This is the main difference between an array and 
a pure Python structure, such as a list, where the items are scattered across the system memory. 
This aspect is the critical feature that makes NumPy arrays so efficient.

Why is this so important? Here are the main reasons:

ff Computations on arrays can be written very efficiently in a low-level language such 
as C (and a large part of NumPy is actually written in C). Knowing the address of the 
memory block and the data type, it is just simple arithmetic to loop over all items, for 
example. There would be a significant overhead if we did that in Python with a list.

ff Spatial locality in memory access patterns results in performance gains notably 
due to the CPU cache. Indeed, the cache loads bytes in chunks from the RAM to the 
CPU registers. Adjacent items are then loaded very efficiently (sequential locality, or 
locality of reference).

ff Finally, the fact that items are stored contiguously in memory allows NumPy to take 
advantage of vectorized instructions of modern CPUs, such as Intel's SSE and AVX, 
AMD's XOP, and so on. For example, multiple consecutive floating point numbers can 
be loaded in 128-, 256-, or 512-bit registers for vectorized arithmetical computations 
implemented as CPU instructions.

Additionally, NumPy can be linked to highly optimized linear algebra 
libraries such as BLAS and LAPACK through ATLAS or the Intel 
Math Kernel Library (MKL). A few specific matrix computations may 
also be multithreaded, taking advantage of the power of modern 
multicore processors.

In conclusion, storing data in a contiguous block of memory ensures that the architecture 
of modern CPUs is used optimally, in terms of memory access patterns, CPU cache, and 
vectorized instructions.
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What is the difference between in-place and implicit-copy 
operations?
Let's explain the example in step 2. An expression such as a *= 2 corresponds to an in-place 
operation, where all values of the array are multiplied by two. By contrast, a = a*2 means 
that a new array containing the values of a*2 is created, and the variable a now points to this 
new array. The old array becomes unreferenced and will be deleted by the garbage collector. 
No memory allocation happens in the first case, unlike the second case.

More generally, expressions such as a[i:j] are views to parts of an array; they point to the 
memory buffer containing the data. Modifying them with in-place operations changes the 
original array.

Knowing this subtlety of NumPy can help you fix some bugs (where an array is implicitly and 
unintentionally modified because of an operation on a view), and optimize the speed and 
memory consumption of your code by reducing the number of unnecessary copies.

Why can't some arrays be reshaped without a copy?
We explain the example in step 3 here, where a transposed 2D matrix cannot be flattened 
without a copy. A 2D matrix contains items indexed by two numbers (row and column), but 
it is stored internally as a 1D contiguous block of memory, accessible with a single number. 
There is more than one way of storing matrix items in a 1D block of memory: we can put the 
elements of the first row first, then the second row, and so on, or the elements of the first 
column first, then the second column, and so on. The first method is called row-major order, 
whereas the latter is called column-major order. Choosing between the two methods is only a 
matter of internal convention: NumPy uses row-major order, like C, but unlike FORTRAN.

Internal array layouts: row-major and column-major orders

More generally, NumPy uses the notion of strides to convert between a multidimensional 
index and the memory location of the underlying (1D) sequence of elements. The specific 
mapping between array[i1, i2] and the relevant byte address of the internal data is 
given by:

offset = array.strides[0] * i1 + array.strides[1] * i2
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When reshaping an array, NumPy avoids copies when possible by modifying the strides 
attribute. For example, when transposing a matrix, the order of strides is reversed, but 
the underlying data remains identical. However, flattening a transposed array cannot be 
accomplished simply by modifying strides, so a copy is needed.

Internal array layout can also explain some unexpected performance discrepancies  
between very similar NumPy operations. As a small exercise, can you explain the  
following benchmarks?

>>> a = np.random.rand(5000, 5000)
>>> %timeit a[0, :].sum()
2.91 µs ± 20 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)
>>> %timeit a[:, 0].sum()
33.7 µs ± 22.7 ns per loop (mean ± std. dev. of 7 runs
    10000 loops each)

What are NumPy broadcasting rules?
Broadcasting rules describe how arrays with different dimensions and/or shapes can be 
used for computations. The general rule is that two dimensions are compatible when they 
are equal, or when one of them is 1. NumPy uses this rule to compare the shapes of the two 
arrays element-wise, starting with the trailing dimensions and working its way forward. The 
smallest dimension is internally stretched to match the other dimension, but this operation 
does not involve any memory copy.

There's more...
Here are a few references:

ff Broadcasting rules and examples, available at http://docs.scipy.org/doc/
numpy/user/basics.broadcasting.html

ff Array interface in NumPy, at http://docs.scipy.org/doc/numpy/reference/
arrays.interface.html

ff Locality of reference, at https://en.wikipedia.org/wiki/Locality_of_
reference

ff Internals of NumPy in the SciPy lectures notes, available at http://scipy-
lectures.github.io/advanced/advanced_numpy/

ff 100 NumPy exercises by Nicolas Rougier, available at http://www.loria.
fr/~rougier/teaching/numpy.100/index.html

See also
ff The Using stride tricks with NumPy recipe

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference
http://scipy-lectures.github.io/advanced/advanced_numpy/
http://scipy-lectures.github.io/advanced/advanced_numpy/
http://www.loria.fr/~rougier/teaching/numpy.100/index.html
http://www.loria.fr/~rougier/teaching/numpy.100/index.html
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Using stride tricks with NumPy
In this recipe, we will dig deeper into the internals of NumPy arrays, by generalizing the notion 
of row-major and column-major orders to multidimensional arrays. The general notion is that 
of strides, which describe how the items of a multidimensional array are organized within a 
one-dimensional data buffer. Strides are mostly an implementation detail, but they can also 
be used in specific situations to optimize some algorithms.

Getting ready
We suppose that NumPy has been imported and that the aid() function has been defined 
(refer to the Understanding the internals of NumPy to avoid unnecessary array copying recipe).

>>> import numpy as np
>>> def aid(x):
        # This function returns the memory
        # block address of an array.
        return x.__array_interface__['data'][0]

How to do it...
1.	 Strides are integer numbers describing the byte step in the contiguous block of 

memory for each dimension.
>>> x = np.zeros(10)
    x.strides
(8,)

This vector x contains double-precision floating point numbers (float64, 8 bytes); 
you need to go 8 bytes forward to go from one item to the next.

2.	 Now, let's look at the strides of a 2D array:
>>> y = np.zeros((10, 10))
    y.strides
(80, 8)

In the first dimension (vertical), you need to go 80 bytes (10 float64 items) forward 
to go from one item to the next, because the items are internally stored in row-major 
order. In the second dimension (horizontal), you need to go 8 bytes forward to go from 
one item to the next.

3.	 Let's show how we can revisit the broadcasting rules from the previous recipe  
using strides:
>>> n = 1000
    a = np.arange(n)
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We will create a new array, b, pointing to the same memory block as a, but with a 
different shape and different strides. This new array will look like a vertically-tiled 
version of a. We use a special function in NumPy to change the strides of an array:
>>> b = np.lib.stride_tricks.as_strided(a, (n, n), (0, 8))
>>> b
array([[  0,   1,   2, ..., 997, 998, 999],
       [  0,   1,   2, ..., 997, 998, 999],
       [  0,   1,   2, ..., 997, 998, 999],
       ...,
       [  0,   1,   2, ..., 997, 998, 999],
       [  0,   1,   2, ..., 997, 998, 999],
       [  0,   1,   2, ..., 997, 998, 999]])
>>> b.size, b.shape, b.nbytes
(1000000, (1000, 1000), 8000000)

NumPy believes that this array contains one million different elements, whereas the 
data buffer actually contains the same 1,000 elements as a.

4.	 We can now perform an efficient outer product using the same principle as with 
broadcasting rules:
>>> %timeit b * b.T
766 µs ± 2.59 µs per loop (mean ± std. dev. of 7 runs,
1000 loops each)
>>> %%timeit
    np.tile(a, (n, 1)) * np.tile(a[:, np.newaxis], (1, n))
5.55 ms ± 9.1 µs per loop (mean ± std. dev. of 7 runs,
100 loops each)

How it works...
Every array has a number of dimensions, a shape, a data type, and strides. Strides describe 
how the items of a multidimensional array are organized in the data buffer. There are many 
different schemes for arranging the items of a multidimensional array in a one-dimensional 
block. NumPy implements a strided indexing scheme, where the position of any element is 
a linear combination of the dimensions, the coefficients being the strides. In other words, 
strides describe, in any dimension, how many bytes we need to jump over in the data buffer to 
go from one item to the next.
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The position of any element in a multidimensional array is given by a linear combination of its 
indices, as follows:

Strides

Artificially changing the strides allows us to make some array operations more efficient than 
with standard methods, which may involve array copies. Internally, that's how broadcasting 
works in NumPy.

The as_strided() method takes an array, a shape, and strides as arguments. It creates a 
new array, but uses the same data buffer as the original array. The only thing that changes 
is the metadata. This trick lets us manipulate NumPy arrays as usual, except that they may 
take much less memory than what NumPy thinks. Here, using 0 in the strides implies that any 
array item can be addressed by many multidimensional indices, resulting in memory savings.

Be very careful with strided arrays! The as_strided() function does 
not check whether you stay inside the memory block bounds. This 
means that you need to handle edge effects manually; otherwise, you 
may end up with garbage values in your arrays. The documentation 
says: "This function has to be used with extreme care, see notes. (...) It 
is advisable to avoid as_strided() when possible."

We will see a more useful application of stride tricks in the next recipe.

See also
ff The Implementing an efficient rolling average algorithm with stride tricks recipe
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Implementing an efficient rolling average 
algorithm with stride tricks

Stride tricks can be useful for local computations on arrays, when the computed value at a 
given position depends on the neighboring values. Examples include dynamical systems, 
digital filters, and cellular automata.

In this recipe, we will implement an efficient rolling average algorithm (a particular type 
of convolution-based linear filter) with NumPy stride tricks. A rolling average of a 1D vector 
contains, at each position, the average of the elements around this position in the original 
vector. Roughly speaking, this process filters out the noisy components of a signal so as to 
keep only the slower components.

How to do it...
The idea is to start from a 1D vector, and make a virtual 2D array where each line is a shifted 
version of the previous line. When using stride tricks, this process is very efficient as it does 
not involve any copy.

1.	 Let's generate a 1D vector:
>>> import numpy as np
    from numpy.lib.stride_tricks import as_strided
>>> def aid(x):
        # This function returns the memory
        # block address of an array.
        return x.__array_interface__['data'][0]
>>> n = 5
    k = 2
    a = np.linspace(1, n, n)
    ax = aid(a)

2.	 Let's change the strides of a to add shifted rows:
>>> as_strided(a, (k, n), (8, 8))
array([[ 1e+000,  2e+000,  3e+000,  4e+000,  5e+000],
       [ 2e+000,  3e+000,  4e+000,  5e+000,  9e-321]])

The last value indicates an out-of-bounds problem: stride tricks can be dangerous as 
memory access is not checked. Here, we should take edge effects into account by 
limiting the shape of the array.
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3.	 Now, let's implement the computation of the rolling average. The first version 
(standard method) involves explicit array copies, whereas the second version uses 
stride tricks:
>>> def shift1(x, k):
        return np.vstack([x[i:n - k + i + 1]
                          for i in range(k)])
>>> def shift2(x, k):
        return as_strided(x, (k, n - k + 1),
                          (x.itemsize, x.itemsize))

4.	 These two functions return the same result, except that the array returned by the 
second function refers to the original data buffer:
>>> b = shift1(a, k)
>>> b
array([[ 1.,  2.,  3.,  4.],
       [ 2.,  3.,  4.,  5.]])
>>> aid(b) == ax
False
And now with the second function:
>>> c = shift2(a, k)
>>> c
array([[ 1.,  2.,  3.,  4.],
       [ 2.,  3.,  4.,  5.]])
>>> aid(c) == ax
True

5.	 Let's generate a signal:
>>> n, k = 1000, 10
    t = np.linspace(0., 1., n)
    x = t + .1 * np.random.randn(n)

6.	 We compute the signal rolling average by creating the shifted version of the signal, 
and averaging along the vertical dimension:
>>> y = shift2(x, k)
    x_avg = y.mean(axis=0)

7.	 Let's plot these arrays:
>>> import matplotlib.pyplot as plt
    %matplotlib inline
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(x[:-k + 1], '-k', lw=1, alpha=.5)
    ax.plot(x_avg, '-k', lw=2)
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8.	 Let's evaluate the time taken by the first method:
>>> %timeit shift1(x, k)
15.4 µs ± 302 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)
>>> %%timeit y = shift1(x, k)
    z = y.mean(axis=0)
10.3 µs ± 123 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)

Here, most of the total time is spent in the array copy (the shift1() function).

9.	 Let's benchmark the second method:

>>> %timeit shift2(x, k)
4.77 µs ± 70.3 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)
>>> %%timeit y = shift2(x, k)
    z = y.mean(axis=0)
9 µs ± 179 ns per loop (mean ± std. dev. of 7 runs,
    100000 loops each)

This time, thanks to the stride tricks, most of the time is instead spent in the 
computation of the average.

See also
ff The Using stride tricks with NumPy recipe
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Processing large NumPy arrays with 
memory mapping

Sometimes, we need to deal with NumPy arrays that are too big to fit in the system memory. 
A common solution is to use memory mapping and implement out-of-core computations. 
The array is stored in a file on the hard drive, and we create a memory-mapped object to this 
file that can be used as a regular NumPy array. Accessing a portion of the array results in 
the corresponding data being automatically fetched from the hard drive. Therefore, we only 
consume what we use.

How to do it...
1.	 Let's create a memory-mapped array in write mode:

>>> import numpy as np
>>> nrows, ncols = 1000000, 100
>>> f = np.memmap('memmapped.dat', dtype=np.float32,
                  mode='w+', shape=(nrows, ncols))

2.	 Let's feed the array with random values, one column at a time because our system's 
memory is limited!
>>> for i in range(ncols):
        f[:, i] = np.random.rand(nrows)

We save the last column of the array:

>>> x = f[:, -1]

3.	 Now, we flush memory changes to disk by deleting the object:
>>> del f

4.	 Reading a memory-mapped array from disk involves the same memmap() function. 
The data type and the shape need to be specified again, as this information is not 
stored in the file:
>>> f = np.memmap('memmapped.dat', dtype=np.float32,
                  shape=(nrows, ncols))
>>> np.array_equal(f[:, -1], x)
True
>>> del f

This method is not adapted for long-term storage of data and data 
sharing. The following recipe in this chapter will show a better way 
based on the HDF5 file format.



Chapter 4

149

How it works...
Memory mapping lets you work with huge arrays almost as if they were regular arrays. Python 
code that accepts a NumPy array as input will also accept a memmap array. However, we 
need to ensure that the array is used efficiently. That is, the array is never loaded as a whole 
(otherwise, it would waste system memory and would obviate any advantage of the technique).

Memory mapping is also useful when you have a huge file containing raw data in a 
homogeneous binary format with a known data type and shape. In this case, an alternative 
solution is to use NumPy's fromfile() function with a file handle created with Python's 
native open() function. Using f.seek() lets you position the cursor at any location and load 
a given number of bytes into a NumPy array.

There's more...
Another way of dealing with huge NumPy matrices is to use sparse matrices through SciPy's 
sparse subpackage. It is adapted to when matrices contain mostly zeros, as is often the 
case with simulations of partial differential equations, graph algorithms, or specific machine 
learning applications. Representing matrices as dense structures can be a waste of memory, 
and sparse matrices offer a more efficient compressed representation.

Using sparse matrices in SciPy is not straightforward as multiple implementations exist. Each 
implementation is best for a particular kind of application. Here are a few references:

ff SciPy lecture notes about sparse matrices, available at http://scipy-lectures.
github.io/advanced/scipy_sparse/index.html

ff Reference documentation on sparse matrices, at http://docs.scipy.org/doc/
scipy/reference/sparse.html

ff Documentation of memmap, at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.memmap.html

See also
ff The Manipulating large arrays with HDF5 recipe

ff The Performing out-of-core computations on large arrays with Dask recipe in Chapter 
5, High-Performance Computing

http://scipy-lectures.github.io/advanced/scipy_sparse/index.html
http://scipy-lectures.github.io/advanced/scipy_sparse/index.html
http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
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Manipulating large arrays with HDF5
NumPy arrays can be persistently saved on disk using built-in functions in NumPy such as 
np.savetxt(), np.save(), or np.savez(), and loaded in memory using analogous 
functions. Common file formats for data arrays include raw binary files as in the previous 
recipe, the NPY file format implemented by NumPy (raw binary files with a header containing 
the metadata), and Hierarchical Data Format (HDF5).

An HDF5 file contains one or several datasets (arrays or heterogeneous tables) organized into 
a POSIX-like hierarchy. Datasets may be accessed lazily with memory mapping. In this recipe, 
we will use h5py, a Python package designed to deal with HDF5 files with a NumPy-like 
programming interface.

Getting ready
You need h5py for this recipe and the next one. It should be included with Anaconda, but you 
can also install it with conda install h5py.

How to do it...
1.	 First, we need to import NumPy and h5py:

>>> import numpy as np
    import h5py

2.	 Let's create a new empty HDF5 file in write mode:
>>> f = h5py.File('myfile.h5', 'w')

3.	 We create a new top-level group named experiment1:
>>> f.create_group('/experiment1')
<HDF5 group "/experiment1" (0 members)>

4.	 Let's also add some metadata to this group:
>>> f['/experiment1'].attrs['date'] = '2018-01-01'

5.	 In this group, we create a 1000 * 1000 array named array1:
>>> x = np.random.rand(1000, 1000)
    f['/experiment1'].create_dataset('array1', data=x)
<HDF5 dataset "array1": shape (1000, 1000), type "<f8">

6.	 Finally, we need to close the file to commit the changes to disk:
>>> f.close()
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7.	 Now, let's open this file in read mode. We could have done this in another Python 
session since the array has been saved in the HDF5 file.
>>> f = h5py.File('myfile.h5', 'r')

8.	 We can retrieve an attribute by giving the group path and the attribute name:
>>> f['/experiment1'].attrs['date']
'2018-01-01'

9.	 Let's access our array:
>>> y = f['/experiment1/array1']
    type(y)
h5py._hl.dataset.Dataset

10.	 The array can be used as a NumPy array, but an important distinction is that it is 
stored on disk instead of system memory. Performing a computation on this array 
automatically loads the requested section of the array into memory, thus it is more 
efficient to access only the array's views.
>>> np.array_equal(x[0, :], y[0, :])
True

11.	 We're done for this recipe, so let's do some clean-up:
>>> f.close()
>>> import os
    os.remove('myfile.h5')

How it works...
In this recipe, we stored a single array in the file, but HDF5 is especially useful when many 
arrays need to be saved in a single file. HDF5 is generally used in big projects, when large 
arrays have to be organized within a hierarchical structure. For example, it is largely used at 
NASA and other scientific institutions. Researchers can store recorded data across multiple 
devices, multiple trials, and multiple experiments.

In HDF5, the data is organized within a tree. Nodes are either groups (analogous to folders in 
a file system) or datasets (analogous to files). A group can contain subgroups and datasets, 
whereas datasets only contain data. Both groups and datasets can contain attributes 
(metadata) that have a basic data type (integer or floating point number, string, and so on).

There's more...
HDF5 files created with h5py can be accessed in other languages such as C, FORTRAN, 
MATLAB, and others.
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In HDF5, a dataset may be stored in a contiguous block of memory, or in chunks. Chunks 
are atomic objects and HDF5 can only read and write entire chunks. Chunks are internally 
organized within a tree data structure called a B-tree. When we create a new array or table, 
we can specify the chunk shape. It is an internal detail, but it can greatly affect performance 
when writing and reading parts of the dataset.

The optimal chunk shape depends on how we plan to access the data. There is a trade-off 
between many small chunks (large overhead due to managing lots of chunks) and a few large 
chunks (inefficient disk I/O). In general, the chunk size is recommended to be smaller than  
1 MB. The chunk cache is also an important parameter that may affect performance.

Another HDF5 library in Python is PyTables. There is work in progress 
to make the two libraries share more code and reduce the duplication 
of development efforts.

Here are a few references:

ff NPY file format at https://docs.scipy.org/doc/numpy-dev/neps/npy-
format.html

ff h5py at http://www.h5py.org/

ff HDF5 chunking, at http://www.hdfgroup.org/HDF5/doc/Advanced/
Chunking/

ff Python and HDF5, a vision, https://www.hdfgroup.org/2015/09/python-
hdf5-a-vision/

ff PyTables optimization guide, available at http://pytables.github.io/
usersguide/optimization.html

ff Difference between PyTables and h5py, from the perspective of h5py, at https://
github.com/h5py/h5py/wiki/FAQ#whats-the-difference-between-
h5py-and-pytables

ff A personal piece about the limitations of HDF5, at http://cyrille.rossant.
net/moving-away-hdf5/

See also
ff Processing huge NumPy arrays with memory mapping

ff Manipulating large heterogeneous tables with HDF5

ff The Ten tips for conducting reproducible interactive computing experiments recipe

https://docs.scipy.org/doc/numpy-dev/neps/npy-format.html
https://docs.scipy.org/doc/numpy-dev/neps/npy-format.html
http://www.h5py.org/
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/
https://www.hdfgroup.org/2015/09/python-hdf5-a-vision/
https://www.hdfgroup.org/2015/09/python-hdf5-a-vision/
http://pytables.github.io/usersguide/optimization.html
http://pytables.github.io/usersguide/optimization.html
https://github.com/h5py/h5py/wiki/FAQ#whats-the-difference-between-h5py-and-pytables
https://github.com/h5py/h5py/wiki/FAQ#whats-the-difference-between-h5py-and-pytables
https://github.com/h5py/h5py/wiki/FAQ#whats-the-difference-between-h5py-and-pytables
http://cyrille.rossant.net/moving-away-hdf5/
http://cyrille.rossant.net/moving-away-hdf5/
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5
High-Performance 

Computing

In this chapter, we will cover the following topics:

ff Using Python to write faster code

ff Accelerating pure Python code with Numba and Just-In-Time compilation

ff Accelerating array computations with NumExpr

ff Wrapping a C library in Python with ctypes

ff Accelerating Python code with Cython

ff Optimizing Cython code by writing less Python and more C

ff Releasing the GIL to take advantage of multi-core processors with Cython  
and OpenMP

ff Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA

ff Distributing Python code across multiple cores with IPython

ff Interacting with asynchronous parallel tasks in IPython

ff Performing out-of-core computations on large arrays with Dask

ff Trying the Julia programming language in the Jupyter Notebook

Introduction
The previous chapter presented techniques for code optimization. Sometimes, these  
methods are not sufficient, and we need to resort to advanced high-performance  
computing techniques.
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In this chapter, we will see three broad, but not mutually exclusive, categories of methods:

ff Just-In-Time (JIT) compilation of Python code

ff Resorting to a lower-level language, such as C, from Python

ff Dispatching tasks across multiple computing units using parallel computing

With JIT compilation, Python code is dynamically compiled into a lower-level language. 
Compilation occurs at runtime rather than ahead of execution. The translated code runs faster 
since it is compiled rather than interpreted. JIT compilation is a popular technique as it can 
lead to fast and high-level languages, whereas these two characteristics used to be mutually 
exclusive in general.

JIT compilation techniques are implemented in packages such as Numba or NumExpr,  
which we will cover in this chapter.

We will also use Julia, a programming language that uses JIT compilation to achieve high 
performance. This language can be used effectively in the Jupyter Notebook, thanks to the 
IJulia package.

PyPy (http://pypy.org), successor to Psyco, is another related project. 
This alternative implementation of Python (the reference implementation 
being CPython) integrates a JIT compiler. Thus, it is typically faster than 
CPython. Since October 2017, PyPy supports NumPy and Pandas (but 
with Legacy Python rather than Python 3). See https://morepypy.
blogspot.fr/2017/10/pypy-v59-released-now-supports-
pandas.html for more details.

Resorting to a lower-level language such as C is another interesting method. Popular libraries 
include ctypes and Cython. Using ctypes requires writing C code and having access to a C 
compiler, or using a compiled C library. By contrast, Cython lets us write code in a superset 
of Python, which is translated to C with various performance results. In this chapter, we will 
cover ctypes and Cython, and we will see how to achieve interesting speed enhancement on 
relatively complex examples.

Finally, we will cover two classes of parallel computing techniques: using multiple CPU  
cores with IPython and using massively parallel architectures such as Graphics Processing 
Units (GPUs).

http://pypy.org
https://morepypy.blogspot.fr/2017/10/pypy-v59-released-now-supports-pandas.html
https://morepypy.blogspot.fr/2017/10/pypy-v59-released-now-supports-pandas.html
https://morepypy.blogspot.fr/2017/10/pypy-v59-released-now-supports-pandas.html
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Here are a few references:

ff Interfacing Python with C, a tutorial in the scikit-learn lectures notes available at 
http://scipy-lectures.github.io/advanced/interfacing_with_c/
interfacing_with_c.html

ff Extending Python with C or C++, at https://docs.python.org/3.6/
extending/extending.html

ff xtensor, a NumPy-like library in C++ at http://quantstack.net/xtensor

CPython and concurrent programming
The mainstream implementation of the Python language is CPython, written in C. CPython 
integrates a mechanism called Global Interpreter Lock (GIL). This is discussed at  
http://wiki.python.org/moin/GlobalInterpreterLock:

"The GIL facilitates memory management by preventing multiple native threads 
from executing Python bytecodes at once."

In other words, by disabling concurrent threads within one Python process, the GIL 
considerably simplifies the memory management system. Memory management is  
therefore not thread-safe in CPython.

An important implication is that CPython makes it non trivial to leverage multiple CPUs in a 
single Python process. This is an important issue as modern processors contain more and 
more cores.

What possible solutions do we have in order to take advantage of multi-core processors?

ff Removing the GIL in CPython. This solution has been tried but has never made it into 
CPython. It would bring too much complexity in the implementation of CPython, and it 
would degrade the performance of single-threaded programs.

ff Using multiple processes instead of multiple threads. This is a popular solution; it can 
be done with the native multiprocessing module or with IPython. We will cover this 
latter in this chapter.

ff Rewriting specific portions of your code in Cython and replacing all Python variables 
with C variables. This allows you to remove the GIL temporarily in a loop, thereby 
enabling use of multi-core processors. We will cover this solution in the Releasing  
the GIL to take advantage of multi-core processors with Cython and OpenMP recipe.

ff Implementing a specific portion of your code in a language that offers better support 
for multi-core processors and calling it from your Python program.

ff Making your code use the NumPy functions that benefit from multi-core  
processors, such as numpy.dot(). NumPy needs to be compiled with  
BLAS/LAPACK/ATLAS/MKL.

http://scipy-lectures.github.io/advanced/interfacing_with_c/interfacing_with_c.html
http://scipy-lectures.github.io/advanced/interfacing_with_c/interfacing_with_c.html
https://docs.python.org/3.6/extending/extending.html
https://docs.python.org/3.6/extending/extending.html
http://quantstack.net/xtensor
http://wiki.python.org/moin/GlobalInterpreterLock
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A must-read reference on the GIL can be found at http://www.dabeaz.com/GIL/.

Compiler-related installation instructions
In this section, we will give a few instructions on using compilers with Python. Use cases 
include using ctypes, using Cython, and building C extensions for Python.

On Linux, you should install GCC. For example, on Ubuntu type sudo apt-get install 
build-essential in a Terminal.

On macOS, install Xcode or the Xcode Command Line Tools. Alternatively, type gcc in a 
Terminal. If it is not installed, macOS should provide you with some options to install it.

On Windows, install a version of Microsoft Visual Studio, Visual C++, or the Visual C++ Build 
Tools that corresponds to your version of Python. If you use Python 3.6 (which is the latest 
stable version of Python at the time of writing), the corresponding version of the Microsoft 
compiler is 2017. All of these programs are free or have a free version that is sufficient  
for Python.

Here are a few references:

ff Documentation for Installing Cython at http://cython.readthedocs.io/en/
latest/src/quickstart/install.html

ff Windows compilers for Python, at https://wiki.python.org/moin/
WindowsCompilers

ff Microsoft Visual Studio downloads at https://www.visualstudio.com/
downloads/

Using Python to write faster code
The first way to make Python code run faster is to know all features of the language. Python 
brings many syntax features and modules in the standard library that run much faster than 
anything you could write by hand. Moreover, although Python may be slow if you write in 
Python like you would write in C or Java, it is often fast enough when you write Pythonic code.

In this section, we show how badly-written Python code can be significantly improved when 
using all the features of the language.

http://www.dabeaz.com/GIL/
http://cython.readthedocs.io/en/latest/src/quickstart/install.html
http://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
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Leveraging NumPy for efficient array operations is of course another 
possibility that we explored in the Introducing the multidimensional array in 
NumPy for fast array computations recipe in Chapter 1, A Tour of Interactive 
Computing with Jupyter and IPython. This recipe focuses on cases where, 
for one reason or another, depending on and using NumPy is not a possible 
or desirable option. For example, operations on dictionaries, graphs, or text 
may be easier to write in Python than in NumPy. In these cases, Python 
brings many features that can still let you make your code faster.

How to do it...
1.	 Let's define a list of normally-distributed random variables, using the random built-in 

module instead of NumPy.
>>> import random
    l = [random.normalvariate(0,1) for i in range(100000)]

2.	 Let's write a function that computes the sum of all numbers in that list. Someone 
inexperienced with Python may write in Python as if it was C, which would give the 
following function:
>>> def sum1():
        # BAD: not Pythonic and slow
        res = 0
        for i in range(len(l)):
            res = res + l[i]
        return res
>>> sum1()
319.346
>>> %timeit sum1()
6.64 ms ± 69.1 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

Six milliseconds to compute the sum of only 100,000 numbers is slow, which may 
lead some to say rather unfairly that Python is slow.

3.	 Now, let's write a slightly improved version of this code, taking into account the fact 
that we can enumerate the elements of a list using for x in l instead of iterating 
with an index:
>>> def sum2():
        # STILL BAD
        res = 0
        for x in l:
            res = res + x
        return res
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>>> sum2()
319.346
>>> %timeit sum2()
3.3 ms ± 54.7 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

This slight modification gave us a two-fold speed improvement.

4.	 Finally, we realize that Python brings a built-in function to compute the sum of all 
elements in a list:
>>> def sum3():
        # GOOD
        return sum(l)
>>> sum3()
319.346
>>> %timeit sum3()
391 µs ± 840 ns per loop (mean ± std. dev. of 7 runs,
    1000 loops each)

This version is 17 times faster than the first version, and we only wrote pure  
Python code!

5.	 Let's move to another example involving strings. We'll create a list of strings 
representing all numbers in our previous list:
>>> strings = ['%.3f' % x for x in l]
>>> strings[:3]
['-0.056', '-0.417', '-0.357']

6.	 We define a function concatenating all strings in that list. Again, an inexperienced 
Python programmer could write code such as the following:
>>> def concat1():
        # BAD: not Pythonic
        cat = strings[0]
        for s in strings[1:]:
            cat = cat + ', ' + s
        return cat
>>> concat1()[:24]
'-0.056, -0.417, -0.357, '
>>> %timeit concat1()
1.31 s ± 12.1 ms per loop (mean ± std. dev. of 7 runs,
    1 loop each)

This function is very slow because a large number of tiny strings are allocated.
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7.	 Next, we realize that Python offers the option to easily concatenate several strings:
>>> def concat2():
        # GOOD
        return ', '.join(strings)
>>> concat2()[:24]
'-0.056, -0.417, -0.357, '
>>> %timeit concat2()
797 µs ± 13.7 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)

This function is 1640 times faster!

8.	 Finally, we want to count the number of occurrences of all numbers between 0 and 
99 in a list containing 100,000 integers between 0 and 99:
>>> l = [random.randint(0, 100) for _ in range(100000)]

9.	 The naive way would be to iterate over all elements in the list and construct the 
histogram using a dictionary:
>>> def hist1():
        # BAD
        count = {}
        for x in l:
            # We need to initialize every number
            # the first time it appears in the list.
            if x not in count:
                count[x] = 0
            count[x] += 1
        return count
>>> hist1()
{0: 979,
 1: 971,
 2: 990,
 ...
 99: 995,
 100: 1009}
>>> %timeit hist1()
8.7 ms ± 27.6 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

10.	 Next, we realize that Python offers a defaultdict structure that handles the 
automatic creation of dictionary keys:
>>> from collections import defaultdict
>>> def hist2():
        # BETTER
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        count = defaultdict(int)
        for x in l:
            # The key is created and the value
            # initialized at 0 when needed.
            count[x] += 1
        return count
>>> hist2()
defaultdict(int,
            {0: 979,
             1: 971,
             ...
             99: 995,
             100: 1009})
>>> %timeit hist2()
6.82 ms ± 217 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

This version is slightly faster.

11.	 Finally, we realize that the built-in collections module offers a Counter class that 
does exactly what we need:

>>> from collections import Counter
>>> def hist3():
        # GOOD
        return Counter(l)
>>> hist3()
Counter({0: 979,
         1: 971,
         ...
         99: 995,
         100: 1009})
>>> %timeit hist3()
3.69 ms ± 105 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

This version is twice as fast as the first one.

There's more...
When your code is too slow, the first step is to make sure you're not reinventing the wheel and 
that you're making good use of all the features of the language.
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You can have an overview of all the syntax features and built-in modules of Python by reading 
the documentation and other references:

ff Documentation for Python 3 at https://docs.python.org/3/library/index.
html

ff Python Cookbook, 3rd Edition, Brian Jones and David Beazley, O'Reilly Media at 
http://shop.oreilly.com/product/0636920027072.do

See also
ff The Using the latest features of Python 3 recipe, in Chapter 2, Best Practices in 

Interactive Computing

Accelerating pure Python code with Numba 
and Just-In-Time compilation

Numba (http://numba.pydata.org) is a package created by Anaconda, Inc (http://
www.anaconda.com). Numba takes pure Python code and translates it automatically (JIT) 
into optimized machine code. In practice, this means that we can write a non-vectorized 
function in pure Python, using for loops, and have this function vectorized automatically by 
using a single decorator. Performance speedups when compared to pure Python code can 
reach several orders of magnitude and may even outmatch manually-vectorized NumPy code.

In this section, we will show you how to accelerate pure Python code generating a  
Mandelbrot fractal.

Getting ready
Numba should already be installed in Anaconda, but you can also install it manually with 
conda install numba.

How to do it...
1.	 Let's import NumPy and define a few variables:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
>>> size = 400
    iterations = 100

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
http://shop.oreilly.com/product/0636920027072.do
http://numba.pydata.org
http://www.anaconda.com
http://www.anaconda.com
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2.	 The following function generates a fractal in pure Python. It accepts an empty array m 
as argument.
>>> def mandelbrot_python(size, iterations):
        m = np.zeros((size, size))
        for i in range(size):
            for j in range(size):
                c = (-2 + 3. / size * j +
                     1j * (1.5 - 3. / size * i))
                z = 0
                for n in range(iterations):
                    if np.abs(z) <= 10:
                        z = z * z + c
                        m[i, j] = n
                    else:
                        break
        return m

3.	 Let's run the simulation and display the fractal:
>>> m = mandelbrot_python(size, iterations)
>>> fig, ax = plt.subplots(1, 1, figsize=(10, 10))
    ax.imshow(np.log(m), cmap=plt.cm.hot)
    ax.set_axis_off()
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4.	 Now, we evaluate the time taken by this function:
>>> %timeit mandelbrot_python(size, iterations)
5.45 s ± 18.6 ms per loop (mean ± std. dev. of 7 runs,
    1 loop each)

5.	 Let's try to accelerate this function using Numba. First, we import the package:
>>> from numba import jit

6.	 Next, we add the @jit decorator right above the function definition, without changing 
a single line of code in the body of the function:
>>> @jit
    def mandelbrot_numba(size, iterations):
        m = np.zeros((size, size))
        for i in range(size):
            for j in range(size):
                c = (-2 + 3. / size * j +
                     1j * (1.5 - 3. / size * i))
                z = 0
                for n in range(iterations):
                    if np.abs(z) <= 10:
                        z = z * z + c
                        m[i, j] = n
                    else:
                        break
        return m

7.	 This function works just like the pure Python version. How much faster is it?

>>> mandelbrot_numba(size, iterations)
>>> %timeit mandelbrot_numba(size, iterations)
34.5 ms ± 59.4 µs per loop (mean ± std. dev. of 7 runs,
    10 loops each)

The Numba version is about 150 times faster than the pure Python version here!

How it works...
Python bytecode is normally interpreted at runtime by the Python interpreter (most often, 
CPython). By contrast, a Numba function is parsed and translated directly to machine code 
ahead of execution, using a powerful compiler architecture named Low Level Virtual Machine 
(LLVM).
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Numba supports a significant but not exhaustive subset of Python semantics. You can find a 
list of supported Python features at http://numba.pydata.org/numba-doc/latest/
reference/pysupported.html. When Numba cannot compile Python code to assembly, 
it will automatically fall back to a much slower mode. You can prevent this behavior with @
jit(nopython=True).

Numba generally gives the most impressive speedups on functions that involve tight loops 
on NumPy arrays (such as in this recipe). This is because there is an overhead running loops 
in Python, and this overhead becomes non-negligible when there are many iterations of a 
few cheap operations. In this example, the number of iterations is size * size * iterations = 
16,000,000.

There's more...
Let's compare the performance of Numba with manually-vectorized code using NumPy, 
which is the standard way of accelerating pure Python code such as the code given in this 
recipe. In practice, it means replacing the code inside the two loops over i and j with 
array computations. This is relatively easy here as the operations closely follow the Single 
Instruction, Multiple Data (SIMD) paradigm:

>>> def initialize(size):
        x, y = np.meshgrid(np.linspace(-2, 1, size),
                           np.linspace(-1.5, 1.5, size))
        c = x + 1j * y
        z = c.copy()
        m = np.zeros((size, size))
        return c, z, m
>>> def mandelbrot_numpy(c, z, m, iterations):
        for n in range(iterations):
            indices = np.abs(z) <= 10
            z[indices] = z[indices] ** 2 + c[indices]
            m[indices] = n
>>> %%timeit -n1 -r10 c, z, m = initialize(size)
    mandelbrot_numpy(c, z, m, iterations)
174 ms ± 2.91 ms per loop (mean ± std. dev. of 10 runs,
    1 loop each)

In this example, Numba still beats NumPy.

Numba supports many other features, such as multiprocessing and GPU computing.

http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
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Here are a few references:

ff Documentation for Numba available at http://numba.pydata.org

ff Supported Python features in Numba, available at http://numba.pydata.org/
numba-doc/latest/reference/pysupported.html

ff Supported NumPy features in Numba, available at http://numba.pydata.org/
numba-doc/latest/reference/numpysupported.html

See also
ff The Accelerating array computations with NumExpr recipe

Accelerating array computations with 
NumExpr

NumExpr is a package that can offer some speedup on complex computations on NumPy 
arrays. NumExpr evaluates algebraic expressions involving arrays, parses them, compiles 
them, and finally executes them, possibly on multiple processors.

This principle is somewhat similar to Numba, in that normal Python code is compiled 
dynamically to machine code. However, NumExpr only tackles algebraic array expressions 
rather than arbitrary Python code. We will see how that works in this recipe.

Getting ready
NumExpr should already be installed in Anaconda, but you can also install it manually with 
conda install numexpr.

How to do it...
1.	 Let's import NumPy and NumExpr:

>>> import numpy as np
    import numexpr as ne

2.	 Then we generate three large vectors:
>>> x, y, z = np.random.rand(3, 1000000)

3.	 Now, we evaluate the time taken by NumPy to calculate a complex algebraic 
expression involving our vectors:
>>> %timeit x + (y**2 + (z*x + 1)*3)
6.94 ms ± 223 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)

http://numba.pydata.org
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html
http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html
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4.	 Let's perform the same calculation with NumExpr. We need to give the expression as 
a string:
>>> %timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)')
1.47 ms ± 8.07 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)

The following screenshot shows the CPU usage when we ran the code with NumPy 
and then with NumExpr, which automatically use multiple CPUs:

CPU usage

5.	 NumExpr can use multiple cores. Here, we have four physical cores and eight virtual 
threads with Intel's Hyper-Threading Technology (HTT). We can specify how many 
cores we want NumExpr to use using the set_num_threads() function:

>>> ne.ncores
8
>>> for i in range(1, 5):
        ne.set_num_threads(i)
        %timeit ne.evaluate('x + (y**2 + (z*x + 1)*3)',)
3.53 ms ± 12.9 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)
2.35 ms ± 276 µs per loop (mean ± std. dev. of 7 runs,
    100 loops each)
1.6 ms ± 60 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)
1.5 ms ± 24.6 µs per loop (mean ± std. dev. of 7 runs,
    1000 loops each)
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How it works...
NumExpr analyzes the array expression, parses it, and compiles it into a lower-level language. 
NumExpr is aware of CPU-vectorized instructions as well as CPU cache characteristics.  
As such, NumExpr can optimize vectorized computations dynamically.

Here are a few references:

ff NumExpr on GitHub, at https://github.com/pydata/numexpr

ff NumExpr documentation at https://numexpr.readthedocs.io/en/latest/
intro.html

See also
ff The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Wrapping a C library in Python with ctypes
Wrapping a C library in Python allows us to leverage existing C code or to implement a critical 
part of the code in a fast language such as C.

It is relatively easy to use externally-compiled libraries with Python. The first possibility is to 
call a command-line executable with the os.system() command, but this method does not 
extend to compiled libraries.

A more powerful method consists of using a native Python module called ctypes. This module 
allows us to call functions defined in a compiled library (written in C) from Python. The ctypes 
module takes care of data type conversions between C and Python. In addition, the numpy.
ctypeslib module provides facilities to use NumPy arrays wherever data buffers are used in 
the external library.

In this example, we will rewrite the code of the Mandelbrot fractal in C, compile it in a shared 
library, and call it from Python.

Getting ready
The code in this recipe is written for Unix systems and has been tested on Ubuntu. It can be 
adapted to other systems with minor changes.

A C compiler is required. You will find all compiler-related instructions in this chapter's 
introduction.

https://github.com/pydata/numexpr
https://numexpr.readthedocs.io/en/latest/intro.html
https://numexpr.readthedocs.io/en/latest/intro.html
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How to do it...
First, we write and compile the Mandelbrot example in C. Then, we access it from Python  
using ctypes.

1.	 Let's write the code for the Mandelbrot fractal in C:
>>> %%writefile mandelbrot.c
    #include "stdio.h"
    #include "stdlib.h"
    
    void mandelbrot(int size, int iterations, int *col)
    {
        // Variable declarations.
        int i, j, n, index;
        double cx, cy;
        double z0, z1, z0_tmp, z0_2, z1_2;
    
        // Loop within the grid.
        for (i = 0; i < size; i++)
        {
            cy = -1.5 + (double)i / size * 3;
            for (j = 0; j < size; j++)
            {
                // We initialize the loop of the system.
                cx = -2.0 + (double)j / size * 3;
                index = i * size + j;
                // Let's run the system.
                z0 = 0.0;
                z1 = 0.0;
                for (n = 0; n < iterations; n++)
                {
                    z0_2 = z0 * z0;
                    z1_2 = z1 * z1;
                    if (z0_2 + z1_2 <= 100)
                    {
                        // Update the system.
                        z0_tmp = z0_2 - z1_2 + cx;
                        z1 = 2 * z0 * z1 + cy;
                        z0 = z0_tmp;
                        col[index] = n;
                    }
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                    else
                    {
                        break;
                    }
                }
            }
        }
    }

2.	 Now, let's compile this C source file with gcc into the mandelbrot.so  
dynamic library:
>>> !!gcc -shared -Wl,-soname,mandelbrot \
        -o mandelbrot.so \
        -fPIC mandelbrot.c

3.	 Let's access the library with ctypes:
>>> import ctypes
>>> lib = ctypes.CDLL('mandelbrot.so')
>>> mandelbrot = lib.mandelbrot

4.	 NumPy and ctypes allow us to wrap the C function defined in the library:
>>> from numpy.ctypeslib import ndpointer
>>> # Define the types of the output and arguments of
    # this function.
    mandelbrot.restype = None
    mandelbrot.argtypes = [ctypes.c_int,
                           ctypes.c_int,
                           ndpointer(ctypes.c_int),
                           ]

5.	 To use this function, we first need to initialize an empty array and pass it as an 
argument to the mandelbrot() wrapper function:
>>> import numpy as np
    # We initialize an empty array.
    size = 400
    iterations = 100
    col = np.empty((size, size), dtype=np.int32)
    # We execute the C function, which will update
    # the array.
    mandelbrot(size, iterations, col)
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6.	 Let's show the result:
>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
>>> fig, ax = plt.subplots(1, 1, figsize=(10, 10))
    ax.imshow(np.log(col), cmap=plt.cm.hot)
    ax.set_axis_off()

7.	 How fast is this function?
>>> %timeit mandelbrot(size, iterations, col)
28.9 ms ± 73.1 µs per loop (mean ± std. dev. of 7 runs,
    10 loops each)

The wrapped C version is slightly faster than the Numba version in the first recipe of 
this chapter.

How it works...
The mandelbrot() function accepts as arguments:

ff The size of the col buffer (the col value is the last iteration where the 
corresponding point is within a disc around the origin)

ff The number of iterations

ff A pointer to the buffer of integers
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The mandelbrot() C function does not return any value; rather, it updates the buffer that 
was passed by reference to the function (it is a pointer).

To wrap this function in Python, we need to declare the types of the input arguments.  
The ctypes module defines constants for the different data types. In addition, the numpy.
ctypeslib.ndpointer() function lets us use a NumPy array wherever a pointer is 
expected in the C function. The data type given as argument to ndpointer() needs to 
correspond to the NumPy data type of the array passed to the function.

Once the function has been correctly wrapped, it can be called as if it was a standard Python 
function. Here, the initially-empty NumPy array is filled with the Mandelbrot fractal after the 
call to mandelbrot().

There's more...
An alternative to ctypes is cffi (http://cffi.readthedocs.org), which may be a bit 
faster and more convenient to use. You can also refer to http://eli.thegreenplace.
net/2013/03/09/python-ffi-with-ctypes-and-cffi/.

See also
ff The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Accelerating Python code with Cython
Cython is both a language (a superset of Python) and a Python library. With Cython, we start 
from a regular Python program and we add annotations about the type of the variables. Then, 
Cython translates that code to C and compiles the result into a Python extension module. 
Finally, we can use this compiled module in any Python program.

While dynamic typing comes with a performance cost in Python, statically-typed variables in 
Cython generally lead to faster code execution.

Performance gains are most significant in CPU-bound programs, notably in tight Python 
loops. By contrast, I/O bound programs are not expected to benefit much from a Cython 
implementation.

In this recipe, we will see how to accelerate the Mandelbrot code example with Cython.

Getting ready
A C compiler is required. You will find all compiler-related instructions in the introduction the 
this chapter.

http://cffi.readthedocs.org
http://eli.thegreenplace.net/2013/03/09/python-ffi-with-ctypes-and-cffi/
http://eli.thegreenplace.net/2013/03/09/python-ffi-with-ctypes-and-cffi/
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You will also need Cython, which should be installed by default with Anaconda. If needed,  
you can also install it with conda install cython.

How to do it...
1.	 Let's define some variables:

>>> import numpy as np
>>> size = 400
    iterations = 100

2.	 To use Cython in the Jupyter Notebook, we first need to import the Cython  
Jupyter extension:
>>> %load_ext cython

3.	 As a first try, let's just add the %%cython magic before the definition of the 
mandelbrot() function. Internally, this cell magic compiles the cell into a 
standalone Cython module, hence the need for all required imports to occur within 
the same cell. This cell does not have access to any variable or function defined in 
the interactive namespace:
>>> %%cython -a
    import numpy as np
    
    def mandelbrot_cython(m, size, iterations):
        for i in range(size):
            for j in range(size):
                c = -2 + 3./size*j + 1j*(1.5-3./size*i)
                z = 0
                for n in range(iterations):
                    if np.abs(z) <= 10:
                        z = z*z + c
                        m[i, j] = n
                    else:
                        break
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The -a option tells Cython to annotate lines of code with a background color 
indicating how optimized it is. The darker the color, the less optimized the line. The 
color depends on the relative number of Python API calls at each line. We can click 
on any line to see the generated C code. Here, this version does not appear to be 
optimized.

4.	 How fast is this version?
>>> s = (size, size)
>>> %%timeit -n1 -r1 m = np.zeros(s, dtype=np.int32)
    mandelbrot_cython(m, size, iterations)
4.52 s ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)

We get virtually no speedup here. We need to specify the type of our Python variables.

5.	 Let's add type information using typed memory views for NumPy arrays (we explain 
these in the How it works... section). We also use a slightly different way to test 
whether particles have escaped from the domain (the if test):
>>> %%cython -a
    import numpy as np
    
    def mandelbrot_cython(int[:,::1] m,
                          int size,
                          int iterations):
        cdef int i, j, n
        cdef complex z, c
        for i in range(size):
            for j in range(size):
                c = -2 + 3./size*j + 1j*(1.5-3./size*i)
                z = 0
                for n in range(iterations):
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                    if z.real**2 + z.imag**2 <= 100:
                        z = z*z + c
                        m[i, j] = n
                    else:
                        break

6.	 How fast is this new version?

>>> %%timeit -n1 -r1 m = np.zeros(s, dtype=np.int32)
    mandelbrot_cython(m, size, iterations)
12.7 ms ± 0 ns per loop (mean ± std. dev. of 1 run,
    1 loop each)

This version is almost 350 times faster than the first version!

All we have done is specify the type of the local variables and function arguments, and bypass 
NumPy's np.abs() function when computing the absolute value of z. These changes have 
helped Cython generate more optimized C code from Python code.

How it works...
The cdef keyword declares a variable as a statically-typed C variable. C variables lead to 
faster code execution because the overhead from Python's dynamic typing is bypassed. 
Function arguments can also be declared as statically-typed C variables.

There are two ways of declaring NumPy arrays as C variables with Cython: using array buffers 
or using typed memory views. In this recipe, we used typed memory views. We will cover array 
buffers in the next recipe.

Typed memory views allow efficient access to data buffers with a NumPy-like indexing syntax. 
For example, we can use int[:,::1] to declare a C-ordered 2D NumPy array with integer 
values, with ::1 meaning a contiguous layout in this dimension. Typed memory views can be 
indexed just like NumPy arrays.
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However, memory views do not implement element-wise operations like NumPy. Thus, 
memory views act as convenient data containers within tight for loops. For element-wise 
NumPy-like operations, array buffers should be used instead.

We could achieve a significant performance speedup by replacing the call to np.abs() 
with a faster expression. The reason is that np.abs() is a NumPy function with a slight call 
overhead. It is designed to work with relatively large arrays, not scalar values. This overhead 
results in a significant performance hit in a tight loop such as here. This bottleneck can be 
spotted with Cython annotations.

There's more...
Using Cython from Jupyter is very convenient with the %%cython cell magic. However, it is 
sometimes necessary to create a reusable C extension module with Cython. This is actually 
what the %%cython cell magic does under-the-hood. You will find more information at 
http://cython.readthedocs.io/en/latest/src/quickstart/build.html.

Here are a few references:

ff Distributing Cython modules, explained at http://docs.cython.org/src/
userguide/source_files_and_compilation.html

ff Compilation with Cython, explained at http://docs.cython.org/src/
reference/compilation.html

ff Cython and Numpy, at http://cython.readthedocs.io/en/latest/src/
userguide/memoryviews.html

See also
ff The Optimizing Cython code by writing less Python and more C recipe

ff The Releasing the GIL to take advantage of multi-core processors with Cython and 
OpenMP recipe

Optimizing Cython code by writing less 
Python and more C

In this recipe, we will consider a more complicated Cython example. Starting from a  
slow implementation in pure Python, we will use different Cython features to speed  
it up progressively.

We will implement a very simple ray tracing engine. Ray tracing consists of rendering a scene 
by simulating the physical properties of light propagation. This rendering method leads to 
photorealistic scenes, but it is computationally intensive.

http://cython.readthedocs.io/en/latest/src/quickstart/build.html
http://docs.cython.org/src/userguide/source_files_and_compilation.html
http://docs.cython.org/src/userguide/source_files_and_compilation.html
http://docs.cython.org/src/reference/compilation.html
http://docs.cython.org/src/reference/compilation.html
http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html
http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html
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Here, we will render a single sphere with diffuse and specular lighting. First we'll give the 
example's code in pure Python. Then, we will accelerate it incrementally with Cython.

The code is long and contains many functions. We will first give 
the full code of the pure Python version. Then, we will just describe 
the changes required to accelerate the code with Cython. The full 
scripts are available on the book's website.

How to do it...
1.	 First, let's implement the pure Python version:

>>> import numpy as np
    import matplotlib.pyplot as plt
>>> %matplotlib inline
>>> w, h = 400, 400  # Size of the screen in pixels.

2.	 We create a normalization function for vectors:
>>> def normalize(x):
        # This function normalizes a vector.
        x /= np.linalg.norm(x)
        return x

3.	 We create a function that computes the intersection of a ray with a sphere:
>>> def intersect_sphere(O, D, S, R):
        # Return the distance from O to the intersection
        # of the ray (O, D) with the sphere (S, R), or
        # +inf if there is no intersection.
        # O and S are 3D points, D (direction) is a
        # normalized vector, R is a scalar.
        a = np.dot(D, D)
        OS = O - S
        b = 2 * np.dot(D, OS)
        c = np.dot(OS, OS) - R * R
        disc = b * b - 4 * a * c
        if disc > 0:
            distSqrt = np.sqrt(disc)
            q = (-b - distSqrt) / 2.0 if b < 0 \
                else (-b + distSqrt) / 2.0
            t0 = q / a
            t1 = c / q
            t0, t1 = min(t0, t1), max(t0, t1)
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            if t1 >= 0:
                return t1 if t0 < 0 else t0
        return np.inf

4.	 The following function traces a ray:
>>> def trace_ray(O, D):
        # Find first point of intersection with the scene.
        t = intersect_sphere(O, D, position, radius)
        # No intersection?
        if t == np.inf:
            return
        # Find the point of intersection on the object.
        M = O + D * t
        N = normalize(M - position)
        toL = normalize(L - M)
        toO = normalize(O - M)
        # Ambient light.
        col = ambient
        # Lambert shading (diffuse).
        col += diffuse * max(np.dot(N, toL), 0) * color
        # Blinn-Phong shading (specular).
        col += specular_c * color_light * \
            max(np.dot(N, normalize(toL + toO)), 0) \
            ** specular_k
        return col

5.	 Finally, the main loop is implemented in the following function:
>>> def run():
        img = np.zeros((h, w, 3))
        # Loop through all pixels.
        for i, x in enumerate(np.linspace(-1, 1, w)):
            for j, y in enumerate(np.linspace(-1, 1, h)):
                # Position of the pixel.
                Q[0], Q[1] = x, y
                # Direction of the ray going through
                # the optical center.
                D = normalize(Q - O)
                # Launch the ray and get the color
                # of the pixel.
                col = trace_ray(O, D)
                if col is None:
                    continue
                img[h - j - 1, i, :] = np.clip(col, 0, 1)
        return img
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6.	 Now, we initialize the scene and define a few parameters:
>>> # Sphere properties.
    position = np.array([0., 0., 1.])
    radius = 1.
    color = np.array([0., 0., 1.])
    diffuse = 1.
    specular_c = 1.
    specular_k = 50
    
    # Light position and color.
    L = np.array([5., 5., -10.])
    color_light = np.ones(3)
    ambient = .05
    
    # Camera.
    O = np.array([0., 0., -1.])  # Position.
    Q = np.array([0., 0., 0.])  # Pointing to.

7.	 Let's render the scene:
>>> img = run()
    fig, ax = plt.subplots(1, 1, figsize=(10, 10))
    ax.imshow(img)
    ax.set_axis_off()

In this screenshot, the left panel shows the result of this recipe's code. The right 
panel shows an extended version of the simple ray tracing engine implemented here.
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8.	 How slow is this implementation (the ray1 example on the book's website)?
>>> %timeit run()
2.75 s ± 29.9 ms per loop (mean ± std. dev. of 7 runs,
    1 loop each)

9.	 If we just use the %%cython magic with the adequate import numpy as np 
and cimport numpy as np commands at the top of the cell, we only get an 
approximate 6% speed improvement (the ray2 example).

10.	 We could do better by giving information about the type of the variables. Since we 
use vectorized computations on NumPy arrays, we cannot easily use memory views. 
Rather, we will use array buffers. First, at the very beginning of the Cython module  
(or %%cython cell), we declare NumPy data types as follows:
import numpy as np
cimport numpy as np
DBL = np.double ctypedef
np.double_t DBL_C

Then, we declare a NumPy array with cdef np.ndarray[DBL_C, ndim=1] (in this 
example, a 1D array of double precision floating point numbers). There is a difficulty 
here because NumPy arrays can only be declared inside functions, not at the top 
level. Thus, we need to slightly tweak the overall architecture of the code by passing 
some arrays as function arguments instead of using global variables. However,  
even by declaring the type of all variables, we gain no speed enhancement at all  
(the ray3 example).

11.	 In the current implementation, we incur a performance hit because of the large 
number of NumPy function calls on tiny arrays (three elements). NumPy is designed 
to deal with large arrays, and it does not make much sense to use it for arrays 
that small. In this specific situation, we can try to bypass NumPy by rewriting some 
functions using the C standard library. We use the cdef keyword to declare a C-style 
function. These functions can yield significant performance speedups. Here is the C 
function replacing normalize():
from libc.math cimport sqrt
cdef normalize(np.ndarray[DBL_C, ndim=1] x):
    cdef double n
    n = sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2])
    x[0] /= n
    x[1] /= n
    x[2] /= n
    return x

We obtain a 25% speed improvement (the ray4 example).
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12.	 To get the most interesting speedups, we need to completely bypass NumPy. Where 
do we use NumPy precisely?

�� Many variables are NumPy arrays (mostly 1D vectors with three elements)

�� Element-wise operations yield implicit NumPy API calls

�� We also use a few NumPy built-in functions such as np.dot()

In order to bypass NumPy in our example, we need to reimplement all these features 
for our specific needs. The first possibility is to use a native Python type for vectors 
(for example, tuples), and write C-style functions that implement operations on tuples 
(always assuming they have exactly three elements). For example, the addition 
between two tuples can be implemented as follows:
cdef tuple add(tuple x, tuple y):
    return (x[0]+y[0], x[1]+y[1], x[2]+y[2])

This time, we get an 18x speed enhancement compared to the pure Python version  
(the ray5 example)! But we can do even better.

13.	 We are going to define a pure C structure instead of using a Python type for our 
vectors. In other words, we are not only bypassing NumPy, but we are also bypassing 
Python by moving to pure C code. To declare a C structure representing a 3D vector in 
Cython, we can use the following code:
cdef struct Vec3:
    double x, y, z

To create a new Vec3 variable, we can use the following function:
cdef Vec3 vec3(double x, double y, double z):
    cdef Vec3 v
    v.x = x
    v.y = y
    v.z = z
    return v

As an example, here is the function used to add two Vec3 objects:
cdef Vec3 add(Vec3 u, Vec3 v):
    return vec3(u.x + v.x, u.y + v.y, u.z + v.z)

The code can be updated to make use of these fast C-style functions. Finally, the image  
can be declared as a 3D memory view. With all these changes, the Cython implementation 
runs in approximately 8 ms instead of almost a couple of seconds, or 330 times faster  
(the ray6 example)!

In summary, we have achieved a very interesting speed enhancement  by basically rewriting 
the entire implementation in C with an enhanced Python syntax.
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How it works...
Let's explain briefly how ray tracing works. We model a 3D scene with objects such as planes 
and spheres (here, there is only one sphere). There is also a camera and a plane representing 
the rendered image:

Principles of ray tracing (Ray trace diagram by Henrik, Wikimedia Commons)

There is a main loop over all pixels of the image. For each pixel, we launch a ray from the 
camera center to the scene through the current pixel and compute the first intersection 
point between that ray and an object from the scene. Then, we compute the pixel's color as a 
function of the object material's color, the position of the lights, the normal of the object at the 
intersection point, and so on. There are several physics-based lighting equations that describe 
how the color depends on these parameters. Here, we use the Blinn-Phong shading model 
with ambient, diffuse, and specular lighting components:

Blinn-Phong shading model (Phong components, Wikimedia Commons)
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Of course, a full ray tracing engine is far more complex than what we have implemented 
in this example. We can model other optic and lighting characteristics such as reflections, 
refractions, shadows, depth of field, and others. It is also possible to implement ray  
tracing algorithms on the graphics card for real-time photorealistic rendering. Here  
are a few references:

ff Blinn-Phong shading model on Wikipedia, available at https://en.wikipedia.
org/wiki/Blinn-Phong_shading_model

ff Ray tracing on Wikipedia, available at https://en.wikipedia.org/wiki/Ray_
tracing_%28graphics%29

There's more...
Although powerful, Cython requires a good understanding of Python, NumPy, and C. The most 
interesting performance speedups are achieved when dynamically-typed Python variables are 
converted to statically-typed C variables, notably within tight loops.

Here are a few references:

ff Cython extension types, available at http://docs.cython.org/src/
userguide/extension_types.html

ff Extended version of the ray tracing example, available at http://gist.github.
com/rossant/6046463

See also
ff The Accelerating Python code with Cython recipe

ff The Releasing the GIL to take advantage of multi-core processors with Cython and 
OpenMP recipe

Releasing the GIL to take advantage of 
multi-core processors with Cython and 
OpenMP

As we have seen in this chapter's introduction, CPython's GIL prevents pure Python code from 
taking advantage of multi-core processors. With Cython, we have a way to release the GIL 
temporarily in a portion of the code in order to enable multi-core computing. This is done with 
OpenMP, a multiprocessing API that is supported by most C compilers.

In this recipe, we will see how to parallelize the previous recipe's code on multiple cores.

https://en.wikipedia.org/wiki/Blinn-Phong_shading_model
https://en.wikipedia.org/wiki/Blinn-Phong_shading_model
https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
http://docs.cython.org/src/userguide/extension_types.html
http://docs.cython.org/src/userguide/extension_types.html
http://gist.github.com/rossant/6046463
http://gist.github.com/rossant/6046463
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Getting ready
To enable OpenMP in Cython, you just need to specify some options to the compiler. There is 
nothing special to install on your computer besides a good C compiler. See the instructions in 
this chapter's introduction for more details.

The code in this recipe has been written for GCC on Ubuntu. It can be adapted to other 
systems with minor changes to the %%cython options.

How to do it...
Our simple ray tracing engine implementation is embarrassingly parallel (see https://
en.wikipedia.org/wiki/Embarrassingly_parallel); there is a main loop over 
all pixels, within which the exact same function is called repetitively. There is no crosstalk 
between loop iterations. Therefore, it would be theoretically possible to execute all iterations 
in parallel.

Here, we will execute one loop (over all columns in the image) in parallel with OpenMP.

You will find the entire code on the book's website (the ray7 example). We will only show the 
most important steps here:

1.	 We use the following magic command:
>>> %%cython --compile-args=-fopenmp --link-args=-fopenmp --force

2.	 We import the prange() function:
>>> from cython.parallel import prange

3.	 We add nogil after each function definition in order to remove the GIL. We cannot 
use any Python variable or function inside a function annotated with nogil. For 
example:
cdef Vec3 add(Vec3 x, Vec3 y) nogil:
    return vec3(x.x + y.x, x.y + y.y, x.z + y.z)

4.	 To run a loop in parallel over the cores with OpenMP, we use prange():
with nogil:
    for i in prange(w):
        # ...

The GIL needs to be released before using any parallel computing feature such as 
prange().

5.	 With these changes, we reach a 3x speed enhancement on a quad-core processor 
compared to the fastest version of the previous recipe.

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Embarrassingly_parallel
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How it works...
The GIL has been described in the introduction to this chapter. The nogil keyword tells 
Cython that a particular function or code section should be executed without the GIL. When 
the GIL is released, it is not possible to make any Python API calls, meaning that only C 
variables and C functions (declared with cdef) can be used.

See also
ff The Accelerating Python code with Cython recipe

ff The Optimizing Cython code by writing less Python and more C recipe

ff The Distributing Python code across multiple cores with IPython recipe

Writing massively parallel code for NVIDIA 
graphics cards (GPUs) with CUDA

Graphics Processing Units (GPUs) are powerful processors specialized for real-time 
rendering. We find GPUs in virtually any computer, laptop, video game console, tablet, or 
smartphone. Their massively parallel architecture comprises tens to thousands of cores. The 
video game industry has been fostering the development of increasingly powerful GPUs over 
the last two decades.

Since the mid-2000s, GPUs are no longer limited to graphics processing. We can now 
implement scientific algorithms on a GPU. The only condition is that the algorithm follows 
the SIMD paradigm, where a sequence of instructions is executed in parallel with multiple 
data. This is called General Purpose Programming on Graphics Processing Units (GPGPU). 
GPGPU is used in many areas: meteorology, machine learning (most particularly deep 
learning), computer vision, image processing, finance, physics, bioinformatics, and many 
more. Writing code for GPUs can be challenging as it requires understanding the internal 
architecture of the hardware.

CUDA is a proprietary GPGPU framework created in 2007 by NVIDIA Corporation, one of the 
main GPU manufacturers. Programs written in CUDA only work on NVIDIA graphics cards. 
There is another competing GPGPU framework called OpenCL, an open standard supported 
by other major companies. OpenCL programs can work on GPUs and CPUs from most 
manufacturers (notably NVIDIA, AMD, and Intel).

CUDA kernels are typically written in a C dialect that runs on the GPU. However, Numba  
allows us to CUDA kernels in Python. Numba takes care of compiling the code automatically 
for the GPU.

In this recipe, we will implement the embarrassingly parallel computation of the Mandelbrot 
fractal in CUDA using Numba.
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Getting ready
You need an NVIDIA GPU installed on your computer. You also need the CUDA toolkit,  
which you can install with conda install cudatoolkit.

How to do it...
1.	 Let's import the packages:

>>> import math
    import numpy as np
    from numba import cuda
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's check whether Numba correctly identified our GPU:
>>> len(cuda.gpus)
1
>>> cuda.gpus[0].name
b'GeForce GTX 980M'

3.	 We write our function in Python. It will be compiled to CUDA code. The object m 
represents a pointer to the array stored on the GPU. The function is called on the GPU 
in parallel on every pixel of the image. Numba provides a cuda.grid() function that 
gives the index of the pixel in the image:
>>> @cuda.jit
    def mandelbrot_numba(m, iterations):
        # Matrix index.
        i, j = cuda.grid(2)
        size = m.shape[0]
        # Skip threads outside the matrix.
        if i >= size or j >= size:
            return
        # Run the simulation.
        c = (-2 + 3. / size * j +
             1j * (1.5 - 3. / size * i))
        z = 0
        for n in range(iterations):
            if abs(z) <= 10:
                z = z * z + c
                m[i, j] = n
            else:
                break
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4.	 We initialize the matrix:
>>> size = 400
    iterations = 100
>>> m = np.zeros((size, size))

5.	 We initialize the execution grid (see the How it works... section):
>>> # 16x16 threads per block.
    bs = 16
    # Number of blocks in the grid.
    bpg = math.ceil(size / bs)
    # We prepare the GPU function.
    f = mandelbrot_numba[(bpg, bpg), (bs, bs)]

6.	 We execute the GPU function, passing our empty array:
>>> f(m, iterations)

7.	 Let's display the result:
>>> fig, ax = plt.subplots(1, 1, figsize=(10, 10))
    ax.imshow(np.log(m), cmap=plt.cm.hot)
    ax.set_axis_off()
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8.	 Now, let's benchmark this function:
>>> %timeit -n10 -r100 f(m, iterations)
2.99 ms ± 173 µs per loop (mean ± std. dev. of 100 runs,
    10 loops each)

That's about 10 times faster than the CPU version obtained with Numba in the first 
recipe in this chapter, and 1,800 times faster than the pure Python version! But we 
can do even better.

9.	 Numba takes care of transferring arrays automatically between the host machine 
(CPU) and the device (GPU). These data transfers are slow, sometimes even more 
than the actual on-device computation. Numba provides facilities to deal with these 
transfers manually, which can be interesting in some use cases. Let's estimate the 
time of the data transfers and the computation on the GPU.

10.	 First, we send the NumPy array to the GPU with the cuda.to_device() function:
>>> %timeit -n10 -r100 cuda.to_device(m)
481 µs ± 106 µs per loop (mean ± std. dev. of 100 runs,
    10 loops each)

11.	 Second, we run the computation on the GPU:
>>> %%timeit -n10 -r100 m_gpu = cuda.to_device(m)
    f(m_gpu, iterations)
101 µs ± 11.8 µs per loop (mean ± std. dev. of 100 runs,
    10 loops each)

12.	 Third, we copy the modified array from the GPU to the CPU.

>>> m_gpu = cuda.to_device(m)
>>> %timeit -n10 -r100 m_gpu.copy_to_host()
238 µs ± 67.8 µs per loop (mean ± std. dev. of 100 runs,
    10 loops each)

If we consider only the GPU computation time excluding the data transfer times, we obtain 
a version that is 340 times faster than the version compiled on the CPU with Numba, and 
54,000 times faster than the pure Python version!

This astronomic speed improvement is explained by the fact that the GPU version is compiled 
and runs on 1536 CUDA cores on the NVIDIA GTX 980M, whereas the pure Python version is 
interpreted and runs on 1 CPU.
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How it works...
GPU programming is a rich and highly technical topic, encompassing low-level architectural 
details of GPUs. Of course, we only scratched the surface here with the simplest paradigm 
possible (an embarrassingly parallel problem). We give further references in a later section.

A CUDA GPU has a number of multiprocessors, and each multiprocessor has multiple stream 
processors (also called CUDA cores). Each multiprocessor executes in parallel with the 
others. Within a multiprocessor, the stream processors execute the same instruction at the 
same time, but on multiple data bits (SIMD paradigm).

Concepts central to the CUDA programming model are kernels, threads, blocks, and grids:

ff A kernel is a program written in a C-like language that runs on the GPU

ff A thread represents one execution of a kernel on one stream processor

ff A block contains multiple threads executing on one multiprocessor

ff A grid contains a number of blocks

The number of threads per block is limited by the size of the multiprocessors and depends 
on the graphics card model (1,024, for example). However, a grid can contain an arbitrary 
number of blocks.

Within a block, threads are executed within warps of typically 32 threads. Better performance 
is achieved when conditional branching in a kernel is organized into groups of 32 threads.

Threads within a block can synchronize at synchronization barriers using the  
CUDA __syncthreads() function. This feature enables inter-thread communication  
within one block. However, blocks execute independently so that two threads from different 
blocks cannot synchronize.

Within a block, threads are organized into a 1D, 2D, or 3D structure, and similarly for blocks 
within a grid, as shown in the following figure. This structure is convenient as it matches most 
common multidimensional datasets encountered in real-world problems.
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The CUDA programming model (showing threads, blocks, and grids—image by NVIDIA Corporation)

In CUDA, the kernel can retrieve the thread index within the block (threadIdx), as well as 
the block index within the grid (blockIdx), to determine which bit of data it should work 
on. In this recipe, the 2D image of the fractal is partitioned into 16 x 16 blocks, each block 
containing 256 pixels, with one thread per pixel. The kernel computes the color of a  
single pixel.

Numba provides the cuda.grid(ndim) function to obtain directly the 1D, 2D, or 3D index of 
the thread within the grid. Alternatively, one can use the following code snippet to control the 
exact position of the current thread within the block and the grid (code given in the Numba 
documentation):

# Thread id in a 1D block
tx = cuda.threadIdx.x
# Block id in a 1D grid
ty = cuda.blockIdx.x
# Block width, i.e. number of threads per block
bw = cuda.blockDim.x
# Compute flattened index inside the array
pos = tx + ty * bw
if pos < an_array.size:  # Check array boundaries
    # One can access 'an_array[pos]'
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There are several levels of memory on the GPU, ranging from small, fast, and local memory 
shared by a few threads within a block to large, slow, and global memory shared by all blocks. 
We need to tweak the memory access patterns in the code to match the hardware constraints 
and achieve higher performance. In particular, data access is more efficient when the threads 
within a warp access consecutive addresses in the global memory; the hardware coalesces 
all memory accesses into a single access to consecutive Dynamic Random Access Memory 
(DRAM) locations.

There's more...
Here are a few references:

ff Numba CUDA documentation at http://numba.pydata.org/numba-doc/dev/
cuda/index.html

ff Official CUDA portal at http://developer.nvidia.com/category/zone/
cuda-zone

ff Education and training for CUDA, at http://developer.nvidia.com/cuda-
education-training

ff Suggested books about CUDA, at http://developer.nvidia.com/suggested-
reading

See also
ff The Accelerating pure Python code with Numba and Just-In-Time compilation recipe

Distributing Python code across multiple 
cores with IPython

Despite CPython's GIL, it is possible to execute several tasks in parallel on multi-core 
computers using multiple processes instead of multiple threads. Python offers a native 
multiprocessing module. IPython's parallel extension, called ipyparallel, offers an even 
simpler interface that brings powerful parallel computing features in an interactive 
environment. We will describe this tool here.

Getting started
You need to install ipyparallel with conda install ipyparallel.

Then, you need to activate the ipyparallel Jupyter extension with ipcluster nbextension 
enable --user.

http://numba.pydata.org/numba-doc/dev/cuda/index.html
http://numba.pydata.org/numba-doc/dev/cuda/index.html
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/suggested-reading
http://developer.nvidia.com/suggested-reading
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How to do it...
1.	 First, we launch four IPython engines in separate processes. We have basically two 

options to do this:

�� Executing ipcluster start -n 4 in a system shell

�� Using the web interface provided in Jupyter Notebook's main page by clicking 
on the IPython Clusters tab and launching four engines

2.	 Then, we create a client that will act as a proxy to the IPython engines. The client 
automatically detects the running engines:
>>> from ipyparallel import Client
    rc = Client()

3.	 Let's check the number of running engines:
>>> rc.ids
[0, 1, 2, 3]

4.	 To run commands in parallel over the engines, we can use the %px line magic or the 
%%px cell magic:
>>> %%px
    import os
    print(f"Process {os.getpid():d}.")
[stdout:0] Process 10784.
[stdout:1] Process 10785.
[stdout:2] Process 10787.
[stdout:3] Process 10791.

5.	 We can specify which engines to run the commands on using the --targets or -t 
option:
>>> %%px -t 1,2
    # The os module has already been imported in
    # the previous cell.
    print(f"Process {os.getpid():d}.")
[stdout:1] Process 10785.
[stdout:2] Process 10787.



High-Performance Computing

192

6.	 By default, the %px magic executes commands in blocking mode; the cell only 
returns when the commands have completed on all engines. It is possible to run  
non-blocking commands with the --noblock or -a option. In this case, the cell 
returns immediately, and the task's status and results can be polled asynchronously 
from IPython's interactive session:
>>> %%px –a
    import time
    time.sleep(5)
<AsyncResult: execute>

7.	 The previous command returned an ASyncResult instance that we can use to poll 
the task's status:
>>> print(_.elapsed, _.ready())
1.522944 False

8.	 The %pxresult blocks until the task finishes:
>>> %pxresult
>>> print(_.elapsed, _.ready())
5.044711 True

9.	 ipyparallel provides convenient functions for common use cases, such as a parallel 
map() function:
>>> v = rc[:]
    res = v.map(lambda x: x * x, range(10))
>>> print(res.get())
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

How it works...
There are several steps in distributing code across multiple cores:

1.	 Launching several IPython engines (there is typically one process per core).

2.	 Creating a client that acts as a proxy to these engines.

3.	 Using the client to launch tasks on the engines and retrieve the results.

Engines are Python processes that execute code on different computing units. They are very 
similar to IPython kernels.

There are two main interfaces for accessing the engines:

ff With the direct interface, we access engines directly and explicitly with their 
identifiers

ff With the load-balanced interface, we access engines through an interface that 
automatically and dynamically assigns work to appropriate engines
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We can also create custom interfaces for alternative styles of parallelism.

In this recipe, we used the direct interface; we addressed individual engines explicitly by 
specifying their identifiers in the %px magic command.

As we have seen in this recipe, tasks can be launched synchronously or asynchronously. 
The %px* magic commands are particularly convenient in the Notebook, as they let us work 
seamlessly on multiple engines in parallel.

There's more...
The parallel computing capabilities of ipyparallel offer an easy way to launch independent jobs 
in parallel over multiple cores. A more advanced use case is when jobs have dependencies.

There are two types of dependency:

ff Functional dependency: It determines whether a given task can execute on a 
given engine, according to the engine's operating system, the presence or absence 
of specific Python modules, or other conditions. ipyparallel provides a @require 
decorator for functions that need specific Python modules to run on the engines. 
Another decorator is @depend; it lets us define arbitrary conditions implemented in a 
Python function returning True or False.

ff Graph dependency: It determines whether a given task can execute at a given time 
on a given engine. We may require a task to run only after one or several other tasks 
have finished. Additionally, we can impose this condition within any individual engine; 
an engine may need to execute a specific set of tasks before executing our task. For 
example, here is how to require tasks B and C (with asynchronous results arB and 
arC) to finish before task A starts:
with view.temp_flags(after=[arB, arC]):
    arA = view.apply_async(f)

ipyparallel provides options to specify whether all or any of the dependencies should be met 
for the task to run. Additionally, we can specify whether success- and/or failure-dependent 
tasks should be considered as met or not.

When a task's dependency is unmet, the scheduler reassigns it to one engine, then to another 
engine, and so on until an appropriate engine is found. If the dependency cannot be met on 
any engine, an ImpossibleDependency error is raised for the task.

Passing data between dependent tasks is not particularly easy with ipyparallel. One initial 
possibility is to use blocking calls in the interactive session, wait for tasks to finish, retrieve the 
results, and send them back to the next tasks. Another possibility is to share data between 
engines via the filesystem, but this solution does not work well on multiple computers. 
An alternative solution is described at: http://nbviewer.ipython.org/gist/
minrk/11415238.

http://nbviewer.ipython.org/gist/minrk/11415238
http://nbviewer.ipython.org/gist/minrk/11415238
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References
Here are a few references about ipyparallel:

ff Documentation for ipyparallel available at https://ipyparallel.readthedocs.
io/en/latest/

ff Dependencies in ipyparallel, explained at https://ipyparallel.readthedocs.
io/en/latest/task.html#dependencies

ff DAG dependencies, described at https://ipyparallel.readthedocs.io/en/
latest/dag_dependencies.html

ff Using MPI with ipyparallel, at http://ipyparallel.readthedocs.io/en/
latest/mpi.html

Here are some references about alternative parallel computing solutions in Python:

ff Dask, available at https://dask.pydata.org/en/latest/

ff Joblib, available at http://pythonhosted.org/joblib/parallel.html

ff List of parallel computing packages, available at http://wiki.python.org/
moin/ParallelProcessing

See also
ff The Interacting with asynchronous parallel tasks in IPython recipe

ff The Performing out-of-core computations on large arrays with Dask recipe

Interacting with asynchronous parallel tasks 
in IPython

In this recipe, we will show how to interact with asynchronous tasks running in parallel  
with ipyparallel.

Getting ready
You need to start the IPython engines (see the previous recipe). The simplest option is to 
launch them from the IPython Clusters tab in the Notebook dashboard. In this recipe, we use 
four engines.

https://ipyparallel.readthedocs.io/en/latest/
https://ipyparallel.readthedocs.io/en/latest/
https://ipyparallel.readthedocs.io/en/latest/task.html#dependencies
https://ipyparallel.readthedocs.io/en/latest/task.html#dependencies
https://ipyparallel.readthedocs.io/en/latest/dag_dependencies.html
https://ipyparallel.readthedocs.io/en/latest/dag_dependencies.html
http://ipyparallel.readthedocs.io/en/latest/mpi.html
http://ipyparallel.readthedocs.io/en/latest/mpi.html
https://dask.pydata.org/en/latest/
http://pythonhosted.org/joblib/parallel.html
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/ParallelProcessing
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How to do it...
1.	 Let's import a few modules:

>>> import sys
    import time
    import ipyparallel
    import ipywidgets
    from IPython.display import clear_output, display

2.	 We create a client:
>>> rc = ipyparallel.Client()

3.	 Now, we create a load-balanced view on the IPython engines:
>>> view = rc.load_balanced_view()

4.	 We define a simple function for our parallel tasks:
>>> def f(x):
        import time
        time.sleep(.1)
        return x * x

5.	 We will run this function on 100 integer numbers in parallel:
>>> numbers = list(range(100))

6.	 We execute f on our list numbers in parallel across all of our engines, using map_
async(). This function immediately returns an AsyncResult object that allows us 
to interactively retrieve information about the tasks:
>>> ar = view.map_async(f, numbers)

7.	 This object has a metadata attribute: a list of dictionaries for all engines. We can get 
the date of submission and completion, the status, the standard output and error, 
and other information:
>>> ar.metadata[0]
{'after': None,
 'completed': None,
 'data': {},
 ...
 'submitted': datetime.datetime(2017, ...)}

8.	 Iterating over the AsyncResult instance works normally; the iteration progresses in 
real-time while the tasks are being completed:
>>> for i in ar:
        print(i, end=', ')
0, 1, 4, ..., 9801,
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9.	 Now, we create a simple progress bar for our asynchronous tasks. The idea is to 
create a loop polling for the tasks' status at every second. An IntProgressWidget 
widget is updated in real-time and shows the progress of the tasks:

>>> def progress_bar(ar):
        # We create a progress bar.
        w = ipywidgets.IntProgress()
        # The maximum value is the number of tasks.
        w.max = len(ar.msg_ids)
        # We display the widget in the output area.
        display(w)
        # Repeat:
        while not ar.ready():
            # Update the widget's value with the
            # number of tasks that have finished
            # so far.
            w.value = ar.progress
            time.sleep(.1)
        w.value = w.max
>>> ar = view.map_async(f, numbers)

The progress bar is shown in the following screenshot:
>>> progress_bar(ar)

How it works...
AsyncResult instances are returned by asynchronous parallel functions. They implement 
several useful attributes and methods, notably:

ff elapsed: Elapsed time since submission

ff progress: Number of tasks that have competed so far

ff serial_time: Sum of the computation time of all of the tasks done in parallel

ff metadata: Dictionary with further information about the task

ff ready(): Returns whether the call has finished

ff successful(): Returns whether the call has completed without raising an 
exception (an exception is raised if the task has not completed yet)
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ff wait(): Blocks until the tasks have completed (there is an optional timeout 
argument)

ff get(): Blocks until the tasks have completed and returns the result (there is an 
optional timeout argument)

There's more...
Here are a few references:

ff Documentation for the AsyncResult class available at http://ipyparallel.
readthedocs.io/en/latest/asyncresult.html

ff Documenation for the AsyncResult of the native multiprocessing module 
at https://docs.python.org/3/library/multiprocessing.
html#multiprocessing.pool.AsyncResult

ff Documentation for the task interface available at http://ipyparallel.
readthedocs.io/en/latest/task.html

See also
ff The Distributing Python code across multiple cores with IPython recipe

Performing out-of-core computations on 
large arrays with Dask

Dask is a parallel computing library that offers not only a general framework for distributing 
complex computations on many nodes, but also a set of convenient high-level APIs to deal 
with out-of-core computations on large arrays. Dask provides data structures resembling 
NumPy arrays (dask.array) and Pandas DataFrames (dask.dataframe) that efficiently 
scale to huge datasets. The core idea of Dask is to split a large array into smaller arrays 
(chunks).

In this recipe, we illustrate the basic principles of dask.array.

Getting ready
Dask should already be installed in Anaconda, but you can always install it manually with 
conda install dask. You also need memory_profiler, which you can install with 
conda install memory_profiler.

http://ipyparallel.readthedocs.io/en/latest/asyncresult.html
http://ipyparallel.readthedocs.io/en/latest/asyncresult.html
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult
http://ipyparallel.readthedocs.io/en/latest/task.html
http://ipyparallel.readthedocs.io/en/latest/task.html
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How to do it...
1.	 Let's import the libraries:

>>> import numpy as np
    import dask.array as da
    import memory_profiler
>>> %load_ext memory_profiler

2.	 We initialize a large 10,000 x 10,000 array with random values using dask. The array 
is chunked into 100 smaller arrays with size 1,000 x 1,000:
>>> Y = da.random.normal(size=(10000, 10000),
                         chunks=(1000, 1000))
>>> Y
dask.array<da.random.normal, shape=(10000, 10000),
    dtype=float64, chunksize=(1000, 1000)>
>>> Y.shape, Y.size, Y.chunks
((10000, 10000),
 100000000,
 ((1000, ..., 1000),
  (1000, ..., 1000)))

Memory is not allocated for this huge array. Values will be computed on-the-fly at the 
last moment.

3.	 Let's say we want to compute the mean of every column:
>>> mu = Y.mean(axis=0)
    mu
dask.array<mean_agg-aggregate, shape=(10000,),
    dtype=float64, chunksize=(1000,)>

This mu  object is still a dask array and nothing has been computed yet.

4.	 We need to call the compute() method to actually launch the computation. Here, 
only part of the array is allocated because Dask is smart enough to compute just 
what is necessary for the computation. Here, the 10 chunks containing the first 
column of the array are allocated and involved in the computation of mu[0]:
>>> mu[0].compute()
0.011

5.	 Now, we profile the memory usage and time of the same computation using either 
NumPy or dask.array:
>>> def f_numpy():
        X = np.random.normal(size=(10000, 10000))
        x = X.mean(axis=0)[0:100]
>>> %%memit
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    f_numpy()
peak memory: 916.32 MiB, increment: 763.00 MiB
>>> %%time
    f_numpy()
CPU times: user 3.86 s, sys: 664 ms, total: 4.52 s
Wall time: 4.52 s

NumPy used 763 MB to allocate the entire array, and the entire process (allocation 
and computation) took more than 4 seconds. NumPy wasted time generating all 
random values and computing the mean of all columns whereas we only requested 
the first 100 columns.

6.	 Next, we use dask.array to perform the same computation:
>>> def f_dask():
        Y = da.random.normal(size=(10000, 10000),
                             chunks=(1000, 1000))
        y = Y.mean(axis=0)[0:100].compute()
>>> %%memit
    f_dask()
peak memory: 221.42 MiB, increment: 67.64 MiB
>>> %%time
    f_dask()
CPU times: user 492 ms, sys: 12 ms, total: 504 ms
Wall time: 105 ms

This time, Dask used only 67 MB and the computation lasted about 100 
milliseconds.

7.	 We can do even better by changing the shape of the chunks. Instead of using 100 
square chunks, we use 100 rectangular chunks containing 100 full columns each. 
The size of the chunks (10,000 elements) remains the same:
>>> def f_dask2():
        Y = da.random.normal(size=(10000, 10000),
                             chunks=(10000, 100))
        y = Y.mean(axis=0)[0:100].compute()
>>> %%memit
    f_dask2()
peak memory: 145.60 MiB, increment: 6.93 MiB
>>> %%time
    f_dask2()
CPU times: user 48 ms, sys: 8 ms, total: 56 ms
Wall time: 57.4 ms



High-Performance Computing

200

This is more efficient when computing per-column quantities, because only a single 
chunk is involved in the computation of the mean of the first 100 columns, compared 
to 10 chunks in the previous example. The memory usage is therefore 10 times  
lower here.

8.	 Finally, we illustrate how we can use multiple cores to perform computations on large 
arrays. We create a client using dask.distributed, a distributed computing library 
that complements dask:
>>> from dask.distributed import Client
>>> client = Client()
>>> client

9.	 The computation represented by the Y.sum() Dask array can be launched locally, or 
using the dask.distributed client:
>>> Y.sum().compute()
4090.221
>>> future = client.compute(Y.sum())
>>> future

>>> future.result()
4090.221

The second method scales to large clusters containing many nodes.

10.	 We have seen how dask.array can help us manage larger datasets in less memory. 
Now, we show how we can manipulate arrays that would never fit in our computer. For 
example, let's compute the average of a large terabyte array:

>>> huge = da.random.uniform(
        size=(1500000, 100000), chunks=(10000, 10000))
    "Size in memory: %.1f GB" % (huge.nbytes / 1024 ** 3)
'Size in memory: 1117.6 GB'
>>> from dask.diagnostics import ProgressBar
    # WARNING: this will take a very long time computing
    # useless values. This is for pedagogical purposes
    # only.
    with ProgressBar():
        m = huge.mean().compute()
[##                   ] | 11% Completed |  1min 44.8s
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The way this task is processed, chunk after chunk, can be seen on this graphic 
showing CPU and RAM usage as a function of time:

CPU and RAM usage

There's more...
The dask.array interface shown here is just one of the many possibilities offered by 
the low-level, graph-based distributed computing framework implemented in Dask. With 
task scheduling, a large computation is split into many smaller computations that may 
have complex dependencies represented by a dependency graph. A scheduler implements 
algorithms to execute these computations in parallel by respecting the dependencies.
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Here are a few references:

ff Dask documentation at https://dask.pydata.org/en/latest/index.html

ff Integrating Dask with IPython at http://distributed.readthedocs.io/en/
latest/ipython.html

ff Dask examples at https://dask.pydata.org/en/latest/examples-
tutorials.html

ff Parallelizing Scientific Python with Dask, by James Crist, SciPy 2017, a video tutorial 
at https://www.youtube.com/watch?v=mbfsog3e5DA

ff Dask tutorial at https://github.com/dask/dask-tutorial/

See also
ff The Distributing Python code across multiple cores with IPython recipe

ff The Interacting with asynchronous parallel tasks in IPython recipe

Trying the Julia programming language in 
the Jupyter Notebook

Julia (http://julialang.org) is a high-level, dynamic language for high-performance 
numerical computing. The first version was released in 2012 after three years of development 
at MIT. Julia borrows ideas from Python, R, MATLAB, Ruby, Lisp, C, and other languages. 
Its major strength is to combine the expressivity and ease of use of high-level, dynamic 
languages with the speed of C (almost). This is achieved via an LLVM-based JIT compiler that 
targets machine code for x86-64 architectures.

In this recipe, we will try Julia in the Jupyter Notebook using the IJulia package available at 
https://github.com/JuliaLang/IJulia.jl. We will also show how to use Python 
packages (such as NumPy and Matplotlib) from Julia. Specifically, we will compute and display 
a Julia set.

This recipe is inspired by a Julia tutorial given by David P. Sanders at the SciPy 2014 
conference, available at the following:

http://nbviewer.ipython.org/github/dpsanders/scipy_2014_julia/tree/
master/

Getting ready
You first need to install Julia. You will find packages for Windows, macOS, and Linux on Julia's 
website at http://julialang.org/downloads/.

https://dask.pydata.org/en/latest/index.html
http://distributed.readthedocs.io/en/latest/ipython.html
http://distributed.readthedocs.io/en/latest/ipython.html
https://dask.pydata.org/en/latest/examples-tutorials.html
https://dask.pydata.org/en/latest/examples-tutorials.html
https://www.youtube.com/watch?v=mbfsog3e5DA
https://github.com/dask/dask-tutorial/
http://julialang.org
https://github.com/JuliaLang/IJulia.jl
http://nbviewer.ipython.org/github/dpsanders/scipy_2014_julia/tree/master/
http://nbviewer.ipython.org/github/dpsanders/scipy_2014_julia/tree/master/
http://julialang.org/downloads/
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Open a Julia Terminal with the julia command, and install IJulia by typing Pkg.
add("IJulia") in the Julia Terminal. Then, quit Julia with exit() and launch the Jupyter 
Notebook as usual with jupyter notebook. The IJulia kernel is now available in Jupyter.

How to do it...
1.	 We can't avoid the customary Hello World example. The println() function displays 

a string and adds a line break at the end:
println("Hello world!")
Hello world!

2.	 We create a polymorphic function, f, that computes the expression z*z + c.  
We will evaluate this function on arrays, so we use element-wise operators with  
a dot (.) prefix:
f(z, c) = z.*z .+ c
f (generic function with 1 method)

3.	 Let's evaluate f on scalar complex numbers (the imaginary number  is 1.0im):
f(2.0 + 1.0im, 1.0)
4.0 + 4.0im

4.	 Now, we create a (2, 2) matrix. Components are separated by a space and rows are 
separated by a semicolon (;). The type of this array is automatically inferred from its 
components. The Array type is a built-in data type in Julia, similar, but not identical, 
to NumPy's ndarray type:
z = [-1.0 - 1.0im  1.0 - 1.0im;
     -1.0 + 1.0im  1.0 + 1.0im]
2×2 Array{Complex{Float64},2}:
 -1.0-1.0im  1.0-1.0im
 -1.0+1.0im  1.0+1.0im

5.	 We can index arrays with brackets []. A notable difference from Python is that 
indexing starts from 1 instead of 0. MATLAB has the same convention. Furthermore, 
the keyword end refers to the last item in that dimension:
z[1,end]
1.0 - 1.0im

6.	 We can evaluate f on the matrix z and a scalar c (polymorphism):
f(z, 0)
2×2 Array{Complex{Float64},2}:
 0.0+2.0im  0.0-2.0im
 0.0-2.0im  0.0+2.0im
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7.	 Now, we create a function, julia, that computes a Julia set. Optional named 
arguments are separated from positional arguments by a semicolon (;). Julia's 
syntax for flow control is close to that of Python's, except that colons are dropped, 
indentation doesn't count, and block end keywords are mandatory:
function julia(z, c; maxiter=200)
    for n = 1:maxiter
        if abs2(z) > 4.0
            return n-1
        end
        z = f(z, c)
    end
    return maxiter
end
julia (generic function with 1 method)

8.	 We can use Python packages from Julia. First, we have to install the PyCall package 
by using Julia's built-in package manager (Pkg). Once the package is installed, we 
can use it in the interactive session with using PyCall:
Pkg.add("PyCall")
using PyCall

9.	 We can import Python packages with the @pyimport macro (a metaprogramming 
feature in Julia). This macro is the equivalent of Python's import command:
@pyimport numpy as np

10.	 The np namespace is now available in the Julia interactive session. NumPy 
arrays are automatically converted to Julia Array objects:
z = np.linspace(-1., 1., 100)
100-element Array{Float64,1}:
 -1.0
 -0.979798
 -0.959596
  .
  .
  .
  0.959596
  0.979798
  1.0
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11.	 We can use list comprehensions to evaluate the function julia on many arguments:
m = [julia(z[i], 0.5) for i=1:100]
100-element Array{Int64,1}:
 2
 2
 .
 .
 .
 2
 2

12.	 Let's try the Gadfly plotting package. This library offers a high-level plotting interface 
inspired by Dr. Leland Wilkinson's textbook The Grammar of Graphics, Springer. In 
the Notebook, plots are interactive thanks to the D3.js library:
Pkg.add("Gadfly")
using Gadfly
plot(x=1:100, y=m, Geom.point, Geom.line)
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13.	 Now, we compute a Julia set by using two nested loops. In general, and unlike Python, 
there is no significant performance penalty in using for loops instead of vectorized 
operations. High-performance code can be written either with vectorized operations 
or for loops:
@time m = [julia(complex(r, i), complex(-0.06, 0.67))
           for i = 1:-.001:-1,
               r = -1.5:.001:1.5];
  1.99 seconds (12.1 M allocations: 415.8 MiB)

14.	 Finally, we use the PyPlot package to draw Matplotlib figures in Julia:
Pkg.add("PyPlot")
using PyPlot
imshow(m, cmap="RdGy",
       extent=[-1.5, 1.5, -1, 1]);

How it works...
Languages used to be either low-level, difficult to use but fast (such as C); or high-level, easy 
to use but slow (such as Python). In Python, solutions to this problem include NumPy and 
Cython, among others.

Julia developers chose to create a new high-level but fast language, bringing the best of both 
worlds together. This is essentially achieved through JIT compilation techniques implemented 
with LLVM.
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Julia dynamically parses code and generates low-level code in the LLVM intermediate 
representation (IR). This representation features a language-independent instruction set 
that is then compiled to machine code. Code written with explicit loops is directly compiled to 
machine code. This explains why performance-motivated vectorization of code is generally not 
required with Julia.

There's more...
Strengths of Julia include:

ff A powerful and flexible dynamic type system based on multiple dispatch for 
parametric polymorphism

ff Facilities for metaprogramming

ff A simple interface for calling C, FORTRAN, or Python code from Julia

ff Built-in support for fine-grained parallel and distributed computing

ff A built-in multidimensional array data type and numerical computing library

ff A built-in package manager based on Git

ff External packages for data analysis such as DataFrames (equivalent of Pandas) and 
Gadfly (a statistical plotting library)

ff Integration in the Jupyter Notebook

The main strengths of Python as opposed to Julia are its wide community, ecosystem, and the 
fact that it is a general-purpose language. It is easy to bring numerical computing code written 
in Python to a Python-based production environment.

Fortunately, one may not have to choose because both Python and Julia can be used in the 
Jupyter Notebook, and there are ways to make both languages talk to each other via PyCall 
and pyjulia.

We have only scratched the surface of the Julia language in this recipe. Topics of interest we 
couldn't cover in details here include Julia's type system, its metaprogramming features, the 
support for parallel computing, and the package manager, among others.

Here are some references:

ff The Julia language on Wikipedia available at https://en.wikipedia.org/wiki/
Julia_%28programming_language%29

ff Official documentation for Julia available at http://docs.julialang.org/en/
latest/

ff PyCall.jl for calling Python from Julia available at https://github.com/
stevengj/PyCall.jl

ff pyjulia for calling Julia from Python available at https://github.com/JuliaPy/
pyjulia

https://en.wikipedia.org/wiki/Julia_%28programming_language%29
https://en.wikipedia.org/wiki/Julia_%28programming_language%29
http://docs.julialang.org/en/latest/
http://docs.julialang.org/en/latest/
https://github.com/stevengj/PyCall.jl
https://github.com/stevengj/PyCall.jl
https://github.com/JuliaPy/pyjulia
https://github.com/JuliaPy/pyjulia
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ff PyPlot.jl for using Matplotlib in Julia available at https://github.com/
stevengj/PyPlot.jl

ff Gadfly.jl, a Julia plotting library, available at http://gadflyjl.org/stable/

ff DataFrames.jl, an equivalent of Pandas for Julia, available at https://github.
com/JuliaStats/DataFrames.jl

ff Juno, an IDE for Julia, available at http://junolab.org/

https://github.com/stevengj/PyPlot.jl
https://github.com/stevengj/PyPlot.jl
http://gadflyjl.org/stable/
https://github.com/JuliaStats/DataFrames.jl
https://github.com/JuliaStats/DataFrames.jl
http://junolab.org/
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6
Data Visualization

In this chapter, we will cover the following topics:

ff Using Matplotlib styles

ff Creating statistical plots easily with seaborn

ff Creating interactive web visualizations with Bokeh and HoloViews

ff Visualizing a NetworkX graph in the Notebook with D3.js

ff Discovering interactive visualization libraries in the Notebook

ff Creating plots with Altair and the Vega-Lite specification

Introduction
While Matplotlib is the main visualization library in Python, it is not the only one. In this 
chapter, we will introduce some of the many other visualization libraries that cover more 
domain-specific use cases, or that offer specific interactivity features in the Jupyter Notebook.

Using Matplotlib styles
Recent versions of Matplotlib have significantly improved the default style of its figures. Today, 
Matplotlib comes with a set of high-quality predefined styles along with a styling system that 
lets one customize all aspects of these styles.
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How to do it...
1.	 Let's import the libraries:

>>> import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's see a list of all available styles:
>>> sorted(mpl.style.available)
['bmh',
 'classic',
 'dark_background',
 'fivethirtyeight',
 'ggplot',
 'grayscale',
 'mycustomstyle',
 'seaborn',
 ...
 'seaborn-whitegrid']

3.	 We create a plot:
>>> def doplot():
        fig, ax = plt.subplots(1, 1, figsize=(5, 5))
        t = np.linspace(-2 * np.pi, 2 * np.pi, 1000)
        x = np.linspace(0, 14, 100)
        for i in range(1, 7):
            ax.plot(x, np.sin(x + i * .5) * (7 - i))
        return ax

4.	 We can set a style with mpl.style.use(). All subsequent plots will use this style:
>>> mpl.style.use('fivethirtyeight')
    doplot()
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5.	 We can temporarily change the style for a given plot using the context  
manager syntax:
>>> # Set the default style.
    mpl.style.use('default')
    # Temporarily switch to the ggplot style.
    with mpl.style.context('ggplot'):
        ax = doplot()
        ax.set_title('ggplot style')
    # Back to the default style.
    ax = doplot()
    ax.set_title('default style')
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6.	 Now, we will customize the ggplot style by creating a new custom style to be applied 
in addition to ggplot. First, we specify the path to the custom style file, which  
should be in mpl_configdir/stylelib/mycustomstyle.mpltstyle, where 
mpl_configdir is the Matplotlib config directory. Let's get this config directory:
>>> cfgdir = matplotlib.get_configdir()
    cfgdir
'/home/cyrille/.config/matplotlib'

7.	 We get the path to the file using the pathlib module:
>>> from pathlib import Path
    p = Path(cfgdir)
    stylelib = (p / 'stylelib')
    stylelib.mkdir(exist_ok=True)
    path = stylelib / 'mycustomstyle.mplstyle'

8.	 In this file, we specify a few parameters:
>>> path.write_text('''
    axes.facecolor : f0f0f0
    font.family : serif
    lines.linewidth : 5
    xtick.labelsize : 24
    ytick.labelsize : 24
    ''')
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9.	 We need to reload the library after we add or change a style:
>>> mpl.style.reload_library()

10.	 Here is the result of the new style (we first apply the ggplot style, then we customize 
it by applying the options of our new style):

>>> with mpl.style.context(['ggplot', 'mycustomstyle']):
        doplot()

There's more...
Here are a few references:

ff Customizing matplotlib, at http://matplotlib.org/users/customizing.
html

ff Matplotlib Style Gallery, at https://tonysyu.github.io/raw_content/
matplotlib-style-gallery/gallery.html

ff Matplotlib: beautiful plots with style, at http://www.futurile.
net/2016/02/27/matplotlib-beautiful-plots-with-style/

See also
ff The Creating statistical plots easily with seaborn recipe

http://matplotlib.org/users/customizing.html
http://matplotlib.org/users/customizing.html
https://tonysyu.github.io/raw_content/matplotlib-style-gallery/gallery.html
https://tonysyu.github.io/raw_content/matplotlib-style-gallery/gallery.html
http://www.futurile.net/2016/02/27/matplotlib-beautiful-plots-with-style/
http://www.futurile.net/2016/02/27/matplotlib-beautiful-plots-with-style/
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Creating statistical plots easily with 
seaborn

seaborn is a library that builds on top of Matplotlib and Pandas to provide easy-to-use 
statistical plotting routines. In this recipe, we give a few examples, adapted from the official 
documentation, of the types of statistical plot that can be created with seaborn.

How to do it...
1.	 Let's import NumPy, Matplotlib, and seaborn:

>>> import numpy as np
    from scipy import stats
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline

2.	 seaborn comes with built-in datasets, which are useful when making demos.  
The tips dataset contains bills and tips for taxi journeys:
>>> tips = sns.load_dataset('tips')
    tips
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3.	 seaborn implements easy-to-use functions to visualize the distribution of datasets. 
Here, we plot the histogram, Kernel Density Estimation (KDE), and a gamma 
distribution fit for our dataset:
>>> # We create two subplots sharing the same y axis.
    f, (ax1, ax2) = plt.subplots(1, 2,
                           figsize=(12, 5),
                           sharey=True)
    
    # Left subplot.
    # Histogram and KDE (active by default).
    sns.distplot(tips.total_bill,
                 ax=ax1,
                 hist=True)
    
    # Right subplot.
    # "Rugplot", KDE, and gamma fit.
    sns.distplot(tips.total_bill,
                 ax=ax2,
                 hist=False,
                 kde=True,
                 rug=True,
                 fit=stats.gamma,
                 fit_kws=dict(label='gamma'),
                 kde_kws=dict(label='kde'))
    ax2.legend()
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4.	 We can make a quick linear regression to visualize the correlation between  
two variables:
>>> sns.regplot(x="total_bill", y="tip", data=tips)

5.	 We can also visualize the distribution of categorical data with different types of plot. 
Here, we display a bar plot, a violin plot, and a swarm plot that show an increasing 
amount of details:
>>> f, (ax1, ax2, ax3) = plt.subplots(
        1, 3, figsize=(12, 4), sharey=True)
    sns.barplot(x='sex', y='tip', data=tips, ax=ax1)
    sns.violinplot(x='sex', y='tip', data=tips, ax=ax2)
    sns.swarmplot(x='sex', y='tip', data=tips, ax=ax3)

The bar plot shows the mean and standard deviation of the tip, for males and 
females. The violin plot shows an estimation of the distribution in a more informative 
way than the bar plot, especially with non-Gaussian or multimodal distributions.  
The swarm plot displays all points, using the non-informative x axis to make them 
non-overlapping.
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6.	 FacetGrid lets us explore a multidimensional dataset with several subplots 
organized within a grid. Here, we plot the tip as a function of the bill, with a linear 
regression, for every combination of smoker (Yes/No) and sex (Male/Female):

>>> g = sns.FacetGrid(tips, col='smoker', row='sex')
    g.map(sns.regplot, 'total_bill', 'tip')

There's more...
Besides seaborn, there are other high-level plotting interfaces:

ff Grammar of Graphics: The Grammar of Graphics, Springer is a book by Dr. Leland 
Wilkinson that has influenced many high-level plotting interfaces such as R's ggplot2, 
Python's ggplot by ŷhat, and others.

ff Vega, by Trifacta, is a declarative visualization grammar that can be translated to 
D3.js (a JavaScript visualization library). Altair provides a Python API for the Vega-Lite 
specification (a higher-level specification that compiles to Vega).

Here are some more references:

ff seaborn tutorial at https://seaborn.pydata.org/tutorial.html

ff seaborn gallery at https://seaborn.pydata.org/examples/index.html

ff Altair, available at https://altair-viz.github.io

https://seaborn.pydata.org/tutorial.html
https://seaborn.pydata.org/examples/index.html
https://altair-viz.github.io
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ff plotnine, a Grammar of Graphics implementation in Python, at https://
plotnine.readthedocs.io/en/stable/

ff ggplot for Python available at http://ggplot.yhathq.com/

ff ggplot2 for the R programming language, available at http://ggplot2.org/

ff Python Plotting for Exploratory Data Analysis at http://pythonplot.com/

See also
ff The Using Matplotlib styles recipe

ff The Discovering interactive visualization libraries in the Notebook recipe

ff The Creating plots with Altair and the Vega-Lite specification recipe

Creating interactive web visualizations with 
Bokeh and HoloViews

Bokeh (http://bokeh.pydata.org/en/latest/) is a library for creating rich  
interactive visualizations in a browser. Plots are designed in Python, and they are  
rendered in the browser.

In this recipe, we will give a few short examples of interactive Bokeh figures in the Jupyter 
Notebook. We will also introduce HoloViews, which provides a high-level API for Bokeh and 
other plotting libraries.

Getting ready
Bokeh should be installed by default in Anaconda, but you can also install it manually by 
typing conda install bokeh in a Terminal.

To install HoloViews, type conda install -c ioam holoviews.

How to do it...
1.	 Let's import NumPy and Bokeh. We need to call output_notebook() to tell Bokeh 

to render plots in the Jupyter Notebook.
>>> import numpy as np
    import pandas as pd
    import bokeh
    import bokeh.plotting as bkh
    bkh.output_notebook()

https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
http://ggplot.yhathq.com/
http://ggplot2.org/
http://pythonplot.com/
http://bokeh.pydata.org/en/latest/
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2.	 Let's create a scatter plot of random data:
>>> f = bkh.figure(width=600, height=400)
    f.circle(np.random.randn(1000),
             np.random.randn(1000),
             size=np.random.uniform(2, 10, 1000),
             alpha=.5)
    bkh.show(f)

An interactive plot is rendered in the notebook. We can pan and zoom by clicking on 
the toolbar buttons on the right.
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3.	 Let's load a sample dataset, sea_surface_temperature:
>>> from bokeh.sampledata import sea_surface_temperature
    data = sea_surface_temperature.sea_surface_temperature
    data

4.	 Now, we plot the evolution of the temperature as a function of time:
>>> f = bkh.figure(x_axis_type="datetime",
                   title="Sea surface temperature",
                   width=600, height=400)
    f.line(data.index, data.temperature)
    f.xaxis.axis_label = "Date"
    f.yaxis.axis_label = "Temperature"
    bkh.show(f)
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5.	 We use Pandas to plot the hourly average temperature:
>>> months = (6, 7, 8)
    data_list = [data[data.index.month == m]
                 for m in months]
>>> # We group by the hour of the measure:
    data_avg = [d.groupby(d.index.hour).mean()
                for d in data_list]
>>> f = bkh.figure(width=600, height=400,
                   title="Hourly average sea temperature")
    for d, c, m in zip(data_avg,
                       bokeh.palettes.Inferno[3],
                       ('June', 'July', 'August')):
        f.line(d.index, d.temperature,
               line_width=5,
               line_color=c,
               legend=m,
               )
    f.xaxis.axis_label = "Hour"
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    f.yaxis.axis_label = "Average temperature"
    f.legend.location = 'center_right'
    bkh.show(f)

6.	 Let's move on to HoloViews:
>>> import holoviews as hv
    hv.extension('bokeh')

7.	 We create a 3D array that could represent a time-dependent 2D image:
>>> data = np.random.rand(100, 100, 10)
>>> ds = hv.Dataset((np.arange(10),
                     np.linspace(0., 1., 100),
                     np.linspace(0., 1., 100),
                     data),
                    kdims=['time', 'y', 'x'],
                    vdims=['z'])
>>> ds
:Dataset   [time,y,x]   (z)
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The ds object is a Dataset instance representing our time-dependent data. The 
kdims are the key dimensions (time and space) whereas the vdims are the quantities 
of interest (here, a scalar z). In other words, the kdims represent the axes of the 3D 
array data, whereas the vdims represent the values stored in the array.

8.	 We can easily display a 2D image with a slider to change the time, and a histogram of 
z as a function of time:
>>> %opts Image(cmap='viridis')
    ds.to(hv.Image, ['x', 'y']).hist()
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There's more...
Bokeh figures in the Notebook are interactive even in the absence of a Python server. For 
example, our figures can be interactive in nbviewer. Bokeh can also generate standalone 
HTML/JavaScript documents from our plots. More examples can be found in the gallery.

The xarray library (see http://xarray.pydata.org/en/stable/) provides a way to 
represent multidimensional arrays with axes. HoloViews can work with xarray objects.

Plotly is a company specializing in interactive visualization. It provides an open-source Python 
visualization library (see https://plot.ly/python/). It also proposes tools for building 
dashboard-style web-based interfaces (see https://plot.ly/products/dash/).

Datashader (http://datashader.readthedocs.io/en/latest/) and vaex (http://
vaex.astro.rug.nl/) are two visualization libraries that target very large datasets.

Here are a few references:

ff Bokeh user guide at http://bokeh.pydata.org/en/latest/docs/user_
guide.html

ff Bokeh gallery at http://bokeh.pydata.org/en/latest/docs/gallery.
html

ff Using Bokeh in the Notebook, available at http://bokeh.pydata.org/en/
latest/docs/user_guide/notebook.html

ff HoloViews at http://holoviews.org

ff HoloViews gallery at http://holoviews.org/gallery/index.html

ff HoloViews tutorial at https://github.com/ioam/jupytercon2017-
holoviews-tutorial

Visualizing a NetworkX graph in the 
Notebook with D3.js

D3.js (http://d3js.org) is a popular interactive visualization framework for the web. 
Written in JavaScript, it allows us to create data-driven visualizations based on web 
technologies such as HTML, SVG, and CSS. The official gallery contains many examples 
(https://github.com/d3/d3/wiki/gallery). There are many other JavaScript 
visualization and charting libraries, but we will focus on D3.js in this recipe.

Being a pure JavaScript library, D3.js has in principle nothing to do with Python. However, the 
HTML-based Jupyter Notebook can integrate D3.js visualizations seamlessly.

In this recipe, we will create a graph in Python with NetworkX and visualize it in the Jupyter 
Notebook with D3.js.

http://xarray.pydata.org/en/stable/
https://plot.ly/python/
https://plot.ly/products/dash/
http://datashader.readthedocs.io/en/latest/
http://vaex.astro.rug.nl/
http://vaex.astro.rug.nl/
http://bokeh.pydata.org/en/latest/docs/user_guide.html
http://bokeh.pydata.org/en/latest/docs/user_guide.html
http://bokeh.pydata.org/en/latest/docs/gallery.html
http://bokeh.pydata.org/en/latest/docs/gallery.html
http://bokeh.pydata.org/en/latest/docs/user_guide/notebook.html
http://bokeh.pydata.org/en/latest/docs/user_guide/notebook.html
http://holoviews.org
http://holoviews.org/gallery/index.html
https://github.com/ioam/jupytercon2017-holoviews-tutorial
https://github.com/ioam/jupytercon2017-holoviews-tutorial
http://d3js.org
https://github.com/d3/d3/wiki/gallery
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Getting ready
You need to know the basics of HTML, JavaScript, and D3.js for this recipe.

How to do it...
1.	 Let's import the packages:

>>> import json
    import numpy as np
    import networkx as nx
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We load a famous social graph published in 1977 called Zachary's Karate Club 
graph. This graph represents the friendships between members of a karate club. The 
club's president and the instructor were involved in a dispute, resulting in a schism in 
this group. Here, we simply display the graph with Matplotlib (using the networkx.
draw() function):
>>> g = nx.karate_club_graph()
    fig, ax = plt.subplots(1, 1, figsize=(8, 6));
    nx.draw_networkx(g, ax=ax)
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3.	 Now, we're going to display this graph in the Notebook with D3.js. The first step is to 
bring this graph to JavaScript. Here, we choose to export the graph to JSON. D3.js 
generally expects each edge to be an object with a source and target. Also, we specify 
which side each member has taken (the club attribute):
>>> nodes = [{'name': str(i), 'club': g.node[i]['club']}
             for i in g.nodes()]
    links = [{'source': u[0], 'target': u[1]}
             for u in g.edges()]
    with open('graph.json', 'w') as f:
        json.dump({'nodes': nodes, 'links': links},
                  f, indent=4,)

4.	 The next step is to create an HTML object that will contain the visualization. Here, we 
create a <div> element in the notebook. We also specify a few CSS styles for nodes 
and links (also called edges):
>>> %%html
    <div id="d3-example"></div>
    <style>
    .node {stroke: #fff; stroke-width: 1.5px;}
    .link {stroke: #999; stroke-opacity: .6;}
    </style>

5.	 The last step is trickier. We write the JavaScript code to load the graph from the JSON 
file and display it with D3.js. Knowing the basics of D3.js is required here (see the 
documentation of D3.js):

>>> %%javascript
    // We load the d3.js library from the Web.
    require.config({paths:
        {d3: "http://d3js.org/d3.v3.min"}});
    require(["d3"], function(d3) {
      // The code in this block is executed when the
      // d3.js library has been loaded.
    
      // First, we specify the size of the canvas
      // containing the visualization (size of the
      // <div> element).
      var width = 300, height = 300;
    
      // We create a color scale.
      var color = d3.scale.category10();
    
      // We create a force-directed dynamic graph layout.
      var force = d3.layout.force()
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        .charge(-120)
        .linkDistance(30)
        .size([width, height]);
    
      // In the <div> element, we create a <svg> graphic
      // that will contain our interactive visualization.
      var svg = d3.select("#d3-example").select("svg")
      if (svg.empty()) {
        svg = d3.select("#d3-example").append("svg")
              .attr("width", width)
              .attr("height", height);
      }
    
      // We load the JSON file.
      d3.json("graph.json", function(error, graph) {
        // In this block, the file has been loaded
        // and the 'graph' object contains our graph.
    
        // We load the nodes and links in the
        // force-directed graph.
        force.nodes(graph.nodes)
          .links(graph.links)
          .start();
    
        // We create a <line> SVG element for each link
        // in the graph.
        var link = svg.selectAll(".link")
          .data(graph.links)
          .enter().append("line")
          .attr("class", "link");
    
        // We create a <circle> SVG element for each node
        // in the graph, and we specify a few attributes.
        var node = svg.selectAll(".node")
          .data(graph.nodes)
          .enter().append("circle")
          .attr("class", "node")
          .attr("r", 5)  // radius
          .style("fill", function(d) {
             // The node color depends on the club.
             return color(d.club);
          })
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          .call(force.drag);
    
        // The name of each node is the node number.
        node.append("title")
            .text(function(d) { return d.name; });
    
        // We bind the positions of the SVG elements
        // to the positions of the dynamic force-directed
        // graph, at each time step.
        force.on("tick", function() {
          link.attr("x1", function(d){return d.source.x})
              .attr("y1", function(d){return d.source.y})
              .attr("x2", function(d){return d.target.x})
              .attr("y2", function(d){return d.target.y});
    
          node.attr("cx", function(d){return d.x})
              .attr("cy", function(d){return d.y});
        });
      });
    });

When we execute this cell, the HTML object created in the previous cell is updated. 
The graph is animated and interactive; we can click on nodes, see their labels, and 
move them within the canvas:

An interactive plot in the Notebook with D3.js
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There's more...
NetworkX implements routines to import/export graphs from/into files in different formats.

Here are a few references:

ff Reading and writing graphs with NetworkX, at https://networkx.github.io/
documentation/stable/reference/readwrite/index.html

ff NetworkX and JSON, at https://networkx.github.io/documentation/
stable/reference/readwrite/json_graph.html

See also
ff The Creating interactive web visualizations with Bokeh and HoloViews recipe

Discovering interactive visualization 
libraries in the Notebook

Several libraries provide interactive visualization of 2D or 3D data in the Notebook, using the 
capabilities of Jupyter widgets. We give basic examples using four of these libraries: ipyleaflet, 
bqplot, pythreejs, and ipyvolume.

Getting started
To install the libraries, type conda install -c conda-forge ipyleaflet bqplot 
pythreejs ipyvolume in a Terminal.

How to do it...
1.	 First, we show a simple example of ipyleaflet, which offers a Python interface to 

use the Leaflet.js interactive mapping library (similar to Google Maps, but based on 
the open source project OpenStreetMaps):
>>> from ipyleaflet import Map, Marker

2.	 We create a map around a given position specified in GPS coordinates:
>>> pos = [34.62, -77.34]
    m = Map(center=pos, zoom=10)

https://networkx.github.io/documentation/stable/reference/readwrite/index.html
https://networkx.github.io/documentation/stable/reference/readwrite/index.html
https://networkx.github.io/documentation/stable/reference/readwrite/json_graph.html
https://networkx.github.io/documentation/stable/reference/readwrite/json_graph.html
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3.	 We also add a marker at that position:
>>> marker = Marker(location=pos,
                    rise_on_hover=True,
                    title="Here I am!",
                    )
>>> m += marker

4.	 We display the map in the notebook:
>>> m

5.	 Let's move to the bqplot interactive plotting library, which implements an API 
inspired by Grammar of Graphics:
>>> import numpy as np
    import bqplot.pyplot as plt

6.	 We display an interactive plot using an API that should be familiar to any  
Matplotlib user:
>>> plt.figure(title='Scatter plot with colors')
    t = np.linspace(-3, 3, 100)
    x = np.sin(t)
    y = np.sin(t) + .1 * np.random.randn(100)
    plt.plot(t, x)
    plt.scatter(t, y,
                size=np.random.uniform(15, 50, 100),
                color=np.random.randn(100))
    plt.show()
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7.	 Next, we show an example of pythreejs, a Python bridge to the three.js 3D library 
in JavaScript. This library uses WebGL, an API that leverages the GPU for fast  
real-time rendering in the browser:
>>> from pythreejs import *

8.	 We will display a parametric surface plot. We define the function as a string 
containing JavaScript code:
>>> f = """
    function f(x, y) {
        x = 2 * (x - .5);
        y = 2 * (y - .5);
        r2 = x * x + y * y;
        var z = Math.exp(-2 * r2) * (
            Math.cos(12*x) * Math.sin(12*y));
        return new THREE.Vector3(x, y, z)
    }
    """

9.	 We also create a texture for the surface:
>>> texture = np.random.uniform(.5, .9, (20, 20))
    material = LambertMaterial(
        map=height_texture(texture))
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10.	 We create ambient and directional lights:
>>> alight = AmbientLight(color='#777777')
    dlight = DirectionalLight(color='white',
                              position=[3, 5, 1],
                              intensity=0.6)

11.	 We create the surface mesh:
>>> surf_g = ParametricGeometry(func=f)
    surf = Mesh(geometry=surf_g,
                material=material)

12.	 Finally, we initialize the scene and the camera, and we display the plot:
>>> scene = Scene(children=[surf, alight])
    c = PerspectiveCamera(position=[2.5, 2.5, 2.5],
                          up=[0, 0, 1],
                          children=[dlight])
    Renderer(camera=c, scene=scene,
             controls=[OrbitControls(controlling=c)])
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13.	 The last library is ipyvolume, a 3D plotting library in Python that also uses WebGL in 
the Notebook:
>>> import ipyvolume

14.	 This library provides volume rendering features, where a volumetric dataset 
represented as a 3D array is visualized using ray tracing techniques:

>>> ds = ipyvolume.datasets.aquariusA2.fetch()
    ipyvolume.quickvolshow(ds.data, lighting=True)

There's more
Here are several references:

ff Jupyter widgets at http://jupyter.org/widgets.html

ff ipyleaflet at https://github.com/ellisonbg/ipyleaflet

ff bqplot at https://bqplot.readthedocs.io/en/stable/

ff pythreejs at https://github.com/jovyan/pythreejs

ff three.js at https://threejs.org/

http://jupyter.org/widgets.html
https://github.com/ellisonbg/ipyleaflet
https://bqplot.readthedocs.io/en/stable/
https://github.com/jovyan/pythreejs
https://threejs.org/
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ff ipyvolume at https://github.com/maartenbreddels/ipyvolume

ff Jupyter Google Maps at http://jupyter-gmaps.readthedocs.io/en/
latest/

ff An interactive 3D molecular viewer for Jupyter, based on NGL, at http://
nglviewer.org/nglview/latest/

Creating plots with Altair and the Vega-Lite 
specification

Vega is a declarative format for designing static and interactive visualizations. It provides a 
JSON-based visualization grammar that focuses on the what instead of the how. Vega-Lite is 
a higher-level specification that is easier to use than Vega, and that compiles directly to Vega.

Altair is a Python library that provides a simple API to define and display Vega-Lite 
visualizations. It works in the Jupyter Notebook, JupyterLab, and nteract.

Altair is under active development and some details of the API 
might change in future versions.

Getting started...
Install Altair with conda install -c conda-forge altair.

How to do it...
1.	 Let's import Altair:

>>> import altair as alt

2.	 Altair provides several example datasets:
>>> alt.list_datasets()
['airports',
 ...
 'driving',
 'flare',
 'flights-10k',
 'flights-20k',
 'flights-2k',
 'flights-3m',
 'flights-5k',
 'flights-airport',
 'gapminder',

https://github.com/maartenbreddels/ipyvolume
http://jupyter-gmaps.readthedocs.io/en/latest/
http://jupyter-gmaps.readthedocs.io/en/latest/
http://nglviewer.org/nglview/latest/
http://nglviewer.org/nglview/latest/
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 ...
 'wheat',
 'world-110m']

3.	 We load the flights-5k dataset:
>>> df = alt.load_dataset('flights-5k')

The load_dataset() function returns a Pandas DataFrame.
>>> df.head(3)

This dataset provides the date, origin, destination, flight distance, and delay for  
many flights.

4.	 Let's create a scatter plot showing the delay as a function of the date, with the 
marker size depending on the flight distance:
>>> alt.Chart(df).mark_point().encode(
        x='date',
        y='delay',
        size='distance',
    )
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The mark_point() method specifies that we're creating a scatter plot. The 
encode() function allows us to link parameters of the plot (the x and y coordinates 
and the point size) to specific columns in our DataFrame.

5.	 Next, we create a bar plot with the average delay of all flights departing from Los 
Angeles, as a function of time:
>>> df_la = df[df['origin'] == 'LAX']
    
    x = alt.X('date', bin=True)
    y = 'average(delay)'
    
    alt.Chart(df_la).mark_bar().encode(
        x=x,
        y=y,
    )

We select all flights departing from the LAX airport using Pandas. For the x 
coordinate, we use the alt.X class to specify that we want a histogram (bin=True). 
For the y coordinate, we specify the average of all delays for every bin.
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6.	 Now, we create a histogram of the average delay of every origin airport. We use the 
sort option of the X class to specify that we want to order the x axis (origin) as a 
function of the average delay, in descending order:

>>> sort_delay = alt.SortField(
        'delay', op='average', order='descending')
    
    x = alt.X('origin', sort=sort_delay)
    y = 'average(delay)'
    
    alt.Chart(df).mark_bar().encode(
        x=x,
        y=y,
    )

How it works...
Altair provides a Python API to generate a Vega-Lite specification in JSON. The to_json() 
method of an Altair chart can be used to inspect the JSON created by Altair. For example, here 
is the JSON for the last chart example:

{
 "$schema": "https://vega.github.io/schema/vega-lite/v1.2.1.json",
 "data": {
  "values": [
   {
    "date": "2001-01-10 18:20:00",
    "delay": 25,
    "destination": "HOU",
    "distance": 192,
    "origin": "SAT"
   },
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   ...
  ]
 },
 "encoding": {
  "x": {
   "field": "origin",
   "sort": {
    "field": "delay",
    "op": "average",
    "order": "descending"
   },
   "type": "nominal"
  },
  "y": {
   "aggregate": "average",
   "field": "delay",
   "type": "quantitative"
  }
 },
 "mark": "bar"
}

The JSON may contain the data itself, like here, or a URL to a data file. It also defines the 
encoding channels that link the chart parameters to the data.

In the Jupyter Notebook, Altair leverages the Vega-Lite library to create a Canvas or SVG figure 
with the requested plot.

There's more...
Altair and Vega-Lite support much more complex charts, as can be seen in the galleries for 
these projects.

Vega-Lite supports interactive plots. The following example from the Vega-Lite gallery 
illustrates linked brushing between subplots, where a rectangular selection can be  
drawn with the mouse in any subplot:
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Linked brushing

There is also an online editor on the Vega-Lite website that can be used to create plots directly 
in the browser without installing anything.

Here are a few references:

ff Altair documentation at https://altair-viz.github.io/

ff Altair gallery at https://altair-viz.github.io/gallery/index.html

ff Vega-Lite documentation at https://vega.github.io/vega-lite/

ff Vega-Lite gallery at https://vega.github.io/vega-lite/examples/

ff Vega-Lite online editor at https://vega.github.io/editor/#/custom/vega-
lite

https://altair-viz.github.io/
https://altair-viz.github.io/gallery/index.html
https://vega.github.io/vega-lite/
https://vega.github.io/editor/#/custom/vega-lite 
https://vega.github.io/editor/#/custom/vega-lite 
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See also
ff The Creating statistical plots easily with seaborn recipe

ff The Discovering interactive visualization libraries in the Notebook recipe
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7
Statistical Data 

Analysis

In this chapter, we will cover the following topics:

ff Exploring a dataset with pandas and Matplotlib

ff Getting started with statistical hypothesis testing – a simple z-test

ff Getting started with Bayesian methods

ff Estimating the correlation between two variables with a contingency table  
and a chi-squared test

ff Fitting a probability distribution to data with the maximum likelihood method

ff Estimating a probability distribution nonparametrically with a kernel  
density estimation

ff Fitting a Bayesian model by sampling from a posterior distribution with a Markov 
chain Monte Carlo method

ff Analyzing data with the R programming language in the Jupyter Notebook

Introduction
In the previous chapters, we reviewed technical aspects of high-performance interactive 
computing in Python. We now begin the second part of this book by illustrating a variety of 
scientific questions that can be tackled with Python.

In this chapter, we introduce statistical methods for data analysis. In addition to covering 
statistical packages such as pandas, statsmodels, and PyMC3, we will explain the basics of 
the underlying mathematical principles. Therefore, this chapter will be most profitable if you 
have basic experience with probability theory and calculus.
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The next chapter, Chapter 8, Machine Learning, is closely related; the underlying mathematics 
is very similar, but the goals are slightly different. In this chapter, we show how to gain insight 
into real-world data and how to make informed decisions in the presence of uncertainty. In 
the next chapter, the goal is to learn from data—that is, to generalize and to predict outcomes 
from partial observations.

In this introduction, we will give a broad, high-level overview of the methods we will see in  
this chapter.

What is statistical data analysis?
The goal of statistical data analysis is to understand a complex, real-world phenomenon 
from partial and uncertain observations. The uncertainty in the data results in uncertainty  
in the knowledge we get about the phenomenon. A major goal of the theory is to quantify  
this uncertainty.

It is important to make the distinction between the mathematical theory underlying statistical 
data analysis, and the decisions made after conducting an analysis. The former is perfectly 
rigorous; perhaps surprisingly, mathematicians were able to build an exact mathematical 
framework to deal with uncertainty. Nevertheless, there is a subjective part in the way 
statistical analysis yields actual human decisions. Understanding the risk and the  
uncertainty behind statistical results is critical in the decision-making process.

In this chapter, we will see the basic notions, principles, and theories behind statistical data 
analysis, covering in particular how to make decisions with a quantified risk. Of course,  
we will always show how to implement these methods with Python.

A bit of vocabulary
There are many terms that need introduction before we get started with the recipes.  
These notions allow us to classify statistical techniques within multiple dimensions.

Exploration, inference, decision, prediction
Exploratory methods allow us to get a preliminary look at a dataset through basic statistical 
aggregates and interactive visualization. We covered these basic methods in the first chapter 
of this book and in the prequel book Learning IPython for Interactive Computing and Data 
Visualization, Second Edition, Packt Publishing. The first recipe of this chapter, Exploring a 
dataset with pandas and Matplotlib, shows another example.
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Statistical inference consists of getting information about an unknown process through 
partial and uncertain observations. In particular, estimation entails obtaining approximate 
quantities for the mathematical variables describing this process. Three recipes in this 
chapter deal with statistical inference:

ff The Fitting a probability distribution to data with the maximum likelihood  
method recipe

ff The Estimating a probability distribution nonparametrically with a kernel density 
estimation recipe

ff The Fitting a Bayesian model by sampling from a posterior distribution with a Markov 
chain Monte Carlo method recipe

Decision theory allows us to make decisions about an unknown process from random 
observations, with a controlled risk. The following two recipes show how to make  
statistical decisions:

ff The Getting started with statistical hypothesis testing – a simple z-test recipe

ff The Estimating the correlation between two variables with a contingency table and a 
chi-squared test recipe

Prediction consists of learning from data—that is, predicting the outcomes of a random 
process based on a limited number of observations. This is the topic of the next chapter, 
Chapter 8, Machine Learning.

Univariate and multivariate methods
In most cases, you can consider two dimensions in your data:

ff Observations (or samples, for machine learning people)

ff Variables (or features)

Typically, observations are independent realizations of the same random process. Each 
observation is made of one or several variables. Most of the time, variables are either 
numbers, or elements belonging to a finite set (that is, taking a finite number of values).  
The first step in an analysis is to understand what your observations and variables are.

Your problem is univariate if you have one variable. It is bivariate if you have two variables 
and multivariate if you have at least two variables. Univariate methods are typically simpler. 
That being said, univariate methods may be used on multivariate data, using one dimension 
at a time. Although interactions between variables cannot be explored in that case, it is often 
an interesting first approach.
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Frequentist and Bayesian methods
There are at least two different ways of considering uncertainty, resulting in two different 
classes of methods for inference, decision, and other statistical questions. These are called 
frequentist and Bayesian methods. Some people prefer frequentist methods, while others 
prefer Bayesian methods.

Frequentists interpret a probability as a statistical average across many independent 
realizations (law of large numbers). Bayesians interpret it as a degree of belief (no need 
for many realizations). The Bayesian interpretation is very useful when only a single trial is 
considered. In addition, Bayesian theory takes into account our prior knowledge about a 
random process. This prior probability distribution is updated into a posterior distribution as 
we get more and more data.

Both frequentist and Bayesian methods have their advantages and disadvantages. For 
instance, one could say that frequentist methods might be easier to apply than Bayesian 
methods, but more difficult to interpret. For classic misuses of frequentist methods, see 
http://www.refsmmat.com/statistics/.

In any case, if you are a beginner in statistical data analysis, you probably want to learn the 
basics of both approaches before choosing sides. This chapter introduces you to both types  
of methods.

The following recipes are exclusively Bayesian:

ff The Getting started with Bayesian methods recipe

ff The Fitting a Bayesian model by sampling from a posterior distribution with a Markov 
chain Monte Carlo method recipe

Jake VanderPlas has written several blog posts about frequentism and Bayesianism, with 
examples in Python. The first post of the series is available at http://jakevdp.github.
io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/.

Parametric and nonparametric inference methods
In many cases, you base your analysis on a probabilistic model. This model describes how 
your data is generated. A probabilistic model has no reality; it is only a mathematical object 
that guides you in your analysis. A good model can be helpful, whereas a bad model may 
misguide you.

With a parametric method, you assume that your model belongs to a known family of 
probability distributions. The model has one or multiple numerical parameters that you  
can estimate.

http://www.refsmmat.com/statistics/
http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro
http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro
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With a nonparametric model, you do not make such an assumption in your model. This gives 
you more flexibility. However, these methods are typically more complicated to implement and 
to interpret.

The following recipes are parametric and nonparametric, respectively:

ff The Fitting a probability distribution to data with the maximum likelihood  
method recipe

ff The Estimating a probability distribution nonparametrically with a kernel density 
estimation recipe

This chapter only gives you an idea of the wide range of possibilities that Python offers for 
statistical data analysis. You can find many books and online courses that cover statistical 
methods in much greater detail, such as:

ff Statistics resources on Awesome Math, available at https://github.com/
rossant/awesome-math#statistics

ff Statistics on WikiBooks at http://en.wikibooks.org/wiki/Statistics

ff Free statistical textbooks available at http://stats.stackexchange.com/
questions/170/free-statistical-textbooks

Exploring a dataset with pandas and 
Matplotlib

In this first recipe, we will show how to conduct a preliminary analysis of a dataset with 
pandas. This is typically the first step after getting access to the data. pandas lets us  
load the data very easily, explore the variables, and make basic plots with Matplotlib.

We will take a look at a dataset containing all ATP matches played by the Swiss tennis player 
Roger Federer until 2012.

How to do it...
1.	 We import NumPy, pandas, and Matplotlib:

>>> from datetime import datetime
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline

https://github.com/rossant/awesome-math#statistics
https://github.com/rossant/awesome-math#statistics
http://en.wikibooks.org/wiki/Statistics
http://stats.stackexchange.com/questions/170/free-statistical-textbooks
http://stats.stackexchange.com/questions/170/free-statistical-textbooks
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2.	 The dataset is a CSV file—that is, a text file with comma-separated values. pandas lets 
us load this file with a single function:
>>> player = 'Roger Federer'
    df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'federer.csv?raw=true',
                     parse_dates=['start date'],
                     dayfirst=True)

We can have a first look at this dataset by just displaying it in the Jupyter Notebook:
>>> df.head(3)

3.	 There are many columns. Each row corresponds to a match played by Roger Federer. 
Let's add a Boolean variable indicating whether he has won the match or not.  
The tail() method displays the last rows of the column:
>>> df['win'] = df['winner'] == player
    df['win'].tail()
1174    False
1175     True
1176     True
1177     True
1178    False
Name: win, dtype: bool

4.	 df['win'] is a Series object. It is very similar to a NumPy array, except that each 
value has an index (here, the match index). This object has a few standard statistical 
functions. For example, let's look at the proportion of matches won:
>>> won = 100 * df['win'].mean()
    print(f"{player} has won {won:.0f}% of his matches.")
Roger Federer has won 82% of his matches.

5.	 Now, we are going to look at the evolution of some variables across time.  
The df['start date'] field contains the start date of the tournament:
>>> date = df['start date']
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6.	 We are now looking at the proportion of double faults in each match (taking into 
account that there are logically more double faults in longer matches!). This number 
is an indicator of the player's state of mind, his level of self-confidence, his willingness 
to take risks while serving, and other parameters.
>>> df['dblfaults'] = (df['player1 double faults'] /
                       df['player1 total points total'])

7.	 We can use the head() and tail() methods to take a look at the beginning and 
the end of the column, and describe() to get summary statistics. In particular,  
let's note that some rows have NaN values (that is, the number of double faults is  
not available for all matches).
>>> df['dblfaults'].tail()
1174    0.018116
1175    0.000000
1176    0.000000
1177    0.011561
1178         NaN
Name: dblfaults, dtype: float64
>>> df['dblfaults'].describe()
count    1027.000000
mean        0.012129
std         0.010797
min         0.000000
25%         0.004444
50%         0.010000
75%         0.018108
max         0.060606
Name: dblfaults, dtype: float64

8.	 A very powerful feature in pandas is groupby(). This function allows us to group 
together rows that have the same value in a particular column. Then, we can 
aggregate this group by value to compute statistics in each group. For instance, here 
is how we can get the proportion of wins as a function of the tournament's surface:
>>> df.groupby('surface')['win'].mean()
Surface
Indoor: Carpet    0.736842
Indoor: Clay      0.833333
Indoor: Hard      0.836283
Outdoor: Clay     0.779116
Outdoor: Grass    0.871429
Outdoor: Hard     0.842324
Name: win, dtype: float64
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9.	 Now, we are going to display the proportion of double faults as a function of the 
tournament date, as well as the yearly average. To do this, we also use groupby():
>>> gb = df.groupby('year')

10.	gb is a GroupBy instance. It is similar to a DataFrame object, but there are multiple 
rows per group (all matches played in each year). We can aggregate these rows using 
the mean() operation. We use the matplotlib plot_date() function because 
the x axis contains dates:

>>> fig, ax = plt.subplots(1, 1)
    ax.plot_date(date.astype(datetime), df['dblfaults'],
                 alpha=.25, lw=0)
    ax.plot_date(gb['start date'].max().astype(datetime),
                 gb['dblfaults'].mean(), '-', lw=3)
    ax.set_xlabel('Year')
    ax.set_ylabel('Double faults per match')
    ax.set_ylim(0)

There's more...
pandas is an excellent tool for data wrangling and exploratory analysis. pandas accepts all 
sorts of formats (text-based, and binary files) and it lets us manipulate tables in many ways.  
In particular, the groupby() function is particularly powerful.

What we covered here is only the first step in a data-analysis process. We need more 
advanced statistical methods to obtain reliable information about the underlying phenomena, 
make decisions and predictions, and so on. This is the topic of the following recipes.

In addition, more complex datasets demand more sophisticated analysis methods. For 
example, digital recordings, images, sounds, and videos require specific signal processing 
treatments before we can apply statistical techniques. These questions will be covered in 
subsequent chapters.
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Here are a few references about pandas:

ff pandas website at https://pandas.pydata.org/

ff pandas tutorial at http://pandas.pydata.org/pandas-docs/
stable/10min.html

ff Python for Data Analysis, 2nd Edition, Wes McKinney, O'Reilly Media,  
at http://shop.oreilly.com/product/0636920050896.do

Getting started with statistical hypothesis 
testing — a simple z-test

Statistical hypothesis testing allows us to make decisions in the presence of incomplete 
data. By definition, these decisions are uncertain. Statisticians have developed rigorous 
methods to evaluate this risk. Nevertheless, some subjectivity is always involved in the 
decision-making process. The theory is just a tool that helps us make decisions in an 
uncertain world.

Here, we introduce the most basic ideas behind statistical hypothesis testing. We will follow 
a particularly simple example: coin tossing. More precisely, we will show how to perform a 
z-test, and we will briefly explain the mathematical ideas underlying it. This kind of method 
(also called the frequentist method), although widely used in science, is not without flaws and 
interpretation difficulties. We will show another approach based on Bayesian theory later in 
this chapter. It is very helpful to understand both approaches.

Getting ready
You need to have a basic knowledge of probability theory for this recipe (random variables, 
distributions, expectancy, variance, central limit theorem, and so on).

How to do it...
Many frequentist methods for hypothesis testing roughly involve the following steps:

1.	 Writing down the hypotheses, notably the null hypothesis, which is the opposite of 
the hypothesis we want to prove (with a certain degree of confidence).

2.	 Computing a test statistic, a mathematical formula depending on the test type, the 
model, the hypotheses, and the data.

3.	 Using the computed value to reject the hypothesis with a given level of uncertainty,  
or fail to conclude (and, consequently, accept the hypothesis until future studies 
reject it).

https://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/10min.html
http://pandas.pydata.org/pandas-docs/stable/10min.html
http://shop.oreilly.com/product/0636920050896.do
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For example, to test the efficacy of a new drug, doctors may consider, as a null hypothesis, 
that the drug has no statistically significant effect on a group of patients compared to a 
control group of patients who do not take the drug. If studies reject the null hypothesis,  
it is an argument in favor of the efficacy of the drug (but it is not a definite proof).

Here, we flip a coin  times and we observe  heads. We want to know whether the coin is fair 
(null hypothesis). This example is particularly simple yet quite useful for pedagogical purposes. 
Besides, it is the basis of many more complex methods.

We denote the Bernoulli distribution by  with the unknown parameter . You can refer to 
https://en.wikipedia.org/wiki/Bernoulli_distribution for more information.

A Bernoulli variable is:

ff 0 (tail) with probability 

ff 1 (head) with probability 

Here are the steps required to conduct a simple statistical z-test:

1.	 Let's suppose that after  flips, we get  heads. We choose a significance 
level of 0.05: is the coin fair or not? Our null hypothesis is: the coin is fair ( ). 
We set these variables:
>>> import numpy as np
    import scipy.stats as st
    import scipy.special as sp
>>> n = 100  # number of coin flips
    h = 61  # number of heads
    q = .5  # null-hypothesis of fair coin

2.	 Let's compute the z-score, which is defined by the following formula (xbar is the 
estimated average of the distribution). We will explain this formula in the next  
section, How it works....
>>> xbar = float(h) / n
    z = (xbar - q) * np.sqrt(n / (q * (1 - q)))
    # We don't want to display more than 4 decimals.
    z
 2.2000

3.	 Now, from the z-score, we can compute the p-value as follows:
>>> pval = 2 * (1 - st.norm.cdf(z))
    pval
 0.0278

https://en.wikipedia.org/wiki/Bernoulli_distribution
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4.	 This p-value is less than 0.05, so we reject the null hypothesis and conclude that the 
coin is probably not fair.

How it works...
The coin tossing experiment is modeled as a sequence of  independent random variables 

 following the Bernoulli distribution . Each  represents one coin flip. After 
our experiment, we get actual values (samples) for these variables. A different notation is 
sometimes used to distinguish between the random variables (probabilistic objects) and the 
actual values (samples).

The following formula gives the sample mean (proportion of heads here):

Knowing the expectancy  and variance  of the distribution ,  
we compute:

The z-test is the normalized version of  (we remove its mean, and divide by the standard 
deviation, thus we get a variable with mean 0 and standard deviation 1):

Under the null hypothesis, what is the probability of obtaining a z-test higher (in absolute 
value) than some quantity ? This probability is called the (two-sided) p-value. According to 
the central limit theorem, the z-test approximately follows a standard Gaussian distribution 

 for large , so we get:
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The following diagram illustrates the z-score and the p-value:

Illustration of the z-score and the p-value.

In this formula,  is the cumulative distribution function of a standard normal distribution. In 
SciPy, we can get it with scipy.stats.norm.cdf. So, given the z-test computed from the 
data, we compute the p-value: the probability of observing a z-test more extreme than the 
observed test, under the null hypothesis.

If the p-value is less than five percent (a frequently-chosen significance level, for arbitrary and 
historical reasons), we conclude that either:

ff The null hypothesis is false, thus we conclude that the coin is unfair.

ff The null hypothesis is true, and it's just bad luck if we obtained these values.  
We cannot make a conclusion.

We cannot disambiguate between these two options in this framework, but typically the first 
option is chosen. We hit the limits of frequentist statistics, although there are ways to mitigate 
this problem (for example, by conducting several independent studies and looking at all of 
their conclusions).

There's more...
There are many statistical tests that follow this pattern. Reviewing all those tests is  
largely beyond the scope of this book, but you can take a look at the reference at  
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing.

As a p-value is not easy to interpret, it can lead to wrong conclusions, even in peer-reviewed 
scientific publications. For an in-depth treatment of the subject, see http://www.
refsmmat.com/statistics/.

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://www.refsmmat.com/statistics/
http://www.refsmmat.com/statistics/
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See also
ff The Getting started with Bayesian methods recipe

Getting started with Bayesian methods
In the last recipe, we used a frequentist method to test a hypothesis on incomplete data. 
Here, we will see an alternative approach based on Bayesian theory. The main idea is to 
consider that unknown parameters are random variables, just like the variables describing 
the experiment. Prior knowledge about the parameters is integrated into the model. This 
knowledge is updated as more and more data is observed.

Frequentists and Bayesians interpret probabilities differently. Frequentists interpret a 
probability as a limit of frequencies when the number of samples tends to infinity. Bayesians 
interpret it as a belief; this belief is updated as more and more data is observed.

Here, we revisit the previous coin flipping example with a Bayesian approach. This example 
is sufficiently simple to permit an analytical treatment. In general, as we will see later in this 
chapter, analytical results cannot be obtained and numerical methods become essential.

Getting ready
This is a math-heavy recipe. Knowledge of basic probability theory (random variables, 
distributions, Bayes formula) and calculus (derivatives, integrals) is recommended.  
We use the same notations as in the previous recipe.

How to do it...
Let  be the probability of obtaining a head. Whereas  was just a fixed number in the 
previous recipe, we consider here that it is a random variable. Initially, this variable follows 
a distribution called the prior probability distribution. It represents our knowledge about  
before we start flipping the coin. We will update this distribution after each trial (posterior 
distribution).

1.	 First, we assume that  is a uniform random variable on the interval . That's our 
prior distribution: for all , .

2.	 Then, we flip our coin  times. We note  the outcome of the th flip (  for tail,  
 for head).
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3.	 What is the probability distribution of  knowing the observations ? Bayes' theorem 
allows us to compute the posterior distribution analytically (see the next section for 
the mathematical details):

4.	 We define the posterior distribution according to the preceding mathematical formula. 
We remark that this expression is  times the Probability Mass Function (PMF) 
of the binomial distribution, which is directly available in scipy.stats. (For more 
information on binomial distribution, refer to https://en.wikipedia.org/wiki/
Binomial_distribution.)
>>> import numpy as np
    import scipy.stats as st
    import matplotlib.pyplot as plt
    %matplotlib inline
>>> def posterior(n, h, q):
        return (n + 1) * st.binom(n, q).pmf(h)

5.	 Let's plot this distribution for an observation of  heads and  total flips:

>>> n = 100
    h = 61
    q = np.linspace(0., 1., 1000)
    d = posterior(n, h, q)
>>> fig, ax = plt.subplots(1, 1)
    ax.plot(q, d, '-k')
    ax.set_xlabel('q parameter')
    ax.set_ylabel('Posterior distribution')
    ax.set_ylim(0, d.max() + 1)

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
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This curve represents our belief about the parameter  after we have observed 61 heads.

How it works...
In this section, we explain Bayes' theorem, and we give the mathematical details underlying 
this example.

Bayes' theorem
There is a very general idea in data science that consists of explaining data with a 
mathematical model. This is formalized with a one-way process, model → data.

Once this process is formalized, the task of the data scientist is to exploit the data to recover 
information about the model. In other words, we want to invert the original process and get 
data → model.

In a probabilistic setting, the direct process is represented as a conditional probability 
distribution . This is the probability of observing the data when the  
model is entirely specified.

Similarly, the inverse process is . It gives us information about the model 
(what we're looking for), knowing the observations (what we have).

Bayes' theorem is at the core of a general framework for inverting a probabilistic process of 
model → data. It can be stated as follows:

This equation gives us information about our model, knowing the observed data. Bayes' 
equation is widely used in signal processing, statistics, machine learning, inverse problems, 
and in many other scientific applications.

In Bayes' equation,  reflects our prior knowledge about the model. Also, 
 is the distribution of the data. It is generally expressed as an integral of 

.

In conclusion, Bayes' equation gives us a general roadmap for data inference:

1.	 Specify a mathematical model for the direct process model → data  
(the  term).

2.	 Specify a prior probability distribution for the model (  term).

3.	 Perform analytical or numerical calculations to solve this equation.
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Computation of the posterior distribution
In this recipe's example, we found the posterior distribution with the following equation 
(deriving directly from Bayes' theorem):

Knowing that the  are independent, we get (  being the number of heads):

In addition, we can compute analytically the following integral (using an integration by parts 
and an induction):

Finally, we get:

Maximum a posteriori estimation
We can get a point estimate from the posterior distribution. For example, the Maximum 
a posteriori (MAP) estimation consists of considering the maximum of the posterior 
distribution as an estimate for . We can find this maximum analytically or numerically. For 
more information on MAP, refer to https://en.wikipedia.org/wiki/Maximum_a_
posteriori_estimation.

Here, we can get this estimate analytically by deriving the posterior distribution with respect to 
. We get (assuming ):

This expression is equal to zero when . This is the MAP estimate of the parameter . 
This value happens to be the proportion of heads obtained in the experiment.

https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
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There's more...
In this recipe, we showed a few basic notions in Bayesian theory. We illustrated them with a 
simple example. The fact that we were able to derive the posterior distribution analytically is 
not very common in real-world applications. This example is nevertheless informative because 
it explains the core mathematical ideas behind the complex numerical methods we will  
see later.

Credible interval
The posterior distribution indicates the plausible values for  given the observations. We could 
use it to derive a credible interval, likely to contain the actual value. Credible intervals are 
the Bayesian analog to confidence intervals in frequentist statistics. For more information on 
credible intervals, refer to https://en.wikipedia.org/wiki/Credible_interval.

Conjugate distributions
In this recipe, the prior and posterior distributions are conjugate, meaning that they belong to 
the same family (the beta distribution). For this reason, we were able to compute the posterior 
distribution analytically. You will find more details about conjugate distributions at https://
en.wikipedia.org/wiki/Conjugate_prior.

Non-informative (objective) prior distributions
We chose a uniform distribution as prior distribution for the unknown parameter . It is a 
simple choice and it leads to tractable computations. It reflects the intuitive fact that we 
do not favor any particular value a priori. However, there are rigorous ways of choosing 
completely uninformative priors (see https://en.wikipedia.org/wiki/Prior_
probability#Uninformative_priors). An example is the Jeffreys prior, based on the 
idea that the prior distribution should not depend on the parameterization of the parameters. 
For more information on Jeffreys prior, refer to https://en.wikipedia.org/wiki/
Jeffreys_prior. In our example, the Jeffreys prior is:

See also
ff The Fitting a Bayesian model by sampling from a posterior distribution with a Markov 

chain Monte Carlo method recipe

https://en.wikipedia.org/wiki/Credible_interval
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Prior_probability#Uninformative_priors
https://en.wikipedia.org/wiki/Prior_probability#Uninformative_priors
https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Jeffreys_prior
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Estimating the correlation between two 
variables with a contingency table and a  
chi-squared test

Whereas univariate methods deal with single-variable observations, multivariate methods 
consider observations with several features. Multivariate datasets allow the study of relations 
between variables, more particularly their correlation, or lack thereof (that is, independence).

In this recipe, we will take a look at the same tennis dataset as in the first recipe of this 
chapter. Following a frequentist approach, we will estimate the correlation between the 
number of aces and the proportion of points won by a tennis player.

How to do it...
1.	 Let's import NumPy, pandas, SciPy.stats, and Matplotlib:

>>> import numpy as np
    import pandas as pd
    import scipy.stats as st
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We download and load the dataset:
>>> player = 'Roger Federer'
    df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'federer.csv?raw=true',
                     parse_dates=['start date'],
                     dayfirst=True)

3.	 Each row corresponds to a match, and the 70 columns contain many player 
characteristics during that match:
>>> print(f"Number of columns: {len(df.columns)}")
    df[df.columns[:4]].tail()
Number of columns: 70
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4.	 Here, we only look at the proportion of points won, and the (relative) number of aces:
>>> npoints = df['player1 total points total']
    points = df['player1 total points won'] / npoints
    aces = df['player1 aces'] / npoints
>>> fig, ax = plt.subplots(1, 1)
    ax.plot(points, aces, '.')
    ax.set_xlabel('% of points won')
    ax.set_ylabel('% of aces')
    ax.set_xlim(0., 1.)
    ax.set_ylim(0.)

If the two variables were independent, we would not see any trend in the cloud of 
points. On this plot, it is a bit hard to tell. Let's use pandas to compute a coefficient 
correlation.

5.	 For simplicity, we create a new DataFrame object with only these fields. We also 
remove the rows where one field is missing (using dropna()):
>>> df_bis = pd.DataFrame({'points': points,
                           'aces': aces}).dropna()
    df_bis.tail()
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6.	 Let's compute the Pearson's correlation coefficient between the relative number of 
aces in the match, and the number of points won:
>>> df_bis.corr()

A correlation of ~0.26 seems to indicate a positive correlation between our two 
variables. In other words, the more aces in a match, the more points the player  
wins (which is not very surprising!).

7.	 Now, to determine if there is a statistically significant correlation between the 
variables, we use a chi-squared test of the independence of variables in a 
contingency table.

8.	 First, we binarize our variables. Here, the value corresponding to the number  
of aces is True if the player is serving more aces than usual in a match,  
and False otherwise:
>>> df_bis['result'] = (df_bis['points'] >
                        df_bis['points'].median())
    df_bis['manyaces'] = (df_bis['aces'] >
                          df_bis['aces'].median())

9.	 Then, we create a contingency table, with the frequencies of all four possibilities 
(True and True, True and False, and so on):
>>> pd.crosstab(df_bis['result'], df_bis['manyaces'])

10.	 Finally, we compute the chi-squared test statistic and the associated p-value. The 
null hypothesis is the independence between the variables. SciPy implements this 
test in scipy.stats.chi2_contingency(), which returns several objects. We're 
interested in the second result, which is the p-value:

>>> st.chi2_contingency(_)
(2.780e+01, 1.338e-07, 1,
    array([[ 257.250,  256.749],
           [ 256.749,  256.250]]))
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The p-value is much lower than 0.05, so we reject the null hypothesis and conclude that there 
is a statistically significant correlation between the proportion of aces and the proportion of 
points won in a match in this dataset.

Correlation does not imply causation. Here, it is likely that external factors 
influence both variables. See https://en.wikipedia.org/wiki/
Correlation_does_not_imply_causation for more details.

How it works...
We give here a few details about the statistical concepts used in this recipe.

Pearson's correlation coefficient
Pearson's correlation coefficient measures the linear correlation between two random 
variables,  and . It is a normalized version of the covariance:

It can be estimated by substituting, in this formula, the expectancy with the sample mean, 
and the variance with the sample variance. More details about its inference can be found 
at https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_
coefficient.

Contingency table and chi-squared test
The contingency table contains the frequencies  of all combinations of outcomes, when 
there are multiple random variables that can take a finite number of values. Under the null 
hypothesis of independence, we can compute the expected frequencies , based on the 
marginal sums (sums in each row). The chi-squared statistic, by definition, is:

When there are sufficient observations, this variable approximately follows a chi-squared 
distribution (the distribution of the sum of normal variables squared). Once we get the p-value, 
as explained in the Getting started with statistical hypothesis testing – a simple z-test recipe, 
we can reject or accept the null hypothesis of independence. Then, we can conclude (or not) 
that there exists a significant correlation between the variables.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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There's more...
There are many other sorts of chi-squared tests—that is, tests where the test statistic follows 
a chi-squared distribution. These tests are widely used for testing the goodness-of-fit of a 
distribution, or testing the independence of variables. More information can be found in the 
following pages:

ff Chi-square test in SciPy documentation available at http://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.chi2_contingency.html

ff Contingency table introduced at https://en.wikipedia.org/wiki/
Contingency_table

ff Chi-squared test introduced at https://en.wikipedia.org/wiki/Pearson's_
chi-squared_test

See also
ff The Getting started with statistical hypothesis testing – a simple z-test recipe

Fitting a probability distribution to data with 
the maximum likelihood method

A good way to explain a dataset is to apply a probabilistic model to it. Finding an adequate 
model can be a job on its own. Once a model is chosen, it is necessary to compare it to 
the data. This is what statistical estimation is about. In this recipe, we apply the maximum 
likelihood method on a dataset of survival times after heart transplant (1967-1974 study).

Getting ready
As usual in this chapter, a background in probability theory and real analysis is  
recommended. In addition, you need the statsmodels package to retrieve the  
test dataset. It should be included in Anaconda, but you can always install it with  
the conda install statsmodels command.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test
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How to do it...
1.	 statsmodels is a Python package for conducting statistical data analyses. It also 

contains real-world datasets that we can use when experimenting with new methods. 
Here, we load the heart dataset:
>>> import numpy as np
    import scipy.stats as st
    import statsmodels.datasets
    import matplotlib.pyplot as plt
    %matplotlib inline
>>> data = statsmodels.datasets.heart.load_pandas().data

2.	 Let's take a look at this DataFrame.
>>> data.tail()

This dataset contains censored and uncensored data: a censor of 0 means that the 
patient was alive at the end of the study, and thus we don't know the exact survival 
time. We only know that the patient survived at least the indicated number of days. 
For simplicity here, we only keep uncensored data (we thereby introduce a bias 
toward patients that did not survive very long after their transplant):
>>> data = data[data.censors == 1]
    survival = data.survival

3.	 Let's take a look at the data graphically, by plotting the raw survival data and  
the histogram:
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
    
    ax1.plot(sorted(survival)[::-1], 'o')
    ax1.set_xlabel('Patient')
    ax1.set_ylabel('Survival time (days)')
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    ax2.hist(survival, bins=15)
    ax2.set_xlabel('Survival time (days)')
    ax2.set_ylabel('Number of patients')

4.	 We observe that the histogram is decreasing very rapidly. Fortunately, the survival 
rates today are much higher (~70 percent after 5 years). Let's try to fit an exponential 
distribution (more information on the exponential distribution is available at 
https://en.wikipedia.org/wiki/Exponential_distribution) to the 
data. According to this model,  (number of days of survival) is an exponential 
random variable with the parameter , and the observations  are sampled  
from this distribution. Let the sample mean be:

The likelihood function of an exponential distribution is as follows, by definition  
(see proof in the next section):

The maximum likelihood estimate for the rate parameter is, by definition, the value 
 that maximizes the likelihood function. In other words, it is the parameter that 

maximizes the probability of observing the data, assuming that the observations are 
sampled from an exponential distribution.

Here, it can be shown that the likelihood function has a maximum value when 
, which is the maximum likelihood estimate for the rate parameter. Let's 

compute this parameter numerically:
>>> smean = survival.mean()
    rate = 1. / smean

https://en.wikipedia.org/wiki/Exponential_distribution
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5.	 To compare the fitted exponential distribution to the data, we first need to generate 
linearly spaced values for the x axis (days):
>>> smax = survival.max()
    days = np.linspace(0., smax, 1000)
    # bin size: interval between two
    # consecutive values in `days`
    dt = smax / 999.

We can obtain the probability density function of the exponential distribution with 
SciPy. The parameter is the scale, the inverse of the estimated rate.
>>> dist_exp = st.expon.pdf(days, scale=1. / rate)

6.	 Now, let's plot the histogram and the obtained distribution. We need to rescale the 
theoretical distribution to the histogram (depending on the bin size and the total 
number of data points):
>>> nbins = 30
    fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    ax.hist(survival, nbins)
    ax.plot(days, dist_exp * len(survival) * smax / nbins,
            '-r', lw=3)
    ax.set_xlabel("Survival time (days)")
    ax.set_ylabel("Number of patients")

The fit is far from perfect. We were able to find an analytical formula for the maximum 
likelihood estimate here. In more complex situations, that is not always possible. Thus 
we may need to resort to numerical methods. SciPy actually integrates numerical 
maximum likelihood routines for a large number of distributions. Here, we use this 
other method to estimate the parameter of the exponential distribution.
>>> dist = st.expon
    args = dist.fit(survival)
    args
(1.000, 222.289)
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7.	 We can use these parameters to perform a Kolmogorov-Smirnov test, which 
assesses the goodness of fit of the distribution with respect to the data. This test is 
based on a distance between the empirical distribution function of the data and the 
Cumulative Distribution Function (CDF) of the reference distribution.
>>> st.kstest(survival, dist.cdf, args)
KstestResult(statistic=0.362, pvalue=8.647e-06)

Here, the p-value is very low: the null hypothesis (stating that the observed 
data stems from an exponential distribution with a maximum likelihood rate 
parameter) can be rejected with high confidence. Let's try another distribution, 
the Birnbaum-Sanders distribution, which is typically used to model failure times. 
(More information on the Birnbaum-Sanders distribution is available at https://
en.wikipedia.org/wiki/Birnbaum-Saunders_distribution.)
>>> dist = st.fatiguelife
    args = dist.fit(survival)
    st.kstest(survival, dist.cdf, args)
KstestResult(statistic=0.188, pvalue=0.073)

This time, the p-value is about 0.073, so that we would not reject the null hypothesis 
with a five percent confidence level. When plotting the resulting distribution,  
we observe a better fit than with the exponential distribution:
>>> dist_fl = dist.pdf(days, *args)
    nbins = 30
    fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    ax.hist(survival, nbins)
    ax.plot(days, dist_exp * len(survival) * smax / nbins,
            '-r', lw=3, label='exp')
    ax.plot(days, dist_fl * len(survival) * smax / nbins,
            '--g', lw=3, label='BS')
    ax.set_xlabel("Survival time (days)")
    ax.set_ylabel("Number of patients")
    ax.legend()

https://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
https://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
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How it works...
Here, we give the calculations leading to the maximum likelihood estimation of the rate 
parameter for an exponential distribution:

Here,  is the sample mean. In more complex situations, we would require numerical 
optimization methods in which the principle is to maximize the likelihood function using a 
standard numerical optimization algorithm (see Chapter 9, Numerical Optimization).

To find the maximum of this function, let's compute its derivative function with respect to :

The root of this derivative is therefore .

There's more...
Here are a few references:

ff Maximum likelihood on Wikipedia, available at https://en.wikipedia.org/
wiki/Maximum_likelihood

ff Kolmogorov-Smirnov test on Wikipedia, available at https://en.wikipedia.org/
wiki/Kolmogorov-Smirnov_test

ff Goodness of fit at https://en.wikipedia.org/wiki/Goodness_of_fit

The maximum likelihood method is parametric: the model belongs to a prespecified 
parametric family of distributions. In the next recipe, we will see a nonparametric  
kernel-based method.

https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Goodness_of_fit
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See also
ff The Estimating a probability distribution nonparametrically with a kernel density 

estimation recipe

Estimating a probability distribution 
nonparametrically with a kernel density 
estimation

In the previous recipe, we applied a parametric estimation method. We had a statistical 
model (the exponential distribution) describing our data, and we estimated a single  
parameter (the rate of the distribution). Nonparametric estimation deals with statistical 
models that do not belong to a known family of distributions. The parameter space is then 
infinite-dimensional instead of finite-dimensional (that is, we estimate functions rather  
than numbers).

Here, we use a Kernel Density Estimation (KDE) to estimate the density of probability of a 
spatial distribution. We look at the geographical locations of tropical cyclones from 1848 
to 2013, based on data provided by the NOAA, the US' National Oceanic and Atmospheric 
Administration.

Getting ready
You need Cartopy, available at http://scitools.org.uk/cartopy/. You can install it 
with conda install -c conda-forge cartopy.

How to do it...
1.	 Let's import the usual packages. The kernel density estimation with a Gaussian 

kernel is implemented in scipy.stats:
>>> import numpy as np
    import pandas as pd
    import scipy.stats as st
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    import cartopy.crs as ccrs
    %matplotlib inline

http://scitools.org.uk/cartopy/
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2.	 Let's open the data with pandas:
>>> # www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data
    df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'Allstorms.ibtracs_wmo.v03r05.csv?'
                     'raw=true')

3.	 The dataset contains information about most storms since 1848. A single storm may 
appear multiple times across several consecutive days.
>>> df[df.columns[[0, 1, 3, 8, 9]]].head()

4.	 We use pandas' groupby() function to obtain the average location of every storm:
>>> dfs = df.groupby('Serial_Num')
    pos = dfs[['Latitude', 'Longitude']].mean()
    x = pos.Longitude.values
    y = pos.Latitude.values
    pos.head()
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5.	 We display the storms on a map with Cartopy. This toolkit allows us to easily project 
the geographical coordinates on the map.
>>> # We use a simple equirectangular projection,
    # also called Plate Carree.
    crs = ccrs.PlateCarree()
    # We create the map plot.
    ax = plt.axes(projection=crs)
    # We display the world map picture.
    ax.stock_img()
    # We display the storm locations.
    ax.scatter(x, y, color='r', s=.5, alpha=.25)

6.	 Before performing the kernel density estimation, we transform the storms' positions 
from the geodetic coordinate system (longitude and latitude) into the map's 
coordinate system, called plate carrée.
>>> geo = ccrs.Geodetic()
    h = geo.transform_points(crs, x, y)[:, :2].T
    h.shape
(2, 6940)

7.	 Now, we perform the kernel density estimation on our (2, N) array.
>>> kde = st.gaussian_kde(h)

8.	 The gaussian_kde() routine returned a Python function. To see the results  
on a map, we need to evaluate this function on a 2D grid spanning the entire  
map. We create this grid with meshgrid(), and we pass the x and y values  
to the kde() function:
>>> k = 100
    # Coordinates of the four corners of the map.
    x0, x1, y0, y1 = ax.get_extent()
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    # We create the grid.
    tx, ty = np.meshgrid(np.linspace(x0, x1, 2 * k),
                         np.linspace(y0, y1, k))
    # We reshape the grid for the kde() function.
    mesh = np.vstack((tx.ravel(), ty.ravel()))
    # We evaluate the kde() function on the grid.
    v = kde(mesh).reshape((k, 2 * k))

9.	 Before displaying the KDE heatmap on the map, we need to use a special colormap 
with a transparent channel. This will allow us to superimpose the heatmap on the 
stock image:
>>> # https://stackoverflow.com/a/37334212/1595060
    cmap = plt.get_cmap('Reds')
    my_cmap = cmap(np.arange(cmap.N))
    my_cmap[:, -1] = np.linspace(0, 1, cmap.N)
    my_cmap = ListedColormap(my_cmap)

10.	 Finally, we display the estimated density with imshow():

>>> ax = plt.axes(projection=crs)
    ax.stock_img()
    ax.imshow(v, origin='lower',
              extent=[x0, x1, y0, y1],
              interpolation='bilinear',
              cmap=my_cmap)
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How it works...
The kernel density estimator of a set of n points  is given as:

Here,  is a scaling parameter (the bandwidth) and  is the kernel, a symmetric 
function that integrates to 1. This estimator is to be compared with a classical histogram, 
where the kernel would be a top-hat function (a rectangle function taking its values in  

), but the blocks would be located on a regular grid instead of the data points. For  
more information on kernel density estimator, refer to https://en.wikipedia.org/
wiki/Kernel_density_estimation.

Multiple kernels can be chosen. Here, we chose a Gaussian kernel, so that the KDE is the 
superposition of Gaussian functions centered on all the data points. It is an estimation of  
the density.

The choice of the bandwidth is not trivial; there is a tradeoff between a too low value (small 
bias, high variance: overfitting) and a too high value (high bias, small variance: underfitting). 
We will return to this important concept of bias-variance tradeoff in the next chapter. For 
more information on the bias-variance tradeoff, refer to https://en.wikipedia.org/
wiki/Bias-variance_dilemma.

There are several methods to automatically choose a sensible bandwidth. SciPy uses a rule of 
thumb called Scott's Rule: h = n**(-1. / (d + 4)). You will find more information at http://
scipy.github.io/devdocs/generated/scipy.stats.gaussian_kde.html.

The following figure illustrates the KDE. The sample dataset contains four points in   
(black lines). The estimated density is a smooth curve, represented here with different 
bandwidth values.

Kernel density estimation

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Bias-variance_dilemma
https://en.wikipedia.org/wiki/Bias-variance_dilemma
http://scipy.github.io/devdocs/generated/scipy.stats.gaussian_kde.html
http://scipy.github.io/devdocs/generated/scipy.stats.gaussian_kde.html
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There are other implementations of KDE in statsmodels and scikit-learn. 
You can find more information here: http://jakevdp.github.io/
blog/2013/12/01/kernel-density-estimation/

See also
ff The Fitting a probability distribution to data with the maximum likelihood  

method recipe

Fitting a Bayesian model by sampling from 
a posterior distribution with a Markov chain 
Monte Carlo method

In this recipe, we illustrate a very common and useful method for characterizing a posterior 
distribution in a Bayesian model. Imagine that you have some data and you want to obtain 
information about the underlying random phenomenon. In a frequentist approach, you could 
try to fit a probability distribution within a given family of distributions, using a parametric 
method such as the maximum likelihood method. The optimization procedure would yield 
parameters that maximize the probability of observing the data if given the null hypothesis.

In a Bayesian approach, you consider the parameters themselves as random variables. 
Their prior distributions reflect your initial knowledge about these parameters. After the 
observations, your knowledge is updated, and this is reflected in the posterior distributions  
of the parameters.

A typical goal for Bayesian inference is to characterize the posterior distributions. Bayes' 
theorem gives an analytical way to do this, but it is often impractical in real-world problems 
due to the complexity of the models and the number of dimensions. A Markov chain Monte 
Carlo (MCMC) method, such as the Metropolis-Hastings algorithm, gives a numerical 
method to approximate a posterior distribution.

Here, we introduce the PyMC3 package, which gives an effective and natural interface for 
fitting a probabilistic model to data in a Bayesian framework. We will look at the annual 
frequency of storms in the northern Atlantic Ocean since the 1850s using data from NOAA, 
the US' National Oceanic and Atmospheric Administration. This example is largely inspired 
by the tutorial available in the official PyMC3 documentation at http://docs.pymc.io/
notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters.

http://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
http://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
http://docs.pymc.io/notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters
http://docs.pymc.io/notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters
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Getting ready
You need PyMC3, available at http://docs.pymc.io. You can install it with conda 
install -c conda-forge pymc3.

How to do it...
1.	 Let's import the standard packages and PyMC3:

>>> import numpy as np
    import pandas as pd
    import pymc3 as pm
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's import the data with pandas:
>>> # www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data
    df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'Allstorms.ibtracs_wmo.v03r05.csv?'
                     'raw=true',
                     delim_whitespace=False)

3.	 With pandas, it only takes a single line of code to get the annual number of storms 
in the North Atlantic Ocean. We first select the storms in that basin (NA), then we 
group the rows by year (Season), and finally we take the number of unique storms 
(Serial_Num), as each storm can span several days (the nunique() method):
>>> cnt = df[df['Basin'] == ' NA'].groupby(
        'Season')['Serial_Num'].nunique()
    # The years from 1851 to 2012.
    years = cnt.index
    y0, y1 = years[0], years[-1]
    arr = cnt.values
>>> # Plot the annual number of storms.
    fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(years, arr, '-o')
    ax.set_xlim(y0, y1)
    ax.set_xlabel("Year")
    ax.set_ylabel("Number of storms")
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4.	 Now we define our probabilistic model. We assume that storms arise following a  
time-dependent Poisson process with a deterministic rate. We assume that this rate 
is a piecewise-constant function that takes a first value early_mean before a switch 
point switchpoint, and a second value late_mean after that point. These three 
unknown parameters are treated as random variables (we will describe them more 
in the How it works... section). In the model, the annual number of storms per year 
follows a Poisson distribution (this is a property of Poisson processes).

A Poisson process (https://en.wikipedia.org/wiki/
Poisson_process) is a particular point process—that is, 
a stochastic process describing the random occurrence of 
instantaneous events. The Poisson process is fully random:  
the events occur independently at a given rate. See also 
Chapter 13, Stochastic Dynamical Systems.

>>> # We define our model.
    with pm.Model() as model:
        # We define our three variables.
        switchpoint = pm.DiscreteUniform(
            'switchpoint', lower=y0, upper=y1)
        early_rate = pm.Exponential('early_rate', 1)
        late_rate = pm.Exponential('late_rate', 1)
        # The rate of the Poisson process is a piecewise
        # constant function.
        rate = pm.math.switch(switchpoint >= years,
                              early_rate, late_rate)
        # The annual number of storms per year follows
        # a Poisson distribution.
        storms = pm.Poisson('storms', rate, observed=arr)

https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Poisson_process
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5.	 Now, we sample from the posterior distribution given the observed data. The 
sample(10000) method launches the fitting iterative procedure with 10000 
iterations, which may take a few seconds:
>>> with model:
        trace = pm.sample(10000)
Assigned Metropolis to switchpoint
Assigned NUTS to early_rate_log__
Assigned NUTS to late_rate_log__
100%|██████████| 10500/10500 [00:05<00:00, 1757.23it/s]

6.	 Once the sampling has finished, we can plot the distribution and paths of the  
Markov chains:
>>> pm.traceplot(trace)

Each row represents a variable. The left plot is a histogram of the corresponding 
Markov chain, which gives the posterior distribution of the variable. The right plot is 
an arbitrarily-chosen path of a Markov chain, showing the evolution of the variable 
during the fitting procedure.

7.	 Taking the sample mean of these distributions, we get posterior estimates for 
the three unknown parameters, including the year where the frequency of storms 
suddenly increased:
>>> s = trace['switchpoint'].mean()
    em = trace['early_rate'].mean()
    lm = trace['late_rate'].mean()
    s, em, lm
(1930.171, 7.316, 14.085)
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8.	 Finally, we can plot the estimated rate on top of the observations:

>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(years, arr, '-o')
    ax.axvline(s, color='k', ls='--')
    ax.plot([y0, s], [em, em], '-', lw=3)
    ax.plot([s, y1], [lm, lm], '-', lw=3)
    ax.set_xlim(y0, y1)
    ax.set_xlabel("Year")
    ax.set_ylabel("Number of storms")

How it works...
The general idea is to define a Bayesian probabilistic model and to fit it to the data. This 
model may be the starting point of an estimation or decision task. The model is essentially 
described by stochastic or deterministic variables linked together within a Directed Acyclic 
Graph (DAG). A is linked to B if B is entirely or partially determined by A. The following figure 
shows the graph of the model used in this recipe:

Dependency graph of the variables
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Stochastic variables follow distributions that can be parameterized by fixed numbers or 
other variables in the model. Parameters may be random variables themselves, reflecting 
knowledge prior to the observations. This is the core of Bayesian modeling.

The goal of the analysis is to include the observations into the model in order to update our 
knowledge as more and more data is available. Although Bayes' theorem gives us an exact 
way to compute those posterior distributions, it is rarely practical in real-world problems. This 
is notably due to the complexity of the models. Alternatively, numerical methods have been 
developed in order to tackle this problem.

The MCMC method used here allows us to sample from a complex distribution by  
simulating a Markov chain that has the desired distribution as its equilibrium distribution.  
The Metropolis-Hastings algorithm is a particular application of this method to our  
current example.

There's more...
Here are a few references:

ff A free e-book on the subject, by Cameron Davidson-Pilon, entirely written in the 
Jupyter Notebook, available at http://camdavidsonpilon.github.io/
Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/

ff The MCMC method introduced at https://en.wikipedia.org/wiki/Markov_
chain_Monte_Carlo

ff The Metropolis-Hastings algorithm introduced at https://en.wikipedia.org/
wiki/Metropolis-Hastings_algorithm

See also
ff The Getting started with Bayesian methods recipe

Analyzing data with the R programming 
language in the Jupyter Notebook

R (http://www.r-project.org) is an open-source domain-specific programming 
language for statistics. Its syntax is well-adapted to statistical modeling and data analysis. 
By contrast, Python's syntax is typically more convenient for general-purpose programming. 
Luckily, Jupyter allows us to have the best of both worlds. For example, we can insert R code 
snippets anywhere in a normal Jupyter notebook. We can continue using Python and pandas 
for data loading and wrangling, and switch to R to design and fit statistical models. Using R 
instead of Python for these tasks is more than a matter of programming syntax; R comes with 
an impressive statistical toolbox.

http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
http://www.r-project.org
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In this recipe, we will show how to interface R with Python in the Jupyter Notebook, and we will 
illustrate the most basic capabilities of R with a simple data analysis example.

There is another way of using R in the Jupyter Notebook, which is to install 
IRkernel, the R kernel for Jupyter. Using this method, all of the code of an 
IRkernel notebook is written in R, not in Python. You will find more information 
at https://irkernel.github.io/installation/.

Getting ready
You need the statsmodels package for this recipe. It should be installed by default with 
Anaconda, but you can always install it with conda install statsmodels.

You also need R and rpy2 (https://rpy2.readthedocs.io/). There are three steps to 
use R with Python:

1.	 Download R from https://cran.r-project.org/ and install it.

2.	 Install rpy2 with conda install rpy2.

3.	 Run the %load_ext rpy2.ipython command in a Jupyter notebook.

rpy2 does not appear to work well on Windows. We recommend 
using Linux or macOS.

How to do it...
Here, we will use the following workflow: first, we load data from Python. Then, we use R to 
design and fit a model, and to make some plots in the Jupyter Notebook. We could also use R 
only for the entire recipe, or Python only. The goal of this recipe is precisely to show how to use 
both languages in the same Jupyter notebook.

1.	 Let's load the longley dataset with the statsmodels package. This dataset 
contains a few economic indicators in the US from 1947 to 1962. We also load the 
IPython R extension:
>>> import statsmodels.datasets as sd
>>> data = sd.longley.load_pandas()
>>> %load_ext rpy2.ipython

https://irkernel.github.io/installation/
https://rpy2.readthedocs.io/
https://cran.r-project.org/
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2.	 We define x and y as the exogeneous (independent) and endogenous (dependent) 
variables, respectively. The endogenous variable quantifies the total employment in 
the country.
>>> data.endog_name, data.exog_name
('TOTEMP', ['GNPDEFL', 'GNP', 'UNEMP',
            'ARMED', 'POP', 'YEAR'])

>>> y, x = data.endog, data.exog

3.	 For convenience, we add the endogenous variable to the x DataFrame:
>>> x['TOTEMP'] = y
>>> x

4.	 We will make a simple plot in R. First, we need to pass Python variables to R. We use 
the %R -i var1,var2 magic. Then, we call R's plot() command:
>>> gnp = x['GNP']
    totemp = x['TOTEMP']
>>> %R -i totemp,gnp plot(gnp, totemp)
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5.	 Now that the data has been passed to R, we can fit a linear model to the data. In 
R, the lm() function lets us perform a linear regression. Here, we want to express 
totemp (total employment) as a function of the country's GNP. We use the %%R cell 
magic to write several lines of R code in a cell:
>>> %%R
    # Least-squares regression
    fit <- lm(totemp ~ gnp)
    # Display the coefficients of the fit.
    print(fit$coefficients)
    # Plot the data points.
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    plot(gnp, totemp)
    # And plot the linear regression.
    abline(fit)

How it works...
The -i and -o options of the %%R magic allow us to pass variables back and forth between 
IPython and R. The variable names need to be separated by commas. You can find more 
information about the %R magic in the documentation available at https://rpy2.
readthedocs.io/.

In R, the tilde (~) expresses the dependence of a dependent variable upon one or several 
independent variables. The lm() function allows us to fit a simple linear regression model  
to the data. Here, totemp is expressed as a function of gnp:

Here, b (intercept) and a are the coefficients of the linear regression model. These two values 
are returned by fit$coefficients in R, where fit is the fitted model.

https://rpy2.readthedocs.io/
https://rpy2.readthedocs.io/
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Our data points do not satisfy this relation exactly, but the coefficients are chosen so as to 
minimize the error between this linear prediction and the actual values. This is typically done 
by minimizing the following least squares error:

The data points are  here. The coefficients  and  that are returned by lm() 
make this sum minimal: they fit the data best.

There's more...
Regression is an important statistical concept that we will see in greater detail in the next 
chapter. Here are a few references:

ff Regression analysis on Wikipedia, available at https://en.wikipedia.org/
wiki/Regression_analysis

ff Least squares method on Wikipedia, available at https://en.wikipedia.org/
wiki/Linear_least_squares_%28mathematics%29

Here are a few references about R:

ff Introduction to R available at http://cran.r-project.org/doc/manuals/R-
intro.html

ff R tutorial available at http://www.cyclismo.org/tutorial/R/

ff CRAN, or Comprehensive R Archive Network, containing many packages for R, 
available at http://cran.r-project.org

See also
ff The Exploring a dataset with pandas and Matplotlib recipe

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://www.cyclismo.org/tutorial/R/
http://cran.r-project.org
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8
Machine Learning

In this chapter, we will cover the following topics:

ff Getting started with scikit-learn

ff Predicting who will survive on the Titanic with logistic regression

ff Learning to recognize handwritten digits with a K-nearest neighbors classifier

ff Learning from text – Naive Bayes for Natural Language Processing

ff Using support vector machines for classification tasks

ff Using a random forest to select important features for regression

ff Reducing the dimensionality of a dataset with a principal component analysis

ff Detecting hidden structures in a dataset with clustering

Introduction
In the previous chapter, we were interested in getting insight into data, understanding complex 
phenomena through partial observations, and making informed decisions in the presence 
of uncertainty. Here, we are still interested in analyzing and processing data using statistical 
tools. However, the goal is not necessarily to understand the data, but to learn from it.

Learning from data is close to what we do as humans. From our experience, we intuitively 
learn general facts and relations about the world, even if we don't fully understand their 
complexity. The increasing computational power of computers makes them able to learn  
from data too. That's the heart of machine learning, a branch of artificial intelligence at  
the intersection of computer science, statistics, and applied mathematics.

This chapter is a hands-on introduction to some of the most basic methods in machine 
learning. These methods are routinely used by data scientists. We will use these methods  
with scikit-learn, a popular and user-friendly Python package for machine learning.
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A bit of vocabulary
In this introduction, we will explain the fundamental definitions and concepts of  
machine learning.

Learning from data
In machine learning, most data can be represented as a table of numerical values. Every  
row is called an observation, a sample, or a data point. Every column is called a feature  
or a variable.

Let's call  the number of rows (or the number of points) and  the number of columns (or 
number of features). The number  is also called the dimensionality of the data. The reason 
is that we can view this table as a set  of vectors in a space with  dimensions (or vector 
space). Here, a vector  contains  numbers , also called components. This 
mathematical point of view is very useful and we will use it throughout this chapter.

We make the distinction between supervised learning and unsupervised learning:

ff Supervised learning is when we have a label  associated with a data point . The 
goal is to learn the mapping from  to  from our data. The data gives us this mapping 
for a finite set of points, but what we want is to generalize this mapping to the full set 

, or at least to a larger set of points.

ff Unsupervised learning is when we don't have any labels. What we want to do is 
discover some form of hidden structure in the data.

Supervised learning
Mathematically, supervised learning consists of finding a function  that maps the set of 
points  to a set of labels , knowing a finite set of associations , which is given by our 
data. This is what generalization is about: after observing the pairs , given a new , we 
are able to find the corresponding  by applying the function  to .

It is a common practice to split the set of data points into two subsets: the training set and 
the test set. We learn the function  on the training set and test it on the test set. This is 
essential when assessing the predictive power of a model. By training and testing a model on 
the same set, our model might not be able to generalize well. This is the fundamental concept 
of overfitting, which we will detail later in this chapter.

We generally make the distinction between classification and regression, two particular 
instances of supervised learning.
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Classification is when our labels  can only take a finite set of values (categories).  
Examples include:

ff Handwritten digit recognition:  is an image with a handwritten digit;  is a digit 
between 0 and 9

ff Spam filtering:  is an email and  is 1 or 0, depending on whether that email is 
spam or not

Regression is when our labels  can take any real (continuous) value. Examples include:

ff Predicting stock market data

ff Predicting sales

ff Detecting the age of a person from a picture

A classification task yields a division of our space  in different regions (also called 
partitions), each region being associated to one particular value of the label . A regression 
task yields a mathematical model that associates a real number to any point  in the space . 
This difference is illustrated in the following figure:

Difference between classification and regression

Classification and regression can be combined. For example, in the probit model, although 
the dependent variable is binary (classification), the probability that this variable belongs 
to one category can also be modeled (regression). We will see an example in the recipe 
about logistic regression. For more information on the probit model, refer to https://
en.wikipedia.org/wiki/Probit_model.

Unsupervised learning
Broadly speaking, unsupervised learning helps us discover systemic structures in our data. 
This is harder to grasp than supervised learning, in that there is generally no precise question 
and answer.

https://en.wikipedia.org/wiki/Probit_model
https://en.wikipedia.org/wiki/Probit_model
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Here are a few important tasks related to unsupervised learning:

ff Clustering: Grouping similar points together within clusters

ff Density estimation: Estimating a probability density function that can explain the 
distribution of the data points

ff Dimension reduction: Getting a simple representation of high-dimensional  
data points by projecting them onto a lower-dimensional space (notably for  
data visualization)

ff Manifold learning: Finding a low-dimensional manifold containing the data points 
(also known as nonlinear dimension reduction)

Feature selection and feature extraction
In a supervised learning context, when our data contains many features, it is sometimes 
necessary to choose a subset of them. The features we want to keep are those that are most 
relevant to our question. This is the problem of feature selection.

Additionally, we might want to extract new features by applying complex transformations on 
our original dataset. This is feature extraction. For example, in computer vision, training a 
classifier directly on the pixels is not the most efficient method in general. We might want to 
extract the relevant points of interest or make appropriate mathematical transformations. 
These steps depend on our dataset and on the questions we want to answer.

For example, it is often necessary to preprocess the data before learning models. Feature 
scaling (or data normalization) is a common preprocessing step where features are linearly 
rescaled to fit in the range  or .

Feature extraction and feature selection involve a balanced combination of domain expertise, 
intuition, and mathematical methods. These early steps are crucial, and they might be even 
more important than the learning steps themselves. The reason is that the few dimensions 
that are relevant to our problem are generally hidden in the high dimensionality of our 
dataset. We need to uncover the low-dimensional structure of interest to improve the 
efficiency of the learning models.

We will see a few feature selection and feature extraction methods in this chapter. Methods 
that are specific to signals, images, or sounds will be covered in Chapter 10, Signal 
Processing, and Chapter 11, Image and Audio Processing.

Deep learning has profoundly revolutionized machine learning in the last few years. A major 
characteristic of this range of methods is that feature selection and extraction are often 
included in the model itself. The most relevant features are automatically selected by the 
algorithm. This method works particularly well on images, sounds, and videos. Typically, 
however, deep learning requires a huge amount of training data and computational power. 
Covering deep learning methods in Python is beyond the scope of this book, but we give a few 
references at the end of this introduction.
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Here are a few further references:

ff Feature selection in scikit-learn, documented at http://scikit-learn.org/
stable/modules/feature_selection.html

ff Feature selection on Wikipedia at https://en.wikipedia.org/wiki/Feature_
selection

Overfitting, underfitting, and the bias-variance tradeoff
A central notion in machine learning is the trade-off between overfitting and underfitting. 
A model may be able to represent our data accurately. However, if it is too accurate, it might 
not generalize well to unobserved data. For example, in facial recognition, a too-accurate 
model would be unable to identify someone who styled their hair differently that day. The 
reason is that our model might learn irrelevant features in the training data. On the contrary, 
an insufficiently trained model would not generalize well either. For example, it would be 
unable to correctly recognize twins. For more information on overfitting, refer to https://
en.wikipedia.org/wiki/Overfitting.

A popular solution to reduce overfitting consists of adding structure to the model—for example, 
with regularization. This method favors simpler models during training (Occam's razor). You 
will find more information at https://en.wikipedia.org/wiki/Regularization_%28
mathematics%29.

The bias-variance dilemma is closely related to the issue of overfitting and underfitting. The 
bias of a model quantifies how precise it is across training sets. The variance quantifies 
how sensitive the model is to small changes in the training set. A robust model is not overly 
sensitive to small changes. The dilemma involves minimizing both bias and variance; we 
want a precise and robust model. Simpler models tend to be less accurate but more robust. 
Complex models tend to be more accurate but less robust. For more information on the 
bias-variance dilemma, refer to https://en.wikipedia.org/wiki/Bias-variance_
dilemma.

The importance of this trade-off cannot be overstated. This question pervades the entire 
discipline of machine learning. We will see concrete examples in this chapter.

Model selection
As we will see in this chapter, there are many supervised and unsupervised algorithms. For 
example, well-known classifiers that we will cover in this chapter include logistic regression, 
nearest-neighbors, Naive Bayes, and support vector machines. There are many other 
algorithms that we can't cover here.

No model performs uniformly better than the others. One model may perform well on one 
dataset and badly on another. This is the question of model selection.

http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Regularization_%28mathematics%29
https://en.wikipedia.org/wiki/Regularization_%28mathematics%29
https://en.wikipedia.org/wiki/Bias-variance_dilemma
https://en.wikipedia.org/wiki/Bias-variance_dilemma
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We will see systematic methods to assess the quality of a model on a particular dataset 
(notably cross-validation). In practice, machine learning is not an exact science in that it 
frequently involves trial and error. We need to try different models and empirically choose the 
one that performs best.

That being said, understanding the details of the learning models allows us to gain intuition 
about which model is best adapted to our current problem.

Here are a few references on this question:

ff Model selection on Wikipedia, available at https://en.wikipedia.org/wiki/
Model_selection

ff Model evaluation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/model_evaluation.html

ff Blog post on how to choose a classifier, available at http://blog.echen.
me/2011/04/27/choosing-a-machine-learning-classifier/

Machine learning references
Here are a few excellent, math-heavy textbooks on machine learning:

ff Pattern Recognition and Machine Learning, Christopher M. Bishop, (2006), Springer

ff Machine Learning – A Probabilistic Perspective, Kevin P. Murphy, (2012), MIT Press

ff The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome 
Friedman, (2009), Springer

Here are a few books more oriented toward programmers without a strong mathematical 
background:

ff Machine Learning for Hackers, Drew Conway, John Myles White, (2012),  
O'Reilly Media

ff Machine Learning in Action, Peter Harrington, (2012), Manning Publications Co.

ff Python Machine Learning, Sebastian Raschka (2015), Packt Publishing

Further references can be found here:

ff Awesome Machine Learning resources, at https://github.com/josephmisiti/
awesome-machine-learning

ff Statistical Learning lectures on Awesome Math, at https://github.com/
rossant/awesome-math/#statistical-learning

Important classes of machine learning methods that we couldn't cover in this chapter include 
neural networks and deep learning. Deep learning is the subject of very active research  
in machine learning. Many state-of-the-art results are currently achieved by using deep 
learning methods.

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Model_selection
http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html
http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/
http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/
https://github.com/josephmisiti/awesome-machine-learning
https://github.com/josephmisiti/awesome-machine-learning
https://github.com/rossant/awesome-math/#statistical-learning
https://github.com/rossant/awesome-math/#statistical-learning
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Here are few references on deep learning:

ff Awesome Deep Learning resources, at https://github.com/
ChristosChristofidis/awesome-deep-learning

ff Coursera Deep Learning Specialization course, at https://www.coursera.org/
specializations/deep-learning

ff Udacity Deep Learning course, at https://www.udacity.com/course/deep-
learning--ud730

ff Keras Tutorial: Deep Learning in Python, at https://www.datacamp.com/
community/tutorials/deep-learning-python

ff Deep Learning with Python, a book by François Chollet, Manning Publications, at 
https://www.manning.com/books/deep-learning-with-python

Finally, here are a few lists of public datasets that can be used for data science projects:

ff List of datasets for machine learning research, at https://en.wikipedia.org/
wiki/List_of_datasets_for_machine_learning_research

ff Awesome Public Datasets, at https://github.com/caesar0301/awesome-
public-datasets

ff Datasets for Data Science and Machine Learning, at https://
elitedatascience.com/datasets

ff Kaggle Datasets, at https://www.kaggle.com/datasets

Getting started with scikit-learn
In this recipe, we introduce the basics of the machine learning scikit-learn package (http://
scikit-learn.org). This package is the main tool we will use throughout this chapter. Its 
clean API makes it easy to define, train, and test models.

We will show here a basic example of linear regression in the context of curve fitting. This toy 
example will allow us to illustrate key concepts such as linear models, overfitting, underfitting, 
regularization, and cross-validation.

Getting ready
You can find all instructions to install scikit-learn in the main documentation. For more 
information, refer to http://scikit-learn.org/stable/install.html. Anaconda 
comes with scikit-learn by default, but, if needed, you can install it manually by typing conda 
install scikit-learn in a Terminal.

https://github.com/ChristosChristofidis/awesome-deep-learning
https://github.com/ChristosChristofidis/awesome-deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.manning.com/books/deep-learning-with-python
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets
https://elitedatascience.com/datasets
https://elitedatascience.com/datasets
https://www.kaggle.com/datasets
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org/stable/install.html
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How to do it...
We will generate a one-dimensional dataset with a simple model (including some noise), and 
we will try to fit a function to this data. With this function, we can predict values on new data 
points. This is a curve fitting regression problem.

1.	 First, let's make all the necessary imports:
>>> import numpy as np
    import scipy.stats as st
    import sklearn.linear_model as lm
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We now define a deterministic nonlinear function underlying our generative model:
>>> def f(x):
        return np.exp(3 * x)

3.	 We generate the values along the curve on :
>>> x_tr = np.linspace(0., 2, 200)
    y_tr = f(x_tr)

4.	 Now, let's generate data points within . We use the function  and we add some 
Gaussian noise:
>>> x = np.array([0, .1, .2, .5, .8, .9, 1])
    y = f(x) + 2 * np.random.randn(len(x))

5.	 Let's plot our data points on :
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.plot(x_tr, y_tr, '--k')
    ax.plot(x, y, 'ok', ms=10)
    ax.set_xlim(0, 1.5)
    ax.set_ylim(-10, 80)
    ax.set_title('Generative model')

In the image, the dotted curve represents the generative model.
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6.	 Now, we use scikit-learn to fit a linear model to the data. There are three steps. First, 
we create the model (an instance of the LinearRegression class). Then, we fit the 
model to our data. Finally, we predict values from our trained model.
>>> # We create the model.
    lr = lm.LinearRegression()
    # We train the model on our training dataset.
    lr.fit(x[:, np.newaxis], y)
    # Now, we predict points with our trained model.
    y_lr = lr.predict(x_tr[:, np.newaxis])

We need to convert x and x_tr to column vectors, as it is a general convention in 
scikit-learn that observations are rows, while features are columns. Here, we have 
seven observations with one feature.

7.	 We now plot the result of the trained linear model. We obtain a regression line in 
green here:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.plot(x_tr, y_tr, '--k')
    ax.plot(x_tr, y_lr, 'g')
    ax.plot(x, y, 'ok', ms=10)
    ax.set_xlim(0, 1.5)
    ax.set_ylim(-10, 80)
    ax.set_title("Linear regression")

8.	 The linear fit is not well-adapted here, as the data points are generated according to a 
nonlinear model (an exponential curve). Therefore, we are now going to fit a nonlinear 
model. More precisely, we will fit a polynomial function to our data points. We can still 
use linear regression for this, by precomputing the exponents of our data points. This 
is done by generating a Vandermonde matrix, using the np.vander() function. We 
will explain this trick in How it works.... In the following code, we perform and plot  
the fit:
>>> lrp = lm.LinearRegression()
    fig, ax = plt.subplots(1, 1, figsize=(6, 3))
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    ax.plot(x_tr, y_tr, '--k')
    
    for deg, s in zip([2, 5], ['-', '.']):
        lrp.fit(np.vander(x, deg + 1), y)
        y_lrp = lrp.predict(np.vander(x_tr, deg + 1))
        ax.plot(x_tr, y_lrp, s,
                label=f'degree {deg}')
        ax.legend(loc=2)
        ax.set_xlim(0, 1.5)
        ax.set_ylim(-10, 80)
        # Print the model's coefficients.
        print(f'Coefficients, degree {deg}:\n\t',
              ' '.join(f'{c:.2f}' for c in lrp.coef_))
    ax.plot(x, y, 'ok', ms=10)
    ax.set_title("Linear regression")
Coefficients, degree 2: 36.95 -18.92 0.00
Coefficients, degree 5: 903.98 -2245.99 1972.43 -686.45 78.64 0.00

We have fitted two polynomial models of degree 2 and 5. The degree 2 polynomial 
appears to fit the data points less precisely than the degree 5 polynomial. However, 
it seems more robust; the degree 5 polynomial seems really bad at predicting values 
outside the data points (look for example at the  portion). This is what we 
call overfitting; by using a too-complex model, we obtain a better fit on the trained 
dataset, but a less robust model outside this set.

9.	 We will now use a different learning model called ridge regression. It works like 
linear regression except that it prevents the polynomial's coefficients from becoming 
too big. This is what happened in the previous example. By adding a regularization 
term in the loss function, ridge regression imposes some structure on the underlying 
model. We will see more details in the next section.
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The ridge regression model has a meta-parameter, which represents the weight of 
the regularization term. We could try different values with trial and error using the 
Ridge class. However, scikit-learn provides another model called RidgeCV, which 
includes a parameter search with cross-validation. In practice, this means that 
we don't have to tweak this parameter by hand—scikit-learn does it for us. As the 
models of scikit-learn always follow the fit-predict API, all we have to do is replace 
lm.LinearRegression() with lm.RidgeCV() in the previous code. We will give 
more details in the next section.
>>> ridge = lm.RidgeCV()
    
    fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.plot(x_tr, y_tr, '--k')
    
    for deg, s in zip([2, 5], ['-', '.']):
        ridge.fit(np.vander(x, deg + 1), y)
        y_ridge = ridge.predict(np.vander(x_tr, deg + 1))
        ax.plot(x_tr, y_ridge, s,
                label='degree ' + str(deg))
        ax.legend(loc=2)
        ax.set_xlim(0, 1.5)
        ax.set_ylim(-10, 80)
        # Print the model's coefficients.
        print(f'Coefficients, degree {deg}:',
              ' '.join(f'{c:.2f}' for c in ridge.coef_))
    
    ax.plot(x, y, 'ok', ms=10)
    ax.set_title("Ridge regression")
Coefficients, degree 2: 14.43 3.27 0.00
Coefficients, degree 5: 7.07 5.88 4.37 2.37 0.40 0.00

This time, the degree 5 polynomial seems more precise than the simpler degree 
2 polynomial (which now causes underfitting). Ridge regression mitigates the 
overfitting issue here. Observe how the degree 5 polynomial's coefficients are  
much smaller than in the previous example.
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How it works...
In this section, we explain all the aspects covered in this recipe.

scikit-learn API
scikit-learn implements a clean and coherent API for supervised and unsupervised 
learning. Our data points should be stored in an  matrix , where  is the number of 
observations and  is the number of features. In other words, each row is an observation.  
The first step in a machine learning task is to define what the matrix  is exactly.

In a supervised learning setup, we also have a target, an N-long vector  with a scalar value for 
each observation. This value is either continuous or discrete, depending on whether we have 
a regression or classification problem, respectively.

In scikit-learn, models are implemented in classes that have the fit() and predict() 
methods. The fit() method accepts the data matrix  as input, and  as well for supervised 
learning models. This method trains the model on the given data.

The predict() method also takes data points as input (as an  matrix). It returns the 
labels or transformed points as predicted by the trained model.

Ordinary Least Squares regression
Ordinary Least Squares (OLS) regression is one of the simplest regression methods. It 
consists of approaching the output values  with a linear combination of :

Here,  is the (unknown) parameter vector. Also,  represents the  
model's output. We want this vector to match the data points  as closely as possible. Of 
course, the exact equality  cannot hold in general (there is always some noise and 
uncertainty—models are idealizations of reality). Therefore, we want to minimize the difference 
between these two vectors. The OLS regression method consists of minimizing the following 
loss function:
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This sum of the components squared is called the L² norm. It is convenient because it leads 
to differentiable loss functions so that gradients can be computed and common optimization 
procedures can be performed.

Polynomial interpolation with linear regression
OLS regression fits a linear model to the data. The model is linear both in the data points  
and in the parameters . In our example, we obtain a poor fit because the data points were 
generated according to a nonlinear generative model (an exponential function).

However, we can still use the linear regression method with a model that is linear in  but 
nonlinear in . To do this, we need to increase the number of dimensions in our dataset by 
using a basis of polynomial functions. In other words, we consider the following data points:

Here,  is the maximum degree. The input matrix  is therefore the Vandermonde matrix 
associated to the original data points . For more information on the Vandermonde matrix, 
refer to https://en.wikipedia.org/wiki/Vandermonde_matrix.

Training a linear model on these new data points is equivalent to training a polynomial model 
on the original data points.

Ridge regression
Polynomial interpolation with linear regression can lead to overfitting if the degree of the 
polynomials is too large. By capturing the random fluctuations (noise) instead of the general 
trend of the data, the model loses some of its predictive power. This corresponds to a 
divergence of the polynomial's coefficients .

A solution to this problem is to prevent these coefficients from growing unboundedly. 
With ridge regression (also known as Tikhonov regularization), this is done by adding a 
regularization term to the loss function. For more details on Tikhonov regularization, refer to 
https://en.wikipedia.org/wiki/Tikhonov_regularization.

By minimizing this loss function, we not only minimize the error between the model and the 
data (first term, related to the bias), but also the size of the model's coefficients (second term, 
related to the variance). The bias-variance trade-off is quantified by the hyperparameter , 
which specifies the relative weight between the two terms in the loss function.

Here, ridge regression led to a polynomial with smaller coefficients, and thus a better fit.

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/Tikhonov_regularization
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Cross-validation and grid search
A drawback of the ridge regression model compared to the ordinary least squares model is 
the presence of an extra hyperparameter . The quality of the prediction depends on the 
choice of this parameter. One possibility would be to fine-tune this parameter manually,  
but this procedure can be tedious and can also lead to overfitting problems.

To solve this problem, we can use a grid search; we loop over many possible values for ,  
and we evaluate the performance of the model for each possible value. Then, we choose  
the parameter that yields the best performance.

How can we assess the performance of a model with a given  value? A common solution  
is to use cross-validation. This procedure consists of splitting the dataset into a training set 
and a test set. We fit the model on the train set, and we test its predictive performance on  
the test set. By testing the model on a different dataset than the one used for training,  
we reduce overfitting.

There are many ways to split the initial dataset into two parts like this. One possibility is  
to remove one sample to form the train set and to put this one sample into the test set.  
This is called Leave-one-out cross-validation (LOOCV). With  samples, we obtain  sets  
of train and test sets. The cross-validated performance is the average performance on all 
these set decompositions.

As we will see later, scikit-learn implements several easy-to-use functions to do cross-
validation and grid search. In this recipe, we used a special estimator called RidgeCV 
that implements a cross-validation and grid search procedure that is specific to the ridge 
regression model. Using this class ensures that the best hyperparameter  is found 
automatically for us.

There's more...
Here are a few references about least squares:

ff Ordinary least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Ordinary_least_squares

ff Linear least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Linear_least_squares_%28mathematics%29

Here are a few references about cross-validation and grid search:

ff Cross-validation in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/cross_validation.html

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
http://scikit-learn.org/stable/modules/cross_validation.html
http://scikit-learn.org/stable/modules/cross_validation.html
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ff Grid search in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/grid_search.html

ff Cross-validation on Wikipedia, available at https://en.wikipedia.org/wiki/
Cross-validation_%28statistics%29

Here are a few references about scikit-learn:

ff scikit-learn basic tutorial available at http://scikit-learn.org/stable/
tutorial/basic/tutorial.html

ff scikit-learn tutorial given at the SciPy 2017 conference, available at https://www.
youtube.com/watch?v=2kT6QOVSgSg

Predicting who will survive on the Titanic 
with logistic regression

In this recipe, we will introduce logistic regression, a basic classifier. We will apply these 
techniques on a Kaggle dataset where the goal is to predict survival on the Titanic based  
on real data (see http://www.kaggle.com/c/titanic).

Kaggle (http://www.kaggle.com/competitions) hosts machine 
learning competitions where anyone can download a dataset, train a model, 
and test the predictions on the website.

How to do it...
1.	 We import the standard packages:

>>> import numpy as np
    import pandas as pd
    import sklearn
    import sklearn.linear_model as lm
    import sklearn.model_selection as ms
    import matplotlib.pyplot as plt
    %matplotlib inline

http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/grid_search.html
https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://scikit-learn.org/stable/tutorial/basic/tutorial.html
http://scikit-learn.org/stable/tutorial/basic/tutorial.html
https://www.youtube.com/watch?v=2kT6QOVSgSg
https://www.youtube.com/watch?v=2kT6QOVSgSg
http://www.kaggle.com/c/titanic
http://www.kaggle.com/competitions
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2.	 We load the training and test datasets with pandas:
>>> train = pd.read_csv('https://github.com/ipython-books'
                        '/cookbook-2nd-data/blob/master/'
                        'titanic_train.csv?raw=true')
    test = pd.read_csv('https://github.com/ipython-books/'
                       'cookbook-2nd-data/blob/master/'
                       'titanic_test.csv?raw=true')
>>> train[train.columns[[2, 4, 5, 1]]].head()

3.	 Let's keep only a few fields for this example, and also convert the Sex field to a  
binary variable so that it can be handled correctly by NumPy and scikit-learn.  
Finally, we remove the rows that contain NaN values:
>>> data = train[['Age', 'Pclass', 'Survived']]
    # Add a 'Female' column.
    data = data.assign(Female=train['Sex'] == 'female')
    # Reorder the columns.
    data = data[['Female', 'Age', 'Pclass', 'Survived']]
    data = data.dropna()
    data.head()
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4.	 Now, we convert this DataFrame object to a NumPy array so that we can pass it to 
scikit-learn:
>>> data_np = data.astype(np.int32).values
    X = data_np[:, :-1]
    y = data_np[:, -1]

5.	 Let's have a look at the survival of male and female passengers as a function  
of their age:
>>> # We define a few boolean vectors.
    # The first column is 'Female'.
    female = X[:, 0] == 1
    
    # The last column is 'Survived'.
    survived = y == 1
    
    # This vector contains the age of the passengers.
    age = X[:, 1]
    
    # We compute a few histograms.
    bins_ = np.arange(0, 81, 5)
    S = {'male': np.histogram(age[survived & ~female],
                              bins=bins_)[0],
         'female': np.histogram(age[survived & female],
                                bins=bins_)[0]}
    D = {'male': np.histogram(age[~survived & ~female],
                              bins=bins_)[0],
         'female': np.histogram(age[~survived & female],
                                bins=bins_)[0]}
>>> # We now plot the data.
    bins = bins_[:-1]
    fig, axes = plt.subplots(1, 2, figsize=(10, 3),
                             sharey=True)
    for ax, sex, color in zip(axes, ('male', 'female'),
                              ('#3345d0', '#cc3dc0')):
        ax.bar(bins, S[sex], bottom=D[sex], color=color,
               width=5, label='survived')
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        ax.bar(bins, D[sex], color='k',
               width=5, label='died')
        ax.set_xlim(0, 80)
        ax.set_xlabel("Age (years)")
        ax.set_title(sex + " survival")
        ax.grid(None)
        ax.legend()

6.	 Let's try to train a LogisticRegression classifier in order to predict the survival 
of people based on their gender, age, and class. We first need to create a train and a 
test dataset:
>>> # We split X and y into train and test datasets.
    (X_train, X_test, y_train, y_test) = \
        ms.train_test_split(X, y, test_size=.05)
>>> # We instantiate the classifier.
    logreg = lm.LogisticRegression()

7.	 We train the model and we get the predicted values on the test set:
>>> logreg.fit(X_train, y_train)
    y_predicted = logreg.predict(X_test)

The following figure shows the actual and predicted results:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ax.imshow(np.vstack((y_test, y_predicted)),
              interpolation='none', cmap='bone')
    ax.set_axis_off()
    ax.set_title("Actual and predicted survival outcomes "
                 "on the test set")
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8.	 To get an estimation of the model's performance, we compute the cross-validation 
score with the cross_val_score() function. This function uses a three-fold 
stratified cross-validation procedure by default, but this can be changed with the  
cv keyword argument:
>>> ms.cross_val_score(logreg, X, y)
array([ 0.78661088,  0.78991597,  0.78059072])

This function returns, for each pair of train and test set, a prediction score (we give 
more details in How it works...).

9.	 The LogisticRegression class accepts a C hyperparameter as an argument. 
This parameter quantifies the regularization strength. To find a good value, we can 
perform a grid search with the generic GridSearchCV class. It takes an estimator as 
input and a dictionary of parameter values. We can also specify the number of cores 
to use on a multicore processor with the n_jobs argument. This new estimator uses 
cross-validation to select the best parameter:
>>> grid = ms.GridSearchCV(
        logreg, {'C': np.logspace(-5, 5, 200)}, n_jobs=4)
    grid.fit(X_train, y_train)
    grid.best_params_
{'C': 0.042}

10.	 Here is the performance of the best estimator:

>>> ms.cross_val_score(grid.best_estimator_, X, y)
array([ 0.77405858,  0.80672269,  0.78902954])

How it works...
Logistic regression is not a regression model, it is a classification model. However, it is closely 
related to linear regression. This model predicts the probability that a binary variable is 1, by 
applying a sigmoid function (more precisely, a logistic function) to a linear combination of the 
variables. The equation of the sigmoid is:
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The following figure shows a logistic function:

A logistic function

If a binary variable has to be obtained, we can round the value to the closest integer.

The parameter w is obtained with an optimization procedure during the learning step.

There's more...
Here are a few references:

ff Logistic regression in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/linear_model.html#logistic-regression

ff Logistic regression on Wikipedia, available at https://en.wikipedia.org/
wiki/Logistic_regression

See also
ff The Getting started with scikit-learn recipe

ff The Learning to recognize handwritten digits with a K-nearest neighbors  
classifier recipe

ff The Using support vector machines for classification tasks recipe

http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
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Learning to recognize handwritten digits 
with a K-nearest neighbors classifier

In this recipe, we will see how to recognize handwritten digits with a K-nearest neighbors  
(K-NN) classifier. This classifier is a simple but powerful model, well-adapted to complex,  
highly nonlinear datasets such as images. We will explain how it works later in this recipe.

How to do it...
1.	 We import the modules:

>>> import numpy as np
    import sklearn
    import sklearn.datasets as ds
    import sklearn.model_selection as ms
    import sklearn.neighbors as nb
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's load the digits dataset, part of the datasets module of scikit-learn.  
This dataset contains handwritten digits that have been manually labeled:
>>> digits = ds.load_digits()
    X = digits.data
    y = digits.target
    print((X.min(), X.max()))
    print(X.shape)
(0.0, 16.0)
(1797, 64)

In the matrix X, each row contains 8*8=64 pixels (in grayscale, values between 0  
and 16). The row-major ordering is used.
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3.	 Let's display some of the images along with their labels:
>>> nrows, ncols = 2, 5
    fig, axes = plt.subplots(nrows, ncols,
                             figsize=(6, 3))
    for i in range(nrows):
        for j in range(ncols):
            # Image index
            k = j + i * ncols
            ax = axes[i, j]
            ax.matshow(digits.images[k, ...],
                       cmap=plt.cm.gray)
            ax.set_axis_off()
            ax.set_title(digits.target[k])

4.	 Now, let's fit a K-NN classifier on the data:
>>> (X_train, X_test, y_train, y_test) = \
        ms.train_test_split(X, y, test_size=.25)
>>> knc = nb.KNeighborsClassifier()
>>> knc.fit(X_train, y_train)

5.	 Let's evaluate the score of the trained classifier on the test dataset:
>>> knc.score(X_test, y_test)
0.987
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6.	 Now, let's see if our classifier can recognize a handwritten digit:

>>> # Let's draw a 1.
    one = np.zeros((8, 8))
    one[1:-1, 4] = 16  # The image values are in [0, 16].
    one[2, 3] = 16
>>> fig, ax = plt.subplots(1, 1, figsize=(2, 2))
    ax.imshow(one, interpolation='none',
              cmap=plt.cm.gray)
    ax.grid(False)
    ax.set_axis_off()
    ax.set_title("One")

>>> # We need to pass a (1, D) array.
    knc.predict(one.reshape((1, -1)))
array([1])

Good job!

How it works...
This example illustrates how to deal with images in scikit-learn. An image is a 2D  
matrix, which has  features. This matrix needs to be flattened when composing the data 
matrix; each row is a full image.

The idea of K-NN is as follows: given a new point in the feature space, find the K closest points 
from the training set and assign the label of the majority of those points.

The distance is generally the Euclidean distance, but other distances can be used too.
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The following plot, obtained from the scikit-learn documentation at http://scikit-learn.
org/stable/modules/neighbors.html, shows the space partition obtained with a 
15-nearest-neighbors classifier on a toy dataset (with three labels):

K-nearest neighbors example

The number  is a hyperparameter of the model. If it is too small, the model will not 
generalize well (high variance). In particular, it will be highly sensitive to outliers. By contrast, 
the precision of the model will worsen if  is too large. At the extreme, if  is equal to the 
total number of points, the model will always predict the exact same value disregarding the 
input (high bias). There are heuristics to choose this hyperparameter.

It should be noted that no model is learned by a K-NN algorithm; the classifier just stores  
all data points and compares any new target points with them. This is an example of  
instance-based learning. It is in contrast to other classifiers such as the logistic regression 
model, which explicitly learns a simple mathematical model on the training data.

The K-NN method works well on complex classification problems that have irregular decision 
boundaries. However, it might be computationally intensive with large training datasets 
because a large number of distances have to be computed for testing. Dedicated tree-based 
data structures such as K-D trees or ball trees can be used to accelerate the search of 
nearest neighbors.

The K-NN method can be used for classification, like here, and also for regression problems. 
The model assigns the average of the target value of the nearest neighbors. In both cases, 
different weighting strategies can be used.

http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
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There's more...
Here are a few references:

ff The K-NN algorithm in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/neighbors.html

ff The K-NN algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/K-nearest_neighbors_algorithm

ff Blog post about how to choose the K hyperparameter, available at http://
datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-
means-clustering/

ff Instance-based learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Instance-based_learning

See also
ff The Predicting who will survive on the Titanic with logistic regression recipe

ff The Using support vector machines for classification tasks recipe

Learning from text – Naive Bayes for Natural 
Language Processing

In this recipe, we show how to handle text data with scikit-learn. Working with text requires 
careful preprocessing and feature extraction. It is also quite common to deal with highly 
sparse matrices.

We will learn to recognize whether a comment posted during a public discussion is considered 
insulting to one of the participants. We will use a labeled dataset from Impermium, released 
during a Kaggle competition (see http://www.kaggle.com/c/detecting-insults-
in-social-commentary).

How to do it...
1.	 Let's import our libraries:

>>> import numpy as np
    import pandas as pd
    import sklearn
    import sklearn.model_selection as ms

http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/
http://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/
http://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Instance-based_learning
http://www.kaggle.com/c/detecting-insults-in-social-commentary
http://www.kaggle.com/c/detecting-insults-in-social-commentary


Machine Learning

310

    import sklearn.feature_extraction.text as text
    import sklearn.naive_bayes as nb
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's open the CSV file with pandas:
>>> df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'troll.csv?raw=true')

3.	 Each row is a comment. We will consider two columns: whether the comment is 
insulting (1) or not (0) and the Unicode-encoded contents of the comment:
>>> df[['Insult', 'Comment']].tail()

4.	 Now, we are going to define the feature matrix X and the labels y:
>>> y = df['Insult']

Obtaining the feature matrix from the text is not trivial. scikit-learn can only work with 
numerical matrices. So how do we convert text into a matrix of numbers? A classical 
solution is to first extract a vocabulary, a list of words used throughout the corpus. 
Then, we count, for each sample, the frequency of each word. We end up with a 
sparse matrix, a huge matrix containing mostly zeros. Here, we do this in two lines. 
We will give more details in How it works....

The general rule here is that whenever one of our features is categorical (that 
is, the presence of a word, a color belonging to a fixed set of  colors, and 
so on), we should vectorize it by considering one binary feature per item in 
the class. For example, instead of a feature color being red, green, or blue, 
we should consider three binary features color_red, color_green, and 
color_blue. We give further references in the There's more... section.
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>>> tf = text.TfidfVectorizer()
    X = tf.fit_transform(df['Comment'])
    print(X.shape)
(3947, 16469)

5.	 There are 3947 comments and 16469 different words. Let's estimate the sparsity of 
this feature matrix:
>>> p = 100 * X.nnz / float(X.shape[0] * X.shape[1])
    print(f"Each sample has ~{p:.2f}% non-zero features.")
Each sample has ~0.15% non-zero features.

6.	 Now, we are going to train a classifier as usual. We first split the data into a train and 
test set:
>>> (X_train, X_test, y_train, y_test) = \
        ms.train_test_split(X, y, test_size=.2)

7.	 We use a Bernoulli Naive Bayes classifier with a grid search on the  parameter:
>>> bnb = ms.GridSearchCV(
        nb.BernoulliNB(),
        param_grid={'alpha': np.logspace(-2., 2., 50)})
    bnb.fit(X_train, y_train)

8.	 Let's check the performance of this classifier on the test dataset:
>>> bnb.score(X_test, y_test)
0.761

9.	 Let's take a look at the words corresponding to the largest coefficients (the words we 
find frequently in insulting comments):
>>> # We first get the words corresponding to each feature
    names = np.asarray(tf.get_feature_names())
    # Next, we display the 50 words with the largest
    # coefficients.
    print(','.join(names[np.argsort(
        bnb.best_estimator_.coef_[0, :])[::-1][:50]]))
you,are,your,to,the,and,of,that,is,in,it,like,have,on,not,for,just
,re,with,be,an,so,this,xa0,all,idiot,what,get,up,go,****,don,stupi
d,no,as,do,can,***,or,but,if,know,who,about,dumb,****,me,******,be
cause,back

10.	 Finally, let's test our estimator on a few test sentences:

>>> print(bnb.predict(tf.transform([
        "I totally agree with you.",
        "You are so stupid."
    ])))
[0 1]
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How it works...
scikit-learn implements several utility functions to obtain a sparse feature matrix from 
text data. A vectorizer such as CountVectorizer() extracts a vocabulary from a corpus 
(fit()) and constructs a sparse representation of the corpus based on this vocabulary 
(transform()). Each sample is represented by the vocabulary's word frequencies. The 
trained instance also contains attributes and methods to map feature indices to the 
corresponding words (get_feature_names()) and conversely (vocabulary_).

N-grams can also be extracted: those are pairs or tuples of words occurring successively 
(ngram_range keyword).

The frequency of the words can be weighted in different ways. Here, we have used tf-idf, or 
term frequency-inverse document frequency. This quantity reflects how important a word 
is to a corpus. Frequent words in comments have a high weight except if they appear in most 
comments (which means that they are common terms, for example, "the" and "and" would be 
filtered out using this technique).

Naive Bayes algorithms are Bayesian methods based on the naive assumption of 
independence between the features. This strong assumption drastically simplifies the 
computations and leads to very fast yet decent classifiers.

There's more...
Here are a few references:

ff Text feature extraction in scikit-learn's documentation, available at http://
scikit-learn.org/stable/modules/feature_extraction.html#text-
feature-extraction

ff Term frequency-inverse document-frequency on Wikipedia, available at https://
en.wikipedia.org/wiki/tf-idf

ff Vectorizer in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/generated/sklearn.feature_extraction.
DictVectorizer.html

ff Naive Bayes classifier on Wikipedia, at https://en.wikipedia.org/wiki/
Naive_Bayes_classifier

ff Naive Bayes in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/naive_bayes.html

ff Document classification example in scikit-learn's documentation, at http://
scikit-learn.org/stable/datasets/twenty_newsgroups.html

http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://en.wikipedia.org/wiki/tf-idf
https://en.wikipedia.org/wiki/tf-idf
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
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Here are other natural language processing libraries in Python:

ff NLTK available at http://www.nltk.org

ff spaCy available at https://spacy.io/

ff textacy available at http://textacy.readthedocs.io/en/stable/

See also
ff The Predicting who will survive on the Titanic with logistic regression recipe

ff The Learning to recognize handwritten digits with a K-nearest neighbors  
classifier recipe

ff The Using support vector machines for classification tasks recipe

Using support vector machines for 
classification tasks

In this recipe, we introduce support vector machines, or SVMs. These models can be used 
for classification and regression. Here, we illustrate how to use linear and nonlinear SVMs 
on a simple classification task. This recipe is inspired by an example in the scikit-learn 
documentation (see http://scikit-learn.org/stable/auto_examples/svm/plot_
svm_nonlinear.html).

How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import pandas as pd
    import sklearn
    import sklearn.datasets as ds
    import sklearn.model_selection as ms
    import sklearn.svm as svm
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We generate 2D points and assign a binary label according to a linear operation on 
the coordinates:
>>> X = np.random.randn(200, 2)
    y = X[:, 0] + X[:, 1] > 1

http://www.nltk.org
https://spacy.io/
http://textacy.readthedocs.io/en/stable/
http://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html
http://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html
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3.	 We now fit a linear Support Vector Classifier (SVC). This classifier tries to separate 
the two groups of points with a linear boundary (a line here, but more generally  
a hyperplane):
>>> # We train the classifier.
    est = svm.LinearSVC()
    est.fit(X, y)

4.	 We define a function that displays the boundaries and decision function of a  
trained classifier:
>>> # We generate a grid in the square [-3,3 ]^2.
    xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
                         np.linspace(-3, 3, 500))
    
    # This function takes a SVM estimator as input.
    
    
    def plot_decision_function(est, title):
        # We evaluate the decision function on the grid.
        Z = est.decision_function(np.c_[xx.ravel(),
                                        yy.ravel()])
        Z = Z.reshape(xx.shape)
        cmap = plt.cm.Blues
    
        # We display the decision function on the grid.
        fig, ax = plt.subplots(1, 1, figsize=(5, 5))
        ax.imshow(Z,
                  extent=(xx.min(), xx.max(),
                          yy.min(), yy.max()),
                  aspect='auto',
                  origin='lower',
                  cmap=cmap)
    
        # We display the boundaries.
        ax.contour(xx, yy, Z, levels=[0],
                   linewidths=2,
                   colors='k')
    
        # We display the points with their true labels.
        ax.scatter(X[:, 0], X[:, 1],
                   s=50, c=.5 + .5 * y,
                   edgecolors='k',
                   lw=1, cmap=cmap,
                   vmin=0, vmax=1)
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        ax.axhline(0, color='k', ls='--')
        ax.axvline(0, color='k', ls='--')
        ax.axis([-3, 3, -3, 3])
        ax.set_axis_off()
        ax.set_title(title)

5.	 Let's take a look at the classification results with the linear SVC:
>>> ax = plot_decision_function(
        est, "Linearly separable, linear SVC")

The linear SVC tried to separate the points with a line and it did a pretty good  
job here.

6.	 We now modify the labels with an XOR function. A point's label is 1 if the coordinates 
have different signs. This classification is not linearly separable. Therefore, a linear 
SVC fails completely:
>>> y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
    
    # We train the classifier.
    est = ms.GridSearchCV(svm.LinearSVC(),
                          {'C': np.logspace(-3., 3., 10)})
    est.fit(X, y)
    print("Score: {0:.1f}".format(
          ms.cross_val_score(est, X, y).mean()))
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    # We plot the decision function.
    ax = plot_decision_function(
        est, "XOR, linear SVC")
Score: 0.5

7.	 Fortunately, it is possible to use nonlinear SVCs by using nonlinear kernels. Kernels 
specify a nonlinear transformation of the points into a higher dimensional space. 
Transformed points in this space are assumed to be more linearly separable. By 
default, the SVC classifier in scikit-learn uses the Radial Basis Function (RBF) kernel:

>>> y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
    
    est = ms.GridSearchCV(
        svm.SVC(), {'C': np.logspace(-3., 3., 10),
                    'gamma': np.logspace(-3., 3., 10)})
    est.fit(X, y)
    print("Score: {0:.3f}".format(
          ms.cross_val_score(est, X, y).mean()))
    
    plot_decision_function(
        est.best_estimator_, "XOR, non-linear SVC")
Score: 0.955
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This time, the nonlinear SVC successfully managed to classify these nonlinearly 
separable points.

How it works...
A two-class linear SVC tries to find a hyperplane (defined as a linear equation) that best 
separates the two sets of points (grouped according to their labels). There is also the 
constraint that this separating hyperplane needs to be as far as possible from the points.  
This method works best when such a hyperplane exists. Otherwise, this method can  
fail completely, as we saw in the XOR example. XOR is known as being a nonlinearly  
separable operation.

The SVM classes in scikit-learn have a C hyperparameter. This hyperparameter trades off 
misclassification of training examples against simplicity of the decision surface. A low C 
value makes the decision surface smooth, while a high C value aims at classifying all training 
examples correctly. This is another example where a hyperparameter quantifies the bias-
variance trade-off. This hyperparameter can be chosen with cross-validation and grid search.

The linear SVC can also be extended to multiclass problems. The multiclass SVC is directly 
implemented in scikit-learn.
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The nonlinear SVC works by considering a nonlinear transformation  from the original 
space into a higher dimensional space. This nonlinear transformation can increase 
the linear separability of the classes. In practice, all dot products are replaced by the 

 kernel.

Non-linear SVC

There are several widely-used nonlinear kernels. By default, SVC uses Gaussian radial  
basis functions:

Here,  is a hyperparameter of the model that can be chosen with grid search and  
cross-validation.

The  function does not need to be computed explicitly. This is the kernel trick; it suffices to 
know the kernel . The existence of a function  corresponding to a given kernel  
is guaranteed by a mathematical theorem in functional analysis (Mercer's theorem).

There's more...
Here are a few references about support vector machines:

ff Exclusive OR on Wikipedia, available at https://en.wikipedia.org/wiki/
Exclusive_or

ff Support vector machines on Wikipedia, available at https://en.wikipedia.
org/wiki/Support_vector_machine

ff SVMs in scikit-learn's documentation, available at http://scikit-learn.org/
stable/modules/svm.html

https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
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ff Kernel trick on Wikipedia, available at https://en.wikipedia.org/wiki/
Kernel_method

ff Notes about the kernel trick, available at http://www.eric-kim.net/eric-
kim-net/posts/1/kernel_trick.html

See also
ff The Predicting who will survive on the Titanic with logistic regression recipe

ff The Learning to recognize handwritten digits with a K-nearest neighbors  
classifier recipe

Using a random forest to select important 
features for regression

Decision trees are frequently used to represent workflows or algorithms. They also form a 
method for nonparametric supervised learning. A tree mapping observations to target values 
is learned on a training set and gives the outcomes of new observations.

Random forests are ensembles of decision trees. Multiple decision trees are trained and 
aggregated to form a model that is more performant than any of the individual trees. This 
general idea is the purpose of ensemble learning.

There are many types of ensemble methods. Random forests are an instance of bootstrap 
aggregating, also called bagging, where models are trained on randomly drawn subsets of 
the training set.

Random forests yield information about the importance of each feature for the classification 
or regression task. In this recipe, we will find the most influential features of Boston house 
prices using a classic dataset that contains a range of diverse indicators about the houses' 
neighborhood.

How to do it...
1.	 We import the packages:

>>> import numpy as np
    import sklearn as sk
    import sklearn.datasets as skd
    import sklearn.ensemble as ske
    import matplotlib.pyplot as plt
    %matplotlib inline

https://en.wikipedia.org/wiki/Kernel_method
https://en.wikipedia.org/wiki/Kernel_method
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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2.	 We load the Boston dataset:
>>> data = skd.load_boston()

The details of this dataset can be found in data['DESCR']. Here is the description 
of some features:

�� CRIM: Per capita crime rate by town

�� NOX: Nitric oxide concentration (parts per 10 million)

�� RM: Average number of rooms per dwelling

�� AGE: Proportion of owner-occupied units built prior to 1940

�� DIS: Weighted distances to five Boston employment centres

�� PTRATIO: Pupil-teacher ratio by town

�� LSTAT: Percentage of lower status of the population

�� MEDV: Median value of owner-occupied homes in $1000s

The target value is MEDV.

3.	 We create a RandomForestRegressor model:
>>> reg = ske.RandomForestRegressor()

4.	 We get the samples and the target values from this dataset:
>>> X = data['data']
    y = data['target']

5.	 Let's fit the model:
>>> reg.fit(X, y)

6.	 The importance of our features can be found in reg.feature_importances_.  
We sort them by decreasing order of importance:
>>> fet_ind = np.argsort(reg.feature_importances_)[::-1]
    fet_imp = reg.feature_importances_[fet_ind]

7.	 Finally, we plot a histogram of the features' importance by creating a pandas Series:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    labels = data['feature_names'][fet_ind]
    pd.Series(fet_imp, index=labels).plot('bar', ax=ax)
    ax.set_title('Features importance')
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8.	 We find that RM (number of rooms per dwelling) and LSTAT (proportion of lower 
status of the population) are the most important features determining the price of a 
house. As an illustration, here is a scatter plot of the price as a function of LSTAT:
>>> fig, ax = plt.subplots(1, 1)
    ax.scatter(X[:, -1], y)
    ax.set_xlabel('LSTAT indicator')
    ax.set_ylabel('Value of houses (k$)')

9.	 Optionally, we can display a graphic representation of the trees, using the Graphviz 
package (available at http://www.graphviz.org):

>>> from sklearn import tree
    tree.export_graphviz(reg.estimators_[0],
                         'tree.dot')

http://www.graphviz.org
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This command exports the first estimator of the random forest into a .dot file. We 
can convert this file into an image with the dot command-line executable (available in 
the graphviz package). The following image shows a small part of the image, which 
is otherwise too large to display:

Tree

The following image shows a close-up of the tree:

Zoom-out tree

The intermediary nodes contain decisions of the form feature <= value. Every input point 
starts from the roof and ends up in a leaf node, depending on which conditions are satisfied. 
The leaf node's value gives the estimated target value for the input point. When using a 
random forest, an average of the values across trees is computed.

How it works...
Several algorithms can be used to train a decision tree. scikit-learn uses the CART, or 
Classification and Regression Trees algorithm. This algorithm constructs binary trees using 
the feature and threshold that yield the largest information gain at each node. Terminal nodes 
give the outcomes of input values.
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Decision trees are simple to understand. They can also be visualized with pydot, a Python 
package for drawing graphs and trees. This is useful when we want to understand what a tree 
has learned exactly (white box model); the conditions that apply on the observations at each 
node can be expressed easily with Boolean logic.

However, decision trees may suffer from overfitting, notably when they are too deep, and 
they might be unstable. Additionally, global convergence toward an optimal model is not 
guaranteed, particularly when greedy algorithms are used for training. These problems  
can be mitigated by using ensembles of decision trees, notably random forests.

In a random forest, multiple decision trees are trained on bootstrap samples of the training 
dataset (randomly sampled with replacement). Predictions are made with the averages of 
individual trees' predictions (bootstrap aggregating or bagging). Additionally, random subsets 
of the features are chosen at each node (random subspace method). These methods lead to 
an overall better model than the individual trees.

There's more...
Here are a few references:

ff Ensemble learning in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/ensemble.html

ff API reference of RandomForestRegressor available at http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

ff Random forests on Wikipedia, available at https://en.wikipedia.org/wiki/
Random_forest

ff Decision tree learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Decision_tree_learning

ff Bootstrap aggregating on Wikipedia, available at https://en.wikipedia.org/
wiki/Bootstrap_aggregating

ff Random subspace method on Wikipedia, available at https://en.wikipedia.
org/wiki/Random_subspace_method

ff Ensemble learning on Wikipedia, available at https://en.wikipedia.org/
wiki/Ensemble_learning

http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Random_subspace_method
https://en.wikipedia.org/wiki/Random_subspace_method
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Ensemble_learning
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See also
ff The Using support vector machines for classification tasks recipe

Reducing the dimensionality of a dataset 
with a principal component analysis

In the previous recipes, we presented supervised learning methods; our data points came 
with discrete or continuous labels, and the algorithms were able to learn the mapping from 
the points to the labels.

Starting with this recipe, we will present unsupervised learning methods. These methods 
might be helpful prior to running a supervised learning algorithm. They can give a first insight 
into the data.

Let's assume that our data consists of points  without any labels. The goal is to discover 
some form of hidden structure in this set of points. Frequently, data points have intrinsic low 
dimensionality: a small number of features suffice to accurately describe the data. However, 
these features might be hidden among many other features not relevant to the problem. 
Dimension reduction can help us find these structures. This knowledge can considerably 
improve the performance of subsequent supervised learning algorithms.

Another useful application of unsupervised learning is data visualization; high-dimensional 
datasets are hard to visualize in 2D or 3D. Projecting the data points on a subspace or 
submanifold yields more interesting visualizations.

In this recipe, we will illustrate a basic unsupervised linear method, Principal Component 
Analysis (PCA). This algorithm lets us project data points linearly on a low-dimensional 
subspace. Along the principal components, which are vectors forming a basis of this low-
dimensional subspace, the variance of the data points is maximum.

We will use the classic Iris flower dataset as an example. This dataset contains the width 
and length of the petal and sepal of 150 iris flowers. These flowers belong to one of three 
categories: Iris-setosa, Iris-virginica, and Iris-versicolor. We have access to 
the category in this dataset (labeled data). However, because we are interested in illustrating 
an unsupervised learning method, we will only use the data matrix without the labels.

How to do it...
1.	 We import NumPy, Matplotlib, and scikit-learn:

>>> import numpy as np
    import sklearn
    import sklearn.decomposition as dec
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    import sklearn.datasets as ds
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 The Iris flower dataset is available in the datasets module of scikit-learn:
>>> iris = ds.load_iris()
    X = iris.data
    y = iris.target
    print(X.shape)
(150, 4)

3.	 Each row contains four parameters related to the morphology of the flower.  
Let's display the first two dimensions. The color reflects the iris variety of the  
flower (the label, between 0 and 2):
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.scatter(X[:, 0], X[:, 1], c=y,
               s=30, cmap=plt.cm.rainbow)

If you're reading the printed version of this book, you might not be 
able to distinguish the colors. You will find the colored images on 
the book's website.

4.	 We now apply PCA on the dataset to get the transformed matrix. This operation can 
be done in a single line with scikit-learn: we instantiate a PCA model and call the 
fit_transform() method. This function computes the principal components and 
projects the data on them:
>>> X_bis = dec.PCA().fit_transform(X)
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5.	 We now display the same dataset, but in a new coordinate system (or equivalently,  
a linearly transformed version of the initial dataset):
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.scatter(X_bis[:, 0], X_bis[:, 1], c=y,
               s=30, cmap=plt.cm.rainbow)

Points belonging to the same classes are now grouped together, even though the PCA 
estimator did not use the labels. The PCA was able to find a projection maximizing  
the variance, which corresponds here to a projection where the classes are  
well separated.

6.	 The sklearn.decomposition module contains several variants of the classic PCA 
estimator: ProbabilisticPCA, SparsePCA, RandomizedPCA, KernelPCA, and 
others. As an example, let's take a look at KernelPCA, a nonlinear version of PCA:

>>> X_ter = dec.KernelPCA(kernel='rbf').fit_transform(X)
    fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.scatter(X_ter[:, 0], X_ter[:, 1], c=y, s=30,
               cmap=plt.cm.rainbow)
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How it works...
Let's look at the mathematical ideas behind PCA. This method is based on a matrix 
decomposition called Singular Value Decomposition (SVD):

Here,  is the  data matrix,  and  are orthogonal matrices, and  is an  
diagonal matrix.

PCA transforms  into  defined by:

The diagonal elements of  are the singular values of . By convention, they are generally 
sorted in descending order. The columns of  are orthonormal vectors called the left singular 
vectors of . Therefore, the columns of  are the left singular vectors multiplied by the 
singular values.

In the end, PCA converts the initial set of observations, which are made of possibly correlated 
variables, into vectors of linearly uncorrelated variables called principal components.

The first new feature (or first component) is a transformation of all original features such that 
the dispersion (variance) of the data points is the highest in that direction. In the subsequent 
principal components, the variance is decreasing. In other words, PCA gives us an alternative 
representation of our data where the new features are sorted according to how much they 
account for the variability of the points.

There's more...
Here are a few further references:

ff Iris flower dataset on Wikipedia, available at https://en.wikipedia.org/wiki/
Iris_flower_data_set

ff PCA on Wikipedia, available at https://en.wikipedia.org/wiki/Principal_
component_analysis

ff SVD decomposition on Wikipedia, available at https://en.wikipedia.org/
wiki/Singular_value_decomposition

ff Iris dataset example available at http://scikit-learn.org/stable/auto_
examples/datasets/plot_iris_dataset.html

ff Decompositions in scikit-learn's documentation, available at http://scikit-
learn.org/stable/modules/decomposition.html

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
http://scikit-learn.org/stable/modules/decomposition.html
http://scikit-learn.org/stable/modules/decomposition.html
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ff Unsupervised learning tutorial with scikit-learn, available at http://scikit-
learn.org/dev/tutorial/statistical_inference/unsupervised_
learning.html

See also
ff The Detecting hidden structures in a dataset with clustering recipe

Detecting hidden structures in a dataset 
with clustering

A large part of unsupervised learning is devoted to the clustering problem. The goal is to 
group similar points together in a totally unsupervised way. Clustering is a hard problem, as 
the very definition of clusters (or groups) is not necessarily well posed. In most datasets, 
stating that two points should belong to the same cluster may be context-dependent or  
even subjective.

There are many clustering algorithms. We will see a few of them in this recipe, applied to a  
toy example.

How to do it...
1.	 Let's import the libraries:

>>> from itertools import permutations
    import numpy as np
    import sklearn
    import sklearn.decomposition as dec
    import sklearn.cluster as clu
    import sklearn.datasets as ds
    import sklearn.model_selection as ms
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's generate a random dataset with three clusters:
>>> X, y = ds.make_blobs(n_samples=200,
                         n_features=2,
                         centers=3,
                         cluster_std=1.5,
                         )

http://scikit-learn.org/dev/tutorial/statistical_inference/unsupervised_learning.html
http://scikit-learn.org/dev/tutorial/statistical_inference/unsupervised_learning.html
http://scikit-learn.org/dev/tutorial/statistical_inference/unsupervised_learning.html
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3.	 We need a couple of functions to relabel and display the results of the  
clustering algorithms:
>>> def relabel(cl):
        """Relabel a clustering with three clusters
        to match the original classes."""
        if np.max(cl) != 2:
            return cl
        perms = np.array(list(permutations((0, 1, 2))))
        i = np.argmin([np.sum(np.abs(perm[cl] - y))
                       for perm in perms])
        p = perms[i]
        return p[cl]
>>> def display_clustering(labels, title):
        """Plot the data points with the cluster
        colors."""
    
        # We relabel the classes when there are 3 clusters
        labels = relabel(labels)
        fig, axes = plt.subplots(1, 2, figsize=(8, 3),
                                 sharey=True)
        # Display the points with the true labels on the
        # left, and with the clustering labels on the
        # right.
        for ax, c, title in zip(
                axes,
                [y, labels],
                ["True labels", title]):
            ax.scatter(X[:, 0], X[:, 1], c=c, s=30,
                       linewidths=0, cmap=plt.cm.rainbow)
            ax.set_title(title)
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4.	 Now, we cluster the dataset with the K-means algorithm, a classic and simple 
clustering algorithm:
>>> km = clu.KMeans()
    km.fit(X)
    display_clustering(km.labels_, "KMeans")

If you're reading the printed version of this book, you might not be 
able to distinguish the colors. You will find the colored images on 
the book's website.

5.	 This algorithm needs to know the number of clusters at initialization time. In general, 
however, we do not necessarily know the number of clusters in the dataset. Here, 
let's try with n_clusters=3 (that's cheating, because we happen to know that there 
are three clusters):
>>> km = clu.KMeans(n_clusters=3)
    km.fit(X)
    display_clustering(km.labels_, "KMeans(3)")

6.	 Let's try a few other clustering algorithms implemented in scikit-learn. The simplicity 
of the API makes it really easy to try different methods; it is just a matter of changing 
the name of the class:

>>> fig, axes = plt.subplots(2, 3,
                             figsize=(10, 7),
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                             sharex=True,
                             sharey=True)
    
    axes[0, 0].scatter(X[:, 0], X[:, 1],
                       c=y, s=30,
                       linewidths=0,
                       cmap=plt.cm.rainbow)
    axes[0, 0].set_title("True labels")
    
    for ax, est in zip(axes.flat[1:], [
        clu.SpectralClustering(3),
        clu.AgglomerativeClustering(3),
        clu.MeanShift(),
        clu.AffinityPropagation(),
        clu.DBSCAN(),
    ]):
        est.fit(X)
        c = relabel(est.labels_)
        ax.scatter(X[:, 0], X[:, 1], c=c, s=30,
                   linewidths=0, cmap=plt.cm.rainbow)
        ax.set_title(est.__class__.__name__)
    
    # Fix the spacing between subplots.
    fig.tight_layout()

The first two algorithms required the number of clusters as input. The next one did not, but it 
was able to find the right number. The last two failed at finding the correct number of clusters 
(this is overclustering—too many clusters have been found).
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How it works...
The K-means clustering algorithm consists of partitioning the data points  into  clusters  
so as to minimize the within-cluster sum of squares:

Here,  is the center of the cluster  (average of all points in ).

Although it is very hard to solve this problem exactly, approximation algorithms exist. A 
popular one is Lloyd's algorithm. It consists of starting from an initial set of  means  and 
alternating between two steps:

ff In the assignment step, the points are assigned to the cluster associated to the 
closest mean

ff In the update step, the means are recomputed from the last assignments

The algorithm converges to a solution that is not guaranteed to be optimal.

The expectation-maximization algorithm can be seen as a probabilistic version of the 
K-means algorithm. It is implemented in the mixture module of scikit-learn.

The other clustering algorithms used in this recipe are explained in the scikit-learn 
documentation. There is no clustering algorithm that works uniformly better than all the 
others, and every algorithm has its strengths and weaknesses. You will find more details  
in the references in the next section.

There's more...
Here are a few references:

ff The K-means clustering algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/K-means_clustering

ff The expectation-maximization algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/Expectation-maximization_algorithm

ff Clustering in scikit-learn's documentation, available at http://scikit-learn.
org/stable/modules/clustering.html

ff t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering method, at 
https://lvdmaaten.github.io/tsne/

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html
https://lvdmaaten.github.io/tsne/
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ff scikit-learn t-SNE implementation, at http://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE.html

ff Uniform Manifold Approximation and Projection (UMAP), a t-SNE alternative,  
at https://github.com/lmcinnes/umap

See also
ff The Reducing the dimensionality of a dataset with a principal component  

analysis recipe

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/lmcinnes/umap
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9
Numerical Optimization

In this chapter, we will cover the following topics:

ff Finding the root of a mathematical function

ff Minimizing a mathematical function

ff Fitting a function to data with nonlinear least squares

ff Finding the equilibrium state of a physical system by minimizing its potential energy

Introduction
Mathematical optimization is a wide area of applied mathematics. It consists of finding 
the best solution to a given problem. Many real-world problems can be expressed in an 
optimization framework. What is the shortest path on the road from point A to point B? 
What is the best strategy to solve a puzzle? What is the most energy-efficient shape of a car 
(automotive aerodynamics)? Mathematical optimization is relevant in many domains including 
engineering, economics, finance, operations research, image processing, data analysis,  
and others.

Mathematically, an optimization problem consists of finding the maximum or minimum 
value of a function. We sometimes use the terms continuous optimization or discrete 
optimization, according to whether the function variable is real-valued or discrete.

In this chapter, we will focus on numerical methods for solving continuous optimization 
problems. Many optimization algorithms are implemented in the scipy.optimize module. 
We will come across other instances of optimization problems in several other chapters of 
this book. For example, we will see discrete optimization problems in Chapter 14, Graphs, 
Geometry, and Geographic Information Systems.

In this introduction, we give a few important definitions and key concepts related to 
mathematical optimization.
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The objective function
We will study methods to find a root or an extremum of a real-valued function  called the 
objective function. An extremum is either a maximum or a minimum of a function. It can 
accept one or several variables, it can be continuous or not, and so on. The more assumptions 
we have about the function, the easier it can be optimized.

A maximum of  is a minimum of - , so any minimization algorithm can be 
used to maximize a function by considering the opposite of that function. 
Therefore, from now on, when we talk about minimization, we will really mean 
minimization or maximization.

Convex functions are easier to optimize than non-convex functions, as they satisfy certain 
useful properties. For example, any local minimum is necessarily a global minimum. The field 
of convex optimization deals with algorithms that are specifically adapted to the optimization 
of convex functions on convex domains. Convex optimization is an advanced topic, and we 
can't cover much of it here.

Differentiable functions have gradients, and these gradients can be particularly useful in 
optimization algorithms. Similarly, continuous functions are typically easier to optimize than 
non-continuous functions.

Also, functions with a single variable are easier to optimize than functions with  
multiple variables.

The choice of the most adequate optimization algorithm depends on the properties satisfied 
by the objective function.

Local and global minima
A minimum of a function  is a point  such that , for a particular set of points  
in . When this inequality is satisfied on the whole set , we refer to  as a global minimum. 
When it is only satisfied locally (around the point ), we say that  is a local minimum.  
A maximum is defined similarly.

If  is differentiable, an extremum  satisfies:

Therefore, finding the extrema of an objective function is closely related to finding the roots of 
the derivative. However, a point  satisfying this property is not necessarily an extremum.
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It is more difficult to find global minima than to find local minima. In general, when an 
algorithm finds a local minimum, there is no guarantee that it is also a global minimum. 
Frequently, an algorithm seeking a global minimum stays stuck in a local minimum. This 
problem needs to be accounted for, specifically in global minimization algorithms. However, 
things are simpler with convex functions since these do not have strictly local minima. 
Moreover, there are many cases where finding a local minimum is good enough (for example, 
when looking for a good solution to a problem rather than the absolute best solution).

Finally, let's note that a global minimum or maximum does not necessarily exist (the function 
can go to infinity). In that case, it may be necessary to constrain the space search; this is the 
subject of constrained optimization.

Local and global extrema (from https://en.wikipedia.org/wiki/Maxima_and_minima#/media/
File:Extrema_example_original.svg)

Constrained and unconstrained optimization
ff Unconstrained optimization: Finding the minimum of a function  on the full set  

where  is defined

ff Constrained optimization: Finding the minimum of a function  on a subset  of ; 
this set is generally described by equalities and inequalities:

Here, the  and  are arbitrary functions defining the constraints.

For example, optimizing the aerodynamic shape of a car requires constraints on parameters 
such as the volume and mass of the car, the cost of the production process, and others.

https://en.wikipedia.org/wiki/Maxima_and_minima#/media/File:Extrema_example_original.svg
https://en.wikipedia.org/wiki/Maxima_and_minima#/media/File:Extrema_example_original.svg
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Deterministic and stochastic algorithms
Some global optimization algorithms are deterministic, others are stochastic. Stochastic 
methods are useful when dealing with the highly irregular and noisy functions that are typical 
of real-world data. Deterministic algorithms may be stuck in local minima, particularly if there 
are many non-global local minima. By spending some time exploring the space , stochastic 
algorithms may have a chance of finding a global minimum.

References
ff The SciPy lecture notes are an excellent reference on mathematical optimization 

with SciPy, and they are available at http://scipy-lectures.github.io/
advanced/mathematical_optimization/index.html

ff Reference manual of scipy.optimize available at http://docs.scipy.org/
doc/scipy/reference/optimize.html

ff Numerical Analysis on Awesome Math, at https://github.com/rossant/
awesome-math/#numerical-analysis

ff Overview of mathematical optimization on Wikipedia, available at https://
en.wikipedia.org/wiki/Mathematical_optimization

ff Extrema, minima, and maxima on Wikipedia, available at https://
en.wikipedia.org/wiki/Maxima_and_minima

ff Convex optimization on Wikipedia, available at https://en.wikipedia.org/
wiki/Convex_optimization

Finding the root of a mathematical function
In this short recipe, we will see how to use SciPy to find the root of a simple mathematical 
function of a single real variable.

http://scipy-lectures.github.io/advanced/mathematical_optimization/index.html
http://scipy-lectures.github.io/advanced/mathematical_optimization/index.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
https://github.com/rossant/awesome-math/#numerical-analysis
https://github.com/rossant/awesome-math/#numerical-analysis
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Convex_optimization
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How to do it...
1.	 Let's import NumPy, SciPy, scipy.optimize, and matplotlib:

>>> import numpy as np
    import scipy as sp
    import scipy.optimize as opt
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define the mathematical function  in Python. We will try to find 
a root of this function numerically. Here, a root corresponds to a fixed point of the 
cosine function:
>>> def f(x):
        return np.cos(x) - x

3.	 Let's plot this function on the interval  (using 1000 samples):
>>> x = np.linspace(-5, 5, 1000)
    y = f(x)
    fig, ax = plt.subplots(1, 1, figsize=(5, 3))
    ax.axhline(0, color='k')
    ax.plot(x, y)
    ax.set_xlim(-5, 5)

4.	 We see that this function has a unique root on this interval (this is because the 
function's sign changes on this interval). The scipy.optimize module contains 
a few root-finding functions that are adapted here. For example, the bisect() 
function implements the bisection method (also called the dichotomy method).  
It takes as input the function and the interval to find the root in:
>>> opt.bisect(f, -5, 5)
0.739
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Let's visualize the root on the plot:

>>> fig, ax = plt.subplots(1, 1, figsize=(5, 3))
    ax.axhline(0, color='k')
    ax.plot(x, y)
    # The zorder argument is used to put
    # the dot on top of the other elements.
    ax.scatter([_], [0], c='r', s=100, 
               zorder=10)
    ax.set_xlim(-5, 5)

5.	 A faster and more powerful method is brentq() (Brent's method). This algorithm 
also requires f to be continuous and f(a) and f(b) to have different signs:

>>> opt.brentq(f, -5, 5)
0.739

The brentq() method is faster than bisect(). If the conditions are satisfied, it is a 
good idea to try Brent's method first:
>>> %timeit opt.bisect(f, -5, 5)
    %timeit opt.brentq(f, -5, 5)
    34.5 µs ± 855 ns per loop (mean ± std. dev. of 7 runs,  
    10000 loops each)
    7.71 µs ± 170 ns per loop (mean ± std. dev. of 7 runs,  
    100000 loops each)

How it works...
The bisection method consists of iteratively cutting an interval in half and selecting a 
subinterval that necessarily contains a root. This method is based on the fact that, if  is a 
continuous function of a single real variable, , and , then  has a root in  
(intermediate value theorem).
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Brent's method is a popular hybrid algorithm combining root bracketing, interval bisection, 
and inverse quadratic interpolation. It is a default method that works in many cases.

Let's also mention Newton's method. The idea is to approximate  by its tangent (found 
with ) and find the intersection with the  line. If  is regular enough, the intersection 
point will be closer to the actual root of . By iterating this operation, the algorithm may 
converge to the sought solution.

There's more…
Here are a few references:

ff Documentation of scipy.optimize, available at http://docs.scipy.org/
doc/scipy/reference/optimize.html#root-finding

ff A course on root finding with SciPy, available at http://quant-econ.net/scipy.
html#roots-and-fixed-points

ff The bisection method on Wikipedia, available at https://en.wikipedia.org/
wiki/Bisection_method

ff The intermediate value theorem on Wikipedia, available at https://
en.wikipedia.org/wiki/Intermediate_value_theorem

ff Brent's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Brent%27s_method

ff Newton's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Newton%27s_method

See also
ff The Minimizing a mathematical function recipe

Minimizing a mathematical function
Mathematical optimization deals mainly with the problem of finding a minimum or a maximum 
of a mathematical function. Frequently, a real-world numerical problem can be expressed as a 
function minimization problem. Such examples can be found in statistical inference, machine 
learning, graph theory, and other areas.

Although there are many function minimization algorithms, a generic and universal method 
does not exist. Therefore, it is important to understand the differences between existing 
classes of algorithms, their specificities, and their respective use cases. We should also 
have a good understanding of our problem and our objective function; is it continuous, 
differentiable, convex, multidimensional, regular, or noisy? Is our problem constrained or 
unconstrained? Are we seeking local or global minima?

http://docs.scipy.org/doc/scipy/reference/optimize.html#root-finding
http://docs.scipy.org/doc/scipy/reference/optimize.html#root-finding
http://quant-econ.net/scipy.html#roots-and-fixed-points
http://quant-econ.net/scipy.html#roots-and-fixed-points
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Intermediate_value_theorem
https://en.wikipedia.org/wiki/Brent%27s_method
https://en.wikipedia.org/wiki/Brent%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
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In this recipe, we will demonstrate a few usage examples of the function minimization 
algorithms implemented in SciPy.

How to do it...
1.	 We import the libraries:

>>> import numpy as np
    import scipy as sp
    import scipy.optimize as opt
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 First, let's define a simple mathematical function (the opposite of the cardinal  
sine). This function has many local minima but a single global minimum  
(https://en.wikipedia.org/wiki/Sinc_function):
>>> def f(x): 
        return 1 - np.sin(x) / x

3.	 Let's plot this function on the interval  (with 1000 samples):
>>> x = np.linspace(-20., 20., 1000)
    y = f(x)
>>> fig, ax = plt.subplots(1, 1, figsize=(5, 5)) 
    ax.plot(x, y)

https://en.wikipedia.org/wiki/Sinc_function
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4.	 The scipy.optimize module comes with many function minimization routines. The 
minimize() function offers a unified interface to many algorithms. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (the default algorithm in minimize()) 
gives good results in general. The minimize() function requires an initial point as 
argument. For scalar univariate functions, we can also use minimize_scalar():
>>> x0 = 3
    xmin = opt.minimize(f, x0).x

Starting from , the algorithm was able to find the actual global minimum, as 
shown in the following figure:
>>> fig, ax = plt.subplots(1, 1, figsize=(5, 5))
    ax.plot(x, y)
    ax.scatter(x0, f(x0), marker='o', s=300)
    ax.scatter(xmin, f(xmin), marker='v', s=300, 
               zorder=20)
    ax.set_xlim(-20, 20)
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5.	 Now, if we start from an initial point that is further away from the actual global 
minimum, the algorithm converges towards a local minimum only:
>>> x0 = 10
    xmin = opt.minimize(f, x0).x
>>> fig, ax = plt.subplots(1, 1, figsize=(5, 5))
    ax.plot(x, y)
    ax.scatter(x0, f(x0), marker='o', s=300)
    ax.scatter(xmin, f(xmin), marker='v', s=300, 
               zorder=20)
    ax.set_xlim(-20, 20)

6.	 Like most function minimization algorithms, the BFGS algorithm is efficient at finding 
local minima, but not necessarily global minima, especially on complicated or noisy 
objective functions. A general strategy to overcome this problem is to combine such 
algorithms with an exploratory grid search on the initial points. Another option is to 
use a different class of algorithms based on heuristics and stochastic methods. An 
example is the basin-hopping algorithm:
>>> # We use 1000 iterations.
    xmin = opt.basinhopping(f, x0, 1000).x
>>> fig, ax = plt.subplots(1, 1, figsize=(5, 5))
    ax.plot(x, y)
    ax.scatter(x0, f(x0), marker='o', s=300)
    ax.scatter(xmin, f(xmin), marker='v', s=300,
               zorder=20)
    ax.set_xlim(-20, 20)
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This time, the algorithm was able to find the global minimum.

7.	 Now, let's define a new function, in two dimensions this time, called the  
Lévi function:

This function is very irregular and may be difficult to minimize in general. The 
expected global minimum is . The Lévi function is one of the many test 
functions for optimization that researchers have developed to study and 
benchmark optimization algorithms (https://en.wikipedia.org/wiki/Test_
functions_for_optimization):

>>> def g(X):
        # X is a 2*N matrix, each column contains
        # x and y coordinates.
        x, y = X
        return (np.sin(3 * np.pi * x)**2 +
                (x - 1)**2 * (1 + np.sin(3 * np.pi * y)**2) +
                (y - 1)**2 * (1 + np.sin(2 * np.pi * y)**2))

https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization
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8.	 Let's display this function with imshow(), on the square :
>>> n = 500
    k = 10
    X, Y = np.mgrid[-k:k:n * 1j,
                    -k:k:n * 1j]
>>> Z = g(np.vstack((X.ravel(), Y.ravel()))).reshape(n, n)
>>> fig, ax = plt.subplots(1, 1, figsize=(3, 3))
    # We use a logarithmic scale for the color here.
    ax.imshow(np.log(Z), cmap=plt.cm.hot_r,
              extent=(-k, k, -k, k), origin=0)
    ax.set_axis_off()

9.	 The minimize() function also works in multiple dimensions:

>>> # We use the Powell method.
    x0, y0 = opt.minimize(g, (8, 3),
                          method='Powell').x
    x0, y0
    (1.000, 1.000)

>>> fig, ax = plt.subplots(1, 1, figsize=(3, 3))
    ax.imshow(np.log(Z), cmap=plt.cm.hot_r,
              extent=(-k, k, -k, k), origin=0)
    ax.scatter(x0, y0, s=100)
    ax.set_axis_off()
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How it works...
Many function minimization algorithms are based on the fundamental idea of gradient 
descent. If a function  is differentiable, then at every point, the opposite of its gradient 
points to the direction of the greatest decrease rate of the function. By following this direction, 
we can expect to find a local minimum.

This operation is generally done iteratively, by following the direction of the gradient with a 
small step. The way this step is computed depends on the optimization method.

Newton's method can also be used in this context of function minimization. The idea is to find 
a root of  with Newton's method, thereby making use of the second derivative . In other 
words, we approximate  with a quadratic function instead of a linear function. In multiple 
dimensions, this is done by computing the Hessian (second derivatives) of . By performing 
this operation iteratively, we can expect the algorithm to converge towards a local minimum.

When the computation of the Hessian is too costly, we can compute an approximation of the 
Hessian. Such methods are called Quasi-Newton methods. The BFGS algorithm belongs to 
this class of algorithms.

These algorithms make use of the objective function's gradient. If we can compute an 
analytical expression of the gradient, we should provide it to the minimization routine. 
Otherwise, the algorithm will compute an approximation of the gradient that may  
not be reliable.

The basin-hopping algorithm is a stochastic algorithm that seeks a global minimum by 
combining random perturbation of the positions and local minimization.



Numerical Optimization

348

There are many stochastic global optimization methods based on metaheuristics. They are 
generally less well-theoretically grounded than the deterministic optimization algorithms 
previously described, and convergence is not always guaranteed. However, they may be useful 
in situations where the objective function is very irregular and noisy, with many local minima. 
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a metaheuristic 
that performs well in many situations. It is currently not implemented in SciPy, but there's a 
Python implementation in one of the references given later.

SciPy's minimize() function accepts a method keyword argument to specify the 
minimization algorithm to use. This function returns an object containing the results  
of the optimization. The x attribute is the point reaching the minimum.

There's more...
Here are a few further references:

ff The scipy.optimize reference documentation, available at http://docs.
scipy.org/doc/scipy/reference/optimize.html

ff Documentation of the basin-hopping algorithm, available at http://scipy.
github.io/devdocs/generated/scipy.optimize.basinhopping.html

ff A lecture on mathematical optimization with SciPy, available at http://scipy-
lectures.github.io/advanced/mathematical_optimization/

ff Definition of the gradient on Wikipedia, available at https://en.wikipedia.org/
wiki/Gradient

ff Newton's method on Wikipedia, available at https://en.wikipedia.org/wiki/
Newton%27s_method_in_optimization

ff Quasi-Newton methods on Wikipedia, available at https://en.wikipedia.org/
wiki/Quasi-Newton_method

ff Metaheuristics for function minimization on Wikipedia, available at https://
en.wikipedia.org/wiki/Metaheuristic

ff The CMA-ES algorithm described at https://en.wikipedia.org/wiki/CMA-ES

ff A Python implementation of CMA-ES, available at http://www.lri.fr/~hansen/
cmaes_inmatlab.html#python

See also
ff The Finding the root of a mathematical function recipe

http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://scipy.github.io/devdocs/generated/scipy.optimize.basinhopping.html
http://scipy.github.io/devdocs/generated/scipy.optimize.basinhopping.html
http://scipy-lectures.github.io/advanced/mathematical_optimization/
http://scipy-lectures.github.io/advanced/mathematical_optimization/
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/CMA-ES
http://www.lri.fr/~hansen/cmaes_inmatlab.html#python
http://www.lri.fr/~hansen/cmaes_inmatlab.html#python
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Fitting a function to data with nonlinear 
least squares

In this recipe, we will show an application of numerical optimization to nonlinear least 
squares curve fitting. The goal is to fit a function, depending on several parameters, to data 
points. In contrast to the linear least squares method, this function does not have to be linear 
in those parameters.

We will illustrate this method on artificial data.

How to do it...
1.	 Let's import the usual libraries:

>>> import numpy as np
    import scipy.optimize as opt
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define a logistic function with four parameters:

>>> def f(x, a, b, c, d): 
        return a / (1. + np.exp(-c * (x - d))) + b

3.	 Let's define four random parameters:
>>> a, c = np.random.exponential(size=2)
    b, d = np.random.randn(2)

4.	 Now, we generate random data points by using the sigmoid function and adding a bit 
of noise:
>>> n = 100 
    x = np.linspace(-10., 10., n) 
    y_model = f(x, a, b, c, d)
    y = y_model + a * .2 * np.random.randn(n)
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5.	 The following is a plot of the data points, with the particular sigmoid used for their 
generation (in dashed black):
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4)) 
    ax.plot(x, y_model, '--k')
    ax.plot(x, y, 'o')

6.	 We now assume that we only have access to the data points and not the underlying 
generative function. These points could have been obtained during an experiment. 
By looking at the data, the points appear to approximately follow a sigmoid, so we 
may want to try to fit such a curve to the points. That's what curve fitting is about. 
SciPy's curve_fit() function allows us to fit a curve defined by an arbitrary Python 
function to the data:
>>> (a_, b_, c_, d_), _ = opt.curve_fit(f, x, y)

7.	 Now, let's take a look at the fitted sigmoid curve:

>>> y_fit = f(x, a_, b_, c_, d_)
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4)) 
    ax.plot(x, y_model, '--k') 
    ax.plot(x, y, 'o')
    ax.plot(x, y_fit, '-')
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The fitted sigmoid appears to be reasonably close to the original sigmoid used for 
data generation.

How it works...
In SciPy, nonlinear least squares curve fitting works by minimizing the following cost function:

Here,  is the vector of parameters (in our example, ).

Nonlinear least squares is really similar to linear least squares for linear regression. Whereas 
the function  is linear in the parameters with the linear least squares method, it is not linear 
here. Therefore, the minimization of  cannot be done analytically by solving the derivative 
of  with respect to . SciPy implements an iterative method called the Levenberg-Marquardt 
algorithm (an extension of the Gauss–Newton algorithm).

Here are further references:

ff Reference documentation of curvefit, available at http://docs.scipy.org/doc/
scipy/reference/generated/scipy.optimize.curve_fit.html

ff Nonlinear least squares on Wikipedia, available at https://en.wikipedia.org/
wiki/Non-linear_least_squares

ff The Levenberg-Marquardt algorithm on Wikipedia, available at https://
en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm 
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm 
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See also
ff The Minimizing a mathematical function recipe

Finding the equilibrium state of a physical 
system by minimizing its potential energy

In this recipe, we will give an application example of the function minimization algorithms 
described earlier. We will try to numerically find the equilibrium state of a physical system by 
minimizing its potential energy.

More specifically, we'll consider a structure made of masses and springs, attached to a 
vertical wall and subject to gravity. Starting from an initial position, we'll search for the 
equilibrium configuration where the gravity and elastic forces compensate.

How to do it...
1.	 Let's import NumPy, SciPy, and matplotlib:

>>> import numpy as np
    import scipy.optimize as opt
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define a few constants in the International System of Units:
>>> g = 9.81  # gravity of Earth
    m = .1  # mass, in kg
    n = 20  # number of masses
    e = .1  # initial distance between the masses
    l = e  # relaxed length of the springs
    k = 10000  # spring stiffness

3.	 We define the initial positions of the masses. They are arranged on a two-dimensional 
grid with two lines and  columns:
>>> P0 = np.zeros((n, 2))
    P0[:, 0] = np.repeat(e * np.arange(n // 2), 2)
    P0[:, 1] = np.tile((0, -e), n // 2)
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4.	 Now, let's define the connectivity matrix between the masses. Coefficient  is 1 if 
masses  and  are connected by a spring, 0 otherwise:
>>> A = np.eye(n, n, 1) + np.eye(n, n, 2)
    # We display a graphic representation of
    # the matrix.
    f, ax = plt.subplots(1, 1)
    ax.imshow(A)
    ax.set_axis_off()

5.	 We also specify the spring stiffness of each spring. It is , except for diagonal springs 
where it is :
>>> L = l * (np.eye(n, n, 1) + np.eye(n, n, 2))
    for i in range(n // 2 - 1):
        L[2 * i + 1, 2 * i + 2] *= np.sqrt(2)

6.	 We get the indices of the spring connections:
>>> I, J = np.nonzero(A)

7.	 This dist() function computes the distance matrix (the distance between any pair 
of masses):
>>> def dist(P):
        return np.sqrt((P[:, 0] - P[:, 0][:, np.newaxis])**2 +
                       (P[:, 1] - P[:, 1][:, np.newaxis])**2)
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8.	 We define a function that displays the system. The springs are colored according to 
their tension:
>>> def show_bar(P):
        fig, ax = plt.subplots(1, 1, figsize=(5, 4))

        # Wall.
        ax.axvline(0, color='k', lw=3)

        # Distance matrix.
        D = dist(P)

        # Get normalized elongation in [-1, 1].
        elong = np.array([D[i, j] - L[i, j]
                          for i, j in zip(I, J)])
        elong_max = np.abs(elong).max()

        # The color depends on the spring tension, which
        # is proportional to the spring elongation.
        colors = np.zeros((len(elong), 4))
        colors[:, -1] = 1  # alpha channel is 1

        # Use two different sequentials colormaps for
        # positive and negative elongations, to show
        # compression and extension in different colors.
        if elong_max > 1e-10:
            # We don't use colors if all elongations are
            # zero.
            elong /= elong_max
            pos, neg = elong > 0, elong < 0
            colors[pos] = plt.cm.copper(elong[pos])
            colors[neg] = plt.cm.bone(-elong[neg])

        # We plot the springs.
        for i, j, c in zip(I, J, colors):
            ax.plot(P[[i, j], 0],
                    P[[i, j], 1],
                    lw=2,
                    color=c,
                    )

        # We plot the masses.
        ax.plot(P[[I, J], 0], P[[I, J], 1], 'ok',)
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        # We configure the axes.
        ax.axis('equal')
        ax.set_xlim(P[:, 0].min() - e / 2,
                    P[:, 0].max() + e / 2)
        ax.set_ylim(P[:, 1].min() - e / 2,
                    P[:, 1].max() + e / 2)
        ax.set_axis_off()

        return ax

9.	 Here is the system in its initial configuration:
>>> ax = show_bar(P0)
    ax.set_title("Initial configuration")

10.	 To find the equilibrium state, we need to minimize the total potential energy of the 
system. The following function computes the energy of the system given the positions 
of the masses. This function is explained in the How it works... section of this recipe:
>>> def energy(P):
        # The argument P is a vector (flattened matrix).
        # We convert it to a matrix here.
        P = P.reshape((-1, 2))
        # We compute the distance matrix.
        D = dist(P)
        # The potential energy is the sum of the
        # gravitational and elastic potential energies. 
        return (g * m * P[:, 1].sum() +
                .5 * (k * A * (D - L)**2).sum())
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11.	 Let's compute the potential energy of the initial configuration:
>>> energy(P0.ravel())
-0.981

12.	 Now, let's minimize the potential energy with a function minimization method. We 
need a constrained optimization algorithm, because we make the assumption that 
the first two masses are fixed to the wall. Therefore, their positions cannot change. 
The L-BFGS-B algorithm, a variant of the BFGS algorithm, accepts bound constraints. 
Here, we force the first two points to stay at their initial positions, whereas there are 
no constraints on the other points. The minimize() function accepts a bounds list 
containing, for each dimension, a pair of [min, max] values:
>>> bounds = np.c_[P0[:2, :].ravel(), 
                   P0[:2, :].ravel()].tolist() + \ 
        [[None, None]] * (2 * (n - 2))
>>> P1 = opt.minimize(energy, P0.ravel(), 
                      method='L-BFGS-B', 
                      bounds=bounds).x.reshape((-1, 2))

13.	 Let's display the stable configuration:

>>> ax = show_bar(P1)
    ax.set_title("Equilibrium configuration")

The springs near the wall are maximally extended (top) or compressed (bottom).
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How it works...
This example is conceptually simple. The state of the system is only described by the positions 
of the masses. If we can write a Python function that returns the total energy of the system, 
finding the equilibrium is just a matter of minimizing this function. This is the principle of 
minimum total potential energy, due to the second law of thermodynamics.

Here, we give an expression of the total energy of the system. Since we are only interested 
in the equilibrium, we omit any kinetic aspect and we only consider potential energy due to 
gravity (gravitational force) and spring forces (elastic potential energy).

Letting  be the total potential energy of the system,  can be expressed as the sum of 
the gravitational potential energies of the masses and the elastic potential energies of the 
springs. Therefore:

Here:

ff  is the mass

ff  is the gravity of Earth

ff  is the stiffness of the springs

ff  is the position of mass ,

ff  is 1 if masses  and  are attached by a spring,  otherwise

ff  is the relaxed length of spring , or  if masses  and  are not attached

The energy() function implements this formula using vectorized computations on  
NumPy arrays.

There's more...
The following references contain details about the physics behind this formula:

ff Potential energy on Wikipedia, available at https://en.wikipedia.org/wiki/
Potential_energy

ff Elastic potential energy on Wikipedia, available at https://en.wikipedia.org/
wiki/Elastic_potential_energy

https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Elastic_potential_energy 
https://en.wikipedia.org/wiki/Elastic_potential_energy 
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ff Hooke's law, which is the linear approximation of the springs' response, described at 
https://en.wikipedia.org/wiki/Hooke%27s_law

ff The principle of minimum energy on Wikipedia, available at https://
en.wikipedia.org/wiki/Minimum_total_potential_energy_principle

Here is a reference about the optimization algorithm:

ff The L-BFGS-B algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/Limited-memory_BFGS#L-BFGS-B

See also
ff The Minimizing a mathematical function recipe

https://en.wikipedia.org/wiki/Hooke%27s_law
https://en.wikipedia.org/wiki/Minimum_total_potential_energy_principle
https://en.wikipedia.org/wiki/Minimum_total_potential_energy_principle
https://en.wikipedia.org/wiki/Limited-memory_BFGS#L-BFGS-B
https://en.wikipedia.org/wiki/Limited-memory_BFGS#L-BFGS-B
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10
Signal Processing

In this chapter, we will cover the following topics:

ff Analyzing the frequency components of a signal with a Fast Fourier Transform

ff Applying a linear filter to a digital signal

ff Computing the autocorrelation of a time series

Introduction
Signals are mathematical functions that describe the variation of a quantity across time or 
space. Time-dependent signals are often called time series. Examples of time series include 
share prices, which are typically presented as successive points in time spaced at uniform 
time intervals. In physics or biology, experimental devices record the evolution of variables 
such as electromagnetic waves or biological processes.

In signal processing, a general objective consists of extracting meaningful and relevant 
information from raw, noisy measurements. Signal processing topics include signal 
acquisition, transformation, compression, filtering, and feature extraction, among others. 
When dealing with a complex dataset, it can be beneficial to clean it before applying more 
advanced mathematical analysis methods (such as machine learning, for instance).

In this concise chapter, we will illustrate and explain the main foundations of signal 
processing. In the next chapter, Chapter 11, Image and Audio Processing, we will see 
particular signal processing methods adapted to images and sounds.

First, we will give some important definitions in this introduction.
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Analog and digital signals
Signals can be time-dependent or space-dependent. In this chapter, we will focus on time-
dependent signals.

Let  be a time-varying signal. We say that:

ff This signal is analog if  is a continuous variable and  is a real number

ff This signal is digital if  is a discrete variable (discrete-time signal) and  can only 
take a finite number of values (quantified signal)

The following figure shows the difference between an analog signal (the continuous curve) 
and a digital signal (dots):

Analog and digital signals (https://en.wikipedia.org/wiki/Digital_signal#/media/
File:Digital.signal.discret.svg)

Analog signals are found in mathematics and in most physical systems such as electric 
circuits. Yet, computers being discrete machines, they can only understand digital signals. 
This is why computational science especially deals with digital signals.

A digital signal recorded by an experimental device is typically characterized by two  
important quantities:

ff The sampling rate: The number of values (or samples) recorded every second  
(in Hertz)

ff The resolution: The precision of the quantization, usually in bits per sample  
(also known as bit depth)

Digital signals with high sampling rates and bit depths are more accurate, but they require 
more memory and processing power. These two parameters are limited by the experimental 
devices that record the signals.

https://en.wikipedia.org/wiki/Digital_signal#/media/File:Digital.signal.discret.svg
https://en.wikipedia.org/wiki/Digital_signal#/media/File:Digital.signal.discret.svg
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The Nyquist–Shannon sampling theorem
Let's consider a continuous (analog) time-varying signal . We record this physical signal 
with an experimental device, and we obtain a digital signal with a sampling rate of . The 
original analog signal has an infinite precision, whereas the recorded signal has a finite 
precision. Therefore, we expect to lose information in the analog-to-digital process.

The Nyquist–Shannon sampling theorem states that under certain conditions on the analog 
signal and the sampling rate, it is possible not to lose any information in the process. In other 
words, under these conditions, we can recover the exact original continuous signal from the 
sampled digital signal. For more details, refer to https://en.wikipedia.org/wiki/
Nyquist%E2%80%93Shannon_sampling_theorem.

Let's define these conditions. The Fourier transform  of  is defined by:

Here, the Fourier transform is a representation of a time-dependent signal in the frequency 
domain. The Nyquist criterion states that:

In other words, the signal must be bandlimited, meaning that it must not contain any 
frequency higher than a certain cutoff frequency . Additionally, the sampling rate  needs to 
be at least twice as large as this frequency . Here are a couple of definitions:

ff The Nyquist rate is . For a given bandlimited analog signal, it is the minimal 
sampling rate required to sample the signal without loss.

ff The Nyquist frequency is . For a given sampling rate, it is the maximal frequency 
that the signal can contain in order to be sampled without loss.

Under these conditions, we can theoretically reconstruct the original analog signal from the 
sampled digital signal.

Compressed sensing
Compressed sensing is a recent and important approach to signal processing. It 
acknowledges that many real-world signals are intrinsically low dimensional. For example, 
speech signals have a very specific structure depending on the general physical constraints of 
the human vocal tract.

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
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Even if a speech signal has many frequencies in the Fourier domain, it may be well 
approximated by a sparse decomposition on an adequate basis (dictionary). By definition, a 
decomposition is sparse if most of the coefficients are zero. If the dictionary is chosen well, 
every signal is a combination of a small number of the basis signals.

This dictionary contains elementary signals that are specific to the signals considered in a 
given problem. This is different from the Fourier transform that decomposes a signal on a 
universal basis of sine functions. In other words, with sparse representations, the Nyquist 
condition can be circumvented. We can precisely reconstruct a continuous signal from a 
sparse representation containing fewer samples than what the Nyquist condition requires.

Sparse decompositions can be found with sophisticated algorithms. In particular, these 
problems may be turned into convex optimization problems that can be tackled with specific 
numerical optimization methods.

Compressed sensing has many applications in signal compression, image processing, 
computer vision, biomedical imaging, and many other scientific and engineering areas.

Here are further references about compressed sensing:

ff https://en.wikipedia.org/wiki/Compressed_sensing

ff https://en.wikipedia.org/wiki/Sparse_approximation

ff Compressed sensing in Python at http://www.pyrunner.com/
weblog/2016/05/26/compressed-sensing-python/

References
Here are a few references:

ff Understanding Digital Signal Processing, Richard G. Lyons,  
Pearson Education, (2010).

ff For good coverage of compressed sensing, refer to the book A Wavelet Tour of Signal 
Processing: The Sparse Way, Mallat Stéphane, Academic Press, (2008).

ff Harmonic Analysis Lectures on Awesome Math, at https://github.com/
rossant/awesome-math/#harmonic-analysis

ff The book Python for Signal Processing, Jose Unpingco, Springer International 
Publishing contains many more details than what we can cover in this chapter. The 
code is available as Jupyter notebooks on GitHub (http://python-for-signal-
processing.blogspot.com).

https://en.wikipedia.org/wiki/Compressed_sensing
https://en.wikipedia.org/wiki/Sparse_approximation
http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
https://github.com/rossant/awesome-math/#harmonic-analysis
https://github.com/rossant/awesome-math/#harmonic-analysis
http://python-for-signal-processing.blogspot.com
http://python-for-signal-processing.blogspot.com
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ff Digital Signal Processing on WikiBooks available at http://en.wikibooks.org/
wiki/Digital_Signal_Processing.

ff Numerical Tours in Python, available at http://www.numerical-tours.com/
python/

Analyzing the frequency components of a 
signal with a Fast Fourier Transform

In this recipe, we will show how to use a Fast Fourier Transform (FFT) to compute the spectral 
density of a signal. The spectrum represents the energy associated to frequencies (encoding 
periodic fluctuations in a signal). It is obtained with a Fourier transform, which is a frequency 
representation of a time-dependent signal. A signal can be transformed back and forth from 
one representation to the other with no information loss.

In this recipe, we will illustrate several aspects of the Fourier transform. We will apply this  
tool to weather data spanning 20 years in France obtained from the US National Climatic  
Data Center.

How to do it...
1.	 Let's import the packages, including scipy.fftpack, which includes many  

FFT- related routines:
>>> import datetime
    import numpy as np
    import scipy as sp
    import scipy.fftpack
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We import the data from the CSV file (it has been obtained at http://www.ncdc.
noaa.gov/cdo-web/datasets#GHCND). The number -9999 is used for N/A 
values. The pandas can easily handle this. In addition, we tell pandas to parse  
dates contained in the DATE column:
>>> df0 = pd.read_csv('https://github.com/ipython-books/'
                      'cookbook-2nd-data/blob/master/'
                      'weather.csv?raw=true',
                      na_values=(-9999),

http://en.wikibooks.org/wiki/Digital_Signal_Processing
http://en.wikibooks.org/wiki/Digital_Signal_Processing
http://www.numerical-tours.com/python/ 
http://www.numerical-tours.com/python/ 
http://www.ncdc.noaa.gov/cdo-web/datasets#GHCND
http://www.ncdc.noaa.gov/cdo-web/datasets#GHCND
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                      parse_dates=['DATE'])
>>> df = df0[df0['DATE'] >= '19940101']
>>> df.head()

3.	 Each row contains the precipitation and extreme temperatures recorded each day by 
one weather station in France. For every date in the calendar, we want to get a single 
average temperature for the whole country. The groupby() method provided by 
pandas lets us do this easily. We also remove any N/A value with dropna():
>>> df_avg = df.dropna().groupby('DATE').mean()
>>> df_avg.head()

4.	 Now, we get the list of dates and the list of corresponding temperatures. The unit is in 
tenths of a degree, and we get the average value between the minimal and maximal 
temperature, which explains why we divide by 20.
>>> date = df_avg.index.to_datetime()
    temp = (df_avg['TMAX'] + df_avg['TMIN']) / 20.
    N = len(temp)
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5.	 Let's take a look at the evolution of the temperature:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    temp.plot(ax=ax, lw=.5)
    ax.set_ylim(-10, 40)
    ax.set_xlabel('Date')
    ax.set_ylabel('Mean temperature')

6.	 We now compute the Fourier transform and the spectral density of the signal.  
The first step is to compute the FFT of the signal using the fft() function:
>>> temp_fft = sp.fftpack.fft(temp)

7.	 Once the FFT has been obtained, we need to take the square of its absolute value in 
order to get the Power Spectral Density (PSD):
>>> temp_psd = np.abs(temp_fft) ** 2

8.	 The next step is to get the frequencies corresponding to the values of the PSD. The 
fftfreq() utility function does just that. It takes the length of the PSD vector as 
input as well as the frequency unit. Here, we choose an annual unit: a frequency of 1 
corresponds to 1 year (365 days). We provide 1/365 because the original unit is  
in days:
>>> fftfreq = sp.fftpack.fftfreq(len(temp_psd), 1. / 365)

9.	 The fftfreq() function returns positive and negative frequencies. We are only 
interested in positive frequencies here, as we have a real signal:
>>> i = fftfreq > 0
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10.	 We now plot the PSD of our signal, as a function of the frequency (in unit of 1/year). 
We choose a logarithmic scale for the y axis (decibels):
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(fftfreq[i], 10 * np.log10(temp_psd[i]))
    ax.set_xlim(0, 5)
    ax.set_xlabel('Frequency (1/year)')
    ax.set_ylabel('PSD (dB)')

Because the fundamental frequency of the signal is the yearly variation of the 
temperature, we observe a peak for f=1.

11.	 Now, we cut out frequencies higher than the fundamental frequency:
>>> temp_fft_bis = temp_fft.copy()
    temp_fft_bis[np.abs(fftfreq) > 1.1] = 0

12.	 Next, we perform an inverse FFT to convert the modified Fourier transform back 
to the temporal domain. This way, we recover a signal that mainly contains the 
fundamental frequency, as shown in the following figure:

>>> temp_slow = np.real(sp.fftpack.ifft(temp_fft_bis))
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    temp.plot(ax=ax, lw=.5)
    ax.plot_date(date, temp_slow, '-')
    ax.set_xlim(datetime.date(1994, 1, 1),
                datetime.date(2000, 1, 1))
    ax.set_ylim(-10, 40)
    ax.set_xlabel('Date')
    ax.set_ylabel('Mean temperature')
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We get a smoothed version of the signal, because the fast variations have been lost when we 
have removed the high frequencies in the Fourier transform.

How it works...
Broadly speaking, the Fourier transform is an alternative representation of a signal as a 
superposition of periodic components. It is an important mathematical result that any  
well-behaved function can be represented under this form. Whereas a time-varying signal 
is most naturally considered as a function of time, the Fourier transform represents it as 
a function of the frequency. A magnitude and a phase, which are both encoded in a single 
complex number, are associated to each frequency.

The discrete Fourier transform
Let's consider a digital signal  represented by a vector . We assume that this 
signal is regularly sampled. The Discrete Fourier Transform (DFT) of  is  
defined as:

The DFT can be computed efficiently with the FFT, an algorithm that exploits symmetries and 
redundancies in this definition to considerably speed up the computation. The complexity 
of the FFT is  instead of  for the naive DFT. The FFT is one of the most 
important algorithms of the digital universe.

Here is an intuitive explanation of what the DFT describes. Instead of representing our signal 
on a real line, let's represent it on a circle. We can play the whole signal by making 1, 2, or any 
number  of laps on the circle. Therefore, when  is fixed, we represent each value  of the 
signal with an angle  and a distance from the original equal to .
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In the following figure, the signal is a sine wave at the frequency . The points of this 
signal are in blue, positioned at an angle . Their algebraic sum in the complex plane is 
in red. These vectors represent the different coefficients of the signal's DFT.

Illustration of the DFT.

The next figure represents the previous signal's PSD:

The PSD of the signal in the previous example.



Chapter 10

369

Inverse Fourier transform
By considering all possible frequencies, we have an exact representation of our digital signal 
in the frequency domain. We can recover the initial signal with an Inverse Fast Fourier 
Transform that computes an Inverse Discrete Fourier Transform. The formula is very similar 
to the DFT:

The DFT is useful when periodic patterns are to be found. However, generally speaking, the 
Fourier transform cannot detect transient changes at specific frequencies. Local spectral 
methods are required, such as the wavelet transform.

There's more...
The following links contain more details about Fourier transforms:

ff Introduction to the FFT with SciPy, available at http://scipy-lectures.
github.io/intro/scipy.html#fast-fourier-transforms-scipy-
fftpack

ff Reference documentation for the fftpack in SciPy, available at http://docs.
scipy.org/doc/scipy/reference/fftpack.html

ff Fourier transform on Wikipedia, available at https://en.wikipedia.org/wiki/
Fourier_transform

ff DFT on Wikipedia, available at https://en.wikipedia.org/wiki/Discrete_
Fourier_transform

ff FFT on Wikipedia, available at https://en.wikipedia.org/wiki/Fast_
Fourier_transform

ff Decibel on Wikipedia, available at https://en.wikipedia.org/wiki/Decibel

See also
ff The Applying a linear filter to a digital signal recipe

ff The Computing the autocorrelation of a time series recipe

http://scipy-lectures.github.io/intro/scipy.html#fast-fourier-transforms-scipy-fftpack
http://scipy-lectures.github.io/intro/scipy.html#fast-fourier-transforms-scipy-fftpack
http://scipy-lectures.github.io/intro/scipy.html#fast-fourier-transforms-scipy-fftpack
http://docs.scipy.org/doc/scipy/reference/fftpack.html
http://docs.scipy.org/doc/scipy/reference/fftpack.html
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Decibel
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Applying a linear filter to a digital signal
Linear filters play a fundamental role in signal processing. With a linear filter, one can extract 
meaningful information from a digital signal.

In this recipe, we will show two examples using stock market data (the NASDAQ stock 
exchange). First, we will smooth out a very noisy signal with a low-pass filter to extract its 
slow variations. We will also apply a high-pass filter to the original time series to extract the 
fast variations. These are just two common examples among a wide variety of applications of 
linear filters.

How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import scipy as sp
    import scipy.signal as sg
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We load the NASDAQ data (obtained from https://finance.yahoo.com/
quote/%5EIXIC/history?period1=631148400&period2=1510786800&inte
rval=1d&filter=history&frequency=1d) with pandas:
>>> nasdaq_df = pd.read_csv(
        'https://github.com/ipython-books/'
        'cookbook-2nd-data/blob/master/'
        'nasdaq.csv?raw=true',
        index_col='Date',
        parse_dates=['Date'])
>>> nasdaq_df.head()

https://finance.yahoo.com/quote/%5EIXIC/history?period1=631148400&period2=1510786800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EIXIC/history?period1=631148400&period2=1510786800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EIXIC/history?period1=631148400&period2=1510786800&interval=1d&filter=history&frequency=1d
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3.	 Let's extract two columns: the date and the daily closing value:
>>> date = nasdaq_df.index
    nasdaq = nasdaq_df['Close']

4.	 Let's take a look at the raw signal:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    nasdaq.plot(ax=ax, lw=1)

5.	 Now, we will follow the first approach to get the slow variations of the signal. We will 
convolve the signal with a triangular window, which corresponds to a FIR filter. We 
will explain the idea behind this method in the How it works... section of this recipe. 
For now, let's just say that we replace each value with a weighted mean of the signal 
around this value:
>>> # We get a triangular window with 60 samples.
    h = sg.get_window('triang', 60)
    # We convolve the signal with this window.
    fil = sg.convolve(nasdaq, h / h.sum())
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>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    # We plot the original signal...
    nasdaq.plot(ax=ax, lw=3)
    # ... and the filtered signal.
    ax.plot_date(date, fil[:len(nasdaq)],
                 '-w', lw=2)

6.	 Now, let's use another method. We create an IIR Butterworth low-pass filter to extract 
the slow variations of the signal. The filtfilt() method allows us to apply a filter 
forward and backward in order to avoid phase delays:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    nasdaq.plot(ax=ax, lw=3)
    # We create a 4-th order Butterworth low-pass filter.
    b, a = sg.butter(4, 2. / 365)
    # We apply this filter to the signal.
    ax.plot_date(date, sg.filtfilt(b, a, nasdaq),
                 '-w', lw=2)
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7.	 Finally, we use the same method to create a high-pass filter and extract the fast 
variations of the signal:

>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    nasdaq.plot(ax=ax, lw=1)
    b, a = sg.butter(4, 2 * 5. / 365, btype='high')
    ax.plot_date(date, sg.filtfilt(b, a, nasdaq),
                 '-', lw=1)

The fast variations around 2000 correspond to the dot-com bubble burst, reflecting the high-
market volatility and the fast fluctuations of the stock market indices at that time. For more 
details, refer to https://en.wikipedia.org/wiki/Dot-com_bubble.

How it works...
In this section, we explain the very basics of linear filters in the context of digital signals.

A digital signal is a discrete sequence  indexed by . Although we often assume 
infinite sequences, in practice, a signal is represented by a vector of the finite size .

In the continuous case, we would rather manipulate time-dependent functions . Loosely 
stated, we can go from continuous signals to discrete signals by discretizing time and 
transforming integrals into sums.

What are linear filters?
A linear filter  transforms an input signal  to an output signal . This 
transformation is linear—the transformation of the sum of two signals is the sum of the 
transformed signals: .

In addition to this, multiplying the input signal by a constant yields the same output as 
multiplying the original output signal by the same constant: .

https://en.wikipedia.org/wiki/Dot-com_bubble
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A Linear Time-Invariant (LTI) filter has an additional property: if the signal  is transformed 
to , then the shifted signal  is transformed to , for any fixed . In other words, 
the system is time-invariant because the output does not depend on the particular time the 
input is applied.

From now on, we will only consider LTI filters.

Linear filters and convolutions
A very important result in the LTI system theory is that LTI filters can be described by a single 
signal: the impulse response . This is the output of the filter in response to an impulse signal. 
For digital filters, the impulse signal is .

It can be shown that  is transformed to  defined by the convolution of the 
impulse response  with the signal :

The convolution is a fundamental mathematical operation in signal processing. Intuitively, 
and considering a convolution function peaking around zero, the convolution is equivalent to 
taking a local average of the signal (  here), weighted by a given window (  here).

It is implied, by our notations, that we restrict ourselves to causal filters (  for ). 
This property means that the output of the signal only depends on the present and the past of 
the input, not the future. This is a natural property in many situations.

The FIR and IIR f﻿ilters
The support of a signal  is the set of  such that . LTI filters can be classified into 
two categories:

ff A Finite Impulse Response (FIR) filter has an impulse response with finite support

ff A Infinite Impulse Response (IIR) filter has an impulse response with infinite support

A FIR filter can be described by a finite impulse response of size  (a vector). It works by 
convolving a signal with its impulse response. Let's define  for . Then,  is a 
linear combination of the last  values of the input signal:
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On the other hand, an IIR filter is described by an infinite impulse response that cannot 
be represented exactly under this form. For this reason, we often use an alternative 
representation:

This difference equation expresses  as a linear combination of the last  values of 
the input signal (the feedforward term, like for a FIR filter) and a linear combination of the 
last  values of the output signal (feedback term). The feedback term makes the IIR filter 
more complex than a FIR filter in that the output depends not only on the input but also on the 
previous values of the output (dynamics).

Filters in the frequency domain
We only described filters in the temporal domain. Alternate representations in other domains 
exist such as Laplace transforms, Z-transforms, and Fourier transforms.

In particular, the Fourier transform has a very convenient property: it transforms convolutions 
into multiplications in the frequency domain. In other words, in the frequency domain, an 
LTI filter multiplies the Fourier transform of the input signal by the Fourier transform of the 
impulse response.

The low-, high-, and band-pass filters
Filters can be characterized by their effects on the amplitude of the input signal's frequencies. 
They are as follows:

ff A low-pass filter attenuates the components of the signal at frequencies higher than 
a cutoff frequency

ff A high-pass filter attenuates the components of the signal at frequencies lower than 
a cutoff frequency

ff A band-pass filter passes the components of the signal at frequencies within a 
certain range and attenuates those outside

In this recipe, we first convolved the input signal with a triangular window (with finite support). 
It can be shown that this operation corresponds to a low-pass FIR filter. It is a particular case 
of the moving average method, which computes a local weighted average of every value in 
order to smooth out the signal.

Then, we applied two instances of the Butterworth filter, a particular kind of IIR filter that can 
act as a low-pass, high-pass, or band-pass filter. In this recipe, we first used it as a low-pass 
filter to smooth out the signal, before using it as a high-pass filter to extract fast variations of 
the signal.
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There's more...
Here are some general references about digital signal processing and linear filters:

ff Digital signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Digital_signal_processing

ff Linear filters on Wikipedia, available at https://en.wikipedia.org/wiki/
Linear_filter

ff LTI filters on Wikipedia, available at https://en.wikipedia.org/wiki/LTI_
system_theory

See also
ff The Analyzing the frequency components of a signal with a Fast Fourier  

Transform recipe

Computing the autocorrelation of a time 
series

The autocorrelation of a time series can inform us about repeating patterns or serial 
correlation. The latter refers to the correlation between the signal at a given time and at a 
later time. The analysis of the autocorrelation can thereby inform us about the timescale 
of the fluctuations. Here, we use this tool to analyze the evolution of baby names in the US, 
based on data provided by the United States Social Security Administration.

How to do it...
1.	 We import the following packages:

>>> import os
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We download the Babies dataset (available on the GitHub data repository of the 
book) using the requests third-party package. The dataset was obtained initially from 
the data.gov website (https://catalog.data.gov/dataset/baby-names-
from-social-security-card-applications-national-level-data). We 
extract the archive locally in the babies subdirectory. There is one CSV file per year. 
Each file contains all baby names given that year with the respective frequencies.
>>> import io
    import requests

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/LTI_system_theory
https://en.wikipedia.org/wiki/LTI_system_theory
data.gov
https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-level-data
https://catalog.data.gov/dataset/baby-names-from-social-security-card-applications-national-level-data
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    import zipfile
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'babies.zip?raw=true')
    r = io.BytesIO(requests.get(url).content)
    zipfile.ZipFile(r).extractall('babies')
>>> %ls babies
yob1902.txt
yob1903.txt
yob1904.txt
...
yob2014.txt
yob2015.txt
yob2016.txt

3.	 We read the data with pandas. We load the data in a dictionary, containing one 
DataFrame per year:
>>> files = [file for file in os.listdir('babies') 
             if file.startswith('yob')]
>>> years = np.array(sorted([int(file[3:7]) 
                             for file in files]))
>>> data = {year: 
            pd.read_csv('babies/yob%d.txt' % year, 
                        index_col=0, header=None, 
                        names=['First name', 
                               'Gender', 
                               'Number']) 
            for year in years}
>>> data[2016].head()
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4.	 We write functions to retrieve the frequencies of baby names as a function of the 
name, gender, and birth year:
>>> def get_value(name, gender, year): 
        """Return the number of babies born a given year, 
        with a given gender and a given name.""" 
        dy = data[year] 
        try: 
            return dy[dy['Gender'] ==  
            gender]['Number'][name] 
        except KeyError: 
            return 0
>>> def get_evolution(name, gender): 
        """Return the evolution of a baby name over 
        the years."""
        return np.array([get_value(name, gender, year) 
                         for year in years])

5.	 Let's define a function that computes the autocorrelation of a signal. This function is 
essentially based on NumPy's correlate() function.
>>> def autocorr(x):
        result = np.correlate(x, x, mode='full')
        return result[result.size // 2:]

6.	 Now, we create a function that displays the evolution of a baby name as well as its 
(normalized) autocorrelation:
>>> def autocorr_name(name, gender, color, axes=None):
        x = get_evolution(name, gender)
        z = autocorr(x)
    
        # Evolution of the name.
        axes[0].plot(years, x, '-o' + color,
                     label=name)
        axes[0].set_title("Baby names")
        axes[0].legend()
    
        # Autocorrelation.
        axes[1].plot(z / float(z.max()),
                     '-' + color, label=name)
        axes[1].legend()
        axes[1].set_title("Autocorrelation")

7.	 Let's take a look at two female names:

>>> fig, axes = plt.subplots(1, 2, figsize=(12, 4))
    autocorr_name('Olivia', 'F', 'k', axes=axes)
    autocorr_name('Maria', 'F', 'y', axes=axes)
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The autocorrelation of Olivia is decaying much faster than Maria's. This is mainly because of 
the steep increase of the name Olivia at the end of the twentieth century. By contrast, the 
name Maria is varying more slowly globally, and its autocorrelation is decaying slower.

How it works...
A time series is a sequence indexed by time. Important applications include stock markets, 
product sales, weather forecasting, biological signals, and many others. Time series analysis 
is an important part of statistical data analysis, signal processing, and machine learning.

There are various definitions of the autocorrelation. Here, we define the autocorrelation of a 
time series  as:

In the previous plot, we normalized the autocorrelation by its maximum so as to compare the 
autocorrelation of two signals. The autocorrelation quantifies the average similarity between 
the signal and a shifted version of the same signal, as a function of the delay between the 
two. In other words, the autocorrelation can give us information about repeating patterns as 
well as the timescale of the signal's fluctuations. The faster the autocorrelation decays to zero, 
the faster the signal varies.

There's more...
Here are a few references:

ff NumPy's correlation function documentation, available at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.correlate.html

ff Autocorrelation function in statsmodels, documented at http://statsmodels.
sourceforge.net/stable/tsa.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html
http://statsmodels.sourceforge.net/stable/tsa.html 
http://statsmodels.sourceforge.net/stable/tsa.html 
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ff Time series on Wikipedia, available at https://en.wikipedia.org/wiki/
Time_series

ff Serial dependence on Wikipedia, available at https://en.wikipedia.org/
wiki/Serial_dependence

ff Autocorrelation on Wikipedia, available at https://en.wikipedia.org/wiki/
Autocorrelation

See also
ff The Analyzing the frequency components of a signal with a Fast Fourier  

Transform recipe

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Serial_dependence
https://en.wikipedia.org/wiki/Serial_dependence
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation
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11
Image and Audio 

Processing

In this chapter, we will cover the following topics:

ff Manipulating the exposure of an image

ff Applying filters on an image

ff Segmenting an image

ff Finding points of interest in an image

ff Detecting faces in an image with OpenCV

ff Applying digital filters to speech sounds

ff Creating a sound synthesizer in the Notebook

Introduction
In the previous chapter, we covered signal processing techniques for one-dimensional,  
time-dependent signals. In this chapter, we will see signal processing techniques for  
images and sounds.

Generic signal processing techniques can be applied to images and sounds, but many image 
or audio processing tasks require specialized algorithms. For example, we will see algorithms 
for segmenting images, detecting points of interest in an image, or detecting faces. We will 
also hear the effect of linear filters on speech sounds.

The scikit-image package is one of the main image processing packages in Python. We 
will use it in most of the image processing recipes in this chapter. For more on scikit-image, 
refer to http://scikit-image.org.

http://scikit-image.org
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We will also use OpenCV (http://opencv.org), a computer vision library in C++ that has a 
Python wrapper.

In this introduction, we will discuss the particularities of images and sounds from a signal 
processing point of view.

Images
A grayscale image is a bidimensional signal represented by a function, , that maps each 
pixel to an intensity. For example, the intensity could be a real value between 0 (dark) and 1 
(light). In a colored image, this function maps each pixel to a triplet of intensities—generally, 
the red, green, and blue (RGB) components.

On a computer, images are digitally sampled. The intensities are not real values, but integers 
or floating point numbers. On one hand, the mathematical formulation of continuous 
functions allows us to apply analytical tools such as derivatives and integrals. On the other 
hand, we need to take into account the digital nature of the images we deal with.

Sounds
From a signal processing perspective, a sound is a time-dependent signal that has sufficient 
power in the hearing frequency range (about 20 Hz to 20 kHz). Then, according to the Nyquist-
Shannon theorem (introduced in Chapter 10, Signal Processing), the sampling rate of a digital 
sound signal needs to be at least 40 kHz. A sampling rate of 44100 Hz is frequently chosen.

References
Here are a few references:

ff Image processing on Wikipedia, available at https://en.wikipedia.org/wiki/
Image_processing

ff Numerical Tours, advanced image processing algorithms available at http://www.
numerical-tours.com/python/

ff Audio signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Audio_signal_processing

ff Particularities of the 44100 Hz sampling rate explained at https://
en.wikipedia.org/wiki/44,100_Hz

http://opencv.org
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
http://www.numerical-tours.com/python/
http://www.numerical-tours.com/python/
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/44,100_Hz 
https://en.wikipedia.org/wiki/44,100_Hz 
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Manipulating the exposure of an image
The exposure of an image tells us whether the image is too dark, too light, or balanced. It can 
be measured with a histogram of the intensity values of all pixels. Improving the exposure of 
an image is a basic image-editing operation. As we will see in this recipe, it can be done easily 
with scikit-image.

Getting ready
The scikit-image command should be included by default in Anaconda. Otherwise, you 
can always install it manually with conda install scikit-image.

How to do it...
1.	 Let's import the packages:

>>> import numpy as np

    import matplotlib.pyplot as plt

    import skimage.exposure as skie

    %matplotlib inline

2.	 We open an image with Matplotlib. We only take a single RGB component to have a 
grayscale image (it is a very crude way of doing it, we give much better ways at the 
end of this recipe):
>>> img = plt.imread('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'beach.png?raw=true')[..., 0]

3.	 We create a function that displays the image along with its histogram of the intensity 
values (that is, the exposure):
>>> def show(img):
        # Display the image.
        fig, (ax1, ax2) = plt.subplots(1, 2,
                                       figsize=(12, 3))
    
        ax1.imshow(img, cmap=plt.cm.gray)
        ax1.set_axis_off()
    
        # Display the histogram.
        ax2.hist(img.ravel(), lw=0, bins=256)
        ax2.set_xlim(0, img.max())
        ax2.set_yticks([])
    
        plt.show()
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4.	 Let's display the image along with its histogram:
>>> show(img)

The histogram is unbalanced and the image appears overexposed (many pixels are 
too bright).

5.	 Now, we rescale the intensity of the image using scikit-image's rescale_
intensity function. The in_range and out_range parameters define a linear 
mapping from the original image to the modified image. The pixels that are outside 
in_range are clipped to the extremal values of out_range. Here, the darkest pixels 
(intensity less than 100) become completely black (0), whereas the brightest pixels 
(>240) become completely white (255):
>>> show(skie.rescale_intensity(

        img, in_range=(0.4, .95), out_range=(0, 1)))

Many intensity values seem to be missing in the histogram, which reflects the poor 
quality of this crude exposure correction technique.

6.	 We now use a more advanced exposure correction technique called Contrast Limited 
Adaptive Histogram Equalization (CLAHE):

>>> show(skie.equalize_adapthist(img))
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The histogram seems more balanced, and the image now appears more contrasted.

How it works...
An image's histogram represents the distribution of the pixels' intensity values. It is a central 
tool in image editing, image processing, and computer vision.

The rescale_intensity() function stretches or shrinks the intensity levels of the image. 
One use case is to ensure that the whole range of values allowed by the data type is used by 
the image.

The equalize_adapthist() function works by splitting the image into rectangular sections 
and computing the histogram for each section. Then, the intensity values of the pixels are 
redistributed to improve the contrast and enhance the details.

The skimage.color.rgb2gray() function converts a colored image to a grayscale image 
using a special weighting of the color channels that preserves luminance.

There's more...
Here are some references:

ff Transforming image data in the scikit-image documentation, at http://scikit-
image.org/docs/dev/user_guide/transforming_image_data.html

ff Histogram equalization in the scikit-image documentation, at http://scikit-
image.org/docs/dev/auto_examples/color_exposure/plot_equalize.
html

ff Image histogram on Wikipedia, available at https://en.wikipedia.org/wiki/
Image_histogram

ff Histogram equalization on Wikipedia, available at https://en.wikipedia.org/
wiki/Histogram_equalization

http://scikit-image.org/docs/dev/user_guide/transforming_image_data.html
http://scikit-image.org/docs/dev/user_guide/transforming_image_data.html
http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
https://en.wikipedia.org/wiki/Image_histogram
https://en.wikipedia.org/wiki/Image_histogram
https://en.wikipedia.org/wiki/Histogram_equalization 
https://en.wikipedia.org/wiki/Histogram_equalization 
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ff Adaptive histogram equalization on Wikipedia, available at https://
en.wikipedia.org/wiki/Adaptive_histogram_equalization

ff Contrast on Wikipedia, available at https://en.wikipedia.org/
wiki/Contrast_(vision)

See also
ff The Applying filters on an image recipe

Applying filters on an image
In this recipe, we apply filters on an image for various purposes: blurring, denoising, and  
edge detection.

How it works...
1.	 Let's import the packages:

>>> import numpy as np
    import matplotlib.pyplot as plt
    import skimage
    import skimage.color as skic
    import skimage.filters as skif
    import skimage.data as skid
    import skimage.util as sku
    %matplotlib inline

2.	 We create a function that displays a grayscale image:
>>> def show(img):
        fig, ax = plt.subplots(1, 1, figsize=(8, 8))
        ax.imshow(img, cmap=plt.cm.gray)
        ax.set_axis_off()
        plt.show()

3.	 Now, we load the Astronaut image (bundled in scikit-image). We convert it to a 
grayscale image with the rgb2gray() function:
>>> img = skic.rgb2gray(skid.astronaut())
>>> show(img)

https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Contrast_(vision)
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4.	 Let's apply a blurring Gaussian filter to the image:
>>> show(skif.gaussian(img, 5.))



Image and Audio Processing

388

5.	 We now apply a Sobel filter that enhances the edges in the image:
>>> sobimg = skif.sobel(img)
    show(sobimg)

6.	 We can threshold the filtered image to get a sketch effect. We obtain a binary 
image that only contains the edges. We use a notebook widget to find an adequate 
thresholding value; by adding the @interact decorator, we display a slider on top of 
the image. This widget lets us control the threshold dynamically.
>>> from ipywidgets import widgets

    

    @widgets.interact(x=(0.01, .2, .005))

    def edge(x):

        show(sobimg < x)
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7.	 Finally, we add some noise to the image to illustrate the effect of a denoising filter:
>>> img = skimage.img_as_float(skid.astronaut())
    
    # We take a portion of the image to show the details.
    img = img[50:200, 150:300]
    
    # We add Gaussian noise.
    img_n = sku.random_noise(img)
    show(img_n)

The denoise_tv_bregman() function implements total-variation denoising using 
the Split Bregman method:

>>> img_r = skimage.restoration.denoise_tv_bregman(
        img_n, 5.)
    
    fig, (ax1, ax2, ax3) = plt.subplots(
        1, 3, figsize=(12, 8))
    
    ax1.imshow(img_n)
    ax1.set_title('With noise')
    ax1.set_axis_off()
    
    ax2.imshow(img_r)
    ax2.set_title('Denoised')
    ax2.set_axis_off()
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    ax3.imshow(img)
    ax3.set_title('Original')
    ax3.set_axis_off()

How it works...
Many filters used in image processing are linear filters. These filters are very similar to those 
seen in Chapter 10, Signal Processing; the only difference is that they work in two dimensions. 
Applying a linear filter to an image amounts to performing a discrete convolution of the image 
with a particular function. The Gaussian filter applies a convolution with a Gaussian function 
to blur the image.

The Sobel filter computes an approximation of the gradient of the image. Therefore, it can 
detect fast-varying spatial changes in the image, which generally correspond to edges.

Image denoising refers to the process of removing noise from an image. Total variation 
denoising works by finding a regular image close to the original (noisy) image. Regularity is 
quantified by the total variation of the image:

The Split Bregman method is a variant based on the L1 norm. It is an instance of 
compressed sensing, which aims to find regular and sparse approximations of  
real-world noisy measurements.

There's more...
Here are a few references:

ff API reference of the skimage.filter module available at http://scikit-
image.org/docs/dev/api/skimage.filters.html

ff Noise reduction on Wikipedia, available at https://en.wikipedia.org/wiki/
Noise_reduction

http://scikit-image.org/docs/dev/api/skimage.filters.html
http://scikit-image.org/docs/dev/api/skimage.filters.html
https://en.wikipedia.org/wiki/Noise_reduction 
https://en.wikipedia.org/wiki/Noise_reduction 
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ff Gaussian filter on Wikipedia, available at https://en.wikipedia.org/wiki/
Gaussian_filter

ff Sobel filter on Wikipedia, available at https://en.wikipedia.org/wiki/
Sobel_operator

ff The Split Bregman algorithm explained at http://www.ece.rice.edu/~tag7/
Tom_Goldstein/Split_Bregman.html

See also
ff The Manipulating the exposure of an image recipe

Segmenting an image
Image segmentation consists of partitioning an image into different regions that share 
certain characteristics. This is a fundamental task in computer vision, facial recognition, and 
medical imaging. For example, an image segmentation algorithm can automatically detect the 
contours of an organ in a medical image.

The scikit-image provides several segmentation methods. In this recipe, we will demonstrate 
how to segment an image containing different objects. This recipe is inspired by a scikit-image 
example available at http://scikit-image.org/docs/dev/user_guide/tutorial_
segmentation.html

How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import matplotlib.pyplot as plt
    from skimage.data import coins
    from skimage.filters import threshold_otsu
    from skimage.segmentation import clear_border
    from skimage.morphology import label, closing, square
    from skimage.measure import regionprops
    from skimage.color import lab2rgb
    %matplotlib inline

2.	 We create a function that displays a grayscale image:
>>> def show(img, cmap=None):
        cmap = cmap or plt.cm.gray
        fig, ax = plt.subplots(1, 1, figsize=(8, 6))
        ax.imshow(img, cmap=cmap)
        ax.set_axis_off()
        plt.show()

https://en.wikipedia.org/wiki/Gaussian_filter
https://en.wikipedia.org/wiki/Gaussian_filter
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
http://www.ece.rice.edu/~tag7/Tom_Goldstein/Split_Bregman.html
http://www.ece.rice.edu/~tag7/Tom_Goldstein/Split_Bregman.html
http://scikit-image.org/docs/dev/user_guide/tutorial_segmentation.html
http://scikit-image.org/docs/dev/user_guide/tutorial_segmentation.html
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3.	 We get a test image bundled in scikit-image, showing various coins on a plain 
background:
>>> img = coins()
>>> show(img)

4.	 The first step to segment the image is finding an intensity threshold separating the 
(bright) coins from the (dark) background. Otsu's method defines a simple algorithm 
to automatically find such a threshold.
>>> threshold_otsu(img)

107

>>> show(img > 107)
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5.	 There appears to be a problem in the top-left corner of the image, with part of the 
background being too bright. Let's use a Notebook widget to find a better threshold:
>>> from ipywidgets import widgets
    
    @widgets.interact(t=(50, 240))
    def threshold(t):
        show(img > t)

6.	 The threshold 120 looks better. The next step consists of cleaning the binary image 
by smoothing the coins and removing the border. The scikit-image library 
contains a few functions for these purposes.
>>> img_bin = clear_border(closing(img > 120, square(5)))
    show(img_bin)
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7.	 Next, we perform the segmentation task itself with the label() function. This 
function detects the connected components in the image and attributes a unique 
label to every component. Here, we color code the labels in the binary image:
>>> labels = label(img_bin)
    show(labels, cmap=plt.cm.rainbow)

8.	 Small artifacts in the image result in spurious labels that do not correspond  
to coins. Therefore, we only keep components with more than 100 pixels.  
The regionprops() function allows us to retrieve specific properties of the 
components (here, the area and the bounding box):
>>> regions = regionprops(labels)
    boxes = np.array([label['BoundingBox']
                      for label in regions
                      if label['Area'] > 100])
    print(f"There are {len(boxes)} coins.")
There are 24 coins.

9.	 Finally, we show the label number on top of each component in the original image:

>>> fig, ax = plt.subplots(1, 1, figsize=(8, 6))
    ax.imshow(img, cmap=plt.cm.gray)
    ax.set_axis_off()
    
    # Get the coordinates of the boxes.
    xs = boxes[:, [1, 3]].mean(axis=1)
    ys = boxes[:, [0, 2]].mean(axis=1)
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    # We reorder the boxes by increasing
    # column first, and row second.
    for row in range(4):
        # We select the coins in each of the four rows.
        if row < 3:
            ind = ((ys[6 * row] <= ys) &
                   (ys < ys[6 * row + 6]))
        else:
            ind = (ys[6 * row] <= ys)
        # We reorder by increasing x coordinate.
        ind = np.nonzero(ind)[0]
        reordered = ind[np.argsort(xs[ind])]
        xs_row = xs[reordered]
        ys_row = ys[reordered]
        # We display the coin number.
        for col in range(6):
            n = 6 * row + col
            ax.text(xs_row[col] - 5, ys_row[col] + 5,
                    str(n),
                    fontsize=20)

How it works...
To clean up the coins in the thresholded image, we used mathematical morphology 
techniques. These methods, based on set theory, geometry, and topology, allow us to 
manipulate shapes.
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For example, let's explain dilation and erosion. First, if  is a set of pixels in an image, and  
is a 2D vector, we denote bA  the set  translated by  as:

Let  be a set of vectors with integer components. We call B the structuring element (here, 
we used a square). This set represents the neighborhood of a pixel. The dilation of  by  is:

The erosion of  by  is:

A dilation extends a set by adding pixels close to its boundaries. An erosion removes the pixels 
of the set that are too close to the boundaries. The closing of a set is a dilation followed by an 
erosion. This operation can remove small dark spots and connect small bright cracks. In this 
recipe, we used a square structuring element.

There's more...
Here are a few references:

ff SciPy lecture notes on image processing available at http://scipy-lectures.
github.io/packages/scikit-image/

ff Image segmentation on Wikipedia, available at https://en.wikipedia.org/
wiki/Image_segmentation

ff Otsu's method to find a threshold explained at https://en.wikipedia.org/
wiki/Otsu's_method

ff Segmentation tutorial with scikit-image (which inspired this recipe) available 
at http://scikit-image.org/docs/dev/user_guide/tutorial_
segmentation.html

ff Mathematical morphology on Wikipedia, available at https://en.wikipedia.
org/wiki/Mathematical_morphology

http://scipy-lectures.github.io/packages/scikit-image/
http://scipy-lectures.github.io/packages/scikit-image/
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Otsu's_method
http://scikit-image.org/docs/dev/user_guide/tutorial_segmentation.html
http://scikit-image.org/docs/dev/user_guide/tutorial_segmentation.html
https://en.wikipedia.org/wiki/Mathematical_morphology 
https://en.wikipedia.org/wiki/Mathematical_morphology 
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ff API reference of the skimage.morphology module available at http://scikit-
image.org/docs/dev/api/skimage.morphology.html

See also
ff The Computing connected components in an image recipe, in Chapter 14, Graphs, 

Geometry, and Geographic Information Systems.

Finding points of interest in an image
In an image, points of interest are positions where there might be edges, corners, or 
interesting objects. For example, in a landscape picture, points of interest can be located near 
a house or a person. Detecting points of interest is useful in image recognition, computer 
vision, or medical imaging.

In this recipe, we will find points of interest in an image with scikit-image. This will allow us to 
crop an image around the subject of the picture, even when this subject is not in the center of 
the image.

How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import matplotlib.pyplot as plt
    import skimage
    import skimage.feature as sf
    %matplotlib inline

2.	 We create a function to display a colored or grayscale image:
>>> def show(img, cmap=None):
        cmap = cmap or plt.cm.gray
        fig, ax = plt.subplots(1, 1, figsize=(8, 6))
        ax.imshow(img, cmap=cmap)
        ax.set_axis_off()
        return ax

http://scikit-image.org/docs/dev/api/skimage.morphology.html
http://scikit-image.org/docs/dev/api/skimage.morphology.html
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3.	 We load an image:
>>> img = plt.imread('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'child.png?raw=true')
>>> show(img)

4.	 Let's find salient points in the image with the Harris corner method. The first  
step consists of computing the Harris corner measure response image with the 
corner_harris() function (we will explain this measure in the How it works... 
section of this recipe). This function requires a grayscale image, thus we select  
the first RGB component:
>>> corners = sf.corner_harris(img[:, :, 0])
>>> show(corners)

We see that the patterns in the child's coat are well detected by this algorithm.

5.	 The next step is to detect corners from this measure image, using the  
corner_peaks() function:
>>> peaks = sf.corner_peaks(corners)
>>> ax = show(img)
    ax.plot(peaks[:, 1], peaks[:, 0], 'or', ms=4)
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6.	 Finally, we create a box around the median position of the corner points to define our 
region of interest:

>>> # The median defines the approximate position of
    # the corner points.
    ym, xm = np.median(peaks, axis=0)
    # The standard deviation gives an estimation
    # of the spread of the corner points.
    ys, xs = 2 * peaks.std(axis=0)
    xm, ym = int(xm), int(ym)
    xs, ys = int(xs), int(ys)
    show(img[ym - ys:ym + ys, xm - xs:xm + xs])
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How it works...
Let's explain the method used in this recipe. The first step consists of computing the structure 
tensor (or Harris matrix) of the image:

Here,  is the image,  and  are the partial derivatives, and the brackets denote the 
local spatial average around neighboring values.

This tensor associates a  positive symmetric matrix at each point. This matrix is used to 
calculate a sort of autocorrelation of the image at each point.

Let  and  be the two eigenvalues of this matrix (the matrix is diagonalizable because 
it is real and symmetric). Roughly, a corner is characterized by a large variation of the 
autocorrelation in all directions, or in large positive eigenvalues  and . The corner measure 
image is defined as:

Here,  is a tunable parameter.  is large when there is a corner. Finally, corner_peaks() 
finds corner points by looking at local maxima in the corner measure image.

There's more...
Here are a few references:

ff A corner detection example with scikit-image available at http://scikit-image.
org/docs/dev/auto_examples/features_detection/plot_corner.html

ff An image processing tutorial with scikit-image available at http://blog.yhathq.
com/posts/image-processing-with-scikit-image.html

ff Corner detection on Wikipedia, available at https://en.wikipedia.org/wiki/
Corner_detection

ff Structure tensor on Wikipedia, available at https://en.wikipedia.org/wiki/
Structure_tensor

ff API reference of the skimage.feature module available at http://scikit-
image.org/docs/dev/api/skimage.feature.html

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_corner.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_corner.html
http://blog.yhathq.com/posts/image-processing-with-scikit-image.html
http://blog.yhathq.com/posts/image-processing-with-scikit-image.html
https://en.wikipedia.org/wiki/Corner_detection
https://en.wikipedia.org/wiki/Corner_detection
https://en.wikipedia.org/wiki/Structure_tensor
https://en.wikipedia.org/wiki/Structure_tensor
http://scikit-image.org/docs/dev/api/skimage.feature.html 
http://scikit-image.org/docs/dev/api/skimage.feature.html 
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Detecting faces in an image with OpenCV
OpenCV (Open Computer Vision) is an open source C++ library for computer vision.  
It features algorithms for image segmentation, object recognition, augmented reality,  
face detection, and other computer vision tasks.

In this recipe, we will use OpenCV in Python to detect faces in a picture.

Getting ready
You need OpenCV and the Python wrapper. You can install them with the following command:

conda install -c conda-forge opencv

How to do it...
1.	 First, we import the packages:

>>> import io
    import zipfile
    import requests
    import numpy as np
    import cv2
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We download and extract the dataset in the data/ subfolder:
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'family.zip?raw=true')
    r = io.BytesIO(requests.get(url).content)
    zipfile.ZipFile(r).extractall('data')

3.	 We open the JPG image with OpenCV:
>>> img = cv2.imread('data/family.jpg')

4.	 Then, we convert it to a grayscale image using OpenCV's cvtColor() function. For 
face detection, it is sufficient and faster to use grayscale images.
>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
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5.	 To detect faces, we will use the Viola–Jones object detection framework. A cascade 
of Haar-like classifiers has been trained on many images to detect faces (more details 
are given in the next section). The result of the training is stored in an XML file that 
is part of the archive that was downloaded in step 2. We load this cascade from this 
XML file with OpenCV's CascadeClassifier class:
>>> path = 'data/haarcascade_frontalface_default.xml'

    face_cascade = cv2.CascadeClassifier(path)

6.	 Finally, the detectMultiScale() method of the classifier detects the objects on a 
grayscale image and returns a list of rectangles around these objects:

>>> for x, y, w, h in face_cascade.detectMultiScale(
            gray, 1.3):
        cv2.rectangle(
            gray, (x, y), (x + w, y + h), (255, 0, 0), 2)
    fig, ax = plt.subplots(1, 1, figsize=(8, 6))
    ax.imshow(gray, cmap=plt.cm.gray)
    ax.set_axis_off()

We see that, although all detected objects are indeed faces, one face out of four is 
not detected. This is probably due to the fact that this face is not perfectly facing the 
camera, whereas the faces in the training set were. This shows that the efficacy of 
this method is limited by the quality and generality of the training set.

How it works...
The Viola–Jones object detection framework works by training a cascade of boosted classifiers 
with Haar-like features. First, we consider a set of features:
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Haar-like features

A feature is positioned at a particular location and size in the image. It covers a small  
window in the image (for example, 24 x 24 pixels). The sum of all pixels in the black area is 
subtracted to the sum of the pixels in the white area. This operation can be done efficiently 
with integral images.

Then, the set of all classifiers is trained with a boosting technique; only the best features are 
kept for the next stage during training. The training set contains positive and negative images 
(with and without faces). Although the classifiers yield poor performance individually, the 
cascade of boosted classifiers is both efficient and fast. This method is therefore well-adapted 
to real-time processing.

The XML file has been obtained in OpenCV's package. There are multiple files corresponding 
to different training sets. You can also train your own cascade with your own training set.

There's more...
Here are a few references:

ff A cascade tutorial with OpenCV (C++) available at http://docs.opencv.org/
doc/tutorials/objdetect/cascade_classifier/cascade_classifier.
html

ff Documentation to train a cascade, available at http://docs.opencv.org/doc/
user_guide/ug_traincascade.html

ff Haar cascades library, available at https://github.com/Itseez/opencv/
tree/master/data/haarcascades

http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
https://github.com/Itseez/opencv/tree/master/data/haarcascades 
https://github.com/Itseez/opencv/tree/master/data/haarcascades 
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ff OpenCV's cascade classification API reference available at http://docs.opencv.
org/modules/objdetect/doc/cascade_classification.html

ff The Viola–Jones object detection framework on Wikipedia, available at https://
en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_
framework

ff Boosting, or how to create one strong classifier from many weak classifiers, explained 
at https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29

Applying digital filters to speech sounds
In this recipe, we will show how to play sounds in the Notebook. We will also illustrate the 
effect of simple digital filters on speech sounds.

Getting ready
You need the pydub package. You can install it with pip install pydub or download it 
from https://github.com/jiaaro/pydub/.

This package requires the open source multimedia library FFmpeg for the decompression of 
MP3 files, available at http://www.ffmpeg.org.

How to do it
1.	 Let's import the packages:

>>> from io import BytesIO
    import tempfile
    import requests
    import numpy as np
    import scipy.signal as sg
    import pydub
    import matplotlib.pyplot as plt
    from IPython.display import Audio, display
    %matplotlib inline

2.	 We create a Python function that loads an MP3 sound and returns a NumPy array 
with the raw sound data:
>>> def speak(data):
        # We convert the mp3 bytes to wav.
        audio = pydub.AudioSegment.from_mp3(BytesIO(data))

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29
https://github.com/jiaaro/pydub/
http://www.ffmpeg.org
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        with tempfile.TemporaryFile() as fn:
            wavef = audio.export(fn, format='wav')
            wavef.seek(0)
            wave = wavef.read()
        # We get the raw data by removing the 24 first
        # bytes of the header.
        x = np.frombuffer(wave, np.int16)[24:] / 2.**15
        return x, audio.frame_rate

3.	 We create a function that plays a sound (represented by a NumPy vector) in the 
Notebook, using IPython's Audio class:
>>> def play(x, fr, autoplay=False):
        display(Audio(x, rate=fr, autoplay=autoplay))

4.	 Let's play a sound that had been obtained from http://www.fromtexttospeech.
com:
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'voice.mp3?raw=true')
    voice = requests.get(url).content
>>> x, fr = speak(voice)
    play(x, fr)
    fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    t = np.linspace(0., len(x) / fr, len(x))
    ax.plot(t, x, lw=1)

http://www.fromtexttospeech.com
http://www.fromtexttospeech.com
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5.	 Now, we will hear the effect of a Butterworth low-pass filter applied to this sound  
(500 Hz cutoff frequency):
>>> b, a = sg.butter(4, 500. / (fr / 2.), 'low')
    x_fil = sg.filtfilt(b, a, x)
>>> play(x_fil, fr)
    fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(t, x, lw=1)
    ax.plot(t, x_fil, lw=1)

We hear a muffled voice.

6.	 Now, with a high-pass filter (1000 Hz cutoff frequency):
>>> b, a = sg.butter(4, 1000. / (fr / 2.), 'high')
    x_fil = sg.filtfilt(b, a, x)
>>> play(x_fil, fr)
    fig, ax = plt.subplots(1, 1, figsize=(6, 3))
    ax.plot(t, x, lw=1)
    ax.plot(t, x_fil, lw=1)

It sounds like a phone call.



Chapter 11

407

7.	 Finally, we can create a simple widget to quickly test the effect of a high-pass filter 
with an arbitrary cutoff frequency: we get a slider that lets us change the cutoff 
frequency and hear the effect in real-time.

>>> from ipywidgets import widgets
    
    @widgets.interact(t=(100., 5000., 100.))
    def highpass(t):
        b, a = sg.butter(4, t / (fr / 2.), 'high')
        x_fil = sg.filtfilt(b, a, x)
        play(x_fil, fr, autoplay=True)

How it works...
The human ear can hear frequencies up to 20 kHz. The human voice frequency band ranges 
from approximately 300 Hz to 3,000 Hz.

Digital filters were described in Chapter 10, Signal Processing. The example given here allows 
us to hear the effect of low- and high-pass filters on sounds.

There's more...
Here are a few references:

ff Audio signal processing on Wikipedia, available at https://en.wikipedia.org/
wiki/Audio_signal_processing

ff Audio filters on Wikipedia, available at https://en.wikipedia.org/wiki/
Audio_filter

ff Voice frequency on Wikipedia, available at https://en.wikipedia.org/wiki/
Voice_frequency

ff PyAudio, an audio Python package that uses the PortAudio library, available at 
http://people.csail.mit.edu/hubert/pyaudio/

See also
ff The Creating a sound synthesizer in the Notebook recipe

https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Audio_filter
https://en.wikipedia.org/wiki/Audio_filter
https://en.wikipedia.org/wiki/Voice_frequency
https://en.wikipedia.org/wiki/Voice_frequency
http://people.csail.mit.edu/hubert/pyaudio/
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Creating a sound synthesizer in the 
Notebook

In this recipe, we will create a small electronic piano in the Notebook. We will synthesize 
sinusoidal sounds with NumPy instead of using recorded tones.

How to do it...
1.	 We import the modules:

>>> import numpy as np
    import matplotlib.pyplot as plt
    from IPython.display import (
        Audio, display, clear_output)
    from ipywidgets import widgets
    from functools import partial
    %matplotlib inline

2.	 We define the sampling rate and the duration of the notes:
>>> rate = 16000.
    duration = .25
    t = np.linspace(
        0., duration, int(rate * duration))

3.	 We create a function that generates and plays the sound of a note (sine function) at a 
given frequency, using NumPy and IPython's audio class:
>>> def synth(f):
        x = np.sin(f * 2. * np.pi * t)
        display(Audio(x, rate=rate, autoplay=True))

4.	 Here is the fundamental 440 Hz note:
>>> synth(440)

5.	 Now, we generate the note frequencies of our piano. The chromatic scale is obtained 
by a geometric progression with the common ratio :
>>> notes = 'C,C#,D,D#,E,F,F#,G,G#,A,A#,B,C'.split(',')
    freqs = 440. * 2**(np.arange(3, 3 + len(notes)) / 12.)
    notes = list(zip(notes, freqs))
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6.	 Finally, we create the piano with the Notebook widgets. Each note is a button, and 
all buttons are contained in a horizontal box container. Clicking on one note plays a 
sound at the corresponding frequency.

>>> layout = widgets.Layout(
        width='30px', height='60px',
        border='1px solid black')
    
    buttons = []
    for note, f in notes:
        button = widgets.Button(
            description=note, layout=layout)
    
        def on_button_clicked(f, b):
            # When a button is clicked, we play the sound
            # in a dedicated Output widget.
            with widgets.Output():
                synth(f)
    
        button.on_click(partial(on_button_clicked, f))
        buttons.append(button)
    
    # We place all buttons horizontally.
    widgets.Box(children=buttons)

How it works...
A pure tone is a tone with a sinusoidal waveform. It is the simplest way of representing a 
musical note. A note generated by a musical instrument is typically much more complex. 
Although the sound contains many frequencies, we generally perceive a musical tone 
(fundamental frequency).

By generating another periodic function instead of a sinusoidal waveform, we would hear the 
same tone, but a different timbre. Electronic music synthesizers are based on this idea.
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There's more...
Here are a few references:

ff Synthesizer on Wikipedia, available at https://en.wikipedia.org/wiki/
Synthesizer

ff Equal temperament on Wikipedia, available at https://en.wikipedia.org/
wiki/Equal_temperament

ff Chromatic scale on Wikipedia, available at https://en.wikipedia.org/wiki/
Chromatic_scale

See also
ff The Applying digital filters to speech sounds recipe

https://en.wikipedia.org/wiki/Synthesizer
https://en.wikipedia.org/wiki/Synthesizer
https://en.wikipedia.org/wiki/Equal_temperament
https://en.wikipedia.org/wiki/Equal_temperament
https://en.wikipedia.org/wiki/Chromatic_scale
https://en.wikipedia.org/wiki/Chromatic_scale
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Deterministic 

Dynamical Systems

In this chapter, we will cover the following topics:

ff Plotting the bifurcation diagram of a chaotic dynamical system

ff Simulating an elementary cellular automaton

ff Simulating an ordinary differential equation with SciPy

ff Simulating a partial differential equation — reaction-diffusion systems  
and Turing patterns

Introduction
The previous chapters dealt with classical approaches in data science: statistics, machine 
learning, and signal processing. In this chapter and the next chapter, we will cover a different 
type of approach. Instead of analyzing data directly, we will simulate mathematical models 
that represent how our data was generated. A representative model gives us an explanation  
of the real-world processes underlying our data.

Specifically, we will cover a few examples of dynamical systems. These mathematical 
equations describe the evolution of quantities over time and space. They can represent a wide 
variety of real-world phenomena in physics, chemistry, biology, economics, social sciences, 
computer science, engineering, and other disciplines.

In this chapter, we will consider deterministic dynamical systems. This term is used in contrast 
to stochastic systems, which incorporate randomness in their rules. We will cover stochastic 
systems in the next chapter.
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Types of dynamical systems
The types of deterministic dynamical systems we will consider here are:

ff Discrete-time dynamical systems (iterated functions)

ff Cellular automata

ff Ordinary Differential Equations (ODEs)

ff Partial Differential Equations (PDEs)

In these models, the quantities of interest depend on one or several independent variables. 
Often, these variables include time and/or space. The independent variables can be  
discrete or continuous, resulting in different types of models and different analysis  
and simulation techniques.

A discrete-time dynamical system is described by the iterative application of a function on an 
initial point: , , , and so on. This type of system can lead to complex and 
chaotic behaviors.

A cellular automaton is represented by a discrete grid of cells that can be in a finite number 
of states. Rules describe how the state of a cell evolves according to the states of the 
neighboring cells. These simple models can lead to highly sophisticated behaviors.

An ODE describes the dependence of a continuous function on its derivative with respect 
to the independent variable. In differential equations, the unknown variable is a function 
instead of a number. ODEs notably arise when the rate of change of a quantity depends on 
the current value of this quantity. For example, in classical mechanics, the laws of motion 
(including the movements of planets and satellites) can be described by ODEs.

PDEs are similar to ODEs, but they involve several independent variables (for example, time 
and space). These equations contain partial derivatives of the function with respect to 
the different independent variables. For example, PDEs describe the propagation of waves 
(acoustic, electromagnetic, or mechanical waves) and fluids (fluid dynamics). They are also 
important in quantum mechanics.

Differential equations
ODEs and PDEs can be one-dimensional or multidimensional, depending on the 
dimensionality of the target space. Systems of multiple differential equations can  
be seen as multidimensional equations.

The order of an ODE or a PDE refers to the maximal derivative order in the equation.  
For example, a first-order equation only involves simple derivatives, a second-order equation 
also involves second-order derivatives (the derivatives of the derivatives), and so on.
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Ordinary or partial differential equations come with additional rules: initial and boundary 
conditions. These formulas describe the behavior of the sought functions on the spatial 
and temporal domain boundaries. For example, in classical mechanics, boundary conditions 
include the initial position and initial speed of a physical body subject to forces.

Dynamical systems are often classified between linear and nonlinear systems, depending 
on whether the rules are linear or not (with respect to the unknown function). Nonlinear 
equations are typically much harder to study mathematically and numerically than linear 
equations. They can lead to extremely complex behaviors.

For example, the Navier–Stokes equations, a set of nonlinear PDEs that describe the motion 
of fluid substances, can lead to turbulence, a highly chaotic behavior seen in many fluid 
flows. Despite their high importance in meteorology, medicine, and engineering, fundamental 
properties of the Navier-Stokes equations remain unknown at this time. For example, the 
existence and smoothness problem in three dimensions is one of the seven Clay Mathematics 
Institute's Millennium Prize Problems. One million dollars is offered to anyone who comes up 
with a solution.

References
Here are a few references:

ff Overview of dynamical systems on Wikipedia, available at https://
en.wikipedia.org/wiki/Dynamical_system

ff Mathematical definition of dynamical systems available at https://
en.wikipedia.org/wiki/Dynamical_system_%28definition%29

ff List of dynamical systems topics available at https://en.wikipedia.org/wiki/
List_of_dynamical_systems_and_differential_equations_topics

ff Navier-Stokes equations on Wikipedia, available at https://en.wikipedia.org/
wiki/Navier%E2%80%93Stokes_equations

ff A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the 
Jupyter Notebook, available at https://github.com/barbagroup/CFDPython

ff Pynamical, a Python package for modeling and visualizing discrete dynamical 
systems, available at https://pynamical.readthedocs.io/en/latest/

Plotting the bifurcation diagram of a chaotic 
dynamical system

A chaotic dynamical system is highly sensitive to initial conditions; small perturbations at any 
given time yield completely different trajectories. The trajectories of a chaotic system tend to 
have complex and unpredictable behaviors.

https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system_%28definition%29
https://en.wikipedia.org/wiki/Dynamical_system_%28definition%29
https://en.wikipedia.org/wiki/List_of_dynamical_systems_and_differential_equations_topics
https://en.wikipedia.org/wiki/List_of_dynamical_systems_and_differential_equations_topics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://github.com/barbagroup/CFDPython
https://pynamical.readthedocs.io/en/latest/
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Many real-world phenomena are chaotic, particularly those that involve nonlinear interactions 
among many agents (complex systems). Examples can be found in meteorology, economics, 
biology, and other disciplines.

In this recipe, we will simulate a famous chaotic system: the logistic map. This is an 
archetypal example of how chaos can arise from a very simple nonlinear equation. The  
logistic map models the evolution of a population, taking into account both reproduction  
and density-dependent mortality (starvation).

We will draw the system's bifurcation diagram, which shows the possible long-term behaviors 
(equilibria, fixed points, periodic orbits, and chaotic trajectories) as a function of the system's 
parameter. We will also compute an approximation of the system's Lyapunov exponent, 
characterizing the model's sensitivity to initial conditions.

How to do it...
1.	 Let's import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define the logistic function by:

Here is the implementation of this function in Python:

>>> def logistic(r, x):
        return r * x * (1 - x)

3.	 Here is a graphic representation of this function
>>> x = np.linspace(0, 1)
    fig, ax = plt.subplots(1, 1)
    ax.plot(x, logistic(2, x), 'k')
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4.	 Our discrete dynamical system is defined by the recursive application of the  
logistic function:

Let's simulate a few iterations of this system with two different values of :
>>> def plot_system(r, x0, n, ax=None):
        # Plot the function and the
        # y=x diagonal line.
        t = np.linspace(0, 1)
        ax.plot(t, logistic(r, t), 'k', lw=2)
        ax.plot([0, 1], [0, 1], 'k', lw=2)
    
        # Recursively apply y=f(x) and plot two lines:
        # (x, x) -> (x, y)
        # (x, y) -> (y, y)
        x = x0
        for i in range(n):
            y = logistic(r, x)
            # Plot the two lines.
            ax.plot([x, x], [x, y], 'k', lw=1)
            ax.plot([x, y], [y, y], 'k', lw=1)
            # Plot the positions with increasing
            # opacity.
            ax.plot([x], [y], 'ok', ms=10,
                    alpha=(i + 1) / n)
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            x = y
    
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.set_title(f"$r={r:.1f}, \, x_0={x0:.1f}$")
    
    
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6),
                                   sharey=True)
    plot_system(2.5, .1, 10, ax=ax1)
    plot_system(3.5, .1, 10, ax=ax2)

On the left panel, we can see that our system converges to the intersection point 
of the curve and the diagonal line (fixed point). On the right panel, however, using a 
different value for , we observe a seemingly chaotic behavior of the system.

5.	 Now, we simulate this system for 10000 values of  linearly spaced between 2.5 and 
4, and vectorize the simulation with NumPy by considering a vector of independent 
systems (one dynamical system per parameter value):
>>> n = 10000
    r = np.linspace(2.5, 4.0, n)

6.	 We use 1000 iterations of the logistic map and keep the last 100 iterations to display 
the bifurcation diagram:
>>> iterations = 1000
    last = 100

7.	 We initialize our system with the same initial condition :
>>> x = 1e-5 * np.ones(n)
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8.	 We also compute an approximation of the Lyapunov exponent for every value of .  
The Lyapunov exponent is defined by:

We first initialize the Lyapunov vector:

>>> lyapunov = np.zeros(n)

9.	 Now, we simulate the system and plot the bifurcation diagram. The simulation only 
involves the iterative evaluation of the logistic() function on our vector x. Then, 
to display the bifurcation diagram, we draw one pixel per point  during the last 
100 iterations:

>>> fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 9),
                                   sharex=True)
    for i in range(iterations):
        x = logistic(r, x)
        # We compute the partial sum of the
        # Lyapunov exponent.
        lyapunov += np.log(abs(r - 2 * r * x))
        # We display the bifurcation diagram.
        if i >= (iterations - last):
            ax1.plot(r, x, ',k', alpha=.25)
    ax1.set_xlim(2.5, 4)
    ax1.set_title("Bifurcation diagram")
    
    # We display the Lyapunov exponent.
    # Horizontal line.
    ax2.axhline(0, color='k', lw=.5, alpha=.5)
    # Negative Lyapunov exponent.
    ax2.plot(r[lyapunov < 0],
             lyapunov[lyapunov < 0] / iterations,
             '.k', alpha=.5, ms=.5)
    # Positive Lyapunov exponent.
    ax2.plot(r[lyapunov >= 0],
             lyapunov[lyapunov >= 0] / iterations,
             '.r', alpha=.5, ms=.5)
    ax2.set_xlim(2.5, 4)
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    ax2.set_ylim(-2, 1)
    ax2.set_title("Lyapunov exponent")
    plt.tight_layout()

The bifurcation diagram brings out the existence of a fixed point for , then two and four 
equilibria, and a chaotic behavior when  belongs to certain areas of the parameter space.

We observe an important property of the Lyapunov exponent: it is positive when the system is 
chaotic (in red as shown in the preceding diagram).

There's more...
Here are some references:

ff Chaos theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Chaos_theory

ff Complex systems on Wikipedia, available at https://en.wikipedia.org/wiki/
Complex_system

ff The logistic map on Wikipedia, available at https://en.wikipedia.org/wiki/
Logistic_map

ff Iterated functions (discrete dynamical systems) on Wikipedia, available at https://
en.wikipedia.org/wiki/Iterated_function

ff Bifurcation diagrams on Wikipedia, available at https://en.wikipedia.org/
wiki/Bifurcation_diagram

https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Complex_system
https://en.wikipedia.org/wiki/Complex_system
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Iterated_function
https://en.wikipedia.org/wiki/Iterated_function
https://en.wikipedia.org/wiki/Bifurcation_diagram 
https://en.wikipedia.org/wiki/Bifurcation_diagram 
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ff Lyapunov exponent on Wikipedia, available at https://en.wikipedia.org/
wiki/Lyapunov_exponent

See also
ff The Simulating an ordinary differential equation with SciPy recipe

Simulating an elementary cellular 
automaton

Cellular automata are discrete dynamical systems evolving on a grid of cells. These cells can 
be in a finite number of states (for example, on/off). The evolution of a cellular automaton is 
governed by a set of rules, describing how the state of a cell changes according to the state of 
its neighbors.

Although extremely simple, these models can initiate highly complex and chaotic behaviors. 
Cellular automata can model real-world phenomena such as car traffic, chemical reactions, 
propagation of fire in a forest, epidemic propagations, and much more. Cellular automata are 
also found in nature. For example, the patterns of some seashells are generated by natural 
cellular automata.

By Richard Ling (wikipedia@rling.com) - Own work; Location: Cod Hole, Great Barrier Reef, Australia, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=293495

An elementary cellular automaton is a binary, one-dimensional automaton, where the rules 
concern the immediate left and right neighbors of every cell.

In this recipe, we will simulate elementary cellular automata with NumPy using their  
Wolfram code.

https://en.wikipedia.org/wiki/Lyapunov_exponent
https://en.wikipedia.org/wiki/Lyapunov_exponent
wikipedia@rling.com
https://commons.wikimedia.org/w/index.php?curid=293495
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How to do it...
1.	 We import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We will use the following vector to obtain numbers written in binary representation:
>>> u = np.array([[4], [2], [1]])

3.	 Let's write a function that performs an iteration on the grid, updating all cells at  
once according to the given rule in binary representation (we will give all explanations 
in the How it works... section of this recipe). The first step consists of stacking 
circularly-shifted versions of the grid to get the LCR (left, center, right) triplets  
of each cell (y). Then, we convert these triplets into 3-bit numbers (z). Finally,  
we compute the next state of every cell using the specified rule:
>>> def step(x, rule_b):
        """Compute a single stet of an elementary cellular
        automaton."""
        # The columns contains the L, C, R values
        # of all cells.
        y = np.vstack((np.roll(x, 1), x,
                       np.roll(x, -1))).astype(np.int8)
        # We get the LCR pattern numbers between 0 and 7.
        z = np.sum(y * u, axis=0).astype(np.int8)
        # We get the patterns given by the rule.
        return rule_b[7 - z]

4.	 We now write a function that simulates any elementary cellular automaton. First, we 
compute the binary representation of the rule (Wolfram Code). Then, we initialize 
the first row of the grid with random values. Finally, we apply the function step() 
iteratively on the grid:
>>> def generate(rule, size=100, steps=100):
        """Simulate an elementary cellular automaton given
        its rule (number between 0 and 255)."""
        # Compute the binary representation of the rule.
        rule_b = np.array(
            [int(_) for _ in np.binary_repr(rule, 8)],
            dtype=np.int8)
        x = np.zeros((steps, size), dtype=np.int8)
        # Random initial state.
        x[0, :] = np.random.rand(size) < .5
        # Apply the step function iteratively.
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        for i in range(steps - 1):
            x[i + 1, :] = step(x[i, :], rule_b)
        return x

5.	 Now, we simulate and display nine different automata:
>>> fig, axes = plt.subplots(3, 3, figsize=(8, 8))
    rules = [3, 18, 30,
             90, 106, 110,
             158, 154, 184]
    for ax, rule in zip(axes.flat, rules):
        x = generate(rule)
        ax.imshow(x, interpolation='none',
                  cmap=plt.cm.binary)
        ax.set_axis_off()
        ax.set_title(str(rule))

How it works...
Let's consider an elementary cellular automaton in one dimension. Every cell  has two 
neighbors (  and ), and it can be either off (0) or on (1). Therefore, the future state of a 
cell depends on the current state of , , and . This triplet can be encoded as a number 
between 0 and 7 (three digits in binary representation).

A particular elementary cellular automaton is entirely determined by the outcome of each of 
these eight configurations. Therefore, there are 256 different elementary cellular automata  
( ). Each of these automata is identified by a number between 0 and 255.
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We consider all eight LCR states in order: 111, 110, 101, ..., 001, 000. Each of the eight digits 
in the binary representation of the automaton's number corresponds to a LCR state (using the 
same order). For example, in the Rule 110 automaton (01101110 in binary representation), 
the state 111 yields a new state of 0 for the center cell, 110 yields 1, 101 yields 1, and so 
on. It has been shown that this particular automaton is Turing complete (or universal); it can 
theoretically simulate any computer program.

There's more...
Other types of cellular automata include Conway's Game of Life, in two dimensions.  
This famous system yields various dynamic patterns. It is also Turing complete.

Here are a few references:

ff Cellular automata on Wikipedia, available at https://en.wikipedia.org/wiki/
Cellular_automaton

ff Elementary cellular automata on Wikipedia, available at https://en.wikipedia.
org/wiki/Elementary_cellular_automaton

ff Rule 110, described at https://en.wikipedia.org/wiki/Rule_110

ff The Wolfram code, explained at https://en.wikipedia.org/wiki/Wolfram_
code, assigns a 1D elementary cellular automaton to any number between 0 and 
255

ff Conway's Game of Life on Wikipedia, available at https://en.wikipedia.org/
wiki/Conway's_Game_of_Life

ff A computer implemented in Conway's Game of Life, at https://codegolf.
stackexchange.com/questions/11880/build-a-working-game-of-
tetris-in-conways-game-of-life

Simulating an ordinary differential equation 
with SciPy

Ordinary Differential Equations (ODEs) describe the evolution of a system subject to 
internal and external dynamics. Specifically, an ODE links a quantity depending on a single 
independent variable (time, for example) to its derivatives. In addition, the system can be 
under the influence of external factors. A first-order ODE can typically be written as:

More generally, an -th order ODE involves successive derivatives of  until the order .  
The ODE is said to be linear or nonlinear depending on whether  is linear in  or not.

https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
https://en.wikipedia.org/wiki/Rule_110
https://en.wikipedia.org/wiki/Wolfram_code
https://en.wikipedia.org/wiki/Wolfram_code
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
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ODEs naturally appear when the rate of change of a quantity depends on its value. Therefore, 
ODEs are found in many scientific disciplines such as mechanics (evolution of a body subject 
to dynamic forces), chemistry (concentration of reacting products), biology (spread of an 
epidemic), ecology (growth of a population), economics, and finance, among others.

Whereas simple ODEs can be solved analytically, many ODEs require a numerical treatment. 
In this recipe, we will simulate a simple linear second-order autonomous ODE, describing 
the evolution of a particle in the air subject to gravity and viscous resistance. Although this 
equation could be solved analytically, here we will use SciPy to simulate it numerically.

How to do it...
1.	 Let's import NumPy, SciPy (the integrate package), and Matplotlib:

>>> import numpy as np
    import scipy.integrate as spi
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define a few parameters appearing in our model:
>>> m = 1.  # particle's mass
    k = 1.  # drag coefficient
    g = 9.81  # gravity acceleration

3.	 We have two variables:  and  (two dimensions). We note . The ODE that 
we are going to simulate is:

Here,  is the gravity acceleration vector.

In order to simulate this second-order ODE with SciPy, we can convert it to a first-
order ODE (another option would be to solve  first before integrating the solution). 
To do this, we consider two 2D variables:  and . We note . We can 
express  as a function of . Now, we create the initial vector  at time : it has 
four components.

>>> # The initial position is (0, 0).
    v0 = np.zeros(4)
    # The initial speed vector is oriented
    # to the top right.
    v0[2] = 4.
    v0[3] = 10.
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4.	 Let's create a Python function  that takes the current vector  and a time  as 
arguments (with optional parameters) and that returns the derivative :
>>> def f(v, t0, k):
        # v has four components: v=[u, u'].
        u, udot = v[:2], v[2:]
        # We compute the second derivative u'' of u.
        udotdot = -k / m * udot
        udotdot[1] -= g
        # We return v'=[u', u''].
        return np.r_[udot, udotdot]

5.	 Now, we simulate the system for different values of . We use the SciPy odeint() 
function, defined in the scipy.integrate package.

Starting with SciPy 1.0, the generic scipy.integrate.
solve_ivp() function can be used instead of the old 
function odeint()

>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    
    # We want to evaluate the system on 30 linearly
    # spaced times between t=0 and t=3.
    t = np.linspace(0., 3., 30)
    
    # We simulate the system for different values of k.
    for k in np.linspace(0., 1., 5):
        # We simulate the system and evaluate $v$ on the
        # given times.
        v = spi.odeint(f, v0, t, args=(k,))
        # We plot the particle's trajectory.
        ax.plot(v[:, 0], v[:, 1], 'o-', mew=1, ms=8,
                mec='w', label=f'k={k:.1f}')
    ax.legend()
    ax.set_xlim(0, 12)
    ax.set_ylim(0, 6)
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In the preceding figure, the most outward trajectory (blue) corresponds to drag-free motion 
(without air resistance). It is a parabola. In the other trajectories, we can observe the 
increasing effect of air resistance, parameterized with .

How it works...
Let's explain how we obtained the differential equation from our model. Let  encode 
the 2D position of our particle with mass . This particle is subject to two forces: gravity 

 and air drag . This last term depends on the particle's  
speed and is only valid at low speed. With higher speeds, we need to use more complex 
nonlinear expressions.

Now, we use Newton's second law of motion in classical mechanics. This law states that, in 
an inertial reference frame, the mass multiplied by the acceleration of the particle is equal to 
the sum of all forces applied to that particle. Here, we obtain:

We immediately obtain our second-order ODE:

We transform it into a single-order system of ODEs, with :

The last term can be expressed as a function of  only.
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The SciPy odeint() function is a black-box solver; we simply specify the function that 
describes the system, and SciPy solves it automatically. This function leverages the Fortran 
library ODEPACK, which contains well-tested code that has been used for decades by many 
scientists and engineers.

The newer solve_ivb() function offers a common API for Python implementations of 
various ODE solvers.

An example of a simple numerical solver is the Euler method. To numerically solve the 
autonomous ODE , the method consists of discretizing time with a time step  and 

replacing  with a first-order approximation:

Then, starting from an initial condition , the method evaluates  successively with 
the following recurrence relation:

There's more...
Here are a few references:

ff The documentation of the integrate package in SciPy available at http://docs.
scipy.org/doc/scipy/reference/integrate.html

ff The new solve_ivp() function, available in SciPy 1.0 and later, at https://
docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
solve_ivp.html

ff ODEs on Wikipedia, available at https://en.wikipedia.org/wiki/Ordinary_
differential_equation

ff ODEs lectures on Awesome Math, at https://github.com/rossant/awesome-
math/#ordinary-differential-equations

ff Newton's laws of motion on Wikipedia, available at https://en.wikipedia.org/
wiki/Newton's_laws_of_motion

ff Air resistance on Wikipedia, available at https://en.wikipedia.org/wiki/
Drag_%28physics%29

ff Some numerical methods for ODEs described at https://en.wikipedia.org/
wiki/Numerical_methods_for_ordinary_differential_equations

ff The Euler method on Wikipedia, available at https://en.wikipedia.org/wiki/
Euler_method

http://docs.scipy.org/doc/scipy/reference/integrate.html
http://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://github.com/rossant/awesome-math/#ordinary-differential-equations
https://github.com/rossant/awesome-math/#ordinary-differential-equations
https://en.wikipedia.org/wiki/Newton's_laws_of_motion
https://en.wikipedia.org/wiki/Newton's_laws_of_motion
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Euler_method 
https://en.wikipedia.org/wiki/Euler_method 
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ff Documentation of the ODEPACK package in Fortran available at http://www.
netlib.org/odepack/opks-sum

See also
ff The Plotting the bifurcation diagram of a chaotic dynamical system recipe

Simulating a partial differential equation 
— reaction-diffusion systems and Turing 
patterns

Partial Differential Equations (PDEs) describe the evolution of dynamical systems involving 
both time and space. Examples in physics include sound, heat, electromagnetism, fluid flow, 
and elasticity, among others. Examples in biology include tumor growth, population dynamics, 
and epidemic propagations.

PDEs are hard to solve analytically. Therefore, PDEs are often studied via numerical 
simulations.

In this recipe, we will illustrate how to simulate a reaction-diffusion system described by a 
PDE called the FitzHugh–Nagumo equation. A reaction-diffusion system models the evolution 
of one or several variables subject to two processes: reaction (transformation of the variables 
into each other) and diffusion (spreading across a spatial region). Some chemical reactions 
can be described by this type of model, but there are other applications in physics, biology, 
ecology, and other disciplines.

Here, we simulate a system that has been proposed by Alan Turing as a model of animal coat 
pattern formation. Two chemical substances influencing skin pigmentation interact according 
to a reaction-diffusion model. This system is responsible for the formation of patterns that are 
reminiscent of the pelage of zebras, jaguars, and giraffes.

We will simulate this system with the finite difference method. This method consists of 
discretizing time and space and replacing the derivatives with their discrete equivalents.

How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

http://www.netlib.org/odepack/opks-sum
http://www.netlib.org/odepack/opks-sum
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2.	 We will simulate the following system of partial differential equations on the domain 
:

The variable  represents the concentration of a substance favoring skin 
pigmentation, whereas  represents another substance that reacts with the  
first and impedes pigmentation.

At initialization time, we assume that  and  contain independent random numbers 
on every grid point. We also take Neumann boundary conditions: we require the 
spatial derivatives of the variables with respect to the normal vectors to be null on 
the domain's boundaries.

3.	 Let's define the four parameters of the model:
>>> a = 2.8e-4
    b = 5e-3
    tau = .1
    k = -.005

4.	 We discretize time and space. The time step dt must be small enough to ensure the 
stability of the numerical simulation:
>>> size = 100  # size of the 2D grid
    dx = 2. / size  # space step
>>> T = 9.0  # total time
    dt = .001  # time step
    n = int(T / dt)  # number of iterations

5.	 We initialize the variables  and . The matrices  and  contain the values of these 
variables on the vertices of the 2D grid. These variables are initialized with a uniform 

noise between 0 and 1:
>>> U = np.random.rand(size, size)
    V = np.random.rand(size, size)

6.	 Now, we define a function that computes the discrete Laplace operator of a 2D 
variable on the grid, using a five-point stencil finite difference method. This operator 
is defined by:
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We can compute the values of this operator on the grid using vectorized matrix 
operations. Because of side effects on the edges of the matrix, we need to remove 
the borders of the grid in the computation:

>>> def laplacian(Z):
        Ztop = Z[0:-2, 1:-1]
        Zleft = Z[1:-1, 0:-2]
        Zbottom = Z[2:, 1:-1]
        Zright = Z[1:-1, 2:]
        Zcenter = Z[1:-1, 1:-1]
        return (Ztop + Zleft + Zbottom + Zright -
                4 * Zcenter) / dx**2

7.	 We define a function that displays the matrix:
>>> def show_patterns(U, ax=None):
        ax.imshow(U, cmap=plt.cm.copper,
                  interpolation='bilinear',
                  extent=[-1, 1, -1, 1])
        ax.set_axis_off()

8.	 Now, we simulate the system of equations using the finite difference method.  
At each time step, we compute the right-hand sides of the two equations on the  
grid using discrete spatial derivatives (Laplacians). Then, we update the variables  
using a discrete time derivative. We also show the evolution of the system at  
9 different steps:
>>> fig, axes = plt.subplots(3, 3, figsize=(8, 8))
    step_plot = n // 9
    # We simulate the PDE with the finite difference
    # method.
    for i in range(n):
        # We compute the Laplacian of u and v.
        deltaU = laplacian(U)
        deltaV = laplacian(V)
        # We take the values of u and v inside the grid.
        Uc = U[1:-1, 1:-1]
        Vc = V[1:-1, 1:-1]
        # We update the variables.
        U[1:-1, 1:-1], V[1:-1, 1:-1] = \
            Uc + dt * (a * deltaU + Uc - Uc**3 - Vc + k),\
            Vc + dt * (b * deltaV + Uc - Vc) / tau
        # Neumann conditions: derivatives at the edges
        # are null.
       for Z in (U, V):
            Z[0, :] = Z[1, :]
            Z[-1, :] = Z[-2, :]
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            Z[:, 0] = Z[:, 1]
            Z[:, -1] = Z[:, -2]
    
        # We plot the state of the system at
        # 9 different times.
        if i % step_plot == 0 and i < 9 * step_plot:
            ax = axes.flat[i // step_plot]
            show_patterns(U, ax=ax)
            ax.set_title(f'$t={i * dt:.2f}$')

9.	 Finally, we show the state of the system at the end of the simulation:

>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    show_patterns(U, ax=ax)

Whereas the variables were completely random at initialization time, we observe the 
formation of patterns after a sufficiently long simulation time.
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How it works...
Let's explain how the finite difference method allowed us to implement the update step.  
We start from the following system of equations:

We first use the following scheme for the discrete Laplace operator:

We also use this scheme for the time derivative of  and :

We end up with the following iterative update step:

Here, our Neumann boundary conditions state that the spatial derivatives with respect to the 
normal vectors are null on the boundaries of the domain :

We implement these boundary conditions by duplicating values in matrices  and  on the 
edges (see the preceding code).

There's more...
Here are further references on partial differential equations, reaction-diffusion systems,  
and numerical simulations of those systems:

ff Partial differential equations on Wikipedia, available at https://en.wikipedia.
org/wiki/Partial_differential_equation

https://en.wikipedia.org/wiki/Partial_differential_equation 
https://en.wikipedia.org/wiki/Partial_differential_equation 
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ff Partial differential equations lectures on Awesome Math, at https://github.
com/rossant/awesome-math/#partial-differential-equations

ff Reaction-diffusion systems on Wikipedia, available at https://en.wikipedia.
org/wiki/Reaction%E2%80%93diffusion_system

ff FitzHugh-Nagumo system on Wikipedia, available at https://en.wikipedia.
org/wiki/FitzHugh%E2%80%93Nagumo_equation

ff Neumann boundary conditions on Wikipedia, available at https://
en.wikipedia.org/wiki/Neumann_boundary_condition

ff A course on Computational Fluid Dynamics by Prof. Lorena Barba, written in the 
Jupyter Notebook, available at https://github.com/barbagroup/CFDPython

https://github.com/rossant/awesome-math/#partial-differential-equations
https://github.com/rossant/awesome-math/#partial-differential-equations
https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
https://en.wikipedia.org/wiki/FitzHugh%E2%80%93Nagumo_equation
https://en.wikipedia.org/wiki/FitzHugh%E2%80%93Nagumo_equation
https://en.wikipedia.org/wiki/Neumann_boundary_condition
https://en.wikipedia.org/wiki/Neumann_boundary_condition
https://github.com/barbagroup/CFDPython
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13
Stochastic Dynamical 

Systems

In this chapter, we will cover the following topics:

ff Simulating a discrete-time Markov chain

ff Simulating a Poisson process

ff Simulating a Brownian motion

ff Simulating a stochastic differential equation

Introduction
Stochastic dynamical systems are dynamical systems subjected to the effect of noise. The 
randomness brought by the noise takes into account the variability observed in real-world 
phenomena. For example, the evolution of a share price typically exhibits long-term behaviors 
along with faster, smaller-amplitude oscillations, reflecting day-to-day or hour-to-hour 
variations.

Applications of stochastic systems to data science include methods for statistical  
inference (such as Markov chain Monte Carlo) and stochastic modeling for time  
series or geospatial data.

Stochastic discrete-time systems include discrete-time Markov chains. The Markov property 
means that the state of a system at time  only depends on its state at time . Stochastic 
cellular automata, which are stochastic extensions of cellular automata, are particular 
Markov chains.
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As far as continuous-time systems are concerned, Ordinary Differential Equations with noise 
yield Stochastic Differential Equations (SDEs). Partial Differential Equations with noise yield 
Stochastic Partial Differential Equations (SPDEs).

Point processes are another type of stochastic process. These processes model the random 
occurrence of instantaneous events over time (arrival of customers in a queue or action 
potentials in the nervous system) or space (locations of trees in a forest, cities in a territory,  
or stars in the sky).

Mathematically, the theory of stochastic dynamical systems is based on probability theory 
and measure theory. The study of continuous-time stochastic systems builds upon stochastic 
calculus, an extension of infinitesimal calculus (including derivatives and integrals) to 
stochastic processes.

In this chapter, we will see how to simulate different kinds of stochastic systems with Python.

References
Here are a few references on the subject:

ff An overview of stochastic dynamical systems, available at http://www.
scholarpedia.org/article/Stochastic_dynamical_systems

ff The Markov property on Wikipedia, available at https://en.wikipedia.org/
wiki/Markov_property

ff Stochastic processes on awesome Math, at https://github.com/rossant/
awesome-math/#stochastic-processes

Simulating a discrete-time Markov chain
Discrete-time Markov chains are stochastic processes that undergo transitions from one 
state to another in a state space. Transitions occur at every time step. Markov chains are 
characterized by their lack of memory in that the probability to undergo a transition from the 
current state to the next depends only on the current state, not the previous ones. These 
models are widely used in scientific and engineering applications.

Continuous-time Markov processes also exist and we will cover particular instances later in 
this chapter.

http://www.scholarpedia.org/article/Stochastic_dynamical_systems
http://www.scholarpedia.org/article/Stochastic_dynamical_systems
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_property
https://github.com/rossant/awesome-math/#stochastic-processes
https://github.com/rossant/awesome-math/#stochastic-processes
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Markov chains are relatively easy to study mathematically and to simulate numerically. In this 
recipe, we will simulate a simple Markov chain modeling the evolution of a population.

How to do it...
1.	 Let's import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We consider a population that cannot comprise more than  individuals, and 
define the birth and death rates:
>>> N = 100  # maximum population size
    a = .5 / N  # birth rate
    b = .5 / N  # death rate

3.	 We simulate a Markov chain on the finite space . Each state represents a 
population size. The x vector will contain the population size at each time step. We 
set the initial state to  (that is, there are 25 individuals in the population at 
initialization time):
>>> nsteps = 1000
    x = np.zeros(nsteps)
    x[0] = 25

4.	 Now we simulate our chain. At each time step , there is a new birth with probability 
, and independently, there is a new death with probability . These probabilities 

are proportional to the size of the population at that time. If the population size 
reaches 0 or N, the evolution stops:
>>> for t in range(nsteps - 1):
        if 0 < x[t] < N - 1:
            # Is there a birth?
            birth = np.random.rand() <= a * x[t]
            # Is there a death?
            death = np.random.rand() <= b * x[t]
            # We update the population size.
            x[t + 1] = x[t] + 1 * birth - 1 * death
        # The evolution stops if we reach $0$ or $N$.
        else:
            x[t + 1] = x[t]
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5.	 Let's look at the evolution of the population size:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(x, lw=2)

We see that, at every time step, the population size can stay stable, increase,  
or decrease by 1.

6.	 Now, we will simulate many independent trials of this Markov chain. We could run 
the previous simulation with a loop, but it would be very slow (two nested for 
loops). Instead, we vectorize the simulation by considering all independent trials 
at once. There is a single loop over time. At every time step, we update all trials 
simultaneously with vectorized operations on vectors. The x vector now contains the 
population size of all trials, at a particular time. At initialization time, the population 
sizes are set to random numbers between 0 and N:
>>> ntrials = 100
    x = np.random.randint(size=ntrials,
                          low=0, high=N)

7.	 We define a function that performs the simulation. At every time step, we find the 
trials that undergo births and deaths by generating random vectors, and we update 
the population sizes with vector operations:
>>> def simulate(x, nsteps):
        """Run the simulation."""
        for _ in range(nsteps - 1):
            # Which trials to update?
            upd = (0 < x) & (x < N - 1)
            # In which trials do births occur?
            birth = 1 * (np.random.rand(ntrials) <= a * x)
            # In which trials do deaths occur?
            death = 1 * (np.random.rand(ntrials) <= b * x)
            # We update the population size for all trials
            x[upd] += birth[upd] - death[upd]
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8.	 Now, let's look at the histograms of the population size at different times. These 
histograms represent the probability distribution of the Markov chain, estimated  
with independent trials (the Monte Carlo method):

>>> bins = np.linspace(0, N, 25)
>>> nsteps_list = [10, 1000, 10000]
    fig, axes = plt.subplots(1, len(nsteps_list),
                             figsize=(12, 3),
                             sharey=True)
    for i, nsteps in enumerate(nsteps_list):
        ax = axes[i]
        simulate(x, nsteps)
        ax.hist(x, bins=bins)
        ax.set_xlabel("Population size")
        if i == 0:
            ax.set_ylabel("Histogram")
        ax.set_title(f"{nsteps} time steps")

Whereas, initially, the population sizes look uniformly distributed between 0 and  
, they appear to converge to 0 or  after a sufficiently long time. This is because 

the states 0 and  are absorbing; once reached, the chain cannot leave these states. 
Furthermore, these states can be reached from any other state.

How it works...
Mathematically, a discrete-time Markov chain on a space  is a sequence of random 
variables  that satisfy the Markov property:

A (stationary) Markov chain is characterized by the probability of transitions . These 
values form a matrix called the transition matrix. This matrix is the adjacency matrix of a 
directed graph called the state diagram. Every node is a state, and the node  is connected to 
the node  if the chain has a non-zero probability of transition between these nodes.
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There's more...
Simulating a single Markov chain in Python is not particularly efficient because we need a for 
loop. However, simulating many independent chains following the same process can be made 
efficient with vectorization and parallelization (all tasks are independent, thus the problem is 
embarrassingly parallel). This is useful when we are interested in statistical properties of the 
chain (example of the Monte Carlo method).

There is vast literature on Markov chains. Many theoretical results can be established with 
linear algebra and probability theory.

Many generalizations of discrete-time Markov chains exist. Markov chains can be defined on 
infinite state spaces, or with a continuous time. Also, the Markov property is important in a 
broad class of stochastic processes.

Here are a few references:

ff Markov chains on Wikipedia, available at https://en.wikipedia.org/wiki/
Markov_chain

ff Absorbing Markov chains on Wikipedia, available at https://en.wikipedia.
org/wiki/Absorbing_Markov_chain

ff Monte Carlo methods on Wikipedia, available at https://en.wikipedia.org/
wiki/Monte_Carlo_method

See also
ff The Simulating a Brownian motion recipe

Simulating a Poisson process
A Poisson process is a particular type of point process, a stochastic model that represents 
random occurrences of instantaneous events. Roughly speaking, the Poisson process is the 
least structured, or the most random, point process.

The Poisson process is a particular continuous-time Markov process.

Point processes, and notably Poisson processes, can model random instantaneous 
events such as the arrival of clients in a queue or on a server, telephone calls, radioactive 
disintegrations, action potentials of nerve cells, and many other phenomena.

In this recipe, we will show different methods to simulate a homogeneous stationary  
Poisson process.

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Absorbing_Markov_chain
https://en.wikipedia.org/wiki/Absorbing_Markov_chain
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
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How to do it...
1.	 Let's import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 Let's specify the rate value, that is, the average number of events per second:
>>> rate = 20.  # average number of events per second

3.	 First, we will simulate the process using small time bins of 1 millisecond:
>>> dt = .001  # time step
    n = int(1. / dt)  # number of time steps

4.	 On every time bin, the probability that an event occurs is about rate * dt if dt is 
small enough. Besides, as the Poisson process has no memory, the occurrence of 
an event is independent from one bin to another. Therefore, we can sample Bernoulli 
random variables (either 1 or 0, respectively representing an experiment's success or 
failure) in a vectorized way in order to simulate our process:
>>> x = np.zeros(n)
    x[np.random.rand(n) <= rate * dt] = 1

The x vector contains zeros and ones on all time bins, 1 corresponding to the 
occurrence of an event:

>>> x[:10]
array([ 1.,  0.,  ...,  0.,  0.])

5.	 Let's display the simulated process. We draw a vertical line for each event:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 2))
    ax.vlines(np.nonzero(x)[0], 0, 1)
    ax.set_axis_off()
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6.	 Another way of representing that same object is by considering the associated 
counting process ,which is the number of events that have occurred until time . 
Here, we can display this process using the cumsum() function:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    ax.plot(np.linspace(0., 1., n),
            np.cumsum(x), lw=2)
    ax.set_xlabel("Time")
    ax.set_ylabel("Counting process")

7.	 The other (and more efficient) way of simulating the homogeneous Poisson process 
is to use the property that the time intervals between two successive events follow an 
exponential distribution. Furthermore, these intervals are independent. Thus, we can 
sample them in a vectorized way. Finally, we get our process by cumulatively summing 
all of these intervals:
>>> y = np.cumsum(np.random.exponential(1. / rate,
                                        size=int(rate)))

The y vector contains another realization of our Poisson process, but the data 
structure is different. Every component of the vector is an event time:

>>> y[:10]
array([ 0.021,  0.072,  0.087,  0.189,  0.224,
        0.365,  0.382,  0.392,  0.458,  0.489])

8.	 Finally, let's display the simulated process:

>>> fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ax.vlines(y, 0, 1)
    ax.set_axis_off()
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How it works...
For a Poisson process with rate , the number of events in a time window of length  follows a 
Poisson distribution:

When  is small, we can show that, at first order, this probability is about .

Also, the holding times (delays between two consecutive events) are independent and follow 
an exponential distribution. The Poisson process satisfies other useful properties, such as the 
independent and stationary increments. This property justifies the first simulation method 
used in this recipe.

There's more...
In this recipe, we only considered homogeneous time-dependent Poisson processes. Other 
types of Poisson processes include inhomogeneous (or non-homogeneous) processes that  
are characterized by a time-varying rate, and multidimensional spatial Poisson processes.

Here are further references:

ff The Poisson process on Wikipedia, available at https://en.wikipedia.org/
wiki/Poisson_process

ff Point processes on Wikipedia, available at https://en.wikipedia.org/wiki/
Point_process

ff Renewal theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Renewal_theory

ff Spatial Poisson processes on Wikipedia, available at https://en.wikipedia.
org/wiki/Spatial_Poisson_process

https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Point_process
https://en.wikipedia.org/wiki/Point_process
https://en.wikipedia.org/wiki/Renewal_theory
https://en.wikipedia.org/wiki/Renewal_theory
https://en.wikipedia.org/wiki/Spatial_Poisson_process 
https://en.wikipedia.org/wiki/Spatial_Poisson_process 
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See also
ff The Simulating a discrete-time Markov chain recipe

Simulating a Brownian motion
The Brownian motion (or Wiener process) is a fundamental object in mathematics, physics, 
and many other scientific and engineering disciplines. This model describes the movement of 
a particle suspended in a fluid resulting from random collisions with the quick molecules in 
the fluid (diffusion). More generally, the Brownian motion models a continuous-time random 
walk, where a particle evolves in space by making independent random steps in all directions.

Mathematically, the Brownian motion is a particular Markov continuous stochastic process. 
The Brownian motion is at the core of mathematical domains such as stochastic calculus and 
the theory of stochastic processes, but it is also central in applied fields such as quantitative 
finance, ecology, and neuroscience.

In this recipe, we will show how to simulate and plot a Brownian motion in two dimensions.

How to do it...
1.	 Let's import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We simulate Brownian motions with 5000 time steps:
>>> n = 5000

3.	 We simulate two independent one-dimensional Brownian processes to form a 
single two-dimensional Brownian process. The (discrete) Brownian motion makes 
independent Gaussian jumps at each time step. Therefore, we merely have to 
compute the cumulative sum of independent normal random variables (one for  
each time step):
>>> x = np.cumsum(np.random.randn(n))
    y = np.cumsum(np.random.randn(n))

4.	 Now, to display the Brownian motion, we could just use plot(x, y). However, the 
result would be monochromatic and a bit boring. We would like to use a gradient of 
color to illustrate the progression of the motion in time (the hue is a function of time). 
matplotlib does not support this feature natively, so instead we use scatter(). This 
function allows us to assign a different color to each point at the expense of dropping 
out line segments between points. To work around this issue, we linearly interpolate 
the process to give the illusion of a continuous line:



Chapter 13

443

>>> # We add 10 intermediary points between two
    # successive points. We interpolate x and y.
    k = 10
    x2 = np.interp(np.arange(n * k), np.arange(n) * k, x)
    y2 = np.interp(np.arange(n * k), np.arange(n) * k, y)
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    # Now, we draw our points with a gradient of colors.
    ax.scatter(x2, y2, c=range(n * k), linewidths=0,
               marker='o', s=3, cmap=plt.cm.jet,)
    ax.axis('equal')
    ax.set_axis_off()

How it works...
The Brownian motion  has several important properties. First, it gives rise (almost  
surely) to continuous trajectories. Second, its increments  are independent 
on non-overlapping intervals. Third, these increments are Gaussian random variables.  
More precisely:

In particular, the density of  is a normal distribution with variance .
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Additionally, the Brownian motion, and stochastic processes in general, have deep 
connections with partial differential equations. Here, the density of  is a solution  
of the heat equation, a particular diffusion equation. More generally, the Fokker-Planck 
equation is a partial differential equation satisfied by the density of solutions of a stochastic 
differential equation.

There's more...
The Brownian motion is a limit of a random walk with an infinitesimal step size. We used this 
property here to simulate the process.

Here are a few references:

ff The Brownian motion (physical phenomenon) described at https://
en.wikipedia.org/wiki/Brownian_motion

ff The Wiener process (mathematical object) explained at https://en.wikipedia.
org/wiki/Wiener_process

ff The Brownian motion is a particular type of the Lévy process; refer to https://
en.wikipedia.org/wiki/L%C3%A9vy_process

ff The Fokker-Planck equation links stochastic processes to partial 
differential equations; refer to https://en.wikipedia.org/wiki/
Fokker%E2%80%93Planck_equation

See also
ff The Simulating a stochastic differential equation recipe

Simulating a stochastic differential equation
Stochastic Differential Equations (SDEs) model dynamical systems that are subject to noise. 
They are widely used in physics, biology, finance, and other disciplines.

In this recipe, we simulate an Ornstein-Uhlenbeck process, which is a solution of the 
Langevin equation. This model describes the stochastic evolution of a particle in a fluid under 
the influence of friction. The particle's movement is due to collisions with the molecules of the 
fluid (diffusion). The difference with the Brownian motion is the presence of friction.

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/L%C3%A9vy_process
https://en.wikipedia.org/wiki/L%C3%A9vy_process
https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
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The Ornstein-Uhlenbeck process is stationary, Gaussian, and Markov, which makes it a good 
candidate to represent stationary random noise.

We will simulate this process with a numerical method called the Euler-Maruyama method.  
It is a simple generalization to SDEs of the Euler method for ODEs.

How to do it...
1.	 Let's import NumPy and Matplotlib:

>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We define a few parameters for our model:
>>> sigma = 1.  # Standard deviation.
    mu = 10.  # Mean.
    tau = .05  # Time constant.

3.	 Let's define a few simulation parameters:
>>> dt = .001  # Time step.
    T = 1.  # Total time.
    n = int(T / dt)  # Number of time steps.
    t = np.linspace(0., T, n)  # Vector of times.

4.	 We also define renormalized variables (to avoid recomputing these constants at every 
time step):
>>> sigma_bis = sigma * np.sqrt(2. / tau)
    sqrtdt = np.sqrt(dt)

5.	 We create a vector that will contain all successive values of our process during  
the simulation:
>>> x = np.zeros(n)

6.	 Now, let's simulate the process with the Euler-Maruyama method. It is really like the 
standard Euler method for ODEs, but with an extra stochastic term (which is just a 
scaled normal random variable). We will give the equation of the process along with 
the details of this method in the How it works... section of this recipe:
>>> for i in range(n - 1):
        x[i + 1] = x[i] + dt * (-(x[i] - mu) / tau) + \
            sigma_bis * sqrtdt * np.random.randn()
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7.	 Let's display the evolution of the process:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ax.plot(t, x, lw=2)

8.	 Now, we are going to take a look at the time evolution of the distribution of the 
process. To do this, we will simulate many independent realizations of the same 
process in a vectorized way. We define a vector X that will contain all realizations 
of the process at a given time (that is, we do not keep all realizations at all times 
in memory). This vector will be overwritten at every time step. We will show the 
estimated distribution (histograms) at several points in time:
>>> ntrials = 10000
    X = np.zeros(ntrials)
>>> # We create bins for the histograms.
    bins = np.linspace(-2., 14., 100)
    fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    for i in range(n):
        # We update the process independently for
        # all trials
        X += dt * (-(X - mu) / tau) + \
            sigma_bis * sqrtdt * np.random.randn(ntrials)
        # We display the histogram for a few points in
        # time
        if i in (5, 50, 900):
            hist, _ = np.histogram(X, bins=bins)
            ax.plot((bins[1:] + bins[:-1]) / 2, hist,
                    {5: '-', 50: '.', 900: '-.', }[i],
                    label=f"t={i * dt:.2f}")
        ax.legend()
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The distribution of the process tends to a Gaussian distribution with mean  
and standard deviation . The process would be stationary if the initial 
distribution was also a Gaussian with the adequate parameters.

How it works...
The Langevin equation that we use in this recipe is the following stochastic  
differential equation:

Here,  is our stochastic process,  is the infinitesimal increment,  is the mean,  is the 
standard deviation, and  is the time constant. Also,  is a Brownian motion (or the Wiener 
process) that underlies our SDE.

The first term on the right-hand side is the deterministic term (in ), while the second  
term is the stochastic term. Without that last term, the equation would be a regular 
deterministic ODE.

The infinitesimal step of a Brownian motion is a Gaussian random variable. Specifically, 
the derivative (in a certain sense) of a Brownian motion is a white noise, a sequence of 
independent Gaussian random variables.

The Euler-Maruyama method involves discretizing time and adding infinitesimal steps to the 
process at every time step. This method involves a deterministic term (like in the standard 
Euler method for ODEs) and a stochastic term (random Gaussian variable). Specifically,  
for an equation:
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The numerical scheme is (with ):

Here,  is a random Gaussian variable with variance 1 (independent at each time step). The 
normalization factor  comes from the fact that the infinitesimal step for a Brownian motion 
has the standard deviation .

There's more...
The mathematics of SDEs comprises the theory of stochastic calculus, Itō calculus, 
martingales, and other topics. Although these theories are quite involved, simulating 
stochastic processes numerically can be relatively straightforward, as we have seen in  
this recipe.

The error of the Euler-Maruyama method is of order . The Milstein method is a more 
precise numerical scheme, of order .

Here are a few references on these topics:

ff Stochastic differential equations on Wikipedia, available at https://
en.wikipedia.org/wiki/Stochastic_differential_equation

ff White noise, described at https://en.wikipedia.org/wiki/White_noise

ff The Langevin equation on Wikipedia, available at https://en.wikipedia.org/
wiki/Langevin_equation

ff The Ornstein-Uhlenbeck process described at https://en.wikipedia.org/
wiki/Ornstein%E2%80%93Uhlenbeck_process

ff Itō calculus, described at https://en.wikipedia.org/wiki/It%C5%8D_
calculus

ff The Euler-Maruyama method, explained at https://en.wikipedia.org/wiki/
Euler%E2%80%93Maruyama_method

ff The Milstein method on Wikipedia, available at https://en.wikipedia.org/
wiki/Milstein_method

See also
ff The Simulating a Brownian motion recipe

https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Langevin_equation
https://en.wikipedia.org/wiki/Langevin_equation
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process
https://en.wikipedia.org/wiki/It%C5%8D_calculus
https://en.wikipedia.org/wiki/It%C5%8D_calculus
https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method
https://en.wikipedia.org/wiki/Euler%E2%80%93Maruyama_method
https://en.wikipedia.org/wiki/Milstein_method
https://en.wikipedia.org/wiki/Milstein_method
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14
Graphs, Geometry, and 

Geographic Information 
Systems

In this chapter, we will cover the following topics:

ff Manipulating and visualizing graphs with NetworkX

ff Drawing flight routes with NetworkX

ff Resolving dependencies in a directed acyclic graph with a topological sort

ff Computing connected components in an image

ff Computing the Voronoi diagram of a set of points

ff Manipulating geospatial data with Cartopy

ff Creating a route planner for a road network

Introduction
In this chapter, we will cover Python's capabilities in graph theory, geometry, and geography.

Graphs are mathematical objects describing relations between items. They are ubiquitous in 
science and engineering, as they can represent many kinds of real-world relations: friends in 
a social network, atoms in a molecule, website links, cells in a neural network, neighboring 
pixels in an image, and so on. Graphs are also classical data structures in computer science. 
Finally, many domain-specific problems may be re-expressed as graph problems, and then 
solved with well-known algorithms.
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We will also see a few recipes related to geometry and Geographic Information Systems 
(GIS), which refers to the processing and analysis of any kind of spatial, geographical,  
or topographical data.

In this introduction, we will give a brief overview of these topics.

Graphs
Mathematically, a graph  is defined by a set  of vertices or nodes, and a set  of 
edges (two-element subsets of ). Two nodes  and  are said to be connected if  is an 
edge (element of ).

ff If the edges are unordered (meaning that ), the graph is said  
to be undirected

ff If the edges are ordered (meaning that ), the graph is said  
to be directed

An edge in an undirected graph is represented by a line segment between the two nodes.  
In a directed graph, it is represented by an arrow.

Undirected and directed graphs

A graph can be represented by different data structures, such as an adjacency list  
(for each vertex, a list of adjacent vertices) or an adjacency matrix (matrix of  
connections between vertices).

Problems in graph theory
Here are a few examples of classical graph problems:

ff Graph traversal: How to walk through a graph, discussed at  
https://en.wikipedia.org/wiki/Graph_traversal

ff Graph coloring: How to color nodes in a graph such that no two adjacent vertices 
share the same color, discussed at https://en.wikipedia.org/wiki/Graph_
coloring

https://en.wikipedia.org/wiki/Graph_traversal
https://en.wikipedia.org/wiki/Graph_coloring 
https://en.wikipedia.org/wiki/Graph_coloring 
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ff Connected components: How to find connected components in a graph, explained 
at https://en.wikipedia.org/wiki/Connected_component_%28graph_
theory%29

ff Shortest paths: What is the shortest path from one node to another in a given 
graph?, discussed at https://en.wikipedia.org/wiki/Shortest_path_
problem

ff Hamiltonian paths: Does a graph include a Hamiltonian path, visiting every vertex 
exactly once?, explained at https://en.wikipedia.org/wiki/Hamiltonian_
path

ff Eulerian paths: Does a graph include an Eulerian path, visiting every edge exactly 
once?, discussed at https://en.wikipedia.org/wiki/Eulerian_path

ff Traveling salesman problem: What is the shortest route visiting every node exactly 
once (Hamiltonian path)?, explained at https://en.wikipedia.org/wiki/
Traveling_salesman_problem

Random graphs
Random graphs are particular kinds of graphs defined with probabilistic rules. They are useful 
for understanding the structure of large real-world graphs such as social graphs.

In particular, small-world networks have sparse connections, but most nodes can be reached 
from every other node in a small number of steps. This property is due to the existence of a 
small number of hubs that have a high number of connections.

Graphs in Python
Although graphs can be manipulated with native Python structures, it is more convenient to 
use a dedicated library implementing specific data structures and manipulation routines. In 
this chapter, we will use NetworkX, a pure Python library. An alternative library is graph-tool, 
largely written in C++.

NetworkX implements a flexible data structure for graphs, and it contains many algorithms. 
NetworkX also lets us draw graphs easily with matplotlib.

Geometry in Python
Shapely is a Python library used to manipulate 2D geometrical shapes such as points, lines, 
and polygons. It is most notably useful in geographic information systems.

https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Traveling_salesman_problem
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Geographical information systems in Python
There are several Python modules used to manipulate geographical data and plotting maps.

In this chapter, we will use Cartopy and Shapely to handle GIS files.

The ESRI shapefile is a popular geospatial vector data format. It can be read by Cartopy  
and NetworkX.

Cartopy is a Python library that provides cartographic tools for Python. We can use it to 
perform map projections and draw maps with matplotlib. It relies on Shapely.

The geoplot is a young high-level geospatial data visualization library in Python that builds 
on top of Cartopy and matplotlib.

We will also use the OpenStreetMap service, a free, open source, collaborative service 
providing maps of the world.

Other GIS/mapping systems in Python that we couldn't cover in this chapter include 
GeoPandas and Kartograph.

References
Here are a few references about graphs:

ff Graph theory on Wikipedia, available at https://en.wikipedia.org/wiki/
Graph_theory

ff Graph theory lectures on AwesomeMath, available at https://github.com/
rossant/awesome-math/#graph-theory

ff Data structures for graphs, described at https://en.wikipedia.org/wiki/
Graph_%28abstract_data_type%29

ff Random graphs on Wikipedia, available at https://en.wikipedia.org/wiki/
Random_graph

ff Small-world graphs on Wikipedia, available at https://en.wikipedia.org/
wiki/Small-world_network

ff NetworkX package, available at http://networkx.github.io

ff The graph-tool package, available at http://graph-tool.skewed.de

Here are a few references about geometry and maps in Python:

ff Cartopy at http://scitools.org.uk/cartopy/

ff Shapely at https://github.com/Toblerity/Shapely

ff Shapefile at https://en.wikipedia.org/wiki/Shapefile

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_theory
https://github.com/rossant/awesome-math/#graph-theory
https://github.com/rossant/awesome-math/#graph-theory
https://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Small-world_network
http://networkx.github.io
http://graph-tool.skewed.de
http://scitools.org.uk/cartopy/
https://github.com/Toblerity/Shapely
https://en.wikipedia.org/wiki/Shapefile 
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ff geoplot at https://github.com/ResidentMario/geoplot

ff Folium at https://github.com/wrobstory/folium

ff GeoPandas at http://geopandas.org

ff Kartograph at http://kartograph.org

ff OpenStreetMap at http://www.openstreetmap.org

Manipulating and visualizing graphs with 
NetworkX

In this recipe, we will show how to create, manipulate, and visualize graphs with NetworkX.

Getting ready
NetworkX is installed by default in Anaconda. If needed, you can also install it manually with 
conda install networkx.

How to do it...
1.	 Let's import NumPy, NetworkX, and matplotlib:

>>> import numpy as np
    import networkx as nx
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 There are many ways of creating a graph. Here, we create a list of edges (pairs of 
node indices):
>>> n = 10  # Number of nodes in the graph.
    # Each node is connected to the two next nodes,
    # in a circular fashion.
    adj = [(i, (i + 1) % n) for i in range(n)]
    adj += [(i, (i + 2) % n) for i in range(n)]

3.	 We instantiate a Graph object with our list of edges:
>>> g = nx.Graph(adj)

4.	 Let's check the list of nodes and edges of the graph, and its adjacency matrix:
>>> print(g.nodes())

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> print(g.edges())

https://github.com/ResidentMario/geoplot
https://github.com/wrobstory/folium
http://geopandas.org
http://kartograph.org
http://www.openstreetmap.org
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[(0, 1), (0, 9), (0, 2), (0, 8), (1, 2), ...,

 (6, 8), (7, 8), (7, 9), (8, 9)]

>>> print(nx.adjacency_matrix(g))

  (0, 1)    1

  (0, 2)    1

  (0, 8)    1

  (0, 9)    1

  (1, 0)    1

  ...

  (8, 9)    1

  (9, 0)    1

  (9, 1)    1

  (9, 7)    1
  (9, 8)    1

5.	 Let's display this graph. NetworkX comes with a variety of drawing functions. We 
can either specify the nodes' positions explicitly, or we can use an algorithm to 
automatically compute an interesting layout. Here, we use the draw_circular() 
function that simply positions nodes linearly on a circle:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 6))
    nx.draw_circular(g, ax=ax)

6.	 Graphs can be modified easily. Here, we add a new node connected to all existing 
nodes. We also specify a color attribute to this node. In NetworkX, every node and 
edge comes with a Python dictionary containing arbitrary attributes.
>>> g.add_node(n, color='#fcff00')
    # We add an edge from every existing
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    # node to the new node.
    for i in range(n):
        g.add_edge(i, n)

7.	 Now, let's draw the modified graph again. This time, we specify the nodes' positions 
and colors explicitly:
>>> # We define custom node positions on a circle
    # except the last node which is at the center.
    t = np.linspace(0., 2 * np.pi, n)
    pos = np.zeros((n + 1, 2))
    pos[:n, 0] = np.cos(t)
    pos[:n, 1] = np.sin(t)
    
    # A node's color is specified by its 'color'
    # attribute, or a default color if this attribute
    # doesn't exist.
    color = [g.node[i].get('color', '#88b0f3')
             for i in range(n + 1)]
    
    # We now draw the graph with matplotlib.
    fig, ax = plt.subplots(1, 1, figsize=(6, 6))
    nx.draw_networkx(g, pos=pos, node_color=color, ax=ax)
    ax.set_axis_off()
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8.	 Let's also use an automatic layout algorithm:

>>> fig, ax = plt.subplots(1, 1, figsize=(6, 6))
    nx.draw_spectral(g, node_color=color, ax=ax)
    ax.set_axis_off()

There's more...
In NetworkX, nodes are not necessarily integers. They can be numbers, strings, tuples,  
or instances of any hashable Python class.

In addition, every node and edge comes with optional attributes (which form a dictionary).

A few layout algorithms are implemented in NetworkX. The draw_spectral() function uses 
the eigenvectors of the graph's Laplacian matrix.

The draw_spring() function implements the Fruchterman-Reingold force-directed 
algorithm. Nodes are considered as masses subject to edge-dependent forces.  
A force-directed graph drawing algorithm minimizes the system's energy so as to  
find an equilibrium configuration. This results in an aesthetically appealing layout  
with as few crossing edges as possible.
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Here are a few references:

ff Graph drawing, described at https://en.wikipedia.org/wiki/Graph_
drawing

ff Laplacian matrix on Wikipedia, available at https://en.wikipedia.org/wiki/
Laplacian_matrix

ff Force-directed graph drawing, described at https://en.wikipedia.org/wiki/
Force-directed_graph_drawing

See also
ff The Drawing flight routes with NetworkX recipe

Drawing flight routes with NetworkX
In this recipe, we load and visualize a dataset containing many flight routes and airports 
around the world (obtained from the OpenFlights website at https://openflights.org/
data.html).

Getting ready
To draw the graph on a map, you need Cartopy, available at http://scitools.org.uk/
cartopy/. You can install it with conda install -c conda-forge cartopy.

How to do it...
1.	 Let's import a few packages:

>>> import math
    import json
    import numpy as np
    import pandas as pd
    import networkx as nx
    import cartopy.crs as ccrs
    import matplotlib.pyplot as plt
    from IPython.display import Image
    %matplotlib inline

https://en.wikipedia.org/wiki/Graph_drawing
https://en.wikipedia.org/wiki/Graph_drawing
https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Force-directed_graph_drawing 
https://en.wikipedia.org/wiki/Force-directed_graph_drawing 
https://openflights.org/data.html
https://openflights.org/data.html
http://scitools.org.uk/cartopy/
http://scitools.org.uk/cartopy/
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2.	 We load the first dataset containing many flight routes:
>>> names = ('airline,airline_id,'
             'source,source_id,'
             'dest,dest_id,'
             'codeshare,stops,equipment').split(',')
>>> routes = pd.read_csv(
        'https://github.com/ipython-books/'
        'cookbook-2nd-data/blob/master/'
        'routes.dat?raw=true',
        names=names,
        header=None)
    routes

3.	 We load the second dataset with details about the airports, and we only keep the 
airports from the United States:
>>> names = ('id,name,city,country,iata,icao,lat,lon,'
             'alt,timezone,dst,tz,type,source').split(',')
>>> airports = pd.read_csv(
        'https://github.com/ipython-books/'
        'cookbook-2nd-data/blob/master/'
        'airports.dat?raw=true',
        header=None,
        names=names,
        index_col=4,
        na_values='\\N')
    airports_us = airports[airports['country'] ==
                           'United States']
    airports_us
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The DataFrame index is the IATA code, a 3-character code identifying the airports.

4.	 Let's keep all national US flight routes—that is, those for which the source and the 
destination airports belong to the list of US airports:
>>> routes_us = routes[
        routes['source'].isin(airports_us.index) &
        routes['dest'].isin(airports_us.index)]
    routes_us
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5.	 We construct the list of edges representing our graph, where nodes are airports, and 
two airports are connected if there exists a route between them (flight network):
>>> edges = routes_us[['source', 'dest']].values
    edges
array([['ADQ', 'KLN'],
       ['KLN', 'KYK'],
       ['BRL', 'ORD'],
       ...,
       ['SOW', 'PHX'],
       ['VIS', 'LAX'],
       ['WRL', 'CYS']], dtype=object)

6.	 We create the networkX graph from the edges array:
>>> g = nx.from_edgelist(edges)

7.	 Let's take a look at the graph's statistics:
>>> len(g.nodes()), len(g.edges())
(546, 2781)

There are 546 US airports and 2781 routes in the dataset.

8.	 Let's plot the graph:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 6))
    nx.draw_networkx(g, ax=ax, node_size=5,
                     font_size=6, alpha=.5,
                     width=.5)
    ax.set_axis_off()
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9.	 There are a few airports that are not connected to the rest of the airports. We keep 
the largest connected component of the graph as follows (the subgraphs returned by 
connected_component_subgraphs() are sorted by decreasing size):
>>> sg = next(nx.connected_component_subgraphs(g))

10.	 Now, we plot the largest connected component subgraph:
>>> fig, ax = plt.subplots(1, 1, figsize=(6, 6))
    nx.draw_networkx(sg, ax=ax, with_labels=False,
                     node_size=5, width=.5)
    ax.set_axis_off()

The graph encodes only the topology (connections between the airports) and not the 
geometry (actual positions of the airports on a map). Airports at the center of the 
graph are the largest US airports.

11.	 We're going to draw the graph on a map, using the geographical coordinates of the 
airports. First, we need to create a dictionary where the keys are the airports IATA 
codes, and the values are the coordinates:

>>> pos = {airport: (v['lon'], v['lat'])
           for airport, v in
           airports_us.to_dict('index').items()}

12.	 The node sizes will depend on the degree of the nodes—that is, the number of 
airports connected to every node:
>>> deg = nx.degree(sg)
    sizes = [5 * deg[iata] for iata in sg.nodes]
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13.	 We will also show the airport altitude as the node color:
>>> altitude = airports_us['alt']
    altitude = [altitude[iata] for iata in sg.nodes]

14.	 We will display the labels of the largest airports only (at least 20 connections to other 
US airports):
>>> labels = {iata: iata if deg[iata] >= 20 else ''
              for iata in sg.nodes}

15.	 Finally, we use Cartopy to project the points on the map:

>>> # Map projection
    crs = ccrs.PlateCarree()
    fig, ax = plt.subplots(
        1, 1, figsize=(12, 8),
        subplot_kw=dict(projection=crs))
    ax.coastlines()
    # Extent of continental US.
    ax.set_extent([-128, -62, 20, 50])
    nx.draw_networkx(sg, ax=ax,
                     font_size=16,
                     alpha=.5,
                     width=.075,
                     node_size=sizes,
                     labels=labels,
                     pos=pos,
                     node_color=altitude,
                     cmap=plt.cm.autumn)
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See also
ff The Manipulating and visualizing graphs with NetworkX recipe

ff The Manipulating geospatial data with Cartopy recipe

Resolving dependencies in a directed 
acyclic graph with a topological sort

In this recipe, we will show an application of a well-known graph algorithm: topological 
sorting. Let's consider a directed graph describing dependencies between items.  
For example, in a package manager, before we can install a given package P,  
we may need to install dependent packages.

The set of dependencies forms a directed graph. With topological sorting, the package 
manager can resolve the dependencies and find the right installation order of the packages.

Topological sorting has many other applications. Here, we will illustrate this notion on real 
data from the JavaScript package manager npm. We will find the installation order of the 
required packages for the react JavaScript package.

How to do it...
1.	 We import a few packages:

>>> import io
    import json
    import requests
    import numpy as np
    import networkx as nx
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We download the dataset (a GraphML file stored on GitHub, that we created using a 
script at https://github.com/graphcommons/npm-dependency-network) 
and we load it with the NetworkX function read_graphml():
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'react.graphml?raw=true')
    f = io.BytesIO(requests.get(url).content)
    graph = nx.read_graphml(f)

https://github.com/graphcommons/npm-dependency-network
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3.	 The graph is a directed graph (DiGraph) with few nodes and edges:
>>> graph
<networkx.classes.digraph.DiGraph at 0x7f69ac6dfdd8>
>>> len(graph.nodes), len(graph.edges)
(16, 20)

4.	 Let's draw this graph:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    nx.draw_networkx(graph, ax=ax, font_size=10)
    ax.set_axis_off()

5.	 A topological sort only exists when the graph is a Directed Acyclic Graph (DAG).  
This means that there is no cycle in the graph—that is, no circular dependency.  
Is our graph a DAG? Let's see:
>>> nx.is_directed_acyclic_graph(graph)
True

6.	 We can perform the topological sort, thereby obtaining a linear installation order 
satisfying all dependencies:
>>> ts = list(nx.topological_sort(graph))
    ts
['react',
 'prop-types',
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 'fbjs',
 'ua-parser-js',
 'setimmediate',
 'promise',
 'asap',
 'object-assign',
 'loose-envify',
 'js-tokens',
 'isomorphic-fetch',
 'whatwg-fetch',
 'node-fetch',
 'is-stream',
 'encoding',
 'core-js']

Since we used the convention that A directs to B if B needs to be installed before A  
(A depends on B), the installation order is the reversed order here.

7.	 Finally, we draw our graph with a shell layout algorithm, and we display the 
dependence order using the node colors (darker nodes need to be installed  
before lighter ones):

>>> # Each node's color is the index of the node in the
    # topological sort.
    colors = [ts.index(node) for node in graph.nodes]
>>> nx.draw_shell(graph,
                  node_color=colors,
                  cmap=plt.cm.Blues,
                  font_size=8,
                  width=.5
                  )
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How it works...
We used the following code (adapted from https://github.com/graphcommons/npm-
dependency-network) to obtain the dependency graph of the react npm package:

>>> from lxml.html import fromstring
    import cssselect  # Need to do: pip install cssselect
    from requests.packages import urllib3
    
    urllib3.disable_warnings()
    fetched_packages = set()
    
    def import_package_dependencies(graph, pkg_name,
                                    max_depth=3, depth=0):
        if pkg_name in fetched_packages:
            return
        if depth > max_depth:
           return
        fetched_packages.add(pkg_name)
        url = f'https://www.npmjs.com/package/{pkg_name}'
        response = requests.get(url, verify=False)
        doc = fromstring(response.content)
        graph.add_node(pkg_name)
        for h3 in doc.cssselect('h3'):
            content = h3.text_content()
            if content.startswith('Dependencies'):
                for dep in h3.getnext().cssselect('a'):
                    dep_name = dep.text_content()
                    print('-' * depth * 2, dep_name)
                    graph.add_node(dep_name)
                    graph.add_edge(pkg_name, dep_name)
                    import_package_dependencies(
                        graph,
                        dep_name,
                        depth=depth + 1
                    )
    
    graph = nx.DiGraph()
    import_package_dependencies(graph, 'react')
    nx.write_graphml(graph, 'react.graphml')

You can use that code to obtain the dependency graph of any other npm package. 
The script may take a few minutes to complete.

https://github.com/graphcommons/npm-dependency-network
https://github.com/graphcommons/npm-dependency-network
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There's more...
Directed acyclic graphs are found in many applications. They can represent causal relations, 
influence diagrams, dependencies, and other concepts. For example, the version history of a 
distributed revision control system such as Git is described with a DAG.

Topological sorting is useful in any scheduling task in general (project management and 
instruction scheduling).

Here are a few references:

ff Directed acyclic graphs on NetworkX, at https://networkx.github.io/
documentation/latest/reference/algorithms/dag.html

ff Topological sort documentation on NetworkX, available at https://networkx.
github.io/documentation/latest/reference/algorithms/generated/
networkx.algorithms.dag.topological_sort.html

ff Topological sorting on Wikipedia, available at https://en.wikipedia.org/
wiki/Topological_sorting

ff Directed acyclic graphs, described at https://en.wikipedia.org/wiki/
Directed_acyclic_graph

Computing connected components in an 
image

In this recipe, we will show an application of graph theory in image processing. We will 
compute connected components in an image. This method will allow us to label contiguous 
regions of an image, similar to the bucket fill tool of paint programs.

Finding connected components is also useful in many puzzle video games such as 
Minesweeper, bubble shooters, and others. In these games, contiguous sets of items  
with the same color need to be automatically detected.

How to do it...
1.	 Let's import the packages:

>>> import itertools
    import numpy as np
    import networkx as nx
    import matplotlib.colors as col
    import matplotlib.pyplot as plt
    %matplotlib inline

https://networkx.github.io/documentation/latest/reference/algorithms/dag.html
https://networkx.github.io/documentation/latest/reference/algorithms/dag.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.dag.topological_sort.html
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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2.	 We create a 10 x 10 image where each pixel can take one of three possible  
labels (or colors):
>>> n = 10
>>> img = np.random.randint(size=(n, n),
                            low=0, high=3)

3.	 Now, we create the underlying 2D grid graph encoding the structure of the image. 
Each node is a pixel, and a node is connected to its nearest neighbors. NetworkX 
defines a grid_2d_graph() function to generate this graph:
>>> g = nx.grid_2d_graph(n, n)

4.	 Let's create two functions to display the image and the corresponding graph:
>>> def show_image(img, ax=None, **kwargs):
        ax.imshow(img, origin='lower',
                  interpolation='none',
                  **kwargs)
        ax.set_axis_off()
>>> def show_graph(g, ax=None, **kwargs):
        pos = {(i, j): (j, i) for (i, j) in g.nodes()}
        node_color = [img[i, j] for (i, j) in g.nodes()]
        nx.draw_networkx(g,
                         ax=ax,
                         pos=pos,
                         node_color='w',
                         linewidths=3,
                         width=2,
                         edge_color='w',
                         with_labels=False,
                         node_size=50,
                         **kwargs)
>>> cmap = plt.cm.Blues

5.	 Here is the original image superimposed with the underlying graph:
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    show_image(img, ax=ax, cmap=cmap, vmin=-1)
    show_graph(g, ax=ax, cmap=cmap, vmin=-1)
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6.	 Now, we are going to find all contiguous dark blue regions containing more than three 
pixels. First, we consider the subgraph corresponding to all dark blue pixels:
>>> g2 = g.subgraph(zip(*np.nonzero(img == 2)))
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    show_image(img, ax=ax, cmap=cmap, vmin=-1)
    show_graph(g2, ax=ax, cmap=cmap, vmin=-1)
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7.	 The requested contiguous regions correspond to the connected components 
containing more than three nodes in the subgraph. We can use the connected_
components() function of NetworkX to find those components:
>>> components = [np.array(list(comp))
                  for comp in nx.connected_components(g2)
                  if len(comp) >= 3]
    len(components)
4

8.	 Finally, we assign a new color to each of these components, and we display  
the new image:

>>> # We copy the image, and assign a new label
    # to each found component.
    img_bis = img.copy()
    for i, comp in enumerate(components):
        img_bis[comp[:, 0], comp[:, 1]] = i + 3
>>> # We create a new discrete color map extending
    # the previous map with new colors.
    colors = [cmap(.5), cmap(.75), cmap(1.),
              '#f4f235', '#f4a535', '#f44b35',
              '#821d10']
    cmap2 = col.ListedColormap(colors, 'indexed')
>>> fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    show_image(img_bis, ax=ax, cmap=cmap2)



Chapter 14

471

How it works...
The problem we solved is called connected-component labeling. It is also closely related to 
the flood-fill algorithm.

The idea to associate a grid graph to an image is quite common in image processing. Here, 
contiguous color regions correspond to connected components of subgraphs. A connected 
component can be defined as an equivalence class of the reachability relation. Two nodes 
are connected in the graph if there is a path from one node to the other. An equivalence class 
contains nodes that can be reached from one another.

Finally, the simple approach described here is only adapted to basic tasks on small images. 
More advanced algorithms are covered in Chapter 11, Image and Audio Processing.

There's more...
Here are a few references:

ff Connected components on Wikipedia, available at https://en.wikipedia.org/
wiki/Connected_component_%28graph_theory%29

ff Connected-component labeling on Wikipedia, at https://en.wikipedia.org/
wiki/Connected-component_labeling

ff Flood-fill algorithm on Wikipedia, available at https://en.wikipedia.org/
wiki/Flood_fill

Computing the Voronoi diagram of a set of 
points

The Voronoi diagram of a set of seed points divides space into several regions. Each region 
contains all points closer to one seed point than to any other seed point.

The Voronoi diagram is a fundamental structure in computational geometry. It is widely used 
in computer science, robotics, geography, and other disciplines. For example, the Voronoi 
diagram of a set of metro stations gives us the closest station from any point in the city.

In this recipe, we compute the Voronoi diagram of the set of metro stations in Paris  
using SciPy.

Getting ready
You need the Smopy module to display the OpenStreetMap map of Paris. You can install this 
package with pip install git+https://github.com/rossant/smopy.git.

https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/Flood_fill
https://en.wikipedia.org/wiki/Flood_fill
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How to do it...
1.	 Let's import the packages:

>>> import numpy as np
    import pandas as pd
    import scipy.spatial as spatial
    import matplotlib.pyplot as plt
    import matplotlib.path as path
    import matplotlib as mpl
    import smopy
    %matplotlib inline

2.	 Let's load the dataset with pandas (which had been obtained on the RATP open data 
website, the public transport operator in Paris, at http://data.ratp.fr):
>>> df = pd.read_csv('https://github.com/ipython-books/'
                     'cookbook-2nd-data/blob/master/'
                     'ratp.csv?raw=true',
                     sep='#', header=None)
>>> df[df.columns[1:]].tail(3)

3.	 The DataFrame object contains the coordinates, name, city, district, and type of 
station. Let's select all metro stations:
>>> metro = df[(df[5] == 'metro')]
>>> metro[metro.columns[1:]].tail(3)

4.	 We are going to extract the district number of Paris' stations. With pandas, we can 
use vectorized string operations using the str attribute of the corresponding column.
>>> # We only extract the district from stations in Paris.
    paris = metro[4].str.startswith('PARIS').values
>>> # We create a vector of integers with the district

http://data.ratp.fr


Chapter 14

473

    # number of the corresponding station, or 0 if the
    # station is not in Paris.
    districts = np.zeros(len(paris), dtype=np.int32)
    districts[paris] = metro[4][paris].str.slice(6, 8) \
        .astype(np.int32)
    districts[~paris] = 0
    ndistricts = districts.max() + 1

5.	 We also extract the coordinates of all metro stations:
>>> lon = metro[1]
    lat = metro[2]

6.	 Now, let's retrieve Paris' map with OpenStreetMap. We specify the map's boundaries 
with the extreme latitude and longitude coordinates of all our metro stations. We use 
Smopy to generate the map:
>>> box = (lat[paris].min(), lon[paris].min(),
           lat[paris].max(), lon[paris].max())
    m = smopy.Map(box, z=12)
    m.show_ipython()
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7.	 We now compute the Voronoi diagram of the stations using SciPy. A Voronoi  
object is created with the points coordinates. It contains several attributes we  
will use for display:
>>> vor = spatial.Voronoi(np.c_[lat, lon])

8.	 We create a generic function to display a Voronoi diagram. SciPy already implements 
such a function, but this function does not take infinite points into account. 
The implementation we will use is available at http://stackoverflow.
com/a/20678647/1595060:
>>> def voronoi_finite_polygons_2d(vor, radius=None):
        """Reconstruct infinite Voronoi regions in a
        2D diagram to finite regions.
        Source:
        https://stackoverflow.com/a/20678647/1595060
        """
        if vor.points.shape[1] != 2:
            raise ValueError("Requires 2D input")
        new_regions = []
        new_vertices = vor.vertices.tolist()
        center = vor.points.mean(axis=0)
        if radius is None:
            radius = vor.points.ptp().max()
        # Construct a map containing all ridges for a
        # given point
        all_ridges = {}
        for (p1, p2), (v1, v2) in zip(vor.ridge_points,
                                      vor.ridge_vertices):
            all_ridges.setdefault(
                p1, []).append((p2, v1, v2))
            all_ridges.setdefault(
                p2, []).append((p1, v1, v2))
        # Reconstruct infinite regions
        for p1, region in enumerate(vor.point_region):
            vertices = vor.regions[region]
            if all(v >= 0 for v in vertices):
                # finite region
                new_regions.append(vertices)
                continue
            # reconstruct a non-finite region
            ridges = all_ridges[p1]
            new_region = [v for v in vertices if v >= 0]
            for p2, v1, v2 in ridges:
                if v2 < 0:
                    v1, v2 = v2, v1

http://stackoverflow.com/a/20678647/1595060
http://stackoverflow.com/a/20678647/1595060
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                if v1 >= 0:
                    # finite ridge: already in the region
                    continue
                # Compute the missing endpoint of an
                # infinite ridge
                t = vor.points[p2] - \
                    vor.points[p1]  # tangent
                t /= np.linalg.norm(t)
                n = np.array([-t[1], t[0]])  # normal
                midpoint = vor.points[[p1, p2]]. \
                    mean(axis=0)
                direction = np.sign(
                    np.dot(midpoint - center, n)) * n
                far_point = vor.vertices[v2] + \
                    direction * radius
                new_region.append(len(new_vertices))
                new_vertices.append(far_point.tolist())
            # Sort region counterclockwise.
            vs = np.asarray([new_vertices[v]
                             for v in new_region])
            c = vs.mean(axis=0)
            angles = np.arctan2(
                vs[:, 1] - c[1], vs[:, 0] - c[0])
            new_region = np.array(new_region)[
                np.argsort(angles)]
            new_regions.append(new_region.tolist())
        return new_regions, np.asarray(new_vertices)

9.	 The voronoi_finite_polygons_2d() function returns a list of regions and  
a list of vertices. Every region is a list of vertex indices. The coordinates of all  
vertices are stored in vertices. From these structures, we can create a list of cells. 
Every cell represents a polygon as an array of vertex coordinates. We also use the  
to_pixels() method of the smopy.Map instance. This function converts latitude 
and longitude geographical coordinates to pixels in the image.
>>> regions, vertices = voronoi_finite_polygons_2d(vor)
>>> cells = [m.to_pixels(vertices[region])
             for region in regions]

10.	 Now, we compute the color of every polygon:
>>> cmap = plt.cm.Set3
    # We generate colors for districts using a color map.
    colors_districts = cmap(
        np.linspace(0., 1., ndistricts))[:, :3]
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    # The color of every polygon, grey by default.
    colors = .25 * np.ones((len(districts), 3))
    # We give each polygon in Paris the color of
    # its district.
    colors[paris] = colors_districts[districts[paris]]

11.	 Finally, we display the map with the Voronoi diagram, using the show_mpl() method 
of the Map instance:

>>> ax = m.show_mpl(figsize=(12, 8))
    ax.add_collection(
        mpl.collections.PolyCollection(
            cells, facecolors=colors,
            edgecolors='k', alpha=.35))
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How it works...
Let's give the mathematical definition of the Voronoi diagram in a Euclidean space. If  is 
a set of points, the Voronoi diagram of this set of points is the collection of subsets  (called 
cells or regions) defined by:

The dual graph of the Voronoi diagram is the Delaunay triangulation. This geometrical object 
covers the convex hull of the set of points with triangles.

SciPy computes Voronoi diagrams with Qhull, a computational geometry library in C++.

There's more...
Here are further references:

ff Voronoi diagram on Wikipedia, available at https://en.wikipedia.org/wiki/
Voronoi_diagram

ff Delaunay triangulation on Wikipedia, available at https://en.wikipedia.org/
wiki/Delaunay_triangulation

ff The documentation of scipy.spatial.voronoi available at http://docs.
scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.
Voronoi.html

ff The Qhull library available at http://www.qhull.org

See also
�� The Manipulating geospatial data with Cartopy recipe

Manipulating geospatial data with Cartopy
In this recipe, we will show how to load and display geographical data in the Shapefile format. 
Specifically, we will use data from Natural Earth (http://www.naturalearthdata.com) 
to display the countries of Africa, color coded with their population and Gross Domestic 
Product (GDP). This type of graph is called a choropleth map.

Shapefile (https://en.wikipedia.org/wiki/Shapefile) is a popular geospatial 
vector data format for GIS software. It can be read by Cartopy, a GIS package in Python.

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Delaunay_triangulation
https://en.wikipedia.org/wiki/Delaunay_triangulation
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.Voronoi.html
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.Voronoi.html
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.spatial.Voronoi.html
http://www.qhull.org
http://www.naturalearthdata.com
https://en.wikipedia.org/wiki/Shapefile 
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Getting ready
You need Cartopy, available at http://scitools.org.uk/cartopy/. You can install it 
with conda install -c conda-forge cartopy.

How to do it...
1.	 Let's import the packages:

>>> import io
    import requests
    import zipfile
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.collections as col
    from matplotlib.colors import Normalize
    import cartopy.crs as ccrs
    from cartopy.feature import ShapelyFeature
    import cartopy.io.shapereader as shpreader
    %matplotlib inline

2.	 We download and load the Shapefile that contains geometric and administrative 
information about all countries in the world (it had been obtained from Natural 
Earth's website at http://www.naturalearthdata.com/downloads/10m-
cultural-vectors/10m-admin-0-countries/):
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'africa.zip?raw=true')
    r = io.BytesIO(requests.get(url).content)
    zipfile.ZipFile(r).extractall('data')
    countries = shpreader.Reader(
        'data/ne_10m_admin_0_countries.shp')

3.	 We keep the African countries:
>>> africa = [c for c in countries.records()
              if c.attributes['CONTINENT'] == 'Africa']

4.	 Let's write a function that draws the borders of Africa:
>>> crs = ccrs.PlateCarree()
    extent = [-23.03, 55.20, -37.72, 40.58]
>>> def draw_africa(ax):
        ax.set_extent(extent)
        ax.coastlines()

http://scitools.org.uk/cartopy/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
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>>> fig, ax = plt.subplots(
        1, 1, figsize=(6, 8),
        subplot_kw=dict(projection=crs))
    draw_africa(ax)

5.	 Now, we write a function that displays the countries of Africa with a color that 
depends on a specific attribute, like the population or GDP:
>>> def choropleth(ax, attr, cmap_name):
        # We need to normalize the values before we can
        # use the colormap.
        values = [c.attributes[attr] for c in africa]
        norm = Normalize(
            vmin=min(values), vmax=max(values))
        cmap = plt.cm.get_cmap(cmap_name)
        for c in africa:
            v = c.attributes[attr]
            sp = ShapelyFeature(c.geometry, crs,
                                edgecolor='k',
                                facecolor=cmap(norm(v)))
            ax.add_feature(sp)
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6.	 Finally, we display two choropleth maps with the population and GDP of all  
African countries:

>>> fig, (ax1, ax2) = plt.subplots(
        1, 2, figsize=(10, 16),
        subplot_kw=dict(projection=crs))
    draw_africa(ax1)
    choropleth(ax1, 'POP_EST', 'Reds')
    ax1.set_title('Population')
    
    draw_africa(ax2)
    choropleth(ax2, 'GDP_MD_EST', 'Blues')
    ax2.set_title('GDP')

There's more...
The geoplot package, available at https://github.com/ResidentMario/geoplot, 
provides high-level tools to draw choropleth maps and other geospatial figures.

See also
ff The Creating a route planner for a road network recipe

https://github.com/ResidentMario/geoplot
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Creating a route planner for a road network
In this recipe, we build upon several techniques described in the previous recipes in order to 
create a simple GPS-like route planner in Python. We will retrieve California's road network 
data from the United States Census Bureau in order to find shortest paths in the road network 
graph. This will allow us to display road itineraries between any two locations in California.

Getting ready
You need Smopy for this recipe. You can install it with pip install git+https://
github.com/rossant/smopy. In order for NetworkX to read Shapefile datasets,  
you also need GDAL/OGR. You can install it with conda install gdal.

At the time of this writing, gdal does not appear to work well with conda 
and Python 3.6. You may need to downgrade Python to Python 3.5 with 
conda install python=3.5.

How to do it...
1.	 Let's import the packages:

>>> import io
    import zipfile
    import requests
    import networkx as nx
    import numpy as np
    import pandas as pd
    import json
    import smopy
    import matplotlib.pyplot as plt
    %matplotlib inline

2.	 We load the data (a Shapefile dataset) with NetworkX. This dataset contains detailed 
information about the primary roads in California. NetworkX's read_shp() function 
returns a graph, where each node is a geographical position, and each edge contains 
information about the road linking the two nodes. The data comes from the United 
States Census Bureau website at http://www.census.gov/geo/maps-data/
data/tiger.html.
>>> url = ('https://github.com/ipython-books/'
           'cookbook-2nd-data/blob/master/'
           'road.zip?raw=true')
    r = io.BytesIO(requests.get(url).content)
    zipfile.ZipFile(r).extractall('data')
    g = nx.read_shp('data/tl_2013_06_prisecroads.shp')

http://www.census.gov/geo/maps-data/data/tiger.html
http://www.census.gov/geo/maps-data/data/tiger.html
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3.	 This graph is not necessarily connected, but we need a connected graph in order to 
compute shortest paths. Here, we take the largest connected subgraph using the 
connected_component_subgraphs() function:
>>> sgs = list(nx.connected_component_subgraphs(
        g.to_undirected()))
    i = np.argmax([len(sg) for sg in sgs])
    sg = sgs[i]
    len(sg)
464

4.	 We define two positions (with the latitude and longitude) and find the shortest path 
between these two positions:
>>> pos0 = (36.6026, -121.9026)
    pos1 = (34.0569, -118.2427)

5.	 Each edge in the graph contains information about the road, including a list of points 
along this road. We first create a function that returns this array of coordinates, for 
any edge in the graph:
>>> def get_path(n0, n1):
        """If n0 and n1 are connected nodes in the graph,
        this function returns an array of point
        coordinates along the road linking these two
        nodes."""
        return np.array(json.loads(sg[n0][n1]['Json'])
                        ['coordinates'])

6.	 We can notably use the road path to compute its length. We first need to  
define a function that computes the distance between any two points in  
geographical coordinates:
>>> # from https://stackoverflow.com/a/8859667/1595060
    EARTH_R = 6372.8
    
    def geocalc(lat0, lon0, lat1, lon1):
        """Return the distance (in km) between two points
        in geographical coordinates."""
        lat0 = np.radians(lat0)
        lon0 = np.radians(lon0)
        lat1 = np.radians(lat1)
        lon1 = np.radians(lon1)
        dlon = lon0 - lon1
        y = np.sqrt((np.cos(lat1) * np.sin(dlon)) ** 2 +
            (np.cos(lat0) * np.sin(lat1) - np.sin(lat0) *
             np.cos(lat1) * np.cos(dlon)) ** 2)
        x = np.sin(lat0) * np.sin(lat1) + \
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            np.cos(lat0) * np.cos(lat1) * np.cos(dlon)
        c = np.arctan2(y, x)
        return EARTH_R * c

7.	 Now, we define a function computing a path's length:
>>> def get_path_length(path):
        return np.sum(geocalc(path[1:, 1], path[1:, 0],
                              path[:-1, 1], path[:-1, 0]))

8.	 We update our graph by computing the distance between any two connected nodes. 
We add this information with the distance attribute of the edges:
>>> # Compute the length of the road segments.
    for n0, n1 in sg.edges:
        path = get_path(n0, n1)
        distance = get_path_length(path)
        sg.edges[n0, n1]['distance'] = distance

9.	 The last step before we can find the shortest path in the graph is to find the two 
nodes in the graph that are closest to the two requested positions:
>>> nodes = np.array(sg.nodes())
    # Get the closest nodes in the graph.
    pos0_i = np.argmin(
        np.sum((nodes[:, ::-1] - pos0)**2, axis=1))
    pos1_i = np.argmin(
        np.sum((nodes[:, ::-1] - pos1)**2, axis=1))

10.	 Now, we use NetworkX's shortest_path() function to compute the shortest path 
between our two positions. We specify that the weight of every edge is the length of 
the road between them:
>>> # Compute the shortest path.
    path = nx.shortest_path(
        sg,
        source=tuple(nodes[pos0_i]),
        target=tuple(nodes[pos1_i]),
        weight='distance')
    len(path)
19

11.	 The itinerary has been computed. The path variable contains the list of edges that 
form the shortest path between our two positions. Now we can get information about 
the itinerary with pandas. The dataset has a few fields of interest, including the name 
and type (State, Interstate, and so on) of the roads:
>>> roads = pd.DataFrame(
        [sg.edges[path[i], path[i + 1]]
         for i in range(len(path) - 1)],
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        columns=['FULLNAME', 'MTFCC',
                 'RTTYP', 'distance'])
    roads

Here is the total length of this itinerary:

>>> roads['distance'].sum()
508.664

12.	 Finally, let's display the itinerary on the map. We first retrieve the map with Smopy:
>>> m = smopy.Map(pos0, pos1, z=7, margin=.1)

13.	 Our path contains connected nodes in the graph. Every edge between two nodes is 
characterized by a list of points (constituting a part of the road). Therefore, we need 
to define a function that concatenates the positions along every edge in the path. We 
have to concatenate the positions in the right order along our path. We choose the 
order based on the fact that the last point in an edge needs to be close to the first 
point in the next edge:
>>> def get_full_path(path):
        """Return the positions along a path."""
        p_list = []
        curp = None
        for i in range(len(path) - 1):
            p = get_path(path[i], path[i + 1])
            if curp is None:
                curp = p
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            if (np.sum((p[0] - curp) ** 2) >
                    np.sum((p[-1] - curp) ** 2)):
                p = p[::-1, :]
            p_list.append(p)
            curp = p[-1]
        return np.vstack(p_list)

14.	 We convert the path into pixels in order to display it on the Smopy map:
>>> linepath = get_full_path(path)
    x, y = m.to_pixels(linepath[:, 1], linepath[:, 0])

15.	 Finally, let's display the map, with our two positions and the computed itinerary 
between them:

>>> ax = m.show_mpl(figsize=(8, 8))
    # Plot the itinerary.
    ax.plot(x, y, '-k', lw=3)
    # Mark our two positions.
    ax.plot(x[0], y[0], 'ob', ms=20)
    ax.plot(x[-1], y[-1], 'or', ms=20)
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How it works...
We computed the shortest path with NetworkX's shortest_path() function. Here, this 
function used Dijkstra's algorithm. This algorithm has a wide variety of applications, for 
example in network routing protocols.

There are different ways to compute the geographical distance between two points. Here, 
we used a relatively precise formula: the orthodromic distance (also called great-circle 
distance), which assumes that the Earth is a perfect sphere. We could also have used a 
simpler formula since the distance between two successive points on a road is small.

There's more...
You can find more information about shortest path problems and Dijkstra's algorithm in the 
following references:

ff Shortest paths in the NetworkX documentation, https://networkx.github.io/
documentation/stable/reference/algorithms/shortest_paths.html

ff What algorithms compute directions from point A to point B on a map? on 
StackOverflow, at https://stackoverflow.com/q/430142/1595060

ff Shortest paths on Wikipedia, available at https://en.wikipedia.org/wiki/
Shortest_path_problem

ff Dijkstra's algorithm, described at https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm

Here are a few references about geographical distances:

ff Geographical distance on Wikipedia, at https://en.wikipedia.org/wiki/
Geographical_distance

ff Great circles on Wikipedia, at https://en.wikipedia.org/wiki/Great_
circle

ff Great-circle distance on Wikipedia, at https://en.wikipedia.org/wiki/
Great-circle_distance

https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html
https://networkx.github.io/documentation/stable/reference/algorithms/shortest_paths.html
https://stackoverflow.com/q/430142/1595060
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Geographical_distance
https://en.wikipedia.org/wiki/Geographical_distance
https://en.wikipedia.org/wiki/Great_circle
https://en.wikipedia.org/wiki/Great_circle
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Great-circle_distance


487

15
Symbolic and 

Numerical Mathematics

In this chapter, we will cover the following topics:

ff Diving into symbolic computing with SymPy

ff Solving equations and inequalities

ff Analyzing real-valued functions

ff Computing exact probabilities and manipulating random variables

ff A bit of number theory with SymPy

ff Finding a Boolean propositional formula from a truth table

ff Analyzing a nonlinear differential system — Lotka-Volterra (predator-prey) equations

ff Getting started with Sage

Introduction
In this chapter, we will introduce SymPy, a Python library for symbolic mathematics. Whereas 
most of the book deals with numerical methods, we will see examples here where symbolic 
computations are more suitable.

SymPy is to symbolic computing what NumPy is to numerical computing. For example,  
SymPy can help us analyze a mathematical model before we run a simulation.
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Although quite powerful, SymPy may be slower than other computer algebra systems. The 
main reason is that SymPy is written in pure Python. A faster and more complete mathematics 
system is Sage (see also the Getting started with Sage recipe in this chapter). Sage is a heavy 
standalone program that has many dependencies (including SymPy), and it uses only  
Python 2 at the time of writing. It is essentially meant for interactive use. Sage can be  
used with the Jupyter Notebook.

LaTeX
LaTeX is a document markup language widely used to write publication-quality mathematical 
equations. Equations written in LaTeX can be displayed in the browser with the MathJax 
JavaScript library. SymPy uses this system to display equations in the Jupyter Notebook.

LaTeX equations can also be used in matplotlib. In this case, it is recommended to have a 
LaTeX installation on your local computer.

Here are a few references:

ff LaTeX on Wikipedia, at https://en.wikipedia.org/wiki/LaTeX

ff LaTeX in matplotlib, described at http://matplotlib.org/users/usetex.
html

ff Documentation for displaying equations with SymPy, available at http://docs.
sympy.org/latest/tutorial/printing.html

ff To install LaTeX on your computer, refer to http://latex-project.org/
ftp.html

Diving into symbolic computing with SymPy
In this recipe, we will give a brief introduction to symbolic computing with SymPy. We will see 
more advanced features of SymPy in the next recipes.

Getting ready
Anaconda should come with SymPy by default, but you can always install it with conda 
install sympy.

How to do it...
SymPy can be used from a Python module, or interactively in Jupyter/IPython. In the 
Notebook, all mathematical expressions are displayed with LaTeX, thanks to the MathJax 
JavaScript library.

https://en.wikipedia.org/wiki/LaTeX
http://matplotlib.org/users/usetex.html
http://matplotlib.org/users/usetex.html
http://docs.sympy.org/latest/tutorial/printing.html
http://docs.sympy.org/latest/tutorial/printing.html
http://latex-project.org/ftp.html
http://latex-project.org/ftp.html
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Here is an introduction to SymPy:

1.	 First, we import SymPy and enable LaTeX printing in the Jupyter Notebook:
>>> from sympy import *
    init_printing()

2.	 To deal with symbolic variables, we first need to declare them:
>>> var('x y')

3.	 The var() function creates symbols and injects them into the namespace.  
This function should only be used in the interactive mode. In a Python module,  
it is better to use the symbols() function that returns the symbols:
>>> x, y = symbols('x y')

4.	 We can create mathematical expressions with these symbols:
>>> expr1 = (x + 1) ** 2
    expr2 = x**2 + 2 * x + 1

5.	 Are these expressions equal?
>>> expr1 == expr2
False

6.	 These expressions are mathematically equal, but not syntactically identical.  
To test whether they are mathematically equal, we can ask SymPy to simplify  
the difference algebraically:
>>> simplify(expr1 - expr2)

7.	 A very common operation with symbolic expressions is the substitution of a  
symbol by another symbol, expression, or a number, using the subs() method  
of a symbolic expression:
>>> expr1.subs(x, expr1)

>>> expr1.subs(x, pi)
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8.	 A rational number cannot be written simply as 1/2 as this Python expression 
evaluates to 0.5. A possibility is to convert the number 1 into a SymPy integer  
object, for example by using the S() function:
>>> expr1.subs(x, S(1) / 2)

9.	 Exactly represented numbers can be evaluated numerically with evalf():
>>> _.evalf()

10.	 We can easily create a Python function from a SymPy symbolic expression using the 
lambdify() function. The resulting function can notably be evaluated on NumPy 
arrays. This is quite convenient when we need to go from the symbolic world to the 
numerical world:

>>> f = lambdify(x, expr1)
>>> import numpy as np
    f(np.linspace(-2., 2., 5))
array([ 1.,  0.,  1.,  4.,  9.])

How it works...
A core idea in SymPy is to use the standard Python syntax to manipulate exact expressions. 
Although this is very convenient and natural, there are a few caveats. Symbols such as x, 
which represent mathematical variables, cannot be used in Python before being instantiated 
(otherwise, a NameError exception is thrown by the interpreter). This is in contrast to most 
other computer algebra systems. For this reason, SymPy offers ways to declare symbolic 
variables beforehand.

Another example is integer division; as 1/2 evaluates to 0.5 (or 0 in Python 2), SymPy has 
no way to know that the user intended to write a fraction instead. We need to convert the 
numerical integer 1 to the symbolic integer 1 before dividing it by 2.

Also, the Python equality refers to the equality between syntax trees rather than between 
mathematical expressions.



Chapter 15

491

See also
ff Solving equations and inequalities

ff Getting started with Sage

Solving equations and inequalities
SymPy offers several ways to solve linear and nonlinear equations and systems of equations. 
Of course, these functions do not always succeed in finding closed-form exact solutions.  
In this case, we can fall back to numerical solvers and obtain approximate solutions.

How to do it...
1.	 Let's define a few symbols:

>>> from sympy import *
    init_printing()
>>> var('x y z a')

2.	 We use the solve() function to solve equations (the right-hand side is 0 by default):
>>> solve(x**2 - a, x)

3.	 We can also solve inequalities. Here, we need to use the solve_univariate_
inequality() function to solve this univariate inequality in the real domain:
>>> x = Symbol('x')
    solve_univariate_inequality(x**2 > 4, x)

4.	 The solve() function also accepts systems of equations (here, a linear system):
>>> solve([x + 2*y + 1, x - 3*y - 2], x, y)



Symbolic and Numerical Mathematics

492

5.	 Nonlinear systems are also handled:
>>> solve([x**2 + y**2 - 1, x**2 - y**2 - S(1) / 2], x, y)

6.	 Singular linear systems can also be solved (here, there is an infinite number of 
solutions because the two equations are collinear):
>>> solve([x + 2*y + 1, -x - 2*y - 1], x, y)

7.	 Now, let's solve a linear system using matrices containing symbolic variables:
>>> var('a b c d u v')

8.	 We create the augmented matrix, which is the horizontal concatenation of the 
system's matrix with the linear coefficients and the right-hand side vector. This  
matrix corresponds to the following system in : :
>>> M = Matrix([[a, b, u], [c, d, v]])
    M

>>> solve_linear_system(M, x, y)

9.	 This system needs to be nonsingular in order to have a unique solution, which is 
equivalent to saying that the determinant of the system's matrix needs to be nonzero 
(otherwise the denominators in the preceding fractions are equal to zero):
>>> det(M[:2, :2])
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There's more...
Matrix support in SymPy is quite rich; we can perform a large number of operations and 
decompositions (see the reference guide at http://docs.sympy.org/latest/modules/
matrices/matrices.html).

Here are more references about linear algebra:

ff Linear algebra on Wikipedia, at https://en.wikipedia.org/wiki/Linear_
algebra#Further_reading

ff Linear algebra on Wikibooks, at http://en.wikibooks.org/wiki/Linear_
Algebra

ff Linear algebra lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#linear-algebra

Analyzing real-valued functions
SymPy contains a rich calculus toolbox to analyze real-valued functions: limits, power series, 
derivatives, integrals, Fourier transforms, and so on. In this recipe, we will show the very 
basics of these capabilities.

How to do it...
1.	 Let's define a few symbols and a function (which is just an expression depending  

on x):
>>> from sympy import *
    init_printing()
>>> var('x z')

>>> f = 1 / (1 + x**2)

2.	 Let's evaluate this function at 1:
>>> f.subs(x, 1)

http://docs.sympy.org/latest/modules/matrices/matrices.html
http://docs.sympy.org/latest/modules/matrices/matrices.html
https://en.wikipedia.org/wiki/Linear_algebra#Further_reading
https://en.wikipedia.org/wiki/Linear_algebra#Further_reading
http://en.wikibooks.org/wiki/Linear_Algebra
http://en.wikibooks.org/wiki/Linear_Algebra
https://github.com/rossant/awesome-math/#linear-algebra
https://github.com/rossant/awesome-math/#linear-algebra
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3.	 We can compute the derivative of this function:
>>> diff(f, x)

4.	 What is 's limit to infinity? (Note the double o (oo) for the infinity symbol):
>>> limit(f, x, oo)

5.	 Here's how to compute a Taylor series (here, around 0, of order 9). The Big O can be 
removed with the removeO() method.
>>> series(f, x0=0, n=9)

6.	 We can compute definite integrals (here, over the entire real line):
>>> integrate(f, (x, -oo, oo))

7.	 SymPy can also compute indefinite integrals:
>>> integrate(f, x)

8.	 Finally, let's compute 's Fourier transforms:

>>> fourier_transform(f, x, z)

There's more...
SymPy includes a large number of other integral transforms besides the Fourier transform 
(http://docs.sympy.org/latest/modules/integrals/integrals.html).  
However, SymPy will not always be able to find closed-form solutions.

http://docs.sympy.org/latest/modules/integrals/integrals.html
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Here are a few general references about real analysis and calculus:

ff Real analysis on Wikipedia, at https://en.wikipedia.org/wiki/Real_
analysis#Bibliography

ff Calculus on Wikibooks, at http://en.wikibooks.org/wiki/Calculus

ff Real analysis on Awesome Math, at https://github.com/rossant/awesome-
math/#real-analysis

Computing exact probabilities and 
manipulating random variables

SymPy includes a module named stats that lets us create and manipulate random variables. 
This is useful when we work with probabilistic or statistical models; we can compute symbolic 
expectancies, variances, probabilities, and densities of random variables.

How to do it...
1.	 Let's import SymPy and the stats module:

>>> from sympy import *
    from sympy.stats import *
    init_printing()

2.	 Let's roll two dice, X and Y, with six faces each:
>>> X, Y = Die('X', 6), Die('Y', 6)

3.	 We can compute probabilities defined by equalities (with the Eq operator)  
or inequalities:
>>> P(Eq(X, 3))

>>> P(X > 3)

https://en.wikipedia.org/wiki/Real_analysis#Bibliography
https://en.wikipedia.org/wiki/Real_analysis#Bibliography
http://en.wikibooks.org/wiki/Calculus
https://github.com/rossant/awesome-math/#real-analysis
https://github.com/rossant/awesome-math/#real-analysis
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4.	 Conditions can also involve multiple random variables:
>>> P(X > Y)

5.	 We can compute conditional probabilities:
>>> P(X + Y > 6, X < 5)

6.	 We can also work with arbitrary discrete or continuous random variables:
>>> Z = Normal('Z', 0, 1)  # Gaussian variable
>>> P(Z > pi)

7.	 We can compute expectancies and variances:
>>> E(Z**2), variance(Z**2)

8.	 We can also compute densities:
>>> f = density(Z)
>>> var('x')
    f(x)
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9.	 We can plot these densities:

>>> %matplotlib inline
    plot(f(x), (x, -6, 6))

How it works...
SymPy's stats module contains many functions to define random variables with classical laws 
(binomial, exponential, and so on), discrete or continuous. It works by leveraging SymPy's 
powerful integration algorithms to compute exact probabilistic quantities as integrals of 
probability distributions. For example,  is:

>>> Eq(Integral(f(x), (x, pi, oo)),
       simplify(integrate(f(x), (x, pi, oo))))

Note that the equality condition is written using the Eq operator rather than the more 
standard == Python syntax. This is a general feature in SymPy; == means equality between 
Python variables, whereas Eq is the mathematical operation between symbolic expressions.

There's more...
Here are a few references:

ff SymPy stats module documentation at http://docs.sympy.org/latest/
modules/stats.html

ff Probability lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#probability-theory

http://docs.sympy.org/latest/modules/stats.html
http://docs.sympy.org/latest/modules/stats.html
https://github.com/rossant/awesome-math/#probability-theory
https://github.com/rossant/awesome-math/#probability-theory


Symbolic and Numerical Mathematics

498

ff Statistics lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#statistics

A bit of number theory with SymPy
SymPy contains many number-theory-related routines: obtaining prime numbers, integer 
decompositions, and much more. We will show a few examples here.

Getting ready
To display legends using LaTeX in matplotlib, you will need an installation of LaTeX on your 
computer (see this chapter's introduction).

How to do it...
1.	 Let's import SymPy and the number theory package:

>>> from sympy import *
    import sympy.ntheory as nt
    init_printing()

2.	 We can test whether a number is prime:
>>> nt.isprime(2017)
True

3.	 We can find the next prime after a given number:
>>> nt.nextprime(2017)

4.	 What is the 1000th prime number?
>>> nt.prime(1000)

5.	 How many primes less than 2017 are there?
>>> nt.primepi(2017)

https://github.com/rossant/awesome-math/#statistics
https://github.com/rossant/awesome-math/#statistics
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6.	 We can plot , the prime-counting function (the number of prime numbers 
less than or equal to some number ). The prime number theorem states that this 
function is asymptotically equivalent to . This expression approximately 
quantifies the distribution of prime numbers among all integers:
>>> import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    x = np.arange(2, 10000)
    fig, ax = plt.subplots(1, 1, figsize=(6, 4))
    ax.plot(x, list(map(nt.primepi, x)), '-k',
            label='$\pi(x)$')
    ax.plot(x, x / np.log(x), '--k',
            label='$x/\log(x)$')
    ax.legend(loc=2)

7.	 Let's compute the integer factorization of a number:
>>> nt.factorint(1998)

>>> 2 * 3**3 * 37
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8.	 Finally, a small problem. A lazy mathematician is counting his marbles. When they are 
arranged in three rows, the last column contains one marble. When they form four 
rows, there are two marbles in the last column, and there are three with five rows. 
How many marbles are there? (Hint: The lazy mathematician has fewer than  
100 marbles.)

Marbles

The Chinese Remainder Theorem gives us the answer:

>>> from sympy.ntheory.modular import solve_congruence
    solve_congruence((1, 3), (2, 4), (3, 5))

There are infinitely many solutions: 58 plus any multiple of 60. Since there are less than  
100 marbles, 58 is the right answer.

How it works...
SymPy contains many number-theory-related functions. Here, we used the Chinese 
Remainder Theorem to find the solutions of the following system of arithmetic equations:
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The triple bar is the symbol for modular congruence. Here, it means that  divides  
. In other words,  and  are equal up to a multiple of . Reasoning with congruences 

is very convenient when periodic scales are involved. For example, operations involving  
12-hour clocks are done modulo 12. The numbers 11 and 23 are equivalent modulo 12  
(they represent the same hour on the clock) because their difference is a multiple of 12.

In this recipe's example, three congruences have to be satisfied: the remainder of the number 
of marbles in the division with 3 is 1 (there's one extra marble in that arrangement), it is 2 in 
the division with 4, and 3 in the division with 5. With SymPy, we simply specify these values in 
the solve_congruence() function to get the solutions.

The theorem states that solutions exist as soon as the  are pairwise co-prime (any two 
distinct numbers among them are co-prime). All solutions are congruent modulo the product 
of the . This fundamental theorem in number theory has several applications, notably  
in cryptography.

There's more...
Here are a few textbooks about number theory:

ff Undergraduate level: Elementary Number Theory, Gareth A. Jones, Josephine M. 
Jones, Springer, (1998)

ff Graduate level: A Classical Introduction to Modern Number Theory, Kenneth Ireland, 
Michael Rosen, Springer, (1982)

Here are a few references:

ff Documentation on SymPy's number-theory module, available at http://docs.
sympy.org/latest/modules/ntheory.html

ff The Chinese Remainder Theorem on Wikipedia, at https://en.wikipedia.org/
wiki/Chinese_remainder_theorem

ff Applications of the Chinese Remainder Theorem, given at http://mathoverflow.
net/questions/10014/applications-of-the-chinese-remainder-
theorem

ff Number theory lectures on Awesome Math, at https://github.com/rossant/
awesome-math/#number-theory

Finding a Boolean propositional formula 
from a truth table

The logic module in SymPy lets us manipulate complex Boolean expressions, also known as 
propositional formulas.

http://docs.sympy.org/latest/modules/ntheory.html
http://docs.sympy.org/latest/modules/ntheory.html
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://mathoverflow.net/questions/10014/applications-of-the-chinese-remainder-theorem
http://mathoverflow.net/questions/10014/applications-of-the-chinese-remainder-theorem
http://mathoverflow.net/questions/10014/applications-of-the-chinese-remainder-theorem
https://github.com/rossant/awesome-math/#number-theory
https://github.com/rossant/awesome-math/#number-theory
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This recipe will show an example where this module can be useful. Let's suppose that, in a 
program, we need to write a complex if statement depending on three Boolean variables. We 
can think about each of the eight possible cases (true, true and false, and so on) and evaluate 
what the outcome should be. SymPy offers a function to generate a compact logic expression 
that satisfies our truth table.

How to do it...
1.	 Let's import SymPy:

>>> from sympy import *
    init_printing()

2.	 Let's define a few symbols:
>>> var('x y z')

3.	 We can define propositional formulas with symbols and a few operators:
>>> P = x & (y | ~z)
    P

4.	 We can use subs() to evaluate a formula on actual Boolean values:
>>> P.subs({x: True, y: False, z: True})

5.	 Now, we want to find a propositional formula depending on x, y, and z, with the 
following truth table:

A truth table
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6.	 Let's write down all combinations that we want to evaluate to True, and those for 
which the outcome does not matter:
>>> minterms = [[1, 0, 1], [1, 0, 0], [0, 0, 0]]
    dontcare = [[1, 1, 1], [1, 1, 0]]

7.	 Now, we use the SOPform() function to derive an adequate formula:
>>> Q = SOPform(['x', 'y', 'z'], minterms, dontcare)
    Q

8.	 Let's test that this proposition works:

>>> Q.subs({x: True, y: False, z: False}), Q.subs(
        {x: False, y: True, z: True})

How it works...
The SOPform() function generates a full expression corresponding to a truth table and 
simplifies it using the Quine-McCluskey algorithm. It returns the smallest Sum of Products 
form (or disjunction of conjunctions). Similarly, the POSform() function returns a Product  
of Sums.

The given truth table can occur in this case: suppose that we want to write a file if it doesn't 
already exist (z), or if the user wants to force the writing (x). In addition, the user can prevent 
the writing (y). The expression evaluates to True if the file is to be written. The resulting 
SOP formula works if we explicitly forbid x and y in the first place (forcing and preventing the 
writing at the same time is forbidden).

There's more...
Here are a few references:

ff SymPy logic module documentation at http://docs.sympy.org/latest/
modules/logic.html

ff The propositional formula on Wikipedia, at https://en.wikipedia.org/wiki/
Propositional_formula

ff Sum of Products on Wikipedia, at https://en.wikipedia.org/wiki/
Canonical_normal_form

http://docs.sympy.org/latest/modules/logic.html
http://docs.sympy.org/latest/modules/logic.html
https://en.wikipedia.org/wiki/Propositional_formula
https://en.wikipedia.org/wiki/Propositional_formula
https://en.wikipedia.org/wiki/Canonical_normal_form
https://en.wikipedia.org/wiki/Canonical_normal_form
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ff The Quine–McCluskey algorithm on Wikipedia, at https://en.wikipedia.org/
wiki/Quine%E2%80%93McCluskey_algorithm

ff Logic lectures on Awesome Math, at https://github.com/rossant/awesome-
math/#logic

Analyzing a nonlinear differential system — 
Lotka-Volterra (predator-prey) equations

Here, we will conduct a brief analytical study of a famous nonlinear differential system: the 
Lotka-Volterra equations, also known as predator-prey equations. These equations are  
first-order differential equations that describe the evolution of two interacting populations  
(for example, sharks and sardines), where the predators eat the prey. This example illustrates 
how to obtain exact expressions and results about fixed points and their stability with SymPy.

Getting ready
For this recipe, knowing the basics of linear and nonlinear systems of differential equations  
is recommended.

How to do it...
1.	 Let's create some symbols:

>>> from sympy import *
    init_printing(pretty_print=True)
    
    var('x y')
    var('a b c d', positive=True)

2.	 The variables  and  represent the populations of the prey and predators, 
respectively. The parameters , , , and  are strictly positive parameters (described 
more precisely in the How it works... section of this recipe). The equations are:

>>> f = x * (a - b * y)
    g = -y * (c - d * x)

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm
https://github.com/rossant/awesome-math/#logic
https://github.com/rossant/awesome-math/#logic
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3.	 Let's find the fixed points of the system (solving ). We call them 
 and :

>>> solve([f, g], (x, y))

>>> (x0, y0), (x1, y1) = _

4.	 Let's write the 2D vector with the two equations:
>>> M = Matrix((f, g))
    M

5.	 Now, we can compute the Jacobian of the system, as a function of :
>>> J = M.jacobian((x, y))
    J

6.	 Let's study the stability of the first fixed point by looking at the eigenvalues of the 
Jacobian at this point. The first fixed point corresponds to extinct populations:
>>> M0 = J.subs(x, x0).subs(y, y0)
    M0

>>> M0.eigenvals()
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The parameters  and  are strictly positive, so the eigenvalues are real and of 
opposite signs, and this fixed point is a saddle point. As this point is unstable, the 
extinction of both populations is unlikely in this model.

7.	 Let's consider the second fixed point now:
>>> M1 = J.subs(x, x1).subs(y, y1)
    M1

>>> M1.eigenvals()

The eigenvalues are purely imaginary: thus, this fixed point is not hyperbolic. Therefore, we 
cannot draw conclusions from this linear analysis about the qualitative behavior of the system 
around this fixed point. However, we could show with other methods that oscillations occur 
around this point.

How it works...
The Lotka-Volterra equations model the growth of the predator and prey populations, taking 
into account their interactions. In the first equation, the  term represents the exponential 
growth of the prey, and  represents death by predators. Similarly, in the second equation, 

 represents the natural death of the predators, and  represents their growth as they 
eat more and more prey.

To find the equilibrium points of the system, we need to find the values ,  such that 
, that is, , so that the variables do not evolve  

anymore. Here, we were able to obtain analytical values for these equilibrium points  
with the solve() function.

To analyze their stability, we need to perform a linear analysis of the nonlinear equations, by 
taking the Jacobian matrix at these equilibrium points. This matrix represents the linearized 
system, and its eigenvalues tell us about the stability of the system near the equilibrium point. 
The Hartman–Grobman theorem states that the behavior of the original system qualitatively 
matches the behavior of the linearized system around an equilibrium point if this point is 
hyperbolic (meaning that no eigenvalues of the matrix have a real part equal to 0). Here, the 
first equilibrium point is hyperbolic as , but the second is not.
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Here, we were able to compute symbolic expressions for the Jacobian matrix and its 
eigenvalues at the equilibrium points.

There's more...
Even when a differential system is not solvable analytically (as is the case here), a 
mathematical analysis can still give us qualitative information about the behavior of the 
system's solutions. A purely numerical analysis is not always relevant when we are interested 
in qualitative results, as numerical errors and approximations can lead to wrong conclusions 
about the system's behavior.

Here are a few references:

ff Matrix documentation in SymPy, available at http://docs.sympy.org/latest/
modules/matrices/matrices.html

ff Dynamical systems on Wikipedia, at https://en.wikipedia.org/wiki/
Dynamical_system

ff Equilibrium points on Scholarpedia, at http://www.scholarpedia.org/
article/Equilibrium

ff Bifurcation theory on Wikipedia, at https://en.wikipedia.org/wiki/
Bifurcation_theory

ff Chaos theory on Wikipedia, at https://en.wikipedia.org/wiki/Chaos_
theory

ff Further reading on dynamical systems, at https://en.wikipedia.org/wiki/
Dynamical_system#Further_reading

ff Lectures on ordinary differential equations on Awesome Math, at https://github.
com/rossant/awesome-math/#ordinary-differential-equations

Getting started with Sage
Sage (http://www.sagemath.org) is a standalone mathematics software based on 
Python. It is an open source alternative to commercial products such as Mathematica, Maple, 
or MATLAB. Sage provides a unified interface to many open source mathematical libraries. 
These libraries include SciPy, SymPy, NetworkX, and other Python scientific packages, but also 
non-Python libraries such as ATLAS, BLAS, GSL, LAPACK, Singular, and many others.

In this recipe, we will give a brief introduction to Sage.

http://docs.sympy.org/latest/modules/matrices/matrices.html
http://docs.sympy.org/latest/modules/matrices/matrices.html
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system
http://www.scholarpedia.org/article/Equilibrium
http://www.scholarpedia.org/article/Equilibrium
https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Dynamical_system#Further_reading
https://en.wikipedia.org/wiki/Dynamical_system#Further_reading
https://github.com/rossant/awesome-math/#ordinary-differential-equations
https://github.com/rossant/awesome-math/#ordinary-differential-equations
http://www.sagemath.org
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Getting ready
You can either:

ff Install Sage on your local computer (http://www.sagemath.org/doc/
installation/)

ff Create Sage notebooks remotely in the cloud (https://cloud.sagemath.com/)

Being based on so many libraries, Sage is heavy and hard to compile from source. On Ubuntu, 
you can use the system's package manager (see http://www.sagemath.org/download-
linux.html). Binaries exist for most systems except Windows, where you generally have to 
use VirtualBox (a virtualization solution: http://www.virtualbox.org).

Alternatively, you can use Sage in a browser with a Jupyter notebook running in the cloud.

Once Sage is installed, you can use it with Jupyter by typing the following command in a 
Terminal: sage -n jupyter.

How to do it...
Here, we will create a new Sage notebook and introduce the most basic features:

1.	 Sage accepts mathematical expressions as we would expect:
>>> 3 * 4
12

2.	 Being based on Python, Sage's syntax is almost Python, but there are a few 
differences. For example, the power exponent is the more classical ^ symbol:
>>> 2 ^ 3
8

3.	 Like in SymPy, symbolic variables need to be declared beforehand with the var() 
function. However, the x variable is always predefined. Here, we define a new 
mathematical function:
>>> f = 1 - sin(x) ^ 2

4.	 Let's simplify the expression of f:
>>> f.simplify_trig()
cos(x)^2

http://www.sagemath.org/doc/installation/
http://www.sagemath.org/doc/installation/
https://cloud.sagemath.com/
http://www.sagemath.org/download-linux.html
http://www.sagemath.org/download-linux.html
http://www.virtualbox.org
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5.	 Let's evaluate f on a given point:
>>> f(x=pi)
1

6.	 Functions can be differentiated and integrated:
>>> f.diff(x)
-2*cos(x)*sin(x)
>>> f.integrate(x)
1/2*x + 1/4*sin(2*x)

7.	 Sage also supports numerical computations in addition to symbolic computations:
>>> find_root(f - x, 0, 2)
0.6417143708729726

8.	 Sage also comes with rich plotting capabilities (including interactive plotting widgets):
>>> f.plot((x, -2 * pi, 2 * pi))
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>>> x, y = var('x,y')
    plot3d(sin(x ^ 2 + y ^ 2) / (x ^ 2 + y ^ 2),
           (x, -5, 5), (y, -5, 5))

There's more...
This (too) short recipe cannot do justice to the huge list of possibilities offered by Sage. 
Many aspects of mathematics are covered: algebra, combinatorics, numerical mathematics, 
number theory, calculus, geometry, graph theory, and many others. Here are a few references:

ff An in-depth tutorial on Sage, available at http://doc.sagemath.org/html/en/
tutorial/index.html

ff The Sage reference manual, available at http://doc.sagemath.org/html/en/
reference/index.html

ff Videos on Sage, available at http://www.sagemath.org/help-video.html

See also
ff The Diving into symbolic computing with SymPy recipe

http://doc.sagemath.org/html/en/tutorial/index.html
http://doc.sagemath.org/html/en/tutorial/index.html
http://doc.sagemath.org/html/en/reference/index.html
http://doc.sagemath.org/html/en/reference/index.html
http://www.sagemath.org/help-video.html
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Another Book  
You May Enjoy

If you enjoyed this book, you may be interested in another book by Packt

Hands-On Data Science and Python Machine Learning

Frank Kane

ISBN: 978-1-78728-074-8

ff Learn how to clean your data and ready it for analysis

ff Implement the popular clustering and regression methods in Python

ff Train efficient machine learning models using decision trees and random forests

ff Visualize the results of your analysis using Python's Matplotlib library

ff Use Apache Spark's MLlib package to perform machine learning on large datasets
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Leave a review – let other readers know what  
you think
Please share your thoughts on this book with others by leaving a review on the site that you 
bought it from. If you purchased the book from Amazon, please leave us an honest review on 
this book's Amazon page. This is vital so that other potential readers can see and use your 
unbiased opinion to make purchasing decisions, we can understand what our customers think 
about our products, and our authors can see your feedback on the title that they have worked 
with Packt to create. It will only take a few minutes of your time, but is valuable to other 
potential customers, our authors, and Packt. Thank you!
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graph traversal  450
Hamiltonian paths  451
traveling salesman problem  451

graphs
about  449, 450
manipulating, with NetworkX  453-456
random graphs  451
references  452
using, in Python  451
visualizing, with NetworkX  453-456

graph traversal
URL  450

Graphviz
URL  321

gravitational force  357
grayscale image  382
great-circle distance  486
grid  188
grid search

URL  299
Gross Domestic Product (GDP)  477
groups  151, 328

H
h5py

reference  152
Haar cascades library

URL  403
Hamiltonian paths

URL  451
handwritten digit recognition  287
Hartman-Grobman theorem  506
HDF5 chunking

reference  152
heat equation  444
Hessian  347
Hierarchical Data Format (HDF5)

limitations, reference   152
used, for manipulating large arrays  150-152

high-pass filter  375
histogram equalization

URL  385
holding times  441

HoloViews
interactive web visualizations,  

creating  218-224
Hooke's law

URL  358
hyperbolic  506
Hyper-Threading Technology (HTT)  166

I
image

about  382
faces, detecting with OpenCV  401-403
filters, applying  386-390
points of interest, searching  397-400
segmenting  391-396

image denoising  390
image exposure

manipulating  383-385
image histogram

URL  385
image processing

URL  382, 400
image segmentation

URL  396
independent variables  412
Infinite Impulse Response (IIR)  374
in-place operation

and implicit-copy operation, differences  140
instance-based learning

URL  309
Integrated Development  

Environments (IDEs)  63
Intel Math Kernel Library (MKL)  139
intensity  382
interactive computing

about  41
workflow, with IPython  63

InteractiveShell class  27
interactive visualization libraries

discovering, in Notebook  229-233
references  233

interactive web visualizations
creating, with Bokeh  218-224
creating, with HoloViews  218-224

intermediate value theorem
reference  341
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Inverse Discrete Fourier Transform  369
Inverse Fast Fourier Transform  369
ipyleaflet  229
ipymd module

URL  65
ipyparallel

about  68, 190
references  194

IPython
about  2, 6-12
asynchronous parallel tasks,  

interacting  194-196
code, debugging  79-81
command time, evaluating  126, 127
cProfile, used for code profiling  127-130
debugging  80
IDEs, references  65
Integrated Development  

Environments (IDEs)  65
interactive computing workflows  63
Jupyter Notebook  64, 65
post-mortem mode  79
Python code, distributing across multiple 

cores  190-193
Terminal  64
text editor  64
URL  64

IPython Blocks
URL  86
used, as programming tutorial  

in Notebook  86-90
IPython configuration system

configurable class  31, 32
configuration file  31
configuration object  31
HasTraits class  31
Magics class  32
references  32
user profile  31

IPython extension
creating, with custom magic  

commands  24-27
InteractiveShell class  27
loading  28
references  28

IPython Notebook  2

IPython's configuration system
mastering  29-31

ipyvolume  229
ipywidgets

about  97-103
URL  103

Iris dataset
URL  327

Iris flower dataset
URL  327

IRkernel
URL  279

iterated functions
URL  418

J
Jacobian  505
Jacobian matrix  506
JavaScript Object Notation (JSON)  83
Jeffreys prior

URL  257
Jinja2

URL  97
Joblib

URL  68
Julia

references  207
URL  202
using, in Jupyter Notebook  202-206

Jupyter
about  2
kernel, creating  33-39

JupyterHub
about  85
URL  85

JupyterLab  
about  65, 84, 111-123
references  123

Jupyter Notebook
about  6-12
architecture  84
clients, connecting to kernel  84
configuring  107-110
converting, with nbconvert  91-97
data, analyzing with R  278-283
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exploratory data analysis  13-18
Julia, using  202-206
JupyterHub  85
programming tutorial,  

with IPython Blocks  86-90
references  12, 111
security  85
widgets  97-103

Just-In-Time (JIT) compilation
Python code, accelerating  161-164

K
Kaggle

references  299
URL  309

K-D trees  308
kernel

about  84, 188
clients, connecting  84
creating, for Jupyter  33-39
references  39

Kernel Density Estimation (KDE)
URL  273

K-means clustering algorithm
URL  332

K-nearest neighbors (K-NN) classifier
handwritten digits, recognizing  305-308

K-NN algorithm
references  309

Kolmogorov-Smirnov test
about  266
URL  267

L
L² norm  297
Langevin equation

about  444
URL  448

Laplacian matrix
about  456
URL  457

large arrays
manipulating, with Hierarchical Data Format 

(HDF5)  150-152

LaTeX
references  488
URL  91

L-BFGS-B algorithm
URL  358

least squares method
references  283

Leave-one-out cross-validation (LOOCV)  298
left singular vectors  327
Levenberg-Marquardt algorithm  351
Lévi function  345
linear algebra

references  493
linear combination  143
linear filter

about  373
applying, to digital signal  370-373
band-pass filter  375
convolution  374
filters, using in frequency domain  375
FIR  374, 375
high-pass filter  375
IIR filters  374, 375
low-pass filter  375
references  376

Linear Time-Invariant (LTI)  374
line_profiler

reference  133
used, for line-by-line code profiling  131-133

Lloyd's algorithm  332
load-balanced interface  192
locality of reference  139
local minimum  336
logic lectures

URL  504
logic module

URL  503
logistic map

URL  418
logistic regression

references  304
using, for prediction  299-303

loss function  296
Lotka-Volterra (predator-prey) equations

implementing  504-506
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Low Level Virtual Machine (LLVM)  163
low-pass filter  375
Lyapunov exponent

URL  419

M
machine learning

references  290
maps

references  452
Markov chain Monte Carlo (MCMC)  

method  273
Bayesian model, applying from posterior  

distribution  273-278
URL  278

Markov chains
references  438

Markov property
URL  434

mathematical function
minimizing  341-347
references, for root finding  341
root, finding  338-341

mathematical morphology
URL  396

mathematical morphology techniques  395
mathematical optimization

about  335
constrained optimization  337
deterministic algorithm  338
global minima  336, 337
local minima  336, 337
objective function  336
references  338
stochastic algorithm  338
unconstrained optimization  337
URL  348

MathJax  488
Matplotlib

about  3
dataset, exploring  245-248
URL  4

Matplotlib styles
references  213
using  209-212

matrix  22
matrix documentation

URL  507
Maximum a posteriori (MAP)  256, 257
maximum likelihood method

data, probability distribution  
applying  262-267

URL  267
memory mapping

used, for processing NumPy arrays  148, 149
memory_profiler

reference  135
used, for memory profiling  134, 135

Metaheuristics
URL  348

Metropolis-Hastings algorithm
about  273, 278
URL  278

Microsoft Visual Studio
URL  156

Milstein method
URL  448

model evaluation
URL  290

model selection
about  289
URL  290

Monte Carlo methods
URL  438

multidimensional array
using, in NumPy for array  

computations  19-23
multiprocessing module  190
multivariate method  243

N
Naive Bayes

for Natural Language Processing  309
Naive Bayes classifier

references  312
Natural Earth

URL  477
natural language processing

references  313
Navier-Stokes equations

URL  413
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nbconvert
Jupyter notebook, converting  92-97
URL  12, 97

nbconvert 
Jupyter notebook, converting  91
URL  91

nbformat
URL  91

nbviewer
URL  12, 97

NetworkX
flight routes, drawing  457-461
graphs, manipulating  453-456
graphs, visualizing  453-456

NetworkX graph
references  229
visualizing, in Notebook  

with D3.js  224-229
Neumann boundary conditions

URL  432
Newton's laws of motion

URL  426
Newton's method

about  341
reference  341
URL  348

nodes  450
noise reduction

URL  390
non-contiguous  137
nonlinear kernels  316
nonlinear least squares

function, fitting to data  349-351
references  351

nonlinear least squares curve fitting  349
nonparametric estimation  268
nonparametric model  245
Notebook

sound synthesizer, creating  408, 409
NPY file format 

reference  152
nteract  12
null hypothesis  249
Numba

about  154
Python code, accelerating  161-164

references  165
URL  161

number-theory module
references  501

Numerical Tours
URL  382

NumExpr
about  154
array computations, accelerating  165-167
references  167

NumPy
about  4
broadcasting rules  141
multidimensional array, using for array  

computations  19-23
references  24
stride tricks, using  142-144
unnecessary array copies, avoiding  135-138
URL  4

NumPy arrays
about  149
efficiency  139
processing, with memory mapping  148
reshaping, without copy  140, 141

NumPy broadcasting rules
about  141
references  141

NVIDIA graphics cards (GPUs)
massively parallel code,  

writing with CUDA  184-190
Nyquist criterion  361
Nyquist-Shannon sampling theorem  361

O
objective function  336
observation  286
offset  136
Online Python Tutor

reference  133
OpenCL  184
OpenCV (Open Computer Vision)

URL  382
used, for detecting faces in image  401-403

OpenFlights
URL  457
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OpenMP
used, for releasing GIL  182-184

ordinary differential equations
URL  507

Ordinary Differential Equations (ODEs)
about  412
references  426
simulating, with SciPy  422-425

Ordinary Least Squares (OLS) regression  296
Ornstein-Uhlenbeck process  444
orthodromic distance  486
Otsu's method

URL  396
outer product  138
out-of-core computations  148
overfitting

about  294
URL  289

P
pandas

about  3
dataset, exploring  245-248
references  249

pandas 0.21
URL  4

pandoc
URL  91

parameter vector  296
parametric estimation method  268
parametric method  244
partial derivatives  412
Partial Differential Equations (PDEs)

about  412
references  431
simulating  427-431

partitions  287
Pearson correlation coefficient

about  261
URL  261

physical system
equilibrium state, finding by potential energy 

minimization  352-357
pip  5
pipes  46
plate carrée  270

Plotly
URL  224

podoc module
URL  65

point process  438
points of interest

searching, of image  397-400
Poisson process

about  275
references  441
simulating  438-441
URL  275

polynomial interpolation
with linear regression  297

potential energy
URL  357

Power Spectral Density  365
prediction  243
prime-counting function  499
prime number theorem  499
principal component  327
principal component analysis (PCA)

about  324 
data dimensionality, reducing  324-327

principle of minimum energy
URL  358

principle of minimum total  
potential energy  357

prior probability distribution  253
probabilistic model  244
probability distribution

applying, to data with maximum likelihood 
method  262-267

probability distribution nonparametrically
estimating, with kernel density  

estimation  268-273
Probability Mass Function (PMF)  254
probit model

URL  287
profile  125
profiling  127
pstats

reference  131
pull request  62
pure tone  409
PyCall  207
PyCharm  65
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pydot  323
pyjulia  207
Pylint

URL  71
PyMC3

references  273
PyPy

URL  154
PyTables optimization guide

reference  152
py.test

unit tests, writing  73-77
Python

about  2
C library, wrapping with ctypes  167-171
compilers, using  156
installing  4, 5
profiling tools, reference  131
references  5, 155

Python 3
features, using  46-51
references  51, 52
URL  161

Python code
accelerating, with Cython  171-174
accelerating, with Just-In-Time  

|compilation  161-164
accelerating, with Numba  161-164
distributing, across multiple cores with  

IPython  190-193
improving  156-160
references  73
writing  70-72

Python debuggers
URL  81

Python Enhancement Proposal  
number 8 (PEP8)

URL  71
Python Package Index (PyPI)

URL  5
Python Tools for Visual Studio (PTVS)  65
pythreejs  229

Q
Quasi-Newton methods

about  347
URL  348

Quine-McCluskey algorithm
about  503
URL  504

R
R

data, analyzing in Jupyter  
Notebook  278-283

references  283
URL  278

Rackspace
URL  97

Radial Basis Function (RBF)  316
Random Access Memory (RAM)  139
random forest

about  319
used, for selecting features  

for regression  319-322
URL  323

RandomForestRegressor
URL, for API  323

random graphs  451
random subspace method  323

URL  323
random variable  253
Ray tracing

URL  182
reachability relation  471
reaction-diffusion systems

about  427
references  432
URL  432

Read-Evaluate-Print Loop (REPL)  84
real analysis

references  495
real-valued functions

analyzing  493, 494
rebasing  61
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red, green, and blue (RGB)  382
regions  477
regression  287
regression analysis

references  283
regularization

URL  289
regularization term  294
reproducible interactive  

computing experiments
conducting  66-69
references  69

RequireJS
URK  107

reStructuredText (reST)
URL  67

ridge regression  294, 297
RISE

URL  97
robust model  289
Rodeo  65
rolling average algorithm

about  145
implementing, with stride tricks  145-147

rolling mean  17
route planner

creating, for road network  481-486
row-major order  140
rpy2

URL  279
Rule 

about  110
URL  422

Rule 110 automaton  422
rule of thumb  272

S
Sage

about  488, 507-510
references  508-510
URL  507

sample  286
Scalable Vector Graphics (SVG)  10
scientific Python

references  6

scikit-learn
about  291-296
cross-validation  298
grid search  298
Ordinary Least Squares regression  296
polynomial interpolation,  

with linear regression  297
references  299
ridge regression  297
scikit-learn API  296
text data, handling  309-312
URL  289-308

SciPy
ODEs, simulating  422-425
URL  3

SciPy 1.0
URL  4

SciPy ecosystem  3, 4
Scott's Rule  272
seaborn

references  217, 218
statistical plots, creating  214-217

sequential locality  139
Shapefile

URL  477
shortest paths

in NetworkX, references  486
URL  451

sigmoid function  303
SIMD paradigm  184
Single Instruction, Multiple  

Data (SIMD)  135, 164
Singular Value Decomposition (SVD)  327
SnakeViz

reference  131
Sobel filter

URL  391
sounds  382
sound synthesizer

creating, in Notebook  408, 409
spam filtering  287
sparse decomposition  362
sparse matrices

about  149
reference  149

sparse matrix  310
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spatial locality   139
Sphinx

URL  67
Split Bregman algorithm

URL  391
Split Bregman method  390
Spyder  65
state diagram  437
statistical data analysis  242
statistical hypothesis testing

about  249-252
URL  252

statistical inference  243
Statistical Learning

URL  290
statistical plots

creating, with seaborn  214-217
statistics

references  245
stats module

URL  497
Stochastic cellular automata  433
Stochastic Differential Equations (SDEs)

about  434
simulating  444-447
URL  448

stochastic dynamical systems
URL  434

Stochastic Partial Differential  
Equations (SPDEs)  434

Stochastic processes
URL  434

stream processors  188
strided indexing scheme  143
strides  140
stride tricks

used, for implementing rolling average  
algorithm  145-147

using, in NumPy  142-144
structure tensor

about  400
URL  400

structuring element  396
Sum of Products

URL  503
supervised learning  286
Support Vector Classifier (SVC)  314

support vector machines (SVM)
references  318
URL  313
using, for classification tasks  313-318

SVD decomposition
URL  327

symbolic computing
exploring, with SymPy  488-491

SymPy
about  487
equations, solving  491, 492
inequalities, solving  491, 492
number theory  498-501
probabilities, computing  495-497
random variables, manipulating  495-497
used, for symbolic computing  

exploration  488-491
synthesizer

URL  410

T
t-Distributed Stochastic Neighbor  

Embedding (t-SNE)
references  333

term frequency-inverse document  
frequency (tf-idf)  312

URL  312
test-driven development (TDD)

about  78
URL  79

test functions for optimization
URL  345

test set  286
test statistic  249
text feature extraction

URL  312
thread  188
Tikhonov regularization

URL  297
timbre  409
time series

about  359, 379
autocorrelation, computing  376-379
references  379, 380

topological sort documentation
URL  467
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dependencies, resolving in directed  

acyclic graph  463-467
URL  467

total variation  390
total variation denoising  390
trace module

reference  133
training set  286
traitlets package

URL  29
transition matrix  437
Travis CI

URL  78
two-dimensional array  22

U
underfitting  289
Uniform Manifold Approximation  

and Projection (UMAP)
URL  332

uninformative priors
URL  257

unit tests
test coverage  78
workflows  78
writing, with py.test  73-77

univariate method  243
Unix shell

about  42-46
references  46

unsupervised learning
about  286, 287
clustering  288
density estimation  288
dimension reduction  288
manifold learning  288
methods  324
URL  328

V
Vandermonde matrix
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variable  286
variance  289

vector  22
vectorized instructions  139
vectorizer

URL  312
Vega  217, 234
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plots, creating  234-239
references  239

vertices  450
views  140
Viola-Jones object detection framework

about  402
URL  404

VirtualBox
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vocabulary  310
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computing, of set of points  471-477
URL  477

W
wavelet transform  369
white box model  323
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URL  156
Windows operating system

URL  42
Wolfram code

URL  422

X
xarray library

URL  224

Z
Zachary's Karate Club graph  225
ZeroMQ (ZMQ)

URL  84


	Cover

	Copyright
	Packt Upshell

	Contributors
	Packt is Searching for Authors Like You
	Table of Contents
	Preface
	Chapter 1: A Tour of Interactive Computing with  Jupyter and IPython

	Introduction
	Introducing IPython and the Jupyter Notebook
	Getting started with exploratory data analysis in the Jupyter Notebook
	Introducing the multidimensional array in NumPy for fast array computations
	Creating an IPython extension with custom magic commands
	Mastering IPython's configuration system
	Creating a simple kernel for Jupyter

	Chapter 2: Best Practices in Interactive Computing

	Introduction
	Learning the basics of the Unix shell
	Using the latest features of Python 3
	Learning the basics of the distributed version control system Git
	A typical workflow with Git branching
	Efficient interactive computing workflows with IPython
	Ten tips for conducting reproducible interactive computing experiments
	Writing high-quality Python code
	Writing unit tests with pytest
	Debugging code with IPython

	Chapter 3: Mastering the 
Jupyter Notebook

	Introduction
	Teaching programming in the Notebook with IPython Blocks
	Converting a Jupyter notebook to other formats with nbconvert
	Mastering widgets in the Jupyter Notebook
	Creating custom Jupyter Notebook widgets in Python, HTML, and JavaScript
	Configuring the Jupyter Notebook
	Introducing JupyterLab

	Chapter 4: Profiling and Optimization

	Introduction
	Evaluating the time taken by a command in IPython
	Profiling your code easily with cProfile 
and IPython
	Profiling your code line-by-line with 
line_profiler
	Profiling the memory usage of your code with memory_profiler
	Understanding the internals of NumPy to avoid unnecessary array copying
	Using stride tricks with NumPy
	Implementing an efficient rolling average algorithm with stride tricks
	Processing large NumPy arrays with memory mapping
	Manipulating large arrays with HDF5

	Chapter 5: High-Performance Computing

	Introduction
	Using Python to write faster code
	Accelerating pure Python code with Numba and Just-In-Time compilation
	Accelerating array computations with NumExpr
	Wrapping a C library in Python with ctypes
	Accelerating Python code with Cython
	Optimizing Cython code by writing less Python and more C
	Releasing the GIL to take advantage of 
	multi-core processors with Cython and OpenMP
	Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA
	Distributing Python code across multiple cores with IPython
	Interacting with asynchronous parallel tasks in IPython
	Performing out-of-core computations on large arrays with Dask
	Trying the Julia programming language in the Jupyter Notebook

	Chapter 6: Data Visualization

	Introduction
	Using Matplotlib styles
	Creating statistical plots easily with seaborn
	Creating interactive web visualizations with Bokeh and HoloViews
	Visualizing a NetworkX graph in the Notebook with D3.js
	Discovering interactive visualization libraries in the Notebook
	Creating plots with Altair and the Vega-Lite specification

	Chapter 7: Statistical Data Analysis

	Introduction
	Exploring a dataset with pandas and Matplotlib
	Getting started with statistical hypothesis testing — a simple z-test
	Getting started with Bayesian methods
	Estimating the correlation between two variables with a contingency table and a 
chi-squared test
	Fitting a probability distribution to data with the maximum likelihood method
	Estimating a probability distribution nonparametrically with a kernel density estimation
	Fitting a Bayesian model by sampling from a posterior distribution with a Markov chain Monte Carlo method
	Analyzing data with the R programming language in the Jupyter Notebook

	Chapter 8: Machine Learning

	Introduction
	Getting started with scikit-learn
	Predicting who will survive on the Titanic with logistic regression
	Learning to recognize handwritten digits with a K-nearest neighbors classifier
	Learning from text – Naive Bayes for Natural Language Processing
	Using support vector machines for classification tasks
	Using a random forest to select important features for regression
	Reducing the dimensionality of a dataset with a principal component analysis
	Detecting hidden structures in a dataset with clustering

	Chapter 9: Numerical Optimization

	Introduction
	Finding the root of a mathematical function
	Minimizing a mathematical function
	Fitting a function to data with nonlinear least squares
	Finding the equilibrium state of a physical system by minimizing its potential energy

	Chapter 10: Signal Processing

	Introduction
	Analyzing the frequency components of a signal with a Fast Fourier Transform
	Applying a linear filter to a digital signal
	Computing the autocorrelation of a time series

	Chapter 11: Image and Audio Processing

	Introduction
	Manipulating the exposure of an image
	Applying filters on an image
	Segmenting an image
	Finding points of interest in an image
	Detecting faces in an image with OpenCV
	Applying digital filters to speech sounds
	Creating a sound synthesizer in the Notebook

	Chapter 12: Deterministic Dynamical Systems

	Introduction
	Plotting the bifurcation diagram of a chaotic dynamical system
	Simulating an elementary cellular automaton
	Simulating an ordinary differential equation with SciPy
	Simulating a partial differential equation — reaction-diffusion systems and Turing patterns

	Chapter 13: Stochastic Dynamical Systems

	Introduction
	Simulating a discrete-time Markov chain
	Simulating a Poisson process
	Simulating a Brownian motion
	Simulating a stochastic differential equation

	Chapter 14: Graphs, Geometry, and Geographic Information Systems

	Introduction
	Manipulating and visualizing graphs with NetworkX
	Drawing flight routes with NetworkX
	Resolving dependencies in a directed acyclic graph with a topological sort
	Computing connected components in an image
	Computing the Voronoi diagram of a set of points
	Manipulating geospatial data with Cartopy
	Creating a route planner for a road network

	Chapter 15: Symbolic and Numerical Mathematics

	Introduction
	Diving into symbolic computing with SymPy
	Solving equations and inequalities
	Analyzing real-valued functions
	Computing exact probabilities and manipulating random variables
	A bit of number theory with SymPy
	Finding a Boolean propositional formula from a truth table
	Analyzing a nonlinear differential system — Lotka-Volterra (predator-prey) equations
	Getting started with Sage

	Another Book 
You May Enjoy
	Index



